

Reverse Engineering of
Object Oriented Code

Monographs in Computer Science

Abadi and Cardelli, A Theory of Objects

Benosman and Kang [editors], Panoramic Vision: Sensors, Theory and Applications

Broy and Stølen, Specification and Development of Interactive Systems: FOCUS on
Streams, Interfaces, and Refinement

Brzozowski and Seger, Asynchronous Circuits

Cantone, Omodeo, and Policriti, Set Theory for Computing: From Decision
Procedures to Declarative Programming with Sets

Castillo, Gutiérrez, and Hadi, Expert Systems and Probabilistic Network Models

Downey and Fellows, Parameterized Complexity

Feijen and van Gasteren, On a Method of Multiprogramming

Herbert and Spärck Jones [editors], Computer Systems: Theory, Technology, and
Applications

Leiss, Language Equations

Mclver and Morgan [editors], Programming Methodology

Mclver and Morgan, Abstraction, Refinement and Proof for Probabilistic Systems

Misra, A Discipline of Multiprogramming: Program Theory for Distributed
Applications

Nielson [editor], ML with Concurrency

Paton [editor], Active Rules in Database Systems

Selig, Geometric Fundamentals of Robotics, Second Edition

Tonella and Potrich, Reverse Engineering of Object Oriented Code

Paolo Tonella

Reverse Engineering of

Springer

Alessandra Potrich

Object Oriented Code

eBook ISBN: 0-387-23803-4
Print ISBN: 0-387-40295-0

Print ©2005 Springer Science + Business Media, Inc.

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Boston

©2005 Springer Science + Business Media, Inc.

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com

To Silvia and Chiara
Paolo

To Bruno
Alessandra

This page intentionally left blank

Contents

Foreword XI

Preface XIII

1

2

3

Introduction
1.1
1.2
1.3
1.4
1.5
1.6
1.7

Reverse Engineering

The Object Flow Graph
2.1

2.2
2.3
2.4
2.5
2.6
2.7

Abstract Language
2.1.1
2.1.2

Declarations
Statements

Object Flow Graph

Class Diagram
3.1

3.2

Class Diagram Recovery
3.1.1 Recovery of the inter-class relationships
Declared vs. actual types
3.2.1
3.2.2

Flow propagation
Visualization

1
1
3
5
8

10
14
18

21
21
22
24
25
27
30
32
36
40

43
44
46
47
48
49

The eLib Program
Class Diagram
Object Diagram
Interaction Diagrams
State Diagrams
Organization of the Book

Containers
Flow Propagation Algorithm
Object sensitivity
The eLib Program
Related Work

VIII Contents

3.3

3.4
3.5

Containers
3.3.1 Flow propagation
The eLib Program
Related Work
3.5.1 Object identification in procedural code

4 Object Diagram
4.1
4.2
4.3
4.4

4.5

The Object Diagram

4.4.1 Discussion
The eLib Program
4.5.1
4.5.2
4.5.3
4.5.4

OFG Construction

4.6 Related Work

5 Interaction Diagrams
5.1
5.2

5.3

5.4
5.5

Interaction Diagrams

5.2.1
5.2.2

Incomplete Systems

Dynamic Analysis
5.3.1 Discussion
The eLib Program

6 State Diagrams
6.1
6.2
6.3
6.4
6.5

State Diagrams

7 Package Diagram
7.1
7.2

Package Diagram Recovery

7.2.1
7.2.2

Feature Vectors

7.3
7.4
7.5

Concept Analysis

51
52
56
59
60

63
64
65
68
74
76
78
79
82
83
84
87

89
90
91
95
98

102
105
106
112

115
116
118
122
125
131

133
134
136
136
140
143
148
152

Object Diagram Recovery
Object Sensitivity
Dynamic Analysis

Object Diagram Recovery
Discussion
Dynamic analysis

Interaction Diagram Recovery

Focusing

Related Work

Abstract Interpretation
State Diagram Recovery
The eLib Program
Related Work

Clustering

Modularity Optimization

The eLib Program
Related Work

Contents IX

8 Conclusions
8.1

8.3
8.4

Tool Architecture
8.1.1 Language Model

8.2 The eLib Program
8.2.1
8.2.2

Change Location
Impact of the Change

Perspectives
Related Work
8.4.1 Code Analysis at CERN

A Source Code of the eLib program

B Driver class for the eLib program

155
156
157
159
160
162
170
172
172

175

185

191

199

References

Index

This page intentionally left blank

Foreword

There has been an ongoing debate on how best to document a software system
ever since the first software system was built. Some would have us writing nat-
ural language descriptions, some would have us prepare formal specifications,
others would have us producing design documents and others would want us
to describe the software thru test cases. There are even those who would have
us do all four, writing natural language documents, writing formal specifica-
tions, producing standard design documents and producing interpretable test
cases all in addition to developing and maintaining the code. The problem
with this is that whatever is produced in the way of documentation becomes
in a short time useless, unless it is maintained parallel to the code. Maintain-
ing alternate views of complex systems becomes very expensive and highly
error prone. The views tend to drift apart and become inconsistent.

The authors of this book provide a simple solution to this perennial prob-
lem. Only the source code is maintained and evolved. All of the other infor-
mation required on the system is taken from the source code. This entails
generating a complete set of UML diagrams from the source. In this way, the
design documentation will always reflect the real system as it is and not the
way the system should be from the viewpoint of the documentor. There can
be no inconsistency between design and implementation. The method used is
that of reverse engineering, the target of the method is object oriented code in
C++, C#, or Java. From the code class diagrams, object diagrams, interac-
tion diagrams and state diagrams are generated in accordance with the latest
UML standard. Since the method is automated, there are no additional costs.
Design documentation is provided at the click of a button.

This approach, the result of many years of research and development, will
have a profound impact upon the way IT-systems are documented. Besides
the source code itself, only one other view of the system needs to be developed
and maintained, that is the user view in the form of a domain specific lan-
guage. Each application domain will have to come up with it’s own language
to describe applications from the view point of the user. These languages may
range from natural languages to set theory to formal mathematical notations.

XII Foreword

What these languages will not describe is how the system is or should be con-
structed. This is the purpose of UML as a modeling language. The techniques
described in this book demonstrate that this design documentation can and
should be extracted from the code, since this is the cheapest and most reliable
means of achieving this end. There may be some UML documents produced
on the way to the code, but since complex IT systems are almost always de-
veloped by trial and error, these documents will only have a transitive nature.
The moment the code exists they are both obsolete and superfluous. From
then on, the same documents can be produced cheaper and better from the
code itself. This approach coincides with and supports the practice of extreme
programming.

Of course there are several drawbacks, as some types of information are
not captured in the code and, therefore, reverse engineering cannot capture
them. An example is that there still needs to be a test oracle – something to
test against. This something is the domain specific specification from which
the application-oriented test cases are derived. The technical test cases can
be derived from the generated UML diagrams. In this way, the system as
implemented will be verified against the system as specified. Without the
UML diagrams, extracted from the code, there would be no adequate basis of
comparison.

For these and other reasons, this book is highly recommendable to all
who are developing and maintaining Object-Oriented software systems. They
should be aware of the possibilities and limitations of automated post docu-
mentation. It will become increasing significant in the years to come, as the
current generation of OO-systems become the legacy systems of the future.
The implementation knowledge they encompass will most likely be only in the
source and there will be no other means of regaining it other than through
reverse engineering.

Trento, Italy, July 2004
Benevento, Italy, July 2004

Harry Sneed
Aniello Cimitile

Preface

Diagrams representing the organization and behavior of an Object Oriented
software system can help developers comprehend it and evaluate the impact of
a modification. However, such diagrams are often unavailable or inconsistent
with the code. Their extraction from the code is thus an appealing option.
This book represents the state of the art of the research in Object Oriented
code analysis for reverse engineering. It describes the algorithms involved
in the recovery of several alternative views from the code and some of the
techniques that can be adopted for their visualization.

During software evolution, availability of high level descriptions is ex-
tremely desirable, in support to program understanding and to change-impact
analysis. In fact, location of a change to be implemented can be guided by
high level views. The dependences among entities in such views indicate the
proportion of the ripple effects.

However, it is often the case that diagrams available during software evo-
lution are not consistent with the code, or – even more frequently – that no
diagram has altogether been produced. In such contexts, it is crucial to be
able to reverse engineer design diagrams directly from the code. Reverse engi-
neered diagrams are a faithful representation of the actual code organization
and of the actual interactions among objects. Programmers do not face any
misalignment or gap when moving from such diagrams to the code.

The material presented in this book is based on the techniques devel-
oped during a collaboration we had with CERN (Conseil Européen pour la
Recherche Nucléaire). At CERN, work for the next generation of experiments
to be run on the Large Hadron Collider has started in large advance, since
these experiments represent a major challenge, for the size of the devices,
teams, and software involved. We collaborated with CERN in the introduc-
tion of tools for software quality assurance, among which a reverse engineering
tool.

The algorithms described in this book deal with the reverse engineering of
the following diagrams:

Class diagram: Extraction of inter-class relationships in presence of weakly
typed containers and interfaces, which prevent an exact knowledge of the
actual type of referenced objects.

Object and interaction diagrams: Recovery of the associations among
the objects that instantiate the classes in a system and of the messages
exchanged among them.

State diagram: Modeling of the behavior of each class in terms of states
and state transitions.

Package diagram: Identification of packages and of the dependences among
packages.

XIV Preface

All the algorithms share a common code analysis framework. The basic
principle underlying such a framework is that information is derived statically
(no code execution) by performing a propagation of proper data in a graph
representation of the object flows occurring in a program. The data structure
that has been defined for such a purpose is called the Object Flow Graph
(OFG). It allows tracking the lifetime of the objects from their creation along
their assignment to program variables.

UML, the Unified Modeling Language, has been chosen as the graphical
language to present the outcome of reverse engineering. This choice was mo-
tivated by the fact that UML has become the standard for the representation
of design diagrams in Object Oriented development. However, the choice of
UML is by no means restrictive, in that the same information recovered from
the code can be provided to the users in different graphical or non graphical
formats.

A well known concern of most reverse engineering methods is how to fil-
ter the results, when their size and complexity are excessively high. Since
the recovered diagrams are intended to be inspected by a human, the pre-
sentation modes should take into account the cognitive limitations of humans
explicitly. Techniques such as focusing, hierarchical structuring and element
explosion/implosion will be introduced specifically for some diagram types.

The research community working in the field of reverse engineering has
produced an impressive amount of knowledge related to techniques and tools
that can be used during software evolution in support of program under-
standing. It is the authors’ opinion that an important step forward would be
to publish the achievements obtained so far in comprehensive books dealing
with specific subtopics.

This book on reverse engineering from Object Oriented code goes exactly
in this direction. The authors have produced several research papers in this
field over time and have been active in the research community. The techniques
and the algorithms described in the book represent the current state of the
art.

Trento, Italy
July 2004

Paolo Tonella
Alessandra Potrich

Introduction

Reverse engineering aims at supporting program comprehension, by exploiting
the source code as the major source of information about the organization
and behavior of a program, and by extracting a set of potentially useful views
provided to programmers in the form of diagrams. Alternative perspectives
can be adopted when the source code is analyzed and different higher level
views are extracted from it. The focus may either be on the structure, on
the behavior, on the internal states, or on the physical organization of the
files. A single diagram recovered from the code through reverse engineering
is insufficient. Rather, a set of complementary views need to be obtained,
addressing different program understanding needs.

In this chapter, the role of reverse engineering within the life cycle of a
software system is described. The activities of program understanding and
impact analysis are central during the evolution of an existing system. Both
activities can benefit from sources of knowledge about the program such as
reverse engineered diagrams.

The reverse engineering techniques presented in the following chapters are
described with reference to an example program used throughout the book. In
this chapter, this example program is introduced and commented. Then, some
of the diagrams that are the object of the following chapters are provided for
the example program, showing their usefulness from the programmer’s point
of view. The remaining parts of the book contain the algorithmic details on
how to recover them from the source code.

1.1 Reverse Engineering

In the life cycle of a software system, the maintenance phase is the largest
and the most expensive. Starting after the delivery of the first version of the
software [35], maintenance lasts much longer than the initial development
phase. During this time, the software will be changed and enhanced over and
over. So it is more appropriate to speak of software evolution with reference

1

2 1 Introduction

to the whole life cycle, in which the initial development is only a special case
where the existing system is empty.

Software evolution is characterized by the existence of the source code of
the system. Thus, the typical activity in software evolution is the implemen-
tation of a program change, in response to a change request. Changes may
be aimed at correcting the software (corrective maintenance), at adding a
functionality (perfective maintenance), at adapting the software to a changed
environment (adaptive maintenance), or at restructuring it to make future
maintenance easier (preventive maintenance) [35].

During software evolution, the most reliable and accurate description of
the behavior of a software system is its source code. In fact, design diagrams
are often outdated or missing at all. Such a valuable information repository
may not directly answer all questions about the system. Reverse engineer-
ing techniques provide a way to extract higher level views of the system,
which summarize some relevant aspects of the computation performed by the
program statements. Reverse engineered diagrams support program compre-
hension, as well as restructuring and traceability.

When an existing code base is worked on, the micro-process of program
change can be decomposed into localizing the change, assessing the impact,
and implementing the change. All such activities depend on the knowledge
available about the program to be modified. In this respect, reverse engineer-
ing techniques are a useful support. Reverse engineering tools provide useful
high level information about the system being maintained, thus helping pro-
grammers locate the component to be modified. Moreover, the relationships
(dependencies, associations, etc.) that connect the entities in reverse engi-
neered diagrams provide indications about the impact of a change. By tracing
such relationships the set of entities possibly affected by a change are obtained.

Object Oriented programming poses special problems to software engi-
neers during the maintenance phase. Correspondingly, reverse engineering
techniques have to be customized to address them. For example, the behavior
of an Object Oriented program emerges from the interactions occurring among
the objects allocated in the program. The related instructions may be spread
across several classes, which individually perform a very limited portion of
the work locally and delegate the rest of it to others. Reverse engineered dia-
grams capture such collaborations among classes/objects, summarizing them
in a single, compact view. However, recovering accurate information about
such collaborations represents a special challenge, requiring major improve-
ments to the available reverse engineering methods [48, 100].

When a software system is analyzed to extract information about it, the
fundamental choice is between static and dynamic analysis. Dynamic analysis
requires a tracer tool to save information about the objects manipulated and
the methods dispatched during program execution. The diagrams that can
be reverse engineered in this way are partial. They hold valid for a single,
given execution of the program, with given input values, and they cannot be
easily generalized to the behavior of the program for any execution with any

1.2 The eLib Program 3

input. Moreover, dynamic analysis is possible only for complete, executable
systems, while in Object Oriented programming it is typical to produce in-
complete sets of classes that are reused in different contexts. On the contrary,
a static analysis produces results that are valid for all executions and for all
inputs. On the other side, static analyses may be over-conservative. In fact,
it is undecidable to determine if a statically possible path is feasible, i.e., if
there exists an input value allowing its traversal. Static analysis may conserva-
tively assume that some paths are executable, while they are actually not so.
Consequently, it may produce results for which no input value exists. In the
following chapters, the advantages and disadvantages of the two approaches
will be discussed for each specific diagram, illustrating them on an executable
example.

UML (Unified Modeling Language) [7, 69] has become the standard graphi-
cal language used to represent Object Oriented systems in diagrammatic form.
Its specifications have been recently standardized by the Object Management
Group (OMG) [1]. UML has been adopted by several software companies, and
its theoretical aspects are the subject of several research studies. For these rea-
sons, UML was chosen as the graphical representation that is produced as the
output of the reverse engineering techniques described in this book. However,
the choice of UML is by no means limiting: while the information reverse
engineered from the code can be represented in different graphical (or non
graphical) forms, the basic analysis methods exploited to produce it can be
reused unchanged in alternative settings, with UML replaced by some other
description language.

An important issue reverse engineering techniques must take into account
is usability. Since the recovered views are for humans and not for computers,
they must be compatible with the cognitive abilities of human beings. This
means that diagrams convey useful information only if their size is kept small
(while 10 entities may be fine, 100 starts being too much and 1000 makes a
diagram unreadable). Several approaches can be adopted to support visual-
ization and navigation modes making reverse engineered information usable.
They range from the possibility to focus on a portion of the system, to the
expand/collapse or zoom in/out operations, or to the availability of an overall
navigation map complemented by a detailed view. In the following chapters,
ad hoc methods will be described with reference to the specific diagrams being
produced.

1.2 The eLib Program

The eLib program is a small Java program that supports the main functions
operated in a library. Its code is provided in Appendix A. It will be used in
the remaining of this book as the example.

In eLib, libraries are supposed to hold an archive of documents of different
categories, properly classified. Each document can be uniquely identified by

4 1 Introduction

the librarian. Library users can request some of these documents for loan,
subjected to proper access rules. In order to borrow a document, users must be
identified by the librarian. For example, this could be achieved by distributing
library cards to registered users.

As regards the management of the documents in the eLib system, the
librarian can insert new documents in the archive and remove documents
no longer available in the library. Upon request, the librarian may need to
search the archive for documents according to some search criterion, such as
title, authors, ISBN code, etc. The documents held by a library are of several
different kinds, including books, journals, and technical reports. Each of them
has specific properties and specific access restrictions.

As far as user management is concerned, a set of personal data (name,
address, phone number, etc.) are maintained in the archive. A special cate-
gory of users consists of internal users, who have special permission to access
documents not allowed for loan to normal users.

The main functionality of the eLib system is loan management. Users can
borrow documents up to a maximum number. While books are available for
loan to any user, journals can be borrowed only by internal users, and technical
reports can be consulted but not borrowed.

Although this is a small application, by going through the source code
of the eLib program (see Appendix A) it is not so easy to understand how
the classes are organized, how they interact with each other to fulfill the
main functions, how responsibilities are distributed among the classes, what
is computed locally and what is delegated. For example, a programmer aiming
at understanding this application may have the following questions:

What is the overall system organization?
What objects are updated when a document is borrowed?
What classes are responsible to check if a given document can be borrowed
by a given user?
How is the maximum number of loans handled?
What happens to the state of the library when a document is returned?

Let us assume the following change request (perfective maintenance):

When a document is not available for loan, a user can reserve it, if it
has not been previously reserved by another user. When a document
is returned to the library, the user who reserved it is contacted, if
any is associated with the document. The user can either borrow the
document that has become available or cancel the reservation. In both
cases, after this operation the reservation of the document is deleted.

the programmer who is responsible for its implementation may have the fol-
lowing questions about the system:

Does the overall system organization need any change?
What classes need to collaborate to realize the reservation functionality?

1.3 Class Diagram 5

Is there any possible side effect on the existing functionalities?
What changes should be made in the procedure for returning documents
to the library?
How is the new state of a document described?
Is there any interaction between the new rules for document borrowing
and the existing ones?

In the following sections, we will see how UML diagrams reverse engineered
from the code can help answer the program understanding and impact analysis
questions listed above.

1.3 Class Diagram

The class diagram reverse engineered from the code helps understand the
overall system’s organization and the kind of interclass connections that exist
in the program.

Fig. 1.1. Class diagram for the eLib program.

Fig. 1.1 shows the class diagram of the eLib program, including all inter-
class dependencies. The UML graphical language has been adopted, so that

6 1 Introduction

dashed lines indicate a dependency, solid lines an association and empty ar-
rows inheritance. The exact meaning of the notation will be clarified in the
following chapters. An intuitive idea is sufficient for the purposes of this sec-
tion. Only some attributes and methods inside the compartments of each class
have been selected for display.

The overall architecture of the system is clear from Fig. 1.1. The class
Library provides the main functionalities of the eLib program. For example,
library users are managed through the methods addUser and removeUser,
while documents to be archived or dismissed are managed through addDocu-
ment and removeDocument. The objects that respectively represent users and
documents belong to the two classes User and Document. As apparent from
the class diagram, there are two kinds of users: normal users, represented as
objects of the base class User, and internal users, represented by the subclass
InternalUser. Library documents are also classified into categories. A library
can manage journals (class Journal), books (class Book), and technical reports
(class TechnicalReport). All these classes extend the base class Document.

The attributes of class User aim at storing personal data about library
users, such as their full name, address and phone number. A user code (at-
tribute userCode) is used to uniquely identify each user. This could be read
from a card issued to library users (e.g., reading a bar code). In addition to
that, internal users are identified by an internal code (attribute internalId
of class InternalUser).

Objects of class Document are identified by a code (attribute document-
Code), and possess attributes to record the title, authors and ISBN code.
Technical reports obey an alternative classification scheme, being identified
also by their reference number (attribute refNo).

A Library holds the list of its users and documents. This is represented in
the class diagram by the two associations respectively toward classes User and
Document (labeledusers and documents, resp.). These associations provide a
stable reference to the collection of documents and the set of users currently
handled.

The process of borrowing a document is objectified into the class Loan.
A Library manages a set of current loans, indicated in the class diagram
as an association toward class Loan (labeled loans). A Loan consists of a
User (association labeled user) and a Document (association document). It
represents the fact that a given user borrowed a given document. A Library
can access the list of its active loans through the association loans and from
each Loan object, it can obtain the User and Document involved in the loan.

The two associations, between Loan and User, and between Loan and
Document, are made bidirectional by the addition of a reverse link (from User
to Loan and from Document to Loan resp.). This allows getting the set of loans
of a given user and the loan (if any exists) associated to a given document.
The chain from users to documents, and vice versa, can thus be closed. Given
a user, it is possible to access her/his loans (association loans), and from each
loan, the related Document object. In the other direction, given a Document,

1.3 Class Diagram 7

it is possible to see if it is borrowed (association loan leads to a non-null
object), and in case a Loan object exists, the user who borrowed the document
is accessible through the association user (from Loan to User).

Class Library establishes the relationships between users and documents,
through Loan objects, when calls to its method borrowDocument are issued.
On the contrary, the method returnDocument is responsible for dropping Loan
objects, thus making a document no longer connected to a Loan object, and
diminishing the number of loans a user is associated with. When a document is
requested for loan by a user, the Library checks if it is available, by invoking
the method isAvailable of class Document, and if the given user is authorized
to borrow the document, by invoking the method authorizedLoan inside
class Document. Since loan authorization depends also on the kind of user
issuing the request (normal vs. internal user), a method authorizedUser is
provided inside the class User to distinguish normal users from users with
special loan privileges. The method authorizedLoan is overridden when the
default authorization policy, implemented by the base class Document, needs
be changed in a subclass (namely,TechnicalReport and Journal). Similarly,
the default authorization rights of normal users, defined in the base class User,
are redefined inside InternalUser.

Search facilities are available inside the class Library. Users can be
searched by name (method searchUser), while documents can be searched by
title (method searchDocumentByTitle), authors (method searchDocument-
ByAuthors), or ISBN code (method searchDocumentByISBN). Retrieved users
can be associated with the documents they borrowed and retrieved documents
can be associated with the users who borrowed them (if any) as explained
above.

Print facilities are available inside classes Library, User, Document, and
Loan (for clarity, some of them are not shown in Fig. 1.1). The method
printInfo is a function to print general information available from the classes
User and Document. The method printAvailability inside class Document
emits a message stating if a given document is available or was borrowed. In
the latter case, information about the user who borrowed it is also printed.

The mutual dependencies between classes User and Document (dashed
lines in Fig. 1.1) are due to the invocation of methods to gather informa-
tion that is displayed by some printing function. For example, the method
printInfo of class User displays personal user data, followed by the list
of borrowed documents. Information about such documents is obtained by
traversing the two associations loans and document, leading to a Document
object for each borrowed item. Then, calls to get data about each Document
(e.g., method getTitle) are issued. Hence, the dependency from User to
Document. Symmetrically, method printAvailability of class Document ac-
cesses user data (e.g., calling method getName), in case a User borrowed the
given Document. This happens when the association loan is non-null. The di-
rect invocation from Document to User is the cause of the dependency between
these two classes.

8 1 Introduction

Authorization to borrow documents is handled in a straightforward way
inside the classes Document and TechnicalReport, which return a constant
value (resp. true and false) and do not use at all the parameter user received
upon invocation of authorizedLoan. On the other side, the class Journal
returns a value that depends on the privileges of the parameter user. This is
achieved by calling authorizedUser from authorizedLoan inside Journal.
This direct call from Journal to User explains the dependency between these
two classes in the class diagram.

Chapter 3 provides an algorithm for the extraction of the class diagram in
a context similar to that of the eLib program, where weakly typed containers
and interfaces are used in attribute and variable declarations.

1.4 Object Diagram

The object diagram focuses on the objects that are created inside a program.
Most of the object creations for the classes in the eLib program are performed
inside an external driver class, such as that reported in Appendix B.

The static object diagram represents all objects and inter-object relation-
ships possibly created in a program. The dynamic object diagram shows the
objects and the relationships that are created during a specific program exe-
cution.

Fig. 1.2. Static (left) and dynamic (right) object diagram for the eLib program.

Fig. 1.2 depicts both kinds of object diagrams for the eLib program. In
the static object diagram, shown on the left, each object corresponds to a
distinct allocation statement in the program. Thus, for the eLib program un-
der analysis (Appendixes A and B), there is one allocation point for creating
objects of the classes Library, Book, Journal, TechnicalReport, User,
InternalUser. No object of class Document is ever allocated, while objects of
class Loan are allocated by three different statements inside the class Library.
One such allocation (line 60) belongs to the methodborrowDocument, and pro-
duces the object named Loan1, another one (line 70) is inside returnDocument
and produces Loan2, while the third one (line 78), inside isHolding, produces
Loan3.

1.4 Object Diagram 9

As apparent from the diagram in Fig. 1.2 (left), the object allocated inside
borrowDocument (Loan1) is contained inside the list of loans possessed by the
object Libraryl, which represents the whole library. Loan1 references the
document and the user participating in the loan. These are objects of type
Book, Journal, TechnicalReport and User, InternalUser respectively,
as depicted in the static object diagram. In turn, they have a reference to
the loan object (bidirectional link in Fig. 1.2). On the contrary, the objects
Loan2 and Loan3 are not accessible from the list of loans held by Library1.
They are temporary objects created to manage the deletion of a loan (method
returnDocument, line 70) and to check the existence of a loan between a given
user and a given document (method isHolding, line 78). However, none of
them is in turn referenced by the associated user/document (unidirectional
link in Fig. 1.2).

The dynamic object diagram on the right of Fig. 1.2 was obtained by ex-
ecuting the eLib program under the following scenario:

The time intervals indicating the life span of the inter-object relationships
are in square brackets. The objects InternalUser1, InternalUser2 repre-
sent the two users created at times 1 and 2, while Book1, Book2, Journal1
are the objects created when two books and a journal are archived into
the library, at times 3, 4, 5 respectively. When a loan is opened between
InternalUser1 and Journal1 at time 6, the object Loan1 is created, refer-
encing, and referenced by, the user and document involved in the loan. At time
7 the loan is closed. Correspondingly, the life interval of all associations linked
to Loan1 is [6-7], including the association from the object Library1,repre-
senting the presence of Loan1 in the list of currently active loans (attribute
loans of the object Library1). Loan deletion is achieved by looking for a Loan
object (indicated as Loan2 in the object diagram) in the list of the active loans
(Library1.loans). Loan2 references the document (Journal1) and the user
(InternalUser1) that are participating in the loan to be removed. Being a
temporary object, Loan2 disappears after the loan deletion operation is fin-
ished, together with its associations (life span [7-7]). The object Loan3 has a

Time
1
2
3
4
5
6

7

8

Operation
An internal user is registered into the library.
Another internal user is registered.
A book is archived into the library
Another book is archived.
A journal is archived into the library.
The journal archived at time 5 is borrowed by the first
registered user.
The journal borrowed at time 6 is returned to the library and
the loan is closed.
The librarian verifies that the loan was actually closed.

10 1 Introduction

similar purpose. It is temporarily created to verify if Library1. loans contains
a Loan which references the same user and document (resp., InternalUser1
and journal1) as Loan3. After the check is completed, Loan3 and its associ-
ations are dismissed (life span [8-8]).

Static and dynamic object diagrams provide complementary information,
extremely useful to understanding the relationships among the objects that are
actually allocated in a program. The existence of three different roles played
by the objects of class Loan is not visible in the class diagram. It becomes
clear once the object diagram for the eLib application is built. Moreover,
the analysis of the dynamically allocated objects during the execution of a
specific scenario allows understanding the way relationships are created and
destroyed at run time. Temporary objects and relationships, used only in the
scope of a given operation, can be distinguished from the stable relationships
that characterize the management of users, documents and loans performed
by the library. Moreover, the dynamics of the inter-object relationships that
take place when a document is borrowed or returned also become explicit.
Overall, the structure of the objects instantiated by the eLib program and of
their mutual relationships, which is somewhat implicit in the class diagram,
becomes clear in the object diagrams recovered from the code and from the
program’s execution.

Static and dynamic object diagram extraction is thoroughly discussed in
Chapter 4.

1.5 Interaction Diagrams

The exchange of messages among the objects created by a program can be
displayed either by ordering them temporally (sequence diagrams) or by show-
ing them as labels of the inter-object relationships (collaboration diagrams).
These are the two forms of the interaction diagrams. Each message (method
call) is prefixed by a Dewey number (sequence of dot-separated decimal num-
bers), which indicates the flow of time and the level of nesting. Thus, a method
call numbered 3.2 will be the second call nested inside another call, numbered
3.

Fig. 1.3 clarifies the interactions among objects that occur when a docu-
ment is borrowed by a library user. The first three operations shown in the
collaboration diagram in Fig. 1.3 (numbered 1, 2, 3) are related to the rules
for document loaning implemented in the eLib program. In fact, the first op-
eration (call to numberOfLoans) is issued from the Library object to the
user who intends to borrow a document. The result of this operation is the
number of loans currently held by the given user. The borrowing operation
can proceed only if this number is below a predefined threshold (constant
MAX_NUMBER_OF_LOANS in class Library).

1.5 Interaction Diagrams 11

Fig. 1.3. Collaboration diagram focused on method borrowDocument of class
Library.

The second check is about document availability (call to isAvailable).
Of course, the document must be available in the library, before a user can
borrow it.

The third check implements the authorization policy of the library. Not
all kinds of users are allowed to borrow all kinds of documents. The call
to authorizedLoan, issued from the Library object, is processed differently
by different targets. When the target is a Book or a TechnicalReport ob-
ject, it is processed locally. Actually, in the first case the constant true is
returned (books can be borrowed by all kinds of users), while in the sec-
ond case, false is always returned (technical reports cannot go out of the
library). When the target of authorizedLoan is a Journal, a nested call to
the method authorizedUser, numbered 3.1, is made, directed to the user
requesting the loan. Since the actual target can be either a User (normal
user) or an InternalUser, two different return values are produced in these
two cases. The constants false and true are two such values, meaning that
normal users are not allowed to borrow journals, as are internal users.

If all checks (messages 1, 2, 3) give positive answers, document borrow-
ing can be completed successfully. This is achieved by calling the method
addLoan from class Library (call number 4). The parameter of this method
is a new Loan object, which references the user requesting the loan and the
document to be borrowed. Inside addLoan, such a parameter is queried to get
the User and Document involved in the loan (method calls numbered 4.1 and
4.2). Then, the operation addLoan is invoked both on the User (call 4.3) and
on the Document (call 4.4) object. The effect of addLoan on the user (User or
InternalUser) is the creation of a reverse link with the Loan object (see bidi-
rectional association between Loan1 and InternalUser1, User1 in Fig. 1.2,
left). This is achieved by adding the Loan object to the list of loans held by the
given user. Similarly, the effect of addLoan on the document (Journal , Book
or TechnicalReport), is the creation of a reference link to the Loan object,

12 1 Introduction

so that the bidirectional association between Loan1 and Journal1, Book1,
TechnicalReport1 in Fig. 1.2 (left) is completed.

Analysis of the interactions among objects in the case of document bor-
rowing highlights the dynamics by which the inter-object structure is built.
While Fig. 1.2 focuses on the structure of the associations among the objects,
the interaction diagram in Fig. 1.3 shows how such associations are put into
existence. The checks conducted before creating a new loan are explicitly in-
dicated, and the steps to connect objects with each other are represented in
the sequence of operations performed.

Fig. 1.4. Sequence diagram focused on method returnDocument of class Library.

The sequence diagram in Fig. 1.4 represents the interactions occurring over
time among objects when a borrowed document is returned to the library. First
of all, a check is made to see if the returned document is actually recorded as a
borrowed document in the library (call to isOut, number 1). Another method
of the class Document is exploited to get the answer (nested call isAvailable,
number 1.1).

If the returned Document happens to be actually out, the operation
returnDocument can proceed. Otherwise it is interrupted. The user holding
the document being returned is obtained by calling the method getBorrower
on the given document. This call is numbered 2. In turn, the Book, Techni-
calReport or Journal objects that receive such a call do not have any direct

1.5 Interaction Diagrams 13

reference to the user who borrowed them. However, they have a reference to
the related Loan object. Thus, they can request the Loan object (Loan1) to
return the borrowing user (nested call 2.1, getUser).

Once information about the Document and User objects participating in
the loan to be closed have been gathered, it is possible to call the method
removeLoan from class Library and actually delete all references to the re-
lated Loan object. In order to identify which Loan object to remove, the
method removeLoan needs a temporary Loan object to be compared with
the Loan objects recorded in the Library. In Fig. 1.4, such a temporary Loan
object is named Loan2, while Loan objects stored in the Library are named
Loan1.

Deletion of the Loan object in the Library that is equal to Loan2 is
achieved by means of a call to the method remove of class Collection (see
line 52), which in turn uses an overridden version of method equals (see class
Loan line 146). Deletion of the references to the Loan object from Document
and User objects requires a few nested calls. First of all, the two referenc-
ing objects are made accessible inside the method removeLoan, by calling
getUser and getDocument (calls numbered 3.1 and 3.2) on the temporary
Loan object (Loan2). Then, deletion of the references to the Loan object is
obtained by invoking removeLoan on both User (InternalUser1 or User1)
and Document (Book1, TechnicalReport1, Journal1) objects (calls num-
bered 3.3 and 3.4). At this point, deletion of the bidirectional association
between Library and User and of that between Library and Document is
completed.

With reference to the static object diagram in Fig. 1.2 (left), the se-
quence diagram in Fig. 1.4 clarifies the dynamics by which the associations of
Library1 with the other objects are dropped. As one would expect, returning
a document to the library causes the removal of the association with Loan1,
the Loan object referenced by the Library objectLibrary1, and the removal
of the reverse references from User(InternalUser1 or User1) and Document
(Book1, TechnicalReport1, Journal1). The only check being applied ver-
ifies whether the returned document is actually registered as a borrowed doc-
ument (with associated loan data). Since the data structure used to record
the loans inside class Library is a Collection, an overridden version of the
method equals can be used to match the Loan to be removed with the ac-
tually recorded Loan. Two Loan objects are considered equal if in turn the
referenced User and Document objects are equal (see lines 148, 149 in class
Loan). This requires that the method equals be overridden by classes User
and Document as well (see lines 295 and 172).

The sequence diagram in Fig. 1.4 helps programmers to clarify the op-
erations carried out when documents are returned. Reading the source code
with such a diagram available simplifies the program understanding activity,
in that method calls spread throughout the code are concentrated in a single
diagram. Of course, the diagram itself cannot tell everything about the behav-
ior of specific methods, so that a look at their body is still necessary. However,

14 1 Introduction

the overall picture assumes a concrete form – the sequence diagram – instead
of existing only in the mind of the programmer who understands the code. For
larger systems, the support coming from these diagrams is potentially even
more important, given the cognitive difficulties of humans confronted with a
large number of interacting entities.

The construction of collaboration and sequence diagrams is presented in
Chapter 5. An algorithm for the computation of the Dewey numbers associated
with the method calls is described in the same chapter. It determines the flow
of the events in sequence diagrams. A focusing method to produce diagrams
for specific computations of interest is also provided.

1.6 State Diagrams

State diagrams are used to represent the states possibly assumed by the ob-
jects of a given class, and the transitions from state to state possibly triggered
by method invocations. The joint values of an object’s attributes define its
“complete” state. However, it is often possible to select a subset of all the
attributes to characterize the state. Moreover, the set of all possible values
can usually be abstracted into a small set of symbolic values. In this way, the
size of the state diagrams can be kept limited, fitting the cognitive abilities of
humans.

Fig. 1.5. State diagram for class Document (left) and User (right).

The state of an object of class Document of the eLib program can be char-
acterized by the physical presence/absence of the related item in the library.

1.6 State Diagrams 15

Different behaviors are obtained by invoking methods on a Document object,
when such an object is available for loan, rather than being out, borrowed by
some library user.

Among the attributes of class Document, the one which characterizes the
state of its objects is loan. In fact, a null value of loan indicates that the
document is available for loan, while a non null value indicates that the doc-
ument is currently borrowed, with the related Loan object referenced by the
attribute loan.

Fig. 1.5 (left) shows the state diagram reverse engineered from the code
of class Document. Its two states and indicate respectively the situation
where the document is available for loan (tagged value loan=null in braces)
or is loaned (tagged value loan=Loan1). Initially, the document is available
(edge from the initial state, indicated as a small solid filled circle, to

Interesting information conveyed by Fig. 1.5 (left) regards the states in
which method calls can be accepted. In state (document available) the
only admitted operation is addLoan. It is not possible to request the removal
of a loan associated to the given Document in state On the other side,
when the document is loaned (state the only admitted operation is the
closure of the loan (removeLoan), and no request can be accepted to borrow
the given document (no call of addLoan admitted). This is consistent with
the intuitive semantics of document borrowing: it makes no sense returning
available documents as well as borrowing loaned documents.

The state of the objects that belong to the class User is identified by the
values of the attribute loans, which records the set of loans a given library
user has made. Since this attribute is a container of objects of the type Loan,
it is possible to abstract its concrete values into three symbolic values: empty
(no element in the container), one (exactly one element in the container) and
many (more than one element in the container).

Fig. 1.5 (right) shows the state transitions that characterize the lifetime of
the objects of class User. Initially, they are associated to no loan (edge from
the small solid filled circle to In this state the removeLoan operation
is not admitted, and the only possibility is to add a new loan, by invoking
the method addLoan. This corresponds to the expected behavior of a User
object, which initially can only be involved in borrowing documents, and not
in returning them.

When the User object contains exactly one Loan (state it is possible to
close it, by returning the related document (call to removeLoan) and moving
it back to state or to add another loan (call to addLoan), moving it to the
state which represents more than one document loaned by a given user.

Finally, in state the addition of further loans does not modify the state
of the given object, while the closure of a loan (removeLoan) may either trigger
the transition to state if after the removal only one loan remains, or to
itself.

Similar to the class Document, some preconditions on the admitted method
invocations are revealed by the state diagram for class User. In particular, no

16 1 Introduction

call to removeLoan is accepted in the state assumed by a User object after
its creation when no loan has yet been created by the given user.

Fig. 1.6. State diagram for class Library.

The state of the objects of the class Library is characterized by the
joint values assumed by the class attributes documents, users and loans.
The attribute documents contains a mapping from document identifiers
(documentCode) to the related Document objects stored in the library. Simi-
larly, users holds the mapping from user identifiers (userCode) to User ob-
jects. Thus, they can be regarded as containers, storing documents possessed
by the library and the users registered in the library.

The attribute loans is a container of type Collection, which maintains
the set of currently active loans in the library. A Loan references the library
user who requested the document as well as the borrowed document.

Since the three attributes documents, users and loans are containers of
other objects, it is possible to abstract the values they can assume by means
of two symbolic values: indicating an empty container, and indicating
that some (i.e., one or more) objects are stored inside the container. Thus,
the joint values of the three considered attributes is represented by a triple,
such as whose elements correspond respectively to documents,
users and loans (thus, should read documents = empty, users =
some, loans = empty).

Fig. 1.6 shows the state diagram of class Library, characterized by the
triples of joint values of documents, users and loans. When no user is
yet registered and no document is available in the library, invocations of

1.6 State Diagrams 17

addDocument and addUser change the initial state into or respec-
tively. Addition of a new user in or of a document in moves the library
into state where some users are registered and some documents are avail-
able. Transitions among the states are achieved by calling meth-
ods addUser, removeUser, addDocument, removeDocument. No special con-
straint is enforced with respect to such method invocations. Of course, removal
methods have no effect when containers are empty (e.g., removeDocument in
state

Overall, the four topmost states in Fig. 1.6 describe the management of
users and documents. The librarian can freely add/remove users and docu-
ments, changing the library state from to

Creation or deletion of a loan is possible only in state where some
documents are available in the library and some users are registered. This
is indicated by the absence of edges labeled addLoan in the states
of the state diagram and by the presence of such an edge in the state
(as well as Actually, the corresponding precondition on the invocation of
addLoan is checked by the calling methods. In the source code for the eLib
program (see Appendix A), the only invocation to addLoan is at line 61 inside
borrowDocument. This call is preceded by a check to verify that the involved
User object and Document object (parameters of borrowDocument obtained
from the library at lines 438, 439) be not null. This ensures that no call to
addLoan is issued when no related user or document data are stored in the
library.

Another interesting information that can be obtained from the state di-
agram in Fig. 1.6 is about the methods that can be invoked in In this
state, the library holds some documents, it has some registered users, and
some loans are active. It is not possible to reach any of the states
directly from The only reachable state is which becomes the new state
of the library when all active loans are removed. In other words, the state di-
agram constrains the legal sequences of operations that jointly modify users,
documents and loans. Before removing all of the users or documents from the
library, it is necessary to close all of the active loans.

The code implements the rules described above by performing some checks
before proceeding with the removal of the given item from the respective
container. As regards the method removeUser, at line 17, the number of loans
associated with the user being removed is requested, and if it is greater than
zero, the removal operation is aborted. Similarly, inside removeDocument, at
line 33 the removal operation is interrupted if the document is out (i.e., some
loan is associated with it). Thus, before deleting a user, all of the related
loans must be closed, i.e., users can unregister from the library only if all of
the documents they borrowed have been returned. Dually, documents can be
dismissed only after being returned by the users who borrowed them. These
two constraints on the joint values of the attributes document, users, loans
are revealed by the transitions outgoing from state in the state diagram.

18 1 Introduction

State diagrams and their recovery from the source code are presented in
detail in Chapter 6.

1.7 Organization of the Book

The remainder of the book describes the algorithms that can be used to pro-
duce the diagrams presented in the previous sections for the eLib program,
starting from its source code.

