
TEAM LinG



Hacking Movable Type

01_57499x ffirs.qxd  6/17/05  7:55 PM  Page i

TEAM LinG



01_57499x ffirs.qxd  6/17/05  7:55 PM  Page ii

TEAM LinG



Hacking Movable Type

Jay Allen, Brad Choate, Ben Hammersley,
Matthew Haughey, & David Raynes

01_57499x ffirs.qxd  6/17/05  7:55 PM  Page iii

TEAM LinG



For general information on our other products and services or to obtain technical support, please contact our Customer Care Department
within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Hacking Movable Type / Jay Allen ... [et al.].
p. cm.

Includes index.
ISBN-13: 978-0-7645-7499-3 (paper/website)
ISBN-10: 0-7645-7499-X (paper/website)
1. Movable Type (Computer file)  2. Web sites--Design. 3. Weblogs.

I. Allen, Jay, 1970-     .
TK5105.8885.M67H34  2005
006.7--dc22

2005012598

Trademarks: Wiley, the Wiley logo, and related trade dress are registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. ExtremeTech and the ExtremeTech logo are
trademarks of Ziff Davis Publishing Holdings, Inc. Used under license. All rights reserved. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Hacking Movable Type

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Jay Allen, Brad Choate, Ben Hammersley, Matthew Haughey, & David Raynes. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-7645-7499-3

ISBN-10: 0-7645-7499-X

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/QX/QX/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy
fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN
46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR
EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE
PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF
PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON
SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES
ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE
AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK
WAS WRITTEN AND WHEN IT IS READ.

01_57499x ffirs.qxd  6/17/05  7:55 PM  Page iv

TEAM LinG

www.wiley.com


About the Authors
Jay Allen has been hacking Movable Type since before its first public release and has deployed
MT on over a billion and a half systems, give or take a few orders of magnitude. He created the
first MT plugin, called MT-Search, as well as one of the most necessary plugins, MT-Blacklist.
He currently resides in the ever beautiful and weird San Francisco and works at Six Apart as
Product Manager for Movable Type. He spends his off hours split almost evenly between spin-
ning true house music, recharging personal electronic devices, and trying to find his keys.

Brad Choate has been hacking Movable Type since it was first released. He is now a Six Apart
software engineer where he hacks Movable Type for a living, supporting his incredibly under-
standing wife and three little hackers.

Ben Hammersley is an English journalist and writer, and has been using Movable Type since
version 1. He lives in Florence, Italy, with his beautiful wife and three greyhounds and is cur-
rently tending his cigar and dressing gown habit with little success. He invites you to visit.

Matthew Haughey is closing in on ten years of building websites and runs the popular
MetaFilter weblog as well as half a dozen smaller weblog projects. He’s been tinkering
with Movable Type since the very first private alpha that his friends, Ben and Mena Trott,
let him test out. He’s been hacking away at it ever since.

David Raynes got his first taste of blogs in the first half of 2002, and was running his own
by summer’s end that same year. Shortly after, his first plugin, MTSearches, was released,
and the rest is history. One of his most popular plugins, SubCategories, was even integrated
into Movable Type as of version 3.1. David works as a software engineer in Maryland, where
he lives with his wife, Jenn, and their four cats (two his and two hers): Hans, Franz, Tim,
and Gizmo. Eventually the feud between Tim and Franz will be resolved and there shall be
only three.

01_57499x ffirs.qxd  6/17/05  7:55 PM  Page v

TEAM LinG



Credits
Executive Editor
Chris Webb

Development Editors
Marcia Ellett
Sharon Nash

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Production Manager
Tim Tate

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group
Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Ryan Steffen

Graphics and Production Specialists
Jennifer Heleine
Stephanie D. Jumper
Melanee Prendergast
Amanda Spagnuolo
Mary Gillot Virgin

Quality Control Technicians
Leeann Harney
Jessica Kramer
Carl William Pierce
Dwight Ramsey

Book Designer
Kathie S. Rickard

Proofreading and Indexing
TECHBOOKS Production Services

01_57499x ffirs.qxd  6/17/05  7:55 PM  Page vi

TEAM LinG



Foreword
Almost four years ago, my husband, Ben, and I decided to create a weblogging tool for one
simple reason: I had my own weblog, dollarshort.org, and I wanted a better blogging tool for
myself. As luck would have it, Ben and I were in between jobs (this was 2001 after all and the
tech industry wasn’t exactly booming) and we had some free time to work on a software project
as a hobby.

The more we worked on Movable Type—our ideal blogging tool—the more ambitious Ben
and I became in our goals. We not only wanted to create great software for us and our
friends—fellow engineers, web designers, and writers—to use, but we wanted to give all sorts
of bloggers the power to easily create professional-looking weblogs. The code needed to be
modular and extensible, and the design needed to be clean and simple. What we couldn’t have
imagined is how Movable Type would grow past our own initial ambitions and how it would
be shaped into a platform used by thousands of people worldwide.

Fast-forward to the present day as I sit here writing the foreword to Hacking Movable Type, the
book you now hold in your hands. The fact that this book exists today is a testament not just to
Movable Type itself, but also to the community that has helped grow the platform into what it
is today.

The authors of this book, Jay Allen, Brad Choate, Ben Hammersley, Matt Haughey, and David
Raynes, represent some of the earliest, most passionate, and talented members of the Movable
Type community. While Ben and I were responsible for the core Movable Type product for the
first couple of years in the life of Six Apart, it is these people who helped spread the word
about the power of the platform and helped us learn about what the platform could do.

This team of authors has written tutorials, introduced the product to clients, written plugins,
and helped shape the product’s direction. When Movable Type was first released, the blogging
industry didn’t exist. Today, because of these authors and because of people like you (people
who want to take advantage of Movable Type’s potential to take their projects and their clients’
projects to the next level), we have great resources such as this book to help expand what blog-
ging can do.

Jay Allen and Brad Choate, two of the Hacking Movable Type authors, have been especially piv-
otal in Movable Type’s development: Jay, with his work on MT-Blacklist, and Brad with his
substantial plugin development. It is only fitting that because of their dedication to Movable
Type and because of their talent, they have since (over the course of this book’s development)
become members of the Six Apart staff, working on the Movable Type team to improve the
platform itself.

The generosity that all of these authors have shown by sharing their ideas and code reflects the
values that have grown the Movable Type community over the past few years. That generosity
continues with the sample code, documentation, and most important, the ideas that this tal-
ented group of authors shares in the pages that follow.

01_57499x ffirs.qxd  6/17/05  7:55 PM  Page vii

TEAM LinG



With Movable Type’s rise in popularity comes the rise in demand for talented developers,
designers, and consultants who really understand the software and weblog integration with an
existing website. While this book is great for the early adopters and tinkerers who were the
original target audience for Movable Type, it is essential reading for anyone who wishes to earn
a living or make a career in providing weblogging solutions in today’s business world.

Hacking Movable Type should serve as your guide to what you can accomplish with the software.
As you read this book, you’ll discover why Movable Type has become the leading weblog pub-
lishing platform. We can’t wait to see the creativity your contributions bring to the community.

Mena Trott
Co-founder and president of Six Apart

viii Foreword

01_57499x ffirs.qxd  6/17/05  7:55 PM  Page viii

TEAM LinG



Acknowledgments
All of the authors would like to thank Chris Webb, Sharon Nash, and Marcia Ellett of Wiley
for their superhuman patience, indulgence, and skill. Thanks, guys.

Jay Allen: I’d like to thank the following wonderful people and random inanimate things:
Ezra Cooper and Anil Dash for helping us when we were helpless, Six Apart for making love
in the form of software, my mom for the love, support, and coffee from home, to my Budapesti
baratok for the Unicum and the distractions, és végül de nem utolsósorban, a kisbogaramnak
es a masodik anyukamnak, Gabi: Köszönöm mindent hogy nekem csináltatok. Mindig foglak
szeretni.

Brad Choate: For my family, Georgia, Savannah, Seth, and Arwen.

Ben Hammersley: My part of this book is, as always, thanks for the patience and love of my
wife, Anna: Jag älskar dig. Thanks and love, too, to Lucy, Mischa, and Pico for their ambula-
tory breaks, and Ben and Mena Trott for making their hobby my livelihood. And cheers to my
fellow writers, the sort of men-gods that put the Thor into co-author: it’s been an honor.

Matthew Haughey: I’d like to thank co-authors Jay Allen and Ben Hammersley for carrying
the brunt of the workload on this project. I’d like to thank my wife for going to sleep alone
while I stayed up until 2 A.M. every night as a chapter approached deadline. I’d like to thank
the folks at Wiley for taking the risk and letting us share our knowledge of MT with the
world. And, most of all, I want to thank that wacky duo, Ben and Mena Trott, for taking a
little weblog application they wrote for themselves and turning it into an empire.

David Raynes: For both of my parents, who sacrificed so much to give me the education that
got me where I am today. For my father, who first introduced me to the wondrous feats that
can be performed by typing a few choice magic words into that little box hooked up to our
television. And to my lovely wife, who puts up with all the time I spend doing this stuff.

01_57499x ffirs.qxd  6/17/05  7:55 PM  Page ix

TEAM LinG



01_57499x ffirs.qxd  6/17/05  7:55 PM  Page x

TEAM LinG



Introduction
Welcome to Hacking Movable Type. Inside this book you will find everything you need to know
to take an ordinary installation of Movable Type and turn it into something extraordinary.

Movable Type?
Movable Type is the world’s most advanced personal publishing application. Designed by Six
Apart, originally the husband and wife team of Ben and Mena Trott and now one of the
world’s most dynamic software houses, Movable Type brings professional-quality content man-
agement to the masses. Thousands of users, from webloggers to professional online publica-
tions, are using Movable Type to display their content. It’s one of the greatest Internet success
stories of this century.

Hacking Movable Type?
You might be familiar with Movable Type from the weblogging world. You may well have
installed and used it yourself, but did you know that Movable Type is also perfect fodder for
hacking on?

Nestled inside that sturdy but unassuming exterior is a framework for an exceptionally power-
ful publishing system, and one that bristles with the latest interfaces, standards, and Internet
thinking.

This book teaches you everything you need to know about the internal features of Movable
Type, and how to extend, stretch, push, and pummel the application from something already
superpowerful into something almost unbelievable.

What’s in This Book?
Luckily, this isn’t some Proustian epic requiring you to plow through from beginning to end.
It’s separated into parts, and you’re free to skip around. But here’s a taste of what we have in
store for you:

� Hacking the Perfect Installation

� Hacking the Database

� XML-RPC API

01_57499x ffirs.qxd  6/17/05  7:55 PM  Page xi

TEAM LinG



� Atom API

� Perl API

� Advanced Plugin Writing

� Dynamic Publishing

� Hacking Together Powerful Blog Applications

� Advanced skills

Of course, also included are pages of reference material, recipes for great uses of the Movable
Type system, complete rundowns of the internal structure of the application, the databases, and
the APIs, and clear and concise instructions on just about every aspect of the system.

Hacking Carefully
We know you’re sensible people. Hey, you bought this book, right? So you should know to back
up your data. A lot of things we do in here are potentially hazardous to your stuff, not in a hor-
rible, screaming, bloodcurdling sort of way—it’s all fixable if you make a false move—but to fix
stuff you are going to need backups. Both Jay and Ben’s hard drives died during the writing of
this book, and the wailing and gnashing of teeth was something to behold. So do us a favor, as
we don’t want to see that sort of thing again, for the sake of all that is good and proper, BACK
UP YOUR WEBLOGS BEFORE YOU DO ANYTHING.

Our lawyers would like to point out that we take no responsibility for anything you do. They
do this more formally elsewhere.

Companion Website
For links and updates, please visit this book’s companion website at www.wiley.com/
compbooks/extremetech.

Conclusion
Pablo Picasso once said, “I’m always doing things I can’t do, it’s how I get to do them.” And so
it is with Movable Type. This is a powerful piece of software, and by reading this book you will
be in a position to take full advantage of it. We can’t wait to see what you build. Have fun.

xii Introduction

01_57499x ffirs.qxd  6/17/05  7:55 PM  Page xii

TEAM LinG



01_57499x ffirs.qxd  6/17/05  7:55 PM  Page xiii

TEAM LinG



Contents at a Glance
Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Part I: Hacking the Perfect Installation . . . . . . . . . . . . . . . . . . . . 1
Chapter 1: Preparing Your Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 2: Tweaking the Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Part II: Hacking the Database . . . . . . . . . . . . . . . . . . . . . . . . 29
Chapter 3: MT and Database Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Chapter 4: Tables in the MT Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Chapter 5: Absolutely Necessary Database Tricks . . . . . . . . . . . . . . . . . . . . . . 67

Part III: Hacking with APIs . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Chapter 6: XML-RPC API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Chapter 7: Atom API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Chapter 8: Perl API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Part IV: Hacking with Plugins. . . . . . . . . . . . . . . . . . . . . . . . 143
Chapter 9: The Wonderful World of Plugins. . . . . . . . . . . . . . . . . . . . . . . . 145
Chapter 10: Writing Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Chapter 11: Advanced Plugin Writing . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Chapter 12: Hacking Dynamic Publishing . . . . . . . . . . . . . . . . . . . . . . . . . 215

Part V: Hacking Powerful Blog Applications Together . . . . . . . . . . 235
Chapter 13: Photo Blogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Chapter 14: Linklogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Chapter 15: Blogroll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Chapter 16: Events, Reminders, To-Dos . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Chapter 17: Polls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Chapter 18: LazyWeb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Chapter 19: Creating a Community-Authored Website . . . . . . . . . . . . . . . . . . 295

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

02_57499x ftoc.qxd  6/17/05  7:53 PM  Page xiv

TEAM LinG



Contents
Foreword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Part I: Hacking the Perfect Installation 1

Chapter 1: Preparing Your Installation . . . . . . . . . . . . . . . . . . . . 3
Site Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Archives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Maintenance and Regular Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Streamlining Your Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Posting Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Relying on Third-Party Services . . . . . . . . . . . . . . . . . . . . . . . . . 8
Ping and Comment Time-Outs . . . . . . . . . . . . . . . . . . . . . . . . . 8
Temp Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Installing MT-Blacklist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SuExec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2: Tweaking the Templates . . . . . . . . . . . . . . . . . . . . . 11
MT Template Management Features . . . . . . . . . . . . . . . . . . . . . . . . . 11

Template Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Linked Template Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Advanced Template Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
MT-TemplatePro Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Fast Experimental Template Editing . . . . . . . . . . . . . . . . . . . . . . 14
No-rebuild Static Content . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
The Static Blog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Cookie-based Deep Contextual Edit Links . . . . . . . . . . . . . . . . . . 16

Blog Template Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Recent Comments List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Much-improved Comment Listings . . . . . . . . . . . . . . . . . . . . . . 19
Putting It All Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Integrating Comments and Trackbacks . . . . . . . . . . . . . . . . . . . . . 21
Fixing Up Your Syndication Feeds . . . . . . . . . . . . . . . . . . . . . . . 22

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

02_57499x ftoc.qxd  6/17/05  7:53 PM  Page xv

TEAM LinG



Part II: Hacking the Database 29

Chapter 3: MT and Database Storage . . . . . . . . . . . . . . . . . . . . 31
Database-driven Web Publishing . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
The Power of the Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Database Support in MT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Accessing the Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Command-line Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Web Interface Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Database Backups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Backing Up via the Command Line . . . . . . . . . . . . . . . . . . . . . . 36
Restoring via the Command Line . . . . . . . . . . . . . . . . . . . . . . . 37
Backing Up via phpMyAdmin . . . . . . . . . . . . . . . . . . . . . . . . . 37
Restoring via phpMyAdmin . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 4: Tables in the MT Database. . . . . . . . . . . . . . . . . . . . 39
What’s in a Name?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Lowercase Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Singular in Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Column Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Underscores for Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A Primary Key Is an “id” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A Foreign Key Is Also a Primary Key. . . . . . . . . . . . . . . . . . . . . . 42

Things We Will Skip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
MT Database Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

mt_author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
mt_blog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
mt_category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
mt_comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
mt_entry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
mt_ipbanlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
mt_log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
mt_notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
mt_permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
mt_placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
mt_plugindata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
mt_session. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
mt_tbping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
mt_template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
mt_templatemap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
mt_trackback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xvi Contents

02_57499x ftoc.qxd  6/17/05  7:53 PM  Page xvi

TEAM LinG



Chapter 5: Absolutely Necessary Database Tricks . . . . . . . . . . . . . 67
Database Backup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

The Crontab Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Scheduling the Backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Making Mass Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Practicing Safe SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Closing Old Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
The Forwarding Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Cloning or Moving Your Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Editing TrackBacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Deleting TrackBack Abuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Relocating Stray Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Recovering Lost Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Global Search and Replace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Part III: Hacking with APIs 79

Chapter 6: XML-RPC API . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
What Is XML-RPC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
An Example XML-RPC Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
The Supported Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Using the Movable Type XML-RPC API . . . . . . . . . . . . . . . . . . . . . . 85

Posting an Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Posting an Entry to the LazyWeb . . . . . . . . . . . . . . . . . . . . . . . 86
Making Everything Much Easier with Net::Blogger . . . . . . . . . . . . . . 88
Post Status: A Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Adding a Call to the Interface . . . . . . . . . . . . . . . . . . . . . . . . . 91
A Mobile Article Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Chapter 7: Atom API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Introducing the Atom API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Current Toolkits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Security and Authentication Under MT . . . . . . . . . . . . . . . . . . . . . . . 100
Using the Atom API with Movable Type . . . . . . . . . . . . . . . . . . . . . . 100

Retrieving Weblog Information . . . . . . . . . . . . . . . . . . . . . . . . 100
Posting an Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Setting the Posting Date. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Setting the Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Setting the Author and Other Things . . . . . . . . . . . . . . . . . . . . . 107

Editing an Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Uploading a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Deleting Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xviiContents

02_57499x ftoc.qxd  6/17/05  7:53 PM  Page xvii

TEAM LinG



Chapter 8: Perl API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Overview of the Class Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

The MT Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
MT::App and Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
MT::App Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Extending MT Applications. . . . . . . . . . . . . . . . . . . . . . . . . . 119

Object Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
MT::Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Accessing Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Object Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Extending MT::Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Plugin API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
MT::Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
MT::PluginData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

MT::Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
MT Publishing Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

The Stash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
MT::Promise and Lazy Loading. . . . . . . . . . . . . . . . . . . . . . . . 133
MT::Request and Object Caching. . . . . . . . . . . . . . . . . . . . . . . 134
Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Background Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Logging and Communication Using MT::Log . . . . . . . . . . . . . . . . . . . 135
Debugging Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Messaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Debugging with ptkdb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Practical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Booting Up Movable Type. . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Programmatically Creating Users, Weblogs, Categories, Whatever. . . . . . 138
Inserting a New Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Assigning an Entry to Categories . . . . . . . . . . . . . . . . . . . . . . . 140
Invoking a Rebuild. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Part IV: Hacking with Plugins 143

Chapter 9: The Wonderful World of Plugins. . . . . . . . . . . . . . . . 145
Finding the Available Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
The Different Types of Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
How We Chose the Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
General Conventions for This Chapter . . . . . . . . . . . . . . . . . . . . . . . 146
Static versus Dynamic Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
SimpleComments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

How to Install It . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
How to Use It within a Template . . . . . . . . . . . . . . . . . . . . . . . 147
The Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xviii Contents

02_57499x ftoc.qxd  6/17/05  7:53 PM  Page xviii

TEAM LinG



Textile and Markdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
How to Install Them . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
How to Use Them within a Template . . . . . . . . . . . . . . . . . . . . . 151
The Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Blacklist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
How to Install It . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
The Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

MT-Notifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
How to Install It . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
How to Use the Management Interface . . . . . . . . . . . . . . . . . . . . 158
How to Use It within a Template . . . . . . . . . . . . . . . . . . . . . . . 159

MT-Moderate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
How to Install It . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Installing on Windows Servers . . . . . . . . . . . . . . . . . . . . . . . . 162
How to Use MT-Moderate . . . . . . . . . . . . . . . . . . . . . . . . . . 162

TechnoratiTag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
How to Install It . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
How to Use It within a Template . . . . . . . . . . . . . . . . . . . . . . . 165
The Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

MultiBlog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
How to Install It . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Rebuild Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
How to Use It within a Template . . . . . . . . . . . . . . . . . . . . . . . 166
The Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
How to Install It . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
The Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Transferring an Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

KeyValues 1.53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
How to Install It . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
How to Use It within a Template . . . . . . . . . . . . . . . . . . . . . . . 169
The Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Chapter 10: Writing Plugins . . . . . . . . . . . . . . . . . . . . . . . . 175
Hello World Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Plugin Registration and Metadata. . . . . . . . . . . . . . . . . . . . . . . 175
Adding a Simple Tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Handling Tag Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Using the Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Expanding Hello World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Adding a Container Tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Handling Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Adding to the Context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Adding a Conditional Tag . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Container Tag Looping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Embedded Movable Type Tags . . . . . . . . . . . . . . . . . . . . . . . . 189

xixContents

02_57499x ftoc.qxd  6/17/05  7:53 PM  Page xix

TEAM LinG



Global Tag Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Text Formatting Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Plugin Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Avoid Plugin Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Code Readability and Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Code Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Chapter 11: Advanced Plugin Writing . . . . . . . . . . . . . . . . . . . 197
Data Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Configuration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
General Data Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Callback Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Object Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Application Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Putting It All Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Jerk Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Jerk Throttle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Giving the User Some Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Configuring the Bad Word . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Making It Easier for the User . . . . . . . . . . . . . . . . . . . . . . . . . 209
Adding to the Movable Type Interface . . . . . . . . . . . . . . . . . . . . 211

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Chapter 12: Hacking Dynamic Publishing . . . . . . . . . . . . . . . . . 215
Dynamic Publishing Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 215

mtview.php. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
The MT Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
The MTDatabase Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
The MTViewer Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Customizing mtview.php . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Using MT Tags in PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Smarty Templating Works Too . . . . . . . . . . . . . . . . . . . . . . . . 221

Hacking Dynamic Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Dynamically Paging Entries . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Dynamically Paging an Entry . . . . . . . . . . . . . . . . . . . . . . . . . 225
Creating Web Applications with Smarty . . . . . . . . . . . . . . . . . . . 226
Writing to the Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Hacking Dynamic Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Use the Source, Luke! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Speed, Speed, Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Creating Custom Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
The Obligatory “Hello, World” Tag . . . . . . . . . . . . . . . . . . . . . . 228
Creating Container Tags. . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

xx Contents

02_57499x ftoc.qxd  6/17/05  7:53 PM  Page xx

TEAM LinG



Preserving Stash Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Traditional Container Tags . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Conditional Container Tags . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Global Filter Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Initialization Plugins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Instructing the Template Compiler . . . . . . . . . . . . . . . . . . . . . . 233

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Part V: Hacking Powerful Blog Applications Together 235

Chapter 13: Photo Blogs . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Creating a Simple Photo Blog . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Setting Up an Example Photo Blog . . . . . . . . . . . . . . . . . . . . . . 238
Managing Photos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Using EmbedImage to Hack Images. . . . . . . . . . . . . . . . . . . . . . . . . 240
Setting Up a Mobile Phone Photo Blog . . . . . . . . . . . . . . . . . . . . . . . 243

Using pop2blog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Configuring pop2blog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Using ImageInfo to Display Extra Photo Data . . . . . . . . . . . . . . . . . . . 245
Introducing ImageInfo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Continuing the Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Chapter 14: Linklogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Templating Your Linklog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Using Linklog Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Integrating Del.icio.us and Movable Type. . . . . . . . . . . . . . . . . . . 252
Other Uses for Del.icio.us . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Chapter 15: Blogroll. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Setting Up Your Blogroll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Going Deeper with Technorati . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Better Living Through Plugins . . . . . . . . . . . . . . . . . . . . . . . . 260
Styling and Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Publishing the Blogroll as OPML. . . . . . . . . . . . . . . . . . . . . . . 262

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Chapter 16: Events, Reminders, To-Dos . . . . . . . . . . . . . . . . . . 265
Creating the Day Planner Weblog . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Template Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Archiving Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Category Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

xxiContents

02_57499x ftoc.qxd  6/17/05  7:53 PM  Page xxi

TEAM LinG



Creating Entries for Your Planner . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Template Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Introducing MT-Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Implementing Month Views . . . . . . . . . . . . . . . . . . . . . . . . . 269
Implementing Day Views . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
The Main Index Template . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Yearly Archives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
CSS Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Exporting Your Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Extending Your Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Implementing Weekly Views . . . . . . . . . . . . . . . . . . . . . . . . . 274
More complex recurring entries . . . . . . . . . . . . . . . . . . . . . . . . 274

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Chapter 17: Polls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Creating the Polls Weblog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Template Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Showing the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Knowing Your Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Sharing with Other Weblogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Chapter 18: LazyWeb . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Using All the Entry Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
How the LazyWeb Application Works . . . . . . . . . . . . . . . . . . . . . . . 285

The Front Page Template . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Listening for TrackBacks—mt-lazyweb.cgi . . . . . . . . . . . . . . . . . . 287
Using a Template System . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Chapter 19: Creating a Community-Authored Website . . . . . . . . . . 295
Introducing MT-Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

The API Choice: Perl versus XML-RPC . . . . . . . . . . . . . . . . . . . 296
Overview of the Application. . . . . . . . . . . . . . . . . . . . . . . . . . 297

Creating MT-Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Step 1: Get the Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Step 2: Create New Weblog and User . . . . . . . . . . . . . . . . . . . . . 299
Step 3: Upload Plugin, Libraries, and Scripts . . . . . . . . . . . . . . . . . 299
Step 4: Configure the Weblog . . . . . . . . . . . . . . . . . . . . . . . . . 299
Step 5: Install the Template Code . . . . . . . . . . . . . . . . . . . . . . . 300
Step 6: Edit the Submission Configuration . . . . . . . . . . . . . . . . . . 300
Step 7: Publish Your Blog . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Improving MT-Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

xxii Contents

02_57499x ftoc.qxd  6/17/05  7:53 PM  Page xxii

TEAM LinG



Hacking the Perfect
Installation

Chapter 1
Preparing Your Installation

Chapter 2
Tweaking the Templates

part

in this part

03_57499x pt01.qxd  6/17/05  7:55 PM  Page 1

TEAM LinG



03_57499x pt01.qxd  6/17/05  7:55 PM  Page 2

TEAM LinG



Preparing Your
Installation

Stop worrying. You’ve chosen Movable Type (MT). It’s a remarkably
stable, easy to prepare and maintain piece of software. Indeed, part of
its charm is that straight out of the box, with nothing added to it, and

none of the hacks that make up the rest of this book applied, MT pretty
much takes care of itself. Nearly three years of heavy use, plus two major
code revisions, and the experience of the weblogging world’s finest develop-
ers have produced a package that can look after itself.

We’re not going to go into detail about how you install Movable Type.
Frankly, we think you’re able to follow instructions, and Six Apart’s
documentation is very good in this respect. In addition, the publishers
of this book have another, Movable Type Bible, Desktop Edition, by Rogers
Cadenhead, which deals with the nuts and bolts of installation very
admirably.

Instead, we’re going to jump straight into the more interesting stuff.
First up: Site Architecture.

Site Architecture
Weblogs, by their very frequently updated natures, grow very quickly. It is
not uncommon to have sites of more than a thousand pages, and many are
10 times that. Add in comments and TrackBacks, images, feeds, and per-
haps some audio and video too, and you’ll start to find that a server can get
a little messy. Furthermore, everything on the site itself has a URL, and it is
common practice for readers to play with the URLs to move around. How
many times have you looked around someone’s blog archives by changing
the URL a little to see what you get?

Therefore, you need to plan a site architecture that will both keep things
in order and make for sensible and future-proof URLs that encourage
exploration.

Much of the following is based more on art than science.

˛ Site architecture

˛ Maintenance and
regular tasks

˛ Streamlining your
installation

˛ Security

chapter

in this chapter

04_57499x ch01.qxd  6/17/05  7:54 PM  Page 3

TEAM LinG



4 Part I — Hacking the Perfect Installation

Images
I like to place all of my images in a separate directory, /images. This keeps them organized
but also available for any interesting scripting projects I might like to do in the future. To do
this consistently, you need to remember that MT’s image upload interface will need an extra bit
of typing, as shown in Figure 1-1.

FIGURE 1-1: Using the Upload File dialog box

You will need to do the same in any desktop blogging tool you may be using as well.

Note that you can’t move all of the images to this directory. Without an option, MT will auto-
matically place, and replace if it’s removed, a file called nav-commenters.gif into the root
directory of every blog. It’s the tiny little person with a speech bubble icon that the default
templates use to indicate the commenting link (see Figure 1-2). At the time of writing, you
can’t stop this file from being replaced.

Archives
With respect to the post archives, things have moved on since versions 1 and 2 of MT. Since
3.0 Movable Type, creating archives occurs in an extremely sensible URL structure (namely, for
the individual entry page):

Archive_Path/YYYY/MM/DD/Dirified_Entry_Title.html

04_57499x ch01.qxd  6/17/05  7:54 PM  Page 4

TEAM LinG



5Chapter 1 — Preparing Your Installation

FIGURE 1-2: The Nav-Commenters icon

This is very sensible for two reasons. First, it produces URLs that are independent of the con-
tent management system’s (CMS) own variables. It might sound strange in a book touting the
usefulness of Movable Type, but there’s always a possibility that you will change your CMS in
the future. Having as neutral a file structure as possible will prove invaluable. Second, the logi-
cal structure of the URLs means that people can move around your site from their browser’s
address bar. Consider the logical positions of all of the types of archive indexes:

� Yearly archives: Archive_Path/YYYY/index.html

� Monthly archive: Archive_Path/YYYY/MM/index.html

� Complete archive index: Archive_Path/index.html

It makes sense to do it like this, as this is exactly how a slightly curious reader will try to look
around your site — by deleting bits from the URL and seeing what she finds. There is one
exception: currently, the Weekly indexes default to Archive_Path/week_YYYY_MM_DD.
html, which I do not like. Rather, I would change it to

Archive_Path/YYYY/MM/DD-DD.html

Icon in question

04_57499x ch01.qxd  6/17/05  7:54 PM  Page 5

TEAM LinG



6 Part I — Hacking the Perfect Installation

by adding the following line in the Archive File Template box in the Archive Files configura-
tion page:

<$MTArchiveDate format=”%Y/%m/%d”$>-<$MTArchiveDateEnd
format=”%d”$>.html

All this done, you end up with a filesystem that looks like the one shown in Figure 1-3.

FIGURE 1-3: Exploring the Archive filesystem

Note that the space for the individual archive is taken by two different files: the standard
HTML page and an RSS file for the entry and its comments. As new formats appear, they
can fit into the architecture very easily in this same manner.

Maintenance and Regular Tasks
As a professionally produced piece of software running on and with provably reliable platforms,
MT really doesn’t need any regular maintenance. There aren’t any temporary files to remove, or
automatically generated crud to delete. However, there are some preventive measures you
should take.

Since MT3.1, Movable Type has shipped with a plugin pack containing Sebastian Delmont’s
TypeMover plugin. This plugin enables you to back up your entire weblog data, including pref-
erences and templates. You are very much advised to install and use this regularly.

Sadly, there appears to be no way to automate the downloading of the backups, so you have to
do it manually, but it’s very straightforward. The same plugin, incidentally, is very useful if you
want to build an MT-based site on a local machine and then move it en masse to a public
server. I find this makes templates a whole lot snappier to develop.

Archive

Weblog
Root/

February
March
...etc.

January

February
March
...etc.

January

happy_new_year.rdf
happy_new_year.html1

2
3
...etc.

Archive – 2002

Archive – 2003

February
March
...etc.

January

Archive – 2004

Images

04_57499x ch01.qxd  6/17/05  7:54 PM  Page 6

TEAM LinG



7Chapter 1 — Preparing Your Installation

Streamlining Your Installation
Right out of the box, Movable Type is already pretty fast. With 3.1’s introduction of dynami-
cally built pages, performance has increased a great deal. Even so, and especially if you are not
using the dynamic build option, there are a few changes you can make from the default. First,
look at what you begin with. A clean installation of MT saves the following in the root direc-
tory of the blog:

� Main Index

� Archives Index

� RSS 1.0 Index

� RSS 2.0 Index

� Atom Index

� Stylesheet

� RSD file

Despite the loud brayings of the content syndication communities, you really do not need to
be producing both RSS and Atom feeds. Personally, I prefer to produce only one, RSS 1.0,
and then use external services to convert it to RSS 2.0 or Atom for the people who really care.
(Technically speaking, I do it in this order because RSS 1.0 is the most complicated and data-
rich format and so downgrades nicely. I couldn’t really go from 2.0 to 1.0, especially when you
consider the additional information you can place within the feed after you have visited
Chapter 3.) Services such as that found at www.feedburner.com are good for this. Either
way, you can delete all but one of the feeds straight away.

In addition, turn off the rebuilding of the Stylesheet and RSD files. These do not need to be
rebuilt unless you change your design or upgrade your installation, respectively.

Posting Frequency
Consider how often you post to your site and adjust the number of day’s posts on the front
page to suit. If you’re posting multiple times a day, this should be set pretty low. If you’re post-
ing only once a month, make it high. The risk is that you will have either an enormously large
front page, or, should you not post for a while and then have a comment cause a rebuild, a
completely empty one. Neither is good — you should pay attention to this if you’re going on
holiday, for example. I have been caught out with a setup of “Display 10 days’ worth of posts,”
when on day 11 someone left a comment on an old entry. The front page rebuilt and was left
empty for a week. In the spider-filled ecosystem of the web, a week’s worth of an empty front
page can cause terrible malady, not the least of which is a loss of stumble-upon readership.

If you are very committed to a minimalist filesystem, you can delete the RSD file altogether.
The file makes the setting up of offline editing tools a few seconds faster, but if you remember
the path to your mt-xmlrpc.cgi file and your blog ID, you actually don’t need it. Mine
is history.

04_57499x ch01.qxd  6/17/05  7:54 PM  Page 7

TEAM LinG



8 Part I — Hacking the Perfect Installation

Relying on Third-Party Services
Consider moving all web-services-based things out of your templates and into other files pulled
in by server side includes. If you are using MT, specifically MT-PerlScript, to pull data from
another site while you rebuild your indexes, you will slow the process down considerably. It also
helps, in these sorts of scripts or plugins, to use as much caching as possible. A bad day of net-
work congestion or a slow response time from the remote server might even kill your rebuild
process. The more recent plugins, such as Tim Appnel’s MT-Feed, take this into account, and
plugin developers should give serious thought to any potential slowing effects their plugin
might have on page rebuilds.

Ping and Comment Time-Outs
This slowing effect is particularly noticeable with comments and TrackBacks. MT installations
with slow rebuilds will find that their readers leave the same comment two or three times,
believing the first attempt to have failed when the browser timed out. TrackBacks, too, can
time out, meaning that the remote server doesn’t know it was successful. Automatic trackback-
ing then tries again the next time the remote site is itself rebuilt. By improving the chances of
the rebuilds happening quickly, you will stop these repeated attempts.

For TrackBacks, you can edit mt.cfg to increase the time-out interval to allow other sites to
be slow when you TrackBack to them. Simply uncomment the following line:

# PingTimeout 20

The number is the time, in seconds, with the default being 15. But 20 is better, and 30 just right.

Temp Files
Movable Type produces and saves temporary files to disk during page rebuilds. You can turn
this off, which speeds up rebuilds considerably, albeit at the expense of server memory. If you
believe your machine is big enough to deal with it (and it most probably is, to be honest),
edit mt.cfg and find this line:

# NoTempFiles 1

Uncomment it, like so:

NoTempFiles 1

Save the config file again. Obviously, this will have no effect at all on post-version 3.1 dynami-
cally produced pages.

Security
By now, you should have read the install documents and deleted mt-load.cgi and the 
mt-upgrade scripts and removed the Melody/Nelson identity. For security purposes, you should
take a couple of other steps as well.

04_57499x ch01.qxd  6/17/05  7:54 PM  Page 8

TEAM LinG



9Chapter 1 — Preparing Your Installation

Installing MT-Blacklist
Next, you must install MT-Blacklist. It comes within the plugin pack included with MT3.1,
and its workings are covered elsewhere in this book. MT-Blacklist will keep the vast majority
of comment spammers at bay, and it works well to stop multiple copies posted by visitors to
flood a site. As I write this chapter, this past week my own site has been hit by over 1,000
attempted comment spams, all of them stopped by MT-Blacklist. It is extremely necessary to
install it.

Then, as the installation instructions suggest, but right at the bottom where it tends to be over-
looked, you should protect your mt.cfg file by adding the following to the .htaccess file
within the directory mt.cfg is found:

<Files mt.cfg>
<Limit GET>
deny from all
</Limit>

</Files>

This will prevent anyone from looking at your settings from the open web.

SuExec
The most extreme method of securing your installation is to use Apache enabled with SuExec.
SuExec enables CGI scripts to run under an individual’s user ID, meaning that you don’t need
to set the folder permissions to 777 as before. By eschewing this, you lock the directories down.

Currently, Apache does not have SuExec enabled by default: You need to enable it yourself or,
more likely, ask your system administrator or hosting company to do it for you (this explana-
tion is beyond the scope of this book). The truly interested can look here:
http://httpd.apache.org/docs-2.0/suexec.html.

Once SuExec is up and running, you need to tell MT to take advantage of it. This means
changing mt.cfg. Backup your system first, and then scroll through the file for these lines:

# DBUmask 0022
# HTMLUmask 0022
# UploadUmask 0022
# DirUmask 0022

Uncomment them to the following:

DBUmask 0022
HTMLUmask 0022
UploadUmask 0022
DirUmask 0022

Then find this section:

# HTMLPerms 0777
# UploadPerms 0777

04_57499x ch01.qxd  6/17/05  7:54 PM  Page 9

TEAM LinG



10 Part I — Hacking the Perfect Installation

Again, uncomment the lines like so:

HTMLPerms 0644
UploadPerms 0644

These changes will enable MT to work within the secure constrains of SuExec, and you won’t
have to make your folders world-writable.

