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... both Gauss and lesser mathematicians may be justified in rejoic- 
ing that there is one science [number theory] at  any rate, and that 
their own, whose very remoteness from ordinary human activities 
should keep it gentle and clean. 

- G. H. Hardy, A Mathematician's Apology, 1940 

G. H. Hardy would have been surprised and probably displeased with 
the increasing interest in number theory for application to "ordinary human 
activities" such as information transmission (error-correcting codes) and 
cryptography (secret codes). Less than a half-century after Hardy wrote 
the words quoted above, it is no longer inconceivable (though it hasn't 
happened yet) that the N.S.A. (the agency for U.S. government work on 
cryptography) will demand prior review and clearance before publication 
of theoretical research papers on certain types of number theory. 

In part it is the dramatic increase in computer power and sophistica- 
tion that has influenced some of the questions being studied by number 
theorists, giving rise to a new branch of the subject, called "computational 
number theory." 

This book presumes almost no backgrourid in algebra or number the- 
ory. Its purpose is to introduce the reader to arithmetic topics, both ancient 
and very modern, which have been at the center of interest in applications, 
especially in cryptography. For this reason we take an algorithmic approach, 
emphasizing estimates of the efficiency of the techniques that arise from the 
theory. A special feature of our treatment is the inclusion (Chapter VI) of 
some very recent applications of the theory of elliptic curves. Elliptic curves 
have for a long time formed a central topic in several branches of theoretical 
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mathematics; now the arithmetic of elliptic curves has turned out to have 
potential practical applications as well. 

Extensive exercises have been included in all of the chapters in order 
to enable someone who is studying the material outside of a forrrial course 
structure to solidify her/his understanding. 

The first two chapters provide a general background. A student who 
has had no previous exposure to algebra (field extensions, finite fields) or 
elementary number theory (congruences) will find the exposition rather 
condensed, and should consult more leisurely textbooks for details. On the 
other hand, someone with more mathematical background would probably 
want to  skim through the first two chapters, perhaps trying some of the 
less familiar exercises. 

Depending on the students' background, it should be possible to cover 
most of the first five chapters in a semester. Alternately, if the book is used 
in a sequel to a one-semester course in elementary number theory, then 
Chapters 111-VI would fill out a second-semester course. 

The dependence relation of the chapters is as follows (if one overlooks 
some inessential references to earlier chapters in Chapters V and VI): 

Chapter I 

Chapter I1 

Chapter I11 Chapter V Chapter VI 

This book is based upon courses taught a t  the University of Wash- 
ington (Seattle) in 1985-86 and at  the Institute of Mathematical Sciences 
(Madras, India) in 1987. I would like to thank Gary Nelson and Douglas 
Lind for using the manuscript and making helpful corrections. 

The frontispiece was drawn by Professor A. T. Fomenko of Moscow 
State University to illustrate the theme of the book. Notice that the coded 
decimal digits along the walls of the building are not random. 

This book is dedicated to the memory of the students of Vietnam, 
Nicaragua and El Salvador who lost their lives in the struggle against 
U.S. aggression. The author's royalties from sales of the book will be used 
to buy mathematics and science books for the universities and institutes of 

Preface to the Second Edition 

As the field of cryptography expands to include new concepts and tech- 
niques, the cryptographic applications of number theory have also broad- 
ened. In addition to elementary and analytic number theory, increasing use 
has been made of algebraic number theory (primality testing with Gauss 
and Jacobi sums, cryptosystems based on quadratic fields, the number field 
sieve) and arithmetic algebraic geometry (elliptic curve factorization, c r y p  
tosystems based on elliptic and hyperelliptic curves, primality tests based 
on elliptic curves and abelian varieties). Some of the recent applications 
of number theory to cryptography - most notably, the number field sieve 
method for factoring large integers, which was developed since the appear- 
ance of the first edition - are beyond the scope of this book. However, 
by slightly increasing the size of the book, we were able to include some 
new topics that help convey more adequately the diversity of applications 
of number theory to this exciting multidisciplinary subject. 

The following list summarizes t.he main changes in the second edition. 
Several corrections and clarifications have been made, and many 

references have been added. 
A new section on zero-knowledge proofs and oblivious transfer has 

been added to Chapter IV. 
A section on the quadratic sieve factoring method has been added 

to Chapter V. 
Chapter VI now includes a section on the use of elliptic curves for 

primality testing. 
Brief discussions of the following concepts have been added: k- 

threshold schemes, probabilistic encryption, hash functions, the Chor- 
Rivest knapsack cryptosystem, and the U.S. government's new Digital Sig- 
nature Standard. 

those three countries. 

Seattle, May 1987 
Seattle, May 1994 
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Some Topics in Elementary 
Number Theory 

Most of the topics reviewed in this chapter are probably well known to most 
readers. The purpose of the chapter is to recall the notation and facts from 
elementary number theory which we will need to have at  our fingertips 
in our later work. Most proofs are omitted, since they can be found in 
almost any introductory textbook on number theory. One topic that will 
play a central role later - estimating the number of bit operations needed 
to perform various number theoretic tasks by computer - is not yet a 
standard part of elementary number theory textbooks. So we will go into 
most detail about the subject of time estimates, especially in $1.  

1 Time estimates for doing arithmetic 

Numbers in different bases. A nonnegative integer n written to the base b 
is a notation for n of the form (dk- 1 dk-2 . . dl where the d's are digits, 
i.e., symbols for the integers between 0 and b - 1; this notation means that 
n = dk- 1 bk-' + dk-2bk-2 + - . . + dl b + do. If the first digit dk- 1 is not zero, 
we call 7~ a k-digit base-b nu~nber. Any nur111xr between bk-' am1 bk is a 
k-digit number to the base 6. We shall omit the parentheses and subscript 
( a .  - ) b  in the case of the usual decirnal systern (b = 10) and occasionally in 
other cases as well, if the choice of base is clear from the context,, especially 
when we're using the binary systern (6 = 2). Since it is sometirnes useful to 
work in bases other than 10, one should get used to doing arithmetic in an 
arbitrary base and to converting from one base to another. We now rcview 
this by doing some examples. 
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Remarks. (1) nactions can also be expanded in any base, i.e., they 
can be represented in the form (dk-ldk-2. . dldOd-ld-2. . ) b .  (2) When 
b > 10 it is customary to use letters for the digits beyond 9. One could also 
use letters for all of the digits. 

Example 1. (a) (11001001)2 = 201. 
(b) When b = 26 let us use the letters A-Z for the digits 0-25, 

respectively. Then (BAD)26=679, whereas (B.AD)26 = 1 A. 
Example 2. Multiply 160 and 199 in the base 7. Solution: 

Example 3. Divide (1 1001001)2 by (1001 1 1)2, and divide (HAPPY)26 
by (SAD)26. 

Solution: 

110 
101 loolrl KD 

100111 ~11001001 SAD 
100111 GYBE 

101101 O L Y  

100111 -- CCAJ 

110 M LP 

Example 4. Convert lo6 to the bases 2, 7 and 26 (using the letters 
A-Z as digits in the latter case). 

Solution. To convert a number n to the base b, one first gets the last 
digit (the ones' place) by dividing n by b and taking the remainder. Then 
replace n by the quotient and repeat the process to get the second-tu-last 
digit dl, and so on. Here we find that 

Example 5. Convert rr = 3.1415926 . . to the base 2 (carrying out the 
computation 15 places to the right of the point) and to the base 26 (carrying 
out 3 places to the right of the point). 

Solution. After taking care of the integer part, the fractional part is 
converted to the base b by multiplying by b, taking the integer part of the 
result as d-1, then starting over again with the fractional part of what you 
now have, successively finding d-2, d-s, . . .. In this way one obtains: 

Number of digits. As mentioned before, an integer n satifying bk-' 5 
n < bk has k digits to the base b. By the definition of logarithms, this gives 
the following formula for the number of base-b digits (here "[ 1" denotes 
the greatest integer function): 

log n 
number of digits = [ logbn 1 + 1 = [ l o g b l  - + I ,  

where here (and from now on) "log" means the natural 1ogarit.hm log,. 
Bit operations. Let us start with a very simple arithmetic problem, the 

addition of two binary integers, for example: 

Suppose that the numbers are both k bits long (the word "bit" is short for 
"binary digit"); if one of the two integers has fewer bits than the other, we 
fill in zeros to the left, as in this example, to make them have the same 
length. Although this example involves small integers (adding 120 to 30), 
we should think of k as perhaps being very large, like 500 or 1000. 

Let us analyze in complete detail what this addition entails. Basically, 
we must repeat the following steps k times: 
1. Look a t  the top and bottom bit, and also at whether there's a carry 

above the top bit. 
2. If both bits are 0 and there is no carry, then put down 0 and move on. 
3. If either (a) both bits are 0 and there is a carry, or (b) one of the bits 

is 0, the other is 1, and there is no carry, then put down 1 and move 
on. 

4. If either (a) one of the bits is 0, the other is 1, and there is a carry, or 
else (b) both bits are 1 and there is no carry, then put down 0, put a 
carry in the next column, and move on. 

5. If both bits are 1 and there is a carry, then put down 1, put a carry in 
the next column, and move on. 
Doing this procedure once is called a hit operation. Adding two k-bit 

numbers requires k bit operations. We shall see that more complicated 
tasks can also be broken down into bit operations. The amount of time a 
computer takes to perform a task is essenti;tlly proportional to the number 
of bit opcratior~s. Of course, thc constant of ~)ro~)ortioriality - t tie ri~in~bcr 
of nanoseconds per bit operation --- depends on the particular computer 
system. (This is an over-sirnplification, sincc thc time can be affected by 
"administrative matters," such as accessilig memory.) When we speak of 
estimating the "time" it takes to accomplish something, we mean finding 
an estimate for the number of bit operations required. In thcse estimates 
we shall neglect the time required for "bookkeeping" or logical steps other 
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than the bit operations; in general, it is the latter which takes by far the 
most time. 

Next, let's examine the process of multiplying a k-bit integer by an 
&bit integer in binary. For example, 

Suppose we use this familiar procedure to multiply a k-bit integer n 
by an [-bit integer m. We obtain at  most f! rows (one row fewer for each 
0-bit in m), where each row consists of a copy of n shifted to the left 
a certain distance, i.e., with zeros put on at  the end. Suppose there are 
e' 5 f! rows. Because we want to break down all our computations into bit 
operations, we cannot simultaneously add together all of the rows. Rather, 
we move down from the 2nd row to the L'-th row, adding each new row to 
the partial sum of all of the earlier rows. At each stage, we note how many 
places to the left the number n has been shifted to form the new row. We 
copy down the right-most bits of the partial sum, and then add to n the 
integer formed from the rest of the partial sum - as explained above, this 
takes k bit operations. In the above example 11 101 x 1101, after adding the 
first two rows and obtaining 10010001, we copy down the last three bits 
001 and add the rest (i.e., 10010) to n = 11101. We finally take this sum 
10010 + 11101 = 101111 and append 001 to obtain 101111001, the sum of 
the f!' = 3 rows. 

This description shows that the multiplication task can be broken down 
into L' - 1 additions, each taking k bit operations. Since L' - 1 < L' 5 t ,  
this gives us the simple bound 

Time(multip1y integer k bits long by integer f! bits long) < kt. 

We should make several observations about this derivation of an esti- 
mate for the number of bit operations needed to perform a binary multipli- 
cation. In the first place, as mentioned before, we counted only the number 
of bit operations. We neglected to include the time it takes to shift the 
bits in n a few places to the left, or the time it takes to copy down the 
right-most digits of the partial sum corresponding to the places through 
which n has been shifted to the left in the new row. In practice, the shifting 
and copying operations are fast in comparison with the large number of bit 
operations, so we can safely ignore them. In other words, we shall define a 
"time estimate" for an arithmetic task to be an upper bound for the number 
of bit operations, without including any consideration of shift operations, 

changing registers ( "copying" ), memory access, etc. Note that this means 
that we would use the very same time estimate if we were multiplying a 
k-bit binary expansion of a fraction by an [-bit binary expansion; the only 
additional feature is that we must note the location of the point separating 
integer from fractional part and insert it correctly in the answer. 

In the second place, if we want to get a time estimate that is simple 
and convenient to work with, we should assume at various points that we're 
in the "worst possible case." For example, if the binary expansion of m has 
a lot of zeros, then e' will be considerably less than l .  That is, we could 
use the estimate Time(multip1y k-bit integer by [-bit integer) < k . (number 
of 1-bits in m). However, it is usually not worth the improvement (i.e., 
lowering) in our time estimate to take this into account, because it is more 
useful to have a simple uniform estimate that depends only on the size of 
m and n and not on the particular bits that happen to occur. 

As a special case, we have: Time(multip1y k-bit by k-bit)< k2. 
Finally, our estimate k l  can be written in terms of n and m if we 

remember the above formula for the number of digits, from which it follows 
that k = [log2 n] + 1 5 $ + 1 and 4? = [log2 m] + 1 < @ + 1. 

Example 6. Find an upper bound for the number of bit operations 
required to compute n!. 

Solution. We use the following procedure. First multiply 2 by 3, then 
the result by 4, then the result of that by 5, ..., until you get to n. At the 
( j  - 1)-th step ( j  = 2,3,.  . . , n - I) ,  you are multiplying j! by j + 1. Hence 
you have n - 2 steps, where each step involves multiplying a partial product 
(i.e., j!) by the next integer. The partial products will start to be very large. 
As a worst case estimate for the number of bits a partial product has, let's 
take the number of binary digits in the very last product, namely, in n!. 

To find the nurnber of bits in a product, we use the fact that the number 
of digits in the product of two numbers is either the sum of the number of 
digits in each factor or else 1 fewer than that sum (see the above discussion 
of multiplication). From this it follows that the product of n k-bit integers 
will have at most nk bits. Thus, if n is a k-lit integer - which i~nplies that 
every integer less than n has at most k bits - - then n! has at  most nk bits. 

Hence, in each of the n - 2 multiplications needed to compute n!, we are 
multiplying an integer with at most k bits (namely j + 1) by an integer with 
at most nk bits (namely j!). This roqnires at 111ost nk2 bit opcrations. We 
must do this n - 2 times. So the total number of hit operations is bounded 
by (n - 2)nk2 = n(n - 2)((10g2n] + I ) ~ .  Roughly speaking, the bound is 
approximately n2(10g2n)2. 

Example 7. Find an upper boilrid for the number of bit opcrations 
required to multiply a polynomial C aiz%f degree 5 n 1  and a polynomial 
C b3d  of degree < n2 whose coefficients arc positive integers < m. Suppose 
n2 I n1. 

Solution. To compute C,+j=, a, bj, which is the coefficient of xY in the 
product polynomial (here 0 5 v 5 nl + n2) requires at  most n2 + 1 multi- 
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plications and n2 additions. The numbers being multiplied are bounded by 
m, and the numbers being added are each at most m2; but since we have 
to add the partial sum of up to  n2 such numbers we should take n2m2 as 
our bound on the size of the numbers being added. Thus, in computing the 
coefficient of xu the number of bit operations required is a t  most 

Since there are n l  + n2 + 1 values of Y, our time estimate for the polynomial 
multiplication is 

A slightly less rigorous bound is obtained by dropping the l's, thereby 
obtaining an expression having a more compact appearance: 

log 2 +(logn2+2log m) 

Remark. If we set n = nl 2 n2 and make the assumption that m > 16 
and m 2 fi (which usually holds in practice), then the latter expression 
can be replaced by the much simpler 4n2(log2m)2. This example shows that 
there is generally no single "right answer" to the question of finding a bound 
on the time to execute a given task. One wants a function of the bounds 
on the imput data (in this problem, n l ,  n2 and m) which is fairly simple 
and at the same time gives an upper bound which for most input data is 
more-or-less the same order of magnitude as the number of bit operations 
that turns out to  be required in practice. Thus, for example, in Example 7 
we would not want to  replace our bound by, say, 4n2m, because for large 
m this would give a time estimate many orders of magnitude too large. 

So far we have worked only with addition and multiplication of a k-bit 
and an l-bit integer. The other two arithmetic operations - subtraction and 
division - have the same time estimates as addition and multiplication, 
respectively: Time(subtract k-bit from [-bit)< max(k, l);  Time(divide k- 
bit by &bit)< kl. More precisely, to treat subtraction we must extend our 
definition of a bit operation to include the operation of subtracting a O- 
or 1-bit from another 0- or 1-bit (with possibly a "borrow" of 1 from the 
previous column). See Exercise 8. 

To analyze division in binary, let us orient ourselves by looking at an 
illustration, such as the one in Example 3. Suppose k > l (if k < l ,  then 
the division is trivial, i.e., the quotient is zero and the entire dividend is the 
remainder). Finding the quotient and remainder requires a t  most k - l+ 1 
subtractions. Each subtraction requires l or l+ 1 bit operations; but in the 
latter case we know that the left-most column of the difference will always 
be a 0-bit , so we can omit that bit operation (thinking of it as "bookkeeping" 
rather than calculating). We similarly ignore other administrative details, 
such as the time required to compare binary integers (i.e., take just enough 

bits of the dividend so that the resulting irit cgcr is greater than t lie divisor), 
carry down digits, etc. So our estimate is simply (k - ! + l)!, which is 5 kl. 

Example 8. Find an upper bound for the number of bit operations it 
takes to compute the binomial coefficient (E). 

Solution. Since ( z )  = (,_",), without loss of generality we may as- 
sume that m 5 n/2. Let us use the following procedure to compute (:) = 
= n(n-l)(n-2) . . . (n-m+1)/(2.3. . - m). We have m-1 multiplications fol- 
lowed by m - 1 divisions. In each case the maximum possible size of the first 
number in the multiplication or division is n(n - 1) (n  - 2) . . . (n  - m + 1) < 
nm, and a bound for the second number is n. Thus, by the same argument 
used in the solution to Example 6, we see that a bound for the total num- 
ber of bit operations is 2(m - l)m([log2n] + I ) ~ ,  which for large m and n is 
essentially 2m2 (1 og2 n)2. 

We now discuss a very convcriient notation for suni~narizirig the situa- 
tion with time estimates. 

The big-0 notation. Suppose that f ( 7 t )  and g(n) are functions of the 
positive integers n which take positive (but not necessarily integer) values 
for all n. We say that f (n )  = O(g(n)) (or simply that f = O(g)) if there 
exists a constant C such that f (n) is always less than C.g(n).  For example, 
2n2 + 3n - 3 = 0 (n2 )  (namely, it is not hard to prove that the left side is 
always less than 3n2). 

Because we want to use the big-0 notation in more general situations, 
we shall give a more all-encompassing definition. Namely, we shall allow f 
and g to be functions of several variables, and we shall not be concerned 
about the relation between f and g for small values of n. Just as in the 
study of limits a? n ---t oo in calculus, here also we shall only be concerned 
with large val~ics of 11. 

Definition. Let f (nl , n2, . . . , n,) and g(nl , n2, . . . , n,) be two func- 
tions whose domains are subsets of the set of all r-tuples of positive inte- 
gers. Suppose that there exist constants B and C such that whenever all 
of the nj are greater than B the two f~inctions are defined and positive, 
and f (nl ,  n2,. . . ,n,) < Cg(nl ,  n2,. . . ,n,). In that case we say that f is 
bounded by g and we write f = O(g). 

Note that the "=" in the notation f = O(g) should be thought of as 
more like a "<" and the big-0 should be thought of as meaning "some 
constant multiple." 

Example 9. (a) Let f (n) be any polynomial of degree d whose leading 
coefficient is positive. Then it is easy to prove that f ( n )  = O(nd). hlore 
generally, one can prove that f = O(g) in any situation when f (n)/g(n) 
has a finite limit as n --+ oo. 

(b) If c is any positive number, no matter how small, then one can 
prove that logn = O(nC) (i.e., for large 11, the log function is smaller than 
any power function, no matter how small the power). In fact. this follows 
because l i m , , , ~  = 0, as one can prove usiug 1'HGpital's rule. 
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(c) If f (n) denotes the number k of binary digits in n, then it follows 
from the above formulas for k that f (n) = O(1ogn). Also notice that the 
same relation holds if f (n) denotes the number of base-b digits, where b is 
any fixed base. On the other hand, suppose that the base b is not kept fixed 
but is allowed to increase, and we let f (n, b) denote the number of base-b 
digits. Then we would want to use the relation f(n,  b) = o($). 

(d) We have: Time(n m) = O(1og n . log m) , where the left hand side 
means the number of bit operations required to multiply n by m. 

(e) In Exercise 6, we can write: Time(n!) = 0 ((n log n)2). 
(f) In Exercise 7, we have: 

111 our use, the functions f (n) or f (nl, n2,. . . , n,) will often stand 
for the amount of time it takes to perform an arithmetic task with the 
integer n or with the set of integers n l ,  n2,. . . , n, as input. We will want 
to obtain fairly simple-looking functions g(n) as our bounds. When we do 
this, however, we do not want to obtain functions g(n) which are much 
larger than necessary, since that would give an exaggerated impression of 
how long the task will take (although, from a strictly mathematical point 
of view, it is not incorrect to replace g(n) by any larger function in the 
relation f = O(g)). 

Roughly speaking, the relation f (n) = O(nd) tells us that the function 
f increases approximately like the d-th power of the variable. For example, 
if d = 3, then it tells us that doubling n has the effect of increasing f by 
about a factor of 8. The relation f (n) = O(logdn) (we write logdn to mean 
(log n)d) tells us that the function increases approximately like the d-th 
power of the number of binary digits in n. That is because, up to a constant 
multiple, the number of bits is approximately log n (namely, it is within 1 
of being log nllog 2 = 1.4427 log n). Thus, for example, if f (n) = 0(log3n), 
then doubling the number of bits in n (which is, of course, a much more 
drastic increase in the size of n than merely doubling n)  has the effect of 
increasing f by about a factor of 8. 

Note that to write f (n) = O(1) means that the function f is bounded 
by some constant. 

Remark. We have seen that, if we want to multiply two numbers of 
about the same size, we can use the estimate ~ime(k-bit-k-bit)=O(k2). It 
should be noted that much work has been done on increasing the speed 
of multiplying two k-bit integers when k is large. Using clever techniques 
of multiplication that are much more complicated than the grade-school 
method we have been using, mathematicians have been able to find a proce- 
dure for multiplying two k-bit integers that requires only O(k log k log log k) 
bit operations. This is better than 0(k2) ,  and even better than O(kl+') for 
any E > 0, no matter how small. However, in what follows we shall always 

be content to use the rougher estimates above for the time needed for a 
multiplication. 

In general, when estimating the number of bit operations required to 
do something, the first step is to decide upon and write down an outline 
of a detailed procedure for performing the task. An explicit skp-by-step 
procedure for doing calculations is called an algorithm. Of course, there 
may be many different algorithms for doing the same thing. One may choose 
to use the one that is easiest to write down, or one may choose to use the 
fastest one known, or else one may choose to compromise and make a trade- 
off between simplicity and speed. The algorithm used above for multiplying 
n by m is far from the fastest one known. But it is certainly a lot faster 
than repeated addition (adding n to itself m timcs). 

Example 10. Estimate the time required to convert a k-bit integer to 
its representation in the base 10. 

Solution. Lct 7~ be a k-bit iritcgcr writ,l,tm ill binary. Thc c.or1vcrsio11 
algorithm is as follows. Divide 10 = (1010)2 into n. The remainder - which 
will be one of the integers 0, 1, 10, 11, 100, 101, 110, 11 1, 1000, or 1001 
- will be the ones digit 6. Now replace n by the quotient and repeat the 
process, dividing that quotient by (1010)2, using the remainder as d l  and 
the quotient as the next number into which to divide (1010)2. This process 
must be repeated a number of times equal to the number of decimal digits in 

n,  which is [%] +1 = O(k). Then we're done. (We might want to take our 

list of decimal digits, i.e., of remainders from all the divisions, and convert 
them to the more familiar notation by replacing 0, 1, 10, 11, . . . ,1001 by 
0, 1, 2, 3,. . . ,9, respectively.) How many bit operations does this all take? 
Well, we have O(k) divisions, each requiring O(4k) operations (dividing a 
number with at most k bits by the 4-bit nurnber (1010)2). But O(4k) is the 
same as O(k) (constant factors don't matter in the big-0 notatlion), so we 
conclude that the total number of bit operations is O(k) .  O(k) = 0(k2) .  If 
we want to express this in terms of n rather than k, then since k = O(1og n), 
we can write 

Time(convert n to decimal) = 0(log2n). 

Example 11. Estimate the tirric required to convert a k-bit integer n 
to its representation in the base 6, where b might be very large. 

Solution. Using the same algorithm as in Example 10, except dividing 
now by the !-bit integer b, we find that each division now takes longer (if 
e is large), namely, O(k!) bit operations. How many timcs do we have to 
divide? Here notice that the number of base-b digits in n is O(k/!) (see 
Example 9(c)). Thus, the total number of bit. operations required to do all 
of the necessary divisions is O(k/t) . O(kP) = 0(k2) .  This turns out to be 
the same answer as in Examplo 10. That is, our estimate for the conversion 
time does not depend upon the base to which we're converting (no matter 
how large it may be). This is because t,he great-cr time required to find each 
digit is offset by the fact that there are fewer digits to be found. 
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Example 12. Express in terms of the 0-notation the time required to 
compute (a) n!, (b) (z )  (see Examples 6 and 8). 

Solution. (a) 0(n210g2n), (b) 0(m210g2n). 

In concluding this section, we make a definition that is fundamental in 
computer science and the theory of algorithms. 

Definition. An algorithm to perform a computation involving integers 
711, n2, . . . , n,. of kl, k2,.  . . , k, bits, respectively, is said to be a polynomial 
time algorithm if there exist integers dl,  d2, . . . , d, such that the number of 
bit operations required to perform the algorithm is O(kfl k$ . k,".). 

Thus, the usual arithmetic operations +, -, x, + are examples of 
polynomial time algorithms; so is conversion from one base to another. 
On the other hand, computation of n! is not. (However, if one is satisfied 
with knowing n! to only a certain number of significant figures, e.g., its 
first 1000 binary digits, then one can obtain that by a polynomial time 
algorithm using Stirling's approximation formula for n!.) 

Exercises 

Multiply (212)3 by (122)3. 
Divide (40122)7 by (126)7. 
Multiply the binary numbers 101101 and 11001, and divide 10011001 
by 1011. 
In the base 26, with digits A--Z representing 0-25, (a) multiply YES 
by NO, and (b) divide JQVXHJ by WE. 
Write e = 2.7182818. . (a) in binary 15 places out to the right of the 
point, and (b) to the base 26 out 3 places beyond the point. 
By a "pure repeating" fraction of "period" f in the base b, we mean a 
number between 0 and 1 whose base-b digits to the right of the point 
repeat in blocks of f .  For example, 113 is pure repeating of period 1 
and 117 is pure repeating of period 6 in the decimal system. Prove that 
a fraction cld (in lowest terms) between 0 and 1 is pure repeating of 
period f in the base b if and only if bf - 1 is a multiple of d. 
(a) The "hexadecimal" system means b = 16 with the letters A-F 
representing the tenth through fifteenth digits, respectively. Divide 
(131B6C3)16 by (lA2F)16. 
(b) Explain how to convert back and forth between binary and hex- 
adecimal representations of an integer, and why the time required is 
far less than the general estimate given in Example 11 for converting 
from binary to base-b. 
Describe a subtraction-type bit operation in the same way as was done 
for an addition-type bit operation in the text (the list of five alterna- 
t ives) . 

9. (a) Using the big-0 notation, estimate in terms of a simple function of 
n the number of bit operations required to compute 3n in binary. 
(b) Do the same for n? 

10. Estimate in terms of a simple function of n and N the number of bit 
operations required to compute N? 

11. The following formula holds for the sum of the first n perfect squares: 

(a) Using the big-0 notation, estimate (in terms of n)  the number of 
bit operations required to perform the computations in the left side of 
this equality. 
(b) Estimate the number of bit operations required to perform the 
computations on the right in this equality. 
Using the big4 notation, estimate the number of bit operations re- 
quired to multiply an r x n-matrix by an n x s-matrix, where all matrix 
entries are < m. 
The object of this exercise is to estimate as a function of n the number 
of bit operations required to compute the product of all prime num- 
bers less than n. Here we suppose that we have already compiled an 
extremely long list containing all primes up to n. 
(a) According to the Prime Number Theorem, the number of primes 
less than or equal to n (this is denoted ~ ( n ) )  is asymptotic to n/log 71. 

This means that the following limit approaches 1 as n ---+ oo: 
lirn -$$. Using the Prime Nunhcr Theorem, estimatr the 11urnl)er 
of binary digits in the product of all primes less than n. 
(b) Find a bound for the number of bit operations in one of the mul- 
tiplications that's required in the computation of this product. 
(c) Estimate the number of bit operations required to compute the 
product of all prime numbers less than n. 

14. (a) Suppose you want to test if a large odd number n is a prime by 
trial division by all odd numbers 5 Jn. Estimate the number of bit 
operations this will take. 
(b) In part (a), suppose you have a list of prime numbers up to f i ,  
and you test primality by trial division by those primes (i.e., no longer 
running through all odd numbers). Give a time estimate in this case. 
Use the Prime Number Theorem. 

15. Estimate the time required to test if n is divisible by a prime < m. 
Suppose that you have a list of all primes < m, and again use the 
Prime Number Theorem. 

16. Let n be a very large integer written in binary. Find a simple algorithm 
that computes [fi] in 3(log3n) bit operations (here [ ] denotes the 
greatest integer functicn) 
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2 Divisibility and the Euclidean algorithm 

Divisors and divisibility. Given integers a and b, we say that a divides b (or 
"b is divisible by a") and we write alb if there exists an integer d such that 
b = ad. In that case we call a a divisor of b. Every integer b > 1 has a t  least 
two positive divisors: 1 arid b. By a proper divisor of b we mean a positive 
divisor not equal to b itself, and by a nontrivial divisor of b we mean a 
positive divisor not equal to 1 or b. A prime number, by definition, is an 
integer greater than one which has no positive divisors other than 1 and 
itself; a number is called composite if it has a t  least one nontrivial divisor. 
The following properties of divisibility are easy to verify directly from the 
definition: 
1. If a)b and c is any integer, then albc. 
2. If alb and blc, then alc. 
3. Ifalbandalc,  t hena lb f  c. 
If p is a prime number and a is a nonnegative integer, then we use the 
notation pQ(lb to mean that pa is the highest power of p dividing b, i.e., 
that palb and pa+'fi. In that case we say that pa exactly divides b. 

The Fundamental Theorem of Arithmetic states that any natural num- 
ber n can be written uniquely (except for the order of factors) as a product 
of prime numbers. It is customary to write this factorization as a product of 
distinct primes to the appropriate powers, listing the primes in increasing 
order. For example, 4200 = 23 - 3  52 -7.  

Two consequences of the Fundamental Theorem (actually, equivalent 
assertions) are the following properties of divisibility: 
4. If a prime number p divides ab, then either pla or plb. 
5. If mJa  and nJa,  and if m and n have no divisors greater than 1 in 

common, then mnla. 
Another consequence of unique factorization is that it gives a system- 

atic method for finding all divisors of n once n is written as a product of 
prime powers. Namely, any divisor d of n must be a product of the same 
primes raised to powers not exceeding the power that exactly divides n. 
That is, if palln, then $lid for some p satisfying 0 < @ < a. To find the 
divisors of 4200, for example, one takes 2 to the 0-, I-, 2- or 3-power, mul- 
tiplied by 3 to  the 0- or l-power, times 5 to the 0-, l- or 2-power, times 
7 to the 0- or 1- power. The number of possible divisors is thus the prod- 
uct of the number of possibilities for each prime power, which, in turn, is 
a + 1. That is, a number n = py1p;2 . . . pFr has (a l  + 1)(a2 + 1) . (a, + 1) 
different divisors. For example, there are 48 divisors of 4200. 

Given two integers a and 6, not both zero, the greatest common divisor 
of a and b, denoted g.c.d.(a, b) (or sometimes simply (a, b)) is the largest 
integer d dividing both a and b. It is not iislrd to show that another equiv- 
alent definition of g.c.d.(a, 6) is the following: it is the only positive integer 
d which divides a and b and is divisible by any other number which divides 
both a and b. 

If you happen to have the prime factorization of a and b in front of you, 
then it's very easy to write down g.c.d.(a, 6). Simply take all primes which 
occur in both factorizations raised to the minimum of the two exponents. 
For example, comparing the factorization 10780 = 22 . 5  - 72 . 11 with the 
above factorization of 4200, we see that g.c.d.(4200,10780) = 22.5.7 = 140. 

One also occasionally uses tlie least cornmon multzple of a and 6, tie- 
noted l.c.m.(a, b). It is the smallest positive integer that both a and b divide. 
If you have the factorization of a and b, then you can get l.c.m.(a, b) by tak- 
ing all of the primes which occur in either factorization raised to the maxi- 
mum of the exponents. It is easy to prove that l.c.m.(a, b) = Jabl/g.c.d.(a, b). 

The Euclidean algorithm. If you're working with very large numbers, 
it's likely that you won't know their prime factorizations. In fact, an impor- 
tant area of research in number theory is the search for quicker methods of 
factoring large integers. Fortunately, there's a relatively quick way to find 
g.c.d.(a, b) even when you have no idea of the prime factors of a or b. It's 
called the Euclidean algorithm. 

The Euclidean algorithm works as follows. To find g.c.d.(a, b), where 
a > b, we first divide b into a and write down the quotient ql and the 
remainder r l :  a = qlb + rl. Next, we perform a second division with b 
playing the role of a and rl playing the role of b: b = q2rl + 7-2. Next, 
we divide r 2  into r l :  rl = q3r2 + r3. We continue in this way, each time 
dividing the last remainder into the second-to-last remainder, obtaining 
a new quotient and remainder. When we finally obtain a remainder that 
divides the previous remainder, we are done: that final nonzero remainder 
is the greatest common divisor of a and b. 

Example 1. Find g.c.d.(1547,560). 
Solution: 

1547 = 2 ~ 5 6 0  + 427 

Since 7121, we are done: g.c.d.(1547,560) = 7. 
Proposition 1.2.1. The Euclidean algorithm always gives the greatest 

common divisor in a finite number of steps. In addition, for a > b 

Time(finding g.c.d.(a, b) by the Euclidean algorithm) = 0(log3(a)). 

Proof. The proof of the first assertion is given in detail in many ele- 
mentary number theory textbooks, so we merely summarize the argument. 
First, it is easy to see that the remainders are strictly decreasing from one 
step to the next, and so must eventually reach zero. To see that the iast 
remainder is the g.c.d., use tlie second definition of the g.c.d. That is, i f  any 
number divides both a and b, it must divide r l ,  and then, since it divides 
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b and rl, it must divide r2, and so on, until you finally conclude that it 
must divide the last nonzero remainder. On the other hand, working from 
the last row up, one quickly sees that the last remainder must divide all of 
the previous remainders and also a and 6. Thus, it is the g.c.d., because the 
g.c.d. is the only number which divides both a and b and at  the same time 
is divisible by any other number which divides a and 6. 

We next prove the time estimate. The main question that must be 
resolved is how many divisions we're performing. We claim that the re- 
mainders are not only decreasing, but they're decreasing rather rapidly. 
More precisely: 

Claim. r j + 2  < irj .  
Proof of claim. First, if rj+l < irj, then immediately we have r j + 2  < 

rj+l < f r j .  SO suppose that rj+l > irj. In that case the next division 
gives: rj = 1 . rj+l + rj+2, and SO r j + 2  = rj - rj+l < f r j ,  as claimed. 

We now return to the proof of the time estimate. Since every two steps 
must result in cutting the size of the remainder a t  least in half, and since 
the remainder never gets below 1, it follows that there are a t  mast 2. [log2a] 
divisions. This is O(log a). Each division involves numbers no larger than 
a,  and so takes 0(log2a) bit operations. Thus, the total time required is 
O(1og a).  0(log2a) = 0(log3a). This concludes the proof of the proposition. 

Remark. If one makes a more careful analysis of the number of bit 
operations, taking into account the decreasing size of the numbers in the 
successive divisions, one can improve the time estimate for the Euclidean 
algorithm to 0(log2a). 

Proposition 1.2.2. Let d = g.c.d.(a, b), where a > b. Then there exist 
integers u and v such that d = ua + bv. In  other words, the g.c.d. of two 
numbers can be expressed as a linear combination of the numbers with in- 
teger coeficients. In addition, finding the integers u and v can be done in 
0(log3a) bit operations. 

Outline of proof. The procedure is to use the sequence of equalities in 
the Euclidean algorithm from the bottom up, a t  each stage writing d in 
terms of earlier and earlier remainders, until finally you get to a and 6. At 
each stage you need a multiplication and an addition or subtraction. So it 
is easy to see that the number of bit operations is once again 0(log3a). 

Example 1 (continued). To express 7 as a linear combination of 1547 
and 560, we successively compute: 

Definition. We say that two integers a and b are relatively prime (or 
that, "a is prime to 6") if g.c.d.(a, 6) = 1, i.e., if they have no common 

divisor greater than 1. 
Corollary. If a > b are relatively prime in,tqqcrs, then 1 can bc written as 

an integer linear combinntion of a and 6 in polynomial time, more precisely, 
in 0(log3a) bit operations. 

Definition. Let n be a positive integer. The Euler phi-function cp(n) is 
defined to be the number of nonnegative integers b less than n which are 
prime to n: 

p(n)  = I {0 < b < n 1 g.c.d.(b, n) = 1) 1. 
def 

It is easy to see that p(1) = 1 and that cp(p) = p - 1 for any prime p. 
We can also see that for any prime power 

To see this, it suffices to note that the numbers from 0 to pa - 1 which are 
not prime to pa are precisely those that are divisible by p, and there are 
pa-1 of those. 

In the next section we shall show that the Euler cp-function has a 
"multiplicative property" that enables us to evaluate p(n)  quickly, provided 
that we have the prime factorization of n. Namely, if n is written as a 
product of powers of distinct primes pq then it turns out that cp(n) is equal 
to the product of the cp(pa). 

Exercises 

1. (a) Prove the following properties of the relation pa lib: (i) if pa I la and 
#Jib, then pa+ollab; (ii) if pal la, #lib arid a < 8, then palla f 6. 
(b) Find a counterexample to the assertion that, if palla and pa)lb, 
then palla + 6. 

2. How many divisors does 945 have? List them all. 
3. Let n be a positive odd integer. 

(a) Prove that there is a 1-to-1 correspondence between the divisors 
of n which are < Jn and those that are > Jn. (This part does not 
require n to be odd.) 
(b) Prove that there is a 1-to-1 corresponde~ice between all of the divi- 
sors of n which are 2 Jn and all the ways of writing 71 as a difference 
s2 - t2 of two squares of nonnegative iritegers. (For example, 15 has 
two divisors 6, 15 tliat are > 6, a d  15 = 4' - l 2  = 82 - 72.) 
(c) List all of the ways of writing 945 as a difference of two squares of 
nonnegative integers. 

4. (a) Show that the power of a prime p wliic.li cxactly divides n! is equal 
to [nip] + + [n/P:3] + . - .. (Notiw that, this is n finite su111.) 
(b) Find the power of each prirric 2, 3, 5, 7 tliat exactly divides 100!, 
and then write out the entire prirric factorization of loo!. 



I.  Some Topics in Elementary Number Theory 

(c) Let Sb(n) denote the sum of the base-b digits in n. Prove that the 
exact power of 2 that divides n! is equal to n - S2 (n). Find and prove a 
similar formula for the exact power of an arbitrary prime p that divides 
n! . 
Find d = g.c.d.(360,294) in two ways: (a) by finding the prime factor- 
ization of each number, and from that finding the prime factorization 
of d; and (b) by means of the Euclidean algorithm. 
For each of the following pairs of integers, find their greatest common 
divisor using the Euclidean algorithm, and express it as an integer 
linear combination of the two numbers: 
(a) 26, 19; (b) 187, 34; (c) 841, 160; (d) 2613, 2171. 
One can often speed up the Euclidean algorithm slightly by allowing 
divisions with negative remainders, i.e., T j  = q,+2r,+l- ~ j + 2  as well as 
rj = qj+zrj+l+ rj+2, whichever gives the smallest r j + 2 .  In this way we 
always have r j + 2  < f rj+ Do the four examples in Exercise 6 using 
this method. 
(a) Prove that the following algorithm finds d = g.c.d.(a, b) in finitely 
many steps. First note that g.c.d.(a, b) = g.c.d.(lal, lbl), so that without 
loss of generality we may suppose that a and b are positive. If a and 
b are both even, set d = 2d' with d' = g.c.d.(a/2, b/2). If one of 
the two is odd and the other (say b) is even, then set d = d with 
d' = g.c.d.(a, b/2). If both are odd and they are unequal, say a > b, 
then set d = d' with d' = g.c.d.(a - b, b). Finally, if a = b, then set 
d = a. Repeat this process until you arrive at  the last case (when the 
two integers are equal). 
(b) Use the algorithm in part (a) to find g.c.d.(2613,2171) working in 
binary, i.e., find 

(c) Prove that the algorithm in part (a) takes only 0(log2a) bit oper- 
ations (where a > b). 
(d) Why is this algorithm in the form presented above not necessarily 
preferable to the Euclidean algorithm? 
Suppose that a is much greater than b. Find a big-0 time estimate for 
g.c.d.(a, b) that is better than 0(log3a). 
The purpose of this problem is to find a "best possible" estimate for the 
number of divisions required in the Euclidean algorithm. The Fibonacca 
numbers can be defined by the rule fl = 1, f2 = 1, fn+l = fn + 
fn-, for n > 2, or, equivalently, by means of the matrix equation 

fn )=(;  ;)n. (fj:l fn-1 

(a) Suppose that a > b > 0, and it takes k divisions to find g.c.d.(a, b) 
by the Euclidean algorithm (the standard version given in the text, 
with nonnegative remainders). Show that a > fk+2. 

(b) Using the matrix 
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definition of f,, prove that 

1+A 
where a = -  , I - &  

2 Oi=-. 2 

(c) Using parts (a) and (b), find an upper bound for k in terms of a .  
Compare with the estimate that follows from the proof of Proposition 
1.2.1. 
The purpose of this problem is to find a general estimate for the time 
required to compute g.c.d.(a, 6 )  (where a > b) that is better than the 
estimate in Proposition 1.2.1. 
(a) Show that the number of bit operations required to perform a 
divison a = qb + r is O((log b)(l + log q ) ) .  
(b) Applying part (a) to all of the O(1og a )  divisions of the form ri-1 = 

qi+lri + ri+l, derive the time estimate O((log b)(log a)). 
Consider polynomials with real coefficients. (This problem will apply 
as well to polynomials with coefficients in any field.) If f and g are two 
polynomials, we say that f lg if there is a polynomial h such that g = 
fh .  We define g.c.d.(f,g) in essentially the same way as for integers, 
namely, as a polynomial of greatest degree which divides both f and 
g. The polynomial g.c.d.( f ,  g) defirled in this way is not unique, since 
we can get another polynomial of the same degree by multiplying by 
any nonzero constant. However, we can make it unique by requiring 
that the g.c.d. polynomial be monic, i.e., have leading coefficient 1. 
We say that f and g are relatively prime polynomials if their g.c.d. is 
the "constant polynomial" 1. Devise a procedure for finding g.c.d.'s of 
polynomials - namely, a Euclidean algorithm for polynomials - which 
is completely analogous to the Euclidean algorithm for integers, and 
use it to find (a) g.c.d.(x4 + x2 + 1, x2 + I), and (b) g.c.d.(x4 - 4x3 + 
6x2 - 4x + 1, x3 - x2 + x - 1). In each case find polynomials u(x) and 
v(x) such that the g.c.d. is expressed as u(x) f (x) + v(x)g(x). 
From algebra we know that a polynomial has a multiple root if and 
only if it has a common factor with its derivative; in that case the 
multiple roots of f (x) are the roots of g.c.d.(f, f'). Find the multiple 
roots of the polynomial x4 - 2x3 - x2 + 22 + 1. 
(Before doing this exercise, recall how to do arithmetic with complex 
numbers. Remember that, since (a+ 62) (a - bi) is the real number a2 + bq 
one can divide by writing (c + di)/(a + bi) = (c + di)(a - bi)/(a2 + b2).) 
The Gaussian integers are the complex n~imbers whose real and imag- 
inary parts are integers. In the corrq~lcx planc they are the vertices of 
the squares that make up the grid. If cr and ,O are two Gaussian inte- 
gers, we say that crlP if there is a Guassian integer y such that ,O = cry. 
We define g.c.d.(ry, f j l )  to he a Gaussian int,egcr 6 of maximurn ahsolute 
value which divides both cr and P ( r c cd  that the ahsolute value 161 
is its distance from 0, i.e., the square root of the sum of the squares 
of its real and imaginary parts). The g.c.d. is not uniaue. because we 
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can multiply it by f 1 or f i and obtain another 6 of the same absolute 
value which also divides a and P. This gives four possibilities. In what 
follows we will consider any one of those four possibilities to be "the" 
g.c.d. 
Notice that any complex number can be written as a Gaussian inte- 
ger plus a complex number whose real and imaginary parts are each 
between 4 and - i. Show that this means that we can divide one 
Gaussian integer a by another one /3 and obtain a Gaussian integer 
quotient along with a remairder which is less than in absolute value. 
Use this fact to devise a Euclidean algorithm which finds the g.c.d. 
of two Gaussian integers. Use this Euclidean algorithm to find (a) 
g .c.d. (5 + 6i, 3 - 2i), and (b) g.c.d. (7 - 1 li, 8 - 1%). In each case ex- 
press the g.c.d. as a linear combination of the form ua + up, where u 
and v are Gaussian integers. 

15. The last problem can be applied to obtain an efficient way to write 
certain large primes as a sum of two squares. For example, suppose 
that p is a prime which divides a number of the form b6 + 1. We want 
to write p in the form p = c2 + d2 for some integers c and d. This is 
equivalent to finding a nontrivial Gaussian integer factor of p, because 
c2 + d2 = (C + di)(c - di). We can proceed as follows. Notice that 

b6 + 1 = (b2 + l)(b4 - b2 + 1)) and b4 - b2 + 1 = (b2 - 1)2 + b2. 

By property 4 of divisibility, the prime p must divide one of the two 
factors on the right of the first equality. If plb2 + 1 = (b + i)(b - i), 
then you will find that g.c.d.(p, b+i) will give you the desired c+di. If 
plb4 - b2 + 1 = ((b2 - 1) + bi) ((b2 - 1) - bi) , then g.c.d.(p, (b2 - 1) + bi) 
will give you your c + di. 
Example. The prime 12277 divides the second factor in the product 
206 + 1 = (202 + l)(204 - 202 + 1). So we find g.c.d.(12277, 399 + 20i): 

so that the g.c.d. is 89 + 664 i.e., 12277 = 8g2 + 66f 
(a) Using the fact that 1g6 + 1 = 2 . 1 3 ~  -181 .769 and the Euclidean al- 
gorithm for the Gaussian integers, express 769 as a sum of two squares. 
(b) Similarly, express the prime 3877, which divides 1 5 ~  + 1, as a sum 
of two squares. 
(c) Express the prime 38737, which divides 236 + 1, as a sum of two 
squares. 

3 Congruences 

Basic properties. Given three integers a ,  b and m, we say that "a is con- 
gruent to b modulo m" and write a r b mod m, if the difference a - b is 
divisible by m. m is called the modulus of the congruence. The following 
properties are easily proved directly from the definition: 

(i) a = a mod m; (ii) a = b mod m if and only if b = a mod m; (iii) 
if a r b mod m and b = c mod m, then a r c mod m. For fixed m, 
(i) -(iii) Incan that corrgrucrlce r~iocl~ilo ~ r t  is an r~quivalcncc rrlation. 
For fixed m, each equivalence class with respect to congruence modulo 
m has one and only one representative between 0 and m - 1. (This 
is just another way of saying that any integer is congruent modulo 
m to one and only one integer between 0 and m - 1.) The set of 
equivalence classes (called residue classes) will be denoted Z/mZ. Any 
set of representatives for the residue classes is called a complete set of 
residues modulo m. 
If a = b mod m and c - d mod m, tlicn n f c r b f d mod 7n and 
ac -= bd mod m. In other words, congruences (with the same rnodu- 
lus) can be added, subtracted, or multiplied. One says that the set of 
equivalence classes ZlmZ is a commutative ring, i.e., residue classes 
can be added, subtracted or multiplied (with the result not depend- 
ing on which representatives of the equivalence classes were used), and 
these operations satisfy the familiar axioms (associativity, commuta- 
tivity, additive inverse, etc.). 
If a - b mod m, then a - b mod d for any divisor dim. 
If a = b mod m, a EZ b mod n, and m and n are relatively prime, then 
a - b mod mn. (See Property 5 of divisibility in 5 1.2.) 
Proposition 1.3.1. The elements of Z/nsZ which have multiplicative 

inverses are those which are relatively prime to m, i.e., the numbers a for 
which there exists b with ab z 1 mod m are precisely those a for 
which g.c.d.(a, m) = 1. In addition, if g.c.d.(a, nt) = 1, then such an inverse 
b can be found in 0(log3m) bit operations. 

Proof. First, if d = g.c.d. (a, m) were greater than 1, we could not have 
ab - 1 mod m for any b, because that would irrlply that d divides ah - 1 
and hence divides 1. Conversely, if g.c.d.(a, rn) = 1, then by Property 2 
above we may suppose that a < m. Then, by Proposition 1.2.2, there exist 
integers u and v that can be found in 0(log"7n) bit operations for which 
ua + vm = 1. Choosing b = u, we see that m(1 - UCL = 1 - ab, as desired. 

Remark. If g.c.d.(a, m) = 1, then by rlcgabive powers a-n mod rn we 
mean the n-th power of the inverse residue class, i.e., it is represented by 
the n-th power of any integer b for which ah = 1 mod m. 

Example 1. Find 160-' mod 841, i.e., the inverse of 160 modulo 841. 
Solution. By Exercise 6(c) of the last section, the answer is 205. 

Corollary 1. If p is a prime number, then every nonzero residue class 
has a multiplicative inverse which can be found in U(log") bit operations. 



20 I. Some Topics in Elementary Number Theory 3 Congruences 21 

We say that the ring Z/pZ is a field. We often denote this field Fp, the 
'3eZd of p elements." 

Corollary 2. Suppose we want to solve a linear congruence ax r 
b mod m, where without loss of genemlity we may assume that 0 < a, b < m. 
First, if g.c.d. (a, m) = 1, then there is a solution xo which can be found in 
0(log3m) bit operations, and all solutions are of the form x = xo + mn for 
n an integer. Next, suppose that d = g.c.d.(a, m). There &ts a solution if 
and only if dlb, and in that case our congruence is equivalent (in the sense 
of having the same solutions) to the congruence a'+ r b' mod m: where 
a ' =  ald, b'= bld, m '=  mld. 

The first corollary is just a special case of Proposition 1.3.1. The second 
corollary is easy to prove from Proposition 1.3.1 and the definitions. As 
in the case of the familiar linear equations with real numbers, to solve 
linear equations in Z lmZ one multiplies both sides of the equation by the 
multiplicative inverse of the coefficient of the unknown. 

In general, when working modulo m, the analogy of "nonzero" is often 
"prime to m." We saw above that, like equations, congruences can be added, 
subtracted and multiplied (see Property 3 of congruences). They can also 
be divided, provided that the "denominator" is prime to m. 

Corollary 3. If a = b mod m and c = d mod m, and if g.c.d.(c,m) = 1 
(in which case also g.c.d.(d, m) = I), then ac-' = bd-' mod m (where c-' 
and d-' denote any integers which are inverse to c and d modulo m). 

To prove Corollary 3, we have c(ac-' - bd-') = (acc-' - bdd-') = 
a - b = 0 mod m, and since m has no common factor with c, it follows that 
m must divide ac-' - bd-? 

Proposition 1.3.2 (Fermat's Little Theorem). Let p be a prime. Any 
integer a satisfies aP = a mod p, and any integer a not divisible by p 
satisfies ap-' = 1 mod p. 

Proof. First suppose that p ,fa. We first claim that the integers 
On, l a ,  2a, 3a, . . . , (p - l ) a  are a complete set of residues modulo p. To see 
this, we observe that otherwise two of them, say ia  and ja ,  would have to 
be in the same residue class, i.e., ia  ZE j a  mod p. But this would mean that 
pl(i - j)a, and since a is not divisible by p, we would have pli - j. Since i 
and j are both less than p, the only way this can happen is if i = j .  We 
conclude that the integers a ,  2a, . . . , (p - l ) a  are simply a rearrangement of 
1, 2,. . . , p - 1 when considered modulo p. Thus, it follows that the product 
of the numbers in the first sequence is congruent modulo p to the product 
of the numbers in the second sequence, i.e., a ~ - ' ( ~  - I)! (p - I)! mod p. 
Thus, - l)!(apel - 1)). Since (p - I)! is not divisible by p, we have 
pl(a~-l  - I) ,  as required. Finally, if we multiply both sides of the congru- 
ence ap-' - 1 mod p by a ,  we get the first congruence in the statement of 
the proposition in the case when a is not divisible by p. But if a is divisible 
by p, then this congruence aP E a mod p is trivial, since both sides are 

0 mod p. This concludes the proof of the proposition. 

Corollary. If a is not divisible by p and if n = m mod (p - 1)) then 
an = am mod p. 

Proof of corollary. Say n > m. Since p - l ln - m, we have n = m + 
c(p- 1) for some positive integer c. Then multiplying the congruence ap-' = 
1 mod m by itself c times and then by am = am mod p gives the desired 
result: an - am mod p. 

Example 2. Find the last base7  digit in 21000000 
Solution. Let p = 7. Since 1000000 leaves a remainder of 4 when divided 

by p - 1 = 6, we have 21°00000 = Z4 = 16 5 2 mod 7, so 2 is the answer. 
Proposition 1.3.3 (Chinese Remainder Theorem). Suppose that we want 

to solve a system of congruences to diferent moduli: 

x = a1 mod ml,  

x - a2 mod ma, 

x - a, mod m,. 

Suppose that each pair of moduli is relatively prime: g.c.d.(mi, mj) = 1 
for i # j. Then there exists a simultaneous solution x to all of the con- 
gruences, and any two solutions are congruent to one another modulo 
M = mlm2..-m,.  

Proof. First we prove uniqueness modulo M (the last sentence). S u p  
pose that x' and x" are two solutions. Let x = x' - x'! Then x must be 
congruent to 0 modulo each m,, and hence modulo M (by Property 5 a t  
the beginning of the section). We next show how to construct a solution x. 

Define Mi = M/m, to be the product of all of the moduli except for the 
i-th. Clearly 9.c.d. (mi, Mi) = 1, and so there is an integer Ni (which can be 
found by means of the Euclidean algorithm) such that M,N, 1 mod m,. 
Now set x = xi a,MiNi. Then for each i we see that the terms in the sum 
other than the i-th term are all divisible by m,, because milM, whenever 
j # i. Thus, for each i we havc:: x = a, M, N, = a, mod m,, as clnirccl. 

Corollary. The Euler phi-function is  multiplicative^ meaning that 
'p(mn) = p(m)rp(n) whenever 9.c.d. (m, n)  = 1. 

Proof of corollary. We must count the number of integers between 0 
and mn - 1 which have no common factor with mn. For each j in that 
range, let jl be its least nonnegative residue modulo m (i.e., 0 < jl < m 
and j = jl mod m) and let j2 be its leavt nonnegative residue mothlo n 
(i.e., 0 5 j2 < n and j = j2 mod n). It follows from the Chinese Remainder 
Theorem that for each pair j l ,  j2 there is one and only one j between 0 and 
mn- 1 for which j = jl mod m, j 5 j2 mod n. Notice that j has no common 
factor with mn if and only if it has no comrnori factor with m -- which is 
equivalent to jl having no common factor with m - and it has no common 
factor with n - which is equivalent to jz having no common factor with 
n. Thus, the j's which we must count are in 1-to-1 correspondence with 
the pairs jl, j2 for which 0 5 jl < m, g.c.d.(jl, m) = 1; 0 5 j2 < n,  
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g.c.d.(j2, n) = 1. The number of possible j i s  is p(m), and the number of 
possible j j s  is p(n). So the number of pairs is p(m)p(n). This proves the 
corollary. 

Since every n can be written as a product of prime powers, each of 
which has no common factors with the others, and since we know the for- 
mula p(pa) = pa(l - :), we can use the corollary to conclude that for 
n = p;+lp;2 . . .pFr: 

As a consequence of the formula for p(n), we have the following fact, 
which we shall refer to later when discussing the RSA system of public key 
cryptography. 

Proposition 1.3.4. Suppose that n is known to be the pmduct of two 
distinct primes. Then knowledge of the two primes p, q is equivalent to 
knowledge of p(n). More precisely, one urn compute p(n) from p, q in 
O(1ogn) bit operations, and one can compute p and q from n and p(n) in 
0(log3n) bit operations. 

Proof. The proposition is trivial if n is even, because in that case we 
immediately know p = 2, q = n/2, and p(n) = n/2 - 1; so we suppose 
that n is odd. By the multiplicativity of p, for n = pq we have p(n) = 
(p - l)(q - 1) = n + 1 - (p+ q). Thus, p(n) can be found from p and q using 
one addition and one subtraction. Conversely, suppose that we know n and 
p(n),  but not p or q. We regard p, q as unknowns. We know their product 
n and also their sum, since p + q = n + 1 - p(n). Call the latter expression 
2b (notice that it is even). But two numbers whose sum is 2b and whose 
product is n must be the roots of the quadratic equation x2 - 2bx + n = 0. 
Thus, p and q equal b f JG. The most time-consuming step is the 
evaluation of the square root, and by Exercise 16 of 5 1.1 this can be done 
in 0(log3n) bit operations. This completes the proof. 

We next discuss a generalization of Fermat's Little Theorem, due to 
Euler . 

Proposition 1.3.5. If g.c.d.(a, m) = 1, then a ~ ( ~ )  1 mod m. 
Proof. We first prove the proposition in the case when m is a prime 

power: m = p? We use induction on a. The case a = 1 is precisely Fermat's 
Little Theorem (Proposition 1.3.2). Suppose that a 2 2, and the formula 

a-l-pa-2 

holds for the ( a  - 1)-st power of p. Then aP = 1 +pa-lb for some 
integer b, by the induction assumption. Raising both sides of this equation 
to the p t h  power and using the fact that the binomial coefficients in (1 +x)P 
are each divisible by p (except in the 1 and XP at  the ends), we see that 

-pa - 1 is equal to 1 plus a sum with each term divisible by p? That is, 
aV(pa) - 1 is divisible by pa, as desired. This proves the proposition for 
prime powers. 

Finally, by the multiplicativity of cp, it is clear that 3 1 mod pa 
(simply raise both sides of a'(*a) z 1 mod pa to the appropriate power). 
Since this is true for each pa((m,  and since the different prime powers have 
no common factors with one another, it follows by Property 5 of congruences 
that = 1 mod m. 

Corollary. If g.c.d.(a, m) = 1 and if n' is the least nonnegative residue 
of n modulo ~ ( r n ) ,  then an - an' mod m. 

This corollary is proved in the same way as the corollary of Proposition 
1.3.2. 

Remark. As the proof of Proposition 1.3.5 makes clear, there's a smaller 
power of a which is guaranteed to give 1 mod m: the least common multiple 
of the powers that give 1 mod pa for each pa(Jm. For example, a12 - 
1 mod 105 for a prime to 105, because 12 is a multiple of 3 - 1, 5 - 1 and 
7 - 1. Note that ~ ( 1 0 5 )  = 48. Here is another example: 

Example 3. Compute 21000000 mod 77. 
Solution. Because 30 is the least common multiple'of (p(7) = 6 and 

cp(l1) = 10, by the above remark we have 2") = 1 mod 77. Since 1000000 = 
- 30.33333+10, it follows that 21°00000 = 21° = 23 mod 77. A second method 

of solution would be first to compute 21000"00 mod 7 (since 1000000 = 
6 . 166666 + 4, this is 24 r 2) and also 210000"o mod 11 (since lO00OOU is 
divisible by 11 - 1, this is I), and then use the Chinese Remainder Theorem 
to find an x between 0 and 76 which is = 2 mod 7 and - 1 mod 11. 

Modular exponentiation by the repeated squaring method. A ha- 
sic computation one often encounters in modular arithmetic is finding 
bn mod m (i.e., finding the least noi~negative residue) when both m and 
n are very large. There is a clever way of doing this that is rmch quicker 
than repeated multiplication of b by itself. In what follows we shall assume 
that b < m, and that whenever we perform a multiplication we then im- 
mediately reduce mod m (i.e., replace the product by its least nonnegative 
residue). In that way we never encounter any integers greater than m2 We 
now describe the algorithm. 

Use a to denote the partial product. Whcii we're done, we'll have a 
equal to the least nonnegative residue of b ' h o d  m. We start out with 
a = 1. Let no, n l , .  . . ,nk-1 denote the binary digits of n, i.e., n = no + 
2nl + 4n2 + + 2k-1nk-I. Each n, is 0 or 1. If no = 1, change a to b 
(otherwise keep a = 1). Then square b, arid sot bl = b2 mod nl (i.e., bl is 
the least nonnegative residue of b2 mlod 7 7 1 ) .  If nl = 1, multiply a by bl 
(and reduce mod m); otherwise keep o unclmigcd. Next square bl, and set 
b2 = b: mod m. If n2 = 1, multiply a by b2; otherwise keep a rincllanged. 
Continue in this way. You see that in thc j-tli step you havc corriputed 
bj = b2' mod m. If n, = 1, i.c., if 23 occurs in thc binary expansion of n,  
then you include bj in the product for o (if 23 is absent from n, then yo11 do 
not). It is easy to see that after the ( k  - 1)-st step you'll have the desired 
a = bn mod m. 
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How many bit operations does this take? In each step you have either 
1 or 2 multiplications of numbers which are less than m? And there are 
k - 1 steps. Since each step takes 0(log2(m2))= 0(log2m) bit operations, 
we end up with the following estimate: 

Proposition 1.3.6. Time(bn mod m) = O((1og n)(Zog2m)). 
Remark. If n is very large in Proposition 1.3.6, you might want to 

use the corollary of Proposition 1.3.5, replacing n by its least nonnegative 
residue modulo ip(m). But this requires that you know ip(m). If you do know 
p(m), and if g.c.d.(b, m) = 1, so that you can replace n by its least nonneg- 
ative residue modulo ip(m), then the estimate on the right in Proposition 
1.3.6 can be replaced by 0(Zog3m). 

As a final application of the mult iplicat ivity of the Euler pfunction, 
we prove a formula that will be used at  the beginning of Chapter 11. 

Proposition 1.3.7. Cdln ip(d) = n. 
Proof. Let f (n) denote the left side of the equality in the proposition, 

i.e., f (n) is the sum of ip(d) taken over all divisors d of n (including 1 and 
n). We must show that f (n) = n. We first claim that f (n) is multiplica- 
tive, i.e., that f(mn) = f(m)f(n) whenever g.c.d.(m,n) = 1. To see this, 
we note that any divisor dlmn can be written (in one and only one way) 
in the form dl d2, where dllm, d21n. Since g.c.d.(dl,d2) = 1, we have 
ip(d) = p(dl)9(d2), because of the multiplicativity of ip. We get all possible 
divisors d of mn  by taking all possible pairs dl, d2 where dl is a divisor 
of m and d2 is a divisor of n. Thus, f (mn) = Cdllm Cdlln ip(dl)ip(da) = 

(zdl lm v(d1)) ( z d 2 ( n  'P(d2)) = f (m)f (n), as 'laimed' Now to prove the 
proposition suppose that n = pyl .- .pFr is the prime factorization of n. 
Bv the multiplicativity of f ,  we find that f (n) is a product of terms of 
the form f (pa). SO it suffices to prove the proposition for pq i.e., to prove - .- , 
that f (pa) = p9 But the divisors of pa are p' for 0 5 j 5 a, and so 
f (pa) = Cy='=n ip(p') = 1 + C;==l (p' - p'-l) = p9 This proves the proposi- 
tion for eJ& hence for all n. 

Exercises 

1. Describe all of the solutions of the following congruences: 

(a) 3x r 4 mod 7; (d) 27x 25 mod 256; 

(b) 32 = 4 mod 12; (e) 272 = 72 mod 900; 

(c) 92 = 12 mod 21; (f) 1 0 5  = 612 mod 676. 

2. What are the possibilities for the last hexadecimal digit of a perfect 
square? (See Exercise 7 of 5 1.1 .) 

3. What are the possibilities for the last base-12 digit of a product of two 
consecutive positive odd numbers? 
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Prove that a decimal integer is divisible by 3 if and only if the sum of 
its digits is divisible by 3, and that it is divisible by 9 if and only if the 
sum of its digits is divisible by 9. 
Prove that n5 - n is always divisible by 30. 
Suppose that in tiling a floor that is 8 ft x 9 ft, you bought 72 tiles a t  
a price you cannot remember. Your receipt gives the total cost before 
taxes as some amount under $100, hut the first and last digits are 
illegible. It reads $?0.6?. How much did the tiles cost? 
(a) Suppose that m is either a power pa of a prime p > 2 or else 
twice an odd prime power. Prove that, if x2 = 1 mod m, then either 
x r 1 m o d m o r x ~ - l m o d m .  
(b) Prove that part (a) is always false if m is not of the form pa or 2p4 
and m # 4. 
(c) Prove that if m is an odd number which is divisible by r different 
primes, then the congruence x2 = 1 mod m has 2' different solutions 
between 0 and m. 
Prove "Wilson's Theorem," which states that for any prime p: (p- l)! = 
-1 mod p. Prove that (n - I)! is not congruent to -1 mod n if n is not 
prime. 
Find a 3-digit (decimal) number which leaves a remainder of 4 when 
divided by 7, 9, or 11. 
Find the smallest positivc integer which leaves a remainder of 1 when 
divided by 11, a remainder of 2 when divided by 12, and a remainder 
of 3 when divided by 13. 
Find the smallest nonnegative solution of each of the following systems 
of congruences: 

(a) x - 2 mod 3 (b) x = 12 mod 31 (c) 19x r 103 mod 900 
x e 3 mod 5 x = 87 mod 127 lox 2 511 mod 841 
x r 4 mod 11 x = 91 mod 255 

x r 5 mod 16 

Suppose that a 3-digit (decimal) positive integer which leaves a re- 
mainder of 7 when divided by 9 or 10 and 3 when divided by 11 goes 
evenly into a six-digit natural number which leaves a remainder of 8 
when divided by 9, 7 when divided by 10, and 1 when divided by 11. 
Find the quotient. 
In the situation of Proposition 1.3.3, suppose that 0 < aj < m j < B for 
all j, where B is some large bound on the size of the moduli. Suppose 
that r is also large. Find an estimate for the nurnhcr of bit operations 
required to solve the system. Your time estimate should be a function 
of B and r, and should allow for the possibility that r is either very 
large or very small compared to the n~iriitxr of bits in B. 
Use the repeated squaring method to find 3875 mod 103. 
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In exact integer arithmetic (rather than modular arithmetic) does the 
repeated squaring met hod save time? Explain, using big-0 estimates. 
Notice that for a prime to p, a ~ - ~  is an inverse of a modulo p. Suppose 
that p is very large. Compare using the repeated squaring method to 
find with the Euclidean algorithm as an efficient means to find 
a-' mod p when (a) a has almost as many digits as p, and (b) when a 
is much smaller than p. 
Find p(n) for all m from 90 to 100. 
Make a list showing all n for which p(n) < 12, and prove that your list 
is complete. 
Suppose that n is not a perfect square, and that n- 1 > rp(n) > n-n2I3 
Prove that n is a product of two distinct primes. 
If m 2 8 is a power of 2, show that the exponent in Proposition 1.3.5 
can be replaced by p(m)/2. 
Let m = 7785562197230017200 = 24 . 33 . 52 7 e l 1  - 13  19 31 -37 -41  . 
61 - 7 3  181. 
(a) Find the least nonnegative residue of 6647362 mod m. 
\ I 

(b) Let a be a positive integer less than m which is prime to m. 
First, find a positive power of a less than 500 which is certain to give 
a-' mod m. Next, describe an algorithm for finding this power of a 
working modulo m. How many multiplications and divisions are needed 
to carry out this algorithm? (Reducing a number modulo m counts as 
one division.) What is the maximum number of bits you could en- 
counter in the integers that you work with? Finally, give a good esti- 
mate of the number of bit operations needed to find a-' mod m by 
this method. (Your answer should be a specific number - do not use 
the big-0 notation here.) 
Give another proof of Proposition 1.3.7 as follows. For each divisor d of 
n, let Sd denote the subset (actually a so-called "subgroup") of Z/nZ 
consisting of all multiples of nld. Thus, Sd has d elements. 
(a) Prove that Sd has p(d) different elements x which generate Sd, 
meaning that the multiples of x (considered modulo n) give all elements 
of Sd. 
(b) Prove that every element of x generates one of the Sd, and hence 
that the number of elements in Z/nZ is equal to the sum (taken over 
divisors d) of the number of elements that generate Sd. In light of part 
(a), this gives Proposition 1.3.7. 
(a) Using the Fundamental Theorem of Arithmetic, prove that 

all primes p * P 

diverges to infinity. 
(b) Using part (a), prove that the sum of the reciprocals of the primes 
diverges. 
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(c) Find a sequence nj  approaching cc for which l im , , , a  = 1 
I 

and a s r q ~ ~ w c c  n, for wliirli lin,, +, E F ~  = 0. 
24. Let N be an extremely large secret intcge; used to unlock a missile sys- 

tem, i.e., knowing N would enable one to launch the missiles. Suppose 
you have a commanding general and n different lieutenant generals. 
In the event that the commanding general (who knows N) is inc~pac- 
itated, you want the lieutenant generals each to have enough partial 
information about N so that any three of them (but never two of them) 
can agree to launch the missiles. 
(a) Let pl,  . . . ,pn be n different primes, all of which are greater than 

but much sn~aller than fl. Using the pi, describe the partial 
information about N that should be given to the lieutenant generals. 
(b) Generalize this system to the situation where you want any set 
of k (k > 2) of the lieutenant generals, working together, to be able 
to launch the missiles (but a set of k - 1 of them can never unlock 
the system). Such a set-up is called a k-threshold system for sharing a 
secret. 

4 Some applications to factoring 

Proposition 1.4.1. For any integer b and any positive integer n, bn - 1 is 
divisible by b - 1 with quotient bn-I + bn-2 + - + b2 + b + 1. 

Proof. We have a polynomial identity coming from the following fact: 1 
is a root of xn - 1, and so the linear term x - 1 must divide xn - 1. Namely, 
polynomial division gives xn - 1 = (x - l)(x7'-I + x " - ~  + . . . + x2 + x + 1). 
(Alternately, we can derive this by multiplying x by xn-' + + - - - + 
x2 + x + 1, then subtracting xn-' + x " - ~  + . - .  + x2 + x + 1, and finally 
obtaining xn - 1 after all the canceling.) Now we get the proposition by 
replacing x by 6. 

A second proof is to use arithmetic in the base 6. Written to the base 
6, the number bn - 1 consists of n digits b - 1 (for example, lo6 - 1 = 
999999). On the other hand, bn-' + bn-2 + . . . + b2 + b + 1 consists of 
n digits all 1. Multiplying 11 1 - . 11 1 by the 1-digit number 6 - 1 gives 
(6- l ) (b-  l ) (b-  1)-(6- l ) (b-  l ) (b-  I)(, = bn - 1. 