Most of the static analyses used to reverse engineer these diagrams share a
common representation of the code called the Object Flow Graph (OFG). Such
a data structure is presented in Chapter 2. This chapter contains the rules
for the construction of the OFG and introduces a generic flow propagation
algorithm that can be used to infer properties about the program’s objects.
Specializations of the generic algorithm are defined for specific properties.

The basic algorithm for the recovery of the class diagram is presented at
the beginning of Chapter 3. Here, the rules for the recovery of the various
types of associations, such as dependencies and aggregations, are discussed.
One problem of the basic algorithm for the recovery of the class diagram is
that declared types are an approximation of the classes actually referenced
in a program, due to inheritance and interfaces. An OFG based algorithm is
described that improves the accuracy of the class diagram extracted from the
source code, when classes belonging to a hierarchy or implementing interfaces
are referenced by class attributes. Another problem of the basic algorithm is
related to the usage of weakly typed containers. Associations determined from
the types of the container declarations are in fact not meaningful, since they
do not specify the type of the contained objects. It is possible to recover the
information about the contained objects by exploiting a flow analysis defined
on the OFG.

Chapter 4 describes a technique for the static identification of class in-
stances (objects) in the code. The allocation points in the code are used to
approximate the set of objects created by a program, while the OFG is used
to determine the inter-object relationships. A dynamic method for the pro-
duction of the object diagram is also presented. Then, the differences between
static and dynamic approach are discussed.

Interaction diagrams are obtained by augmenting the object diagram with
information about message exchange (method invocations). In Chapter 5, the
sequence of method dispatches is considered and their ordering is represented
in the two forms of the interaction diagrams: either as collaboration diagrams,
which emphasize the message flows over the structural organization of the
objects, or as sequence diagrams, which emphasize the temporal ordering. The
numbering algorithm, used to order events temporally, is also described in this
chapter. In order for the approach to scale to large systems, it is complemented
by an algorithm to handle incomplete systems, and by a focusing technique
that can be used to locate and visualize only the interactions of interest.

1.7 Organization of the Book 19

Chapter 6 deals with the partitioning of the possible values of an object’s
attributes into equivalence classes, vital to testing, which are approximated
by means of static code analysis. The effects of method invocations on the
class attributes determine the state transitions, i.e., the possibility that a
given method invocation changes the state of the target object. The usage of
abstract interpretation techniques for state diagram recovery is presented in
detail in this chapter.

Chapter 7 is focused on the package diagram. Packages represented in the
package diagram are groupings of design entities (typically classes) identified
in the previous steps. The relationships that hold among such entities are
abstracted into dependences among the packages they belong to. Techniques
for the identification of cohesive groups of classes, including clustering and
concept analysis, are presented in this chapter.

The last chapter contains some considerations on the development of tools
that implement the techniques presented in the previous chapters. Then, the
eLib program is considered once again, to describe the usage of reverse engi-
neering after change implementation. Reverse engineered diagrams help un-
derstand the overall program organization and locate the code portions sub-
jected to change. They are also useful after implementing the change, in that
they can be compared with the initial diagrams, thus revealing the impact of
the change at the design level, possibly indicating the opportunity of refactor-
ing interventions. Furthermore, they support testing by providing information
for the generation of class and integration test cases. Reverse engineered dia-
grams for the eLib program obtained after its modification are commented in
this chapter. Finally, a survey of the existing support and of the current prac-
tice in reverse engineering is provided in the last section, where a discussion
on the future trends and perspectives concludes the book.

All central chapters (2 through 7) have a similar structure: after a theo-
retical presentation of the analysis algorithms, which usually includes small
code fragments used as examples, the eLib program is used as input for the de-
scribed techniques and a step by step execution of the algorithms is conducted
on this program. A discussion of related work concludes each chapter.

This page intentionally left blank

2

The Object Flow Graph

The Object Flow Graph (OFG) is the basic program representation for the
static analysis described in the following chapters. The OFG allows tracing
the flow of information about objects from the object creation by allocation
statements, through object assignment to variables, up until the storage of
objects in class fields or their usage in method invocations.

The kind of information that is propagated in the OFG varies, depending
on the purposes of the analysis in which it is employed. For example, the
type to which objects are converted by means of cast expressions can be
the information being propagated, when an analysis is defined to statically
determine a more precise object type than the one in the object declaration.
Thus, in this chapter a flow propagation algorithm is described, with a generic
indication of the object information being processed.

In the first section of this chapter, the Java language is simplified into an
abstract language, where all features related to the object flow are maintained,
while the other syntactic details are dropped. This language is the basis for
the definition of the OFG, whose nodes and edges are constructed according
to the rules given in Section 2.2. Objects may flow externally to the analyzed
program. For example, an object may flow into a library container, from which
it is later extracted. Section 2.3 deals with the representation of such external
object flows in the OFG. The generic flow propagation algorithm working
on the OFG is described in Section 2.4. Section 2.5 considers the differences
between an object insensitive and an object sensitive OFG. Details of OFG
construction are given for the eLib program in the next Section. A discussion
of the related works concludes this chapter.

2.1 Abstract Language

The static analysis conducted on Java programs to reverse engineer design
diagrams from the code is data flow sensitive, but control flow insensitive. This
means that programs with different control flows and the same data flows are

22 2 The Object Flow Graph

associated with the same analysis results. Data flow sensitivity and control
flow insensitivity are achieved by defining the analyses with reference to a
program representation called the Object Flow Graph (OFG). A consequence
of the control flow insensitivity is that the construction of the OFG can be
described with reference to a simplified, abstract version of the Java language.
All Java instructions that refer to data flows are properly represented in the
abstract language, while instructions that do not affect the data flows at all are
safely ignored. Thus, all control flow statements (conditionals, loops, etc.) are
not part of the simplified language. Moreover, in the abstract language name
resolution is also simplified. All identifiers are given fully scoped name, being
preceded by a dot separated list of enclosing packages, classes and methods.
In this way, no name conflict can ever occur.

The choice of a data flow sensitive/control flow insensitive program rep-
resentation is motivated by two main reasons: computational complexity and
the “nature” of the Object Oriented programs. As discussed in Section 2.4,
the theoretical computational complexity and the practical performances of
control flow insensitive algorithms are substantially superior to those of the
control flow sensitive counterparts. Moreover, the Object Oriented code is
typically structured so as to impose more constraints on the data flows than
on the control flows. For example, the sequence of method invocations may
change when moving from an application which uses a class to another one,
while the possible ways to copy and propagate object references remains more
stable. Thus, for Object Oriented code, where the actual method invocation
sequence is unknown, it makes sense to adopt control flow insensitive/data
flow sensitive analysis algorithms, which preserve the way object references
are handled.

Fig. 2.1 shows the abstract syntax of the simplified Java language. A Java
program P consists of zero or more occurrences of declarations (D), followed
by zero or more statements (S) . The actual ordering of the declarations and of
the statements is irrelevant, due to the control flow insensitivity. The nesting
structure of packages, classes and methods is completely flattened. For exam-
ple, statements belonging to different methods are not divided into separate
groups. However, the full scope is explicitly retained in the names (see below).
Consequently, a fine grain identification of the data elements is possible, while
this is not the case for the control elements (control flow insensitivity).

Transformation of a given Java program into its abstract language repre-
sentation is an easy task, that can be fully automated. Program transforma-
tion tools can be employed to achieve this aim.

2.1.1 Declarations

Declarations are of three types: attribute declarations (production (2)), meth-
od declarations (production (3)) and constructor declarations (4). An at-
tribute declaration consists just of the fully scoped name of the attribute,
that is, a dot-separated list of packages, followed by a dot-separated list of

2.1 Abstract Language 23

Fig. 2.1. Abstract syntax of the simplified Java language.

classes, followed by the attribute identifier. A method declaration consists
of the fully scoped method name (constructed similarly to the class at-
tribute name followed by the list of formal parameters In turn,
each formal parameter has (the fully scoped method name) as prefix,
and the parameter identifier as dot-separated suffix. Constructors have an ab-
stract syntax similar to that of methods, with class names (<cid>) instead of
method names (<mid>). Declarations do not include type information, since
this is not required for OFG construction.

24 2 The Object Flow Graph

2.1.2 Statements

Statements are of three types (see Fig. 2.1): allocation statements (produc-
tion (5)), assignment statements (production (6)) and method invocations
(production (7)). The left hand side of all statements (optional for method
invocations) is a program location. The right hand side of assignment state-
ments, as well as the target of method invocations, is also a program location.
Program locations (<progloc>) are either local variables, class attributes or
method parameters. The former have a structure identical to that of formal
parameters: dot-separated package/class prefix, followed by a method identi-
fier, followed by variable identifier. Chains of attribute accesses are replaced by
the last field only, fully scoped (e.g., a.b.c becomes B.c, assuming b of class B
and class B containing field c). The actual parameters in allocations
and method invocations are also program locations (<progloc>). The vari-
able identifier (<vid>) that terminates a program location admits two special
values: this, to represent the pointer to the current object, and return, to
represent the return value of a method. Program locations (including formal
and actual parameters) of non object type (e.g., int variables) are omitted
in the chosen program representation, in that they are not associated to any
object flow. Class names in allocation statements (production (5)) consist of
a dot-separated list of packages followed by a dot-separated list of classes.

e.Lib example

Let us consider the class Library of the eLib program (see Appendix A).
The abstraction of its attribute loans, of type Collection (line 6), consists
just of the fully scoped attribute name:

The declaration of its method borrowDocument (line 56) is abstracted into:

The declaration of its implicit constructor (with no argument) is abstracted
into:

2.2 Object Flow Graph 25

The body of the second if statement of method borrowDocument (class
Library of the eLib program, lines 60-62) is represented as the following
abstract lines of code:

eLib example

Conditional and return statements have been skipped, and only alloca-
tions, assignments and invocations have been maintained (actually, one allo-
cation, one invocation, and no assignment). Variable names are expanded to
fully scoped names (no packages are used in this application). In the method
call (second line above), the method name is prefixed by the class name. The
implicit target object (this) is made explicit, and prefixed according to the
rules for the program locations.

Return values are represented by an explicit location, which we call return
and which is prefixed by the fully scoped method name. Thus, the values
returned by getUser (line 42) and getDocument (line 43) inside method
addLoan of class Library and assigned respectively to the local variables
user and doc are abstractly represented as:

Unique names are assumed for all program entities. This is the reason
why in the abstract grammar, package, class, method, and variable identifiers
(<pid>, <cid>, <mid>, <vid>) are indicated instead of their names. Given
the source of a Java program, it is always possible to transform it so as to
make its names unique [30]. Names of overloaded methods belonging to the
same class can be augmented with an incremented integer suffix, to make
them unique. The same can be done for methods of different classes with the
same name. Calling statements are transformed correspondingly. The called
method(s) can be resolved with all statically type-compatible possibilities.

2.2 Object Flow Graph

The Object Flow Graph (OFG) is a pair (N, E), comprising of a set of nodes
N and a set of edges E. A node is added to the OFG for each program location

26 2 The Object Flow Graph

(i.e., local variable, attribute or formal parameter, according to the definition
in Fig. 2.1).

The OFG for the class Library of the eLib program contains, for example,
a node associated with the class attribute loans (line 6), labeled:

Two nodes are associated with the formal parameters of method borrow-
Document (line 56):

The local variable loan (line 60) is associated with node:

The current object inside method borrowDocument is also associated with an
OFG node:

Fig. 2.2. OFG edges induced by each abstract Java statement.

Edges are added to the OFG according to the rules specified in Fig. 2.2
(right). They represent the data flows occurring in the analyzed program. The
set of OFG edges E contains all and only the pairs that result from at least
one rule in Fig. 2.2.

When a constructor or a method are invoked (statements (5) and (7),
resp.), edges are built which connect each actual parameter to the respective
formal parameter In case of constructor invocation, the newly created
object, referenced by cs.this (with cs the constructor called by new
is paired with the left hand side of the related assignment (see statement

eLib example

2.3 Containers 27

(5)). In case of method invocation, the target object becomes inside
the called method, generating the edge and the value returned by
method (if any) flows to the left hand side (pair

eLib example

The following invocations, taken from class Library (lines 60, 61):

generate the following OFG edges:

Plain assignments (statement (6) in Fig. 2.2) generate an edge that con-
nects the right hand side to the left hand side. Thus, the following abstract
statements, taken from the constructor of class Loan (lines 137-138):

generate the following edges:

2.3 Containers

Edges in the OFG account for all data flows occurring in a program. While
some of them are associated with specific Java instructions, such as the as-
signment or the method call, others may be related to the usage of library
classes. Each time a library class introduces a data flow from a variable to
a variable an edge must be included in the OFG.

A category of library classes that introduces additional, external data flows
is represented by containers. In Java, an example is any class implementing
the interface Collection, such as the classes Vector, LinkedList, HashSet,

28 2 The Object Flow Graph

and TreeSet. Another example is the interface Map, implemented by classes
Hashtable, HashMap, and TreeMap.

Classes implementing the Collection interface provide public methods
to insert objects into a container and to extract objects from it. One such
insertion method is add, while extraction can be achieved by requesting an
Iterator object, that is successively used to sequentially access all objects in
the container (method next in interface Iterator).

Classes implementing the Map interface offer similar facilities, with the
difference that contained objects are accessed by key. Thus, method put can
be used to insert an object and associate it to a given key, while method get
can be used to retrieve the object associated to a given key.

Abstractly, container objects provide two basic operations that alter the
data flows in a program: insert, to add an object to a container, and extract,
to access an object previously inserted into a container. Thus, for a program
with containers, the two basic cases that have to be handled in OFG construc-
tion are the following:

(1)
(2)

where is a container and is an object. In the first case there is a data flow
from the object to the container while in the second case the data flow is
reversed. Correspondingly, the following edges are introduced in the OFG:

The same edges would be introduced in the OFG in presence of the fol-
lowing assignments:

For this reason, in the abstract program representation we have adopted,
insertion and extraction methods associated with container objects are ac-
counted for by transforming the related statements into assignment state-
ments, such as those given above.

eLib example

Examples of containers used in the eLib program are the attributes
documents, users, and loans of the class Library (lines 4, 5, 6). The at-
tribute loans, of type Collection, is initialized with a LinkedList object.
Its method addLoan contains the following statement (line 44) :

(1)
(2)

(1)
(2)

2.3 Containers 29

where loan is the formal parameter of the method. Its abstract syntax repre-
sentation is therefore:

The invocation of the insertion method add on the container loans is trans-
formed into an assignment that captures the data flow from the inserted object
(loan) to the container.

An example of extraction from a container is available from the same class,
method printAllLoans (lines 120-122), where the following loop is used to
access the Loan objects previously inserted into the loans container:

The related abstract representation, which preserves the data flows be-
tween container and contained objects is:

The first assignment accounts for the data flow from the container (loans)
to the iterator (i). The second assignment accounts for the access to a con-
tained object by means of the iterator (invocation of method next), and the
assignment of this object to the local variable loan.

Another example available from the Library class is the attribute users,
of type Map, initialized by a HashMap. Methods addUser (line 8) and getUser
(line 21) contain respectively insertion and extraction instructions. Specif-
ically, a User object is inserted into the container users by means of the
following statement, taken from method addUser (line 10):

which is transformed into the following abstract statement:

Symmetrically, the following extraction statement, taken from method
getUser (line 22):

is transformed into:

30 2 The Object Flow Graph

In OFG construction, this is interpreted as the existence of a data flow
from the container users to the value returned by the method getUser.

Other examples of external data flows possibly affecting the nodes and
the edges in the OFG are associated with the usage of dynamic loading (e.g.,
through Java reflection) and with the access to modules written in other
programming languages (e.g., through the Java native interface, JNI). In these
cases, a semi-automated analysis of the data flows can still be conducted,
provided that the external flows are (manually) modeled in a similar way as
done above for the containers. The involvement of the user is required in the
specification of the code fragments where such flows take place and of the
program locations affected by them. Other language features not addressed
explicitly in this section, such as exception handling and multi-threading,
require minor extensions (e.g., identifying the throw-catch chains [76]) that
can be fully automated.

2.4 Flow Propagation Algorithm

The OFG represents all data flows involving objects. It is thus possible to
exploit it to analyze the program’s behavior, by propagating proper informa-
tion according to the same flows along which objects are possibly propagated.
In the next chapters some examples of the kind of information to be propa-
gated will be given. The type to which an object is cast is one such example.
The allocation of an object at a given program point is another one. How-
ever, in general it can be assumed that some interesting piece of information,
taken from a set V, is propagated along the OFG. Correspondingly, a flow
propagation algorithm can be given, independent of the specific elements in
V.

Fig. 2.3 shows the pseudocode of the generic flow propagation algorithm.
It is a specific instance of the flow analysis framework described in [2], ap-
plied to the OFG instead of the control flow graph. Each node of the OFG
stores the incoming and outgoing flow information respectively inside the sets

and which are initially empty. Moreover, each node generates
the set of flow information items contained in the set, and prevents
the elements in the set from being further propagated after node
Incoming flow information is obtained from the predecessors of node as the
union of the respective out sets (forward propagation). For some analyses, it
may be appropriate to propagate flow information following the OFG edges
in reverse order (backward propagation). This is obtained by collecting the
incoming information from the out sets of the successors. In other words, the
pseudo-statement 7 becomes:

2.4 Flow Propagation Algorithm 31

Fig. 2.3. Pseudocode of the flow propagation algorithm (forward propagation).

7’

in case of backward propagation. Incoming flow information is trans-
formed into outgoing information by removing the elements in the set

and adding those in Flow information is repeatedly propagated
inside the OFG until the fixpoint is reached: no incoming and no outgoing
information changes, in any OFG node.

Assuming an upper bound for the flow information propagated in the
OFG, the algorithm in Fig. 2.3 is ensured to converge in polynomial time. The
actual performance can be greatly improved by choosing a proper ordering of
the nodes in the OFG. In absence of loops, the best ordering is the partial
order induced by the graph edges. When loops are present, a good strategy
consists of propagating the flow information inside the loop before considering
the nodes following the loop.

The solution produced by the algorithm in Fig. 2.3 has the property of be-
ing valid for all program executions that give rise to the data flows represented
in the OFG. Since the OFG has been defined in order to take into account
all statically possible data flows, the resulting solution is conservative (safe),
in that no data flow can ever occur at run time which is not represented by
a path in the OFG. However, in general it is impossible to decide statically if
a path is feasible or not (i.e., if it can actually be executed for some input).
Thus, the solution produced by the algorithm might be over-conservative, in
that it may permit flow propagation along infeasible paths. Consequently, if
a flow information is present at a node, there may be an execution of the
program that actually produces it, while if it is absent, it is ensured that no
execution can ever produce it.

32 2 The Object Flow Graph

2.5 Object sensitivity

According to the abstract syntax in Fig. 2.1, class attributes, method names,
program locations, etc., are scoped at the class level. This means that it is
possible to distinguish two locations (e.g., two class attributes) when they
belong to different classes, while this cannot be done when they belong to the
same class but to different class instances (objects). In other words, the OFG
constructed according to the rules given in Section 2.2 is object insensitive.
While this may be satisfactory for some analyses, in some cases the ability
to distinguish among locations that belong to different objects might improve
the analysis results substantially.

An object sensitive OFG can be built by giving all non-static program
names an object scope instead of a class scope (static attributes and pro-
gram locations that belong to static methods maintain the class scope).
Objects can be identified statically by their allocation points, thus, in an ob-
ject sensitive OFG, non-static class attributes and methods (including their
parameters and local variables) are replicated for every statically identified
object. Syntactically, an object allocation point in the code is determined by
statements of the kind (5) in Fig. 2.1. For each such allocation point, an ob-
ject identifier is created, and all attributes and methods in the class of the
allocated object are replicated for it. Replicated program locations become
distinct nodes in the OFG.

Construction of the OFG edges becomes more complicated when locations
are object sensitive. For example, in presence of method calls, sources and
targets of OFG edges can be determined only if the current object (pointed to
by this) and the objects pointed by the reference variable used as invocation
target are known. Chapter 4 provides the details of an algorithm to infer such
an information.

eLib example

Let us consider two statements, one from the method getUser (line 141)
and the other from getDocument (line 144) of class Loan. Their abstract syn-
tax, with class scoped names, is:

Assuming that two Loan objects are created in the program, their identi-
fiers being Loan1 and Loan2, the two statements, with object scoped names,
become:

2.5 Object sensitivity 33

The effect of object sensitivity on the accuracy of the OFG consists of
a finer grain edge construction, resulting in a more precise propagation of
information along the data flows. In fact, information is not mixed when
propagated along different objects, in an object sensitive OFG. Let us consider
the following code fragment, inside a hypothetical method main of class Main:

in addition to the body of Loan.Loan (line 136) and Loan.getDocument
(line 143) represented as:

Five objects are allocated in total inside the code fragment above. We will
identify them as User1, Document1, Loan1, Document2, Loan2 respectively.

Fig. 2.4. Object insensitive OFG.

Figures 2.4 and 2.5 contrast object insensitive and object sensitive OFGs
for the code given above. Object flows in Fig. 2.5 capture the data flows
occurring in the code fragment more accurately than those in Fig. 2.4. For
example, the two variables d1 and d2 are assigned a Document object created
at two distinct allocation points. While in the OFG of Fig. 2.4 incoming

34 2 The Object Flow Graph

edges come from a same node (Document. Document. this), in Fig 2.5 the edge
for the first object comes from node Document1.Document.this and ends at
Main.main.d1,while the second edge goes from Document2.Document.this
to Main.main.d2. In this way, the data flows related to these two objects are
kept separated.

Similarly, the two Loan objects assigned to l1 and 12 belong to two differ-
ent flows in Fig. 2.5 (bottom), while they share the same flow in Fig. 2.4. In the
object sensitive OFG (Fig. 2.5), Main.main.d1 flows into Loan1.Loan.doc,
due to parameter passing, while Main.main.d2 flows into Loan2.Loan.doc.
These two flows are mixed in Fig. 2.4. When getDocument is called on ob-
ject l1, a single location (Loan.getDocument .return) stores the return value
in Fig. 2.4, combining both flows from Main.main.d1 and Main.main.d2.
On the contrary, two return locations are represented in Fig. 2.5, namely
Loan1.getDocument.return and Loan2.getDocument.return. Since the call
is issued on l1, and this variable can reference Loanl only, an OFG edge is
created from Loan1.getDocument.return to Main.main.doc, but not from
Loan2.getDocument.return.

The potential advantages of an object sensitive OFG construction are ap-
parent from the example above. In practice, the actual benefits depend on the
purposes for which the successive analysis is conducted.

The main difficulty in object sensitive OFG construction is the static es-
timation of the objects referenced by variables. This information is neces-
sary whenever an attribute or a method are accessed/invoked through a ref-
erence variable. In fact, the related edges connect locations scoped by the
pointed objects. In the example above, Loan1.getDocument.return (but not
Loan2.getDocument.return) is connected to Main.main.doc, because l1 ref-
erences Loan1 (but not Loan2).

In order to construct an object sensitive OFG, the information about the
objects possibly referenced by program variables can be obtained by defining
a flow propagation on the OFG aiming at statically estimating the referenced
objects. This is the topic of Chapter 4. However, the algorithm used for this
purpose assumes the availability of the OFG itself. Thus, we have a mutual
dependence. It can be solved by constructing the OFG edges incrementally.
On the contrary, all OFG nodes can be constructed from the very beginning.

Initially, all allocations points are associated to object identifiers, used to
scope the names of non-static program locations. This produces the set of all
OFG nodes. As regards edges, only internal edges can be built at this stage,
that is, edges involving constructor/method parameters or local variables, that
are replicated for every object scope (boxes in Fig. 2.5).

Invocation of methods and access to class attributes require knowledge
about the objects referenced by variables and by the special location this.
Such information is approximated by a first round of flow propagation. At the

2.5 Object sensitivity 35

Fig. 2.5. Object sensitive OFG. Dashed (resp. solid) boxes indicate a method body
replicated for each allocated object.

end of the propagation, edges can be added to the OFG for method calls and
attribute accesses, using the objects pointed to by the related variables, as
determined by the flow propagation. On the new version of the OFG obtained
in this way, including the edges produced by the result of the previous flow
propagation, a better estimate of the objects pointed by variables can be
obtained. Refinement of the OFG can continue, until a stable one is produced
(it should be noted that the incremental construction is monotone, in that
edges are possibly added, but never removed).

Complete construction of an object sensitive OFG is possible only if the
whole program is available (including the main), since all allocation points
of all involved objects must be part of the code under analysis. In Object-
Oriented programming this may not be the case, since incomplete systems
are often produced and classes are often reused in different contexts. In these
situations, an object insensitive OFG construction may be more appropriate.

36 2 The Object Flow Graph

2.6 The eLib Program

Let us consider the object insensitive (with no main available) construction
of the OFG for the eLib program given in Appendix A. The first step consists
of transforming the original program, written according to the Java syntax,
into a program that respects the abstract syntax provided in Fig. 2.1. During
the transformation, containers are taken into account by converting insertion
and extraction instructions into assignments.

Fig. 2.6. Concrete (top) and abstract (bottom) syntax of method borrowDocument
from classLibrary.

Fig. 2.6 shows the translation of method borrowDocument from class
Library (line 56) into its abstract representation. An abstract declaration of
the method is generated first. The method name is prefixed by the class name,
and all parameter names are fully scoped, being prefixed by class and method
name. Then, abstract statements are generated only for statements that in-
volve object flows. Thus, the first conditional statement is skipped. From the
second conditional statement, only the method invocations contained in the
condition need be transformed. Correspondingly, the abstract representation
contains the invocation of numberOf Loans (class User), isAvailable (class
Document), and authorizedLoan (class Document). Targets of these invoca-
tions are parameters ofborrowDocument. They are abstracted into their fully

2.6 The eLib Program 37

Fig. 2.7. Concrete and abstract syntax of methods addLoan from classes Library,
User and Document.

scoped names. The same holds for the actual parameter of authorizedLoan
(see Fig. 2.6).

The next statement that is abstracted is the allocation of a Loan ob-
ject (line 60). The local variable to which the allocated object is assigned is
fully scoped, similarly to the method parameters. Finally, the call to method
addLoan (line 61) from the same class (Library) is given an abstract repre-
sentation in which the target of the call is the special location this, indicating
explicitly that the method is called on the current object.

Other abstractions for the eLib program are reported in Fig. 2.7. Note that
the same method name addLoan has been left in more than one class, instead of

38 2 The Object Flow Graph

introducing method identifiers (such as addLoan1,addLoan2,addLoan3), just
to improve the readability. However, method calls are assumed to be uniquely
solved when OFG edges are constructed (e.g., the statement at line 45 inside
Library.addLoan is a call to User.addLoan, while the statement at line 46
is a call to Document. addLoan).

Methods getUser and getDocument, invoked inside addLoan in class
Library (lines 42, 43), have a return value, which is assigned to a left hand
side variable. Correspondingly, their abstract representations are assignments
with the invocation in the right hand side and the fully scoped variable as
left hand side (see Fig. 2.7). The method add is called at line 44 on the class
attribute loans, a Collection type object. Since this is an insertion method,
the related abstract representation is an assignment with the parameter of
the call (loan) on the right hand side, and the container (loans) on the left
hand side. It should be noted that the fully scoped name of the class attribute
loans consists of class name and attribute name only. The last two calls inside
Library.addLoan are similar to the first two ones, without any return value.

The body of method addLoan from class User is transformed (see Fig. 2.7)
into an assignment, associated with a container insertion, where the container
is the attribute loans (of type Collection) of class User. Finally, the body of
method addLoan from class Document is abstracted into an assignment with
the fully scoped method’s parameter on the right hand side and the class field
loan on the left hand side.

Transforming the remainder of the eLib program into its abstract syntax
representation is quite straightforward, along the lines given above for the
examples in Fig 2.6 and 2.7. Once the program’s abstraction is completed, it
is possible to construct the OFG by applying the rules in Fig. 2.2.

Fig. 2.8 shows the OFG nodes and edges that are induced by the abstract
code in Fig. 2.6 and 2.7. The number labeling each edge refers to the statement
that generates it. Method calls cause an edge whose target is a this location
(properly prefixed). For example, the first two statements (following the dec-
laration) in the abstract code of Fig. 2.6 (method calls: numberOfLoans()
and isAvailable() at lines 58 and 59) generate respectively the edges
(Library.borrowDocument.user, User.numberOfLoans.this) and (Libra-
ry .borrowDocument.doc, Document.isAvailable.this), labeled 58 and 59.
Parameter passing induces edges that end at formal parameter locations. For
example, the third abstract statement in Fig. 2.6 (associated with line 59) is a
call to the method authorizedLoan with actual parameter Library.borrowDo-
cument.user and formal parameter Document.authorizedLoan.user. Cor-
respondingly, in Fig. 2.8 the topmost edge labeled 59 connects these two lo-
cations.

Allocation statements, such as the fourth abstract statement in Fig. 2.6
(line 60), induce edges between actual and formal parameters, similarly to
method calls. In addition, they induce an edge between the constructor’s this
location and the left hand side location. In our example, Loan.Loan.this

2.6 The eLib Program 39

Fig. 2.8. OFG associated with the abstract code in Fig. 2.6 (method
borrowDocument in class Library) and 2.7 (method addLoan in classes Library,
User,Document).

40 2 The Object Flow Graph

and the allocation’s left hand side variable, Library.borrowDocument.loan
(Fig. 2.8 center, edge labeled 60).

An example of a method call with a return value is provided by the first
abstract statement (after the declaration) of method Library. addLoan (see
Fig. 2.7 top, line 42). The left hand side location (Library.addLoan.user)
is the target of an edge outgoing from Loan.getUser.return, the location
associated with the value returned by the method call (see Fig. 2.8 bottom,
edge labeled 42).

Container operations are also responsible for some edges in the OFG of
Fig. 2.8. For example, the body of User.addLoan contains just an insertion
statement (line 315). The container User.loans, into which a Loan object
is inserted, becomes the target of an edge starting at the inserted object
location, User .addLoan. loan (Fig. 2.8 center, edge labeled 44). This indicates
an object flow from the parameter loan of method addLoan into the container
User .loans.

The OFG constructed for the code in Fig. 2.6 and 2.7 shows the data
flows through which objects are propagated from location to location. Thus,
the parameter user of method borrowDocument becomes the current object
(this) inside numberOfLoans, while it is the parameter user inside method
authorizedLoan and it is the parameter usr inside the constructor of class
Loan, as depicted at the top of Fig 2.8. Similarly, the other parameter of
borrowDocument, doc, flows into isAvailable and authorizedLoan as this,
and into the constructor of class Loan as the parameter doc. The object of class
Document returned by Loan.getDocument (bottom-right of Fig. 2.8) flows into
the local variable doc of Library. addLoan, and then becomes the current
object (this) inside Document. addLoan.

2.7 Related Work

The OFG and the related flow propagation algorithms are based on research
conducted on pointer analysis [3, 21, 47, 49, 60, 68, 81, 86]. The aim of pointer
analysis is to obtain a static approximation of any points-to relationship that
may hold at run-time between pointers and program locations. Similarly, when
Object-Oriented programs are considered, the relationship between reference
variables and objects is analyzed.

Pointer analysis algorithms can be divided into flow/context sensitive [21,
47, 60] and flow/context insensitive [3, 81]. Flow/context sensitive algorithms
produce fine grained and accurate results, in that a points-to relationship is
determined that holds at every program statement. Moreover, different invo-
cation contexts can be distinguished. However, the computational complexity
involved in these approaches is high, and in practice their performance does
not scale to large software systems. Flow/context insensitive algorithms have
lower complexity and scale well. On the other side, they produce results that
hold for the whole program, and the points-to relationships they derive cannot

2.7 Related Work 41

be distinguished by statement or invocation context. Flow/context sensitive
analyses are defined with reference to the control flow graph [2] of a program,
while flow/context insensitive algorithms define the analysis semantics at the
statement level.

The algorithm most similar to ours is [3]. Originally described for the C
language, it has been recently extended to Java [49, 68]. Differently from the
approach followed in this book, no explicit data structure, such as the OFG,
is used in [3] as a support for the flow propagation: data flows are represented
as set-inclusion constraints.

The improvement of a control flow insensitive pointer analysis obtained
by introducing object sensitivity was proposed in [57], where the possibility
of parameterizing the degree of object sensitivity is also discussed.

This page intentionally left blank

3

Class Diagram

The class diagram is the most important and most widely used description of
an Object Oriented system. It shows the static structure of the core classes
that are used to build a system. The most relevant features (attributes and
methods) of each class are provided in the class diagram, together with the
optional indication of some of their properties (visibility, type, etc.). Moreover,
the class diagram shows the relationships that hold among the classes in a
system. This gives a static view of the structural connections that have been
designed to allow communication and interaction among the classes. Thus, the
class diagram provides a very informative summary of many design decisions
about the system’s organization.

Recovery of the class diagram from the source code is a difficult task. The
decision about what elements to show/hide profoundly affects the usability
of the diagram. Moreover, interclass relationships carry semantic information
that cannot be inferred just from the analysis of the code, being strongly
dependent on the domain knowledge and on the design rationale.

A basic algorithm for the recovery of the class diagram can be obtained
by a purely syntactic analysis of the source code, provided that a precise defi-
nition of the interclass relationships is given. For example, an association can
be inferred when a class attribute stores a reference to another class. One
problem of the basic algorithm for the recovery of the class diagram is that
declared types are an approximation of the classes actually instantiated in a
program, due to inheritance and interfaces. An OFG based algorithm can be
defined to improve the accuracy of the class diagram extracted from the code,
in presence of subclassing and interface implementation. Another problem of
the basic algorithm is related to the usage of weakly typed containers. Asso-
ciations determined from the types of the container declarations are in fact
not meaningful, since they do not specify the type of the contained objects. It
is possible to recover information about the contained objects by exploiting a
flow analysis defined on the OFG.

The basic rules for the reverse engineering of the class diagram are given
in Section 3.1. Accuracy of the associations in presence of inheritance and in-

44 3 Class Diagram

terfaces is discussed in Section 3.2, where an algorithm is provided to improve
the results of a purely syntactic analysis. The problems related to the usage
of weakly typed containers and an OFG based algorithm to address them are
described in Section 3.3. Recovery of the class diagram is conducted on the
eLib application in Section 3.4. Related works are discussed in the last section
of this chapter.

3.1 Class Diagram Recovery

The elements displayed in a class diagram are the classes in the system under
analysis. Internal class features, such as attributes and methods, can be also
displayed. Properties of the displayed features, as, for example, the type of
attributes, the parameters of methods, their visibility and scope (object vs.
class scope), can be indicated as well. This information can be directly ob-
tained by analyzing the syntax of the source code. Available tools for Object
Oriented design typically offer a facility for the recovery of class diagrams
from the code, which include this kind of syntactic information.

eLib example

Fig. 3.1. Information gathered from the code of class User.

Fig. 3.1 shows the UML representation recovered from the source code of
class User, belonging to the eLib example (see Appendix A). The first com-
partment below the class name shows the attributes (userCode, fullName,
etc.). Static attributes (nextUserCodeAvailable) are underlined. Class op-

3.1 Class Diagram Recovery 45

erations are in the bottom compartment. The first entry is the constructor,
while the other methods provide the exported functionalities of this class.

Relationships among classes are used to indicate either the presence of ab-
straction mechanisms or the possibility of accessing features of another class.
Generalization and realization relationships are examples of abstraction mech-
anisms commonly used in Object Oriented programming that can be shown
in a class diagram. Aggregation, association and dependency relationships are
displayed in a class diagram to indicate that a class has access to resources
(attributes or operations) from another class.

A generalization relationship connects two classes when one inherits fea-
tures (attributes and methods) from the other. The subclass can add further
features and can redefine inherited methods (overriding). A realization rela-
tionship connects a class to an interface if the class implements all methods
declared in the interface. Users of this class are ensured that the operations
in the realized interface are actually available.

Generalization and realization relationships satisfy the substitutability
principle: in every place in the program where a location of the super-
class/interface type is declared and used, an instance of any sublass/class
realizing the interface can actually occur.

Relationships of access kind hold between pairs of classes each time one
class possesses a way to reference the other. Conceptually, access relationships
can be categorized by relative strength. A quite strong relationship is the
aggregation. A class is related to another class by an aggregation relationship
if the latter is a part-of the former. This means that the existence of an
object of the first class requires that one or more objects of the other class
do also exist, in that they are an integral part of the first object. Participants
in aggregation relationships may have their own independent life, but it is
not possible to conceive the whole (first class) without adding also the parts
(second class). An even stronger relationships is the composition. It is a form
of aggregation in which the parts and the whole have the same lifetime, in
that the parts, possibly created later, can not survive after the death of the
whole.

A weaker relationship among classes than the aggregation is the associa-
tion. Two classes are connected by a (bidirectional) association if there is the
possibility to navigate from an object instantiating the first class to an object
instantiating the second class (and vice versa). Unidirectional associations ex-
ist when only one-way navigation is possible. Navigation from an object to
another one requires that a stable reference exists in the first object toward
the other one. In this way, the second object can be accessed at any time from
the first one.

An even weaker relationship among classes is the dependency. A depen-
dency holds between two classes if any change in one class (the target of

46 3 Class Diagram

the dependency) might affect the dependent class. The typical case is a class
that uses resources from another class (e.g., invoking one of its methods). Of
course, aggregation and association are subsumed by dependency.

3.1.1 Recovery of the inter-class relationships

From the implementation point of view, there is no substantial difference
between aggregation and association. Both relationships are typically imple-
mented as a class attribute referencing other objects. Attributes of container
type are used whenever the multiplicity of the target objects is greater than
one. In principle, there would be the possibility to approximately distinguish
between composition and aggregation, by analyzing the life time of the ref-
erenced objects. However, in practice implementations of the two relation
variants have a large overlap.

In the implementation, dependencies that are not associations or aggre-
gations can be distinguished from the latter ones because they are accesses
to features of another class performed through program locations that, dif-
ferently from class attributes, are less stable. For example, a local variable
or a method parameter may be used to access an object of another class and
invoke one of its methods. In such cases, the reference to the accessed object is
not stable, being stored in a temporary variable. Nevertheless, any change in
the target class potentially affects the user class, thus there is a dependency.

Table 3.1 summarizes the inter-class relationships and the rules for their
recovery. Generalization and realization are easily determined from the class
declaration, by looking for the keywords extends and implements, respec-
tively. The declared type of the program locations (attributes, local variables,
method parameters) involved in associations (including aggregations) and de-
pendencies is used to infer the target of such relationships. In the next two

3.2 Declared vs. actual types 47

sections we will see that this simple method may potentially give rise to in-
accuracies in the presence of inheritance, interfaces or containers. Improved
class diagrams can be obtained by refining the declared type into more precise
information by means of flow propagation in the OFG.

eLib example

In the eLib example (see Appendix A), class Loan has two association
relationships with classes User and Document, which can be easily reverse en-
gineered from its code given the presence of two attributes, user and document
(lines 134, 135), of the two target classes. Conceptually, they could be regarded
as aggregations, rather than associations, in that a loan has a user and a bor-
rowed document as its integral constituents. However, from the analysis of the
source code there is no way to distinguish this case from the plain association.
In the following, no distinction is made between aggregation and association,
and the latter will be used as possibly inclusive of the former.

The class Library performs method invocations on objects of class User
and Document through parameters (resp. at line 10 inside addUser and
at line 26 inside addDocument) or local variables (resp. at line 17 inside
removeUser and at line 33 inside removeDocument). Thus, there is a depen-
dency between Library and User, and between Library and Document.

3.2 Declared vs. actual types

The declared type of attributes, local variables and method parameters is
used to determine the target class of associations and dependencies. It is
quite typical that the declared type is the root of a sub-tree in the inheritance
hierarchy or it is an interface. For example, attributes user and document
of class Loan in the eLib program are respectively declared to be of type
User, which has InternalUser as a subclass, and Document, which has Book,
Journal, and TechnicalReport as subclasses. A hypothetical binary search
tree program may contain a class BinaryTreeNode with an attribute obj to
store the information to be associated with each tree node. Its declared type
could be Comparable, i.e., the interface implemented by objects that can be
totally ordered by means of the method compareTo.

When the declared type is the root of an inheritance sub-tree, an associa-
tion or dependency is inferred from the given class to the root of the sub-tree.
In the eLib example, two of the inferred relationships connect Loan to User

48 3 Class Diagram

and Document. If the application program uses only a portion of the inheri-
tance sub-tree, the target of the association/dependency is inaccurate. A more
precise target class would consist of the classes of the actually allocated ob-
jects. For example, if in a specific instance of the library application only
documents of type Book are handled, an association should connect Loan to
Book instead of Document.

The problem is exacerbated with interfaces. Let us consider the binary
search tree example sketched above. The presence of an attribute obj of type
Comparable would generate an association fromBinaryTreeNode to Compa-
rable. Since the interfaceComparable is not user-defined, such an association
is typically not included in the class diagram of the system, since only rela-
tionships among user-defined classes are of interest. Let us assume that the
application program using the binary search tree defines a class Student which
implements the interface Comparable. Objects of type Student are allocated
in the program and are assigned to the field obj of BinaryTreeNode objects. In
the class diagram for this application, one would expect to see an association
from BinaryTreeNode to Student. If the basic reverse engineering method
described in Section 3.1 is applied, no such association is actually recovered
from the code. Thus, usage of an interface as the type of a class field results
in an inaccurate recovery of the class diagram.

In general, there might be a mismatch between the type declared for a
program location and the actual types of the objects that are possibly as-
signed to such a location. In fact, the declared type might be a superclass
of, or an interface implemented by, the actual object types. In these cases,
a precise recovery of the class diagram can be achieved only by determining
the type of the actually allocated objects that are possibly referenced by the
program locations under analysis. The flow propagation algorithm presented
in Chapter 2 can be used for this purpose.

3.2.1 Flow propagation

Specialization of the generic flow propagation algorithm to refine the declared
type of variables requires the specification of the sets gen and kill of each OFG
node. Fixpoint of the flow information on the OFG is achieved by the generic
procedure given in Chapter 2. Fig. 3.2 shows how the gen set is determined for
the OFG nodes. Only nodes of type cs.this have non empty gen set. All other
OFG nodes have an empty gen set. All kill sets are empty in this analysis
specialization.