Summary
The experience of using a content management system such as Movable Type is a “Eureka!”
moment for most web publishers. There’s no better way to create new content and edit existing
pages than an effective CMS, which makes the old way of editing pages by hand in a text edi-
tor seem vastly inferior.

Movable Type removes the need for hand-editing toil on weblogs and other rapidly changing
websites. In the hands of a Movable Type hacker, the software can be extended into specialized
areas or used to develop new kinds of sites entirely.

04_57499x ch01.qxd  6/17/05  7:54 PM  Page 10

TEAM LinG



Tweaking the
Templates

Have you ever had to edit one piece of text in many different tem-
plates even across several different weblogs and perhaps rebuild each
blog along the way? Did you ever wish you could just edit it once

and be done with it? Are you a victim of the Rebuild Two-Step?

Have you ever wanted to experiment with your templates (for example,
adding some cool widget or making changes to your stylesheet) but couldn’t
do it on your local computer because it required an element of your live site
and you didn’t want expose the havoc you may wreak on your visitors?

Have you ever made a change to a template and then wished fervently to
have the original template back? Wouldn’t version control be a dream?

If you answered yes to any of these questions, you are certainly not alone.
In fact, for any web developer using Movable Type in client work, template
management is one of the most onerous tasks of the project.

As important as the templates are to Movable Type, the template manage-
ment interface has remained almost unchanged since the very first beta
version of Movable Type was released years ago. Given the need, it is sur-
prising that almost no plugins or applications for dealing with templates
have been released — until now, that is (but more about that in a minute).

Luckily, even eschewing the use of plugins, you can do several things to
relieve the burden. This chapter leads you through many of the things I do
at the very beginning of every client project that uses Movable Type. We’ll
start with some of the basics and then move into the really cool stuff.

MT Template Management Features
Movable Type may not provide much in the way of power management
features for templates, but the two it does provide — template modules and
linked template files — are crucial features to making the templates more
manageable.

˛ Template modules

˛ Linked template
files

˛ MT-TemplatePro
plugin

˛ Fast experimental
template editing

˛ No-rebuild static
content

˛ The static blog

˛ Contextual edit
links

˛ Best practices
usability changes

chapter

in this chapter

05_57499x ch02.qxd  6/17/05  7:33 PM  Page 11

TEAM LinG



12 Part I — Hacking the Perfect Installation

Template Modules
One of the advantages of using a templating system is that it separates content from structure
and presentation, at least in theory. The default templates provided with Movable Type stay
fairly true to this goal in that most of the nonstructural content is dynamically generated using
template tags.

However, if you’ve customized your templates, you are most likely guilty of putting some static
content in there along with the dynamic content (for example, a blogroll, upcoming travel, your
e-mail address, a short blurb about you, or even the image source [src] and alternative text for a
picture of you). The list goes on. It’s okay. We all do it.

If you’re developing for commercial clients, this problem is compounded by the mountain of
marketing content, navigation elements, and other consistently displayed text, all of which may
need to be edited by someone who is potentially nontechnical. Separating static and dynamic
content shields your client from complex templates and frees them to easily make edits to the
content they really care about.

This separation can be done using template modules, which you can find at the bottom of the
template management screen. Template modules are separate mini-templates intended for use
inside of other Movable Type templates.

Template modules are included in MT templates via the use of the MTInclude tag, like so:

<$MTInclude module=”MODULE_NAME”$>

For example, suppose a company called BigCo has its slogan on the main index of its website.
Because they have trouble sticking with one slogan, it changes quite often. You would prefer to
put this in an easily accessible place where they can edit it at will without having to pore over
pages of HTML and MT template tags, which may only confuse them. The solution is to
place this content into a template module. Let’s call it “home-bigco-slogan” and make the fol-
lowing the content of the template module:

Big Co. does business like it’s nobody’s business.

Then, in your home page template, you can have something like this:

<p id=”bigco-slogan”>
<$MTInclude module=”home-bigco-slogan”$>
</p>

Upon rebuild of the home page index template, the contents of the home-bigco-slogan tem-
plate module will replace the preceding MTInclude tag with the following:

<p id=”bigco-slogan”>
Big Co. does business like it’s nobody’s business.
</p>

BigCo is happy and can be as indecisive as they like, but understandably, they are annoyed at
having to rebuild their templates each time they make a change in one of the template modules
you set up for them. In a second, I’ll show you how to set things up so that in some cases, they
can skip the rebuild and their changes will be applied immediately.

05_57499x ch02.qxd  6/17/05  7:33 PM  Page 12

TEAM LinG



13Chapter 2 — Tweaking the Templates

Linked Template Files
Face it, the web interface, with its tiny edit box and none of the cool features of your favorite
text editor, is for the birds. It’s fine for making one-off edits or very small tweaks to the tem-
plate, but anything larger and you’ll be yearning for more functionality than a simple web
browser can provide.

For this reason, Movable Type provides the linked template file functionality found on the
individual template editing page. If you provide a server filepath and filename upon saving the
template, a file containing the template will be written to the filesystem.

When the file is created, its size and modification time are recorded in the database, allowing
for synchronization between the file and the database-cached version of the template. If you
make an edit to the file, the changes are recognized and cached in the database and used for
rebuilds or viewing the template itself. If you make an edit through the web interface, Movable
Type caches the new template in the linked file on the filesystem.

One important thing to note, which may be less than obvious, is that if you make an edit to a
linked file while the template is open in your web browser, you will lose all of your changes if
you subsequently click the Save button on the editing page. The browser’s version, which did
not incorporate the most recent edits, is written to the linked file. Rebuilds always take into
account the most recent change, whether it is through the web browser or the linked file.

Advanced Template Management
Template modules and linked files are more than enough for many people. In fact, I would
venture to guess that nearly three-quarters of MT users have yet to even think about using
these two features. But for you, the MT hacker, it’s only just the beginning.

Real-Time Remote Text Editing

Even if you don’t have shell access or don’t care to edit your templates in any other way than
through the web interface, linked template files are still invaluable for static files (for example,
an external stylesheet or JavaScript file) that don’t include any MT template tags and don’t need
to be dynamically generated by the application.

Simply set both the template output file and linked template file to the same file, and any
changes (whether through the web interface or the filesystem) are synchronized and immedi-
ately effective. Movable Type then becomes a regular real-time remote text editor.

05_57499x ch02.qxd  6/17/05  7:33 PM  Page 13

TEAM LinG



14 Part I — Hacking the Perfect Installation

MT-TemplatePro Plugin
In laying out the topics I wanted to cover in this chapter, it quickly became obvious to me just
how much was lacking in the way of template management, or how difficult it would be to
explain all of the shortcuts and tricks that I use along the way to mitigate the effects of these
shortcomings on my work. In fact, it seemed more difficult and prone to errors than simply
creating a solution to obviate the need for such trickery.

The solution I created is a plugin called MT-TemplatePro, which provides the following
functionality:

� Versioning and source control for all templates in the system

� Selective multi-template search-replace and rebuild

� Easy and fast linked file creation and management

� A page with direct links to all of the templates you have permission to edit across all
blogs in the system

If you’ve done any serious Movable Type development in the past, I think you’ll find this 
plugin indispensable. The source and documentation can be found at the companion website 
to this book: www.hackingmt.com/plugins/templatepro.

If you have any suggestions for additional functionality, please don’t hesitate to e-mail me at
the address listed in the documentation.

Fast Experimental Template Editing
Often, I want to make an experimental edit to my templates and either I don’t feel like repli-
cating everything on my local computer or, for some reason, something in the server environ-
ment is necessary to get the full effect of the changes. At the same time, I don’t want these
changes (a euphemism for potential disasters) to be seen by all of my visitors. Achieving this
goal is surprisingly simple, although not entirely obvious to most MT users.

Index templates are easy because they are individually rebuilt. Simply create a new index tem-
plate and copy the code from the original. Use a different output filename and you now have a
nondestructive, untrafficked copy of your index template to edit.

If you are editing any of the other templates, make and save your changes to the template 
and — instead of rebuilding the template type — find an old, rarely viewed entry in the weblog
and resave that entry without editing it.

By doing this, only the indexes and individual, category, and date-based templates containing
that one entry will be rebuilt. This is not only much faster than an archive type rebuild, but also
far less prone to accidental exposure to your readers.

Building index templates can unnecessarily become a big source of performance problems.
When you’re done experimenting and have made the changes to the real index template, be
sure to either remove the experimental template or turn off its page rebuilds — open the
template for editing and uncheck the option Rebuild This Template Automatically When
Rebuilding Index Templates.

05_57499x ch02.qxd  6/17/05  7:33 PM  Page 14

TEAM LinG



15Chapter 2 — Tweaking the Templates

No-rebuild Static Content
Previously, I explained how to easily separate out your static content using template modules.
One of the biggest problems you will encounter, however, is that template modules require a
rebuild of whichever templates include their content before the changes will be displayed.

There is no getting around the fact that any content containing MT template tags must go
through the rebuilding process. However, if your content is completely static and void of tem-
plate tags, you can avoid rebuilds altogether through the use of the linked file feature and
server-side includes (SSIs) or PHP.

To do this, specify a linked file for the template module containing the static content. I find it
best to name these files with an .inc file extension and group them together in a directory
with other included files, just to make things clear down the line for someone who may be
browsing through the filesystem.

Using the previous BigCo slogan example, replace the MTInclude tag in the index template
with the appropriate include function.

For PHP:

<p id=”bigco-slogan”>
<?php include(“/path/to/include/file”); ?>
</p>

For SSI:

<p id=”bigco-slogan”>
<!--#include virtual=”/path/to/include/file” -->
</p>

These solutions require web servers that support server-side includes or PHP. When you make
a change to the template module, the linked file is updated, and, because it is dynamically
included on page load, the change takes effect immediately and rebuilds. For static content,
changes are a thing of the past for BigCo.

The Static Blog
Although template modules and linked files make website management easier, there are times
when they fall very short, as in the following examples:

� When granular permissions are necessary (for example, in a company setting where
each employee should only have privileges to edit the specific content they are autho-
rized to edit)

� When several blogs (in addition to a regular blog, such as a recent press blog, an upcom-
ing events blog, and so on) are used to compile different parts of the same website, lead-
ing to an increase in the overhead of the template management process

� When you want MT to manage an entirely static page as opposed to a static section
of a page

� When you would like your static content to be searchable by visitors

05_57499x ch02.qxd  6/17/05  7:33 PM  Page 15

TEAM LinG



16 Part I — Hacking the Perfect Installation

To make the site management process easier, we turn to the use of a static blog.

A static blog isn’t a blog in the traditional sense. It has no entries (per se), date context,
archives, or even many templates other than the template modules you add. As you’ll see later,
however, it is an extremely powerful concept that turns Movable Type into a heavy-duty con-
tent management system.

The important thing to understand at this point is that through the use of a static blog, you
have a powerful static content manager (or more than one manager, using permissions granted
to different groups) at your fingertips.

Cookie-based Deep Contextual Edit Links
Back in the fall of 2001, I introduced MT-Search as the first add-on to Movable Type (I say
add-on and not plugin because, at the time, there was no such thing as a plugin architecture).
One of its features was an editing link next to each search result, which would only appear if
you were logged into the MT installation via a cookie.

Later, David Gagne (http://davidgagne.net/) came up with the idea of adding a tem-
platized version of the edit link to the weblog templates so that it would show up contextually
next to the entry wherever it appeared. Brenna Koch (“bmk” of Movable Type support boards
fame) improved upon that idea by using a bit of PHP and a secret cookie-setting page to make
the link apparent only for the user or users who had the cookie set.

While all of these ideas are fantastic, they only deal with entries. Why not have every single
piece of content editable directly from the website itself? This is completely possible and some-
thing I call “cookie-based deep contextual edit links.”

The Cookie Page
If you’ve extracted all of your static content from your templates, each static element of the
interface is now editable. Chances are good that if you were to separate all of the elements into
their own templates, there would be quite a lot of them to display. In an ideal world, these links
could only be seen by the person authorized to edit that content. Unfortunately, because of the
way Movable Type sets its authentication cookie, setting up differential display based on it is
very difficult (although not impossible). Fortunately, there is a far easier solution that satisfies
the same goal.

To run this solution, you need three things:

� Use of PHP (although there are ways around this requirement)

� A cookie setting page

� A template with static content

To suppress display of the links for your visitors, you can use PHP to display them only if the
browser has a cookie set by some arbitrary page on your site. Again, because a login (or MT
cookie) would still be required after clicking on the link, it’s not important that the page be
secret, but it should be one that is unlinked and not visited by a non-author, to minimize con-
fusion for your site visitors. In addition, to keep the potentially large number of edit links from
cluttering your own view until you need them, you will want to make the cookie toggleable.

05_57499x ch02.qxd  6/17/05  7:33 PM  Page 16

TEAM LinG



17Chapter 2 — Tweaking the Templates

The following code, saved in that nonlinked page on your site, will achieve all of these goals.
Change the $domain variable to match your site’s domain (minus any subdomains):

<?php

$domain = ‘EXAMPLE.COM’;

$c_name = ‘mteditprivs’;
if ($_COOKIE[$c_name]) {
setcookie($c_name,’0’,time()-31536000,’/’,$domain,’0’);

} else {
setcookie($c_name,’1’,time()+31536000,’/’,$domain,’0’);

}

if ($_GET[‘return’]) {
header(“Location: “.$_GET[‘return’]);

} elseif ($_COOKIE[$c_name]) {
print “Cookie is on.”;

} else {
print “Cookie is off.”;

}
?>

You can access this page directly, in which case the cookie will be toggled appropriately, or
you can access it from any page on your site via your browser’s toolbar using the following
bookmarklet. Replace ‘http://example.com/PAGE’ with the actual URL to the cookie-
setting page:

javascript:document.location.href=’http://example.com/
PAGE?return=’+document.location.href;

If you use the bookmarklet, you will be automatically redirected back to the page you were on
when you clicked it after the cookie was set.

The Edit Link
Now you will want to put an edit link into each template module (or template in a static blog)
you may want to edit:

1. Click on the link to the static blog template or template module containing the content
you wish to be able to edit and copy the URL in the address bar into your clipboard.

2. Paste the link within the following code somewhere in that same template. Replace
EDIT_URL with the URL copied in the previous step:

<?php
if ($_COOKIE[‘mteditprivs’]) {
echo ‘<a href=”EDIT_URL”>[edit]</a>’;

}
?>

3. Save, activate the JavaScript cookie, and edit.

05_57499x ch02.qxd  6/17/05  7:33 PM  Page 17

TEAM LinG



18 Part I — Hacking the Perfect Installation

Hereafter, by using the cookie-setting page or a bookmarklet to (and back from) it, you will
have immediate access to every single piece of static content on your site placed contextually
throughout your website without having to navigate through the myriad of MT administration
screens.

Blog Template Best Practices
So far, you’ve learned what you can do to make your template management experience a better
one. On the other side of the equation is the user. Over the past few years, Six Apart has done
a fabulous job of making usability improvements in their default templates. Of course, being
fairly avid readers of weblogs, we have a few of our own to suggest. Following is a list of
changes you can make to your templates of any regular weblog that will make your visitors’
experience an even better one.

Recent Comments List
Comments are often the most dynamic part of any regular blog. By displaying recent com-
ments on the front page of the site, you can easily improve the user experience for your fre-
quent visitors by pointing them to where the action is.

To include a listing of recent comments, Movable Type provides a global attribute to the
MTEntries tag: recently_commented_on:

<ul>
<MTEntries recently_commented_on=”20”>
<MTComments lastn=”1” sort_order=”descend”>
<li><a href=”<$MTEntryLink$>#c<$MTCommentID$>”><$MTEntryTitle$> -
<$MTCommentAuthor$> (<$MTCommentDate format=”%Y.%m.%d”$>)</a></li>
</MTComments>
</MTEntries>

The preceding code will print out a listing of metadata for, and links to, the last comment
posted in the last 20 recently commented-on entries.

You also could display recent comments in reverse chronological order without regard to
grouping them by entry. The following code displays the last 10 comments:

<MTComments lastn=”10” sort_order=”descend”>
<MTCommentEntry>
<p><a href=”<$MTEntryLink$>”><$MTEntryTitle$></a>
<$MTCommentBody$>
Posted by <$MTCommentAuthorLink spam_protect=”1”$></MTCommentEntry>
<$MTCommentAuthorIdentity$> at <$MTCommentDate$><MTCommentEntry> | <a
href=”<$MTEntryLink$>#reply”>Reply</a><br clear=”all”>
</MTCommentEntry>
</MTComments>

This code incorporates a workaround to a subtle quirk of Movable Type: The
MTCommentDate tag acts differently inside an MTCommentEntry container tag.

05_57499x ch02.qxd  6/17/05  7:33 PM  Page 18

TEAM LinG



19Chapter 2 — Tweaking the Templates

When inside an MTCommentEntry, MTCommentDate displays the date and time of the
entry. By putting it outside the container, MTCommentDate displays the date and time of the
comment, as desired.

Much-improved Comment Listings
There are a few annoyances in the way that Movable Type displays comments, which can be
easily solved with a few minor tweaks.

Properly Named Anchors and Links to Them
Named anchors are URL fragments used to point directly to a specific piece of content on a
web page. Movable Type creates empty named anchors for each comment:

<a id=”c<$MTCommentID$>”></a>

This way, if a #cID (where ID is the comment ID) is tacked onto the end of the URL to the
individual archive page, the page will be scrolled directly to that comment, effectively creating a
permalink to each comment.

Unfortunately, not only is this a syntactically meaningless use of HTML (for those of you who
care about such things), but nowhere in the default templates is there even a link provided to
these anchors, making them useful only to people who read the HTML source.

To offer proper comment permalinks, you should get rid of the empty anchor and use the id
attribute on an existing tag (for example, <div id=”c<$MTCommentID$>”>) related to each
comment. Then, link some part of the comment to this anchor. The byline date, for example, is
a generally accepted place for a permalink:

Posted by <$MTCommentAuthor$> at
<a href=”#<$MTCommentID$>”><$MTCommentDate$></a>

The Faceless Author
Movable Type produces a comment listing with each comment’s text listed first, followed by
the author byline. If the comment is short and the byline is visible, this is not a problem.
However, longer comments create a situation in which you are reading words without knowing
the writer’s identity.

There are few real-world situations in which you hear what is being said or read what was writ-
ten before you ever discover the source, and there is no reason to create one on your weblog.

To really enhance personalization of the comment, print out the comment link in parentheses
next to the author’s name and link it as well.

Suppress the Commenter’s E-mail Address
Although MT provides the global spam_protect attribute on the MTCommentAuthorLink,
it is a very weak protection because programmatic obfuscation can always be programmatically
decoded by a spammer, especially when the source is completely open and relies on standard
encoding techniques or JavaScript.

05_57499x ch02.qxd  6/17/05  7:33 PM  Page 19

TEAM LinG



20 Part I — Hacking the Perfect Installation

If you want to make your visitors happy (or keep them from getting very irate), replace the
spam_protect attribute with the no_email attribute to suppress e-mail addresses entirely
if no URL is provided.

Redirection Is Lame
Not long ago, Six Apart introduced CommentAuthorLink redirects as a defensive weapon
against comment spam. By changing the CommentAuthorLink to an internal link, which
then redirects the user to the actual author’s link, the Google PageRank (that is, the spammer’s
raison d’être) for the spammer’s link is not increased.

Unfortunately, it has been shown that spammers are completely unfazed by this, as demon-
strated by their continued use of scattershot spamming even on blogs where a redirect exists.
What’s more, there are three major problems with this technique:

� It breaks a well-accepted and relied-upon tenet of usability that you never want to
obscure the target of the link in the status bar.

� It breaks the referrer generated by clicking on the link by disassociating it with the page
on which the link is found.

� It violates one of the most important rules of web usability in that it completely breaks
the Back button.

For all of these reasons, we greatly dissuade you from using this technique; it doesn’t help
in the fight against spam and hurts in many different ways. It can be turned off with the
no_redirect attribute to MTCommentAuthorLink tag.

Putting It All Together
The original comment listing code looks like this:

<MTComments>
<a id=”c<$MTCommentID$>”></a>
<$MTCommentBody$>
<p class=”posted”>Posted by: <$MTCommentAuthorLink spam_protect=”1”$>
<MTCommentAuthorIdentity> at <$MTCommentDate$></p>
</MTComments>

Incorporating all of the preceding suggestions gives you the following:

<div id=”c<MTCommentID>”>
<p>
<$MTCommentAuthor$>
(<a href=”<MTCommentURL>”><MTCommentURL></a>)

</p>
<$MTCommentBody$>
<p class=”posted”>

05_57499x ch02.qxd  6/17/05  7:33 PM  Page 20

TEAM LinG



21Chapter 2 — Tweaking the Templates

Posted on
<a href=”#c<MTCommentID>” title=”Permalink to this comment”>
<$MTCommentDate format=”%x %H:%M TZ”$>
</a> 
</p>
</div>

If you find the printed comment author link text to be a bit too long for your liking, you can
easily modify it with Brad Choate’s MT-Perlscript plugin (http://mt-plugins.org/
archives/entry/perlscript.php) to remove common elements such as the
http://www. To do so, replace

(<a href=”<MTCommentURL>”><MTCommentURL></a>)

with the following:

<MTPerlScript>
my $url = ‘<MTCommentURL encode_php=”q”>’;
if ($url =~ m#^\w+://#i) {

(my $stripped_url = $url) =~ s#^http://(www\.)?##;
$stripped_url =~ s#/$##;
print ‘ (<a href=”’.$url.’”>’.$stripped_url.’</a>)’;

} elsif ($url =~ m#\w+#) {
(my $stripped_url = $url) =~ s#^(www\.)?##;
$stripped_url =~ s#/$##;
print ‘ (<a href=”http://’.$url.’”>’.$stripped_url.’</a>)’;

}else {
print ‘’;

}
</MTPerlScript>

Integrating Comments and Trackbacks
Trackbacks are a Six Apart innovation that enables remote notification of and linking back to
posts that refer to a particular trackback-enabled entry or category on any site. They are,
indeed, a form of remote comments.

The default templates and MT functionality dictate that these two types of comments be two
separate lists. The biggest problem with this requirement is that it destroys the chronology of
submissions and tends to treat trackbacks (and the people who link to your entries) as the
unwanted cousins at the family reunion.

Luckily, there is a fabulous plugin called SimpleComments (http://sixapart.com/
pronet/plugins/plugin/simplecomments.html) that strives to reconcile this dispar-
ity. With SimpleComments, you can list comments and trackbacks together in the exact order
in which they were sent and received; and aside from any stylistic differences you choose to
make to differentiate the two, all of your visitors’ submissions will be treated equally.

05_57499x ch02.qxd  6/17/05  7:34 PM  Page 21

TEAM LinG



22 Part I — Hacking the Perfect Installation

Fixing Up Your Syndication Feeds
The syndication feed templates supplied with Movable Type are perfectly serviceable, but they
don’t take full advantage of MT’s capabilities. We can certainly improve them. First up: the
RSS 1.0 feed.

RSS 1.0
RSS 1.0 is, by design, a very rich vocabulary for describing your content. Far too rich, indeed,
for the average RSS application. Much of the data we’re about to provide will not be seen by
your average RSS consumer. However, by providing the data anyway, you enable yourself and
others to write applications that do tap into this data.

To start, for a comparison, here’s the current template (as of 3.15, RSS 1.0):

<?xml version=”1.0” encoding=”<$MTPublishCharset$>”?>

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”
xmlns:sy=”http://purl.org/rss/1.0/modules/syndication/”
xmlns:admin=”http://webns.net/mvcb/”
xmlns:cc=”http://web.resource.org/cc/”
xmlns=”http://purl.org/rss/1.0/”>

<channel rdf:about=”<$MTBlogURL$>”>
<title><$MTBlogName encode_xml=”1”$></title>
<link><$MTBlogURL$></link>
<description><$MTBlogDescription encode_xml=”1”$></description>
<dc:creator></dc:creator>
<dc:date><MTEntries lastn=”1”><$MTEntryDate format=”%Y-%m-
%dT%H:%M:%S”
language=”en”$><$MTBlogTimezone$></MTEntries></dc:date>
<admin:generatorAgent
rdf:resource=”http://www.movabletype.org/?v=<$MTVersion$>” />
<MTBlogIfCCLicense>
<cc:license rdf:resource=”<$MTBlogCCLicenseURL$>” />
</MTBlogIfCCLicense>

<items>
<rdf:Seq><MTEntries lastn=”15”>
<rdf:li rdf:resource=”<$MTEntryPermalink encode_xml=”1”$>” />
</MTEntries></rdf:Seq>
</items>

</channel>

<MTEntries lastn=”15”>
<item rdf:about=”<$MTEntryPermalink encode_xml=”1”$>”>
<title><$MTEntryTitle encode_xml=”1”$></title>
<link><$MTEntryPermalink encode_xml=”1”$></link>
<description><$MTEntryBody encode_xml=”1”$></description>

05_57499x ch02.qxd  6/17/05  7:34 PM  Page 22

TEAM LinG



23Chapter 2 — Tweaking the Templates

<dc:subject><$MTEntryCategory encode_xml=”1”$></dc:subject>
<dc:creator><$MTEntryAuthor encode_xml=”1”$></dc:creator>
<dc:date><$MTEntryDate format=”%Y-%m-%dT%H:%M:%S”
language=”en”$><$MTBlogTimezone$></dc:date>
</item>
</MTEntries>

</rdf:RDF>

We can improve on this. Starting with the <channel> information, a considerable amount of
information is provided here, and there is really only one element left to add in, the
<admin:errorReportsTo>.

This element holds your e-mail address, enabling anyone who might be using your feed finds
to contact you. With my own e-mail address, I add this line to the template:

<admin:errorReportsTo
rdf:resource=”mailto:ben@benhammersley.com”/>

Be warned, however, that many spambots are harvesting e-mail addresses from RSS feeds.
Personally, I’ve given up trying to protect my e-mail address online, and instead rely on spam
filtering. Your mileage, as they say, might vary regarding this.

Moving on, we get to the <item> sections. With weblogs, each <item> refers to an individ-
ual entry, and there is a lot we can say about these. We’re already listing who wrote it, when,
and on which subject, so no need to worry about that. However, we can add more. Comments,
for example, can be listed according to who has contributed to the posting.

In this way, aggregators that recognize this field, such as NewsMonster, can display a list of
commentators, and perhaps provide aggregation based on items for which your friends have
left comments.

Of course, you might turn off commenting for some entries, so we must wrap the entire section
of the template in an <MTEntryIfAllowComments> tag:

<MTEntryIfAllowComments>
<annotate:reference rdf:resource=”<$MTEntryPermalink

encode_xml=”1”$>” />
<MTComments>
<dc:contributor>
<foaf:person foaf:name=”<MTCommentAuthor encode_xml=”1”>”>
<foaf:homepage rdf:resource=”<MTCommentURL

encode_xml=”1”>” />
<foaf:email rdf:resource=”<$MTCommentEmail

encode_xml=”1”$>” />
</foaf:person>

</dc:contributor>
</MTComments>

</MTEntryIfAllowComments>

You’ll notice that we’re providing details of the commentator inside of Friend of a Friend
(FOAF) elements. FOAF is a Resource Description Framework (RDF) vocabulary that gives
us a lot of scope for describing people. For more on that, visit the project’s home page at

05_57499x ch02.qxd  6/17/05  7:34 PM  Page 23

TEAM LinG



24 Part I — Hacking the Perfect Installation

www.foaf-project.org. There’s also a lot to be found in a search of Google; it’s a rapidly
developing field, and new tutorials are out almost weekly.

Trackbacks are also good to include, as they list sites that are related (albeit sometimes loosely).
As trackbacking goes both ways, this is a great bit of metadata to include in one’s feed. We can
add the following to show the pings sent out by the entry itself:

<MTPingsSent>
<trackback:about rdf:resource=”<$MTPingsSentURL

encode_xml=”1”$>”/>
</MTPingsSent>

The following template snippet deals with which pings have been received by the entry in
question, detailed with the <dcterms:isReferencedBy> element, checking first to
determine whether trackbacking that entry has been allowed, and if so, detailing the URL to
ping to trackback to that entry as well:

<MTEntryIfAllowPings>
<trackback:ping rdf:resource=”<MTEntryTrackbackLink

encode_xml=”1”>”/>
<MTPings>
<dcterms:isReferencedBy rdf:resource=”<$MTPingURL

encode_xml=”1”$>” />
</MTPings>

</MTEntryIfAllowPings>

All of the connections to the rest of the web have been detailed. Now, about the content:
The <content:encoded> element is increasingly recognized and used by many to display
their entire entry with the feeds. I like doing this myself, so add this line to the <item>
section:

<content:encoded>
<$MTEntryBody encode_xml=”1”$>
<$MTEntryMore encode_xml=”1”$>
</content:encoded>

Here’s the full template in action:

<?xml version=”1.0” encoding=”<$MTPublishCharset$>”?>

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”
xmlns:sy=”http://purl.org/rss/1.0/modules/syndication/”
xmlns=”http://purl.org/rss/1.0/”
xmlns:admin=”http://webns.net/mvcb/”
xmlns:annotate=”http://purl.org/rss/1.0/modules/annotate/”
xmlns:dcterms=”http://purl.org/dc/terms/”
xmlns:cc=”http://web.resource.org/cc/”
xmlns:content=”http://purl.org/rss/1.0/modules/content/”
xmlns:foaf=”http://xmlns.com/foaf/0.1/”
xmlns:trackback=”http://madskills.com/public/xml/rss/module/

trackback/”
>

05_57499x ch02.qxd  6/17/05  7:34 PM  Page 24

TEAM LinG



25Chapter 2 — Tweaking the Templates

<channel rdf:about=”<$MTBlogURL$>”>
<title><$MTBlogName encode_xml=”1”$></title>
<link><$MTBlogURL$></link>
<description><$MTBlogDescription

encode_xml=”1”$></description>
<dc:language>en-us</dc:language>
<dc:creator>Your Name Here</dc:creator>
<dc:date><MTEntries lastn=”1”><$MTEntryDate format=”%Y-%m-

%dT%H:%M:%S” 
language=”en”$><$MTBlogTimezone$></MTEntries></dc:date>

<admin:generatorAgent 
rdf:resource=”http://www.movabletype.org/?v=<$MTVersion$>”

/>
<admin:errorReportsTo rdf:resource=”mailto:your email here”/>

<MTBlogIfCCLicense>
<cc:license rdf:resource=”<$MTBlogCCLicenseURL$>” />

</MTBlogIfCCLicense>

<items>
<rdf:Seq><MTEntries lastn=”15”>
<rdf:li rdf:resource=”<$MTEntryPermalink encode_xml=”1”$>”

/>
</MTEntries></rdf:Seq>

</items>

</channel>

<MTEntries lastn=”15”>
<item rdf:about=”<$MTEntryPermalink encode_xml=”1”$>”>
<title><$MTEntryTitle encode_xml=”1”$></title>
<link><$MTEntryPermalink encode_xml=”1”$></link>
<description><$MTEntryExcerpt encode_xml=”1”$></description>
<dc:subject><$MTEntryCategory encode_xml=”1”$></dc:subject>
<dc:creator><$MTEntryAuthor encode_xml=”1”$></dc:creator>
<dc:date><$MTEntryDate format=”%Y-%m-%dT%H:%M:%S” 

language=”en”$><$MTBlogTimezone$></dc:date>
<content:encoded><$MTEntryBody encode_xml=”1”$><$MTEntryMore 

encode_xml=”1”$></content:encoded>

<MTEntryIfAllowComments>
<annotate:reference rdf:resource=”<$MTEntryPermalink

encode_xml=”1”$>” />
<MTComments>
<dc:contributor>
<foaf:person foaf:name=”<MTCommentAuthor

encode_xml=”1”>”>
<foaf:homepage rdf:resource=”<MTCommentURL

encode_xml=”1”>” />
<foaf:email rdf:resource=”<$MTCommentEmail

encode_xml=”1”$>” />
</foaf:person>

05_57499x ch02.qxd  6/17/05  7:34 PM  Page 25

TEAM LinG



26 Part I — Hacking the Perfect Installation

</dc:contributor>
</MTComments>

</MTEntryIfAllowComments>

<MTPingsSent>
<trackback:about rdf:resource=”<$MTPingsSentURL

encode_xml=”1”$>”/>
</MTPingsSent>

<MTEntryIfAllowPings>
<trackback:ping rdf:resource=”<MTEntryTrackbackLink

encode_xml=”1”>”/>
<MTPings>
<dcterms:isReferencedBy rdf:resource=”<$MTPingURL

encode_xml=”1”$>” />
</MTPings>
</MTEntryIfAllowPings>

</item>
</MTEntries>

</rdf:RDF>

Remember: If your site is not in English, you need to change the <dc:language> tag at the top
of the feed.

RSS 2.0

The RSS 2.0 template is much simpler than the RSS 1.0 template just examined. It currently
looks like this:

<?xml version=”1.0” encoding=”<$MTPublishCharset$>”?>
<rss version=”2.0”>
<channel>
<title><$MTBlogName remove_html=”1” encode_xml=”1”$></title>
<link><$MTBlogURL$></link>
<description><$MTBlogDescription remove_html=”1”
encode_xml=”1”$></description>
<copyright>Copyright <$MTDate format=”%Y”$></copyright>
<lastBuildDate><MTEntries lastn=”1”><$MTEntryDate
format_name=”rfc822”$></MTEntries></lastBuildDate>
<generator>http://www.movabletype.org/?v=<$MTVersion$></generator>
<docs>http://blogs.law.harvard.edu/tech/rss</docs> 

<MTEntries lastn=”15”>
<item>
<title><$MTEntryTitle remove_html=”1” encode_xml=”1”$></title>
<description><$MTEntryBody encode_xml=”1”$></description>
<link><$MTEntryPermalink encode_xml=”1”$></link>
<guid><$MTEntryPermalink encode_xml=”1”$></guid>
<category><$MTEntryCategory remove_html=”1”
encode_xml=”1”$></category>
<pubDate><$MTEntryDate format_name=”rfc822”$></pubDate>

05_57499x ch02.qxd  6/17/05  7:34 PM  Page 26

TEAM LinG



27Chapter 2 — Tweaking the Templates

</item>
</MTEntries>

</channel>
</rss>

As before, we can add the e-mail address to contact in case of technical trouble. In RSS 2.0,
this is done with the <webMaster> element, like so:

<webMaster>ben@benhammersley.com</webMaster>

Use your own e-mail address in place of mine, of course.

RSS 2.0 also enables you to place the author’s name and e-mail address within the <item>
section. This is done in the format “example@example.com ( Joe Example),” so we add
this line:

<author><MTEntryAuthorEmail> (<MTEntryAuthor>)</author>

That is really as far as we can go with RSS 2.0. Therefore, to sum up, here’s the whole
template again:

<?xml version=”1.0” encoding=”<$MTPublishCharset$>”?>
<rss version=”2.0”>
<channel>
<title><$MTBlogName remove_html=”1” encode_xml=”1”$></title>
<link><$MTBlogURL$></link>
<description><$MTBlogDescription remove_html=”1”
encode_xml=”1”$></description>
<language>en-us</language>
<copyright>Copyright <$MTDate format=”%Y”$></copyright>
<lastBuildDate><MTEntries lastn=”1”><$MTEntryDate
format_name=”rfc822”$></MTEntries></lastBuildDate>
<pubDate><$MTDate format_name=”rfc822”$></pubDate>
<generator>http://www.movabletype.org/?v=<$MTVersion$></generator>
<webMaster>ben@benhammersley.com</webMaster>
<docs>http://blogs.law.harvard.edu/tech/rss</docs> 

<MTEntries lastn=”15”>
<item>
<title><$MTEntryTitle remove_html=”1” encode_xml=”1”$></title>
<description><$MTEntryExcerpt encode_xml=”1”$></description>
<link><$MTEntryPermalink encode_xml=”1”$></link>
<guid><$MTEntryPermalink encode_xml=”1”$></guid>
<category><$MTEntryCategory remove_html=”1”
encode_xml=”1”$></category>
<pubDate><$MTEntryDate format_name=”rfc822”$></pubDate>
<author><MTEntryAuthorEmail> (<MTEntryAuthor>)</author>
</item>
</MTEntries>

</channel>
</rss>

05_57499x ch02.qxd  6/17/05  7:34 PM  Page 27

TEAM LinG



28 Part I — Hacking the Perfect Installation

Summary
Though Movable Type is ostensibly a weblog publishing tool, the software could just as easily
be described as a content management system that can be used on any dynamic web site, espe-
cially one that must be updated frequently over time.

The software’s template-driven publishing system, in the hands of a hacker, can deliver the
content of online magazines, photo albums, marketing presentations, or any other kind of site.

As you gain confidence in your ability to edit templates, you’ll find more ways to put Movable
Type to work.

The software provides support for dozens of template tags and can be supplemented by new
tags implemented as software plugins. These tags integrate completely with the template pub-
lishing system, appearing to users as if they were a built-in part of the software.

By learning the ins and outs of Movable Type’s tags and extending them with plugin tags, you
can take a lot of the sweat out of site maintenance and provide more features to your visitors.