Corollary. For any integer b and any positive integers m and n ,  we 
have bmn - 1 = (bm - 1)(bm("-1) + bm(n-2) + . . . + b2m + bm + 1 ) .  

Proof. Simply rcplace b by bm in the last proposition. 
As an example of the use of this corollary, we see that 235 - 1 is divisible 

by 25 - 1 = 31 and by 27 - 1 = 127. Nar~loly, we set b = 2 and either 
m = 5, n = 7 or else m = 7, n = 5. 

Proposition 1.4.2. Suppose that h is primo t o rn. and  (1 and r (~1.e positive 
integers. If ba = 1 mod m and hr = 1 mod nr , and if d = 9.c.d. (u ,  c) , then 
bd = 1 mod m. 
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Proof. Using the Euclidean algorithm, we can write d in the form 
ua + vc, where u and v are integers. I t  is easy to see that one of the two 
numbers u, v is positive and the other is negative or zero. Without loss of 
generality, we may suppose that u > 0, v < 0. Now raise both sides of the 
congruence ba = 1 mod m to the u-th power, and raise both sides of the 
congruence bc = 1 mod m to the (-v)-th power. Now divide the resulting 
two congruences, obtaining: baU-'(-') G 1 mod rn. But au + m = dl so the 
proposition is proved. 

Proposition 1.4.3. If p is a prime dividing bn - 1, then either (i) ( bd - 1 
for some proper divisor d of n ,  or else (ii) p = 1 mod n. If p > 2 and n is 
odd, then in case (ii) one has p r 1 mod 2n. 

Proof. We have bn z 1 mod p and also, by Fermat's Little Theorem, 
we have bP-l = 1 mod p. By the above proposition, this means that bd = 
1 mod p, where d = g.c.d.(n, p - 1). First, if d < n, then this says that 
p I bd - 1 for a proper divisor d of n,  i.e., case (i) holds. On the other hand, 
if d = n, then, since dip - 1, we have p = 1 mod n. Finally, if p and n are 
both odd and n 1 p - 1 (i.e., we're in case (ii)), then obviously 2111 p - 1. 

We now show how this proposition can be used to factor certain types 
of large integers. 

Examples 

1. Factor 211 - 1 = 2047. If p1211 - 1, by the theorem we must have 
p = 1 mod 22. Thus, we test p = 23, 67, 89,. . . (actually, we need go 
no farther than = 45. . . .). We immediately obtain the prime 
factorization of 2047: 2047 = 23 . 89. In a very similar way, one can 
quickly show that 213 - 1 = 8191 is prime. A prime of the form 2" - 1 
is called a "Mersenne prime." 

2. Factor 312 - 1 = 531440. By the proposition above, we first try the 
factors of the much smaller numbers 3' - 1, 32 - 1, 33 - 1, 34 - 1, and 
the factors of 3" 1 = (33 - 1 ) ( 3 ~  + 1) which do not already occur in 
33 - 1. This gives us 24 5 . 7  13. Since 531440/(2~ 5 .  7 13) = 73, 
which is prime, we are done. Note that, as expected, any prime that 
did not occur in 3d - 1 for d a proper divisor of 12 - namely, 73 - 
must be r 1 mod 12. 

3. Factor 235 - 1 = 34359738367. First we consider the factors of 2d - 1 
for d = 1, 5, 7. This gives the prime factors 31 and 127. Now (235 - 
l)/(31 . 127) = 8727391. According to the proposition, any remaining 
prime factor must be = 1 mod 70. So we check 71, 21 1, 281, ..., looking 
for divisors of 8727391. At first, we might be afraid that we'll have 
to check all such primes less than 48727391' = 2954.. . .. However, we 
immediately find that 8727391 = 71 122921, and then it remains to 
check only up to = 350. . .. We find that 122921 is prime. 
Thus, 235 - 1 = 31 71 . 127 122921 is the prime factorization. 
Remark. In Example 3, how can one do the arithmetic on a calculator 

that only shows, say, 8 decimal places? Simply break up the numbers into 
sections. For example, when we compute Z35 we reach the limit of our 
calculator display with 226 = 67108864. To multiply this by Z9 = 512, 
we write 235 = 512 (67108 - 1000 + 864) = 34359296 . 1000 + 442368 = 
34359738368. Later, when we divide 235- 1 by 31.127 = 3937, we first divide 
3937 into 34359738, taking the integer part of the quotient: (-1 = 
8727. Next, we write 34359738 = 3937 - 8727 + 1539. Then 

Exercises 

Give two different proofs that if n is odd, then bn + 1 = (b + l)(bn-' - 
bnF2 + . + bZ - b + 1). In one proof use a polynomial identity. In the 
other proof use arithmetic to the base b. 
Prove that if 2" - 1 is a prime, then n is a prime, and that if 2n + 1 
is a prime, then n is a power of 2. The first type of prime is called a 
"Mersenne prime," as mentioned above, and the second type is called 
a "Fermat prime." The first few Mersenne primes are 3, 7, 31, 127; the 
first few Fermat primes are 3, 5, 17, 257. 
Suppose that b is prime to m, where m > 2, and a and c are positive 
integers. Prove that, if ba = -1 mod 711 and bc E f 1 mod m, and if 
d = g.c.d.(a, c), then bd = -1 mod m, and a/d is odd. 
Prove that, if p 1 bn + 1, then either (i) p 1 bd + 1 for some proper divisor 
d of n for which n l d  is odd, or else (ii) p - 1 mod 2n. 
Let m = 224 + 1 = 16777217. 
(a) Find a Fermat prime which divides m. 
(b) Prove that any other prime is _= 1 mod 48. 
(c) Find the complete prime factorization of m. 
Factor 315 - 1 and 324 - 1. 
Factor 512 - 1. 
Factor lo5 - 1, lo6 - 1 and lo8 - 1. 
Factor 233 - 1 and 221 - 1. 
Factor 215 - 1, 230 - 1, and 260 - 1. 
(a) Prove that if d = g.c.d.(m,n) and a > 1 is an integer, then 
g.c.d.(am - 1, an  - 1) = ad - 1. 
(b) Suppose you want to multiply two k-bit integers a and b, where k 
is very large. Let e be a fixed integer much smaller than k. Choose a set 
of m,, 1 < i < r, such that 4 < m, <[for all i and g.c.d.(mi,mj) = 1 
for i # j. Choose r = [4k/lf + 1. Suppose that a large integer such as 
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a is stored as an r-tuple (a l , .  . . , a,), where ai is the least nonnegative 
residue of a mod 2mi - 1. Prove that a,  b and ab are each uniquely 
determined by the corresponding r-tuple, and estimate the number of 
bit operations required to find the r-tuple corresponding to ab from 
the r-tuples corresponding to  a and b. 

References for Chapter I 

3. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. 
Wagstaff, Jr., Factorizations of bn f 1, b = 2,3,5,6,7,10,11,12, up to 
High Powers, Amer. Math. Society, 1983. 
L. E. Dickson, History of the Theory of Numbers, three volumes, 
Chelsea, 1952. 
R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 
1982. 
G. H. Hardy and E. M. Wright, An Introduction to the Theory of 
Numbers, 5th ed., Oxford University Press, 1979. 
W. J . LeVeque, Ftrndamentals of Number Theory, Addison-Wesley, 
1977. 
H. Rademacher, Lectures on Elementary Number Theory, Krieger, 
1977. 
K. H. Rosen, Elementary Number Theory and its Applications, 3rd ed., 
Addison-Wesley, 1993. 
M. R. Schroeder, Number Theory in Science and Communication, 2nd 
ed., Springer-Verlag, 1986. 
D. Shanks, Solved and Unsolved Problems in Number Theory, 3rd ed., 
Chelsea Publ. Co., 1985. 
W. Sierpinski, A Selection of Problems in the Theory of Numbers, Per- 
gamon Press, 1964. 
D. D. Spencer, Computers in Number Theory, Computer Science Press, 
1982. 

Finite Fields and Quadratic 
Residues 

In this chapter we shall assume familiarity with the basic definitions and 
properties of a field. We now briefly recall what we need. 
1. A field is a set F with a multiplication arid addition operation which 

satisfy the familiar rules associativity and commutativity of both 
addition and multiplication, tlic distributive law, existence of an ad- 
ditive identity 0 and a m~iltiplicative irlc~~tity 1, additive invcrscs, and 
multiplicative inverses for cverytliirig exccyt 0. The following ex:imples 
of fields are basic in many areas of mathematics: (1) the field Q con- 
sisting of all rational numbers; (2) the ficld R of real numbers; (3) the 
field C of complex numbers; (4) the ficltl Z l p Z  of integers modulo a 
prime riuniber p. 

2. A vector space can be defined over any ficld F by the same properties 
that are used to define a vector spacc over the real numbers. Any 
vector space has: a basis, and the nurnhcr of elements in a basis is 
called its dimension. An extension field, i.e., a bigger field containing 
F, is automatically a vector space over F. We call it a finite extension if 
it is a finite tlimensional vector spacc. 13y ttic degree of a finite extension 
we mean its dimension as a vector spacc. 011c common way of obtaining 
extension fields is to adjoin an elemerit to F: we say that K = F ( a )  if 
K is the field consisting of all rational expressions formed using a and 
elements of F. 

3. Similarly, the polynomial ring can be tkfined over any field F. It  is de- 
noted FIX]; it consists of all finite sunis of  powers of X with coefficients 
in F. One adds and multiplies polynort~i;ils in FIX] in the same way as 
one does with polynomials over the rcals. The degree d of a polynomial 
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is the largest power of X which occurs with nonzero coefficient; in a 
rnonic polynomial the coefficient of xd is 1. We say that g divides f ,  
where f ,  g E F[X], if there exists a polynomial h E F[X] such that 
f = gh. The irreducible polynomials f E F[X] are those that are not 
divisible by any polynomials of lower degree except for constants; they 
play the role among the polynomials that the primes play among the 
integers. The polynomial ring has unique factorization, meaning that 
every rnonic polynomial can be written in one and only one way (except 
for the order of factors) as a product of rnonic irreducible polynomials. 
(A non-monic polynomial can be uniquely written as a constant times 
such a product.) 

4. An element a in some extension field K containing F is said to be 
algebraic over F if it satisfies a polynomial with coefficients in F. In 
that case there is a unique rnonic irreducible polynomial in F[X] of 
which a is a root (and any other polynomial which a satisfies must be 
divisible by this rnonic irreducible polynomial). If this rnonic irreducible 
polynomial has degree dl then any element of F(a )  (i.e., any rational 
expression involving powers of ct and elements in F) can actually be 
expressed as a linear combination of the powers 1, a, a2 ,  . . . , ad-! Thus, 
those powers of a form a basis of F ( a )  over F, and so the degree of 
the extension obtained by adjoining a is the same as the degree of 
the rnonic irreducible polynomial of a. Any other root a' of the same 
irreducible polynomial is called a conjugate of a over F. The fields 
F(a )  and F(a t )  are isomorphic by means of the map that takes any 
expression in terms of o to the same expression with a replaced by a'. 
The word "isomorphic" means that we have a 1-to-1 correspondence 
that preserves addition and multiplication. In some cases the fields 
F ( a )  and F(a t )  are the same, in which case we obtain an automorphism 
of the field. For example, fi has one conjugate, namely -a, over Q, 
and the map a + b 4  H a -  b f i  is an automorphism of the field ~ ( d )  
(which consists of all real numbers of the form a + b& with a and b 
rational). If all of the conjugates of a are in the field F(a) ,  then F (a )  
is called a Galois extension of F. 

5. The derivative of a polynomial is defined using the nXn-I rule (not as 
a limit, since limits don't make sense in F unless there is a concept of 
distance or a topology in F). A polynomial f of degree d may or may 
not have a root r E F ,  i.e., a value which gives 0 when substituted in 
place of X in the polynomial. If it does, then the degree-1 polynomial 
X - r divides f ;  if (X  - r ) m  is the highest power of X - r which divides 
f ,  then we say that r is a root of multiplicity m. Because of unique 
factorization, the total number of roots of f in F, counting multiplicity, 
cannot exceed d. If a polynomial f E F[X] has a multiple root r ,  then 
r will be a root of the greatest common divisor of f and its derivative 
f '(see Exercise 13 of 5 1.2). 

6 .  Given any polynomial f (X) E F[X], there is an extension field K of 
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F such that f (X)  splits into a product of linear factors (equivalently, 
has d roots in K, counting multiplicity, where d is itls degree) and such 
that K is the smallest extension field containing those roots. K is called 
the splitting field of f .  The splitting field is unique up to isomorphism, 
meaning that if we have any other field Kt with the same properties, 
then there must be a 1-to-1 correspondence K ~ K '  which preserves 
addition and multiplication. For example, ~ ( a )  is the splitting field 
of f (X) = X 2  - 2, and to obtain the splitting field of f (X)  = X3 - 2 
one must adjoin to Q both f i  and G. 

7. If adding the mdtiplicative identity 1 t,o itself in F never gives 0, then 
we say that F has characteristic zero; in that case F contains a copy 
of the field of rational numbers. Otherwise, there is a prime number 
p such that 1 + 1 + . - - + 1 (p times) equals 0, and p is called the 
characteristic of the field F. In that case F contains a copy of the field 
Z/pZ (see Corollary 1 of Propositiori 1.3.1), which is called its prime 
field. 

1 Finite fields 

Let F, denote a field which has a finite nuniber q of elements in it. Clearly 
a finite field cannot have characteristic zero; so let p be the characteristic of 
F,. Thcn F, contairis the pri~nc ficlcl Fp = ZlpZ, and so is a vcctor space 
- necessarily finite dimensional - over F,. Let f denote its dimension as 
an F,-vector space. Since choosing a basis enables us to set up a 1-to-1 
correspondence between the elements of this f -dimensional vector space 
and the set of all f-tuples of clemerits in F,,, it follows that thcre mast be 
pf elements in F,. That is, q is a power of the characteristic p. 

We shall soon see that for every prime power q = pf there is a field of 
q elements, and it is unique (up to isomorphism). 

But first we investigate the multiplicative order of elements in F;, the 
set of nonzero elements of our finite field. By the "order" of a nonzero 
element we mean the least positive power which is 1. 

Existence of multiplicative generators of finite fields. There are q - 1 
nonzero elements, and, by the definition of a field, they form an abelian 
group with respect to multiplication. This means that the product of two 
nonzero elements is nonzero, the associative law and commutative law hold, 
there is an identity element 1, and any nonzcro elcrnent has an inverse. It is 
a general fact about finite groups that the order of any element must, divide 
the number of elements in the group. For the sake of completeness, we give 
a proof of this in the case of our group F;. 

Proposition 11.1.1. The order of any o E FG divides q - 1. 
First proof. Let d be the srnallcst powm of n which eqiials 1. (Note 

that there is a finite power of n that is 1 ,  siricc the powers of a in the finite 
set F: cannot all be distinct, and as soon as at = aJ for j > i we have 
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aj-i - - 1.) Let S = {I,  a,  a2 , .  . . , ad-'} denote the set of all powers of a ,  

and for any b E F; let bS denote the "coset" consisting of all elements of 
the form baj (for example, 1s = S). It is easy to see that any two cosets 
are either identical or distinct (namely: if some bla' in blS is also in b2S, 
i.e., if it is of the form b2a3, then any element blai' in blS is of the form to 

- be in b2S, because blail = bla'ai'-' - b2aj+"-' ). And each coset contains 
exactly d elements. Since the union of all the cosets exhausts Fi, this means 
that F; is a disjoint union of d-element sets; hence dl (q - 1). 

Second proof. First we show that a'-' = 1. To see this, write the 
product of all nonzero elements in F,. There are q - 1 of them. If we 
multiply each of them by a ,  we get a rearrangement of the same elements 
(since any two distinct elements remain distinct after multiplication by a). 
Thus, the product is not affected. But we have multiplied this product 
by a'-'. Hence a,-' = 1. (Compare with the proof of Proposition 1.3.2.) 
Now let d be the order of a ,  i.e., the smallest positive power which gives 
1. If d did not divide q - 1, we could find a smaller positive number r - 
namely, the remainder when q - 1 = bd + r is divided by d - such that 
a' = = 1. But this contradicts the minimality of d. This concludes 
the proof. 

Definition. A generator g of a finite field F, is an element of order q - 1; 
equivalently, the powers of g run through all of the elements of F;. 

The next proposition is one of the very basic facts about finite fields. 
It says that the nonzero elements of any finite field form a cyclic gmup, i.e., 
they are all powers of a single element. 

Proposition 11.1.2. Every finite field has a generator. If g is a generator 
of Fz, then gj is also a generator if and only if g.e.d.(j, q - 1) = 1. In 
particular, there are a total of cp(q - 1) diflerent generators of F;. 

Proof. Suppose that a E F; has order d, i.e., ad = 1 and no lower 
power of a gives 1. By Proposition 11.1.1, d divides q - 1. Since ad is the 
smallest power which equals 1, it follows that the elements a ,  a2,.  . ., ad = 1 
are distinct. We claim that the elements of order d are precisely the cp(d) 
values a j  for which g.c.d. (j ,  d) = 1. First, since the d distinct powers of a all 
satisfy the equation xd = 1, these are all of the roots of the equation (see 
paragraph 5 in the list of facts about fields). Any element of order d must 
thus be among the powers of a. However, not all powers of a have order 
d, since if g.c.d.(j, d) = d' > 1, then a j  has lower order: because dld' and 
jld '  are integers, we can write ( ~ j ) ( ~ / ~ ' )  = (ad)jld' = 1. Conversely, we now 
show that a j  does have order d whenever g.c.d.(j, d) = 1. If j is prime to d, 
and if a j  had a smaller order d': then ad" raised to either the j-th or the 
d-th power would give 1, and hence ad'' raised to the power g.c.d.(j, d) = 1 
would give 1 (this is proved in exactly the same way as Proposition 1.4.2). 
Bllt this contradicts thc fact that a is of order d and so ad" # 1. Thus, a j  
has order d if and only if g.c.d.(j, d) = 1. 

This means that, if there is any element a of order d, then there are 
exactly ~ ( d )  elements of order d. So for every dl(q - 1) there are only two 
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possibilities: no element has order d, or exactly cp(d) elements have order d. 
Now every element has some order dl(q - 1). And there are either 0 or 

~ ( d )  elements of order d. But, by Proposition 1.3.7, Ed,(,- (p(d) = q - 1, 
which is the number of elerncnts in F;. Tlliis, the only way that every 
element can have some order d((q - 1) is if there are always cp(d) (and never 
0) elements of ortler d. In particular, thew arc cp(q - 1) clcmerits of order 
q - 1; and, as we saw in the previous paragraph, if g is any elerricr~t of order 
q - 1, then t l ~ c  other elcnlents of ardor q - 1 arc yrccisely the powers 9-7 for 
which g.c.d.(j, q - 1) = 1. This completes the proof. 

Corollary. For evey prime p, there exists an integer g such that the 
powers of g exhaust all nonzero residue classes modulo p. 

Example 1. We can get all residues mod 19 from 1 to 18 by taking 
powers of 2. Namely, the successive powers of 2 reduced mod 19 are: 2, 4, 
8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1. 

In many situations when working with finite fields, such as Fp for some 
prime p, it is useful to find a generator. What if a number g E F; is chosen 
at random? What is the probability that it will be a generator? In other 
words, what proportion of all of the nonzero elements consists of generators? 
According to Proposition 11.1.2, the proportion is cp(p - l ) / (p  - 1). But 
by our formula for cp(n) following the corollary of Proposition 1.3.3, this 
fraction is equal to tlie n ( l  - f ), where tlie product is over all primes l 
dividing p - 1. Thus, the odds of getting a generator by a random guess 
depend heavily on the factorization of p - 1. For example, we can prove: 

Proposition 11.1.3. There exists a sequence of primes p such that the 
probability that a random g E F; is a generator approaches zero. 

Proof. Let {nj) be any sequence of positive integers which is divisible 
by more and more of the successive primes 2, 3, 5, 7,. . . as j ---+ oo. 
For example, we could take n j  = j!. Choose pj to be any prime such that 
pj -- 1 mod nj.  How do we know that such a prime exists? That follows from 
Dirichlet's theorem on primes in an arithmetic progression, which states: If 
n and k are relatively prime, then there are infinitely many primes which are - k mod n. (In fact, more is true: the primes are "evenly distributed" among 
the different possible k mod n, i.e., the proportion of primes E k mod n is 
l/cp(n); but we don't need that fact here.) Tlic~i the primes dividing pj - 1 

include all of the primes dividing nj ,  and so 'I::--') 5 nprimes +,, ( I  - 1 1- 
But as j + m this product approaches nn pri,,,s (1 - i ) ,  which is zero 
(see Exercise 23 of 5 1.3). This proves the proposition. 

Existence and uniqueness of finite fields with prime power number of 
elements. We prove both existence and uniqlicness by showing that a finite 
field of q = pf elements is the splitting field of the polyno~nial Xq - X. The 
following proposition shows that for every prime power q tlierc is one and 
(up to isomorphism) only one finite field with q elcrnents. 

Proposition 11.1.4. If F, is a firld o j  q = pf elements, then even/ 
element satisfies the equation XQ - X = 0, and F, is precisely the set 
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of roots of that equation. Conversely, for every prime power q = pf the 
splitting field over Fp of the polynomial Xq - X is a field of q elements. 

Proof. First suppose that F, is a finite field. Since the order of any 
nonzero element divides q - 1, it follows that any nonzero element satisfies 
the equation x'-' = 1, and hence, if we multiply both sides by X ,  the 
equation X9 = X. Of course, the element 0 also satisfies the latter equation. 
Thus, all q elements of F, are roots of the degree-q polynomial Xq - X. 
Since this polynomial cannot have more than q roots, its roots are precisely 
the elements of F,. Notice that this means that F, is the splitting field of 
the polynomial X9 - X ,  that is, the smallest field extension of Fp which 
contains all of its roots. 

Conversely, let q = pf be a prime power, and let F be the splitting 
field over Fp of the polynomial X9 - X. Note that Xg - X has derivative 
qXq-' - 1 = -1 (because the integer q is a multiple of p and so is zero 
in the field Fp); hence, the polynomial X9 - X has no common roots with 
its derivative (which has no roots a t  all), and therefore has no multiple 
roots. Thus, F must contain at  least the q distinct roots of X9 - X.  But 
we claim that the set of q roots is already a field. The key point is that 
a sum or product of two roots is again a root. Namely, if a and b satisfy 
the polynomial, we have a9 = a,  bq = b, and hence (ab)q = ab, i.e., the 
product is also a root. To see that the sum a+b also satisfies the polynomial 
Xq - X = 0, we note a fundamental fact about any field of characteristic 
P: 

Lemma. (a + b)P = aP + bP in any field of characteristic p. 
The lemma is proved by observing that all of the intermediate terms 

vanish in the binomial expansion C7=o (;)ap-jbJ, because p!/(p - j)!j! is 
divisible by p for 0 < j < p. 

Repeated application of the lemma gives us: aP + bP  = (a + b)P, up2 + 
bP2 = (UP + bP)P = (a  + b)p2,. . ., a, + bq = (a + b)9. Thus, if a9 = a and 
bq = b it follows that (a + b)'J = a + b, and so a + b is also a root of Xq - X. 
We conclude that the set of q roots is the smallest field containing the roots 
of X9 - X ,  i.e., the splitting field of this polynomial is a field of q elements. 
This completes the proof. 

In the proof we showed that raising to the p t h  power preserves addition 
and multiplication. We derive another important consequence of this in the 
next proposition. 

Proposition 11.1.5. Let F, be the finite field of q = pf elements, and let 
o be the map that sends every element to its p-th power a(a)  = a? Then o 
is an automorphism of the field F, (a 1-to-1 map of the field to itself which 
preserves addition and multiplication). The elements of F, which are kept 
fixed by o are precisely the elements of the prime field Fp. The f -th power 
(and no lower power) of the map o is the identity map. 

Proof. A map that raises to a power always preserves multiplication. 
The fact that o preserves addition comes from the lemma in the proof of 
Proposition 11.1.4. Notice that for any j the j-th power of o (the result of 

repeating o j times) is the map a I-+ a$. Thus, the elements left fixed by 
oj are the roots of X$ - X. If j = 1, these are precisely the p elements of 
the prime field (this is the special case q = p of Proposition 11.1.4, namely, 
Fermat's Little Theorem). The elements left fixed by of are the roots of 
X9 - X ,  i.e., all of F,. Since the f-th power of o is the identity map, o 

must be 1 - t e l  (its inverse map is of-' : a H up'-'). NO lower power of o 
gives the identity map, since for j < f not all of the elements of F, could 
be roots of the polynomial X$ - X.  This completes the proof. 

Proposition 11.1.6. In the notation of Proposition 11.1.5, if a is any 
element of F,, then the conjugates of a over Fp (the elements of F, which 
satisfy the same rnonic irreducible polynomial with coefficients in Fp) are 
the elements &(a )  = ad. 

Proof. Let d be the degree of Fp(a)  as an extension of F,. That is, 
Fp(a) is a copy of F p d .  Then a satisfies xpd - X but does not satisfy 

~9 - X for any j < d. Thus, one obtains d distinct elements by repeatedly 
applying o to a .  It now suffices to show that each of these elements satisfies 
the same rnonic irreducible polynomial f (X)  that a does, in which case they 
must be the d roots. To do this, it is enough to prove that, if a satisfies 
a polynomial f (X) E Fp[X], then so does a* Let f (X) = C ajXj ,  where 
a j  E Fp. Then 0 = f (a )  = C aja? Raising both sides to the p t h  power 
gives 0 = C(aja j )p  (where we use the fact that raising a sum a + b to the 
p t h  power gives aP + P). But a; = a j ,  by Fermat's Little Theorem, and 
so we have: 0 = C aj(ap)j = f (ap), as desired. This completes the proof. 

Explicit construction. So far our discussion of finite fields has been 
rather theoretical. Our only practical experience has been with the finite 
fields of the form Fp = ZlpZ. We now discuss how to work with finite 
extensions of Fp. At this point we should recall how in the case of the 
rational numbers Q we work with an extension such as ~ ( f i ) .  Namely, 
we get this field by taking a root a of the equation X 2  - 2 and looking a t  
expressions of the form a + ba, which are added and multiplied in the usual 
way, except that a2 should always be replaced by 2. (In the case of Q ( B )  
we work with expressions of the form a + ba + ca2, and when we multiply 
we always replace a3 by 2.) We can take the same general approach with 
finite fields. 

Example 2. To construct Fg we take any rnonic quadratic polynomial in 
F3[X] which has no roots in F3. By trying all possible choices of coefficients 
and testing whether the elements 0, f 1 E F3 are roots, we find that there 
are three rnonic irreducible quadratics: X 2  + 1, x2 f X - 1. If, for example, 
we take cu to be a root of X2 + 1 (let's call it i rather than a - after all, 
we are simply adjoining a square root of -I) ,  then the elements of F9 are 
all combinations a + bi, where a and b are 0, 1, or - 1. Doing arithmetic in 
Fg is thus a lot like doing arithmetic in the Gaussian integers (see Exercise 
14 of 5 I.2), except that our arithmetic with the coefficients a and b occurs 
in the tiny field F3. 
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Notice that the element i that we adjoined is not a generator of Fc, 
since it has order 4 rather than q - 1 = 8. If, however, we adjoin a root a of 
x2 - X - 1, we can get all nonzero elements of F9 by taking the successive 
powers of a (remember that a2 must always be replaced by a + 1, since 
a satisfies X2 = X + 1): a' = a ,  a2 = a + 1, a3 = -a + 1, a4 = -1, 
a5 = --a, a6 = -a - 1, a7 = a - 1, a8 = 1. We sometimes say that 
the polynomial x2 - X - 1 is primitive, meaning that any root of the 
irreducible polynomial is a generator of the group of nonzero elements of 
the field. There are 4 = (p(8) generators of Fc, by Proposition 11.1.2: two 
are the roots of x2 - X - 1 and two are the roots of x2 +X - 1. (The second 
root of X 2  - X - 1 is the conjugate of a ,  namely, o (a )  = a3 = -a + 1.) Of 
the remaining four nonzero elements, two are the roots of x2 + 1 (namely 
f i = f ( a  + 1)) and the other two are the two nonzero elements f 1 of F3 
(which are roots of the degree-1 monic irreducible polynomials X - 1 and 
x + 1). 

In general, in any finite field F,, q = pf ,  each element a satisfies a 
unique rnonic irreducible polynomial over F, of some degree d. Then the 
field F,(a) obtained by adjoining this element to the prime field is an 
extension of degree d that is contained in F,. That is, it is a copy of the 
field Fpd. Since the big field Fpf contains F p d ,  and SO is an F,d-vector 
space of some dimension f: it follows that the number of elements in F,r 
must be (pd)f', i.e., f = df! Thus, dlf. Conversely, for any dlf the finite 
field F,s is contained in F,, because any solution of xpd = X is also a 

solution of XP' = X.  (To see this, note that for any dl, if you repeatedly 
replace X by xpd on the left in the equation xpd = X ,  you can obtain 

xpdd' = I.) Thus, we have proved: 
Proposition 11.1.7. The subfields of FPf are the F p d  for d dividing f .  

If an element of Fpf is adjoined to F,, one obtains one of these fields. 
It is now easy to prove a formula that is useful in determining the 

number of irreducible polynomials of a given degree. 
Proposition 11.1.8. For any g = pf the polynomial Xq - X factors in 

Fp[X] into the product of all rnonic irreducible polynomials of degrees d 
dividing f .  

Proof. If we adjoin to F, a root a of any rnonic irreducible polyno- 
mial of degree dl f ,  we obtain a copy of F,s, which is contained in F,,. 
Since a then satisfies XQ - X = 0, the rnonic irreducible must divide that 
polynomial. Conversely, let f (X) be a rnonic irreducible polynomial which 
divides XQ - X. Then f (X)  must have its roots in F, (since that's where 
all of the roots of XQ - X are). Thus f (X) must have degree dividing f ,  by 
Proposition 11.1.7, since adjoining a root gives a subfield of F,. Thus, the 
monic irreducible polynomials which divide X Q  - X are precisely all of the 
ones of degree dividing f .  Since we saw that XQ - X has no multiple fac- 
tors, this means that XQ - X is equal to the product of all such irreducible 
polynomials, as was to be proved. 

1 Finite fields 39 

Corollary. If f is a prime number, then there are (pf - p)/f distinct 
rnonic irreducible polynomials of degree f in Fp [XI. 

Notice that (pf -p)/ f is an integer because of Fermat's Little Theorem 
for the prime f ,  which guarantees that pf s p mod f .  To prove the corollary, 
let n be the number of rnonic irreducible polynomials of degree f .  According 
to the proposition, the degree-pf polynomial xpf - X is the product of n 
polynomials of degree f and the p degree-1 irreducible polynomials X - a 
for a E Fp. Thus, equating degrees gives: p j  = nf + p, from which the 
desired equality follows. 

More generally, suppose that f is riot riecessarily prime. Then, letting 
nd denote the number of rnonic irreducible polynomials of degree d over 
Fp, we have nf = (pf - C d n d ) /  f ,  where the summation is over all d < f 
which divide f .  

We now extend the time estimates in Chapter I for arithmetic modulo 
p to general finite fields. 

Proposition 11.1.9. Let F,, where q = pf ,  be a finite field, and let 
F (X)  be an irreducible polynornial of degree j over Fp. Then two elements 
of F, can be multiplied or divided in O(log"q) bit operations. If k i s  a 
positive integer, then an element of F, can be raised to the k-th power in 
O(log k log3q) bit operations. 

Proof. An element of F, is a polynomial with coefficients in F, = Z/pZ 
regarded modulo F(X) .  To multiply two such elements, we multiply the 
polynomials - this requires O( f 2, multiplications of integers modulo p (and 
some additions of integers modulo p, which take much less time) - and 
then divide the polynomial F ( X )  into the product, taking the remainder 
polynomial as our answer. The polynomial division involves O( f )  divisions 
of integers modulo p and O( f 2, multiplicat~ions of integers motfrilo p. Since 
a multiplication modulo p takes 0(log2p) bit operations, anti a division 
(using the Euclidean algorithm, for example) takes O(log") bit operations 
(see the corollary to Proposition 1.2.2), the total number of bit operations is: 
0(f210g2p + f 1og:'p) = 0(( f l09p)~)  = O ( ~ O ~ ' ~ ~ ) .  TO prove the same result 
for division, it suffices to show that the reciprocal of an element can be found 
in time 0(log3q). Using the Euclidean algorithm for polynomials over the 
field F, (scc Exercise 12 of 5 I.2), we rri~rst write 1 ;is a linear combination of 
our given element in F, (i.e., a given polyrior~iial of degree < f )  and the fixed 
degree- f polynomial F(X) .  This involves O( f )  divisions of polynomials of 
degree < f ,  and each polynomial division requires O( f 210g2p + f log3p) = 
O( f 210g3p) bit operations. Thus, the total tirrie required is 0 (  f310g3p) = 
0(log3q). Finally, a k-tli power can he computed by the repeated squaring 
method in the same way as modular exporit:nt~iation (see the end of § 1.3). 
This takes O(1og k) multiplications (or sy~iaririgs) of elements of F,, and 
hence O(1og k log3q) bit operations. This conipletes the proof. 

We conclude this section with an exaniple of computation with poly- 
nomials over finite fields. We illustrate by an example over the very small- 
est (and perhaps the most important) finite field, the Zelernent field 
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F2 = (0, 1). A polynomial in F2[X] is simply a sum of powers of X .  
In some ways, polynomials over Fp are like integers expanded to the base 
p, where the digits are analogous to the coefficients of the polynomial. For 
example, in its binary expansion an integer is written as a sum of powers of 
2 (with coefficients 0 or I), just as a polynomial over F2 is a sum of powers 
of X. But the comparison is often misleading. For example, the sum of any 
number of polynomials of degree d is a polynomial of degree (at most) d; 
whereas a sum of several d-bit integers will be an integer having more than 
d binary digits. 

Example 3. Let f (X) = x4 + X3 + X2 + 1, g = x3 + 1 E F2[X]. Find 
g.c.d.( f ,  g) using the Euclidean algorithm for polynomials, and express the 
g.c.d. in the form u(X) f (X) + v(X)g(X). 

Solution. Polynomial division gives us the sequence of equalities below, 
which lead to the conclusion that g.c.d. (f, g) = X + 1, and the next sequence 
of equalities enables us, working backwards, to express X + 1 as a linear 
combination of f and g. (Note, by the way, that in a field of characteristic 
2 adding is the same as subtracting, i.e., a - b = a + b - 2b = a + b.) We 
have: 

f = ( x + l ) g + ( x Z + x )  

g = ( ~ + 1 ) ( ~ 2 + ~ ) + ( x + 1 )  

x Z + x = x ( x + 1 )  

and then 

Exercises 

1. For p . =  2, 3, 5, 7, 11, 13 and 17, find the smallest positive inte- 
ger which generates F;, and determine how many of the integers 
1, 2, 3, . . . , p  - 1 are generators. 

2. Let (Z/paZ)* denote all residues modulo pa which are invertible, i.e., 
are not divisible by p. Warning: Be sure not to confuse Z/paZ (which 
has pa - pa-' invertible elements) with Fpa (in which all elements 
except 0 are invertible). The two are the same only when a, = 1. 
(a) Let g be an integer which generates F;, where p > 2. Let a be 
any integer greater than 1. Prove that either g or (p + l)g generates 
(Z/paZ)t Thus, the latter is also a cyclic group. 
(b) Prove that if a > 2, then (Z/2aZ)* is not cyclic, but that the 
number 5 generates a subgroup consisting of half of its elements, namely 
those which are - 1 mod 4. 

3. How many elements are in the smallest field extension of F5 which 
contains all of the roots of the polynomials x2 + X +  1 and X3 + X  + l ?  
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For each degree d 5 6, find the number of irreducible polynomials over 
F2 of degree d, and make a list of than.  
For each degree d 5 6, find the numhcr of monic irreducible polyno- 
mials over Fj of degree d, arid for d 5 3 make a list of them. 
Suppose that f is a power of a prime P. Find a simple formula for the 
number of monic irreducible polynomials of degree f over F,. 
Use the polynomial version of the Euclidean algorithm (see Exercise 
12 of 5 1.2) to find g.c.d.( f ,  g) for f ,  g E Fp[X] in each of the following 
examples. In each case express the g.c.d. polynomial as a combination 
of f and g, i.e., in the form d(X) = u(X) f (X)  + v(X)g(X). 
(a) f = X 3 + X + 1 , g = X 2 + ~ + l , p = 2 ;  
(b) f = X 6 + X 5 + X 4 + X 3 + X 2 + ~ + 1 , g =  X 4 + x 2 + x + 1 ,  
p = 2; 
(c) f = ~ ~ - X + l , ~ = X ~ + 1 , ~ = 3 ;  
(d) f = X ~ + X ~ + X ~ - X ~ - X + ~ , ~ = X ~ + X ~ + X + ~ , ~ = ~ ;  
(e) f = ~ ~ + 8 8 ~ ~ + 7 3 X ~ + 8 3 X ~ + 5 1 ~ + 6 7 ,  g = X3+97X2+40x+38, 
p = 101. 
By computing g.c.d.( f ,  f ') (see Exercise 13 of 5 I.2), find all multiple 
roots of f (X) = X7 + X5 + X 4  - x3 - X 2  - X + 1 E F3[X] in its 
splitting field. 
Suppose that a E Fp2 satisfies the polynomial X 2  + a x  + 6, where 
a ,  b E Fp. 
(a) Prove that a P  also satisfies this polynomial. 
(b) Prove that if a $ Fp, then a = -a - UP and b = a,+'. 
(c) Prove that if a $ F, and c, d E F,, then (ca+d)p+' = d2 - acd+ bc2 
(which is E F,). 
(d) Let i be a square root of -1 in F192. Use part (c) to find (2+3i)1°' 
(i.e., write it in the form a + bi, a ,  b E Fig). 
Let d be the maximum degree of two polynomials f ,  g E F,[X]. Give 
an estimate in terms of d and p for the number of bit operations needed 
to compute g.c.d.( f ,  g) using the Eucliciean algorithm. 
For each of the following fields F,, where q = p! find an irreducible 
polynomial with coefficients in the prime field whose root a is primitive 
(i.e., generates F;), and write all of tlw powers of a as polynoniials in 
a of degree < f :  (a) F4 ;  (b) F8; (c) F27; ((1) F25. 
Let F ( X )  E F2[X] be a primitive irreducible polynomial of degree f .  If 
a denotes a root of F (X) ,  this mearis tliat the powers of 0 exhaust all 
of F;, . Using the big-0 notation, esti111ntc (in terms of f )  t,he nulnher 
of bit operations required to write every power of a as a poiynornial in 
a of degree less than f .  
(a) Under what co~iditions on p arid j is eriety clc~ncr~t of F, ,  l)csi(lcs 
0, 1 a generator of F;, ? 
(b) Under what conditions is every eler~icrit # 0, 1 either a generator 
or the square of a generator? 
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14. For any fixed p, show that there is a sequence qj = p f ~  of powers of p 
such that the probability that a random element of Fqj is a generator 
of F;, approaches 0 as j ---, m. 

15. Which polynomials in Fp[X] have derivative identically zero? 
16. Let 0 be the autornorphism of F, in Proposition 11.1.5. Prove that the 

set of elements left fixed by oj is the field Fpd, where d = g.c.d.(j, f ) .  
17. Prove that if b is a generator of F;. and if din, then b(pn-')/(pd-'1 is 

a grnrmtor of F;,, . 

2 Quadratic residues and reciprocity 

Roots of unity. In many situatioris it is useful to have solutions of the 
equation xn = 1. Suppose we are working in a finite field F,. We now 
answcr t11o questio~~: t iow many n-tli roots of unity are there in F,? 

Proposition 11.2.1. Let g be a generator of F;. Then g' is an n-th root 
of unity if and only if n j  = 0 mod q - 1. The number of n-th roots of unity 
is g.c.d.(n, q - 1). In particular, F, has a primitive n-th root of unity (i.e., 
an element < such that the powers of < run through n n-th roots of unity) 
if and only if nl q - 1. If F is a primitive n-th root of unity in F,, then <j 

is also a primitive n-th root if and only if g.c.d.(j, n) = 1. 
Proof. Any element of F; can be written as a power g' of the generator 

g. A power of g is 1 if and only if the power is divisible by q - 1. Thus, 
an element gj is an n-th root of unity if and only if n j  - 0 mod q - 1. 
Next, let d = g.c.d.(n, q - 1). According to Corollary 2 of Proposition 1.3.1, 
the equation n j  = 0 mod q - 1 (with j the unknown) is equivalent to 
the equation 2 j 0 mod 9. Since n/d is prime to (q - l)/d, the latter 
congruence is equivalent to requiring j to be a multiple of (q - l)/d. In 
other words, the d distinct powers of g(q-l)/d are precisely the n-th roots 
of unity. There are n such roots if and only if d = n, i.e., nl q - 1. Finally, 
if n does divide q - 1, let < = g(9-')/1 Then <j  equals 1 if and only if nl j .  
The k-th power of <j  equals 1 if and only if k j  - 0 mod n. It is easy to see 
that (j has order n (i.e., this equation does not hold for any positive k < n)  
if and only if j is prime to n. Thus, there are cp(n) different primitive n-th 
roots of unity if nl q - 1. This completes the proof. 

Corollary 1. If g.c.d.(n, q- 1) = 1, then 1 is the only n-th root of unity. 
Corollary 2. The element -1 E F, has a square root in F, if and only 

if q = 1 mod 4. 
The first corollary is a special case of the proposition. To prove Corol- 

lary 2, note that a square root of -1 is the same thing as a primitive 4-th 
root of 1, and our field has a primitive 4-th root if and only if 41 q - 1. 

Corollary 2 says that if q = 3 mod 4, we can always get the quadratic 
extension F,2 by adjoining a root of x2 + 1, i.e., by considering "Gaussian 
integer" type expressions a + bi. We did this for q = 3 in the last section. 
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Let us suppose, for example, that p is a prime which is E 3 mod 4. 
There is a nice way to think of the field Fp2 which generalizes to other 
situations. Let R denote the Gaussian integer ring (see Exercise 14 of 5 1.2). 
Sometimes we write R = Z+Zi, meaning the set of all integer co~nbinations 
of 1 and i. If m is any Gaussian integer, and a = a + bi and = c + di 
are two Gaussian integers, we write cr E @ mod m if cr - p is divisible by 
m, i.e., if the quotient is a Gaussian integer. We can then look at the set 
R/mR of residue classes modulo m; just as in the case of ordinary integers, 
residue classes can be added or multiplied, and the residue class of the result 
does not depend on which representatives were chosen for the residue class 
factors. Now if m = p + O i  is a prime number which is EE 3 mod 4, it is not 
hard to show that R/pR is the field Fp2. 

Quadratic residues. Suppose that p is an odd prime, i.e., p > 2. We are 
interested in knowing which of the nonzero clcrr~ents (1, 2, . . . , p - 1) of F, 
are squares. If some a E F; is a square, say b2 = a, then a has precisely two 
square roots f b  (since the equation X 2  - a = 0 has at  most two solutions 
in a field). Thus, the squares in Fi can all be found by computing b2 m,od p 
for b = 1, 2, 3,. . . , (p - 1)/2 (since the remaining integers up to p - 1 
are all z -b for one of these b), and precisely half of the elements in F; 
are squares. For example, the squares in FI1 are l2 = 1, 22 = 4, 32 = 9, 
42 = 5, and 52 = 3. The squares in Fp are called quadratic residues modulo 
p. The remaining nonzero elements are called nonresidues. For p = 11 the 
nonresidues are 2, 6, 7, 8, 10. There are (p - 1)/2 rcsidues and (p - 1)/2 
nonresidues. 

If g is a generator of Fp, then any element can be written in tlic form g? 
Thus, the square of any element is of the forrn $ with j even. Conversely, 
any element of the form gj with j even is the square of sonic elcme~lt, 
namely f gj/2. 

The Legendre symbol. Let a be an integer and p > 2 a prime. We 
define the Legendre symbol (E )  to equal 0, 1 or - 1, as follows: 

0, if p(a; 
1, if a is a quadratic residue mod p; 
-1, if a is a nonresidue mod p. 

Thus, the Legendre symbol is simply a way of identifying whetlm or riot 
an integer is a quadratic residue modulo p. 

Proposition 11.2.2. 

Proof. If a is divisible by p, then both sides are = 0 mod y. Suppose 
p ]a. By Fermat's Little Tiworern, in Fp the sq~lare of a(p-l)I2 is 1, so 
a ( ~ - ' ) / ~  itself is f 1. Let g be 1 gm~ra tor  of F6, and let a = g? As wc saw, 
a is a residue if and only if j is even. And a('-')/2 = g ~ ( ~ - 1 ) / 2  is 1 if and 
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only if j (p  - 1)/2 is divisible by p - 1, i.e., if and only if j is even. Thus, 
both sides of the congruence in the proposition are f 1 in Fp, and each side 
is +1 if and only if j is even. This completes the proof. 

Proposition 11.2.3. The Legendre symbol sattsfies the following proper- 
ties: 
(a) (:) depends only on the residue of a modulo p; 

(b) ($9 = (;)(;); 
(c) for b prime to p, ($) = (%); 
(d) ( b )  = 1 and (2) = (-l)(p-')I2. 

Proof. Part (a) is obvious from the definition. Part (b) follows from 
Proposition 11.2.2, because the right side is congruent modulo p to a ( ~ - ' ) / ~  . 
b(p-l)l2 = (ab)(p-l)lf as is the left side. Part (c) follows immediately from 
part (b). The first equality in part (d) is obvious, because l2 = 1, and the 
second equality comes from Corollary 2 of Proposition 11.2.1 (or by taking 
a = - 1 in Proposition 11.2.2). This completes the proof. 

Part (b) of Proposition 11.2.3 shows that one can determine if a number 
a is a quadratic residue modulo p, i.e., one can evaluate ($), if one factors 
a and knows the Legendre symbol for the factors. The first step in doing 
this is to write a as a power of 2 times an odd number. We then want to 
know how to evaluate (a).  

Proposition 11.2.4. 

Proof. Let f (n)  = (-1)("'-1)/~ for n odd, f (n)  = 0 for n even. We 
want to show that (a )  = f (p). Of the various ways of proving this, we 
shall use an efficient method based on what we already know about finite 
fields. Since p2 - 1 mod 8 for any odd prime p, we know that the field F p a  
contains a primitive 8-th root of unity. Let < E Fp2 denote a primitive 8-th 
root of 1. Note that t4 = -1. Define G = xi=o f (j)<j. (G is an example 
of what is called a Gauss sum.) Then G = C$ - t3 - t5 + t7 = 2(( - F3) 
(because t5 = e4< = -F and c7 = -e3), and G2 = 4(F2 - 2t4 + c6) = 8. 
Thus, in Fp2 we have 

by Proposition 11.2.2 and Proposition 11.2.3(c). On the other hand, using 
the definition of G, the fact that ( a  + b)P = UP + b P  in Fpz, and the obvious 
observation that f (j)P = f ( j ) ,  we compute: GP = xi=O f (j)cpj. Notice 
that f ( j )  = f (p) f (pj), as we easily check. Then, making the change of 
variables j' = p j  (i.e., modulo 8 we have j' running through 0,.  . . ,7 when 
j does), we obtain: 
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Comparing the two equalities for GP gives the desired result. (Notice that 
we can divide by G, since it is not 0 in Fp2, as is clear from the fact that 
its square is 8.) 

Next, we must deal with the odd prime factors of a.  Let q stand for 
such an odd prirr~e factor. Warning: for thc rcr1:airider of this scctioll, q will 
stand for an odd prime distinct from p, not for a power of p as in the last 
section. 

Since a can be assumed to be smaller than p (by part (a) of Proposition 
11.2.3)) the prime factors q will be smaller than p. The next proposition - 
the fundamental Law of Quadratic Reciprocity - tells us how to relate 
(:) to (E). The latter Legendre symbol will be easier to evaluate, since we 
can immediately replace p by its least positive residue modulo q,  thereby 
reducing ourselves to a Legendre symbol involving smaller numbers. The 
quadratic reciprocity law states that (9) and ( P )  are the same unless p and 
q are both = 3 mod 4, in which case t iey arc tLe negatives of one another. 
This can be expressed as a formula using the fact that (p - l)(q - 1)/4 is 
even unless both primes are = 3 mod 4, in which case it is odd. 

Proposition 11.2.5 (Law of Quadratic Reciprocity). Let p and q be two 
odd primes. Then 

Proof. There are several dozen proofs of quadratic reciprocity in print. 
We shall give a particularly short proof along the lines of the proof of 
the last proposition, using finite fields. Let f be any power of p such that 
pf = 1 mod q. For example, we can always take f = q - 1. Then, as we saw 
at the beginning of the section (Proposition 11.2.1)) the field Fp, contains 
a primitive q-th root of unity, which we denote [. (Remember that q here 
denotes another prime besides p; it does not denote pf .) We define the 
"Gauss sum" G by the formula G = CIA($)<? In the next paragraph we 

shall prove that G2 = ( -~)(q- ' ) /~q.  Beforc proving that lemma, we show 
how to use it to prove our proposition. The proof is very similar to the 
proof of Proposition 11.2.4. We first obtain (using the lemma to be proved 
below): 

by Proposition 11.2.2 with a replaced by q (recall that we're working in a 
field of characteristic p, namely Fp, , and so corigruence modulo p becomes 
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equality). On the other hand, using the definition of G, the fact that (a + 
b)P = aP + bP in Fpf , and the obvious observation that ( t ) P  = ( ), we 
compute: 

by parts (b) and (c) of Proposition 11.2.3. Pulling ( :) outside the summation 
and making the change of variables j' = pj in the summation, we finally 
obtain: GP = (:)G. Equating our two expressions for GP and dividing by G 
(which is possible, since G2 = f q and so is not zero in Fpf ) ,  we obtain the 
quadratic reciprocity law. Tlius, it remains to prove the following lemma. 

Lemma. G2 = (-l)(q-1)/2q. 
Proof. Using the definition of G, where in one copy of G we replace the 

variable of summation j by -k (and note that the summation can start a t  
1 rather than 0, since (:) = 0), we have: 

where we have used Part (d) of Proposition IL2.3 to replace (;61) by 

(-1)(q-')/; and for each value of j we have made a change of variable 
in the inner summation k c-1 k j (i.e., for each fixed j, kj runs through the 
residues modulo q as k does, and the summands depend only on the residue 
modulo q). We next use part (c) of Proposition 11.2.3, interchange the order 
of summation, and pull the ( 8 )  outside the inner sum over j. The double 

sum then becomes xk ( X )  C ~ j ( ' - ~ !  Here both sums go from 1 to q - 1, 
but if we want we can insert the terms with j = 0, since that simply adds 
to the double sum Ck ( i), which is zero (because there are equally many 
residues and nonresidues modulo q). Thus, the double sum can be written 

C::: ( :) <j(l-k! h t  for each k other than 1, the inner sum vanishes. 
This is because the sum of tlie distinct powers of a nontrivial (# 1) root of 
unity (' is zero (the sirnplcst way to see this is to note that multiplying the 
sum by C' just rearranges it, and so the sum multiplied by <' - 1 is zero). 
So we are left with tlic contribution when k = 1, and we finally obtain: 

This completes tlie proof of the lemma, and hence also the proof of the Law 
of Quadratic Reciprocity. 
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Example 1. Determine whether 7411 is a residue niodulo the prime 
9283. 

Solution. Since 7411 and 9283 are bot.11 prirncs which are zz 3 mod 4, 
we have (3) = -(%) = -(%) by part (a) of Proposition 11.2.3. Since 
1872 = 24 3' . 13, by part (c) of Proposition 11.2.3 we find that the desired 
Legendre symbol is - (& ). But we can 1 1 0 ~  apply quadratic reciprocity 
again: since 13 = 1 mud 4 we find tlint -(a) = -(wL) = -(L) = -1. 

, 4 1 1  13 13 
In other words, 7411 is a quadratic nonresiduc. 

One difficulty with this 111c.tl1od of cvalriat ing Lcgentlre symbols is that 
at  each stage we must factor the nunitwr on top in order to apply Proposi- 
tion 11.2.5. If our nrlnitxrs arc astro~lo~nically Iiirgc., this will he very time- 
consuming. Fortunately, it is possible to avoid any need for factoring (except 
taking out powers of 2, which is very easy), once we prove a generalization 
of the quadratic reciprocity law that applies to all positive odd integers, 
not necessarily prime. But we first need a definition which generalizes the 
definition of the Legendre symbol. 

The Jacobi symbol. Let a be an integer, and let n be any positive odd 
number. Let n = P:' . . .pFr be the prime factorization of n. Then we define 
the Jacobi symbol (:) as the product of the Legeridre symbols for the prime 
factors of n: 

A word of warning is in order here. If (:) = 1 for n composite, it is not 
necessarily true that a is a square modulo n. For example, (A) = ($  ) ( z )  = 
(-I)(-1) = 1, hut there is no integer x such that x2 = 2 mod 15. 

We now generalize Propositions 11.2.4 5 to the Jacobi symbol. 
Proposition 11.2.6. For an?) positive odd rr we have (!) = 
Proof. Let f (71) do~~o te  tllc fiint't.io~~ O I I  t,11(> right sitlo of t.hc eq~ial- 

ity, as in tlie proof of Proposit ion 11.2.4. It is rasy to see that f (nl  nz) = 
f (nl) f (n2) for any two odd nurr~bers nl ard 712. (Just consider tlie different 
possibilities for 781 and n2 rnotlrilo 8.) This I I I ~ V ~ I I S  t.l~at the right sitlc of the 
equality in tlie proposition equds j ( p l  )"I . . j(p,)"7 = (;)"I . . (L) - .  11y 

Y r  

Proposition 11.2.4. But tliis is ( :), by clcfiliit.ioll. 
Proposition 11.2.7. For any two positive odd inteyrs In and n we have 

( Z )  = ( - 1 )  ( n t - l ) ( ? l -  1) /4  (;)a 

Proof. First note that if nl and 71 have a csorii~iio~i fact or, them it follows 
from the defiliitiori of the Legcrldre ant1 .J;tc.ol)i sy111l)ols that both sidcs are 
zero. So we can suppose that g.c.d.(m,  n) = 1. Next, we write nz and n 
as products of prirrics: tn = plpz . . p,. ii11tl 1 1  = qlqn . . . g,. (Tl~tb p's and 
q's include repetitions if 7n or 7z has a sqri;ircl factor.) In converting from 
(E) = Hi,,(:) to (E)  = HE,,(:) we must apply the quadratic rcdprocity 
law for the ~ e ~ e n d r e  symbol r.9 t i~~ics .  Tlw ~~urllber of (- 1)'s we get is 
the number of times both pi arid q, arc z 3 r r ~ o d  4. i.e., i t  is the prod~ict 
of the number of primes r 3 mod 4 in tlw fi~rtorizatior~ of r n  wr~d in the 
factorization of n. Thus, (E) = (2) ~i~ilcss tlicre are an odd ~iulnber of 
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primes = 3 mod 4 in both factorizations, in which case (:) = -(z).  But 
a product of odd primes, such as m or n,  is = 3 mod 4 if and only if it 
contains an odd number of primes which are = 3 mod 4. We conclude that 
(:) = (n )  T l 1  unless both rn and n are = 3 mod 4, as was to be proved. This 
gives us the reciprocity law for the Jacobi symbol. 

Example 2. We return to Example 1, and show how to evaluate the 
Legendre symbol without factoring 1872, except to take out the power of 
2. By the reciprocity law for the Jacobi symbol we have 

and this is equal to -(&)(&) = (A) = (y) = ( a )  = -1. 
Square roots modulo p. Using quadratic reciprocity, one can quickly 

determine whether or not an integer a is a quadratic residue modulo p. 
However, if it is a residue, that does not tell us how to find a solution to 
the congruence x2 - a mod p - it tells us only that a solution exists. We 
conclude this section by giving an algorithm for finding a square root of a 
residue a once we know any nonresidue n. 

Let p be an odd prime, and suppose that we somehow know a quadratic 
nonresidue n. Let a be an integer such that (g)  = 1. We want to  find an 
integer x such that x2 = a mod p. Here is how we proceed. First write p - 1 
in the form 2" . s ,  where s is odd. Then compute n8 modulo p, and call 
that b. Next compute a ( ~ + l ) / ~  modulo p, and call that r .  Our first claim is 
that r  comes reasonably close to  being a square root of a. More precisely, 
if we take the ratio of r2 to a ,  we claim that we get a 2"-'-th root of unity 
modulo p. Namely, we compute (for brevity, we shall use equality to mean 
congruence modulo p, and we use a-I to  mean the inverse of a modulo p): 

We must then modify r  by a suitable 2"-th root of unity to get an x such 
that x2/a is 1. To do this, we claim that b is a primitive 2"-th root of unity, 
which means that all 2"-th roots of unity are powers of b. To see this, first we 

- note that b is a 2"-th root of 1, because bZa = nZa8 - np-' = 1. If b weren't 
primitive, there would be a lower power (a divisor of 2") of b that gives 1. 
But then b would be an even power of a primitive 2"-th root of unity, and 
so would be a square in F;. This is impossible, because (:) = (E)' = -1 
(since s is odd and n is a nonresidue). Thus, b is a primitive 2"-th root 
of unity. So it remains to find a suitable power bJ, 0 < j < 2", such that 
x = W r  gives the desired square root of a. To do that, we write j in binary 
as j = jo + 2jl + 4j2 + . . . + 2a-2 ja-2, and show how one successively 
determines whether jo, jl, . . . is 0 or 1. (Note that we may suppose that 
j < 2"-', since b2"-I = -1, and so j can be modified by 2"-' to give 
another j for which V r  is the other square root of a.) Here is the inductive 
procedure for determining the binary digits of j :  
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Raise (r2/a) to the 2a-2-th power. We proved that the square of this 
is 1. Hence, you get either f 1. If you gct 1, take jo = 0; if yo11 get -1, 
take jo = 1. Notice that jo has bee11 cliosen so that ( ( P ~ r ) ~ / a )  is a 
2a-2-t11 root of unity. 
Suppose you've found jo ,  . . . , jk-1 such that (P~+'jl+.. .+~"'  I k - ~ r ) ~ / a  
is a 2"-k-1 -th root of unity, and you want to find jk.  Raise this number 

to half the power that gives 1, and choose j k  according to whether you 
get +1 or -1: 

then take jk = { , respectively. 

We easily check that with this choice of jk the "corrected" value comes 
closer to being a square root of a ,  i.e., we find that ( ~ 0 + ~ j l + . . . + ~ ' j k r ) ~ / a  
is a 2a-k-2-th root of unity. 
When we get to k = a - 2 and find j a _ 2 ,  we then have 

i.e., V r  is a square root of a, as desired. 
Example 3. Use the above algorithm to find a square root of a = 186 

modulo p = 401. 
Solution. The first nonresidue is n = 3. We have p - 1 = Z4 . 25, 

and so b = 325 = 268 and r = a13 = 103 (where we use equality to 
denote congruence modulo p). After first corriputing a-  ' = 235, we note 
that r2/a  = 98, which must be an 8-th root of 1. We compute that 98' = -1, 
and so jo = 1. Next, we compute ( b ~ ) ~ / a  = -1. Since the 2-ntl power of 
this is 1, we have jl = 0, and then j2 = 1. Thus, j = 5 and the desired 
square root is b5r = 304. 

Remarks. 1. The easiest case of this algorithm occurs when p is a 
prime which is = 3 mod 4. Then a = 1, s = ( p -  1)/2, so (.9+1)/2 = (p+1)/4, 
and we see that x = r = n(p+l)/' is already the desired square root. 

2. We now discuss the time estimate for this algorithm. We suppose 
that we start already knowing the information that n is a nonresidue. The 
steps in finding s ,  b, and r = (working rnod~ilo p, of course) take a t  
most O ( 1 0 g ~ ~ )  bit opcrations (see Propositio~i 1.3.6). T l ~ ~ r i  in fillding j t he 
most time-consuming part of the k-th inductio~i step is raising a riurrihcr to 
the 2a-k-2-tli power, and this means (r - k - 2 sqwiriogs ~liorl 1) of int rlgr~rs 
less than p. Since n - k - 2 < a. wc h ; w  the. cstimitc. 0(0  log"^) for 
oacli step. Thus, since tlierc arc a - 1 stcj)s, t I IO fill;tl estil~iate is 0(log:'p + 
0210g2p) = 0(10g2p(10gp + a2)) .  At worst (if almost all of p - 1 is a power 
of 2), this is 0(log4p), since a < log2p = O(loy 11). Thus, given a rioriresidue 
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modulo p, we can extract square roots mod p in polynomial time (bounded 
by the fourth power of the number of bits in p). 

3. Strictly speaking, it is not known (unless one assumes the validity 
of the so-called "Riemann Hypothesis") whether there is an algorithm for 
finding a nonmidw modulo p in polynomial time. However, given any 
r > 0 there is a polynomial time algorithm that finds a nonresidue with 
probability greater than 1 - c. Namely, a randomly chosen number n, 0 < 
n < p, has a 50% chance of being a nonresidue, and this can be checked 
in polynomial time (see Exercise 17 below). If we do this for more than 
log2(l/r) different randomly chosen n, then with probability > 1 - e at  
least one of them will be a nonresidue. 

Exercises 

Make a table showing all quadratic residues and nonresidues modulo 
p for p = 3, 5, 7, 13, 17, 19. 
Suppose that p122k + 1, where k > 1. 
(a) Use Exercise 4 of 5 1.4 to prove that p = 1 mod 2'+! 
(b) Use Proposition 11.2.4 to prove that p E 1 mod 2'+? 
(c) Use part (b) to prove that 216 + 1 is prime. 
How many 84-th roots of 1 are there in the field of 113 elements? 
Prove that (2)  = 1 if p 1 or 3 mod 8, and (9) = -1 if p EE 5 or 
7 mod 8. 
Find ( $) using quadratic reciprocity. 

Find the Gauss sum G = C:I: (i)<j (here < is a q-th root of 1 in Fp, , 
where pf - 1 mod q) when: 
(a) q = 7, p =  29, f = 1, [ = 7; 
(b) q = 5, p = 19, f = 2, f = 2 - 4i, where i is a root of X 2  + 1; 
(c) q = 7, p = 13, f = 2, f = 4 + a, where u is a root of X 2  - 2. 
Let m = a4 + 1, n > 2. Find a positive integer x between 0 and m/2 
such that x2 = 2 mod m. Use this to find f i  in Fg when p is each of 
the following: the Fermat primes 17, 257, 65537; p = 41 = (34 + 1)/2, 
p = 1297, and p = 1201. (Hint: see the proof of Proposition 11.2.4.) 
Let p and q be two primes with q EE 1 mod p. Let < be a primitive p t h  
root of unity in F,. Find a formula in terms of < for a square root of 
(+)p in F,. 
(a) Let m = aP - 1, where p is an odd prime and a > 2. Find a positive 
integer x between 0 and m/2 such that x2 I ( 2 ) P  mod m. Use this 

to find fi in F31, f l  in a in Fslsl, and f l  in F1093. 
(b) If q = 2P - 1 is a Mersenne prime, find an expression for the least 
positive integer whose square is = ( 2 ) p  mod q. 

10. Evaluate the Legendre symbol (#) (a) using the reciprocity law only 
for the Legendrr symbol (i.e., factoring all numbers that arise), and (b) 

without factoring any odd integers, inst,ead using the reciprocity law 
for the Jacobi symbol. 

11. Evaluate the following Legendre symbols: 
5 ( 4  (8);  (b) (g); ( 4  (%); ( 4  (%); ( 4  (-1; ( f )  (S); 

43691 
(9 )  (rn). 

12. (a) Let p be an odd prime. Prove that -3 is a residue in Fp if arid only 
if p r 1 mod 3. 
(b) Prove that 3 is a quadratic nonresidue modulo any Mersenne prime 
greater than 3. 

13. Find a condition on the last decimal digit of p which is equivalent to 
5 being a square in F,. 

14. Prove that a quadratic residue can never be a generator of F;. 
15. Let p be a Fermat prime. 

(a) Show that any quadratic nonresidue is a generator of F;. 
(b) Show that 5 is a generator of F;, except in the case p = 5. 
(c) Show that 7 is a generator of Fi, except in the case p = 3. 

16. Let p be a Mersenne prime, let q = p2, and let i be a root of X2 + 1 = 0, 
so that F, = F,(i). 
(a) Suppose that the integer a2 + b2 is a generator of F;. Prove that 
a + bi is a generator of F,. 
(b) Show that either 4 + i or 3 + 2i will serve as a generator of F;I,. 

17. Let p be an odd prime and n be an intcgcr betwceri 1 and p - 1. 
Estimate in terms of p the ~iumhcr of t ~ i t  oj)crations ncccied to cornpirte 
(;) (a) using the reciprocity law for tlic .J;icohi symbol, and (b) using 
Proposition 11.2.2 and Proposition 1.3.6. 

18. (a) Let p be an odd prime, and let a ,  b, c be integers with p !a. 
Prove that the number of solutions x E (0, 1, 2,. . . , p  - 1) to the 
congruence ax2 + bx + c = 0 mod p is given by the formula 1 + (:), 
where D = b2 - 4ac is the discrirriinant. 
(b) How many solutions in FS3 are thcrr to each of the following eqna- 
tions: (i) x2 + 1 = 0; (ii) x2 + x + 1 = 0; (iii) x2 + 215 - 1 1 = 0; (iv) 
x2 + x  + 21 = 0; (v) x2 - 4s  - 13 = 07 
(c) How many solutions in Fg7 are thcrc to each of the equations in 
part (b)? 

19. Let p = 2081, and let n be the srriallest positive nonresidue modulo p. 
Find n, and use the method in the text to find a square root of 302 
modulo p. 

20. Let m = pyl . . -pFr be an odd integer. arid supposc that a is prime 
to m and is the square of some integer modulo m. Your ohject is to 
find x such that x2 = a mod m. Supj)ose that for each j you know a 
nonresidue modiilo p3, i.e., an intcgcr 7 1 ,  si~rli that (3) = - 1. 

P 1 

(a) For each fixcd p = pj and a = a], s~ippost: yoit use tlit algorithm 
in the text to find some xo such tliat xi - u mod p. Show liow you can 
then find some x = xo +xlp+ . - + x,- 1p"-' s~icli tliat x2 r (1 mod pa. 
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(b) Describe how to find an x such that x2 = a mod m. 
The technique in parts (a)-(b) of this exercise is known as "lifting" a 
square root from Fpj (1 5 j < r )  to ZlmZ. 
In the text we saw that if n is an odd prime and g.c.d.(b, n) = 1, then 

The purpose of this exercise is to show that, if n is an odd composite 
integer, then the relation (*) is false for a t  least 50% of all b for which 
g.c.d.(b, n) = 1. 
(a) Prove that if (*) is true for bl and is false for b, then it is false for 
the product blb2. Use this to prove that if (*) is false for even a single 
b, then the number of b's for which it is false is at  least as great as the 
number of b's for which it is true. 
(b) If n is divisible by the square of a prime p, show how to find an 
integer b prime to n such that b(n-1)/2 is not = f 1 mod n. 
(c) If n is a product of distinct primes, if p is one of those primes, and 
if b has the property that (!) = -1 and b = 1 mod n/p, prove that (*) 
fails for b. Then show that such a b always exists. 
Explain why the following probabilistic algorithm gives a square root 
of a modulo p: Choose t in Fp at  random until you find t such that 
t2 - a is a nonsauare modulo D. Let a denote the element d c a  in 
the quadratic extension Fp2. Then compute b = (t + a)(pC1)I2. Show 
that b is in Fp and has the property that b2 = a. 
Suppose that p is a prime r 1 mod 4, and suppose you have found 
a quadratic nonresidue n. Describe an algorithm for expressing p as a 
sum of two squares p = c2 + dZ that takes time  lo^^^). 
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1 Some simple cryptosystems 

Basic notions. Cryptography is the study of methods of sending messages 
in disguised form so that only the intended recipients can remove the dis- 
guise and read the message. The message we want to send is called the 
plaintext and the disguised message is called the ciphertext. The plaintext 
and ciphertext are written in some alphabet (usually, but not always, they 
are written in the same alphabet) consisting of a certain number N of let- 
ters. The term "letter" (or "character") can refer not only to the familiar 
A-Z, but also to numerals, blanks, punctuation marks, or any other sym- 
bols that we allow ourselves to use when writing the messages. (If we don't 
include a blank, for example, then all of the words are run together, and 
the messages are harder to read.) The process of converting a plaintext to 
a ciphertext is called enciphering or encryption, and the reverse process is 
called deciphering or decryption. 

The plaintext and ciphertext are broken up into message units. A mes- 
sage unit might be a single letter, a pair of letters (digraph), a triple of 
letters (trigmph), or a block of 50 letters. An enciphering tmnsformation is 
a function that takes any plaintext message unit and gives us a ciphertext 
message unit. In other words, it is a map f from the set P of all possible 
plaintext message units to the set C of all possible ciphertext message units. 
We shall always assume that f is a 1-to-1 correspondence. That is, given a 
ciphertext message unit, there is one and only one plaintext message unit 
for which it is the encryption. The deciphering transformation is the map 
f -' which goes back and recovers the plaintext from the ciphertext. We 
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can represent the situation schematically by the diagram 

Any such set-up is called a cryptosystem. 
The first step in inventing a cryptosystxm is to "label" all possible 

plaintext message units and all possible ciphertext message units by means 
of mat hematical objects from which functions can be easily constructed. 
These objects are often simply the integers in some range. For example, 
if our plaintext and ciphertext message units are single letters from the 
26-letter alphabet A-Z, then we can label the letters using the integers 
0, 1, 2,. . . , 25, which we call their "numerical equivalents." Thus, in place 
of A we write 0, in place of S we write 18, in place of X we write 23, and so 
on. As another example, if our message units are digraphs in the 27-letter 
alphabet consisting of A-Z and a blank, we might first let the blank have 
numerical equivalent 26 (one beyond Z), and then label the digraph whose 
two letters correspond to x, y E {0, 1, 2, .  . . , 26) by the integer 

Thus, we view the individual letters as digits to the base 27 arid we view 
the digraph as a 2-digit integer to that base. For example, the digraph 
LLNO" corresponds to the integer 27 . 13 + 14 = 365. Analogously, if we 
were using trigraphs as our message units, we could label them by integers 
729x+27y+z E {O,1, . . . ,19682). In general, we can label blocks of k letters 
in an N-letter alphabet by integers between O and N~ - 1 by regarding each 
such block as a k-digit integer to the base N .  

In some situations, one might want to label message units using other 
mathematical objects besides integers - for example, vectors or points on 
some curve. But for the duration of this section we shall use integers. 

Examples. Let us start with the case when we take a message unit 
(of plaintext or of ciphertext) to be a single letter in an N-letter alphabet 
labeled by the integers 0, 1,2, . . . , N - 1. Then, by definition, an enciphering 
transformation is a rearrangement of these N iritegers. 