Given an object allocation such as statement (5) of Fig. 3.2, the flow
information that has to be propagated in the OFG is the exact type of the
allocated object. This is the reason why the class name is inserted into the
gen set. The OFG location where the propagation of this flow information
starts is the this pointer of the constructor. In fact, that is the very first
location holding a reference to the newly allocated object. Thanks to the OFG
edges, constructed according to the algorithm described in Chapter 2, this

3.2 Declared vs. actual types 49

Fig. 3.2. Flow propagation specialization to determine the type of actually allocated
objects referenced by program locations.

information is propagated to the right hand side of the allocation statement
(5), and from this location it can reach other program locations, according to
the object flows. In the end, the class names that reach class attributes indicate
the improved targets of association relationships. Similarly, the class names
associated with local variables or method parameters allow the refinement of
dependency relationships.

3.2.2 Visualization

Since flow propagation in the OFG according to the specialization in Fig. 3.2
results in a set of referenced object types for each program location, instead
of a single type, a postprocessing that simplifies the output might be appro-
priate. Each time the types inferred for a location and available from
after the fixpont, are coincident with all descendants of a user-defined class
A, a single relationship can be produced toward class A, which is assumed to
imply a relationship with all subclasses. In this way, the class diagram is not
cluttered by relationships toward all subclasses. However, the disadvantage
of this graphical representation is that it makes it impossible to distinguish
between a relationship with class A only and a relationship with A and all its
subclasses.

In the eLib example, if the result of flow propagation is: out [Loan. user] =
{User, InternalUser}, it is possible to draw just one association in the class
diagram, between Loan and User. However, this makes the diagram indistin-
guishable from one produced for a program where no InternalUser is ever
allocated. Such an inaccuracy becomes acceptable when the diagram is large
and drawing relationships toward all subclasses makes it not understandable
and usable. Otherwise, the diagram with more precise relationships should be
preferred.

As a general rule, when several relationships are directed from a class to a
set of classes, an option to reduce the visual cluttering is replacing them with
a single relationship toward the Least Common Ancestor (LCA) of the target
classes. The diagram becomes less precise but easier to read.

50 3 Class Diagram

binary search tree example

The importance of applying the flow propagation algorithm to determine
the targets of associations and dependencies becomes even more evident when
interfaces are used in the program. Let us consider the binary tree example
once more. The code fragments relevant to our analysis are the following:

The abstract syntax of the statements above follows:

The related OFG is shown in Fig. 3.3. The only non empty gen sets of its
nodes are:

3.3 Containers 51

Fig. 3.3. OFG for the binary search tree example.

After flow propagation, the following out set is determined for the attribute
obj of class BinaryTreeNode:

Thus, an association can be drawn in the class diagram from BinaryTreeNode
to Student. On the contrary, the analysis of the declared type would miss com-
pletely this interclass relationship, because the declared type ofBinaryTreeNo-
de. obj is Comparable.

As apparent from the example above, the declared types of variables are a
good starting point to infer the relationships that hold among the user-defined
classes represented in a class diagram. However, they may lead to imprecise
diagrams, where some of the existing relationships are absent. One of the main
reasons for the inaccuracy is the declaration of program locations whose type
is an interface. In this case, the declared type is not very informative. An
OFG based analysis of the actual object types can be used to obtain a more
accurate class diagram.

3.3 Containers

Containers are classes that implement a data structure to store, manage, and
access other objects. Classical examples of such data structures are: list, tree,
graph, vector, hash table, etc. Weakly typed containers are containers that
collect objects the type of which is not declared. With the current version of
Java, that does not yet support genericity, all containers are weakly typed.

52 3 Class Diagram

Thus, an object x of type List that is used to store objects from class A is
declared as: “List x;”, without any explicit mention of the contained object
type, A. Knowledge about the kind of objects that can be inserted into x and
that are retrieved from x is not part of the program’s syntax.

Weakly typed containers expose programmers to errors that are not de-
tected at compile time, and are typically due to a wrong type assumed for
contained objects. Moreover, they make reverse engineering a difficult task. In
fact, interclass relationships, such as associations and dependencies, are deter-
mined from the type declared for attributes, local variables and parameters.
When containers are involved, the relationships to recover should connect the
given class to the classes of the contained objects. However, information about
the contained object classes is not directly available in the program.

eLib example

Let us consider the eLib example. Class Library has an attribute loans
(line 6) of declared type Collection, and two attributes, users and docu-
ments (lines 4, 5), of type Map. Since both Collection and Map are inter-
faces, the algorithm described in Section 3.2 can be applied to determine a
more accurate type for these class attributes. The result does not help re-
verse engineer the associations implemented through these attributes. In fact,
the classes that implement the Collection and Map interfaces and are actu-
ally used for the corresponding attributes of class Library are respectively
LinkedList andHashMap, that is, two weakly typed containers. SinceHashMap
and LinkedList are library classes, no relationship is drawn in the class di-
agram for them (only user defined classes are considered). However, a closer
inspection of the source code reveals that the attribute documents holds the
mapping between a document code and the corresponding Document object.
Similarly, the attribute users associates a user code to the related User ob-
ject. The attribute loans stores the list of all active loans of the library,
represented as objects of the class Loan. Thus, three association relationships
are missed when only declared types are considered, one between Library and
Document, another one between Library and User, and a third one between
Library and Loan. Correspondingly, the reverse engineered class diagram is
very poor and does not show important information such as the way to ac-
cess the Document objects managed by the Library, the library users (User
objects), and the loans (missing association with class Loan).

3.3.1 Flow propagation

It is possible to define a specialization of the flow propagation algorithm pre-
sented in Chapter 2, aimed at estimating the type of the contained objects for
weakly typed containers. The basic idea is that before insertion into a con-
tainer each object has to be allocated, and allocation requires the full speci-

3.3 Containers 53

fication of the object type. Symmetrically, after extraction from a container
each object has to be constrained to a specific type, in order to be manipu-
lated with type-dependent operations. Flow propagation of the pre-insertion
and post-extraction type information results in a static approximation of the
contained object types. Such information can be used to refine the class dia-
grams extracted from the code, by recovering some of the otherwise missing
relations between classes.

Container classes offer two basic functionalities to user classes: insertion
methods, to store objects into the container, and extraction methods, to re-
trieve objects out of a container. During OFG construction, these functionali-
ties are abstracted by the two methods insert and extract. Their effects on the
object flows are accounted for by replacing their invocations with assignment
statements, equivalent to the method calls from the point of view of the data
flows (see Chapter 2, Section 2.3).

Given the OFG produced by taking container flows into account, a spe-
cialization of the flow propagation algorithm to determine the type of the con-
tained objects is obtained by defining gen and kill sets of each OFG node. Two
different kinds of flow information can be used to infer the type of contained
objects: the type of inserted objects can be obtained from their allocation,
while the type of extracted objects can be obtained from their type coercion.
For example, (abstract) statements such as can be
exploited to estimate the contained object type as that of the allocation, while
the coerced type in a statement such as where ”(A)” is
the syntax for type coercion, can be exploited to associate type A to container

Correspondingly, two executions of the flow propagation algorithm have to
be conducted, with two different sets of gen and kill sets associated with OFG
nodes. Moreover, the direction of flow propagation changes when insertion vs.
extraction information is used.

Fig. 3.4. Flow propagation specialization to determine the type of objects stored
inside weakly typed containers, accounting for object insertions and based on allo-
cation information. Forward propagation.

54 3 Class Diagram

Fig. 3.4 provides the gen and kill sets to use when the contained object
type is estimated from insertion information. Object allocation statements
provide the precise type of allocated objects. This information is propagated
from object constructors to the containers, according to the fixpoint algorithm
described in Chapter 2. The direction of propagation is forward, so that in-
coming information of each node is obtained from the predecessors. It
can be noted that the same flow analysis specialization has been used to refine
associations when declared types are superclasses of actual types or interfaces
(see Fig. 3.2).

Fig. 3.5. Flow propagation specialization to determine the type of objects stored
inside weakly typed containers, accounting for object extractions and based on type
coercion. Backward propagation.

Fig. 3.5 gives gen and kill sets for the second execution of the flow propaga-
tion algorithm, exploiting extraction information. The abstract syntax given
in Chapter 2 has been enriched with a type coercion operator, “()”. Each
time a type coercion occurs on a program location or on the value returned
by a method, the related type information is generated at the corresponding
OFG node. In order to reach the container from which an object has been
extracted, this type information has to be propagated backward in the OFG,
that is, from the successors of a node to the node itself. In fact, type coercion
occurs after an object has flown out of a container up to a given location.
Such data flow has to be reversed to propagate the coerced type back to the
container.

After the two flow propagations are complete, the two respective out sets
of each container location hold the contained object types computed by the
two specializations described above. The union of these two out sets gives
the final results, i.e., the set of types estimated for the contained objects.
If several classes from an inheritance subtree are included in the out set of a
container, it may be appropriate to replace them with the LCA, thus reducing
the number of connections among entities in the class diagram, and improving
its readability.

3.3 Containers 55

eLib example

Let us consider the eLib program in Appendix A, and in particular, let us
focus on methods addUser (line 8) and searchDocumentByTitle (line 90) of
class Library. Their abstract statements are respectively:

where the first and second assignments are the result of transforming invoca-
tions of extraction methods (iterator at line 92 and next at line 94, resp.),
while the fourth assignment results from the conversion of an insertion (invo-
cation of add on docsFound at line 96). For completeness, let us consider a
code fragment from class Main (Appendix B), that performs a user insertion
into the library:

The abstract statements of this code fragment are:

Fig. 3.6 shows (a portion of) the OFG associated with the abstract state-
ments above. Sets gen1 and gen2 have been obtained according to the rules
in Fig. 3.4 and 3.5 respectively. Thus, gen1 is used during the first, forward
propagation, while gen2 is used in the second, backward flow propagation.
The cumulative result is:

where the assignment has been obtained by transforming the insertion method
put invoked on Library.users at line 10, and:

56 3

Fig. 3.6. OFG for a portion of the eLib program. Set gen1 is used during forward
flow propagation, while gen2 is used for backward propagation.

This allows a precise estimation of the contained object types. The at-
tribute users of class Library contains objects of type User, so that an
association can be drawn in the class diagram between Library and User.
Similarly, the class attribute documents has been found to contain objects of
type Document, resulting in the recovery of an association between Library
and Document. Both associations are completely missed if container analysis
is not performed.

3.4 The eLib Program

Fig. 3.7 shows the class diagram obtained by applying the basic reverse engi-
neering method described in Section 3.1, which takes only declared types into
account, to the eLib program. Since typically interconnections due to depen-
dencies that are not associations tend to make the class diagram less readable,
they have not been considered in Fig. 3.7. Only the two most important inter-
class relationships, associations and generalizations, are displayed. Moreover,
class attributes and methods are hidden, to simplify the view, and only class
names are shown.

Apparently, the class Library holds no stable reference toward the other
classes in the system. In fact, it is an isolated node in Fig. 3.7. This is due
to the usage of Java containers to implement associations with multiplic-
ity greater than one. Specifically, its fields documents, users and loans are

Class Diagram

3.4 The eLib Program 57

Fig. 3.7. Class diagram for the eLib program, obtained without container analysis.

Java containers (the declared type is the interface Map for the first two, and
Collection for the latter).

A bidirectional association exists between classes Loan and Document, in
that a Loan object holds a reference toward the borrowed Document object,
and vice versa, a borrowed Document has access to the Loan object with data
about the loan. While one would expect a similar bidirectional association be-
tween Loan and User, such a connection seems to be unidirectional, according
to the class diagram in Fig. 3.7. The reason for the missing association be-
tween User and Loan is that the related multiplicity is greater than 1 (a user
can borrow several documents). From the implementation point of view, the
problem is the usage of a container (actually, a Collection) for the field
loans of class User. On the contrary, since a document can be borrowed by
exactly one user, the association from Document to Loan has the multiplic-
ity one, and is implemented as a plain reference, that can be easily reverse
engineered from the code.

To summarize, the class diagram depicted in Fig. 3.7 does not represent
associations with multiplicity greater than one, since they are implemented
through containers. Execution of the container analysis algorithm described
in Section 3.3 is thus of fundamental importance for this program.

Fig. 3.8 shows the class diagram for the eLib program, produced by taking
into account the estimated classes of the objects stored inside containers. The
previously missing association between User and Loan has now been correctly
recovered. This is achieved by considering the set out [User. loans] = {Loan}
after flow propagation for container analysis.

Class Library is no longer a disconnected node in the diagram. Its con-
tainer attributes have been analyzed, and the type determined for the con-
tained objects allows drawing association relationships toward User, Loan and
Document. They correspond to an intuitive model of a library, where the list

58 3

Fig. 3.8. Class diagram for the eLib program, obtained after performing container
analysis.

of registered users is available, as well as the archive of the documents and
the set of loans currently active. The class diagram in Fig. 3.8 is much more
informative and accurate than that in Fig. 3.7. A programmer that has to
understand this application will find it much easier to map intuitive notions
about a library to software components by means of the diagram in Fig 3.8.

Fig. 3.9 completes the class diagram in Fig. 3.8 with the dependency
relationships, which are shown only if they connect two classes otherwise
not connected by an association (association is subsumed by dependency).
Class User iteratively accesses Document objects (through the association with
Loan) inside methodprintInfo (line 323), where code and title of borrowed
documents are printed (line 332). The related method calls (getCode and
getTitle) are the reasons for the dependency from User to Document. In
the reverse direction, the dependency is due to calls of methods getCode and
getName, issued at lines 220 and 221 inside printAvalability (line 215).
When a document is not available, the code and name of the user who bor-
rowed it are printed. The User object on which calls are made is obtained from
the Loan object (attribute loan) reachable from Document, which is non-null
in case the document is borrowed (not available).

The dependency from Journal to User is due to the implementation of
method authorizedLoan in class Journal (line 253). The base implementa-
tion of this method, in class Document, returns the constant true: every user
is authorized to borrow any document. This implementation is overridden by
the class TechnicalReport, returning the constant false (technical reports
can be consulted, but not borrowed). The class Journal also overrides it,
delegating the authorization to class User (hereby, the dependency), in that
only internal users (class InternalUser) are authorized to borrow journals
(line 254).

Class Diagram

3.5 59

Fig. 3.9. Class diagram for the eLib program including dependency relationships.

3.5 Related Work

Usage of points-to analysis to improve the accuracy of the interclass rela-
tionships is described in [56], where the type of pointed-to objects is used to
replace the declared type. The results obtained by points-to analysis are com-
parable to those obtained by the OFG based algorithm to handle inheritance,
given in Section 3.2. Both approaches exploit the object type used in alloca-
tion points to infer the actual type of referenced objects. As discussed in [56],
this represents a substantial improvement over the Class Hierarchy Analysis
(CHA) [17], which determines all direct and transitive subclasses of the de-
clared type as possibly referenced by a given program location. CHA becomes
particularly imprecise in the presence of interfaces as declared types. In fact,
it is quite typical that a large number of classes implement general purpose
interfaces (such as the Comparable interface). If all of them are accounted
for as possible targets of interclass relationships, a completely unusable class
diagram is derived from the code. In [56], the output of two points-to analysis
algorithms, described respectively in [68] and [57], is used to determine the
possibly pointed-to locations for each variable in the given program. The ex-
perimental data show that such information is crucial to refine the inter-class
relationships associated with dynamic binding.

In [18], container types are analyzed with the purpose of moving to a hy-
pothetical strongly typed version of the Java containers. A set of constraints is
derived on the type parameters that are introduced for each potentially generic
class (e.g., containers). A templated instance of the original class which re-
spects such constraints can safely replace the weakly typed one, thus making
most of the downcasts unnecessary and allowing for a deeper static check
of the code. Although based on a different algorithm, this approach is com-

Related Work

60 Class Diagram3

parable to that described in Section 3.3. In fact, more accurate information
about the type of objects inserted into containers is inferred from type-related
statements in the code under analysis.

An empirical study comparing the results obtained with and without con-
tainer analysis is described in [87]. The class diagrams for the subsystems in
a large C++ code base were reverse engineered. The number of associations
missed in the absence of container analysis turned out to be high, and the vi-
sual inspection of the related class diagrams revealed that container analysis
plays a fundamental role in reverse engineering, when weakly typed container
libraries are used.

3.5.1 Object identification in procedural code

In this chapter, reverse engineering of the class diagram has been presented
with reference to Object Oriented programs. A lot of work [12, 13, 51, 75,
80, 88, 102] has been conducted within the reverse engineering research com-
munity, aimed at identifying abstract data types in procedural code. Thus,
classes are tentatively reverse engineered from procedural (instead of Object
Oriented) code.

The purpose of the analyses considered in these works is supporting the
migration from procedural to Object Oriented programming. It was recognized
that this migration process cannot be fully automated and the results available
in the literature provide local approaches which help in some cases, but not
in others. If a software system was built around data types in the first place,
it is possible to identify and extract them as objects. If not, it is hard to
retrofit objects into the system and, until now, no one has come up with a
general, automated solution for transforming procedural systems into Object
Oriented ones. In such a case, the output of reverse engineering may be only
the starting point for a highly human-intensive reengineering activity.

In [51] the main methods for class identification are classified as global-
based or type-based, respectively when functions are clustered around globally
accessible objects or formal parameter and return types. A new identification
method – based on the concept of receiver parameter type – is also proposed.
The approach presented in [12], which considers accesses to global variables,
uses an internal connectivity index to decide which functions should be clus-
tered around the recognized class. Such a method is extended in [13] to include
type-based relations and it is combined with the strong direct dominance tree
to obtain a more refined result. The recovery technique described in [102]
builds a graph showing the references of the procedures to the internal fields
of structures. Accesses to global variables drive the recognition of classes.

In [27] the star diagram is proposed as a support to help programmers
restructure programs by improving the encapsulation of abstract data types.
Another decomposing and restructuring system is described in [58]. Both of
them provide sophisticated interaction means to assist the user in the process
of analyzing and restructuring a program.

3.5 Related Work 61

Several works [50, 75, 80, 88] on identification and remodularization of ab-
stract data types are based on the output produced by concept analysis [25].
The relation between procedures and global variables is analyzed by means of
concept analysis in [50]. The resulting lattice is used to identify module can-
didates. Concept analysis is used in [75] to identify modules, by considering
both positive and negative information about the types of the function argu-
ments and of the return value. An example of how to identify class candidates
from a C implementation of two tangled data structures is provided in [75].
Concept analysis succeeds in separating them into two distinct classes. In [88],
encapsulation around dynamically allocated memory locations and module re-
structuring are considered. Points-to analysis is used to determine dynamic
memory accesses, while concept analysis permits grouping functions around
the accessed dynamic locations. Concept analysis is exploited in [80] to reengi-
neer class hierarchies. A context describing the usage of a class hierarchy is the
starting point for the construction of a concept lattice, from which redesign
possibilities are derived.

This page intentionally left blank

4

Object Diagram

This chapter describes a technique to statically characterize the behavior of
an object oriented system by means of diagrams which represent the class
instances (objects) and their mutual relationships.

Although the class diagram is the basic view for program understanding
of Object Oriented systems, it is not very informative of the behavior that
a program will exhibit at run time, being focused on the static relationships
among classes. On the contrary, the object diagram represents the instances
of the classes and the related inter-object relationships. This program repre-
sentation provides additional information with respect to the class diagram
on the way classes are actually used. In fact, while the class diagram shows
all possible relationships for all possible class instances, the object diagram
takes into consideration the specific object allocations occurring in a program,
and for each class instance it provides the specific relationships a given object
has with other objects. While in the class diagram a single entity represents
a class and summarizes the properties of all of its instances, in the object
diagram different instances are represented as distinct diagram nodes, with
their own properties. Thus, the dynamic layout of objects and inter-object
relationships emerges from the object diagram, while it is only implicit in the
class diagram.

A static analysis of the source code based on the flow propagation in
the OFG can be exploited to reverse engineer information about the objects
allocated in a program and the inter-object relationships mediated by the
object attributes. The allocation points in the code are used to approximate
the set of objects created by a program, while the OFG is used to determine
the inter-object relationships. Resulting diagrams approximate statically any
run-time object creation and inter-object relationship, in a conservative way.

A second, dynamic technique that can be considered to produce the object
diagram is based on the execution of the program on a set of test cases. Each
test case is associated with an object diagram depicting the objects and the
relationships that are instantiated when the test case is run. The diagram can

64 4 Object Diagram

be obtained as a postprocessing of the program traces generated during each
execution.

The static and the dynamic techniques are complementary, in that the
first is safe with respect to the objects and relationships it represents, but it
cannot provide precise information on the actual multiplicity of the allocated
objects (e.g., in presence of loops), nor on the actual layout of the relationships
associated with the allocated objects (e.g., in presence of infeasible paths). The
dynamic view is accurate with concern to the number of instances and the
relationship layout, but it is (by definition) partial, in that it holds for a single
test run. Therefore, it is useful to contrast the dynamic and static view, to
determine the portion of the latter that was explored with the available test
suite and to refine it with information suggested by the dynamic views.

This chapter is organized as follows: after a summary presentation of the
object diagram elements, given in Section 4.1, Section 4.2 describes a static
method for object diagram recovery. It is a specialization of the general pur-
pose framework defined in Chapter 2. Section 4.3 provides the details of an
object sensitive OFG algorithm for the recovery of the object diagram. The
dynamic technique for object diagram recovery is presented in Section 4.4. At
the end of this section, static and dynamic analysis views are contrasted, high-
lighting advantages and disadvantages of both, and providing hints on how
they can complement each other. Static and dynamic extraction of the object
diagram is conducted on the eLib program in Section 4.5. Related works are
discussed in Section 4.6.

4.1 The Object Diagram

The object diagram represents the set of objects created by a given program
and the relationships holding among them. The elements in this diagram (ob-
jects and relationships) are instances of the elements (classes and associations,
resp.) in the class diagram. The difference between an object diagram and a
class diagram is that the former instantiates the latter. As a consequence, the
objects in the object diagram represent specific cases of the related classes.
Their attributes are expected to have well defined values and their relation-
ships with other objects have a known multiplicity. For each class in the class
diagram there may be several objects instantiating it in the object diagram.
For each relationship between classes in the class diagram there may be object
pairs instantiating it and pairs not related by it.

The usefulness of the object diagram as an abstract program representa-
tion lies in the information specific to the instantiation of the classes that it
shows. While the class diagram summarizes all properties that objects of a
given class may have, the object diagram provides more details on the prop-
erties that specific instances of each class possess. Different instances may
play different roles and may be involved in different relationships with other

4.2 Object Diagram Recovery 65

objects. While this is not apparent in the class diagram, the object diagram
represents this kind of information explicitly.

Let us consider a hypothetical BinaryTree program. In its class diagram,
there might be one BinaryTreeNode class, with two auto-associations named
left and right for the two children, while a possible instance represented
in the object diagram might include three objects of type BinaryTreeNode,
playing three different roles (i.e., tree root, left child and right child). The re-
lationships among these three elements are compliant with those in the class
diagram, but provide more information on the layout of the related instances
by showing a specific scenario (where the root references two children which
have no further descendants). Moreover, the object diagram is the starting
point for the construction of the interaction (collaboration and sequence) di-
agrams, where information about the message exchange between objects is
added to the class instances, thus focusing the view on the dynamic behavior
of a set of cooperating objects (a collaboration, in the UML terminology).

In the following text, two techniques are described for the recovery of
the object diagram. The first exploits only static information and approxi-
mates the set of objects created in the program by analyzing the allocation
(new) statements and propagating the resulting objects by means of the flow
propagation algorithm described in Chapter 2. The second considers a set of
execution traces, associated with the test cases available for a given program,
and obtained by running an instrumented version of the given program. Exe-
cution traces include information about each object allocated by the program,
uniquely identified, and its attributes. Object attributes which reference other
objects are used to recover inter-object associations. These two techniques
have advantages and disadvantages, and it is therefore desirable to be able to
compute and integrate the results of both of them.

4.2 Object Diagram Recovery

The static computation of the object diagram exploits the flow propagation
on the OFG to transmit information about the objects that are created in the
program up to the attributes that reference them. Objects are identified by
allocation site (i.e., the line of code containing the allocation statement), with
no regard to the actual number of times it is executed (which is, in general,
undecidable for a static analysis).

Fig. 4.1 shows the flow information that is propagated in the OFG to
recover the object diagram. Each allocation site (statement of kind (5)) is
associated with a unique object identifier, constructed as the class name
subscripted by an incremented integer (giving the object identifier Such
flow information is propagated in the OFG according to the algorithm given
in Chapter 2, in the forward direction.

Construction of the object diagram is a straightforward post-processing
of the computation described above. Every object identifier generates a

66 4

Fig. 4.1. Flow propagation specialization to determine the set of objects allocated
in the program that are referenced by each program location.

corresponding node in the object diagram. Every node in the OFG associated
to an object attribute, i.e., having a prefix and a suffix where is an
attribute of class is taken into consideration when inter-object associations
are generated. The out set of such an OFG node (i.e., out[c.a]) gives the
set of objects reachable from all objects of class along the association
implemented through the attribute Such an association can thus be given
the name of the attribute,

binary search tree example

Object Diagram

4.2 Object Diagram Recovery 67

The abstract syntax representation of the Java code fragment above is the
following:

Fig. 4.2. Object flow graph for the binary tree example.

Fig. 4.2 shows the OFG derived from the abstract statements above. Non
empty gen sets of OFG nodes are also shown. Objects of type BinaryTreeNode
are allocated at three distinct program points, thus originating three ob-
ject identifiers, BinaryTreeNode1, BinaryTreeNode2 and BinaryTreeNode3,
which are in the gen set of the respective left hand side locations (BinaryTree-
.root, BinaryTreeNode.addLeft.n and BinaryTreeNode.addRight.n). Since
there is just one allocation statement for BinaryTree objects, the only ob-
ject identifier for this class is BinaryTree1, inserted into the gen set of the
allocation left hand side, BinaryTree.main.bt.

After flow propagation, the following out sets are determined for the class
attributes:

Construction of the object diagram is now possible. Every object identi-
fier becomes a node in the object diagram. Thus, in the example above four
nodes are inserted into the diagram, three of class BinaryTreeNode and one of

68 4 Object Diagram

class BinaryTree. The out sets of the class attributes after flow propagation
determine the inter-object associations. Thus, object BinaryTree1 is associ-
ated with BinaryTreeNode1 through the attribute root, used as the associ-
ation name. All three objects of type BinaryTreeNode are associated with
BinaryTreeNode2 through a link named left, and with BinaryTreeNode3
through a link named right.

Fig. 4.3. Class diagram (left) and object diagram (right) for the binary tree exam-
ple.

Fig. 4.3 shows the object diagram recovered from the code of the binary
tree example on the right. For comparison, the related class diagram is de-
picted on the left. As apparent from this figure, the class diagram is less infor-
mative than the object diagram. In fact, the three elements BinaryTreeNode1,
BinaryTreeNode2, BinaryTreeNode3 of the object diagram are collapsed into
a single element (BinaryTreeNode) in the class diagram, with two auto-
associations (left and right). The object diagram makes it clear that the
attribute root of class BinaryTree always references the object identified as
BinaryTreeNode1 (first allocation site), while attributes left and right ref-
erence respectively the objects BinaryTreeNode2 (second allocation site) and
BinaryTreeNode3 (third allocation site).

4.3 Object Sensitivity

A more accurate estimate of the relationships among the objects allocated
in a program can be obtained by means of an object sensitive analysis (see
Chapter 2 for the general framework). Program locations are distinguished
by the object they belong to instead of their class. Given the allocation sites
in the program under analysis, an object identifier is associated to each of
them. A program location originally scoped by class gives rise to a set of
OFG nodes scoped by object identifiers when an object sensitive OFG

4.3 Object Sensitivity 69

is constructed. Specifically, for each object identifier created for class a
replication of the program location scoped by is inserted into the object
sensitive OFG. This gives the complete set of OFG nodes. The main drawback
is that construction of OFG edges becomes more complicated in case of object
sensitive analysis.

Fig. 4.4. Incremental construction of OFG edges for object sensitive analysis.

Fig. 4.4 shows the rules for OFG edge construction, when an object sen-
sitive analysis is conducted. Some object scoped locations connected by OFG
edges can be computed directly from the abstract syntax of the code under
analysis. This happens when the scope of the location is the object allocated
at the current statement or the object scoping the current method. Let us
consider statement (5) in Fig. 4.4. The scope of the invoked constructor cs is
the currently allocated object so that all formal parameters as
well as the this location inside cs will be scoped by

Class methods are replicated for each object of the given class allocated
in the program. Inside such copies, a unique identifier of the current object
(this) is available. It defines the scope of local variables, method parameters,
and attributes of the current object.

The most difficult case is when an attribute is accessed or a method is
called through a location other than this. In fact, in such a case, the target

70 4

attribute or method belongs to an object other than the current one. If the
attribute access has the form and the method call has the form
the object scoping the related program locations is not directly available from
the abstract statements. It can be obtained by executing the flow propaga-
tion algorithm for object analysis described in Section 4.2. However, such an
algorithm requires the availability of the OFG, which has been built only
partially. This is the reason why the rules in Fig. 4.4 have to be applied in-
crementally. During the first iteration of OFG construction, for all
locations Thus, only OFG edges connecting locations scoped by or
(resp., the object allocated at current statement and the object scoping the
current method) can be added to the OFG. Once this initial OFG is built,
flow propagation for object analysis can be performed, giving a first estimate
of the objects These objects can be used to scope the accesses to
attributes of objects other than the current one, or method names and param-
eters, in case of an invocation to a target different from the current object.
This allows adding more edges to the OFG, connecting locations scoped by

an object different from the current one. The refined version of the OFG
allows an improved estimation of the objects for each location
thus possibly augmenting the set of edges added to the OFG, according to the
rules in Fig. 4.4. At the end of this process, when no more edges are added to
the OFG, the final, object sensitive OFG is obtained. OFG nodes will have out
sets storing object identifiers determined through an object sensitive analysis.
Thus, the object diagram derived from them is expected to be more accurate
than the one constructed by an object insensitive analysis.

The algorithm described above produces quite precise object diagrams,
since object flows are not mixed when they belong to the same class but to
different objects. However, it requires replicating the program locations for all
allocation sites, thus generating a larger OFG. Moreover, it assumes that the
whole program is available for the analysis. In fact, if an allocation point for
a class is not part of the code under analysis, some of the related edges in the
OFG are missed, since will remain empty during all OFG construction
iterations. In other words, the result of the object sensitive analysis is still safe
(conservative) only if the whole system is available for the analysis, including
all object allocation statements.

binary search tree example

Let us consider the following Java code fragment for a binary tree program.
Two binary tree data structures, bt1 and bt2, are created to handle two
different kinds of data elements: objects of class A and objects of class B.

Object Diagram

4.3 71

Fig. 4.5. Object insensitive OFG for object analysis.

Fig. 4.5 shows the object insensitive OFG built for the code fragment
above. All program locations are scoped by the class they belong to. The
out sets provided for some OFG nodes are those obtained after completing

Object Sensitivity

72 4

the flow propagation on the OFG. They will be used for the object diagram
construction.

Fig. 4.6. Object sensitive OFG for object analysis.

Fig. 4.6 shows the corresponding object sensitive OFG. Program locations
are replicated for all allocated objects of their class. During the first iteration
of the OFG construction, performed according to the incremental rules in
Fig. 4.4, the edges marked with an asterisk cannot be added to the graph. In
fact, they are originated by the two invocations:

which have invocation targets different from this. According to rule 3 in
Fig. 4.4, the objects scoping the method name and the formal parameters
of the method are to be obtained respectively from out[Main.main.bt1]
and out[Main.main.bt2], but both sets are initially empty. Consequently,
an OFG is built with missing edges, associated with these two calls (asterisks
in Fig. 4.6).

Object Diagram

4.3 Object Sensitivity 73

On the initial, partial OFG, the object analysis algorithm is run, and the
result of the flow propagation at the two nodes of interest is:

This allows computing a proper scope for insert and its formal parameter
n. Specifically, the invocation bt1.insert(n1) results in the addition of the
two topmost edges marked with an asterisk in Fig. 4.6, since the target object
of this invocation has been determined to be BinaryTree1 by the previous flow
propagation step. Similarly, bt2. insert (n2) gives rise to the two asterisked
edges at the bottom.

A new iteration of the flow propagation gives the final result of the ob-
ject analysis. Some of the out sets obtained after this final flow propagation
are shown in Fig. 4.6. They are exploited for the construction of the object
diagram.

Fig. 4.7. Object diagram computed by an object insensitive analysis (left) and by
an object sensitive analysis (right).

Object insensitive (Fig. 4.5) and object sensitive (Fig. 4.6) results are
associated to the two object diagrams respectively on the left and on the right
of Fig. 4.7. When object insensitive results are used for an object diagram
construction, each class attribute is scoped by the class name, so that the
relationships it induces are replicated for every object of that class. Thus,
for example, the presence of BinaryTreeNode1 and BinaryTreeNode2 in the
out set of BinaryTree. root originates the four associations labeled root in
the object diagram on the left. Similarly, four associations labeled object are
generated due to the output of BinaryTreeNode.object.

On the contrary, in the object sensitive OFG, class attributes are scoped
by the object they belong to. Thus, the attribute root has two replications in
Fig. 4.6, namely BinaryTree1.root and BinaryTree2.root, each with a dif-
ferent outset. Since only BinaryTreeNode1 is in the out of BinaryTree1.root,
and only BinaryTreeNode2 is in the out of BinaryTree2.root, just two
edges are constructed in the object diagram on the right for the associa-

74 4

tion labeled root. Similarly, the output of BinaryTreeNode1.object and
BinaryTreeNode2. object in the object sensitive OFG allows drawing the two
associations labeled object in the object diagram on the right in Fig. 4.7.

The object diagram obtained by the object sensitive analysis conveys ac-
curate information about the data elements stored in the two binary trees
bt1 and bt2. In fact, node BinaryTreeNode1 has an attribute object that
tpoints to A1, while BinaryTreeNode2 points to B1 (see Fig. 4.7, right). This
indicates that the first tree is used to manage objects of class A (created at
allocation point 1), while the second tree has a different purpose: managing
objects allocated as B1. On the contrary, the object insensitive diagram is less
accurate and does not allow distinguishing the data elements stored in the
two trees.

Both object diagrams in Fig. 4.7 are safe, that is, they represent a conserva-
tive superset of all inter-object relationships that may occur at run time. How-
ever, the object sensitive one is more precise. The object insensitive diagram
contains spurious associations, but has the advantage of being computable
even when not all object allocations are part of the code under analysis.

4.4

The dynamic construction of the object diagram is achieved by tracing the
execution of a target program on a set of test cases. The tracing facilities
required are basically the possibility to inspect the current object and its
attributes each time a method is invoked on an object and its statements are
executed. Trace data should include an object identifier for the current object
and for any object referenced by the current object’s attributes.

It is possible to obtain these dynamic data either by exploiting available
tracing tools or by instrumenting the given program. In case of program in-
strumentation, the following additions are required:

Classes are augmented with an object identifier, which is computed and
traced during the execution of class constructors.
Upon an attribute change, the identifier(s) of the object(s) referenced by
the given attribute are added to the execution trace.
Time stamps are produced and traced when either of the two events above
occurs.

Each program execution is thus associated with an execution trace, the
analysis of which produces an object diagram. Consequently, the outcome
of the dynamic analysis is a set of object diagrams, each associated with a
test case, providing information on the objects and the relationships that are

Object Diagram

Dynamic Analysis

4.4 Dynamic Analysis 75

instantiated in the test case. Their construction from the execution trace is
straightforward. The identifier of each object in the execution trace is associ-
ated to a node in the dynamic object diagram. The identifiers of the objects
referenced by the current object’s attributes determine the relationships be-
tween the current object and the other ones.

Since the relationship between two objects on a given attribute may change
over time, if such an attribute is successively reassigned, in the execution trace
multiple target objects may be associated to the same attribute at different
times, resulting in more than one association to be drawn in the object dia-
gram for that attribute. Their interpretation is that there exists a time interval
when each drawn relationship actually holds. The traced time stamps are ex-
ploited when the dynamic object diagram is built, to decorate objects and
associations with the time interval that represents their life span (from cre-
ation time to deletion time). Snapshots of the object diagram at a given time
point or for a given interval can also be derived from the overall diagram.

binary search tree example

With reference to the binary tree example described in Section 4.3, let
us assume that the tree is kept ordered according to the compareTo method
available for the attribute object (inside class BinaryTreeNode), which im-
plements the Comparable interface. A test case may consist in the creation of
one or more BinaryTreeNode objects, with a String parameter assigned to
the attribute object, and the insertion of the newly created node into a same
BinaryTree. We can, for example, consider the following sequences of three
strings as our test cases TC1, TC2, TC3. A node is created and inserted into
the binary tree for each string encountered in the sequence:

TC1 ("a", "b", "c")
TC2 ("b", "a", "c")
TC3 ("c", "b", "a")

76 4 Object Diagram

Fig. 4.8. Dynamic construction of object diagrams for test cases TC1, TC2 and
TC3.

The execution traces for these three test cases contain the information in
Table 4.1 (attributes with null value have been removed from the execution
trace, being not relevant for the construction of the object diagram). Time
intervals in which a given relation holds are given in square brackets.

The analysis of the three execution traces produces the three object dia-
grams depicted in Fig. 4.8. In TC1, all child nodes are added on the right. In
TC2, the tree is balanced, while in TC3 only left children are present. The
life span of objects and relationships is in square brackets.

4.4.1 Discussion

Static extraction and dynamic extraction of the object diagram produce dif-
ferent but complementary information about the instantiations of the classes
performed by a program. The static object diagram gives a conservative view
of the objects that are possibly created by the program and of the relation-
ships that may exist between the objects. The number of objects reflects the
number of program locations where an allocation statement is present. If such
a statement is executed multiple times, the actual multiplicity of the related
object is greater than the multiplicity indicated in the static object diagram
(i.e., one). The presence of a relationship between two objects in the static
object diagram indicates that there is some path in the program along which
the first object may reference the second one (through some of its attributes).
The existence of a path in the program does not imply that such a path
is traversed in every execution. As a consequence, the relationships between

4.4 Dynamic Analysis 77

objects indicated in the static object diagram are a conservative superset of
those actually instantiated at run time. Moreover, it may happen that some
of these relationships are associated to paths that can never be followed, for
any input value. This is typical of static analysis: the solution is conservative,
but may include infeasible parts, due to mutually exclusive conditions on the
input values.

The dynamic object diagram complements the static one, in that objects
are replicated in it each time a same allocation statement is re-executed, thus
giving a better picture of their actual multiplicity. However, such a diagram
is always partial, being based on a limited and necessarily incomplete set of
test cases. An indication of the parts of the object diagram not yet explored
can be obtained by contrasting it with the static object diagram. Objects and
relationships in the static object diagram that are not represented in the dy-
namic one are associated respectively to allocation statements and execution
paths not exercised by the available test cases.

binary search tree example

As depicted in Fig. 4.3 (right), the binary tree example has a static object
diagram with 4 nodes and 7 edges. The first test case executed on it (Fig. 4.8,
TC1) instantiates its objects in 3 out of the 4 locations identified statically.
Allocation of a BinaryTreeNode in case of left insertion (addLeft) is not
exercised in TC1. Consequently, the two edges leaving BinaryTreeNode2 in
the static object diagram and the two incoming edges are not represented
in the first dynamic object diagram. However, the first dynamic object dia-
gram provides some additional information on the multiplicity of the object

78 4 Object Diagram

BinaryTreeNode3 (Fig. 4.3), which appears to be greater than 1. On the
contrary, a unitary multiplicity seems to be confirmed for BinaryTree1 and
BinaryTreeNode1 (Fig. 4.3). Correspondence between the objects identified
statically and those identified dynamically is as indicated in Table 4.2.

The second test case generates a dynamic object diagram (Fig. 4.8, TC2)
in which all objects in Fig. 4.3 are represented. The last test case (Fig. 4.8,
TC3) reveals that the multiplicity of BinaryTreeNode2 (Fig. 4.3) can also be
greater than 1.

The comparison of the diagrams in Fig. 4.8 (right) with that in Fig. 4.3
highlights the different and complementary nature of the information they
provide. The actual shape of the allocated objects (a tree) becomes clear only
when the dynamic diagrams are considered. However, they cannot be taken
alone, since they do not represent all possible cases that may occur in the
program. Inspection of the static object diagram allows detecting portions
of the code not yet exercised, which are relevant for the construction of the
objects and of the inter-object relationships, and therefore could contribute
to the understanding of the object organization in the program.

With reference to the diagram in Fig. 4.3, the relationship between
BinaryTreeNode2 and BinaryTreeNode3 labeled right, and that between
BinaryTreeNode3 and BinaryTreeNode2 labeled left, are not represented
in any dynamic diagram (see Fig. 4.8). Two additional test cases can be de-
fined to exercise them:

TC4 ("c", "a", "b")
TC5 ("a", "c", "b")

This highlights one of the advantages of combining the static and the
dynamic method, consisting of the support given to the programmers in the
production of the test cases.

4.5 The eLib Program

The code of the classes in the eLib program, provided in Appendix A, does
not contain the statements allocating objects of type User, Book, etc. In fact,
it is assumed that an external driver program performs such allocations. The
classes in this appendix offer functionalities for general library management,
but do not include a sample implementation of an actual library application.
Appendix B contains an example of such an application, with a driver class
(Main) that can be used to create a library, add/remove users and documents
and manage the process of borrowing/returning documents. This is the list of
commands that can be issued to the Main driver from the command prompt:

4.5 The eLib Program 79

Each command is dispatched by the method dispatchCommand (line 504),
triggering the execution of a proper method of class Main (the method name is
coincident with the command name). In turn, the called method exploits the
functionalities provided by the core classes of the eLib program to complete
its task. Thus, for example, method addUser (line 379) creates a new User
object, passing the parameters of the command (name, address, phone) to
the constructor (line 382). The resulting object is added to the library by
calling method addUser on the static attribute lib of class Main (line 383).
Such an attribute references a statically allocated Library object, accessible
to all methods of class Main.

A meaningful object diagram can be produced for the eLib program by
analyzing both the code in the core classes (Appendix A) and that in the driver
class (Appendix B). Actually, core classes perform just allocations of objects
of type Loan, inside methods for loan management, such as borrowDocument
(line 60), returnDocument (line 70) and isHolding (line 78). All the other
object allocations are performed inside methods of class Main (Appendix B).
Thus, if class Main is not included, a scarsely informative object diagram
would be obtained, with only three nodes representing objects of type Loan,
disconnected with each other.

4.5.1 OFG Construction

The OFG representing object allocations in the Main class and object propa-
gation from allocation points to class attributes is shown in Fig. 4.9. Allocated
objects are in the gen sets of the left hand side locations of allocation state-
ments. The result of flow propagation is depicted only for nodes representing
class attributes (Library .users, Library .documents, etc.). Their out sets
contain the possibly referenced objects, according to the result of the static
object analysis conducted on this OFG.