05_57499x ch02.qxd  6/17/05  7:34 PM  Page 28

TEAM LinG



Hacking the
Database

Chapter 3
MT and Database Storage

Chapter 4
Tables in the MT Database

Chapter 5
Absolutely Necessary
Database Tricks

part

in this part

06_57499x pt02.qxd  6/17/05  7:31 PM  Page 29

TEAM LinG



06_57499x pt02.qxd  6/17/05  7:31 PM  Page 30

TEAM LinG



MT and Database
Storage

In the mid-1990s, I did UNIX System Administration for the Internet
division of a monstrously large telecom company. My team managed a
farm of over 40 immensely powerful Sun servers whose raison d’être was

the presentation of a major high-traffic search portal.

The site contained thousands of articles, reviews, pictures, maps, business
listings, and anything else you can think of, including advertising proudly
displayed alongside of it. The content we served was in constant motion,
going up and coming down every single day.

A colossus of a website such as this required a robust and sophisticated pro-
gram to manage it all. Ours provided us with workflow process control,
audit trails, version control, timed publishing and expiration, ad manage-
ment, and about a billion other features that make geeks drool and accoun-
tants weep.

This software was known as a content management system (CMS).

Our day-to-day system administration chores were numerous and often
intense. When we weren’t forming a bucket brigade to put out major fires
(metaphorically speaking, of course), we were constantly fine-tuning these
servers, upgrading software and hardware, and making security enhance-
ments to the system.

One problem we constantly faced was not knowing what was done when
and by whom. With a large team of people maintaining such a complex sys-
tem, it was crucial that we worked to create a sort of hive brain, whereby
each member of the team had the same knowledge of the system’s state as
every other member.

To that end, I created a small Perl program called slogger (short for system
logger) that enabled members of the team to quickly record any activities
and changes they made to the system. The program automatically recorded
the time and date of the submission as well as the UNIX user ID of the
submitter, but it did little else.

Slogger, while infinitely more primitive than the software that ran the site,
was a content management system as well.

˛ The CMS reliance
on databases

˛ The raw power of
DB access

˛ MT-supported
databases

˛ Accessing the
database from the
web or the
command line

˛ Backing up and
restoring the DB

chapter

in this chapter

07_57499x ch03.qxd  6/17/05  8:22 PM  Page 31

TEAM LinG



32 Part II — Hacking the Database

Database-driven Web Publishing
As the previous story illustrates, content management systems cover a broad spectrum of com-
plexity, but they share one basic, common denominator: the database.

All content management systems have a critical reliance on information storage and retrieval.
At the heart of every CMS is a database. Without the database, there is no content. Without
content, a content management system is nothing.

With our portal CMS, all of the content and every single configuration setting was stored in
the biggest and baddest multi-processor-scorching Oracle database the world had seen.
Slogger, conversely, was powered by single, simple text file. Both of these, when structured in a
predictable way, made programmatic data storage and retrieval by a CMS possible.

Movable Type, of course, is no different. Each piece of configurable data or user-added content
is stored in a database. Every time you click a link or a button in the administrative interface,
the database is consulted regarding what data to display as well as whether you have the appro-
priate permissions for the action you are attempting to perform.

In essence, the database is the fuel that makes the Movable Type CMS burn brightly.

The Power of the Database
The big question is, between the web interface and several application programming interfaces
(API) you can use to interact with the MT system, do you really need to know about the
database? The simple answer, of course, is that you don’t — as long as you don’t want to do
anything interesting and you never have any problems.

By virtue of the fact that you are reading this book, I think it’s safe to assume that you do want
to do interesting things. This is good. Understanding the underlying data structure and the
ways to access that data opens up a whole new world of possibilities. With just a few standard
Structured Query Language (SQL) statements, you can do everything to or with your data that
Movable Type can.

Have you ever wanted to do the following?

� Perform a global search-and-replace across all of your blogs’ entries and/or templates

� Edit a trackback to remove validation-destroying characters

� Include MT-related information on non-MT published pages

� Clone your MT installation or migrate it from one server to another

� Merge two blogs or move entries (and associated comments/trackbacks) from one blog
to another

The possibilities of what you can do are really only limited by your imagination.

07_57499x ch03.qxd  6/17/05  8:22 PM  Page 32

TEAM LinG



33Chapter 3 — MT and Database Storage

As far as problems are concerned, as much as we like to stick our heads in the sand, cross our
fingers, and shake chicken bones to keep them away, problems always happen. The difference
between the big ones and the small ones is often a matter of preparedness, to which under-
standing the database is key.

Following are some common problems that can be cured with a little DB magic:

� Making changes en masse to anything (setting entries to draft, changing author, etc.)

� Moving stray comments to their rightful entries

� Recovering a forgotten password with no author e-mail or hint

� Cleaning up thousands of comments after an abusive user floods the site with junk
messages

� Major, catastrophic data loss

Do I have your attention? Perhaps I’ve piqued your interest? Well, good! We’ll get to many of
these issues in Chapter 5.

Moreover, in this and the following two chapters, you will learn everything there is to know
about the Movable Type database. With that knowledge, not only will you better understand
what is happening under the hood, you’ll also learn how to get in there and fix it when things
go wrong.

Database Support in MT
Movable Type supports the following four different types of databases:

� BerkeleyDB

� MySQL

� SQLite

� PostgreSQL

BerkeleyDB is the one database system supported since the first version of Movable Type.
Ironically, with the MT 3.0 release, it became the only one that Six Apart is actively dissuading
users from adopting due to performance and reliability issues. For our purposes, BerkeleyDB is
of no use because it is nearly impossible to access the stored data directly. In short, if you’re
using BerkeleyDB, rip out this entire section of the book and move on.

The other three systems are all fabulous and free database management systems, and each has
its own special characteristics, which attract a legion of rabid devotees. PostgreSQL is mostly
adored by the super-hardcore techie crowd for its sophisticated feature set, standard SQL sup-
port, and GPL license. SQLite is championed by those who are wowed by its compact size and
memory imprint. MySQL is loved for its simplicity, stability, and great tool set.

07_57499x ch03.qxd  6/17/05  8:22 PM  Page 33

TEAM LinG



34 Part II — Hacking the Database

Putting the religious wars aside, in this book I focus on MySQL when I present database-
specific information, such as SQL statements or connection details. The rationale is two-fold:

� MySQL has a far larger install base both in general and among MT users because its
lower support costs, native multi-threaded design, and fine-grained permission model
make it the best choice in a shared server environment common to most web-hosting
companies.

� If you are using PostgreSQL or SQLite, you most likely already know how to connect to
the database and are intimately familiar with SQL. For the reason mentioned previously,
the same is not generally true for MySQL users.

If you are using PostgreSQL or SQLite and are unfamiliar with SQL, this section of the book
will still provide you with a great deal of important nonvendor-specific information about the
MT database. For more information about comparable SQL statements and connection details
for your platform, you can refer to this book’s companion websites at www.wiley.com/
compbooks/allen and hackingmt.com.

You can download MySQL from www.mysql.com, PostgreSQL from www.postgresql.
org, SQLite from www.sqlite.org, and BerkeleyDB from Sleepycat Software at www.
sleepycat.com.

Accessing the Database
You can access your MySQL database either through the command line (if you have shell
access) or via a Web interface that either you or your web-hosting company has installed.

Command-line Access
Log into your shell account and type the following:

mysql -u USERNAME -h HOST -p DATABASE

At the same time, replace USERNAME, HOST and DATABASE with the MT configuration vari-
ables found in mt.cfg (DBUser, DBHost and Database). If DBHost is commented out in
mt.cfg or is set to localhost, you can simply omit it like this:

mysql -u USERNAME -p DATABASE

You will be prompted for your password, which you can find in mt-db-pass.cgi. If you
have been granted command-line access to MySQL, you should see something like this:

Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 12152 to server version: 3.23.44

07_57499x ch03.qxd  6/17/05  8:22 PM  Page 34

TEAM LinG



35Chapter 3 — MT and Database Storage

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.
mysql> 

At that point, you are ready to go. While we will use this more in the coming chapters, here
are a couple of quick SQL commands just to get you started. Note that each ends with a 
semicolon:

� show tables; — View all of the available tables in a database.

� desc TABLENAME; — View the definition for table TABLENAME.

� select * from TABLENAME; — Display all of the rows from the table TABLENAME.

Web Interface Access
Although many packages are available for web-based management of a MySQL database,
phpMyAdmin (www.phpmyadmin.net) is the most widely installed and sophisticated inter-
face that I have found. Because of its powerful feature set and the fact that it can be installed
in an unprivileged user’s account in under five minutes, it is the package that I most strongly
recommend.

Although the documentation is excellent, it is also quite extensive, so here is the five-minute
quick-start guide to default installation and configuration:

1. Download the latest stable build (currently version 2.6.1) from www.phpmyadmin.net
to your computer.

2. Unpack the archive using your favorite decompression utility, just as you did with
Movable Type.

3. Change the name of the uncompressed folder to phpmyadmin (or anything you prefer
to the current name) and upload the entire package to the desired location within the
web-accessible document root of your web server (for example, in the same directory as
your main index file).

4. Inside of the phpmyadmin folder on your computer, find and open the file
config.inc.php in a basic text editor.

5. Find the following line:

$cfg[‘PmaAbsoluteUri’] = ‘’;

Enter the URL to the phpmyadmin directory, ending in a slash (/). If you followed the
previous suggestions, this would be as follows:

$cfg[‘PmaAbsoluteUri’] = ‘http://YOURDOMAIN.COM/phpmyadmin/’;

6. Find the first instance of the following three lines:

$cfg[‘Servers’][$i][‘host’]          = ‘localhost’;
$cfg[‘Servers’][$i][‘user’]          = ‘root’;
$cfg[‘Servers’][$i][‘password’]      = ‘’

07_57499x ch03.qxd  6/17/05  8:22 PM  Page 35

TEAM LinG



36 Part II — Hacking the Database

Modify these lines to reflect your database configuration found in mt.cfg (DBHost
and DBUser) and mt-db-pass.cgi. Don’t change the host setting unless you also
had to do so in your mt.cfg.

7. Re-upload your modified config.inc.php to the phpmyadmin directory and load
the URL from step 5 in your web browser.

If you followed the previous instructions carefully, you should be looking at the phpMyAdmin
welcome screen. On the left, you can find a drop-down listing of any databases in your
installation.

Select your MT database and familiarize yourself with the interface. Most of this section’s
exercises are done using the SQL functionality accessible from the SQL tab on top, although
the Query functionality on the main database page and the Browse and Search features from
the table view pages are also enlightening and extremely useful.

The phpMyAdmin directory you just installed is unprotected, and anyone can access it and do
anything they like to your data. It is vitally important that you at least provide .htaccess pro-
tection on the directory even if you do not employ stronger access controls provided by the pro-
gram. See the phpMyAdmin documentation for these and other configuration details.

Database Backups
Now that you have direct access to the database, the first thing you should do is back it up. In
fact, back it up now, and before you ever do anything to it. In addition, back it up regularly,
maybe even twice regularly, which I think is called bi-regularly or semi-regularly. . .

Seriously, my dentist used to tell me that I should only floss the teeth I want to keep. I am
telling you that you should only back up the data you want to keep. I personally back up my
entire MT database every single day, and it is downloaded to my computer every single night.
That way, if something catastrophic happens, I haven’t lost much.

The following sections describe the two ways to back up and restore your data.

Backing Up via the Command Line
To back up from the command line, log into your shell account and type the following at the
prompt, replacing USERNAME and DATABASE as described previously:

mysqldump -a -u USERNAME -p DATABASE > FILENAME.mysql 
Enter password:
#

The resulting file, FILENAME.mysql, is a full backup with which you can fully restore your
database in case of problems.

07_57499x ch03.qxd  6/17/05  8:22 PM  Page 36

TEAM LinG



37Chapter 3 — MT and Database Storage

Restoring via the Command Line
Restoring from FILENAME.mysql is a three-step process:

1. Drop the database:

# mysqladmin -u USERNAME -p drop DATABASE
Enter password: 
Dropping the database is potentially a very bad thing to do.
Any data stored in the database will be destroyed.

Do you really want to drop the ‘DATABASE’ database [y/N] y
Database “DATABASE” dropped
#

2. Re-create the database:

#   mysqladmin -u USERNAME -p create DATABASE 
Enter password: 
#

3. Import the backup data:.

# mysql -u USERNAME -p DATABASE < FILENAME.mysql
Enter password:
#

Backing Up via phpMyAdmin
As is often the case, backing a database up via phpMyAdmin is even easier than doing it manu-
ally (after you’ve done it once, that is). From the main database page, click Export in the top
button bar. Set up the options as follows:

Export Section
This section specifies from which tables data should be exported and the format of the file
itself. You should select all tables and choose SQL as the data type.

SQL Section
This section gives you various SQL syntax options that you can choose for your export. You
should check both the Structure and Data checkboxes.

Structure
Check the following SQL structure options:

� Add drop table

� Add AUTO_INCREMENT value

� Enclose table and fieldnames with backquotes

07_57499x ch03.qxd  6/17/05  8:22 PM  Page 37

TEAM LinG



38 Part II — Hacking the Database

Data
Do not check any of the SQL insert syntax options (for example, Complete, Extended, or
Delayed) but make sure that the export type is set to Insert.

Save as File Section
This section enables you to choose options about the exported file itself. If you want to save
your export to a file (always helpful when you want to actually back up your data), check the
Save as File option.

In Filename Template, you can set the name of the file to be saved to your desktop. The default
is __DB__, which yields the database name plus the .sql file extension. This is fine for a one
time backup, but I tend to prefer %Y%m%d%H%M%S-__DB__, which yields a time-stamped file-
name (for example, 20040510120000-mt.sql).

By default, the export will be downloaded in a plaintext file format. If, however, your exports
are as big as mine (about 6MB), you may want to choose some form of compression to shorten
your download and save on bandwidth. Note that due to a bug in the software at the time of
writing, if you choose a compression format, the .gz and .zip extensions may not be added
on, so you may want to add them yourself after the download is complete.

Go
Once you click the Go button, the download of your export file will proceed and phpMyAdmin
will remember your settings for the next time.

Restoring via phpMyAdmin
To restore from a backup, click the SQL tab in the top menu bar. You will see a button labeled
Choose File. Click it and select the file from your computer in the resulting dialog box. Leave
the Compression option at Autodetect unless you experience problems. Click Go and your
database will be restored. It just keeps getting simpler, doesn’t it?

Summary
Movable Type integrates seamlessly with four database programs, the simpler, file-based pro-
grams BerkeleyDB and SQLite, and the more sophisticated relational databases MySQL and
PostgreSQL. Because all four are either open source or public domain, the only costs to pay are
in the time spent installing the programs and mastering their use.

Because Perl modules function as drivers, providing an interface between the MT content
management system and a database, an MT user need not know anything about how the two
programs interact.

This chapter just begins to demonstrate how you can abandon the know-nothing approach,
take advantage of database knowledge, and extend the capabilities of an MT-driven website.
You’ll learn more in the next two chapters, “Tables in the MT Database” and “Absolutely
Necessary Database Tricks.”

07_57499x ch03.qxd  6/17/05  8:22 PM  Page 38

TEAM LinG



˛ The object-oriented
MT database

˛ The naming scheme

˛ Full descriptions of
each table in the
MT database

chapter

in this chapter

Tables in the
MT Database

If you have ever done software development against a poorly structured
database or seen one, you know how difficult life can be. Tables and/or
columns named ‘Cross Reference’, PendingUser-datas,

days_in_advance_for_notifies, XX_KE_CMTR, pfield17, and
the ubiquitous id are enough to turn a relatively sane and stable individual
into — well — neither.

Luckily, despite the growth of Movable Type (and its database) over the
years, it is not one of those types.

As you may know, Movable Type is written in object-oriented (OO) Perl,
which simply means that it is based on a collection of highly encapsulated
and modular object classes (for example, blogs, authors, entries, comments,
and templates) whose member objects have common attributes and interact
with each other through each of their class methods.

Using a generic Object class (which is covered in Chapter 8) and Perl’s
DBI class, each major system object and its attributes are mapped directly
into the database in the form of tables, fields, and records. That is, each
major system class is a table, its attributes are columns in that table, and
each instance of the class is a record in that table.

You can find a listing of each major system class and the table in which its
objects are stored in Table 4-1. If you are unfamiliar with object-oriented
concepts, see the sidebar later in this section entitled “A Quick Primer on
MT and OO.”

Table 4-1 MT Classes Stored in the Database

Table Class

mt_author All authors and registered commenters in the MT
installation

mt_blog Blogs listed in the main menu of the admin interface

mt_category All categories for all blogs in the installation

mt_comment All comments submitted on all entries for all blogs
in the installation

Continued

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 39

TEAM LinG



40 Part II — Hacking the Database

A Quick Primer on MT and OO

If your eyes began to glaze over or perhaps beads of sweat formed on your brow when you read
the words “object-oriented,” I have good news for you: You don’t really need to know anything
about object-oriented programming to understand this chapter. That said, if you understand a
few key concepts, the structure of the database will be clearer to you sooner rather than later.

The Movable Type system is made up of lots of “things.” We can categorize these things into dif-
ferent classes. For example, some common things that can be grouped together include blogs,
entries, authors, comments, and TrackBack pings. Each of these things is called an object class.

An object class has a set of attributes that are common to each member of that class. Every
author has a login ID, a password, a nickname, and a password recovery hint, just to name a
few. These are class attributes.

When you create a new author, you are creating an instance of the author class (that is, an
author object), which inherits the attributes of that author class. This particular author object
has a login ID, a password, a nickname, and a password recovery hint that are set at the time of
creation. These things are attributes of the new author object.

All of these things are stored in the database in a regular and predictable way. There is a table
for each class, a column in each table for each class attribute, and a record in the class’s table for
each instance of the class. For example, an author table contains records of authors containing
values for name, password, author hint, and so on.

Table 4-1 (continued)

Table Class

mt_entry All entries for all blogs in the installation

mt_ipbanlist All IP addresses banned across the installation

mt_log The items in the Activity log

mt_notification All e-mail addresses to be sent notifications for each blog

mt_permission A mapping of author and commenter permissions for each blog

mt_placement A mapping of the category assignments for each entry

mt_plugindata Storage of configuration data for plugins that require persistence

mt_session Active TypeKey sessions and caching of remote data

mt_tbping Data of incoming TrackBack pings

mt_template Templates for all blogs in the installation

mt_templatemap A mapping of templates, blogs, and archiving types

mt_trackback Information about pingable entries or categories in the system

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 40

TEAM LinG



41Chapter 4 — Tables in the MT Database

The object-oriented data storage model combined with a very consistent and predictable nam-
ing scheme for each table and column makes the Movable Type database as easy to understand
as the underlying object-oriented code itself.

This chapter is a guided tour of every nook and cranny of the Movable Type database. You’ll
soon learn how all of your data is stored, and, in doing so, unlock all of the mysteries of this
marvelous publishing platform.

What’s in a Name?
A handful of easy-to-remember and fairly steadfast rules were adhered to in the design of the
MT database. These rules make it easy to remember what tables and columns are called, which
is important because there are over 15 tables and 190 columns.

Lowercase Only
All table and column names in the MT database have only lowercase letters. For example,
Author becomes author, TrackBack becomes trackback, and so on.

Table Names
As you saw in Table 8-1, the name of a table is simply the name of the object prefixed with
“mt_”. Therefore, the table for the Author object is mt_author. The comment objects are stored
in mt_comment. If the object name is two or more words, you drop the spaces. IP Ban List
becomes mt_ipbanlist, and the Template map table is mt_templatemap.

Singular in Number
Although a table holds many things of one type, each record is still a single entity. Hence, all
tables are named in the singular.

Column Names
The name of each column in a table is prefixed with the name of the table object. For example,
in the mt_entry table, you will find an entry_id. The password of an author would be held in a
table named mt_author in a column named author_password. Naming columns in this fashion
removes all ambiguity (whether in SQL statements or documentation) regarding the table to
which a column belongs. You know that entry_allow_comments is in the mt_entry table and
template_text is in the mt_template table.

Underscores for Spaces
Although we eliminated the space between multiword object names for naming tables, looking
at column names such as blog_manualapprovecommenters and blog_oldstylearchivelinks
would get rather old quickly. Hence, for these we use underscores in places where there would
naturally be a space. The extra keystrokes really make a difference: blog_manual_approve_
commenters and blog_old_style_archive_links.

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 41

TEAM LinG



42 Part II — Hacking the Database

A Primary Key Is an “id”
Each table has a column by which a particular record can be uniquely identified. In the
database world, this is called a primary key.

In the MT database, the primary key is always labeled “id” but follows the normal rules for col-
umn naming, as previously described. For example, the primary key for the mt_entry table is
entry_id and in the mt_tbping table, tbping_id.

A Foreign Key Is Also a Primary Key
We now know that a comment record in mt_comment has a primary key called comment_id
and that this column uniquely identifies the mt_comment record, but all comments are linked
to an entry. To uniquely identify the entry to which a comment is linked, store the entry’s pri-
mary key (entry_id) in the mt_comment record in a column called comment_entry_id.

A primary key from one table stored in another table to link the two records together is called a
foreign key. In the MT database, a foreign key is named by appending the object name of the
table onto the column name from the original table. A blog_id stored in the mt_template table
is called template_blog_id. An author_id linked to a set of permissions in the mt_permission
table would be a permission_author_id.

Things We Will Skip
Although in general these naming conventions make the database easy to understand, there are
a handful of fields whose purpose may not be entirely obvious. Furthermore, many fields con-
tain complex or enumerated options as data. This chapter covers all of these topics in detail.

However, due to the large number of tables and columns in the database, it would be impossi-
ble (or at least dreadfully boring) to go over each one in detail. The following list outlines what
I will be skipping for most tables:

� Primary keys — While the primary key is perhaps the most important field in each
table, it is also the most predictable. With the exception of mt_session, every primary key
is simply an auto-incrementing integer that is unique within its table. I will, however,
cover the deviant nature of session_id in the mt_session section.

� Foreign keys — Because foreign keys are simply primary keys from another table, I will
not cover them unless the relationship between the two objects is not obvious. The
exception to this is that the blog_id is a foreign key in almost every table, even if it is
made redundant by another foreign key. The reason for its inclusion is usually for faster
indexing and lookups and I will refrain from repeating that for every table.

� Created and modified fields — All fields ending in _created_on are date fields that
indicate the date of record creation. They are in the format of YYYY-mm-dd
HH:MM:SS — for example, 2004-04-23 17:55:01.

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 42

TEAM LinG



43Chapter 4 — Tables in the MT Database

All fields ending in _modified_on are timestamp fields, which automatically record
the time of any change to the record. Time in these fields is measured in Unix epoch
time, or number of seconds since disco was first unleashed upon the world.

Many tables also have _created_by and _modified_by fields. These fields are cur-
rently unused (except for author_created_by) and therefore NULL in value. In a
future version of MT, they may be used for tracking changes to the database for the pur-
poses of an audit trail. For now, we will skip them.

MT Database Description
This chapter is intended to be a reference for all of your database hacking needs. Because of the
length and amount of information contained herein, it is not recommended for light reading or
if you need to operate a motor vehicle.

For each table, I will provide a short description of its purpose, followed by the table definition
and a description of the important fields or those storing more complex values.

mt_author
If you’ve done any MT hacking in the past, you are probably very familiar with this table, as it
holds the identification and authentication (login) data for all registered authors in the system.
MT 3.0 expands the scope of this table by also including all TypeKey-authenticated com-
menters who leave a comment on your site. This was done in order to facilitate management of
identity for the purposes of giving you more granular control over who can comment on your
site and how (for example, moderated comments). By storing the details of authenticated com-
menters, MT remembers who you have accepted as an unrestricted commenter, whose com-
ments must first be moderated, and whose comments are not welcome on your site.

However, because the functionality available to commenters is extremely limited in comparison
to authors for whom the table was originally made, most of the fields are not applicable and
remain NULL in value for their records. In the descriptions that follow, I will point out which
fields do indeed contain data for commenters.

Table 4-2 defines mt_author.

Table 4-2 mt_author Definition

author_id int(11) NOT NULL auto_increment

author_name varchar(50) NOT NULL default ‘’

author_type tinyint(4) NOT NULL default ‘0’

author_nickname varchar(50) default NULL

Continued 

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 43

TEAM LinG



44 Part II — Hacking the Database

Table 4-2 (continued)

author_password varchar(60) NOT NULL default ‘’

author_email varchar(75) NOT NULL default ‘’

author_url varchar(255) default NULL

author_can_create_blog tinyint(4) default NULL

author_can_view_log tinyint(4) default NULL

author_hint varchar(75) default NULL

author_created_by int(11) default NULL

author_public_key text

author_preferred_language varchar(50) default NULL

author_remote_auth_username varchar(50) default NULL

author_remote_auth_token varchar(50) default NULL

PRIMARY KEY: author_id

UNIQUE KEY: author_name (author_name,author_type)

INDEX: author_email

author_name
This field holds the MT username for authors or the TypeKey username for commenters. This
field is required but it is not, by itself, unique.

author_type
This field distinguishes between a regular author and a commenter with values of 1 and 2,
respectively. This field and the preceding author_name field combine to form a unique key,
which simply means that there cannot be two author records of the same author_type that have
the same author_name.

Note that author records (type 1) and commenter records (type 2) in the mt_author table give
users completely different and mutually exclusive capabilities. If a user is both an author and an
authenticated commenter, that user will be represented by two distinct records, one for each
role. This means that on a blog that requires TypeKey authentication, even a blog author can be
banned from commenting. If you needed further proof that you should be nice to (or wary of )
your co-authors, this is it.

author_nickname
For authors, this field is optional and is set from the author’s profile page. For commenters, this
field is set to the display name in the user’s TypeKey profile at the time of authentication.

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 44

TEAM LinG



45Chapter 4 — Tables in the MT Database

If a user changes her TypeKey nickname, her record in the mt_author table will be updated to
reflect the new information. It does not mean, however, that previous comments will reflect
that change, because the nickname displayed with the comment is permanently stored with the
comment record in the mt_comment table.

author_password
This field holds the author’s password, encrypted with Perl’s crypt function using a random salt
value. For commenters, this field is always “(none),” as commenters are not authorized to log in.

author_email
For authors, this field contains the e-mail address set in the author’s profile. For commenters,
this field will normally contain the e-mail address listed in the user’s TypeKey profile, although
if the weblog configuration does not require revelation of the e-mail address to the weblog
authors and the commenter declines to reveal it, it will be encrypted.

Like author_nickname, this field is updated after each TypeKey login for registered commenters.

author_can_create_blog and author_can_view_log
These fields are Boolean flags indicating whether the author is permitted to create blogs or
view the system activity log, respectively. For commenters, they are always NULL.

author_created_by
This field contains the author_id of the author who created the author and hence the record.
This field is NULL for the initial author created by mt-load.cgi as well as for commenters.

author_public_key
This field is currently unused, but in a future version of MT it will hold the author’s ASCII-
armored public key, with which the system can authenticate incoming e-mail messages from
authors for the purpose of remote posting, editing, and configuration.

author_preferred_language
Movable Type can be localized in many different languages through the use of language packs
downloadable from movabletype.org. This field holds the author’s preferred language, and the
interface uses the images and text mappings found in the appropriate language pack. If the
value of this field is NULL or if the language pack for the preferred language is removed, the
application defaults to American English. This value is NULL for commenters.

author_remote_auth_username and author_remote_auth_token
These fields are currently unused. In the future, they will enable remote TypeKey services.

mt_blog
This table contains all of the configuration data for each weblog in the system. Each of the
table’s 48 fields precisely match a well-explained option on the weblog configuration screens.

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 45

TEAM LinG



46 Part II — Hacking the Database

For the sake of brevity, only a few of the more interesting fields are covered in the following
sections.

Table 4-3 defines mt_blog.

Table 4-3 mt_blog Definition

blog_id int(11) NOT NULL auto_increment

blog_name varchar(255) NOT NULL default ‘’

blog_description text

blog_site_path varchar(255) default NULL

blog_site_url varchar(255) default NULL

blog_archive_path varchar(255) default NULL

blog_archive_url varchar(255) default NULL

blog_archive_type varchar(255) default NULL

blog_archive_type_preferred varchar(25) default NULL

blog_days_on_index smallint(6) default NULL

blog_language varchar(5) default NULL

blog_file_extension varchar(10) default NULL

blog_email_new_comments tinyint(4) default NULL

blog_email_new_pings tinyint(4) default NULL

blog_allow_comment_html tinyint(4) default NULL

blog_autolink_urls tinyint(4) default NULL

blog_sort_order_posts varchar(8) default NULL

blog_sort_order_comments varchar(8) default NULL

blog_allow_comments_default tinyint(4) default NULL

blog_allow_pings_default tinyint(4) default NULL

blog_server_offset float default NULL

blog_convert_paras varchar(30) default NULL

blog_convert_paras_comments varchar(30) default NULL

blog_status_default tinyint(4) default NULL

blog_allow_anon_comments tinyint(4) default NULL

blog_allow_reg_comments tinyint(4) default NULL

blog_allow_unreg_comments tinyint(4) default NULL

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 46

TEAM LinG



47Chapter 4 — Tables in the MT Database

blog_moderate_unreg_comments tinyint(4) default NULL

blog_require_comment_emails tinyint(4) default NULL

blog_manual_approve_commenters tinyint(4) default NULL

blog_words_in_excerpt smallint(6) default NULL

blog_ping_weblogs tinyint(4) default NULL

blog_ping_blogs tinyint(4) default NULL

blog_ping_others text

blog_mt_update_key varchar(30) default NULL

blog_autodiscover_links tinyint(4) default NULL

blog_welcome_msg text

blog_old_style_archive_links tinyint(4) default NULL

blog_archive_tmpl_monthly varchar(255) default NULL

blog_archive_tmpl_weekly varchar(255) default NULL

blog_archive_tmpl_daily varchar(255) default NULL

blog_archive_tmpl_individual varchar(255) default NULL

blog_archive_tmpl_category varchar(255) default NULL

blog_google_api_key varchar(32) default NULL

blog_sanitize_spec varchar(255) default NULL

blog_cc_license varchar(255) default NULL

blog_is_dynamic tinyint(4) default NULL

blog_remote_auth_token varchar(50) default NULL

PRIMARY KEY: blog_id

INDEX: blog_name (blog_name)

blog_archive_type
This field, set via Weblog Config ➪ Archiving, is a comma-separated list of all archive types
used for the blog in question. The archive type options (case-sensitive) are Individual, Daily,
Weekly, Monthly, and Category.

blog_allow_comment_html
This Boolean flag specifies whether HTML should be stripped from comments when they are
displayed or when a page containing comments is built. Regardless of value, MT always stores
the comment as it was input into the system by the commenter. If HTML is allowed in com-
ments, it will be sanitized according to the blog_sanitize_spec or that listed in the mt.cfg file.

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 47

TEAM LinG



48 Part II — Hacking the Database

blog_allow_comments_default
This field holds the default value for the comments setting on new entries (see entry_allow_
comments for further description).

blog_allow_pings_default
This field holds the default Boolean value for “Allow Incoming Pings” on new entries (also see
entry_allow_pings).

blog_convert_paras and blog_convert_paras_comments
These two fields, misnamed for historical reasons, hold the blog’s default value for text format-
ting of new entries and comments, respectively.

Possible values for these fields include the following:

� “0” for no conversion

� “__default__” for the default Movable Type paragraph conversion

� The unique identifier provided by any text formatting plugins via the MT ➪
add_text_filter() function discussed in Chapter 10

Multiple comma-separated values are allowed and the filters will be applied in the order of
appearance. However, in the current interface, there is no way to select multiple filters, so you
will rarely ever see multiple values in these fields. (Also see entry_convert_breaks for more
information.)

blog_status_default
This field holds the default status value for the new entries. (See entry_status for possible
values.)

blog_allow_anon_comments, blog_allow_unreg_comments, and
blog_allow_reg_comments
These three Boolean fields make up a trinary option that dictates the level of commenter
anonymity allowed for the blog.

The possible combinations and meanings of those combinations are described in Table 4-4.
Note that a true value (1) for allow_unreg_comments effectively overrides allow_anon_
comments.

Table 4-4 Comment Identity Configuration Setting

Type allow_anon allow_unreg Commenters Allowed

Anonymous 1 1 All

Not anonymous 0 1 Non-anonymous and registered 

Registered 0 0 Registered

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 48

TEAM LinG



49Chapter 4 — Tables in the MT Database

blog_moderate_unreg_comments
This Boolean flag dictates whether comments from unregistered commenters should be
approved before being displayed on the blog.

blog_require_comment_emails
This Boolean flag dictates whether an e-mail address is required from registered commenters.
If this flag is set to 0, the e-mail address will be returned from the TypeKey login but will be
encrypted.

blog_manual_approve_commenters
This Boolean flag determines whether registered commenters should be approved before their
comments will be displayed. Note that this is different from blog_moderate_unreg_comments,
which forces approval of the comments and not the commenter because the true identity of an
unregistered commenter is not known.

blog_archive_tmpl_*
These five columns with names that begin with blog_archive_tmpl are no longer used but
remain for backward compatibility.

blog_is_dynamic
This Boolean field indicates whether a blog should be dynamically rendered with mt-
view.cgi or be statically published.

blog_remote_auth_token
This is the blog’s TypeKey authorization token. This token enables the TypeKey moderation
and registration features for the blog’s comments.

mt_category
The mt_category table contains information on every category in all blogs across the installa-
tion. Categories may have the same label, but must be unique within the same blog. Hence,
category_blog_id and category_label combine to form a unique binary key.

Table 4-5 defines mt_category.

Table 4-5 mt_category Definition

category_id int(11) NOT NULL auto_increment

category_blog_id int(11) NOT NULL default ‘0’

category_allow_pings tinyint(4) default NULL

category_label varchar(100) NOT NULL default ‘’

category_description text

Continued 

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 49

TEAM LinG



50 Part II — Hacking the Database

Table 4-5 (continued)

category_author_id int(11) default NULL

category_ping_urls text

PRIMARY KEY: category_id

UNIQUE KEY: category_blog_id (category_blog_id,category_label)

category_allow_pings
This Boolean value determines whether a category can receive pings or not. When pings are
enabled for a category, a record is created in mt_trackback and the inverse of this value is
cached in trackback_is_disabled.

category_author_id
This field holds the primary key of the author who created the category. It currently has no
purpose within the program.

category_ping_urls
This is a carriage-return-separated list of TrackBack URLs to ping when an entry is saved
with the category of record assigned to it.

mt_comment
This table holds information about comments submitted to any entry in any blog of the
installation.

Table 4-6 defines mt_comment.

Table 4-6 mt_comment Definition

comment_id int(11) NOT NULL auto_increment

comment_blog_id int(11) NOT NULL default ‘0’

comment_entry_id int(11) NOT NULL default ‘0’

comment_ip varchar(16) default NULL

comment_author varchar(100) default NULL

comment_email varchar(75) default NULL

comment_url varchar(255) default NULL

comment_commenter_id int(11) default NULL

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 50

TEAM LinG



51Chapter 4 — Tables in the MT Database

comment_visible tinyint(4) default NULL

comment_text text

comment_created_on datetime NOT NULL default ‘0000-00-00 00:00:00’

comment_modified_on timestamp(14) NOT NULL

comment_created_by int(11) default NULL

comment_modified_by int(11) default NULL

PRIMARY KEY: comment_id

INDEXES: comment_created_on, comment_entry_id, comment_blog_id

comment_ip
This field contains the IP address of the commenter.

comment_author
This field contains either the commenter’s name as input into the comment submission form
or, in the case of authenticated commenters, the nickname specified on the user’s TypeKey
profile page. If anonymous comments are allowed, this field can be NULL.

comment_email
Gone are the days when this was a simple text input field. In MT 3.0, the contents of this field
are as follows:

1. If the blog requires an e-mail address from the commenter, the e-mail address will be the
value stored.

2. If the blog does not require e-mail from TypeKey-authenticated commenters, this field
will be the encrypted e-mail address of any TypeKey-authenticated commenter.

3. If the blog allows unregistered, anonymous commenters, the e-mail field may be left
blank and hence NULL.

In the first two cases, if the commenter is a TypeKey-authenticated commenter, the comment_
email field will be assigned the value of the author_email field after the TypeKey login.

One important thing to note is that if you later change the blog’s e-mail address requirements,
the effect is not retroactive. You cannot make previous comments with no e-mails disappear just
by turning on the requirement in the Weblog Config, nor will past comments from TypeKey-
authenticated commenters be encrypted.

comment_url and comment_text
These fields contain the input from the comment form. The comment_url field may be NULL.

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 51

TEAM LinG



52 Part II — Hacking the Database

comment_commenter_id
For a comment by a registered commenter, this field contains their author_id. In all other cases,
it is NULL.

Note that, for purposes of clarity, this column represents a deviation from the MT database
naming scheme. Normally, this would be comment_author_id because it is a foreign key from
the mt_author table.

comment_visible
This Boolean value determines whether a comment should be shown upon rebuild or whether
it is still pending moderation.

mt_entry
This table holds information related to every entry posted to any blog in the installation.

Table 4-7 defines mt_entry.