To facilitate rapid enciphering arid deciphering, it is convenient to have 
a relatively simple rule for performing such a rcarrangcment. One way is to 
think of the set of integers (0, 1, 2, .  . . , N - 1 )  as ZINZ, and make use of 
the operations of addition and rnultiplicatiori rt~ocl~ilo N. 

Example 1. S~ipposc we ;ire usirlg tlw tlfi-l(ttc~ alp11al)ct A Z with 
11111nerical eq~iivalr~its 0 25. Lt:t tlic lrttor I' c (0, 1, . . . , 25) st;nid for t i  

plaintext message unit. Define a function f from the set (0, 1, . . . , 25) to 
itself by the rule 

111 other words, f sirriply adds 3 rnod~ilo 26: f (1') = P + 3 mod 26. The 
(lefinition using modular arithrrictic is easier to write down and work with. 
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Example 3. Still working in our 26-letter alphabet, suppose that we 
know the most frequently occurring letter of ciphertext is "K", and the sec- 
ond most frequently occurring letter is "D". It is reasonable to assume that 
these are the encryptions of "E" and "T", respectively, which are the two 
most frequently occurring letters in the English language. Thus, replacing 
the letters by their numerical equivalents and substituting for P and C in 
the deciphering formula, we obtain: 

IOU' + b' r 4 mod 26, 

3a' + b' r 19 mod 26. 

We have two congruences with two unknowns, a' and b! The quickest way 
to solve is to subtract the two congruences to eliminate b'. We obtain 7a' = 
11 mod 26, and a' = 7-'11 9 mod 26. Finally, we obtain b' by substituting 
this value for a' in one of the congruences: b' = 4 - 10a' G 18 mod 26. So 
messages can be deciphered by means of the formula P = 9C + 18 mod 26. 

Recall from linear algebra that n equations suffice to find n unknowns 
only if the equations are independent (i.e., if the determinant is nonzero). 
For example, in the case of 2 equations in 2 unknowns this means that the 
straight line graphs of the equations intersect in a single point (are not par- 
allel). In our situation, when we try to cryptanalyze an affine system from 
the knowledge of the two most frequently occurring letters of ciphertext, 
we might find that we cannot solve the two congruences uniquely for a' and 
b'. 

Example 4. Suppose that we have a string of ciphertext which we know 
was enciphered using an affine transformation of single letters in a 28-letter 
alphabet consisting of A-Z, a blank, and ?, where A-Z have numerical 
equivalents 0-25, blank=26, ?=27. A frequency analysis reveals that the 
two most common letters of ciphertext are '(B" and "?", in that order. Since 
the most common letters in an English language text written in this 28- 
letter alphabet are " " (blank) and "E", in that order, we suppose that "B" 
is the encryption of " " and "7" is the encryption of "E". This leads to the 
two congruences: a' + b' = 26 mod 28, 27a' + b' = 4 mod 28. Subtracting 
the two congruences, we obtain: 2a' G 22 mod 28, which is equivalent to 
the congruence a' = 11 mod 14. This means that a' = 11 or 25 mod 28, and 
then b' - 15 or 1 mod 28, respectively. The fact of the matter is that both 
of the possible f i n e  deciphering transformations 11C + 15 and 25C + 1 
give " " and "E" as the plaintext letters corresponding to "B" and "?", 
respectively. At this point we could try both possibilities, and see which 
gives an intelligible message. Or we could continue our frequency analysis. 
Suppose we find that "I" is the third most frequently occurring letter of 
ciphertext. Using the fact that "T" is the third most common letter in 
the English language (of our 28 letters), we obtain a third congruence: 
8a' + b' E 19 mod 28. This extra bit of information is enough to determine 
which of the affine maps is the right one. We find that it is 11C + 15. 
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Digraph transformations. We now suppose that our plaintext and ci- 
phertext message units are two-letter blocks. called digraphs. This means 
that the plaintext is split up into two-letter segments. If the entire plaintext 
has an odd number of letters, then in order to obtain a whole number of 
digraphs we add on an extra letter at  the end; we choose a letter which 
is not likely to cause confusion, such as a blank if our alphabet contains a 
blank, or else "X" or "Q" if we are using just the 26-letter alphabet. 

Each digraph is then assigned a numerical equivalent. The simplest 
way to do this is to take X N  + y, where x is the numerical equivalent of the 
first letter in the digraph, y is the numerical ccpivalcnt of the sccond lcttcr 
in the digraph, and N is the number of letters in tlie alphabet. Equivalently, 
we think of a digraph as a 2-digit base-N integer. This gives a 1-to-1 corre- 
spondence between the set of all digraphs in the N-letter alphabet and the 
set of all nonnegative integers less than N2  We described this "labeling" of 
digraphs before in the special case when N = 27. 

Next, we decide upon an enciphering transformation, i.e., a rearrange- 
ment of the integers {0, 1, 2,. . . , N~ - 1). Among the simplest enciphering 
transformations are the af ine  ones, where we view this set of integers as 
z/N2Z, and define the encryption of P to be the nonnegative integer less 
than N2 satisIying the congruence C -- UP + b mod N? Here, as before, 
a must have no common factor with N (which means it has no common 
factor with N ~ ) ,  in order that we have an inverse transformation telling 
us how to decipher: P z a'C + b' mod N2,  where a' a-' mod N? 
b' -a-'b mod N? We translate C into a two-letter block of ciphertext 
by writing it in the form C = x'N + y: and then looking up the letters with 
numerical equivalents x' and y! 

Example 5. Suppose we are working in the 26-letter alphabet and using 
the digraph enciphering transformation C r 159P+580 mod 676. Then the 
digraph "NO" has numerical equivalent 13 26 + 14 = 352 and is taken to 
the ciphertext digraph 159.352 + 580 - 440 mod 676, which is "QY'I The 
digraph "ON" has numerical equivalent 377, and is taken to 359="NV': 
Notice that the digraphs change as a unit, anti t hero is no relation betwccn 
the encryption of one digraph and that of another one that has a letter in 
common with it or even consists of the same Iotters in the reversc ortler. 

To break a digraphic encryption system which uses an affinc transfor- 
mation C aP+b mod N: we need to know the ciphertext correspondi~ig to 
two different plaintext message units. Since the nirssage units are digraphs, 
a frequency analysis rncms corrritirlg which t.wtrlct.t~cr blocks occur riiost 
often in a long string of ciphertext (of coursr, counting only those occur- 
rences where the first letter begins a message uriit, ignoring the occurrences 
of the two letters which straddle two message  ini its), and comparing with 
the known frequency of digraphs in English larig~iagc texts (writt-en in the 
same alphabet). For example, if we use the 26-letter alphabet, statistical 
analyses seem to show that "TH" and "HE" are the two most frequently 
occurring digraphs, in that order. Knowing two plaintext-ciphertext pairs 
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of digraphs is often (but not always) enough to determine a and b. 
Example 6. You know that your adversary is using a cryptosystem with 

a 27-letter alphabet, in which the letters A-Z have numerical equivalents 
0-25, and blank=26. Each digraph then corresponds to an integer between 
0 and 728 = 272 - 1 according to the rule that, if the two letters in the 
digraph have numerical equivalents x and y, then the digraph has numerical 
equivalent 272 + y, as explained earlier. Suppose that a study of a large 
sample of ciphertext reveals that the most frequently occurring digraphs are 
(in order) "ZA': "IA': and "IW7: Suppose that the most common digraphs in 
the English language (for text written in our 27-letter alphabet) are "E " 

(i.e., "E blank"), "S ': " T'! You know that the cryptosystem uses an affine 
enciphering transformation modulo 729. Find the deciphering key, and read 
the message "NDXBHO'I Also find the enciphering key. 

Solution. We know that plaintexts are enciphered by means of the rule 
C I a P  + b mod 729, and that ciphertexts can be deciphered by means of 
the rule P = a'C + b' mod 729; here a ,  b form the enciphering key, and 
a: b' form the deciphering key. We first want to find a' and b! We know how 
three digraphs are deciphered, and, after we replace the digraphs by their 
numerical equivalents, this gives us the three congruences: 

675a' + b' - 134 mod 729, 

216a' + b' E 512 mod 729, 

238a' + b' - 721 mod 729. 

If we try to eliminate b' by subtracting the first two congruences, we arrive 
at  459a' = 351 mod 729, which does not have a unique solution a' mod 729 
(there are 27 solutions). We do better if we subtract the third congruence 
from the first, obtaining 437a' = 142 mod 729. To solve this, we must find 
the inverse of 437 modulo 729. By way of review of the Euclidean algorithm, 
let's go through that in detail: 

and then 

= 362 - 437 mod 729. 
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Thus, a' = 362 - 142 r 374 mod 729, and then b' = 134 - 675 . 374 = 
647 mod 729. Now applying the deciphering transformation to the digraphs 
'(ND'; ((XB" and "HO" of our message - they correspond to the integers 
354, 622 and 203, respectively - we obtain the integers 365, 724 and 24. 
Writing 365 = 13-27+14, 724 = 26.27+22, 24 = 0.27+24, we put together 
the plaintext digraphs into the message "NO WAY': Finally, to find the 
enciphering key we compute a = a'-' = 374-' _= 614 mod 729 (again using 
the Euclidean algorithm) and b = -a'-'b' - -614 647 = 47 mod 729. 

Remark. Although affine cryptosystems with digraphs (i.e., modulo 
N ~ )  are better than the ones using single letters (i.e., moddo N),  they also 
have drawbacks. Notice that the second letter of each ciphertext digraph 
depends only on the second letter of the plai~itext digraph. This is because 
that second letter depends on the mod-N value of C = a P  + b mod N2, 
which depends only on P modulo N ,  i.e., only on the second letter of the 
plaintext digraph. Thus, one could obtain a lot of information (namely, 
a and b modulo N)  from . a  frequency analysis of the even-numbered let- 
ters of the ciphertext message. A similar remark applies to  mod-^^ affine 
transformations of k-letter blocks. 

Exercises 

1. In certain computer bulletin-board systems it is customary, if you want 
to post a message that may offend some people (e.g., a dirty joke), to 
encipher the letters (but not the blanks or punctuation) by a trans- 
lation C - P + b mod 26. It is then easy to decipher the text if one 
wants to, but no one is forced to see a message that jars on the nerves. 
Decipher the punchline of the following story (use frequency analysis 
to find b): At an international convention of surgeons, representatives 
of different countries were comparing notes on recent advances in reat- 
taching severed parts of the body. The French, Americans and Russians 
were being especially boastful. The French surgeon said, "We sewed a 
leg on an injured runner, and a year later he placed in a national 
1000-meter race." "Using the most advanced surgical procedures," the 
Russian surgeon chimed in, "we were able to put back an athlete's 
entire arm, and a year later with the same arm he established a new 
world record for the shot put.'' But they all fell silent when the Amer- 
ican, not to be outdone, announced that ".Jr fr.jrq n fzvyr ba n ~ibefr'f 
nff, naq n lrne yngre vg jnf ryrpgrq Cerfvqrag!" (Note: We are using 
a 26-letter alphabet, but we have inserted blanks and punctuation for 
ease of reading.) 

2. Using frequency analysis, cryptanirlyzc a ~ d  cl(:cipllcr t l ~ :  following mes- 
sage, which you know was cncipllcretf ~is i~ig a shift tra~~sfor~nation of 
single-letter plaintext message units in the 26-letter alphabet: 

PXPXKXENVDRUXVTNLXHYMXGMAXYKXJN 
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XGVRFXMAHWGXXWLEHGZXKVBIAXKMXQM. 
In the 27-letter alphabet (with blank=26), use the affine encipher- 
ing transformation with key a = 13, b = 9 to encipher the message 
"HELP ME." 
In a long string of ciphertext which was encrypted by means of an 
aHine map on single-letter message units in the 26-letter alphabet, 
you ol)scrve that t.lie most frequently occurring letters are "Y" arid 
"V", in that order. Assuming that those ciphertext message units 
are the encryption of "E" and "T", respectively, read the message 
"QAOOYQQEVHEQV". 
You are trying to cryptanalyze an affine enciphering transforma- 
tion of single-letter message units in a 37-letter alphabet. This al- 
phabet includes the numerals 0-9, which are labeled by themselves 
(i.e., by the integers 0-9). The letters A-Z have numerical equiva- 
lents 10-35, respectively, and blank=36. You intercept the ciphertext 
L'OH7F86BB46R36270266BB9" (here the 0 ' s  are the letter "oh", not 
the numeral zero). You know that the plaintext ends with the signature 
"007" (zero zero seven). What is the message? 
You intercept the ciphertext "OFJDFOHFXOL", which was enciphered 
using an affine transformation of single-letter plaintext units in the 27- 
letter alphabet (with blank=26). You know that the first word is "I " 

(''I" followed by blank). Determine the enciphering key, and read the 
message. 
(a) How many different shift transformations are there with an N-letter 
alphabet? 
(b) Find a formula for the number of different affine enciphering trans- 
formations there are with an N-letter alphabet. 
(c) How many affine transformations are there when N = 26, 27, 29, 
30? 
A plaintext message unit P is said to be fixed for a given enciphering 
transformation f if f ( P )  = P. Suppose we are using an affine enci- 
phering transformation on single-letter message units in an N-letter 
alphabet. In this problem we also assume that the affine map is not a 
shift, i.e., that a # 1. 
(a) Prove that if N is a prime number, then there is always exactly 
one fixed letter. 
(b) Prove (for any N) that if our affine transformation is linear, i.e., if 
b = 0, then it has at  least one fixed letter; and that, if N is even, then 
a linear enciphering transformation has a t  least two fixed letters. 
(c) Give an example for some N of an affine enciphering transformation 
which has no fixed letter. 
Now suppose that our message units are digraphs in an N-letter al- 
phabet. Find a formula for the number of different affine enciphering 
t,rarisformations tlicre are. How many are there when N = 26, 27, 29, 
30? 
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10. You intercept the ciphertext message "PbWLPZTQAWHF'; which you 
know was encrypted using an affine map on digraphs in the 26-letter 
alphal~ct,, whcrc, as in the t~x t , ,  a digraph whose t8wo lct,tcrs have nu- 
nicrical ecpivale~its 3' slid ;y correspords to the' integer 262 + y. Ari ex- 
tensive statistical analysis of earlier cipliclrt cx ts which had been codcd 
by tlic same crlcipliering map sliows that t llc niost frequently occurririg 
digraphs in all of that cipllortcxt arc. "IX" ; i r d  "TQ': ill  that ortlcr. It 
is known that the most common digraphs in the English language are 
"TH" and "HE': in that order. 
(a) Find the deciphering kcy, and read t 1ic niessage. 
(b) You decide to have the intended rev.-ipient of the message inca- 
pacitated, but you don't want tlic scritlc~r to know that anything is 
amiss. So you want to impcrsoriate tlie sclitler's acconiplice and reply 
"GOODWORK". Find the enciphering key, and determine the appro- 
priate ciphertext. 

11. You intercept the coded mcssage "DXM SCE DCCUVGX ", which 
was enciphered using an affine map on digraphs in a 30-letter alpha- 
bet, in which A-- Z have nurncrical equiv;donts 0 --25, blank=26, ?=27, 
!=28, '=29. A frequency analysis shows that the most corrlrrion di- 
graphs in earlier ciphertexts are "hi ", ''(7 ", and "IH", in that order. 
Suppose that in the English larlguage 1 .11~  most frequently occurring 
digraphs (in this particular 30-lcttcr alp1id)ct) are "E ", "S ", and 
" T", in that ordcr. 
(a) Find tlie clccipliering key, and read the message. 
(b) Find the enciphering key, and encrypt the message "YES I'hl JOK- 
ING!" 

12. The same techniques apply, of course, if one is using some other al- 
phabet besides the Latin alphabet. For cx;~rriplc, this exercise uses the 
Russian alphabet (it is not necessary, or cvcri helpful, to know Russian 
or the Cyrillic alphabet in order to do this exercise). Use the following 
numerical equivalents for tlie Cyrillic a1ph;het: 

Suppose that you intercept the codctl mossage "UIITM': which was 
enciphered using ari affine 111ap 011 (ligriq)I~s i l l  the a1)ove 33-Iettcr al- 
phabet. A frequency analysis of earlier ciplic~rtcxt shows that t hc   no st 
frcqueritJy occurring cipl~crtc\xt (ligrapl~s ilr(' "I 111" ant1 "I>1'1": i l l  t lir~t 
order. Suppose it is known that tlie two niost frequently occurring 
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digraphs in the Russian language are "HO" and "ET'I Find the deci- 
phering key, and write out the plaintext message. 
Recall from Exercise 8 that a &ed plaintext message unit is one that 
the given enciphering transformation keeps the same. Find all fixed 
digraphs for the enciphering transformation in Exercise 11. 
By the product (or composition) of two cryptosystems, we mean the 
cryptosystem that results from enciphering a plaintext using the first 
cryptosystem and then treating the resulting ciphertext as plaintext 
for the second cryptosystem, i.e., encrypting a second time using the 
second system. More precisely, we must assume that the set C1 of ci- 
phertext message units for the first cryptosystem is contained in the set 
of plaintext message units for the second system. Let fl and f2 be the 
enciphering functions; then the product cryptosystem is given by the 
enciphering function f = f2 o fl. If we let I (for "intermediate text") 
denote a ciphertext message unit for the first system, and let Z = Cl 
denote the set of intermediate texts, then the product cryptosystem 
can be represented schematically by the composite diagram: 

Prove that: 
(a) The product of two shift enciphering transformations is also a shift 
enciphering transformation. 
(b) The product of two linear enciphering transformations is a linear 
enciphering transformation. 
(c) The product of two ffine enciphering transformations is an affine 
enciphering transformation. 
Here is a slightly more complicated cryptosystem, in which the plain- 
texts and ciphertexts are written in different alphabets. We choose an 
N-let ter alphabet for plaintexts and an M-let ter alphabet for cipher- 
texts, where M > N. As usual, we regard digraphs in the N-letter 
alphabet as twedigit integers written to the base N, i.e., as integers 
between 0 and N2 - 1; and we similarly regard digraphs in the M- 
letter alphabet as integers between 0 and M2 - 1. Now choose any 
integer L between N2 and M ~ :  N2 < L < M? Also choose integers 
a and b with g.c.d.(a, L) = 1. We encipher a plaintext digraph P us- 
ing the rule C -= UP + b mod L (in which C is taken to be the least 
nonnegative residue modulo L which satisfies the congruence). (Here 
the set P of all possible digraphs P consists of all integers from 0 to 
N2 - 1; but the set C of all possible ciphertext digraphs C in the larger 
alphabet is only part of the integers from 0 to M~ - 1, in fact, it is 
the subset of the integers less than L that arises from applying the 
enciphering rule to all possible plaintext digraphs.) Suppose that the 
plaintext alphabet is the 27-letter alphabet (as in Exercise 3), and the 
ciphertext alphabet is the 30-letter alphabet in Exercise 11. Suppose 
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that L = 853. Further suppose that you know that the two most fre- 
quently occurring plaintext digraphs "E " and "S " have encryptions 
"FQ" and "LEV, respectively. Find the deciphering key, and read the 
message "YAVAOCH'D!" 

16. Continuing along the lines of Exercise 15, here is an example of how 
one can, without too much extra work, create a cryptosystern that is 
much harder to break. Let f l  be one cryptosystem of the type described 
in Exercise 15, i.e., given by the rule f ( P )  = a l  P + bl m o d  L1, and 
let f2  be a second cryptosystem of the same type. Here the N and hi 
are the same, but the a's, 6's and L's are different. We suppose that 
L2 > L1. We then construct the product of the two cryptosystems (see 
Exercise 14), i.e., we encrypt a plaintext message unit P by successively 
applying the two rules: 

I E a l  P + bl m o d  L1, 

C - a2 I + b2 m o d  L2. 

(In the first rule I is the nonnegative integer less than L1 that satisfies 
the congruence, and in the second rule C is less than L2.) Because the 
moduli L1 and L2 are different, Exercise 14(c) does not apply, and this 
product cryptosystem is not generally an affine system. Here we sup- 
pose that the two alphabets of M and N letters are always the same, 
but we are free to frequently change our choice of the parameters a l ,  
bl, L1, a2, 62, L2, subject, of course, to the conditions: N2 5 L1 < 
L2 < M ~ ,  g.c.d.(al, Ll) = 1, g.c.d.(a2, Lz) = 1. Thus, the encipliering 
key consists of the six-tuple of parameter values {al, bl , Ll , a2, 62, L2}. 
Let the plaintext and ciphertext alphabets be as in Exercise 15, con- 
sisting of 27 anti 30 letters, respcctivcdy. If the eucipheririg key is 
{247, 109, 757, 675, 402, 8811, explain how to decipher, and decipher 
the message "D!RAJ'KCTN1: 

2 Enciphering Matrices 

Suppose we have an N-letter alphabet and want to send digraphs (two- 
letter blocks) as our message units. In $1 we saw how we can let each 
digraph correspond to an integer considered modulo N2, i.e., to an element 
of z /N2Z.  An alternate possibility is to let each digraph correspond to a 
vector, i.e., to a pair of integers (i) with x and y each considered modulo 
N. For example, if we're using the 26-letter alphabet A-Z with numerical 
equivalents 0-25, respectively, then the digraph NO corresponds to the 
vector (t:). See the diagram at the top of the next page. 

We picture each digraph P as a point on an N x N square array. That. 
is, we have an "xy-plane," except that each axis, rather than being a copy 
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ZINZ 

of the real number line, is now a copy of ZINZ. Just as the real xy-plane 
is often denoted R: this N x N array is denoted (ZINZ)? 

Once we visualize digraphs as vectors (points in the plane), we then 
interpret an "enciphering transformation" as a rearrangement of the N x N 
array of points. More precisely, an enciphering map is a 1 - t c ~ l  function from 
(Z/NZ)2 to itself. 

Remark. For several centuries one of the most popular methods of 
encryption was the secalled "Vigenkre cipher." This can be described as 
follows. For some fixed k, regard blocks of k letters as vectors in (z /Nz)~  
Choose some fixed vector b E ( z /Nz )~  (usually b was the vector corre- 
sponding to some easily remembered "key-word"), and encipher by means 
of the vector translation C = P + b (where the ciphertext message unit C 
and the plaintext message unit P are k-tuples of integers modulo N). This 
cryptosystem, unfortunately, is almost as easy to break as a single-letter 
translation (see Example 1 of the last section). Namely, if one knows (or 
can guess) N and k, then one simply breaks up the ciphertext in blocks of 
k letters and performs a frequency analysis on the first letter in each block 
to determine the first corrlponent of b, then the same for the second letter 
in each block, and so on. 

Review of linear algebra. We now review how one works with vectors 
in the real xy-plane and with 2 x 2-matrices with real entries. Recall that, 
given a 2 x 2 array of numbers 

( ) and a vector in the plane (3 
(we shall write vectors as columns), one can apply the matrix to the vector 
to obtain a new vector, as follows: 
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For a fixed matrix, this function from one vector to another vector is called 
a linear transformation, meaning that it preserves sums and constant mul- 
tiples of vectors. Using this notation, we can view any set of simultaneous 
equations of the form ax + by = e ,  cx + dy = f as equivalent to a single 
matrix equation AX = B, where A denotes the matrix 

X denotes the vector of unknowns (E), and B denotes the vector of con- 

stants (;). Stated in words, the simultaneous equations can thus be in- 
terpreted as asking to find a vector which when "multiplied" by a certain 
known matrix gives a certain known vector. Thus, it is analogous to the 
simple equation ax = b, which is solved by multiplying both sides by a-' 
(assuming a # 0). Similarly, one way to solve the matrix equation AX = B 
is to find the inverse of the matrix A, and then apply A-I to both sides to 
obtain the unique vector solution X = A-'B. 

By the inverse of the matrix A we mean the matrix which multiplies 
by it to give the identity matrix 

(the matrix which, when applied to any vector, keeps that vector the same). 
But not all matrices have inverses. It is not hard to prove that a matrix 

has an inverse if and only if its determinant D =def ad - bc is nonzero, and 
that its inverse in that case is 

There are three possibilities for the solutions o f  the system of sim~iltaneous 
equations AX = B.  First, if the determinant D is nonzero, then there 
is precisely one solution X = (:) . If D = 0, then either there are no 
solutions or there are infinitely many. The three possibilities have a simple 
geometric interpretation. The two equations give straight lines in the xy- 
plane. If D # 0, then they intersect in exactly one point (x, y). Otherwise, 
they are parallel lines, which means either that they don't meet at  all (the 
simultaneous equations have no common soliltion) or else that they are 
really the same line (the equations have infinitely many common solutions). 



68 111. Cryptography 

Next, let us suppose that we have a bunch of vectors XI = (i:), . . . , 
X k  = (;:), arranged as the columns of a 2 x k-matrix. Then we define the 
matrix product 

i.e., we simply apply the matrix A to each column vector in order, obtaining 
new column vectors. For example, the product of two 2 x 2-matrices is: 

( a  b )  ($ h') - - ( a d  + bd ab' + bd') 
c d ca' + dc' cb' + dd' ' 

Similar facts hold for 3 x 3-matrices, which can be applied to 3-dimensional 
column-vectors, and so on. However, the formulas for the determinant and 
inverse matrix are more complicated. This concludes our brief review of 
linear algebra over the real numbers. 

Linear algebra modulo N. In $1, when we were dealing with single 
characters and enciphering maps of ZINZ, we found that two easy types 
of maps to work with were: 
(a) "linear" maps C = UP,  where a is invertible in ZINZ; 
(b) "affine" maps C = a P  + b, where a is invertible in ZINZ. 
We have a similar situation when our message units are digraph-vectors. 
We first consider linear maps. The difference when we work with (Z/NZ)2 
rather than ZINZ is that now instead of an integer a we need a 2x 2-matrix, 
which we shall denote A. We start by giving a systematic explanation of 
the type of matrices we need. 

Let R be any commutative ring, i.e., a set with multiplication and 
addition satisfying the same rules as in a field, except that we do not require 
that any nonzero element have a multiplicative inverse. For example, ZINZ 
is always a ring, but it is not a field unless N is prime. We let R* denote 
the subset of invertible elements of R. For example, (Z/NZ)* = (0 < j < 
N 1 g.c.d.(j, N)  = 1). 

If R is a commutative ring, we let M2(R) denote the set of all 2 x 2- 
matrices with entries in R, with addition and multiplication defined in the 
usual way for matrices. We call M2 (R) a "matrix ring over R" ; M2 (R) itself 
is a ring, but it is not a commutative ring, i.e., in matrix multiplication the 
order of the factors makes a difference. 

Earlier in this scction, the matrices considered were the case when 
R = R is the ring (actually, field) of real numbers. Recall that a matrix 

with real numbers a ,  b, c, d has a multiplicative inverse if and only if the 
determinant D = ad - bc is nonzero, and in that case the inverse matrix is 
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We have a similar situation when we work over an arbitrary ring R. 
Namely, suppose that 

and D = det(A) =d,f ad - bc is in R: Let D-' denote the multiplicative 
inverse of D in R. Then 

D l )  ( ) = ( D 1 ( d a - b c )  
0 D-'(-cb + ad) 

= ( :) , 

and we obtain the same result 

if we multiply in the opposite order. Thus, A has an inverse matrix given 
by the same formula as in the real number case: 

Example 1. Find the inverse of 

Solution. Here D = 2 . 8 - 3 7 = -5 = 21 in Z/26Z. Since 
g.c.d.(21,26) = 1, the determinant D has an inverse, namely 21-' = 5. 
Thus, 

since we are working in 21262, we are using "=" t o  mean that the en- 
tries are congruent modulo 26. 

Just as in the real number case, a 2 x 2-matrix 
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with entries in a ring R can be multiplied by a column-vector (;) with 

z, y E R to get a new vector (;:): 

This gives a "linear map" from vectors to vectors, meaning that a linear 
combination (::~:$f:), where kl and kz are in the ring R, is taken to 

(::;iI::ii). The only difference with the situation earlier in our review of 
linear algebra is that now everything is in our ring R rather than in the 
real numbers. 

We shall want to apply all of this when our ring is R = ZINZ. The next 
proposition will be stated in that case, although the analogous proposition 
is true for any R. 

Proposition 111.2.1. Let 

A =  (: :) t M2(Z/NZ) andset D = a d - 6 .  

The following are equivalent: 
(a) g.c.d.(D,N)=l; 
(b) A has an inverse matrix; 
(c) if x and y are not both 0 in ZINZ, then A(;) # (:); 
(d) A gives a 1-to-1 correspondence of (Z/NZ)2 wath itself. 

Proof. We already showed that (a)&(b). It suffices now to prove that 
(b>*(d>==.(c)=w. 

Suppose that (b) holds. Then part (d) also holds, because A-' gives 
the inverse map from (2,:) to (E) . Next, if we have (d), then (2) # (:) implies 

that A (;) # A(:) = (:) , and so (c) holds. Finally, we prove (c)+(a) by 
showing that (a) false + (c) false. So suppose that (a) is false, and set 
m = g.c.d.(D, N)  > 1 and let m' = N/m. Three cases are possible. 

Case (i). If all four entries of A are divisible by m, set (f) = (::), to 
get a contradiction to (c). 

Case (ii). If a and b are not both divisible by m, set (;) = (iz'). 
Then 

a b -bm' - a h '  + barn' 
A(:) = ( c  d )  ( am' ) = (-cbm'+dam') = (A') = (:)' 

because m ( D  and so N = mm'lDm! 
Case (iii). If c and d are not both divisible by m, set (3 = (!$), and 

proceed as in case (ii). These three cases exhaust all possibilities. Thus, (a) 
false implies (c) false. This completes the proof of Proposition 111.2.1. 

Example 2. Solve the following systems of simultaneous congruences: 

2x + 3y = 1 mod 26, 

7x + 89 - 2 mod 26; 

x + 3y - 1 mod 26, 

72 + 9y - 2 ntod 26; 

x + 3y - 1 mod 26, 

72 + 9y - 1 mod 26. 

Solution. The matrix form of the system (a) is AX z B mod 26, where 
A is the matrix in Example 1, X = (:), and B = (i). We obtain the unique 
solution 

14 11 x - A-'B = (17 lo) (;) = (i:) mod 26. 

The matrix of the systems (b)-(c) does not have an inverse modulo 26, since 
its determinant is 14, which has a common factor of 2 with 26. However, we 
can work modulo 13, i.e., we can find the solution to the same congruence 
mod 13 and see if it gives a solution which works modulo 26. Modulo 13 
we obtain 

(where (;) = (i) in part (b) and (:) in part (c)). This gives ( Z )  z (i) and 

(!) mod 13, respectively. Testing the possibilities modulo 26, we find that 
in part (b) there are no solutions, and in part (c) there are two solutions: 
x = 6, y = 7 and x = 19, y = 20. 

Another way to solve systems of equations (preferable sometimes, espe- 
cially when the matrix is not invertible) is to eliminate one of the variables 
(e.g., in parts (b) and (c), one could subtract 7 times the first congruence 
from the second). 

To return to cryptography, we see from Proposition 111.2.1 that we can 
get enciphering transformations of our digraph-vectors by using matrices 
A E M2(Z/NZ) whose determinant has no common factor with N: 

A = ( :  11, D = ad - bc, g.c.d.(D, N)  = 1. 

Namely, each plaintext message unit P = (;) is taken to a ciphertext 

c = (;:) by the rule 
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C = AP, i.e., ( )  = ( :) (i). 
To decipher a message, we simply apply the inverse matrix: 

Example 3. Working in the 26-letter alphabet, use the matrix A in 
Example 1 to encipher the message unit "NO." 

Solution. We have: 

and so C = A P  is "QV." 
Remark. To encipher a plaintext sequence of k digraphs P = PI P2 P3 . . 

Pk, we can write the k vectors as columns of a 2 x k-matrix, which we also 
denote P ,  and then multiply the 2 x 2-matrix A by the 2 x k-matrix P to 
get a 2 x k-matrix C = A P  of coded digraph-vectors. 

Example 4. Continue as in Example 3 to encipher the plaintext 
"NOANSWER." 

Solution. The numerical equivalent of "NOANS WER" is the sequence 
of vectors (3 (&) (::) (;L7). We have 

i.e., the coded message is "QVNAYQHI." 
Example 5. In the situation of Examples 3 4 ,  decipher the ciphertext 

"FWMDIQ." 
Solution. We have: 

O l9 = "ATTACK." 
= ( I 9  0 10) 

As in $1, suppose that we have some limited information from which 
we want to analyze how to decipher a string of ciphertext. We know that 
the "enemy" is using digraph-vectors in an N-letter alphabet and a linear 
enciphering transformation C = AP.  However, we do not have the encipher- 
ing "key" - the matrix A - or the deciphering "key" - the matrix A-? 
But suppose we are able to determine two pairs of plaintext and ciphertext 
digraphs: Cl = APl and C2 = AP2. Perhaps we learned this information 
from an analysis of the frequency of occurrence of digraphs in a long string 
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of ciphertext. Or perhaps we know from some outside source that a certain 
4-letter plaintext segment corresponds to a certain 4-letter ciphertext. In 
that case we can proceed as follows to determine A and A-! We put the 
two columns Pl and Pz together into a 2 x 2-matrix P ,  and similarly for 
the ciphertext columns. We obtain an equation of 2 x 2-matrices: C = AP,  
in which C and P are known to us, and A is the unknown. We can solve 
for A by multiplying both sides by P-I : 

Similarly, from the equation P = A-'C we can solve for A-': 

Example 6. Suppose that we know that our adversary is using a 2 x 2 
enciphering matrix with a 29-letter alphabet, where A-Z have the usual 
numerical equivalents, blank=26, ?=27, !=28. We receive the message 

"GFPYJP X?UYXSTLADPLW, " 

and we suppose that we know that the last five letters of plaintext are our 
adversary's signature "KARLA." Since we don't know the sixth letter from 
the end of the plaintext, we can only use the last four letters to make two 
digraphs of plaintext. Thus, the ciphertext digraphs DP and LW correspond 
to the plaintext digraphs AR and LA, respectively. That is, the matrix P 
made up from AR and LA is the result of applying the unknown deciphering 
matrix A-' to the matrix C made up from DP and LW: 

Thus, 

and the full plaintext message is 

6 15 9 26 27 24 18 11 3 11 
5 .24 15 23 20 23 19 0 15 22 

= ( 
18 17 10 26 19 13 14 28 0 11 
19 8 4 0 26 14 13 10 17 0 

= "STRIKE AT NOON! KARLA." 

Remark. In order for this to work, notice that the matrix P formed by 
the two known plaintext digraphs must be invertible, i.e., its determinant D 
must have no common factor with the number of letters N. What if we are 
not so fortunate? If we happen to know another ciphertext-plaintext pair, 
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then we could try to use that pair of columns in place of either the first or 
second columns of P and C,  hoping to obtain then an invertible matrix. 
But suppose we have no further information, or that none of the known 
plaintext digraphs give us an invertible matrix P. Then we cannot find 
A-' exactly. However, we might be able to get enough information about 
A-' to cut down drastically the number of possibilities for the deciphering 
matrix. We now illustrate this with an example. (For more on this, see the 
exercises at  the end of the section.) 

Example 7. Suppose we know than our adversary is using an enci- 
phering matrix A in the 26-letter alphabet. We intercept the ciphertext 
"WKNCCHSSJH," and we know that the first word is "GIVE." We want 
to find the deciphering matrix A-' and read the message. 

Solution. If we try to proceed as in Example 6, writing 

we immediately run into a problem, since det(C) = 18 and g.c.d.(18,26) = 
2. We can proceed as follows. Let 51 denote the reduction modulo 13 
of the matrix A, and similarly for and c. If we consider these ma- 
trices in M2(Z/13Z), we can take C-' (more precisely, c-'), because 

--I- 
g.c.d.(det(C), 13) = 1. Thus, from F = A C we can compute 

Since the entries of A-: which are integers mod 26, must reduce to 

modulo 13, it follows that there are two possibilities for each entry in the 
matrix A-? More precisely, 

where A1 E Mz(Z/2Z) is a 2 x 2-matrix of 0's and 1's. That leaves 24 = 16 
possibilities. However, in the first place, since A-' is invertible, its deter- 
minant must be prime to 26, and hence also prime to 2 (i.e., odd). This 
consideration rules out all but 6 possibilities for Al. In the second place, 
when we substitute 
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for A-' in the equation 

(this means entry-by-entry congruence mod 26), we eliminate all but 2 
possibilities, namely, 

Attempting to decipher with the first matrix yields "GIVEGHEMHP," 
which must be wrong. Deciphering with the second matrix 

leads to "GIVETHEMUP." So that must be correct. Although a certain 
amount of trial and error is involved, it's better than running through all 
157,248 possibilities for a deciphering matrix A- ' E Mz (Z/26Z): 

Remark. In Example 7 it would perhaps be more efficient to adjust the 
1 

entries in xr- by multiples of 13 so that they become divisible by 2, i.e., 
to define A1 by writing: 

Then one can obtain information on A1 by working modulo 2, since we now 
have AIC - P mod 2. 

A 5 e  enciphering transformat ions. A more general way to encipher a 
digraph-vector P = (;) is to apply a 2 x 2-matrix A = (: I;) E M2(Z/NZ) 

and then add a constant vector B = (;): 

This is called an "affine" map, and is analogous to the enciphering function 
C = U P  + b that we studied in $1 when we were using single-letter message 
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units. Of course, as before, we are using "=" to mean the corresponding 
entries are congruent mod N. 

The inverse transformation that expresses P in terms of C can be found 
by subtracting B from both sides and then applying A-' to both sides: 

This is also an affine transformation P = A'C + B: where A' = A-l and 
B' = -A-'B. Notice that we must assume that A is an invertible matrix 
in order to be able to decipher uniquely. 

Suppose we know that our adversary is using an f i n e  enciphering 
transformation of digraph-vectors with an N-letter alphabet. To determine 
A and B (or to determine A' = A-' and B' = -A-'B), we need at  least 
three digraph pairs. Suppose we know that the ciphertext digraphs Cl, C2, 
C3 correspond to the plaintext digraphs PI, Pz, P3: 

PI = A'C1 + B' 
P2 = A'C2 + B' 
P3 = A'C3 + B'. 

To find A' and B' we can proceed as follows. Subtract the last equation 
from the first two, and then make a 2 x 2-matrix P from the two columns 
PI - P3 and P2 - P3 and a 2 x 2-matrix C from the two columns C1 - C3 and 
C2 - C3. We obtain the matrix equation P = A'C, which can be solved for 
A' (provided that C is invertible) as we did in the case of linear enciphering 
transformations. Finally, once we find A' = A-1 we can determine B' from 
any of the above three equations, e.g., B' = PI - A1C1. 

Exercises 

1. Use frequency analysis to decrypt the following message, which was 
encoded in the 26-letter alphabet using a Vigenhre cipher with a 3- 
letter key-word. Do this in the following way. To find the first letter of 
the key-word, work with the sequence consisting of every third letter 
starting with the first. Do not assume that the most frequently oc- 
curring letter is necessarily the ciphertext for "En. List the four most 
frequently occurring letters, and try out the possibility that each one 
in turn is the encryption of "E" . If one of the other three frequently 
occurring letters would then have to be the encryption, say, of "Z" 
or " Q ,  then you know that you ma& a wrong choice for "En. By 
an elimination process, find the letter that must be "E" and then the 
key-word letter which produces that translation. In this way find the 
key-word and decipher the message: 
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AWYVPQCTBLWYLPASQJWUPGBUSHFACELDLLDLWLBWAFAHS 

EBYJXXACELWCJTQMARKDDLWCSXBUDLKDPLXSEQCJTNWPR 

WSRGBCLWPGJEZIFWIMJDLLDAGCQMAYLTGLPPJXTWSGFRM 

VTLGUYUXJAIGWHCPXQLTBXDPVTAGSGFVRZTWTGMMVFLXR 

LDKWPRLWCSXPHDPLPKSHQGULMBZWGQAPQCTBAURZTWSHQ 

MBCVXAG JJVGCSSGLIFWNQSXBFDGSHIWSFGLRZTWESVC 

VIFWNQSXBOWCFHMETRZXLYPPJXTWSGFRMVTRZTU'HWMFTB 

OPQZXLYIMFPLVWYVIFWDPAVGFPJETQKPEWGCSSRGIFWB 

2. Find the inverses of the following matrices mod N. Write the entries 
in the inverse matrix as nonnegative integers less than N.  

( 4  ( :) mod 5 (b) (: f) mod 2; (c) (: $I) mod 26 

(d) (400 ) mod 841 (e) ( l g 7  603 271 62 ) mod 841. 

In Exercises 3-5, find all solutions (i) ~riodulo N,  writing x arid y  as 
nonnegative integers less than N. 

x + 4 y = l m o d 9  x + 4 y = l m o d 9  

(a) 5 x + 7 y  = 1 mod 9  (b) 5x + 8 y  = 1 mod 9  

x + 4 y n 1  m o d 9  x + 4 y r O m o d 9  

(') 5 x +  8y EE 2 mod 9  (d) 5 x + 8 y ~ O m o d 9  

17x+ l l y  SE 7 mod 29 17x+ l l y  = 0 mod 29 
(a) 13x+ 10y E 8 mod 29 (b) 13x+ lOy = 0 mod 29 

92 + 20y ,= 0 mod 29 92 + 20y r 10 mod 29 
16x + 13y zs 0 mod 29 (d) 16x+ 13y = 21 mod 29 

92 + 20y = 1 mod 29 

(e) 16x + 13y -- 2 mod 29 

4802 + 971y = 416 mod 1 1  1 1  480s + 971 y  r 109 mod 1 1  1 1  
297s + 398y = 319 mod 1111 (b) 297x+398y 906 mod 1 1 1 1  

480x + 971y r 0 mod 1 1 1 1  480s + 971y = 0 mod 1 1 1 1  

297x+398y=Omod 1 1 1 1  298x+398y=Omod 1 1 1 1  

480x + 971 y r 648 mod 1 1  1 1  

(e) 2981 + 398 y 1004 mod 1 1 1 1 

6 .  The Fibonacci numbers can be defined by the rule f l  = 1 ,  f2 = 1 ,  
f3 = 2, fn+l = fn + fn-1 for n > 1, or, equivalently, by mcans of the 
matrix equation 
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(see Exercise 10 of 51.2). Using the matrix form of the definition, prove 
that fn is even if and only if n is divisible by 3. More generally, prove 
that fn is divisible by a if and only if n is divisible by b for the following 
a and b: (a) a = 2, b = 3; (b) a = 3, b = 4; (c) a = 5, b = 5; (d) 
a = 7, b = 8; (e) a = 8, b = 6; (f) a = 11, b = 10. 

You intercept the message ((SONAFQCHMWPTVEW,' which you 
know resulted from a linear enciphering transformation of digraph- 
vectors, where the sender used the usual 26-letter alphabet A-Z with 
numerical equivalents 0-25, respectively. An earlier statistical anal- 
ysis of a long string of intercepted ciphertext revealed that the most 
frequently occurring ciphertext digraphs were "KH" and "XW" in that 
order. You take a guess that those digraphs correspond to "TH" and 
"HE7,' respectively, since those are the most frequently occurring di- 
graphs in most long plaintext messages on the subject you think is 
being discussed. Find the deciphering matrix, and read the message. 
You intercept the message "ZRIXXWBMNPO; which you know re- 
sulted from a linear enciphering transformation of digraph-vectors in 
a 27-letter alphabet, in which A-Z have numerical equivalents 0-25, 
and blank=26. You have found that the most frequently occurring ci- 
phertext digraphs are "PK" and "RZ.' You guess that they correspond 
to the most frequently occurring plaintext digraphs in the 27-letter 
alphabet, namely, "E " (E followed by blank) and "S ." Find the 
deciphering matrix, and read the message. 
You intercept the message "!IWGVIEX!ZRADRYD',' which was sent 
using a linear enciphering trar~sformation of digraph-vectors in a 29- 
letter alphabet, in which A-Z have numerical equivalents 0-25, 
blank=26, ?=27, !=28. You know that the last five letters of plain- 
text are the sender's signature "MARIA'.' 
(a) Find the deciphering matrix, and read the message. 
(b) Find the enciphering matrix, and, impersonating Maria's friend Jo, 
send the following reply in code: "DAMN FOG! JOY.' 
In this exercise we are again working with the Cyrillic alphabet (see 
Exercise 12 of the last section). We use a 34-letter alphabet, where in 
addition to the numerical equivalents listed before we have blank=33. 
Suppose that still the two most frequently occurring digraphs in Rus- 
sian are taken to be '(HO" and 'ET'I Meanwhile, we find that in a 
long string of ciphertext the most frequently occurring digraphs are 
"IOT" and T M ' I  We know that the encryption uses a linear enci- 
phering transformation of digraph-vectors in the 34-letter alphabet. 
Read the intercepted message "CXHC%LLIOHLII3'1 
Prove that the product (see Exercise 14 of the last section) of a c ryp  
tosystem with enciphering matrix Al E M2(Z/NZ)*  and a cryptosys- 
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tem with enciplicring rnatrix A2 E hf2(Z/NZ)* is also a liriear enci- 
phering transformation. 

12. In order to increase the difficulty of hrcaking your cryptosyste~n. vou 
a d 

decide to encipher a digraph-vector in tjlw 26-letter alphabet by first 
applying the matrix 

( :i)* 
working modulo 26, and then applying tlic matrix 

working modulo 29. (Note that applying two matrices in succession 
while working with the same rnod~llus is cq~iivalcnt to applying a single 
matrix, as sliown in Excrciso 1 I ;  h i t ,  i f  .yo11 c-liango rriodl~lus t l i v  two- 
step encryption is much more cornplicatctf.) Thus, while your plaintexts 
are in the 26-letCor ;tlj)lial)ot, your c'ipllortc~xts will I)(. i l l  t,lic 29-letter 
alphabet we used in Exercisc 9. 
(a) Encipher the message "SEND!' 
(b) Describe how to decipher a ciphertext by applying two rnatrices in 
succession, and decipher "ZMOY.' 
Prove that if a non-invertible A E hf2(Z/NZ) is used to encipher di- 
graph vectors by means of the formula C = AP, then every ciphertext 
one sends can be deciphered as coming from at least two different pos- 
sible plaintexts. 
You intercept the message "S GNL,IKD?I{OZQLLIOhlKUL.VY" (here 
the blank after the S is part of the message). Suppose tliat a liriear 
enciptloring t,r,zrisfor~~iat~io~~ C = A P  is lwirlg 1iscv1 with :I 30-lcttcr 
alphabet, in which A-Z liave the usual ri~ir~icrical equivalents 0 - 25 ,  
blank=26, .=27, ,=28, ?=29. You also know tliat the Iatt six lcttcrs of 
the plaintext are the signature KARLA followed by a period. Find the 
deciphering matrix A-' and the full plitintcxt niessage. 
You intercept the messago "KVW? TA!K,JB?FVR ." (The blanks 
after ? and R are part of the niessagc, hut the final . is not.) You kriow 
that a linear enciphering transformation is lxi~lg used with a 30-letter 
alphabet, in which A - Z have nu~neric;d c.cl~~iv;tl~.nts 0 --25, Mank=26, 
?=27, !=28, .=29. You further kriow that the first six letters of the 
plaintext are "C.I.A." Find the tiecipht~riilg ~riatrix A -' arid the full 
plaintext message. 
Suppose tliat. N = 7 ~ n ,  wllcre g.c.d.(vr. r r )  = 1. Any A E A12(Z/NZ) 
can be considered in M2(Z/nzZ) or A12(Z/nZ) hy simply rctlucing the 
entries rnod~~lo nz or n. Let 2 and A (lrwot c1 the corresponding matrices 
in M2(Z/mZ) and hf2(Z/nZ), rcspcctiv(~I?~. 
(a) Prove that the map that tnkrs A to t I I P  pair (A. A)  is a 1-to-1 cor- 
resporidcncc betwoe11 h12(Z/NZ) : u ~ l  t l i r .  scbt A12(Z/irrZ) x A12(Z/rl Z) 
of all pairs of matrices, one modulo rn m(1 m e  mod1110 n. 



111. Cryptography 

(b) Prove that the map in part (a) gives a 1-to-1 correspondence be- 
tween the set M2(Z/NZ)* of invertible matrices mod N and the set 
M2(Z/mZ)* x M2(Z/nZ)* 
For 11 a prime, find tlic number of elements in M2(Z/pZ)* in two ways, 
and check that your answers agree: 
(a) Count the number of solutions in F, of the equation ad - bc = 0, 
and subtract this from the number of elements in M2(Z/pZ). 
(b) Any A E M2(Z/pZ)* must take (t) and ( y )  to two linearly inde- 
pendent vectors, i.e., the first can be any nonzero vector, and then the 
second can be any vector not a multiple of the first. Count the number 
of possibilities. 
Prove that a matrix in M2(Z/paZ) is invertible if and only if its re- 
duction mod p in Mz(Z/pZ) is invertible. Then find the number of 
elements in M2 (Z/pa Z) * 
Using Exercises 16-18, find a formula for the number of elements in 
M2 (ZINZ): Call this number rp2(N). Recall the formula for the num- 
ber p (N)  of elements in (Z/NZ)*: rp(N) = N npl , ( l  - 4). Write your 
formula for rp2(N) in a similar form. How many possible 2 x 2 enci- 
phering matrices A are there when N = 26, 29, 301 
Let vk (N) denote the number of invertible k x k-matrices with entries 
in Z/NZ. Guess a formula for rpk (N). This formula is not hard to  prove 
by the method in Exercise 16(b). 
Remark. The approach in Exercises 16-20 is typical of many proofs 

and computations modulo N.  Using a multiplicativity property, one first 
reduces to the case of a prime power. Then, using a "lifting argument" (see 
Exercise 20 of 5 11.2 for another example of this), one reduces to the case of 
a prime, i.e., we can then work in a field Fp. Once we are working with a 
field, we can more easily use our geometric intuition, as in Exercise 17(b) 
above. All of linear algebra that we first learn over the real numbers goes 
through word-for-word over any field. For example, a congruence of the 
form ax + by = c mod p can be depicted by a "line" in the "plane" over the 
field F,; a second such congruence will either meet the first line in a single 
point, be parallel to the first line, or else coincide with the first line. In the 
case of congruences with a composite modulus N,  on the other hand, there 
are other possibilities, which occur when the determinant of the coefficient 
matrix has a nontrivial common factor with N. 
21. How many possible affine enciphering transformations are there for 

digraphs in an N-letter alphabet? How many are there when N = 26, 
29, 30? 

22. Suppose that you want to find a deciphering matrix A-' E M2(Z/NZ)* 
from the equation P = A-'C, where P and C are made up from 
two known pairs of plaintextxiphertext digraphs. Suppose that g.c.d. 
(det (C), N)  = p, where p is a prime dividing N only to the first power. 
Let n = N/p. 
(a) Find the number of possibilities for A-' you will be left with after 
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solving the congruence P A-'C mod 7 1  and after taking into account 
that pXdet(A-'). 
(b) Suppose that p does not, dividr, all of t htl critxics in C. D(writ)c how 
to use the corlgrucucc Y - A - ' C mod p t .0 further ~ C C ~ I I C C  t.he 1iur111)~r 
of possibilities for A-! How many possibilities are you now left with? 
Example 8 and Exercise 15 illustrate this in the case p = 2. 

23. You want to find a 2 x 2 enciphering matrix A modulo 30. You have 
two plaintext/ciphertext digraph pairs (in a 30-letter alphabet), which 
enables you to write A P  r C mod 30, wliere 

(a) Working modulo 10, write A in the form A = A. + 10A1 mod 30, 
where Al is an unknown matrix modulo 3 (whose entries are 0, 1 or 2) 
and A. is a matrix you know from your mod 10 computations. Choose 
A. so that all of its entries are between 0 and 29 and are divisible by 
3. 
(b) Working modulo 3, find the second column of the matrix Al . 
(c) How many possibilities are there for the original matrix A? List 
them all. 

24. Let 

be the matrix of a linear enciphering transformation of digraphs in an 
N-letter alphabet. By a fied digraph of A we mean a digraph vector P 
whose corresponding ciphertext vector C is the same as P, i.e., A P  = 
P. In this problem we suppose that A is not the identity matrix. (After 
all, there's no point in considering the enciphering transformation that 
doesn't even make a half-hearted attempt to disguise anything.) 
(a) Show that the digraph "AA1'= (:) is always fixed, and find a con- 
dition on 

which is equivalent to "AA" being the only fixed digraph. 
(b) If N is a prime number and if ('AA" is not the only fixed digraph, 
prove that there are exactly N fixed digraphs. 

25. You intercept the message 

"WUXHURWZNQR XVUEXU!JHALGQG.J?',' 

which you know was encoded using an f i n e  transforrnatiori of vcctors 
(i) in an 841-letter alphabet. Here thc nun1e1-ical equivalent of a di- 
graph is the number x = 2'3x1 + z 2 ,  wllcrc X I  is the number of tllc first 
letter and x2 is the number of the second letter in the digraph (the 29 
letters are numbered as in Exercise 9). Thus, each block of four letters 
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gives a column ( z )  : the first two letters give the integer x and the next 
two letters give y. You also know that the last 12 letters of the above 
ciphertext correspond to the signature "HEADQUARTERS'.' 
(a) Find the deciphering transformation and read the message. 
(b) Find the enciphering transformation and make a coded message 
that inpersonates headquarters and says "CANCEL LAST ORDER!" 
followed by two blanks and the signature "HEADQUARTERS'.' 
How many possible affine enciphering transformations are there in the 
situation of Exercise 25 (with an 841-letter digraph alphabet)? 
How many possible affine enciphering transformations are there for tri- 
graphs (3-component vectors) in a 26-letter alphabet? 
You intercept the message 

"FBRTLWUGAJQINZTHHXTEPHBNXSW, " 

which you know was encoded using a linear enciphering transformation 
of trigraphs in the 26-letter alphabet A-Z with numerical equivalents 
0-25. You also know that the last three trigraphs are the sender's 
signature "JAMESBOND." Find the deciphering matrix and read the 
message. 
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Public Key 

1 The idea of public key cryptography 

Recall that a cryptosystem consists of a 1-to-1 enciphering transformation f 
from a set P of all possible plaintext rnessage units to a set C of all possible 
ciphertext message units. Actually, the term "cryptosystem" is more often 
used to refer to a whole family of such transformations, each corresponding 
to a choice of parameters (the sets P and C, as well as the map f ,  may 
depend upon the values of the parameters). For example, for a fixed N- 
letter alphabet (with numerical equivalents also fixed once and for all), 
we might consider the affine cryptosystem (or "family of cryptosystems") 
which for each a E ( Z / N Z ) *  and b E Z / N Z  is the map from P = Z / N Z  
to C = Z / N Z  defined by C s a P  + b mod N .  In this example, the sets P 
and C are fixed (because N is fixed), but the mciphering transformation f 
depends upon the choice of parameters a, b. The enciphering transformation 
can then be described by (i) an algorithm, which is the same for the whole 
family, and (ii) the values of the parameters. The values of the parameters 
are called the enciphering key K E .  In our example, K E  is the pair (a, b). 
In practice, we shall suppose that the algorithrn is publicly known, i.e., the 
general procedure used to encipher cannot he kept secret. However, the 
keys can easily be changed periodically and, if one wants, kept secret. 

One also needs an algorithm and a key in order to decipher, i.e., com- 
pute f-! The key is called the deczphering kry Ku. In our example of the 
affine cryptosystem family, deciphering is also accomplished hy an affine 
map, namely P =_ a - lC  - a-'b mod N ,  arid so the decipheri~~g transfor- 
mation uses the same algorithrn as the encirhcrinn transformation. e x c e ~ t  



84 IV. Public Key 

with a different key, namely, the pair (a-: -a-'b). (In some cryptosys- 
terns, the deciphering algorithm, as well as the key, is different from the 
enciphering algorithm.) We shall always suppose that the deciphering and 
enciphering algorithms are publicly known, and that it is the keys KE and 
KD which can be concealed. 

Let us suppose that someone wishes to communicate secretly using 
the above affine cryptosystem C a P  + b. We saw in 5 111.1 that it is not 
hard to break the system if one uses single-letter message units in an N- 
letter alphabet. It is a little more difficult to break the system if one uses 
digraphs, which can be regarded as symbols in an N2-letter alphabet. It 
would be safer to use blocks of k letters, which have numerical equivalents 
in 2 / N k z .  At least for k > 3 it is not easy to  use frequency analysis, 
since the number of possible k-letter blocks is very large, and one will find 
many that are close contenders for the title of most frequently occurring 
k-graph. If we want to increase k, we must be concerned about the length 
of time it takes to do various arithmetic tasks (the most important one 
being finding a-' by the Euclidean algorithm) involved in setting up our 
keys and carrying out the necessary transformations every time we send a 
message or our friend at  the other end deciphers a message from us. That 
is, it is useful to have big-0 estimates for the order of magnitude of time 
(as the parameters increase, i.e., as the cryptosystem becomes LLlarger" ) 
that it takes to: encipher (knowing KE), decipher (knowing KD), or break 
the code by enciphering without knowledge of KE or deciphering without 
knowledge of KD . 

In all of the examples in Chapter I11 - and in all of the cryptosystems 
used historically until about fifteen years ago - it is not really necessary 
to specify the deciphering key once the enciphering key (and the general 
algorithms) are known. Even if we are working with large numbers - such 
as N k  with k fairly large - it is possible to determine the deciphering 
key from the enciphering key using an order of magnitude of time which is 
roughly the same as that needed to implement the various algorithms. For 
example, in the case of an affine enciphering transformation of Z / N ~ Z ,  once 
we know the enciphering key KE = (a, b) we can compute the deciphering 
key KD = (ap1 mod Nk, -a-'b mod Nk)  by the Euclidean algorithm in 
0(log3(Nk)) bit operations. 

Thus, with a traditional cryptosystem anyone who knew enough to 
decipher messages could, with little or no extra effort, determine the enci- 
phering key. Indeed, it was considered naive or foolish to think that someone 
who had broken a cipher might nevertheless not know the enciphering key. 
We see this in the following passage from the autobiography of a well-known 
historical personality: 

Five or six weeks later, she [Madame d'Urf61 asked me if I 
had deciphered the manuscript which had the transmutation pro- 
cedure. I told her that I had. 
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"Without the key, sir, excuse me if I believe the thing impos- 
sible." 

"Do you wish me to name your key, madame?" 
"If you please." 
I then told her the key-word, which belonged to no language, 

and I saw her surprise. She told me that it was impossible, for she 
believed herself the only possessor of that word which she kept in 
her memory and which she had never written down. 

I could have told her the truth - that the same calculation 
which had served me for deciphering the manuscript had enabled 
me to learn the word - but on a caprice it struck me to tell her 
that a genie had revealed it to me. This false disclosure fettered 
Madame d'Urf6 to me. That day I became the master of her soul, 
and I abused my power. Every time I think of it, I am distressed 
and ashamed, and I do penance now in the obligation under which 
I place myself of telling the truth in writing my memoirs. 

- Casanova, 1757, quoted in D. Kahn's The Codebreakers 

The situation persisted for another 220 years after this encounter be- 
tween Casanova and Madame d1Urf6: knowledge of how to encipher and 
knowledge of how to decipher were regarded as essentially equivalent in 
any cryptosystem. However, in 1976 W. Diffie and M. Hellman discovered 
an entirely different type of cryptosystem and invented "public key c ryp  
tography. " 

By definition, a public key cryptosystern has the property that someone 
who knows only how to encipher cannot use the enciphering key to find 
the deciphering key without a prohibitively lengthy computation. In other 
words the enciphering function f :  P ---+ C is easy to compute once the 
enciphering key KE is known, but it is very hard in practice to compute 
the inverse function f-':C -+ P. That is, from the standpoint of realistic 
computability, the function f is not invertible (without some additional 
information - the deciphering key KD). Such a function f is called a 
trapdoor function. That is, a trapdoor function f is a function which is 
easy to compute but whose inverse f -' is hard to compute without having 
some additional auxiliary information beyond what is necessary to compute 
f .  The inverse f -' is easy to compute, however, for someone who has this 
information KD (the "deciphering key" ) . 

There is a closely related concept of a one-way function. This is a 
function f which is easy to compute but for which f-' is hard to compute 
and cannot be made easy to compute even by acquiring some additional 
information. While the notion of a trapdoor function apparently appeared 
for the first time in 1978 along with the invention of the RSA public-key 
cryptosystem, the notion of a one-way function is somewhat older. What 
seems to have been the first use of one-way f~inctions for cryptography was 
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described in Wilkes' book about time-sharing systems that was published in 
1968. The author describes a new one-way cipher used by R. M. Needham 
in order to make it possible for a computer to verify passwords without 
storing information that could be used by an intruder to impersonate a 
legitimate user. 

In Needham's system, when the user first sets his password, 
or whenever he changes it, it is immediately subjected to the enci- 
phering process, and it is the enciphered form that is stored in the 
computer. Whenever the password is typed in response to a de- 
mand from the sllpervisor for the user's identity to be established, 
it is again enciphered and the result compared with the stored 
version. It would be of no immediate use to a would-be malefac- 
tor to obtain a copy of the list of enciphered passwords, since he 
would have to decipher them before he could use them. For this 
purpose, he would need access to a computer and even if full de- 
tails of the enciphering algorithm were available, the deciphering 
process would take a long time. 

In 1974, G. Purdy published the first detailed description of such a 
one-way function. The original passwords and their enciphered forms are 
regarded as integers modulo a large prime p, and the "one-way" map Fp --+ 

Fp is given by a polynomial f (x) which is not hard to evaluate by computer 
but which takes an unreasonably long time to  invert. Purdy used p = 

264 - 59, f (x) = x224+17 + a1x224+3 + a2x3 + a3z2 + a4x + as, where the 
coefficients ai were arbitrary 19-digit integers. 

The above definitions of a public key cryptosystem and a one-way or 
trapdoor function are not precise from a rigorous mathematical standpoint. 
The notion of "realistic computability" plays a basic role. But that is an 
empirical concept that is affected by advances in computer technology (e.g., 
parallel processor techniques) and the discovery of new algorithms which 
speed up the performance of arithmetic tasks (sometimes by a large factor). 
Thus, it is possible that an enciphering transformation that can safely be 
regarded as a oneway or trapdoor function in 1994 might lose its one-way 
or trapdoor status in 2004 or in the year 2994. 

It is conceivable that some transformation could be proved to be t r a p  
door. That is, there could be a theorem that provides a nontrivial lower 
bound for the number of bit operations that would be required ("on the 
average," i.e., for random values of the key parameters) in order to figure 
out and implement a decipliering algorithm without the deciphering key. 
Here one w ~ u l d  have to allow the possibility of examining a large number of 
corresponding plaintext-iphertext message units (as in our frequency anal- 
ysis of the simple systems in Chapter 111), because, by the definition of a 
public key system, any user can generate an arbitrary number of plaintext- 
ciphertext pairs. One would also have to allow the use of L'probabilistic" 
methods which, while not guaranteed to break the code at once, would be 
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likely to work if repeated many times. (Examples of probabilistic algorithols 
will be given in the next chapter.) Unfortunately, no such thcorcms have 
been proved for any of the functions that have been used as enciphering 
maps. Thus, while there are now many cryptosystems which empirically 
seem to earn the right to be called "public key," there is no cryptosystem 
in existence which is provably public key. 

The reason for the name "public key" is that the information needed 
to send secret messages - the enciphering key K E  - can be niade public 
information without enabling anyone to rcacl the secrct incssagcs. That is, 
suppose we have some population of users of the cryptosystcm, ('i~ch onr of 
wliolrl wants to bc able to receive co~lfidellt,ii~l (-o~~llnullications fro111 any of 
the other users without a third party (eitlicr another user or an outsider) 
being able to decipher the message. Some central office can collect the 
enciphering key KEYA from each user A and publish all of the keys in a 
"telephone book" having the form 

AAA Banking Company (9974398087453930, 297529001 759 1012) 
Aardvark, Aaron (8870004228331, 7234752637937) 

Someone wanting to send a message merely has to look up the enciphering 
key in this "telephone book" and then use the general enciphering algorithm 
with the key parameters corresponding to the intended recipient. Only the 
intended recipient has the matching deciphering key needed to read the 
message. 

In earlier ages this type of system would not have seemwt to have 
any particularly striking advantages. Traditionally, cryptography was used 
mainly for military and diplomatic porposcs. Usually there was a small, 
well-defined group of users who could all share a system of keys, and new 
keys could be distributed periodically (using couriers) so as to keep the 
enemy guessing. 

However, in recent years the actual and j~otcntial applications of cryp- 
tography have expanded to include many o t l w  arcas where comrn~inication 
systems play a vital role - collecting ant1 keeping records of confidential 
data, electronic financial transactions, arid so on. Often one 11a~ a large 
network of users, any two of whom should bc able to keep their cornrnu- 
nications secret from all other users a5 well as ir~tniders from outside the 
network. Two parties may share a secret co~llrnurlication on oric occasion, 
and thon a liltlo h k r  one of t l ~ w  may w;wt f o s(wl a crmliclcl~t i i t l  rttt'ssiigt3 
to a third party. That is, the "alliances" - who is sharing a srrrrt with 
whom - may be continually shifting. It might i)c impractical always to be 
exchanging keys with all possible confidential correspondents. 

Notice that with a public key systenl i t  is possihlo for two partics to 
initiate secret communications without evcr Ilaving had any prior contact, 
without having established any prior trust for oric anotlier, without cx- 
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changing any preliminary information. All of the information necessary to 
send an enciphered message is publicly available. 

Classical vesus public key. By a classical cryptosystem (also called 
a private key cryptosystem or a symmetrical cryptosystem), we mean a 
cryptosystem in which, once the enciphering information is known, the 
deciphering transformation can be implemented in approximately the same 
order of magnitude of time as the enciphering transformation. All of the 
cryptosystems in Chapter I11 are classical. Occasionally, it takes a little 
longer for the deciphering - because one needs to apply the Euclidean 
algorithm to find an inverse modulo N or one must invert a matrix (and 
this can take a fairly long time if we work with k x k -matrices for k larger 
than 2) - nevertheless, the additional time required is not prohibitive. 
(Moreover, usually the additional time is required only once - to  find KD 
- after which it takes no longer to decipher than to encipher.) For example, 
we might need only 0(log2B) to encipher a message unit, and 0(log3B) 
bit operations to decipher one by finding KD from KE, where B is a bound 
on the size of the key parameters. Notice the role of big-0 estimates here. 

If, on the other hand, the enciphering time were polynomial in log B 
and the deciphering time (based on knowledge of KE but not KD) were, 
say, polynomial in B but not in log B, then we would have a public key 
rather than a classical cryptosystem. 

Authentication. Often, one of the most important parts of a message 
is the signature. A person's signature - hopefully, written with an idiosyn- 
cratic flourish of the pen which is hard to duplicate - lets the recipient 
know that the message really is from the person whose name is typed be- 
low. If the message is particularly important, it might be necessary to use 
additional methods to authenticate the communication. And in electronic 
communication, where one does not have a physical signature, one has to 
rely entirely on other methods. For example, when an officer of a corporation 
wants to withdraw money from the corporate account by telephone, he/she 
is often asked to give some personal information (e.g., mother's maiden 
name) which the corporate officer knows and the bank knows (from data 
submitted when the account was opened) but which an imposter would not 
be likely to know. 

In public key cryptography there is an especially easy way to identify 
oneself in such a way that no one could be simply pretending to be you. Let 
A (Alice) and B (Bob) be two users of the system. Let fA be the enciphering 
transformation with which any user of the system sends a message to Alice, 
and let fB  be the same for Bob. For simplicity, we shall assume that the 
set P of all possible plaintext message units and the set C of all possible 
ciphertext message units are equal, and are the same for all users. Let 
P be Alice's "signature" (perhaps including an identification number, a 
statement of the time the message was sent, etc.). It would not be enough 
for Alice to send Bob the encoded message f ( P )  , since everyone knows how 
to do that, so there would be no way of knowing that the signature was not 
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forged. Rather, at the beginning (or end) of t,he message Alice transmits 
fB f i l ( p ) .  Then, when Bob deciphers the wliole message, inchiding this 
part, by applying f* he finds that evcrytlii~ig has beconic plaintext except 
for a small section of jibberish, which is f i l ( P ) .  Since Bob knows that the 
message is claimed to be from Alice, lie applies f A  (which lie kliows, since 
Alice's enciphering key is public), and obtains P. Since no one other than 
Alice could have applied tlie function fi which is inverted by f A  , he knows 
that the message was from Alice. 

Hash functions. A common way to sign a document is with the help of 
a hash function. Roughly speaking, a hash function is an easily co~nput~able 
map f : x H h from a very long input x to a much shorter output h 
(for example, from strings of about lo6 bits to strings of 150 or 200 bits) 
that has the following property: it is not computationally feasible to find 
two different inputs x and x' such that f (xl)  = f (x). If part of Alice's 
"signature" consists of the hash value h = f (x), where x is the entire text 
of her message, then Bob can verify not only that the message was really 
sent by Alice, but also that it wasn't tampered with during transmission. 
Namely, Bob applies the hash function f to his deciphered plaintext from 
Alice, and checks that the result agrees with the value h in Alice's signature. 
By assumption, no tamperer would have been able to change x without 
changing the value h = f (x). 

Key exchange. In practice, the public key cryptosystems for sending 
messages tend to be slower to implement than the clasical systems that are 
in current use. The number of plaintext message units per second that can 
be transmitted is less. However, even if a network of users feels attached 
to the traditional type of cryptosystem, they may want to use a public 
key cryptosystem in an auxiliary capacity to send one another their keys 
K = (KE, K D )  for the classical system. Thus, the ground rules for tlie 
classical cryptosystem can be agreed upon, and keys can be periodically 
exchanged, using the slower public key cryptography; while the large volume 
of messages would then be sent by the faster, older methods. 

Probabilistic Encryption. Most of the number theory based cryptosys- 
tems for message transmission are deterministic, in the sense that a given 
plaintext will always be encrypted into the sarne ciphertext any time it is 
sent. However, deterministic encryption has two disadvantages: (1) if an 
eavesdropper knows that the plaintext message belongs to a small set (for 
example, the message is either "yes" or "no"), then she can simply en- 
crypt all possibilities in order to determine which is the supposedly secret 
message; and (2) it seems to be very difficrilt to prove anything about the 
security of a system if the encryption is deterniinistic. For these reasons, 
probabilistic encryption was introduced. We will not. discuss this further or 
give examples in this book. For more inforrriatiori, see the funda~rlcntai pa- 
pers on the subject by Go1tiwaw:r ant1 Micali ( Proc. 14th A CM S?yrnp. The- 
ory of Computing, 1982, 365-377, and J. Cornput. System Sci. 28 (1984), 
270-299). 
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Exercises 

1. Suppose that m users want to be able to communicate with one an- 
other using a classical cryptosystem. Each user insists on being able to 
communicate with each other user without the remaining m - 2 users 
eavesdropping. How many keys K = (KE, KD) must be developed? 
How many keys are needed if they are using a public key cryptosystem? 
How many keys are needed for each type of cryptosystem if m = lOOO? 