80 4 Object Diagram

Fig. 4.9. OFG of the eLib program for object diagram recovery, driver class.

4.5 The eLib Program 81

It can be noted that invocation of method authorizedLoan on the param-
eter doc of method borrowDocument (class Library) at line 59 is a polymor-
phic call. Consequently, the method actually invoked may be that defined in
classDocument, or that overridden by classes Journal and TechnicalReport
(Book does not override it), depending on the actual type of the invocation
target doc. Conservatively, edges in the OFG are drawn from the node asso-
ciated with doc to the this location of all methods possibly invoked in the
polymorphic call (see Fig. 4.9, bottom right edges).

Construction of the OFG in Fig. 4.9 requires a transformation of the state-
ments involving containers, as described in Chapter 2. For example, the edge
from Library.addUser. user to Library.users results from the invocation
of method put on Library .users, an object of type Map (line 10).

Fig. 4.10. OFG of the eLib program for object diagram recovery, core classes.

Fig. 4.10 contains the OFG for allocation points inside the core classes
(Appendix A). Containers are handled similarly as for the OFG in Fig. 4.9.
Only objects of type Loan are allocated inside core classes code. The Loan
object allocated inside method borrowDocument at line 60 is named Loan1,
the one allocated inside returnDocument at line 70 is named Loan2, and the
one allocated inside isHolding at line 78 is named Loan3. The OFG portion
that propagates these objects is shown in Fig. 4.10, where allocated objects
are contained in gen sets. No node has a gen set containing Loan3, since this
object is not propagated any further inside user classes. It is just used to check
the presence of a Loan object referencing a given User and Document in the
Collection loans of classLibrary (line 78). This requires a direct invocation
of method contains, implemented by a standard library (not a user) class. In
Fig. 4.10, out sets are shown only for locations representing class attributes.
They are exploited for object diagram construction.

82 4 Object Diagram

4.5.2 Object Diagram Recovery

Fig. 4.11. Object diagrams for the eLib program. On the left, the diagram recovered
from the driver class alone. On the right the complete diagram.

Fig. 4.11 depicts the object diagrams that are derived from the out infor-
mation associated with nodes that represent class attributes. Specifically, the
diagram on the left was obtained by considering only the allocation points
in the driver class (Main), that is, using the results of flow propagation on
the OFG of Fig. 4.9 only. Attributes users and documents of class Library
have been found to reference objects User1, InternalUser1 and Book1,
TechnicalReport1,Journal1 respectively. Since one object of typeLibrary
is allocated in the driver class (Library1), the object diagram contains such
an object with outgoing edges toward User1, InternalUser1 labeled users,
and toward Book1, TechnicalReport1, Journal1 labeled documents.

When the core classes of eLib are also analyzed (OFG in Fig. 4.10), the
objects Loan1, Loan2, Loan3 are added to the object diagram. Objects Loan2
and Loan3 do not reach any class attribute in the OFG after flow propagation.
This means that they cannot be stored inside any class attribute. Actually,
they are temporary objects used respectively to remove a Loan from the library
loans (line 71) and to check if a Loan with given User and Document exists in
the library list of the loans (line 78). In the first case, the method removeLoan
(line 48) is executed. It removes the given Loan from the list of the loans of
the library, and it updates User and Document linked to the Loan object
consistently. However, the two temporary objects Loan2 and Loan3 are no
longer accessible after the completion of the returnDocument and isHolding
operations.

According to the result of flow propagation in the OFG of Fig. 4.10, the ob-
ject Loan1 is referenced by the attributes loan ofDocument, loans ofLibrary,
and loans of User. This is reflected in the object diagram by new associations
outgoing from all objects of type Document, Library and User, and of any sub-
type. The attributes user and document of class Loan are found to contain the
objects User1, InternalUser1 and Book1, TechnicalReport1, Journal1
respectively (see out sets in Fig. 4.9). Thus, all objects of type Loan will have
an association with User1, InternalUser1 named user and with Book1,

4.5 The eLib Program 83

TechnicalReport1, Journal1 named document. The final object diagram is
shown in Fig. 4.11, on the right.

4.5.3 Discussion

By contrasting the class diagram recovered in Chapter 3 (Section 3.4) for
the eLib program and the object diagram in Fig. 4.11 (right), the different
nature of the information they convey becomes apparent. In the object di-
agram, only classes of actually allocated objects are present. Thus, no node
of type Document is in the object diagram, since only objects of subclasses
are allocated in the program. On the contrary, in the class diagram, the class
Document is represented. Moreover, in this diagram the inheritance hierarchy
is visible, while it is flattened in the object diagram, where emphasis is on
the actual allocation type, instead of the declared type. Correspondingly, the
relationships in the class diagram are replicated in the object diagram for all
objects descending from a given class. For example, the link from Document to
Loan is replicated for Book1, TechnicalReport1 and Journal1 in the object
diagram. However, the target of the link is Loan1, but not Loan2 or Loan3.
In other words, a link in the class diagram has disappeared in the object dia-
gram, since the related class instances are never associated with each other by
such a link. This occurs, in our example, for all incoming edges of class Loan
in the class diagram, which disappear when the instances Loan2 and Loan3
are considered. Differently from Loan1, these two instances of class Loan do
not participate in the associations from classes Document and User, and in
the association from class Library depicted in the class diagram. Such kinds
of information are not available from the class diagram, which generically in-
dicates a set of associations for class Loan. Only when allocations of objects
of class Loan are analyzed in detail, does it become clear that the object al-
located inside borrowDocument is the one participating in the associations,
while the other two do not.

Another interesting information that can be derived from the object di-
agram, but which is missing in the class diagram, is related to the outgoing
links of objects Loan2 and Loan3. The document and the user that are ref-
erenced by these two temporary objects are those allocated inside the Main
driver, and extracted from Library .documents and Library .users respec-
tively (see also the OFG in Fig. 4.9). Actually, when a document is returned
(temporary object Loan2) or when the presence of a loan is checked (tempo-
rary object Loan3), the involved document is obtained from the library by
documentCode (docId in the command issued to the Main driver), resp. at
lines 448 and 482. The user is either accessed by userCode (line 481), or it is
obtained as the user who borrows a given document (method getBorrower,
line 450). In all these cases, User and Document objects are extracted from
those stored in the library, as depicted in the object diagram (Fig. 4.11, right).

84 4 Object Diagram

4.5.4 Dynamic analysis

Let us consider a program execution in which the following commands are
prompted:

The related execution trace (over time) is given in Fig 4.12. During the
static initialization of classes, the object Library1 is created and is assigned
to the attribute lib of class Main (time 0). Creation of two internal users at
times 1, 2 results in two new objects, InternalUser1 and InternalUser2,
which are inserted into the attribute users of the objectLibrary1. Similarly,
the addition of two books (objects Book1, Book2) and of a journal (object
Journal1) to the library changes the attributedocuments ofLibrary1, which
eventually stores these three objects (time points 3, 4, 5). At time 6, a doc-
ument is borrowed by a user. This requires the creation of a new object of
type Loan, Loan1, which is inserted into Library1. loans. The attributes user
and document of Loan1 are found to reference the objects InternalUser1 and
Journal1 respectively. In turn, Journal1. loan is a reference to Loan1, which
is the only object insideInternalUser1 . loans. Returning the document
Journal1 at time 7 determines the removal of Loan1 from Library1 .loans,
InternalUser1. loans andJournal1 .loan. To achieve this, a temporary
Loan object (Loan2) is created which referencesInternalUser1 andJournal1
through its attributes user and document. It is compared with the objects
inLibrary1.loans to identify which Loan object to remove (resulting in
Loan1). Execution of the command isHolding causes the creation of another
temporary object of type Loan, Loan3, which also references InternalUser1
and Journal1. The presence of an identical object inside Library1. loans is
checked during the execution of the requested operation.

Fig. 4.13 shows the object diagram that can be derived from the execution
trace in Fig. 4.12. Arcs in this diagram are decorated with an indication of
the time interval in which the related associations exist (from creation to
deletion). Thus, Library1 is associated with its documents (Book1, Book2
and Journal1) and to its users (InternalUser1 and InternalUser2) for
the whole duration of the program (until time 8), starting from the creation
time of each object (3, 4, 5 for the documents and 1, 2 for the users). The
command borrowDoc, issued at time 6, gives rise to the creation of Loan1,
connected to InternalUser1 and Journal1, and inserted into the container
loans of Library1. Since at the next time point (7) such a loan is deleted,

4.5 The eLib Program 85

Fig. 4.12. Execution trace obtained by running the eLib program.

86 4 Object Diagram

Fig. 4.13. Dynamic object diagram obtained from the execution trace of the eLib
program.

the links connected to Loan1 cease to exist at time 7, their life interval being
[6-7]. At time 7, the temporary object Loan2 is created to achieve the deletion
of the previous loan. Such an object is connected to InternalUser1 and
Journal1, but the related associations do not exist any longer when the object
is dismissed. Thus, their life span is limited to the execution of the command
returnDoc ([7-7]). Similarly, the objectLoan3 is created at time 8 to verify the
presence of a loan among those in the library. Being a temporary object, its life
ends with the termination of the command. Correspondingly, the associations
outgoing from Loan3 have a time interval [8-8].

A comparison of the static object diagram (Fig. 4.11, right) with the dy-
namic object diagram (Fig. 4.13) reveals the complementary nature of the in-
formation they convey. The static diagram represents all possible associations
and all possible objects that may be created at run time conservatively. On
the contrary, the dynamic diagram is partial and represents only the objects
and the associations created during a particular program execution. Thus,
since classTechnicalReport is never instantiated in the chosen execution,
the dynamic diagram does not contain any object for it, while the possibility
of creating TechnicalReport objects is accounted for in the static diagram.
The dynamic diagram provides more information about object multiplicity.
Class Book is instantiated twice in the execution being considered, and cor-
respondingly, two objects are in the dynamic diagram (Book1, Book2). On
the other side, the number of times a given allocation is executed at run time
is unknown during a static analysis, so that no multiplicity information is
included in the static diagram. Moreover, the dynamic diagram provides the
time intervals for the associations depicted in it. This allows distinguishing,
for example, more stable relationships, such as those between Library1 and
its documents or users, from temporary relationships, such as those between
Loan2, Loan3 and the referenced document/user. In general, in the static
diagram, times of creation and removal of relationships and objects are not
apparent, in that all possible relationships at any possible execution time are
shown. On the contrary, the dynamic diagram shows the exact time at which

4.6 Related Work 87

relationships (objects) are created, changed, or deleted. On the other hand,
this is known only for specific program executions.

4.6 Related Work

Information about class instances is collected at run-time by research proto-
types, such as those described in [42, 62, 67, 97]. In these works, creation of
objects and inter-object message exchange are captured by tracing the exe-
cution of a program under given scenarios. A novel approach for the dynamic
analysis of object creation and of the inter-object relationships is described
in [29]. It exploits the notion of aspect, introduced by Aspect Oriented Pro-
gramming [40], and its ability to intercept a well defined execution point (join
point), at which information about objects can be accessed and traced.

The OFG propagation exploited for static object diagram construction is
based on the type inference technique for points to analysis [3]. More details on
this and other related works are provided in Chapter 2, in the context of OFG
construction and flow propagation. A major difference with the works in the
type inference literature consists of the object sensitive variant (see Fig. 4.4),
which requires an incremental OFG construction. Edges in the OFG depend
on the objects referenced by program locations (object sensitivity), which
are in turn the outcome of flow propagation on the OFG. OFG construction
followed by flow propagation are repeatedly performed to produce the final,
object sensitive, OFG of the program. Similar problems are faced in [57],
where an object sensitive variant of [3] is investigated.

Experimental results obtained by applying the presented approach to a
case study are provided in [89], where the information conveyed by class di-
agrams, static object diagrams and dynamic object diagrams is considered.
Results indicate that the object diagram provides additional information with
respect to the class diagram, being focused on the way a program actually uses
the objects that instantiate the declared classes. Moreover, static and dynamic
views of the objects capture complementary information. The former covers
all statically admissible inter-object relationships, while the latter provides
accurate multiplicity data for specific scenarios. Two novel object-oriented
testing criteria, Object coverage and Inter-object relationship coverage are de-
rived in [89] from the comparison of the static object diagram and of the
diagrams associated to the execution of test cases. The number of test cases
should be enough as to cover all object creations or inter-object relationships
displayed in the static object diagram.

This page intentionally left blank

Interaction Diagrams

This chapter is focused on the extraction of a representation of the interac-
tions that occur among the objects that compose an Object Oriented system.
A static analysis of the source code provides a conservative superset of all pos-
sible interactions, while a dynamic analysis can be used to trace the behavior
of the program during a given execution.

In Object Oriented programming, the overall functionality of an applica-
tion emerges from the interactions among the communicating objects it in-
stantiates. There is no single place where the instructions for a given system’s
functionality are concentrated. On the contrary, each object gives a small con-
tribution to a larger picture, possibly delegating part of the computation to
other objects. Thus, understanding the behavior emerging from the message
exchange implemented in an Object Oriented system can be a difficult task.
Interaction diagrams help programmers in such a task by offering a visual
language for the display of the control transfers among objects.

Interaction diagrams can be obtained from the source code by augmenting
the object diagram with information about method invocations. The sequence
of method dispatches is considered and their ordering is represented in the two
forms of the interaction diagrams: either in collaboration diagrams, which em-
phasize the message flows over the structural organization of the objects, or in
sequence diagrams, which emphasize the temporal ordering. Recovery of these
diagrams from the source code can be achieved by defining a proper analysis
on the OFG and exploiting its outcome to statically resolve the method in-
vocations. Dynamic recovery of the interaction diagrams can be obtained by
running an instrumented version of the program and collecting the dynamic
interactions among the objects from the execution trace.

For statically determined diagrams, a numbering algorithm, aimed at or-
dering events temporally, is also described in this chapter. It is used to attach
time stamps to method calls, thus making the diagrams more informative. In
order for the approach to scale to large systems, it is complemented by an
extension of the interaction diagram recovery algorithm to handle incomplete
systems, and by a focusing technique that can be used to locate and visualize

5

90 5 Interaction Diagrams

only the interactions of interest. Correspondingly, focused numbering of the
temporal events is also considered.

The chapter is organized as follows: Section 5.1 gives an overview on the
interaction diagrams. Section 5.2 presents the specialization of the general flow
propagation algorithm that is used for the reverse engineering of the interac-
tion diagrams and some related problems, the first of which deals with the
recovery of useful interaction diagrams in the presence of incomplete systems.
Moreover, the usability problems of the resulting diagrams are also discussed.
To make diagrams fit the cognitive abilities of humans, proper visualization
techniques must be adopted. In particular, the possibility to focus on a com-
putation of interest is described in detail, together with a related numbering
algorithm, for the temporal ordering of the involved events. Interaction di-
agrams can be recovered at run time, for specific program’s executions, as
described in Section 5.3. Examples of interaction diagrams obtained for the
eLib system are provided in Section 5.4, while a discussion of the related works
ends the chapter.

5.1 Interaction Diagrams

Interaction diagrams are used to model the dynamic aspects of an Object
Oriented system [7]. While class diagrams are used to represent the static
structure of the system, in terms of its classes and of the relationships among
classes, interaction diagrams are focused on class instances (objects), work-
ing together to carry out some task. Their behavior (instead of their static
structure) is represented as a sequence of messages that are exchanged among
objects. The evolution over time of the method dispatches characterizes the
overall behavior.

As in the object diagram, the elements represented in the interaction di-
agrams are the objects created by a program. The main difference between
object diagram and interaction diagrams is that the former represents the
structure of the object system, in terms of inter-object relationships, while
the latter deals with the behavior of communicating objects, expressed in
terms of the method invocations issued among the objects in the system.

The interactions among objects can be modeled in two ways: by emphasiz-
ing the time ordering of the messages (sequence diagrams), or by emphasizing
the sequencing of the messages in the context of the structural organization
of the objects (collaboration diagrams). In the first case, a vertical time line is
displayed and events are positioned on it to indicate their temporal ordering.
In the latter case, the Dewey numbering system (incremented integer num-
bers separated by dots) is used to indicate that a given message triggers the
exchange of a set of nother nested messages. Thus, if 1 is the sequence num-
ber of the first message, 1.1 and 1.2 are respectively used for the first and
second nested messages. Method calls prefixed by Dewey numbers label the
inter-object relationships shown in a collaboration diagram.

5.2 Interaction Diagram Recovery 91

Reverse engineering of the interaction diagrams from the code can be con-
ducted either dynamically or statically. Dynamic extraction of the interactions
among objects requires the availability of a full, executable system, which is
run with some predefined input data. The statements issuing calls to methods
are traced during the execution, with information for the unique identification
of the source and target objects. The main disadvantages of this approach are
that it does not apply to incomplete systems, but only to whole, executable
ones, and that the resulting diagrams describe the system for a single execu-
tion with given input values. A static, conservative analysis of the code for
the reverse engineering of the interaction diagrams addresses both problems.
However, it may overestimate the set of admissible behaviors. This is why
these two kinds of diagrams complement each other and it is desirable to have
both of them during reverse engineering of a given Object Oriented system.

5.2 Interaction Diagram Recovery

The static recovery of the interactions among objects is done in two steps: first,
the objects created by the program and accessible through program variables
are inferred from the code. Then, each call to a method is resolved in terms
of the possible source and target objects involved in the message exchange.

Fig. 5.1. Flow propagation specialization to determine the set of objects allocated
in the program that are (possibly) referenced by each program location.

A static approximation of the objects created by a program and of their
mutual relationships can be obtained by performing a flow propagation in-
side the OFG, as described in more detail in Chapter 4. For the reader’s
convenience, the rules for the generation of the related flow information are
reported also in Fig. 5.1. Each object allocation point in the program gives
rise to an object identifier where is the object’s class name. Propagation
of such object identifiers along the program’s data flows (i.e., in the OFG)

92 5 Interaction Diagrams

allows associating each variable with the set of statically determined objects
it may reference.

The set of objects extracted from a program approximates the set of
objects the program may create at run time. The main source of approxima-
tion consists of their multiplicity: since it is impossible to determine statically
the number of times a statement is executed, the actual multiplicity of each
object is unknown.

During interaction diagram construction, source and target of method in-
vocations are resolved into a set of statically determined objects An alter-
native would be associating them with the respective classes, instead of their
instances. However, the first choice provides a better approximation than just
using the class of the objects that are invocation sources or targets. In fact,
in the resulting interaction diagrams, objects of a same class allocated at
different program points are distinguished in the first case, while they are
represented as a single element in the second case. Moreover, objects belong-
ing to a subclass of the declared class are assigned the exact type, as obtained
from the allocation statement, while the analysis of method invocations at
the class level does not allow distinguishing instances of the given class from
instances of the subclasses.

Fig. 5.2. Algorithm for the static resolution of a method call.

Once the objects referenced by program locations are obtained by the flow
analysis on the OFG, method calls can be resolved by means of the algorithm
shown in Fig. 5.2. Given a statement containing a call expression of the form
p.g() inside a method f of class A, the source objects and the target objects
of the call are respectively those referenced by the this pointer of the current
method (out[A.f.this]) and by the location p (out[A.f.p] or out[A.p] in case
p is a class attribute).

More complex Java expressions involving method calls can be easily re-
duced to the case reported in Fig. 5.2. For example, if a chain of attribute
accesses precedes the method call, as in p.q.g(), the invocation targets are
obtained from the last involved attribute: out[B.q], where B is the class of the
attribute q accessed through p. When another method call precedes the one

5.2 Interaction Diagram Recovery 93

to be solved, as in p.f().g(), the related return location can be used to
determine the targets of the call: out[B.f .return], where B is the class of the
method f accessed through p.

The procedure resolveCall given in Fig. 5.2 returns a pair of sets, sources
and targets, containing the object identifiers that are statically determined
as respectively possible source or target objects of the given invocation. The
source and target objects returned by the procedure resolveCall will be con-
nected by a call relationship in the interaction diagrams.

eLib example

Let us consider the method addLoan from class Library (line 40). It con-
tains four method calls (lines 42, 43, 45, 46) that must be resolved before
constructing the interaction diagrams.

Fig. 5.3. Portion of OFG used for call resolution.

Fig. 5.3 shows the portion of OFG that contains the information re-
quired for the resolution of the four calls inside method addLoan. The ob-
ject Library1, allocated at line 348 and assigned to the static attribute lib
of class Main, is the object referenced by this inside addLoan. The object
Loan1, allocated inside borrowDocument at line 60, is passed as the param-
eter loan to addLoan. The attribute user of class Loan is returned by the
method getuser of class Loan and is assigned to the variable user (line 42),
a local variable of method addLoan. The set of objects possibly referenced by
the attribute user of class Loan was determined in the previous chapter (see

94 5 Interaction Diagrams

Fig. 4.9). In Fig. 5.3 it is represented as the out set of node Loan.user. By
propagating such values in the OFG, the out set of Library . addLoan. user
is computed. Similarly, the OFG edges that lead to Library.addLoan.doc
(the local variable doc inside method addLoan) indicate that it references the
objects stored inside the attribute document of class Loan. These were also
determined in the previous chapter (see Fig. 4.9) and are reported as the out
set of node Loan.document in Fig. 5.3.

The out sets reported in Fig. 5.3 can be used to resolve method calls,
according to the algorithm in Fig. 5.2. The resulting sets of source and
target objects are shown in Table 5.1. The source of the calls is the set
of objects possibly referenced by this in method addLoan, that is, the set
out[Loan. addLoan. this] in Fig, 5.3. Targets are obtained similarly, as the
out sets of the locations involved in the four calls (resp. loan, loan, user,
doc inside method addLoan). The content of these sets, shown in Fig. 5.3, is
reported in Table 5.1 under the heading “Targets”.

Given the resolved method calls (sources and targets), it is straightforward
to either build the sequence or the collaboration diagram. Figure 5.4 depicts
both of them. The first call issued inside method addLoan is a call to method
getUser and is made on the object Loan1 (allocated at line 60). The sec-
ond call (getDocument) also has Loan1 as its target. Then, method addLoan
is invoked either on the object User1, an object of class User allocated at
line 382, or on objectInternalUser1, an object of class InternalUser al-
located at line 390. The last call (still addLoan) has three possible target
objects: Book1, TechnicalReport1, Journal1 (resp. allocated at lines 406,
414, 422). The source object of all these calls is Library1.

In Fig. 5.4, the associations between objects shown in the collaboration
diagram at the bottom are those recovered during reverse engineering of the
object diagram, as described in Chapter 4.

5.2 Interaction Diagram Recovery 95

Fig. 5.4. Sequence (top) and collaboration (bottom) diagram built after call reso-
lution for method addLoan in class Library.

5.2.1 Incomplete Systems

In order to produce complete interaction diagrams, the algorithm described in
the previous section requires that all allocation points are in the code under
analysis. This means that the system under analysis comprises all the driver
modules necessary to build all of the needed objects. However, in Object Ori-
ented programming it is very common to build only an incomplete system,
consisting of a cohesive set of interacting classes that perform a given, well de-
fined task, and are expected to be reused in different contexts. In these cases it
would be desirable to be able to derive the interaction diagrams even if not all
object creations are in the code, to understand the behavior of the incomplete
subsystem in isolation, independently of its usages in a given application. To
achieve this, all method invocations are taken into consideration and when
the source or the target of a call are not associated with any recovered ob-
ject, although their classes are part of the system under analysis, a generic
object is introduced. The result is an interaction diagram in which placehold-
ers (marked with an asterisk) for generic objects are present for objects not
allocated inside the analyzed code.

Resolution of method calls for incomplete systems is shown in Fig. 5.5. All
calls in the program are considered in sequence Results of flow analysis are

96 5 Interaction Diagrams

Fig. 5.5. Resolution of all method calls for incomplete systems.

used to determine the source and target objects (invocation of procedure re-
solveCall). If one or both of the two sets are empty, a generic object associated
to the declared class or interface is used instead indicates a generic object
of class/interface A or any derived/implementing class). In this way call edges
are generated even when the object analysis algorithm fails to determine the
object issuing or receiving a message.

When an object allocated in the program portion under analysis is
the source or target of a call, it cannot be excluded that another externally
allocated object be an alternative source or target of the same call. Thus,
must be always assumed implicitly as an alternative source or target, unless
further information is available about the excluded code. Moreover, if the
excluded code introduces data flows that alter the OFG, it is necessary to take
them into account, in order for the result to remain conservative. An example
of this situation is the presence of external container classes, discussed in
detail in Chapter 2. The presence of a label indicates that no allocation
point for the given object was found in the code, while indicates that at
least one allocation point was found, although other external allocations may
also exist.

When, in the presence of subclassing, the allocation point is part of the an-
alyzed code, the allocated object is assigned the exact type (e.g., if A1 inherits
from A and the allocation expression is new A1() the object will be identi-
fied accurately as On the contrary, when a generic object is introduced
because the allocation point is missing, the actual type may be any derived
class, and the recovered information is less precise than for objects allocated
in the code is used for the external allocation of objects of any subclass
of A, including A itself).

5.2 Interaction Diagram Recovery 97

eLib example

Let us consider the code of just the core classes of the eLib program (Ap-
pendix A), excluding the driver class Main reported in Appendix B. When
method addLoan (line 40) from class Library is analyzed, the source object
of the four calls it contains (lines 42, 43, 45, 46) is not known. Actually, no
allocation of objects belonging to class Library is performed inside the code
in Appendix A. While for the first two calls it is possible to determine the
target object, which is Loan1, the Loan object allocated at line 60, this is not
possible for the last two calls. No object of either classes User and Document
is ever allocated in the code under analysis. Correspondingly, the set targets
returned by the procedure resolveCall is empty for the calls at lines 45, 46.

Fig. 5.6. Sequence (top) and collaboration (bottom) diagram for method addLoan
in class Library. The analyzed code excludes the driver class Main.

Application of the rules in Fig. 5.5 leads to the introduction of a generic
object as the source of all four calls. Moreover, the generic objects

 and are introduced for the calls at lines 45, 46. The resulting
sequence and collaboration diagrams are shown in Fig. 5.6. By contrasting
them with those in Fig. 5.4, the approximations introduced by generic objects
become apparent. Only superclasses (e.g., User and Document) of actually
allocated classes are specified with the generic objects, and no reference to
specific allocation statements can be given (e.g., in Fig. 5.4User1 is the object
allocated at line 382, while in Fig. 5.6 allocation of is external and
unknown).

98 5 Interaction Diagrams

5.2.2 Focusing

The interaction diagrams in Fig. 5.4 and 5.6 represent the message ex-
change among objects triggered by the execution of the method addLoan
inside the class Library. In other words, the view focuses on the interactions
occurring when a particular computation (i.e., method of interest, such as
Library. addLoan) is performed. This corresponds to the natural approach of
drawing the interaction diagrams in forward engineering. In fact, it usually
makes no sense to draw just one huge diagram for the whole functioning of
the system. It is preferable to split it up according to the most important
subcomputations (i.e., the most important methods for the selected function-
ality). This is the key to handling the complexity of large systems.

When interaction diagrams are reverse engineered, the overall plot con-
taining all objects and all message exchanges may be unusable, because its
size may exceed the cognitive abilities of humans even for relatively small
systems. However, it is possible to focus the view on specific methods, thus
following the natural approach to the construction of these diagrams. This
is achieved by restricting the view to a subset of the calls issued in the pro-
gram: those belonging to a method of choice. The corresponding modification
of the recovery algorithm is as follows. First, the procedure resolveAllCalls in
Fig 5.5, which returns all call edges in the whole interaction diagram, is run.
Then, only the nodes reachable in the call graph (the graph representing the
call relationship between pairs of methods) from a method of choice are taken
into account. The set of call edges returned by procedure resolveAllCalls is
thus restricted to the methods in a selected portion of the call graph.

If this is not enough to produce interaction diagrams of manageable size,
the second option available to the user is cutting a part of the system and
analyzing an incomplete system, in such a way that it still includes all the key
classes involved in the computation of interest. As discussed in the previous
section, the introduction of generic objects allows analyzing incomplete sys-
tems as well. To summarize, applicability of the proposed approach to large
systems can be achieved by filtering the relevant information in two ways:

1.

2.

Only the calls issued directly or indirectly from a method of interest are
resolved.
An incomplete system, including only the interesting classes, is analyzed.

Method calls in a focused collaboration diagram are numbered according
to the Dewey notation. Such numbering is exploited also to draw the sequence
diagrams, in that the temporal (vertical) ordering is induced by them. It is
possible to obtain the proper numbering of method calls by means of the
numbering algorithms shown in Fig. 5.7, 5.8.

The first step, described in Fig. 5.7, consists of numbering each call state-
ment in the program. The first time the procedure numberCalls is invoked,
it has a method body (block of statements) as first and 1 as the second pa-
rameter. An incremental number is associated to each call statement (line 3)

5.2 Interaction Diagram Recovery 99

Fig. 5.7. Numbering of method calls.

and each nested block of statements is handled similarly to the main block,
by recurring inside it (at line 11 only the case of a while loop containing a
nested block is represented for simplicity). Statements with more than one
nested block of statements, such as an if statement with both then and else
part, require a special treatment, in that the value of the number to use for
the first statement following the if must be the maximum between the values
generated inside the two nested blocks of statements (then and else part of
the if).

example

Assuming num equal to 5 when the if statement above (inside method f of
class A) is encountered, the absolute numbers attached to the calls to B1 .m1
and B2.m2 are respectively 5 and 6, the absolute number attached to B3.m3 is
5, and the next value of num, used for B4.m4, is 7 (assuming that variables o1,
o2, o3, o4 belong respectively to classes B1, B2, B3, B4). The alternative
between the two branches of the if is indicated by giving them a same initial
numbering (5, for both and

100 5 Interaction Diagrams

Fig. 5.8. Numbering of method calls focused on a method.

The second step in the generation of the Dewey numbers for the collab-
oration diagram, summarized in Fig. 5.8, is run under the assumption that
the view is focused on some method. Correspondingly, numberFocusedCalls is
invoked with the body of the selected method as the first parameter, and an
empty Dewey number as the second parameter. When a call is encountered,
the related Dewey number is obtained by concatenating the current Dewey
number and the number of the call, separating them with a dot (line 3). The
new Dewey number generated for the call is passed to a recursive invocation
of numberFocusedCalls, executed on the body of the called method (line 7).
Computation of the Dewey numbers inside the called method is not activated
in case recursion is detected (check at line 5). For the other statements (lines
11 through 17), the procedure just enters each nested block of statements,
where it is reapplied.

When multiple objects, belonging to different classes, are determined as
the targets of a call (e.g., InternalUser1 and User1 for the call to addLoan
in Fig. 5.4), the content of the invoked method may differ from object to
object (method overriding). The procedure to compute the Dewey numbers
(numberFocusedCalls in Fig. 5.8) is recursively called (line 7) for each different
implementation (body) of the overridden method, thus including all of the
possibile alternatives.

5.2 Interaction Diagram Recovery 101

eLib example

Let us consider the direct and indirect method calls issued from inside
the body of method returnDocument, class Library, line 66, shown in Ta-
ble 5.2. The first called method, isOut, in turn invokes method isAvailable
from classDocument. MethodgetBorrower (second call inreturnDocument)
invokes getUser from class Loan. Finally, Library.removeLoan, the last in-
vocation inside returnDocument, triggers the execution of four methods, re-
ported at the bottom-right of Table 5.2. These do not perform any further
method invocation.

Method calls are numbered in Table 5.2 (column Num) according to
the rules given in Fig. 5.7. Let us consider a collaboration diagram focused
on method Library.returnDocument. Computation of the Dewey numbers
(see Fig. 5.8) starts with the body of method Library.returnDocument
and an empty Dewey value. The three calls issued inside this method are
thus numbered 1, 2, 3. Procedure numberFocusedCalls is then reapplied to
the body of Document.isOut, with a current Dewey value equal to 1. The
call to isAvailable issued inside Document.isOut is correspondingly num-
bered 1.1. Similarly, the call to Loan.getUser inside Document.getBorrower
is numbered 2.1. Another call to the same method, issued from method
Library.removeLoan, receives a different Dewey number: 3.1. The final
Dewey numbers produced for the collaboration diagram focused on return-
Document are displayed in Fig. 5.9.

102 5 Interaction Diagrams

Fig. 5.9. Collaboration diagram focused on method returnDocument of class
Library.

5.3 Dynamic Analysis

A second approach to the construction of the interaction diagrams for a given
application relies on dynamic analysis, i.e., on the analysis of the run-time
behavior. Interaction diagrams can be produced out of the execution traces
obtained by executing the application on a set of test cases. The basic infor-
mation that must be available from the execution traces to support the con-
struction of the interaction diagrams consists of an identifier of the current
object and of the object on which each method call is issued. More specifically,
in order to instrument a program for interaction diagram construction, the
following additions are required:

Classes are augmented with an object identifier, computed within the ex-
ecution of the class constructors.
Upon method call, the identifier of the current and of the target object are
added to the execution trace. Moreover, the name of the current method
is also traced.
Time stamps associated with method calls are produced and traced.

At this point, a straightforward postprocessing of the execution trace pro-
vides an interaction diagram for each test case executed. Each time a method
call is found in the trace, a call relationship is drawn in the interaction dia-
gram between the objects uniquely identified in the trace. Knowledge of the
current method issuing the call is used to determine the current activation in
the sequence diagram (see below). The ordering of the call events is induced
by the time stamps.

5.3 Dynamic Analysis 103

Differently from the static analysis, the dynamic analysis produces a set
of interaction diagrams, one for each test case. Even if each diagram usually
represents a different interaction pattern, it is not ensured that all possible
interactions are considered. This depends on the quality of the test cases. On
the contrary, all possible behaviors are represented in the statically recovered
diagrams.

eLib example

Let us consider two test cases for the eLib program1:

TC1 A book previously borrowed by a normal (not an internal) user of the
library is returned, and the loan is closed.

TC2 An attempt is made to return a book which is already available for loan.

Both test cases result in the execution of the method returnDocument
(line 66) from class Library, with a different parameter (resp., a borrowed
and an available book).

The related execution traces are shown in Table 5.3. Fig. 5.10 displays
the sequence diagrams that are obtained from the execution traces. Method
activations are shown on the vertical time lines as blank vertical boxes. Such
information can be easily derived from the execution traces, since the name
of the current method is also traced when a call is issued. Thus, at time
5 (TC1) a new method activation is started on the time line of the object
Library1 because of the call to removeLoan, which has a target object equal

1 Ad hoc drivers must be defined for them. In particular, the driver class Main in
Appendix B is not compatible with TC2.

104 5 Interaction Diagrams

Fig. 5.10. Sequence diagrams for method Library.returnDocument obtained by
dynamic analysis, with test cases TC1 (top) and TC2 (bottom).

to the current object. Since successive calls are made with Library1 as the
current object and removeLoan as the current method, they depart from the
nested activation in the time line of Library1. Similarly, a nested activation
is created for the execution of isAvailable inside isOut at time 2 on object
Book1.

The same method invocations are represented in the dynamic sequence
diagram in Fig. 5.10 (top) and in the static collaboration diagram in Fig. 5.9.
However, the partial nature of the dynamic analysis is apparent from the
comparison of the sequence diagram at the bottom of Fig. 5.10 and the static
collaboration diagram in Fig. 5.9. In fact, only two of all possible interactions

5.3 Dynamic Analysis 105

are exercised in test case TC2, while all of them are conservatively shown in
Fig. 5.9.

Another aspect of the partial information provided by the dynamic dia-
grams is the type of the objects issuing or receiving a call. In Fig. 5.10 it
seems that the class of the object receiving the calls issued at times 1, 2,
3, 9 is Book and the class of the object receiving the call issued at time 8
is User. On the contrary, inspection of the statically recovered collaboration
diagram in Fig. 5.9, which accounts for all statically possible objects involved
in each call, reveals that other object types can be the targets of these calls
(resp. TechnicalReport and Journal for the calls issued at 1, 2, 3, 9, and
InternalUser for the call issued at 8). Additional test cases would be nec-
essary to cover also these possibilities, while a static analysis conservatively
reports all of them.

Where dynamic interaction diagrams are more precise than static dia-
grams is in object identification. In Fig. 5.10, the target of the calls isOut,
getBorrower, removeLoan is a same object,Book1, of classBook. This means
that exactly the same object receives these three calls. On the contrary, iden-
tity of the target of these three calls, numbered 1, 2 and 3.4 in Fig. 5.9, is not
precisely defined in the case of a statically recovered diagram. The allocation
point for the three alternative target objects is known exactly (line 406 for
Book1, line 414 for TechnicalReport1, line 422 for Journal1). However, such
allocation points may be executed repeatedly (actually, they are, since they
belong to methods indirectly called inside the loop at line 521 in the main).
Since it is not possible to distinguish two instances made during different loop
iterations by means of a static analysis, the source and target objects in static
diagrams such as that in Fig. 5.9 account for all objects allocated by the same
allocation statement. On the contrary, a dynamic analysis allows distinguish-
ing among them, and in a dynamic diagram two call relationships have the
same source or the same target object if and only if exactly the same object
issues or receives the calls. In the presence of dynamic binding, the knowledge
of the exact object identity obtained through the dynamic analysis allows for
a smaller, though possibly incomplete, set of potentially invoked polymorphic
variants of the same method.

5.3.1 Discussion

As with the object diagram, static and dynamic extraction of the interaction
diagrams provide different and complementary information. In static interac-
tion diagrams, all possible method calls among all possible objects created
in the program are represented. Actually, some of them may never occur in
any program execution, due to the presence of infeasible paths that cannot

106 5 Interaction Diagrams

(in general) be identified statically. However, the result is conservative. There
does not exist any interaction among objects that is not represented in a
statically recovered interaction diagram. Moreover, objects involved in the in-
teractions are necessarily of one of the classes reported in the static diagrams,
and cannot be of any other class.

The main limitation of the statically recovered interaction diagrams is re-
lated to the identity of the objects represented in the diagrams. When two
arcs depart from a same object or enter a same object in a static interaction
diagram, it cannot be ensured that the same object will actually issue or re-
ceive the calls associated with such arcs. In fact, object identity is given by the
allocation statement in the program, but such a statement can be in general
executed multiple times, giving rise to different objects that are represented
as a single element in a static interaction diagram. On the contrary, the iden-
tity of the objects represented in dynamic interaction diagrams is based on
a unique identifier that is generated and traced at run time for each newly
created object. Thus, a precise object identification is possible, and corre-
spondingly the presence of call arcs departing from or entering into the same
object indicates that exactly this object is involved in the interaction.

On the other side, the main limitation of the dynamic diagrams is related
to the quality of the test cases used to produce them. It may happen that not
all possible interactions are exercised by the available test cases, or that not
all possible type combinations are tried. In order to increase the amount of
information carried by the dynamic views, it is possible to measure the level
of coverage achieved with respect to the corresponding static diagram. Thus,
a test case selection criterion may be defined as follows: if all object types and
all possible interactions in the static diagram are covered by the available test
cases, the set of dynamic diagrams obtained from the execution traces can be
considered satisfactory.

From the point of view of the usability of the diagrams, static and dynamic
views have contrasting properties. A static diagram concentrates all the in-
formation about the behavior of a method in a single place, the interaction
diagram focused on the given method, while several dynamic diagrams may
be necessary to cover all relevant interactions associated to a given method.
This indicates a higher usability of the static diagrams, since just one diagram
per method must be inspected. On the other side, static diagrams tend to be
larger than dynamic diagrams, in that the latter account for a specific, limited
execution scenario, while the former represent all possibilities.

5.4 The eLib Program

The full, static interaction diagram for the eLib program (Appendix A and B),
obtained by considering all interactions among objects possibly triggered by
the main control loop (line 527), contains a number of nodes, arcs and labels
largely beyond the cognitive capabilities of a human being, mainly because

5.4 The eLib Program 107

of the high number of edges and of the very high number of labels (more
than 200) on the edges (each edge label represents a method call). It should
be recognized that this happens for a relatively small application such as
eLib. In larger, more realistic, programs the problem is exacerbated. Conse-
quently, usage of the focusing technique described in Section 5.2.2 appears to
be mandatory for any program under analysis.

When focused interaction diagrams are taken into consideration, their size
is largely reduced. If focused diagrams are produced for the eLib program,
the typical number of edges is between 5 and 10, while labels are typically
in the range 5-20. Thus, focusing seems to be a very effective technique to
make the information reverse engineered from the code useful and usable.
Interaction diagrams focused on selected methods restrict the scope of the
program comprehension effort to a given computation and provide an amount
of data that can be managed by a human being. Overall, they represent a
good trade-off between providing detailed information and considering a single
functionality at a time.

Fig. 5.11. Collaboration diagram focused on method borrowDocument of class
Library.

Fig. 5.11 shows the collaboration diagram obtained by focusing on the
methodborrowDocument of classLibrary. The interactions occurring among
the objects to realize the library functionality of document loan are pretty
clear from the diagram. First, the number of loans held by the user who intends
to borrow a document is checked (call to numberOfLoans), and if it exceeds
a given threshold the loan is negated. Then, availability of the selected docu-
ment is verified (call to isAvailable). A third check is about the authoriza-
tion to borrow the chosen document. The method authorizedLoan is called
on the given document, which may belong to class Book, TechnicalReport
or Journal. In the first two cases, method authorizedLoan return a fixed
value (resp. true and false). In the last case, authorization depends on the
user category. Thus, the value returned by authorizedLoan is obtained by
invoking the method authorizedUser on the borrowing user. This method re-

108 5 Interaction Diagrams

turns true for internal users, who have more privileges than the normal user,
while it returns false for the other users. In the diagram, it can be observed
that authorizedLoan is numbered 3 and authorizedUser is numbered 3.1.
The latter is a nested invocation occurring only when the target object of
authorizedLoan is of type Journal.

If all checks give positive answers, the document can be borrowed. This
is achieved by calling the method addLoan (call number 4), after creating
a new Loan object (Loan1). In turn, this call triggers the execution of four
nested methods. First of all, user and document are accessed from the Loan
object Loan1 (calls 4.1 and 4.2). Then, method addLoan is invoked on these
two objects of type User and Document (calls 4.3 and 4.4). In this way, a
bidirectional association is created between Loan object and User object, and
between Loan object and Document object.

Fig. 5.12. Sequence diagram focused on method returnDocument of class Library.