Table 4-7 mt_entry Definition

entry_id int(11) NOT NULL auto_increment

entry_blog_id int(11) NOT NULL default ‘0’

entry_status tinyint(4) NOT NULL default ‘0’

entry_author_id int(11) NOT NULL default ‘0’

entry_allow_comments tinyint(4) default NULL

entry_allow_pings tinyint(4) default NULL

entry_convert_breaks varchar(30) default NULL

entry_category_id int(11) default NULL

entry_title varchar(255) default NULL

entry_excerpt text

entry_text text

entry_text_more text

entry_to_ping_urls text

entry_pinged_urls text

entry_keywords text

entry_tangent_cache text

entry_created_on datetime NOT NULL default ‘0000-00-00 00:00:00’

entry_modified_on timestamp(14) NOT NULL

entry_created_by int(11) default NULL

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 52

TEAM LinG



53Chapter 4 — Tables in the MT Database

entry_modified_by int(11) default NULL

entry_basename varchar(50) default NULL

PRIMARY KEY: entry_id

INDEXES: entry_blog_id, entry_status, entry_author_id, entry_created_on

entry_status
This field indicates whether an entry should be published upon rebuild. Draft and Publish are
represented by values of 1 and 2, respectively, in this field. Throughout the MT source code,
these values are represented by the constants HOLD and RELEASE. (Also see blog_status_
default.)

entry_allow_comments
This value indicates whether comments are disallowed, open, or closed for an entry, with values
of 0, 1, and 2, respectively. (Also see blog_allow_comments_default.)

entry_allow_pings
This Boolean value determines whether an entry can receive pings or not. When pings are
enabled for an entry, a record is created in mt_trackback and the inverse of this value is cached
in trackback_is_disabled. (Also see blog_allow_pings_default.)

entry_convert_breaks
This field holds the text formatting preference for the entry. (See blog_convert_paras for more
information.)

entry_category_id
This field is unused and exists only for backward compatibility of upgrades from older versions
of Movable Type.

entry_title, entry_text, entry_text_more, entry_excerpt, and entry_keywords
These fields hold the content for the four major text input sections of the entry editing screen.
If entry_excerpt is NULL or empty, the excerpt is dynamically created from the entry_text when
needed.

entry_to_ping_urls
This field contains a list of all URLs to ping the next time the entry is saved. Although usually
a non-NULL value for this field indicates that the entry has not yet been published, failed pings
from published entries will also remain stored here until successfully sent.

entry_pinged_urls
This field contains a list of all pings sent at some point during the saving of an entry. If a URL
is pinged more than once, duplicates can exist in this field.

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 53

TEAM LinG



54 Part II — Hacking the Database

entry_tangent_cache
The tangent_cache is a field created for use with the Tangent plugin, which connects web
entries from different sites together. Weblog entries are sent to Tangent, receive links from
other sites based on the content of the entries, and are presented. See www.tangent.cx for
more information.

entry_basename
This field holds the default basename for the entry’s individual archive file. In most cases, it is a
version of the real or derived entry title, which alters the title to make it suitable for use as a
directory name by removing HTML tags, making characters lowercase, stripping non-
alphanumeric characters other than underscore (_), and replacing spaces with underscores. The
result will be truncated to 15 characters.

The basename is used to avoid the creation of conflicting individual archive filenames for iden-
tically titled entries in a given blog. If there is a matching basename on another entry in the
same blog, an incremented counter value is appended with an underscore (for example, my_post,
my_post_1, my_post_2, and so on).

The entry_basename is ignored if an Archive File template is specified for the individual
archive under Weblog Config ➪ Archive Files.

mt_ipbanlist
mt_ipbanlist holds the records for each IP address a user has banned for incoming comments
or TrackBacks. Each record contains blog_id, so the settings are on a per-blog basis.

Despite the fact that this field is evaluated as a regular expression, making it possible to ban
ranges of IP addresses, this functionality is rarely effective for dismissing unwanted com-
menters due to the proliferation of dynamic IP addressing for dialup and DSL users.
TrackBacks, on the other hand, tend to come from servers with fixed IP addresses and can be
easily isolated. Table 4-8 defines mt_ipbanlist.

Table 4-8 mt_ipbanlist Definition

ipbanlist_id int(11) NOT NULL auto_increment

ipbanlist_blog_id int(11) NOT NULL default ‘0’

ipbanlist_ip varchar(15) NOT NULL default ‘’

ipbanlist_created_on datetime NOT NULL default ‘0000-00-00 00:00:00’

ipbanlist_modified_on timestamp(14) NOT NULL

ipbanlist_created_by int(11) default NULL

ipbanlist_modified_by int(11) default NULL

PRIMARY KEY: ipbanlist_id

INDEXES: ipbanlist_blog_id, ipbanlist_ip

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 54

TEAM LinG



55Chapter 4 — Tables in the MT Database

mt_log
The mt_log table holds information about each entry in the system-wide activity log accessible
from the main menu of the administrative interface. Table 4-9 defines mt_log.

Table 4-9 mt_log Definition

log_id int(11) NOT NULL auto_increment

log_message varchar(255) default NULL

log_ip varchar(16) default NULL

log_created_on datetime NOT NULL default ‘0000-00-00 00:00:00’

log_modified_on timestamp(14) NOT NULL

log_created_by int(11) default NULL

log_modified_by int(11) default NULL

PRIMARY KEY: log_id

INDEX: log_created_on (log_created_on)

If a log item is created in response to a user’s action, the log_ip field contains that user’s IP
address. The field can be NULL if it’s not applicable. For example, if MT-Rebuild, a plugin that
is run via cron, were to put an entry in the activity log, log_ip would be NULL.

mt_notification
Table 4-10 defines mt_notification.

Table 4-10 mt_notification Definition

notification_id int(11) NOT NULL auto_increment

notification_blog_id int(11) NOT NULL default ‘0’

notification_name varchar(50) default NULL

notification_email varchar(75) default NULL

notification_url varchar(255) default NULL

notification_created_on datetime NOT NULL default ‘0000-00-00 00:00:00’

notification_modified_on timestamp(14) NOT NULL

notification_created_by int(11) default NULL

Continued

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 55

TEAM LinG



56 Part II — Hacking the Database

Table 4-10 (continued)

notification_modified_by int(11) default NULL

PRIMARY KEY: notification_id

INDEX: notification_blog_id (notification_blog_id)

mt_permission
The main purpose of this table is to store author permissions for each blog. For instance, one
record may give an author permission to do anything to a particular blog, while another record
may restrict that author to simply being able to comment on a second blog. For each author/
blog combination, a record will be stored in mt_permission detailing this permission level.

This table also holds display preferences for the entry editing screen for each author.

Table 4-11 defines mt_permission.

Table 4-11 mt_permission Definition

permission_id int(11) NOT NULL auto_increment

permission_author_id int(11) NOT NULL default ‘0’

permission_blog_id int(11) NOT NULL default ‘0’

permission_role_mask smallint(6) default NULL

permission_entry_prefs varchar(255) default NULL

PRIMARY KEY: permission_id

UNIQUE KEY: permission_blog_id (permission_blog_id,permission_author_id)

permission_author_id and permission_blog_id
These foreign keys uniquely identify the author and blog for which the permissions detailed in
permission_role_mask will be applied.

permission_role_mask
This integer value determines what permissions an author or commenter has for a particular
blog. User permissions and calculation of the permission_role_mask are discussed in Chapter 8,
“Perl API.”

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 56

TEAM LinG



57Chapter 4 — Tables in the MT Database

permission_entry_prefs
This field holds an author’s layout preferences for the entry editing screen on a particular blog.
The format for this field is as follows:

FIELDS|POSITION

POSITION is the position of the Save/Preview/Delete Entry button bar and can be either Top
or Bottom. FIELDS indicates the type of layout or user interface (UI) elements to be included.
Acceptable values are Basic, Advanced, or a comma-separated listing of the following:

� category

� extended

� excerpt

� keywords

� allow_comments

� convert_breaks

� allow_pings

� authored_on

� ping_urls

mt_placement
The mt_placement table holds information about the relationships between each entry and any
categories to which it may be assigned. In the MT system, an entry can have any number of
categories (or placements) but only one can be the primary category.

Each record in mt_placement is an entry-category assignment and consists of a primary key,
three foreign keys (entry_id, category_id, and blog_id), and one Boolean field to designate the
primary category for the entry. Table 4-12 defines mt_placement.

Table 4-12 mt_placement Definition

placement_id int(11) NOT NULL auto_increment

placement_entry_id int(11) NOT NULL default ‘0’

placement_blog_id int(11) NOT NULL default ‘0’

placement_category_id int(11) NOT NULL default ‘0’

placement_is_primary tinyint(4) NOT NULL default ‘0’

PRIMARY KEY: placement_id

INDEXES: placement_entry_id, placement_category_id, placement_is_primary

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 57

TEAM LinG



58 Part II — Hacking the Database

mt_plugindata
Most plugins are fairly simple in that they take raw data as an input and simply return it in
some consistently processed way. They need no further instructions and they don’t need to
know what happened the last time they did their work.

Other plugins, however, require detailed configuration or “persistent memory” from one call to
the next in order to operate (for example, MT-Blacklist and the subcategories plugin) For these
plugins, mt_plugindata offers structured, protected persistent storage that is easily accessible
through the Plugin API.

Table 4-13 defines mt_plugindata.

Table 4-13 mt_plugindata Definition

plugindata_id int(11) NOT NULL auto_increment

plugindata_plugin varchar(50) NOT NULL default ‘’

plugindata_key varchar(255) NOT NULL default ‘’

plugindata_data mediumtext

PRIMARY KEY: plugindata_id

INDEXES: plugindata_plugin, plugindata_key

plugindata_plugin
This field holds a name that uniquely identifies the plugin storing the data. This field creates a
namespace for the plugin in the mt_plugindata table so that there is no clash between similarly
named plugindata_keys.

plugindata_key
This field provides the name or label of the data being stored. This is like the key in an associa-
tive array. This field and the preceding plugindata_plugin field combine to form a unique
binary key.

plugindata_data
This field contains the serialized data structure stored by the plugin function. Because of its
binary format, this field is not directly editable.

mt_session
Three components of the Movable Type system have limited life spans. During these life
spans, otherwise known as sessions, information about these elements is stored in the 
mt_session table.

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 58

TEAM LinG



59Chapter 4 — Tables in the MT Database

The three nonpersistent elements are as follows:

� Commenter authentication state and related information

� A cache of the TypeKey public DSA encryption key

� A cache of the news box on the main MT administration page for Movable Type news

Table 4-14 briefly lists the contents for each field.

Table 4-14 mt_session Definition

session_id varchar(80) NOT NULL default ‘’

session_data text

session_email varchar(255) default NULL

session_name varchar(255) default NULL

session_start int(11) NOT NULL default ‘0’

session_kind char(2) default NULL

PRIMARY KEY: session_id

INDEXES: session_start

session_id
The session_id field contains the following:

� For commenter sessions, the sig string returned from TypeKey authentication. This
string is also stored in the tk_commenter cookie.

� For the public key cache, a timestamp plus eight random characters.

� For the news box cache, it is an empty (but non_NULL) string.

session_data
The session_data field contains the following:

� For commenter sessions, this field is NULL.

� For the public key cache, this field holds the TypeKey public DSA key.

� For the news box cache, this holds the cached news items.

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 59

TEAM LinG



60 Part II — Hacking the Database

session_email
The session_email field contains the following:

� For commenter sessions, this is the e-mail returned from the TypeKey login. It may be
encrypted depending on the setting in blog_require_comment_email.

� For the public key cache and new box cache, this field is NULL.

session_name
The session_name field contains the following:

� For commenter sessions, it is the TypeKey login ID also stored in author_name.

� For the public key cache and news box cache, this field has a NULL value.

session_start
For all sessions, session_start is the “created on” timestamp in UNIX epoch time.

session_kind
The session_kind field contains the following:

� SI for commenter sessions

� KY for the public key cache

� NW for the news box cache

mt_tbping
This table holds information about incoming TrackBack pings. Records in mt_tbping are not
directly associated with the object of the ping, but instead with a record in mt_trackback.
(See mt_trackback for more details.)

Table 4-15 defines mt_tbping.

Table 4-15 mt_tbping Definition

tbping_id int(11) NOT NULL auto_increment

tbping_blog_id int(11) NOT NULL default ‘0’

tbping_tb_id int(11) NOT NULL default ‘0’

tbping_title varchar(255) default NULL

tbping_excerpt text

tbping_source_url varchar(255) default NULL

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 60

TEAM LinG



61Chapter 4 — Tables in the MT Database

tbping_ip varchar(15) NOT NULL default ‘’

tbping_blog_name varchar(255) default NULL

tbping_created_on datetime NOT NULL default ‘0000-00-00 00:00:00’

tbping_modified_on timestamp(14) NOT NULL

tbping_created_by int(11) default NULL

tbping_modified_by int(11) default NULL

PRIMARY KEY: tbping_id

INDEXES: tbping_blog_id, tbping_tb_id, tbping_ip, tbping_created_on

tbping_tb_id
This field contains the ID of the mt_trackback record for the pinged item.

tbping_title
This field contains the title of the source entry from which a TrackBack item was pinged. If the
ping was sent with no title, either the first five words of the excerpt or the entry’s entire URL is
used, in that order of preference.

tbping_excerpt
This contains the excerpt of the entry from which a TrackBack item was pinged. If the excerpt
is longer than 255 characters, it is trimmed to 252 and ellipses (...) are added to the end.

tbping_ip
This field contains the IP address of the source of the ping.

tbping_blog_name
This field contains the name of the blog from which the ping was sent.

mt_template
The mt_template table holds information about templates and their related input and output
files. It is the source of the Template listing screen in the MT administrative interface for
each blog.

Table 4-16 defines mt_template.

Table 4-16 mt_template Definition

template_id int(11) NOT NULL auto_increment

template_blog_id int(11) NOT NULL default ‘0’

Continued

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 61

TEAM LinG



62 Part II — Hacking the Database

Table 4-16 (continued)

template_name varchar(50) NOT NULL default ‘’

template_type varchar(25) NOT NULL default ‘’

template_outfile varchar(255) default NULL

template_rebuild_me tinyint(4) default ‘1’

template_text text

template_linked_file varchar(255) default NULL

template_linked_file_mtime varchar(10) default NULL

template_linked_file_size mediumint(9) default NULL

PRIMARY KEY: template_id

UNIQUE KEY: template_blog_id (template_blog_id,template_name)

INDEXES: template_type

template_type
This field indicates what type of template the record is storing. Functionally, there are 10 dif-
ferent types of templates in the MT system, each having its own special purpose and set of
allowed and relevant tags.

The following is a list of the possible values of this field, followed by a short description of its
purpose:

� index — Used for generating one single page

� archive — Used for generating date-based archives (Daily, Weekly, Monthly)

� category — Used for generating category archives

� individual — Used for generating individual (per-entry) archives

� custom — Custom template modules for inclusion in other templates

� comment_preview — Template for dynamic comment preview page

� comment_pending — Template for dynamic comment moderated page

� comment_error — Template for error display page for invalid comments

� popup_image — Popup page for displaying uploaded images

� comments — Comment listing page

� pings — TrackBack ping listing page

In a default MT 3.0 installation, you will have seven index templates and one of each of the
other types except for custom.

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 62

TEAM LinG



63Chapter 4 — Tables in the MT Database

template_outfile
The template_outfile field holds the path to the file where the final static output produced
from an index template will be stored. This field is only relevant (non-NULL) for Index tem-
plates. Comment, Trackback, and file upload templates are used by the application to dynami-
cally generate pages, and the output files for the other archiving types (archive, category,
individual, and so on) are specified in templatemap_file_template because they generate more
than one file upon rebuild.

Like all filepaths stored in the MT database, this field can be either an absolute path or relative
to the Local Site Path setting under Weblog Config ➪ Core Setup.

template_rebuild_me
This Boolean field determines whether or not the template should be included when all tem-
plates or templates of its type are rebuilt. Like template_outfile, this field is only relevant to
index files.

Note that for purposes of backward compatibility with older versions of MT, a NULL value in
this field is assumed to have a true value, meaning that an index template must have an explic-
itly set value of 0 to be excluded from rebuilding.

template_linked_file
This field holds the filepath for the file optionally linked to the template.

Like all filepaths stored in the MT database, this field can be either an absolute path or relative
to the Local Site Path setting under Weblog Config ➪ Core Setup.

template_linked_file_mtime and template_linked_file_size
These two fields hold the last-known modification time and size of the linked file and indicate
whether the content stored in template_text is current for the purposes of rebuilding. Upon
check, if either of these file attributes differs from the stored values, the linked file’s contents,
modification time (mtime), and size are recached in the database.

The modification time is measured in seconds since the UNIX epoch (1970). The file size is
measured in bytes.

mt_templatemap
When you create a new archive under Weblog Config ➪ Archiving, a templatemap record is
created. Each record represents an association between a blog, a template, and an archive type.

This little understood and underutilized feature enables you, for example, to create an individ-
ual entry RSS feed containing comments and TrackBacks, in addition to your regular individ-
ual archives.

Table 4-17 defines mt_templatemap.

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 63

TEAM LinG



64 Part II — Hacking the Database

Table 4-17 mt_templatemap Definition

templatemap_id int(11) NOT NULL auto_increment

templatemap_blog_id int(11) NOT NULL default ‘0’

templatemap_template_id int(11) NOT NULL default ‘0’

templatemap_archive_type varchar(25) NOT NULL default ‘’

templatemap_file_template varchar(255) default NULL

templatemap_is_preferred tinyint(4) NOT NULL default ‘0’

PRIMARY KEY: templatemap_id

INDEXES: templatemap_blog_id, templatemap_template_id,
templatemap_archive_type, templatemap_is_preferred

templatemap_archive_type
This value provides MT with the necessary context to compile the tags contained within the
template. The valid archive types are as follows:

� Individual

� Daily

� Weekly

� Monthly

� Category

templatemap_file_template
In producing the archive set, MT needs to know where the files are to be stored. This path and
filename schema is created using regular MT template tags as variables and stored in this field.
In the MT interface, you will see this schema referred to as an “Archive File Template,” which,
unfortunately, is most confusing for novice users for obvious reasons.

If, for example, you wanted to store your individual entries by category, you would create and
put the following in your Individual Archive File Template:

<$MTEntryCategory dirify=”1”$>/<$MTEntryTitle dirify=”1”$>

templatemap_is_preferred
This Boolean field determines whether the given templatemap should be used as the preferred
archive in constructing links to the archive for the <$MTEntryPermalink$>,
<$MTEntryLink$>, <$MTArchiveLink$>, and <$MTCategoryArchiveLink$> tags.

In the previous individual entry RSS feed example, you would probably want to set your nor-
mal Individual archives as your preferred archive of the two so that
<$MTEntryPermalink$> doesn’t point to an XML file.

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 64

TEAM LinG



65Chapter 4 — Tables in the MT Database

mt_trackback
mt_trackback holds information about each entry or category in the MT install that can be
pinged or was pingable at some point in the past. It does not contain any information about
incoming pings, as that information is held in the mt_tbping table.

Table 4-18 defines mt_trackback.

Table 4-18 mt_trackback Definition

trackback_id int(11) NOT NULL auto_increment

trackback_blog_id int(11) NOT NULL default ‘0’

trackback_title varchar(255) default NULL

trackback_description text

trackback_rss_file varchar(255) default NULL

trackback_url varchar(255) default NULL

trackback_entry_id int(11) NOT NULL default ‘0’

trackback_category_id int(11) NOT NULL default ‘0’

trackback_passphrase varchar(30) default NULL

trackback_is_disabled tinyint(4) default ‘0’

trackback_created_on datetime NOT NULL default ‘0000-00-00 00:00:00’

trackback_modified_on timestamp(14) NOT NULL

trackback_created_by int(11) default NULL

trackback_modified_by int(11) default NULL

PRIMARY KEY: trackback_id

INDEXES: trackback_blog_id, trackback_entry_id, trackback_category_id,
trackback_created_on

trackback_title, trackback_description, and trackback_url
These fields cache information about the TrackBack item either found in other tables or nor-
mally processed through other means. For entries, they contain the title, excerpt, and URL to
the archived entry in the preferred archive. For categories, they contain the category label,
description, and URL to the category archive.

They are cached so that if an RSS file is generated for each TrackBack item (see
GenerateTrackbackRSS in the mt.cfg or the TrackBack section of the Movable Type manual),
it can be compiled quickly so that the connection with the remote server sending the ping
won’t time out. When any of these fields are changed in their source tables, the information is
updated in the mt_trackback table.

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 65

TEAM LinG



66 Part II — Hacking the Database

trackback_rss_file
This field is currently unused. All TrackBack RSS files are named using the TrackBack ID
and .xml.

trackback_entry_id and trackback_category_id
For each record, one of these two fields will contain the ID of the item that accepts incoming
pings and the other will have a value of 0. The column in this table with the non-zero value
(that is, a valid entry_id) determines whether the record is a category or entry TrackBack item.

trackback_passphrase
This field holds an optional passphrase chosen to protect a category enabled for pinging. The
passphrase is held in clear text and is transmitted as part of the ping URL. For example, in the
following URL, the trackback_id is 1 and whodooyoulove is the trackback_passphrase:

http://jayallen.org/mt/mt-tb.cgi/1/whodooyoulove

trackback_is_disabled
This Boolean field indicates whether a certain TrackBack item can receive pings or not. Like
trackback_title et al, this value exists in mt_trackback only for lookup optimization. The value
is the inverse value of entry_allow_pings and category_allow_pings.

Summary
Movable Type content ends up in a relational database as tables that contain a specific kind of
information, including mt_comment for visitor comments, mt_entry for weblog entries, and
mt_ipbanlist for IP addresses blocked from submitting comments and TrackBack pings.

You can work with these database tables from Movable Type plugins or external software,
manipulating web content in whatever manner meets your needs.

08_57499x ch04.qxd  6/17/05  7:52 PM  Page 66

TEAM LinG



Absolutely 
Necessary
Database Tricks

At this point you know everything there is to know about how
Movable Type stores your data. You understand that each table is a
system object and that the fields in the table are simply its attributes.

You are probably also now well familiar with the naming scheme. Therefore,
the next question is, what can you do with that data?

The answer is, quite literally, “anything you can think of.”

This chapter demonstrates just a handful of useful techniques that can make
your life easier and your site richer. The examples herein are sometimes
complex and intrinsically heavy on usage of Structured Query Language
(SQL). However, even if you are a veritable newbie, the task-oriented,
cookbook nature of this chapter, combined with the careful explanation of
each SQL statement, will make it easy for you to follow along and join in
the fun!

Before performing any of the feats in this chapter, please back up
your database as described in Chapter 3. One command can
erase a lifetime of content. It’s always better to be safe than
sorry.

Database Backup
Chapter 3 covered how to back up and restore your database. This is
extremely important and useful information that must not only be under-
stood, but also practiced regularly. Typically, the two biggest barriers to
performing regular backups are the difficulty of the operation itself and
remembering or consistently having the time to do it.

As previously shown, backing up a MySQL database is not difficult, but
how can you make it so easy that you’ll never forget and never lack the time
to do it?

The answer is simple: cron.

˛ Automating your
backups

˛ Making changes
en masse

˛ Cloning or moving
your install

˛ Editing TrackBacks

˛ Relocating stray
comments

˛ Recovering lost
passwords

˛ Global search and
replace

chapter

in this chapter

09_57499x ch05.qxd  6/17/05  7:43 PM  Page 67

TEAM LinG



68 Part II — Hacking the Database

Cron is every UNIX user’s best friend. It is a program installed by default on all UNIX plat-
forms that enables you to schedule jobs to run at a certain time in the future and to specify a
frequency for execution.

Everything that you can do from the command line you can also do through cron. Each user
has his or her own cron job schedule, otherwise known as a crontab. The UNIX system man-
ages all of these jobs and executes them at the times specified by the owner.

In many cases, web-hosting companies offer crontab access through your account control
panel. These web-based control panels offer a much easier editing interface than is available via
the command line due to the fairly arcane format of the crontab. If you are not well versed in
command-line basics and UNIX text editors, you may find this option preferable.

If you don’t have control panel access to cron or you are at least somewhat familiar with UNIX,
you can access cron from the command line. To list the jobs in your crontab, type the following:

crontab -l

If you want to edit your crontab, simply type the following:

crontab -e

At this point, your default editor will start and provide you with a space to enter or edit your
scheduled jobs. When you quit your editor, your changes will be saved and scheduled in the
system.

The Crontab Format
If you must go in through the shell, the crontab format can be a bit overwhelming. I will give
you the very basics in order to get you started. You can read the manual pages for crontab,
which describe the format in detail, by typing the following at the command line:

man 5 crontab

In short, each line of the crontab file is a command. Two types of commands are allowed in the
crontab: job scheduling and environment setting commands.

Scheduling commands are divided into six fields that are space-delimited. The fields and their
acceptable values are as follows:

minute        0-59
hour          0-23
day of month  1-31
month         1-12 (or names, see below)
day of week   0-7 (either 0 or 7 is Sun, or use names)
job command   See below

For all of the time and date fields, you can either specify a value from the preceding list or use
an asterisk (*). Asterisks are wildcards that indicate that all of the values of that field are to be
assumed. A better way to think of it, however, is that an asterisk indicates that there is no
restriction for that field.

For example, if you wanted a command to run every day at 2:00 A.M., the date fields (we will
get to the job command in a second) would look like this:

0 2 * * *

09_57499x ch05.qxd  6/17/05  7:43 PM  Page 68

TEAM LinG



69Chapter 5 — Absolutely Necessary Database Tricks

The 2 indicates the hour (on a 24-hour system) and the 0 indicates 0 minutes. Because this job
will run every day, there are no restrictions on the other fields, so they contain asterisks.

The job command field is the command that you would issue if you were performing the action
from the command line.

Scheduling the Backup
For the purposes of this tip, we only need to use a few of the fields above. How often you back
up depends on how active your site is in terms of comments, TrackBacks, and entries. If you
have a low-traffic site, backing up twice per month may be acceptable. Your entry in crontab
would be as follows:

0 1 1,15 * *  mysqldump -a -u USERNAME -p PASSWORD DATABASE >Æ
~/backups/`date +%Y%m%d`_backup.mysql

Replacing the all-caps placeholders with their actual values will produce a time-stamped
(YYYYMMDD) dump of your database at 1:00 A.M. on the first and fifteenth of every month,
placed in a previously created directory in your home directory called backups. Because each
backup is time-stamped, your backups are never overwritten and you can download them at
your leisure.

Putting your MySQL password in your crontab causes it to show up in the process listing 
(ps -aux) for the duration of the program execution. Because database dumps usually take only
a second or two, I consider this an acceptable risk.

However, if you would prefer to avoid this, you can look into using the expect program
installed on most versions of UNIX with which you can script an interactive session with MySQL.

TMTOWTDI with the MySQL Bible

The rallying cry of Perl mongers around the world is “There’s more than one way to do it.” That
is also true with MySQL. If you’ve got a keen eye for SQL, you will recognize that the code I
present is often not the easiest, most elegant, or optimized choice. However, aside from being
useful, all of the examples were carefully chosen to illustrate a point to anyone less confident
with their database hacking.

For those of you who are new to SQL or to MySQL’s variety of it, you simply must bookmark
MySQL.com. The site contains a wealth of information in its online manual, including com-
ments by users detailing real-world solutions to real-world problems. You can find the manual at
http://dev.mysql.com/doc/mysql.

If there is anything you don’t understand (particularly some of the more complex functions), or
if you simply want to modify or extend any of the examples in this chapter to suit your own
needs, always make the manual your first stop.

By the way, have you backed up your database lately?

09_57499x ch05.qxd  6/17/05  7:43 PM  Page 69

TEAM LinG



70 Part II — Hacking the Database

If you have a site with higher traffic, you may want to back up each night by changing the date
fields to

30 4 * * *

and using the job command previously listed. This produces the same database dump nightly at
4:30 A.M.

After completing your job, cron will, by default, send an e-mail to your user account (login
name plus server name) to let you know that it ran. It will also send you any output written to
standard output, although in our case there is none.

If you would like to use an e-mail address other than the default, you can issue an environment
setting command (the second of the two types of allowed crontab commands) and set the
MAILTO environment variable right in the crontab:

MAILTO=fred@mydomain.com
0 1 1,15 * *  mysqldump -a -u USERNAME -p PASSWORD DATABASE >Æ
~/backups/`date +%Y%m%d`_backup.mysql

For each job in the crontab, the MAILTO environment will be set to fred@mydomain.com.

Making Mass Changes
There are any number of reasons why you might want to make changes en masse directly
through the database. There are some tasks that you simply cannot do from the MT admin
interface. Issuing a single SQL statement is infinitely faster than slogging through page load
after page load., checking checkboxes, clicking Submit buttons, and waiting for popup win-
dows to pop to accomplish the same task. Being able to modify 10,000 records in less than one
second is raw, unadulterated power.

Conversely, there is no safety net (unless of course, you’ve backed up). By issuing direct SQL
commands, you are bypassing the benevolent protection of MT and taunting the terrible
demon of catastrophic data loss. Luckily (or infuriatingly, depending on your perspective),
MySQL is extremely finicky about syntax, so if you miss a quote mark you won’t destroy the
world; you’ll simply get an error.

Practicing Safe SQL
In these exercises, you need to be very careful with two commands because they change the
state of the database, potentially for the worse: DELETE and UPDATE.

To reduce the possibility of anything bad happening, there are a few best practices that you
should try to keep in mind and observe as you experiment with the examples in this chapter.

Be SELECTive
Both of these commands are almost always issued with a WHERE clause to limit the scope of
action to a subset of records in the table. That same WHERE clause can and should first be used
in a SELECT statement (which is completely nondestructive) on the same table to ensure that
you will only be deleting or updating the records intended.

09_57499x ch05.qxd  6/17/05  7:43 PM  Page 70

TEAM LinG



71Chapter 5 — Absolutely Necessary Database Tricks

For example, before doing this

DELETE FROM mt_comments WHERE comment_ip like ‘192.168%’;

you should do something like this:

SELECT comment_id, comment_author FROM mt_comments
WHERE comment_ip like ‘192.168%’;

ID Is Key
Whenever you are deleting or updating only one row, you should always restrict the command
in the WHERE clause on its primary key. This way, you avoid the possibility of accidentally
selecting other matching rows, because the primary key is always unique in its table.

Good:

UPDATE mt_entry 
SET entry_keywords = ‘Boring’ 
WHERE entry_id = 62;

Bad:

UPDATE mt_entry 
SET entry_keywords = ‘Boring’
WHERE entry_title = ‘What I ate for lunch today’;

If you are deleting or updating several rows that are contiguous, you can restrict them to a
range of values on the primary key with the BETWEEN operator (note that it’s inclusive):

DELETE FROM mt_comment 
WHERE comment_id BETWEEN 249 AND 321;

LIMIT the Damage
If you are expecting to delete or update a specific number of records (which you may have
attained from a SELECT count()), limit the number of possible rows acted upon with the
LIMIT modifier:

DELETE FROM mt_comment 
WHERE comment_text LIKE ‘%You Suck!%’ 
LIMIT 22;

Back Up Your Data
If you haven’t gotten the hint by now, I will assume that you are either supremely confident in
your abilities or not particularly fond of your data. In either case, this is your last reminder on
my part to back up your database.

Closing Old Comments
Some people have found that closing comments on older entries has drastically cut down on
the amount of comment spam they receive. Of course, I liken this to burning down your house
to fix a termite problem or keeping a museum closed seven days per week to keep the floors
clean for visitors. While your entries may be old to you, they are new to most people; and non-
spam comments on older entries are no less valid than on newer ones.

09_57499x ch05.qxd  6/17/05  7:43 PM  Page 71

TEAM LinG



72 Part II — Hacking the Database

If, however, your commitment to the common good is overcome by a barrage of spam and you
want a passive way to control it, simply enter the following:

UPDATE mt_entry 
SET entry_allow_comments = 2 
WHERE entry_created_on < DATE_SUB(CURDATE(), INTERVAL 7 DAY);

This statement closes comments on all entries posted prior to one week ago. In English, the
WHERE clause specifies entries whose entry_created_on date (see mt_entry in Chapter 4)
is less than (that is, older than) the current date minus seven days. If run daily from your
crontab, as discussed in the previous trick, you would have a rolling seven-day window of open
comments, effectively keeping the floors of your museum clean for all of the visitors you aren’t
letting in.

The Forwarding Address
If a friend who frequently comments on your site switches domain names, you may want to
change the e-mail and URL information on all of her comments:

UPDATE  mt_comment
SET 
comment_url = ‘http://bigpinkcookie.com’, 
email = ‘notarealemail@bigpinkcookie.com’
WHERE comment_url IN
(‘http://www.blahblahblog.com’,’http://blahblahblog.com’);

The preceding code says change the URL to http://www.bigpinkcookie.com where the
URL is either http://www.blahblahblog.com or http://blahblahblog.com. Note
that when using the IN operator, the string must match one of the options exactly, which
means that if there is even a single trailing slash the record will be skipped. Later in this chap-
ter you will learn a much better method using the REPLACE() function.

For another example, suppose that you had a really bad breakup with your girlfriend, Kate, and
you wanted to unpublish (set to draft) any entries that suggest her, regardless of whether it was
actually her you were talking about:

UPDATE mt_entry
SET entry_status = 1
WHERE concat_ws(‘ ‘, entry_title, entry_text, entry_text_more) 
LIKE ‘%Kate%’;

The preceding statement sets any entry to draft if the name Kate can be found in the title,
entry body, or extended entry. For purposes of comparison, we concatenate the three fields
together with a space as the separator. The percent sign (‘%’) is a wildcard meaning that the
word Kate can be surrounded by anything or nothing.

Cloning or Moving Your Install
This is a truly basic hint, but one that I rarely see talked about in the Movable Type commu-
nity. If you have access to your database and can produce a full database dump as described in

09_57499x ch05.qxd  6/17/05  7:43 PM  Page 72

TEAM LinG



73Chapter 5 — Absolutely Necessary Database Tricks

Chapter 3, you can easily migrate an entire MT installation from one server to another, or
clone it for development use.

As you may know, the export functionality in MT exports only entries and their comments. By
using this functionality, you lose a great deal of information:

� Entry and comment IDs

� Author information and permissions

� Approved registered commenters

� Plugin configuration data

� TrackBacks

� Notification lists

� Templates

All of that information resides in the database; and because you already know how to dump
and restore, it’s a snap to clone or migrate your entire installation. The only thing you must do
is change the filepaths and the URLs for the new site. Things that typically need to be changed
include the following:

� Local site and archive paths for each blog

� Site and archive URLs for each blog

� Template outfile paths for each blog

� Template linked template paths for each blog

� Every internal link (those pointing to resources on your own site) posted in any of your
entries

Were it not for that last item, changing everything within the MT admin interface could be
considered palatable, but given that MT’s internal search-and-replace leaves absolutely no room
for error and no way of undoing damage, I have always considered this an unacceptable solution.

You could do this using MySQL (via the UPDATE statement, which is explained later in this
chapter) to change the data in each field, but I find that for migration and cloning it’s much
easier to make the global changes in the dumped SQL file before importing into your new
MySQL server. This way, you can change all of the outdated information at once, and in a way
that is far safer and more recoverable.

Any basic text editor with a search-and-replace function will do the job admirably, but if you
are working via the command line, the nifty but powerful UNIX utility sed makes things even
easier. Among other things, sed — short for stream editor — takes text input, modifies it as
instructed, and then spits it back out in its transformed state.

The sed command’s syntax isn’t too difficult aside from the use of regular expressions (which
we’re really not using here):

sed -e ‘s#OLD#NEW#g’ INPUT_FILE > OUTPUT_FILE

09_57499x ch05.qxd  6/17/05  7:43 PM  Page 73

TEAM LinG



74 Part II — Hacking the Database

The preceding command uses sed both to transform the input_file by executing (-e) the
search and replace instructions in quotes and to put the results into the output_file. The
execution instructions direct sed to substitute (s) all values of OLD with NEW and to do so
globally (g).

Table 5-1 shows a migration I did about a year ago when I moved web host providers.

Table 5-1 Example Migration of an MT Database

Site URL Site Path

Old http://openwire.com/ /home/openwire

New http://jayallen.org/ /usr/home/jayallen

To begin with, I dumped the contents of my database to a file. The names of the output files in
this example are arbitrary, but I choose mine to give me a sense of the changes each contains
and the order in which they were processed.:

mysqldump -a -u jallen -p jay_mt > mt-0dump.mysql

First, I modified the filepaths from /home/openwire to /usr/home/jayallen and
dumped the transformed content to mt-1paths.mysql:

sed -e ‘s#/home/openwire#/usr/home/jayallen#g’ mt-0dump.mysql > mt-1paths.mysql

That was easy; however, the URLs are a bit more difficult. Because my site could be reached
with and without the “www.”, both must be transformed. Although this can be done with one
step using regular expressions, I’ll break it into two to make it more clear to those who aren’t
familiar with them:

sed -e ‘s#http://openwire.com#http://jayallen.org#g’ mt-1paths.mysql > 
mt-2urls.mysql
sed -e ‘s#http://www.openwire.com#http://jayallen.org#g’ mt-2urls.mysql > 
mt-3urls.mysql

With the preceding code, I have not only transformed all filepaths and URLs to their new val-
ues, but I also have three backup files (that is, mt-dump.mysql, mt-1paths.mysql, and
mt-2urls.mysql) to which I can roll back if something got screwed up along the way. It’s
worth taking a look inside of these files just to make sure that everything went the way you
expected. Often, just a simple grep will tell you what you need by showing you the matching
lines that you can visually inspect for potential gotchas:

grep openwire.com mt-dump.mysql
grep /home/openwire mt-dump.mysql

In mt-3urls.mysql, we have a file that is ready to be imported into MySQL on the new
server and which should run MT flawlessly with all of the information from the old server
intact.

09_57499x ch05.qxd  6/17/05  7:43 PM  Page 74

TEAM LinG



75Chapter 5 — Absolutely Necessary Database Tricks

Editing TrackBacks
If you’re a standards nut like myself, you are also most likely plagued by validation errors on
your XHTML-Strict DOCTYPE pages caused by incoming TrackBacks that include charac-
ters that are not part of your specified character set. Unfortunately, there is no way to edit a
TrackBack from within the Movable Type interface. Fortunately, we know a bit about the
database.