2. Suppose that a network of investors and stockbrokers is using public 
key cryptography. The investors fear that their stockbrokers will buy 
stock without autliorization (in order to receive the commission) and 
then, when the investor's money is lost, claim that they had received 
instructions (producing as evidence an enciphered message to buy the 
stock, claiming that it came from the investor). The stockbrokers, on 
the other hand, fear that in cases when they buy according to the 
investor's instructions and the stock loses money, the investor will claim 
that he never sent the instruction, and that it was sent by an imposter 
or by the stockbroker himself. Explain how this problem can be solved 
by public key cryptography, so that when all of these sleazy people end 
up in court suing one another, there is proof of who is to blame for 
the reckless investing and consequent loss of money. (Suppose that, in 
the case of a lawsuit between investor A and stockbroker B, the judge 
is given all of the relevant enciphering/deciphering information - the 
keys KA = (KEYa, KDvA)  and KB = (KE,B, K D , ~ )  and the software 
necessary to encipher and decipher.) 

3. Suppose that two countries A and B want to reach an agreement to ban 
underground nuclear tests. Neither country trusts the other, in both 
cases for good reason. Nevertheless, they must agree on a system of ver- 
ification devices to be implanted at  various locations on the territory of 
the two countries. Each verification device consists of a sophisticated 
seismograph, a small computer for interpreting the seismograph read- 
ing and generating a message, and a radio transmitter. Explain how 
public key cryptography can be used to enable all of the following (at 
first glance seemingly contradictory) conditions to be met: 
a. Country A insists on knowing the plaintext content of all messages 
emanating from its territory, in order to be sure that the devices are 
not used in coordination with espionage activities by Country B. 
b. Country B insists that Country A cannot fabricate a message from 
the devices which broadcast from its territory (i.e., a message saying 
that everything's OK, when in fact the seismograph has detected a 
treaty violation). 
c. Country A insists that, if Country B falsely claims to have received 
notification from the device of a treaty violation, then any interested 
third country will be able to determine that, in fact, no such message 
was sent. 
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d. Same as conditions a-c with the roles of the two countries reversed. 
e. The verification devices in both countries must be identical, and 
must be constructed jointly by scientists from both countries. 
The purpose of this problem is to construct a long-distance coin flip 
using any two-to-one trapdoor function. For example, suppose that 
two chess players at distant parts of the world are playing chess by 
mail or telephone and want a fair way to determine who plays white. 
Or suppose that when making preparations for an international ice- 
hockey match, rcprcsentativcs of tlie two tcarlls tlccitle to flip a coin 
to see which country hosts the nlatch, without having to arrange a 
meeting (or trust a third party) to "flip the coi~l." 
By a system of two-to-one trapdoor functions, we mean an algorithm 
which, given a key KE of a suitable type, constructs a function f: P --t 
C such that every element c in the image of f has exactly two prcimages 
pl,  pa E P such that f (pj) = c; and an algorithm which, given a key 
KD which "reverses KE," can find both prcimages of any c in tile irnage 
of f .  Here we assume that it is computationally infeasible to find KD 
knowing only KE. Given an element pl E P,  notice that one can find 
the other element p2 having the same irnage if one knows both KE and 
KD (namely, find both inverses of f (pl));  but we assume that, knowing 
only KE, one cannot feasibly compute t4he companion element p2 for 
any pl a t  all. 
Suppose that Player A (Aniuta) and Player B (Bjorn) want to use 
this set-up to flip a coin. Aniuta generates a pair of keys KE and KD 
and sends KE (but not KD) to Bjorn. Explain a procedure that has a 
50%-50% chance of each player "winning" (give a suitable definition 
of "winning"), and that has adequate safeguards against cheating. 
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2 RSA 

In looking for a trapdoor function f to use for a public key cryptosystem, 
one wants to use an idea which is fairly simple conceptually and lends itself 
to easy implementation. On the other hand, one wants to have very strong 
empirical evidence - based on a long history of attempts to find algorithms 
for f -' - that decryption cannot feasibly be accomplished without knowl- 
edge of the secret deciphering key. For this reason it is natural to look at  an 
ancient problem of number theory: the problem of finding the complete fac- 
torization of a large composite integer whose prime factors are not known 
in advance. The success of the so-called "RSA" cryptosystem (from the last 
names of the inventors Rivest, Shamir, and Adleman), which is one of the 
oldest (16 years old) and most popular public key cryptosystems, is based 
on the tremendous difficulty of factoring. 

We now describe how RSA works. Each user first chooses two extremely 
large prime numbers p and q (say, of about 100 decimal digits each), and 
sets n = pq. Knowing the factorization of n,  it is easy to compute ~ ( n )  = 
(p - l)(q - 1) = n + 1 - p - q. Next, the user randomly chooses an integer 
e between 1 and cp(n) which is prime to cp(n). 

Remark. Whenever we say "random" we mean that the number was 
chosen with the help of a random-number generator (or "pseudo-random" 
number generator), i.e., a computer program that generates a sequence of 
digits in a way that no one could duplicate or predict, and which is likely 
to have all of the statistical properties of a truly random sequence. A lot 
has been written concerning efficient and secure ways to generate random 
numbers, but we shall not concern ourselves with this question here. In 
the RSA cryptosystem we need a random number generator not only to 
choose e, but also to choose the large primes p and q (so that no one 
could guess our choices by looking at  tables of special types of primes, for 
example, Mersenne primes or factors of bk f 1 for small b and relatively 
small k). What does a "randomly generated" prime number mean? Well, 
first generate a large random integer m. If m is even, replace m by m + 1. 
Then apply suitable primality tests to see if the odd number m is prime 
(primality tests will be examined systematically in the next chapter). If m 
is not prime, try m+2, then m+4, and so on, until you reach the first prime 
number > m, which is what you take as your "random" prime. According 
to the Prime Number Theorem (for the statement see Exercise 13 of 5 I.1), 
the frequency of primes among the numbers near m is about l/log(m), so 
you can expect to test O(logm) numbers for primality before reaching the 
first prime > m. 
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Similarly, the "random" number e prime to cp(n) can be chosen by first 
generating a random (odd) integer with an appropriate number of bits, and 
then successively incrementing it until one finds an e with g.c.d.(e, p(n)) = 
1. (Alternately, one can perform primality tests until one finds a prime 
e, say between max(p,q) and p(n); such a prime must necessarily satisfy 
g.c.d.(e, cp(n)) = 1.) 

Thus, each user A chooses two primes p~ and q~ and a random number 
eA which has no common factor with (pA - l)(qA - 1). Next, A computes 
nA = P A ~ A ,  p(nA) = nA + 1 -PA - q ~ ,  and also the multiplicative inverse of 
e~ modulo cp(nA): dA = e i l  mod p(nA).  She makes public the enciphering 
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key KE,a = (nA,  e ~ )  and conceals the decipliering key KDYA = (nA,  dA). 
The enciphering transformation is the map from Z/nAZ to itself given by 
f ( P )  PeA mod n ~ .  The deciphering transformation is the map from 
Z/nAZ to itself given by f -'(C) 5 CdA mod n ~ .  It is not hard to see that 
these two maps are inverse to one another, because of our choice of dA. 
Namely, performing f followed by f-' or f -' followed by f means raising 
to the dAeA-th power. But, because dAeA leaves a remainder of 1 when 
divided by rp(nA), this is the same as raising to the 1-st power (see the 
corollary of Proposition 1.3.5, which gives this in the case when P has no 
common factor with nA; if g.c.d.(P, nA)  > 1, see Exercise 6 below). 

From the description in the last paragraph, it seems that we are work- 
ing with sets P = C of plaintext and ciphertext message units that vary 
from one user to another. In practice, we would probably want to choose 
P and C uniformly throughout the system. For example, suppose we are 
working in an N-letter alphabet. Then let k < P be suitably chosrn positive 
integers, such that, for example, N k  and N' have approximately 200 dec- 
imal digits. We take as our plaintext messagr units all blocks of k letters, 
which we regard as k-digit base-N integers, i.e., we assign them numerical 
equivalents between 0 and NC We similarly take ciphertext message units to  
be blocks of l letters in our N-letter alphabet. Then each user must choose 
his/her large primes pa and q, so that nA = p n q ~  satisfies N~ < n , ~  < N! 
Then any plaintext message unit, i.e., integer less than N! corresponds to 
an element in Z/nAZ (for ariy user's nA) ;  md ,  since n~ < N (  the image 
f (P) E Z/nAZ can be uniquely written as an E-letter block. (Not all !-letter 
blocks can arise - only those corresponding to integers less than 7 t ~  for 
the particular user's nA .) 

Example 1. For the benefit of a rcadcr who doesn't have a computer 
handy (or does not have good multiple procision software), we shall sac- 
rifice realism and choose most of our exa~nplrs so as  to i~ivolve relatively 
small integers. Choose N = 26, k = 3, E = 4. That is, the plaintext con- 
sists of trigraphs and the ciphertext consists of four-graphs in the usual 
26-letter alphabet. To send the message "YES" to a user A with enci- 
phering key (nA, eA) = (46927, 39423), we first find the numerical equiva- 
lent of "YES," namely: 24 . 2c2 + 4 . 26 + 18 = 16346, and tlicn compute 
1 6 3 4 6 ~ ' ~ ~ ~  mod 46927, which is 21 166 = 1 - 2 ~ "  5 262 +8.26+ 2 = "BFIC." 
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The recipient A knows the deciphering key (nA,dA) = (46927, 26767), 
and so computes 2 1 1 6 6 ~ ~ ~ ~ ~  mod 46927 = 16346 ="YES." How did user 
A generate her keys? First, she multiplied the primes pa = 281 and 
q~ = 167 to get nA; then she chose e~ at random (but subject to the 
condition that g.c.d.(eA, 280) = g.c.d.(eA, 166) = 1). Then she found 
dA = e l 1  mod 280.166. The numbers pa ,  q ~ ,  da remain secret. 

In Example 1, how cumbersome are the computations? The most time- 
consuming step is modular exponentiation, e.g., 1 6 3 4 6 ~ ' ~ ~ ~  mod 46927. But 
this can he clone by the repeated squaring method (see 5 1.3) in 0(k3) bit 
operations, where k is the number of bits in our integers. Actually, if we were 
working with much larger integers, potentially the most time-consuming 
step would be for each user A to find two very large primes p~ and q ~ .  In 
order to quickly choose suitable very large primes, one must use an efficient 
priniality test. Such tests will be described in the next chapter. 

Remarks. 1. In choosing p and q, user A should take care to see 
that certairi coriditions hold. The most important are: that the two prirrics 
not be too close together (for example, one should be a few decimal digits 
longer than the other); and that p - 1 and q - 1 have a fairly small g.c.d. 
and both have at  least one large prime factor. Some of the reasons for 
these conditions are indicated in the exercises below. Of course, if someone 
discovers a factorization method that works quickly under certain other 
conditions on p and q, then future users of RSA would have to take care to 
avoid those conditions as  well. 

2. In $1.3 we saw that, when n is a product of two primes p and q, 
knowledge of ~ ( n )  is equivalent to knowledge of the factorization. Let's 
suppose now that we manage to break an RSA system by determining a 
positive integer d such that ned I a mod n for all a prime to n. This 
is equivalent to ed - 1 being a multiple of the least common multiple of 
p - 1 and q - 1. Knowing this integer m = ed - 1 is weaker than actually 
knowing ~ ( n ) .  But we now give a procedure that with a high probability 
is nevertheless able to use the integer m to factor n. 

So suppose we know n -- which is a product of two unknown primes 
- and also an integer m such that am ZE 1 mod n for all a prime to 
n. Notice that any such m must be even (as we see by taking a = -1). 
We first check whether m/2 has the same property, in which case we can 
replace m by m/2. If am/' is not 1 mod n for all a prime to n, then we 
must have am12 f 1 mod n for a t  least 50% of the a's in (Z/nZ)* (this 
statement is proved in exactly the same way as part (a) of Exercise 21 in 
5 11.2). Thus, if we test several dozen randomly chosen a's and find that 
in all cases amI2 = 1 mod n, then with very high probability we have this 
congruence for all a prime to n,  and so may replace m by m/2. We keep 
on doing this until we no longer have the congruence when we take half of 
the exponent. There are now two possibilities: 
(i) m/2 is a multiple of one of the two numbers p - 1, q - 1 (say, p - 1) 

but not both. In this case amI2 is always - 1 mod p but exactly 50% 
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of the time is congr~ient to -1 rather tllalt +I niodulo q. 
(ii) m/2 is not a rnultiple of either p - 1 or q - 1. In this case n"'i2 is _= 1 

modulo both p and q (and hence niodulo 12) exactly 25% of the time. 
it is - -1 niodulo both p and q exactly 25% of the time, arid for the 
remaining 50% of the values of n it is r 1 rriodulo one of tlie primes 
and = -1 rnodulo the other prime. 
Thus, by trying a's at  random with higlt pro1)ability we will soon find 

an a for which a""2 - 1 is divisible by one of tltv two prinics (say, p )  hut not 
the other. (Each raridornly selc~ctcd ( I  has it 50% cliaricc of satisfying this 
statcrrlerit.) Onco wc firid such an n we c;m ir~irricdiatcly factor 71, 1)ccarisc 
g.c.d.(n, arnI2 - 1) = p. 

The above procedure is an example of a probabilistic algomthm. We 
shall encounter other probabilistic algorithnis in the next chapter. 

3. How do wc scrd a signature in RSA? When discussing atitlwrltica- 
ti011 iri the last scctiori, we assurned for si~liplicit~y that P = C. Wc have 
a sliglitly rriorc c-ornplicatcd sd,-~ip in HSA.  licrca is orlc. way to i~voitl t hc 
problern of different nA's arid different block sizes (k, the number of letters 
in a plaintext message unit, being less tliari t ,  the riuniber of lcttcrs i r i  a ci- 
phertext message unit). Suppose that, as in the last section, Alice is sending 
her signat,~ir-e (some plaintext P) to Bob. Slic knows Bob's enciplicring key 
KE , s  = (n8, es) and her own deciphering kcy K D , ~  = (nA,  dA). Wiat  she 
does is serid f B  fil (P) if nA < ns ,  or else f i l  f,g(P) if nA > no.  That is, in 
the former case slie takes the least positive rc.sit11ic of P d A  1nod111o n / l ;  tlieri, 
regarding tliat number niodulo no ,  slie comptltcs ( p d ~  mod nA)"" mod n ~ ,  
which she sends as a ciphertext message uliit,. In the case n~ > no,  she 
first computes PCB mod 718 and then, worki~ig niodulo n ~ ,  she raises this 
to the dA-th powcr. Clcarly, Boh call verify t ho aut heriticity of t ltc Inessiigc 
in the first case by raising to tlie dB-tli poww rriodulo 7113 arid tliorl to tlic 
en-tli powcr rrtotl~ilo n ~ ;  in tliv scco~ltl CiLCit' I I V  does these two op('riiti011~ 
in the reverse order. 

Exercises 

1. Suppose that the followirig 4 0 - l ~ t t c ~  al~)IlitI)~t is used for all plai~itcxts 
and ciphertcxts: A -Z with n~ilrierical cqrlivalents 0---25, blank=26, 
.=27, ?=28, $=29, thc: riu~~icr:tls 0 9 will) 1t11111cric:iI ~ c ~ ~ i i ~ i d ( ~ ~ i t  s 30 
39. Suppose tliat plaintext message units are digraphs and ciphertext 
message units are trigraphs (i.e., k = 2, 4 = 3, 402 < nA < 40"or all 
nn).  
(a) Send the rncssago "SEND $7500" to a user wliosc ericipltcri~ig key 
is ( n A ,  e n )  = (2047,179). 
(b) Break the code by factoring nn arid t l i ( ~ 1  cornputilig the tlccipliering 
kcy (71 A , cln ) . 
(c) Explairi why, cvc3ri witliout f;lc.torilig 71 , , 1 ,  coddmakcr c*o~ild fird 
tlie dccipheri~ig kcv rathw cpicklr. In ot llor words, why (in wlditioli t o  
its sinall size) is 2047 a particularly bat1 cMcc for nA? 
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Try to break the code whose enciphering key is (nA, eA) = (536813567, 
3602561). Use a computer to factor n~ by the stupidest known algo- 
rithm, i.e., dividing by all odd numbers 3, 5, 7,. . .. If you don't have a 
computer available, try to guess a prime factor of nA by trying special 
classes of prime numbers. After factoring nA, find the deciphering key. 
Then decipher the message BNBPPKZAVQZLBJ, under the assump- 
tion that the plaintext consists of &letter blocks in the usual 26-letter 
alphabet (converted to an integer between 0 and 266 - 1 in the usual 
way) and the ciphertext consists of 7-letter blocks in the same alpha- 
bet. It should be clear from this exercise that even a 29-bit choice of 
n~ is far too small. 
Suppose that both plaintexts and ciphertexts consist of trigraph mes- 
sage units, but while plaintexts are written in the 27-letter alphabet 
(consisting of A-Z and blank=26), ciphertexts are written in the 28- 
letter alphabet obtained by adding the symbol "/" (with numerical 
equivalent 27) to the 27-letter alphabet. We require that each user A 
choose nA between 273 = 19683 and 2g3 = 21952, so that a plaintext 
trigraph in the 27-letter alphabet corresponds to a residue P modulo 
nA, and then C = PeA mod nA corresponds to a ciphertext trigraph 
in the 28-letter alphabet. 
(a) If your deciphering key is KD = (n, d )  = (21583,20787), decipher 
the message "YSNAUOZHXXH " (one blank at  the end). 
(b) If in part (a) you know that rp(n) = 21280, find (i)e = d-' mod rp(n), 
and (ii) the factorization of n. 
Show why the 35-bit integer 23360947609 is a particularly bad choice 
for n = pq, because the two prime factors are too close to one another; 
that is, show that n can easily be factored by "Fermat factorization" as 
follows. Note that if n = pq (say p > q), then n = ( y ) 2  - (y)? If p 
and q are close together, then s = (p - q)/2 is small and t = (p + q)/2 is 
an integer only slightly larger than fi having the property that t2 - n 
is a perfect square. If you test the successive integers t > fi, you'll 
soon find one such that n = t2 - s: at  which point you have p = t + s ,  
q = t - s. (See Exercise 3 of § 1.2 and also $3 of Chapter V.) 
Suppose that you have a quick algorithm (a  probabilistic algorithm) for 
solving the equation x2 - a mod p for any prime p and any quadratic 
residue a. For example, by trying random integers and computing the 
Legendre symbol, with high probability we can find a nonresidue; then 
we can apply the algorithm described in 5 11.2. Suppose, however, that 
there is no good algorithm for solving x2 r a mod n for a a square 
modulo n and n = pq a product of two large primes, unless one knows 
the factorization of n (in which case one can find a square root modulo 
p and modulo q and then use the Chinese Remainder Theorem to 
find a square root modulo n). Suppose that p and q are not both 
= 1 mod 4. Let KE = n, and let KD = {p, q) be its factorization. Let 
P = C = (Z/nZ)*/ f 1, which is the set of pairs (x, -x) of residues 
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modulo n prime to n, where negatives are grouped with one another. 
Let f :  P ---+ C be the map x - x2 mod n. Show that this set-up is 
an example of Exercise 4 in the last section. This gives us a way to 
implement long-distance coin flips. 

6. Let n be any squarefree integer (i.e., product of distinct primes). Let d 
and e be positive integers such that de - 1 is divisible by p - 1 for every 
prime divisor p of n. (For example, this is the case if de = 1 mod ~ ( n ) . )  
Prove that ade e a mod n for any integer a (whether or not it has a 
common factor with n). 

7. Prove the statements in Remark 2 about the percent of the time the 
different congruences for amI2 occur in cases (i) and (ii). 
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3 Discrete log 

The RSA system discussed in the last scctiori is based on the fact that 
finding two large primes and multiplying thcm together to get n is far easier 
than going in the other direction (given 71, finding the two primrs). There 
are other fiintiarnental processcs in n11rnhc:r t licory which apparent 1 y also 
have this "trapdoor" or "one-way" property. One of the most important is 
raising to a power in a large finite field. 

When working with the real nurrihers, cxponentiation (finding bx to a 
prescribed accuracy) is not signif cantly easier than the inverse opcrat ion 
(finding logbx to a prescribed accuracy). Brit now suppose we have a finite 
group, such as (ZlnZ)' or F; (with the gnwp operation of multiplication). 
Because of the repeatedsquaring method (sec 5 1.3)) one can compiltr bx 
for large x rather rapidly (in time which is polynomial in logr) .  But, if 
we're given an element y which we know to lw of the form bx (we srippose 
that the "basev b is fixed), how can we find t hc power of b that gives y, i.e., 
how can we compute x = logby (where hcrc "log" has a different hut analo- 
gous meaning than before)? This question is called the "discrete logarithm 
problem." The word "discrete" distingiiishcs t hc finite group situation from 
the classical (continuous) situation. 
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Definition. If G is a finite group, b is an element of G, and y is an 
element of G which is a power of b, then the discrete logarithm of y to the 
base b is any integer x such that bx = y. 

Example 1. If we take G = F;9 = (Z/19Z)* and let b be the generator 
2 (see Example 1 of 5 II.l), then the discrete logarithm of 7 to the base 2 
is 6. 

Example 2. In Fg with a a root of x2 - X - 1 (see Example 2 of 5 11.1), 
the discrete logarithm of - 1 to the base a is 4. 

At the end of this section we shall briefly discuss the present state 
of algorithms to solve the discrete logarithm problem in finite fields. First 
we describe several public key cryptosystems or special purpose public key 
arrangements that are based on the computational difficulty of solving the 
discrete logarithm problem in finite fields. 

The Dif£ie-Hellman key exchange system. Because public key c ryp  
tosystems are relatively slow compared to classical cryptosystems (at least 
a t  our present stage of technology and theoretical knowledge), it is often 
more realistic to use them in a limited role in conjunction with a classical 
cryptosystem in which the actual messages are transmitted. In particular, 
the process of agreeing on a key for a classical cryptosystem can be ac- 
complished fairly efficiently using a public key system. The first detailed 
proposal for doing this, due to W. Diffie and M. E. Hellman, was based on 
the discrete logarit hrn problem. 

We suppose that the key for the classical cryptosystem is a large ran- 
domly chosen positive integer (or a collection of such integers). For example, 
suppose we want to use an afirie matrix transformation of pairs of digraphs 
(see 5 111.2) 

where 0 5 a,  b, c, d, e,  f < N~ and P is a column vector consisting of the 
numerical equivalents of two successive plaintext digraphs (i.e., altogether 
a four-letter block) in an N-letter alphabet. Once we have a randomly 
selected integer k between 0 and N1: we can take a ,  b, c, d, e, f to be 
the six digits in k written to the base N 2  (We must check that ad - bc is 
invertible modulo N: i.e., that it has no common factor with N ;  otherwise 
we choose another random integer k.) 

We observe that choosing a random integer in some interval is equiv- 
alent to choosing a random element of a large finite field of roughly the 
same size. Let us suppose, for example, that we want to choose a random 
positive k < N'? If our finite field is a prime field of p elements, we sim- 
ply let an element of F, correspond to an integer from 0 to p - 1 in the 
usual way; if the resulting integer is larger than N': we reduce it modulo 
N '2 

If our finite field is Fpf, we first choose an Fp-basis of this field, so 
that every element corresponds to an f-tuple of ele~nents of Fp; then such 
an f-tuple gives an integer less than pf if wc consider the coordinates as 
digits of an integer written to the b a ~ e  p. Warning: This gives a 1-to-1 
correspondence between F,, and ~ / p f ~  = (0, 1, 2 , .  . . , p i  - 1). But these 
two sets have a very different structure unclcr addition and multiplication. 
The first is a field, i.e., all of the pf - 1 nonzero elements have inverses, 
while the second is a ring in which pf-' of the pf elements (the multiples 
of p) fail to have inverses. 

We now describe the Diffie-Hellrnan niethod for generating a random 
element of a large finite field F,. We suppose that q is public knowledge: 
everyone knows what finite field our key will be in. We also suppose that g 
is some fixed element of F,, which is also not kept secret. Ideally, g should 
be a generator of F i ;  however, this is not absolutely necessary. The method 
described below for generating a key will lead only to elements of F, which 
are powers of g ;  thus, if we really want our random element of F, to have 
a chance of being any element, g must be a generator. 

Suppose that two users A (Aida) and B (Bernardo) want to agree 
upon a key - a random element of Fi - which they will use to encrypt 
their subsequent messages to one another. Aida chooses a random integer 
a between 1 and q - 1, which she keeps secret, and computes ga E F,, 
which she makes public. Bernardo does the same: he chooses a random b 
and makes public gb The secret key they use is then gab. Both users can 
conipute this key. For exarnple, Aids knows !Ib (which is public k~iowletlge) 
and her own secret a. However, a third party knows only ga and gb.  If 
the following assumption holds for the niultiplicative group F;, then an 
unauthorized third party will he unable to determine the key. 

Dae-Hellman assumption. It is computationally infeasible to compute 
gab knowing only ga arid gb.  

The DiffieHellman assumption is a priori at least as strong as the 
assumption that discrete logarithms cannot be feasibly computed in the 
group. That is, if discrete logarithms can be computed, then obviously the 
DiffieHellman assumption fails. Some people would conjecture that the 
converse implication also holds, but that is still an open question. In other 
words, no one can imagine a way of passing from ga and gb to gab without 
first being able to determine a or b; but it is conceivable that such a way 
might exist. 

Example 3. Suppose we're using a shift encryption of single-letter 
message units in the 26-letter alphabet (see Example 1 of fj 111.1): C r 
P + B mod 26. (We're using B rather than h to denote the shift key so as 
not to confuse it with the b in the last paragraph.) To choose B,  take the 
least nonnegative residue modulo 26 of a rmclorn element in F53. Lt)t g = 2 
(which is a generator of FS3). Suppose Aidla j~icked at random u = 29, and 
looked up Bernardo's public 2', which is, say, 12 E F53 She then knows 
that the enciphering key is = 21 E F53, i.e., B = 21. Meanwliile, she 
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has made public 229 = 45, and so Bernardo can also find the key B = 21 by 
raising 45 to the b t h  power (his secret exponent is b = 19). Of course, there 
is no security in working with such a small field; an outsider could easily 
find the discrete logarithm to the base 2 of 12 or 45 modulo 53. And in any 
case there is no security in using a shift encryption of single-letter message 
units. But this example illustrates the mechanics of the Diffie-Hellman key 
exchange system. 

The Massey-Omura crypt osys t em for message transmission. We s u p  
pose that everyone has agreed upon a finite field F,, which is fixed and 
publicly known. Each user of the system secretly selects a random integer e 
between 0 and q - 1 such that g.c.d.(e, q - 1) = 1 and, using the Euclidean 
algorithm, computes its inverse d = e-' mod q - 1, i.e., de = 1 mod q - 1. 
If user A (Alice) wants to send a message P to Bob, first she sends him 
the element P e A .  This means nothing to Bob, who, not knowing dA (or 
eA, for that matter), cannot recover P. But, without attempting to make 
sense of it, he raises it to his e ~ ,  and sends P e A e B  back to Alice. The third 
step is for Alice to unravel the message part of the way by raising to the 
dA-th power; because P ~ * ~ *  = P (by Proposition ILl.l), this means that 
she returns P e B  to Bob, who can read the message by raising this to the 
dB-th power. 

The idea behind this system is rather simple, and it can be generalized 
to settings where one is using other processes besides exponentiation in 
finite fields. However, some words of caution are in order. First of all, notice 
that it is absolutely necessary to use a good signature scheme along with the 
Massey-Omura system. Otherwise, any person C who is not supposed to 
know the message P could pretend to be Bob, returning to Alice P e A e c  ; not 
knowing that an intruder was using his own ec ,  she would proceed to raise 
to the dA and make it possible for C to read the message. Thus, the message 
P e A e B  from Bob to  Alice must be accompanied by some authentification, 
i.e., some message in some signature scheme which only Bob could have 
sent. 

In the second place, it is important that, after a user such as B or C 
has deciphered various messages P ,  and so knows various pairs (P, PeA),  
he cannot use that information to determine e ~ .  That is, suppose Bob 
could solve the discrete log problem in F;, thereby determining from P 
and P e A  what eA must be. In that case he could quickly compute dA = 
e i l  mod q - 1 and then intercept and read all future messages from Alice, 
whether intended for him or not. 

The ElGamal cryptosystem. We start by fixing a very large finite field 
F, and an element g E F; (preferably, but not necessarily, a generator). We 
suppose that we are using plaintext message units with numerical equiv- 
alents P in F,. Each user A randomly chooses an integer a = aA, say in 
the range 0 < a < q - 1. This integer a is the secret deciphering key. The 
public enciphering key is the element ga E F,. 

To send a message P to the user A, we choose an integer k a t  random, 

and then send A the following pair of elements of F,: 

Notice that we can compute gak without knowing a, simply by raising ga 
to the k-th power. Now A, who knows a,  can recover P from this pair by 
raising the first element gk to the a-th power and dividing the result into 
the second element (or, equivalently, raising gk to the (q - 1 - a)-th power 
and multiplying by the second element). In other words, what we send A 
consists of a disguised form of the message - P is "wearing a mask" gak 
- along with a "clue," namely gk, which can be used to take off the mask 
(but the clue can be used only by someone who knows a). 

Someone who can solve the discrete log problem in F, breaks the c ryp  
tosystem by finding the secret deciphering key a from the public enciphering 
key ga. In theory, there could be a way to use knowledge of gk and ga to  
find gak - and hence break the cipher - without solving the discrete log 
problem. However, as we mentioned in our discussion of the Diffie-Hellman 
key exchange system, it is conjectured that there is no way to go from gk 

and ga to gak without essentially solving the discrete logarithm problem. 
The Digital Signature Standard. In 1991 the U.S. government's Na- 

tional Institute of Standards and Technology (NIST) proposed a Digital 
Signature Standard (DSS). The role of DSS is expected to be analogous 
to that of the much older Data Encryption Standard (DES), i.e., it is s u p  
posed to provide a standard digital signature method for use by government 
and commercial organizations. But while DES is a classical ("private key") 
cryptosystem, in order to construct digital signatures it is necessary to use 
public key cryptography. NIST chose to base their signature scheme on the 
discrete log problem in a prime finite field. The DSS is very similar to a sig- 
nature scheme that was originally proposed by Schnorr (see the references 
below). It is also similar to a signature scheme of ElGamal (see Exercise 9 
below). We now describe how the DSS works. 

To set up the scheme (in order later to be able to sign messages), each 
user Alice proceeds as follows: (1) she chooses a prime q of about 160 bits 
(to do this, she uses a random number generator and a primality test); 
(2) she then chooses a second prime p that is = 1 (mod q) and has about 
512 bits; (3) she chooses a generator of the unique cyclic subgroup of F; 
of order q (by computing gf-')" (mod p) for a random integer go; if this 
number is # 1, it will be a generator); (4) she takes a random integer x 
in the range 0 < x < q as her secret key, and sets her public key equal to  
y = gx (mod p). 

Now suppose that Alice wants to sign a message. She first applies a 
hash function to her plaintext (see § I ) ,  obtaining an integer h in the range 
0 < h < q. She next picks a random integer k in the same range, computes 
gk (mod p), and sets r equal to the least nonnegative residue moddo q of 
the latter number (i.e., gk is first computed modulo p, and the result is then 
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reduced modulo the smaller prime q). Finally, Alice finds an integer s such 
that sk  r h + xr  (mod q). Her signature is then the pair (r, s) of integers 
modulo q. 

To verify the signature, the recipient Bob computes ul = s-'h (mod q) 
and u2 = s- l r (mod q). He then computes gUl yU2 (mod p). If the result 

- 1 
agrees modulo q with r, he is satisfied. (Note that gUlyU2 = gs (h+xP) = 

gk (mod PI.) 
This signature scheme has the advantage that signatures are fairly 

short, consisting of two 160-bit numbers (the magnitude of q). On the other 
hand, the security of the system seems to depend upon intractability of the 
discrete log problem in the multiplicative group of the rather large field Fp. 
Although to break the system it would suffice to find discrete logs in the 
smaller subgroup generated by g, in practice this seems to be no easier than 
finding arbitrary discrete logarithms in F;. Thus, the DSS seems to have 
attained a fairly high level of security without sacrificing small signature 
storage and implementation time. 

Algorithms for finding discrete logs in finite fields. We first suppose 
that all of the prime factors of q - 1 are small. In this case we sometimes say 
that q - 1 is "smooth." With this assumption there is a fast algorithm for 
finding the discrete log of an element y E F; to the base b. For simplicity, we 
shall suppose that b is a generator of F;. We now describe this algorithm, 
which is due to Silver, Pohlig and Hellman. 

First, for each prime p dividing q - 1, we compute the p t h  roots of 
unity rP j  = P(~-')/P for j = 0,1, . . . , p  - 1. (As usual, we use the repeated 
squaring method to raise b to a large power.) With our table of {rplj} we 
are ready to compute the discrete log of any y E F;. (Note that, if b is 
fixed, this first computation needs only be done once, after which the same 
table is used for any y.) 

Our object is to find x, 0 < x < q- 1, such that bx = y. If q- 1 = np pa 
is the prime factorization of q - 1, then it suffices to find x mod pa for each 
p dividing q - 1; from this x is uniquely determined using the algorithm 
in the proof of the Chinese Remainder Theorem (Proposition 1.3.3). So we 
now fix a prime p dividing q - 1, and show how to determine x mod pa. 

Suppose that x xo + xlp+.  . . + ~ , - ~ p ~ - '  (mod pa) with 0 < xi < p. 
To find xo we compute y(q-')Ip. We get a p t h  root of 1, since yq-' = 1. 
Since y = bX, it follows that y(q-')/P = ~ x ( P - ~ ) / P  = ~ x o ( Q - ~ ) / P  = rp,x,. Thus, 
we compare y(q-')/p with the {rp,j}osj<p and set xa equal to the value of 
j for which y(q- l ) /~ = rp,j. 

Next, to find $1, we replace y by yl = p/bX0. Thcn yl has discrcte 
log x - xo = xlp + - - (mod pa). Since yl is a p t h  power, we 

(q-l)/p = 1 and yjq-1)/~2 - ~ ( x - x o ) ( ~ - ~ ) / P ~  = ~ ( x ~ + x ~ P + . . . ) ( ( I - ~ ) / P  = have y1 - 

bxl(q-l)/p = rpYZ1 . SO we can compare yp-l)lpZ with {rplj} and set xl  equal 

to the value of j for which yiq-1)1p2 - - 'p,j. 

It should now be clear how we can proceed inductively to find all xo, xl ,  
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. . .  , 2,-1. Namely, for each i = 1,2,.  . . , a - 1 set 

- 
- r ~ , j .  

When we are done we will have x mod pa. After doing this for each 
plq - 1, we finally use the Chinese Remainder Theorem to find x. 

This algorithm works well when all of the primes dividing q - 1 are 
small. But clearly the computation of the table of {r, } and the comparison 

of the y!q-l)lpifl with this table will take a long time if q - 1 is divisible by 
a large prime. (By "large" we mean of at  least about 20 digits. If plq - 1 is 
smaller than about lo2', then one can combine the Silver-Pohlig-Hellman 
algorithm with Shanks' "giant step - baby step" method; see pp. 9, 575- 
576 of Knuth, Vol. 2.) 

Example 4. Find the discrete log of 28 to the base 2 in F& using the 
Silver-Pohlig-Hellman algorithm. (2 is a ger~crator of F:7.) 

Solution. Here 37 - 1 = 22 . 32. We co~ripute 218 zz 1 (mod 37), and 
so r2,o = 1, r2,l = -1. (For p = 2, always { T ~ , ~ }  = {&I}.) Next, 236/3 
26, 22.36/3 = 10 (mod 37), and so {r3,,) = (1, 26, 10). Now let 28 - 
2" (mod 37). We first take p = 2 arid find z mod 4, which we write as 
xo + 2x1. We compute 2836/2 - 1 (mod 37), and hence xo = 0. We then 
compute 2836/4 = - 1 (mod 37), and hence z l  = 1, i.e., x = 2 (mod 4). 
Next we take p = 3 and find x mod 9, which we write as xo + 3x1. (Of 
course, for each p the xi are defined differently.) To find s o ,  we compute 
2836/3 -- 26 (mod 37), and so xo = 1. We then compute (28/2)36/9 = 1 4 ~  = - 
10 (mod 37); thus, xl = 2, and so x E 1 + 2 . 3 = 7 (mod 9). It remains 
to find the unique x mod 36 such that x I 2 (rnod 4) and x E 7 (mod 9). 
This is x = 34. Thus, 28 = 234 in F&. 

The index-calculus algorithm for discrete logs. The reader may want 
to skip this subsection for now, or read it lightly, and come back to it for a 
closer exarnination while reading 5V.3, since the index-calculus algorithm 
for computing discrete logs in finite fields has much in common with the 
factor-base method for factoring large integers. 

Here we shall suppose that q = pn is a fairly large power of a small 
prime p, and b is a generator of F;. Tlic intlcx calciilus algorithm finds for 
any y E F: tlie value of x mod q - 1 such tl~iit y = br .  

Let f (X)  E Fp[X] be any irrctluciblc polynomial of degree n; then 
F, is isomorphic to the residue ring F,[X]/ f ( X ) .  Any element a E Fq = 
F,[X]/ f (X) can he written (unicyiely) as a polynomial a (X)  E F,[X] of 
degree at most n - 1 .  111 particiilar, o11r h s o  t)  = h(X) is s~icli a polynomial. 
The "constants" are the elements of F, c F,. 



104 IV. Public Key 3 Discrete log 105 

We first note that b' = b(q-')/(p-') is a generator of F; (see Exercise 17 
of 511.1). Thus, we immediately know the discrete logs to the base b of these 
constants once we solve the discrete log problem in F; (to the base b'). But 
we have assumed that p is small, and so a table of such discrete logs can 
easily be constructed. In the important special case p = 2, in fact, the only 
nonzero constant is 1, whose discrete log to any base is 0. In what follows 
we shall suppose that we can easily find the discrete log of a constant. 

For the rest of this section we shall let ind(a(X)) (from the word 
"index") denote the discrete log of a(X) E F; to the base b(X). The base 
b(X) is fixed throughout the discussion, and so will not be indicated in the 
notation. 

There are two basic stages of the index-calculus algorithm. The first 
stage is called a "precomputation," because it does not depend on the ele- 
ment y(X) E F; whose discrete log we ultimately want to determine. It has 
only to be carried out once, and can then be used for many computations of 
various discrete logs to  the fixed base b(X). (Recall that there was also an 
analogous precomputat ion st age in the Silver-Pohlig-Hellman algorithm, 
namely, the compilation of the table of {rPlj).) 

We first choose a subset B c F, which will serve as our "basis." 
Usually B consists of all monic irreducible polynomials over Fp of degree 
5 m, where m < n is determined in some optimal way so that the set B has 
a suitable size h = #(B) of intermediate magnitude between p = #(Fp) 
and q = pn = #(Fq). The precomputation stage consists in determining 
the discrete logs of all a(X) E B, as follows. 

Choose a random integer t between 1 and q - 2, and compute bt E F,, 
i.e., compute the polynomial c(X) E Fp[X] of degree < n such that 

c(X) = b ( ~ ) ~  mod f (X). 

(Here one uses the repeated squaring method, a t  each step reducing mod- 
ulo f (X) .) Factor out the leading coefficient c, from c(x), and determine 
whether or not the resulting monic polynomial can be written as a product 
of the a(X) E B, i.e., whether or not c(X) can be written in the form 

One way to determine this is to run through all a(X) E B and divide c(X) 
successively by a(X)"c+ (where a,,, is the highest power of a(X) which 
divides c(X) in Fp[X]). If the constant c, is all that remains after dividing 
by powers of all of the a(X) E B, then c(X) has the above form; otherwise, 
start over again at  the beginning of this paragraph with a different random 
integer t. (A second way - in some cases quicker - to determine whether 
c(X) factors into a product of a(X) E B is simply to factor c(X) using 
an algorithm for factoring elements of Fp[X]. For a description of a good 
algorithm for this purpose (due to Berlekamp), see Volume I1 of Knuth, 
54.6.2.) 

Now suppose that we have found a c ( X )  = b(X)t mod f (X) which 
has the desired type of factorization. Taking the discrete log of both sides 
of the above equality, we obtain 

where equality here should be interpreted as congruence modulo q - 1 (since 
the discrete log is defined only modulo q - 1). The left side of this equality 
is known, since ind(c(X)) = t and the discrete logs of constants are as- 
sumed to be known. The coefficients a,,, on the right are also known. The 
unknowns are the h values ind(a(X)), a (X)  E B, on the right. 

Thus, we have obtained a linear equation in Z/(q - l ) Z  with h un- 
knowns. Now suppose we continue to choose random integers t until we 
obtain a large number of different c(X)'s which factor into a product of 
a(X)'s. As soon as we obtain h independent congruences of the type 

t - i n d ( ~ )  - a,.ind(a(X)) mod q - 1 
a€ B 

(here "independent" means that the determinant of the coefficient matrix 
{a,,,) is prime to q - l ) ,  then we can solve the system for the unknowns 
modulo q - 1. (See $111.2 for a discussion of linear algebra modulo N = 
q - 1.) This completes the first stage of the index-calculus algorithm. The 
precomputation has given us a large "data-base," namely the discrete logs 
of all a(X) E B,  from which to compute any discrete log we are interested 
in. 

Before proceeding to a description of the second stage of the index- 
calculus algorithm, we should comment on the choice of m, which was not 
specified when we described B c F,[X] as the set of all monic irreducible 
polynomials of degree 5 m. The size h of the set B grows rapidly as m in- 
creases. For example, if m is prime, then we saw (Corollary to Proposition 
11.1.8) that in degree m alone there are (pm -p)/m monic irreducible poly- 
nomials. Since we are required to find at  least h different c(X)'s which give 
us the h x h system of independent linear congruences in the h unknowns 
ind(a(X)), and then we have to solve the system, it would be helpful if h 
were not too large, i.e., if m were not too large. On the other hand, if m is 
small, then a "typical" monic polynomial c i l c (X)  of degree 5 n - 1 is not 
likely to factor into a product of a (X)  of degree 5 m; it is more likely to 
have at  least one irreducible factor of dcgrce > m. That is, if m is small, 
it will take us an inordinate ar~iount of ti~ric to r~iake even a siriglc lucky 
random choice of t for which c(X) = b(X)t mod f (X)  has the desired type 
of factorization. Thus, m must be not too srriall, though quite a hit srnaller 
than n. The optimal choice of m - dependirig, of course, on p and n - 
requires a lengthy analysis of probabilities arid time estimates, which go 
beyond the scope of this book. For example, when p = 2 and n = 127, the 
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best choice turns out to be m = 17 (in which case h = 16510). The value 
q = 2127 is a popular choice, because #(F;,,,) = 2127 - 1 is a Mersenne 
prime. 

Wc now return to the index-calculus algorithm, and describe the fi- 
nal stage. Here we suppose that y(X) E FG is the element whose dis- 
crete log we wish to compute, and that stage one has already given us 
the values of ind(a(X)) for all a(X) E B. We again choose a random t 
between 1 and q - 2, and compute yl = ybt, i.e., the unique polynomial 
yl(X) E F,[X] of degree < n satisfying yl(X) -- ~ ( x ) b ( X ) ~  mod f (X). 
As in the first stage of the algorithm, we test whether yl(X) factors 
into a constant yo times a product of powers of a(X), a(X) E B. If 
not, we choose another random t, and so on, until we finally have an 
integer t such that yl(X) - yo naEB u ( X ) ~ ~ .  As soon as this happens, 
we are done, because ind(y) = ind(yl) - t, by the definition of yl; and 
ind(yl) = ind(yo) + a,ind(a(X)), in which we know all of the terms on 
the right. This completes the description of the index-calculus algorithm. 

It should be mentioned that in the popular case p = 2, an improved 
method due to D. Coppersmith has significantly speeded up the process of 
finding discrete logs. For this reason, a discrete log cryptosystem using F;1, 
is no longer regarded as secure unless n is of the order of 1000. Despite this, 
these fields F2n remain popular because they lend themselves to efficient 
programming. For a good survey (covering what was known as of 1985), 
the reader is referred to A. Odlyzko's article (see References below). 

If q = pn is an odd prime power which is k bits long, it turns out 
that, roughly speaking, the order of magnitude of time needed to solve 
the discrete log problem in F; is comparable to what is needed to factor 
a k-bit integer. That is, from an empirical point of view, the discrete log 
problem seems to be about as difficult as factoring (though no one has been 
able to prove a theorem to this effect). In fact, when we discuss factoring 
algorithms and time estimates for them in the next chapter, we will see that 
one of the fundamental methods of factoring large integers bears a striking 
resemblance to the index-calculus algorithm for finding discrete logs. 

Thus, a t  this point it is too early to say whether the public key c ryp  
tosystems of the RSA type (based on the difficulty of factoring integers) or 
the discrete log cryptosystems will eventually prove to be the more secure. 

Exercises 

Note: Exercises 4, 6, 7(c) and 8 should be attempted only if you have the 
use of a computer with multiple precision arithmetic programs. (All that is 
really needed is a program for computing ab mod m for very large integers 
a,  b and m; recall that a-I mod p can be computed by taking 
1. If one has occasion to do a lot of arithmetic in a fixed finite field F, 

which is not too large, it can save time first to compose a complete 
"table of logarithms." In other words, choose a generator g of F, and 
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make a 2-column list of all pairs n, g ' k  n goes from 1 to q - 1; then 
make third and fourth columns listing all pairs a ,  log,a. That is. list 
the elements a of F; in some convenirnt order in the third colurnn. 
and then rlln down the first two co l~ t r t~~~s ,  pltt8tring c;~ch 72 i n  tllo fourt 11 
column next to the a which is gn. For exa~nple, to do this for F9 (see 
Example 2 in 5 II.l), we choose g = a to be a root of X 2  - X - 1, and 
make the following table: 

Then multiplication or division involves nothing more than addition 
or subtraction modulo q - 1 and looking at the table. For example, to 
multiply a - 1 by -a - 1, we find the two numbers in the third column, 
add the two corresponding logarithms: 7 + 6 = 5 mod 8, and then find 
the answer -a in the second column next to 5. 
(a) Make a log table for F j l ,  and use it to compute 16 - 17, 19 .  13, 
1/17, 20123. 
(b) Make a log table for Fg, and use it to compute the following (where 
a is a root of X3 + X + 1; your answers should not involve any higher 
power of a than a2): ( a +  l ) (a2  + a ) ,  (c r2+a+ l ) ( a 2 +  I),  l / ( a 2 +  I ) ,  
a / ( a 2  + a + 1). 
At first glance, it may seem that we could use the cyclic group 
(Z/paZ)* (see Exercise 2(a) in 5 11.1) instead of FG as a set,ting for 
the discrete logarithm problem. However, the discrete log problem for 
(Z/paZ) for a > 1 turns out to be essentially no more time-consuming 
(even if cr is fairly large) than for a = 1 (i.e., Fp).  More precisely, 
using the same technique that is given below in this exercise, onc can 
prove that, once one solvcs the discrete log problem modulo p, going 
the rest of the way (i.e., solving it modulo pa) takes polynomial time in 
log(pa) = alogp. (Recall that no algorithm is known which solves the 
discrete log problem modulo p for large p in polynomial time in log p; 
and experts doubt that such an a lgo r i t h~  exists.) Irl this exercise, we 
show that in the case p = 3 there's a straightforward algoritlm which 
solves the discrete log problem modulo 3" in time which is polynomial 
in a .  
Thus, suppose we take g = 2 (it is easy to show that 2 is a generator of 
(Z/3"Z)* for any r u ) ,  we !.:~vc sornc3 intqcr n not, divisi1)lc hy 3, il11~1 IVC 

want to solve the congruence 2" = a r r m l  3': Prove that the following 



108 IV. Public Key 

algorithm always finds x and takes polynomial time in a ,  and estimate 
(using the 0-notation) the number of bit operations required to find 
x: 
(i) Show that the discrete log problem is equivalent to the congruence 
with a moved to the left (i.e., 2'a = 1). Next, show that without loss of 
generality we may assume that a = 1 mod 3 and x is even. Thus, we can 
replace our original congruence with the congruence 4'a = 1 mod 34 
(ii) Write x = xo +3x1 +. . .+3ff-2x,-2, where the x j  are base3 digits. 
Take x- 1 = 0. Then the congruence 

holds for j = 1. Set gl = 4. In the course of the algorithm as 
a by-product we will compute gj = 43'-1 mod 3ff. Set a1 = a ,  

de f 
and for j > 1 define a j  to be the least positive residue mod 3ff of 
4xo+3x1+".+3'-2xj-2a; we will compute a j  below as we go along. 
(iii) Suppose that j > 1 and we have found $0, . . . , xj-3 such that the 
congruence (*) j-l holds (i.e., (*) with j - 1 in place of j). Further 
suppose that we have computed gj-1 = 43'-' mod 3, and also aj-1. 
First set xj-2 equal to (1 - ~ ~ - ~ ) / 3 j - '  modulo 3. (Notice that aj-1 
1 mod 3j-' because of (*) j-l .) Next, compute a j  = g 7 L i 2 ~ j - l  mod 34 
Finally, if j < a ,  compute gj by raising gj-1 to the 3-rd power, working 
modulo 34 
(iv) When you reach j = a ,  you're done. 

3. You and your friend agree to communicate using sffine enciphering 
transformations C - A P  + B mod N (see Examples 3 and 4 in 5 111.1, 
where lowercase letters a and b were used for the coefficients of the 
transformation). Your message units are single letters in the 31-letter 
alphabet with A-Z corresponding to 0-25, blank=26, .=27, ?=28, 
!=29, '=30. You regard the key KE = (A, B) as an element A + Bi 
in the field of 312 elements (where i denotes a square root of -1 in 
that field). You also agree to exchange keys using the Diffie-Hellman 
system, and to choose g = 4 + i. Then you randomly choose a secret 
integer a = 209. Your friend sends you her gb = 1 + 1%. 
(a) Find the enciphering key. 
(b) What element of Fssl must you send your friend in order that she 
can also find the key? 
(c) Find the deciphering transformation. 
(d) Read the message "BUVCFI WOU JTZ!H." 

4. You receive the ciphertext "VHNHDOAM," which was sent to you 
using a 2 x 2 enciphering matrix 
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applied to digraphs in the usual 26-letter alphabet. The enciphering 
matrix was determined using the Diffie-Hellman key exchange method, 
as follows. Working in the prime field of 3602561 elements, your corre- 
spondent sent you gb = 983776. Your randomly chosen Diffie-Hellman 
exponent a is 1082389. Finally, you agree to get a matrix from a key 
number KE E F3602561 by writing the least nonnegative residue of K E  
modulo 264 in the form a - 263 + b - 262 + c 26 + d (where a ,  6, c, d are 
digits in the base 26). If the resulting matrix is not invertible modulo 
26, replace KE by KE + 1 and try again. Take as the enciphcring ma- 
trix the first invertible matrix that arises from the successive integers 
starting wit11 K E .  
(a) Use this information to find the enciphering matrix. 
(b) Find the deciphering matrix, and read the message. 
Suppose that each user A has a secret pair of transformations f A  and 
fil from P to P ,  where P is a fixed set of plaintext message units. 
They want to transmit information securely using the Massey-Omura 
technique, i.e., Alice sends f A ( P )  to Bob, who then sends fB( fA(P ) )  
back to her, and so on. Give the conditions that the system of f A  's 
must satisfy in order for this to work. 
Let p be the Fermat prime 65537, and let g = 5. You receive the mes- 
sage (29095, 23846)) which your friend composed using the ElGamal 
cryptosystem in F;, using your public key ga. Your secret key, needed 
for deciphering, is a = 13908. You have agreed to convert integers in 
Fp to trigraphs in the 31-letter alphabet of Exercise 3 by writing them 
to the base 31, the digits in the 312-, the 31- and 1- place being the 
numerical equivalents of the three letters in the trigraph. Decipher the 
message. 
(a) Show that choosing Fp with p = 22k + 1 a Fermat prime is an 
astoundingly bad idea, by constructing a polynomial time algorithm 
for solving the discrete log problem in FG (i.e., an algorithm which is 
polynomial in logp). To do this, suppose that g is a generator (e.g., 5 
or 7, as shown in Exercise 15 of 5 11.2) and for a given a you want to 
find x, where 0 < x < p - 1 = 22k, such that gx = a mod p. Write x in 
binary, and pattern your algori thrn after the algorithm for extracting 
square roots modulo p that wa5 described at the end of fj 11.2. 
(b) Find a big-0 estimate (in terms of p) for the number of bit opera- 
tions required to find the integer x by means of the algorithm in part 

( 4  - 
(c) Use the algorithm in part (a) to f i d  the value of k in Rxcrcise 6. 
Suppose that your plaintext message uriits are 18-letter blocks written 
in the usual 26-letter alphabet, where the numerical equivalent of such 
a block is an 18-digit base-26 integer (written in order of decreasing 
powers of 26). You receive the message 
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which was enciphered using the ElGamal cryptosystem in the prime 
field of 297262705009139006771611927 elements, using your public key 
ga. Your secret key is a  = 10384756843984756438549809. Decipher the 
message. 

9. Here is a scheme (also due to ElGamal) for sending a signature using 
a large prime finite field F,. Explain why Alice can do all the steps 
required to send her signature (in time polynomial in logp), why Bob 
can verify that Alice must have sent the signature, and why the system 
would fail if an imposter could solve the discrete logarithm problem in 
F; . 
We suppose that a fixed p and a fixed g E F; are publicly known. Each 
user A also chooses a random integer a~ , 0 < aA < p - 1, which is kept 
secret, and publishes y ~  = gaA . 
To send her signature - which is composed of message units with 
numerical equivalents S in the range 0 < S < p- 1 - Alice first chooses 
a random integer k prime to p- 1. She computes r = gk mod p, and then 
solves the following congruence for the unknown x: gS 5 yrrx mod p. 
She sends Bob the pair ( r ,  x) along with her signature S. Bob verifies 
that gS is in fact - yrrx mod p, and he is happy, secure in his confidence 
that Alice did send the message S. 

10. Using the Silver-Pohlig-Hellman algorithm, find the discrete log of 153 
to the base 2 in F;81. (2 is a generator of Figl.) 

11. (a) What is the percent likelihood that a random polynomial over Fz of 
degree exactly 10 factors into a product of polynomials of degree < 2? 
What is the likelihood that a random nonzero polynomial of degree at  
most 10 factors into such a product? 
(b) What is the probability that a random monic polynomial over F3 of 
degree exactly 10 factors into a product of polynomials of degree < 27 
What is the probability that a random monic polynomial of degree at 
most 10 factors into such a product? 

12. For n > m 2 1, let P,(n,m) denote the probability that a random 
monic polynomial over F, of degree at  most n is a product of irre- 
ducible factors all of degree < m. 
(a) Prove that for any fixed n and m, P(n,  m) = limp,, P,(n, m) 
exists and is strictly between 0 and 1. 
(b) Find an explicit expression for P(n ,  2). 
(c) Compute P (n ,  2) exactly for all n < 7. 
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4 Knapsack 

In this section we rlcsc.ril,r anotl~rr typr of p~bl ic  key cryptosystc~ll, wl~iclr is 
based on the so-called "knapsack prob1r:m." Suppose you have a large knap- 
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sack which you are packing in preparation for a long hike in the wilderness. 
You have a large number of items (say, k items) of volume vi, i = 0, . . . , k-1, 
to fit into the knapsack, which holds a total volume V. Suppose that you 
are an experienced knapsack packer, and can always fit items in with no 
wasted space. You want to take the biggest load possible, so you want to 
find some subset of the k items that exactly fills the knapsack. In other 
words, you want to find some subset I c {I , .  . . , k) such that xiEI Vi = V, 
if such a subset exists. This is the geneml knapsack problem. We shall fur- 
ther assume that V and all of the vi are positive integers. An equivalent 
way to state the problem is then as follows: 

The knapsack problem. Given a set {vi) of k positive integers and an 
integer V, find a k-bit integer n = (ck-lck-2 . . c1co)2 (where the €i E {O, 1) 
are the binary digits of n) such xfzi civi = V, if such an n exists. 

Note that there may be no solution n or many solutions, or there might 
be a unique solution, depending on the k-tuple {ui) and the integer V. 

A special case of the knapsack problem is the superincreusang knapsack 
problem. This is the case when the vi, arranged in increasing order, have 
the property that each one is greater than the sum of all of the earlier vi. 

Example 1. The 5-tuple (2,3,7,15,31) is a superincreasing sequence. 
It is known that the general knapsack problem is in a very difficult 

class of problems, called l'NP-complete" problems. This means that it is 
equivalent in difficulty to the notorious "traveling salesman problem." In 
particular, if the central conjecture in complexity theory is true, as most 
everyone believes it is, then there does not exist an algorithm which solves 
an arbitrary knapsack problem in time polynomial in k and log B, where 
B is a bound on the size of V and the v,. 

However, the superincreasing knapsack problem is much, much easier 
to solve. Namely, we look down the vi, starting with the largest, until we 
get to the first one that is 5 V. We include the corresponding i in our 
subset I (i.e., we take ci = I) ,  replace V by V - vi, and then continue down 
the list of vi until we find one that is less than or equal to this difference. 
Continuing in this way, we eventually either obtain a subset of {v,) which 
sums to V, or else we exhaust all of {vi) without getting V - CiEI v, equal 
to 0, in which case there is no solution. We now write the algorithm in a 
more formal way that could be easily converted to a computer program. 

The following polynomial time algorithm solves the knapsack problem 
for a given superincreasing k-tuple {vi) and integer V: 
1. Set W equal to V, and set j = k. 
2. Starting with cj-1 and decreasing the index of c, choose all of the ci 

equal to 0 until you get to the first i - call it io - such that v,, 5 W. 
Set ci0 = 1. 

3. Replace W by W - vi,, set j = io, and, if W > 0, go back to step 2. 
4. If W = 0, you're done. If W > 0, and all of the remaining vi are > W, 

then you know there is no solution n = (ck-l . . . c0)2 to the problem. 
Notice that the solution (if there is one) is unique. 
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Example 2. Let the vi be as in Example 1, and take V = 24. Then, 
working from right to left in our 5-tuple {2,3,7,15,31), we see that €4 = 0, 
€3 = 1 (at which point we replace 24 by 24 - 15 = 9), €2 = 1 (at which 
point we replace 9 by 9 - 7 = 2), €1 = 0, €0 = 1. Thus, n = (01101)2 = 13. 

We now describe how to construct the knapsack cryptosystem (also 
called the Merkle-Hellman system). We first suppose that our plaintext 
message units have k-bit integers P as their numerical equivalents. For 
example, if we're working with single letters in the 26-letter alphabet, then 
every letter corresponds to one of the 5-bit integers from 0 = (00000)2 to 
25 = (11001)2 in the usual way. 

Next, each user chooses a superincreasing k-tuple {vO,. . . , vk-l), an 
integer m which is greater than ~ f z i  V i ,  and an integer a prime to rn, 
0 < a < m. This is done by some random process. For example, we could 
choose an arbitrary sequence of k + 1 positive integers ai, i = 0,1,.  . . , k, 
less than some convenient bound; set vo = zo , vi = zi + vi- 1 + vi-2 + . . - + vo 
for i = 1, .  . . , k - 1; and set m equal to ak + vi. Then one can choose 
a random positive a0 < m and take a to be the first integer 2 a0 that 
is prime to m. After that, one computes b = a-' mod m (i.e., b is the 
least positive integer such that ab = 1 mod m), and also computes the 
k-tuple {wi) defined by wi = avi mod m (i.e., wi is the least positive 
residue of avi modulo m). The user keeps the numbers ui, m, a ,  and b 
all secret, but pubiishes the k-tuple of wi. That is, the enciphering key is 
KE = {wO, . . . , wk- 1 }. The deciphering key is Ko = (6, m) (which, along 
with the enciphering key, enables or~e to dcterrnine {vo, . . . , vk-1)). 

Someone who wants to send a plaintext k-bit message P = ( E ~ - ~  ek-2 
. . z ~ E ~ ) ~  to a user with enciphering key {wi) computes C = f (P) = 

~Fzi  ciwi, and transmits that integer. 
To read the message, the user first finds the least positive residue V of 

bC modulo m. Since bC - C fibwi C Civi mod m (because bwi bavi r 
vi mod m), it follows that V = C civi. (Here we are using the fact that both 
V < m and C E i V i  < C v i  < m to convert the congruence modulo m to  
equality.) It is then possible to use the above algorithm for superincreasing 
knapsack problems to find the unique solution (ck- . - - eo)z = P of the 
problem of finding a subset of the {vi) which sums exactly to V. In this 
way we recover the message P. 

Note that an eavesdropper who knows only {wi) is faced with the 
knapsack problem C = C Eiwi, which is not a superincreasing problem, 
because the superincreasing property of the k-tuple of vi is destroyed when 
v, is replaced by the least positive residue of nvi modulo m. Thus, the above 
algorithm cannot be used, and, at  first glance, the unauthorized person 
seems to be faced with a much more difficult problem. We shall return to 
this point later. 

Example 3. Suppose that our plaintext message units are single let- 
ters with 5-bit numerical equivalents from (00000)2 to (1 1001)2, as above. 
Suppose that our secret deciphering key is the superincreasing 5-tuple 
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in Example 1. Let us choose m = 61, a = 17; then b = 18 and the 
enciphering key is (34,51,58,11,39). To send the message 'WHY' our 
correspondent would compute 'W'= (10110)2 I+ 51 + 58 + 39 = 148, 
'H'= (00111)2 I-+ 34 + 51 + 58 = 143, 'Y'= (11000)2 I-+ 11 + 39 = 50. 
To read the message 148,143,50, we first multiply by 18 modulo 61, ob- 
taining 41,12,46. Proceeding as in Example 2 with V = 41, V = 12, and 
V = 46, we recover the plaintext (10110)2, (00111)2, (11000)2. 

Of course, as usual there is no security using single-letter message units 
with such a small value of k = 5; Example 3 is meant only to illustrate the 
mechanics of the system. 

For a while, many people were optimistic about the possibilities for 
knapsack cryptosystems. Since the problem of breaking the system is in a 
very difficult class of problems (NP-complete problems), they reasoned, the 
system should be secure. 

However, there was a fallacy in that reasoning. The type of knapsack 
problem C = C eiwi that must be solved, while not a superincreasing knap- 
sack problem, is nevertheless of a very special type, namely, it is obtained 
from a superincreasing problem by a simple transformation, i.e., multiply- 
ing everything by a and reducing modulo m. In 1982, Shamir found an 
algorithm to solve this type of knapsack problem that is polynomial in k. 
Thus, the original Merkle-Hellman cryptosystem cannot be regarded as a 
secure public key cryptosystem. 

One way around Shamir's algorithm is to make the knapsack system 
a little more complicated by using a sequence of transformations of the 
form x H ax  mod m for different a and m. For example, we might sim- 
ply use two transformations corresponding to (al, ml) and (a2, ma). That 
is, we first replace our superincreasing sequence {vi) by {wi), where wi 
is the least positive residue of alvi mod ml ,  and then obtain a third 
sequence {ui) by taking the least positive residue ui = azw, mod ma. 
Here we choose random ml ,  m2, a l  and a2 subject to the conditions 
ml  > x u i ,  m2 > kml, and g.c.d.(al,ml) = g.c.d.(a2,m2) = 1. 
The public key is then the k-tuple of ui, and the enciphering function 
is C = f ( P )  = ~ F z t  qu,,  where P = (ek-1 TO decipher the ci- 
phertext using the key KD = (bl,ml, b2,m2) (where bl = a;' mod ml  
and b2 = a;' mod m2), we first compute the least positive residue of b2C 
modulo m2, and then take the result, multiply it by bl, and reduce modulo 
ml . Since b&' G C eiwi mod m2, and since m2 > kml > C wi, it follows 
that the result of reducing b2C mod m2 is equal to C ciwi. Then when we 
take bl C eiwi mod ml  we obtain eivi, from which we can determine the 
e, using the above algorithm for a superincreasing knapsack problem. 

At the present time, although there is no polynomial time algorithm 
which has been proved to give a solution of the iterated knapsack problem 
(i.e., the public key cryptosystem described in the last paragraph), Shamir's 
algorithm has been generalized by Brickell and others, who show that it- 
erated knapsack cryp tosystems are vulnerable to efficient cryptanalysis. In 

any case, after Shamir's breakthrough, most experts lost confidence in the 
security of a public key cryptosystem of this type. 

An as yet unbroken knapsack. We now drsrribe a nietliod of message 
transniissio~i based on a knapsack-type ollr-wiky function that uses poly- 
nomials over a finite field. The cryptosystern is due to Chor and Rivest; 
we shall describe a slightly simplified (and less efficient) version of their 
construction. 

Again suppose that Alice wants to be able to receive messages that 
are k-tuples of bits €0,. . . , tk-1. (The number k is selected by Alice, as 
described below.) Her public key, as before, is a scqnence of positive integers 
uo, . . . , vk-1, constructed in the way described helow. This time Bob must 
send her not only the integer c = C rjvj but also the sum of the bits 
c' = x e j .  

Alice constructs the sequence vj as follows. All of the choices described 
in this paragraph can be kept secret, sincc it is only the final k-tuple 
vo, . . . , uk-1 that Bob needs to know in order to send a message. First, 
Alice chooses a prime power q = p j  such that q - 1 has no large prime fac- 
tors (in which case discrete logs can feasibly be computed in F;, see $3) and 
such that both p and f are of intermediate size (e.g., 2 or 3 digits). In the 
1988 paper by Chor and Rivest the value q = 197~' was suggested. Next, 
Alice chooses a monic irreducible poly~iornial F ( X )  E Fp[X] of degree f ,  
so that F, may be regarded as F,[X]/F(X). She also chooses a gmcrator 
g of F;, and an ititcger z.  Alice makes tI1esr rlioicrs of F, !I, and z i l l  sotoe 
random way. 

Let t E F, = F,[X]/F(X) tlc~iotr: the resicl~ie class of X.  Alicrl chooses 
k to be any integer less than both p and f .  For j = 0,.  . . , k- 1, she computes 
the nonnegative integer bJ < q - 1 such that y " ~  = t + j .  (By assumption, 
Alice can easily find discrete logaritlirns in F:.) Finally, Alice chooses at  
random a permutation rr of (0,.  . . , k - I ) ,  and sets vj equal to the least 
nonnegative residue of b,(j) + r modulo q - 1. She publishes the k-tuple 
(vo, . . . , vk- l )  as her public key. 

Deciphering works as follows. After receiving c and c' from Bob. she 
first computes gC-zc', which is represented as a unique polynomial G(X) E 

F,[XJ of degree < f .  But she knows that this elcwient must also be equal to 
f l g ' ~ ~ ~ ( ~ )  = ,(t + rr(j)) '~,  which is represented by the polynomial H ( X  + 
r ( j ) ) ' j .  Since both G(X) and n ( X  +rr(j)) '~ have degree < f and represent 
the same element modulo F (X) ,  she niust have 

from which she can determine the r j  by factoring G ( X )  (for which efficient 
algorithms are available, see Vol. 2 of Knuth). 
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Exercises 

For each of the following sequences and "volumes," decide whether the 
knapsack problem is superincreasing and how many solutions (if any) 
it has: (a) {2,3,7,20,35,69}, V = 45; (b) {I, 2,5,9,20,49), V = 73; 
(c) {1,3,7,12, 22,451, V = 67; (d) {2,3,6,11,21,40), V = 39; (e) 
{4,5,10,30,50,101), V = 186; (f) {3,5,8,15,28,60), V = 43; 
(a) Show that the superincreasing sequence with the smallest v,'s is 
the one with ui = 2C 
(b) Show that a superincreasing knapsack problem with ui = 2' always 
has a solution n, namely n = V, and that for no other superincreas- 
ing sequence does the corresponding knapsack problem always have a 
solution. 
Show that any sequence of positive integers {ui} with v,+l 2 2v, for 
all i is superincreasing. 
Suppose that plaintext message units are single letters in the usual 
26-letter alphabet with A-Z corresponding to 0-25. You receive the 
sequence of ciphertext message units 14, 25, 89, 3, 65, 24, 3, 49, 89, 24, 
41, 25, 68, 41, 71. The public key is the sequence {57,14,3,24,8} and 
the secret key is b = 23, m = 61. 
(a) Try to decipher the message without using the deciphering key; 
check by using the deciphering key and the algorithm for a superin- 
creasing knapsack problem. 
(b) Use the above public key to send the message TENFOUR. 
Suppose that plaintext message units are trigraphs in the 32-letter 
alphabet with A-Z corresponding to 0-25, blank=26, ?=27, !=28, 
.=29, '=30, $=31. You receive the sequence of ciphertext message units 
152472, 116116, 68546, 165420, 168261. The public key is the sequence 
{24038, 29756, 34172, 34286, 38334, 1824, 18255, 19723, 143, 17146, 
35366, 11204, 32395, 12958, 64791, and the secret key is b = 30966, 
m = 47107. Decipher the message. 
Suppose that plaintext message units are digraphs in the 32-letter al- 
phabet of Exercise 5. You receive the sequence of ciphertext message 
units 33219, 7067, 18127, 43099, 37953, which were enciphered using 
a two-iteration knapsack system with public key {23161, 6726, 4326, 
16848,21805,11073,120,15708,2608,341}. The secret key is bl = 533, 
m l  = 2617, bz = 10175, rnz = 27103. Decipher the message. 
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5 Zero-knowledge protocols and oblivious transfer 

LLZero knowledge" is the name of a cryptographic concept first developed in 
the early 1980's to deal with the following problem. Suppose someone wants 
to prove that she has figured out how to do something find a solution 
to an equation, prove a theorem, solve a puzzle - while at  the same time 
conveying no knowledge about her proof or solution. Can this ever be done? 
How can you convince someone that you have a solution without exhibiting 
it? The somewhat surprising fact is that in many situations it is possible 
to do this. 

The "prover," whom we shall call Picara, is the person with the solu- 
tion; the "verifier" Vivales is the one who in the end must become satisfied 
that Picara has a solution, while still not having the foggiest idea of what 
that solution is. 

In this section we shall first give a simple, visual example of a zero- 
knowledge proof which is interactive (i.e., it requircs comrriunication back 
and forth between Picara and Vivales). This cx;uriple concerns map coloring 
and does not use number theory. Then we give a second example: how to 
prove that you have found a discrete logarithm without helping the verifier 
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to know what it is. We next discuss a concept called "oblivious transfer," 
with which one can construct noninteractive zero-knowledge proofs. Finally, 
we use oblivious transfer to give a zereknowledge proof of factorization. 

Map coloring. Our first example is the following. It is now known that 
any planar map can be colored with 4 colors. Some maps can be colored 
with 3 colors and others cannot. Suppose Picara is given a complicated 
map, which after much effort she is able to find a way of coloring with only 
3 colors (red, blue, green). How can she convince Vivales that she has done 
this, without giving him a clue that would help him color the map? 

We first translate this problem into the language of graphs. 
Definition. A graph is a set V, whose elements are called "vertices," 

and a subset E of the set of all (unordered) pairs of elements of V. The 
elements of E are called "edges." An "edge" e = {u, v), where u, v E V, 
should be visualized as a line joining the vertices u and v. 

Definition. We say that a graph is colorable by the colors r ,  b, g, if 
there exists a function f : V -+ {T, b, g} such that no vertices joined by an 
edge have the same color, i.e., {u,v) E E =+ f(u) # f(v). 

The 3-colorability problem consists in determining, given a graph, 
whether or not it is colorable by T, b, g. 