Fig. 5.12 shows the sequence diagram focused on the method returnDoc-
ument of class Library. It clarifies the message exchange that occurs when
a document is returned to the library. First of all, a check is made to see if
the document is actually out (call number 1, isOut). If this is not the case,
nothing has to be done. A nested method execution is triggered by isOut,
which resorts to isAvailable to produce the answer. If the document is out,
its current borrower is obtained by requesting it via the document (call to

5.4 The eLib Program 109

getBorrower, number 2). In turn, the Document object redirects the request of
the borrower to the Loan object associated to it (call 2.1, getUser). It should
be noted that the involved Loan object is Loan1, i.e., the instance allocated at
line 60. A new, temporary Loan object (Loan2, allocated at line 70), is then
created and passed to removeLoan (call number 3) as a parameter. Inside
removeLoan (nested activation in Fig. 5.12) user and document associated
with the temporary Loan object are obtained (calls 3.1 and 3.2), and a call to
method removeLoan on both of them (calls number 3.3 and 3.4) deletes the
associations of these two objects toward the Loan object being removed. In
this way, not only the Loan object is removed from the list of current loans
held by the Library, but the inverse associations from User and Document to
Loan are also updated. The resulting state of the library is thus consistent.

Class Library provides methods to print information about stored data.
Two examples of methods that can be invoked for such a purpose are
printAllLoans and printUserInfo. Their interaction diagrams are displayed
in Fig. 5.13 and 5.14.

Fig. 5.13. Collaboration diagram focused on method printAllLoans of class
Library.

The first and only method execution invoked inside method printAll-
Loans (from class Library) is on objectLoan1. Such an invocation, numbered
1 in Fig. 5.13, is iterated as long as the condition reported in square brackets
before the method name (print) is true. This condition requires that method
hasNext, called on the iterator i running over all loans in the library, returns
true. Thus, printAllLoans delegates the print functionality to the Loan ob-
jects stored in the library inside an iteration. In turn, each Loan object can
print complete loan information by requesting some of the data to the User
and Document objects associated with it. This is the reason for the nested
calls 1.1, 1.2 (toward objects InternalUser1 or User1) and 1.3, 1.4 (toward
objects Book1, TechnicalReport1, Journal1).

This example highlights the usefulness of showing conditions in square
brackets. The existence of an iteration over all loans in the library can be

110 5 Interaction Diagrams

grasped immediately from the collaboration diagram, due to the indication of
a loop (asterisk before the call to print) and of the loop condition (in square
brackets). While for larger diagrams the explicit indication of all conditions
in square brackets may make them unreadable, because of an excessive label
size, for small or medium size diagrams it may be extremely useful to include
them in the arc labels. They provide important hints on the behavior of the
method under analysis.

Fig. 5.14. Sequence diagram focused on method printUserInfo(User user) of
classLibrary.

The method printUserInfo from class Library (see Fig. 5.14) has a
parameter of type User, referencing a User object. The printing of infor-
mation about this library user is completely delegated to the User object.
Thus, printUserInfo contains just a method call, numbered 1, that trans-
fers the control of the execution to method printInfo of class User. Inside
this method, several data are obtained on the current object, by activating
nested method invocations (numbered 1.1, 1.2, 1.3, 1.4). Then, the sequence
of loans held by the given user are considered iteratively. For each of them,
the borrowed document is requested (call to getDocument, number 1.5). The
identifier and title of such a document are then accessed, by means of meth-
ods getCode (number 1.6) and getTitle (number 1.7). These further calls

5.4 The eLib Program 111

are still inside the same iteration. Retrieved information about the borrowed
documents is printed to the standard output.

The sequence diagram depicted in Fig. 5.14 exploits the following results
of flow propagation in the OFG:

out[User.loans] = {Loan1}
out[Loan.document] = {Book1, TechnicalReport1, Journal1}

Such results are conservative, but inaccurate in two respects: different
loans should be associated with different kinds of users and no document of
kind TechnicalReport should be ever present in a loan. In fact, documents
of type Journal can be borrowed only by internal users (see check at line 59).
Consequently, one would expect that User.loans and InternalUser.loans
reference two different sets of objects, where only the second contains loans of
Journals. On the contrary, only one node, User.loans, is in the OFG, and
InternalUser just inherits the value of attribute loans from its superclass.
On the other side, the authorization of a given User to borrow a document
depends on the outcome of the call at line 59, to method authorizedLoan. A
static analysis of the source code can hardly distinguish among the possible
outcomes of this call, depending on the actual type of the target object and
of the parameter. Similarly, the impossibility of creating a new loan when
the given document is of type TechnicalReport is also hard to determine
from a static analysis. In fact, it still depends on the outcome of the call to
authorizedLoan at line 59.

The inaccuracies of the static analysis used to approximate the objects ref-
erenced by the attribute loans of class User and by the attribute document
of class Loan have the following consequences for the sequence diagram in
Fig. 5.14. The two calls togetCode and getTitle (numbered 1.6 and 1.7 resp.)
have two objects as possible sources (namely, User1 and InternalUser1),
and three objects as possible targets (namely, Book1, TechnicalReport1
and Journal1). However, object TechnicalReport1 can never be the tar-
get of the two calls, since technical reports are never authorized for loan and
consequently cannot be referenced by the attribute document of Loan1. Ob-
ject Journal1 can be the target of the two calls only when the source is
InternalUser1, while it can never be returned by getDocument when the
source is User1, since normal users are not allowed to borrow journals. The
static analysis conducted to determine the objects possibly referenced by class
attributes cannot detect such infeasible situations, implied by the behavior
of authorizedLoan. In general, static analyses have only limited capabili-
ties of dealing with the detection of infeasible conditions. On the other side,
the results shown in Fig. 5.14 are conservative, in that they account for all
possible run time behaviors. No interaction among objects can occur, when
printUserInfo is called, that is not represented in the statically recovered
diagram.

It would also be possible to recover the sequence diagram for the print-
UserInfo method of class Library by means of a dynamic analysis. The

112 5 Interaction Diagrams

related test cases would include a sequence of operations that change the
state of the library, by adding users and documents, as well as Loan objects
associated to users borrowing documents. The method printUserInfo should
be invoked with the library in different states. The resulting sequence diagrams
would resemble that obtained statically and represented in Fig. 5.14, with a
few important differences. Only instances of classes Book and Journal would
be present in the diagram, since there is no way to make a TechnicalReport
object participate in a loan. Moreover, when the source of the calls number
1.6 and 1.7 is of type User, the target is always of type Book, in that there is
no way to make a Journal object participate in a loan, when the associated
user is not an InternalUser.

The example above highlights the different and complementary nature of
statically and dynamically recovered interaction diagrams. The former repre-
sent all possible interactions in a single diagram, but may include interactions
that can never occur due to infeasible conditions that cannot be detected stat-
ically. The latter show only interactions that are ensured to be possible, since
they are obtained by an actual program execution. However, their results are
scattered in a set of diagrams (one for each test case), none of which usually
represents all possible interactions in a conservative way.

5.5 Related Work

Information about class instances collected at run-time is dealt with by several
research prototypes [42, 62, 67, 97], In these research projects, creation of ob-
jects and inter-object message exchange are captured by tracing the execution
of the program in a given set of scenarios. In [67] static information limited
to method invocations (call graph) can be combined with execution traces,
thanks to a common representation of both data in a single database of logic
facts, from which views are created through queries. In [41] the call graph is
animated by highlighting the currently executing methods. Construction of
call graphs for Object Oriented programs and their accuracy are considered
in [28, 83].

Sequence diagrams are constructed by means of a dynamic analysis in [29].
The proposed approach exploits Aspect Oriented Programming [40] to inter-
cept the execution of method calls in a non invasive way. The original source
code is weaved with an external aspect that defines which run time events to
capture and which data to record. The original code does not need be instru-
mented at all. Aspects are used to instrument Java code also in [8], where a
mapping is defined between a metamodel of the execution traces and a meta-
model of the scenario diagrams, adapted from the UML sequence diagram
metamodel. Such a mapping is given as a set of consistency rules expressed
in the Object Constraint Language (OCL) [98]. They account for the mes-
sage exchanges that occur in non-distributed as well as in distributed systems
and they are used to reverse engineer UML sequence diagrams from exccu-

5.5 Related Work 113

tion traces. In distributed systems, the order of execution of the methods is
determined without resorting to a global clock, by matching each sequence of
remote calls with the corresponding sequence of remote method executions.

In [20], points-to analysis is exploited to statically recover all possible
execution traces for a given object, represented in a so-called Object Process
Graph. Sequences of relevant instructions, including invocation instructions,
are represented in the resulting graphs. Among the devised applications, these
graphs can be used for protocol validation.

Experimental results on the application of the method described in this
chapter to a large C++ system are presented in [90]. The static technique
for the reverse engineering of the interaction diagrams has been applied to
about half million lines of C++ code. To generate diagrams of manageable
size, both partial analysis (with sub-systems being considered separately) and
focusing (on each single method) have been exploited. Combined together,
they have been fundamental to produce usable diagrams. The resulting views
have been evaluated by the author of the related code, who judged them
extremely informative and able to summarize information spread across the
code. The lesson we learned is that the interactions among objects are a great
help in support of program comprehension, but at the same time they require
proper interactive facilities and reduction methods to scale to large software
systems.

This page intentionally left blank

6

State Diagrams

State diagrams can be used to describe the behavior exhibited by objects
of a given class. They show the possible states an object can be in and the
transitions from state to state, as triggered by the messages issued to the
object.

The effect of a method invocation on a target object depends on the state
the object is in before the call. Thus, a description of an Object Oriented
system in terms of message exchange only (see previous chapter, Interaction
diagrams) does not reveal the state-dependent nature of the class behavior.
This is where state diagrams can give a useful contribution.

Reverse engineering of the state diagrams from the code is a difficult task,
that cannot be fully automated. The states of the objects in the system under
analysis are defined by the values assumed by their fields. However, it is not
possible to describe each of field values as a distinct state, because
of their intractable growth, and equivalence classes of field values must be
introduced. The definition of such equivalence classes requires a manual inter-
vention, while recovery of the state transitions can be automated, by means of
an abstract interpretation of the program. Thus, given an abstract description
of the field values and of the primitive operations on the abstract field values,
it is possible to automatically derive a state diagram for the class, where the
possible combinations of abstract values define the states, while the effects of
method invocations are associated with the state transitions.

This chapter is organized as follows: the first section summarizes the main
features represented in state diagrams and discusses the possibility of reverse
engineering them from an existing program. Section 6.2 provides a summary
of the main concepts behind abstract interpretation. A thorough treatment
of abstract interpretation would occupy a much longer book portion. The
presentation given in this chapter aims at providing the basic background
knowledge necessary to understand the technique involved in state diagram
recovery, which is described in detail in Section 6.3, from an operational point
of view. The application of the presented method to the eLib program is
discussed in Section 6.4, while related works are commented in Section 6.5.

116 6 State Diagrams

6.1 State Diagrams

The behavior of the objects that belong to a given class can be described by
means of state diagrams [1, 7, 31]. States represent conditions that charac-
terize the lifetime of an object, so that objects remain in a given state for a
time interval, until some action occurs that makes the state condition invalid
and triggers a state transition. Given the fields of a class, the combinations
of all possible values define the most detailed decomposition of the class be-
havior into states. However, such a decomposition is typically impractical, for
the huge number of states, and not very meaningful, for the high number of
equivalent states. Thus, field values are aggregated into equivalence classes
that partition the set of all field value combinations. Each equivalence class
is represented as a state and an object is in such a state as long as its field
values are in the related equivalence class.

An object may change its state in response to a message it receives. Thus,
state transitions are associated to method calls, and the dynamics of an object
is abstracted into the state changes induced by method calls.

Available notations for the state diagrams [1, 7, 69] allow for a richer set
of properties that can be incorporated into them. For example, each state can
be characterized by entry and exit actions, ongoing activity and the inclusion
of submachines (contained sub-state diagrams). Moreover, transitions can be
guarded by conditions and temporized events can be added to the events of
the kind method call. However, for the purposes of this chapter, the basic
elements of the state diagrams described above are sufficient. They consist of:

States, identified as equivalence classes of field values.
Transitions, triggered by method calls.

coffee machine example

Fig. 6.1 shows the state diagram for a hypothetical class that manages the
main functions of an automatic coffee machine. The coffee machine accepts
quarters of dollars in input (up to two quarters), and requires an amount
equal to half of a dollar to prepare a coffee. The user can, at any time, insert
a quarter, request the return of the quarters inserted so far or request the
preparation of the coffee. Of course, the coffee will be prepared only if two
quarters have previously been inserted.

The behavior of the coffee machine class, described informally above, is
explicitly represented in Fig. 6.1. Let us assume that the class field records
the number of quarters inserted so far, and that the boolean flag represents
the possibility to request the preparation of the coffee. According to the di-
agram in Fig. 6.1, the initial state of the objects of this class after creation
is with and (F represents the boolean value false, while T
represents true). Graphically, is identified as the creation state because it

6.1 State Diagrams 117

Fig. 6.1. Example of state diagram describing an automatic coffee machine.

is directly reached from the small solid filled circle, which represents the entry
state of the diagram.

Requests to prepare a coffee (makeCoffee) or return money (reset) issued
in have no effect (self transitions outgoing from while the insertion of
a quarter (insertQuarter) triggers the transition from to In the latter
state, the number of quarters inserted so far is 1 and coffee cannot yet be
prepared

A request to prepare a coffee issued in has no effect (self transition),
while a request to return the inserted quarter has the effect of triggering a
transition back to the initial state, as well as the “visible” effect of actually
returning a quarter to the user. Insertion of a further quarter originates a
transition to where and

In coffee can be prepared Thus, an invocation of makeCoffee
has the “visible” effect of delivering the beverage to the user, and has the
“internal” effect of restoring the initial state A request to return money
(reset) can also be issued in resulting in 2 quarters being returned to the
user, and the system moving to the initial state When the coffee machine is
in additional quarters cannot be accepted. Correspondingly, their insertion
(call to insertQuarter) does not change the internal state (self transition) and
has the effect of immediately returning the inserted coin.

Usefulness of the state diagrams is pretty clear from the example above.
The same method call can have very different effects, according to the state of
the target object. For example, a call to insertQuarter results in an increment
of in and but not in and changes the value of the flag only
in While interaction diagrams are focused on the message exchange that
occurs among a set of collaborating objects, state diagrams are focused on the
internal changes that occur within a single object of a given class. The kind of
information they provide is thus complementary, and a complete description
of the system’s behavior can be achieved by properly combining these two

118 6 State Diagrams

alternative views. In the next sections, a technique for the semi-antomatic
recovery of state diagrams from the source code will be defined within the
framework of abstract interpretation.

6.2 Abstract Interpretation

The abstract interpretation framework [16] has been deeply investigated and
is thoroughly described in a large body of literature (see for example [38]).
Abstract interpretation is presented in this section from an operational per-
spective, with the purpose of providing a survey of the algorithmic details
necessary for its usage in reverse engineering of the state diagrams. Some of
the theoretical and formal aspects are deliberately skipped.

The aim of abstract interpretation is determining the outcome of any pro-
gram execution, with any possible input, by approximating the actual pro-
gram behavior with an abstract behavior. Actual variable values are replaced
by abstract values and the effect of each program statement on the variable
values is abstracted into the effect it has on the corresponding abstract val-
ues. Abstract values represent equivalence classes of actual values, so that the
problem of determining all values that all variables may have at each program
point and in any execution becomes tractable.

In order to perform an abstract interpretation of a given program, the
following entities must be defined:

A domain of abstract values (abstract domain).
A mapping from concrete to abstract values (abstraction).
The abstract semantics of all primitive operations in the given program
(abstract interpretation).

The main constraint on the abstract domain is that it must define a com-
plete semi-lattice (with ordering i.e., its elements must be partially
ordered and for each two elements a unique least upper bound must exist.
The main constraint on the abstract interpretations of primitive operations is
that they must be order-preserving.

Let us indicate with the abstract domain, and with the abstract
interpretation of statement The requirement on is the following:

Usually, concrete variable values are replaced by symbolic values which
encode entire equivalence classes of values, and the abstract domain is the
powerset of the set of symbolic values. The powerset can be partially ordered

D

6.2 Abstract Interpretation 119

by set inclusion, and such an ordering defines a complete lattice, thus satisfy-
ing the constraint on the abstract domain.

Abstract operations are typically defined for individual symbolic, values,
the extension to sets of values (i.e., elements of the abstract domain) being
straightforward.

The choice of the appropriate abstract domain is crucial, to obtain results
that address the original motivation for performing an abstract interpretation
of the program. While a too fine-grained domain makes abstract interpre-
tation computationally intractable, a too high-level domain might produce
over-conservative results, that are not useful to answer the initial questions
on the program. In fact, the output of abstract interpretation is safe, i.e. the
values produced in any actual execution are always a “concretization” of the
abstract values. However, the latter might be over-conservative, i.e., the ab-
stract values produced by the abstract interpretation might entail concrete
values that can never occur in a real execution.

Once abstract domain and abstract operations are defined, the abstract in-
terpretation of the program consists of computing the fixpoint of the abstract
values collected at each statement from the predecessors and transformed by
the abstract interpretation function associated with such a statement.

coffee machine example

The two state variables in the automatic coffee machine example are
holding the number of quarters inserted so far, and which is true when
coffee can be obtained from the machine. Different abstract domains can be
chosen when performing an abstract interpretation of this program. For ex-
ample, the following symbolic values can be used for variables and

Concrete values Abs value (1)

Another possible abstraction might collapse all values of greater than zero
into a single symbolic value:

120 6 State Diagrams

Concrete values Abs value (2)

Abstract semantics must then be defined for the operations in the program.
Since only constant values are assigned to the variables and the following
simplified abstract interpretation table can be defined for the assignment op-
erator:

Operation
q = 0

q = 1
q = 2
r = true
r = false

Abs scm (1) Abs sem (2)

where and indicate any symbolic value prefixed respectively by
’ or The abstract semantics of the increment operator is straightfor-

ward:

Operation
q++

Operation
q++

Abs sem (1)

Abs sem (2)

The other operators used in the coffee machine program are relational oper-
ators, such as the equality comparison. Since variables are compared only to
constant values in this program, the following simplified abstract semantics
of the equality comparison can be used:

Operation
q == 2

Operation
q == 2

Abs sem (1)
true for the abstract value
false for the abstract values
Abs sem (2)
unknown for the abstract value
false for the abstract value

6.2 Abstract Interpretation 121

If the abstract value of is the result of the evaluation of q == 2 is
unknown, and conservatively one has to assume that both possibilities might
occur. When the relational expression q == 2 is part of a conditional state-
ment (e.g., if (q == 2) r = true;), the result of its abstract interpretation
determines the way abstract values are propagated forward. If the result is
true, the abstract value is propagated only along the then branch of the con-
ditional statement. If the result is false, only the else branch is followed. If
the result is unknown, both branches are taken.

The abstract semantics above have been given for individual abstract val-
ues, but the generalization to sets of abstract values is easy to achieve. For
example, the increment applied to the set gives

i.e., the increment is applied separately to individual values and the re-
sult is the union of the results. Of course, when it is applied to it behaves
like the identity. Another example is the equality comparison. Abstract eval-
uation of q == 2 for gives false for the first two values and is
undefined on the third abstract value. If the condition q == 2 is part of an if
statement, all values will be propagated only along the false branch (includ-
ing since no abstract value reaching the if statement can ever make the
related condition true. If the set of abstract values reaching the if statement
is the condition can be both true and false. Correspondingly,

is propagated along the then branch, while is propagated
along the else branch. In order to decide if the abstract value should be
propagated only along the then branch (with or the else branch (with

a more refined abstract domain would be necessary, in which and
are represented jointly (e.g., using the abstract values

In the second abstract domain, if reaches the
same if statement, both values must be propagated along both branches of the
conditional statement, in that the value of the related condition is unknown.

Fig. 6.2. Example of abstract interpretation under different initial conditions and
for different abstract domains.

122 6 State Diagrams

Fig. 6.2 shows three abstract interpretations of the method insertQuarter.
The first two refer to the abstract domain (1) with 4 symbolic values for
while the last one refers to the smaller domain (2) with only 2 symbolic values
for Two different initial conditions are considered in the first two interpre-
tations.

In the first abstract interpretation, conditions in both if statements eval-
uate to false, since is not among the propagated values. Correspondingly,
the output of the two associated then branches is the empty set. In the second
abstract interpretation, the first condition q == 2 evaluates to false, while the
second evaluates to true, due to the incremented value assigned to Thus,
only the else branch is taken in the first if, while the then branch is taken in
the second if statement. As a result, in the second interpretation the final ab-
stract value of is indicating that the coffee machine is ready to prepare
a coffee.

In the last abstract interpretation, the result of incrementing is
Such a value does not allow deciding on the truth value of the condition in the
second if statement. Correspondingly, both branches are taken, and the final
result contains both values and associated to variable The only
“true” value is because when the starting value of is zero the
then branch of the if statement cannot be taken and cannot be assigned
to However, the low granularity of the abstract domain chosen does not al-
low distinguishing from and correspondingly the actual execution
path cannot be obtained. It should be noticed however that the paths fol-
lowed during abstract interpretation are a superset of the “true” paths (safe
interpretation), and that the final results contain those that actually occur
(conservative output).

The higher accuracy obtained using the first abstract domain, with respect
to the second one, indicates the importance of choosing the right abstraction.
Such a choice depends on the problem being solved by abstract interpretation.
In some cases, the gross grain abstraction (2) may suffice. In the next section,
application of abstract interpretation to the recovery of the state diagrams
will be described and the problem of choosing the right abstraction will be
reconsidered in such a context.

6.3 State Diagram Recovery

The first step in the recovery of a state diagram for a given class consists
of defining an appropriate abstract domain for its attributes and (possibly)
for the variables involved in attribute computations. Correspondingly, the ab-
stract semantics of each operation in the class methods must be also provided.

6.3 State Diagram Recovery 123

Then, abstract interpretation of the class methods gives the transitions from
state to state to be represented in the state diagram. The algorithm for this
final step is described in detail below.

In a state diagram, the effects of method invocation on the attribute values
are abstracted by considering only “meaningful” equivalence classes of such
values. The decision on which equivalence classes should be considered is a
non trivial one, and deeply affects the characteristics of the resulting state
diagram. Thus, the role of the programmer in this recovery process consists
of establishing proper groupings of attribute values that correspond to the
different states in which the class can be, and that give rise to different be-
haviors, in response to method invocations. Such a choice can by no means
be automated. Usually, indicators of the boundary values that separate the
equivalence classes are available from the constant values used in conditional
expressions (if any). Since different execution paths are taken when values are
below or above these boundaries, it is likely that these characterize meaning-
ful equivalence classes of values. However, human intervention is unavoidable
to determine the proper granularity of the abstraction. Moreover, it is often
the case that accurate results can be obtained from abstract interpretation
only if some groups of attributes/variables are described jointly, since they
are mutually influenced by the values of the each other. If no joint descrip-
tion is adopted, the result of abstract interpretation is over-conservative and
produces a state diagram where abstract values that can never occur in any
execution are present in some states. A possible solution is an iterative state
diagram recovery process, where the output of an initial guess on a possi-
ble abstract domain is refined if it appears that the resulting state diagram
contains lots of non admissible attribute values.

Fig. 6.3. Algorithm for the recovery of the state diagram.

124 6 State Diagrams

Fig. 6.3 shows the pseudocode of the recovery algorithm. It assumes that
an abstract domain for the class variables has already been properly defined.

First of all, the algorithm determines the initial states in which any object
of the given class can be. This is obtained by executing an abstract inter-
pretation of each class constructor starting from an initially empty state (see
line 3). The state obtained at the exit of each constructor after abstract in-
terpretation is one of the possible initial states for the objects of this class
(line 4). Such a state is also a possible starting point for a further method
invocation, so that it must be inserted into a set of pending states (pend-
States) that will be considered later by abstract interpretation (line 5). Each
available class method will be applied to them. Moreover, the state reached
after constructor execution is one of the states to be included in the resulting
state diagram. Correspondingly, it is inserted into the set of all the states in
the diagram (allStates, line 6). All the edges in the state diagram that end at
the initial states, recovered in this phase, depart from the entry state of the
diagram, which is conventionally indicated as a small solid filled circle.

Then, the recovery algorithm repeatedly executes an abstract interpreta-
tion of the class methods as long as there are pending states to be considered
(loop at line 8). Each pending state is removed from pendStates (line 9), and
each class method is interpreted using the removed pending state as the initial
state (line 11). When the final state obtained by the abstract interpretation
has not yet been encountered, it is added both to the set of still pending states
(line 13) and to the set of diagram states (line 14).

Recovery of the edges in the state diagram is not explicitly indicated in
Fig. 6.3. However, the related rules are quite simple. As described above, the
initial states (initStates) are the targets of edges outgoing from the entry state.
As regards the other states, when the abstract interpretation of method
is conducted (line 11), the starting state used by the interpretation is and
the final state it produces is Thus, an edge labeled is added in the state
diagram from to

coffee machine example

Let us consider the application of the algorithm in Fig. 6.3 to a hypothet-
ical class CoffeeMachine, implementing the coffee machine example, using
the first abstract domain (1) defined in Section 6.2. Let us assume that this
class has only one constructor, which resets the behavior of the machine by
assigning 0 to and false to Correspondingly, only one initial state is re-
covered by performing the abstract interpretation of the constructor starting
from the empty set: (see Fig. 6.4, methodCoffeeMachine).

The classCoffeeMachine may define three methods,reset,insertQuar-
ter and makeCoffee, which, following the steps in Fig. 6.3, are interpreted
from the only pending state produced so far, the initial state While
reset and makeCoffee give a final state equal to the initial state (see Fig. 6.4),
so that no other pending state is generated, method insertQuarter produces

6.4 The eLib Program 125

Fig. 6.4. Results of the abstract interpretation of the methods in the CoffeeMachine
class under all possible initial states.

a final state never encountered so far, This is added to the set of
pending states and is examined in the next iteration of the algorithm. The
detailed steps performed in the abstract interpretation of insertQuarter from
the initial state have already been described (see Fig. 6.2).

Then, the next pending state, is considered. The abstract inter-
pretation of makeCoffee produces a final state equal to the initial one, while
reset gives a final state equal to the already encountered state In-
terpretation of insertQuarter (see Fig. 6.2) generates a new state,
Interpretation of reset, insertQuarter and makeCoffee from such a state
completes the execution of the state diagram recovery algorithm. A graphical
display of the resulting diagram has been provided previously, in Fig. 6.1.

6.4 The eLib Program

Let us consider the class Document from the eLib program (see line 159 in
Appendix A). Among its attributes, the one which mostly characterizes its
state is loan. The set of all possible values that can be assigned to loan can
be abstracted into loan:null, representing the case where loan references no
object (the document is not borrowed), and loan:Loan 1, representing the case
where loan references an object of type loan (the document is borrowed).
The abstract domain to use in the construction of the state diagram for this
class is thus:

where indicates the powerset.

126 6 State Diagrams

The class methods that may change the state (restricted to the attribute
loan) of a Document object are: addLoan (defined at line 202) and removeLoan
(defined at line 205). In order to perform their abstract interpretation, the
specification of the abstract semantics is required for the two following as-
signment statements (taken from lines 203 and 206):

Statement
loan = ln
loan = null

Abstract semantics
{loan:*} {loan:Loan 1}
{loan:*} {loan:null}

The underlying hypothesis is that the method addLoan has a precondition,
requiring that it is invoked only with a non null parameter. Such a check is not
performed by the method itself, being considered the caller’s responsibility.
Under this hypothesis, the first assignment, where the right hand side is the
parameter ln of addLoan, does not need to include loan:null in the result set
of its abstract semantics.

Here is the result of the abstract interpretation of the constructor Document
(line 166), of the methods addLoan (line 202) and removeLoan (line 205)
from all possible starting states:

Method
Document
addLoan

removeLoan

Initial state
{}
{loan:null}
{loan:Loan1}
{loan:null}
{loan:Loan1}

Final state
{loan:null}
{loan:Loan1}
{loan:Loan1}
{loan:null}
{loan:null}

We can assume that addLoan is called only if the Document is available (see
check at line 59), i.e., from state {loan:null}, and that removeLoan is called
only when the document is out (see check at line 68). This prunes two self-
transitions from the state diagram: that from {loan:Loan1} to {loan:Loan1},
due to the call of addLoan, and that from {loan:null} to {loan:null}, due to
removeLoan. The resulting state diagram is shown in Fig. 6.5.

As a second example, let us consider the class User (see line 281) and its
attribute loans, which can be regarded as the one that defines the state of the
objects belonging to this class. Since loans is of type Collection, its values
can be abstracted by the number of elements it contains. We can distinguish
the case of no element inserted (abstract value loans:empty), from the case of
one element inserted (abstract value loans:one), from the case of more than
one element inserted (abstract value loans:many).

The methods that possibly modify the content of the Collection loans
are: addLoan (line 314) and removeLoan (line 320). Correspondingly, the ab-
stract semantics of the following operations is required:

6.4 The eLib Program 127

Fig. 6.5. State diagram for class Document.

Statement
loans.add(loan)

loans.remove(loan)

Abstract semantics
{loans:empty} {loans:one}
{loans: one} {loans :many}
{loans: many} {loans:many}
{loans: empty} {loans:empty}
{loans:one} {loans: empty, loans: one}
{loans:many} {loans: one, loans:many}

Removal of an element from a Collection containing just one element
may give an empty collection, if the removed element is contained in the
Collection, or an unchanged Collection, if the element is different from
the contained one. Removal of an element from a Collection with more than
one (many) elements may still give a Collection with more than one element,
or may give aCollection with exactly one element, if it previously contained
two elements, among which one is equal to that being removed.

Assuming that the precondition of the method removeLoan is the presence
of its parameter loan in the Collection loans (this is ensured in its invo-
cation inside class Library at line 53, as apparent from the body of method
returnDocument, lines 66–75), the abstract semantics given above can be sim-
plified into:

Statement
loans.add(loan)

loans.remove(loan)

Abstract semantics
{loans:empty} {loans:one}
{loans:one} {loans:many}
{loans:many} {loans :many}
{loans:empty} {loans: empty}
{loans:one} {loans: empty}
{loans:many} {loans:one, loans:many}

The abstract interpretation of methods User (line 288), addLoan (line 314)
and removeLoan (line 320) using the abstract semantics above, produces the

128 6 State Diagrams

state diagram depicted in Fig. 6.6. The transition from state {loans:many}
to {loans:one, loans:many} due to the invocation of removeLoan is repre-
sented as a non deterministic choice between the target states {loans:one}
and {loans:many}. Moreover, the precondition ofremoveLoan discussed above
ensures that it is never called when loans is empty. Thus, no self-transition
labeled removeLoan is present in the state

Fig. 6.6. State diagram for class User.

Let us consider the class Library (see line 3). Its three attributes doc-
uments, users, and loans define the state of its objects. It is possible to
consider these three attributes separately, building a distinct state diagram
for each of them. The result is a set of so-called projected state diagrams.
The overall state of the class, described by the joint values of all its state
variables, is projected onto a single state variable, by considering the values
it can assume and ignoring the values assumed by the other variables.

Since the three attributes documents, users, and loans are containers of
other objects, it is possible to abstract their values into the symbolic values
empty and some, indicating respectively that no object is contained or that
some (i.e., at least one) objects are contained. Abstract interpretation of the
methods that modify these containers is similar to the abstract interpretation
of the methods of class User described above, with the only difference being
that the values of container loans from class User have been modeled by three
abstract values (empty, one, and many), while for class Library no distinction
is made between one and many, both of which are abstracted as some.

The three projected state diagrams resulting from the abstract interpreta-
tion of methods addDocument (line 24), removeDocument (line 31), addUser

6.4 The eLib Program 129

(line 8), removeUser (line 15), addLoan (line 40), removeLoan (line 48) are
depicted in Fig. 6.7. The removal methods removeDocument and removeUser
have no effect if applied in the state (empty) of the diagrams for the
attributes documents and users. On the contrary, the removal method
removeLoan can never be invoked in the state of the diagram for loans,
because of the check performed by the calling method returnDocument (see
line 68, where isOut returns true only if the document references a non null
Loan object, stored inside the attribute loans of class Library).

Fig. 6.7. Projected state diagrams for class Library.

If the attributes of a class vary independently from each other, the com-
bined state diagram can be obtained as the Cartesian product of the pro-
jected state diagrams, with a number of states that grows as the product of
the number of states in the separate diagrams. Transitions are obtained by all
combinations of transitions in the substates.

If we consider the combined state diagram for class Library, the total
number of states it contains is not 8 (2 × 2 × 2), as it would occur in case
of independent projections. The combined state diagram, shown in Fig. 6.8,
contains 5 states, because some combinations in the Cartesian product are
prohibited by preconditions that are checked before calling some of the meth-
ods in this class.

Let us represent the three abstract values that have been defined for the
three state attributes (document, users, loans) of this class as a triple,
with the symbolic values indicating the abstract value empty and indi-
cating some. The triple is thus the abstract value for a combined
state of class Library, with the following joint values of the state variables:
documents=empty, users=some, loans=empty.

Fig. 6.8 shows the combined state diagram, as obtained by applying some
constraints (explained below) on the invocation of the involved methods. As
regards the first two variables represented in the triples that characterize the

130 6 State Diagrams

Fig. 6.8. Combined state diagram for class Library.

states, it is evident that they vary independently from each other. In fact, all
possible combinations of the values of these variables are in the diagram, and
every method invocation remains possible in each state. Correspondingly, the
upper part of the diagram in Fig. 6.8 contains exactly 4 (i.e., 2 × 2) states

and 20 related transitions.
The invocation of method addLoan can only be made in state where

documents=some and users=some, i.e., only in the presence of registered
users and documents in the library. In fact, the method borrowDocument
checks (see line 57) that both of its parameters (user of type User and doc of
type Document) are not null. Since such parameters are obtained from class
Library, which in turn exploits its attributes users and documents to re-
trieve them, the execution of borrowDocument proceeds until the invocation
of addLoan only if at least one user (referenced by parameter user) and one
document (referenced by doc) are in the library. The result of calling addLoan
in is a transition to where all state variables are equal to some, i.e.,
there are registered users and documents, and there are active loans.

Since method removeLoan is never called with loans empty, as discussed
above, the only state that has outgoing transitions labeled by removeLoan is

where loans=some. The deletion of a loan can either lead to a state in
which some loans are still active (self transition in or it can lead to a
state where no loan is active in the library This is the reason for the non
deterministic transition triggered by removeLoan, with two possible target
states.

In state removal of documents (method removeDocument) or users
(method removeUser) can never result in a state of the library with an empty

6.5 Related Work 131

set of documents and some loans still active or with an empty
set of users and some loans still active In fact, it is not possible
to remove a user who is borrowing some documents (see check performed
at line 17), and it is not possible to remove a document that is borrowed
by a user (see check performed at line 33). Consequently, when one or more
loans are active (loans:some), the associated users and documents cannot be
removed from the library, thus making the states and
unreachable.

6.5 Related Work

Recovering a finite state model of a program has been investigated in the
context of model checking [15, 19]. One of the major obstacles that has been
encountered in the extension of model checking from hardware to software ver-
ification is the problem of constructing a finite state model that approximates
the executable behavior of a program in a reliable way. Manual construction
of such models is expensive and error prone. For complex systems it is out of
the question. The possibility of using abstract interpretation for this purpose
has been investigated in [15, 19]. Automated support for the abstraction of
the source code into a finite state model is provided by the tool Bandera,
which allows for the integration of abstraction definitions into the source code
of the program under analysis. Moreover, customization of the abstraction to
check a particular property is also possible.

Another tool that employs abstraction to produce a tractable model of an
input software system is Java Path Finder [95]. Program annotations consist-
ing of user-defined predicates are used to generate another Java program in
which concrete statements are replaced by the abstracted ones. Model check-
ing is conducted on the abstracted version of the program, which exhibits a
tractable, finite state, behavior. The model checker explores the state space by
performing a symbolic execution of the program. The state being propagated
in the symbolic execution includes a heap configuration, a path condition on
primitive fields, and thread scheduling. Whenever the path condition is up-
dated, it is checked for satisfiability using an external decision procedure. If it
cannot be satisfied, the model checker backtracks. In this way, infeasible por-
tions of the state space are not explored. Java Path Finder has been used for
test case generation [96], with the test criterion (e.g., reaching every control
flow branch) encoded as a property. When the model checker can determine
a path along which such a property is true, associated with a satisfiable path
condition, it is possible to find a witness, that is, a set of concrete values that
make the path condition true and respect the constraints on the heap con-
figuration (i.e., on the object fields referencing other objects). This is easily
converted into a test case for the given program.

Besides program understanding, one of the most important applications of
the state diagrams, possibly recovered from the code, is state-based testing [6,

132 6 State Diagrams

92]. According to this testing methodology, the class under test is modeled by
its state diagram and a set of test cases is considered adequate for the unit
test of the class when the states and the transitions in the state diagram are
covered up to a level specified in the objective coverage criterion. The most
widely used coverage criterion in state-based testing is transition coverage. It
requires that all transitions from state to state be exercised at least once by
some test case. This ensures that a class is not delivered with untested states
or state transitions. As a support to defect finding, it forces programmers to
test their code by exercising all the states and all the possible state changes
triggered by messages received by the object under test.

7

Package Diagram

The complexity involved in the management and description of large software
systems can be faced by partitioning the overall collection of the composing
entities into smaller, more manageable, units. Packages offer a general group-
ing mechanism that can be used to decompose a given system into sub-systems
and to provide a separate description for each of them.

Packages represented in the package diagram show the decomposition of
a given system into cohesive units that are loosely coupled with each other.
Each package can in turn be decomposed into sub-packages or it can contain
the final, atomic entities, typically consisting of the classes and of their mutual
relationships.

The dependency relationships shown in a package diagram represent the
usage of resources available from other packages. For example, if a method
of a class contained in a package calls a method of a class that belongs to a
different package, a dependency relationship exists between the two packages.

Most Object Oriented programming languages provide an explicit con-
struct to define packages. Thus, their recovery from the source code is just a
matter of performing a pretty simple syntactic analysis. Dependencies among
packages are also quite easy to retrieve, since they correspond to references
to resources possessed by other packages (method calls, usage of types, etc.).

A more interesting and challenging situation is one in which no package
structure was defined for a given software system, while its evolution over
time has made it necessary (for example, because of an increased system’s
size). Code analysis techniques can be employed to determine appropriate
groupings of entities to be inserted in a same package. In this scenario, pack-
ages are recovered from a system that does not possess any package structure
at all. Another similar scenario consists of restructuring an existing package
organization. If there are reasons to believe that the current decomposition
of the system into packages is not satisfactory, code analysis can be used to
determine an alternative decomposition, with more cohesive and less coupled
packages. Migration to the new package structure can thus be supported by
the recovery of an alternative package organization from the code, ignoring

134 7 Package Diagram

the existing one. The exercise of recovering a package structure from the code
can be useful also to assess the validity of the current decomposition into
packages, by contrasting that recovered with the existing one.

The scenarios in which package diagram recovery applies are clarified in
Section 7.1. Among the techniques available for the identification of cohesive
groups of classes, clustering is considered in detail in Section 7.2, while concept
analysis is presented in Section 7.3. Application of these two methods to the
eLib program is described in Section 7.4. A discussion of the related works
concludes the chapter.

7.1 Package Diagram Recovery

The complexity of large software systems can be managed by decomposing the
overall system into smaller units, called packages, that are internally highly
cohesive and that exhibit a low coupling with the other packages in the decom-
position. In turn, each package can be decomposed into sub-packages, when
its complexity requires a finer grain subdivision. The atomic elements even-
tually included in the lower level packages are usually the classes used in each
subsystem. Although the decomposition into packages is a general mechanism
that can be used also with entities different from classes (e.g., states in state
diagrams), in the following we will focus on the most frequently occurring
case, in which packages contain groups of classes (or other sub-packages).

Since modern Object Oriented programming languages, such as Java, pro-
vide an explicit mechanism for package definition, recovery of the organization
of the classes into packages and of the decomposition of packages into sub-
packages is straightforward and requires just the ability to parse the source
code. The dependency relationship between packages is also easy to retrieve.
In fact, once the kinds of relevant dependencies are defined (e.g., method calls
between classes in different packages; declaration of variables whose type is
defined in another package), their identification in the source code is typically
just a matter of performing some simple syntactic or semantic (construction
of symbol table with type information) analysis.

Software systems tend to evolve over time in a manner that is difficult
to predict in advance, so that their periodic reorganization is often necessary
to preserve the original quality of the design. In this context, recovery of
the package diagram from the source code cannot be based on the declared
packages, since these may reflect the initial decomposition of the system, which
does not correspond any longer its actual structure. Techniques for the reverse
engineering of highly cohesive and lowly coupled groups of classes play an
important role in this situation.

Three possible scenarios in which package diagram recovery should be
based on the actual code organization, instead of the declared package struc-
ture, are depicted in Fig. 7.1. When classes are not grouped into packages

7.1 Package Diagram Recovery 135

Fig. 7.1. Scenarios of package diagram recovery from code properties.

(see Fig. 7.1, (a)) or when the existing package structure is considered inap-
propriate (see Fig. 7.1, (b)), recovery of the package diagram from the code
may provide useful indications on how to (re-)organize classes into packages.
In these two cases, either no package structure exists, or the available pack-
age structure is ignored. A third situation may occur, in which the existing
package structure is evaluated to identify opportunities of improvement (see
Fig. 7.1, (c)). In such a scenario, the recovered package diagram is expected
to have a large overlap with the existing package organization, and interesting
information is provided by the differences (if any). Classes that are assigned to
different packages in the two package diagrams (the actual and the recovered
one) should be carefully inspected to assess the opportunity of reassigning
them. The resulting organization of the system, in all three cases sketched
above, will be characterized by more cohesive packages with fewer dependen-
cies between each other. This is expected to affect positively the activities of
program understanding and code evolution.

Recovery of the package diagram in the three scenarios of Fig. 7.1 is based
on proper code properties. Classes that exhibit commonalities in such prop-
erties are grouped in a same package. Several algorithms can be employed to
identify such commonalities and to group classes together. The code properties
to consider in the recovery process vary accordingly, and may be customized
based on the available knowledge about the system. Typical examples of such
properties are the types of class attributes and of method variables and pa-
rameters, and the invocations of methods that belong to other classes. The
fact that a group of classes operate on the same types or depend one on the
other due to method invocations hint that they should be grouped into a same
package. In the next two sections more details are provided on which prop-
erties to consider and how to infer packages (i.e., highly cohesive and loosely
coupled groupings of classes) from such properties.