As described in Chapter 4, incoming TrackBacks are stored in the mt_tbping table. If you
don’t want to simply delete the TrackBack, you can easily modify the tbping_title and/or
tbping_excerpt fields. Once you know the tbping_id of the item, you can update the
title and excerpt quite easily:

UPDATE mt_tbping
SET tbping_title = ‘[From a Japanese weblog], 
tbping_except = ‘[Untranslatable Japanese text]’
WHERE tbping_id = ID;

Simply change ID to the tbping_id of the incoming TrackBack and change the
tbping_title and tbping_excerpt to whatever you like and you’re back in compliance
with standards.

Deleting TrackBack Abuse
The popularity of Movable Type makes it a ripe target for abuse from spammers who flood
individual entries with bogus TrackBack pings and other unwanted junk.

Spammers seek to benefit from this practice in two ways: higher rankings in search engines
such as Google, which factor in the number of pages linking to a site in their results, and
higher traffic from visitors who click the TrackBack links.

Though the browser interface provides a way to remove pings by title, source, and IP address,
you may find it faster and more flexible to employ direct database commands to get rid of them.

When you’ve received hundreds of junk pings, you can look for telltale phrases in the title and
excerpts of these pings, such as “texas holdem,” “totally nude,” or “debt consolidation” to
quickly find and delete them.

The following command deletes every ping with a title containing the phrase “phentermine”:

DELETE FROM mt_tbping
WHERE tbping_title LIKE ‘%phentermine%’;

Similarly, here’s a command to delete pings with a specific phrase in their excerpt fields:

DELETE FROM mt_tbping
WHERE tbping_excerpt LIKE ‘%online casino%’;

Deleted pings disappear from the database immediately, but do not disappear from your entries
until they are rebuilt.

09_57499x ch05.qxd  6/17/05  7:43 PM  Page 75

TEAM LinG



76 Part II — Hacking the Database

There’s no way to undo these commands short of restoring the database from a backup, so take
care not to delete pings with a phrase that may appear in legitimately submitted TrackBacks.

As stated earlier, to minimize the risk of deleting the wrong pings, a SELECT command can be
tried first with the spam-hunting WHERE clause, as in this example command:

SELECT * FROM mt_tbping
WHERE tbping_title LIKE ‘%Please visit%’;

In response to this command, MySQL lists matching pings without deleting anything. The
results can be skimmed to look for anything that should not be deleted.

Relocating Stray Comments
All too often, someone comments on my website in the wrong thread. Sometimes it’s because
they had multiple pages of my site opened in different windows and used the wrong one; other
times they just didn’t find the right thread. In any case, it’s easy to relocate a comment from
one entry to another.

The only connection between entry and comment is in the mt_comment table in the 
comment_entry_id field. Suppose someone named “Mom” commented in entry 2518 and
you would like to move that to 2519:

SELECT comment_id, comment_entry_id, comment_author, comment_text
FROM mt_comment
WHERE comment_entry_id = 2518 AND comment_author = ‘Mom’;

I selected comment_text just to make sure that we were getting the right comment and that
there was only one.

+------------+------------------+----------------+-------------------------+
| comment_id | comment_entry_id | comment_author | comment_text            |
+------------+------------------+----------------+-------------------------+
|       3114 |             2518 | Mom            | Don’t forget to call!   |
+------------+------------------+----------------+-------------------------+

Now we update the comment_entry_id using the comment_id and a LIMIT restriction
just to be on the safe side, and then rebuild:

UPDATE mt_comment
SET comment_entry_id = 2519
WHERE comment_id = 3114
LIMIT 1;

Recovering Lost Passwords
Have you or another author forgotten your password only to find that the e-mail address and
author hint in the profile were either empty, outdated, or forgotten? Without both of those, it’s
impossible to recover your password from the Movable Type web interface, but through

09_57499x ch05.qxd  6/17/05  7:43 PM  Page 76

TEAM LinG



77Chapter 5 — Absolutely Necessary Database Tricks

MySQL, it’s a breeze. Replacing “JayAllen” in the following with the login ID of the user who
is without access, you will retrieve the record:

SELECT author_id, author_name, author_email, author_hint 
FROM mt_author
WHERE author_name = ‘JayAllen’;

+-----------+--------------+------------------+-------------+
| author_id | author_name | author_email     | author_hint  |
+-----------+-------------+------------------+-------------+
|         1 | JayAllen    | jay@openwire.org |              |
+-----------+--------------+------------------+-------------+

An incorrect e-mail address and a blank author hint would be the problem, no doubt.
Therefore, let’s change both:

UPDATE mt_author
SET author_email = ‘mt@jayallen.org’, author_hint = ‘Idiota’
WHERE author_id = 1
LIMIT 1;

Now you can successfully recover your password through the web interface using the new
author hint.

Global Search and Replace
As I showed you earlier, you can easily do a quick search and replace or sed transformation
using a MySQL dumpfile. While this technique is quick and powerful, it doesn’t enable you to
easily specify the fields to which you want to limit your changes.

For example, suppose you wanted to change the wording of some phrase in all of your tem-
plates, but not touch your entries or comments. The fastest and easiest way to do that is using
MySQL’s replace() function:

UPDATE mt_template 
SET template_text = REPLACE(template_text, ‘RSS feed’, ‘News feed’);

This will change every instance of ‘RSS Feed’ found in template_text to ‘News feed’
for all templates in your installation. You could obviously use a WHERE clause to specify only
templates in one of your blogs, or even a certain type of template (such as Main Index
templates).

In the Forwarding Address example earlier in this chapter, you saw one way of changing a
comment author’s information retroactively:

UPDATE  mt_comment
SET 
comment_url = ‘http://bigpinkcookie.com’, 
comment_email = ‘notarealemail@bigpinkcookie.com’
WHERE comment_url IN
(‘http://www.blahblahblog.com’,’http://blahblahblog.com’);

09_57499x ch05.qxd  6/17/05  7:43 PM  Page 77

TEAM LinG



78 Part II — Hacking the Database

While valid, it requires that the URL be exactly as written in the preceding example and then
replaces the e-mail address despite what the comment author originally submitted. Using the
replace() function, you can do much better:

UPDATE mt_comment
SET
comment_url = REPLACE(comment_url, ‘blahblahblog.com’, ‘bigpinkcookie.com’),
comment_email = REPLACE(comment_email, ‘blahblahblog.com’,

‘bigpinkcookie.com’)
WHERE comment_url LIKE ‘%blahblahblog.com%’
OR comment_email LIKE ‘%blahblahblog.com%’;

The preceding command looks for any record whose comment_url or comment_email
contains ‘blahblahblog.com’ and changes each instance of that string to big-
pinkcookie.com in whichever field it exists.

Summary
The examples I’ve included in this chapter are just a small sample of the thousands of things
you could do with direct manipulation and selection of database data. By now, it should be
clear that access to the MT database gives you a lot of raw power. With it, you can make
changes both quickly and easily and do just about anything Movable Type can do.

The flip side, of course, is that you can also make mistakes quickly and easily if you aren’t care-
ful. The Movable Type code has safeguards and logic built into it that ensures that the data in
the database remains usable to the application. The Movable Type code also offers intrinsically
more intelligent data manipulation routines, such as text formatting plugins, and functions that
more easily cull data from different tables (for example, categories on an entry).

Later chapters will discuss some safer and more intelligent ways to interact with the MT sys-
tem through use of Application Programming Interfaces (APIs). These interfaces are provided
as a way to interact programmatically with MT without having to manipulate the database
directly. APIs enable you to extend the capabilities of the program or to manipulate data as we
have done in this chapter, but within the confines (and protection) of the MT source code.

Using the APIs, you will learn to be an “MT law-abiding citizen,” instead of a “database
renegade.”

Show Us What You’ve Got!

At the Hacking Movable Type website (www.hackingmt.com), you can find even more exam-
ples of powerful ways you can use the database to its fullest potential or manipulate the data to
suit your needs. If you have a question about any of the methods outlined in this chapter, check
out our help forums. If you have an interesting or novel application of database trickery, we
encourage you to submit it and show the world what you can do.

09_57499x ch05.qxd  6/17/05  7:43 PM  Page 78

TEAM LinG



Hacking with APIs

Chapter 6
XML-RPC API

Chapter 7
Atom API

Chapter 8
Perl API

part

in this part

10_57499x pt03.qxd  6/17/05  7:39 PM  Page 79

TEAM LinG



10_57499x pt03.qxd  6/17/05  7:39 PM  Page 80

TEAM LinG



XML-RPC API

Arguably, the two features that make Movable Type so powerful are
the internal and external Application Programmatic Interfaces 
(APIs). We will be dealing with the internal APIs in a later chapter.

These next two chapters, however, deal with the ways in which external
applications can interface with a Movable Type installation.

The oldest and most common way of doing this is via the XML-RPC
interface. Three sets of commands are available: the Blogger API, the
Metaweblog API, and the MT Extended API. Although there is some
political squabbling surrounding these specifications, they all have
their uses.

What Is XML-RPC?
Get thee to http://xmlrpc.com/ and you’ll see that Extensible
Markup Language Remote Procedure Calls (XML-RPC) is a specification
that enables different applications to talk to each other by throwing chunks
of XML at each other. XML might seem to be quite a verbose way of doing
it, but it does have a few advantages: it compresses easily, it’s simple
to use and debug, and should be — if the application designer is sensible —
pretty much self-explanatory whenever you see a new call.

The full XML-RPC specification and a list of code implementa-
tions can be found at http://xmlrpc.com/.

Examples in this chapter use Perl, but of course you don’t have to. In fact,
this is one of the nice things about the MT XML-RPC APIs: You can code
in pretty much any language you like. Interfacing with MT via a mix of
Squeak and Flash is just as easy as doing so with Perl, if you feel the need.

An Example XML-RPC Call
Just to give you an idea of what is going on across the wire when you make
a call, let’s break an easy example down into its component parts. The call
used is one of the 19 supported by MT: blogger.getUsersBlogs.

˛ What is XML-RPC?

˛ The three
commandsets

˛ Using the API with
a generic toolkit

˛ Using the API with
an MT-specific
toolkit

˛ Adding your own
calls to the API

chapter

in this chapter

11_57499x ch06.qxd  6/17/05  7:48 PM  Page 81

TEAM LinG



82 Part III — Hacking with APIs

This call returns the list of weblogs within an MT installation to which the author has posting
rights. The MT documentation says this:

� Description: Returns a list of weblogs to which an author has posting privileges

� Parameters: String appkey, String username, String password

� Return value: On success, array of structs containing String url, String blogid, String
blogName; on failure, fault

The API call blogger.getUsersBlogs is part of the Blogger API suite of commands and
was originally designed for use within Blogger itself. The appkey string is a Blogger-specific
variable and is ignored by MT. You can make it equal to anything you like within your own
code, but don’t leave it out when you send the call the Movable Type. I like to make it equal
mt, mostly out of habit.

In Perl, I like to use the XMLRPC::Lite module, as follows:

#!/usr/bin/perl -w 

use strict; 
use XMLRPC::Lite; 

my $username = “Melody”; 
my $password = “Nelson”; 
my $url=”http://192.168.16.52/mt-xmlrpc.cgi”;

my $rpc_call = XMLRPC::Lite->new; 

$rpc_call->proxy($url); 

my $call_result = $rpc_call->call(‘blogger.getUsersBlogs’ => ‘MT’,
$username, $password); 

if ($call_result->fault) { 
print “metaWeblog.newPost error code: “, $call_result->faultcode,
“\n\n”, $call_result->faultstring, “\n\n”; 
} else {

my $call_result_array = $call_result->result();

foreach my $single_call_result (@$call_result_array) {
print “BlogID: $single_call_result->{blogid} \n”;
print “Blog name: $single_call_result->{blogName} \n”;
print “Blog URL: $single_call_result->{url} \n”;

}

}

11_57499x ch06.qxd  6/17/05  7:48 PM  Page 82

TEAM LinG



83Chapter 6 — XML-RPC API

Note that the variables set at the top of the script are for working on my test blog setup on my
laptop; you need to change them to reflect your own target.

The call sends an XML document containing the meaningless appkey, the username, and the
password, in that order. It looks like this:

<?xml version=”1.0” encoding=”UTF-8”?>
<methodCall>
<methodName>blogger.getUsersBlogs</methodName>
<params>
<param>
<value>
<string>MT</string>
</value>
</param>
<param>
<value>
<string>Melody</string>
</value>
</param>
<param>
<value>
<string>Nelson</string>
</value>
</param>

</params>
</methodCall>

XML-RPC versus Perl APIs

In writing this chapter, I’ve been running MT on my local machine, which is why all of the IP
addresses in the examples are local ones. This is unusual in that the usual usage for these APIs is
for a remote client to interface with MT (a desktop blogging application, for example).

However, this brings up an interesting debate; there are many occasions when you might want
to post new entries, retrieve some data, or generally interface with your MT installation from
the very same machine. The traditional way to do this would be with the Perl API, which you
will see in Chapter 8, but I often prefer to use the XML-RPC interface, even on the local system.
I find the code simpler and more portable. You may or may not agree. Either way, don’t assume
that the XML-RPC APIs are for remote machines only. The “LazyWeb” code on the next few
pages is a good example of this.

–Ben Hammersley

11_57499x ch06.qxd  6/17/05  7:48 PM  Page 83

TEAM LinG



84 Part III — Hacking with APIs

The application — in this case, Movable Type — parses this document, retrieves the name of
the method you wish to call and its associated inputs, performs the action associated with the
call, and returns the result in XML:

<?xml version=”1.0” encoding=”UTF-8”?>
<methodResponse>
<params>
<param>
<value>
<array>
<data>
<value>
<struct>
<member>
<name>blogid</name>
<value>
<string>1</string>
</value>

</member>
<member>
<name>blogName</name>
<value>
<string>First Weblog</string>
</value>

</member>
<member>
<name>url</name>
<value>
<string>http://192.168.16.52/</string>
</value>

</member>
</struct>
</value>
</data>
</array>
</value>
</param>
</params>
</methodResponse>

As you can see, these documents are pretty big for what they contain, and if you’re unused to
seeing XML, they do look quite confusing. No worries, Perl has many modules to take the pain
out of using XML-RPC. This chapter uses the XMLRPC::Lite module, available from CPAN
mirrors everywhere.

The Supported Calls
Movable Type supports 19 different XML-RPC calls: 6 from the Blogger API, 5 from the
Metaweblog API, and 8 of its own. These are documented in the online manual of your MT
installation at <SITEPATH>/mt-static/docs/mtmanual_programmatic.html.

11_57499x ch06.qxd  6/17/05  7:48 PM  Page 84

TEAM LinG



85Chapter 6 — XML-RPC API

Using the Movable Type XML-RPC API
The following sections detail the various ways to post entries using the MT XML-RPC API.

Posting an Entry
An entry posting can be done with either the Blogger API’s blogger.newPost call or the
Metaweblog API’s metaWeblog.newPost call. The Metaweblog call is much more power-
ful, providing access to all of the fields allowed in an MT entry, including extended entry, key-
words, summary, comments, and pings on and off, and so on. For this reason, this is the one
we’ll be using.

Let’s step through some code:

#!/usr/bin/perl -w 

use strict; 
use XMLRPC::Lite; 
use Class::Struct; 

# Set up variables
my $username = “Melody”; 
my $password = “Nelson”; 
my $url=”http://192.168.16.52/mt-xmlrpc.cgi”;
my $blogid = “1”;

It starts off basically enough, with the good practice of use strict, and then the loading of
XMLRPC::Lite and Class::Struct. You don’t actually need Class::Struct; you can
create the structs by hand, but as you will see in the next snippet, it makes for what I think is
clearer code. Change the username and password to reflect your settings, and change the $url
to equal the URL to your installation’s mt-xmlrpc.cgi file. $blogid, too, should be
changed to reflect your weblog:

my $struct;

struct( struct => { 
title => ‘$’,
description => ‘$’,
dateCreated => ‘$’, 
mt_text_more => ‘$’,
mt_excerpt => ‘$’,
mt_keywords => ‘$’,
mt_allow_comments => ‘$’,
mt_allow_pings => ‘$’,
mt_convert_breaks => ‘$’,
mt_tb_ping_urls => ‘$’}
);

# Other code can go here

11_57499x ch06.qxd  6/17/05  7:48 PM  Page 85

TEAM LinG



86 Part III — Hacking with APIs

$struct->{‘title’} “Put your title here”; 
$struct->{‘description’} = “Put the main entry body here”; 
$struct->{‘dateCreated’} = “Put a date here, optionally”;
$struct->{‘mt_text_more’} = “Extended entry body here,
optionally”;
$struct->{‘mt_excerpt’} = “The entry excerpt, optionally”;
$struct->{‘mt_keywords’}       = “Keywords, optionally”;
$struct->{‘mt_allow_comments’} = “1”;
$struct->{‘mt_allow_pings’} = “1”;
$struct->{‘mt_convert_breaks’} = “1”;
$struct->{‘mt_tb_ping_urls’} = “An array containing URLs to ping”;

In this section, we’ve set up the struct and applied values to it. It is in the middle of this that we
can place other code that will provide the data you want to put into the entry. Different uses
are explained in a page or two, but now, let’s post the thing:

# Post the message to the blog 
my $rpc_call = XMLRPC::Lite->new; 
$rpc_call->proxy($url); 

my $call_result = $rpc_call->call(‘metaWeblog.newPost’ => $blogid,
$username, $password, $struct, 1); 

if ($call_result->fault) { 
print “\n\nThere was a problem.\n\nmetaWeblog.newPost error code:
“, $call_result->faultcode, “ \n\n”, $call_result->faultstring,
“\n\n”; 
} 
else {

print “\n\nPost ‘$struct->{‘title’}’ published.\n\n”; 
}

This invokes the XMLRPC::Lite module and sends the call. You’re passing the blogid, your
username and password, the struct containing the post, and then finally a Boolean value
of 1 or 0 denoting whether you wish the post to be published or not. As you will discover in the
next few pages, this value is ignored by all versions of MT post 2.11.

Posting an Entry to the LazyWeb
Let’s look at actually using the framework code on a site. One site that uses it is the LazyWeb
(www.lazyweb.org). This site, for web developers and other such technological reprobates,
enables its readers to post their ideas to it in the hope that others will already know of a solu-
tion or be inspired to take up the coding challenge. It works by utilizing the TrackBack
autodiscovery system built into MT. The front page contains the TrackBack RDF snippet, so
whenever anyone links to it, MT will automatically request that page, pull out the snippet, real-
ize it is TrackBackable, and then send off the ping. The TrackBack snippet, however, doesn’t
point to the usual MT TrackBack code, but to our own script, which parses the TrackBack ping
and posts it as a new entry on the site. It does this via the XML-RPC interface.

11_57499x ch06.qxd  6/17/05  7:48 PM  Page 86

TEAM LinG



87Chapter 6 — XML-RPC API

Consider the mapping of the data. The TrackBack specification, found at www.movabletype.
org/docs/mttrackback.html, states that a TrackBack ping contains four parameters:

� Title — The title of the entry.

� Excerpt — An excerpt of the entry. In the Movable Type implementation, if this string
is longer than 255 characters, it will be cropped to 252 characters, and ... (ellipses) will be
added to the end.

� url — The permalink for the entry. Like any permalink, this should point as closely as
possible to the actual entry on the HTML page, as it will be used when linking to the
entry in question.

� blog_name — The name of the blog in which the entry is posted.

Title and Excerpt map beautifully onto Title and Main Body, but the url and
blog_name don’t really fit. Having this data, however, is useful, especially having it in a way
that enables you to use it within the MT templates. Therefore, let’s use the extended entry and
keywords fields for them. If we do that, our mapping looks like this:

title -> title

excerpt -> description

url -> mt_text_more

blog_name -> mt_keywords

Following is our existing code with a TrackBack listener added in. Happily, TrackBack acts just
like the submission of a CGI form, so this is very simple:

#!/usr/bin/perl -w
use strict;
use CGI qw( :standard );
use XMLRPC::Lite; 
use Class::Struct; 

# Set up variables
my $username = “YOUR NAME HERE”; 
my $password = “YOUR PASSWORD HERE”; 
my $url=”http://YOUR URL HERE/mt-xmlrpc.cgi”;
my $blogid = “YOUR BLOGID HERE”;
my $struct;

struct( struct => { 
title => ‘$’,
description => ‘$’,
dateCreated => ‘$’, 
mt_text_more => ‘$’,
mt_excerpt => ‘$’,
mt_keywords => ‘$’,
mt_allow_comments => ‘$’,

11_57499x ch06.qxd  6/17/05  7:48 PM  Page 87

TEAM LinG



88 Part III — Hacking with APIs

mt_allow_pings => ‘$’,
mt_convert_breaks => ‘$’,
mt_tb_ping_urls => ‘$’
}
);

my $i = { map { $_ => scalar param($_) } qw(title excerpt url
blog_name) };

$struct->{‘title’} = “$i->{title}”; 
$struct->{‘description’}       = “$i->{excerpt}”; 
$struct->{‘mt_text_more’} = “$i->{url}”;
$struct->{‘mt_keywords’}       = “$i->{blog_name}”;

# Post the message to the blog 
my $rpc_call = XMLRPC::Lite->new; 
$rpc_call->proxy($url); 

my $call_result = $rpc_call->call(‘metaWeblog.newPost’ => $blogid,
$username, $password, $struct, 1); 

print “Content-Type: text/xml\n\n”;
print qq(<?xml version=”1.0” encoding=”iso-8859-1”?>
\n<response>\n);
if ($call_result->fault) {

printf qq(<error>1</error>\n%s\n), xml(‘message’,
$call_result->faultstring);
} else {

print qq(<error>0</error>\n) . ($_[1] ? $_[1] : ‘’);
}
print “</response>\n”;

Making Everything Much Easier with Net::Blogger
Calling the interface directly, whether by using XMLRPC::Lite or any other standard XML
RPC module or toolkit is simple enough, but it can be made even easier. A Perl module
available on CPAN provides an even simpler interface, which abstracts away even that:
Aaron Straup Cope’s Net::Blogger (http://search.cpan.org/~ascope/
Net-Blogger-0.87/).

You’ll remember that MT supports three XML-RPC commandsets: Blogger, Metaweblog,
and the MovableType Specific. Net::Blogger deals with all of these. In practice, however, you
will probably find that your application starts to use a combination of Net::Blogger and your
own bespoken XMLRPC::Lite code. This is not a problem at all. It shows a pleasing sense of
the baroque.

Anyhow, Net::Blogger provides access to all of the available MT XML-RPC commandsets. As
an example, let’s rewrite the relevant bits of the previous LazyWeb code:

#!/usr/bin/perl -w
use strict;
use CGI qw( :standard );

11_57499x ch06.qxd  6/17/05  7:48 PM  Page 88

TEAM LinG



89Chapter 6 — XML-RPC API

use Net::Blogger; 

my $mt = Net::Blogger->new(engine=>”movabletype”);

# Set up variables
$mt->proxy(“http://YOUR URL HERE/mt-xmlrpc.cgi”);
$mt->Username(“YOUR NAME HERE”); 
$mt->Password(“YOUR PASSWORD HERE”);
$mt->BlogId(“YOUR BLOGID HERE”);

my $i = { map { $_ => scalar param($_) } qw(title excerpt url
blog_name) };

# Post the message to the blog 
$mt->metaWeblog()->newPost(title=>”$i->{title}”,

description=>”$i->{excerpt}”,
mt_text_more=> “$i->{url}”,
mt_keywords=> “$i->{blogname}”,
publish=>1);

# The rest of the code would continue here.

As you can see, it’s much shorter and simpler this way. The specific line that is important to
Movable Type is this:

my $mt = Net::Blogger->new(engine=>”movabletype”);

Indeed, Net::Blogger has extensions for many weblogging packages. Invoking the
engine=>”movabletype” makes all of the Movable Type interface methods available.
If you don’t specify an engine, to use Aaron Straup Cope’s term, the module will default to the
vanilla Blogger interface, which is workmanlike, but dull.

You do have to pay attention to the commandset in which the method you are calling is found,
however. Note the difference between these two calls:

$mt->newPost(postbody=>”hello world”,publish=>1) 

$mt->metaWeblog()->newPost(description=>”hello world”,publish=>1);

They do the same thing, with the top line using the Blogger API, and the bottom line using
the Metaweblog. Because Net::Blogger considers the Metaweblog API an additional vocabu-
lary to the default Blogger API, you have to call the metametaWeblog() method first.
If you’re deep into object-oriented programming, you’ll be excited to know that it returns an
object. If you’re cutting and pasting a script together, just remember to stick the additional
metaWeblog()-> into every line that calls a Metaweblog method. Actually, this is the beau-
tiful thing about using this module over XMLRPC::Lite; it produces eminently reusable/
stealable code.

To access the MT Specific commandset, the additional method is mt(). To call the MT
Specific getTrackbackPings() method, you would write a script similar to the following:

my $mt = Net::Blogger->new(engine=>”movabletype”);
...
$mt->mt()->getTrackbackPings(postid=>”1234”);

11_57499x ch06.qxd  6/17/05  7:48 PM  Page 89

TEAM LinG



90 Part III — Hacking with APIs

With those little additional flourishes understood, Net::Blogger behaves exactly as you might
expect. The method names are exactly the same as their counterparts in the XML-RPC APIs
themselves, and they take exactly the same variables. Using Net::Blogger, once you understand
how to invoke a Net::Blogger object as previously demonstrated, is really just like addressing
the XML-RPC API directly. You can code directly from the Movable Type manual’s listing of
the supported calls.

As a reminder, you will find the Movable Type manual’s listing of supported calls at www.
movabletype.org/docs/mtmanual_programmatic.html#xmlrpc%20api.

Don’t forget that appkey has no meaning in MT, but still needs to be set to something. Use it
to store a message of secret love to your beau. Whatever, MT won’t look or care.

Because the list of commands is so long, and so admirably covered by the MT and
Net::Blogger documentation itself, we won’t go into the calls individually. Instead, let’s look at
what you can’t do with the available APIs, and what you can do about that.

Post Status: A Problem
Movable Type’s XML-RPC interfaces, indeed any interfaces using the Blogger or Metaweblog
APIs, have a serious limitation: They can’t tell you the status of an entry. Generally, this is
not surprising; there is no standard set of post statuses across the content management system
world, so it’s difficult to build a standard interface for them. However, as we are concentrating
on an individual toolkit, we can build nonstandard calls to help us out. MT already does
this, with its suite of mt.* calls, but sadly none of them enable you to retrieve the status of
an entry.

Let’s recap: Movable Type 3.0D has four separate status codes available internally for an entry,
only two of which (at the moment) are in use. These four are 1, 2, 3, and 4 and are defined as
follows:

� “1” HOLD — Draft, store but do not publish

� “2” RELEASE — Publish

� “3” REVIEW — Unused at present

� “4” FUTURE — Unused at present

At this point, it is also very important to note the following comment from the MT source
code:

## In 2.1 we changed the behavior of the $publish flag.
Previously,
## it was used to determine the post status. That was a bad idea.
## So now entries added through XML-RPC are always set to publish,
## *unless* the user has set “NoPublishMeansDraft 1” in mt.cfg,
which
## enables the old behavior.

11_57499x ch06.qxd  6/17/05  7:48 PM  Page 90

TEAM LinG



91Chapter 6 — XML-RPC API

As it stands, with a stock build of MT3.0D, it’s impossible to author a draft post over 
XML-RPC, or to check whether a post is draft or not, or to publish it if you somehow find
that it is.

The only way to do this over XML-RPC is to modify the MT code itself to include the requi-
site additional calls. We’ll call them mt.getStatus and mt.setStatus.

Adding a Call to the Interface
The callable methods available to the XML-RPC interface are delivered out of /lib/MT/
XMLRPCServer.pm. This is a very simple file to understand, with each call simply being its
own subroutine, accepting inputs and returning results to mt-xmlrpc.cgi, which deals with
the whole XML-RPC aspect of the transaction. We needn’t worry about these mechanics; we
just need to add our own subroutines to XMLRPCServer.pm and they become available to the
outside world.

Here’s an example of one of the existing calls, mt.getCategoryList:

sub getCategoryList {
my $class = shift;
my($blog_id, $user, $pass) = @_;
my $mt = MT::XMLRPCServer::Util::mt_new();   ## Will die if

MT->new fails.
my($author, $perms) = $class->_login($user, $pass, $blog_id);
die _fault(“Invalid login”) unless $author;
die _fault(“Author does not have privileges”)

unless $perms && $perms->can_post;
require MT::Category;
my $iter = MT::Category->load_iter({ blog_id => $blog_id });
my @data;
while (my $cat = $iter->()) {

push @data, {
categoryName => SOAP::Data->type(string => $cat-

>label),
categoryId => SOAP::Data->type(string => $cat->id)

};
}
\@data;

}

Stepping through this code, you can see that it takes the three arguments blog id, username,
and password, checks that the username and password are correct, whether the user has the
right, and shows the data on the requested blog id. If all is okay, it iterates through each 
category assigned to that blog, returning two strings, the label, and its category id.

I won’t say any more about this code — for the full details about exactly how this code works,
the chapters on the Perl API and plugin design will prove extremely useful — except to say
that it is extremely simple stuff. For our mt.getStatus call, we need only add this code snip-
pet to XMLRPCServer.pm:

11_57499x ch06.qxd  6/17/05  7:48 PM  Page 91

TEAM LinG



92 Part III — Hacking with APIs

sub getStatus {
my $class = shift;
my($entry_id, $user, $pass) = @_;

my $mt = MT::XMLRPCServer::Util::mt_new();
require MT::Entry;

my $author = $class->_login($user, $pass);
my $entry = MT::Entry->load($entry_id)

or die _fault(“Invalid entry ID ‘$entry_id’”);
my($author, $perms) = $class->_login($user, $pass, $entry-

>blog_id);
die _fault(“Invalid login”) unless $author;
die _fault(“No posting privileges”) unless $perms && $perms-

>can_post;
{ status => SOAP::Data->type(string => $entry->status)};

}

This call takes the entry id, username, and password and returns a struct containing the status
code, or an error code on failure. A successful exchange looks like this:

<?xml version=”1.0” encoding=”UTF-8”?>
<methodCall>
<methodName>mt.getStatus</methodName>
<params>
<param>
<value><int>8389</int></value>
</param>
<param>
<value><string>Ben Hammersley</string></value>
</param>
<param>
<value><string>SekretPassword</string></value>
</param>
</params>
</methodCall>

The server replies coyly:

<?xml version=”1.0” encoding=”UTF-8”?>
<methodResponse>
<params>
<param>
<value>
<struct>
<member>
<name>status</name>
<value><string>2</string></value>
</member>
</struct>
</value>
</param>
</params>
</methodResponse>

11_57499x ch06.qxd  6/17/05  7:48 PM  Page 92

TEAM LinG



93Chapter 6 — XML-RPC API

To install it, just add that subroutine inside the XMLRPCServer.pm file next to the others.
I dropped it in at line 702, for example. (In future releases of MT, the line numbers might
change, and this might appear to be a daft place to put it, but I thought I’d take a flier.) You can
now use the XML-RPC interface to query for each weblog entry’s status. We shall be using
this in combination with the getRecentPosts call in the following section.

But first, having ascertained the status of a post, what if you want to change it? For that we’re
going to need another call: mt.setStatus. Again, it uses Perl API commands covered else-
where in this book, so we’ll go straight to the code:

sub setStatus {
my $class = shift;
my($entry_id, $user, $pass, $status) = @_;
my $mt = MT::XMLRPCServer::Util::mt_new();   ## Will die if

MT->new fails.
require MT::Entry;
my $entry = MT::Entry->load($entry_id)

or die _fault(“Invalid entry ID ‘$entry_id’”);
my($author, $perms) = __PACKAGE__->_login($user, $pass,

$entry->blog_id);
die _fault(“Invalid login”) unless $author;
die _fault(“Not privileged to edit entry”)

unless $perms && $perms->can_edit_entry($entry, $author);
$entry->status($status)

or die _fault(“Status change failed: “ . $mt->errstr);
$entry->save

or die _fault(“Saving entry failed: “. $entry->errstr); 
$mt->rebuild_entry( Entry => $entry, BuildDependencies => 1 )

or die _fault(“Rebuild after status change failed: “ .
$mt->errstr);

SOAP::Data->type(boolean => 1);
}

This, when placed inside XMLRPCServer.pm, will take four inputs: username and password,
entry id, and the code for the status. That can be 1, 2, 3, or 4 for draft, publish, and the cur-
rently unused review and future, respectively. Changing the status code on an entry will cause
it, and any connected indexes, to be rebuilt. Therefore, if you set a draft post to status code 2,

Use Case Hardening

The code you’re looking at here is really the code running LazyWeb.org—more or less. In real
life, real users and real abusers demanded that I include code to ignore empty entries, and to
pass the data through Jay’s MT-Blacklist. This sort of sanity checking is trivial, however, so I’ve
left it out of this code for the sake of clarity. If you’re going to use the code as is on the open
web, spend a few minutes considering the possibility of abuse. My main problem was that the
site showed only the last entry, and the RSS feed the last five. A curious Denial of Service attack
started, where someone would make five quick, empty submissions, effectively emptying my
site of content. Preventing this sort of use-case-specific abuse is worth thinking about.

11_57499x ch06.qxd  6/17/05  7:48 PM  Page 93

TEAM LinG



94 Part III — Hacking with APIs

publish, it will appear in the indexes. If you set a published post to code 1, it will disappear
from the indexes; however, it will not be removed from the site’s archive directory. If anyone
remembers it is there, they will still be able to retrieve it. This may or may not be a 
problem for you and your site’s workflow. If it is a problem, it’s easy to add another call to
XMLRPCServer.pm (or convert an existing call) to delete the file itself.

A Mobile Article Trigger
By way of example, let’s build a little application that uses the calls we now have available to us.
Imagine, if you will, that you’re a journalist on assignment at an awards ceremony. There are
four shortlisted candidates, and you’ve prepared an article on each of them in advance. All you
need to know is which one has actually won and which article to put up live on the web.

What we’d like is a small CGI application that prints the title and entry id of all of the posts
and enables the user to select an entry id, which will then be published. Here is the code:

#!/usr/bin/perl -w 
use strict; 
use XMLRPC::Lite; 
use XML::Simple;
use Net::Blogger;
use CGI;

# Set up variables
my $username = “Ben Hammersley”; 
my $password = “joe90”; 
my $url=”http://www.mediacooperative.com/mt-xmlrpc.cgi”;
my $blog_id = “3”;

my $cgi = CGI::new();
my $post_to_publish = $cgi->param(‘publish’);

if ($cgi->param(‘publish’)) { 
my $publish_result = publish_post($cgi-

>param(‘publish’));
print $cgi->header();
print $cgi->start_html(-

title=>”Publication Result”);
print $cgi->h1(‘Publication Result’);
print $cgi->p(“Result: $publish_result”);
print $cgi->end_html();

} else {
print $cgi->header();                    
print $cgi->start_html(-title=>”Drafts to

Publish”);
print $cgi->h1(‘Drafts to Publish’);
my $retrieve_last_20_posts_test_result =

retrieve_last_x_posts();
print “<ul>”;

11_57499x ch06.qxd  6/17/05  7:48 PM  Page 94

TEAM LinG



95Chapter 6 — XML-RPC API

for my $entry(@$retrieve_last_20_posts_
test_result) {

my $retrieve_post_status_test_result =
retrieve_post_status($entry->{postid}); 

if ($retrieve_post_status_test_result
eq “1”) {

print ‘<li><a
href=”’.’remotepublishdrafts.cgi?publish=’.”$entry-
>{postid}”.’”>’.”$entry->{title}</a></li>”;

}
}
print “</ul>”;
print $cgi->end_html();

}

sub retrieve_last_x_posts {
my $rpc_call = Net::Blogger->new(engine=>”movabletype”);
$rpc_call->Proxy($url);    
$rpc_call->Username($username);
$rpc_call->Password($password);
$rpc_call->BlogId($blog_id);
my $recent_posts = $rpc_call->mt()->getRecentPostTitles(); 
return ($recent_posts);

}

sub retrieve_post_status {
my $post_id = shift;
my $rpc_call = XMLRPC::Lite->new;
$rpc_call->proxy($url); 
$rpc_call->outputxml(1);
my $call_result = $rpc_call->call(‘mt.getStatus’ => $post_id,

$username, $password);
my $raw_xml_result = XMLin($call_result);
my $parsed_result = $raw_xml_result->{params}->{param}-

>{value}->{struct}->{member}->{value}->{string};  
return ($parsed_result);

}

sub publish_post {
my $post_id = shift;
my $rpc_call = Net::Blogger->new(engine=>”movabletype”);
$rpc_call->Proxy($url);    
$rpc_call->Username($username);
$rpc_call->Password($password);
$rpc_call->BlogId($blog_id);
my $publish_call = $rpc_call->mt()->publishPost($post_id);
return ($publish_call);

}

11_57499x ch06.qxd  6/17/05  7:48 PM  Page 95

TEAM LinG



96 Part III — Hacking with APIs

This is not the most beautiful use of CGI.pm, but it shows a basic framework. If the page is
accessed without a parameter, it throws itself over to the retrieve_last_x_posts
subroutine:

sub retrieve_last_x_posts {
my $rpc_call = Net::Blogger->new(engine=>”movabletype”);
$rpc_call->Proxy($url);    
$rpc_call->Username($username);
$rpc_call->Password($password);
$rpc_call->BlogId($blog_id);
my $recent_posts = $rpc_call->mt()->getRecentPostTitles(); 
return ($recent_posts);

}

This uses the Net::Blogger module to make the getRecentPostTitles call and returns the
resulting array. We use this call because we only want the titles (for the user) and the entry ids
(for the rest of the program) — the other call that would give us the same information,
getRecentPosts, would be overkill.