To translate the mapcoloring problem to a graph-coloring problem, 
simply take V to be the set of countries (visualized now as points), and 
"connect" two countries with an edge if and only if they have a common 
boundary. 

The 3-colorability problem has two nice properties which make it a 
convenient choice for discussions of many questions: (1) it is easy to visu- 
alize; and (2) it is NP-complete (see the discussion of the knapsack in 54). 
The NP-completeness property implies that, if you have a zereknowledge 
verification of 3-colorability, then you can get a zerccknowledge verification 
for any NP-problem by "reducing" it to 3-colorability. 

However, this does not mean that, once a zerccknowledge verifica- 
tion has been constructed for a certain NP-complete problem PI (say, 3- 
colorability), it is then superfluous to construct a zerccknowledge proof for 
another NP-problem 4. On the contrary, in the process of reducing Pz to 
PI,  one generally increases the size of the input data substantially. Thus, a 
much more efficient zero-knowledge verification is likely to result by working 
directly with P2 rather than by reducing P2 to PI and then using the earlier 
verification of PI.  For example, we shall later give a direct zero-knowledge 
proof of possession of a discrete logarithm. It would be inefficient in the ex- 
treme to construct such a zero-knowledge proof by first reducing possession 
of a discrete log to 3-colorability of some graph. 

Zero-knowledge proof of 3-colorability. Suppose that Picara is given a 
graph. We shall visualize the vertices as small balls containing little colored 
lights and joined by b a n  wherever there is an edge. The light in each vertex 
can flash either red, blue or green. Picara has (1) a device A which sets each 
vertex to flash whichever of the three colors she chooses, and (2) a device B 
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which, whenever a button is pushed, chooses a random permutation of the 
three colors and then resets each vertex according to the permutation. For 
example, if the device U chooses the transpositior~ of red and tduc, then it 
goes to all vertices with blue lights, switches them to red lights. goes to all 
vertices with red lights, switches them to blue lights, and leaves the vertices 
with green lights alone. Vivales has no control over the device B and does 
not even know which permutations it generates. 

We further suppose that the lights inside the vertex balls are hidden 
from view. However, whenever someone grabs onto the bar connecting two 
vertices, the lights in those two vertices (and no others) become visible. 

Now Picara tias figured out a 3-coloring of the graph, am1 uses the 
device A to set the vertices with the corresponding colon. Here is the 
procedure used to convince Vivales that she has been successful in doing 
this: 
1. Vivales is allowed to grab any one of the edgobars, revealing the colors 

of the two vertices at each end. He will see that those two vertices have 
different colors, thereby giving a little bit of evidence that Picara ha3 a 
valid coloring (recall that "valid" means that no two adjacent vertices 
have the same color). 

2. Next, Picara pushes the button on B, permuting the colors. 
3. Vivales may then grab another edge-bar. 
4. Picara and Vivales repeat steps #2 and #3 in alternation, until Vivales 

has tested all the bars (or, if he insists, until he has tested all the 
bars several times - perhaps he suspects that Picara has cheated by 
resetting the vertices on a bar that way tested earlier). 
After a little thought, two things shollld be clear: (1) If Picara has 

really not been able to 3-color the graph, shc won't he able to fool Vivales 
- eventually step #3 will reveal adjacent vertices of the same color. (2) 
Because of the random permutations of the colors, Vivales learns nothing 
about the coloring, except for the fact that Picara has been successful. That 
is, if he, too, now wants to %color the graph, it will be just as hard for him 
to 3-color it after going through steps #1--4 ahove as it would have been 
before. 

To prove the claim that Vivales has learnal nothing about the coloring, 
one argues as follows. Suppose that a third prrson, Clyde, does not know 
how to 3-color the graph but does know in advance which edge-bar Vivales 
will grab. Then Clyde could produce the exact same result a5 Picara, i.r., 
the inforniation Vivnles reccivcs from Clycl(~ is ir~(listi~~g~lisliitI~lc from what 
Picara woulcl haw given Iii~n. Dut C l y d ~  co~ild 11;irrlly br convryir~g i t~ l~ t l l i l~g  
useful about 3-coloring the graph, since hc. l~irrisclf does riot know a 3- 
coloring. We say that Clyde "sirnulat,cs" t l i ~  rolr of Picarit. This i~rg~linrnt 
hy simulation is the standard way to show t h a t  a certair~ protorol is really 
a zero-knowlcdgo proof. 

Zerwknowledge proof of having found a discrete logarithm. As hi rjO, 
suppose that G is a finite group containing N i:lcnients (whose group oper- 
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ation will be written multiplicatively), b is a fixed element of G, and y is an 
element of G for which Picara has found a discrete logarithm to the base 6, 
i.e., she has solved the equation bx = y for a positive integer x. She wants 
to demonstrate to Vivales that she knows x without giving him a clue as to 
what x is. We first suppose that Vivales knows the order N of the group. 
Here is the sequence of steps performed by the two of them: 
1. Picara generates a random positive integer e < N,  and sends Vivales 

6' = be. 
2. Vivales flips a coin. If it comes up heads, Picara must reveal el and 

Vivales checks that in fact b' is be. 
3. If the coin comes up tails, then Picara must reveal the least positive 

residue of x + e modulo N ,  a t  which point Vivales checks that yb' = 
bx+e. 

4. Steps #1-3 are repeated until Vivales is convinced that Picara must 
know the value x of the discrete logarithm. 
Notice that if Picara does not know the value z of the discrete log, 

then she will not be able to respond to more than one possible result of 
the coin toss. If she has performed step (1) as she was supposed to, then 
she can respond to  heads - but not to tails - without knowing x. On the 
other hand, if she anticipates tails and so in step (1) decides to send Vivales 
b1 = be/y (so that in step (3) she can send him simply e instead of x + e), 
then she will be in a jam if the coin comes up heads (since she does not 
know the power of b that gives 6'). 

Further notice that the zero-knowledge property of this protocol can 
be proved by a simulation argument. Namely, suppose that Clyde does not 
know the discrete log of y to the base b but does know in advance how the 
coin toss will go. Then Clyde can simulate the same steps as Picara (by 
sending 6' = be for heads and 6' = be / y for tails), giving Vivales informat ion 
that is indistinguishable from what Picara would have given him. Clyde 
cannot be telling Vivales anything useful for finding the discrete log, since 
he himself has no idea what the discrete log is. 

In the exercises we will examine the situation when Vivales does not 
know N. For example, suppose that he knows that G = (ZIMZ)' , but he 
does not know the factorization of M. (Recall that if M is a product of two 
primes, then knowing its factorization is equivalent to knowing N = p ( M ) ,  
see $1-3.) Then ideally Picara (or the simulator Clyde), who uses the value 
of N in step (I), must avoid conveying to Vivales any information about N 
(or else we don't really have a "zero knowledge1' proof). This might seem to 
be too much to ask for, but one can insist that no more than a very small 
amount of information be conveyed. 

Oblivious transfer. An Uoblivious transfer channel" from Picara to Vi- 
vales is a system for Picara to  send Vivales two encrypted packets of infor- 
mation subject to the following conditions: 
1. Vivales can decipher and read exactly one of the two packets; 
2. Picara does not know which of the two packets he can read; and 

3. both Picara and Vivales are certain that conditions (1) and (2) hold. 
At first glance, this might seem like an odd thing to want. However, 

such a channel turns out to be a fundamental concept in cryptography. 
We shall soon see how it can be used to construct a non-interactive zero- 
knowledge proof. But before discussing this application to zero knowledge, 
we describe one way to obtain an oblivious transfer channel, based on the 
intractability of the discrete log problem. 

More precisely, we suppose that we have a large finite field F, and 
a fixed element b of the multiplicative group F; such that, given bx and 
by, there is no computationally feasible way to find 6'9. This is the Diffie- 
Hellman assumption, which conjecturally holds if the discrete logarithm 
problem is intractable in F; (see 53). 

We further suppose that we have an easily computed (and easily in- 
verted) map $ from our finite field to the F2-vector space F!j of n-tuples 
of bits. Suppose that the image of this map contains all of F,"-' (i.e., all 
n-tuples whose last bit is 0). For example, if q is a prime p, then we can 
choose n so that 2"-l < p < 2", and map any element of F, - i.e., any 
nonnegative integer less than p - to its sequence of binary digits. 

We suppose that our message units are also n-tuples of bits, i.e., ele- 
ments m E F;. We finally suppose that an element C E F;, fixed once and 
for all, has been chosen so that no one knows its discrete logarithm. (Recall 
that we have assumed that the discrete log problem is intractable in F;.) 
This element C might have been supplied by a "trusted Center," or by an 
agreed upon random procedure, or by an interactive construction in which 
both Picara and Vivales participated. 

The oblivious transfer proceeds as follows. Vivales chooses a random 
integer x, 0 < x < q - 1, and also a random element i E (1, 2). In what 
follows both x and i denote fixed integers in the range (1,. . . , q - 21 and 
{I, 2), respectively. Vivales sets P* = bx and P303-i = C/bx. He then publishes 
his "public key" ( P l , a ) ,  while keeping x and i secret. Notice that Vivales 
is assumed not to know the discrete logarithm of P3-* - which we shall 
denote x1 - because if he did, then he would know the discrete log of 
C = Pih-i ,  contrary to assumption. 

Now suppose that Picara has a message unit ml E F; from the first 
packet and a message unit m2 E F!j from the second packet. She chooses 
two random integers 0 < yl, y2 < q - 1, and sends to Vivales the following 
two elements of F; and two elements of F,": 

(Here addition is in the F2-vector space F;; t,his addition operation is also 
known as "exclusive or.") Picara keeps yl and y2 secret. 

Since Pyi = (byi)", and Vivales knows Loth by1 and x, he can easily 
determine $(fly), and hence find mi = ai + d!(p!'). However, if he wanted 
to find m3-i, he would have to find &' = br'y3-a knowing only by3- and 
bx' but not 93-i or xl. This is impossible, by thr Diffie-Hellman assumption. 
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Notice that Picara can easily check that PlP2 = C, and thus be sure 
that Vivales does not know the discrete logs of both elements of his public 
key (Dl, P2). Since it is in Vivales' interest to get as much information as 
possible, Picara can be sure that he does know the discrete log of one of the 
two elements. But there is no way Picara can distinguish between Dl and 
/h for the purpose of determining which Vivales obtained as bx and which 
as C/bx. Thus, both Vivales and Picara can be confident that the above 
conditions (1) and (2) are fulfilled. 

If a sequence of pairs (ml , mz) are sent using the same (Pl, h) (i.e., 
the same values of x and i) , then Picara does know that the element of the 
pair (ml,  m2) that Vivales is deciphering (namely, mi) remains the same for 
all pairs of message units in the sequence. If we want another sequence of 
message units to be sent independently, then Vivales must randomly select 
new values for x and i, and send a new public key (Ply h). 

Use of oblivious transfer for a non-interactive proof of factorization. 
The idea conveyed by the term "non-interactive" can be summarized in the 
form of a diagram 

Center 

~ i c a r a  j Vivales 

Here the "trusted Center" can be thought of as a source of random bits, 
which are sent simultaneously to Picara and Vivales (it is permissible for 
the Center first to perform some arithmetic operations on the bits before 
sending them). The combination of these bits and Picars's reaction to them 
- what she sends Vivales - must be enough to convince Vivales (with an 
exponentially decreasing chance that he's being fooled) that she did what 
she claims to have done. 

The "non-interaction" means that in the course of the proof Vivales 
does not communicate to Picara. However, it is permitted that a t  the very 
beginning Picara has been given a long sequence of oblivious transfer pub- 
lic keys (PI, P2) for Vivales, as described above. This is not counted as a 
communication from Vivales to Picara. In fact, the same public keys are 
available, as the word "public" suggests, for anyone to use who's playing 
the role of Picara. And Picara can use the same sequence of public keys in 
many different zero-knowledge proofs she sends to Vivales. 

We now describe the procedure that Picara uses to convince Vivales 
that she can factor an integer n = pq without giving him any information 
about what its factors might be. We will use the fact that the ability to 
take the square root modulo n = pq of an arbitrary number that has a 
square root is equivalent to knowledge of p and q (see Exercise 5 below). 
The procedure is as follows: 
1. The Center randomly generates an integer x, and sends Picara and 

Vivales the least nonnegative residue of x2 modulo n; let us denote y 
= x2 mod n. 
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Picara finds the four square roots of y modulo n, namely, f x, &xi. She 
arbitrarily chooses xo to be one of these four square roots. 
Picara randomly picks an integer r and sends Vivales the integer s = 
r2 mod n. She sets ml = r mod n, r n z  = xor mod n, and sends these 
two messages to Vivales by oblivious transfer. 
Vivales is able to read exactly one of the two messages. He checks that 
its square modulo n is s (if his random i is 1) or ys  (if i = 2). 
Steps 1-4 are repeated (with different public keys (&02)).  If Picara 
meets the test T tirnes, t l ir~i Viv;llcs is sat.isficc1 (with certainty 1 - 2 - T )  
that Picara really knows the factorization. 

Exercises 
In the zeroknowledge proof of possession of a discrete logarithm, if 
Picara does not really know the discrete log, then what are the odds 
against her successfully fooling Vivales for T repetitions of steps (1)- 
(3)? 
In the zero-knowledge proof of possession of a discrete logarithm, s u p  
pose that Vivales does not know the value of N. 
(a) Explain how the protocol described in the text is not really "zero 
knowledge." 
(b) How could Picara decrease the amount of information Vivales ob- 
tains about the magnitude of N? 
Suppose that Picara does not know N, and so in step (1) she chooses 
a random e in some other range (e.g., e < B, where B is an upper 
bound for the possible value of N), and in step (3) she sends simply 
x + e rather than the least positive residue of x + e modulo N. Explain 
why this is not a zero-knowledge proof. Why is the procedure followed 
by Clyde not a valid simulation? 
Explain how the zero-knowledge proof in the text for possession of a 
discrete logarithm can be used for public key electronic identification. 
(This means that Picara convinces Vivalcs that she really is Picara.) 
Explain why being able to extract sqliarr roots modulo n = pq is 
essentially equivalent to krwwirig the f;lc-torizdiori of n. 
Can the same public key (PI,  B2) for ol)livious transfer be used by sev- 
eral different people to give Vivales zero-knowledge proofs that they all 
independently know the same factorization? Assume that each person 
can eavesdrop on the transmissions of the others. 
Using oblivious transfer, construct a non-interactive zero-knowledge 
proof for possession of a discrete logaritlirn. (Suppose that the order 
N of the group is known to everyone.) 
The following scheme was recently proposed as a zero-knowledge pro- 
tocol for Picara to use in order to demonstrate to Vivales that she 
knows the factors p and q of an iritcgrr 7 1 ,  where n is known to br a 
product of two primes that are = 3 (111od 4). Find a basic flaw in the 
scheme. 
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Step 1. Vivales, who knows n, but not p and q, chooses an integer x 
at random. He computes the least nonnegative residue of x4 modulo 
n ,  and sends this number - which we denote y - to Picara. 
Step 2. When Picara receives y, she computes a square root modulo 
n (which is easy, since she knows the factorization of n; see Exercise 5 
above). Of the four possible square roots, she chooses the unique one 
which is a quadratic residue modulo both p and q. This must be the 
least positive residue of x2 modulo n. She sends this integer to Vivales. 
Step 3. Vivales checks that the number he received from Picara is in 
fact the residue of x2 modulo n. He is then convinced that she can take 
square roots modulo n, something that would have been impossible if 
she didn't know the factors of n. 

9. Find the drawback of the following procedure for a zereknowledge 
proof of factorization. Suppose that n is the product of two primes p 
and q. Suppose that a "trusted Center" supplies an unending sequence 
of random squares modulo n, as in the text: yl ,  yz, . . .. For each of the 
successive yi, Picara finds one of its square roots xi, and sends it to 
Vivales, who verifies that xt = y (mod n). 
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Primality and Factoring 

There are many situations where one wants to know if a large number n 
is prime. For example, in the RSA public key cryptosystem and in various 
cryptosystems based on the discrete log problem in finite fields, we need to 
find a large "random" prime. One interpretation of what this means is to 
choose a large odd integer no using a generator of random digits and then 
test no, no + 2, . . . for primality until we obtain the first prime which is 
> no. A second type of use of primality testing is to determine whether an 
integer of a certain very special type is a prime. For example, for some large 
prime f we might want to know whether 21 - 1 is a Mersenne prime. If 
we're working in the field of 2f elements, we saw that every element # 0, 1 
is a generator of F;, if (and only if) 21 - 1 is prime (see Ex.l3(a) of 5 11.1). 

A primality test is a criterion for a number n not to be prime. If n 
"passes" a primality test, then it may be prime. If it passes a whole lot 
of primality tests, then it is very likely to he prime. On the other hand, if 
n fails any single primality test, then it is definitely composite. But that 
leaves us with a very difficult problem: finding the prime factors of n. In 
general, it is much more time-consuming to factor a large number once it 
is known to be composite (because it fails a primality test) than it is to  
find a prime number of the same order of magnitude. (This is an empirical 
statement, not a theorem; no assertion of this sort has been proved.) The 
security of the RSA cryptosystem is based on the assumption that it is 
much easier for someone to find two extremely large primes p and q than it 
is for someone else, knowing n = pq but not p or q, to find the two factors 
in n. After discussing primality tests in $1 ,  we shall describe three different 
factorization methods in $52-5. 



126 V. Primality and Factoring 

1 Pseudoprimes 

Have you ever noticed that there's no attempt being made to 
find really large numbers that aren't prime? I mean, wouldn't you 
like to see a news report that says "Today the Department of 
Computer Sciences at  the University of Washington announced 
that 258911196257031 + 8 is even. This is the largest non-prime yet 
reported." 

- bathroom graffiti, University of Washington 

Un phhnomhe dont la probabilitb est ne se produira donc 
jamais, ou du moins ne sera jamais observe. 

-   mile Borel, Les Probabilitds et la vie 

Let n be a large odd integer, and suppose that you want to determine 
whether or not n is prime. The simplest primality test is ('trial division." 
This means that you take an odd integer m and see whether or not it 
divides n. If m # 1, n and mln, then n is composite; otherwise, n passes 
the primality test "trial division by m." As m runs through the odd numbers 
starting with 3, if n passes all of the trial division tests, then it becomes 
more and more likely that n is prime. We know for sure that n is prime 
when m reaches fi. Of course, this is an extremely time-consuming way 
to test whether or not n is prime. The other tests described in this section 
are much quicker. 

Most of the efficient primality tests that are known are similar in gen- 
eral form to the following one. 

According to Fermat's Little Theorem, we know that, if n is prime, 
then for any b such that g.c.d.(b, n)  = 1 one has 

If n is not prime, it is still possible (but probably not very likely) that (1) 
holds. 

Delinition. If n is an odd composite number and b is an integer such 
that g.c.d.(n, b) = 1 and (1) holds, then n is called a pseudoprime to the 
base b. 

In other words, a "pseucloprime" is a number n that "pretends" to be 
prime by passing the test (1). 

Example 1. The number n = 91 is a pseudoprime to the base b = 3, 
because 390 r 1 mod 91. However, 91 is not a pseudoprime to the base 2, 
because zg0 2 64 mod 91. If we hadn't already known that 91 is composite, 
the fact that 290 $ 1 mod 91 would tell us that it is. 

Proposition V.1.1. Let n be an odd composite integer. 
(a) n is a pseudoprime to the base b, where g.c.d.(b,n) = 1, if and only if 

the order of b in (Z/nZ)* (i.e, the least positive power of b which is 
= 1 mod n) divides n - 1. 
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(b) If n is a pseudoprime to the bases hl and b2 (where g.c.d.(bl, n )  = 
= g.c.d.(b2, 71) = I), thcn n is a pse~rrioprirne to the base bl b2 and also 
to the base bl b; ' (where b; ' is an intrger which is inverse to b2 modulo 
n). 

(c) If n fails the test ( I )  for a single base b E (Z/nZ)*, then n fads (I) for 
at least half of the possible bases b E (Z/nZ)*. 
Proof. Parts (a) and (b) are very easy, and will be left to the reader. 

To prove (c), let {bl, b2,. . . , b,) be the sct of all bases for which n is a 
pseudoprime, i.e., the set of all integers 0 < b, < n for which the congruence 
(1) holds. Let b be a fixed base for which n is not a pseudoprime. If n were 
a pseudoprime for any of the bases bbi, then, by part (b), it would be a 
pseudoprime for the base b - (bb,)b;' mod n, which is not the case. Thus, 
for the s distinct residues {bb,, bb?,. . . , bb,} the integer n fails the test (1). 
Hence, there are at  least as rriariy bases in (Z/nZ)* for which n fails to be 
a pseudoprime as there are bases for which (1) holds. This completes the 
proof. 

Thus, unless n happens to pass the test (1) for all possible b with 
g.c.d.(b,n) = 1, we have at least a 50% chance that n will fail (1) for a 
randomly chosen b. That is, suppose we want to know if a large odd integer 
n is prime. We might choose a random b in the range 0 < b < n. We first 
find d = g.c.d.(b, n) using the Euclidean algoritlim. If d > 1, we know that n 
is not prime, and in fact we have found a riorltrivial factor dln. If d = 1, then 
we raise b to the (n - 1)-st powcr (using tlie repeated squaring method of 
modular exponentiation, see 9 1.3). If ( 1 )  fails, we know that n is composite. 
If (1) holds, we have some eviclcnrr that perl~nps n is prime. We then try 
anotllcr b and go through ttn: same proccss. If (1) fails for any b, then we 
can stop, secure in the knowledge that n is c-omposite. Suppose that we try 
k different b's and find that n is a pseucloprime for all of the k bases. By 
Proposition V.1.1, the chance that 11 is still composite despite passing the 
k tests is at  most 1 out of 2k, unless n liappens to have the very special 
property that (1) holds for every single b E (Z/nZ)*. If k is large, we can be 
sure "with a high probability" that rc is pri~ric (~~rilcss n hac the property of 
being a pseudoprime for all htses). This ~lic%l~od of finding prime nunibers 
is called a probabilistic method. It differs froiri a deterministic method: the 
word "deterministic" means that the rncthtl will either reveal n to be 
composite or else determine with 100% ccrt itirity that n is prime. 

Can it ever happen for a composite rl t llitt (1) holds for evcry b'! 111 that 
case our probabilistic rnethod fails to r~\vcd tho fact that n is composite 
(unless we are lucky and hit upon a b with g.c.d.(b, 11) > I). The answer is 
yes, and such a number is called a Carnl~rlrcwl number. 

Definition. A Carmichacl number is a composite intcgcr 71 such that 
(1) holds for evcry b E (Z/nZ)*. 

Proposition V.1.2. Let n be an odd corrrposite integer. 
(a) If n is divisible by a perfect square > 1, then n is not n Carmichnel 

number. 
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(b) If n is square free, then n is a Cannichael number if and only if 
p - 1Jn - 1 for every prime p dividing n. 
Proof. (a) Suppose that p21n. Let g be a generator modulo p2, i.e., an 

integer such that g ~ ( ~ - ' )  is the lowest power of g which is G 1 mod p2. Ac- 
cording to Exercise 2 of 5 11.1, such a g always exists. Let nt be the product 
of all primes other than p which divide n. By the Chinese Remainder Theo- 
rem, there is an integer b satisfying the two congruences: b 2 g mod p2 and 
b r 1 mod n! Then b is, like g, a generator modulo p2, and it also satisfies 
g.c.d.(b, n) = 1, since it is not divisible by p or by any prime which divides 
n'. We claim that n is not a pseudoprime to the base b. To see this, we notice 
that if (1) holds, then, since p2 In, we automatically have bn-' E 1 mod p2. 

But in that case p(p - 1)Jn - 1, since p(p - 1) is the order of b modulo p2. 

However, n - 1 = - 1 mod p, since pin, and this means that n - 1 is not 
divisible by p(p - 1). This contradiction proves that there is a base b for 
which n fails to be a pseudoprime. 

(b) First suppose that p - l ln - 1 for every p dividing n. Let b be any 
base, where g.c.d.(b, n)  = 1. Then for every prime p dividing n we have: 
bn-' is a power of bp-', and so is r 1 mod p. Thus, bn-' - 1 is divisible by all 
of the prime factors p of n,  and hence by their product, which is n. Hence, 
(1) holds for all bases b. Conversely, suppose that there is a p such that 
p - 1 does not divide n - 1. Let g be an integer which generates (Z/pZ)*. 
As in the proof of part (a), find an integer b which satisfies: b = g mod p 
and b = 1 mod n/p. Then g.c.d.(b,n) = 1, and bn-' = gn-' mod p. But 
gn-' is not = 1 mod p, because n - 1 is not divisible by the order p - 1 
of g. Hence, bn-' f 1 mod p, and so (1) cannot hold. This completes the 
proof of the proposition. 

Example 2. n = 561 = 3 11 . 17 is a Carmichael number, since 560 is 
divisible by 3 - 1, 11 - 1 and 17 - 1. In the exercises we shall see that this 
is the smallest Carmichael number. 

Proposition V.1.3. A Carmichael number must be the product of at 
least three distinct primes. 

Proof. By Proposition V.1.2, we know that a Carmichael number must 
be a product of distinct primes. So it remains to rule out the possibility that 
n = pq is the product of two distinct primes. Suppose that p < q. Then, if 
n were a Carmichael number, we would have n - 1 - 0 mod q - 1, by part 
(b) of Proposition V.1.2. But n - 1 = p(q - 1 + 1) - 1 = p - 1 mod q - 1, 
and this is not r 0 mod q - 1, since 0 < p - 1 < q - 1. This concludes the 
proof. 

Remark. It was only very recently that it was proved (by Alford, 
Granville, and Pomerance) that there exist infinitely many Carmichael 
numbers. See Granville's report in Notices of the Amer. Math. Soc. 39 
(l992), 696-700. 

Euler pseudoprimes. Let n be an odd integer, and let (:) denote the 
Jacobi symbol (see 5 11.2). According to Proposition 11.2.2, if n is a prime 
number, then 

b 
b("-')I2 = (--) mod n 

for any integer b. On the other hand, if n is composite, then Exercise 21 of 
5 11.2 shows that a t  least 50% of all h E (Z/nZ)* fail to satisfy (2). From 
these two facts we can obtain an efficient probabilistic test for whether or 
not a large odd integer n is prime. We start with the following definition. 

Definition. If n is an odd composite number and b is an integer such 
that g.c.d.(n, b) = 1 and (2) holds, then 71 is called an Euler pseudoprime 
to the base b. 

Proposition V.1.4. If n is an Euler pseudoprime to the base b, then z t  
is a pseudoprime to the base b. 

Proof. We must show that, if (2) holds, then (1) holds. But this is 
obvious by squaring both sides of the congruence (2). 

Example 3. The converse of Proposition V.1.4 is false. For example, 
in Example 1 we saw that 91 is a pseudoprinle to the base 3. However, 
345 = 27 mod 91, so (2) does not hold for n = 91, b = 3. (Note that it 
is easy to raise b to a large power modulo 91 if we know the order of b in 
(Z/91Z)*; since 3' = 1 mod 91, we immediately see that 345 s 33 mod 91.) 
An example of a base to which 91 is an Euler pseudoprime is 10, since 

-- lo3 -1 mod 91, and (8) = -1. 
Example 4. It is easy to see that any odd composite n is an Euler 

pseudoprime to the base f 1; in what follows we shall rule out these two 
"trivial" bases b. 

We can now describe the Solovay-Strassen primality test. Suppose that 
n is a positive odd integer, and we would like to know whether n is prime 
or composite. Choose k integers O < b < 71 at random. For each b, first 
compute both sides of (2). Finding the left side b(n-1)/2 takes 0(log3n) bit 
operations, using the repeated squaring method (Proposition 1.3.6); finding 
the Jacobi symbol on the right also takes 0(log3n) bit operations (see 
Exercise 17 of fj 11.2). If the two sides are not congruent modulo n, then you 
know that n is composite, and the test stops. Otherwise, move on to the 
next b. If (2) holds for all k random choices of b, then the probability that 
n is composite despite passing all of the tests is at most 112~. Thus, the 
Solovay-Strassen test is a probabilistic algorithm which leads either to the 
conclusion that n is composite or to the conclusion that it is "probably" 
prime. 

Notice that there are no Euler pseudoprime analogs of Carrnichael 
numbers: for any composite n, the test (2) fails for at  least half of the 
possible bases b. 

Strong pseudoprimes. We now discuss one more type of primality test, 
which is in one respect even bctter than t l ~ c  Solovay Strassen t,cst l ~ i ~ ~ c d  on 
the definition of an Euler pseudoprinle. This is the Miller-Ralili tcst, which 
is based on the notion of a "strong pselicloprime," which will bc defined 
below. Suppose that n is a large positive odd integer, and b E (Z/nZ)*. 
Suppose that n is a pseudoprime to the t~ase b, i.e., bn-' = - 1 mod n. 
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The idea behind the strong pseudoprime criterion is that, if we succes- 
sively "extract square roots" of this congruence, i.e., if we raise b to the 
((11 - 1)/2)-th, ((n - 1)/4)-th, . . . , ((n - 1)/2')-th powers (where t = 
(n  - 1)/2' is odd), then the first residue class we get other than 1 must 
be -1 if n is prime, because f 1 are the only square roots of 1 modulo a 
prime nurnbcr. Actually, in practice one proceeds in the other direction, 
setting n - 1 = 2't with t odd, then computing bt mod n, then (if that 
is not E 1 mod n)  squaring to get b2t mod n, then squaring again to get 
b22t mod n, etc., until we first obtain the residue 1; then the step before 
getting 1 we must have had -1, or else we know that n is composite. 

Definition. Let n be an odd composite number, and write n - 1 = 2't 
with t odd. Let b E (Z/nZ)*. If n and b satisfy the condition 

either bt ZE 1 mod n or 

thereexistsr, 0 < r  < s, such that bZrt = -1 mod n, (3) 

then n is called a strong pseudoprime to the base b. 
Proposition V.1.5. If n - 3 mod 4, then n is a strong pseudoprime to 

the base b if and only if it is an Euler pseudoprime to the base b. 
Proof. Since in this case s = 1 and t = (n - 1)/2, we see that n is 

a strong pseudoprime to the base b if and only if b("-')I2 E f 1 mod n. 
If n is an Euler pseudoprime, then this congruence holds, by definition. 
Conversely, suppose that b("-')I2 = f 1. We must show that the f 1 on the 
right is (9). But for n 3 mod 4 we have f 1 = (e), and so 

as required. The next two important propositions are somewhat harder to 
prove. 

Proposition V.1.6. If n is a strong pseudoprime to the base b, then it 
is an Euler pseudoprime to the base b. 

Proposition V.1.7. If n is an odd composite integer, then n is a strong 
pseudoprime to the base b for at  most 25% of all 0 < b < n. 

Remark. The converse of Proposition V.1.6 is not true, in general, as 
we shall see in the exercises below. 

Before proving these two propositions, we describe the Miller-Rabin 
primality test. Suppose we want to determine whether a large positive odd 
integer n is prime or composite. We write n- 1 = 2't with t odd, and choose 
a random integer b, 0 < b < n. First we compute bt mod n. If we get f 1, 
we conclude that n passes the test (3) for our particular b, and we go on to 
another random choice of b. Otherwise, we square bt modulo n, then square 
that modulo n, and so on, until we get -1. If we get -1 then n passes the 7.4 1 

test. However, if we never obtain -1, i.e., if we reach b2 1 mod n while 
bZr f - 1 mod n, then n fails the test and we know that n is composite. If 
n passes the test (3) for all our random choices of b - suppose we try k 
different bases 6 - t hcri we know by Proposition V. 1.7 that n has a t  most a 

1 out of 4k chance of being composite. This is because, if n is composite, then 
at most 1/4 of the bases 0 < b < n satisfy (3). Notice that this is somewhat 
better than for the Solovay-Strassen test, where the analogous estimate 
is a 1 out of 2k chance (becaiise there exist rornposite n whir11 arc E~iler 
pseudoprirnes for half of all bases 0 < b < T L ,  as we shall see in t lie exercises). 

We now proccctl to thc proofs of Proj)osit.ions V.1.G ant1 V. 1.7. 
Proof of Proposition V.1.6. We have 71 and b satisfying (3). lye nlust 

prove that they satisfy (2). Let n - 1 = 2" 1 with t odd. 
Case (i). First suppose that bt E 1 mod n. Then the left side of (2) is 

clearly 1. We must show that (:) = 1. But 1 = (i) = ($) = (k)! Since t 
is odd, this means that ( k ) = 1. 

Case (ii). Next suppose that b(n-1)/2 = - - 1 mod n. Then we rriust show 
that (!) = -1. Let p be any of the prirne divisors of n. We write p - 1 in 
the form p - 1 = 2"tr with t' odd, and we prove the following claim: 

Claim. We have st 2 s ,  and 

- Proof of the claim. Because b(n-')/2 - b2'-It = - 1 mod n, raising 
both sides to the tr power gives (b2'-1t')t = - 1 mod n. Since pin, the same 
congruence holds modulo p. But if we had s' < s ,  this would mean that 

b ~ " ~ '  could not be = 1 mod p, as it must be by Ferrnat's Little Tllcorern. 
0-1 t' 

Thus, s' _> s. If s' = s, then the congrt~cnce (b2 ) z -1 mod p implies 
that (i) = b ( ~ - ' ) / ~  = b2s'-'t' mod p must be -1 rather than 1. On the 

other hand, if st  > s,  then the same congruence raised to the (2"-')-th 
power implies that (:) must he 1 rather than -1. This proves the claim. 

We now return to the proof of Proposition V.1.6 in Case (ii). We write 
n as a product of primes (not necessarily distinct): n = H p .  Let k denote 
the number of primes p such that s' = s when one writes p - 1 = 2"tr with 
t' odd. (k counts such a prime p with its multiplicity, i.e., a times if paIJn.) 
According to the claim, we always have s' 2 s ,  and (k )  = n ( : )  = (- 
On the other hand, working modulo 2'+', we see that p = 1 unless p is one 
of the k primes for which st  = s, in which caw p = 1 + 2'. Since n = 1 + 2st z 
1 + 2' mod 2'+l, we have 1 + 2' = n p  = (1 + 2s)k r 1 + k2" mod 2'+' 
(where the last step follows by the binomial expansion). This means that k 
must be odd, and hence (k )  = ( - I ) ~  = -1, as was to be proved. 

Case (iii). Finally, suppose that, b2'" r -1 mod n for some 0 < r < s. 
(We are using r - 1 in place of the r in (3).) Since the11 b(n-')'2 = 1 mod n, 
we must show that in Case (iii) WP have (!) = 1. Again let 11 iw any prirne 
divisor of n, and write p - 1 = 2"tr with t r  odd. 

Claim. We have st  2 r ,  and 
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The proof of this claim is identical to the proof of the claim in Case 
(ii) . 

To prove the proposition in Case (iii), we let k denote the number of 
primes p (not necessarily distinct) in the product n = n p  for which the 
first alternative holds, i.e., st = r. Then, as in Case (ii), we obviously have 
( k )  = ( - I )~ .  On the other hand, since n = 1 + 2't = 1 mod 2'+' and also 
n = n p  = (1 + 2P)k mod 2'+', it follows that k must be even, i.e., ( 9 )  = 1. 
This concludes the proof of Proposition V.1.6. 

Before proving Proposition V. 1.7, we prove a general lemma about the 
number of solutions to the equation xk = 1 in a "cyclic group" containing m 
elements. We already encountered this lemma once at  the beginning of 5 11.2; 
the proof of the lemma should be compared to the proof of Proposition 
11.2.1. 

Lemma 1. Let d = g.c.d.(k,m). Then there are exactly d elements in 
the group {g, g2, g3,. . . , gm = 1) which satisfy xk = 1. 

Proof. An element g j  satisfies the equation if and only if gjk = 1, i.e., 
if and only if ml jk. This is equivalent to: 1 j 5 ,  which, since mld  and kld 
are relatively prime, is equivalent to: j is a multiple of mld. There are d 
such values of j ,  1 5 j 5 m. This proves the lemma. 

We need one more lemma, which has a proof similar to that of Lemma 
1. 

Lemma 2. Let p be an odd prime, and write p - 1 = 2"'t' with t t  odd. 
Then the number of x E (Z/pZ)* which satisfy xZrt = -1 mod p (where t 
is odd) is equal to 0 if r > st and is equal to 2'g.c.d.(t,t1) if r < s'. 

Proof. We let g be a generator of (Z/pZ)*, and we write x in the form 
g j  with 0 < j < p - 1. Since g(p-')12 = -1 mod p and p - 1 = 2"t1, the 
congruence in the lemma is equivalent to: 2'tj = 2"-'t' mod 2"t' (with 
j the unknown). Clearly there is no solution if r > st - 1. Otherwise, we 
divide out by the g.c.d. of the modulus and the coefficient of the unknown, 
which is 2'd, where d = g.c.d.(t, t'). The resulting congruence has a unique 
solution modulo 2"-' 5 ,  and it has 2'd solutions modulo 2"t1, as claimed. 
This proves Lemma 2. 

Proof of Proposition V.1.7. Case (i). We first suppose that n is divisible 
by the square of some prime p. Say pal In, a > 2. We show that in this 
case n cannot even be a pseudoprime (let alone a strong pseudoprime) for 
more than (n - 1)/4 bases b, 0 < b < n. To do this, we suppose that 
bn-' = 1 mod n,  which implies that bn-' = 1 mod p2, and we find a 
condition modulo p2 that b must satisfy. Recall that (ZIp2Z)* is a cyclic 
group of order p(p - 1) (see Exercise 2 of 5 II.l), i.e., there exists an integer 
g such that (ZIP2 Z)* = {g, g2, g3, . . . , gp(p-')}. According to Lemma 1, 
the number of possibilities for b modulo p2 for which bn-' = 1 mod p2 is 
d = g.c.d.(p(p - 1) ,n  - 1). Since pin, it follows that p l n  - 1, and hcncc 
p Jd. Thus, the largest d can be is p - 1. Hence, the proportion of all b not 
divisible by p2 in the range from 0 to n which satisfy bn-' = 1 mod p2 is 
less than or equal to 

Since the proportion of b in the range from 0 to n which satisfy bn-' = 
1 mod n is less than or equal to this, we cor~cl~ide that n is a pseudoprime to 
the base b for at  most 114 of the b, 0 < b < n. This proves the proposition 
in Case (i). (Remark: This upper bound of 25% is actually reached in Case 
(i) in the case when n = 9, i.e., 9 is a (strong) pseudoprime for 2 out of the 
8 possible values of b, namely, b = f 1.) 

Case (ii). We next suppose that n is the product of 2 distinct primes p 
and q: n = pq. We write p - 1 = 2"tt with t' odd and q - 1 = 2'"t" with t" 
odd. Without loss of generality we may suppose that st 5 sf'. In order for 
an element b E (Z/nZ)* to be a base to which n is a strong pseudoprime, 
one of the following must occur: (1) bt - 1 mod p and bt = 1 mod q, or (2) 
bZrt EE -1 mod p and b2rt = -1 mod q for some r ,  0 < r < s. According to 
Lemma 1, the number of b for which the first possibility holds is the product 
of g.c.d.(t, tt) (the number of residue classes modulo p) times g.c.d.(t, tt') 
(the number of residue classes modulo q), which is certainly no greater than 
t't". According to Lemma 2, for each r < min(s1, st') = st the number of b 
for which bZrt = -1 mod n is 2'g.c.d.(t,tt) . 2'g.c.d.(t,tM) < 4't't". Since 
we have n - 1 > p(n) = 2s'+s1't't", it follows that the fraction of integers b, 
0 < b < n, for which n is a strong pseudoprime is a t  most 

If s" > s', then this is at most 2-2s'-'(?j + $) 5 T 3 3  + = $, as desired. 
On the other hand, if st = st', then we note that one of the two inequalities 
g.c.d.(t, t') 5 t', g.c.d.(t, tft) 5 tt' must be a strict inequality, since if we had 
ttlt and t"lt, we could conclude from the congruence n - 1 = 2't = pq - 1 r 
q - 1 mod t' that t'lq - 1 = 2"'tN, i.e., tlJt", and similarly t"ltt; but this 
would mean that t' = tt' and p = q, a contradiction. Hence one of the two 
g.c.d.'s is strictly less than t' or t", and so must be less at  least by a factor 
of 3 (since we're working with odd numbers). Thus, in this case we may 
replace t't" by it't" in the above estimates for the number of b satisfying 
each condition for n to be a strong pseudoprime to the base b. This leads 
to the following upper bound for the fraction of integers b, 0 < b < n, for 
which n is a strong pseudoprime: 

as desired. This cornpletcs thc proof of the tlicorcrn in Casc ( i i ) .  
Case (iii). Finally, we suppose that n is a product of more than 2 

distinct primes: n = plp2 - .  .pk, k 2 3. We write pj - 1 = 2'jtj with t j  odd, 
and we proceed exactly as in Case (ii). Without loss of generality, we may 
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suppose that s l  5 s j  is the smallest of the sj . We obtain the following upper 
bound for the fraction of possible b's for which n is a strong pseudoprime: 

because k > 3 in Case (iii). This concludes the proof of Proposition V. 1.7. 
Remarks. 1. In fact, in practice one does not have to choose a very 

large number of bases b to be almost sure that n is prime if it is a strong 
pseudoprime to each base b. For example, it has been computed that there 
is only one composite number less than 2.5.10'~ - namely, n = 3215031751 
- which is a strong pseudoprime to all four bases 2, 3, 5, 7. 

2. It is not entirely satisfactory to rely upon a probabilistic test. Despite 
  mile Borel's assurance, quoted at  the beginning of the section, it would be 
nice to have rapid methods to prove that a given n really is prime (especially, 
if it is of some special practical or theoretical importance to know that the 
particular n is prime). For example, suppose we knew that there is some 
fairly small B (depending on the size of n) such that, if n is composite, 
then there is some base b < B for which n is not a strong pseudoprime. If 
we knew that, then in order to be absolutely sure that n is prime it would 
suffice to test (3) only for the first B bases. 

There is such a fact, but it depends upon an unproved conjecture 
called the "Generalized Riemann Hypothesis." The usual Riemann Hy- 
pothesis is the assertion that all complex zeros of the so-called "Riemann 
zeta-function" ((s) (which is defined to be the sum of the reciprocal s-th 
powers when s > 1) which lie in the "critical strip" (where the real part of 
s is between 0 and 1) must lie on the "critical line" (where the real part 
of s is 112). The Generalized Riemann Hypothesis is the same assertion 
for certain generalizations of C(s) called "Dirichlet Lseries." The following 
fact, whose proof is beyond the scope of this book, shows that the Miller- 
Rabin test (3) gives a deterministic primality test which takes polynomial 
time (in logn), provided that one is willing to assume the validity of the 
Generalized Riemann Hypothesis (GRH). 

If the GRH is true, and if n is a composite odd integer, then n fails 
the test (3) for at least one base b less than 2 log2n. 

3. In the 1980's an efficient deterministic primality test was developed 
which, while strictly speaking not polynomial in logn, in practice can rou- 
tinely prove primality of numbers of over a hundred decimal digits in a 
matter of seconds (on current large computers). This method of Adleman- 
Pomerance-Rumely and Cohen-Lenstra is based on the same ideas as the 
prirnality tests considered above, except that it uses analogs of Fermat's 
Little Thcorem in extension fields of the rational numbers. A basic role 
is played by Gauss sums (certain types of which were introduced in 511.2 
in order to prove quadratic reciprocity) and the closely related "Jacobi 
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sums." A detailed discussion of their method would take us too far afield. 
A thorough and readable account is given in the Cohen-Lenstra article in 
Mathematics of Computation. 

Exercises 

1. (a) Find all bases b for which 15 is a pseudoprime. (Do not include the 
trivial bases f 1 .) 
(b) Find all bases for which 21 is a pseudoprime. 
(c) Prove that there are 36 bases b E (Z/91Z)* (i.e., 50% of the possible 
bases) for which 91 is a pseudoprime. 
(d) Generalizing part (c), show that if p and 2p - 1 are both prime, 
and n = p(2p - l ) ,  then n is a pseudoprime for 50% of the possible 
bases b, namely for all b which are quadratic residues modulo 2p - 1. 

2. Let n be a positive odd composite integer, and let g.c.d.(b, n) = 1. 
(a) Show that if p is a prime divisor of n and we set set n' = n/p, then 
n is a pseudoprime to the base b only if bn'-' 1 mod p. 
(b) Prove that no integer of the form n = 3p (with p > 3 prime) can 
be a pseudoprime to the base 2, 5 or 7. 
(c) Prove that no integer of the form n = 5p (with p > 5 prime) can 
be a pseudoprime to the base 2, 3 or 7. 
(d) Prove that 91 is the smallest pseudoprime to the base 3. 

3. Show that p2 (with p prime) is a pseudoprime to the base b if and only 
if bP-' 2 1 mod P2. 

4. (a) Find the smallest pseudoprime to the base 5. 
(b) Find the smallest pseudoprime to the base 2. 

5. Let n = pq be a product of two distinct primes. 
(a) Set d = g.c.d.(p - 1, q - 1). Prove that n is a pseudoprime to the 
base b if and only if bd = 1 mod 7t. In terms of dl how many bases are 
there to which n is a pseudoprirne? 
(b) How many bases are there to which n is a pseudoprime if q = 2p+ l? 
List all of them (in terms of p). 
(c) For n = 341, what is the probability that a randomly chosen b 
prime to n will be a base to which n is a pseudoprirne? 

6. Show that, if n is a pseudoprirne to the base b E (Z/nZ)*, then n is 
also a pseudoprime to the base -b and to the base b-'. 

7. (a) Prove that if n js a pse~~doprirne to the base 2, then so is N = 2n - 1. 
(b) Prove that if n is a pseudoprirne to the base b, and if g.c.d.(b - 
1, n)  = 1, then the integer N = (bn - l)/(b - 1) is a pseudoprime to  
the base b. 
(c) Prove that there are infinitely many pseudoprimes to the base b for 
b = 2, 3, 5. 
(d) Give an example showing that part. (h) may be false if we omit the 
condition g.c.d.(b - 1, n) = 1. 
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Let b be any integer greater than 1, let p be an odd prime not dividing 
b, b - 1 or b + 1. Set n = (b2p - l)/(b2 - 1). 
(a) Show that n is composite. 
(b) Show that 2pln - 1. 
(c) Show that n is a pseudoprime to the base b; conclude that for any 
base b there are infinitely many pseudoprimes to the base b. 
(a) Use the test (1) to show that 2047 = 211 - 1 is composite. 
(b) Explain why you should never test whether the Fermat number 
22k + 1 or the Mersenne number 2P - 1 is prime by checking (1) with 
b = 2. What about using the test (2) with b = 2? What about using 
(3) with b = 2? 
Suppose that m is a positive integer such that 6m + 1, 12m + 1 and 
18m + 1 are all primes. Let n = (6m + 1)(12m + 1)(18m + 1). Prove 
that n is a Carmichael number. Note. It is not known whether there are 
infinitely many Carmichael numbers of the form n = (6m + 1)(12m + 
1)(18m + I), but heuristic arguments suggest that there are. 
Show that the following are Carmichael numbers: 1105 = 5 . 13 . 17; 
1729 = 7.13.19; 2465 = 5.17-29; 2821 = 7-13-31;  6601 = 7-23-41;  
29341 = 13.37 61; 172081 = 7 .13  31 61; 278545 = 5.17  29.113. 
(a) Find all Carmichael numbers of the form 3pq (with p and q prime). 
(b) Find all Carmichael numbers of the form 5pq (with p and q prime). 
(c) Prove that for any fixed prime number r, there are only finitely 
many Carmichael numbers of the form rpq (with p and q prime). 
Prove that 561 is the smallest Carmichael number. 
Give an example of a composite number n and a base b such that 
b("-l)I2 = f 1 mod n but n is not an Euler pseudoprime to the base b. 
(a) Prove that if n is an Euler pseudoprime to the base b E (Z/nZ)*, 
then it is also an Euler pseudoprime to the base -b and to the base 
b-? 
(b) Prove that if n is an Euler pseudoprime to the base bl and to the 
base b2, then it is also an Euler pseudoprime to the base b = blb2. 
Let n be of the form p(2p - I), as in Exercise l(d). 
(a) Prove that n is an Euler pseudoprime for 25% of all possible bases 
b E (Z/nZ)*. 
(b) Find a class of numbers n of this type such that n is a strong 
pseudoprime for 25% of all possible bases. 
Let n be of the form (6m + 1)(12m + 1)(18m + I), as in Exercise 10. 
Prove that (a) if m is odd, then n is an Euler pseudoprime for 50% of 
all possible bases b E (Z/nZ)*; and (b) if m is even, then n is an Euler 
pseudoprime for 25% of all possible bases. 
(a) Using the big-0 notation, estimate the number of bit operations 
required to perform the Miller-Rabin test on a number n enough times 
so that, if n passes all the tests, it has less than a l / m  chance of being 
composite (here n and m are very large). 
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(b) Assuming the Generalized Riemann Hypothesis, estimate the num- 
ber of bit operations required to perform the Miller-Rabin test on n 
enough times to be sure that, if n passes all the tests, then it is prime. 
(a) Prove that, if n is a pseudoprime to the base 2, then N = 2" - 1 is 
a strong pseudoprime and an Euler pseudoprime to the base 2. 
(b) Prove that there are infinitely many strong pseudoprimes and Euler 
pseudoprimes to the base 2. 
Prove that, if n is a strong pseudoprime to the base b, then it is a 
strong pseudoprime to the base bk for any integer k. 
Let n be the Carmichael number 561. 
(a) Find the number of bases b E (Z/561Z)* for which 561 is an Euler 
pseudoprime. 
(b) Find the number of baxs for which 561 is a strong psniclopri~ne, 
and make a list of them. 
Prove that if n is a prime power pa, where cr > 1, then n is a strong 
pseudoprime to the base b if and only if it is a pseudoprime to the base 
b. 
(a) Show that 65 is a strong pseudoprime to the base 8 and to the base 
18, but not to the base 14, which is the product of 8 and 18 modulo 
65. 
(b) For any odd composite integer n,  let (*) denote the assertion, 
"Whenever n is a strong pseudoprime to the base bl and to the base 
b2 it is a strong pseudoprime to the base b = blb2" (in other words, 
the strong pseudoprime property is preserved under multiplication of 
bases). Prove that (*) holds if and only if n is a prime power or is 
divisible by a prime which is r 3 mod 4. 
(a) Prove that, if you find a b such that n is a pseudoprime but not a 
strong pseudoprime to the base b, then you can quickly find a nontrivial 
factor of n. 
(b) Explain how to guard against this when choosing your n = pq in 
the RSA cryptosystem. 
Remark. In many primality tests, if a composite n happens to pass 

some initial test and then fails a subsequent test, one not only learns that 
n is composite, but at  the same time one can quickly find a nontrivial 
factor. Exercise 24 is an example of this: if n passes the pseudoprime test 
to the base b and then fails the strong pseudoprime test to the base 6, then 
you can factor n. One can easily be misled into thinking that in this way 
the primality tests can also 1)c used for factorization. This is not the case. 
Given a large composite number n (c.g., a product of two randomly selected 
large primes), it is extremely unlikely that we would stumble upon a base 
b for which n is a pseudoprime (see Exercise 5(a) above to get an idea 
of the probability of stumbling upon such a b). Thus, the various refined 
pseudoprime tests are useful only in convincing ourselves of the prirnality 
of a number that really is prime; in practice, if we have a composite number 
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that we want to factor, it will fail every single primality test we apply to 
it, and the primality tests will not help us find a factor. 
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2 The rho method 

Suppose we know that a certain large odd integer n is composite; for ex- 
ample, we found that it fails one of the primality tests in $1. As mentioned 
before, this does not mean that we have any idea of what a factor of n 
might be. Of the methods we have encountered for testing primality, only 
the very slowest - trying to divide by the successive primes less than Jii 
- actually gives us a prime factor at  the same time as it tells us that n 
is composite. All of the faster primality test algorithms are more indirect: 
they tell us that n must have proper factors, but not what they are. 

The method of trial division by primes < Jn can take more than 
O(&) bit operations. The simplest algorithm which is substantially faster 
than this is J .  M. Pollard's "rho method" (also called the "Monte Carlo" 
method) of factorization. 
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The first step in the rho method is to choose an easily evaluated map 
from Z/nZ to itself, namely, a fairly simple polynomial with integer coef- 
ficients, such as f (x )  = x2 + 1. Next, one chooses some particular value 
x = xo (perhaps xo = 1 or 2, or perhaps it is a randomly generated inte- 
ger) and computes the successive iterates of f :  XI  = f (so),  x2 = f( f (xo)), 
$3 = f (f (f (xo))), etc. That is, we define 

Then we make comparisons bctween different xi's, hoping to firit1 two wliich 
are in different residue classes niodulo n but in the same residue class 
modulo some divisor of n. Once we find such x,, xk, we have g.c.d.(xl - 
xk, n)  equal to a proper divisor of n, and we are done. 

Example 1. Let us factor 91 by choosing f (x) = x2 + 1, xo = 1. Then 
we have xl = 2, x2 = 5, x3 = 26, etc. MTP find that g.c.d.(x3 - x2. n)  = 

g.c.d.(21,91) = 7, so 7 is a factor. Of course, this is a trivial exa~nple: we 
could have found the factor 7 faster by trial division. 

In the rho method it is importmt to choose a polynomial f (x) which 
maps Z/nZ to itself in a rather disjointed, "random" way. For example, 
we shall later see that f (x) must not be a linear polynomial, and in fact, 
should not give a 1-tcrl map. 

Let 11s suppose that f (x) is a "random" map from ZlnZ to itself, and 
compute how long we expect to have to wait before we have two iterations 
x j  and xk such that x1 - xk has a nontrivial common factor with n. We 
do this by finding for a fixed divisor r of 72. (which, in practice, is not yet 
known to us) the average (taken over all maps from Z/nZ to itself and 
over all values xo) of the first index k such that there exists j < k with 
x j  - xk mod r .  In other words, we regard f (x)  as a map from Z/rZ to  
itself and ask how many iterations are required before we encounter the 
first repetition of values xk = x j  in ZlrZ.  

Proposition V.2.1. Let S be a set of r elements. Gwen a map f from 
S to S and an element xo E S ,  let xJ+l = f (xl)  for j = 0,1,2,.  . . .  Let 
X be a positive real number, and let l' = 1 + [m]. Then thr prrqwrtzon 
of pairs (f ,  xo) for which xo, x l ,  . . . , I I ; .~  n7r dzstinct, whcre f t ~ m s  ovcr all 
maps from S to S and xo runs over all eletrtrnts of S, is less than e-A. 

Proof. The total number of pairs is rr+' ,  because there are r choices 
of xo, and for each of the r different x E S t,liere are r choices of f ( . r ) .  How 
many pairs (f ,  xo) are there for which xo, xl , . . . , xe are distinct? T h e  are 
r choices for xo, there are r - 1 choices for f ( r o )  = X I  (since this cannot 
equal xo), there are r - 2 choices for f ( x l )  = 22, and so on. until f (s) 
has been defined for x = xo, zl , . . . , xp- 1 . Then the value of f (x)  for each 
of the r - e remaining x is ~rbitrary, i.c., there are Pe possibilities for 
those values. Hcnce, the total number of possilde ways of choosing xu, and 
assigning the values f (x) so that 20,. . . , xt are distinct is: 
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rr-e n ( r  - j) ,  

and the proportion of pairs having the stated property (i.e., the above 
number divided by rr+') is 

The proposition states that the log of this is less than -A (where l = 1 + 
[&Kr] ). To prove the proposition, then, we take the log of the product on 
the right, and use the fact that log(1-x) < -x for 0 < x < 1 (geometrically, 
this is simply the fact that the logarithm curve remains under the line which 
is tangent to it at  the point (1,O)). Using the formula for the sum of the 
first C integers, we have: 

as required. This completes the proof of the proposition. 
The significance of Proposition V.2.1 is that it gives an estimate for the 

probable length of time of the rho method, provided that we assume that 
our polynomial behaves like an average map from Z/rZ to itself. Before 
explaining this estimate, we make a slight refinement of the rho method in 
the interest of efficiency. 

Recall that the rho method works by successively computing xk = 
f (xk- 1) and comparing xk with the earlier X j  until we find a pair satisfying 
g.c.d.(xk - xj,  n)  = r > 1. But as k becomes large, it becomes very time- 
consuming to have to compute g.c.d.(xk - x j  , n)  for each j < k. We now 
describe a way to carry out the algorithm so as to make only one 9.c.d. 
computation for each k. First, observe that, once there is a ko and jo such 
that xk, = Xj, mod r for some divisor rln, we then have the same relation 
xk = x j  mod r for any pair of indices j ,  k having the same difference 
k - j = ko - jo. To see this, simply set k = ko + m, j = jo + m, and 
apply the polynomial f to both sides of the congruence xk, Xj, mod r 
repeatedly, i.e., m times. 

We now describe how the rho algorithm works. We successively com- 
pute the xk, and for each k we proceed as follows. Suppose k is an (h+l)-bit 
integer, i.e., 2h 5 k < 2hf l. Let j be the largest h-bit integer: j = 2h - 1. 
We compare xk with this particular xj ,  i.e., we compute g.c.d.(xk - xj ,  n). 
If this 9.c.d. gives a nontrivial factor of n, we stop; otherwise we move on 
to k +  1. 

This modified approach has the advantage that we compute only one 
9.c.d. for each k. It has the disadvantage that we probably will not detect the 
first time there is a ko such that g . c . d . ( ~ ~ ~ - x ~ ~ ~  n) = r > 1 for some jo < ko. 

However, before long we will detect such a pair xk, x j  whose difference has 
a common factor with n. Namely, suppose that ko has h + 1 bits. Set 
j = 2h+1 - 1 and k = j + (ko - jo), in which case j is the largest ( h+  1)-bit 
integer and k is an (h+2)-bit integer such that g.c.d.(xk -xj,  n)  > 1. Notice 
that we have k < 2h+2 = 4 + 2 h  5 4ko. 

Example 2. Let us return to Example 1 but compare each xk only 
with the particular x j  for which j is the largest integer < k of the form 
2 h - 1 .  For n = 91, f(x) = x 2 + l ,  xo = 1 we have XI  = 2, x2 = 5, 
53  = 26 as before, and x4 = 40 (since 262 + 1 r 40 mod 91). Following 
the algorithm described above, we first find a factor of n when we compute 
g.c.d.(x4 - x3,n) = g.c.d.(14,91) = 7. 

Example 3. Factor 4087 using f (x) = x2 + x + 1 and xo = 2. 
Solution. Our computations proceed in the following order: 

x1 = f(2) = 7; g.c.d.(xl - x0,n) = g.c.d.(7 - 2,4087) = 1; 

2 2  = f(7) = 57; g.c.d.(x2 - x1,n) = g.c.d.(57 - 7,4087) = 1; 

x3 = f (57) = 3307; g.c.d.(x3 - xl ,  n) = g.c.d.(3307 - 7,4087) = 1; 

2 4  G f(3307) r 2745 mod 4087; g.c.d.(xa - x3,n) 

= g.c.d.(2745 - 3307,4087) = 1; 

x5 - f (2745) E 1343 mod 4087; g.c.d.(x5 - x3, n) 

= g.c.d.(1343 - 3307,4087) = 1; 

xs - f (1343) r 2626 mod 4087; g.c.d.(x6 - 23, n) 

x7 = f (2626) - 3734 mod 4087; g.c.d.(x7 - 23,  n) 

Thus, we obtain 4087 = 61 67, and we are done. 
Proposition V.2.2. Let n be an odd composite integer, and let r be 

a nontrivial divisor of n which is less than Jn (i.e., rln, 1 < r < Jn; 
we suppose that we are trying to determine what r is). If a pair ( f ,  xo) 
consisting of a polynomial f with integer coeiJicients and an initial value 
xo is chosen which behaves like an average pair (f ,  xo) in the sense of 
Proposition V.2.1 (with f a map from Z l rZ  to itself and xo an integer), 
then the rho method will reveal the factor r in O(f i logBn) bit operations 
with a high probability. More precisely, there exists a constant C such that 
for any positive real number X the probability that the rho method fails to 
find a nontrivial factor of n in i/iilog3n bit operations is less than 
e - '. 

Proof. Let C1 be a constant such that g.c.d.(y - z, n)  can he computed 
in Cllog3n bit operations whenever y, z 5 n (see $ 1.3). Let C2 be a constant 
such that the least nonnegative residue of f (x) modulo n can bc computed 
in C210g2n bit operations whenever x < n (see $1.1). If ko is the first 
index for which there exists jo < ko with xk, r xj, mod r ,  then the rho 
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algorithm as described above finds r in the k-th step, where k < 4ko. 
(Strictly speaking, it could happen that xk - x j  has a larger g.c.d. with 
n, i.e., g.c.d.((xk - xj)/r, n / r )  > 1; but the chance of a random integer 
having nontrivial g.c.d. with n / r  is small, especially if n is a product of a 
small number of large primes. So we shall neglect this possibility, which at 
worse would have the effect of requiring a slightly larger constant C in the 
proposition.) 

Thus, the number of bit operations needed to find r is bounded by 
4ko (Cllog3n +C210g2n). According to Proposition V.2.1, the probability 
that ko is greater than 1 + is less than e-? If ko is not greater than 
1 + m, then the number of bit operations needed to find r is bounded 
by (here we use the fact that r < fi): 

If we choose C slightly greater than 4&?(cI + C2) (so as to take care of 
the added I),  we conclude, as claimed, that the factor r will be found in 
~ f i  i/ii log3n bit operations, unless we made an unfortunate choice of 
(f, xo), of which the likelihood is less than e-? 

Remarks. 1. The basic assumption underlying the rho method is that 
polynomials can be found which behave like random maps in the sense of 
Proposition V.2.1. This has not been proved. However, practical experience 
factoring numbers by the rho method suggests that the ''average" poly- 
nomial behaves like the "average" map, and that some very simple poly- 
nomials (the most popular one being f (x) = x2 + 1) have this "average" 
property. 

2. According to Proposition V.2.2, if we choose X large enough to have 
confidence in success - for example, e-A is only about 0.0001 for X = 9 
- then we know that for an average pair (f, xo) we are almost certain to 
factor n in 3Ci/iilog3n bit operations. 

Exercises 

In Exercises 1-4, use the rho method with the indicated f (x) and s o  to 
factor the given n. In each case compare xk only with the x j  for which 
j = 2h - 1 (where k is an (h + 1)-bit integer). 
1. x2 - 1, xo = 2, n = 91. 
2. x2 + 1, x0 = 1, n = 8051. 
3. x2 - 1, XO = 5, n = 7031. 
4. x3 + x +  1, xo = 1, n = 2701. 
5. Let S be a set containing r elements, and let the maps f in the pairs 

(f, s o )  range over all bijections of the set S to itself (i.e., f is a 1-t+ 
1 correspondence between S and itself - no two x's have the same 
f (x)). As before, let xj+l = f (xj) for j = 0,1,2,. . . . For each pair 

(f ,  xo), let k denote the first index such that there exists j < k for 
which f (xk) = f (xj). Prove that 
(a) k is at  most r ,  and for each value from 1 to r there is a l / r  
probability that k is that value; 
(b) the average value of k is ( r  + 1)/2 (where the average is taken over 
all pairs (f ,  xo) with f a bijection). 

6. Using Exercise 5, explain why a linear polynomial ax  + b should never 
be chosen for f (x) in the rho method. 

7. Suppose that you are using tho rho rr~c?tliod to factor a nurnbcr which 
has a prime divisor r .  You decide to choose f (x) = x2 as your function 
to be iterated. (This is a bad choice of f (x), as will become clear 
below.) We are interested in determining the first value of k such that 
xk -- xe mod r for some 4? < k, i.e., the first value of k such that 
xo, XI, . . . , xk are not all distinct niot111lo r .  Suppose that you happen 
to choose xo which is a generator of (Z/rZ)*. Set r - 1 = 2't, where t 
is odd. 

(a) Write a congruence modulo r - 1 which is equivalent to xk = xe (equal- 
ity means congruence modulo r) .  

(b) Find the first values of k and t for which the condition in (a) holds, 
expressing them in terms of s and the binary expansion of the fraction 
lit. 

(c) Roughly how large is k compared to r?  Why is f (x) a bad choice of 
function for the rho method? 

References for 5 V.2 

1. W. D. Blair, C. B. Lacampagne and J .  L. Selfridge, "Factoring large 
numbers on a pocket calculator," American Math. Monthly 93 (1986), 
802-808. 

2. R. P. Brent, "An improved Monte Carlo factorization algorithm," BIT 
20 (1980), 176-184. 

3. R. P. Brent and .I. M. Pollard, "Factorization of the eighth Fermat 
number," Math. Comp. 36 (1981), 627 630. 

4. R. K. Guy, "How to factor a n~irnl~er," Proc. 5th Manitoba Conference 
on Numerical Mathematics (1975), 49 89. 

5. J. M. Pollard, "A Monte Carlo method for factorization," BIT 15 
(1975), 331-334. 

3 Fermat factorization and factor bases 

Fermat factorization. As we saw earlier (soc Excrcise 3 of 3 1.2 and Exercise 
4 of fj IV.2), there's a way to factor a cornposito number n that is efficient if 
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n is a product of two integers which are close to one another. This method, 
called "Fermat factorization," is based on the fact that n is then equal to 
a difference of two squares, one of which is very small. 

Proposition V.3.1. Let n be a positive odd integer. There i s  a 1-to- 
1 correspondence between factorizations of n in the form n = ab, where 
a 2 b > 0, and representations of n in the form t2 - s2, where s and t are 
nonnegative integers. The correspondence is given by the equations 

Proof. Given such a factorization, we can write n = ab = ((a+ !1)/2)~ - 
((a - b)/2)2, SO we obtain the representation as a difference of two squares. 
Conversely, given n = t2 - s2 we can factor the right side as (t + s)(t - s). 
The equations in the proposition explicitly give the 1-to- 1 correspondence 
between the two ways of writing n. 

If n = ab with a and b close together, then s = (a - b)/2 is small, and 
so t is only slightly larger than fi. In that case, we can find a and b by 
trying all values for t starting with [fi] + 1, until we find one for which 
t2 - n = s2 is a perfect square. 

In what follows, we shall assume that n is never a perfect square, so 
as not to have to  worry about trivial exceptions to the procedures and 
assertions. 

Example 1. Factor 200819. 
Solution. We have [ d m ]  + 1 = 449. Now 44g2 - 200819 = 782, 

which is not a perfect square. Next, we try t = 450: 4502 - 2OO8l9 = 1681 = 
412. Thus, 200819 = 4502 - 412 = (450 + 41)(450 - 41) = 491 -409. 

Notice that if the a and b are not close together for any factorization 
n = ab, then the Fermat factorization method will eventually find a and 6, 
but only after trying a large number of t = [fi] + 1, [fi] + 2,. . .. There 
is a generalization of Fermat factorization that often works better in such a 
situation. We choose a small k, successively set t = [&] + 1, [&] + 2, 
etc.. until we obtain a t for which t2 - kn = s2 is a perfect square. Then 
(t + s)(t - s)  = kn, and so t + s has a nontrivial common factor with n 
which can be found by computing 9.c.d. (t + s, n). 

Example 2. Factor 141467. 
Solution. If we try to use Fermat factorization, setting t = 377,378, . . . , 

after a while we tire of trying different t's. However, if we try t = [a] 
+1 = 652,. . . we soon find that 6552 - 3 . 141467 = 682, a t  which point 
we compute g.c.d.(655 + 68,141467) = 241. We conclude that 141467 = 
241 . 587. The reason why generalized Fermat factorization worked with 
k = 3 is that there is a factorization n = ab with b close to  3a. With k = 3 
we need to try only four t's, whereas with simple Fermat factorization (i.e., 
k = 1) it would have taken thirty-eight t's. 

Factor bases. There is a generalization of the idea behind Fermat fac- 
torization which leads to a much more efficient factoring method. Namely, 
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we use the fact that any time we are able to obtain a congrllence of the 
form t2 = s2 mod n with t $ f s mod n, we immediately find a factor 
of n by computing g.c.d.(t + s, n) (or g.c.d.(t - s, n)). This is because we 
have nit2 - s2 = (t + s)(t - s), while n does not divide t + s or t - s; thus 
g.c.d.(t + s ,n )  must be a proper factor a of n, and then b = n l a  divides 
g.c.d.(t - s, n). 

Example 4. Suppose we want to factor 4633, and happen to notice 
that 1 1 8 ~  leaves a remainder of 25 = 52 modulo 4633. Then we find that 
g.c.d.(ll8 + 5,4633) = 41, g.c.d.(118 - 5,4633) = 113, and 4633 = 41 - 113. 
A skeptic might wonder how in Example 4 we ever came upon a number 
such as 118 whose square has least positive residue also a perfect square. 
Would a random selection of various b soon yield one for which the least 
positive residue of b2 mod n is a perfect square? That is very unlikely if n 
is large, so it is necessary to generalize this method in a way that allows 
much greater flexibility in choosing the b's for which we consider b2 mod n. 
The idea is to choose several hi's which have the property that b: mod n is 
a product of small prime powers, and such that some subset of them, when 
multiplied together, give a b whose square is congruent to a perfect square 
modulo n. We now give the details. 

By the "least absolute residue" of a number a modulo n we mean the 
integer in the interval from -n/2 to n/2 to which a is congruent. We shall 
denote this a mod n. 

Definition. A factor base is a set B = {pl  , pz, . . . , ph} of distinct primes, 
except that p, may be the integer -1. We say that the square of an integer 
b is a B-number (for a given n)  if the least absolute residue b2 mod n can 
be written as a product of numbers from 13. 

Example 5. For n = 4633 and B = { - l,2,3}, the squares of the three 
integers 67, 68 and 69 are B-numbers, because 672 5 -144 mod 4633, 
682 = -9 mod 4633, and 6g2 = 128 mod 4633. 

Let F! denote the vector space over the field of two elements which 
consists of h-tuples of zeros and ones. Givcn n and a factor base B con- 
taining h numbers, we show how to correspond a vector T' E F! to every 
B-number. Namely, we write b2 mod n in the form n:=l p7' and set the 
j-th component cj equal to aj mod 2, i.e., r, = 0 if aj is even, and cj = 1 
if Qj  is odd. 

Example 6. In the situation of Example 5, the vector corresponding 
to 67 is {1,0,0}, the vector corresponding to 68 is {1,0, O}, and the vector 
corresponding to 69 is {0,1,0}. 

Suppose that we have some set of B-n~imbers 6: mod n such that the 
corresponding vectors Ti = {cil, . . . , cih} add up to the zero vector in F;. 
Then the product of the least absolute residues of 6: is equal to a product 
of even powers of all of the pj in B. That is, if for each i we let ai denote 

h the least absolute residue of b: mod n and we write ai = uj, pa1J , we 
obtain 
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with the exponent of each pj an even number on the right. Then the right 
hand side is the square of aj py with % = xi aij. Thus, if we set 
b = ni bi mod n (least positive residue) and c = nj mod n (least 
positive residue), we obtain two numbers b and c, constructed in quite 
different ways (one as a product of hi's and the other as a product of pj's) 
whose squares are congruent modulo n. 

It may happen that b b f c  mod n, in which case we are out of luck, 
and we must start again with another collection of B-numbers whose corre- 
sponding vectors sum to zero. This will happen, for example, if we foolishly 
choose bi less than m, in which case all of the vectors are zero-vectors, 
and we end up withva trivial congruence. 