136 7 Package Diagram

7.2 Clustering

Clustering is a general technique aimed at gathering the entities that compose
a system into cohesive groups (clusters). Clustering has several applications in
program understanding and software reengineering [4, 54, 99], and has been
recently applied to Web applications [52, 65].

Given a system consisting of entities which are characterized by a vector
of properties (feature vector) and are connected by mutual relationships, there
are two main approaches to clustering [4]: the sibling link and the direct link
approach. In the sibling link approach, entities arc grouped together when
they possess similar properties, while in the direct link approach they are
grouped together when the mutual relationships form a highly interconnected
sub-graph.

Main issues in the application of the sibling link approach are the choice of
the features to consider in the feature vectors, the definition of an appropriate
similarity measure based on such features and the steps for the computation
of the clusters, given the similarity measures. The following section, Feature
Vectors, examines such issues in detail.

In the direct link approach, clustering is reduced to a combinatorial op-
timization problem. Given the relationships that connect entities with each
other, the goal of clustering is to determine a partition of the set of enti-
ties which concurrently minimizes the connections that cross the boundaries
of the clusters and maximizes the connections among entities belonging to a
same cluster. Details for the application of this approach are provided in the
following section, Modularity Optimization.

7.2.1 Feature Vectors

A feature vector is a multidimensional vector of integer values, where each
dimension in the vector corresponds to one of the features selected to describe
the entities, while the coordinate value represents the number of references to
such a feature found in the entity being described. Selection of the appropriate
features to use with a given system is critical for the quality of the resulting
clusters, and may be guided by pre-existing knowledge about the software.

In the literature, several different features have been used to characterize
procedural programs, with the aim of remodularizing them [4, 54, 99]. Some
of such features apply to Object Oriented software as well, and can be used
to derive a package diagram from the source code of the classes in the system
under analysis. Examples of such features are the following:

User-def types: Declaration of attributes, variables or method parameters
whose type is a user defined type.

Method calls: Invocation of methods that belong to other classes.

The rationale behind the two kinds of features above is that classes oper-
ating on the same data types or using the same computations (method calls)

7.2 Clustering 137

are likely to be functionally close to each other, so that clustering is expected
to group them together.

In addition to the syntactic features considered above, informal descriptive
features can be exploited for clustering as well. For example, the words used
in the identifiers defined in each class under analysis or in the comments are
informal descriptive features that may give a useful contribution to clustering.
The main limitations of informal features are that they depend on the ability
of the code to be self-documenting and that they may be not up to date, if they
have not been evolved along with the code. On the other side, they are more
abstract than the syntactic features, being closer to a human understanding
of the system.

Once the features to be considered in the feature vectors have been se-
lected, a proper similarity measure has to be defined. It will be used by the
clustering algorithm to compare the vectors. The entities with the most similar
feature vectors are inserted in a same cluster. In alternative to the similar-
ity measure, it is possible to define a distance measure and to group vectors
at minimum distance. Usually, similarity measures are favored over distance
measures, because they have a better behavior in presence of empty or quasi-
empty descriptions. In fact, if most (all) of the entries in two feature vectors
are zero, any distance measure will have a very low value, thus suggesting
that the two entities should be clustered together. However, it may be the
case that the two entities are very dissimilar and that the low distance is
just a side effect of the quasi-empty description. Consequently, it is preferable
to use similarity, instead of distance, measures, in presence of quasi-empty
descriptions.

Among the various ways in which similarity between two vectors can be
defined, the metrics most widely used in software clustering are the normalized
product (cosine similarity) and the association coefficients.

Normalized product: Normalized vector product of the feature vectors:

Association coefficients: Derived metrics are based on the following coef-
ficients:

Jaccard:
Simple Matching:
Sørensen-Dice:

The normalized product gives the scalar product between two vectors, re-
duced to unitary norm. Thus, it measures the cosine of the angle between the
vectors. The normalized product is maximum (+1) when the two vectors are

138 7 Package Diagram

co-linear and have the same direction, i.e., the ratio between the respective
components is a positive constant: with In the general case,
the normalized product is minimum (-1) when the two vectors are co-linear,
but have opposed directions: with However, since feature
vectors associated with software components count the number of references
to each feature in each component, the coordinate values are always non neg-
ative and the normalized product is correspondingly always greater than or
equal to zero. Thus, the minimum value of the normalized product is not -1
for the feature vectors we are interested in. Such a minimum, equal to 0 under
the hypothesis of non negative coordinates, is obtained when the two vectors
are orthogonal with each other, that is, when non-zero values occur always
at different coordinates. In other words, two vectors with non negative coor-
dinates have zero normalized product if the first has zeros in the positions
where the second has positive values, and vice-versa.

Association coefficients are used to compute various different similarity
metrics, among which the Jaccard, the Simple Matching, and the Sørensen-
Dice similarities. These coefficients are based on a view of the feature vectors
as the characteristic function of sets (of features). Thus, the first coefficient,

measures the number of features that are common to the two vectors X
and Y, i.e., the intersection between the sets of features represented in the
two feature vectors. Coefficients and measure the number of features in
the first (second) set but not in the second (first). Coefficient measures the
number of features that are neither in X nor in Y is the set of all features).

Given the four association coefficients, several similarity metrics can be
defined, based on them. For example, the Jaccard similarity metric counts
the number of common features over the total number of features in the two
vectors It is 1 when X and Y have exactly the same features, while
it is 0 when they have no common feature. The Simple Matching similarity
metric gives equal weight to the common and to the missing features.
This metric is equal to 1 when two vectors have the same common and missing
features, i.e., coefficients and are zero. In other words, no feature exists
which belong to one vector but not to the other. The Simple Matching metric
is zero when each feature belongs exclusively to the first or to the second
vector (no common and no commonly missing feature). Finally, the Sørensen-
Dice similarity metric is a variant of the Jaccard metric, in which the common
features are counted twice, because they are present in both vectors.

In the literature, several different clustering algorithms have been investi-
gated [99], with different properties. Among them, hierarchical algorithms are
the most widely used in software clustering. Hierarchical algorithms do not
produce a single partition of the system. Their output is rather a tree, with
the root consisting of one cluster enclosing all entities, and the leaves consist-
ing of singleton clusters. At each intermediate level, a partition of the system
is available, with the number of clusters increasing while moving downward
in the tree.

7.2 Clustering 139

Hierarchical algorithms can be divided into two families: divisive and ag-
glomerative algorithms. Divisive algorithms start from the whole system at
the tree root, and then divide it into smaller clusters, attached as children of
each tree node. On the contrary, agglomerative algorithms start from singleton
clusters and join them together incrementally.

Fig. 7.2. Agglomerative clustering algorithm.

Fig. 7.2 shows the main steps of the agglomerative clustering algorithm.
After creating a singleton cluster for each feature vector, the algorithm merges
the most similar clusters together, until one single cluster is produced. It will
be the root of the resulting clustering hierarchy.

A critical decision in the implementation of this algorithm is associated
to step 3. While it is obvious how similarity between singleton clusters is
measured, since it just accounts for applying the metric chosen among those
presented above, the similarity between clusters that contain more than one
entity can be computed in different, alternative ways. Given two clusters
and containing respectively and entities, their similarity is computed
from the similarities between each pair of contained en-
tities, according to so-called linkage rules. Among the linkage rules reported
in the literature, the most widely used in software clustering are the single
linkage and the complete linkage:

Single linkage (or closest neighbor):

Complete linkage (or furthest neighbor):

Single linkage is known to give less coupled clusters, while complete linkage
gives more cohesive clusters (with cohesion measuring the average similarity
between any two entities clustered together, and coupling measuring the av-
erage similarity between any two entities belonging to different clusters).

Since feature vectors tend to be sparse, coupling naturally tends to be low.
As a consequence, more importance is typically given to cohesion, so that the
complete linkage is the typical rule of choice.

An alternative approach to computing the similarity between clusters is
offered by the combined clustering algorithm [70]. In this approach, clusters
are also associated with feature vectors that describe them. Initially, singleton

140 7 Package Diagram

clusters have a feature vector that is coincident with that of the enclosed entity.
Then, when a cluster contains feature vectors, its own feature
vector is given by their sum: Thus, a cluster is associated to
a feature vector with each coordinate given by the sum of the values of the
same coordinate in all contained vectors.

Fig. 7.3. Clustering hierarchy (left), with two cut points selected, and associated
package diagram (right).

When hierarchical clustering is applied for package diagram recovery, a
partition of the classes can be obtained by cutting the hierarchy at an ap-
propriate height (see Fig. 7.3). Successive cuts at different heights can be
generated and assessed. Higher level cuts followed by lower level cuts indicate
the cases where packages contain sub-packages. Lower level cuts eventually
define packages that contain only classes.

With reference to Fig. 7.3, two cut points have been selected in the cluster-
ing hierarchy. The topmost cut defines a package containing two other pack-
ages, and a package containing 3 classes. The lower level cut in turn defines
the content of the two packages that are merged at the higher level cut.

Problems that may occur when clustering is applied to software compo-
nents, such as the classes, are the generation of a black hole, in which one
cluster absorbs everything incrementally, while moving upward in the hier-
archy, or, at the other extreme, the generation of a gas cloud, in which all
singleton clusters tend to remain almost unchanged until the final grouping
into a single final cluster [4]. Careful selection of the features to use, of the
similarity measure between vectors and of the clustering algorithm to apply
allow avoiding such problems.

7.2.2 Modularity Optimization

The approach to clustering based on modularity optimization [54] focuses on
the relationships that hold among the entities to be clustered, rather than
their features. In this setting, the goal of clustering is optimizing the level of

7.2 Clustering 141

modularity, so that the resulting grouping of the entities concurrently mini-
mizes coupling (i.e., the connections between components of distinct clusters)
while maximizing cohesion (i.e., the connections between components in a
same cluster).

When this approach is applied to package diagram recovery, the relation-
ships that hold among the classes have to be taken into account. The alter-
native choices span across those represented in the class diagram:

Inheritance.
Association.
Aggregation.
Composition.
Dependency.

All or a subset of them can be used for clustering. As discussed below, it
may be important to be able to give different relationships different weights.

Given a set of entities (classes, in case of package diagram recover) and of
relationships (inter-class relationships), cohesion and coupling can be formally
defined as follows:

Cohesion:

Coupling:

where is the number of relationships internal to cluster is the num-
ber of relationships between clusters and and is the number of
entities inside cluster If auto-loops cannot occur in the relationships being
considered, the denominator of becomes

and range between 0 and 1. is 1 when the entities in cluster
are fully connected with each other with auto-loops,
without auto-loops), while it is 0 when they are completely disconnected.
is equal to 1 when each entity of cluster is connected to each entity of
cluster and vice-versa. is 0 when the entities in and have no
connection with each other.

A joint measure of the modularization quality, MQ, can be obtained as
the difference between the normalized total cohesion and the normalized total
coupling:

where is the number of clusters. Since is between 0 and 1, the sum over
all clusters will be between 0 and hence the normalizing denominator of
the first term in MQ. As regards the sum of over all pairs of different
clusters, the maximum will be i.e., equal to the number of such
pairs. This number is used to normalize the second term in MQ, so as to make
it range between 0 and 1.

142 7 Package Diagram

As a consequence of the normalization of the sums, MQ is bounded be-
tween -1 (no cohesion, maximum coupling) and 1 (no coupling, maximum
cohesion). The latter situation is of course the most desirable one. Thus, the
clustering algorithm based on the modularity metric MQ aims at determining
the partition of the entities into clusters that maximizes MQ.

The problem of clustering has been turned into a combinatorial optimiza-
tion problem. Consequently, the heuristics available from the field of combi-
natorial optimization can be used to approximate the optimal solution. The
exact optimal solution is in general non computable, since the number of pos-
sible partitions for which MQ should be determined grows exponentially with
the number of entities to be clustered.

Fig. 7.4. Hill-climbing clustering algorithm.

In the literature, several algorithms have been investigated to determine
the clusters that maximize MQ [32, 54]. Fig. 7.4 shows a simple algorithm,
based on the hill-climbing technique. It exploits the notion of neighbor parti-
tion. A partition NP is a neighbor of a partition P if it is the same as P except
for a single element that belongs to different clusters in the two partitions.
Initially, a random partition P is produced out of the set S of the entities to
be clustered (line 2, Fig. 7.4). Then, an optimization loop is entered, which
ends when the chosen strategy is unable to further improve the current parti-
tion of the entities. At line 4, a subset of all neighboring partitions, consisting
of those with a higher MQ than P, is determined and assigned to BNP. If
at least one better neighbor partition actually exists, P is reassigned (line
6). When more than one improvement directions are possible, one is chosen
randomly. In the end, a (sub-)optimal partitioning of the entities is produced
which can be interpreted as the package diagram being recovered from the
inter-class relationships.

The main limitation of the algorithm in Fig. 7.4 is that its result is quite
sensitive to the initial, random partition, from which optimization is started.
This can be (partially) mitigated by executing it several times, starting from

7.3 Concept Analysis 143

different initial partitions. More sophisticated methods (e.g., based on genetic
algorithms) to cope with this problem can be found in the literature.

When a large software system is analyzed, the number of clusters in the
(sub-)optimal partition may be big. In this case, it makes sense to cluster
the clusters, thus creating a hierarchy of packages. The first step consists of
applying the modularization algorithm to the set of all the entities, which
are assigned to different clusters. A new higher-level graph is then built by
treating each cluster as a single entity. Given two nodes in this higher-level
graph, if there exists at least one edge between any two enclosed entities,
then there is an edge between the higher-level nodes in the new graph. The
clustering algorithm is re-applied to the new graph, in order to discover the
next higher-level graph, and so on, until all components have coalesced into a
single cluster.

Symmetrically, when the clusters obtained by the optimization of MQ
contain a large number of entities, it makes sense to re-apply the clustering
algorithm inside each higher-level cluster, until groupings of entities of man-
ageable size are produced. The hierarchy of the packages is obtained as an
effect of clustering re-computation within previously determined clusters.

The algorithm described above needs be improved in cases where not only
the existence of a relationships is important, but also the number of instances
of the relationship and the kind of relationship matter. This is especially true
with Object Oriented systems. For example, the presence of an inheritance
relationship between two classes may be a stronger indicator of the fact that
the two related classes should belong to a same package, than the existence
of a dependency due to a method call. Thus, inheritance should be weighted
more than dependency. Moreover, the fact that a high number of method calls
exists between two classes should result in a stronger relationship than in the
case of a small number of calls.

Therefore, the technique described above has to account for the so-called
interconnection strength of the relationships: a proper weighting mechanism
must be defined for the inter-class relationships, according to the number of
instances and/or the kind of relationships being considered.

7.3 Concept Analysis

Concept analysis [25] is a branch of lattice theory that permits grouping ob-
jects that have common attributes. Concept analysis has been successfully
applied to code restructuring and modularization [24, 50, 71, 75, 88, 94], with
functions as the objects, and properly selected function properties as the at-
tributes (e.g., accesses to global variables, accesses to dynamic locations and
presence of user-defined structured types in the signature, including the re-
turn types). A few survey papers [78, 79, 82] account for the applications of
concept analysis to software engineering in general.

144 7 Package Diagram

The possibility to use concept analysis for package diagram recovery de-
scends from its ability to determine maximal groupings of objects sharing
maximal subsets of common attributes. In this application of concept anal-
ysis, the objects to be considered are the classes of the program, while the
attributes are selected among the class properties. The choice of which prop-
erties to include in the analysis is quite important and may lead to different
results. Examples of class properties that are highly related to the cohesion
that packages are expected to exhibit are the following:

User defined types used in the declarations of class attributes, method
parameters, return values, and/or local variables.
Method calls.
Relationships a class has with other classes (aggregation, inheritance, etc.).

Informal properties such as words in method identifiers, comments, etc.

The output of concept analysis represents a candidate package diagram
for the given program, in that classes are grouped together when they share
maximal sets of properties. For example, classes operating on the same, user
defined types, calling the same methods, related to the same classes, or in-
cluding the same descriptive information, are likely to be a cohesive group
that can be possibly interpreted as a package of the system.

The starting point for concept analysis is a context (O, A, R), consisting
of a set of objects O, a set of attributes A and a binary relation R between
objects and attributes, stating which attributes are possessed by each object.

Let and The mappings
(the common attributes of X) and
(the common objects of Y) form a Galois connection, that is, these two

mappings are antimonotone and extensive.
A concept is a maximal collection of objects that possess common at-

tributes, i.e., it is a grouping of all the objects that share a common set of
attributes. More formally a concept is a pair of sets (X, Y) such that:

X is said to be the extent of the concept and Y is said to be the intent.
The definition given above is mutually recursive (X is defined in terms of

Y and vice-versa), thus it cannot be used in a constructive way (it just helps
deciding if a pair (X, Y) is or is not a concept). However, several algorithms
for computing the concepts from a given context are available (see below).

A concept is a subconcept of concept
if (or, equivalently, The subconcept relation forms a
complete partial order (the concept lattice) over the set of concepts [25].

7.3 Concept Analysis 145

The fundamental theorem for concept lattices [25] relates subconcepts and
superconcepts as follows:

The least upper bound (suprermum) of a set of concepts (join operation)
can be computed by intersecting their intents and finding the common objects
of the resulting intersection. Dually, the largest lower bound (infimum) can
be computed as follows:

The steps of a simple bottom-up concept construction algorithm (see [75])
are the following:

1. Compute the bottom element of the concept lattice: with

2.

3.

Compute the atomic concepts – smallest concepts with extent obtained
by treating each object as a singleton:
Close the set of atomic concepts under join (AtomicConceptClosure).

The procedure AtomicConceptClosure, which computes the transitive
closure of the atomic concepts under the least upper bound (join) relationship,
is given in Fig 7.5.

Fig. 7.5. Bottom-up concept formation algorithm. Procedure AtomicConcept-
Closure.

A worklist is initialized with all pairs of concepts that are not sub concepts
of each other (line 1). Then, the formation of superconcepts is tried, as long
as there are pairs of concepts to consider in the worklist. Each such pair gives

146 7 Package Diagram

raise to a unique supremum, computed at line 4. If such a concept has not
yet been discovered, it is added to the list of known concepts (not shown)
and it is compared with all concepts produced so far. For each concept that
is unrelated with the new one (line 7), a pair is generated and added to the
worklist. In the end, the transitive construction of all superconcepts, starting
from the atomic concepts, gives the final set of all the concepts, organized into
the concept lattice.

The key observation for using concept analysis in package diagram recovery
is that a package corresponds to a formal concept. Let us consider, for example,
the method calls issued inside the code of the classes under analysis. A concept
consists of a set of classes performing a set of same method calls, which are
not simultaneously made by the code of any other class outside the concept.

An example of such kind of context is given in Table 7.1. The set of objects
consists of the three classes and the attributes are the calls to
methods Table 7.1 indicates which class invokes which method.
After applying concept analysis to this example, the following concepts are
identified:

Concept indicates that all the three classes call method Concept
states that both and call both and is the only class calling
both and (concept while no class has the property of calling all
three methods

The concept lattice associated with the concepts above is depicted
in Fig. 7.6 (nodes have the shape used in package diagrams). Edges indicate
the subconcept relationships and are upward directed. Inside each concept
(package), the names of the classes that have been grouped together are shown,
while the related attributes are not indicated.

Concepts are good candidates for the organization of classes into packages.
In fact, each concept is, by definition, characterized by a high cohesion of its
objects around the chosen attributes. However, concepts may have extents

7.3 Concept Analysis 147

Fig. 7.6. Example of concept lattice, showing the candidate packages.

with non-empty intersections. Correspondingly, not every collection of con-
cepts represents a potential package diagram. To address this problem, the
notion of concept partition was introduced (see for example [75]). A concept
partition consists of a set of concepts whose extents are a partition of the
object set O. is a concept partition iff:

A concept partition allows assigning every class in the considered context
to exactly one package. In the example discussed above, the two following
concept partitions can be determined (see dashed boxes in Fig. 7.6):

The first partition contains just one concept, and corresponds to a
package diagram with all three classes in the same package, on the
basis of their shared call to The second partition generates a proposal
of package organization in which and are inside a package, since they
call both and while is put inside a second package for its calls to

and It should be noted that the second package organization permits
a violation of encapsulation, since classes of different packages have a shared
method call, namely to It ensures that no class outside invokes both
and while alone can be invoked outside This example gives a deeper
insight into the modularization associated with a concept partition: even in
cases in which the only package diagram that does not violate encapsulation is
the trivial one, with all the classes in one package, concept analysis can extract

148 7 Package Diagram

alternative organizations of the packages into cohesive units, that occasionally
are allowed to violate encapsulation.

It might be the case that no meaningful concept partition is determined
out of the initial context, although each concept, taken in isolation, represents
a meaningful grouping of classes into a package. In this situation, the package
organization indicated by the concepts can be taken into account by relaxing
the constraint on the concept partitions. One way to achieve this result is
described in [88], and consists of determining concept sub-partitions, instead
of concept partitions, that can be eventually extended to a full partition of
the set of classes under analysis.

7.4 The eLib Program

The eLib program is a small application consisting of just 8 classes. Thus,
it makes no sense to organize them into packages. However, the exercise of
applying the package diagram recovery techniques to the eLib program may
be useful to understand how the different techniques work in practice and how
their output can be interpreted.

Table 7.2 summarizes the results obtained by the agglomerative cluster-
ing method (first two lines, labeled Agglom.), by the modularity optimization
method (lines 3 and 4, labeled Mod. opt.), and by concept analysis (last line,
labeled Concept). The second column contains the kind of features or rela-
tionships that have been taken into account (a detailed explanation follows).
The last column gives the resulting package diagram, expressed as a partition
of the set of classes in the program.

In the application of the agglomerative clustering algorithm, two kinds of
feature vectors have been used. In the first case, each entry in the feature

7.4 The eLib Program 149

vector represents any of the user defined types (i.e., each of the 8 classes in
the program). The associated value counts the number of references to such
a type in the declarations of class attributes, method parameters, local vari-
ables or return values. Table 7.3 shows the feature vectors based on the type
information. The types in each position of the vectors read as follows:

It should be noted that the feature vectors for classes Book and Internal–
User are empty. This indicates that the chosen features do not characterize
these two classes at all, and consequently they do not permit grouping these
two classes with any cluster.

Fig. 7.7. Clustering hierarchy for the eLib program (clustering method Agglom-
Types).

150 7 Package Diagram

Fig. 7.7 shows the clustering hierarchy produced by the agglomerative
algorithm applied to the feature vectors in Table 7.3. The (manually) selected
cut point is indicated by a dashed line. The results shown in the first line of
Table 7.2 correspond to this cut point. Classes User, Document, Library,
Loan are clustered together. So are Journal, TechnicalReport, while Book
and InternalUser remain isolated, due to their empty description.

The agglomerative clustering algorithm was re-executed on the eLib pro-
gram, with different feature vectors. The number of invocations of each
method is stored in the respective entry of the new feature vectors. Thus, for
example, the first component of the feature vectors, associated with method
User.getCode, holds value 1 for classes Document, Library, Loan, in that
they contain one invocation of such a method (resp. at lines 220, 10, 152),
while such an entry contains a zero in the feature vectors for all the other
classes, which do not call method getCode of class User.

The class partition obtained by cutting the clustering hierarchy associated
with these feature vectors is reported in the second line of Table 7.2. Now the
two classes Book and InternalUser have a non empty description, so that they
can be properly clustered. The resulting package diagram is the same that was
produced with the feature vectors based on the declared variable types, except
for classBook, which is aggregated with {Journal, TechnicalReport}.

Fig. 7.8. Inter-class relationships considered in the first application of the modu-
larity optimization method.

The clustering method that determines the partition optimizing the Mod-
ularity Quality (MQ) measure depends on the inter-class relationships being
considered. Two kinds of such relationships have been investigated: (1) those
depicted in the class diagram reported in Fig. 3.9 (i.e., inheritance, association
and dependency); (2) the method calls.

Fig 7.8 shows the inter-class relationships considered in the first case.
Given the low number of classes involved, an exhaustive search was conducted

7.4 The eLib Program 151

to determine the partition which maximizes MQ. The result is the partition
in the third line of Table 7.2 (see also the box in Fig 7.8). It corresponds to a
value of MQ equal to 0.91 and it was obtained by giving the same weight to
all kinds of relationships. Actually, giving different weights to different kinds
of relationships does not change the result, as long as the ratios between the
weights remains small enough (less than 5). Big ratios between the weights
lead to an optimal MQ reached when all classes are in just one cluster.

Fig. 7.9. Call relationships considered in the second application of the modularity
optimization method.

In the second case (call relationships), the optimal partition is associated
with MQ = 0.87, and it differs from the previous one only for the position
of class Library, which is merged with {User, Document, Loan} (see Ta-
ble 7.2). Call relationships considered in this second clustering based on MQ
are weighted by the number of calls issued within each class. Thus, the call
relationship between Loan and User is weighted 3 because there are three
invocations of methods belonging to class User, issued from methods of class
Loan (resp. at lines 148, 152, 153). Fig. 7.9 shows the weighted call relation-
ships considered in this second application of the modularity optimization
method (the only non-singleton cluster is surrounded by a box).

Finally, concept analysis was applied to the context that relates the classes
to the declared type of attributes, method parameters and local variables (see
Table 7.4). Classes Book and InternalUser have been excluded, since they do
not declare any variable of a user-defined type (see discussion of the feature
vectors in Table 7.3 given above). Two concepts are determined from such a
context:

152 7 Package Diagram

Although no concept partition emerges, it is possible to partition the
classes based on the two concepts and by considering all classes in
the extent of as one group, and all classes in the extent of but not in
the extent of as a second group. The associated class partition is reported
in the last line of Table 7.2.

Different techniques and different properties have been exploited to recover
a package diagram from the source code of the eLib program. Nonetheless, the
results produced in the various settings are very similar with each other (see
Table 7.2). They differ at most for the position of one or two classes. A strong
cohesion among the classes User, Document, Loan was revealed by all of the
considered techniques. Actually, these three classes are related to the over-
all functionality of this application that deals with loan management. Even
if different points of view are adopted (the relationships among classes, the
declared types, etc.), such a grouping emerges anyway. The eLib program
is a small program that does not need be organized into multiple packages.
However, if a package structure is to be superimposed, the package diagram
recovery methods considered above indicate that a package about loan man-
agement containing the classes User, Document, Loan could be introduced.
The class diagram of the eLib program (taken from Fig. 1.1) with such a
package structure superimposed is depicted in Fig. 7.10.

7.5 Related Work

The problem of gathering cohesive groups of entities from a software system
has been extensively studied in the context of the identification of abstract
data types (objects), program understanding, and module restructuring, with
reference to procedural code. Some of these works [13, 51, 102] have already

7.5 Related Work 153

Fig. 7.10. Package diagram for the eLib program.

been discussed in Chapter 3. Others [4, 52, 54, 91, 99] are based on variants
of the clustering method described above.

Atomic components can be detected and organized into a hierarchy of
modules by following the method described in [26]. Three kinds of atomic
components are considered: abstract state encapsulations, grouping global
variables and accessing procedures, abstract data types, grouping user de-
fined types and procedures with such types in their signature, and strongly
connected components of mutually recursive procedures. Dominance analysis
is used to hierarchically organize the retrieved components into subsystems.

Some of the approaches to the extraction of software components with high
internal cohesion and low external coupling exploit the computation of soft-
ware metrics. The ARCH tool [73] is one of the first examples embedding the
principle of information hiding, turned into a measure of similarity between
procedures, within a semi-automatic clustering framework. Such a method
incorporates a weight tuning algorithm to learn from the design decisions
in disagreement with the proposed modularization. In [11, 22] the purpose
of retrieving modular objects is reuse, while in [61] metrics are used to re-
fine the decomposition resulting from the application of formal and heuristic
modularization principles. Another different application is presented in [46],
where cohesion and coupling measures are used to determine clusters of pro-

154 7 Package Diagram

cesses. The problem of optimizing a modularity quality measure, based on
cohesion and coupling, is approached in [54] by means of genetic algorithms,
which are able to determine a hierarchical clustering of the input modules.
Such a technique is improved in [55] by the possibility to detect and properly
assign omnipresent modules, to exploit user provided clusters, and to adopt
orphan modules. In [53] a complementary clustering mechanism is applied to
the interconnections, resulting in the definition of tube edges between subsys-
tems. Usage of genetic algorithms in software modularization is investigated
also in [32], where a new representation of the assignment of components to
modules and a new crossover operator are proposed.

Other relevant works deal with the application of concept analysis to
the modularization problem. In [24, 45, 77] concept analysis is applied to
the extraction of code configurations. Modules associated with specific pre-
processor directive patterns are extracted and interferences are detected.
In [50, 71, 75, 84, 94], module recovery and restructuring is driven by the
concept lattice computed on a context that relates procedures to various
attributes, such as global variables, signature types, and dynamic memory
access.

The main difference between module restructuring based on clustering and
module restructuring based on concepts is that the latter gives a characteri-
zation of the modules in terms of shared attributes. On the contrary, modules
recovered by means of clustering have to be inspected to trace similarity values
back to their commonalities.

Module restructuring methods based on concepts suffer from the difficulty
of determining partitions, i.e., non overlapping and complete groupings of
program entities. In fact, concept analysis does not assure that the candidate
modules (concepts) it determines are disjoint and cover the whole entity set.
In the approach proposed in [88], such a problem is overcome by using concept
subpartitions, instead of concept partitions, and by providing extension rules
to obtain a coverage of all of the entities to be modularized.

Conclusions

This chapter deals with the practical issues related to the adoption of reverse
engineering techniques within an Object Oriented software development pro-
cess. Tool support and integration is one of the main concerns. This chapter
contains some considerations on a general architecture for tools that imple-
ment the techniques presented in the previous chapters. A survey of the exist-
ing support and of the current practice in reverse engineering is also provided.

Once an automated infrastructure for reverse engineering is in place, the
process of software evolution has to be adapted so as to smoothly integrate
the newly offered functionalities. This accounts for revising the main activities
in the micro-process of software maintenance. The kind of support offered to
program understanding has been already described in detail (see Chapter 1,
eLib example). The way other activities are affected by the integration of a
reverse engineering tool in the development process are described in this chap-
ter, by reconsidering the eLib program and the change requests sketched in
Chapter 1. Location of the changes in the source code, change implementation
and assessment of the ripple effects are conducted on the eLib program, using,
whenever possible, the information reverse engineered from the code.

A vision of the software development process that could be realized by
exploiting the potential of reverse engineering concludes the chapter. The op-
portunities offered by new programming languages and paradigms for reverse
engineering are outlined, as well as the possibility of integration with emerging
development processes.

This chapter is organized as follows: Section 8.1 describes the main mod-
ules to be developed in a reverse engineering tool for Object Oriented code.
Reverse engineered diagrams can be exploited for change location and imple-
mentation, as well as for change impact analysis. Their usage with the eLib
program is presented in Section 8.2. The authors’ perspectives on potential
improvements of the current practices are given in Section 8.3, with reference
to new programming languages and development processes. Finally, related
works are commented in the last section of the chapter.

8

156 8 Conclusions

8.1 Tool Architecture

Implementation of the algorithms described in the previous chapters is affected
by practical concerns, such as the target programming language, the available
libraries, the graphical format of the resulting diagrams, etc. However, it is
possible to devise a general architecture to be instantiated in each specific
case. In this architecture, functionalities are assigned to different modules, so
as to achieve a decomposition of the main task into manageable, well-defined
sub-tasks. In turn, each module requires a specialization that depends on the
specific setting in which the actual implementation is being built.

Fig. 8.1. General architecture of a reverse engineering tool.

Fig. 8.1 shows the main processing steps performed by the modules com-
posing a reverse engineering tool. The first module, Parser, is responsible
for handling the syntax of the source programming language. It contains the
grammar that defines the language under analysis. It parses the source code
and builds the derivation tree associated with the grammar productions. A
higher-level view of the derivation tree is preferable, in order to decouple suc-
cessive modules from the specific choices made in the definition of the gram-
mar for the target language. Specifically, the intermediate non-terminals used
in each grammar production are quite variable, being strongly dependent on
the way the parser handles ambiguity (e.g., bottom-up and top-down parsers
require very different organizations of the non-terminals). For this reason, it
is convenient to transform the derivation tree into a more abstract tree rep-
resentation of the program, called the Abstract Syntax Tree (AST). In this
program representation, chains of intermediate non-terminals are collapsed,
and only the main syntactic categories of the language are represented [2].

The AST is a program representation that reflects the syntactic structure
of the code. However, reverse engineering tools are based on a somewhat dif-
ferent view of the source code. In the remainder of this chapter, this view is
referenced as the language model assumed by a reverse engineering tool. In a
language model, several syntactic details can be safely ignored. For example,
the tokens delimiting blocks of statements (curly braces, begin, end, etc.)
are irrelevant, while the information of interest is the actual presence of a

8.1 Tool Architecture 157

sequence of statements. Thus, in the language model, tokens such as delim-
iters of statement blocks and parameters, separators in parameter lists and
statement sequences, etc., are absent. On the other hand, information not
explicitly represented in the AST is made directly available in the language
model. For example, each variable involved in an expression is linked to its
declaration. Each method call is resolved in terms of all the type-compatible
definitions of the invoked method. Each class is associated with its super-
class, as well as the interfaces it implements. Such cross-references are not
obtained by means of plain identifiers, as in the AST, but are links toward
the referenced elements in the language model. For example, if class A extends
class B, the AST for class A contains just a child node for the extends clause,
leading to the identifier B, while in the language model an association exists
between the model element for class A and the model element for class B. An
example of (simplified) language model for the Java language is described in
detail below. The module responsible for building the language model out of
the AST of an input program is the Model Extractor (see Fig. 8.1).

Based upon the language model of the input program, reverse engineering
algorithms can be executed to recover alternative design views. The output is
a set of diagrams to be displayed to the user. In some cases, a further abstrac-
tion of the language model that Reverse Engineering algorithms have in input
is necessary. For example, most (but not all) of the techniques described in the
previous chapters require that the data flows in the target Object Oriented
program be abstracted into a data structure called the Object Flow Graph
(OFG). Such a data structure is built internally into the Reverse Engineering
module and is shared by all the algorithms that depend on it. Flow propaga-
tion of proper information inside the OFG leads to the recovery of the design
views of interest. These are converted into a graphical format of choice, in
order for the final user to be able to visualize them.

8.1.1 Language Model

Since reverse engineering techniques span over a wide spectrum, depending
on the kind of high-level information being recovered, it is quite important
to design a general language model that supports all of the alternative algo-
rithms. In turn, each algorithm may have an internal representation of the
source code, different from the language model itself. However, the main re-
quirement on the language model is that all the information necessary for the
reverse engineering algorithms to work and (possibly) build their own internal
data structures must be available in the language model. Thus, the language
model plays a critical, central role in the architecture described above and
should be designed very carefully. An example of such a model is given in
Fig. 8.2 for the Java language. Only the most important entities are shown
(for space reasons), with no indication of their properties.

A Java source file contains the definition of classes within a name space
called package. In turn, packages can be nested. Thus, the topmost entity

158 8 Conclusions

Fig. 8.2. Simplified Java language model. Containment and inheritance relation-
ships are shown.

in the language model for Java (see Fig. 8.2, left) is the package and a self-
containment relationship in the package entity represents nesting. Eventually,
packages contain classes (containment from package to class in Fig. 8.2). The
main property of the entity package (not shown in Fig. 8.2) is its name, that
uniquely identifies it.

The properties of the entity class include the name, visibility, as well as its
superclass, implemented interfaces, etc. The entities in turn contained inside
classes are the class members. Thus, the entity class is connected to the entity
attribute and to the entity method. Moreover, classes can be nested inside other
classes. This is the reason for the self-containment outgoing from the entity
class.

The entity attribute has properties such as name, type, visibility, initializer,
etc. Similarly, the entity method has properties such as name, formal param-
eters, return type, visibility, etc. The body of each method is represented as a
sequence of statements in the language model (containment from method to
statement labeled body in Fig. 8.2).

Statements can be of different types. Some of them are enumerated in
Fig. 8.2, connected to their abstraction statement by an inheritance relation-
ship. Conditional statements are used for constructs such as if and switch.
Among their properties, they hold a reference to the expression entity used
in the tested condition (not shown in Fig. 8.2). The if conditional statement
has a then-part and an else-part, which are in turn sequences of statements
(similarly to the body of a method). The switch statement is associated with
a sequence of cases, each containing the respective statements to execute.

Loop statements include while, for and do-while loops. Their main prop-
erties are the tested condition (an expression entity, not shown in Fig. 8.2) and
the loop body (a sequence of statements). For loops have also an initializer
and an increment part.

Assignment statements have two main components, the left hand side and
the right hand side. While the latter is a generic expression, the former must
eventually reference a location. This is achieved by constraining it to a unary
expression, instead of a generic expression.

8.2 The eLib Program 159

Call statements involve a dereference chain (primary expression), eventu-
ally leading to the object which is the target of the invocation. Other impor-
tant properties are the name of the called method, the actual parameter list
(a list of expressions), and links toward all type-compatible methods in the
language model. In the case of an invocation of a library method, the call is
marked as library call.

When the control flow inside a method is interrupted to return a value to
the caller, a return statement is encountered. The main property of this entity
is the expression that defines the returned value.

Among the entities and relationships not shown in Fig. 8.2 for space rea-
sons, the most important one is the entity expression, accounting for all math-
ematical expressions supported by the language, possibly intermixed with
method invocations. The sub-hierarchy of the expression entities closely re-
sembles that available in most programming languages (either procedural or
Object Oriented).

The information represented according to the model in Fig. 8.2 is sufficient
to build the OFG for a given source code, as well as to conduct all other
analyses that do not depend on the OFG and have been described in the
previous chapters. Thus, it can be used as the basic representation exploited
by all reverse engineering techniques implemented in the Reverse Engineering
module.

8.2 The eLib Program

The change request for the eLib program, anticipated in Section 1.2, is recon-
sidered now that several design views have been recovered from the eLib code
and are available for inspection.

In summary, the modification to be implemented involves the following
issues:

The program should support the reservation of books not available for loan
(i.e., borrowed).
A document can be reserved by a user if it is currently borrowed by an-
other user and if no other user has already reserved it (one reservation per
document only).
Permission to reserve a document follows the same policy used for the
loans: only users that are authorized to loan a given document can reserve
it when it is out.
When a reserved document is returned to the library, only the user who
made the reservation can borrow it.
Reservations can be cleared at any time (both before and after a document
is returned).

The design diagrams extracted from the code in the previous chapters are
used to locate the code portions to be changed and to define the approach to

160 8 Conclusions

implement the change, at a high level. Then, design diagrams are recovered
from the new system, to assess the portions of the system actually impacted
by the change. These are expected to be the main target of the testing activity
to be conducted before releasing the new version of the program.

8.2.1 Change Location

Let us consider the class diagram depicted in Fig. 1.1. The class Loan is used
to instantiate an association between a user and a document, that comes into
existence each time a document is borrowed by a user. Such an association is
objectified into instances of class Loan, which are stored inside the attribute
loans of class Library, thus remaining accessible to the library.

The role played by the class Loan in the class organization depicted in
Fig. 1.1 is very similar to that required for the implementation of the reser-
vation mechanism. In fact, a reservation is an association between a user and
a document, that comes into existence each time a document is reserved by
a user. Moreover, the class Library needs to maintain a persistent list of the
currently active reservations. To achieve this, the user-document association
representing a reservation can be objectified, by instantiating a new class, that
we will call Reservation.

Similarly to class Loan, class Reservation has two stable references to-
ward classes User and Document, which implement the association between a
user and a document, where the former is reserving the latter. Moreover, an
attribute of class Library, which we will call reservations, can be used to
store the list of current reservations (objects of class Reservation).

From the short description given above, it is clear that the two classes Loan
and Reservation are very similar. Thus, it might be the case that a common
abstraction can be defined, implementing the shared functionalities of these
two classes. Inheritance of such functionalities would avoid their duplication
in the two classes Loan and Reservation.

The common mechanism shared by Loan and Reservation consists of the
association between an object of class User and an object of class Document,
implemented by means of two attributes referencing the two classes being
associated and by means of a method to create such an association. Moreover,
methods to access each participant in the association and to assess equality
are expected to be also provided. We will callUserDocumentAssociation the
class containing such common functionalities. Classes Loan and Reservation
extends it and inherit these fuctionalities from it.

The other classes in Fig. 1.1 are expected to be not affected by the change
to be implemented. However, additions and modifications of existing data
members may be necessary. For example, class Library must provide interface
methods to reserve a document (reserveDocument) and to clear a reserva-
tion (clearReservation). In turn, the implementation of these methods may
be based on private methods addReservation and removeReservation, de-
fined in classes Library, User and Document, with a role similar to that of

8.2 The eLib Program

addLoan and removeLoan. Another convenience method that should be added
is isReserved in class Document, which, similarly to isAvailable, checks if a
reservation was made for a given document (attribute reservation not null,
similarly to attribute loan for isAvailable) A method isReserving could
play a similar role as isHolding in class Library. Other useful methods are
related to the printing and searching facilities (e.g., printReservation in
class Document).

Let us consider the instances of the eLib classes, by looking at the static
and dynamic object diagrams depicted in Fig. 1.2. Introduction of the reser-
vation mechanism would result in a new object, Reservation1, representing
all instances of class Reservation stored in the library, referenced through
the attributereservations.

Similarly to the objects Loan2 and Loan3, temporarily created by return–
Document and isHolding, two temporary objects Reservation2 and Reserva-
tion3 may be necessary in the implementation of clearReservation and
isReserving.

Let us consider the interactions occurring when a document is borrowed
(see Fig. 1.3). Given the parallel behavior of reservations and loans, a similar
diagram is expected to hold for method reserveDocument, with some slightly
different checks (e.g., with isAvailable replaced by isReserved) and the
same authorization controls. On the other side, the method borrowDocument
itself is expected to be impacted by the change being implemented. In fact,
if the document requested for loan is currently reserved, it can be borrowed
only by the user who reserved it. In such a case, creation of the loan must
include the deletion of the existing reservation.

The original interaction diagram for the method returnDocument from
class Library is shown in Fig. 1.4. The sequence of messages exchanged among
the involved objects has the overall effect of deleting a Loan object, which is
removed from the list stored in the Library and which becomes no longer
referenced by the User and Document it was previously associated with. Such
an operation is not affected by the introduction of a reservation mechanism.
In fact, a loan is closed in the same way, regardless of the fact that the related
document is reserved or not. It becomes available anyway after the loan is
dropped. Thus, we expect that the sequence diagram in Fig. 1.4 remains
unchanged in the new version of the eLib program.