The subroutine returns the result, an array, which we then step through:

my $retrieve_last_20_posts_test_result = retrieve_last_x_posts();
print “<ul>”;
for my $entry(@$retrieve_last_20_posts_test_result) {

my $retrieve_post_status_test_result =
retrieve_post_status($entry->{postid}); 

if ($retrieve_post_status_test_result eq “1”) {
print ‘<li><a

href=”’.’remotepublishdrafts.cgi?publish=’.”$entry-
>{postid}”.’”>’.”$entry->{title}</a></li>”;

}

It takes every entry in the array and sends the entry_id over to the retrieve_post_
status subroutine:

sub retrieve_post_status {
my $post_id = shift;
my $rpc_call = XMLRPC::Lite->new;
$rpc_call->proxy($url); 
$rpc_call->outputxml(1);
my $call_result = $rpc_call->call(‘mt.getStatus’ => $post_id,

$username, $password);
my $raw_xml_result = XMLin($call_result);
my $parsed_result = $raw_xml_result->{params}->{param}-

>{value}->{struct}->{member}->{value}->{string};  
return ($parsed_result);

}

Because this uses the getStatus call that we’ve hacked into the MT source, we have to use
XMLRPC::Lite to make the call, and XML::Simple to parse the result. That result is just a
string: 1, 2, 3, or 4.

11_57499x ch06.qxd  6/17/05  7:48 PM  Page 96

TEAM LinG



97Chapter 6 — XML-RPC API

If that returns with a status of 1– (remember that this means the entry is a “Draft”), the main
code prints the entry title and id as a link, with a parameter of the entry id.

We then move onto the next entry in the array, and so on, until the resultant page is closed off
and the script ends. If one of the links that we produced is clicked, the script is called again,
this time with the parameter in place. That triggers the final subroutine, publish_post:

sub publish_post {
my $post_id = shift;
my $rpc_call = Net::Blogger->new(engine=>”movabletype”);
$rpc_call->Proxy($url);    
$rpc_call->Username($username);
$rpc_call->Password($password);
$rpc_call->BlogId($blog_id);
my $publish_call = $rpc_call->mt()->publishPost($post_id);
return ($publish_call);

}

This uses Net::Blogger again to call the publishPost method on the XML-RPC interface
and publish the post.

With this script, simple as it is, you can see how you can use the XML-RPC interface to create
additional interfaces to your Movable Type installations. Indeed, the desktop clients now avail-
able for webloggers do their job in exactly this way.

Summary
This chapter showed how Movable Type’s XML-RPC interface enables you to post, retrieve,
and edit entries from within other programs. You can now use these skills to create your own
new interfaces to MT, or to have other applications create weblog posts automatically.
However, you’ve also seen that the XML-RPC API is quite limited. The next chapter looks at
the new generation of weblogging APIs: the Atom Publishing Protocol.

11_57499x ch06.qxd  6/17/05  7:48 PM  Page 97

TEAM LinG



11_57499x ch06.qxd  6/17/05  7:48 PM  Page 98

TEAM LinG



Atom API

One of the major additions to the Movable Type codebase included
with version 3 was the introduction of the Atom API. This new
standard aims to take the place of the more disparate XML-RPC

APIs explored in Chapter 6. It is part of a larger project that also includes
the Atom syndication format, and it looks set to become a widely supported
specification, by standards bodies as well as programmers.

This chapter looks at using the version of the Atom API supported by MT.
At the time of writing, Atom is not yet finalized, so it would be wise to
check the latest documentation, both for Movable Type and for Atom itself.
This chapter was written using MT 3.01D, Atom API spec document
draft-ietf-atompub-protocol-01.txt, and the Perl module
XML::Atom 0.09. Chances are good that these have all been updated.

You can find Atom’s main development documentation at www.
intertwingly.net/wiki/pie/FrontPage, while the latest specifica-
tions are archived at http://bitworking.org/projects/atom/.

Introducing the Atom API
The Atom API uses the native functions of HTTP to provide a system to
create, retrieve, edit, delete, and upload new web resources. It does this, with
either REST or SOAP style requests, by using the standard HTTP verbs:

� GET — Used to retrieve a representation of a resource, or the resource
itself as a read-only request

� PUT — Used to update a resource

� POST — Used to create a resource

� DELETE — Used to remove a resource

These verbs are directed at five standard URIs:

� EditURI — Takes PUT, GET, and DELETE. This is used to edit a
single entry and is unique to that entry. Every editable entry has one.

� PostURI — Takes POST. This is used to create an entry. POSTing a
properly formed Atom entry to this URI will create one or more
resources (the individual entry archive in HTML and in Atom, for
example).

˛ Introducing the
Atom API

˛ Current toolkits

˛ Security

˛ Retrieving weblog
information

˛ Posting an entry

˛ Editing an entry

˛ Atom links in your
templates

chapter

in this chapter

12_57499x ch07.qxd  6/17/05  7:38 PM  Page 99

TEAM LinG



100 Part III — Hacking with APIs

� FeedURI — Takes GET. This is used to retrieve a representation of the resource in the
Atom syndication format. There are three different types of FeedURIs for MT: the
entire installation, a single weblog, or a single entry.

� UploadURI — Takes POST. This is used to upload a file to the weblog. It doesn’t create
an entry, but merely moves a file.

� CategoryURI — Takes GET. This is used to retrieve a list of the categories within a
weblog.

Current Toolkits
There are currently only a few toolkits for working with the Atom API (there are far more
for the Atom syndication format), but looking at www.atomenabled.org/everyone/
atomenabled/index.php?c=7 will enable you to find more.

For our purposes, we shall be using the XML::Atom Perl module, written by Ben Trott. It’s the
library that powers Movable Type’s side of the API, so we know it’s robust; and being a web
API, it really doesn’t matter what language you write your client code in.

Security and Authentication Under MT
Currently, the authentication system that Atom uses is incompatible with the way that
Movable Type stores its passwords internally. This means that you can’t use your usual MT
password to authenticate yourself with Atom. Rather, you must use your usual username and
the “Atom Authentication Token” that is given on your Author Details page. You can find this
by going to the main MT menu and looking for your name at the top right. Click on it and
scroll down the resulting page. It’s about halfway down.

This value, not your usual password, is what you need to log into Movable Type’s Atom API.

Using the Atom API with Movable Type
Although everything is very new, we can use the Atom API to interact with Movable Type
today. In fact, at the time of this writing, Movable Type has the best support for the Atom API
to be found anywhere.

Retrieving Weblog Information
For our first foray into Atom land, let’s retrieve information about the weblog by running a
GET request to the FeedURI. Remember, there are three possible FeedURIs within Movable
Type: the FeedURI for the whole installation, the FeedURI for a single weblog, and the
FeedURI for a single entry.

12_57499x ch07.qxd  6/17/05  7:38 PM  Page 100

TEAM LinG



101Chapter 7 — Atom API

Retrieving Information from an Entire Installation
The FeedURI for an entire installation is http://PATH.TO.MT/mt-atom.cgi/weblog/.

This code will access that and print out the result as XML:

#!/usr/bin/perl -w
use strict;
use XML::Atom::Client;

my $username = “Ben Hammersley”;
my $password = “XXXXXXXX”;
my $FeedURI = “http://www.mediacooperative.com/mt-
atom.cgi/weblog/”;

my $api = XML::Atom::Client->new;
$api->username($username);
$api->password($password);

my $feed = $api->getFeed($FeedURI);

if ($feed) {
print $feed->as_xml;

} else {
print $api->errstr;

}

The result for my own weblog is as follows:

<?xml version=”1.0”?>
<feed xmlns=”http://purl.org/atom/ns#”>
<link xmlns=”http://purl.org/atom/ns#”

type=”application/x.atom+xml” rel=”service.post”
href=”http://www.mediacooperative.com/mt-
atom.cgi/weblog/blog_id=3” title=”Ben Hammersley’s Dangerous
Precedent”/>
<link xmlns=”http://purl.org/atom/ns#”

type=”application/x.atom+xml” rel=”service.feed”
href=”http://www.mediacooperative.com/mt-
atom.cgi/weblog/blog_id=3” title=”Ben Hammersley’s Dangerous
Precedent”/>
<link xmlns=”http://purl.org/atom/ns#”

type=”application/x.atom+xml” rel=”service.upload”
href=”http://www.mediacooperative.com/mt-
atom.cgi/weblog/blog_id=3/svc=upload” title=”Ben Hammersley’s
Dangerous Precedent”/>
<link xmlns=”http://purl.org/atom/ns#”

type=”application/x.atom+xml” rel=”service.categories”
href=”http://www.mediacooperative.com/mt-
atom.cgi/weblog/blog_id=3/svc=categories” title=”Ben Hammersley’s
Dangerous Precedent”/>
<link xmlns=”http://purl.org/atom/ns#”

type=”application/x.atom+xml” rel=”service.post”

12_57499x ch07.qxd  6/17/05  7:38 PM  Page 101

TEAM LinG



102 Part III — Hacking with APIs

href=”http://www.mediacooperative.com/mt-atom.cgi/weblog/
blog_id=5” title=”Lazyweb”/>
<link xmlns=”http://purl.org/atom/ns#” type=”application/

x.atom+xml” rel=”service.feed”
href=”http://www.mediacooperative.com/mt-atom.cgi/weblog/
blog_id=5” title=”Lazyweb”/>
<link xmlns=”http://purl.org/atom/ns#” type=”application/

x.atom+xml” rel=”service.upload”
href=”http://www.mediacooperative.com/mt-atom.cgi/weblog/
blog_id=5/svc=upload” title=”Lazyweb”/>
<link xmlns=”http://purl.org/atom/ns#” type=”application/

x.atom+xml” rel=”service.categories”
href=”http://www.mediacooperative.com/mt-atom.cgi/weblog/
blog_id=5/svc=categories” title=”Lazyweb”/>
<link xmlns=”http://purl.org/atom/ns#” type=”application/

.atom+xml” rel=”service.post”
href=”http://www.mediacooperative.com/mt-atom.cgi/weblog/
blog_id=19” title=”BHDP Static Pages”/>
<link xmlns=”http://purl.org/atom/ns#” type=”application/

x.atom+xml” rel=”service.feed”
href=”http://www.mediacooperative.com/mt-atom.cgi/weblog/
blog_id=19” title=”BHDP Static Pages”/>
<link xmlns=”http://purl.org/atom/ns#” type=”application/

x.atom+xml” rel=”service.upload”
href=”http://www.mediacooperative.com/mt-atom.cgi/weblog/
blog_id=19/svc=upload” title=”BHDP Static Pages”/>
<link xmlns=”http://purl.org/atom/ns#” type=”application/

x.atom+xml” rel=”service.categories”
href=”http://www.mediacooperative.com/mt-atom.cgi/weblog/
blog_id=19/svc=categories” title=”BHDP Static Pages”/>
</feed>

As you can see, I have three weblogs within my installation that I care to share with you, and
each one has four URIs associated with it. The fifth type, the EditURI, is only associated with
individual entries, and so doesn’t get listed here.

Being in XML, I can use a variety of tools on the results that the Atom API throws back at
me. XML::Atom requires either XML::LibXML or XML::XPath as a prerequisite to it being
installed, so straight away you can use DOM or XPath to do your querying. (Or, you can load
up something like XML::Simple and use that — whatever you are most comfortable with. This
is Perl, remember.)

In this case, we’re really interested in my main site, titled “Ben Hammersley’s Dangerous
Precedent,” so we need to pull out the specific FeedURI for that from the result we have now.

Using the standard XML::LibXML interface, you can do it like this:

#!/usr/bin/perl -w
use strict;
use XML::Atom::Client;

my $username = “Ben Hammersley”;

12_57499x ch07.qxd  6/17/05  7:38 PM  Page 102

TEAM LinG



103Chapter 7 — Atom API

my $password = “XXXXXXXX”;
my $FeedURI = “http://www.mediacooperative.com/mt-atom.cgi/
weblog/”;

my $api = XML::Atom::Client->new;
$api->username($username);
$api->password($password);

my $feed = $api->getFeed($FeedURI);

if ($feed) {
my @links = $feed->{doc}->getElementsByTagNameNS(‘http://purl.

org/atom/ns#’, ‘link’);
foreach my $link (@links) {

my $link_rel = $link->getAttribute(‘rel’);
my $link_title = $link->getAttribute(‘title’);
my $link_href = $link->getAttribute(‘href’);

if (($link_rel eq ‘service.feed’) && ($link_title eq
“Ben Hammersley\’s Dangerous Precedent”)) {

print “$link_href”;
}

}
} else {

print $api->errstr;
}

This will print out the FeedURI for that specific weblog, which turns out to be www.
mediacooperative.com/mt-atom.cgi/weblog/blog_id=3.

Let’s move on and use it.

Retrieving Information from a Single Weblog
GETting the FeedURI for a single weblog will return the last 20 entries, in descending
chronological order. Again using XML::Atom, and the FeedURI previously found above, this
is simply as follows:

#!/usr/bin/perl -w
use strict;
use XML::Atom::Client;

my $username = “Ben Hammersley”;
my $password = “XXXXXXXX”;
my $FeedURI = “http://www.mediacooperative.com/mt-atom.cgi/weblog/
blog_id=3”;

my $api = XML::Atom::Client->new;
$api->username($username);
$api->password($password);

my $feed = $api->getFeed($FeedURI);

12_57499x ch07.qxd  6/17/05  7:38 PM  Page 103

TEAM LinG



104 Part III — Hacking with APIs

if ($feed) {
print $feed->as_xml;

} else {
print $api->errstr;

}

The outcome is the same as before, but with the longer FeedURI. This results in a more com-
plicated document. It’s a complete Atom feed, just like the Syndication standard, containing
details of the last 20 entries on that blog. Here’s a cut-down version with only one <entry>
where usually there would be 20:

<?xml version=”1.0”?>
<feed xmlns=”http://purl.org/atom/ns#”>
<link xmlns=”http://purl.org/atom/ns#” type=”text/html”
rel=”alternate” href=”http://www.benhammersley.com” title=””/>
<title>Ben Hammersley’s Dangerous Precedent</title>
<link xmlns=”http://purl.org/atom/ns#”
type=”application/x.atom+xml” rel=”service.post”
href=”http://www.mediacooperative.com/mt-
atom.cgi/weblog/blog_id=3” title=”Ben Hammersley’s Dangerous
Precedent”/>

<entry xmlns=”http://purl.org/atom/ns#”>
<title>Perl really can do everything</title>
<summary/>
<content mode=”xml”>
<div xmlns=”http://www.w3.org/1999/xhtml”>The perils of coding
and bittorrenting at the same time.
<code>perl -MCPAN -e ‘install CSI::Miami’</code>
More coffee needed. I repeat, more coffee needed.</div>
</content>
<author>
<name xmlns=”http://purl.org/atom/ns#”>Ben Hammersley</name>
<url

xmlns=”http://purl.org/atom/ns#”>http://www.benhammersley.com</url
>
<email

xmlns=”http://purl.org/atom/ns#”>ben@benhammersley.com</email>
</author>
<issued>2004-07-13T14:17:40+0100</issued>
<id>tag::post:8588</id>
<link xmlns=”http://purl.org/atom/ns#”
type=”application/x.atom+xml” rel=”service.edit”
href=”http://www.mediacooperative.com/mt-
atom.cgi/weblog/blog_id=3/entry_id=8588” title=”Perl really can do
everything”/>
</entry>
</feed>

Parsing this document for the details of each post is very easy indeed. As you can see, it’s
straightforward XML.

12_57499x ch07.qxd  6/17/05  7:38 PM  Page 104

TEAM LinG



105Chapter 7 — Atom API

You will notice, however, that this feed does not give the public URL for the entry. You can’t
take this data and expect to be able to produce proper URLs for public display. Neither does it
include the category under which the entry has been posted. These are serious drawbacks to
the current Atom implementation, but they may have been fixed by the time you read this.

To edit an entry, you must call the EditURI for the entry itself. Notice there’s a pointer to it at
the bottom of the <entry>.

We would parse this value out using our own favorite XML technique, and declare it thus:

http://www.mediacooperative.com/mt-
atom.cgi/weblog/blog_id=3/entry_id=8588

Now we can find out all about an installation, a single weblog, and an entry. Before moving on
to more interesting things, here is a nice entry to play with.

Posting an Entry
Posting an entry is merely a matter of POSTing correctly formed content to the correct
PostURI. Within MT, PostURIs are formed like so:

http://URL.TO.MT/mt-atom.cgi/weblog/blog_id=X

Once again, we turn to XML::Atom. With this module, you create an XML::Atom::Entry
object and push it at the server.

Let’s look at some code that will post an entry, and work from there:

#!/usr/bin/perl -w
use strict;
use XML::Atom::Client;

my $username = “Ben Hammersley”;
my $password = “XXXXXXXXXXXXX”;
my $PostURI = “http://www.mediacooperative.com/mt-atom.cgi/weblog/
blog_id=3/”;

my $api = XML::Atom::Client->new;
$api->username($username);
$api->password($password);

my $entry = XML::Atom::Entry->new;
$entry->title(‘And it shall render my doubts asunder’);
$entry->content(‘If this works, I shall be unto an Atom API
wrangling god. Oh yes.’);

my $EditURI = $api->createEntry($PostURI, $entry);

if ($EditURI) {
print $EditURI;
} else {
print $api->errstr;
}

12_57499x ch07.qxd  6/17/05  7:38 PM  Page 105

TEAM LinG



106 Part III — Hacking with APIs

When run, this produces an entry and returns the new entry’s EditURI to the script. This is
www.mediacooperative.com/mt-atom.cgi/weblog/blog_id=3/entry_id=8644;
we’ll save that for later.

As you can see, you can invoke various methods on the object that give it the attributes you
want. In other words, you can do any combination of these, with the content() call being
compulsory:

$entry->title(‘This is the title’);
$entry->content(‘This is the main entry body’);
$entry->summary(‘This is the excerpt’);

Setting the Posting Date
$entry->issued(‘2004-08-06T00:12:34Z’);

Currently, under MT3.01D, MT will only accept the issued date set as Zulu. It’s simple to
change the date, however; just invoke the issued method with the new date in the format
shown.

Setting the Category
Categories within the raw XML of an Atom request are denoted by the use of the trusty
old Dublin Core element <dc:subject>, perhaps already familiar to you from RSS.

The code to do this is useful to know, as it can be changed to fit any namespaced element,
should they be introduced:

my $dc = XML::Atom::Namespace->new(dc => ‘http://purl.org/dc/
elements/1.1/’);

$entry->set($dc, ‘subject’, ‘your_category’);

Note that the category must already exist within your weblog for the entry to take it on.
If it doesn’t, the call will throw an error and the post will not be made. For a remote client,
therefore, you need to either know the categories or be able to get MT to tell you what
they are.

Remembering categories is a job best left to computers. Happily, Movable Type provides an
Atom method to retrieve the categories it knows about. Remember when we retrieved the
FeedURI for the entire installation? One of the lines for my own weblog was this:

<link xmlns=”http://purl.org/atom/ns#” type=
”application/x.atom+xml” rel=”service.categories”
href=”http://www.mediacooperative.com/mt-atom.cgi/weblog/
blog_id=3/svc=categories” title=”Ben Hammersley’s Dangerous
Precedent”/>

We can parse this to get the following CategoryURI:

http://www.mediacooperative.com/mt-atom.cgi/weblog/blog_id=3/
svc=categories

12_57499x ch07.qxd  6/17/05  7:38 PM  Page 106

TEAM LinG



107Chapter 7 — Atom API

We can then run a GET request on the CategoryURI, like so:

#!/usr/bin/perl -w
use strict;
use XML::Atom::Client;

my $username = “Ben Hammersley”;
my $password = “XXXXXXXXXXXXXX”;
my $FeedURI = “http://www.mediacooperative.com/mt-atom.cgi/
weblog/blog_id=3/svc=categories”;

my $api = XML::Atom::Client->new;
$api->username($username);
$api->password($password);

my $feed = $api->getFeed($FeedURI);

if ($feed) {
print $feed->as_xml;

} else {
print $api->errstr;

}

A file like this is returned:

<?xml version=”1.0” encoding=”utf-8”?>
<categories xmlns=”http://sixapart.com/atom/category#”>
<subject xmlns=”http://purl.org/dc/elements/1.1/”>Movable

Type</subject>
<subject xmlns=”http://purl.org/dc/elements/1.1/”>RDF and

FOAF</subject>
<subject xmlns=”http://purl.org/dc/elements/1.1/”>Renaissance

Art</subject>
<subject xmlns=”http://purl.org/dc/elements/1.1/”>Social

Software and Virtual Communities</subject>
<subject xmlns=”http://purl.org/dc/elements/1.1/”>Urban

Theory</subject>
<subject

xmlns=”http://purl.org/dc/elements/1.1/”>Weblogging</subject>
</categories>

This is very straightforward indeed to parse, and we leave that as an exercise for the reader.

Setting the Author and Other Things
Currently, although the toolkits may allow it, Movable Type does not recognize or react in any
way to any other payload within an entry creation call. XML::Atom, for example, has a very
nice object for the author of a post, but setting it within a new post will have no effect at all.

Incidentally, you can look at the code that interacts with an incoming Atom call yourself. It’s at
/lib/MT/AtomServer.pm — however, please be conscientious and back it up before tinker-
ing with it.

12_57499x ch07.qxd  6/17/05  7:38 PM  Page 107

TEAM LinG



108 Part III — Hacking with APIs

Editing an Entry
So now that we’ve created an entry, and it has given us the EditURI for a single entry, we can
do some more interesting stuff, such as load up an entry, change something, and send it back.

First, we load the entry like so:

#!/usr/bin/perl -w
use strict;
use XML::Atom::Client;

my $username = “Ben Hammersley”;
my $password = “XXXXXXXXXXXXX”;
my $EditURI = “http://www.mediacooperative.com/mt-atom.cgi/weblog/
blog_id=3/entry_id=8588”;

my $api = XML::Atom::Client->new;
$api->username($username);
$api->password($password);

my $entry= $api->getEntry($EditURI);

if ($entry) {
print $entry->as_xml;
} else {
print $api->errstr;
}

This will print out the XML of the entry, which in our case appears as follows:

<?xml version=”1.0”?>
<entry xmlns=”http://purl.org/atom/ns#”>
<title>Perl really can do everything</title>
<summary/>
<content mode=”xml”>
<div xmlns=”http://www.w3.org/1999/xhtml”>The perils of coding

and bittorrenting at the same time.

<code>perl -MCPAN -e ‘install CSI::Miami’</code>

More coffee needed. I repeat, more coffee needed.</div>
</content>
<author>
<name xmlns=”http://purl.org/atom/ns#”>Ben Hammersley</name>
<url

xmlns=”http://purl.org/atom/ns#”>http://www.benhammersley.com</url
>

<email
xmlns=”http://purl.org/atom/ns#”>ben@benhammersley.com</email>
</author>
<issued>2004-07-13T14:17:40+0100</issued>
<id>tag::post:8588</id>

</entry>

12_57499x ch07.qxd  6/17/05  7:38 PM  Page 108

TEAM LinG



109Chapter 7 — Atom API

This is very similar indeed to the <entry>s inside a FeedURI result. So now we know what
we’re dealing with. Fortunately, there is no need to mess around with the raw XML. The
XML::Atom module provides a good object-oriented interface to the entry.

At this point, however, I should mention that in version 3.01D, with which I am writing this
chapter, there is a bug that prevents the Edit Entry functionality from working. It’s easy to fix,
however. At line 432, you should change

$entry->text($atom->content);

to read

$entry->text($atom->content()->body());

This problem may have been fixed in later versions, but if you find your calls failing weirdly,
check this out. Another problem, mentioned before, is that you can’t retrieve the current cate-
gory, although you can set a new one. If you’re thinking of writing code to show the current
category and then change it to something else, you will need to wait for Six Apart to fix this
before you can do the first bit.

Anyhow, you can load the Entry object, and you can place new values into the Entry’s
attributes. Then you just send the updated Entry object back to MT, doing that with the
XML::Atom function updateEntry(), which takes the EditURI and the Entry object.

That is pretty much it: Load the entry, change it, and put it back. However, there are a couple
things to notice about XML::Atom:

� Calling the method with no argument gives you the current value, whereas setting an
argument changes the value, as in the following example:

$entry->title(); # will return the current title.
$entry->title(‘new title’); # will set the title to
‘new title’.

� Although it is not mentioned in the current XML::Atom documentation, the content
body is an exception to this. You retrieve the body text like this:

my $current_entry_body = $entry->content()->body();

but set it like this:

$entry->content(“$new_entry_body”);

Put all of that together and you get something like this:

#!/usr/bin/perl -w
use strict;
use XML::Atom::Client;
use XML::Atom::Entry;

my $username = “Ben Hammersley”;
my $password = “XXXXXXXXXXXXXX”;
my $EditURI = “http://www.mediacooperative.com/mt-atom.cgi/weblog/
blog_id=3/entry_id=8588”;

12_57499x ch07.qxd  6/17/05  7:38 PM  Page 109

TEAM LinG



110 Part III — Hacking with APIs

my $api = XML::Atom::Client->new;
$api->username($username);
$api->password($password);

my $entry = $api->getEntry($EditURI);

my $current_entry_title = $entry->title();
my $current_entry_body = $entry->content()->body();

my $new_entry_body = “$current_entry_body”. “Update: Atom Rocks!”;

$entry->title(“$current_entry_title - UPDATED”);
$entry->content(“$new_entry_body”);

my $post_result = $api->updateEntry($EditURI, $entry);

This will load the entry, change the title, append the text “Update: Atom Rocks!” to the current
body text, and send it back to MT.

If you have architected your site in the way recommended in Chapter 1, changing the entry title
will change the permalink of that entry.

Uploading a File
Sometimes you want to upload files to MT: images, for example, or other types of media files.
This is done using the UploadURI, denoted within the whole installation feed as service.
upload. As we discovered earlier, for my site this is www.mediacooperative.com/
mt-atom.cgi/weblog/blog_id=3/svc=upload.

This URI takes a POST call, with the binary contents of the file as the content entry, its file-
name as the entry title, and the file’s mime type as entry content type. It returns a 1 on success
or an error message. It’s easy to work out the URL of the uploaded file, as MT will automati-
cally save it into the weblog’s root directory. This cannot be changed. You can then place that
URL inside a new entry.

Here’s some code that takes a local image file and throws it onto the server:

#!/usr/bin/perl -w
use strict;
use XML::Atom::Client;

my $username = “Ben Hammersley”;
my $password = “XXXXXXXXXXXXXXX”;
my $UploadURI = “http://www.mediacooperative.com/mt-
atom.cgi/weblog/blog_id=3/svc=upload”;

my $name = “image.gif”;
open my $fh, $name or die $!;
binmode $fh;

12_57499x ch07.qxd  6/17/05  7:38 PM  Page 110

TEAM LinG



111Chapter 7 — Atom API

my $data = do { local $/; <$fh> };
close $fh;

my $api = XML::Atom::Client->new;
$api->username($username);
$api->password($password);

my $entry = XML::Atom::Entry->new;

# The title is the filename
$entry->title(‘exampleimage.gif’);
$entry->content($data);
$entry->content()->type(‘image/gif’);

my $link = $api->createEntry($UploadURI, $entry);

If the file already exists, it won’t be overwritten. Instead, it will have an underscore and a num-
ber appended to it, like this:

exampleimage.gif

exampleimage_1.gif

exampleimage_2.gif

Note that, in old school style, the numbering starts from zero.

Deleting Entries
Deleting an entry is merely a matter of sending a DELETE request to the entry’s EditURL.
You can do this within the XML::Atom module with the deleteEntry() function, like so:

#!/usr/bin/perl -w
use strict;
use XML::Atom::Client;

my $username = “Ben Hammersley”;
my $password = “XXXXXXXXXXXXXXX”;
my $EditURI = “http://www.mediacooperative.com/mt-
atom.cgi/weblog/blog_id=3/entry_id=8644”;

my $api = XML::Atom::Client->new;
$api->username($username);
$api->password($password);

my $entry= $api->deleteEntry($EditURI);

if ($entry) {
print $entry;

12_57499x ch07.qxd  6/17/05  7:38 PM  Page 111

TEAM LinG



112 Part III — Hacking with APIs

} else {
print $api->errstr;
}

This will also return 1 on success, or an error message.

Summary
From this chapter, you should have learned how to post, retrieve, and edit entries using the
Atom API, and you will have used the interface to upload other files. Movable Type’s support
for the Atom API is, like the API standard itself, still in its infancy, but it is already quite
powerful. Be sure to keep track of the Movable Type documentation to see how it develops
in future versions.

12_57499x ch07.qxd  6/17/05  7:38 PM  Page 112

TEAM LinG



Perl API

The Movable Type Perl API is an excellent example of object-oriented
Perl development. That makes MT extremely accessible, whether you
are creating external tools or plugins that extend its capabilities.

This chapter delves into this powerful API and explores how you can use it
to control Movable Type yourself. It assumes you are familiar with Perl pro-
gramming and general object-oriented programming concepts.

Overview of the Class Hierarchy
Movable Type’s codebase is stored in the lib subdirectory of a typical
installation. Let’s take a closer look at how these modules relate to one
another. Figure 8-1 displays the physical location of each of the MT Perl
modules (this excludes the files from the extlib and plugins directories,
which are outside of the core Movable Type API).

Figure 8-2 is a view of the MT Perl API, showing the class hierarchy and
relationships between the classes. The MT::ErrorHandler class is a base
class for many of the objects, but it provides little function other than the
capability to store an error status in the case of an exception within the MT
framework.

Figure 8-3 shows the same set of modules as Figure 8-2, but this time
they’re grouped by their functionality.

˛ Overview

˛ Object persistence

˛ Plugin API

˛ MT::Session

˛ MT publishing
mechanics

˛ Background tasks

˛ Logging and
communication

˛ Debugging
techniques

˛ Practical examples

chapter

in this chapter

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 113

TEAM LinG



114 Part III — Hacking with APIs

FIGURE 8-1: Movable Type’s Perl API, filesystem view

The MT Class
The MT class is the ancestor of MT::App and handles the startup of the Movable Type envi-
ronment. This includes loading the configuration file (mt.cfg) and initialization of installed
plugins. The MT class also provides hooks and management routines for the Movable Type call-
back architecture. Additionally, the MT class includes much of the weblog rebuilding operations
because most any MT subclass (particularly applications) will be rebuilding weblog elements.

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 114

TEAM LinG



115Chapter 8 — Perl API

FIGURE 8-2: Movable Type’s Perl API, hierarchical view

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 115

TEAM LinG



116 Part III — Hacking with APIs

FIGURE 8-3: Movable Type’s Perl API, functional view

MT::App and Family
The MT::App class is a descendant of the MT class and establishes a framework for applica-
tions. Most of Movable Type’s CGI applications are implemented as a subclass of the
MT::App class. Table 8-1 shows the relationship between the MT::App descendants and the
CGI files that invoke them.

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 116

TEAM LinG



117Chapter 8 — Perl API

Table 8-1 MT::App Subclasses

CGI Filename MT::App Subclass Purpose

mt.cgi MT::App::CMS Primary MT application

mt-comments.cgi MT::App::Comments Handles comment submissions

mt-add-notify.cgi MT::App::Notify Handles weblog subscription requests

mt-search.cgi MT::App::Search Handles search requests

mt-tb.cgi MT::App::Trackback Receives TrackBack submissions

mt-view.cgi MT::App::Viewer Generates pages dynamically

You will want to inherit the functionality provided by MT::App when writing your own MT
extensions, particularly if they have a web interface of their own. The MT:App class enables you
to enforce a login to access the application. You can also leverage the cookie management, tem-
plating, and error handling support MT::App provides.

MT::App Structure
Creating your own MT-based applications is pretty simple. You first create a Perl package that
defines a new MT::App subclass. At a minimum, it should implement the init method and
define a default handler. Listing 8-1 illustrates a minimal MT::App subclass.

Listing 8-1: A Minimal MT::App Subclass

# store in extlib/MT/App/MyApp.pm
package MT::App::MyApp;

use strict;
use base ‘MT::App’;

sub init {
my $app = shift;
$app->SUPER::init(@_) or return;
$app->add_methods(‘main’ => \&main,

‘time’ => \&show_time);
$app->{default_mode} = ‘main’;

}

sub main {
my $app = shift;
# return HTML to the browser
return ‘<html><body>Hello, world!</body></html>’;

}

Continued

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 117

TEAM LinG



118 Part III — Hacking with APIs

Listing 8-1 (continued)

sub show_time {
my $app = shift;
my $time = localtime(time);
return qq{<html><body>Server time is $time</body></html>};

}

1;

The other element you need is a way to invoke your application class. If you are using tradi-
tional CGI on your server, you need to write a small script to launch the application. The code
should look something like what is shown in Listing 8-2.

Listing 8-2: Launch Code for Invoking Your Application Class

#!/usr/bin/perl -w
use strict;

# establish the directory we’re running from and
# add the ‘lib’, ‘extlib’ directories to the Perl
# search path
my($MT_DIR);
BEGIN {

if ($0 =~ m!(.*[/\\])!) {
$MT_DIR = $1;

} else {
$MT_DIR = ‘./’;

}
unshift @INC, $MT_DIR . ‘lib’;
unshift @INC, $MT_DIR . ‘extlib’;
# add any other Perl library paths you require here...

}

eval {
# load application package
require MT::App::MyApp;
# instantiate application
my $app = MT::App::MyApp->new(Config => $MT_DIR . ‘mt.cfg’,

Directory => $MT_DIR )
or die MT::App::MyApp->errstr;

local $SIG{__WARN__} = sub { $app->trace($_[0]) };
$app->run;

};
if ($@) {

print “Content-Type: text/html\n\n”;
print “Got an error: $@”;

}

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 118

TEAM LinG



119Chapter 8 — Perl API

Once you have your CGI, you can execute requests to your application package from your
browser. For example, if you placed your CGI in the MT directory, the URL for your request
might look like this:

http://localhost/cgi-bin/mt/myapp.cgi

This will invoke the “main” handler in MT::App::MyApp, because it is defined as the default
application mode. To request other modes, such as time, the URL would look like this:

http://localhost/cgi-bin/mt/myapp.cgi?__mode=time

The __mode parameter is what you use to segment the functionality of your application into
different subroutines. The MT::App package directs the requests to the appropriate handler
based on the given mode.

Extending MT Applications
Extending MT applications is very easy to do with the object-oriented framework. For exam-
ple, you can create a package that inherits from the MT::App::CMS package (the main MT
application). If you do that, you can add additional functionality and override existing behavior,
as illustrated in Listing 8-3.

Listing 8-3: Adding Additional Functionality

package MT::App::MyCMS;

use strict;
use base ‘MT::App::CMS’;

sub init {
my $app = shift;
# important, since it populates all the standard MT
# application methods
$app->SUPER::init(@_) or return;
# now we can customize the method list; note that
# redefining an existing method is okay too.
$app->add_methods(

‘my_mode’ => \&my_mode,      # new mode
‘list_blogs’ => \&list_blogs # overridden mode

);
$app;

}

sub my_mode {
return ‘<html><body>Hello, world!</body></html>’;

}

sub list_blogs {
my $self = shift;
my $html = $self->SUPER::list_blogs(@_);
# now do something with $html

Continued

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 119

TEAM LinG



120 Part III — Hacking with APIs

Listing 8-3 (continued)

# finally, return html
return $html;

}

1;

To use this package, you would create a copy of the standard mt.cgi script that invokes
MT::App::MyCMS instead of MT::App::CMS.

Accessing the HTTP Environment
Once you’re ready to move beyond “Hello, world,” you will want to start doing real communi-
cation with the browser. The data sent by the browser can be accessed through the following
methods. (The $app variable here is the instance of your MT::App subclass. Plugins can also
retrieve this object using the MT->instance() method.)

� $app->query_string — Returns any data from the URL, following the ? character.

� $app->cookie_val — Retrieves the value of a particular browser cookie.

� $app->{query} — Holds the original CGI object. Use this to retrieve individual
parameters, process uploaded files, and retrieve other information sent to the CGI from
the request.

� $app->get_header — Retrieves the value of a particular HTTP header.

� %ENV — Perl’s global hash variable for accessing environment variables. It’s also useful
for determining whether you are executing in a mod_perl environment, because
$ENV{MOD_PERL} will be assigned.

� $app->path_info — Returns any characters following the CGI name that are not
part of the query string (for example, returns /path from a request like http://
localhost/mt/myapp.cgi/path).

The handlers of your application respond to HTTP requests by returning a scalar with the
content to be returned to the client. The content is usually HTML (or XHTML), but could
also be RSS or Atom, among others. To adjust the content type header that is returned to the
client, use the send_http_header method of the application object:

$app->send_http_header(“image/jpeg”);

Application Callbacks
Movable Type 3 introduced a callback system, which enables plugins to hook into various
points of the MT application. MT exposes the application callback entry points listed in
Table 8-2.

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 120

TEAM LinG



121Chapter 8 — Perl API

Table 8-2 Application Callback Entry Points

Callback Name Application Class Purpose

AppPostEntrySave MT::App::CMS Invoked upon saving an entry and all objects
related to that entry

CommentThrottleFilter MT::App::Comments Enables plugins to control whether an e-
comment is denied based on a throttle rule

CommentFilter MT::App::Comments Enables plugins to intercept an inbound
comment and either accept, deny, or moderate it

TBPingThrottleFilter MT::App::Trackback Enables plugins to control whether a TrackBack
ping is denied, based on a throttle rule

TBPingFilter MT::App::Trackback Enables plugins to intercept an inbound
TrackBack ping and either accept or deny it

The comment and TrackBack callbacks in particular are excellent means for developing your
own comment filtering plugins. Attaching a method to one of these callbacks is demonstrated
in Listing 8-4.