But for more randomly chosen bi, because n is composite we would 
expect that b and c would happen to be congruent (up to f 1) modulo n 
at  most 50% of the time. This is because any square modulo n has 2' 2 4 
square roots if n has r different prime factors (see Exercise 7 of $ 1.3); thus 
a random square root of b2 has only a 2/2' 5 $ chance of being either b or 
-b. And as soon as we have b and c with b2 - c2 mod n but b f f c mod n 
we can immediately find a nontrivial factor 9.c.d. (b+ c, n) , as we saw before. 
Thus, if we go through the above procedure for finding b and c until we find 
a pair that gives us a nontrivial factor of n, we see that there is a t  most a 
2-k probability that this will take more than k tries. 

In practice, how do we choose our factor base B and our bi? One 
method is to start with B consisting of the first h primes (or the first h - 1 
primes together with pl = -1) and choose random bils until we find several 
whose squares are B-numbers. Another method is to start by choosing some 
hi's for which b: mod n (least absolute residue) is small in absolute value 
(for example, take bi close to 6 for small multiples kn; another way will 
be explained in $4). Then choose B to consist of a small set of small primes 
(and usually pl = -1) so that several of the b: mod n can be expressed in 
terms of the numbers in B. 

Example 7. In the situation of Examples 5-6, we actually chose 67 and 
68 because they are close to dm. After finding that 672 = -144 mod 4633 
and 682 = -9 mod 4633, we saw that we can choose B = {-1,2,3). As 
we saw before, the vectors corresponding to bl = 67 and b2 = 68 are 
{1,0,0) and {1,0,0), which add up to the zero vector. We compute b = 
67.68 mod 4633 = -77 and c = 272 . 3T3 (we can ignore the power of -1 in 
c), i.e., c = 36. Fortunately, -77 f f 36 mod 4633, and so we find a factor 
by computing g.c.d.(-77 + 36,4633) = 41. 

When can we be sure that we have enough bi to find a sum of Ti 
which is the zero vector? In other words, given a collection of vectors in 
F!, when can we be sure of being able to find a subset of them which sums 
to zero? To ask for this is to ask for the collection of vectors to be linearly 
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dependent over the field F2.  According to basic linear algebra (which applies 
just as well over the field F2 as over the real numbers), this is guaranteed 
to occur as soon as wc have h + 1 vcctors. Thus, at  worst wr'll have to 
generate h + 1 different B-numbers in order to find our first example of (n, bZ)? = (n, pT)2 mod n. (Example 7 shows that we may very well 
obtain linearly dependent vectors sooner; in that case h = 3, and we were 
able to stop after finding two B-numbers.) If h is large, we might not be able 
to notice by inspection a subset of vectors which sums to zero; in that case, 
we must write the vectors as rows in a matrix arid use the row-reduction 
technique of linear algebra to find a linearly dependent set of rows. 

Example 8. Let n = 4633. Find the smallest factor-base B such that 
the squares of 68, 69 and 96 are B-nu~nbers, and then factor 4633. 

Solution. As we saw before, 682 mod n and 6g2 mod n are products 
of -1, 2, and 3; since 962 mod n = -50, the least absolute residues of all 
three squares can be written in terms of the factor-base B = {- 1,2,3,5). 
We already computed the vectors €1 = {1,0,0,0} and €2 = { O ,  1,0,0) 
corresponding to 68 and 69, respectively. Since 962 E -50 mod 4633, we 
have €3 = 11, 1, 0,0}. Since thr sum of tllcsr vectors is zero, we ca~ i  take 
b = 68 69.96 5 1031 mod 4633 and c = 24 . 3  - 5 = 240. Then we obtain 
g.c.d.(240 + 1031,4633) = 41. 

Examples 7 and 8 indicate how one might proceed systematically to 
find several bi such that the least absolute residue by mod n is a product of 
small primes. The likelihood that b: mod n is a product of small prirnes is 
greater if this residue is small in absolute value. Thus, we might successively 
try integers bi close to 6 for small integers k. For example, we might 
choose [m and [m + 1 for k = 1,2, . . . . 

Example 9. Let us factor n = 1829 by taking for bi all integers of the 
form [ d s ]  and [&?&%I + 1, k = 1,2, .  . ., such that b: mod n is a 
product of primes less than 20. For such bi we write b: mod n = njpTi' 
and tabulate the aij. After taking k = 1,2,3,4, we have the following table, 
in which the number at the top of the j-th column is pj and the entry in 
the i-th row beneath pj is the power of pj which occurs in b: mod n: 

We now look for a s d m t  of rows wllose entrios s im  to an even nur~iber 
in each column. We see at a glance that the 2nd and 6th rows sum to 
the even row - 6 - 2 - - - . This leads to the congruence 
(b2 . b6)2 (2 6/2 52/2)2 mod n, i.e., (43 - 8 ~ ) ~  = 402 mod 1829. But since 
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43 . 86 F 40 mod 1829, we have found only a trivial relationship. Thus, 
we have to look for another subset of rows which sum to a row of even 
numbers. We notice that the sum of the first three rows and the fifth row 
is 2 2 2 2 2 - 2 , and this gives the congruence (42 -43  61 . 85)2 = 
(2 - 3  - 5  7 . 1 3 ) ~  mod n, i.e., 145g2 = 9012 mod 1829. We conclude that a 
factor of 1829 is g.c.d.(1459 + 901,1829) = 59. 

Factor base algorithm. We now summarize a systematic method to 
factor a very large n using a mndom choice of the b,. Choose an integer y of 
intermediate size, for example, if n is a 50-decimal-digit integer, we might 
choose y to be a number with 5 or 6 decimal digits. Let B consist of -1 
and all primes 5 y. Choose a large number of random b,, and try to express 
b: mod n (least absolute residue) as a product of the primes in B. Once you 
obtain a large quantity of B-numbers 61 mod n ( ~ ( y )  + 2 is enough, where 
n(y) denotes the number of primes < y), take the corresponding vectors in 
F! (where h = n(y) + 1) and by row-reduction determine a subset of the - 

bi whose corresponding 2, sum to zero. Then form b = n b, mod n and 
c = npy mod n, as described above. Then b2 E c2 mod n. If b = f c mod n, 
start again with a new random collection of B-numbers (or, to be more 
efficient, choose a different subset of rows in the matrix of 7 's which sum 
to zero, if necessary finding a few more B-numbers and their corresponding 
rows). When you finally obtain b2 z c? mod n and b f f c mod n, compute 
g.c.d.(b + c, n), which will be a nontrivial factor of n. 

Heuristic time estimate. We now give a very rough derivation of an 
estimate for the number of bit operations it takes to find a factor of a very 
large n using the algorithm described above. We shall use several simplifying 
assumptions and approximations, and in any case the result will only be a 
probabilistic estimate. If we are very unlucky in our random choice of b,, 
then the algorithm will take longer. 

We shall need the following preliminary facts: 
Fact 1 (Stirling 's fornula). log(n!) is approximately n log n - n. 
By "approximately," we mean that the difference grows much more 

slowly than n as n --+ oo. This can be proved by observing that log(n!) 
is the right-endpoint Riemann sum (with endpoints a t  1,2,3,. . .) for the 
definite integral $; log x dx = n log n - n + 1. 

Fact 2. Given a positive integer N and a positive number u, the total 
N 

number of nonnegative integer N-tuples aj such that C j = ,  aj < u is the 

binomial coefficient (IU% ") . 
Here [ ] denotes the greatest integer function. Fact 2 can be proved by 

letting each N-tuple solution aj correspond to the following choice of N 
integers pj from among 1,2,.  . . , [u] + N. Let = a1 + 1, and for j 2 1 
let Dj+l = (Ij + aj+l + 1, i.e., we choose the pj's SO that there are aj 
numbers between oj-1 and oj. This gives a 1 - t e l  correspondence between 
the number of solutions and the number of ways of choosing N numbers 
from a set of [u] + N numbers. 

Now, in order to estimate the time our algorithm takes, a crucial step 
is to estimate the probability that a random number less than x will be a 
product of primes less than y (where y is a number much less than x). To 
do this, we first let u denote the ratio z. That is, if x is an r-bit integer 
and y is an s-bit integer, then u is approxi~uately the ratio of digits r / s .  

In the course of the computations, we shall want to make some simpli- 
fications by ignoring smaller terms. We shall do this under the assumption 
that u is much smaller than y. We let n(y), as usual, denote the number of 
prime numbers which are < y. Since n(y) is approximately equal to yllog y, 
by the Prime Number Theorem, we are also assuming that we are working 
with values of u which are much smaller than n(y). In a typical practical 
application of the algorithm, we might take y, u, x of approximately the 
following sizes: 

y z lo6 (so that ~ ( y )  = 7-10' and logy = 14); 

u z 8; 

It is customary to let P(x, y) denote the number of integers < x which 
are not divisible by any prime greater than y, i.e., the number of integers 
which can be written as a product np;' 5 x, where the product is over 
all primes < y and the aj are nonnegative integers. There is obviously a 
1-to-1 correspondence between n(y)-tuples of nonnegative integers aj for 
which njP7' < x and integers < x which are not divisible by any prime 
greater than y. Thus, @(x, y) is equal to the number of integer solutions aj 

to the inequality C Y ~ )  aj log pj < log x, as we see by taking logarithms. 
We now observe that most of the p,'s have logarithms not too much less 
than logy. This is because most of the primes less than y have almost 
the same number of digits as y; only relatively few have many fewer digits 
and hence a much smaller logarithm. Thus, we shall allow ourselves to 
replace logpj by logy in the previous inequality. Dividing both sides of the 
resulting inequality by logy and replacing log xllog y by u, we can say that 
P(x, y) is approximately equal to the number of solutions of the inequality 

aj < U. 
We now make another important simplification, replacing the number 

of variables n(y) by y. This might appear at  first to be a rather reckless 
modification of our problem. And in fact, replacing ~ ( y )  by y does introduce 
nontrivial terms; however, it turns out that those terms cancel, and the net 
result is the same as one would get by a much more careful approximation of 
@(x, y). Thus, we shall suppose that @(a, y) is roughly equal to the number 
of y-tuple nonnegative integer solutions to tlic ineqdi ty  o, < u. 

But, by Fact 2 (with N = y), this means that P(x, y) is approximately (IUrv). We now estimate l o g ( v ) ,  whirl, is the logarithm of the proba- 
bility that a random integer between 1 and x is a product of primes < y. 
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Notice that log x = ulog y, by the definition of u. We use the approximation 
for P(x, y) and Fact 1: 

= ([u] + Y ) ~ ~ ( [ u I  + Y) - ( I4  + Y)- 

- ([u] log [u] - [u]) - (Y 109 Y - Y) - u 109 Y. 

We now make some further approximations. First, we replace [u] by u. 
Next, we note that, because u is assumed to be much smaller than y, we 
can replace log(u + y) by logy. After cancellation we obtain 

P(X,Y) -,, 
- M U  , 

x 

For example, this says that if x = and y lo6 as above, then the 

probability that a random number between 1 and x is a product of primes 
5 y is about 1 out of 8*. 

We are now ready to estimate the number of bit operations required to 
carry out the factor base algorithm described above, where for simplicity we 
shall suppose that our factor base B consists of the first h = n(y) primes, 
i.e., all primes 5 y. To make our analysis easier, we shall suppose that B 
does not include - 1, and that we consider the least positive residue (rather 
than the least absolute residue) of bf mod n. 

Thus, we estimate the number of bit operations required to carry out 
the following steps: (1) choose random numbers bj between 1 and n and 
express the least positive residue of b: modulo n as a product of primes 
5 y if it can be so expressed, continuing until you have ~ ( y )  + 1 different 
hi's for which bf mod n is written as such a product; (2) find a set of 
linearly dependent rows in the corresponding ( ( ~ ( y )  + 1) x x(y))-matrix 
of zeros and ones to obtain a congruence of the form b2 G c2 mod n; 
(3) if b = f c  mod n, repeat (1) and (2) with new bi until you obtain 
b2 = c2 mod n with b $ f c mod n, a t  which point find a nontrivial factor 
of n by computing g.c.d. (b + c, n). 

Assuming that the b: mod n (meaning least positive residue of bt 
modulo n) are randomly distributed between 1 and n, by the argument 
above we expect that it will take approximately uU tries before we find a 
bi such that bf mod n is a product of primes < y, where u = log n/log y. 
We will later decide how to choose y so as to minimize the length of time. 
The point is that choosing y large would make uU small, and so we would 
frequently encounter bi such that bf mod n is a product of primes 5 y. 
However, in that case the factorization of b: mod n into a product involving 
all of those primes - which we would have to do a(y) + 1 times - and 
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then the row reduction of the matrix would all be very time consuming. 
Conversely, if we choose y fairly small, then the latter tasks would be easy, 
but it would take us a very long time to find any hi's for which b; mod n 
is divisible only by primes 5 y, because in that case uu would be very 
large. So y should be chosen in some intcrrrlediatc range, as a compromise 
between these two extremes. 

In order to decide how y should be chosen, we first make a very rough 
estimate in terms of y (and n, of course) of the number of bit operations. 
We then minimize this with respect to y (using first year calculus and some 
simplifying approximations), and find our time estimate with y chosen so 
that the time is minimized. 

Suppose that n is an r-bit integer and y is an s-bit integer; then u is 
very close to r l s .  First of all, how many bit operations are needed for each 
test of a randomly chosen bi? We claim that the number of operations is 
polynomial in r and y, i.e., it is O(r'eks) for some (fairly small) integers 
k and I. It takes a fixed amount of time to generate a random bit, and 
so O(r) bit operations to generate a random integer bi between 1 and n. 
Next, computing b: mod n takes 0 ( r 2 )  bit operations. We must then divide 
b: mod n successively by all primes 5 y which divide it evenly (and by any 
power of the prime that divides it evenly), hoping that when we're done 
we'll be left with 1. A simple way to do this (though not the most efficient) 
would be to divide successively by 2 and by all odd integers p from 3 to y, 
recording as we go along what power of p divides b; mod n evenly. Notice 
that if p is not prime, then it will not divide evenly, since we will have 
already removed from b: mod n all of the factors of p. Since a division of 
an integer of < r bits by an integer of < s bits takes time O(rs),  we see 
that each test of a randomly chosen bi takes O(rsy) bit operations. 

To complete step (1) requires testing approximately u"(a(y) + 1) values 
of bi, in order to find n(y) + 1 values for which b: mod n is a product of 
primes 5 y. Since a(y) & = O(y/s), this means that step (1) takes 
O(uUr y2) bit operations. 

Step (2) then involves operations which are polynomial in y and r (such 
as matrix reduction and finding b and c modulo n). Thus, step (2) takes 
~ ( ~ j r ~ )  bit operations for some integers j and h. Each time we perform 
steps (1)-(2) there is at  least a 50% cliance of s~iccess, i.e., of finding that 
b $ f c mod n. More precisely, the chance of success is 50% if n is divisible 
by only two distinct primes, and is greater if n is divisible by more primes. 
Thus, if we are satisfied with, say, a 1 - 2-" probability of finding a non- 
trivial factor of n, it suffices to go through the steps 50 times. Taking this 
as good enough for all practical purposes, wc end up with the estimate 

for suitable i~ttcgors h a~itl k. 
We now find y - equivalently, s -- for which this time cstimate is 

minimal. Since r, the nu~nber of bits ill rt, is fixal, this means iriinin~izing 
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(r/s)'/'ek8 with respect to s, or equivalently, minimizing its log, which is 
5 log 5 + ks. Thus, we set 

i.e., we choose s in such a way that ks is approximately equal to 5 log I ,  
in other words, in such a way that the two factors in (r/s)'/'ek8 are ap- 
proximately equal. Because k is a constant, it follows from the above a p  
proximate equality that s2 has the same order of magnitude as r log(r/s) = 
r(log r - log s), which means that s has order of magnitude between f i  and 
J-. But this means that log s is approximately ?log r, and so, making 
the substitution log s r~ +log r, we transform the above relation to: 

With this value of s,  we now estimate the time. Since the two factors 
(r/s)'I8 and ek8 are approximately equal for our optimally chosen s, the 

,/rlogr 
time estimate simplifies to  ~ ( e ~ ~ ' )  = O(e ). Replacing the con- 

stant && by C, we finally obtain the following estimate for the number of 
bit operations required to  factor an r-bit integer n: 

The above argument was very rough. We made no attempt to jus- 
tify our simplifications or bound the error in our approximate equalities. 
In addition, both our algorithm and our estimate of its running time are 
probabilistic. 

Until the advent of the number field sieve very recently (see the remark 
at the end of §5), all analyses of the running time of the best general-purpose 

factoring algorithms known led to estimates of the form 0 ( e c e ) .  

In some cases, the estimates were proved rigorously, and in other cases 
they relied upon plausible but unproved conjectures. The main difference 
between the time estimates for the various competing algorithms was the 
constant C in the exponent. In this respect the factoring problem has had 
a history quite different from the primality problem considered in 51, where 
improvements in running time (especially of deterministic primality tests) 
have been dramatic. For a detailed survey and comparison of the factoring 
algorithms that were known in the early 1980's, see Pomerance's 1982 article 
cited in the references below. 

Remark. Since r = O(1og n), the above time estimate can also be 
expressed in the form 

Except for the number field sieve, all of the asymptotically fast general 
factoring algorithms have conjectured running times of the above form with 
C = 1 + E for E arbitrarily small. 

Implications for RSA. Recall that the security of the RSA public key 
cryptosystem (see 5 IV.2) depends upon the circumstance that factoring a 
very large integer of the form n = pq is much more time consuming than 
the various tasks which legitimate users of the system must perform, tasks 
which are polynomial time or near-polynomial time (primality testing) as 
functions of the number r of bits in n. We have just seen why time estimates 

r log r  
of the form O(e F, tend to arise when analyzing factoring algorithms. 
Since a polynomial function of r can be written in the form O(eC logr), we 
see that for large r the time required for factorization is indeed much larger 
than for polynomial time or near-polynomial time algorithms. (However, the 

factoring algorithms with time estimate of the form O(e -) are better 
for large r than the rho method, which has time estimate approximately 
O(i/ii) = 0(eC9, where C = f log 2.) 

Finally, we note that the question of replacing in the exponent 
by a smaller function of r is not the only matter of practical importance in 
evaluating the security of the RSA system. After all, a polynomial function 

of the number of bits r becomes much smaller than Cle C2 only when 
r is large, and how large r must be taken depends strongly on the values of 
the constants Cl and C2. So even the discovery of a factoring algorithm with 
the same time estimate except with smaller constants would have practical 
implications for the usability of the RSA public key cryptosystem. 

Exercises 

Use Fermat factorization to factor: (a) 8633, (b) 809009, (c) 92296873, 
(d) 88169891, (e) 4601. 
Prove that, if n has a factor that is within i/ii of fi, then Fermat 
factorization works on the first try (i.e., for t = [fi] + 1). 
(a) Prove that if k = 2, or if k is any integer divisible by 2 but not by 4, 
then we cannot factor a large odd integer n using generalized Fermat 
factorization with this choice of k. 
(b) Prove that if k = 4, and if generalized Fermat factorization works 
for a certain t,  then simple Ferrnat factorization (with k = 1) would 
have worked equally well. 
Use generalized Ferniat factorizatiori to factor: (a) 68987, (b) 29895581, 
(c) 19578079, (d) 17018759. 
Let n = 2701. Use the B-numbers 522, 532 mod n for a suitable factor- 
base B to factor 2701. What are the T' 's corresponding to 52 and 
53? 
Let n = 4633. Use 68, 152 and 153 with a suitable factor-base B to 
factor 4633. What are the correspondirig vectors? 
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(a) Prove that: logn! - (nlogn - n) = O(1ogn). 
(b) Derive the more precise estimate: 1 og n! - ((n+ ;)log n -n) = O(1). 
(c) What is the expected value of log j for a randomly chosen integer 
j between 1 and y? 
(a) What is the probability that a randomly chosen set of k vectors in 
FT is linearly independent (where k < n)? 
(b) What is the probability that 5 randomly chosen vectors in Fq are 
a basis? 
Let n be an r-bit integer. By what factor does each of the expressions - fi log r 
fi (that appears in the time estimate for the rho method) and e 
(that appears in the estimate for the factor base method) increase if n 
increases from a 50-decimal-digit to a 100-decimal-digit integer? 
(a) Suppose that f (s) is a positive monotonically decreasing function 
and g(s) is a positive monotonically increasing function on an interval, 
and suppose that f (so) = g(so). Prove that the function h(s) = f (s) + 
g(s) "essentially" reaches its minimum at  so,  in the sense that the 
minimum value of h(s) is between h(so) and ? h(so). 
(b) Suppose that f (s) > 1 is a monotonically decreasing function and 
g(s) > 1 is a monotonically increasing function on an interval, and 
suppose that f (so) = g(so). Prove that the function h(s) = f (s)g(s) 
"essentially" reaches its minimum a t  so,  in the sense that the minimum 
value of h(s) is between h(so) and Jh(s). 
(c) Using part (b), show that the function h(s) = (r/s)'lS eks on the 
interval (0, T) (here k and T are positive constants) "essentially" reaches 
its minimum when (r/s)'18 = eks. 
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4 The continued fraction method 

In the last section, we saw that the factor-base method of finding a non- 
trivial factor of a large composite integer n works best if one has a good 
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method of finding integers b between 1 and n such that the least abso- 
lute residue b2 mod n is a product of small primes. This is most likely to 
occur if the absolute value of b2 mod n is sniall. In this section we de- 
scribe a method (originally due to Legendre) for finding many b such that 
1b2 mod nl < 2fi. This method uses "co~itinued fractions," so we shall 
start with a brief introduction to tlie contiliucd fraction representation of 
a real number. Our account will describe orily those features which wdl be 
needed here; the reader interested in a more tliorongh txcatnwnt of contin- 
ued fractions should consult, for exarriple, Davenport's classic and readable 
book (see the references at the end of the section). 

Continued hactions. Given a real number x, we construct its continued 
fraction expansion as follows. Let a0 = [XI be the greatest integer not greater 
than x, and set xo = x - ao; let a1 = [l/xo], and set xl = l /xo - a l ;  and 
for i > 1, let ai = [ l / ~ , - ~ ] ,  and set xi = l / ~ , - ~  - a,. If/when you find 
that i/xi-1 is an integer, you have x, = 0, and the process stops. It is not 
hard to see that the process terminates if and only if x is rational (because 
in that case the xi are rational numbers with decreasing denominators). 
Because of the construction of ao, a l ,  . . . , a,, for each i you can write 

which is usually written in a more compact notation as follows: 

Suppose that x is an irrational real number. If we carry out the above 
expansion to the i-th term and then delete xi, we obtain a rational number 
bi/ci, called the i-th convergent of the contiliucd fraction for x: 

Proposition V.4.1. In the above notation. one has: 
(a) & = 9. = aoa t l  . bi - aibi-l+bi-2 

co l ' c l  a: 7 c, - sic, .. +c,  - for ' 2 2; 
(b) the fmctions on the right in part (a) nrr in lowest terms, i.e., if bi = 

aibi-l + bi-2 and C, = a i~ i -1  + (.i-2, then g.c.d.(bi, ci) = 1; 

(c) bici-1 - bGlci = (-I)'-' for i > 1 .  
Proof. We define the sequences {bi} atid {ci} by the relations in (a), 

and prove by induction that then bi/ci is thr i-th convergent. N'e will prove 
this without assuming that the ai are iritcgors, i.c., we will prove that for 
any real numbers ai the ratio bi/ci with hi ar~d ci defined by thr formillas 
in (a) is equal to a0 + 5 . . - 2. It is trivial tm check the begi~ining of the 
induction (i = 0,1,2). We now suppose that tlie claim is true through the 
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i-th convergent, and we prove the claim for the (i + 1)-th convergent. Note 
that we obtain the (i + 1)-th convergent by replacing by a, + 1/ai+i 
in the formula that expresses the numerator and denominator of the i-th 
convergent in terms of the (i - 1)-th and (i - 2)-th. That is, the (i  + 1)-th 
convergent is 

by the induction assumption. This completes the induction, and proves part 

( 4 .  
Part (c) is also easy to prove by induction. The induction step goes as 

follows: 

so part (c) for i implies part (c) for i + 1. Finally, part (b) follows from part 
(c), because any common divisor of bi and ci must divide (-I)'-', which is 
f 1. This proves the proposition. 

If we divide the equation in Proposition V.4.l(c) by QQ-1, we find 
that 

Since the ci clearly form a strictly increasing sequence of positive integers, 
this equality shows that the sequence of convergents behaves like an al- 
ternating series, i.e., it oscillates back and forth with shrinking amplitude; 
thus, the sequence of convergents converges to a limit. 

Finally, it is not hard to see that the limit of the convergents is the 
number x which was expanded in the first place. To see that, notice that 
x can be obtained by forming the (i + 1)-th convergent with ai+l replaced 
by l/xi.  Thus, by Proposition V.4.l(a) (with i replaced by i + 1 and ai+l 
replaced by l/xi), we have 

and this is strictly between b , - l /~ - l  and bi/ci. (To see this, consider the 
two vectors u = (b,, ci) and v = (6,- 1, Ci- 1) in the plane, both in the same 
quadrant; note that the slope of the vector u + xiv is intermediate between 
the slopes of u and v.) Thus, the sequence b i / ~  oscillates around x and 
converges to x. 

Continued fractions have many special properties that cause them to 
come up in several different branches of mathematics. For example, they 
provide a way of generating "best possible" rational approximations to real 
numbers (in the sense that any rational number that is closer to x than bi/c, 
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must have a denominator larger than ci). Another property is analogous 
to the fact that the decimal (or baseb) digits of a real number x repeat if 
and only if x is rational. In the continued fraction expansion of x,  we saw 
that the sequence of integers ai terminates if and only if x is rational. It 
can be shown that the ai become a repeating sequence if and only if x is a 
quadratic irrationality, i.e., of the form xl + x 2 f i  with XI  and x2 rational 
and n not a perfect square. This is known as Lagrange's theorem. 

Example 1. If we start expanding fi as a continued fraction, we obtain 

At this point we might conjecture that the ai's alternate between 1 and 
2. To prove this, let x equal the infinite continued fraction on the right 
with alternating 1's and 2's. Then clearly x = 1 + 1+(1,t1+2)) , as we see by 
replacing x on the right by its definition as a continued fraction. Simplify- 
ing the rational expression on the right and multiplying both sides of the 
equation by 2 + x gives: 22 + x2 = 3 + 22, i.e., x = a. 

Proposition V.4.2. Let x > 1 be a real number whose continued fmction 
expansion has convergents bi/ci. Then for all i: I b: - x2c: 1 < 2s. 

Proof. Since x is between bi/ci and bi+l /~i+l ,  and since the absolute 
value of the difference between these successive convergents is ~ / c ~ c ~ + ~  (by 

re Proposition V.4.1 (c)), we ha1 

bi Ib: - x2c:J = c:lx - - 
Ci 

Hence, 

This proves the proposition. 
Proposition V.4.3. Let n be a positive integer which is not a perfect 

square. Let bi/ci be the convergents in the continued fraction expansion of 
fi. Then the residue of b: modulo n which is smallest in absolute value 
(ie., between -n/2 and n/2) is less than 2 6 .  

Proof. Apply Proposition V.4.2 with x = fi. Then b: z b,? - 
nc: mod n, and the latter integer is less than 2 f i  in absolute value. 

Propa7ition V.4.3 is the key to the continued fraction algorithm. It 
says that we can find a sequence of hi's whose squares have small residues 
by taking the numerators of the convergents in the continued fraction ex- 
pansion of f i. Note that we do not have to find the actual convergent: only 
the numerator b, is needed, and that is necdcd only modulo n. Thus, the 
fact that the numerator and denominator of the convergents soon become 
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very large does not worry us. We never need to work with integers larger 
than n2 (when we multiply integers modulo n). 

We now describe in sequence how the continued fraction algorithm 
works. All we do is use the factor-base method in 53, except with Proposi- 
tion V.4.3 replacing random choice of the hi's. 

Continued fraction factoring algorithm. Let n be the integer to be 
factored. All computations below will be done modulo n, i.e., products and 
sums of integers will be reduced modulo n to their least nonnegative residue 
(or least absolute residue in step (3)). First set b-1 = 1, bo = a0 = [fi], 
and xo = f i  - ao. Compute bi mod n (which will be bi - n). Next, for 
i = 1,2, . . . successively: 
1. S e t a i = [ l / ~ , - ~ ]  a n d t h e n x i = l / ~ ~ - ~  - a,. 
2. Set bi = aibi- + bi-2 (reduced modulo n). 
3. Compute b: mod n. After doing this for several i, look at  the numbers in 

step 3 which factor into f a product of small primes. Take your factor 
base B to consist of -1, the primes which occur in more than one of the 
b: mod n (or which occur to an even power in just one b: mod n). Then 
list all of the numbers b: mod n which are B-numbers, along with the 
corresponding vectors Ti of zeros and ones. If possible, find a subset 
whose vectors sum to zero. Set b = n b, (working modulo n and taking 
the product over the subset for which C Ti = 0). Set c = n pF,  where 
p j  are the elements of B (except for -1) and yj  = f C aij (with the 
sum taken over the same subset of i; see 53). If b f f c mod n, then 
g.c.d.(b+c, n)  is a nontrivial factor of n. If b = f c mod n, then look for 
another subset of i such that C Ti = 0. If it is not possible to find any 
subset of i such that C Ti = 0, then you must continue computing 
more a,, b,, and b: mod n, enlarging your factor base B if necessary. 
Remark. In order to be able to compute c = n p T ,  it is efficient if for 

each B-number b: mod n we record the vector Zi = {. . . , ai j ,  . . .} rather 
than Ti, which is simply Zi reduced modulo 2. 

Example 2. Use the above algorithm to factor 9073. 
Solution. We first make a list of successive ails and b,'s (where b, is 

the least nonnegative residue modulo n of aib,_i + b,-2), along with the 
corresponding least absolute residue modulo n of 61: 

i 0 1 2 3 4  
a i 95 3 1 26 2 
bi 95 286 381 1119 2619 

b: mod n -48 139 -7 87 -27 

Looking at  the last line of the table, we see that it is reasonable to set B = 
{-1,2,3,7}. Then bt mod n is a B-number for i = 0,2,4. The corresponding 
vectors 7?, are, respectively, {I,  4,1,0}, {I, 0,0,1}, and {1,0,3,0). The sum 
of the first and third is zero modulo 2. So let us choose b = 95 . 2619 - 
3834 mod 9073, and c = 22 - 32 = 36. Thus, 38342 - 362 mod 9073. 
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Since 3834 $ f 36 mod 9073, we obtain the nontrivial factor g.c.d.(3831 + 
36,9073) = 43. Thus, 9073 = 43 -21  1. 

Example 3. Factor 17873. 
Solution. As in Example 2, we start out with a table 

If we set B = {-I, 2,7,23), we have B-numbers when i = 0,2,4,5; the cor- 
responding vectors Zi are, respectively, {1,3,0,1), {1,3,1,0), {1,6,0,0) 
and {0,0,1,1). The sum of the first, sccorid and fourth of these four vec- 
tors is zero modulo 2. However, if we compute b = 133 . 401 - 13369 = 
1288 mod 17873 and c = 2" 7 23 = 1288, we find that b = c mod 17873. 
Thus, we must continue to look for more B-numbers with vectors that sum 
to zero modulo 2. Continuing the table, wc have 

If we now enlarge B to include the prime 11, i.e., B = {-1,2,7,11,23), 
then for i = 0,2,4,5,6,8 we obtain B-numbers with vectors Zi as fol- 
lows: {I, 3, 070, I}, {I,  3,1,0, 017 {I,  6, O,O, 01, {o, O,l,O, 11, {I,  071, LO}, 
{1,3,0,1,0}. We now note that the sum of the second, third, fifth and 
sixth of these six vectors is Zen) ino(l11lo 2. This leads to b = 7272, c = 4928, 
and we finally find a nontrivial factor g.c.d.(7272 + 4928,17873) = 61. We 
obtain: 17873 = 61 -293. 

Exercises 

1. Find the continued fraction representation of the following rational 
nurnbers: (a) 45/89; (b) 55/89; (c) 1.13. 

2. (a) Suppose that x is a real riumhcr whose continued fraction expansion 
consists of the positive integer a repeated infinitely: 

What rral number is x (written in a simple closed form)? 
(b) Prove that if n = 1 in part (a), tlwn T is the golden ratio and 
the riurnerators and denominators of the convergents are Fibonacci 
numbers. 

3. Expand e in a continued fraction, and try to guess a pattern in the 
integers ai. 



160 V. Primality and Factoring 

4. In the continued fraction algorithm explain why there is no need to 
include in the factor base B any primes p such that (:) = -1. 

5. Following Examples 2 and 3, use the continued fraction algorithm to 
factor the following numbers: (a) 9509; (b) 13561; (c) 8777; (d) 14429; 
(e) 12403; (f) 14527; (g) 10123; (h) 12449; (i) 9353; (j) 25511; (k) 17873. 
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The quadratic sieve method 

The quadratic sieve method for factoring large integers, developed by 
Pomerance in the early 1980's, for a long time was more successful than 
any other method in factoring integers n of general type which have no 
prime factor of order of magnitude significantly less than fi. (For integers 
n having a special form there may be special purpose methods which are 
faster, and for n divisible by a prime much smaller than fi the elliptic 
curve factorization method in sVI.4 is faster. Also see the discussion of the 
number field sieve a t  the end of the section.) 

The quadratic sieve is a variant of the factor base approach discussed 
in $3. As our factor base B we take the set of all primes p 5 P (where P is 
some bound to be chosen in some optimal way) such that n is a quadratic 

residue mod p, i.e., (i) = 1 for p odd, and p = 2 is always included in 

B. The set of integers S in which we look for B-numbers (recall that a 
B-number is an integer divisible only by primes in B )  will be the same set 
that we used in Fermat factorization (see 93), namely: 
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for some suitably chosen bound A. 
The main idea of the method is that, instead of taking each s E S 

one by one and dividing it by the primes p E B to see if it is a B-number, 
we take each p E B one by one and examine divisibility by p (and powers 
of p) simultaneously for all of the s E S. The word "sieve" refers to this 
idea. Here we should recall the "sieve of Eratosthenes," which one can 
use to make a list of all primes p 5 A. For example, to list the primes 
5 1000 one takes the list of all integers < 1000 and then for each p = 
2,3,5,7,11,13,17,19,23,29,31 one discards all multiples of p greater than 
p - one "lets them fall through a sieve which has holes spaced a distance 
p apart" - after which the numbers that remain are the primes. 

We shall give an outline of a procedure to carry out the method, and 
then give an example. The particular version described below is only one 
possible variant, and it is not necessarily the most efficient one. Moreover, 
our example of a number n to be factored (and also the numbers to be 
factored in the exercises at  the end of the section) will be chosen in the 
range = lo6, so as to avoid having to work with large matrices. However, 
such n are far too small to illustrate the time advantage of the sieve in 
finding a large set of B-numbers. 

Thus, suppose we have an odd composite integer n. 
1. Choose bounds P and A, both of order of magnitude roughly 

eJ~og n Log log n 

Generally, A should be larger than P ,  but not larger than a fairly small 
power of P ,  e.g., P < A < P2 .  

This function exp( Jlog n log log n) ,  which we encountered before in 
this chapter and which is traditionally denoted L(n), has an order of rnag- 
nitude intermediate between polynomial in logn and polynomial in n. If 
n = lo6, then L(n) = 400. In the examples below, we shall choose P = 50, 
A = 500. 

2. For t = [fi] + 1, [fi] + 2, .  . . , [fi] + A, make a column listing 
the integers t2 - n. 

3. For each odd prime p < P, first check that = 1 (see 511.2); if 
not, then throw that p out of the factor base. 

(9 
4. Assuming that p is an odd prime such that n is a quadratic residue 

mod p (we'll treat the case p = 2 separately), solve the equation t2 r 
n (mod $) for = 1,2,.  . ., using the method in Exercise 20 of $11.2. Take 
increasing values of p until you find that there is no solution t which is 
congruent modulo $ to any integer in t l ~ c  range [fi] + 1 < t 5 [Jii] + A. 
Let p be the largest integer such that there is some t in this range for which 
t2 n (mod $). Let tl and t2 be two solutions of t2 = n (mod #) with 
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t2 = -t 1 (mod $) (t 1 and t2 are not necessarily in the range from [fi ] + 1 
to [,hi] + A). 

5. Still with the same value of p, run down the list of t2 - n from part 
2. In a column under p put a 1 next to all values of t2 - n for which t differs 
from tl  by a multiple of p, change the 1 to a 2 next to all values of t2 - n 
for which t differs from t l  by a multiple of p2, change the 2 to a 3 next to 
all values of t2 - n for which t differs from tl by a multiple of p3, and so on 
until $. Then do the same with tl  replaced by t2. The largest integer that 
appears in this column will be P. 

6. As you go through the procedure in 5), each time you put down a 1 
or change a 1 to a 2, a 2 to a 3, etc., divide the corresponding t2 - n by p 
and keep a record of what's left. 

7. In the column p = 2, if n f 1 mod 8, then simply put a 1 next to the 
t2 - n for t odd and divide the corresponding t2 - n by 2. If n = 1 mod 8, 
then solve the equation t2 = n (mod 28) and proceed exactly as in the case 
of odd p (except that there will be 4 different solutions t l  , t2, t3, t4 modulo 
20 if /3 2 3). 

8. When you finish with all primes < P ,  throw out all of the t2 - n 
except for those which have become 1 after division by all the powers of 
p 5 P. You will have a table of the form in Example 9 in $3, in which the 
column labeled bi will have the values of t, [fi] + 1 5 t 5 [fi] + A, for 
which t2 - n is a B-number, and the other columns will correspond to all 
values of p 5 P for which n is a quadratic residue. 

9. The rest of the procedure is exactly as in 53. 

Example. Let us try to factor n = 1042387, taking the bounds P = 50 
and A = 500. Here [fi] = 1020. Our factor base consists of the 8 primes 
{2,3,11,17,19,23,43,47} for which 1042387 is a quadratic residue. Since 
n $ 1 (mod 8), the column corresponding to p = 2 alternates between 1 
and 0, with a 1 beside all odd t, 1021 5 t < 1520. 

We describe in detail how to form the column under p = 3. We 
want a solution tl = tlYo + tlYl 3 + tl,2 . 32 + -.. + tl,p-l . 38-I to 
t: = 1042387 (mod 30), where t l j  E {O, 1,2} (for the other solution t2 
we can take t2 = 38 - tl). We can obviously take tlYo = 1. (For each of 
our 8 primes the first step - solving t: 1042387 (mod p) - can be 
done quickly by trial and error; if we were working with larger primes, 
we could use the procedure described at  the end of 511.2.) Next, we work 
modulo 9: (1 + 3t1,1)2 3 1042387 = 7 (mod 9), i.e., 6tlYl = 6 (mod 9), i.e., 
2tl,1 -- 2 (mod3), so tlYl = 1. Next, modulo 27: (1+3+9t~ ,2)~  = 1042387 = 
25 (mod 27), i.e., 16 + l8tlY2 - 25 (mod 27), i.e., 2t1,2 = 1 (mod 3), so 
tlY2 = 2. Then modulo 81: (1 + 3 + 18 + 27tl,3)2 1042387 = 79 (mod 81), 
which leads to tlYs = 0. Continuing until 3?, we find the solution (in the no- 
tation of 51.1 for numbers written to the base 3): tl - (210211)3 (mod 3?), 
and t2 -= (2012012)3 (mod 3?). However, there is no t between 1021 and 
1520 which is ZE t l  or t2 modulo 37. Thus, we have P = 6, and we can 
take tl = (210211)3 = 589 s 1318 (mod 36) and t2 = 36 - tl = 140 - 

1112 (mod 35) (note that there is no number in the range from 1021 to 
1520 which is z t2 (mod 36)). 

We now construct our "sieve" for the prime 3 as follows. Starting from 
1318, we take jumps of 3 down until we rea.ch 1021 and up until we reach 
1519, each time putting a 1 in the column, dividing the corresponding 
t2 - n by 3, and recording the result of the division. (Actually, for t odd, 
the number we divide by 3 is half of t2 - n, since we already divided t2 -n by 
2 when we formed the column of alternating 0's and 1's under 2.) Then we 
do the same with jumps of 9, each time changing the 1 to 2 in the column 
under 3, dividing the quotient of t2 - n by another 3, and recording the 
result. We go through the analogous procedure with jumps of 27, 81, 243, 
and 729 (there is no jump possible for 729 - we merely change the 5 to 
6 next to 1318 and divide the quotient of 1318~-1042387 by another 3). 
Finally, we go through the same steps with t2 = 11 12 instead of t l  = 1318, 
this time stopping with jumps of 243. 

I After going through this procedure for the remaining 6 primes in our 
factor base, we have a 500 x 8 array of exponents, each row corresponding 
to a value o f t  between 1021 and 1520. Now we throw out all rows for which 
t2 - n has not been reduced to 1 by repeated division by powers of p as we 
formed our table, i.e., we take only the rows for which t2 - n is a B-number. 
In the present example n = 1042387 we are left with the following table 
(here blank spaces denote zero exponents): 

Proceeding as we did in Example 9 in $3, we now look for relations modulo 
2 between the rows of this matrix. That is, moving down from the first 
row, we look for a subset of the rows which sums to an even number in 
each column. The first such subset we find here is the first three rows, the 
sum of which is twice the row 1 3 2 1 - - - - . Thus, we obtain the 
congruence 

(1021 . 1027.1030)~ G ( 2 .  33 . 112 1 7 ) ~  (mod 1042387). 
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But despite our good fortune in finding a set of mod 2 linearly de- 
pendent rows so quickly, it turns out that we are not so lucky after 
all: the two numbers being squared in the above congruence are both - 111078 (mod 1042387), so we get only the trivial factorization. As we 
continue down the matrix, we find some other sets of dependent rows, 
which also fail to give us a nontrivial factorization. Finally, when we are 
about to give up - and start over again with a larger A - we notice 
that the last row - corresponding to our very last value of t - is depen- 
dent on the earlier rows. More precisely, it is equal modulo 2 to the fifth 
row. This gives us (1 112 . 1520)~ - (33 17 23 . 47)2 (mod 1042387), i.e., 
6478532 r 49617g2 (mod 1042387), and we obtain the nontrivial factor 
g.c.d.(647853 - 496179,1042387) = 1487. 

Based on some plausible conjectures, one can show that the expected 
running time of the quadratic sieve factoring method is asymptotically 

for any E > 0. There is a fairly large space requirement, also of the form 
exp(C4og n log log n). For a detailed discussion of time and space require- 
ments for the quadratic sieve (and several other) factoring algorithms, see 
Pomerance's article in the volume Computation Methods in Number The- 
ory. 

The number field sieve. Until recently, all of the contenders for the 
best general purpose factoring algorithm had running time of the form 

Some people even thought that this function of n might be a natural lower 
bound on the running time. However, during the last few years a new 
method - called the number field sieve - has been developed that has 
a heuristic running time that is much better (asymptotically), namely: 

In practice, it appears to be the fastest method for factoring numbers that 
are a t  or beyond the current (1994) upper limits of what can be factored, 
i.e., > 150 digits. 

In some respects, the number field sieve factoring algorithm is similar 
to the earlier algorithms that attempt to combine congruences so as to 
obtain a relation of the form x2 - y2 (mod n). However, one uses a "factor 
base" in the ring of integers of a suitably chosen algebraic number field. 
Thus, along with the basic machinery of the quadratic sieve, this factoring 
method uses algebraic number theory. It is perhaps the most complicated 
factoring algorithm known. We shall give only an overview. 

The basic requirements of the algorithm can be briefly described as 
follows. Given an integer n to be factored, choose a degree d and find n as 
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the value at  some integer m of an irreducible monic integer polynomial of 
degree d: 

n = f (m) = rnd + ad-lmd-l + ad-2ntd-2 + . . . + arm + ao, 

where m and the a k  are integers that are O(nlld). One way to find such a 
polynomial is to let m be the integer part of the d-th root of n and then 
expand n to the base m. For 125-digit numbers an analysis of the algorithm 
suggests that d should be 5, so that m and the coefficients will have about 
25 digits. 

The number field sieve then searches (by a sieving process similar to 
the quadratic sieve) for as many pairs (a, 6) as possible such that both 
a + bm and also 

are smooth over a given factor base (i.e., are divisible only by primes in 
the factor base). The details of how this is done and how this leads to  a 
factorization of n can be found in the book The Development of the Number 
Field Sieve cited in the references below. In order for this procedure to  
succeed, the proportion of smooth numbers among values of the polynomial 
f should be approximately the same as the proportion of smooth numbers 
among all numbers of the same size. Although this is likely to he true, and 
is true in all examples that have been computed, it seems to be a very 
hard assertion to prove. Since the estimate of running time depends on 
this unproved conjecture, it is a heuristic estimate. While perhaps of little 
consequence in practice for factoring actual numbers, this circumstance 
points to some important open problems in the analysis of the theoretical 
asymptotic complexity of factoring. 

The author would like to thank Joe Buhler for providing the above 
brief summary of the number field sieve for this book. 

Exercises 

In the example, find all linear dependence relations mod 2 between the 
rows of the matrix, and show that if P = 50 and A 5 499 one cannot 
get a nontrivial factorization of 1042387 by this method. 
Let n + oo, and suppose that P and A are always chosen to have the 
same order of magnitude (for example, suppose that there are positive 
constants cl and c2 such that c1 5 log A/ log P 5 c2). Asymptotically, 
what is the most time-consuming part of steps 1)-7) in the above ver- 
sion of the quadratic sieve? Give a big-0 estimate for the number of 
bit operations required by that step. 
Use the method in this section with P = 50 and A = 500 to factor: 
(a) 1046603, (b) 1059691, and (c) 998771. 
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Elliptic Curves 

In recent years a topic in number theory and algebraic geometry - ellip 
tic curves (more precisely, the theory of elliptic curves defined over finite 
fields) - has found application in cryptography. The basic reason for this 
is that elliptic curves over finite fields provide an inexhaustible supply of 
finite abelian groups which, even when large, are amenable to computation 
because of their rich structure. Before ( 5  IV.3) we worked with the multi- 
plicative groups of fields. In many ways elliptic curves are natural analogs 
of these groups; but they have the advantage that one has more flexibility 
in choosing an elliptic curve than in choosing a finite field. 

We shall start by presenting the basic definitions and facts about el- 
liptic curves. We shall include only the minimal amount of background 
necessary to understand the applications to cryptography in $52-4, em- 
phasizing examples and concrete descriptions at the expense of proofs and 
generality. For systematic treatments of the subject, see the references at  
the end of $1. 

1 Basic facts 

In this section let K be a field. For us, I( will be either the field R of real 
numbers, the field Q of rational nu~rrbers, the field C of complex numbers, 
or tho finit,~ fidd F,/ of q = pr clcr~icwt,s. 

Definition. Let K be a field of charact.cristic # 2, 3, and let x" ax  + b 
(where a ,  b E I<) 1)c a cubic polynomial with no multiple roots. An elliptic 
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curve over K is the set of points (x, y) with x, y E K which satisfy the 
equation 

y2 = x3 + ax + b, (1) 

together with a single element denoted 0 and called the "point a t  infinity" 
(about which more will be said below). 

If K is a field of characteristic 2, then an elliptic curve over K is the 
set of points satisfying an equation of type either 

or else 
y 2 + x y = x 3 + a x 2 + b  

(here we do not care whether or not the cubic on the right has multiple 
roots) together with a "point a t  infinity" 0. 

If K is a field of characteristic 3, then an elliptic curve over K is the 
set of points satisfying the equation 

(where the cubic on the right has no multiple roots) together with a "point 
a t  infinity" 0. 

Remarks. 1. There's a general form of the equation of an ellipse which 
applies to any field: y2 + alxy + a3 y = x3 + a2x2 + arx  + as, which when 
char K # 2 can be transformed to y2 = x3 + ax2 + bx + c (and to the 
form y2 = x3 + bx + c if char K > 3). In the case when the field K has 
characteristic 2, this equation can be transformed either to (2a) or (2b). 

2. If we let F(x, y) = 0 be the implicit equation for y as a function 
of x in (1) (or (2), (3)), i.e., F(x, y) = y2 - x3 - ax  - b (or F(x ,  y) = 
y2+  y + x 3 + a x + b ,  y 2 + x y + x 3 + a x + b ,  y2-x3-ax2-bx-c) ,  then 
a point (x, y) on the curve is said to be non-singular (or a smooth point) 
if a t  least one of the partial derivatives aF /ax ,  dF/dy is nonzero at  the 
point. (Derivatives of polynomials can be defined by the usual formulas over 
any field; see paragraph 5 at  the beginning of Chapter 11.) I t  is not hard 
to show that the condition that the cubic on the right in (1) and (3) not 
have multiple roots is equivalent to requiring that all points on the curve 
be nonsingular. 

Elliptic curves over the reds. Before discussing some specific examples 
of elliptic curves over various fields, we shall introduce a centrally important 
fact about the set of points on an elliptic curve: they form an abelian group. 
In order to explain how this works visually, for the moment we shall assume 
that K = R, i.e., the elliptic curve is an ordinary curve in the plane (plus 
one other point 0 "at infinity"). 

Definition. Let E be an elliptic curve over the real numbers, and let P 
and Q be two points on E. We define the negative of P and the sum P + Q 
according to the following rules: 

If P is the point at infinity 0, then wc define -P to be 0 and P + Q 
to be Q; that is, 0 serves as the additive identity ("zero element") of 
the group of points. In what follows, we shall suppose that neither P 
nor Q is the point a t  infinity. 
The negative -P is the point with the same x-coordinate but negative 
the y-coordinate of P, i.e., -(x, y) = (x, - y). It is obvious from (1) 
that (2, - y) is on the curve whenever (x, y) is. 
If P and Q have different x-coordinates, then it is not hard to see 
that the line l? = PQ iritrrsects the clirvc in exactly one niort point R 
(unless that line is tangent to the curve at P ,  in which case we take 
R = P, or at  Q, in which case we take R = Q). Tlicn dcfine P + Q to 
be -R, i.e., the mirror image (with respect to the r-axis) of the third 
point of intersection. The geometrical construction that gives P + Q is 
illustrated in Example 1 below. 
If Q=-P (i.e., Q has the same x-coordinate but minus the y-coordi- 
nate), then we define P+ Q = 0 (the point at  infinity). (This is forced 
on us by (2).) 
The final possibility is P = Q. Then let l? be the tangent line to the 
curve at P ,  let R be the only other point of intersection of l with the 
curve, and define P + Q = -R. (R is taken to be P if the tangent line 
has a "double tangency" at P, i.e., if P is a point of inflection.) 
Example 1. The elliptic 

curve y2 = x3 -x in the xy-plane 
is sketched to the right. The dia- 
gram also shows a typical case of 
adding points P and Q. To find 
P + Q  one draws a chord through 
P and Q, and takes P + Q to 
be the point symmetric (with re- 
spect to the x-axis) to the third 
point where the line through P 
and Q intersects the curve. If 
P and Q were the same point, 
i.e., if we wanted to find 2P, 
we would use the tangent line 
to the curve at P ;  then 2 P  is 
the point symmetric to the third 
point where that tangent line in- I \ 
tersects the curve. 

We now show why there is exactly onc more point where the line .t 
through P and Q intersects the curve; at  the same time we will derive a 
formula for the coordinates of this third poirit, and hence for the coordinates 
of P + Q .  

Let (21, yl), (22, y2) and (23, ya) denotc the coordinates of P, Q, and 
P + Q, respectively. We want to express x3 and y3 in terms of xl , yl , xz, y2. 
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Suppose that we are in case (3) in the definition of P+Q,  and let y = a x + P  
be the equation of the line through P and Q (which is not a vertical line in 
case (3)). Then a = (y2 - y1)/(x2 - xl), and /3 = yl - axl .  A point on e, 
i.e., a point (x, a x  + 0) , lies on the elliptic curve if and only if (ax  + P)2 = 
x3 + ax + b. Thus, there is one intersection point for each root of the cubic 
equation x3 - (ax  + /3)2 + ax  + b. We already know that there are the two 
roots x1 and 22, because (xl, ax1 + P), (22, ax2 + P) are the points P, Q 
on the curve. Since the sum of the roots of a monic polynomial is equal to 
minus the coefficient of the second-to-highest power, we conclude that the 
third root in this case is x3 = a2 - x1 - x2. This leads to an expression for 
23, and hence P + Q = (xs, -(ax3 + P)), in terms of XI, xz, yl, y2: 

The case (5) when P = Q is similar, except that a is now the derivative 
dyldx at P. Implicit differentiation of Equation (1) leads to the formula a = 
(3xT + a)/2yl, and so we obtain the following formulas for the coordinates 

twice P :  

Example 2. On the elliptic curve y2 = x3 - 362 let P = (-3,9) and 
Q = (-2,8). Find P + Q and 2P. 

Solution. Substituting xl = -3, yl = 9, 2 2  = -2, y2 = 8 in the first 
equation in (4) gives 23 = 6; then the second equation in (4) gives y3 = 0. 
Next, substituting xl  = -3, yl = 9, a = -36 in the first equation in (5) 
gives 2514 for the x-coordinate of 2P; then the second equation in (5) gives 
-3518 for its y-coordinate. 

There are several ways of proving that the above definition of P + Q 
makes the points on an elliptic curve into an abelian group. One can use 
an argument from projective geometry, a complex analytic argument with 
doubly periodic functions, or an algebraic argument involving divisors on 
curves. See the refercrices at  tlie end of the section for proofs of each type. 

As in any abelian group, we use the notation n P  to denote P added 
to itself n times if n is positive, and otherwise - P added to itself In1 times. 

We have not yet said much about the "point of infinity" 0. By defi- 
nition, it is the identity of the group law. In the diagram above, it should 
be visualized as sitting infinitely far up the y-axis, in the limiting direction 
of the ever-steeper tangents to the curve. It is the "third point of intersec- 
tion" of any vertical line with the curve; that is, such a line has points of 
intersection of the forrn (xl,  yl), (xl, -yl) and 0. A more natural way to 
introduce the point 0 is as follows. 

By the projective plane we mean the set of equivalence classes of triples 
(X, Y, Z)  (not all components zero) where two triples are said to he cquiv- 
alent if they are a scalar multiple of one another, i.e., (AX, XY, XZ) - 
(X, Y, 2 ) .  Such an equivalence class is called a projective point. If a pro- 
jective point has nonzero Z,  then there is one and only one triple in its 
equivalence class of the form (x, y, 1): simply set x = X/Z, y = Y/Z. Thus. 
the projective plane can be identified witli all points (x, v) of the ordinary 
("affine") plane plus the poirits for which Z = 0. The latter poi~its make 
up what is called the line at infinity; ro~~glily speaking, it can be vislializcd 
as the "horizon" on the plane. Any equation F(x ,  y) = O of a curve in the 
affine plane corresponds to an equation F(X, Y, Z )  = 0 satisfied by the 
corresponding projective points: simply rcplace x by X/Z and y by Y/Z 
and multiply by a power of Z to clear the denominators. For example, if 
we apply this procedure to the affine equation (1) of an elliptic curve, we 
obtain its "projective equation" Y2Z = X3 + aXZ2 + bZ3. This latter equa- 
tion is satisfied by all projective points (X, Y, Z)  with Z # 0 for which the 
corresponding affine points (x, y), where x = X/Z, y = Y/Z, satisfy ( I). 
In addition, what projective points (X, Y, Z)  on the line at infinity satisfy 
the equation fi = 01 Setting Z = 0 in the equation leads to 0 = X3, i.e., 
X = 0. But the only equivalence class of triples (X, Y, Z)  with both X and 
Z zero is the class of (0, 1,O). This is the point we call 0. It is the point on 
the intersection of the y-axis with the line at  infinity. 

Elliptic curves over the complexes. The algebraic formulas (4) - ( 5 )  for 
adding points on an elliptic curve over the reals actually make sense ovcr 
any field. (If the field has characteristic 2 or 3, one derives similar cquatioris 
starting from Equation (2) or (3).) It can be shown that these formulas give 
an abelian group law on an elliptic curve ovcr any field. 

In particular, let E be an elliptic curve dofincd over tlic ficld C of 
complex numbers. Thus, E is the set of pairs (x, y) of complcx riurnbcrs 
satisfying Equation (I),  together witli tlic point at  infinity 0. Although 
E is a "curve," if wc think in tcrrrls of fmliliar georiictrical pictures, it 
is 2-dimensional, i.e., it is a surfacc in t11c 4-rc.al-dir~icrisional spwc whose 
coordinates are tlie real and imaginary parts of x and y. We rlow dcscribc 
how E can be visualized as a surface. 

Let L be a lattice in th .  corl11)lcx pliulo. This ~iic~i~ns 111at 1, is t110 
abelian group of all integer cornbir~atioris of two complex nu~ i~ lx r s  wl arid 
w2 (where wl and w2 span the plane, i.e., do riot lie on the same liric tlirough 
the origin): L = Zwl + Zw2. For exarnplc, if wl = 1 and w2 = i ,  then L 
is the Gaussian integers, the square grid co~isisting of all complex rlunihers 
with integer real and imaginary parts. 

Given an elliptk curve (1) ovcr tlic co~nplcx numbers, it t ~~ r r i s  out 
that there exist a lattice L awl a C O I I ~ ~ ~ O X  fimctio11, called the "Wicrstrass 
pfunction" and denoted p ~ (  z), wliich 11a.s the followirig properties. 
1. p(z) is analytic except f c x  a doliblc j )oI(~ at cwch point o f  1,; 
2. p(z) satisfies the differential equatiori g ~ ' '  = 6" a p  + b, and lirnce for 
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any z @ L the point (p(z), p' (2)) lies on the elliptic curve E ;  
3. two complex numbers 21 and a2 give the same point (g(z), p'(z)) on 

E if and only if zl - 22 E L; 
4. the map that associates any z @ L to the corresponding point (p(z), 

p'(z)) on E and associates any z E L to the point a t  infinity 0 E 
E gives a 1-to-1 correspondence between E and the quotient of the 
complex plane by the subgroup L (denoted CIL); 

5. this 1-to-1 correspondence is an isomorphism of abelian groups. In 
other words, if zl corresponds to the point P E E and z2 corresponds 
to Q E E ,  then the complex number zl + z2 corresponds to the point 
P + Q .  
Thus, we can think of the abelian group E as equivalent to the complex 

plane modulo a suitable lattice. To visualize the latter group, note that 
every equivalence class z + L has one and only one representative in the 
"fundamental parallelogram" consisting of complex numbers of the form 
awl + bwz, 0 < a,  b < 1 (for example, if L is the Gaussian integers, the 
fundamental parallelogram is the unit square). Since opposite points on 
the parallel sides of the boundary of the parallelogram differ by a lattice 
point, they are equal in C/L. That is, we think of them as '(glued together." 
If we visualize this - folding over one side of the parallelogram to meet 
the opposite side (obtaining a segment of a cylinder) and then folding over 
again and gluing the opposite circles - we see that we obtain a "torus" 
(donut), pictured below. 

As a group, the torus is the product of two copies of a circle, i.e., 
its points can be parametrized by ordered pairs of angles (a, P ) .  (More 
precisely, if the torus was obtained from the lattice L = Zwl + Zw2, then 
we write an element in C/L  in the form awl + bw2 and take cr = 27ra, 
p = 27rb.) Thus, we can think of an elliptic curve over the complex numbers 
as a generalization to two real dimensions of the circle in the real plane. 
In fact, this analogy goes much farther than one might think. The "elliptic 
functions" (which tell us how to go back from a point (x, y) E E to the 
complex number z for which (x, y) = (p(z),  pl(z))) turn out to have some 
properties analogous to the familiar function Arcsin (which tells us how to 
go back from a point on the unit circle to the real number that corresponds 
to that point when we "wrap" the real nurnher line around the circle). In 
the algebraic number theory of elliptic curves, one finds a deep analogy 
between the coordinates of the "n-division points" on an el1ij)tic curves 
(the points P such that nP is the identity 0 )  and the n-division points on 
the unit circle (which are the n-th roots of 1111ity i11 the complex plane). Scc 
the references at the end of the section for more information on this, and 
for the definition of the Weierstrass pfunction and proofs of its properties. 

Elliptic curves over the rationals. In Equation (I) ,  if a and b are ra- 
tional numbers, it is natural to look for rational solutions (x, y), i.e., to 
consider the elliptic curve over the field Q of rational numbers. There is 
a vast theory of elliptic curves over the rationals. It turns out that the 
abelian group is finitely generated (the Mordell theorem). This means that 
it consists of a finite "torsion subgroup" (the points of finite order) plus 
the subgroup generated by a finite number of points of infinite order. The 
number of generators needed for the infinite part is called the rank r ;  it is 
zero if and only if the entire group is finite. The study of the rank r and 
other features of the group of an elliptic curve over Q is related to many in- 
teresting questions in number theory and algebraic geometry. For example, 
a question asked since ancient times - "Given a positive integer n, when 
does there exist a right triangle with rational sides whose area is n?" - 
turns out to be cquivalcnt to the qucstiori "Is the rank of the elliptic cmve 
y2 = x3 - n2x greater than zcro'?" The case n = 6 and the 3 - 4 - 5 right 
triangle lead to the point P in Example 2, which is a point of infinite order 
on the curve y2 = 5' - 3Fx. For Inon: i~ifor~~intioo on this subject, we again 
refer the reader to the references at the end of the section. 

Points of finite order. The order N of a point P on an elliptic cilrve is 
the smallest positive integer such that N P  = 0; of course, such a finite N 
need not exist. It is often of interest to find points P of finite order on an 
elliptic curve, especially for elliptic curves defined over Q. 

Example 3. Find the order of P = (2,3) on y2 = x3 + 1. 
Solution. Using (5), we find that 2 P  = (0, I ) ,  and using (5) again gives 

4 P  = 2(2P) = (0, -1). Thus, 4 P  = -2P, and so 6P = 0. Thus, the order 
of P is 2, 3 or 6. But 2 P  = ( 0 , l )  # 0 ,  and if P had order 3, then 4 P  = P, 
which is not true. Thus, P has order 6. 
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Elliptic curves over a finite field. For the rest of this section we shall 
let K be the finite field F, of q = pr elements. Let E be an elliptic curve 
defined over F,. If p = 2 or 3, then E is given by an equation of the form 
(2) or (3), respectively. 

It is easy to see that an elliptic curve can have at  most 2q + 1 F,-points, 
i.e., the point a t  infinity along with 2q pairs (x, y) with x, y E F, which 
satisfy (1) (or (2) or (3) if p = 2 or 3). Namely, for each of the q possible 
x's there are at  most 2 y's which satisfy (1). 

But since only half of the elements of FG have square roots, one would 
expect (if x3 + ax + b were random elements of the field) that there would 
be only about half that number of F,-points. More precisely, let x be the 
quadratic character of F,. This is the map which takes x E F; to f 1 
depending on whether or not x has a square root in F, (and we take ~ ( 0 )  = 
0). For example, if q = p is a prime, then ~ ( x )  = ( : ) is the Legendre symbol 
(see 5 11.2). Thus, in all cases the number of solutions y E Fq to the equation 
y2 = u is equal to 1 + ~ ( u ) ,  and SO the number of solutions to (1) (counting 
the point at  infinity) is 

We would expect that x(x3 +ax+b) would be equally likely to be +1 and - 1. 
Taking the sum is much like a "random walk": toss a coin q times, moving 
one step forward for heads, one step backward for tails. In probability theory 
one computes that the net distance traveled after q tosses is of the order of 
Ji;. The sum C x(x3 + ax  + b) behaves a little like a random walk. More 
precisely, one finds that this sum is bounded by 2&. This result is Hasse's 
Theorem; for a proof, see 5 V.l of Silverman's book on elliptic curves cited 
in the references. 

Hasse's Theorem. Let N be the number of F,-points on an elliptic 
curve defined over F,. Then 

In addition to the number N of elements on an elliptic curve defined 
over F,, we might want to know the actual structure of the abelian group. 
This abelian group is not necessarily cyclic, but it can be shown that it 
is always a product of two cyclic groups. This means that it is isomorphic 
to a product of pprimary groups of the form Z/paZ x z/#z, where the 
product is taken over primes dividing N (here cu 2 1, P 2 0). By the type of 
the abelian group of F,-points on E, we mean a listing (. . . ,pa, $, . . 
of the orders of the cyclic pprimary factors (we omit # when P = 0). It is 
not always easy to find the type. 

Example 4. Find the type of y2 = x3 - x over F71. 
Solution. We first find the number of points N. In (6) we notice 

that in the sum the term for x and the term for -x cancel, because 
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x ( ( - x ) ~  - (-x)) = x(- l)x(x3 - x), and x(- 1) = - 1 because 71 r 3 mod 4. 
Thus, N = q + 1 = 72. Notice that there are exactly four points of or- 
der 2 (including the identity 0), because t,hey correspond to the roots of 
x3 - x = x(x - 1)(x + 1) (see Exercise 4(a) below). This means that the 
2-primary part of the group has type (4,2), a~ id  so the type of the group is ei- 
ther (4,2,3,3) or else (4,2,9), depending on whether thcre are 9 or 3 points 
of order 3, respectively. So it remains to determine whether or not there 
can be 9 points of order 3. Note that for any P # 0 the equation 3 P  = 0 
is equivalent to 2 P  = f P, i.e., to the condition that the x-coordinates of P 
and 2 P  be the same. By (5), this means that ((3x2 - 1 ) /2y )~  - 22 = x, i.e., 
(3x2 - 1)2 = 12xy2 = 12x4 - 12x2. Simplifying, we obtain 3x4 - 6x2 - 1 = 0. 
There are at  most 4 roots to this equation in FT1. If thcre are four roots, 
then each root can give at most 2 points (by taking y = f d G  if x3 - z 
has a square root modulo 71), and so we may in this way obtain 9 points 
of order 3 (including the identity 0 at infinity). Otherwise, thcre must be 
fewer than 9 points of order 3 (and hence exactly 3 points of order 3). But 
if the root x of the quartic polynomial has x3 - x a square modulo 71, 
then the root -x of the quartic has ( - x ) ~  - (-2) = -(x3 - x) a nonsquare 
modulo 71. Thus, we cannot get 9 points of order 3, and so the type of the 
group is (4,2,9). 

Extensions of finite fields, and the Weil conjectures. If an elliptic curve 
E is defined over F,, then it is also defirled over Fqr for r = 1,2, . . ., and so 
it is meaningful to consider the Fqr-points, i.c., to look at sol~~tions of (1) 
over extension fields. If we start out with F, as the field over which E is 
defined, we let Nr denote the number of Fqr-poitits on E. (Thus, N1 = N 
is the number of points with coordinates in our "ground field" F,.) 

From the nu~nbers Nr one for~ris the "gonerating series" Z(T;  EIF,), 
which is the formal power series in Q[[T]]  defined by setting 

in which T is an indeterminate, the notation EIF,  designates the elliptic 
curve and the field we're taking as our gro~irid field, and the sum on the 
right is over all r = 1'2,. . . . It can be shown that the series on the right 
(obtained by taking the infinite product of the exponential power series 
eNrTr/") actually has positive integer coefficients. This power series is called 
the zeta-function of the elliptic curve (over F,), and is a very important 
object associated with E .  

The "Weil conjectures" (now a t,hcorcni of P. Deligne) say in a much 
more general context (algebraic varieties of any dimension) that the zeta- 
function has a very special form. In the caw of an elliptic curve E/Fq \Veil 
proved the following. 

Weil conjectures [theorem] for an elliptic curve. The zeta-function is 
a rational function of T having the form 
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where only the integer a depends on the particular elliptic curve E .  The 
value a is related to N = Nl as follows: N = q + 1 - a. In addition, the 
discriminant of the quadmtic polynomial in the numemtor is negative (i.e., 
a2 < 49, which is Hasse's Theorem) and so the quadmtic has two complex 
wnjugate mots a ,  fl both of absolute value Jii. (More precisely, l/a and 
I/@ are the mots, and a, fl are the "recipmcal mots.") 

For a proof, see 5 V.2 of Silverman's book. 
Remark. If we write the numerator of (8) in the form (1 - a T )  (1 - PT) 

and then take the derivative of the logarithm of both sides (replacing the 
left side by its definition (7)), we soon see that the formula (8) is equivalent 
to writing the sequence of relations 

Since a and p, along with a ,  are determined once you know N = Nl, 
this means that the number of points over F, uniquely determines the 
number of points over any extension field. Thus, among other things, Weil's 
conjectures for elliptic curves are useful for determining the number of 
points over extension fields of large degree. 

Example 5. The zeta-function of the elliptic curve y2 + y = x3 over 
F2 is easily computed from the fact that there are three F2-points. It is 
(1 + 2 ~ ~ ) / ( 1  - T)(1 - 2T), i.e., the reciprocal roots of the numerator are 
f i a. This leads to  the formula 

if r is odd; 
= { - 2 - 2 ,  if r is even. (9) 

To conclude this section, we remark that there are many analogies 
between the group of Fq-points on an elliptic curve and the multiplicative 
group (F,)*. For example, they have approximately the same number of 
elements, by Hasse's Theorem. But the former construction of an abelian 
group has a major advantage that explains its usefulness in cryptography: 
for a single (large) q there are many different elliptic curves and many 
different N that one can choose from. Elliptic curves offer a rich source of 
'lnaturally occurring" finite abelian groups. We shall take advantage of this 
in the next three sections. 

Exercises 

1. If E is an elliptic curve defined over C whose equation (1) actually has 
coefficients a, b E R, then the points of E with real coordinates form 
a subgroup. What are the possible subgroups of the complex curve E 
(which as a group is isomorphic to the product of the circle group with 
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itself) which can occur as the group of real points? Give an example 
of each. 
How many points P of order n (i.e., nP = 0) are there on an elliptic 
curve defined over C? How about on an elliptic curve over R? 
Give an example of an elliptic curve over R which has exactly 2 points 
of order 2, and another example which has exactly 4 points of order 2. 
Let P be a point on an elliptic curve over R. Suppose that P is not 
the point a t  infinity. Give a geometric condition that is equivalent to 
P being a point of order (a) 2; (b) 3; (c) 4. 
Each of the following points has finite order on the given elliptic curve 
over Q. In each case, find the order of P. 
(a) P = (0,16) on y2 = x3 + 256. 
(b) P = (!j, i )  on y2 = x3 + f x .  
(c) P = (3,B) on y2 = x3 - 432 + 166. 
(d) P = (0,O) on y2 + y = x3 - x2 (which can be written in the form 
(1) by making the change of variables y --+ y - i ,  x ---+ x + Q). 
Derive addition formulas similar to (4)-(5) for elliptic curves in char- 
acteristic 2, 3 (see Equations (2)-(3)). 
Prove that there are q + 1 F,-points on the elliptic curve 
(a) y2 = x3 - x when q = 3 mod 4; 
(b) y2 = x3 - 1 when q = 2 mod 3 (where q is odd); 
(c) y2 + y = x3 when q 2 mod 3 (q may be even here). 
For all odd prime powers q = pr up to 27 find the order and type of the 
group of Fq-points on the elliptic curves y2 = x3 - x and y2 = x3 - 1 
(in the latter case when p # 3). In some cases you will have to check 
how many points have order 3 or 4. 
Let q = 2: and let the elliptic curve E over F, have equation y2 + y = 
x3. 
(a) Express the coordinates of - P and 2 P  in terms of the coordinates 
of P. 
(b) If q = 16, show that every P E E is a point of order 3. 
(c) Show that any point of E with coordinates in FI6 actually has 
coordinates in Fq.  Then use Hasse's Theorem with q = 4 and 16 to 
determine the number of points on the curve. 
Compute the zeta-functions of the two curves in Exercise 8 over Fg for 
p = 5,7,11,13. 
Compute the zeta function of the curve y2 + y = x3 - x + 1 over F, 
for p = 2 and 3. (First show that Nl = 1 in both cases.) Letting 
N(x) = x . 5 denote the norm of a complex number, find a simple 
formula for Nr. 
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2 Elliptic curve cryptosystems 

In 5 IV.3 we saw how the finite abelian group F; - the multiplicative group 
of a finite field - can be used to create public key cryptosystems. More 
precisely, it was the difficulty of solving the discrete logarithm problem in 
finite fields that led to the cryptosystems discussed in $ IV.3. The purpose 
of this section is to make analogous public key systems based on the finite 
abelian group of an elliptic curve E defined over F,. 