The state diagrams in Fig. 1.5, 1.6 are not affected by the change being
implemented. In fact, the state of a User or a Document, in terms of the loan(s)
they are associated with, continues to obey the dynamics represented in these
diagrams. The same is true for the joint dynamics of the documents, users and
loans referenced by a Library object (see Fig. 1.6). However, introduction of
a new attribute, reservations, in class Library, and of backward links from
User, Document to Reservation, creates a demand for additional views of
the states of User, Document and Library. For the latter, a joint description
of loans and reservations may be useful to characterize the transitions allowed
in each combined state.

161

162 8 Conclusions

Fig. 8.3. New class diagram for the eLib program.

8.2.2 Impact of the Change

After implementing the change request described above, all diagrams pre-
sented in Chapter 1 have been recomputed. In the following text, they are
commented, with the aim of identifying the main differences with respect to
the original program. Such differences indicate which code portions have been
affected by the change. This helps understanding the new organization of the
application, but can also be useful in defining a test plan, where changed
parts are exercised more extensively. Unexpected ripple effects may also come
to light thanks to the assessment of the changes performed.

8.2 The elib Program 163

Fig. 8.4. Static (left) and dynamic (right) object diagram for the eLib program.

Fig. 8.3 shows the new class diagram obtained after change implementa-
tion. As anticipated in the previous section, a class (UserDocumentAssocia–
tion) has been introduced to factor out all operations involved in the cre-
ation of an association between a user and a document. Classes Loan and
Reservation (the latter is a new class) represent specific cases of User–
Document Association.

Class Library stores the list of the active reservations inside its at-
tribute reservations. Hence, the link from Library to Reservation la-
beled reservations. User and document participating in a reservation pos-
sess a reference to the related Reservation object. In the class diagram,
this is indicated by the association from User to Reservation (labeled
reservations) and by the association from Document to Reservation (la-
beled reservation).

Among the methods listed in the lower compartment of class Library,
some new members are apparent in Fig. 8.3. For example, the method
reserveDocument has been added, offering the functionalities to create a
reservation of a document by a user. The method clearReservation deletes
the reservation associated with a given document doc (parameter of the
method). Both of them return true upon successful completion of the op-
eration.

In the class Document, among others, the method isReserved has been
added, returning true when called onto reserved documents (i.e., documents
with non-null reservation attribute). Information about any reservation pos-
sibly made on a document can be printed by calling the method printReser–
vation from class Document.

Let us consider the relationships that hold among the objects instanti-
ating the classes in Fig. 8.3. Fig. 8.4 shows the static and dynamic object
diagrams recovered from the code of the modified application. The dynamic
object diagram has been obtained from the execution of the following scenario:

164 8 Conclusions

Time
1
2
3
4
5
6

7

8

9

Operation
An internal user is registered into the library.
Another internal user is registered.
A book is archived into the library
Another book is archived.
A journal is archived into the library.
The journal archived at time 5 is borrowed by the first
registered user.
The second registered user reserves the journal archived
at time 5.
The journal borrowed at time 6 is returned to the library and
the loan is closed.
The librarian verifies that the loan was actually closed.

The only difference with respect to the scenario described in Section 1.4
is the operation occurring at time 7, when a document not available for loan
is reserved by an authorized user (only internal users can borrow journals).

In the static object diagram (Fig. 8.4, left), accounting for all possible inter-
object relationships that may occur in any program execution, three new nodes
are present, representing instances of class Reservation: Reservation1,
Reservation2 and Reservation3. The object Reservation1 is created by
the method reserveDocument, in class Library, each time a user makes a
reservation on a document not available for loan. The object Library1 holds
the list of such objects (link from Library1 to Reservation1). Moreover, the
involved user and document also possess a reference to it (links from Book1,
Journal1, TechnicalReport1 and from User1, InternalUser1).

The objectReservation2 is created inside methodclearReservation in
class Library. It is a temporary object referencing user and document (links
toward User1, InternalUser1 and Book1, Journal1, TechnicalReport1) in-
volved in the reservation to be canceled, but not referenced by them (no
backward link, as shown in Fig. 8.4, left). This object is passed to method
removeReservation from class Library, where the library operation remove
on the Collection reservations is invoked with this object as a parame-
ter. Implicitly, the method equals of class Reservation is called to check if
Reservation2 is present insidereservations, and in case of positive answer,
it is removed.

The object Reservation3 is another temporary object, created inside
method isReserving in class Library. It is passed to the library operation
contains, called on the Collection reservations to check if Reservation3
is present inside it. Method equals of class Reservation is once again invoked
implicitly.

The dynamic object diagram shown on the right in Fig. 8.4 gives a partial
view of the inter-object relationships, holding when the scenario described
above is executed. Specifically, since the reservation requested at time 7 can

8.2 The eLib Program 165

be completed successfully, in that the related document is not available for
loan, it is not already reserved by another user, and the given user is autho-
rized to borrow it, an object representing the reservation (Reservation1) is
created. It is accessible fromLibrary1 through the link reservations, and
it has a bidirectional association with the two specific objects involved in the
reservation:Journal1 and InternalUser2.

It should be noted that, differently from the static object diagram, in the
dynamic view objects participating in a relationship are uniquely identified,
thus making the diagram easier to interpret. On the other hand, the main
disadvantage of the dynamic view is that it holds only for the specific scenario
for which it was built.

Fig. 8.5. Collaboration diagram focused on method reserveDocument of class
Library.

Fig. 8.5 shows the collaboration diagram for the method reserveDocument
of class Library. This is a completely new method, introduced in class
Library to support the reservation mechanism.

The first three calls (isAvailable, isReserved, authorizedLoan) check
whether the reservation can take place or not. A document can be reserved
only if it is not available and not already reserved (calls number 1 and 2).
Moreover, the reservation proceeds only if the given user (first method’s
parameter) has the permission to reserve the given document doc (second
method’s parameter). This is checked by the call number 3 (authorizedLoan),
which requires a nested call to authorizedUser (numbered 3.1) when the
document being reserved is a Journal, since only internal users can borrow
journals.

If all checks above are positive, a reservation is created by means of the call
number 4 (addReservation). Target of this call is Library1, i.e., the same
object on which method reserveDocument was originally invoked.

The parameter passed to addReservation is a newly created object of
class Reservation, indicated as Reservation1 in Fig. 8.5. Such an object is
the target of the invocations numbered 4.1 and 4.2, aimed at obtaining User

166 8 Conclusions

and Document involved in the reservation. Then, method addReservation
inserts the object Reservation1 into the Collection reservations of the
library (i.e., of objectLibrary1) and calls the method addReservation on
the user and document participating in the reservation, in order to create
backward links directed toward Reservation1. Possible sources of these links
are InternalUser1, User1 and Book1, Journal1, TechnicalReport1 (the
latter is an inaccuracy introduced by the static analysis method employed).

The collaboration diagram described above is extremely useful to under-
stand the logics behind the reservation mechanism and its interactions with
the loan authorization policy. The contribution to the reservation functional-
ity of code fragments belonging to different classes is presented in a summary,
compact form in Fig. 8.5. Recovering the same knowledge by code reading
would require jumping from class to class, with the risk of missing relevant
message exchanges.

The behavior of the method borrowDocument is substantially changed by
the implementation of the reservation mechanism, while this is not the case for
method returnDocument. A comparison of the interaction diagram in Fig. 8.6
with that in Fig. 1.3 reveals the differences.

In the message exchanges that precede the call to addLoan, we can notice
a few differences. In addition to the checks performed by calling methods
numberOfLoans, isAvailable and authorizedLoan (calls number 3, 4, 5 in
Fig. 8.6), the method borrowDocument verifies that, if the document is already
reserved (call number 1 to isReserved), the user who made the reservation
is the same who is now requesting the loan (call number 2 to getReserver).
If this is not the case, the method borrowDocument is aborted and returns
false.

If all checks performed by calls 1 through 5 give a positive answer, borrow-
ing can proceed and a new loan can be inserted into the library. The object
representing such a new loan is indicated as Loan1 in Fig. 8.6. It is passed as
a parameter to the next invoked method, addLoan (call number 6, issued on
object Library1 itself).

The first four operations carried out inside the new version of method
addLoan in class Library are the same as in the original method (compare
calls 6.1, 6.2, 6.3, 6.4 in Fig. 8.6 with calls 4.1, 4.2, 4.3, 4.4 in Fig. 1.3).
The next operations have been added to ensure a correct management of the
reservations possibly made on the document being borrowed.

If the document being borrowed was previously reserved (call 6.5 to
isReserved), the user who made the reservation is accessed (call 6.6 to
getReserver) to verify that it is coincident with the one activating the loan.
This is a safety, redundant check with respect to that performed through calls
1 and 2 in Fig. 8.6. It is made under the hypothesis that addLoan could be
called also by methods other than borrowDocument.

Once such a check gives a positive answer, the reservation is canceled,
by invoking methodremoveReservation of classLibrary (call number 6.7).
The called method deletes its parameter,Reservation1, from theCollection

8.2 The eLib Program 167

Fig. 8.6. Sequence diagram focused on method borrowDocument of class Library.

reservations of Library1. In order to also delete the backward links from
User and Document involved in the reservation, the two associated objects are
retrieved by respectively calling getUser and getDocument on Reservation1
(calls number 6.7.1, 6.7.2). Then, invocation of removeReservation on the
two retrieved objects (calls 6.7.3, 6.7.4) completes the execution of remove–
Reservation inside classLibrary. In turn, the methodremoveReservation
inside the class Document assigns a null value to the attribute reservation,
while removeReservation inside class User deletes Reservation1 from the
attribute reservations, of type Collection.

The sequence diagram in Fig. 8.6 provides a centralized, compact view
of the code changes introduced to handle document loans in the presence of

168 8 Conclusions

reservations. The additional operations are easily identified by comparing this
diagram with that given in Section 1.5. The objects collaborating to implement
the new functionality are all depicted at the top of Fig. 8.6, their role being
evident from the message exchanges shown on the vertical time lines.

Fig. 8.7. State diagram for class Document (left) and User (right).

Let us now consider the state diagrams for the new version of the eLib
program. The classes Document and User have a new attribute (respectively,
reservation and reservations) accounting for the new reservation mecha-
nism. Correspondingly, the possible states of the objects instantiating these
classes can be characterized in terms of the (abstract) values assumed by the
new attributes. If these attributes are considered in isolation, the state dia-
grams in Fig. 8.7 are obtained by executing an abstract interpretation of the
methods in these two classes. The abstract values used for reservation and
reservations parallel those used for loan (in class Document) and loans (in
class User) in Section 1.6 (see Fig. 1.5). Specifically, the two abstract values
null and Reservation1are used for Document . reservation, while empty, one
and many are used for User. reservations.

As apparent from Fig. 8.7, the dynamics of the state changes associ-
ated with the two new attributes are similar to those already described for
Document.loan and User.loans. This is a confirmation of the analog roles
played by loans and reservations. The two related classes, Loan and Reserva-
tion, descend from a common super-class, UserDocumentAssociation, and
inherit from it the associations with User and Document. Correspondingly, the
state changes induced inside these latter classes are similar when attributes
loans/reservations or loan/reservation are respectively considered.

8.2 The eLib Program 169

Specifically, as regards the class User (see Fig. 8.7, right), in the initial
state the only invocation that can occur is the invocation of method
addReservation. This leads to state where a call to addReservation
results in as the new state, while a call to removeReservation brings the
class state back to In state addReservation leaves the current state
unchanged, while removeReservation may leave it unchanged or lead to
when one reservation remains in the Collection reservations.

The state diagram for class Document (see Fig. 8.7, left) indicates that
addReservation is called only when the document is not currently reserved
(reservation=null), while removeReservation is called only when the docu-
ment is reserved (reservation=Reservation1).

Fig. 8.8. State diagram for class Library.

Introduction of the reservation mechanism requires that a new attribute,
reservations, of type Collection, be added inside the class Library. Since
the values of this attribute interact with the values of attribute loans, because
the logics behind reserving and borrowing a document are interleaved, it makes
sense to describe the values of these two attributes jointly. The procedure is
similar to that followed to produce the joint description given in Section 1.6,
Fig. 1.6.

Let us indicate the joint values of loans and reservations (both of type
Collection) as a pair, using the abstract value for an empty Collection
and when some (i.e., at least one) elements are inside the given Collection.
Thus, a pair indicates that the attribute loans hold some (more than
zero) elements, while reservations is empty. In other words, there are active
loans in the library, but there is no active reservation.

Fig. 8.8 shows the state diagram that results from the abstract inter-
pretation of the methods of class Library with the abstract values described
above. The initial state produced by the constructor of class Library has
both containers (loans and reservations) empty. An invocation of addLoan
leads the library to state (non emptyloans, emptyreservations), while

170 8 Conclusions

no invocation of addReservation (neither of the removal methods) can ever
occur in due to the checks performed in the code issuing such invoca-
tions. Specifically, the only invocation to addReservation is inside method
reserveDocument of class Library, where the call is issued only if the docu-
ment being reserved is not available. This implies that at least one loan must
exist

In state loans can be added and removed. In the latter case, the new
state is when no loan remains inside the Collection loans. Moreover, in
state reservations can be made, since not all documents are available. This
leads to state

In state loans and reservations can be added and removed. If eventually
no reservation remains, the new state is a state already described above.
If method removeLoan is called when exactly one loan is active in the library,
the new state is a fourth one never encountered before, characterized by
an empty set of loans and some reservations pending. It should be noted that
this state is not reachable directly from the initial state since reservations
cannot be added when no loans are present. Thus, the only way to reach it is
to go through all the other states,

If all reservations are cleared in state the final state that is reached is
On the other side, if loans are added, the state of the library goes back to

State diagrams are useful in understanding how the introduction of the
reservation mechanism affects the internal states of the classes. The new at-
tributes reservations and reservation inside the classes User and Document
are not influenced by the other class attributes, similarly to the original at-
tributes loans and loan in the same classes. On the contrary, in the class
Library, loans and reservations are mutually related. Their joint descrip-
tion given in the state diagram of Fig. 8.8 highlights the permitted transitions
in each state and the possible paths from one state to another one. This is
potentially useful to support comprehension of the changed system and of the
differences with respect to the original one. It will also help in the definition
of test cases for the changed classes, particularly when the state-based testing
approach is being used [6, 92]. In fact, this may turn out to be its primary
use.

8.3 Perspectives

The authors’ position is that all the information about a program should be
in the source code. From a purely observational point of view, the well-known
effects of software evolution, consisting of a progressive misalignment of source
code and other sources of information about a program, entail that only the
source code is reliable. So, de-facto, most information about a program is
in the source code. On the prescriptive side, one could take as the extreme

8.3 Perspectives 171

consequence the fact that everything should be part of the code (including
design, documentation, etc.).

The first view gives a central role to reverse engineering in the future of
software development. Although this discipline was born with the problems of
legacy systems in mind, new software systems, developed according to modern
programming paradigms such as the Object Oriented one, are not free from
the problems related to program comprehension and modification. As de-
scribed in this book, the comprehension problems involved in understanding
Object Oriented systems are different from those arising with more traditional
software, but remain the main concerns during the evolution phase. Reverse
engineering has the potential to address them.

The view in which all relevant information about a program is central-
ized in a single source, the code, comes from the Extreme Programming (XP)
development process [36]. In this methodology, limited effort is devoted to
design and design documents are not maintained over time. They are con-
sidered a temporary support to communication and understanding, that is
abandoned when software engineers move to the implementation. The ab-
sence of design information is mitigated by pair programming, by continuous
execution of refactoring, and by the description of functionalities in terms of
test cases. Reverse engineering can make an important contribution here [93].
In fact, understanding the organization of an application and of the interac-
tions among its objects is a quite difficult task in the XP setting. As discussed
in this book, there are several diagrams that can be extracted automatically
from the source code and approximate quite well this kind of information.

Looking at the emerging programming languages and paradigms, we can
hypothesize an increasing role of reverse engineering. Programming languages
tend to evolve so as to maintain very precise information about the program’s
behavior in the source code. Modern compilers rely on this information to
perform several checks, optimizations and transformations. Examples of this
kind of information are type parameters (genericity) and metadata (e.g., an-
notations), that will be included in the next version (1.5) of the Java language.
Aspect Oriented Programming [40] and introspection capabilities (e.g., Java
reflection, OpenJava) are going in the same direction, in that they support a
programmable interface to the internal units of a program.

All this has a twofold effect. On one hand, it simplifies reverse engineering,
in that the source code becomes a richer information repository, that can
be queried automatically by tools. On the other hand, it makes the design
diagrams reverse engineered from the source code much more meaningful and
useful, in that they are based on information directly encoded in the program
(and checked by the compiler), instead of using information inferred by means
of approximate static or dynamic analysis methods. Availability of accurate
diagrams easily extracted from the code will make the reverse engineering
option even more appealing, getting closer to the XP vision that everything is
in the source code. In fact, maintaining and evolving multiple descriptions of
a software system is much too expensive and error prone. Only by focusing on

172 8 Conclusions

the source code as the single source of information, is it possible to keep costs
low and to avoid communication errors resulting from inconsistent views.

8.4 Related Work

Reverse engineering tools have been mainly developed to support the analysis
of existing procedural software, written in widely used programming languages
such as C and Cobol [5, 12, 13, 14, 23, 26, 33, 34, 37, 43, 39, 59, 64, 66]. It is
only in the last 10 years that the problem of reverse engineering design views
from Object Oriented code has been considered [9, 20, 28, 29, 44, 42, 62, 67,
72, 74, 83, 85, 97, 101].

Some works [9, 44, 72, 74, 85, 101] are focused on the problem of identifying
well-known, recurring architectural solutions, called design patterns, which
are widely employed in the design of Object Oriented systems. Important
information about the design rationale is recovered when such patterns are
matched in the code.

In [29, 42, 62, 67, 97], the creation of objects and inter-object message
exchange are captured by tracing the execution of a program on a given set
of scenarios. This allows for a dynamic recovery of the interaction diagrams
from a complete Object Oriented application.

Static analysis is employed in [20] to reverse engineer so-called Object
Process Graphs, giving a finite description of all possible operation sequences,
extracted for individual stack and heap-allocated objects.

The construction of call graphs for Object Oriented programs and their
accuracy are considered in [28, 83].

8.4.1 Code Analysis at CERN

The material presented in this book is based on previous work conducted in the
context of a collaboration with CERN, (Conseil Européen pour la Recherche
Nucléaire), the research center performing high energy physics experiments in
Geneva. The new experiments (currently under preparation at CERN) rep-
resent a major challenge in terms of the resources involved, including many
software resources. Historic libraries developed in Fortran at CERN to support
the execution of high energy physics experiments have since been ported to
C++. Such a tremendous effort was conducted in a very heterogeneous and
loosely controlled development environment, which involves lots of institu-
tions distributed world-wide and many persons with a wide range of software
engineering skills.

The collaboration of the authors with CERN aimed at studying method-
ologies and tools to control and improve the quality of the code developed
at CERN. One of the planned deliverables in such a streamline was the re-
verse engineering tool RevEng, for extracting UML diagrams from C++ code.

8.4 Related Work 173

The architecture of RevEng and its language model, described in more detail
in [63], are similar to those given above for the Java language.

Among the diagrams that RevEng extracts from a program, are the class,
object and interaction diagrams which have been described here. Their utility
has been empirically assessed in [87, 89, 90].

The ROOT C++ library [10], which is widely employed in High Energy
Physics computing, offers several containers and container operations for in-
stances of subclasses of the top level class TObject. Such containers are de-
clared without indicating the contained objects’ type. Thus, they are prone
to the problems discussed in Chapter 3, occurring when the class diagram
is reverse engineered in presence of weakly typed containers. Experimental
results obtained on CERN code indicate that there is a substantial difference
between class diagrams produced with or without running the container anal-
ysis algorithm described in Chapter 3. A large fraction of inter-class relations
is missed if container types are not determined. Moreover, the diagrams of
improved quality are expected to be much closer to the mental model of the
application under analysis. They can therefore be used more effectively for
the high-level comprehension of the system and for its evolution.

The complementary roles of static and dynamic analysis of the source code
in the extraction of the object diagram, discussed in Chapter 4, is investigated
in [89], with reference to a case study in the C++ language. In [90], 27 C++
systems developed at CERN have been analyzed, with the purpose of extract-
ing the related interaction diagrams. Empirical data indicate that diagrams
of manageable size can be generated thanks to the possibility of performing
a partial analysis and of focusing the view on each computation of interest
(see Chapter 5 for a description of these two techniques). The resulting views
have been evaluated by the authors of the related code, who judged them
extremely informative. They were able to summarize information otherwise
spread throughout the code.

This page intentionally left blank

Source Code of the eLib program

import java.util.*;
import java.io.*;

file Library.java

A

1
2

3
4
5
6
7

8
9
10
11
12
13
14

15
16
17
18
19
20

21
22
23

class Library {
Map documents = new HashMap();
Map users = new HashMap();
Collection loans = new LinkedList();
final int MAX_NUMBER_OF_LOANS = 20;

public boolean addUser(User user) {
if (!users.containsValue(user)) {

users.put(new Integer(user.getCode()), user);
return true;

}
return false;

}

public boolean removeUser(int userCode) {
User user = (User)users.get(new Integer(userCode));
if (user == null user.numberOfLoans() > 0) return false;
users.remove(new Integer(userCode));
return true;

}

public User getUser(int userCode) {
return (User)users.get(new Integer(userCode));

}

176 A Source Code of the eLib program

public boolean addDocument(Document doc) {
if (!documents.containsValue(doc)) {
documents.put(new Integer(doc.getCode()), doc);
return true;

}
return false;

}

24
25
26
27
28
29
30

31
32
33
34
35
36

37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65

public boolean removeDocument(int docCode) {
Document doc = (Document)documents.get(new Integer(docCode));
if (doc == null doc.isOut()) return false;
documents.remove(new Integer(docCode));
return true;

}

public Document getDocument(int docCode) {
return (Document)documents.get(new Integer(docCode));

}

private void addLoan(Loan loan) {
if (loan == null) return;
User user = loan.getUser();
Document doc = loan.getDocument();
loans.add(loan);
user.addLoan(loan);
doc.addLoan(loan);

}

private void removeLoan(Loan loan) {
if (loan == null) return;
User user = loan.getUser();
Document doc = loan.getDocument();
loans.remove(loan);
user.removeLoan(loan);
doc.removeLoan();

}

public boolean borrowDocument(User user, Document doc) {
if (user == null doc == null) return false;
if (user.numberOfLoans() < MAX_NUMBER_OF_LOANS &&

doc.isAvailable() && doc.authorizedLoan(user)) {
Loan loan = new Loan(user, doc);
addLoan(loan);
return true;

}
return false;

}

A Source Code of the eLib program 177

public boolean returnDocument(Document doc) {
if (doc == null) return false;
if (doc.isOut()) {
User user = doc.getBorrower();
Loan loan = new Loan(user, doc);
removeLoan(loan);
return true;

}
return false;

}

66
67
68
69
70
71
72
73
74
75

76
77
78
79

80
81
82
83
84
85
86
87
88
89

90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109

public boolean isHolding(User user, Document doc) {
if (user == null doc == null) return false;
return loans.contains(new Loan(user, doc));

}

public List searchUser(String name) {
List usersFound = new LinkedList();
Iterator i = users.values().iterator();
while (i.hasNext()) {
User user = (User)i.next();
if (user.getName().indexOf(name) != -1)
usersFound.add(user);

}
return usersFound;

}

public List searchDocumentByTitle(String title) {
List docsFound = new LinkedList();
Iterator i = documents.values().iterator();
while (i.hasNext()) {
Document doc = (Document)i.next();
if (doc.getTitle().indexOf(title) != -1)
docsFound.add(doc);

}
return docsFound;

}

public List searchDocumentByAuthors(String authors) {
List docsFound = new LinkedList();
Iterator i = documents.values().iterator();
while (i.hasNext()) {
Document doc = (Document)i.next();
if (doc.getAuthors().indexOf(authors) != -1)
docsFound.add(doc);

}
return docsFound;

}

178 A Source Code of the eLib program

public int searchDocumentByISBN(String isbn) {
Iterator i = documents. values() . iterator() ;
while (i.hasNext()) {
Document doc = (Document)i.next();
if (isbn. equals (doc. getISBN()))
return doc.getCode();

}
return -1;

}

class Loan {
User user;
Document document;

file Loan.java

110
111
112
113
114
115
116
117
118

119
120
121
122
123
124
125

126
127
128

129
130
131

132

133
134
135

136
137
138
139

140
141
142

public void printAllLoans() {
Iterator i = loans.iterator();
while (i.hasNext()) {
Loan loan = (Loan)i.next();
loan.print();

}
}

public void printUserInfo(User user) {
user.printInfo();

}

public void printDocumentInfo(Document doc) {
doc.printInfo();

}

}

public Loan(User usr, Document doc) {
user = usr;
document = doc;

}

public User getUser() {
return user;

}

A Source Code of the eLib program 179

public Document getDocument() {
return document;

}

import java.util.*;

file Document. java

143
144
145

146
147
148
149
150

151
152
153
154
155
156
157

158

159
160
161
162
163
164
165

166
167
168
169
170
171

172
173
174
175

176
177
178

179
180
181

public boolean equals(Object obj) {
Loan loan = (Loan)obj;
return user.equals(loan.user) &&
document.equals(loan.document);

}

public void print() {
System.out.println("User: " + user.getCode() +

" - " + user .getName() +
" holds doc: " + document.getCode() +
" - " + document.getTitle());

}

class Document {
int documentCode;
String title;
String authors;
String ISBNCode;
Loan loan = null;
static int nextDocumentCodeAvailable = 0;

public Document(String tit) {
title = tit;
ISBNCode = "";
authors = "";
documentCode = Document.nextDocumentCodeAvailable++;

}

public boolean equals(Object obj) {
Document doc = (Document)obj;
return documentCode == doc.documentCode;

}

public boolean isAvailable() {
return loan == null;

}

public boolean isOut() {
return ! isAvailable() ;

}

}

180 A Source Code of the eLib program

182
183
184

185
186
187
188
189

190
191
192

193
194
195

196
197
198

199
200
201

202
203
204

205
206
207

208
209
210

211
212
213
214

public boolean authorizedLoan(User user) {
return true;

}

public User getBorrower() {
if (loan != null)
return loan.getUser();

return null;
}

public int getCode() {
return documentCode;

}

public String getTitle() {
return title;

}

public String getAuthors() {
return authors;

}

public String getISBN() {
return ISBNCode;

}

public void addLoan(Loan ln) {
loan = ln;

}

public void removeLoan() {
loan = null;

}

protected void printAuthors() {
System.out.println("Author(s): " + getAuthors());

}

protected void printHeader() {
System.out.println("Document: " + getCode() +

" - " + getTitle());
}

A Source Code of the eLib program 181

protected void printAvailability() {
if (loan == null) {
System.out.println("Available.");

} else {
User user = loan.getUser();
System.out.println("Hold by " + user.getCode() +

" - " + user .getName()) ;
}

}

class Book extends Document {
public Book(String tit, String auth, String isbn) {
super(tit);
ISBNCode = isbn;
authors = auth;

}

class Journal extends Document {
public Journal(String tit) {

super(tit);
}

file Book.java

file Journal.java

215
216
217
218
219
220
221
222
223

224
225
226
227
228

229
230
231
232
233
234

235
236
237
238
239
240
241
242
243
244
245
246
247
248

249
250
251
252

protected void printGeneralInfo() {
System.out.println("Title: " + getTitle()):
if (!getISBN().equals(""))
System.out.println("ISBN: " + getISBN());

}

public void printInfo() {
printHeader();
printGeneralInfo();
printAvailability();

}
}

public void printInfo() {
printHeader() ;
printAuthors();
printGeneralInfo();
printAvailability();

}
}

182 A Source Code of the eLib program

public boolean authorizedLoan(User user) {
return user.authorizedUser();

}

class TechnicalReport extends Document {
String refNo;

import java.util.*;

file User.java

file TechnicalReport.java

253
254
255

256

257
258

259
260
261
262
263

264
265
266

267
268
269

270
271
272

273
274
275
276
277
278
279

280

281
282
283
284

public TechnicalReport(String tit, String ref, String auth) {
super(tit);
refNo = ref;
authors = auth;

}

public boolean authorizedLoan(User user) {
return false;

}

public String getRefNo() {
return refNo;

}

protected void printRefNo() {
System.out.println("Ref. No.: " + getRefNo());

}

public void printInfo() {
printHeader() ;
printAuthors();
printGeneralInfo() ;
printRefNo() ;

}
}

class User {
int userCode;
String fullName;
String address;

}

A Source Code of the eLib program 183

String phoneNumber;
Collection loans = new LinkedList();
static int nextUserCodeAvailable = 0;

285
286
287

288
289
290
291
292
293
294
295
296
297
298

299
300
301

302
303
304

305
306
307

308
309
310

311
312
313

314
315
316

317
318
319

320
321
322

public User(String name, String addr, String phone) {
fullName = name;
address = addr;
phoneNumber = phone;
userCode = User.nextUserCodeAvailable++;

}

public boolean equals(Object obj) {
User user = (User)obj;
return userCode == user.userCode;

}

public boolean authorizedUser() {
return false;

}

public int getCode() {
return userCode;

}

public String getName() {
return fullName;

}

public String getAddress() {
return address;

}

public String getPhone() {
return phoneNumber;

}

public void addLoan(Loan loan) {
loans.add(loan);

}

public int numberOfLoans() {
return loans.size();

}

public void removeLoan(Loan loan) {
loans.remove(loan);

}

184 A Source Code of the eLib program

public void printInfo() {
System.out.println("User: " + getCode() + " - " + getName());
System.out.println("Address: " + getAddress());
System.out.println("Phone: " + getPhone());
System.out.println("Borrowed documents:");
Iterator i = loans.iterator();
while (i.hasNext()) {
Loan loan = (Loan)i.next();
Document doc = loan.getDocument();
System.out.println(doc.getCode() + " - " + doc.getTitle());

}
}

}

file InternalUser.java

323
324
325
326
327
328
329
330
331
332
333
334
335

336
337

338
339
340
341
342

343
344
345

346

class InternalUser extends User {
String internalId;

public InternalUser(String name, String addr,
String phone, String id) {

super(name, addr, phone);
internalId = id;

}

public boolean authorizedUser() {
return true;

}

}

Driver class for the eLib program

class Main {
static Library lib = new Library();

file Main.java

347
348

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

public static void printHeader() {
System.out.println("COMMANDS:");
System.out.println("addUser name, address, phone");
System.out.println("addIntUser name, address, phone, id");
System.out.println("rmUser userId");
System.out.println("addBook title, authors, ISBN");
System.out.println("addReport title, ref, authors");
System.out.println("addJournal title");
System.out.println("rmDoc docId");
System.out.println("borrowDoc userId, docId");
System.out.println("returnDoc docId");
System.out.println("searchUser name");
System.out.println("searchDoc title");
System.out.println("isHolding userId, docId");
System.out.println("printLoans");
System.out.println("printUser userId");
System.out.println("printDoc docId");
System.out.println("exit");

}

B

186 B Driver class for the eLib program

368
369
370
371
372
373
374
375
376
377
378

379
380
381
382
383
384
385
386

387
388
389
390
391
392
393
394

395
396
397
398
399
400
401
402

403
404
405
406
407
408
409
410

public static String[] getArgs(String cmd) {
String args [] = new String [0] ;
String s = cmd.trim();
if (s.indexOf(" ") != -1) {
s = s.substring(s.indexOf(" "));
args = s.trim().split(",");
for (int i = 0 ; i < args.length ; i++)
args[i] = args[i] .trim() ;

}
return args;

}

public static void addUser(String cmd) {
String args[] = getArgs (cmd);
if (args.length < 3) return;
User user = new User (args [0] , args[1], args [2]);
lib.addUser(user);
System.out.println("Added user: " + user.getCode() +
" - " + user .getName());

}

public static void addIntUser(String cmd) {
String args[] = getArgs (cmd);
if (args.length < 4) return;
User user = new InternalUser(args[0] , args[1], args [2] , args[3]);
lib.addUser(user);
System.out.println("Added user: " + user.getCode() +
" - " + user.getName());

}

public static void rmUser(String cmd) {
String args[] = getArgs (cmd);
if (args.length < 1) return;
User user = lib.getUser(Integer.parseInt(args[0]));
if (lib.removeUser(Integer.parseInt(args[0])))
System.out.println("Removed user: " + user.getCode() +
" - " + user.getName()) ;

}

public static void addBook(String cmd) {
String args [] = getArgs (cmd) ;
if (args.length < 3) return;
Document doc = new Book(args [0] , args[1], args [2]);
lib.addDocument(doc);
System.out.println("Added doc: " + doc.getCode() +
" - " + doc.getTitle());

}

B Driver class for the eLib program 187

411
412
413
414
415
416
417
418

419
420
421
422
423
424
425
426

427
428
429
430
431
432
433
434

435
436
437
438
439
440
441
442
443
444

445
446
447
448
449
450
451
452
453
454
455

public static void addReport (String cmd) {
String args[] = getArgs(cmd);
if (args.length < 3) return;
Document doc = new TechnicalReport(args[0], args[1], args [2]);
lib.addDocument(doc);
System.out.println("Added doc: " + doc.getCode() +
" - " + doc.getTitle()) ;

}

public static void addJournal(String cmd) {
String args [] = getArgs(cmd);
if (args.length < 1) return;
Document doc = new Journal(args[0]);
lib.addDocument(doc);
System.out.println("Added doc: " + doc.getCode() +
" - " + doc.getTitle());

}

public static void rmDoc (String cmd) {
String args [] = getArgs(cmd);
if (args.length < 1) return;
Document doc = lib.getDocument(Integer.parseInt(args[0]));
if (lib.removeDocument(Integer.parseInt(args[0])))
System.out.println("Removed doc: " + doc.getCode() +
" - " + doc.getTitle());

}

public static void borrowDoc(String cmd) {
String args[] = getArgs(cmd) ;
if (args.length < 2) return;
User user = lib.getUser(Integer.parseInt(args[0]));
Document doc = lib.getDocument(Integer.parseInt(args[1]));
if (user == null doc == null) return;
if (lib.borrowDocument(user, doc))
System.out.println("New loan: " + user .getName() +
" - " + doc.getTitle());

}

public static void returnDoc(String cmd) {
String args[] = getArgs(cmd);
if (args.length < 1) return;
Document doc = lib.getDocument(Integer.parseInt(args[0]));
if (doc == null) return;
User user = doc.getBorrower();
if (user == null) return;
if (lib.returnDocument(doc))
System.out.println("Loan closed: " + user.getName() +
" - " + doc.getTitle());

}

188 B Driver class for the eLib program

456
457
458
459
460
461
462
463
464
465
466

467
468
469
470
471
472
473
474
475
476
477

478
479
480
481
482
483
484
485
486
487
488
489

490
491
492
493
494
495
496

497
498
499
500
501
502
503

public static void searchUser(String cmd) {
String args [] = getArgs(cmd);
if (args.length < 1) return;
List users = lib.searchUser(args[0]);
Iterator i = users.iterator();
while (i.hasNext()) {
User user = (User)i.next();
System.out.println("User found: " + user.getCode() +
" - " + user.getName());

}
}

public static void searchDoc(String cmd) {
String args[] = getArgs(cmd);
if (args.length < 1) return;
List docs = lib.searchDocumentByTitle(args[0]);
Iterator i = docs.iterator();
while (i.hasNext()) {
Document doc = (Document)i.next();
System.out.println("Doc found: " + doc.getCode() +
" - " + doc.getTitle()) ;

}
}

public static void isHolding(String cmd) {
String args[] = getArgs(cmd);
if (args.length < 2) return;
User user = lib.getUser(Integer.parseInt(args [0]));
Document doc = lib.getDocument(Integer.parseInt(args[1]));
if (lib.isHolding(user, doc))

System.out.println(user.getName() +
" is holding " + doc.getTitle());

else
System.out.println(user.getName() +
" is not holding " + doc.getTitle());

}

public static void printUser(String cmd) {
String args[] = getArgs (cmd);
if (args.length < 1) return;
User user = lib.getUser(Integer.parseInt(args[0]));
if (user != null)
user.printInfo();

}

public static void printDoc(String cmd) {
String args [] = getArgs(cmd);
if (args.length < 1) return;
Document doc = lib.getDocument(Integer.parseInt(args[0]));
if (doc != null)
doc.printInfo();

}

B Driver class for the eLib program 189

public static void dispatchCommand(String cmd) {
if (cmd.startsWith("addUser")) addUser(cmd);
if (cmd.startsWith("addIntUser")) addIntUser(cmd) ;
if (cmd.startsWith("rmUser")) rmUser(cmd);
if (cmd.startsWith("addBook")) addBook(cmd) ;
if (cmd.startsWith("addReport")) addReport (cmd);
if (cmd.startsWith("addJournal")) addJournal(cmd);
if (cmd.startsWith("rmDoc")) rmDoc(cmd);
if (cmd.startsWith("borrowDoc")) borrowDoc(cmd);
if (cmd.startsWith("returnDoc")) returnDoc(cmd);
if (cmd.startsWith("searchUser")) searchUser(cmd);
if (cmd.startsWith("searchDoc")) searchDoc(cmd);
if (cmd.startsWith("isHolding")) isHolding(cmd);
if (cmd.startsWith("printLoans")) lib.printAllLoans();
if (cmd.startsWith("printUser")) printUser(cmd);
if (cmd.startsWith("printDoc")) printDoc(cmd);

}

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

public static void main(String arg[]) {
try{
printHeader();
String s = "";
BufferedReader in = new BufferedReader(
new InputStreamReader(System.in));

while (!s.equals("exit")) {
s = in.readLine() ;
dispatchCommand(s);

}
} catch (IOException e) {
System.err.println("IO error.");
System.exit(1);

}
}

}

This page intentionally left blank

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Unified modeling language (UML) specification, version 1.4. Technical report,
Object Management Group (OMG), September 2001.
A. V. Aho, R. Sethi, and J. D. Ullman. Compilers. Principles, Techniques, and
Tools. Addison-Wesley Publishing Company, Reading, MA, 1985.
L. O. Andersen. Program Analysis and Specialization for the C Programming
Language. Phd Thesis, DIKU, University of Copenhagen, 1994.
N. Anquetil and T. C. Lethbridge. Experiments with clustering as a soft-
ware remodularization method. In Proc. of the 6th Working Conference on
Reverse Engineering (WCRE’99), pages 235–255, Atlanta, Georgia, USA, Oc-
tober 1999. IEEE Computer Society.
G. Antoniol, R. Fiutem, G. Lutteri, P. Tonella, and S. Zanfei. Program un-
derstanding and maintenance with the CANTO environment. In Proceedings
of the International Conference on Software Maintenance, pages 72–81, Bari,
Italy, Oct 1997.
Robert V. Binder. Testing Object-Oriented Systems: Models, Patterns, and
Tools. Addison-Wesley, 1999.
G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language –
User Guide. Addison-Wesley Publishing Company, Reading, MA, 1998.
L. C. Briand, Y. Labiche, and J. Leduc. Towards the reverse engineering of
UML sequence diagrams for distributed, real-time Java software. Technical
Report SCE-04-04, Carleton University, April 2004.
Kyle Brown. Design Reverse-Engineering and Automated Design Pattern De-
tection in Smalltalk. Master thesis, North Carolina State University, Raleigh
NC, USA, 1996.
R. Brun and F. Rademakers. Root – an object oriented data analysis frame-
work. In Proc. of AIHENP’96, 5th International Workshop on New Computing
Techniques in Physics Research, pages 81–86, Lausanne, Switzerland, 1996.
G. Caldiera and V. R. Basili. Identifying and qualifying reusable software
components. IEEE Computer, pages 61–70, 1991.
G. Canfora, A. Cimitile, M. Munro, and C.J. Taylor. Extracting abstract data
types from C programs: A case study. In Proceedings of the International Con-
ference on Software Maintenance, pages 200–209, Montreal, Quebec, Canada,
September 1993.