Listing 8-4: Attaching a Method to a Callback

# attach to the AppPostEntrySave callback
use MT;
MT->add_callback( ‘AppPostEntrySave’, 2, undef,

\&post_entry_save_handler );

sub  post_entry_save_handler {
my ($cb, $app, $entry) = @_;
# do something with $entry

}

The parameters given to the add_callback method are as follows:

� method — The name of the callback to which you are attaching.

� priority — A number from 1 to 10 that controls the order of execution for your call-
back. This is particularly useful when you register multiple callbacks for the same
method and one is expecting the other to be run first. The callbacks are executed in order
by priority, starting from priority 1.

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 121

TEAM LinG



122 Part III — Hacking with APIs

� plugin — You can optionally pass in an MT::Plugin (or descendant of
MT::Plugin) object reference here.

� code — A code reference to the callback handler.

The $cb object that is passed to your callback routine is an object of type MT::Callback.
The object also operates as a Perl hash reference and the hash contains the following keys:

� method

� priority

� plugin

� code

As you can see, these are the same elements that were registered with the add_callback
method.

Object Persistence
Movable Type is all about data. MT::Object is the core class that Movable Type uses to man-
age data as it is stored and retrieved from the database. In programming terms, the MT::Object
class is what you would call an abstract class, meaning that it isn’t usable by itself. Movable
Type’s other data classes derive from MT::Object, which supplies their core functions. Refer
to Figure 8-2 for a list of the MT::Object descendant classes.

MT::Object
The MT::Object class provides all of the basic methods necessary to store and retrieve the
data from the object itself. A separate class named MT::ObjectDriver (and child classes for
each supported database, such as MySQL, Postgres, and BerkeleyDB) is used to marshal these
objects to and from the underlying database.

MT::Object Data Access Methods
Basic operations on all persistent object data is done through the methods shown in Table 8-3.

Table 8-3 MT::Object Methods

Method Name Operation

count Counts all or a subset of objects

exists Checks if a particular object exists

load Retrieves one or more objects

load_iter Incrementally retrieves objects

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 122

TEAM LinG



123Chapter 8 — Perl API

Method Name Operation

save Saves an object to the database

remove Removes a single object

remove_all Removes all objects of this class

The MT::Object->load Method
One of the more significant methods of MT::Object is the load method. Because Movable
Type supports several different types of databases, the load method provides a vendor-neutral
mechanism for retrieving data from a database. That means that regardless of whether you are
using the BerkeleyDB as your database or a SQL-based database such as MySQL or
PostgreSQL, you code the same way for all of them. You don’t have to worry about what hap-
pens underneath, it just works.

The load method can retrieve either a single object or a list of objects. Another method,
load_iter, is used to retrieve multiple objects one row at a time. Here’s how you might use
the load method to retrieve a MT::Blog object with an ID of 1:

use MT::Blog;
my $blog = MT::Blog->load(1);

When called with a single numeric parameter, the load method assumes it to be the unique
ID of the object to be loaded. However, you aren’t limited to selecting objects by their ID. The
load method is quite flexible and can select based on other column values as well (as long as
they are indexed columns — a limitation of the BerkeleyDB database). You pass a hash refer-
ence in this form. This provides the search terms for the load method. You provide the col-
umn names and values for the selection:

use MT::Blog;
my $terms = { name => “Bloghappy” };
my $blog = MT::Blog->load( $terms );

If the load method cannot find the object requested, it will return an undef value, which you
should test for in your code:

use MT::Blog;
my $blog = MT::Blog->load({ name => “Unknown Blog” });
return $self->error(“Could not load ‘Unknown Blog’”)

unless defined $blog;

The second parameter for the load method is another hash reference, which provides addi-
tional search arguments. The argument’s hash reference may include the following elements:

� sort — Use to sort by an individual column (for compatibility with all supported
databases, this must be an indexed column):

# selects all blogs, sorting them by name in ascending order
my $args = { sort => ‘name’ };
my @blogs = MT::Blog->load(undef, $args);

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 123

TEAM LinG



124 Part III — Hacking with APIs

� direction — Use to define an ascending (ascend) or descending (descend) sort
order. The default is ascend:

# selects all blogs, sorting by name in descending order
my $args = { sort => ‘name’, direction => ‘descend’ };
my @blogs = MT::Blog->load(undef, $args);

� limit — Use to specify a maximum number of rows to return. The default is to return
all available rows:

# selects the first 10 blogs
my $args = { limit => 10 };
my @blogs = MT::Blog->load(undef, $args);

� offset — Use to specify an offset for your record selection. The default is no offset:

# selects the 10 entries following the first 10
my $args = { offset => 10, limit => 10 };
my @entries = MT::Entry->load(undef, $args);

� start_val — Use to define the start of the selection of records to return. This argu-
ment is used in combination with the sort argument. The column the start_val
value is compared against is the column specified with the sort argument:

# select blogs with a blog_id of 11 or more
my $args = { sort => ‘id’, start_val => 10 };
my @blogs = MT::Blog->load(undef, $args);

� range — Use to select a range of records. The value of the range argument is a hashref
that identifies which of the terms specified are to be used this way. The value of the
search term in this case is not a scalar value but an array reference that contains the low
and high value boundaries of the range:

# selects all MT::Entry records who have an entry_id
# between 20 and 40 (but does not include entry_id 20
# or entry_id 40; this is an exclusive range operation).
my $terms = { ‘id’ => [ 20, 40 ] };
my $args = { range =>  { ‘id’ => 1 } };
my @entries = MT::Entry->load($terms, $args);

� range_incl — Similar to the range argument, but used to select an inclusive range
of records:

# selects all MT::Entry records who have an entry_id
# between and including 20 and 40.
my $terms = { ‘id’ => [ 20, 40 ] };
my $args = { range_incl =>  { ‘id’ => 1 } };
my @entries = MT::Entry->load($terms, $args);

� join — Use to join one table with another. This is the most complicated argument of
the load method, because there are so many options for it. This argument enables you
to select and sort on one table of data, but return matching objects from another table.
The format of the join argument is as follows:

join => [ (class), (column), (terms), (arguments) ]

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 124

TEAM LinG



125Chapter 8 — Perl API

The MT documentation provides an excellent example of a join, listing entries that have
been recently commented on. What is returned is an array of MT::Entry objects that
are related to the MT::Comment objects selected with the join criteria:

# selects the last 10 recently commented-on entries
my $args = {

‘join’ => [ ‘MT::Comment’, ‘entry_id’,
{ blog_id => $blog_id },
{ ‘sort’ => ‘created_on’,
direction => ‘descend’,
unique => 1,
limit => 10 } ]

};
my @entries = MT::Entry->load(undef, $args);

� unique — Use in conjunction with the join argument to ensure that only a single
instance of any object is returned in the lookup.

To load a collection of objects, you can either call the load method with an array receiving the
return value (which tells the load method to return an array of all matches), or you can use the
load_iter method instead. The former is best for cases in which you know you are fetching
just a few objects. The latter is best when you are operating on an unknown number of objects
or when you’re processing all of the available objects:

use MT::Blog;
# immediately loads all MT::Blog objects into @blogs array
my @blogs = MT::Blog->load();

# loads all MT::Blog objects one at a time using an
# iterator
my $iter = MT::Blog->load_iter();
while (my $blog = $iter->()) {

# do something with $blog
}

Accessing Data
Now that you can load objects from the MT database, you will probably want to access or
change the data they contain. All of the MT::Object child classes use a method named
install_properties to establish the column names. This method is invoked when the
object module is loaded initially. The data can then be retrieved or assigned by calling methods
that are named after the properties that were installed. For example, the MT::Blog class
defines a name property that gets and sets the weblog name:

# retrieve name of blog
my $name = $blog->name;

# assign weblog name and save it
$blog->name(“My weblog”);
$blog->save;

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 125

TEAM LinG



126 Part III — Hacking with APIs

The save method will save your updated object back to the database. Removing objects is just
as easy. Simply load the object first and then use the remove method to delete it.

Object Callbacks
Another noteworthy component of the MT::Object class is the callback system. Object call-
backs were introduced with Movable Type 3 and they add a whole new way for plugins to
interact with Movable Type. A callback is a way to ask Movable Type to run a piece of custom
code whenever a particular event happens. In the case of MT::Object callbacks, these events
include those listed in Table 8-4.

Table 8-4 MT::Object Callbacks Events

Callback Name Function

pre_load Before loading an object (called from load, load_iter methods)

post_load After loading an object (called from load, load_iter methods)

pre_remove Before removing an object

post_remove After removing an object

pre_remove_all Before removing all objects

post_remove_all After removing all objects

pre_save Before saving an object

post_save After saving an object

A callback can be associated with any of the MT::Object descendant classes. It is important
to know that these callbacks have no control over the event; they cannot prevent or roll back an
operation in progress. Callbacks are covered in more detail in Chapter 11.

Extending MT::Object
If you need to store objects of your own, you must create a subclass of MT::Object. Suppose
you wanted to create a list of weblogs to automatically ping (to a target TrackBack ping URL,
perhaps a category TrackBack URL) for each post you create. Listing 8-5 provides such an
example.

Listing 8-5: Creating a List of Weblogs to Ping for Each Post

package BlogPal;

use strict;
use base ‘MT::Object’;

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 126

TEAM LinG



127Chapter 8 — Perl API

__PACKAGE__->install_properties ({
columns => [

‘id’, ‘blog_id’, ‘name’, ‘ping_url’,
],
indexes => {

name => 1,
blog_id => 1

},
datasource => ‘blogpal’,
primary_key => ‘id’,

});

1;

With this package, it is instantly usable when run on a BerkeleyDB database, but for SQL-
based databases, you will need to create the table first. For MySQL databases, the SQL to cre-
ate this table would look like this:

create table mt_blogpal (
blogpal_id integer not null auto_increment primary key,
blogpal_blog_id integer,
blogpal_name varchar(100),
blogpal_ping_url varchar(100),
index (blogpal_name),
index (blog_id)

);

With your object class defined, you would use it just as you would any other MT::Object
subclass:

my $pal = new BlogPal;
$pal->blog_id( $blog_id );
$pal->name(“Foo Bar’s Blog”);
$pal->ping_url(“http://foobarblog.com/mt/mt-tb.cgi/10”);
$pal->save;

Then, your plugin or extension would hook into the pre_save callback for MT::Entry:

use MT::Entry;
MT::Entry->add_callback(‘pre_save’, 1, undef,

\&blogpal_entry_pre_save);

sub blogpal_entry_pre_save {
my ($cb, $obj, $entry) = @_;

require BlogPal;
my @pals = BlogPal->load( { blog_id => $entry->blog_id } );
return 1 unless @pals;

my %to_ping = map {$_ => 1} @{ $entry->to_ping_url_list };

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 127

TEAM LinG



128 Part III — Hacking with APIs

my %pinged = map {$_ => 1} @{ $entry->pinged_url_list };
foreach (@pals) {

# add each blog pal ping url to the entry “to ping”
# list unless the url has already been pinged.
my $pal_ping_url = $_->ping_url;
$to_ping{$pal_ping_url} = 1

unless exists $pinged{$pal_ping_url};
}
$entry->to_ping_urls(join “\n”, keys %to_ping);
return 1;

}

Plugin API
Movable Type has a very rich and extensible plugin architecture. The plugin API has grown
significantly with Movable Type 3. The plugin API is touched on here because it is a key com-
ponent of the Perl API, but also refer to Chapter 10 and Chapter 11, dedicated to writing
Movable Type plugins.

MT::Plugin
Movable Type 3 provides a new package that should be the basis for any MT plugin that tar-
gets version 3 or later. The MT::Plugin package enables your plugin to identify itself formally
with Movable Type. MT::Plugin descendants are visible in the MT web interface and can
provide URLs for configuring the plugin as well. A typical plugin package utilizing
MT::Plugin looks like what is shown in Listing 8-6.

Listing 8-6: A Typical Plugin Package Utilizing MT::Plugin

package MyPlugin;

use strict;
use MT;
use base qw(MT::Plugin);

my $plugin = new MyPlugin({
name => ‘My Plugin’,
description => ‘Dices, slices with the greatest of ease’,
doc_link => ‘docs/index.html’,
config_link => ‘myplugin.cgi’

});
MT->add_plugin($plugin);

1;

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 128

TEAM LinG



129Chapter 8 — Perl API

The config_link and doc_link parameters passed to the MT::Plugin constructor
should be relative paths (relative to the directory in which the plugin is installed). The plugin
object you create can also be used when registering for MT object and application callbacks.

Plugins register themselves with the Movable Type application in several ways. Table 8-5 iden-
tifies attachable entry points.

Table 8-5 Plugin Registration Methods

Package Method Purpose

MT add_plugin Registers a plugin so that it is visible in the
Movable Type main menu

MT add_plugin_action Registers a plugin action link so that it
appears on the target page

MT add_callback Used to hook into application callbacks

MT add_text_filter Used to register a text-processing filter

MT::Object add_callback Used to hook into object callbacks
(or descendant)

MT::Template::Context add_tag Registers a new MT template tag

MT::Template::Context add_container_tag Registers a new MT template container tag

MT::Template::Context add_conditional_tag Registers a new conditional MT container tag

MT::Template::Context add_global_filter Registers an MT template global tag attribute

MT::PluginData
If your plugin has data it needs to store in the MT database, it can utilize the
MT::PluginData package for this. The MT::Plugin package provides some convenience
methods for storing configuration data. The following example demonstrates how to save a
configuration setting:

$my_plugin->set_config_value( ‘preference’, $setting );

Loading a previously saved setting is even easier:

my $setting = $my_plugin->get_config_value( ‘preference’ );

You may want to assign a default in the event that the configuration element cannot be found:

$setting = $default_setting if !defined $setting;

If you need to store things besides configuration data, you can create your own
MT::PluginData records. Here’s a method that will read and write data for a particular key

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 129

TEAM LinG



130 Part III — Hacking with APIs

into MT::PluginData objects in the database. This would be a method for your
MT::Plugin descendant class:

sub data($key, $data) {
my $self = shift;
my $key = shift;
require MT::PluginData;
my $pd = MT::PluginData->load({ plugin => $self->name(),

key => $key });
if (@_) {

my $data = shift;
unless ($pd) {

$pd = new MT::PluginData;
$pd->plugin( $self->name() );
$pd->key($key);

}
$pd->data($data);
$pd->save;

}
$pd->data;

}

As with any other MT::Object class, you can also delete MT::PluginData records using
the remove method:

sub remove_all_data {
my $self = shift;
require MT::PluginData;
my @data = MT::PluginData->load({plugin => $self->name()});
$_->remove foreach @data;

}

MT::Session
The MT::Session class provides a place to hold temporary data. It has an ID column that
can hold up to 80 characters. The kind column is a two-character column you would populate
with a signature that is unique to your plugin. This enables you to segregate your session data
from any others, avoiding the possibility of overwriting data belonging to other plugins or to
MT itself.

The following example demonstrates how you would create a new session record:

my $sess = MT::Session->new; 
# note that IDs can be non-numeric for session data.
$sess->id(‘some_unique_identifier’);
$sess->kind(‘ex’);
$sess->data(‘data to be stored’);
# be sure to record the time it was created
$sess->start = time;
$sess->save;

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 130

TEAM LinG



131Chapter 8 — Perl API

Normally, session data is used to avoid doing some lengthy or resource-intensive operation over
and over again. A good example would be fetching data from a remote server. In cases like this,
you would check the session table to determine whether the data is available, and if not, you
would do the expensive operation to gather the data and then save it to the session table. When
fetching your session data, instead of using the load method, you will want to use the
get_unexpired_value method. It is identical to the MT::Object::load method, but
adds an additional parameter used to specify the timeout period, specified in seconds. If rows
are found that exceed the timeout period, they are automatically removed. If a row that is
within the timeout period is found, it is returned:

# the first parameter to get_unexpired_value is the timeout,
# in this case, 300 seconds or 5 minutes.
my $sess = MT::Session::get_unexpired_value( 300, { id => $id,

kind => ‘ex’ } ); 
my $data;
if ($sess) {

$data = $sess->data;
} else {

$data = some_timeconsuming_process();
my $sess = MT::Session->new;
$sess->id($id);
$sess->data($data);
$sess->kind(‘ex’);
$sess->start(time);
$sess->save;

}

MT Publishing Mechanics
When Movable Type starts a page build procedure, it uses the following packages to manage
the process:

� MT::Template — Holds the MT template text itself and invokes the build process.

� MT::Template::Context — Responsible for matching MT tags to Perl handlers.
Also provides the data necessary for each tag, such as the current weblog and the date
range being processed.

� MT::Builder — Provides two primary methods:

■ compile — Converts MT template text into a series of tokens.

■ build — Processes a set of template tokens and returns the “built” result.

The example in Listing 8-7 demonstrates how you can invoke these classes programmatically.
Normally, you would use the MT::Template::build method to do much of this work, but
in this case, we will parse a plain string rather than an MT::Template.

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 131

TEAM LinG



132 Part III — Hacking with APIs

Listing 8-7: Invoking These Classes Programmatically

# make sure these packages are all loaded
use MT::Blog;
use MT::Builder;
use MT::Template::Context;

# our mini-template to demonstrate
my $tmpl = q{<MTBlogName>};

# a builder object for compiling and executing the template
my $builder = new MT::Builder;

# a context which we will populate with the target weblog
my $ctx = new MT::Template::Context;

# here we will just place the first weblog we find
$ctx->stash(‘blog’, MT::Blog->load_iter()->());

# compile the template into a series of tokens (an array
# of data that is easy and fast to process by the builder’s
# build method)
my $tokens = $builder->compile($ctx, $tmpl);

# finally, build the tokens and print the result
print $builder->build($ctx, $tokens);

The Stash
During the page build process, Movable Type uses a state storage object called the stash. The
stash is essentially just a Perl hash table, where you can store one value for any element name.
The implementation of Movable Type’s stash adds some extra capabilities. As pages are pub-
lished, the stash is populated with the contextual information needed by Movable Type’s tem-
plate tags.

The stash becomes the dumping ground for MT tag handlers. Container tags typically store
data in the stash for use by tags that are used within them. For example, the <MTEntries>
container tag sets an entry element in the stash that points to the active MT::Entry
instance. Other entry tags such as <$MTEntryTitle$> refer to the entry element on the
stash and use it as the entry context for the title or whatever they output.

Some MT tag plugins (such as Other Blog or Whole System) replace particular elements in
the stash to extend MT’s capabilities. For instance, by setting the blog stash element, you can
change which weblog MT is looking at when it fetches entries or other weblog-related data.

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 132

TEAM LinG



133Chapter 8 — Perl API

The MT::Template::Context package provides access to the stash. Tag and text-processing
plugins receive a Context object. The following is a small plugin that will output an incre-
menting counter with each use. It stores the counter in the stash:

use MT::Template::Context;
MT::Template::Context->add_tag( ‘Counter’ => &CounterHandler );

sub CounterHandler {
my ($ctx, $args, $cond) = @_;
my $counter = $ctx->stash(‘counter’) || 1;
$ctx->stash(‘counter’, $counter + 1);
$counter;

}

1;

With container tags, you deal with the stash a little differently. Because the stash only holds
one value for any given named slot, it is up to the developer to preserve the value previously
assigned to that slot (if any). For example, container tags such as <MTOtherBlog> change the
blog element of the stash, but upon the closing <MTOtherBlog> tag, you would expect the
active blog to return to what it was:

Before: <MTBlogName>
Inside: <MTOtherBlog blog_id=”2”><MTBlogName></MTOtherBlog>
After: <MTBlogName>

If <MTOtherBlog> did not save and restore the active blog, the last <MTBlogName> tag
would output the blog name of blog #2. There is an easy way to accomplish this with Perl,
using the local statement:

local $ctx->{__stash}->{blog} = $new_blog;

In this manner, we assign to the stash directly, rather than through the stash method of the
MT::Template::Context package. This is a shortcut, however. Accessing private member
data of an object is generally frowned upon. Therefore,, if you’re a purist, you may want to do
things the proper way, by retrieving the existing value using the stash method and then
assigning it back with the stash method just prior to exiting your handler routine.

MT::Promise and Lazy Loading
Movable Type 3 introduced a new technique for putting items in the stash. The
MT::Promise class enables you to put a key into the stash without having to include the
value. However, if the key is requested, the value will be produced.

Suppose you want to place some data in the stash for later use:

use MT::Entry;
my @entries = MT::Entry->load();
$ctx->stash(‘all_entries’, \@entries);

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 133

TEAM LinG



134 Part III — Hacking with APIs

Granted, this is a very contrived example, but it helps illustrate what MT::Promise is good
for, which is to make data available only if it is necessary. If the all_entries element is
never requested from the stash, it would never have been necessary to load all those entries into
memory. Therefore, we will use a MT::Promise instead:

use MT::Promise qw(delay);
use MT::Entry;
my $promise = delay(sub {

my @entries = MT::Entry->load();
return \@entries;

});
$ctx->stash(‘all_entries’, $promise);

The delay routine creates an MT::Promise object whose instance is bound to the code 
provided. In this case, fetching all of the available entries is potentially a time and resource-
consuming process. Because we do not know if this stash element will be used or not, we pro-
vide the data through a promise. When the stash receives a request for an all_entries
element, it will see that the value is an MT::Promise object and will run the code that was
associated with the object. Once the code associated with the promise has been invoked, the
result of that operation will be used for any subsequent requests for that stash element.

MT::Request and Object Caching
Another time-saving mechanism is the MT::Request package. MT::Request provides a
place to store data that lives for the duration of the active HTTP request. The following exam-
ple demonstrates how you might cache lookups for some data into the MT::Request object:

my $id = shift;
require MT::Request;
my $request = MT::Request->instance;
my $data = $request->cache( $id );
if (!$data) {

$data = build_data($id);
$request->cache( $id, $data );

}
# by this point, $data is properly assigned and cached for
# the next lookup.

Caching data once per HTTP request can be particularly time-saving if you plan to use it mul-
tiple times, even across multiple templates. If you need to cache data across HTTP requests,
you should use the MT::Session or MT::PluginData package.

Error Handling
For any custom tag handlers you write, you should always make a point to surface any errors
that users experience. You would do this by returning an error message in the MT::Context
object you receive:

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 134

TEAM LinG



135Chapter 8 — Perl API

sub my_tag_handler {
my ($ctx, $args, $cond) = @_;
my $result = do_something_risky();
if (!defined $result) {

return $ctx->error(“A useful error message”);
}
return $result;

}

Background Tasks
Movable Type 3 introduces a new subroutine to the MT::Util package that enables you to
invoke background tasks. Because this capability is not available on every platform (and is not
available if you’re running MT using mod_perl), it is disabled by default. To enable back-
ground tasks, add this to your Movable Type configuration file (mt.cfg):

LaunchBackgroundTasks  1

Movable Type currently uses this whenever a comment or TrackBack ping is issued. In the case
of comments, it saves your visitor the time MT needs to rebuild the index pages and issue the
notification e-mail.

You can use this capability in your own MT plugins and extensions. If you need to run some
intensive process that doesn’t require user interaction, you can execute it as a background pro-
cess instead:

MT::Util::start_background_task(sub {
# code for some lengthy, involved process 

});

Note that even when background tasks are not available for a given MT installation, the
start_background_task routine will simply execute the task immediately, rather than run
it in the background.

Logging and Communication Using MT::Log
The MT class (and descendants) provide a log method that is used to store records in the appli-
cation’s log table. These records can be viewed through the MT web interface using the View
Activity Log link from MT’s main menu. To store log records, use the log routine in the main
MT package:

MT::log(“Today is a good day to die -- severe error”);

Or, if you have a reference to the application object, you can invoke it that way if you prefer:

$app->log(“Today is a good day to die -- severe error”);

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 135

TEAM LinG



136 Part III — Hacking with APIs

Debugging Techniques
The following sections detail a couple of techniques for debugging software.

Messaging
One of the simplest (and effective) techniques for debugging software is messaging. Simply
exposing the value of a variable can be quite revealing. With MT, debugging plugins is prob-
lematic because it is a web-based application, usually running on a different computer entirely.
With messaging, you have a means to output values of variables or to record how many times a
particular routine is called, and the amount of detail you expose is entirely in your hands.

There are several ways to do messaging with MT. From your code, you can issue messages
using Perl’s warn and die statements. The warn statement will cause a message to display in
the web browser (usually at the bottom of the page). A Perl die statement will cause the appli-
cation to halt (unless the die statement happened in the context of an eval operation, which
would trap it). Your web server may be configured to log error messages from CGI scripts to
the error log for your site. If this is the case, you can simply print debugging information to
stderr and it will be sent to the log file. For example:

print STDERR “The value of X is $x\n”;

You may want to output the state of the MT stash to see what it contains:

use Data::Dumper;
print STDERR Dumper($ctx->{__stash});

Yet another way to debug through messages is to embed them in your templates. Sometimes it
is helpful to see what is going on within a particular part of your template. The WarnDie plug-
in enables you to return those Perl warn messages through your templates:

<MTWarn>Now building entry: <$MTEntryTitle$></MTWarn>

Debugging through messaging is simple, very effective, and easy to do. Just remember to
remove any logging instructions you’ve added once you’re done.

Debugging with ptkdb
A much more interactive way to debug your MT extensions and/or plugins (or any Perl code
for that matter) is to use a Perl debugging package called Devel::ptkdb. A few components
are required in order to use this debugger. An X11 server must be running on the computer you
are using to access Movable Type. If you’re using Linux or Mac OS X, you likely already have
X11 installed. For Windows, you can download an X11 server from http://xfree86.
org/. This package also requires installation of the Tcl/Tk scripting package, which is freely
available for most platforms. Tcl/Tk should be installed on the web server on which Movable
Type is running. You can find the latest version from http://tcl.tk/. Once Tcl/Tk is
installed, you would also install the Perl Tk and Devel::ptkdb packages, again on the web

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 136

TEAM LinG



137Chapter 8 — Perl API

server that runs MT. Once this is done, you would modify the mt.cgi script, changing the
first line to read as follows:

#!/usr/bin/perl -d:ptkdb

Then add these lines immediately after that:

# Now, add a BEGIN block that defines the X11
# display to use for the debugger:
BEGIN {

# assign the IP of your workstation here in place of
# ‘127.0.0.1’ if the web server is not running on your
# workstation:
$ENV{DISPLAY} = ‘127.0.0.1:0.0’;

}

This works best when everything is running on the same network or on the same computer.
Otherwise, you may have to deal with potential firewall rules to enable the X11 connections to
come through to your workstation.

For the Windows platform, ActiveState provides a number of development tools for building
Perl applications, including CGI applications.

Practical Examples
This section provides you with some practical examples for using Movable Type’s Perl API.

Booting Up Movable Type
You can use Movable Type’s Perl API in two ways. You can develop extensions for Movable
Type through its plugin architecture, or you can create external tools or full applications that
use the Movable Type API. If you are creating your own tools or applications, you need to
properly initialize Movable Type’s framework before you can use any of the MT objects. The
initialization process loads the Movable Type configuration file and establishes MT’s home
directory:

my $mt = MT->new(Config => ‘/path/to/mt.cfg’,
Directory => ‘/path/to/mt_home’);

The Directory initialization parameter provides Movable Type with a base location for
looking for the other files it needs to function, such as templates, search templates, CSSs, and
so forth. These directories can also be defined in the mt.cfg file. Without a Directory
parameter, MT will assume it is the same folder that contains the mt.cfg file, or will use the
current working directory.

Whether you are creating your own tools or developing plugins, the MT Perl API is used the
same way. The following examples will give you a feel for how to use these objects.

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 137

TEAM LinG



138 Part III — Hacking with APIs

Programmatically Creating Users, Weblogs, Categories,
Whatever
Creating new authors through Perl is a good place to start. Why would you want to do this?
Well, for some uses of Movable Type, you may want to dynamically create new authors.
For example, perhaps you have a community blog site where anyone can submit entries for
publication. All they have to do is register. Perhaps your registration process uses a Perl CGI
to process the registration form. That CGI could use the Movable Type API to add the new
registrant as an author to the community blog. The code in Listing 8-8 uses constants to
demonstrate the API usage. Your CGI would use CGI post data to populate the author values
instead.

Listing 8-8: Using the Movable Type API to Add New Authors

#!/usr/bin/perl
use strict;

use MT;
use MT::Author qw(AUTHOR);
use MT::Permission;

# initialize Movable Type framework:
my $mt = MT->new(Config => ‘mt.cfg’);

# create new author
my $author = new MT::Author;
$author->name(“Mr. Blog”);
$author->nickname(“Mr. B”);
$author->email(“mrb@blog.com”);
$author->type(AUTHOR);
$author->set_password(“blogging”);
$author->save;

# now, assign this new user to be an author
# for the ‘Bloghappy’ weblog:
my $blog = MT::Blog->load({ name => ‘Bloghappy’ });
my $perm = new MT::Permission;
$perm->blog_id($blog->id);
$perm->author_id($author->id);
$perm->can_post(1);
$perm->save;

# now redirect the user to the MT interface...
my $cfg = MT::ConfigMgr->instance;
print “Location: “.$cfg->CGIPath.”mt.cgi\n\n”;

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 138

TEAM LinG



139Chapter 8 — Perl API

At this point, this user could log in to the Movable Type application itself. She would only
have access to the community blog “Bloghappy.” She can post new entries (and edit ones she’s
created), but that’s all.

Inserting a New Entry
Naturally, creating entries can also be done through the Perl API. There are lots of reasons why
you may want to create entries for your weblog through an external script. A few uses include
the following:

� You have a script that creates entries upon receiving e-mails to a specific e-mail address.

� You aggregate news from other sources and then republish them.

� You have a custom interface enabling authors to submit and edit their entries.

Regardless of your reasons for doing it, the technique is the same, as shown in Listing 8-9
(again, using constants here for the sake of demonstration).

Listing 8-9: Creating New Entries

#!/usr/bin/perl
use strict;

use MT;
use MT::Author;
use MT::Entry;

# initialize Movable Type framework:
my $mt = MT->new(Config => ‘mt.cfg’);
my $blog = MT::Blog->load({ name => ‘Bloghappy’ })

or die “Could not load blog”;
my $author = MT::Author->load({ email => ‘mrb@blog.com’ })

or die “Could not load author”;

my $entry = new MT::Entry;
$entry->blog_id($blog->id);
$entry->author_id($author->id);
$entry->title(“Some interesting title”);
$entry->text(“Content of entry”);
$entry->status(MT::Entry::RELEASE());
$entry->save;
$mt->rebuild_entry(Entry => $entry,

BuildDependencies => 1);

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 139

TEAM LinG



140 Part III — Hacking with APIs

Assigning an Entry to Categories
Assigning entries into categories requires the use of three classes:

� MT::Entry

� MT::Category

� MT::Placement

The first two are obvious, but the MT::Placement package may not be. Because entries can
be assigned to multiple categories, the MT::Placement class is used to relate the two
together. Listing 8-10 shows how to use them to add categories to an existing entry.

Listing 8-10: Adding Categories to an Existing Entry

# load the primary, secondary category and entry
# these can be created from scratch or simply loaded
# as we’re doing here...
my $primary_cat = MT::Category->load({ name => “Journal” });
my $secondary_cat = MT::Category->load({ name => “Weather” });
my $entry = MT::Entry->load({ title => “Rainy day” });

my $place = MT::Placement->new;
$place->entry_id($entry->id);
$place->category_id($primary_cat->id);
$place->is_primary(1);
$place->save;

$place = MT::Placement->new;
$place->entry_id($entry->id);
$place->category_id($secondary_cat->id);
$place->is_primary(0);
$place->save;

# at this point, you may wish to rebuild since the entry
# has changed
my $mt = MT->instance();
$mt->rebuild_entry(Entry => $entry,

BuildDependicies => 1);

Invoking a Rebuild
Finally, you may want to execute rebuild operations independently of the application. Perhaps
you have an element in your template(s) that needs to be updated from time to time (but not

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 140

TEAM LinG



141Chapter 8 — Perl API

necessarily upon every page view from your website). Or perhaps you use MT to pull content
from other websites or web services and you want to refresh that content on a periodic basis.

You already learned in the last example how to rebuild for a particular entry:

$mt->rebuild_entry(Entry => $entry,
BuildDependencies => 1);

There are also rebuild methods available to rebuild your archives or even your entire weblog:

# rebuild the individual archives for blog ID 1.
$mt->rebuild(BlogID => 1, ArchiveType => ‘Individual’);

# rebuild the entire weblog for blog ID 1
$mt->rebuild(BlogID => 1);

# rebuild all archives, but not the index templates:
$mt->rebuild(BlogID => 1, NoIndexes => 1);

# rebuild everything. All weblogs are processed:
my @blogs = MT::Blog->load;
$mt->rebuild(BlogID => $_->id) foreach @blogs;

You can use simple scripts to force MT to rebuild pages like this. Timely, scripted rebuild oper-
ations can give you many of the benefits of dynamic pages, even if you are publishing a static
website.

Summary
Movable Type has become a playground for Perl programmers because of its well-designed and
comprehensive Perl API. Anyone who can code in Perl can extend the capabilities of the soft-
ware with plugins and other enhancement scripts.

The plugin framework transforms a nice browser-based content management system into a
truly ambitious publishing and information-gathering tool.

Ideally, a plugin should integrate so seamlessly with Movable Type that it feels as if it were part
of the software’s standard installation.

13_57499x ch08.qxd  6/17/05  7:50 PM  Page 141

TEAM LinG



13_57499x ch08.qxd  6/17/05  7:50 PM  Page 142

TEAM LinG



Hacking with 
Plugins

Chapter 9
The Wonderful World 
of Plugins

Chapter 10
Writing Plugins

Chapter 11
Advanced Plugin Writing

Chapter 12
Hacking Dynamic Publishing

part

in this part

14_57499x pt04.qxd  6/17/05  8:03 PM  Page 143

TEAM LinG



14_57499x pt04.qxd  6/17/05  8:04 PM  Page 144

TEAM LinG



The Wonderful
World of Plugins

Movable Type is a very powerful application, but its real power isn’t
to be found in the built-in features. For the majority of users, the
real power of MT is found in plugins.

Over one hundred plugins have been written since MT’s birth, and they
continue to add greater and deeper capabilities to the core system. This
chapter details where most of these plugins live, explains how to install
them, and then looks at some of our favorites.

Finding the Available Plugins
Thanks to what is undoubtedly one of the truly heroic efforts of the
weblogging world, it is very easy to find plugins for your installation. You
only need turn to the MT Plugins Directory.

Founded by Kristine Beeson, known on the Movable Type support board as
“Kadyellebee,” the site has now been taken under the wing of Six Apart and
can be reached at www.sixapart.com/pronet/plugins.

From that page you will find the vast majority of all MT plugins ever writ-
ten, catalogued by how they are used.

The Different Types of Plugins
At their most basic, plugins provide a collection of new template tags with
new capabilities for outputting data from your Movable Type installation.
At their most powerful, they can completely customize the way the appli-
cation runs.

˛ Finding new plugins

˛ Installing plugins

˛ Our favorite plugins
explained

chapter

in this chapter

15_57499x ch09.qxd  6/17/05  8:05 PM  Page 145

TEAM LinG



146 Part IV — Hacking with Plugins

The basic types of plugins are as follows:

� Plugins that provide new access to internal data in the form of template tags

� Web services plugins that provide access to external data

� Text formatting plugins that modify your entry text

� Plugins that give you facilities to enable basic programming

� Plugins that modify the way the internal functions work

The following sections introduce examples of most of these categories.

How We Chose the Plugins
Between us (the authors of this book), we have built countless Movable Type–based sites, most
of which simply couldn’t have been built without the help of certain plugins. These were obvi-
ous choices.

Other plugins we chose because of their necessity in maintaining a healthy site. These are typi-
cally spam-related and have saved us countless hours reducing our spam load.

A third group of plugins we chose are those that do something uniquely interesting but not
necessarily life-saving. These plugins were chosen because they make the web a better place
in general.

General Conventions for This Chapter
Every description includes directions for installation. Installing plugins requires uploading cer-
tain files to particular locations and sometimes setting permissions so that the plugin will oper-
ate. In general, we list locations of the programs using two variables:

� MT_DIR — Your main MT directory, where mt.cgi is located

� MT_STATIC — Your static directory, which, by default, is the same as your \N, but 
different if you have moved it elsewhere and specified that location in mt.cfg

Therefore, if you are required to upload plugin.css to your static directory and plugin.pl
to your MT plugins (Perl) directory, it will be written like this:

� MT_DIR/plugin.pl

� MT_STATIC/plugin.css

In some cases, you will be required to create a directory if you have not already done so.

15_57499x ch09.qxd  6/17/05  8:05 PM  Page 146

TEAM LinG



147Chapter 9 — The Wonderful World of Plugins

Static versus Dynamic Plugins
With the advent of MT 3.1, Movable Type included dynamic publishing as an option for tem-
plates selected by the user. Unfortunately, any template tags provided by plugins could not be
used as is on the dynamic side because they were written in Perl and not PHP.

Shortly after MT 3.1’s debut, a conversion campaign was started to get the most widely used
plugins compatible with PHP as well as Perl. This process is ongoing, so some plugins docu-
mented in this chapter may lack PHP support. A plugin that only supports Perl cannot be
employed on dynamically published pages.

For each plugin we detail in the following sections, we will indicate whether it is compatible
with dynamic publishing.