Before introducing the cryptosystems themselves, there are some pre- 
liminary matters that must be discussed. 

Multiples of points. The elliptic curve analogy of multiplying two ele- 
ments of F; is adding two points on E, where E is an elliptic curve defined 
over F,. Thus, the analog of raising to the k-th power in F; is multiplication 
of a point P E E by an integer k. Raising to the k-th power in a finite field 
can be accomplished by the repeated squaring method in O(1og k log3q) bit 
operations (see Proposition 11.1.9). Similarly, we shall show that the mul- 
tiple k P  E E can be found in O(log k log3q) bit operations by the method 
of repeated doubling. 

Example 1. To find l O O P  we write l O O P  = 2(2(P + 2(2(2(P + 2P))))), . 
and end up performing 6 doublings and 2 additions of points on the curve. 

Proposition VI.2.1. Suppose that an elliptic curve E is defined by a 
Weierstmss equation (equation ( I ) ,  (2) or (3) in the last section) over a 
finite field F,. Given P E E, the coordinates of k P  can be computed in 
O(1og k log3q) bit operations. 

Proof. Note that there are fewer than 20 computations in F, (multi- 
plicat ions, divisions, additions, or subtractions) involved in computing the 
coordinates of a sum of two points by means of equations (4)-(5) (or the 
analogous equations in Exercise 6 of $1). Thus, by Proposition 11.1.9, each 
such addition (or doubling) of points takes time 0(log3q). Since there are 
O(1og k) steps in the repeated doubling method (see the proof of Propo- 
sition 1.3.6), we conclude that the coordinates of kP can be calculated in 
O(1og k log3q) bit operations. 

Remarks. 1. The time estimate in Proposition VI.2.1 is not the best 
possible, especially in the case when our finite field has characteristic p = 2. 
But we shall be satisfied with the estimates that result from using the most 
obvious algorithms for arithmetic in finite fields. 

2. If we happen to know the number N of points on our elliptic curve E, 
and if k > N ,  then since N P  = 0 we can replace k by its least nonnegative 
residue modulo N before computing kP; in this case we can replace the 
time estimate by 0(log4q) (recall that N 5 q + 1 + 2 f i  = O(q)). There 
is an algorithm due to Ren6 Schoof which computes N in O(logsq) bit 
operations. 

Imbedding plaintexts. We shall want to encode our plaintexts as  points 
on some given elliptic curve E defined over a finite field F,. We want to 
do this in a simple systematic way, so that the plaintext m (which we 
may regard as an integer in some range) can readily be determined from 
knowledge of the coordinates of the corresponding point P,. Notice that 
this "encoding" is not the same thing as encryption. Later we shall discuss 

i ways to encrypt the plaintext points P,. But an authorized user of the 
I system must be able to recover m after deciphering the ciphertext point. 
4 There are two remarks that should be made here. In the first place, 1 there is no polynomial time (in 1099) deterministic algorithm known for 
I writing down a large number of points on an arbitrary elliptic curve E 

over F,. However, there are probabilistic algorithms for which the chance 
of failure is very small, as we shall see below. In the second place, it is not 
enough to generate random points of E: in order to encode a large number 
of possible messages m, we need a systematic way to generate points that 
are related to m in some way, for example, the x-coordinate has a simple 
relationship to the integer m. 

Here is one possible probabilistic method to imbed plaintexts as points 

j on an elliptic curve E defined over F,, where q = p' is assumed to be large 
(and odd; see Exercise 8 below for q = 2'). Let K be a large enough integer 

1 so that we are satisfied with a failure probability of 1 out of 2n when we 
attempt to imbed a plaintext message unit m; in practice K = 30 or a t  1 worse n = 50 should suffice. We suppose that our message units m are ! 

t integers 0 5 m < M. We also suppose that our finite field is chosen so that 
q > MK. We write the integers from 1 to M K  in the form mrc, + j, where 
1 5 j 5 K, and we set up a 1-to-1 correspondence between such integers 
and a set of elements of F,. For example, we write such an integer as an 
r-digit integer to the base p, and take the r digits, considered as elements 
of Z/pZ, as the coefficients of a polynomial of degree r - 1 corresponding to 
an element of F,. That is, the integer ( U ~ - ~ U , - ~ .  . .also), corresponds to 
the polynomial ajXj, which, considered modulo some fixed degree-r 
irreducible polynomial over Fp, gives an element of F,. 

Thus, given m, for each j = 1,2,.  . . , K we obtain an element x of F, 
corresponding to mK + j. For such an x, we compute the right side of the 
equation 

Y2 = f (x) = x3 + (L3. + b, 

and try to find a square root of f (x) using the method explained at the end 
of $ 11.2. (Although the algorithm was given for the prime field F,, it carries 
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over word for word to any finite field F,. In order to use it we must have 
a nonsquare g in the field, which can easily be found by a probabilistic 
algorithm.) If we find a y such that y2 = f(x), we take P, = (x, y). If 
it turns out that f(x) is a nonsquare, then we increment j by 1 and try 
again with the corresponding x. Provided we find an x for which f (x) is a 
square before j gets bigger than n, we can recover m from the point (x, y) 
by the formula m = [ ( i  - l)/n], where i is the integer corresponding to 
x under the 1-to-1 correspondence between integers and elements of F,. 
Since f (x) is a square for approximately 50% of all x, there is only about 
a 2-" probability that this method will fail to produce a point P, whose 
x-coordinate corresponds to  an integer Z between m ~ + l  and rnrc+n. (More 
precisely, the probability that f (x) is a square is essentially equal to N/2q; 
but N/2q is very close to 112.) 

Discrete log on E. In $ IV.3 we discussed public key cryptosystems 
based on the discrete logarithm problem in the multiplicative group of a 
finite field. Now we do the same in the group (under addition of points) of 
an elliptic curve E defined over a finite field F,. 

Definition. If E is an elliptic curve over F, and B is a point of E, then 
the discrete log problem on E (to the base B) is the problem, given a point 
P E E, of finding an integer x E Z such that XB = P if such an integer x 
exists. 

It is likely that the discrete log problem on elliptic curves will prove 
to be more intractible than the discrete log problem in finite fields. The 
strongest techniques developed for use in finite fields do not seem to work 
on elliptic curves. This is especially true in the case of characteristic 2. 
As explained in Odlyzko's survey article cited in the references, special 
methods for solving the discrete log problem in F;, make it relatively easy 
to compute discrete logs, and hence break the cryptosystems discussed in 
5 IV.3, unless r is chosen to be rather large. It seems that the analogous 
systems using elliptic curves defined over Far (see below) will be secure with 
significantly smaller values of r. Since there are practical reasons (relating 
to both computer hardware and software) for preferring to do arithmetic 
over the fields FZr, the public key cryptosystems discussed below may turn 
out to be more convenient in applications than the systems based on the 
discrete log problem in F;. 

Until 1990, the only discrete log algorithms known for an elliptic curve 
were the ones that work in any group, irrespective of any particular struc- 
ture. These are exponential time algorithms, provided that the order of the 
group is divisible by a large prime factor. But then Menezes, Okamoto, and 
Vanstone found a new approach to the discrete log problem on an elliptic 
curve E defined over F,. Namely, they used the Weil pairing (see 5111.8 of 
Silverman's textbook cited in the references to $1) to imbed the group E 
into the multiplicative group of some extension field F , k .  This imbedding 
reduces the discrete log problem on E to the discrete log problem in Fi,. 

However, in order for the Weil pairing reduction to help, it is essential 

for the extension degree k to be small. Essentially the only elliptic curves for 
which k is small are the so-called "supersingular" elliptic curves, the most 
familiar examples of which are curves of t'hc form y2 = x3 + n z  when the 
characteristic p of F, is ZE -1 (mod 4), and curves of the form y2 = x3 + b 
when p r -1 (mod 3). The vast majority of elliptic curves, however, are 
nonsupersingular. For them, the reduction almost never leads to a subex- 
ponential algorithm (see my paper in Journal of Cryptology cited in the 
references). 

Thus, a key advantage of elliptic curve cryptosystems is that no subex- 
ponential algorithm is known that breaks the system, provided that we 
avoid supersingular curves and also curves whose order has no large prime 
factor. 

We now describe analogs of the public key systems in $ IV.3 based on 
the discrete log problem on an elliptic curve E defined over a finite field 

F,. 

Analog of the Dif6e-Helman key exchange. Suppose that A'ida and 
Bernardo want to agree upon a key which will later be used in conjunction 
with a classical cryptosystem. They first publicly choose a finite field F, 
and an elliptic curve E defined over it. Their key will be constructed from 
a random point P on the elliptic curve. For example, if they have a random 
point P E E, then taking the x-coordinate of P gives a random element of 
F,, which can then be converted to a random r-digit base-p integer (where 
q = pr) which serves as the key to their classical cryptosystem. (Here we're 
using the word "random" in an imprecise sense; all we mean is that its choice 
is arbitrary and unpredictable in a large set of admissible keys.) Their task 
is to choose the point P in such a way that all of their communication with 
one another is public and yet no one other than the two of them knows 
what P is. 

A'ida and Bernardo first publicly choose a point B E E to serve as 
their "base." B plays the role of the generator g in the finitefield Diffie- 
Hellman system. However, we do not want to insist that B be a generator 
of the group of points on E. In fact, the latter group may fail to be cyclic. 
Even if it is cyclic, we want to avoid the effort of verifying that B is a 
generator (or even determining the number N of points, which we do not 
need to know in what follows). We would like the subgroup generated by B 
to be large, preferably of the same order of size as E itself. This question 
will be discussed later. For now, let us snpposc that B is a fixed publicly 
known point on E whose order is very large (either N or a large divisor of 

N). 
To generate a key, first Aida chooses a random integer a of order of 

magnitude q (which is approximately the same as N), which she keeps 
secret. She computes aB E E, which she makes public. Bernardo does the 
same: he chooses a random b and makes public bB E E. The secret key they 
use is then P = abB E E. Both users can compute this key. For example, 
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A'ida knows bB (which is public knowledge) and her own secret a. However, 
a third party knows only a B  and bB. Without solving the discrete logarithm 
problem - finding a knowing B and a B  (or finding b knowing B and bB) 
- there seems to be no way to compute abB knowing only a B  and bB. 

Analog of Massey-Omura. As in the finitefield situation, this is a 
public key cryptosystem for transmitting message units m, which we now 
suppose have been imbedded as points Pm on some fixed (and publicly 
known) elliptic curve E over F, (where q is large). We also suppose that the 
number N of points on E has been computed (and is also publicly known). 
Each user of the system secretly selects a random integer e between 1 and 
N such that g.c.d.(e, N)  = 1 and, using the Euclidean algorithm, computes 
its inverse d = e-' mod N ,  i.e., an integer d such that & 1 mod N. If 
Alice wants to send the message Pm to Bob, first she sends him the point 
eA Pm (where the subsctipt A denotes the user Alice). This means nothing 
to Bob, who, knowing neither dA nor eA, cannot recover Pm. But, without 
attempting to make sense of this point, he multiplies it by his eB, and sends 
eBeAPm back to  Alice. The third step is for Alice to unravel the message 
part of the way by multiplying the point eBeAPm by dA. Since NPm = 0 
and dAeA = 1 mod N ,  this gives the point eBPm, which Alice returns to 
Bob, who can read the message by multiplying the point eBPm by dB. 

Notice that an eavesdropper would know eA P,, eBeA Pm and eB Pm. 
If (s)he could solve the discrete log problem on E, (s)he could determine 
e~ from the first two points and then compute dB = e,' mod N and 
P m  = dB(eBPm). 

Analog of ElGamal. This is another public key cryptosystem for trans- 
mitting messages Pm. As in the key exchange system above, we start with 
a fixed publicly known finite field F,, elliptic curve E defined over it, and 
base point B E E. (We do not need to know the number of points N.) Each 
user chooses a random integer a ,  which is kept secret, and computes and 
publishes the point aB.  

To send a message Pm to Bjorn, Aniuta chooses a random integer k 
and sends the pair of points (kB, Pm + k(aBB)) (where a B B  is Bjorn's 
public key). To read the message, Bjorn multiplies the first point in the 
pair by his secret a~ and subtracts the result from the second point: 

Thus, Aniuta sends a disguised P, along with a "clue" kB  which is enough 
to remove the "mask" kaBB if one knows the secret integer aB. An eaves- 
dropper who can solve the discrete log problem on E can, of course, deter- 
mine aB from the publicly known information B and aBB. 

The choice of curve and point. There are various ways of choosing an 
elliptic curve and (in the Diffie-Hellman and ElGamal set-up) a point B 
on it. 

Random selection of (E, B). Once we choose our large finite field F,, 
we can choose both E and B = (x, y) E: E at  the same time as follows. (We 

shall assume that the characteristic is > 3. so that elliptic curves are given 
by equation (1) in $1; one makes the obvious modifications if q = 2' or 3'.) 
First let x, y, a be three random ele~iicnts of Fq. Thrn set h = y2 - ( .?+ax).  
Check that the cubic x3 + ax + b does not have multiple roots, which is 
equivalent to: 4a3 + 27b2 # 0. (If this coritlition is not met, make another 
random choice of x, y, a.) Set B = (x, 9 ) .  Then B is a point on the elliptic 
curve y2 = x3 + ax + b. 

If you need to know the number N of points, there are several tech- 
niques now available for computing N. The first polynomial time algorithm 
to compute # E  was discovered by Re116 Sclmof. Schoof's algorithm is even 
deterministic. It is based on the idea of finding the value of # E  modulo I 
for all primes 1 less than a certain bound. This is done by examining the 
action of the "F'robenius" (the p t h  power map) on points of order 1. 

In Schoof's original paper the hound for running tirne way essentially 
0(log8 q), which is polynomial but quite wiplcasant. At first it looked like 
the algorithm was not practical. However, since then many people have 
worked on speeding up Schoof's algorithm (V. Miller, N. Elkies, .J. Buch- 
mann, V. Muller, A. Menezes, L. Charlap, 11. Coley, arid D. Robbins). 111 
addition, A. 0. L. Atkins has developed a somewhat different method that, 
while not guaranteed to work in poly~iornial tirne, functions extremely well 
in practice. As a result of all of these efforts it has become feasible to com- 
pute the order of an arbitrary elliptic curve over F, if q is, say, a 50-digit 
or even a 100-digit prime power. Some of thc: methods for computing the 
number of points on an elliptic curve are discussed in the references listed 
at  the end of the section. 

It should also be remarked that, even though one does not have to 
know N in order to implement the DiRe-EIel~rian or the ElGar~lal system, 
in practice one wants to be confident in its security, which depends upon 
N having a large prime factor. If N is a product of small primes, then 
the method of Pohlig-Silver Hellman (see fjIV.3) can be used to solve the 
discrete log problem. Note that the Polilig Silver-Hellman method carries 
over to the discrete log problem in any finite ahclian group (~lnlikr the 
index -calculus algorith~n also discussed ill !JV.3, which depends upon the 
specific nature of F;). Thus, one has to kriow that N is not a product of 
small primes, arttl it is riot likcly that yo11 will know this unlcwi you have 
the actual valuc of N. 

Reducing a global (E, B) modulo p. \.Ve now me~ltion a secorld way 
to determine a pair consisting of an elliptic- curve and a point on it. \.IvTe 
first choose once allti for all a LLgI~)I);ll" dlipt i c *  ( w v r  and a point of irlfi~lito 
order or1 it. Thus, lct E be an dliptic curvc tlcfincd over the field of rational 
numbers (or, more generally, we codd use an c4iptic curve defined ovcr a 
number fkld), arid Ict B be a j~oirit of infi~litcl orclor 011 E. 

Example 2. It tmns out that tllc poi11t 11 = (0,O) is a poirlt of infinite 
order on the elliptic curve E : y2 + ?/ = .T:' - x, and in fact gcwcwt~s the 
entire group of rational points on E. 
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Example 3. It turns out that the point B = (0,O) is a point of infinite 
order on E : y2 + y = x3 + x2, and generates the entire group of rational 
points. 

Next, we choose a large prime p (or, if our elliptic curve is defined over 
an extension field K of Q,  then we choose a prime ideal of K) and consider 
the reduction of E and B modulo p. More precisely, for all p except for 
some small primes the coefficients in the equation for E have no p in their 
denominators, so we may consider the coefficients in this equation modulo 
p. If we make a change of variables taking the resulting equation over Fp 
to the form Y2 = x3 + ax + b, the cubic on the right has no multiple roots 
(except in the case of a few small primes p), and so gives an elliptic curve 
(which we shall denote E mod p) over F p .  The coordinates of B will also 
reduce modulo p to give a point (which we shall denote B mod p) on the 
elliptic curve E mod p. 

When we use this second method, we fix E and B once and for all, 
and then get many different possibilities by varying the prime p. 

Order of the point B. What are the chances that a "random" point B 
on a "random" elliptic curve is a generator? Or, in the case of our second 
method of selecting (E, B), what are the chances, as p varies, that the point 
B reduces modulo p to a generator of E mod p? This question is closely 
analogous to the following question concerning the multiplicative groups of 
finite fields: Given an integer b, what are the chances, as p varies, that b is 
a generator of F;? The question has been studied both in the finitefield 
and elliptic-curve situations. For further discussion, see the paper by Gupta 
and Murty cited in the references. 

As mentioned before, for the security of the above cryptosystems it is 
not really necessary for B to be a generator. What is needed is for the cyclic 
subgroup generated by B to be a group in which the discrete log problem 
is intractible. This will be the case - i.e., all known methods for solving 
the discrete logarithm problem in an arbitrary abelian group will be very 
slow - provided that the order of B is divisible by a very large prime, say, 
having order of magnitude almost a3 large as N. 

One way to guarantee that our choice of B is suitable - and, in fact, 
that B generates the elliptic curve - is to choose our elliptic curve and 
finite field so that the number N of points is itself a prime number. If we do 
that, then every point B # 0 will be a generator. Thus, if we use the first 
method described above, then for a fixed F, we might keep choosing pairs 
(E l  B) until we find one for which the number of points on E is a prime 
number (as determined by one of the primality tests discussed in 5 V.l). If 
we use the second method, then for a fixed global elliptic curve E over Q we 
keep choosing primes p until we find a prime for which the number of points 
on E mod p is a prime nurnber. How long are we likely to have to wait? 
This question is analogous to the following question about the groups FG: 
is (p- 1)/2 prime, i.e., is any element # f 1 either a generator or the square 
of a generator (see Exercise 13 of 5 II.l)? Neither the elliptic curve nor the 

finite field question has been definitively arlswered, but it is conject~lred in 
both cases that the probability that a chosen p has the desired property is 
O ( l / h 7 ~ ) .  

Remark. In ordcr for E mod p t40 haw any cliance of heiug of prirnr 
order N for large p, E must be chosen so as to have trivial torsion, i . ~ . ,  to 
have no points except 0 of finite order. Otherwise, N will be divisible by 
the order of the torsion subgroup. 

Exercises 

Give a probabilistic algorithm for finrlirig a nonsquare in F,. 
Describe a polynomial time determinzstzc algorithm for imlmlding 
plaintexts m as points on an elliptic curve in the following cases: 
(a) E has equation y2 = x3 - x arid q =. 3 mod 4. 
(b) E has equation y 2  + y = x3 and q = 2 mod 3. 
Let E be the elliptic curve y2 + y = x3 - x defined over the field of 
p = 751 elements. (A change of varialhs of the form y' = y + 376 
will convert this equation to the form ( I )  of 51.) This curve contains 
N = 727 points. Suppose that the plaintext message units are the 
decimal digits 0--9 and the letters A--Z with numerical equivalents 
10--35, respectively. Take K = 20. 
(a) Use the method in the text to write the message "STOP007" as a 
sequence of seven points on tlic curve. 
(b) Translate the sequence of points (36 1, XU), (24 1,605), (20 1,380), 
(461,467), (581,395) into a reply rncssagc. 
Let E be an elliptic curve clcfirio(1 ovrr Q, ;nicl lot p i)r a largr pririie, in 
particular, largo enough so that retlucirig the equation y2 = x% ax + b 
modulo p gives an elliptic curvr over F,. Show that (a) if the cubic 
x3 + ax + b splits into linear factors ri10rl11lo p, tlien E mod p is not 
cyclic; (b) if this cubic has a root moc111lo p, then the n~~rribcr N of 
elements on E ~ T M J ~  p is CVCII. 
Let E be tlir elliptric curvr in Exnrriplr~ 5 of $1. Let q = 2: and let N,  
bc tlic nunit)cr of F2r-j)oi1its 011 1;:. 

(a) Show that N,. is never pri~nc for r > 1 .  
(b) Wlien 41r, find conditioris tliirt are (yivalcnt to N,  being divisible 
by an (r/4)-bit or (r/4 + 1 )-bit prime. 
Let E he an elliptic clirvt. rlcfil~(d ovvr F,, illid Irt N,  (I(w)tc tlir 
number of FpT-p~irlts on 13. 
(a) Prove that if p > 3, th(w N,  is rlovt>r prime for r > 1. 
(b) Give a cormterexamplr to part (a) rvlr(m p = 2 ;uid wlicu p = 3. 
(a) Find an olliptic rurvr E clcfirlctl ovor Fq wliic.n I i a s  only o w  Fa-  
point (the point at  infinity 0). 
(b) Show that the niimbrr of FA. -points or1 tlir ci~rvr i n  pari (a) is t,hc 
square of the Merscrlne riii~i~l~cr 2' - 1. 
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(c) Find a very simple formula for the double of an F4r-point on this 
elliptic curve. 
(d) Prove that, if 2' - 1 is a Mersenne prime, then every FsV-point 
(except 0 )  has exact order 2' - 1. 
Let r be odd, and let K denote the field F2r. For z E K let g(z) denote 

r-1)/2 2 2 ~  z , and let tr(z) (called the "trace") denote z2'. 
(a) Prove that tr(z) E F2;  tr(zl + 22) = tr(zl) + tr(z2); tr(1) = 1; and 
g(z) + g ( ~ ) ~  =,z + tr(z). 
(b) Prove that tr(z) = 0 for exactly half of the elements of K and 
tr(z) = 1 for the other half. 
(c) Describe a probabilistic algorithm for generating F2r-points on the 
elliptic curve y2 + y = x3 + ax  + b. 
Let E be the elliptic curve y2 = x3 + ax + b with a,  b E Z. Let P E E. 
Let p > 3 denote a prime that does not divide either 4a3 + 27b2 or the 
denominator of the x- or y-coordinate of P .  Show that the order of 
P mod p on the elliptic curve E mod p is the smallest positive integer 
k such that either (1) kP = 0 on E; or (2) p divides the denominator 
of the coordinates of k P. 
Let E be the elliptic curve y2 + y = x3 - x defined over Q, and let 
P = (0,O). By computing 2 j P  for j = 1,2,. . ., find an example of a 
prime p such that E mod p is not generated by P mod p. (Note: it can 
be shown that the point P does generate the group of rational points 
,- - \  or fi.1 

11. Use the elliptic curve analog of ElGamal to send the message in Ex- 
ercise 3(a) with E and p as in Exercise 3 and B = (0,O). Suppose 
that your correspondent's public key is the point (201,380) and your 
sequence of random k's (one used to send each message unit) is 386, 
209, 118, 589, 312, 483, 335. What sequence of 7 pairs of points do you 
send? 

Note that in this exercise we used a rather small value of p; a 
more realistic example of the sort one would encounter in practice 
would require working with numbers of several dozen decimal digits. 
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3 Elliptic curve primality test 

j The elliptic curve primality test, due to S. Goldwasser, J. Kilian and (in 
4 

i 
1 another variant) A. 0. L. Atkin, is an analog of the following priniality test 
I of Pocklingtori based on the group ( Z / n . Z ) * :  
j Proposition 6.3.1. Let n be a posztive integer. Suppose that there is a 

prime q dividing n - 1 which is greater than \/;I - 1. If there exists an integer 
a such that (i) an-' = 1 (mod n); and (ii) g.c.d.(a("-')/q - 1, n)  = 1, then 
n is prime. 

Proof. If n is not prime, then there is a prime p 5 fi which divides n. 
Since q > p - 1, it follows that g.c.d. (q, p - 1) = 1, and hence there exists 
an integer u such that up = 1 (mod p - 1). 7'1icn a("-')/q =. n"q(n-l)lq = 
aU("-') = 1 (mod p) by condition (i), and this contradicts condition (ii). 

Remarks. This is an excellent test provitlrtl that n - 1 is tlivisible by 
a prime q > fi - 1, and we have been aldr to fi~id q (a~itl prove that it's 
prime). Otherwise, we're out of luck. (This is riot qiiit,~ tm~e - thiw's a 
more general version which can be used wl~c~nover we have a large divisor 
of n - 1 in fully factored form, see Excrcisc 2 Ixdow.) 
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Note that this primality test is probabilistic only in the sense that a 
randomly chosen a may or may not satisfy condition (ii) (of course, if it 
fails to satisfy (i), then n is not prime). But once such an a is found (and 
a = 2 will usually work), then the test shows that n is definitely a prime. 
Unlike the primality tests in sV.1 (the Solovay-Strassen and Miller-Rabin 
tests), the conclusion of Pocklington's test is a certainty: n is a prime, not 
a "probable prime." 

The elliptic curve primality test is based on an analogous proposition, 
where we suppose that we have an equation y2 = x3 + ax  + b considered 
modulo n. That is, a and b are integers modulo n, and we let E denote 
the set of all integers x,  y E Z/nZ which satisfy the equation, along with a 
symbol 0 ,  which we call the "point at  infinity." If n is prime (as is almost 
certainly the case - since in practice we are only considering numbers n 
which have already passed some of the probable prime tests in $V.l) ,  then 
E is an elliptic curve with identity element 0. 

Before stating the analog of Proposition 6.3.1 for El we note that, even 
without knowing that n is prime, we can apply the formulas in $1 to add 
elements of E. One of three things happens when we add two points (or 
double a point): (1) we get a well-defined point, (2) if the points are of 
the form (x, y) and (x, -y) modulo n, then we get the point a t  infinity, (3) 
the formulas are undefined, because we have a denominator which is not 
invertible modulo n. But case (3) means that n is composite, and we can 
find a nontrivial divisor by taking the g.c.d. of n with the denominator. 
So without loss of gerierality in what follows we may assume that case (3) 
never occurs. 

It can be shown that for P an element of E modulo n, even if n is 
coniposite the answer our algorithm gives for mP does not depend on the 
particular manner in which we successively add and double points. (This 
is not a priori obvious.) However, this fact will not be needed below. It 
suffices to iet mP denote any point which is obtained working modulo n 
with the formulas in $1. 

Just as we can add points modulo n without knowing that n is prime, 
similarly, given an algorithm for computing the number of points on an 
elliptic curve (such as Schoof's method), we can apply it to our set E 
modulo n. We will either obtain some number m - which if n is prime 
is guaranteed to be the number of points on the elliptic curve E - or 
else encounter an undefined expression whose denominator has a nontrivial 
common factor with n. As in the case of the addition of points, without 
loss of generality we may assume that the latter never happens. 

Such an m will play the role of n - 1 in Proposition 6.3.1 - notice 
that n - 1 is the order of (Z/nZ)* if n is prime. 

We are now ready to state the elliptic curve analog of Pocklington's 
criterion. 

Proposition 6.3.2. Let n be a positive integer. Let E be the set given 
by  an equation y2 = x3 + ax + b modulo n, as above. Let m be an integer. 

2 Suppose that there is a prime q dividing m trhich is greater than (71"" + 1) . 
If there exists a point P of E such that (i) 711P = 0; and (ii) (m/q)P  is 
defined and not equal to 0 ,  then n is prime. 

Proof (compare with the proof of Proposition 6.3.1). If 72 is not prirne, 
then there is a prime p 5 f i  which divitlcs 11. Let E' he the elliptic curve 
given by the same equation as E but considered niodulo p, and let rn' be 
the order of the group E'. By Hasse's Theortill, we have nz' 5 p+ 1 +2@ = 

2 
( +  1 5 ( 7 2  + 1 < q, and hence 9.c.d. ( q ,  m') = 1, and t h e  exists an 
integer u such that uq = 1 (mod m'). Let P' E E' be tlie point. P considered 
modulo p. Then in El we haw (m/q)P1 = uq(m/q)P1 = umP1 = 0 ,  by 
(i), since mP' is obtained usirig tlie same procedure as mP,  only working 
modulo pin rather than modulo n .  But this coritradicts (ii), since if (m/q)P 
is defined and # 0 modulo n, then the same procedure working modulo p 
rather than modulo n will give (m/q)P1 # 0. This completes the proof. 

This proposition leads to an algorithril for proving that an integer n 
(which we may suppose is already known to be a "probable prime") is 
definitely prime. We proceed as follows. We randomly select three integers 
a,  x, y modulo n and set b = y2 - x3 - ax (mod n). Then P = (a, y) is 
an element of E, where E is given by y2 = x3 + ax + b. We use Sclioof's 
algorithm (or another method for counting the riuniber of points on an 
elliptic curve) to find a ~iurnber rrt which, if 71 is prime, is qua1  to the 
number of points on thc elliptic cllrvc. E ovor F,,. If we cannot writc rn in 
the form m = kq, whcre k > 2 is a srriall iritcyp and q is a "probablc prirne" 
(i.e., it passes a test as in fjV.1), then wc chooscl allother random tripk n, T, y 
and start again. Suppose we finally obtai~i it11 clliptic curvc for which rn has 
the desired form. Thcn we us(. tlie forrnuli~s in sV1.1 (working rriodulo 7,) to 
compute m P  and kP.  If we ever obtain an undefined expression - either 
in computing a multiple of P or in applying Schoof's algorithm - -  then 
we immediately find a nontrivial factor of 11. We may assunic that this 
doesn't happcn. If m P  # 0, then wc kriow that 72 is co~riposit~ ( I ~ e ~ i t ~ ~ s e  
if n were prirne, then tlie group E would have order m, and ally elerrlent 
of E would be killed by multiplication by rrt). If k P  = 0 (which is highly 
unlikely), we are out of luck, and must start again with another triple. But 
if m P  = 0 and k P  # 0, tlim by Proposition 6.3.2 we know that 72 is 
prime, provided that the largc factor q of rrt is rcally a prirne (we only know 
it to be a "probable prime"). This reduces tlie prohlem to proving prirnality 
of q, which has magnitude at rnost about 7112. We then start over with n 
replaced by q. Thus, we obtain a recursive procedure with t repctitioris of 
the primality test, whcrc t is 110 more than i~l)o~i t  log2 n. \Yhcn we're done, 
we have obtained a nurnber qt whidi WP kliow to be prime, from which 
it follows that the prcviolis ql - 1  was rcally a priri~e (not just a "probable 
prime"), from which it follows that the sarrio is truc of ql-2, anti so on. until 
ql = q, and finally n itself is truly a prirric. 'Tliis concluclcs the description 
of the elliptic curve prirnality test. 
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There are two difficulties with this test, one practical and the other 
theoretical. In the first place, although Schoof's algorithm takes time poly- 
nomial in log n, in practice it is quite cumbersome. Some progress has been 
made recently in supplementing and streamlining it, but even so it is rather 
unpleasant to have to count the number of points on a large number of E 
until we finally find one for which m has the desired form m = kg. In order 
to deal with this problem, A. 0. I,. Atkin developed a variant of the elliptic 
curve pri~i~ality test using carefully coristructed elliptic curves with complex 
multiplication, for which it is much easier to compute the number of points 
on their reduction modulo n. For more information on Atkin's method, see 
the article by Lenstra and Lenstra in the references below. 

The second difficulty is theoretical. In order to find an elliptic curve 
E over Fn (assuming that n is prime) whose number of points is "almost 
prime" (i.e., of the form m = kg for k small and q prime), we have to know 
something about the distribution of primes (rather, of "near primes") in the 
interval from p+ 1 - 2 f i  to p+ 1 + 2 f i  which, by Hasse's Theorem, is known 
to contain m. Because the length of this interval is relatively small, there is 
no theorem which guarantees that we have a high probability of finding such 
an E after only polynomially many tries (polynomial in log n). However, 
there is a very plausible conjecture which would guarantee this, and for 
practical purposes there should be no problem. But if one wants a provably 
polynomial time probabilistic algorithm, one has to work much harder: 
such a primality test was developed by Adleman and Huang using tww 
dimensional abelian varieties, which are a generalization of elliptic curves 
to 2 dimensions. However, their algorithm is completely impractical, as well 
as very complicated. 

Exercises 

(a) In Pocklington's primality test, if n is prime, n - 1 is divisible by a 
prime q as in Proposition 6.3.1, and a is chosen at  random in (Z/nZ)*, 
then what is the probability that a will satisfy the conditions of the 
proposition? 
(b) In the elliptic curve primality test, if n is prime, one has an elliptic 
curve of order divisible by a prime q as in Proposition 6.3.2, and P is 
a random point on it, then what is the probability that P will satisfy 
the conditions of the proposition? 
Generalize Pocklington's primality test to the case when one knows an 
integer s dividing n - 1 which is greater than fi - 1 and for which 
one knows all primes 91s. Condition (ii) is required to hold for all 91s. 
(a) (Phpin's primality test for Fermat numbers.) Prove that a Fermat 
number n = 22k + 1 is a prime if and only if there exists an integer a 

such that a22k-1 = -1 mod n. Prove that if n is a prime, then 50% of 
all a E (Z/nZ)* have this property. Also prove that a can always be 
chosen to be 3, or 5, or 7, if k > 1. 

(b) Prove that a Mersennc number n = 2" - 1 is a prime if and only if 
there exists a point P = (x, y) on the curve E : y2 -= x3 +x mod n such 
that (1) 2P-'P can be computed without encountering non-invertible 
denominators mod n, and (2) 2p-'P has y-coordinate zero. To do this, 
first prove that, if  n = 2P - 1 is pril~lo, th(w the group of points on 
E mod n is cyclic of order 2", a~ id  50% of all P E E mod n have 
the proj)crt,ic.s ( 1 )  (2) ahovc. Explain Ilow o~lc  can gcncri~to rantlorn 
poiuts 1' E E mod n. YOU  nay use itlly algorithm that assumes that 
bn-1 - = 1 mod n (i.e., that n is a pscudoprime to various bases b), 

because if you ever encounter a b for which this fails, your test ends 
with the conclusion that n must be composite. 

Note that this is a probabilistic prirnality test in the sense that, if 
n is a prime, there is no guarantee of when a suitable P will turn up. 
However, once such a P is found, then the test ensures that n must 
be prirne. In this respect it is different from the pseudoprime tests in 
3 V.1. For a generalization which can test primality of any odd n, see 
W. Bosma's paper cited below. 
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I tographers is the recent i~igc~iio~rs rwo of rllipf ic curves t)y H. W. Lenstra to 
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obtain a new factorization method that in many respects is better than the 
earlier known ones. The improvement in efficiency is not significant enough 
in practice to pose a threat to the security of cryptosystems based on the 
assumed intractability of factoring (its time estimate has the same form 
tliat we encountered in 5 V.3); nevertheless, the discovery of an improve- 
ment using an unexpected new device serves as a warning that one should 
never be too complacent about the supposed imperviousness of the factor- 
ing problem to dramatic breakthroughs. The purpose of this final section 
is to describe Lenstra's method. 

Before proceeding to Lenstra's elliptic curve factorization algorithm, 
we give a classical factoring technique which is analogous to Lenstra's 
method. 

Pollard's p - 1 method. Suppose that we want to factor the composite 
number n, and p is some (as yet unknown) prime factor of n. If p happens to 
have the property that p - 1 has no large prime divisor, then the following 
method is virtually certain to find p. 

The algorithm proceeds as follows: 
Choose an integer k that is a multiple of all or most integers less than 
some bound B. For example, k might be B!, or it might be the least 
common multiple of all integers 5 B. 
Choose an integer a between 2 and n - 2. For example, a could equal 
2, or 3, or a randomly chosen integer. 
Compute ak mod n by the repeated squaring method. 
Compute d = g.c.d.(ak - 1, n)  using the Euclidean algorithm and the 
residue of ak  modulo n from step 3. 
If d is not a nontrivial divisor of n,  start over with a new choice of a 
and/or a new choice of k. 
To explain when this algorithm will work, suppose that k is divisible 

by all positive integers 5 B, and further suppose that p is a prime divisor 
of n such that p - 1 is a product of small prime powers, all less than B. 
Then it follows that k is a multiple of p - 1 (because it is a multiple of all of 
the prime powers in the factorization of p - I) ,  and so, by Fermat's Little 
Theorem, we have ak  -- 1 mod p. Then plg.c.d. (ak - 1, n), and so the only 
way we could fail to get a nontrivial factor of n in step 4 is if it so happens 
that ak  - 1 mod n. 

Example 1. We factor n = 540143 by this method, choosing B = 8 
(and hence k = 840, which is the least common multiple of 1,2, .  . . ,8) and 
a = 2. We find that 2840 mod n is 53047, and g.c.d.(53046,n) = 421. This 
leads to the factorization 540143 = 421 . 1283. 

The main weakness of the Pollard method is clear if we attempt to use 
it when all of the prime divisors p of n have p - 1 divisible by a relatively 
large prime (or prime power). 

Example 2. Let n = 491389. Wc would be unlikely to find a nontrivial 
divisor until we cliosc B 2 191. This is because it turns out that n = i 

383 1283. We have 383 - 1 = 2 .  191 and 1283 - 1 = 2 641 (hot h 191 a ~ i d  
641 are primes). Exccpt for n r 0, f 1 mod 38.3, all ot her a's 11avc~ orclor 
modulo 383 either 191 or 382; and except for tr = 0. f 1 mod 12X3. it11 otlicr 
a's have ordcr rnodulo 1283 cithtr 641 or 1282. So 11111css k is clivisiltlc~ hy 
191 (or 641)) we are likely to find agaili ant1 again that g.c.d.(a" 1.11) = 1 
in step 4. 

The basic dilemma with Pollard's p - 1 ri~ethod is that we arc pinnilig 
our hopes on the group (Z/pZ)* (more precisely, the various such groups 
as p runs through the prime divisors of 72). For a fixed n, these groups are 
fixed. If all of them happen to have order divisible by a large prime, we are 
stuck. 

The key differcncc in Lcnstra's mctliocl. as wc shall see. is tliat, by 
working with elliptic curves over F ,  = Z/pZ, we suddenly have a whole 
gaggle of groups to use, and we can realistically hope always to find one 
whose order is not divisible by a large pri~no or prime power. 

We start our description of Lenstra's algorithm with some cornmerits 
about reducing points on elliptic curves n~oclillo n, where n is a composite 
integer (unlike in 52, where we worked modulo prinie numbers and in finite 
fields). 

Elliptic curves - reduction modulo n. For the remainder of the section 
we let n tlcnote a11 odd cornpositc intrgcr itnd p a11 (as yct unknown) prime 
factor of n. We shall suppose that p > 3. For any integer m and any 
two rational numbers X I ,  x2 with dcnorniriators prime to m, we shall write 
XI - $2 mod m if xl - 22, written in lowest terms, is a fraction with 
numerator divisible by m. For any rational niirnber xl with denominator 
pri~ne to m there is a unique integer x2 (cdled the "least nonnegative 
residue") between 0 and m - 1 such that zl s x2 mod m. Sometimes we 
shall write "xl mod nz" to denote this least iiormegative residue. 

Suppose that we have an cquatiori of t lic form y2 = x" ax + b with 
a ,  b E Z arid a point P = (x, g )  which satisfies it. In practice, the curve 
E together with the point P will be generated in some "randoni" way, for 
example, by choosing three random integers (L, x, y in some range and then 
setting b = y2 - x3 - ax. We shill1 ass~imc that the cubic has distinct roots, 
i.e., 4a3 + 27b2 # 0; this is aliiiost ccrtairi if the cocfficic~its w r c  chosen 
in the random way described. For silnplic.it,y, i i ~  what follows urc shall also 
suppose that 4a" 27h2 has no cornrnorl f:lctor with n; in other words. 
x3 + ax + b has no multiple roots niodulo 1) for any primr divisor p of 11 .  

In practice, once we l~av t  ~riatlv a droico of rl i111(1 h, wv (-a11 cl~ock this hy 
coniputirig g.r.d.(4n:' + 27h2, n ) .  If this is -2 I ,  t I W I I  ( b i t  liar itl4u:' + 27b2 
(in which case we nilist make anot,hcr c-hoic-c' of (1 arid 6 )  or olsc. wc have 
obtained a nontrivial divisor of 7, (in wliicd~ c.;wta wr'rc clone). So wc. sl~nll 
suppose that g.c..ri.(4u:' + 2'7h'. 71  ) = I .  

Now stlj)pose t l~ t t ,  wc w;t~if to find t h ~  I I I I I ~ ~  i1)lo k P ,  ilsil~g i lw rcpcv~tcd 
dolitding r ~ i r t h d  t1cscril)cd iii ?i VI.2. This cbi t i l  I)(. tlol~c. in O(lo!l k) stcj~s, 
oach irivolvii~g a tloul)lir~g or a11 iuhlit io11 of two tlistil~ct ~)oiiits. 'I'hcre arc 
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many ways to go about this. For example, k can be written in binary as a0 + 
a1 - 2  + - . + a,- 1 2m- ' , then P can be successively doubled, with 2j P added 
to tlie partial sum whenever tlie corresponding bit a j  is 1. Alternately, k 
could be factored first into a product of primes ej, and then one could 
successively compute el (P) ,  e2(el P ) ,  and SO on, where el, e2, . . . are the 
primes in the factorization (listed, say, in non-decreasing order). Here each 
multiple ejPj, where Pj = tj-ltj-2 . l l P ,  is computed by writing ej in 
binary and using repeated doublings. 

We shall suppose that some such technique has been chosen to compute 
multiples kP. 

We shall consider the point P and all of its multiples modulo n. This 
means that we let P mod n = (x mod n, y mod n), and, every time we 
compute some multiple kP ,  we really compute only the reduction of the 
coordinates modulo n. In order to be able to work modulo n, there is a 
nontrivial condition that must hold whenever we perform a doubling step 
or add two different points. Namely, all denominators must be prime to n. 

Proposition VI.3.1. Let E be an elliptic curve with equation y2 = x3 + 
ax  + b, where a ,  b E Z and g.c.d.(4a3 + 27b2, n) = 1. Let Pl and P2 be 
two points on E whose coordinates have denominators prime to n, where 
PI # -P2. Then Pl + P2 E E has coordinates with denominators prime 
to n if and only if there is no prime pJn  with the following property: the 
points Pl mod p and P2 mod p on the elliptic curve E mod p add up to the 
point at infinity 0 mod p E E mod p. Here E mod p denotes the elliptic 
curve over Fp obtained by reducing modulo p the coeficients of the equation 
y2 = x3 + ax + b. 

Proof. First suppose that PI = (xl , yl ), P2 = (x2, y2), and PI + P2 E E 
all have coordinates with denominators prime to n. Let p be any prime 
divisor of n. We must show that Pl mod p + P2 mod p # 0 mod p. If 
xl  f x2 mod p, then, according to the description of the addition law on 
E mod p, we immediately conclude that PI mod p + P2 mod p is not the 
point a t  infinity on E mod p. Now suppose that x1 - x2 mod p. First, if 
PI = P2, then the coordinates of PI + P2 = 2P1 are found by the formula 
(5) of $1, and 2P1 mod p is found by the same formula with each term 
replaced by its residue modulo p. We must show that the denominator 2yl 
is not divisible by p. If it were, then, because the denominator of the x- 
coefficient of 2P1 is not divisible by p, it would follow that the numerator 
32: + a would be divisible by p. But this would mean that xl is a root 
modulo p of both the cubic x3 + ax + b and its derivative, contradicting our 
assumption that there are no multiple roots modulo p. Now suppose that 
PI # P2 Since x2 E xl mod p and x2 # z l ,  we can write x2 = xl  + prx 
with r 2 1 chosen so that neither the numerator nor denominator of x is 
divisible by p. Because we have assumed that PI + P2 has denominator not 
divisible by p, we can use the formula (4) of $1 to conclude that y2 is of the 
form yl +pry. On the other hand, 

yi = (21 + prx)' + a(x1 + prx) + b 

xy + ax1 + b + prx(3x: + a )  = y: + prx(3x: + a )  mod pr". ( 1 )  

But si~ice x2 r xl mod p a d  y2 r yl nlod p,  it follows that Pl mod p = 

P2 mod p, and so Pl mod p + P2 rnud 11 = 21'1 mod p, wliicli is 0 mod p if 
and only if yl = y2 = 0 mod p. If tlie latter congruence held, then y; - y; = 

(y2 - yl) (92 + yl) would be divisible by pr+l (i.e., its numerator would be), 
and so the congruence (1) would imply that 3xT + a - 0 mod p. This is 
impossible, because the polynomial x3 + ax + b modrilo p has no multiple 
roots, and so x1 cannot be a root tmth of this polynomial and its derivative 
modulo p. We conclude that Pl mod p + P2 mod p # 0 mod p, as clainied. 

Conversely, suppose that for all pri~rie divisors p of n we have PI mod p+ 
P2 mod p # 0 mod p. We must show that the coordinates of Pl + P2 have 
denominators prime to n,  i.e., that the denominators are not divisible by 
p for any pin. Fix some pln. If x2 $ X I  mod p, then the formula (4) of $1 
shows that there are no denominators divisible by p. So suppose that x2 s 
x1 mod p. Then yz r f yl mod p; but since Pl mod p+ P2 mod p # 0 mod p, 
we must have y2 r yl $ 0  mod p. First, i f  P2 = PI, then the forniula (5) of 
$1 together with the fact that yl $ 0 mod p shows that the coordinates of 
PI + P2 = 2P1 have denominators prime to p. Finally, if P2 # PI, we again 
write 2 2  = xl + prx with x not divisible by p, and we use the congruence 
(1) above to write (y: - y;)/(x2 - xl )  _= 3s: + a mod p. Since p does not 
divide y2 + y1 = 2y1 mod p, it follows that there is no p in the denominator 

yZ-y2 - of (Yz+y:)(x:-xl) - K, and hence, by forlriula (4) of $1, there is no p in 
the denominator of the coordinates of Pl + P2. This completes the proof. 

Leastrays method. We are given a composite odd integer n and want 
to find a nontrivial factor dln, 1 < d < n. We start by taking some elliptic 
curve E : y2 = x" ax + b with integer cocfficierits along with a point 
P = (x, y) on it. The pair (E, P )  is probably generated in some random way, 
although we could choose to use some dcterrrlinistic method which is capable 
of generating many such pairs (as in Example 4 below). We attempt to use 
E and P to factor n, as will bc presently explained; if our attempt fails, we 
take another pair (E,  P), and continue in this way until we find a factor din. 
If the probability of failure is p < 1, then tlic probability that h successive 
choices of (E l  P )  all fail is ph,  which is very srriall for h large. Thus, with a 
very high probability we will factor n in a reasonable number of tries. 

Once we have a pair (E, P), wc chooso a11 integer k which is divisible 
by powers of small prirncs ( 5  B) which arc lcss than some borl~d C. That 
is, wc set 

k = n Pf , 
es B 

(2) 

where at = [log C/log t] is tlic largest cxpo~irlit s~lcli that Pf < C. We 
then attempt to compute kP,  working all t hc time modulo n. This cornpu- 
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tation is uneventful and useless, unless we run into the following difficulty: 
when attempting to find the inverse of x2 - XI in the formula (4) of 51 
or the inverse of 2yl in (5), we encounter a number that is not prime to 
n. According to Proposition VI.3.1, this will happen when we have some 
multiple kl P (a partial sum encountered along the way in our computation 
of kP)  which for some pln has the property k l ( P  m o d  p) = 0 m o d  p, i.e., 
the point P m o d  p in the group E m o d  p has order dividing kl. In the 
process of using the Euclidean algorithm to try to find the inverse modulo 
n of a denominator which is divisible by p, we instead find the g.c.d. of n 
with that denominator. That 9.c.d. will be a proper divisor of n,  unless it is 
n itself, i.e., unless the denominator is divisible by n. That would mean, by 
Proposition V1.3.1, that kl P m o d  p = 0 m o d  p for all prime divisors p of n 
- something which is highly unlikely if n has two or more very large prime 
divisors. Thus, it is virtually certain that as soon as we try to compute k l P  
modulo n for a kl which is a multiple of the order of P m o d  p for some pln, 
we will obtain a proper divisor of n. 

Notice the similarity with Pollard's p - 1 method. Instead of the group 
(ZjpZ)', we are using the group E m o d  p. However, this time, if our E 
proves to be a bad choice - i.e., for each pin the group E m o d  p has order 
divisible by a large prime (and so k P  m o d  p is not likely to equal 0 m o d  p 
for k given by (2)) - all we have to do is throw it away and pick out 
another elliptic curve E together with a point P E E. We did not have 
such an option in the Pollard method. 

The algorithm. Let n be a positive odd composite integer. We now 
describe Lenstra's probabilistic method for factoring n. 

We suppose we have a method for generating pairs (E,  P )  consisting of 
an elliptic curve y2 = x3 +ax  + b with a ,  b E Z and a point P = (x, y) E E. 
Given such a pair, we go through the procedure about to be described. If 
that procedure fails to yield a nontrivial factor of n, then we generate a 
new pa,ir (E ,  P )  and repeat t hc process. 

Before working with our E modulo n, we must verify that it is in fact an 
elliptic curve modulo any pln, i.e., that the cubic on the right has distinct 
roots ~nodrilo p. This liolds if and only if the discriminant 4a3 + 27b2 is 
pri~tic to rr .  Thus, if !I.c.fi.(4a:' + 2711~~ n) = 1 ,  wc niay proceed. Of course, 
if this g.c.d. is strictly t)ctweon 1 and n, we have a divisor of n,  and we're 
done. If this g.c.d. equals n,  then we must choose a different elliptic curve. 

Next, we suppose that we have chosen two positive integer bounds B,  
C. Here B is a bound for the prime divisors of the integer k by which wc 
multiply the point P .  If B is large, then there is a greater probability that 
our pair (E ,  P )  has the property that k P  m o d  p = 0 m o d  p for some pln; on 
the other hand, the larger B the longer it will take to compute k P  m o d  p. 
So B must be chosen in some way which we estimate minimizes the running 
time. C ,  roughly speaking, is a bound for the prirne divisors pln for which 
wr are at  all likely to obtain a relation k P  m o d  p = 0 m o d  p. We then 
choose k to be giver1 by (2)) i.c., k is the product of all prime powers 5 C 

which are powers of primes 5 B. Tlien Hassr's Theorern tells us t,liat. if p is 
such that p +  1 + 2 f i  < C and tlie order of F: mod  p is not divisible by any 
prime > B, then k is a niultiple of this o n l c ~  ;ulcl so k P  m o d  p = 0 m o d  p. 

Example 3. Suppose we choose B = 20. and we want to factor a 10- 
decimal-digit integer n which may be a product of two 5-digit primes (i.e., 
not be divisible by any prirne of fewer than 5 digits). Then choose C = 

100700 and k = 216 . 310 -57 .  7" 114.  1 3 ~  17" 1g3. 
We now return to the description of t hr algorithm. Working modulo 

n, atternpt to compute k P  as follows. Usc t llc rr'pcatetl doul~lirig llictliod 
to compute 2P, 2(2P), 2(4P) , . .  ., 2"2P. tlien 3(2"2)P, 3(3 . 202P),.  .., 
3 " ~  2"O P, and so on, until finally you havtl n,,, Pt P. (Multiply succes- 
sively by the prime factors .f! of k from snialles~to largest.) In these com- 
putations, whenever you have to divide modulo n, you use the Euclidean 
algorithm to find the inverse modulo n. If at  any stage the Euclidean algo-. 
rithm fails to provide an inverse, then either you find a nontrivial divisor 
of n or you obtain n itself as  the 9.c.d. of n arid the denominator. In the 
former case, the algorithm has been successftilly completed. In the latter 
case, you must go back and choose another pair (E ,  P). If the Euclidean 
algorithm always provides an inverse - arid so k P  modulo n is actually 
calculated - then you must also go back a r ~ l  choose another pair (E, P ) .  
This completes the description of the algoritl~iti. 

Example 4. Let us use the family of elliptic curves y2 = x3 + ax - a, 
a = 1,2, . . ., each of which contains the point P = (1,l) .  Before using an a 
for a given n, we must verify that the discriminant 4a3 + 27a2 is prime to 
n. Let us try to factor n = 5429 with B = 3 arid C = 92. (In this example 
and the exercises below we illustrate the nic:tliod using small values of n. 
Of course, in practice tlie method becorries valuable only for r~irlch, ~riuch 
larger n.) Here our choice of C is motivatrcl by our desire to find a prime 
factor p which could bc almost as large as fi = 73; for p = 73 tlie bound 
on the number of F,-points on an ellij~tic rlirvr is 74 + 2 m  < 92. Using 
(2), we clioosc k = 26 . 3" For c ~ ~ l i  value of (1, wc succcssively multiply P 
by 2 six times and tlien by 3 four ti~nes, working ~noclulo n, on the elliptic 
curve y2 = x3+ar-a .  When a = 1 WO find t lliit t IIC milltiplication proceeds 
s~riootlily, tun1 it t ~ i r ~ i s  out tlial. 392"' ?uod p is a fi~iito point 011 E mod p for 
all pin. So we try a = 2. Then we firid that wll(w wr try to compute 3 2 2 " ~ ,  
we obtain a denominator whoso g.c.d. with 71 is the proper factor 61. That 
is, the point (1, 1) has order dividing ~~2")r i  thr curve y2 = rJ + 2 s  - 2 
modulo 61. (See Excrris(~ 5 helow.) I'lnis, ollr swwllrl attampt s~~*recr ls .  Ily 
the way, if we try a = 3 we fi~id tliat tllv I I I O ~  llorl gives the ot lwr prime 
factor 89 when we try to conip~ite ~ ~ 2 ' 1 ' .  (IJsl~;dly. hilt not always. the 
method gives the srri;illcst prima factor.) 
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orders N of all elliptic curves modulo p are known to be distributed fairly 
uniformly in the interval p + 1 - 2 4  5 N < p + 1 + 2 f i  where Hasse's 
Theorem tells us they all fall (except that the density of N's drops off near 
the endpoints of this interval). Thus, the probability is roughly equal to 
the chance that a randomly chosen integer of size approximately p is not 
divisible by any prime > B. We already saw in our heuristic time estimate 
in 5 V.3 that this probability is approximately ueU, where u = logp/log B. 

This leads to an estimate of the form O(e Cw), where r is the number 
of bits in n. For a detailed derivation of an estimate for the running time, 
see Lenstra's article. 

More precisely, suppose that n is a positive integer which is not a prime 
power and is not divisible by 2 or 3. Assuming a plausible conjecture about 
the distribution of integers not divisible by any prime > B in a small interval 
around p, Lenstra proves the following probabilistic time estimate for the 
number of bit operations required to produce a nontrivial divisor of n: 

where p is the smallest prime factor of n and E approaches zero for large p. 
Since always p < f i, it follows from (3) that we also have the estimate 

e\ / ( l+c)fog n log  log n (4) 

The estimate (4) has exactly the same form as the (conjectural) time 
estimates for the best general factoring methods known. However, Lenstra's 
met hod has certain advantages over its competitors: 
1. It is the only method which is substantially faster if n is divisible by a 

prime which is much smaller than &. 
2. For this reason, it can be used in combination with other factoring 

methods when the factorization of certain auxiliary numbers is re- 
quired. (For example, in the continued fraction method in § V.4, we 
needed the cornplote factorization of b: mod n if it is a product of 
relatively small primes.) 

3. It has a very small storage requirement, unlike most of its competitors. 
But perhaps the most exciting feature of Lenstra's factorization algo- 

rithm is the use for the first time of elliptic curves, which are among thc 
most richly structured and intensively studied objects in modern number 
theory and algebraic geometry. This shows that new factoring techniques 
might be found using unexpected constructions from hitherto unrelated 
branches of mat hemat ics. 

Exercises 
1. Use Pollard's method with k = 840 and a = 2 to try to factor n = 

53467. Then try with u = 3. 
2. Suppose that only one of the prime divisors p of n has the property that 

p - 1 has no large prime factors. Suppose that in Pollard's algorith~ii 
j 
i 
1 

you take a value of k which is not quite a multiple of p - 1, and try 
various values of a. Estimate in terms of k and p - 1 the probability 
that you obtain the factor d = p in step 4. 
For the following values of p and B, find (using a computer if necessary) 
the fraction of the integers between p + 1 - 2 f i  and p + 1 + 2 f l  which 
have no prime divisors greater than B: (a) p = 109, B = 3; (b) p = 109, 
B = 19; (c) p = 1009, B = 19; (d) p = 1009, B = 97; (e) p = 9973, 
B = 97. 
Each of the values of n in Exercise 5 of § V.4 has a factor p < 100. In 
each case (a)-(k) find this factor by Lenstra's elliptic curve method, 
choosing B = 5, C = 120, P = (1, I) ,  and E : y2 = x3 + ax - a 
with a = 1,2,.  . . (taking a's for which the discriminant is prime to 
n). In each case, what is the first value of a for which you find the 
factor, and what is the value of k l  for which the factor appears as 
g.c.d.(denominator, n) in your computation of kl  P ?  
With k given by equation (2), suppose that you find a factor of n in 
the process of computing kl P modulo n, where kl is a partial product 
in (2). (Recall that we compute k P  by successively multiplying by 
the e's, proceeding in order of increasing t . )  Prove that kl  P mod p = 
0 mod p for some pin, i.e., rule out the possibility that you obtained 
a denominator not prime to n in the computation of ! times (kl/t ')P 
during one of the stages of the repeated doubling method before the 
last step. 
(a) Suppose that for any a E Z you have an efficient way of generating 
a point P = (x, y) such that y2 = x3 +ax mod n. Explain why it would 
not be a good idea to use the elliptic curves y2 = x3 + ax with various 
a's to factor n. 
(b) Same question for the family of elliptic curves y2 = x3 + b with 
various b's. 
Suppose you want to increase very slightly the probability that the 
order of E mod p for some 111 N is a prodlict of small prime factors by 
ensuring in advance that 4 divides this orcler. Describe how to do this. 

References for 5 VI.4 
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Answers to Exercises 

(112111)3. 
(260317. 
10001100101; 1101 z. 
MP JNS; LIKE& (in other words, JQVXHJ=WE-LIKE+IT) . 
(a) 10.101101111110000; (b) C.SR0. 
If bf - 1 is a multiple of d, then the fraction can be written in the 
form a/(bf - I), where a is an integer of at most f digits. Then use the 
formula for the sum of a geometric progression with initial term a .  b-f 
and ratio b-! Conversely, given a pure period- f expansion x, you find 
that bfx differs from x by an f -digit integer a, and this means that 
x = a/(bf - 1). 
(a) (BAD)le; (b) no division is required: for example, to go from binary 
to hexadecimal simply start from the right and break off the digits in 
blocks of four; each four-tuple can be viewed as a hexadecimal digit 
(or replaced by one of the symbols 0-9, A-F). 
(1) Look at  the top and bottom bit and also at whether there's a 
borrow; (2) if both bits are the same and there is no borrow, or if the 
top bit is 1, the bottom bit is 0 and there is a borrow, then put down 
0 and move on; (3) if the top bit is 1, the bottom bit is 0 and there is 
no borrow, then put down 1 and move on; (4) if the top bit is 0, the 
bottom bit is 1 and there is a borrow, then put down 0, put a borrow 
in the next column, and move on; (5) if both bits are the same and 
there is a borrow, or if the top bit is 0, the bottom bit is 1 and there 
is no borrow, then put down 1, put a borrow in the next column, and 

(a) One needs n - 1 multiplications; in each case the partial product 
3j has at most O(n) digits and 3 has 2 digits, so there are O(n) bit 
operations; thus, the total is 0(n2).  (b) Here the partial product has 
O(n log n) digits, so each multiplication takes O(n log2n) bit opera- 
tions; the total is 0(n210g2n). 
0(n210g2N). 
(a) O(n log2n); (b) 0(log2n). 
0(rsn(log2m + log n)). 
(a) The product of O(n/log n) numbers each with O(1og n) digits has 
O(n/log n) . O(1og n) = O(n) digits. (b) O(n log n); (c) 0(n2) .  
(a) O ( f i  log2n); (b) O ( f i  log n). 
O(m log n). 
Suppose that n has k + 1 bits. As a first approximation to m = [fi] 
take a 1 followed by [k/2] zeros. Find the digits of m from left to right 
after the 1 by each time trying to change the zero to 1, and if the 
square of the resulting m is larger than n, putting it back to 0. 

(b) A simple counterexample: let b = -a. 
16 divisors: 1, 3, 5, 7, 9, 15, 21, 27, 35, 45, 63, 105, 135, 189, 315, 945. 
(a) When aln write n = ab and let a --t b. (b) Given n = ab with 
a 2 b, set s = (a + b)/2 and t = (a - b) 12. Conversely, given n = s2 - t : 
set a = s+t, b = s -t to get the reverse correspondence. (c) 4732 - 472; 
15g2 - 1561 972 - 92: 712 - 64: 572 - 481 39' - 241 33' - 121 312 - 4? 
(b) loo! = 297. 348. 524 . 716 . 119. 137. 175. 195 -234 -293 .313.372 . 
412 432 . 472 53 - 59.61 ~ 6 7  - 71 -73 79.83.89.97. (c) The formula is 
(n - S,(n))/(p- 1). To prove this, write n = dk-lpk-l + . . - +dip+ do, 
and note that for each j: [nlpl] = d k - l p k - l - j + . . . + d j + l p + d j .  Then 
use the formula in part (a). 
(a) 1 = 11.19-8.26; (b) 17 = 1.187-5-34; (c) 1 = 205.160-39.841; 
(d) 13 = 65.2171 - 54 2613. 
For example, here's a comparison between the two ways in the case of 
part (d): 

move on. 
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(c) Consider the product ab, and show that every two steps must de- 
crease the product of the two numbers whose g.c.d. you're taking at  
least by a factor of 2. Thus, there are O(1oga) steps. Each step is 
a t  most a subtraction, so takes O(1oga) bit operations. (Notice that 
no division or multiplication is involved.) (d) It doesn't give a way 
of expressing the g.c.d. as an integer combination of the original two 
numbers. However, it can be modified so as to do this: see "Extending 
the Binary GCD Algorithm" by G. H. Norton in Algebraic Algorithms 
and E m r  Correcting Codes, Springer-Verlag, 1986, 363-372. 
O(1og a log b + 1og3b). 
(a) The remainders decrease at the slowest rate when all of the quo- 

tients are 1. (b) Write (: :) = BAB-', where A = (: :,) 
is the diagonal matrix made up from the eigenvalues and B is a 

matrix whose columns are eigenvectors, e.g., B = ( y  ';I). (c) 

Since & a  > & fk+2 = a k + 2  - a'k+2 > a k + 2  - 1, it follows that 
k < (log(l + &a)/loga) - 2; we can also get the simpler estimate 
k < log a /  log a .  The latter estimate is equal to 1.44042 . . . log2a, while 
the estimate in the proof of Proposition 1.2.1 is 2 log2a. 
(b) In the sum of (log ri)(l  + log qi+l), use the inequalities Ti 5 b and 
fl q,+l 5 a. Conclude that the sum is bounded by O((log b)(log a + 
log a)). 
(a) x + x2 + 1 = (x2)(x2 + 1) + 1; 1 = 1(x4 + x2 + 1) - x2(x2 + 1). 
(b) x4 - 4x3 + 6x2 - 4x + 1 = (x - 3)(x3 - x2 + x - 1) + (2x2 - 2), 
x3-x2+x-1 =(;I--f)(2x2-2)+(2x-2), 2x2-2=(x+1)(2x-2), 
s 0 t h e g . c . d . i ~ ~ - 1 ;  ~ - l = ( - f x + f ) f + ( f x ~ - x + ~ ) ~ .  
g.c.d.(f, f') = x2 - x - 1, and the multiple roots are the golden ratio 
and its conjugate (1 f &)/2. 
(a )5+6i=2i (3-2 i )+ l ;  1 =  1(5+6i)-2i(3-2i). (b)8-19i=2(7-  
lli)+(-6+3i), 7 - l l i  = (-2+i)(-6+3i)+(-2+i), -6+3i = 3(-2+ 
i), so -2 + i is the g.c.d.; -2 + i = (-3 + 2i)(7 - l l i )  + (2 - i)(8 - 19i). 
(a) 1 2 ~  + 252; (b) 542 +312; (c) 116~  + 1591 

1. (a) x = 6 + 7n, n any integer; (b) no solution; (c) same as (a); (d) 
219 + 256n; (e) 36 + 100n; (f)  636 + 676n. 

2. 0, 1, 4, 9. 
3. 3, B. 
4. The difference between n = 10k-ldk-l + . . . + lOdl + do and the sum 

of the digits dk-1 + . - + dl + do is a sum of multiples of numbers of 
the form 103 - 1, which is divisible by 9. 

5. Prove separately that it is divisible by 2, 3 and 5. 
6. Let x and y be the two digits. Then 72 - - -  and hence both 8 and 9 - 

divide the cost 1000x + 60 + y cents. Thus, 8160 + y, which means that 
y = 4, and then 911000x+64, which is - x +  1 mod 9. So x = 8. Thus 
each tile cost $1.12. 

7. (a) For example, suppose that m = 2pCf Since ml(x2- 1) = (x+l)(x- 1), 
we must have a powers of p appearing in both x +  1 and x - 1 together. 
But since p 2 3, it follows that p cannot divide both x + 1 and x - 1 
(which are only 2 apart from one another), and so all of the p's must 
divide one of them. If pa lx + 1, this means that x -= - 1 mod pa; if 
palx- 1, then x - 1 mod p? Finally, since 21x2 - 1 it follows that x must 
be odd, i.e., x - 1 - - 1 mod 2. Thus, by Property 5 of congruences, 
either x r 1 mod 2pa or x r -1 mod 2pa. (b) First, if m 2 8 is a 
power of 2, it's easy to show that x = m/2 + 1 gives a contradiction 
to part (a). Next, suppose that m is not a prime power (or twice a 
prime power), and palJm. Set m' = mlp? Use the Chinese Remainder 
Theorem to find an x which is = 1 mod pa and r -1 mod m! Show 
that this x contradicts part (a). 

8. Pair every integer from 1 to p - 1 with its multiplicative inverse. Ac- 
cording to Exercise 7(a), only 1 and -1 are their own inverses. Thus, 
when the p - 1 numbers are multiplied, each pair containing two num- 
bers which are each other's inverses must cancel, leaving just 1 and 
-1. 

9. Of course, 4 has the desired property, but it is not a 3-digit number. 
By the last part of the Chinese Remainder Theorem, any other number 
which leaves the right remainders must differ from 4 by a multiple of 
7 - 9 - 11 = 693. The only 3-digit possibility is 4 + 693 = 697. 

10. One can apply the Chinese Remainder Theorem to the congruences x - 
1 mod 11, x - 2 mod 12, x r 3 mod 13. Alternately, one can observe 
that obviously -10 leaves the right remainders, and then proceed as 
in Exercise 9 to get - l o+  11 12.  13 = 1706. 

11. (a) 1973; (b) 63841; (c) 58837. 
12. The quotient leaves remainders of 5, 1, 4 when divided by 9, 10, 11, 

and so (by the Chinese Remainder Theorem) is of the form 851 +99Om. 
Similarly, the divisor is of the form 817 + 9907~. Since the divisor has 

3 
1 3 digits, n = 0. Since the product has 6 digits, also m = 0. Thus, the 1 

l answer is 851. 

1 
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13. The most time-consuming parts of implementing the Chinese Remain- 
der Theorem are: (i) computing M; (ii) computing M, = Mlm, for 
each of the r different i's; (iii) finding the inverse of Mi modulo mi for 
each i; (iv) multiplying out ai  MiNi in the formula for x for each i; (v) 
dividing the resulting x by M to get the least nonnegative value. We use 
O(1og B) for the number of bits in the mi or ai or Ni, and O(r  log B) 
for the number of bits in M or the Mi. This gives 0 ( r 2 1 0 g 2 ~ )  for 
the number of bit operations to do (i)-(ii), (iv)-(v). In (iii), we need 
0(r210g2 B)  bit operations to reduce each of the Mi modulo the cor- 
responding mi before taking the inverses, and then O(r  log3B) bit o p  
erations to find all r inverses by the Euclidean algorithm. This gives 
the combined estimate 0 (r 1 og2 ~ ( r  + log B)) . Whether the r210g2 B 
term or the r log3B term dominates depends on the relative size of r 
and log B (i.e., the number of equations and the number of bits in our 
moduli). 

14. 38'+2+23+26 = 38 . 2 . 1 6  63 = 79 mod 103. 
15. If we use the 0(k2)  estimate for the time to perform one multiplica- 

tion of k-bit integers (as we have been doing), then there is no sav- 
ing of time. In fact, the very last multiplication already uses time 
O((n1og b)2), which is the estimate we get by multiplying b by itself 
n times. The difficulty is that, unlike in modular arithmetic, in the 
repeated squaring method we end up dealing with pairs of very large 
integers, and this offsets the advantage of having far fewer multiplica- 
tions to perform. But if we were to use a more clever way of multiplying 
two k-bit integers, for example, if we used an algorithm requiring only 
O(k log k log log k) bit operations, then it would save time to use the 
repeated squaring method. 

16. (a) Repeated squaring requires 0(log3p) bit operations whereas a time 
estimate of 0(log2p) can be proved for the Euclidean algorithm. (b) 
Repeated squaring still requires time 0(log3p), but after we perform 
the first step of the Euclidean algorithm - dividing p by a (which 
requires O(1 og p log a) bit operations) - the rest of the Euclidean al- 
gorithm takes 0(log2a) bit operations. So the Euclidean algorithm is 
faster, especially for a very small compared to p. 