192 References

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

G. Canfora, A. Cimitile, M. Tortorella, and M. Munro. A precise method
for identifying reusable abstract data types in code. In Proceedings of the
International Conference on Software Maintenance, pages 404–413, Victoria,
British Columbia, Canada, Sept 1994.
Y. R. Chen, G. S. Flowler, E. Koutsofios, and R. S. Wallach. Ciao: A graphical
navigator for software document repositories. In Proceedings of the Interna-
tional Conference on Software Maintenance, pages 66–75, Opio(Nice), 1995.
James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Co-
rina S. Pasareanu, Robby, and Hongjun Zheng. Bandera: Extracting finite-state
models from java source code. In Proceedings of the International Conference
on Software Engineering, pages 439–448, 2000.
Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 238–252, Los An-
geles, California, 1977. ACM Press, New York.
J. Dean, D. Grove, and C. Chambers. Optimizations of object-oriented pro-
grams using static class hierarchy analysis. In Proc. of the European Conference
on Object-Oriented Programming (ECOOP), pages 77–101, 1995.
Dominic Duggan. Modular type-based reverse engineering of parameterized
types in java code. In Proc. of OOPSLA’99, Conference on Object-Oriented
Programming, Systems, Languages and Applications, pages 97–113, Denver,
Colorado, USA, November 1999.
Matthew B. Dwyer, John Hatcliff, Roby Joehanes, Shawn Laubach, Corina S.
Pasareanu, Robby, Hongjun Zheng, and W Visser. Tool-supported program
abstraction for finite-state verification. In Proceedings of the International
Conference on Software Engineering, pages 177–187, 2001.
Thomas Eisenbarth, Rainer Koschke, and Gunther Vogel. Static trace extrac-
tion. In Proc. of the Working Conference on Reverse Engineering (WCRE),
pages 128–137, Richmond, VA, USA, 2002. IEEE Computer Society.
M. Emami, R. Ghiya, and L.J. Hendren. Context-sensitive interprocedural
points-to analysis in the presence of function pointers. Proc. of the ACM
SIGPLAN’94 Conf. on Programming Language Design and Implementation,
pages 242–256, June 1994.
J.C. Esteva. Automatic identification of reusable components. In Proc. of the
7th International Workshop on Computer-Aided Software Engineering, pages
80–87, Toronto, Ontario, Canada, July 1995.
R. Fiutem, G. Antoniol, P. Tonella, and E. Merlo. ART: an architectural
reverse engineering environment. Journal of Software Maintenance, 11(5):339–
364, 1999.
P. Funk, A. Lewien, and G. Snelting. Algorithms for concept lattice decompo-
sition and their application. Technical report, Computer Science Department,
Technische Universitat Braunschweig, 1995.
B. Ganter and R. Wille. Formal Concept Analysis. Springer-Verlag, Berlin,
Heidelberg, New York, 1996.
J. F. Girard and R. Koschke. Finding components in a hierarchy of modules: a
step towards architectural understanding. In Proceedings of the International
Conference on Software Maintenance, pages 72–81, Bari, Italy, Oct 1997.
W.G. Griswold, M.I. Chen, R.W. Bowdidge, and J.D. Morgenthaler. Tool sup-
port for planning the restructuring of data abstractions in large systems. In

References 193

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Proc. of the International Conference on the Foundations of Software Engi-
neering, pages 33–45, 1996.
D. Grove and C. Chambers. A framework for call graph construction
algorithms. A CM Transactions on. Programming Languages and Systems,
23(6):685–746, November 2001.
T. Gschwind and J. Oberleitner. Improving dynamic data analysis with aspect-
oriented programming. In Proc. of the 7th European Conference on Software
Maintenance and Reengineering (CSMR), pages 259–268, Benevento, Italy,
March 2003. IEEE Computer Society.
Xinping Guo, James R. Cordy, , and Thomas R. Dean. Unique renaming
of java using source transformation. In Proc. of the 3rd IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM), Amsterdam,
The Netherlands, September 2003. IEEE Computer Society.
D. Harel. Statecharts: a visual formalism for complex systems. Science of
Computer Programming, 8:231–274, 1987.
Mark Harman, Rob Hierons, and Mark Proctor. A new representation and
crossover operator for search-based optimization of software modularization.
In Proc. of the AAAI Genetic and Evolutionary Computation Conference 2002
(GECCO), pages 1359–1366, New York, USA, July 2002.
D. R. Harris, H. B. Reubenstein, and A. S. Yeh. Reverse engineering to the
architectural level. In Proceedings of the International Conference on Software
Engineering, pages 186–195, Seattle, 1995.
R. Holt and J. Y. Pak. Gase: Visualizing software evolution-in-the-large. In
Proceedings of the Working Conference on Reverse Engineering, pages 163–166,
Monterey, 1996.
IEEE Standard for Software Maintenance. IEEE Std 1219-1998. The Institute
of Electrical and Electronics Engineers, Inc., 1998.
Ron Jeffries, Ann Anderson, and Chet Hendrickson. Extreme Programming
Installed. Addison-Wesley, 2000.
W.L. Johnson and E. Soloway. Proust: knowledge-based program understand-
ing. IEEE Transactions on Software Engineering, 11, 1985.
Neil D. Jones and Flemming Nielson. Abstract interpretation: A semantic-
based tool for program analysis. In D.M. Gabbay S.Abramsky and T.S.E.
Maibaum, editors, Semantic Modelling, volume 4 of Handbook of Logic in
Computer Science, pages 527–636. Clarendon Press, Oxford, 1995.
H. A. Muller K. Wong, S.R. Tilley and M. D. Storey. Structural redocumen-
tation: A case study. IEEE Software, pages 46–54, Jan.
Ivan Kiselev. Aspect-Oriented Programming with AspectJ. Sams Publishing,
Indianapolis, Indiana, USA, 2002.
M. F. Kleyn and P. C. Gingrich. Graphtrace – understanding object-oriented
systems using concurrently animated views. In Proc. of OOPSLA ’88, Confer-
ence on Object-Oriented Programming, Systems, Languages and Applications,
pages 191–205, November 1988.
K. Koskimies and H. Mössenböck. Scene: Using scenario diagrams and active
test for illustrating object-oriented programs. In Proc. of International Confer-
ence on Software Engineering, pages 366–375, Berlin, Germany, March 25-29
1996.
V. Kozaczynski, J. Q. Ning, and A. Engberts. Program concept recognition
and transformation. IEEE Transactions on Software Engineering, 18(12):1065–
1075, Dec 1992.

194 References

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

C. Kramer and L. Prechelt. Design recovery by automated search for structural
design patterns in object oriented software. In Proceedings of the Working
Conference on Reverse Engineering, pages 208–215, Monterey, California, USA,
1996.
M. Krone and G. Snelting. On the inference of configuration structures from
source code. In Proc. of the 16th International Conference on Software Engi-
neering, pages 49–57, Sorrento, Italy, May 1994.
T. Kunz. Evaluating process clusters to support automatic program under-
standing. In Proc. of the 19th International Workshop on Program Compre-
hension, pages 198–207, Berlin, Germany, March 1996.
W. Landi and B.G. Ryder. A safe approximate algorithm for interprocedu-
ral pointer aliasing. Proc. of the ACM SIGPLAN’92 Conf. on Programming
Language Design and Implementation, pages 235–248, 1992.
M. Lejter, S. Meyers, and S. P. Reiss. Support for maintaining object-oriented
programs. IEEE Transactions on Software Engineering, 18(12):1045–1052, De-
cember 1992.
D. Liang, M. Pennings, and M. J. Harrold. Extending and evaluating flow-
insensitive and context-insensitive points-to analysis for java. In Proc. of the
Workshop on Program Analysis for Software Tools and Engineering, pages 73–
79, 2001.
C. Lindig and G. Snelting. Assessing modular structure of legacy code based on
mathematical concept analysis. In Proc. of the 19th International Conference
on Software Engineering, pages 349–359, Boston, Massachussets, USA, May
1997.
P. E. Livadas and T. Johnson. A new approach to finding objects in programs.
Software Maintenance: Research and Practice, 6:249–260, 1994.
G. A. Di Lucca, A. R. Fasolino, U. De Carlini, F. Pace, and P. Tramontana.
Comprehending web applications by a clustering based approach. In Proc. of
the 10th International Workshop on Program Comprehension (IWPC), pages
261–270, Paris, France, June 2002. IEEE Computer Society.
S. Mancoridis and R. C. Holt. Recovering the structure of software systems
using tube graph interconnection clustering. In Proceedings of the International
Conference on Software Maintenance, pages 23–32, Monterey, California, 1996.
S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. Using automatic
clustering to produce high-level system organizations of source code. In Proc. of
the International Workshop on Program Comprehension, pages 45–52, Ischia,
Italy, 1998.
S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. Bunch: a cluster-
ing tool for the recovery and maintenance of software system structures. In
Proceedings of the International Conference on Software Maintenance, pages
50–59, Oxford, England, 1999.
Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Constructing precise
object relation diagrams. In Proc. of the International Conference on Soft-
ware Maintenance (ICSM), Montreal, Canada, October 2002. IEEE Computer
Society.
Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object-
sensitivity for points-to and side-effect analysis for java. In Proc. of the Inter-
national Symposium on Software Testing and Analysis (ISSTA), Rome, Italy,
July 2002.

References 195

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

H. A. Muller, M. A. Orgun, S. R. Tilley, and J. S. Uhl. A reverse engineer-
ing approach to subsystem structure identification. Software Maintenance:
Research and Practice, 5(4):181–204, 1993.
J. Q. Ning, A. Engberts, and W. Kozaczynski. Automated support for legacy
code understanding. Communications of the Association for Computing Ma-
chinery, 37(5):50–57, May 1994.
H.D. Pande, W.A. Landi, and B.G. Ryder. Interprocedural def-use associa-
tions for c systems with single level pointers. IEEE Transactions on Software
Engineering, 20(5), May 1994.
D. Paulson and Y. Wand. An automated approach to information systems
decomposition. IEEE Transactions on Software Engineering, 18(3):174–189,
1992.
W. D. Pauw, D. Kimelman, and J. Vlissides. Modeling object-oriented program
execution. In Proc. of ECOOP’94 – Lecture Notes in Computer Science, pages
163–182. Springer-Verlag, July 1994.
A. Potrich and P. Tonella. C++ code analysis: an open architecture for the
verification of coding rules. In Proc. of CHEP’2000, International Conference
on Computing in High Energy and Nuclear Physics, pages 758–761, Padova,
Italy, 2000.
A. Quilici and D. N. Chin. Decode: A cooperative environment for reverse-
engineering legacy software. In Proceedings of the Second Working Conference
on Reverse Engineering, pages 156–165, Toronto, July 1995.
Filippo Ricca and Paolo Tonella. Using clustering to support the migration
from static to dynamic web pages. In Proc. of the International Workshop
on Program Comprehension (IWPC), pages 207–216, Portland, Oregon, USA,
May 2003 IEEE Computer Society.
C. Rich and R. Waters. The programmer’s apprentice: A research overview.
IEEE Computer, Nov. 1988.
T. Richner and S. Ducasse. Recovering high-level views of object-oriented
applications from static and dynamic information. In Proceedings of the Inter-
national Conference on Software Maintenance, pages 13–22, Oxford, England,
1999.
A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for java based on
annotated constraints. In Proc. of the Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA), pages 43–55. ACM,
October 2001.
J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language –
Reference Guide. Addison-Wesley Publishing Company, Reading, MA, 1998.
M. Saeed, O. Maqbool, H.A. Babri, S.Z. Hassan, and S.M. Sarwar. Software
clustering techniques and the use of combined algorithm. In Proc. of Seventh
European Conference on Software Maintenance and Reengineering (CSMR ’03),
pages 301–310, Atlanta, Georgia, USA, March 26 - 28 2003. IEEE Computer
Society.
H. A. Sahraoui, W. Melo, H. Lounis, and F. Dumont. Applying concept forma-
tion methods to object identification in procedural code. In Proc. of the IEEE
Automated Software Engineering Conference, pages 210–218, Incline Village,
Nevada, USA, November 1997.
R. Schauer and R. Keller. Pattern visualization for software comprehension.
Proc. of the International Workshop on Program Comprehension, pages 4–12,
1998.

196 References

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

R. W. Schwanke. An intelligent tool for re-engineering software modularity.
In Proceedings of the International Conference on Software Engineering, pages
83–92, Austin, TX, 1991.
F. Shull, W. L. Melo, and V. R. Basili. An inductive method for discovering
design patterns from object-oriented software systems. Technical report, Uni-
versity of Maryland, Computer Science Department, College Park, MD, 20742
USA, Oct 1996.
M. Siff and T. Reps. Identifying modules via concept analysis. In Proceedings
of the International Conference on Software Maintenance, pages 170–179, Bari,
Italy, Oct. 1997.
Saurabh Sinha and Mary Jean Harrold. Analysis and testing of programs with
exception handling constructs. IEEE Transactions on Software Engineering,
26(9):849–871, 2000.
G. Snelting. Reengineering of configurations based on mathematical con-
cept analysis. ACM Transactions on Software Engineering and Methodology,
5(2):146–189, 1996.
G. Snelting. Software reengineering based on concept lattices. In Proceedings
of the 4th European Conference on Software Maintenance and Reengineeering
– CSMR’00, Zurich, Switzerland, 2000.
G. Snelting. Concept lattices in software analysis. In Proceedings of the First
International Conference on Formal Concept Analysis – ICFCA ’03, Darm-
stadt, Germany, February-March 2003.
G. Snelting and F. Tip. Reengineering class hierarchies using concept analysis.
ACM Transactions on Programming Languages and Systems, 22(3):540–582,
May 2000.
B. Steensgaard. Points-to analysis in almost linear time. Proc. of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 32–41, January 1996.
Thomas Tilley, Richard Cole, Peter Becker, and Peter Eklund. A survey of
formal concept analysis support for software engineering activities. In Pro-
ceedings of the First International Conference on Formal Concept Analysis –
ICFCA ’03, Darmstadt, Germany, February-March 2003.
F. Tip and J. Palsberg. Scalable propagation-based call graph construction al-
gorithms. In Proc. of OOPSLA, Conference on Object-Oriented Programming,
Systems, Languages and Applications, pages 264–280, 2000.
P. Tonella. Using the O-A diagram to encapsulate dynamic memory access. In
Proceedings of the International Conference on Software Maintenance, pages
326–335, Bethesda, Maryland, November 1998. IEEE Computer Society press.
P. Tonella and G. Antoniol. Inference of object oriented design patterns. Jour-
nal of Software Maintenance, 13(5):309–330, 2001.
P. Tonella, G. Antoniol, R. Fiutem, and E. Merlo. Flow insensitive C++
pointers and polymorphism analysis and its application to slicing. Proc. of the
Int. Conf. on Software Engineering, pages 433–443, 1997.
P. Tonella and A. Potrich. Reverse engineering of the UML class diagram
from C++ code in presence of weakly typed containers. In Proceedings of the
International Conference on Software Maintenance, pages 376–385, Firenze,
Italy, 2001. IEEE Computer Society.
Paolo Tonella. Concept analysis for module restructuring. IEEE Transactions
on Software Engineering, 27(4):351–363, April 2001.

References 197

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

Paolo Tonella and Alessandra Potrich. Static and dynamic C++ code analysis
for the recovery of the object diagram. In Proc. of the International Confer-
ence on Software Maintenance (ICSM 2002), pages 54–63, Montreal, Canada,
October 2002. IEEE Computer Society Press.
Paolo Tonella and Alessandra Potrich. Reverse engineering of the interaction
diagrams from C++ code. In Proc. of the International Conference on Soft-
ware Maintenance (ICSM 2003), pages 159–168, Amsterdam, The Netherlands,
September 2003. IEEE Computer Society Press.
Paolo Tonella, Filippo Ricca, Emanuele Pianta, and Christian Girardi. Us-
ing keyword extraction for web site clustering. In Proc. of the International
Workshop on Web Site Evolution (WSE 2003), pages 41–48, Amsterdam, The
Netherlands, September 2003. IEEE Computer Society Press.
C. D. Turner and D. J. Robson. The state-based testing of object-oriented
programs. In Proc. of the Conference on Software Maintenance, pages 302–
310, Montreal, Canada, September 1993. IEEE Computer Society.
Arie van Deursen. Program comprehension risks and opportunities in extreme
programming. In Proceedings of the 8th Working Conference on Reverse En-
gineering (WCRE), pages 176–185. IEEE Computer Society, 2001.
Arie van Deursen and Tobias Kuipers. Identifying objects using cluster and
concept analysis. In Proc. of the International Conference on Software En-
gineering (ICSE), pages 246–255, Los Angeles, CA, USA, May 1999. ACM
Press.
W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs.
In Proc. of the International Conference on Automated Software Engineering
(ASE), pages 3–12, Grenoble, France, September 2000. IEEE Computer Soci-
ety.
Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshid. Test input genera-
tion with java pathfinder. In Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2004), pages 97–107,
Boston, Massachusetts, USA, July 2004. ACM Press.
R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright, D. Swanson, and
J. Isaak. Visualizing dynamic software system information through high-level
models. In Proc. of the Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 271–283, Vancouver, British Columbia,
Canada, October 18-22 1998.
J. Warmer and A. Kleppe. The Object Constraint Language. Addison-Wesley
Publishing Company, Reading, MA, 1999.
T.A. Wiggerts. Using clustering algorithms in legacy systems remodularization.
In Proc. of the 4th Working Conference on Reverse Engineering (WCRE),
pages 33–43. IEEE Computer Society, 1997.
N. Wilde and R. Huitt. Maintenance support for object-oriented programs.
IEEE Transactions on Software Engineering, 18(12):1038–1044, December
1992.
R. Wuyts. Declarative reasoning about the structure of object-oriented sys-
tems. In Proceedings of TOOLS’98, pages 112–124, Santa Barbara, California,
USA, August 1998. IEEE Computer Society Press.
A. Yeh, D. Harris, and H. Reubenstein. Recovering abstract data types and
object instances from a conventional procedural language. In Proceedings of the
Working Conference on Reverse Engineering, pages 227–236, Toronto, Ontario,
Canada, 1995.

This page intentionally left blank

Names of main diagrams and graphs appear in small capitals: e.g. CLASS DIAGRAM.

Page numbers in bold represent an extensive treatment of a notion. Numbers in italics
refer to the eLib program. A letter after the page number indicates the appendix.

abstract domain, 118, see also symbolic
attribute values, equivalence
classes of attribute values

coffee machine example, 119
for documents (Library), 128
for loans (Library), 128
for loans (User), 126
for loan (Document), 125
for users (Library), 128

abstract interpretation, 19, 115, 118
abstract domain, 118, 119
abstraction, 118
accuracy of the solution, 119, 122
complete semi-lattice, 118
constraints in, 118
for addLoan (Document), 126
for Document (Document), 126
for insertQuarter, 121
for removeLoan (Document), 126
paths, 122

abstract language, 21, see also abstract
syntax

name conflicts, 22
abstract syntax, 23, see also program

location
allocation statement, 24, 25
assignment statement, 24, 28, 29

attribute declaration, 22, 24
class attribute, 24
class name, 24
constructor declaration, 23, 24
declaration, 22
for binary tree example, 50
for addLoan (Document), 37
for addLoan (Library), 37
for addLoan (User), 37
for adduser (Library), 55
for borrowDocument (Library), 36
for getDocument (Loan), 32
for getUser (Loan), 32
for searchDocumentByTitle

(Library), 55
identifier, 23
local variable, 24
method declaration, 23, 24
method invocation, 24, 25
method parameter, 24
program location, 24
statement, 24

Abstract Syntax Tree (AST), 156
adaptive maintenance, 2
addBook (Main), 186(B)
addDocument Library), 6, 176 (A)
addIntUser (Main), 186(B)
addJournal (Main), 187(B)

Index

200 Index

addLeft (BinaryTreeNode), 66
addLoan(Document), 180(A)

abstract interpretation of, 126
abstract syntax, 37

addLoan (Library), 176(A)
abstract syntax, 37
method call resolution, 93
OFG associated with, 39
sequence/collaboration diagrams, 95,

97
addLoan (User), 183(A)

abstract syntax, 37
addReport (Main), 187(B)
addReservation (Library, Document,

User), 160
address (User), 182(A)
addRight (BinaryTreeNode), 66
addStudent (UniversityAdmin), 50
addUser (Library), 6, 175(A)

abstract syntax, 55
addUser (Main), 79, 186(B)

abstract syntax, 55
agglomerative clustering, 139, 148
allocation points, 8, 32, 63, 95
allocation statement, 8

OFG edges due to, 38
ARCH tool, 153
architecture of eLib program, 5
Aspect Oriented Programming (AOP)

for object diagram recovery, 87
for sequence diagram recovery, 112

attributes
abstract description of, 115
equivalence classes, 115
joint values of, 14
symbolic values of, 14, 15, 16, 118

authorizedLoan (Document), 7, 8,
180(A)

authorizedLoan (Journal), 8, 182(A)
authorizedLoan (TechnicalReport), 8,

182(A)
authorizedUser (InternalUser),

184(A)
authorizedUser (User), 7, 8, 183(A)
authors (Document), 179(A)

Bandera tool, 131

behavior recovering, 2, 89, 112, see also
INTERACTION DIAGRAMS, STATE

DIAGRAM

binary tree example, 50, 65, 66, 70, 75
abstract syntax, 50
class diagram, 68
coverage of static object diagram, 77
dynamic object diagrams, 76
missing relationships in class diagram,

51
object diagram, 68, 73
OFG, 51, 71, 72

BinaryTree class, 66, 70
BinaryTreeNode (BinaryTreeNode), 50,

70
BinaryTreeNode class, 50, 66, 70
Book (Book), 181(A)
Book class, 181(A)
borrowDoc (Main), 187(B)
borrowDocument (Library), 7, 176(A)

abstract method declaration, 24
abstract syntax, 36
collaboration diagram focused on, 11,

107
OFG associated with, 39
OFG edges, 27
OFG nodes, 26
sequence diagram focused on, 167

build (BinaryTree), 66

reverse engineering tools for, 172
call graph, 98, 112, 172
call resolution in interaction diagrams,

92, 93, 96
CERN, IX, 172
change impact analysis, IX, 1, 2, 155,

162
change location, 155, 160
change request, 2, 4, 155, 159
class behavior, see STATE DIAGRAM
CLASS DIAGRAM, IX, 5, 44

accuracy of interclass relationships,
59

basic algorithm, 18, 43, 46
containers, 18, 51, 55
for binary tree example, 68
for eLib program, 5
for eLib with container analysis, 58

C++

Index 201

for eLib with dependencies, 59
for eLib without container analysis,

57
inaccuracies of the basic algorithm,

43, 47
inheritance in, 18, 47
interfaces in, 18, 48, 50
missing relationships in binary tree

example, 51
with/without container analysis, 60

Class Hierarchy Analysis (CHA), 59
class identification, see object identifi-

cation in procedural code
class instances, 63, 64
class vs. interaction diagram, 90
class vs. object diagram, 10, 63, 64, 83
clearReservation (Library), 160, 163
clustering, 19, 136

agglomerative algorithm, 139, 148
black hole, 140
combined algorithm, 139
direct link approach, 136
distance measure, 137
distance vs. similarity measure, 137
divisive algorithm, 139
feature vector, 136, 149
gas cloud, 140
hierarchical algorithms, 138
hierarchy of packages, 140, 143, 149
hill-climbing algorithm, 142
interconnection strength, 143
linkage rules, 139
modularity optimization, 140, 148,

150, 151
sibling link approach, 136
similarity between clusters, 139
similarity measure, 137

clustering vs. concept analysis, 154
coffee machine example, 116

abstract domains, 119
abstract interpretation of methods,

125
abstract interpretation of operators,

120
abstract interpretation of

insertQuarter, 121
accuracy of the solution, 119
state diagram, 117

collaboration diagram, 18, 89, 90

focused on borrowDocument, 11, 107
focused on printAllLoans, 109
focused on reserveDocument, 165
focused on returnDocument

(Library), 102
for addLoan (Library), 95, 97

complete systems, 3
concept analysis, 19, 143

eLib program, 151
attributes used in code restructuring,

144
bottom-up algorithm, 145
concept, 144, 152
concept lattice, 144, 147
concept partition, 147, 152
concept sub-partitions, 148
context, 144, 146, 152
encapsulation, 147
extent, 144
Galois connection, 144
intent, 144
largest lower bound (in f imum) , 145
least upper bound (supremum), 145
limitation of, 154
output of, 144
subconcept, 144

concept analysis applied to software
engineering, 143

class hierarchy reengineering, 61
class identification, 61
code restructuring and modulariza-

tion, 143
extraction of code configurations, 154
package identification, 19, 143

containers, 18, 27, 51
abstract operations on, 28
flow propagation specialization, 53,

54
in ROOT C++ library, 173
in eLib program, 28, 40, 52, 55, 81
information associated with in-

sertion/extraction operations,
52

insertion/extraction operations, 29
Java, 27
OFG construction in presence of, 28

control flow graph, 41
convergence of flow propagation

algorithm, 31

202 Index

corrective maintenance, 2
coverage testing

inter-object relationship coverage, 87
object coverage, 87

data flows, 21, 26
decomposition of large software systems,

see PACKAGE DIAGRAM

derivation tree, 156
design decisions, 43, 135, 171
design diagrams, 2
design patterns, 172
design/code consistency, IX
Dewey numbers, 10, 90, 98
diagram usability, see usability of

diagrams
dispatchCommand (Main), 79, 189(B)
Document (Document), 179(A)

abstract interpretation, 126
Document class, 6, 179(A)

state diagram, 14, 127, 168
document (Loan), 6, 111, 178(A)

OFG edges, 27
OFG node, 111

documentCode (Document), 6, 179(A)
documents (Library), 6, 175(A)

abstract domain, 128
containers, 28, 55
symbolic values, 16

dominance analysis, 60, 153
dynamic analysis, 2, see also dynamic

interaction diagrams, dynamic
object diagram

drawbacks of, 2, 91
dynamic interaction diagrams, 102,

see also sequence diagram,
collaboration diagram

for returnDocument (Library), 104
limitations of, 91, 106
test case selection criteria, 106
test cases, 102, 103, 103

dynamic object diagram, 74
changed execution scenario, 164
execution scenario, 9, 84
for binary tree example, 76
for eLib program, 8, 86, 163
limitations of, 64
test cases, 63, 74

dynamic vs. static object diagram, 10,
64, 76, 86

eLib program, 3
architecture of, 5
change location, 155
change request example, 4, 159
class diagram, 5
class diagram after the change, 162
class diagram with container analysis,

58
class diagram with dependencies, 59
class diagram without container

analysis, 57
class partitioning, 148
clustering hierarchy, 149
concepts, 152
containers, 28, 40, 52, 55, 81
context, 152
dynamic interaction diagram, 102
dynamic object diagram, 8, 86, 163,

164
execution scenario, 9, 84, 164
execution traces, 85, 103
feature vector, 149
focused interaction diagrams, 107
functionalities of, 4
impact analysis, 5
list of commands, 78
loan management in, 4
maintenance, 159
OFG, 36, 79
package diagram, 148, 153
program understanding, 4
relationships for modularity

optimization, 150, 151
reservation mechanism, 159
ripple effects, 155
state diagrams, 125
static interaction diagram, 106
static object diagram, 8, 82, 163, 164
test cases, 103
types of document in, 4, 6
types of user in, 4, 6

equals (Document), 179(A)
equals (Loan), 179(A)
equals (User), 183(A)

Index 203

equivalence classes of attribute values,
19, 118, 123, see also abstract
domain, symbolic attribute values

exchange of messages, see INTERACTION

DIAGRAMS

executable systems, 3, 91
execution trace, 65

for binary tree example, 75
for interaction diagram recovery, 102,

103
for object diagram recovery, 74, 85
for eLib program, 85, 103

external data flows, 27
external libraries, see weakly typed

containers
external object flows, 21
Extreme Programming (XP), 171

fixpoint, 31
flow information

gen, kill, in, out sets, 30
flow propagation algorithm, 18, 30

backward propagation, 31
convergence of, 31
for declared type refinement, 48
for object diagram recovery, 65
forward propagation, 31
in presence of containers, 52
information associated with nodes, 30
performance, 31
properties of the solution, 31

focusing, X, 18, 89
on method of interest, 98
usability of diagrams, 107

fullName (User), 182(A)

generic objects in interaction diagrams,
95

genetic algorithms for clustering, 143,
154

getAddress (User), 183(A)
getArgs (Main), 186(B)
getAuthors (Document), 180(A)
getBorrower (Document), 180(A)
getCode (Document), 180(A)
getCode (User), 183(A)
getDocument (Library), 176(A)
getDocument (Loan), 32, 38, 179(A)
getISBN (Document), 180(A)

getName (User), 7, 183(A)
getPhone (User), 183(A)
getRefNo (TechnicalReport), 182(A)
getTitle (Document), 7, 180(A)
getUser (Library), 175(A)
getUser (Loan), 32, 38, 178(A)
guards

in interaction diagrams, 109
in state diagram, 116

impact of change, see change impact
analysis

incomplete systems
in interaction diagrams, 18, 89, 95
in object sensitive OFG, 70

infeasible paths, 3
in interaction diagrams, 105
in object diagram, 64, 77

inheritance, see CLASS DIAGRAM

insert (BinaryTree), 70
instrumented program, 65
instrumenting a program, 74, 102
inter-object structure, see INTERACTION

DIAGRAMS

INTERACTION DIAGRAMS, X, 10, 90,
see also dynamic interaction
diagrams, sequence diagram,
collaboration diagram

test cases, 102
accuracy, 92
call graph, 98
collaboration diagram, 18, 89, 90
complexity reduction, 98
conservative solution, 106
construction of, 89
dynamic approach, 91, 102
flow propagation algorithm, 91
focused interaction diagrams, 98
generic objects, 95
incomplete systems, 89, 95
labels representing conditions, 109
limitations of dynamic/static

approach, 91, 106, 111
method call resolution, 92, 96
multiplicity of the objects, 92, 105
numbering focused on a method, 100
numbering of method calls, 99
object identification, 105, 106
partial view, 91, 103

204 Index

recovering from C++, 173
sequence diagram, 18, 89, 90
source/target for addLoan (Library),

94
source/target resolution, 91, 92, 96
static approach, 91
static vs. dynamic, 103, 105, 105
test cases, 103, 103
use of scenarios for recovery, 172

interaction vs. object diagram, 90
interaction vs. class diagram, 90
interaction vs. state diagram, 117
interfaces, see CLASS DIAGRAM

internalId (InternalUser), 6, 184(A)
InternalUser (InternalUser), 184(A)
InternalUser class, 184(A)
isAvailable (Document), 7, 179(A)
ISBNCode (Document), 179(A)
isHolding (Library), 177(A)
isHolding (Main), 188(B)
isOut (Document), 179(A)
isReserved (Document), 161, 163
isReserving (Library), 161

Java language, 21, see also abstract
language

class diagram for the language model,
158

containers, 27
language model, 157

Java Path Finder, 131
Journal (Journal), 181(A)
Journal class, 181(A)

language model for Java, 157
large software systems

decomposition of, 133
problems of, 18

left (BinaryTreeNode), 50, 66, 70
lib (Main), 79, 185(B)
Library (Library)

abstract constructor declaration, 24
Library class, 6, 175(A)

abstract attribute declaration, 24
abstract constructor declaration, 24
abstract method declaration, 24
combined state diagrams, 130
containers, 52, 55
dependency relationship, 47

Object Flow Graph, 26
projected state diagrams, 129
state diagram, 16, 169
symbolic attribute values, 16, 128

life span of inter-object relationships, 9,
75, 76

Loan (Loan), 178(A)
Loan class, 6, 178(A)

aggregation/association relationship,
47

loan (Document), 7, 179(A)
abstract domain, 125
symbolic values, 15

loans (Library), 6, 175(A)
abstract attribute declaration, 24
abstract domain, 128
containers, 28, 29, 38
insertion/extraction operations, 29
OFG node, 26
symbolic values, 16

loans (User), 6, 111, 183(A)
abstract domain, 126
OFG node, 111
symbolic values, 15

Main class, 79, 185(B)
Main driver, 78
main (Main), 189(B)
maintenance, 1

adaptive maintenance, 2
corrective maintenance, 2
of eLib program, 159
perfective maintenance, 2
preventive maintenance, 2

message
nesting, 10, 90
numbering, 99, 100, 101
ordering, 10, 89, 102

message exchange, see INTERACTION

DIAGRAMS

method activation, 103
method dispatches, see INTERACTION

DIAGRAMS

method invocations
in interaction diagram, 89
in state diagrams, 14, 115

misalignment of code and design, IX
model checking, 131

Index 205

model of source code, see OBJECT

FLOW GRAPH (OFG)
multiplicity of the objects, 64, 76, 86,

92, 105

name conflicts in abstract language, 22
name resolution, 22
navigation in large diagrams, 3, see also

focusing, visualization
numbering of method calls, 99

focused on returnDocument
(Library), 101

focused on a method, 100
numberOfLoans (User), 183(A)

obj (BinaryTreeNode), 50
object

internal behavior of, 115
state of, 115

object (BinaryTreeNode), 70
OBJECT DIAGRAM, X, 8, 64, see also

dynamic object diagram
accuracy of, 73
and interaction diagram, 65
Aspect Oriented Programming, 87
conservative solution, 77
construction of, 65
coverage of, 77
dynamic approach, 63, 74
flow propagation algorithm, 65
for binary tree example, 68, 73
for eLib program, 8, 82, 163
infeasible paths, 64, 77
multiplicity of the objects, 64, 76, 86
nodes in, 76
obj. insensitive vs. sensitive, 73
object identification, 65
object identifier, 32, 65, 74
object sensitivity, 68
partial view, 64, 77
recovery from C++, 173
safety of solution, 74
static approach, 63, 65
static vs. dynamic, 64, 76, 86
temporary objects, 10
test cases, 74
tracing facilities for construction of,

74

OBJECT FLOW GRAPH (OFG), X, 18,
21, 26

addLoan (Library), 39
borrowDocument (Library), 39
accuracy of, 33
containers, 27, 38, 40
data/control flow sensitivity, 21
edges, 26, 27, 28
external data flows, 27
for binary tree example, 67, 71, 72
for class Library, 26
for resolving calls in addLoan

(Library), 93
for eLib program, 36, 80, 81
incremental construction of, 34, 69
information propagated inside, 21, 30
nodes, 26
object insensitivity, 21, 33, 71
object sensitivity, 21, 32, 33, 35, 68,

72
object sensitivity vs. insensitivity, 33,

70
pointer analysis and, 40

object identification in procedural code,
60, 152

object identity
in interaction diagram, 105, 106
in object diagram, 65

object instances, 64
object interactions, 10, 89
Object Process Graph, 113, 172
object vs. class diagram, 10, 63, 64, 83
object vs. interaction diagram, 90
object-oriented testing criteria, 87
OFG, see OBJECT FLOW GRAPH (OFG)
orphan modules, in package diagram

recovery, 154
overridden methods, 81

in numbering method calls, 100

PACKAGE DIAGRAM, X, 19, 133, See also
clustering, concept analysis

clustering, 19, 136
clustering vs. concept analysis, 154
code properties for recovery, 135
cohesion, 133, 141
concept analysis, 19, 143
coupling, 133, 141, 141
for eLib program, 148, 153

206 Index

package, 134
scenarios for recovering, 135
sub-packages, 134

perfective maintenance, 2
phoneNumber (User), 183(A)
points-to analysis, 40, 59, 113
polymorphic calls, 81, 100
preventive maintenance, 2
principle of substitutability, 45
print (Loan), 179(A)
print facilities in eLib program, 7
printAllLoans (Library), 178(A)

collaboration diagram focused on, 109
printAuthors (Document), 180(A)
printAvailability (Document), 7,

181(A)
printDoc (Main), 188(B)
printDocumentInfo (Library), 178(A)
printGeneralInfo (Document), 181(A)
printHeader (Document), 180(A)
printHeader (Main), 185(B)
printInfo (Book), 181(A)
printInfo (Document), 7, 181(A)
printInfo (TechnicalReport), 182(A)
printInfo (User), 184(A)
printRefNo (TechnicalReport), 182(A)
printReservation (Document), 161, 163
printUser (Main), 188(B)
printUserInfo (Library), 178(A)

sequence diagram focused on, 110
program change, 2, 155, 159
program location, see also abstract

syntax
class attribute, 24
class scoped, 32
local variable, 24
method parameter, 24
object scoped, 32, 69
return, 24, 25, 40
this, 24, 25
type declared for, 48

program understanding, IX, 1, 89

reengineering, 60, 61, 136
refactoring, 19, 171
refNo (TechnicalReport), 6, 182(A)
relationships, 144

aggregation, 45, 47, 141
aggregation vs. association, 46

association, 45, 47, 141
call, 93, 98, 102, 136, 144, 150
composition, 45, 141
composition vs. aggregation, 46
dependency, 45, 46, 59, 133, 134, 141
generalization/inheritance, 45, 141
realization, 45
recovery of, 46
usage of declared type, 46

removeDocument (Library), 6, 176(A)
removeLoan (Document), 126, 180(A)
removeLoan (Library), 176(A)
removeLoan (User), 15, 183(A)
removeReservation (Library,

Document, User), 160
removeUser (Library), 6, 175(A)
Reservation class, 160
reservation (Document), 161
reservation in eLib program, see also

eLib program
Reservation class, 160
addReservation (Library,

Document, User), 160
clearReservation (Library), 160,

163
isReserved (Document), 161, 163
isReserving (Library), 161, 164
printReservation (Document), 161
removeReservation (Library,

Document, User), 160
reservations (Library), 160, 163
reservations (User), 160, 163, 168
reservation (Document), 161
reserveDocument (Library), 160,

163, 164
impact of change, 162
impact on borrowDocument

(Library), 161
test plan, 162
UserDocumentAssociation class, 160

reservations (Library), 160, 163
reservations (User), 160, 163, 168
reserveDocument (Library), 160,163

collaboration diagram focused on, 165
restructuring, 2, 60, 133, 143, 152
returnDoc (Main), 187(B)
returnDocument (Library), 7, 177(A)

numbering method calls, 101

Index 207

sequence diagram focused on, 12, 104,
108

RevEng tool, 172
reverse engineering, 1

outcome of, X, 3
perspectives of, 170

reverse engineering tools, 172
Abstract Syntax Tree (AST)

representation, 156
AST vs. language model, 156
general architecture for, 156
impact on the development process,

155
language model representation, 156
Model Extractor module, 157
Object Flow Graph (OFG) represen-

tation, 157
Parser module, 156
system maintenance, 2

right (BinaryTreeNode), 50, 66, 70
ripple effects, IX, 155
rmDoc (Main), 187(B)
rmUser (Main), 186(B)
root (BinaryTree), 66, 70

search facilities in eLib program, 7
searchDoc (Main), 188(B)
searchDocumentByAuthors (Library),

7, 177(A)
searchDocumentByISBN (Library), 7,

178(A)
searchDocumentByTitle (Library), 7,

177(A)
abstract syntax, 55

searchUser (Library), 7, 177(A)
searchUser (Main), 188(B)
sequence diagram, 18, 89, 90

Aspect Oriented Programming, 112
flow of time, 10
focused on addLoan (Library), 95, 97
focused on borrowDocument

(Library), 167
focused on printUserInfo (Library),

110
focused on returnDocument

(Library), 12, 104, 108
method activation, 103
temporal ordering of calls, 90
time line, 90

size of diagrams, 3
interaction diagrams, 98, 107
state diagram, 14, 115

software evolution, IX, 1, 171
software life cycle, 1, 171
software metrics for component

extraction, 153
source code model, see OBJECT FLOW

GRAPH (OFG)
star diagram, 60
state

change of, 116
complete, 14
entry and exit actions, 116

STATE DIAGRAM, X, 14, 116
abstract domain, 118
abstract interpretation, 118
accuracy of, 123
complete state, 14
complexity reduction, 14, 115
equivalence classes of attribute

values, 118, 123
equivalent states, 116
extraction of, 115
for class Document, 14, 127, 168
for class Library, 16, 129, 130, 169
for class User, 14, 128, 168
for coffee machine example, 117
guards, 116
limitations, 115
method invocations, 14, 115
over-conservative solution, 119
primitive operations, 115
projected, 128
properties of, 116
recovery algorithm for, 123
states, 116
sub-state diagrams, 116
subset of attributes, 14
transitions, 14, 115, 116

state vs. interaction diagram, 117
state-based testing, 131
static analysis, 3

conservative solution, 3, 77
drawback of, 3, 91
over-conservative solution, 3, 91

static vs. dynamic object diagram, 10,
64, 76, 86

students (UniversityAdmin), 50

208 Index

symbolic attribute values, see also
abstract domain, equivalence
classes of attribute values

for class Library, 16
for class User, 15

symbolic execution, 131
system behavior, 1, see INTERACTIONS

DIAGRAM, STATE DIAGRAM

system evolution, 1
system organization, 1, 43

TechnicalReport (TechnicalReport),
182(A)

TechnicalReport class, 86, 182(A)
test cases

for binary tree example, 75
for interaction diagram recovery, 102,

103, 106
for object diagram recovery, 63, 74
for eLib program, 103
usage of state diagram for generating,

170
test plan after changes, 162
testing, 160, see also coverage testing
time intervals in object diagram, 9, 75,

75, 86
title (Document), 179(A)
tools, see also reverse engineering tools

for modeling code with finite state
models, 131

for restructuring, 60
for tracing programs, 74

traceability, 2

UML, see Unified Modeling Language
(UML)

Unified Modeling Language (UML), X,
3

UniversityAdmin class, 50
usability of diagrams, 3, 43, 90, 98, see

also focusing
interaction diagram for eLib, 106
static vs. dynamic interaction

diagram, 106
User (User), 183(A)
User class, 6, 44, 182(A)

state diagram, 14, 128, 168
symbolic attribute values, 15

user (Loan), 6, 7, 178(A)
OFG edges, 27

userCode (User), 182(A)
UserDocumentAssociation class, 160
users (Library), 6, 175(A)

abstract domain, 128
containers, 28, 29, 55, 81
insertion/extraction operations, 29
symbolic values, 16

visualization, X
expanding/collapsing diagrams, 3
explosion/implosion of diagrams, X
hierarchical structuring, X
interaction diagrams, 89, 98
of large class diagram, 49
use of Least Common Ancestor

(LCA), 49, 54

weakly typed containers, see containers

	Reverse Engineering of Object Oriented Code
	Cover

	Contents
	Introduction
	1.1 Reverse Engineering
	1.2 The eLib Program
	1.3 Class Diagram
	1.4 Object Diagram
	1.5 Interaction Diagrams
	1.6 State Diagrams
	1.7 Organization of the Book

	The Object Flow Graph
	2.1 Abstract Language
	2.1.1 Declarations
	2.1.2 Statements

	2.2 Object Flow Graph
	2.3 Containers
	2.4 Flow Propagation Algorithm
	2.5 Object sensitivity
	2.6 The eLib Program
	2.7 Related Work

	Class Diagram
	3.1 Class Diagram Recovery
	3.1.1 Recovery of the inter- class relationships

	3.2 Declared vs. actual types
	3.2.1
	3.2.2 Visualization

	3.3 Containers
	3.3.1

	3.4 The eLib Program
	3.5 Related Work
	3.5.1 Object identification in procedural code

	Object Diagram
	4.1 The Object Diagram
	4.2 Object Diagram Recovery
	4.3 Object Sensitivity
	4.4 Dynamic Analysis
	4.4.1 Discussion

	4.5 The eLib Program
	4.5.1 OFG Construction
	4.5.2 Object Diagram Recovery
	4.5.3 Discussion
	4.5.4 Dynamic analysis

	4.6 Related Work

	Interaction Diagrams
	5.1 Interaction Diagrams
	5.2 Interaction Diagram Recovery
	5.2.1 Incomplete Systems
	5.2.2 Focusing

	5.3 Dynamic Analysis
	5.3.1 Discussion

	5.4 The eLib Program
	5.5 Related Work

	State Diagrams
	6.1 State Diagrams
	6.2 Abstract Interpretation
	6.3 State Diagram Recovery
	6.4 The eLib Program
	6.5 Related Work

	Package Diagram
	7.1 Package Diagram Recovery
	7.2 Clustering
	7.2.1 Feature Vectors
	7.2.2 Modularity Optimization

	7.3 Concept Analysis
	7.4 The eLib Program
	7.5 Related Work

	Conclusions
	8.1 Tool Architecture
	8.1.1 Language Model

	8.2 The eLib Program
	8.2.1 Change Location
	8.2.2 Impact of the Change

	8.3 Perspectives
	8.4 Related Work
	8.4.1 Code Analysis at CERN

	Index
	Team-kB