17. n 90 91 92 93 94 95 96 97 98 99 100 
p(n)  24 72 44 60 46 72 32 96 42 60 40 

18. There is no n for which p(n) is an odd number greater than 1; p(n) = 1 
for n = 1, 2; p(n) = 2 for n = 3, 4, 6; p(n) = 4 for n = 5, 8, 10, 12; 
p(n) = 6 for n = 7, 9, 14, 18; p(n) = 8 for n = 15, 16, 20, 24, 30; 
p(n) = 10 for n = 11, 22; p(n) = 12 for n = 13, 21, 26, 28, 36, 42. 
To prove, for example, that these are all of the n for which p(n) = 12, 
compare the possible factorizations of 12 (with 1 allowed as a factor 
but not 3) with the formula p ( n p a )  = n (pa  -pa-'). One has 1 -2 .6 ,  
1 . 12, 2 - 6 ,  and 12. The first gives 2 - 3  .7 ,  the second gives 2 . 13, the 
third gives (3 or 4) . 7  and 4 .9 ,  and the fourth gives 13. 

19. n cannot be a prime, since if it were ~ ( n )  = n - 1. By assumption, n 
is not the square of a prime. If it were not a product of two distinct 
primes, then it would be a product of three or more primes (not nec- 
essarily distinct). Let p bc tllc s~nallcst. Then p 5 T L ' / ~ ,  and we have 
'p(n) 5 n( l  - b) 5 n ( l  - n-'/3) = n - n2/: a contradiction. 

20. Show that the square of any odd number is = 1 mod 8, and then use 
induction just as in the first paragraph of the proof of Proposition 1.3.5. 

21. (a) Notice that 360 is a multiple of p(p" ) for each pa 1 lm. By thc remark 
just before Example 3 in the text, this means that 6647362 = 66472 = 
44182609 mod m. (Here we're also using the fact that g.c.d.(6647, m) = 
1, which follows because 6647 = 1 72-23.) (b) Raise a to the 359t h power 
modulo m by the repeated squaring method. Since m = (101 1001 1 1)2, 
we find that there are 8 squarings plus 5 multiplications (of at  most 
63-bit integers), in each case combined with a division (at worst of a 
126-bit integer by a 63-bit integer). Thus, the number of bit operations 
is at  most 13 x 63 x 63+ 13 x 64 x 63 = 104013. 

22. (a) Show that, if x = j :, then x generates Sd if and only if 
g.c.d.(x, d) = 1. Notice that j runs through 0, 1, . . . , d - 1. (b) Partition 
the set Z lnZ into subsets according to which Sd an element generates. 
The subset corresponding to a given Sd has rp(d) elements, according 
to part (a). 

23. (a) Expand each term in the product in a geometric series: (1 + + 
1 . t J  + ;$ + . .). In expanding all the parentheses, the denominators will 

be all possible expressions of the form py1p;2 . -pF.: According to the 
Fundamental Theorem, every positive integer n occurs exactly once as 
such an expression. Hence, the product is equal to the harmonic series 
Cr=l g, which we know diverges. (b) First prove that for x 5 $ we 
have x > - ilog(l - x) (look at the graph of log). Apply this when 
x = b, and compare C with the log of the product in part (a). (c) 
For any sequence of prime numbers n approaching infinity we have 
9 = 1 - A + 1; for any sequence of n's which are divisible by 
increasingly many of the successive primes (for example, take nj = j!), 

. . 

we have = nPl , ( l  - 5) -- n,,, ,(l  - i) = 0 by part (a). 
24. (a) Give pi and the residue of N modulo pi to the i-th lieutenant 

general, and use the Chinese Remainder   he or em. (b) Choose each 
Pi > but much smaller than '-m. 

5 1.4. 
3. Use the same argument as in the proof of the last proposition to con- 

clude that bd = zk1 mod m. But since (b'i)a/d = - 1 mod m, it follows 
that bd - -1 mod m and a l d  is odd. 

4. UseExcrcise3witha=nar1tl c =  ( p -  1)/2. 
5. (a) 28 + 1 = 257; (b) use Exercise 4; (c) m = 97 257.673. 
6. 2 - 112. 13.4561, 2" 5 7 - 1 3  - 41 - 73 - 6.181. 
7. 24-32+13.31 .601 .  
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8. 32 .41 -271, 33 - 7  11 13.37, 32 . 11 .73  101 -137. 
9. 7.23 89.599479; 72 e127.337 (this example shows that a prime pl bd - 1 

in Proposition 1.4.3 may divide bn - 1 to a greater power than it divides 
bd - 1). 

10. 7.31.151, 32-7.11.31.151-331, 3 2 ~ 5 2 ~ 7 ~ 1 1 ~ 1 3 ~ 3 1 ~ 4 1 ~ 6 1 - 1 5 1 ~ 3 3 1 ~ 1 3 2 1 .  
11. (a) Apply side by side the Euclidean algorithm to find g.c.d.(am - 

l , a n  - 1) and to find g.c.d.(m,n). Notice that a t  each stage the re- 
mainder in the first Euclidean algorithm is ar - 1, where r is the re- 
mainder in the second Euclidean algorithm. For example, in the first 
step one divides am - 1 by an - 1 to get a' - 1, where r is the remainder 
when m is divided by n. (b) By part (a) and the Chinese Remainder 
Theorem, no two numbers between 0 and fl(2*' - 1) have the same 
set of remainders. This product is greater than 2"12 > 22k > ab. For 
the time estimate, one has r multiplications of a t  most &bit integers, 
which take O(rt2) = O(ke) bit operations. This is better by a factor of 
r than the usual multiplication of a and b (which takes time 0(k2)).  

1. prime p 2 3 5 7 11 13 17 
smallest generator 1 2 2 3 2 2 3 
number of generators 1 1 2 2 4 4 8 

2. (a) If gp-' = 1 mod p2, then replace g by (p + 1)g and show that then 
one has gp-I = 1 + glp with gl prime to p. Now if g j  = 1 mod pq first 
show that p - 11 j ,  i.e., j = (p - 1) jl, and so (1 + glp)jl 1 mod p? But 
show that (1 + glp)j1 = 1 + jlglp + higher powers of p, and that then 
pa-1 must divide jl. (b) For the first part, see Exercise 20 of f j  1.3; the 
proof of the second part (which reduces to showing that cannot be 
= 1 mod 2a unless 2"-llj) is similar to part (a). 

3. 5% 
4. 2 ford = 1: X ,  X+1;  1 ford = 2: x 2 + x + 1 ;  2 ford = 3: x 3 + X 2 + 1 ,  

x 3 + x + 1 ;  3f0r d = 4: x 4 + x 3 + 1 ,  x4+x+11 x 4 + X 3 + X 2 + x + 1 ;  
6 for d = 5: X5 + x3 + 1, x5 + x2 + 1, x5 + X* + x3 + X2 + 1, 
x 5 + x 4 + x 3 + x + 1 ,  x 5 + x 4 + x 2 + x + 1 ,  x 5 + x 3 + x 2 + x + 1 ;  9 
ford = 6: x 6 + x 5 + l ,  x 6 + x 3 + l ,  x6+x+1, x ~ + x ~ + X ~ + X ~ + ~ ,  
x6+x5+x4+x+1, x 6 + X 5 + x 3 + x 2 + 1 ,  X 6 + X 5 + X 2 + X + 1 ,  
x ~ + x ~ + ~ ~ + x + ~ , x ~ + x ~ + x ~ + X + ~ .  

5. 3 for d = 1: X,  X f 1; 3 for d = 2: X2 + 1, X2 f X - 1; 8 for d = 3: 
x ~ + x ~ * ( x - ~ ) , x ~ - x ~ ~ ( x + ~ ) , x ~ ~ ( x ~ - ~ ) , x ~ - X ~ ~ ;  
18 for d = 4; 48 for d = 5; 116 for d = 6. 

6. (p i -pf le ) / f .  
7. (a) 9.c.d. = 1 = X 2 g +  ( X +  1)f; (b) 9.c.d. = x3 + X 2  + 1 = f + 

(X2 + X)g; (c) 9.c.d. = 1 = ( X  - 1) f - ( x 2  - X + 1)g; (d) g.c.d. = 
X + 1 = (X - 1) f - (X3 - x2 + 1)g; (e) 9.c.d. = X + 78 = (50X + 
20) f + (51X3 + 26X2 + 27X + 4)g. 

Since g.c.d.( f ,  f') = X 2  + 1, the multiple roots are f a2, where a is the 
generator of Ft; in the text. 
(a) Raising 0 = a2 + ba + c to the p t h  power and using the fact 
that bP = b and cP = c, we obtain O = + bap + c. (b) The 
polynomial's two distinct roots are then a and (rp. Then a is minus 
the sum of tlie roots, arid b is the product of tlie roots. (c) (ca + 
d)p+' = (cap + d)(ca + d), and then multiply out and use part (b). (d) 
(2 + 3i)5(19+1)+1 = (22 + 32)5(2 + 3i) = 14(2 + 3i) = 9 + 4i. 
In each division of polyriornials (first f by 9, then rj by rj+l),  after first 
finding the inverse modulo p of the leading coefficient of rj+l (which 
takes O ( 1 0 g ~ ~ )  bit operations), one iiocds to perform 0(d2)  multiplica- 
tions in the field (i.e., of integers modulo p), each taking 0(log2p) bit 
operations. Thus, each division takes ~ ( l o ~ ~ ~ + d ~ l o ~ ~ p )  bit operations, 
and so the entire Euclidean algorithm takes O(d)-0(log2p(log p+d2)) = 
O(d log2p(log p + d2)) operations. (This can be simplified to O(d log3p) 
if d is constrained not to grow faster than J F p ,  and to 0(d310g2p) 
if p is constrained not to grow faster than ed2 .) 
(a) Let a be a root of X2  +X + 1 = 0; then the-three successive powers 
of a are a ,  a + 1, and 1. (b) Let a be a root of X3 + X + 1 = 0; then 
the seven successive powers of a are a ,  a$ a + 1, a2 + a ,  a2 + a + 1, 
a2 + 1, 1. (c) Let a be a root of X3 - X - 1 = 0; then the 26 successive 
p o w e r s o f a a r e a , a ~ a + l ,  a2+a, a 2 + a + 1 ,  a2--a+1, --a2--a+1, 
-a2 - 1, -a + 1, -a2 + a, a2 - a - 1, -a2 + 1, -1, followed by the 
same 13 elements with all +'s and -'s reversed. (d) Let a be a root 
of X 2  - X + 2 = 0; then the 24 successive powers of a are a. a - 2. 
-a - 2, 2a + 2, -a + 1, 2, then the same six elements multiplied by 2, 
then multiplied by - 1, then multiplied by -2, giving all 24 powers of 
a. 
O(f2f)) since for each of the O(2f) powers of a one has to multiply 
the previous expression by a and, if af occurs, add the lower degree 
polynomial which equals af to the result of increasing the lower powers 
of a by 1 in the previous expression; all of this takes only O(f)  bit 
operations. 

13. (a) p = 2 and 21 - 1 is a "Mersennr" prime (see Example 1 and 
Exercise 2 of 5 1.4); (b) besides the cases in part (a), also when p = 3 
and (3f - 1)/2 is a prime (as in part (a), this requires that f itself 
be prime, but that is not sufficient, as the example f = 5 shows), 
and when p is of the form 2p' + 1 with p' a prime and f = 1. It is 
not known, incidentally, whether there arc i~ifiriitely many prinic fields 
with any of the conditions in (a)-(b) (but it is conjectured that there 
are). Primes p' for which p = 2p' + 1 is also prime are called "Gemiain 
primes" after Sopliie Gerrnain, who in 1823 proved that tho first case 
of Fermat's Last Theorem holds if the exponrrit is such a prime. 

14. Choose a sequence n, for which v(n,)/n, --, 0 a5 j --+ m (see 
Exercise 23 of 5 1.3) with none of the n, divisible by p, and let f, be 
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the order of p modulo n j  (the smallest power of p that is G 1 mod nj). 
15. All polynomials in which X j  occurs with nonzero coefficient only if pl j. 
16. Reduce to the case when j = d by showing that, if d ( a )  = a and 

of(,) = a, we have od(a) = a (see the proof of Proposition 1.4.2). 
Notice that the field Fpd , which is the splitting field of xpd - X,  is 
contained in F,, because any root a of this polynomial also satisfies 
Xq = X (to see this, raise both sides of upd = a to the pd-th power 
f /d times). 

17. Show that b' = b(pn-')/(pd-'1 is in F p d  by showing that it is fixed 
under od (i.e., raising to the pd-th power); show that it is a generator 
by showing that all of the powers (b')j, j = 0,. . . ,pd - 2 are distinct 
(this follows from the fact that the first pn - 1 powers of b axe distinct). 

The sets of residues are: for p = 3, {I); for p = 5, {1,4); for p = 7, 
{I, 2,4); for p = 13, {I, 3,4,9,10,12}; for p = 17, {I, 2,4,8,9,13,15, 
16); for p = 19, {1,4,5,6,7,9,11,16,17). 
(b) Fkom part (a) and Propositions 11.2.2 and 11.2.4 you know that 
(:) = 1 m 2(p-l)I2 mod p. This means that the ((p - 1)/2')-th power 
r 

of 2 is = -1 mod p for some C 2 2. Since 22k = -1 mod p, you 
can show that g.c.d.((p - 1)/2', 2k) = 2f and this immediately gives 
p = 1 mod 2k+f (c) The only prime which is = 1 mod 64 and < I/= 

is 193, which does not divide 65537. 
g.c.d.(84,1330) = 14. 
Write (9) = (9) (i ), and consider the four possible cases of p mod 8. 

167 167 
= (&)(%) = -(T)( 13 = -(+I(+) = -(-')(-') = 

(a) 14; (b) 9; (c) 9a. 
a3 - a (see the proof of Proposition 11.2.4); 6, 60, 4080, 24, 210, 336. 
Since q = 1 mod p, there is a primitive p t h  root of unity < in F,. 
Then G = CTl: ($)e has square (+Ip (see the lemma in the proof 
of Proposition 11.2.5). 
(a) (9) ~ ~ ~ ~ ( : ) a j ;  6, 45, 3126, 906 (in the last case use: 1093 = 

(37 - 1)/2). (b) Let G = c;:: (:)2j. Then the least positive square 
root of ( G I p  modulo 2P - 1 is g if p G 5 mod 8; -g if p E 3 mod 8; 

13. last decimal digit being 1 or 9. 
14. Any power of a residue is a residue, so none of the nonresidues can 

occur as a power, and that means a residue cannot be a gerierator. 
15. (a) Since p - 1 is a power of 2, the order of any element g is a power 

of 2. If -1 = (z) r g(~-1)/2 mod p, then this order cannot be less 

than p - 1. (b) If k > 1 and p = 22k + 1, then p = 2 mod 5 (since the 
exponent of 2 is a multiple of 4). Then (E)  = (E )  = -1. (c) Similar to 
part (b): since the exponent of 2 is not divisible by 3, it follows that 
the power of 2 is r 2 or 4 modulo 7; hence p z 3 or 5 mod 7, and 
(;) = (7) = -1. 

16. (a) We have (a + bi)p+l = (UP + ViP)(a + bi) = (a - &)(a + bi) = 
a2 + b2. Claim: If (a + bi)" E Fp, then p + 1 lm. To prove the claim, 
let d = g.c.d.(m, p + 1). Using the same argument as in the proof of 
Proposition 1.4.2, we see that (a + bi)d E F . But since p + 1 is a power 
of 2, if d < p + 1 we find that (a + bi)(ptl)fi is an element of Fp whose 
square is a2 + b2. But a2 + b2 is not a residue (by Exercise 14). Hence, 
d = p + 1 and p + l (m. Now that the claim has been proved, suppose 
that n = n'(p + 1) is such that (a + 62)" = 1 (note that p + lln by 
the claim). Then (a2 + b2)"' = 1, and so p - lln'because a2 + b2 is a 
generator of F;. (b) Show that 17 and 13 are generators of F jl .  

17. In both cases you get 0 ( 1 0 ~ ~ ~ ) .  But note that Proposition 11.2.2 applies 
only for (:) when n = p is prime, whereas the method in part (a) 
applies generally for any positive odd n. Also notice that the time for 
part (a) can be reduced to 0(log2p) by the method used in Exercise 
11 of 51.2. 

18. (a) Solve by completing the square; show that the number of solutions 
is the same as for the equation x2 _= D mod p. There is 1 solution if 
D = 0, none if D is a nonresidue, and 2 if D is a residue. (b) 0, 0, 2, 
1, 2; (c) 2, 2, 1, 0, 0. 

19. n = 3; p - 1 = 25 . 65; r = a33 - 203 mod p (we compute 
3 0 2 ~ ~  by the repeated squaring method, successively squaring 5 times 
and multiplying the result by 302); also by the repeated squaring 
method we compute b r n65 = 888 mod p; one takes j = 22, i.e., 

mod p = b4r = 1292 mod p. 
20. (a) Use induction on a .  To go from a - 1 to a, suppose you have an 

(a  - 1)-digit base-p integer S such that z2 = a mod pa-'. To determine 
the last digit xa-1 E (0, 1, .  . . , p  - 1) of x = S + write 
z2 = a+bpa-I for some integer 6, and then work modulo pa as follows: 
x2 = (2 + xa-1Pa-1)2 = z2 + 2x0xa-1Pa-1 = a + pa-'(b + ~ X ~ X ~ - ~ ) .  
So it suffices to choose xa-1 -(2xo)-'6 mod p (note that 2xo is 
invertible because p is odd, and a - xi  mod p is prime to p). (b) Use 
the Chinese remainder theorem to find an x which is congruent modulo 
each pa to the square root found in part (a). 

21. (a) If (*) were true for bl and for 6'62, then dividing the two congru- 



210 Answers to Exercises Answers to Exercises 21 1 

ences would give (*) for b2 (since both sides are multiplicative). Next, 
suppose (*) were false for some b. Then the set of b's obtained by 
multiplying b by all the elements for which (*) is true would consist of 
elements for which (*) is false. (b) For example, take b = 1 +n/p, where 
p21n. Then ($) = 1, but bJ = 1 only when ph ,  which is not the case for 
j = (n - 1)/2. (c) Show that ($) = -1 but that b("-')12 = 1 mod n/p 
and hence one could not have b("-')I2 = -1 modulo n/p, let alone 
modulo n. Next, let a1 be any nonresidue modulo p, and let a2 = 1. Use 
the Chinese Remainder Thcorem to find a solution b to: x EE a1 mod p, 
x r a2 mod nip. 

22. b2 = (t +a)P(t + a )  = (t +aP)(t  +a) = (t - a) ( t  + a )  = t2 - a2 - - a,  
where the third equality comes from the fact that a = d G  has 
conjugate a P  = -Jz; note that b must be in F,, since a has two 
square roots in Fp by assumption, and so its square roots in Fp2 are 
actually in Fp. 

23. Let b be the least positive residue of n(p-')I4 modulo p; then b is a 
square root of -1 modulo p, i.e., plb2 + 1. Now compute c + di = 
g.c.d.(p, b + i) (see Exercise 14 of 5 1.2). 

"We sewed a smile on a horse's ass, and a year later it was elected 
President ." 
Use the fact that "X" occurs most frequently in the ciphertext to find 
that b = 19. The message is: WEWERELUCKYBECAUSEOFTEN 
THEFREQUENCYMETHODNEEDSLONGERCIPHERTEXT. 
THRPXDH. 
SUCCESSATLAST. 
AGENT 006 IS DEAD 007. 
You find 9 possibilities for a' and b': a' = 1,4,7,10, 13, 16, 19,22,25, 
and b' = 21, 6, 18, 3, 15, 0, 12, 24, 9, respectively. Since you have 
no more information to go on, simply try all nine possibilities; it turns 
out that only the third one P 7C + 18 mod 27 gives a meaningful 
plaintext. The plaintexts of the nine tranformations are, respectively: 
''1 DY IB RIF: "I PS IH RIX: "I AM IN RIO: "I MG IT RIF: 
''I YA IZ RIX': "I JV IE RIO': "I VP IK RIF'; "I GJ 1Q RIX: 
"I SD IW RIO". 
(a) N; (b) Np(N)  = N~ n p l N ( l  - i); (c) 312, 486, 812, 240. 

(a) If a # 1, then the congruence (a - l ) P  = -b mod N has exactly 
one solution in the field FN = ZINZ. (b) P = 0 is always fixed; for N 
even (so a must be odd) the congruence (a - l)P 0 mod N at least 
has the two solutions P = 0 and P = N/2. (c) Any example with N 
even and b odd; more generally, any example in which b is not divisible 
by g.c.d.(a - 1, N). 

N2p(N2) = N~ n o l N ( l  - :); 210,912; 354,294; 682,892; 216,000. 

(a) a' = 435, b' = 64; "FOUNDTHEGOLD"; (b) a = 115, b = 76; 
"AWOFUWAE." 
(a) You cannot find the key from the first two congruences; but sub- 
tracting the third from the first gives 139a' - 247 mod 900, and then 
a' = 73, b' = 768; "ARE YOU JOKING?"; (b) a = 37, b = 384; 
"FWU OR1 DCCUVGA ." 
"CCCP': which is Russian for USSR. 
P = 37P + 384 mod 900 leads to 3 P  = 43 mod 75; none. 
(a) The product of I r P+bl  7r10d N mid C = I +b2 mod N is C - P+ 
b mod N with b = bl + bz. (b) The protl~~ct is tlie linear tra11sfwlliatioll 
with a = a1 - a2. (c) The product is the affine transformation with 
a = a1 -a2 and b = a2.  bl + b2. 
P _= 642C + 187 mod 853; "DUMB IDEA ." 
First compute I = 201C + 250 mod 881 and then P = 3311 + 
257 mod 757; "NO RETREAT." 

5 111.2. 
1. The key-word for enciphering is "SPY." The plaintext (with blanks 

and punctuation inserted for readability) is: "I had asked that a cable 
from Washington to New Delhi summarizing the results of the aid con- 
sortium be repeated to me through the Toronto Consulate. It arrived 
in code; no facilities existed for decoding. They brought it to me at  
the airport - a mass of numbers. I asked if they assumed I could read 
it. They said no. I asked how they managed. They said when some- 
thing arrived in code, they phoned Washington and had the original 
message read to them." (John Kenneth Galhraith,  ambassador'.^ Jour- 
nal, quoted by G. E. Mellen in "Cryptology, computers and common 
sense," vol. I11 of Computers and Security.) 

(e) (I2, 546 353 ,03) ' 

3. (a) (!); (b) none (since multiplying the second congruence by 2 and - 
subtracting from the first gives Gy = 8 n o d  9, which would mean 318); 

( 4  (3 7 (3 7 (3; (4 (3 1 (3 1 (3. - .  

4. (a) (A); (b) (b)); (c) any vectorwith y = x ,  i.e., (b)), (11, (3 ,e tc . ;  
(d) any vector of the form ( l c , , ) ;  (c) none. 

5. ( 4  (3 (b) (;;3; ( 4  (3; ( 4  (:) 1 (;;& (:go), (:b):)l (3 1 (3 1 

(:::) , (g::), (;b);), (::3, (6":;) ; (e) add (tio) to any of the 11 vectors 

in part (d) and reduce mod 11 1 1. 
6. Use mathematical induction, proving the assertion for n = 1 ,  2. . . . , b 

by inspection and then proving that tlie assertion for n implies the 
assertion for n + b. Namely, compute: 
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where c E (ZlaZ): and use the induction assumption. (It can be proved 
that for any integer a there is an integer b such that a( fn bJn, and 
that if a = pa is a power of a prime p # 5, then b is a divisor of 
pa-'(p2 - 1); the proof uses a little algebraic number theory in the 
real quadratic field generated by the golden ratio - note that the 
golden ratio and its conjugate are the eigenvalues of the matrix in the 
definition of Fibonacci numbers.) 

8. Awl = (if ::), "MEET AT NOON." 

22 20 3 7  
9. A-l = (28 ) , "WHY NO GO? MARIA"; A = ( 4  , 

"JMLD 'W EFwJV." 
10. "CJIABA KIICC': which is Russian for GLORY TO THE CPSU 

(Communist Party of the Soviet Union). 
11. The product cryptosystem has enciphering matrix A2A1. . - 

12. ll?CVK"; first apply (:! i:) to the ciphertext vector, working mod- 

ulo 29, and then apply (22 to the resulting vector, working mod- 

ulo 26; "STOP." 
l5 15> 

13. By Proposition 3.2.1 (namely, (b) false implies (c) false), there ex- 
ists a nonzero vector which the matrix A takes to (:). That plaintext 
digraph-vector can be added to any plaintext digraph-vector without 
changing the corresponding ciphertext. 

14. Here the ciphertext is 

and the last three columns of plaintext are ( :: 2°7). The de- 

terminant of the matrix formed by the first two of the latter three 
columns is 20 mod 30, which is not invertible modulo 30 but is invert- 
ible modulo 3. The determinant of the matrix formed by the second 
and third columns is 9 mod 30, which is not invertible modulo 30 but 

is invertible modulo 10. Working with the first two columns modulo 
10 17 10 1 1 -  3 gives A-I mod 3 = ( 1 1 )  - (20  27) I = (A i) .(; i) 

= ( : ) . Similarly, working with the last two columns modulo 10 

. By the Chinese Remainder Theorem there is 

a unique matrix A-' modulo 30 that satisfies these two congruences: 
4 9 A-' = (25 28).  The plaintext is "GIVE THE PLANS TO KARLA." 

10 22 26 0 10 1 5 17 andthefirst 15. Here the ciphertext is (21 27 19 28 27 21 26) 

three columns of plaintext are ( 2 2 9  ,& 20g) In attempting to use 

A-' = PC-', note that the matrix formed from the first two di- 
graphs of C has determinant whose g.c.d. with 30 is 6. Using the 
1st and 3rd digraphs improves the situation: det 21 

19 = 4, and 
( l o  

g.c.d.(4,30) = 2. Use this matrix for C and work modulo 15 to find 

that Ad' = (i :) + 15A1, where Al E M2(Z/2Z). Use the fact that 
A-1 (21 10 27 22 ' 26 19) = (22g 28g lg) and the fact that det(A-l) is odd 

to show that either A-' = (i7 6 )  or (a; A). The first possi- 
bility gives the plaintext message "C.I.A. WILLLHTLA;" the second 
possibility gives "C.I.A. WILL HELP." 
Use the Chinese Remainder Theorem. 

(p2 - l)(p2 - P). 
The determinant has no common factor with pa if and only if it has 
nocommonfactorwithp; p4a-3(p2-l)(p-1). 
N4 nplN (1 - :)(I - 3); 157248, 682080, 138240. 

N(") nplN ((1 - :)(I - 5 )  . . . (1 - 5)). 
N6 n p l N ( l  - :)(I - 5 ) ;  106,299,648; 573,629,280; 124,416,000. 

(a) (p2 - Wp2 - P I ;  (b) p2 - P. 
(a) A0 = (:; ;:); (b) ( : ) ; (c) six (this agrees with Exercise 22(b), 

where p = 3); they are: A = (: ;), where (:) = (ii) ,  ( y ) ,  (;J, (i) ,  

(3 7 Or (3 * 

(a) g.c.d.(det(A - I ) ,  N )  = 1, where det(A - I )  = (a - l ) (d  - 1) - bc 
(apply the (a)-(c) part of Proposition 3.2.1 with A replaced by 

A - I = (" - ). (b) Let F N  be the field ZINZ. The digraphs ) 
are a Zdimensional vector space, of which the fixed digraphs form a 
subspace. Any subspace that contains rnore than the zero-vector must 
either be l-dimensional, in which case it has N elements, or else contain 
all digraphs, in which case A = I. 

14 781 (a) P = A V +  B: A! = (821 206), BI = (iii);  HIT ARMY 



214 Answers to Exercises Answers to Exercises 215 

BASE! HEADQUARTERS" (b) C = AP+B, A = ('2 \'), B = 

(::a) ; "!NJUFYKTEGOUL IB!VFEXU! JHALGQGJ?" 

26. 2g8 (2g2 - 1) (2g2 - 29) = 341,208,073,352,438,880. 
27. 91,617,661,629,000,000. 

28. A-' = 13 18 3 , "SENDROSESANDCAVIARJAMESBOND." (:B :: ::) 
fj 1V.l. 
1. ( y )  = m(m - 1)/2 for classical; m for public key; 499500 versus 1000 

when m = 1000. 
2. Here is one possible method. The investors and stockbrokers use a sys- 

tem with P = C. Then user A sends a message to user B by taking 
each message unit P and transmitting fB fil (P). Each message in- 
cludes an identification number. Then user B must immediately send 
an acknowledgment message which includes the identification number 
of the message received from A. User B transforms each message unit 
P of the acknowledgment message to fa f i l ( p )  before transmitting it 
(this is completely analogous to A's double enciphering of the original 
message). If A does not receive an acknowledgment message very soon 
after sending his message, he repeats the message until he does. Later, 
after the stock loses money or for some reason there is a dispute about 
who sent what message, the stockbroker can prove that a message was 
sent by A, because no one except A (and the judge) has the infor- 
mation necessary to produce a message that can be read by applying 
f A  fi! Similarly, A can prove that a message with a given identifica- 
tion number was received by B (since no one else could have sent the 
acknowledgment message), and so B can be required to produce the 
message for the judge. 

3. A public key cryptosystem is agreed upon which uses random inte- 
gers (subject to some conditions, perhaps) to form enciphering and 
deciphering keys according to some algorithm. The computer is then 
programmed to  generate random integers which it then uses to form 
a pair of keys K = (KEY KD). The computer transmits KD (not KE) 
to the outside world and keeps KE (not Kg) to itself. Thus, anyone 
at all can read its messages, but no one at  all can create a message 
that can be deciphered using the deciphering algorithm with key KD. 
(This is the reverse of the usual situation in public key cryptography, 
where anyone can send a message but only the user with the secret key 
can read it.) It is possible for the scientists working jointly to program 
the computer to generate random numbers in a way that no one can 
predict or duplicate once the computer is "on its own." (Note the pro- 
found realism of this example, which assumes that the two countries 
have infinite mistrust of each other and at  the same time infinite trust 
of computers.) 

4. Bjorn chooses at  random an element p E P, computes c = f(p) and 
sends Aniuta c. Aniuta then computes the two preimages pl and p2 
and sends only one of them, say pl,  to Bjorn. If pl # p, then Bji5rn can 
name both preimages pl and p2 = p, in which case we say that Bjorn 
wins; otherwise, Aniuta wins. If Ariiuta wins, she has to produce the 
second prei~nage, which Bjiirn can verify does in fact satisfy f (pa) = 
c (otherwise, Aniuta could cheat by choosing an improper key, for 
which each c has only one preirnage). (Aniuta would have no interest 
in choosing a key for which each c has more than two preimages, since 
that would just lessen her chances of sending Bjorn the preimage that 
he already knows.) 

(a) BH A 2AUCAJEARO; (b) 2047 = 23 89 (see Example 1 in fj 1.4)) 
dA = 411; (c) since ~ ( 2 3 )  and ~ ( 8 9 )  have small least common multiple 
88, any inverse of 179 modulo 88 will work as dA (e.g., 59). 
nA is the product of the Mersenne prirne 8191 and the Fermat prime 
65537 - a flamboyantly bad choice; dA = 201934721; "DUMPTHE 
STOCK.'' 
(a) STOP PAYMENT; (b) (i) 6043; (ii) rt = 113.191. 
On the third try t = 152843,152844,152845 you find that t2 - n  = 804; 
and so p = 152845 + 804 = 153649, q = 152845 - 804 = 152041. 
To show that one cannot feasibly corripute the cornpanion cle~nent in P 
that has the same image as a given element, we suppose that a person 
who knows only K E  (i.e., knows n but not its factorization) obtained 
a second pair f x2 with the same square rnodulo n as f xl .  Then show 
that g.c.d.(xl + 2 2 ,  n)  is either p or q. In other words, finding a single 
pair of companion elements of (Z/nZ)*/ f 1 is tantamount to factoring 
n. 
It suffices to prove that ad" ZE a mod p for any integer a and each 
prime divisor p of n. This is obvious if pla; otherwise use Fermat's 
Little Theorem (Proposition 1.3.2). 
If m/2 = (p - l)/2 mod p - 1, then a7"I2 5 (E) ,  which is + 1 half the 
time and -1 half the time. In case (ii), use the Chinese Remainder 
Theorem to show that the probability that an element in (Z/nZ)* is a 
residue modulo p and the probability that it is a residue modulo q are 
independent of one another, ix., the situation in caqe (ii) is like two 
independent tosses of a coin. 

5 IV.3. 
1. (a) 24, 30, 11, 13; (b) 1, a2+a ,  a, a +  1. 
2. (i) To justify moving the a to the left, notice that if x < 4.3") is the 

solution of 2"a = 1 mod 3", theri 4.3") - .r is the solution of t he original 
congruence. If a r 2 mod 3, theri solve the problem 2"(2a) _= 1 mod 3 9  
in which we do have 2a - 1 mod 3, and the11 x + 1 is the solutiori of the 
original congruence. If a r 1 mod 3, thcn the solution x must be even, 
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because 2 0 ~ ~  = 2 mod 3. (iii) To show that (*)j holds after choosing 
5 - 2  = (1 - aj- ')/3j-: you compute the left side of (*) j modulo 3j as 
follows: it equals aj- lgT:;2 = (1 - and then show that 

(1 + 3)3'-2xj -2 E 1 + 33-I  x j-2 mod 3j (use the binomial expansion). 
Thus, the left side of (*)j is (1 - ~ ; , ? _ ~ 3 ~ ( j - l ) )  = 1 mod 3j. Finally, 
to estimate the number of bit operations, note that each time step 
(iii) is performed one does a couple of multiplications and reductions 
(divisions) with integers having O(a) bits, i.e., each step takes 0 (a2 )  
bit operations; thus, the whole thing takes 0(a3) bit operations. 
(a) To make your computation of (gb)O in F3'1 easier, use the fact that 
(c + di)32 = c2 + d2; you find that A + Bi = 26 + 2%; (b) 20 + 13i; (c) 
P r 6C + 18 mod 31; (d) YOU'RE JOKING! 
(a) KE = 1951280, its least nonnegative residue modulo 264 is 7. 263 + 
0 262 + 13 26 + 6; but you have to add 1 to this in order to get an 

7 0 invertible enciphering matrix ( 13 7)  ; (b) ( :: & ) , DONOTPAY. 

The fA's must commute, i.e., fAfB = fBfA for all pairs of users A 
and B; you need to use it with a good signature scheme (as explained 
in the text); and it must not be feasible to determine the key for fA 

from the knowledge of pairs (P, fA(P)). For example, a translation 
map fA (P) = P + b or a linear map fA (P) = a P  has the first property 
but not the last one, since knowing any pair (P, P + b) (or (P, UP)) 
immediately enables anyone to find b (or a). The example in the text 
satisfies this property because of our assumption that the discrete log 
problem cannot be solved in a reasonable length of time. 
P = 6229 ="GO!" 
(a) First replace x by p - 1 - x so as to reduce to the equivalent 
congruence gxa = 1 modp. Set 1 = 2k, and x = X ~ + ~ X ~ + ~ ~ ~ + ~ ' - ' X ~ ~ ~ .  

Define gj = g2j mod p and a j  = gx0+2x1+."+2'-1xj-la mod p (with 

a0 taken to be a). At the j-th step, compute = f 1, and set 
xj-1 = 0 if it is +1 and xj-1 = 1 if it is -1; also compute gj = gi-l, 
and a j  = 9%'. When j = 1, you're done. (b) O ( ~ O ~ ' ~ ) .  (c) k = 7912. 
THEYREFUSEOURTERMS. 
To find x, Alice converts the congruence gS E yrr2 = gar+kx to the 
congruence S - a r  + kx mod p - 1, which has solution x = k-'(S - 
ar) mod p - 1. Bob knows p, g, and y = y,q, and so can verify that 
gS r yrrx mod p once he is sent the pair (r, x) along with S. Finally, 
someone who can solve the discrete log problem can determine a from 
g and y, and hence forge the signature by finding x. 
107. 
(a) 9/128 = 7.03%, 160/1023 = 15.64%; (b) 7012187 = 3.20%, 
1805129524 = 6.1 1%. (See the corollary to Proposition 11.1.8.) 
(a) Neglect terms beyond the leading power of p. Then the number of 
rnonic polynomials is (f+' - l)/(p- 1) = pn. The number of products 
of degree < n can be neglected. The number nf of irreducible rnonic 

f 
polynomials of degree f is j (pf -Ed< f ,  dl dnd) = Ef . The number of 
products of degree n is then the following sum taken over all partitions 

m .  n = zdd (id 2 0): 

Thus, 

This is obviously > 0; to see that P(n,m) < 1, notice that there are 
approximately pn/n rnonic irreducible polynomials of degree n, and so 
the probability that a rnonic polynomial fails to factor as desired is 
at least l/n. (b) xi+2j=,, ,,i,j(2ji!j!)-1. (c) P(3,2) = 213, P(4,2) = 

5/12, P(5,2) = 13/60, P(6, = 19/180, P(7,2) = 291630. 

5 IV.4. 
1. (a) yes, 1; (b) yes, 0; (c) no, 2; (d) no, 0; (e) yes, 1; (f) no, 1. 
2. (a) Use induction on k. (b) To show the second part, let vi be strictly 

greater than 1 + v,-1 + . + vo, and set V = ui - 1. 
3. Use induction. 
4. (a) INTERCEPTCONVOY; (b) 89, 3, 25, 11, 41, 60, 65. 
5. FORMULA STOLEN! 
6. BRIBE HIM! 

2T to 1. 
(a) The numbers e and x + e modulo N that Vivales receives in steps 
(2) and (3) are in the range from 0 to N - 1; so after a large number 
of trials Vivales will get a good idea of the magnitude of N. (b) Let N' 
be a very large multiple of N, and replace N by N' in steps (1) and 
(3). 
The values Vivales receives in step (3) are upper bounds for x. The 
values Clyde sends in step (3) are not bounded from below, unlike the 
values x + e that Picara sends. 
Picara would have y as her public key; signing a document would con- 
sist of convincing the recipient that she knows its discrete log x. 
Knowing the factorization enables one to take square roots, using the 
method at the end of 511.2 along with thc Chinese Remainder Theo- 
rem (see also Exercise 5 of 51V.2). Conversely, suppose you have an 
algorithm to take square roots. Then choose a random number x, and 
apply the algorithm to the least nonnegative residue of x2 mod n. The 
result will be x' such that xl2 = x2 (mod n). There is a 50% chance 
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that x' f f x (mod n), in which case you immediately obtain a non- 
trivial factor, i.e., g.c.d.(x'+x, n). By repeating the procedure T times, 
you have probability 1 - 2-T of factoring n. 
Yes. Suppose that another person Picara2 playing the role of Picara 
intercepts the message (by', bY2, a1 , a2 )  that Picara sent to Vivales, and 
wants to fool Vivales into believing that she also knows the factoriza- 
tion of n (or the 3-coloring, or the discrete logarithm, etc.). Suppose 
also that Vivales will not accept from Picara2 a repetition of the exact 
same four-tuple that Picara sent. Without knowing Picara's secret ran- 
dom integers yl, y2 or her messages ml ,  m2 or the discrete logarithm of 
either Dl or P2, Picara2 has no way to construct a different four-tuple 
that gives Vivales the impression that she knows the factorization. 
Picara randomly selects 0 < x' < N ,  and sends Vivales y' = bxl. 
Then the two messages for oblivious trans? are m l  = x' and m2 = 
x + x' (nod  N). Vivales verifies either bx = y' or else bx+~ '  = yy'. 
If the procedure is repeated T times, then the odds against Picara 
being lucky (i.e., being able to fool Vivales into thinking she knows the 
discrete log of y) are 2T to 1. 
Vivales can easily get Picara to betray the factorization of n,  as follows. 
He randomly chooses integers z until he finds a z whose Jacobi symbol 
modulo n is -1. He then sends Picara y = z2 mod n. Picara replies with 
the value x2 of a square root of y mod n which is different from f z. 
Vivales can now find a nontrivial factor of n,  namely, g.c.d. (x2 + z, n) . 
The proof of zero knowledge transmission using a simulator Clyde will 
not work. Another problem is that Picara would have to be certain 
that every yi had been produced by the trusted Center, and not by 
Vivales pretending to be the trusted Center. 

4, 11; (b) 8, 13; (c) see part (d); (d) Show that n - 1 = 
1 mod 2p - 2, so that bn-' E 1 mod p, and bn-' = b(2p-1-1)/2 

mod 2p - 1. Then bn-I - 1 mod p(2p - 1) if and only if -1 
(A) = 1. 
(a) Use the fact that n = n'p = n'(p - 1 + 1) - n' mod p - 1. (b) Use 
part (a) with n' = 3 to conclude that p would have to be a divisor of 
22 - 1, 52 - 1, 72 - 1. (c) p would have to be a divisor of 2* - 1, 34 - 1, 
74 - 1. (d) Any smaller n would be the product of 2 primes greater 
than 5 (by part (c)). Then check 49 and 77. 
Divide the congruence (1) with n = p2 by the congruence bP2-p = 
1 mod p2, which always holds by Euler's theorem (Proposition 1.3.5). 
(a) 217; (b) 341. 
(a) First suppose that n is a pseudoprime to the base b. Since n - 1 = 
pq - 1 - q - 1 mod p - 1, you have bq-' r 1 mod p; but since bP-' = 
1 mod p always by Fermat's little theorem, and since d is an integer 
linear combination of p - 1 and q - 1, it follows that bd = 1 mod p. 
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Interchanging the roles of p and q gives bd - 1 mod q, and so bd r 
1 mod n. The converse is similar (actually, easier). There are d2 bases 
in (Z/nZ)*. (b) four: f 1 ,  k(4p + 1). (c) d2/rp(341) = 100/300 = $. 
(a) See part (b). (b) Since N - 1 = b(bn-' - l)/(b - I ) ,  where the 
numerator is divisible by n (because n is a pseudoprime to the base 
b) and the denominator is prime to n, it follows that nlN - 1. Since 
bn - 1 mod N (namely, (b - l ) N  = bn - I) ,  we have bN-' = 1 mod N. 
One must also show that N is composite, but this is easy if we use the 
fact that n is composite by assumption (see the corollary to Proposition 
1.4.1). The fact that N is odd (whether b is odd or even) follows by 
writing N in the form bn-' + bn-2 + . . + b + 1. (c) Start with 341, 
91, or 217, respectively, and use part (b) to find a sequence of larger 
and larger pseudoprimes. Note that the condition 9.c.d. (b - 1, n) = 1 
always holds when b = 2,3,5. (d) 15 is a pseudoprime to the base 4, 
but N = (415 - 1)/3 is not. (To see the latter, note that 4 has order 15 
in (Z/NZ)*, but N - 1 = 4(414 - 1)/3 is not divisible by 3, let alone 
15.) 
(a) n = (3) (e) (b) Note that n is odd (see the answer to 7(b) 
above), and so 21n - 1. Next, since (n  - l)(b2 - 1) = b2(b2(p-'1 - 1) z 
0 mod p and p does not divide (b + l)(b - 1) = b2 - 1, it follows that 
pln - 1. (c) Since n is an odd composite number, b2p = 1 mod n, and 
2pln- 1, it follows that n is a pseudoprime to the base b. Since there are 
infinitely many primes greater than b+ 1, in this way we get infinitely 
many pseudoprimes to the base b. 
(a) 32046 s 1013 mod 2047, so (1) fails for b = 3. (b) If composite, they 
will still be pseudoprimes to the base 2. To see this for n = 22k + 1, 
we note that 22k = -1 mod n, and then 2"-' = 1 mod n can be 
obtained from this by repeated squaring. For n = 2P - 1, we have 
n - 1 = 2(2~- '  - 1) - 0 mod p, and so 2P = n + 1 - 1 mod n implies 
2n-1 = - 1 mod n. Using (2) with b = 2 also won't work, since both sides 

will be 1, even if the number is composite. Using (3) with b = 2 also 
won't work: for a Fermat number this follows because 22k - - 1  mod n, 
and for a Mersenne number it follows hy Proposition V.1.5. 

Expand the parentheses to show that n - 1 is divisible by 36m, and 
hence by Gm, 12m, and 18m. 
We suppose p < q. The technique to answer (a)-(b) is given in part (c). 
(a) 561 = 3-11-17; (b) 1105 = 5.13.17; 2465 = 5-17-29; 10585 = 5-29-73. 
(c) Suppose p < q. Sir~ce q - llrpq - 1 G r p  - 1 mod q - 1, we must 
have rp  - 1 = a(q - 1) for some a ,  1 < a < T. Also p - 1Jrq - 1, and so 
p- lla(rq- 1) = r(aq) - a  = r (a+rp-  1) - a  - ( r -  l ) ( a+ r )  mod p-  1. 
Thus, with r fixed and for each fixed n from 2 to r - 1, there are only 
finitely marly possibilities for p, narr~cly, thc prirnes s~lch that p - 1 
is a divisor of ( r  - l ) (a  + r ) .  Then each prime p uniqucly dcterrnines 
g, because rp  - 1 = a(g - 1). Of course, not all a and p lead to a 
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Carmichael number (for example, a might not divide rp - 1). 
Any Carmichael number not listed in Exercise 12(a)-(b) must be at 
least a product of three distinct primes all 2 7. 
n = 21, b = 8. 
(a) By Exercise l(d), we need only look at  the b for which P-' = 
(&) = 1 mod 2p-1. Since n-1 = p-1 mod 2p-2, we have b(n-1)/2 = 
b(p-')12 mod p and mod 2p - 1, i.e., b("-l)I2 = b(p-')12 mod n. Now 
(9 = ((b(9 = ((b = b ( ~ - ' ) / ~  mod p, so condition (2) holds if and 
n 2 P - l P  P 

only if b(p-')I2 -- (8) mod 2p - 1. This holds for exactly half of all b 
for which P-l r 1 mod 2p - 1 (since in (Zl(2p - l)Z)* such b must 
be a power gj of a generator g such that qj = 0 mod 4 if (8) = 1, 

yj - 2 mod 4 if (:) = -1). (b) n =p(2p- 1) wherep = 3 mod 4 
(by Proposition V. 1.5). 
Compute n modulo 72m: n = 36m2 + 36m + 1. Thus, 9 = 18m(m + 
1) mod 36m. If m is odd, this means that we always have b("-1)/2 = 
1 mod n (because p - 1136m for each pln), and so (2) holds if and 
only if (k) = 1, i.e., 50% of the time. If m is even, we still have 
b("-')I2 -- 1 mod 6m + 1 and mod 18m + 1, while b("-')I2 = bGm = 
(&) mod 12m + 1. Thus, in that case (2) holds if and only if 
(A) 12m+1 = 1 (so that b(n-')/2 = 1 mod n) and also (k) = 1, i.e., 25% 
of the time. 
(a) 0(log3n logm); (b) 0(log5n). 
(a) N is composite because n is composite (by the corollary to Propo- 
sition 1.4.1); then proceed as in Exercise 9 to see that 2(N-1)/2 = 
22n-1-1 = 1 mod N. But since N = -1 mod 8, we also have (6) = 1. 
Thus, N is an Euler pseudoprime; by Proposition V.1.5, it is also a 
strong pseudoprime. (b) Use the same argument as in Exercise 7(c). 
If the first possibility in (3) holds, then obviously (bk)' = 1 mod n. Now 
suppose that hart r - 1 mod n. Write k = 2'j with j odd. If i > r ,  then 
(bk)' E 1 mod n; if i 5 r ,  then (bk)2r-ft = ((brt)j = (-l)j = -1 mod n. 
(a) Show that the necessary and sufficient conditions on b are: ( & ) = 1, 
( & ) = 1. These conditions both hold 25% of the time, i.e., for 80 bases 
in (Z/561Z)*. (b) Since b70 = 1 mod 3 and mod 11, it follows that 561 
is a strong pseudoprime to the base b if and only if b35 r f 1 mod 561, 
i.e., if and only if either (i) b 1 mod 3, b = 1 mod 17, (A) = 1, 
or else (ii) b E -1 mod 3, b = -1 mod 17, (&) = -1. There are 10 
such bases, 5 in case (i) and 5 in case (ii), by the Chinese Remainder 
Theorem. The 8 nontrivial bases b # f 1 are: 50, 101, 103, 256, 305, 
458, 460, 511. 
Use Exercise 7(a) of $1.3, which says that the only square roots of 1 
are f 1. 
(a) 82 - 1 8 ~  r -1 mod 65; 1 4 ~  r 1 mod 65, but 14' f f 1 mod 65. (b) 
The case when n is a prime power follows from the previous exercise, so 

suppose that n is not a prime power. First, if pin with p = 3 mod 4, then 
no integer raised to an even power gives - 1 mod n (since -1 is not a 
quadratic residue modulo p); hence, in this case the strong pseudoprime 
condition can be stated: bt = f 1 mod n. This condition obviously has 
the multiplicative property. Next, suppose that n = pyl . . . p:. where 
pj 1 mod 4 for 1 < j 5 r.  Let f a j  be the two square roots of 
-1 modulo pTJ (a square root modulo pj can be lifted to a square 
root modulo pTJ; see Exercise 20 of $ 11.2). Then any b which satisfies 
b z f a ,  mod pT' (for any choice of the f )  is a base to which n is 
a strong pseudoprime, since then b2' = ( - I ) ~  = -1 mod n. Choose 
b1 by taking all of the f a ,  equal to aj ,  and choose b2 by taking any 
of the 2' - 2 possible choices of sign other than all positive or all 
negative. Then show that for b = blb2 one has b2' = 1 mod n and 
b t = b f  f l m o d n .  

24. (a) In that case you obtain a number c other than f 1 whose square is 
1; then g.c.d. (c + 1, n) is a nontrivial factor of n. (b) Choose p and q so 
that p - 1 and q - 1 do not have a large common divisor (see Exercise 
5 above). 

g v.2. 
1. g.c.d.(x5-x3,n)=g.c.d.(21-63,91)=7;91=7.13.  
2. g .c .d . (x6 -x3 ,n )=g .c .d . (2839-26 ,8051)=97;8051=83 .97 .  
3. g.c.d.(x9 - x ~ ,  n) = g.c.d.(869 - 3397,7031) = 79; 7031 = 79 -89. 
4. g.c.d.(x6 - x3,n) =g.c.d.(630- 112,2701) = 37; 2701 = 37-73. 
5. (a) Prove by induction on k that for 1 5 k 5 r there is a l / r  probability 

that xo, . . . , xr-1 are distinct and xk is equal to one of the earlier xj. 
For k = 1 there is a 1/r probability that f(xo) = XO. The induction 
step is as follows. By the induction assumption, the probability that 
none of the earlier k's was the first for which xk = x j  for some j < k is 
1 - 9 = T. Assuming this to be the case, there are r - (k - 1) 
possible values for f ( ~ ~ - ~ ) ,  since a bijection cannot take xt-1 to any 
of the k - 1 values f (xj), 0 5 j 5 k - 2. Of the r - (k - 1) possible 
values, one is so, and all the others are distinct from so, XI,  . . . , xk- 1. 

Thus, there is a l / ( r  - (k - 1)) chance that the value is one of the 
earlier x j  (namely, if this is the case, note that j = 0). The probability 
that both things happen - none of the earlier k's was the first for 
which xk = xo but our present k has xk = xo - is the product of 
the individual probabilities, i.e., = !. (b) Since all of 

the values from 1 to r are equally probable, the average is k = 
+(r(r  + 1112) = ( r  + 1)/2. 

6. Suppose that a has no common factor with n (otherwise, we would 
immediately find a factor of n by computing g .c.d. (a, n) and we would 
have no need of the rho method at all). Then f (x) = ax+b is a bijection 
of Z/rZ to itself (for any rln), and so the expected number of steps 
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before we get a repetition modulo r is of the order of r/2 (by Exercise 
5(b)) rather than fi, i.e., it is much worse. 

7. (a )2k~21modr-1 ; (b )~=sandk=s+m,wheremis theomlero f  
2 modulo t, i.e., the smallest positive integer such that 2m = 1 mod t. 
m is also the period of the repeating binary expansion of l l t ,  as we see 
by writing 2m - 1 = ut and then l l t  = u Czl 2-m*. (c) k can easily 
have order almost as large as r ,  e.g., if r - 1 is twice a prime and 2 
happens to be a generator modulo that prime (in which case s = 1, 
m = (r - 3)/2). 

(a) (using t = [fi] + 1 = 93) 89.97; (b) (using t = [fi] + 4 = 903) 
823 983; (c) (using t = [fi] + 6 = 9613) 9277 . 9949; (d) (using 
t = [fi] + 1 = 9390) 9343 -9437; (e) (using t = [fi] + 8 = 75) 
43 . 107. 
In the factorization n = ab with a > b, if a < fi + fi, then b = 
n la  > n / ( f i  + fi) > fi - fi. On the other hand, if we start 
with b > fi - fi, then we must have a < fi + f i  + 2, because 
otherwise we would have n = ab > (fi + fi + 2)( f i  - fi) = 
n + fi - 2 f i  > n (as soon as n > 15; we check Exercise 2 separately 
for the first few n). Thus, in either case a - b < 2(@ + 1). But if 
Fermat factorization fails to work for the first value of t, then the s 
and t corresponding to the factorization n = ab satisfy: t > fi + 1, 
and so s = d G  > d(fi + 1)2 - n = > fifi, which 
contradicts the relationship s = (a - b)/2 < fi+ 1 as soon as n > 33. 
(a) We would have t2 - s2 = kn r 2 mod 4; but modulo 4 the difference 
of two squares cannot be 2. (b) We would have t2 - s2 = 4n = 4 mod 8, 
which can hold only if both s and t are even; but then (t/2)2 - n = 
( ~ / 2 ) ~ ,  and so simple Fermat factorization would have worked equally 
well. 
(a) (using t = [&I + 1 = 455) 149.463; (b) (using t = [&I + 2 = 

9472) 3217 9293; (c) (using t = [&] + 1 = 9894) 1973 -9923; (d) 
(using t = [&I + 2 = 9226) 1877.9067. 
B = {2,3); the vectors are {0,1) and {0,1); b = 52 ~ 5 3  mod n = 55, 
c = 2 . 32 = 18; g.c.d.(55 + 18,2701) = 73; 2701 = 37 73. 
B = {-1,2,3,61); the vectors are {1,0,0,0), {1,0,0,1), and 
{0,0,0,1); b = 68 .  152- 153 mod n = 1555, c = 2 3 61 = 366; 
g.c.d.(1555 + 366,4633) = 113; 4633 = 41 113. 
(a) Estimate the difference by taking the sum of the "triangular re- 
gions" between the graph of logx and the Riemann sum rectangles. 
(b) Compare $: log x dx with the sum of the areas of the trapezoids 
whose tops join the points (j,log j), and show that the total area 
between the curve and the trapezoids is bounded by a constant. (c) 
lim,,,(~log y! - (log y - 1)) = 0, so log y - 1 is the answer. 
(a) (1 - 2-")(I - 2-"+I) . . (1 - 2-n+k-1); (b) 0.298. 

9. The term from the rho method becomes 3.2 x 1012 times as great, while 
the term from the factor base method becomes 2.6 x lo6 times as great. 

10. (a) For s < so, we have h(s) > f (s) > f (so) = $h(so), and for s > so, 
we have h(s) > g(s) > g(so) = ?h(so). (b) Apply part (a) to log(f (s)) 
and kl(g(s)). 

g v.4. 
(a) 1 1 1 1 1 1 1 .  ,+ ,+ 4,; (b) & & & i$ & & & i$ i-5 ( 4  l +  7+ l+ 2+ 4 

(a) Since a +  : = x, it follows that x is the positive root of x2 -ax- 1 = . . 

0, i.e., x = (a + J 2 7 2 ) / 2 .  (b) Since the aiYs are 1, the recurrence 
relation for the numerators and denominators of the convergents are 
the same as for the Fibonacci numbers. 
2 + 1 1 2- 1 1 2- 1 1 . .; it is possible to show that the a,'s for 1+ 2+ 1+ 1+ 4+ I+ 1+ 6. 
i - 2 mod 3 are the successive even integers, and all other a,% are 1. 
For each bi you have bf - c:n is the least absolute residue of bf modulo 
n. If p divides this least absolute residue, then b: = cTn mod p, and 
this means that n is a quadratic residue modulo p. 
The tables below go through the first value of i such that the least 
absolute residues of bi, . . . , bf give a factorization of n. In four cases 
(parts (g), (i), (j), (k)) there is an earlier value of i such that some 
subset of these residues have corresponding vectors Ti which sum to 
zero; however, in those cases we end up with b r f c mod n. 

i 0 1 2  3 
ai 116 2 4 1 
bi 116 233 1048 1281 

b: mod n - 105 45 -137 80 
B = {2,3,5), b =  233. 1281, c =  22 - 3 . 5 ,  g.c.d.(b+c,n) = 191. 

i 0 1 2  
a i 93 1 2 
bi 93 94 281 

bf mod n -128 59 -32 
B =  {-1,2), b=93.281, ~ = 2 ~ , g . ~ . d . ( b + c , n ) = 6 7 .  
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i 0 1 2 3 4 5 6  
ai 1 1 1 2 1 2 2  7 1 (4 bi 111 223 334 891 2116 3300 5416 

b: m o d n  -82 117 -71 89 -27 166 -39 
B = {-1,3,13), b = 223-2116.5416, c = 33-13,  g.c.d.(b+c,n) = 157. 

a 0 1 2 3 4  5 
ai 120 1 1 8 2 2 

(f) bi 120 121 241 2049 4339 10727 
b: mod n -127 114 -27 98 -71 162 
B = {-1,2,3,7), b = 2049.10727, c = 2 - 3 2  7 ,  g.c.d.(b+c,n) = 199. 

i 0 1 2 3 4 5  
ai 1 0 0 1  1 1  1 2  

(g) bi 100 101 201 302 503 1308 
b: mod n -123 78 -91 97 -66 77 
B = {-1,2,3,7,11,13), b =  101*201.503-1308, ~ = 2 . 3 . 7  
g.c.d.(b + c,  n) = 191. 

i 0 1 2 3 4 5 6  
ai 1 1 1 1 1 2 1 4  1 

@I bi 111 112 223 558 781 3682 4463 
b: mod n -128 95 -67 139 -40 163 -31 

7 8 9 
6 2 1 

5562 3138 8700 
79 -115 80 

B = {-1,2,5), b = 111.781 -8700, c = 27 - 5 ,  g.c.d.(b+c,n) = 59. 

i 0 1 2 3 4  5 6 7 8  
ai 9 6 1 2 2  5 1 1  1 1 0) bi 96 97 290 677 3675 4352 8027 3026 1700 

b: mod n -137 56 -77 32 -107 79 -88 89 -77 
B={-1 ,2 ,7 ,11) ,  b=290 .1700 ,~=7- l l , g . c .d . (b+c ,n )=47 .  

i 0 1 2 3 4  5 6 
ai 159 1 2 1 1 2 4 

(j) bi 159 160 479 639 1118 2875 12618 
b; mod n -230 89 -158 145 -115 61 -227 

7 8 9 
1 5 1 

15493 13550 3532 
50 -167 145 

B = {-1,2,5,23,29}; b =  639-3532; c =  5.29; g.c.d.(b+c,n) = 97. 

i 0 1 2 3 4  5 
ai 133 1 2 4 2 3 @I bi 133 134 401 1738 3877 13369 

b: mod n -184 83 -56 107 -64 161 
6 7 8 
1 2 1 

17246 12115 11488 
-77 149 -88 

B = { - I ,  2,7,11,23}; b = 401 -3877.17246- 11488; c = 26 . 7 . 1 1 ;  
g.c.d.(b + c, n) = 61. 

g v.5. 
2. Part 6 )  is the most time-consuming. Time is bounded by 

A 
-1ogplogn = O ( A l o g n l o g P l o g l o g P ) .  

primes p<P P 

(The question asked only about steps 1-7; the other time-consuming 
stage for very large n is finding linearly dependent rows modulo 2 in 
the matrix of exponents corresponding to the B-numbers among the 
t2 - n.) 

3. (4 

Rows 1 and 3 are dependent and lead to the factorization 1879 - 557. 
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Rows 1 ,2  and 7 are dependent mod 2, but do not lead to a nontrivial factor. 
Rows 1 and 9 are dependent and lead to the factorization 1787.593. 
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Rows 1 and 5 are dependent and lead to the factorization 661 . 1511. 

5 VI.1. 
Either the circle group (if the real curve has one connected component) 
or the product of the circle group and the two-element group (if it has 
two connected components). An example of the first is y2 = x3 + x; an 
example of the second is y2 = x3 - x (for an equation of the form ( 1 ), 
this depends on whether the cubic on the right has 1 or 3 real roots). 
n2 complex points of order 7r; n real points of order n if n is odd, and 
either n or 2n if n is even, depending on whether the real curve has 
one or two components. 
Same examples as in Exercise 1. 
(a) On the x-axis; (b) inflection point; (c) a point where a line from 
an x-intercept of the curve is tangent to the curve (in addition to  the 
points in (a)). 

(a) 3; (b) 4; ( 4  7; ( 4  5. 

Characteristic 2: x3 = +xl +x2, y3 = c+ y1 + s ( x l  +x3), and 
X I  + z 2  

x4+a2 z2+a when P = Q w e  have53 = --l;.r, y3 =c+yl+--1;--(x1+x3); and for 

equation (2b): 1 3  = @; + 2 + x 
2 1  + x 2  

1 + 1 2  + a, Y3 = (gg) (x1 + 
b x3) + 23 +y1, and when P = Q we have x3 = x: + z, y3 = x: + 
1 

(XI + g ) x 3  + 23; characteristic 3: x3 = (s)~ - a - xl - x2, y3 = 

- y l + u ( x l - x 3 ) , a n d w h e n P = Q w e h a v e x 3 =  2 2 - 5 1  ( -b )2-a+Xl, 

y3 = -y1+ +(XI -23). 
(a) Show that in each pair {a, -a) exactly one of the values x = f a  
leads to 2 solutions (x, y) to the equation (treat x = 0 and the point at  
infinity separately). (b)-(c) Use the fact that x I-+ x3 is a 1-to-1 map 
of F, to itself when q = 2 mod 3. 
The following table shows the type of the abclian group for each value 
of q and each of the two elliptic curves: 

3 5 7 9 11 13 17 

9. (a) Let P =  (x,y). Then - P =  ( x , y + l ) ,  2 P =  ( X ' , ~ ~ + I ) .  (b) We 
have 2(2P) = (x16, y16 + 1 + 1) = (x16, y16) = (x, y) = P .  (c) By part 
(b), 2 P  = -P,  i.e., (x4, y4 + 1 )  = (x, y+  1); but this means that 2' = x 
and y4 = y, so that x a.nd y are in the field of 4 elements. By Hasse's 
theorem, the number N GC points is within 2 4  = 4 of 4 + 1 and within 
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10. The denominator of the zeta function is always (1 - T)(1 - pT); the 
following table shows the numerator for p = 5,7,11,13: 
y 2 = ~ 3 - ~  1 + 2 T + 5 T 2  1 + 7 T 2  1 + 1 1 ~ ?  1 - 6 ~ + 1 3 ~ ~  
Y 2 = ~ 3 - 1  1 + 5 T 2  1 - 4 T + 7 T 2  1+11T2 1 - 2 ~ + 1 3 ~ ~  

11. In both cases there is no solution (x, y) to the equation over Fp, SO the 
only point is the point a t  infinity. The numerator of the zeta function is 
1 - 2T + 2T2 and 1 - 3T + 3T2, respectively. Then N, = N(( l  + 2)' - 1) 
and N(( l  + w)' - I), respectively, where w = (-1 + ifi)/2.  

Pick elements of Fq at  random, and stop when you find g such that 
g(q-1)/2 = -1 (rather than +I). 
Let x E Fq correspond to m. (a) Let f (x) = x3 -2. Note that precisely 
one off (x), f (-x) = - f (x) is a square. Let y = f (~)(9+') /~.  Then show 
that either (x, y) or (-x, y) is a point on the curve. (b) Choose any y, 
set x = (y2 + y)(2-q)/3 (unless y = 0 or -1, in which case set x = O), 
and show that (x, y) is on the curve. 
(a) The sequence of points (x, y) is: 

(b) ICANT (I can't). 
(a) E mod p has a noncyclic subgroup, namely, the group of points of 
order 2; (b) E mod p has a subgroup of order 2 or 4, namely, the points 
of order 2. 
Use the formulas in Example 5 of 51. (a) Use congruence modulo 3 to 
show that in both cases ( r  odd and r even) one has 31 N, . (b) When 41r 
we have: N, = (2'12 - 1)2 = (TI4  + 1)~(2 ' /~  - I ) ~ ,  which is divisible 
by an (~14)-bit prime if and only if 7-14 is a prime for which 2'i4 - 1 is 
a Mersenne prime; it is divisible by an (r/4 + 1)-bit prime if and only 
if r /4  = 2k with 22k + 1 a Fermat prime. 
(a) The Fp-points then form a proper subgroup of the Fpv-points (by 
Hasse's theorem), and that subgroup has more than 1 element (also by 
Hasse's theorem). Thus, N, has a proper divisor. (b) In both cases let 
E have equation y2 + y = x3 - x + 1; one easily checks that over F2 or 
F3 the curve has no points except for the point a t  infinity 0. Thus, the 
argument in part (a) does not apply, and one finds that when p = 2 
we have N2 = 5, N3 = 13, N5 = 41, N7 = 113, Nll = 2113 (note 
that the zeta-function is (1 - 2T + 2 ~ ~ ) / ( 1 -  T)(1 - 2T); for r prime 
N, is prime if and only if the secalled "complex Mersenne number" 
(1 + i)' - 1 is a prime in the Gaussian integers, or equivalently, if 
and only if 2' + 1 - (!)2(r+1)/2 is a prime, where (:) is the Legendre 
symbol); when p = 3 we have N2 = '/, Ng = 271, N7 = 2269 (here the 
zeta-function is (1 - 3T + 3 ~ ~ ) / ( 1  - T)(1 - 3T)). 
(a) y2 + y = x3 + a ,  where a is either of the elements of F4 not in F2. 
(b) The zeta-function is (1 - 4T + 4T2)/(1 - T)(1 - 4T), and the two 

reciprocal roots of the numerator are both 2; then use the remark at  the 
end of $1. (c) The double of (x, y) is (x4, y4) (note that the 4th-power 
map is the "Frobenius" map, i.e., the generator of the Galois group of 
F4r over F4).  (d) Doubling any point r times gives (x", y4r)  = (x, y), 
i.e., any P E E satisfies 2'P = P .  
(a) Use the fact that something is in F2 if and only if it satisfies x2 = x; 
and also the fact that (a + b)2 = a2 + b2 in a field of characteristic 2. 
(b) The map z I+ z + 1 gives a 1-to-1 correspondence between the 2's 
with trace 0 and the 2's with trace 1. (c) Choose random x E F2r, 
substitute the cubic x3 + ax  + b for z in g(z), and if z = x3 + ax  + b 
lands in the 50% of elements with trace 0, then the point (x,g(z)) is 
on the curve. 
When working with E modulo p, one uses the same formulas (4)-(5) 
of $1, and one gets the point at  infinity when one adds two smaller 
multiples k P  = k l P  + k2P which, when reduced modulo p, have the 
same x-coordinate and the negative of each other's y-coordinate. That 
is equivalent to conditions (1)-(2) in the exercise. 
The denominator of 8 P  is divisible by p = 23, and so P mod 23 has 
order 8 on E mod 23, by Exercise 9. However, Hasse's theorem shows 
that E mod 23 has more than 8 points. 
(676,182), (385,703); (595,454), (212,625); (261,87), (77,369); 
(126, loo), (66,589); (551,606), (501,530); (97,91), (733,110); 
(63,3 l3), (380,530). 

5 VI.3. 
1. (a) 1 - 119; (b) 1 - l/q. 
3. (a) If n = 22k + 1 is prime, then any a with (:) = -1 has this property. 

See Exercise 15 of 11.2 concerning a = 3,5,7. On the other hand, if 
2 k - l  

p is a proper prime divisor of n, and if a2 = -1, then 22k but 
not 22k-1 is a multiple of the order of a modulo p, i.e., this order 
is 22k = n - 1 > p - 1, which is impossible. (b) First suppose that 
n = 2P - 1 is prime. To show that E mod n has 2P points, see Exercise 
7(a) of gVI.1. To show that the group is cyclic, prove that there are 
only two points of order 2, because the cubic x3 + x has only one 
root modulo n. Then any of the 50% of the points which generate 
E mod n (i.e., which are not the double of any point in E mod n) have 
the properties (1)-(2). Conversely, suppose that n has a proper prime 
divisor e. If P satisfied properties (1) --(2), then on E mod e the order of 
P would divide 2P but not 2 ~ - ' ,  i.e., it would be 2P. But then 2P = n +  l 
would divide the number of points on E mod e, and this contradicts 
Hasse's theorem, which tells us that this number is < e + 2& + 1. To 
generate random points on E mod n, choose x E ZlnZ randomly. If 
b = x3 + x happens to be a square modulo n, then setting y = b(n+1)/4 
will give y2 b . b(n-l)/2 = - x3 + X. (See Remark 1 at the end of 
5 11.2.) 
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VI.4. 
g.c.d.(2k - 1,n) = n ,  but g . ~ . d . ( 3 ~  - 1,n) = 127; n =  127.421. 
The probability that a random residue a in (Z/pZ)* satisfies plak - 1 
is one out of (p - l)/g.c.d.(k, p - 1). Since there is little chance that 
ak - 1 will be divisible by any other divisor of n, this is also an estimate 
of the probability that g.c.d.(ak - 1, n) = p. 
(a) 3 out of 41; (b) 22 out of 41; (c) 25 out of 127; (d) 68 out of 127; 
(e) 105 out of 399. 
Choose k = 26 34 52. Here are the first value of a for which the 
method gives a factor, the factor it gives, and the value of kr for which 
the algorithm terminates: (a) 1, 37, 23; (b) 2, 71, 26 3' 5; (c) 1, 67, 
26 .3( . 5; (d) 1, 47, 26 3; (e) 2, 79, 26 52; (f) 1, 73, 26 -3 ;  (g) 
5, 53, 22; (h) 4, 59, 26 32; (i) 1, 47, 26 3; (j) 3, 97, 26 3; (k) 1, 61, 
26 . 34 . 52. 
If the latter possibility occurred, it would mean that t' (kl/t)P mod p = 
0 mod p for some t' < t ,  while (kl/t)P mod p # 0 mod p. But t' is a 
product of primes t* < t ,  and our choice of exponents in (2) ensured 
that for each such t* the highest power of t* that could divide the 
order of P mod p in E mod p already occurred in (t*)"~', i.e., in 
kl It. 
(a) If n happens to be divisible only by primes which are = 3 mod 4, 
then there are always p + 1 points on E mod p for pln (see Exercise 
7(a) of $1 for the case a = -1; but the same argument applies for any 
a). In that case it won't help to vary a if p + 1 is divisible by a large 
prime for each pln. (b) If n happens to be divisible only by primes 
p 2 mod 3, then there are always p + 1 points (see Exercise 7(b) of 
§I), and so again it won't help to vary b if p + 1 is divisible by a large 
prime for each pln. 
Generate pairs (E, P )  where E has equation y2 = x(x - a)(x - b); then 
E has four points of order 2, including the point at infinity (see Exercise 
4(a) of sVI.1). To do this, choose random a, x, yo; set y = x(x - a)yo 
and then b = x - yyo. 
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point at,  168, 171 
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Solovay-Strassen, 129 
trial division, 126 

prime field, 33 
prime number, 12 

in arithmetic progression, 35 
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