SimpleComments
The SimpleComments plugin, written originally by Adam Kalsey and ported to PHP for
dynamic templates by Brad Choate, merges the idea of a comment and a TrackBack. If you
think about it, a TrackBack is really just a comment that someone has chosen to place primarily
on their own weblog instead of yours; but it is still a comment, and it can be considered as such
within your own templates. SimpleComments provides template tags that enable just this.

SimpleComments is PHP-compatible.

How to Install It
Installation is simple. Download the plugin (v1.32) from http://kalsey.com/tools/
simplecomments and unarchive it. Put the files in the archive in MT_DIR/plugins/ and
the MT_DIR/php/plugins directories into the corresponding directories in your main MT
directory. Doing so completes the installation.

How to Use It within a Template
SimpleComments provides seven new template tags, which work the same for both static and
dynamic templates. Within an entry context, you can use any of the tags that follow:

� <MTSimpleComments> — This is the main container tag. This tag will create a list of
comments and TrackBack pings, by default, sorted by date. This is effectively a combi-
nation of the effects of the built-in <MTComments> and <MTPings> container tags.
Just as with those two standard elements, the sort_order attribute works to display
the comments and TrackBacks in chronologically ascending or descending order. The
lastn=”N” attribute also works as normal to limit the total number of comments and
pings displayed. Under MT3.x, only approved comments are displayed. If you want to
show unapproved comments as well, add an attribute of moderate=”0”.

15_57499x ch09.qxd  6/17/05  8:05 PM  Page 147

TEAM LinG



148 Part IV — Hacking with Plugins

� <MTSimpleCommentCount> — This gives a unified count of both your comments and
TrackBack pings. For example, if an entry has three comments and two pings,
MTSimpleCommentCount will display five.

� <MTSimpleCommentNumber> — This displays the numeric order of the current com-
ment or TrackBack ping. For the first SimpleComment, it reads 1. For the second, 2,
and so on.

� <MTSimpleCommentOdd> — This returns 1 if the current SimpleComment is odd,
and 0 if it is even. This is useful for setting alternating background colors with a CSS,
for example — use code such as class=”commentbg<MTSimpleCommentOdd>”
and then have CSS classes named “commentbg0” and “commentbg1”.

� <MTSimpleCommentIfTrackback> — The contents of this tag will only be 
displayed if the current item in the comment list is a TrackBack.

� <MTSimpleCommentIfComment> — The contents of this tag will only be displayed if
the current item in the comment list is a Comment.

� <MTSimpleCommentEntry> — This container tag works just like the
MTCommentEntry tag and contains the entry on which the comment or TrackBack was
made. Using this tag, you can use MTEntry tags to get entry data for that
SimpleComment.

Put these together and you have something like what is shown in Listing 9-1, a simple example
of using SimpleComments on an entry page.

Listing 9-1: Using SimpleComments on an Entry Page

<MTSimpleComments>
<MTSimpleCommentIfTrackback>
<div id=”trackback”>
<em><MTPingBlogName></em> commented on this post:<br/>
<blockquote cite=”<$MTPingURL$>”><MTPingExcerpt></blockquote>
Read more <a href=”<$MTPingURL$>”>here</a></p>
</div>
</MTSimpleCommentIfTrackback>

<MTSimpleCommentIfComment>
<div id=”comment”>
<$MTCommentBody sanitize=”0” validable=”1” smarty_pants=”1”
acronym=”1”$>
<span class=”permalink”>Posted by: <$MTCommentAuthorLink
show_email=”0”$> <MTCommentAuthorIdentity> on
<$MTCommentDate$></span>
</div>
</MTSimpleCommentIfComment>
</MTSimpleComments>

15_57499x ch09.qxd  6/17/05  8:05 PM  Page 148

TEAM LinG



149Chapter 9 — The Wonderful World of Plugins

Using this in your template will intermingle the comments left directly on your blog with
TrackBacks, but it will also enable you to style the two items differently. In Listing 9-1, the
plugin wraps the TrackBack and the comment in div blocks of the corresponding label, and
adds the correct data about the origin of the comment. Using CSS to style these divs differ-
ently is dead simple, as shown in Listing 9-2.

Listing 9-2: CSS Styling of Comments and TrackBacks

body#comment {
/* Normal page content styling */
}

body#trackback {
border: 1px solid #DD9963;
padding: 6px;
}

The plugin can also be used on the main index page, which is best in conjunction with the
MT-Switch plugin, to provide grammatically correct invitations to comment. Listing 9-3
shows this.

Listing 9-3: Using SimpleComments with MT-Switch

<p class=”tools”>
<MTSwitch value=”[MTSimpleCommentCount]”>
<MTSwCase value=”0”>
<a href=”<$MTEntryPermalink$>”>
No comments as yet.</a>

</MTSwCase>
<MTSwCase value=”1”>
<a href=”<$MTEntryPermalink$>”>
1 Comment - Add another.</a>

</MTSwCase>
<MTSwDefault>
<a href=”<$MTEntryPermalink$>”>
<$MTSimpleCommentCount$> comments - Add more.</a>

</MTSwDefault>
</MTSwitch>
</p>

15_57499x ch09.qxd  6/17/05  8:05 PM  Page 149

TEAM LinG



150 Part IV — Hacking with Plugins

The Result
Figure 9-1 shows the result of the SimpleComments plugin used together with MT-Switch
(as in Listing 9-3) on a site. In this author’s opinion, this is a much cleaner design than the
standard template’s way of showing Comments and TrackBacks as separate values.

FIGURE 9-1: The effect of the SimpleComments plugin

Textile and Markdown
There’s no doubt that a long entry can be easily made much longer and more tedious to write
by including reams of HTML markup. All of those quotes, equals signs, angle brackets, and
slashes are enough to make anyone curse the semantic web. Still, there’s nothing that replaces
strong emphasis, and good luck trying to embed a picture without a little markup magic —
unless, of course, you have the right tools: text-formatting plugins.

A text-formatting plugin is a special type of plugin that transforms the entry text you input
into some other desired output. There are a number of text-formatting plugins, but the two
most useful are Textile and Markdown, written by Brad Choate and John Gruber, respectively
(with PHP versions by Arvind Satyanarayan for dynamic pages).

Both of these plugins (based on the markup formats by the same name) enable you to write
content that is utterly devoid of HTML and yet is marked up correctly when the page is pub-
lished or displayed. It does this by equating actual markup constructs for pneumonic text-based
counterparts commonly found in plaintext e-mail or wikis.

What’s truly awesome, however, is that both Textile and Markdown features are a superset of
Movable Type’s built-in “Convert breaks” text formatting. What that means is that your current
entries are already in Textile/Markdown format (with a few gotchas, which are explained
shortly). You can, in fact, use as much or as little of the special formatting features as you like,
and you can even use regular HTML. Really, they are superior in almost every way imaginable
to the default formatting. Get them now.

Adam Kalsey October 24, 2004 9:05 AM

Arvind: Use either one. I’ve included Brad’s in the download because it’s
released under the same license as my original and because Brad wrote it with
the intention of making it part of the product.

Both dynamic plugins do essentially the same thing, you can use either one.

Trackback from Movable Type Plugin Directory
October 25, 2004 12:11 AM
Simple Comments
Excerpt: 1.1 SimpleComments can now be used outside an entry. 1.32 adds
dynamic option, along with some fixes and easier installation....

15_57499x ch09.qxd  6/17/05  8:05 PM  Page 150

TEAM LinG



151Chapter 9 — The Wonderful World of Plugins

How do you choose? There is some overlap in syntax (covered briefly in a second), but for the
most part, they are different languages, both with their benefits and shortcomings. In general,
Markdown markup tends to be simpler and highly readable, while Textile is more powerful but
slightly kludgier and harder on the eyes. The one you choose depends on how much power you
need. Take a look at Markdown first. The only thing really missing from Markdown is tables
and the capability to specify class or ID CSS selectors for certain tags (images, links, and so on).

Both Markdown and Textile are PHP-compatible.

How to Install Them
For Textile with static templates, download the plugin from www.bradchoate.com/mt-
plugins/textile. Install the textile2.pl file into MT_DIR/plugins. Put the
Textile.pm file into MT_DIR/extlib/Text. Create either if they do not exist.

For Markdown, download the plugin archive from http://daringfireball.net/
projects/markdown. Unpack the archive and upload Markdown.pl to MT_DIR/
plugins.

For Textile or Markdown with dynamic templates, download the plugin from www.movalog.
com/archives/dynamic/breaking-plugins.php. Put all of the files into MT_DIR/
php/plugins.

How to Use Them within a Template
If you only want to use Textile or Markdown conversion in your entry body and extended body
or your comments, you don’t have to make any changes to your templates. However, both can
be used on any arbitrary tag using the filters attribute. For example, if you wanted to mark
up your weblog’s description (set in Weblog Config ➪ Preferences) you would insert it into
your templates as follows:

<$MTBlogDescription filters=”markdown”$>

If you are using Textile, you would replace the “markdown” in the preceding code with
“textile_2”.

The Result
For example, if you wanted to write

I am <em>stylish</em> while you are <strong>bold</strong>.

you would write this in Markdown:

I am *stylish* while you are **bold**.

In Textile, you would write the following:

I am _stylish_ while you are *bold*.

15_57499x ch09.qxd  6/17/05  8:05 PM  Page 151

TEAM LinG



152 Part IV — Hacking with Plugins

The full Textile syntax can be found at www.bradchoate.com/mt/docs/mtmanual_
textile2.html. Markdown’s syntax can be found at http://daringfireball.net/
projects/markdown/syntax.

Never again will you forget to close a link tag.

Blacklist
MT-Blacklist is the Swiss-army knife of anti-spam plugins for Movable Type. Written by Jay
Allen, this plugin was awarded the grand prize in the Movable Type Plugin Developer’s
Contest in 2004 and has become the most crucial plugin to have in your arsenal.

True to its name, Blacklist works in part by enabling a user to block or force moderate com-
ments and TrackBacks that contain certain strings (not IP addresses). Usually, these strings are
domains of spammers, but sometimes using an e-mail address can be surprisingly effective. It
also enables the user to match patterns (specified by regular expressions, either anchored to a
link or not), which delivers broad protection against a multitude of spammish domains.

However, MT-Blacklist is more than just a blacklist. It also enables a user to force moderate
comments with too many URLs or those placed on older entries. Both of these are excellent
indicators of spam and work to keep spam off of your site entirely. What’s more, it also blocks
duplicate pings.

The options available to users in controlling external feedback on their site are numerous and
the plugin’s administration interface will be immediately familiar to any Movable Type user.

MT-Blacklist is PHP-compatible.

How to Install It
To install MT-Blacklist, download the archive appropriate to your version of Movable Type
from www.jayallen.org/projects/mt-blacklist/. Unpack the archive and upload
the Blacklist directory to the MT_DIR/plugins/Blacklist/. The other files are placed as
follows:

� MT_STATIC/mt-blacklist-styles.css

� MT_STATIC/mt-blacklist.js

� MT_STATIC/docs/Blacklist/

� MT_STATIC/images/Blacklist/

Finally, run http://YOURSITE.COM/plugins/Blacklist/mt-bl-load.cgi to ini-
tialize the program. The initialization process will add a couple of tables to your database but

15_57499x ch09.qxd  6/17/05  8:05 PM  Page 152

TEAM LinG



153Chapter 9 — The Wonderful World of Plugins

will not touch your existing Movable Type tables. Still, it is always a good idea to back up your
data first before running it.

When the initialization is done, you will be directed to the MT-Blacklist configuration screen.
After setting up the options to your liking, you are protected against spam.

No template changes are required in order to use MT-Blacklist.

The Result
The result is, undoubtedly, that you will block a mind-bending amount of spam. An explana-
tion of how MT-Blacklist works follows.

Encapsulation
At runtime, Movable Type includes into memory all of its own code as well as that of the
installed plugins. Before the actual request from the client is processed, it executes all of the
plugin code to register each plugin’s callbacks.

This is where MT-Blacklist moves to encapsulate the MT system (as shown in Figure 9-2)
to intercept comments/TrackBacks before they ever get processed by Movable Type and after
Movable Type’s processing is complete to handle responses to the client and comment
notifications.

FIGURE 9-2: Blacklist’s interaction with Movable Type

Without
Blacklist

Comment/
TrackBack

mt-comments.cgi

MT

Database

With
Blacklist

Comment/
TrackBack

mt-comments.cgi

MT

MT-Blacklist

Database

15_57499x ch09.qxd  6/17/05  8:05 PM  Page 153

TEAM LinG



154 Part IV — Hacking with Plugins

Blacklist Matching
After the plugin has control, it checks the comment or TrackBack for matches to its blacklist.
The plugin supports three different types of blacklist entries:

� Strings

� Regular Expressions

� URLPatterns

Strings
Blacklist strings are the most straightforward type. The program will attempt to exactly match
all Blacklist strings that you add against every field submitted by the commenter (Name,
Email, URL, and comment) or in a TrackBack (Blog Name, URL, Excerpt). This is most often
used to block submissions containing links to particular domains, but can also be used as a gen-
eral word filter. Exact string matching is superfast and incurs relatively little overhead in terms
of processing.

You should note two things. First, matching is done in a case-insensitive way, so the following
are true:

� cat equals cat

� Dog equals DOG

� Snake equals sNaKe

Second, you must be careful with your Blacklist strings because if your item is a substring of a
string found in the comment, it will be matched. For instance, a very popular Blacklist string
could be cialis. Unfortunately, cialis would catch the word “specialist” because it is contained
within it. Be on the lookout for substrings.

Regular Expressions (Regexes)
Blacklist strings are excellent for battling a persistent spammer who is trying to get one domain
or a limited number of them onto your site. However, it’s well known that spammers have more
domains in their arsenal than you can imagine, and trying to add each of them as a Blacklist
string is nothing more than an unwinnable arms race. For example, one spammer may have

� texas-holdem.com

� texas-hold-em.com

� texas--hold--em.com

� texas-hold-em-000.com

. . . and a thousand more like them. There are a mind-boggling number of permutations that a
spammer could use while still maintaining a relatively comprehensible domain name, especially
if you take into account all of the top-level and country code domains.

15_57499x ch09.qxd  6/17/05  8:05 PM  Page 154

TEAM LinG



155Chapter 9 — The Wonderful World of Plugins

So how do you stay ahead? Regular expressions. A regular expression is a carefully crafted
text string with metacharacters that act as wildcards for other characters, enabling you to
match a number of different strings all in one. The most commonly used metacharacters
for MT-Blacklist users are shown in Table 9-1.

Table 9-1 Commonly Used Metacharacters

Character Definition

. Any character

* Zero or more

? One or zero

+ One or more

[ ] Character class

\b Word boundary

\s A space

\S Anything but a space

Therefore, to block that Texas Hold-em guy and his 10,000 domains, you only need to add
the following as a Blacklist regex:

texas\S\*hold\S\*em

This matches any comment with the substrings texas, hold, and em with no intervening
spaces between them. By ensuring that the intervening characters are not spaces, you avoid
matching something like the following phrase: The Texas Legislature is holding a November
referendum.

There’s a lot more to regular expressions that is outside the scope of this book. Luckily, you
don’t really need many regular expressions to use Blacklist effectively. You’ll see why in the
next section.

URLPatterns
You know that MT-Blacklist can block just about anything that you want. The question is,
what do you block? Because spammers typically do their thing to get their domains posted on
your site and usually do so to get a higher ranking in search engine algorithms, the best thing
that you can target is their domain names. By blocking domain names, you cost the spammer
time and money in registering new ones, which increases their cost of doing business.

Because we are interested almost solely in spammer domain names, Blacklist provides
URLPatterns, a shortcut to doing some of the magic necessary to specify that you only
intend to match URLs.

15_57499x ch09.qxd  6/17/05  8:05 PM  Page 155

TEAM LinG



156 Part IV — Hacking with Plugins

URLPatterns are regular expressions just like Blacklist regexes, except they match URLs only.
By using URLPatterns, you don’t have to worry about matching small substrings throughout
the comment as we did in the preceding Texas Hold-em example. If it’s not included in the
URL, it won’t match.

Using the previous example, but crafting it as a URLPattern, you would get the following:

texas.*hold.*em

That specifies the strings texas, hold, and em joined by zero or more of anything, but only in
URLs, because URLs don’t have spaces.

While this URLPattern isn’t significantly different from the Regex version, the important
point is that you will cut down on accidental false positives because the pattern must be found
in one particular URL.

Anyway, the real power of URLPatterns is banning or force moderating single words that
would be found in URLs you don’t want on your site.

After the Match
If you were lucky enough for one of the items on your blacklist to be matched (and I promise
you will), the plugin gives you two options for what to do with that submission (configured
when you added the item to the blacklist): block or moderate.

Setting an item to block is an excellent choice when it’s the domain of a known spammer or a
URLPattern containing a word that has just about zero possibility of being found in a legiti-
mate URL. I could list a few here but spammers are a crude lot and there might be children
reading this. You probably already know what I mean.

Moderation provides a wonderful cushion — a purgatory, if you will — that enables you to be
hyper-aggressive in your blacklisting. Each Blacklist item can be set individually to block or
moderate any matching comments. The program will continue searching through the blacklist
for a blocking match even if a moderating one has been found, with the idea that the strongest
rule always applies.

By blocking obviously spammy things and moderating “possibly spammy” things, you essen-
tially have a much more flexible (and hence powerful) defense — one that will enable you to
reach the initial goal of keeping spam off of your site.

Finally, and most important to your own sanity, there is no need to clean up items in moder-
ated status right away. If something is in a moderated state, it can be left there for an hour, a
day, a week, or forever. Get used to the idea of letting spam sit in moderation instead of con-
stantly and quickly despamming your blog after each addition and you’ll live a much longer
and happier life. Incidentally, moderation also offers you a good way to test certain blacklist
items. Think of it as training wheels.

15_57499x ch09.qxd  6/17/05  8:05 PM  Page 156

TEAM LinG



157Chapter 9 — The Wonderful World of Plugins

Max URL and Old Entry Checks
If the submission makes it through the gauntlet of blocked and moderated blacklist items, the
plugin tallies the number of URLs to determine whether it has surpassed your configured limit.
It also checks the posting date of the target entry for the comment or TrackBack to determine
whether it’s outside of your commenting window. If either of these conditions is true, the com-
ment is moderated. Note that because TrackBacks cannot currently be moderated, this step is
only applicable to comments. Still, this works very well in catching nearly all of the spam not
matched by your blacklist because spammers have a tendency to hit old entries and cram tens
or hundreds of URLs into a comment.

Duplicate Check
The plugin also does a simple check to ensure that the same comment or TrackBack wasn’t
submitted to the same entry or category (in the case of a category ping). If one exists, it is
silently rejected. This feature wasn’t created so much to combat spam as it was to solve an issue
that annoyed thousands.

Wrapping It Up
Finally, when a comment or TrackBack is submitted successfully, Blacklist gives you the option
of receiving enhanced notifications with a link to “de-spam” the submission if it’s spam. Once
you do that, you can optionally submit the found domains to a master blacklist that all MT-
Blacklists use to update their own listings.

A whole bevy of other features are included with MT-Blacklist, but that should be enough to
emphasize the importance of having it to keep your blog spam-free and to get you started in
using it effectively.

MT-Notifier
The MT-Notifier plugin, written by Chad Everett, is more than just a simple plugin for the
Movable Type content management system. It is very nearly an application in its own right.

While Movable Type comes with a basic notification system, it is lacking in several areas.
MT-Notifier extends that process to its logical conclusion, offering subscriptions to individual
entries, categories, or even an entire blog. This enables your readers to keep up with an individ-
ual thread, anything in a particular category, or even your entire blog — all automatically, with-
out you having to lift a finger.

You can download MT-Notifier from http://downloads.everitz.com/
MT-Notifier.zip.

MT-Notifier is PHP-compatible.

15_57499x ch09.qxd  6/17/05  8:05 PM  Page 157

TEAM LinG



158 Part IV — Hacking with Plugins

How to Install It
Installation is very straightforward. First, download the most recent version of the plugin.
When the download completes, unarchive the package and upload to the following locations:

� MT_DIR/mt-notifier.cgi

� MT_DIR/extlib/jayseae/notifier.pm

� MT_DIR/plugins/Notifier.pl

� MT_DIR/tmpl/cms/notifier.tmpl

� MT_DIR/tmpl/cms/view_log.tmpl (overwrites MT template)

� MT_DIR/tmpl/email/notification.tmpl

Create any directories that do not exist and set the permissions of mt-notifier.cgi to 755.
Unlike the other files, this one must be executable, because it needs to be executed to access
the MT-Notifier management interface. The management interface is protected by requiring
a Movable Type login, so not just anyone will be able to access this script.

How to Use the Management Interface
MT-Notifier provides a full-featured management interface to access the functions of the
plugin:

� Configure — This option enables you to set a default sender address for your notifica-
tions (the default is to use the author e-mail address), indicate the type of notifications
you would like to send (comments, entries, or both), and indicate whether you’d like to
send entry notifications when entries are updated or only on the initial save. Many peo-
ple make changes to their entries after publishing; if this describes you, keep in mind
that each time you save the entry, a new notification will be sent unless you set this last
option to only send notifications one time.

� Install — To process subscriptions from a comment form (more on that shortly), you’ll
need to integrate MT-Notifier with your MT installation. Do not fear this process. It is
as simple as clicking a link in this menu. This menu also enables you to turn on (or turn
off ) the comment notification for each blog. Comment notification must be turned on in
MT for MT to send notifications for that blog.

� Manage — If you want to set up new subscriptions, view existing subscriptions, or even
set options on a per-blog, per-category, or per-entry basis, this is the place. You can add
new subscriptions to any of the notification types; you can switch subscriptions so that
they provide opt-out (never send) records instead; and you can set options for each of the
subscription types. This is easily the most frequently used menu of the management
interface.

15_57499x ch09.qxd  6/17/05  8:05 PM  Page 158

TEAM LinG



159Chapter 9 — The Wonderful World of Plugins

� Purge — When you decide to get rid of some records, you’ll want to visit this menu. The
basic purge enables you to remove records that are invalid or records of subscriptions for
people who have opted out and no longer want to receive notifications. The advanced
purge provides much more granular control over the purge, including being able to select
the type of records to purge, as well as the location from which to purge (blog, category,
or entry). You can even specify an e-mail address so that only records containing that
address are removed.

� Transfer — If you have subscriptions elsewhere, you’ll likely want to check out the trans-
fer menu. This menu provides options to transfer subscription records from several other
notification programs, including Movable Type and MT-Notifier version 1.x! More
options are added all the time, so if you don’t see the program you use, contact Chad and
ask him to add it.

� User Administration Interface — Each notification that is sent includes a link to that
user’s administration page, where they can change their subscription to their heart’s con-
tent (subject to the parameters you specify, of course). They will only be able to access
their own subscription page, because each user subscription has a unique key that is
required to access the interface.

How to Use It within a Template
MT-Notifier can be used for notifications on just about anything within the Movable Type
system. For example, you can do the following:

� Use it on an individual entry so that your readers will receive updates whenever a new
comment is placed on that entry.

� Place one on your home page and people will be notified about anything new, anywhere
on the site.

� Add it to each category and let people know when you add information to that topic.

You’ll notice that each of the following subscription forms is remarkably similar. This is by
design. The only thing you need to change — aside from the obvious changes to the text to
indicate exactly what is being subscribed to — is the key used for the subscription.

Subscribe to a Blog
Say you want to provide a subscription form to your blog so that your readers will know when-
ever something has been updated. You’ll need to create this form with some basic information
that is required to create the subscription. Specifically, you need to provide a key and the e-mail
address subscribing. Place the template code from Listing 9-4 onto any page that Movable
Type produces.

15_57499x ch09.qxd  6/17/05  8:05 PM  Page 159

TEAM LinG



160 Part IV — Hacking with Plugins

Listing 9-4: Blog Subscription Form

<form method=”get” action=”<$MTCGIPath$>mt-notifier.cgi”>
<input type=”hidden” name=”dkey” value=”<$MTBlogID$>:0” />
Subscribe Without Commenting<br/ ><br />
<input name=”mail” />
<input type=”submit” class=”button” value=”Go” />
</form>

Subscribe to a Category
To provide your visitors with a subscription to your categories so that they are notified when an
entry is posted to the category they subscribe to, add the code from Listing 9-5 in a part of any
template that has category context (for example, within an <MTCategories> loop).

Listing 9-5: Category Subscription Form

<form method=”get” action=”<$MTCGIPath$>mt-notifier.cgi”>
<input type=”hidden” name=”dkey” value=”<$MTCategoryID$>:C” />
Subscribe to entries in <$MTCategoryLabel$><br/ ><br />
<input name=”mail” />
<input type=”submit” class=”button” value=”Go” />
</form>

Of course, the most natural place to put this form is on your category archive pages,
which, ironically, lack the sufficient category context needed for MTCategoryID and
MTCategoryLabel. To resolve this, you could use the CategoryOfArchive plugin
(www.sixapart.com/pronet/plugins/plugin/categoryofarchi) in
conjunction with Notifier, as shown here (replacing the line in the preceding listing
containing <$MTCategoryID$>):

<input type=”hidden” name=”dkey”
value=”<MTCategoryOfArchive><$MTCategoryID$></MTCategoryOfArchive>
:C” />
Subscribe to entries in <$MTArchiveCategory$><br/ ><br />

Subscribe to an Entry (Standalone Form Method)
Just as with the blog and entry subscription forms, you can create a form to enable users to sub-
scribe to an entry. The format, shown in Listing 9-6, is eerily similar and should be placed on
your individual archive page or on any template within an entry context (for example, within an
<MTEntries> loop).

15_57499x ch09.qxd  6/17/05  8:05 PM  Page 160

TEAM LinG



161Chapter 9 — The Wonderful World of Plugins

Listing 9-6: Entry Subscription Form

<form method=”get” action=”<$MTCGIPath$>mt-notifier.cgi”>
<input type=”hidden” name=”dkey” value=”0:<$MTEntryID$>” />
Subscribe to comments/TrackBacks on this entry<br/ ><br />
<input name=”mail” />
<input type=”submit” class=”button” value=”Go” />
</form>

Subscribe to an Entry (En Passant Method)
You may not always want a subscription form all by itself. Often, it is much easier to have the
user check a box on the comment form and have the subscription processed automatically.
Before you can do this, you must have run the Integrate step within the Install menu described
earlier in this chapter.

Luckily, making this work is very simple indeed. Just add the following code to your comment
form, or something very much like it (make sure you keep the name “subscribe”):

<input name=”subscribe” type=”checkbox” /> Notify me of new
comments on this entry

There are, unfortunately, a few things to take care of when using this method. First, if the user
previews his or her comments, the value of this checkbox will be lost. Second, if you use the
MTCommentFields method of generating your comment forms, there is no way for you to
edit the contents of that field, and you will not be able to add this checkbox to the form.

MT-Moderate
The MT-Moderate plugin, written by Chad Everett, both addresses a critical flaw in Movable
Type and adds functionality to an existing function. The critical flaw is that while comments
can be moderated and the options for managing them work quite well, the same cannot be said
about TrackBacks. TrackBacks are pings sent from one weblog to another to form a sort of
interconnected whole across the Internet. In addition, moderating every single comment that
comes into your system isn’t always the best solution. Sometimes you would prefer to moderate
only certain comments. MT-Moderate to the rescue.

MT-Moderate is not PHP-compatible.

15_57499x ch09.qxd  6/17/05  8:06 PM  Page 161

TEAM LinG



162 Part IV — Hacking with Plugins

How to Install It
Installing MT-Moderate is quite simple. Download the most recent version of the plugin from
http://downloads.everitz.com/MT-Moderate.zip. When the download com-
pletes, unarchive the package. When you do, the directory structure will be created for you,
which enables you to easily see where each piece needs to reside on your server:

� MT_DIR/plugins/jayseae/moderate.pl

� MT_DIR/plugins/jayseae/lib/moderate.pm

� MT_DIR/plugins/jayseae/lib/moderate/comments.pm

� MT_DIR/plugins/jayseae/lib/moderate/trackbacks.pm

� MT_DIR/tmpl/cms/list_ping.tmpl (overwrites the MT template)

Installing on Windows Servers
If your site is hosted on a Windows server, you must follow some slightly different steps
because of the way plugins are handled by MT on a Windows server.

Do not create any subdirectories under the plugins directory. Instead, place the moderate.pl
file directly in the plugins directory:

* MT_DIR/plugins/moderate.pl

� MT_DIR/extlib/jayseae/moderate.pm

� MT_DIR/extlib/jayseae/moderate/comments.pm

� MT_DIR/extlib/jayseae/moderate/trackbacks.pm

� MT_DIR/tmpl/cms/list_ping.tmpl (overwrites the MT template)

How to Use MT-Moderate
Perhaps the best part about MT-Moderate is that it’s already running. Any incoming com-
ments or TrackBacks are already being routed through MT-Moderate prior to posting. If the
entry receiving the post is older than seven days, the comment or TrackBack will be moderated
(so that you cannot see it on your blog).

Additionally, any comment posted will check the entry to find the most recent comment. If the
most recently approved comment is one day old (or less), the new comment will be allowed too.
This permits ongoing conversations to continue, even though the entry itself is out of date.

Only Moderate Comments or TrackBacks
MT-Moderate does not have to moderate both incoming comments and incoming
TrackBacks. If you decide not to moderate one or the other, simply remove the corresponding

15_57499x ch09.qxd  6/17/05  8:06 PM  Page 162

TEAM LinG



163Chapter 9 — The Wonderful World of Plugins

module from your server. If you don’t want to moderate comments because you are handling
them some other way, remove the comments.pm file from your server. To allow TrackBacks,
remove the trackbacks.pm module from the server.

Changing the Moderation Window
Within the moderate.pm file, you will find two constants that define the period used for
moderation. Simply change these values to the ones you like and MT-Moderate will do the
rest. By default, MT-Moderate checks for an age of seven days (or less) on entries, and an age
of one day (or less) when looking for comments. Use a value of 0 to allow incoming comments
and TrackBacks only on the same day, or a value of -1 to moderate everything.

TechnoratiTag
Tag classification was a big hit in 2004, spurred on by services such as Flickr and del.icio.us,
which enabled users to easily label pieces of information with keywords. Unlike hierarchical
categorization, which tries to put things into the perfect bucket, tags describe everything that a
piece of data could be, allowing searching on any number of facets (tags are an ad hoc imple-
mentation of faceted classification, and while there are books written on such distinctions, this
is not one).

Opening this practice up to people other than the creator of the content unleashed a new term
of the weblog community: Folksonomies. This bottom-up view of what a piece of data is, built
collaboratively by content creator and consumer, changes the way we think about it and, more
important, how we search for it.

In January 2005, Technorati, a leading blog search engine, introduced Technorati tags, which
are a way to indicate to Technorati specifically what a piece of data is and to allow tag-based
search. You can find the most popular ones at www.technorati.com/tag/technorati.

Photos from Flickr and links from del.icio.us are automatically pulled in by Technorati, but you
can also link any blog post to one or more tags just by placing a link for that tag on the individ-
ual archive page and pinging Technorati when you post a new entry.

The format for the link is as follows:

<a href=”http://technorati.com/tag/[tagname”
rel=”tag”>tagname]</a>

Not a day or two after this feature was released, George Hotelling came out with the
TechnoratiTags plugin, which introduces a new template tag, <$MTTechnoratiTags$>.

TechnoratiTags is not PHP-compatible.

This tag displays in the proper format any of the tags entered into the Keywords field of the
entry.

15_57499x ch09.qxd  6/17/05  8:06 PM  Page 163

TEAM LinG



164 Part IV — Hacking with Plugins

How to Install It
First, download and unpack the archive found at http://george.hotelling.net/
90percent/projects/technoratitags.php. Upload to MT_DIR/plugins/
TechnoratiTags.pl.

Next, select Weblog Config ➪ Preferences and, in the section labeled Publicity/Remote
Interfaces/TrackBack, check the box for technorati.com. This will cause Technorati to be
pinged anytime you create a new entry in that blog.

Finally, make sure that the Keywords field is displayed on your new entry screen. If it is not,
click the Customize This Page link near the bottom of the entry form fields and select
Keywords, along with any other fields you desire for display.

PHP/Dynamic Template Option

If you are using Dynamic templates for your individual archive template (or whichever template
you choose to put this on), you cannot use the TechnoratiTags plugin. However, you can easily
get the same functionality with the following PHP snippet inserted into the appropriate place in
your template:

<?php

/* PARSING ENTRY KEYWORD FIELD INTO TECHNORATI TAGS */

$tags = explode(“ “, $this->tag(‘MTEntryKeywords’));

if (! empty($tags[0])) {

print “<p><strong>Tags:</strong> “;

foreach ($tags as $tag) {

print ‘<a href=”http://technorati.com/tag/’.

$tag.’” rel=”tag”>’.$tag.’</a> ‘;

}

print “</p>”;

}

?>

15_57499x ch09.qxd  6/17/05  8:06 PM  Page 164

TEAM LinG



165Chapter 9 — The Wonderful World of Plugins

How to Use It within a Template
Add keywords for your post, separated by spaces. For example, the TechnoratiTags plugin
might get these tags: technorati tags MovableType. (Note that Movable Type was turned into
one word: MovableType. If it had been spelled with the space, the entry would have been
tagged with Movable and Type but not Movable Type.)

In your Individual Archive template, add the following somewhere between the MTEntries
tags (for example, near the entry’s byline):

<MTIfNonEmpty tag=”MTEntryKeywords”>
<p><strong>Tags:</strong> <$MTTechnoratiTags$></p>
</MTIfNonEmpty>

By default, the hyperlinks will be given the CSS class of “TechnoratiTags,” which is useful for
differentially styling them. If you’d prefer to change that, you could use the class attribute to
MTTechnoratiTags:

<$MTTechnoratiTags class=”MyTagClass”$>

The Result
With the preceding template code, if you create a new entry and tag it with “hacking” and
“MovableType” in the Keywords field, the following will be output:

<p><strong>Tags:</strong> <a
href=”http://technorati.com/tag/hacking” rel=”tag”
class=”TechnoratiTags”>hacking</a> <a
href=”http://technorati.com/tag/MovableType” rel=”tag”
class=”TechnoratiTags”>MovableType</a></p>

If, on the other hand, you don’t include any tags, nothing will be output.

By tagging your entry as such, anyone searching Technorati using the keywords “hacking” or
“MovableType” will find your post.

MultiBlog
The MultiBlog plugin, written by David Raynes based on his OtherBlog plugin and the
GlobalListings plugin by Stepan Riha, provides users with the capability to include templated
content from other blogs in their Movable Type installation. In addition, it enables users to
define rebuild triggers, because normally posts to one blog do not cause rebuilding in another
that might be including content from it.

MultiBlog is not PHP-compatible.

15_57499x ch09.qxd  6/17/05  8:06 PM  Page 165

TEAM LinG



166 Part IV — Hacking with Plugins

How to Install It
Download the latest version of the plugin from www.rayners.org/plugins/multiblog.
Create a directory in your MT_DIR/plugins/ directory named MultiBlog, and unpack the
plugin into it. Then make sure that the permissions of the multiblog-config.cgi file are
set correctly (on a UNIX system, that means 755).

Getting started with MultiBlog is as easy as clicking the MultiBlog link in the Configure
Active Plugins section of MT’s main menu screen.

Rebuild Control
One of the most important features of MultiBlog is the capability to create rules that will cause
other blogs to rebuild their indexes when another blog has an entry posted to it.

To set up these rules, locate the Configuration portion of the Rebuild Control section of the
config page. Select the blog to which posting should trigger the rebuild first, followed by the
blog whose indexes should be rebuilt and what event should trigger that rebuild, and then click
the Set button.

To remove that dependency later, locate the Current Ruleset portion of the Rebuild Control
section, and locate the blog that triggers the rebuild in the left column. All the blogs whose
indexes will be rebuilt are listed in the right column. To remove the rebuild rule for one of
them, just click the Remove link next to the blog name.

How to Use It within a Template
MultiBlog provides a multitude of tags for your templated enjoyment:

� MTMultiBlog — MTMultiBlog is a container tag that will loop over a list of blogs.
Within the container, the blog used by all of the template tags will be the current blog
in the loop and not the blog for which the template is being built. MTMultiBlog takes
one of two arguments: either include_blogs (which will take precedence if both
are used) or exclude_blogs. The format for both arguments is a list of blog ids
(for example, “2,3,5”). If neither is included, the default will be to select all the blogs
to which the current blog has access.

� MTMultiBlogIfLocalBlog and MTMultiBlogIfNotLocalBlog —
MTMultiBlogIfLocalBlog and MTMultiBlogIfNotLocalBlog are conditional
tags that enable you to determine whether or not the current blog within whatever
MultiBlog tag you are currently in is the overall blog for which the template is being built.

� MTMultiBlogObject tags — The MTMultiBlogObject tags enable you to select
one particular entry, comment, category, or ping from across all blogs for which the cur-
rent blog has access (just replace Object in the tag name with Entry, Comment,
Category, or Ping). They take only a single argument: id.

� MTMultiBlogObjectCount tags — The MTMultiBlogObjectCount tags return
the total count for the specified object type (Entry, Comment, Category, or Ping

15_57499x ch09.qxd  6/17/05  8:06 PM  Page 166

TEAM LinG



167Chapter 9 — The Wonderful World of Plugins

again) for all of the blogs specified with either include_blogs or exclude_blogs,
just like the MTMulitBlog tag.

� MTMultiBlogObjects tags —  The MTMultiBlogObjects tags are MultiBlog ver-
sions of their nonglobal counterparts. They accept the same arguments as the corre-
sponding core tags, in addition to include_blogs and exclude_blogs.

The Result
Because MultiBlog is so powerful, it would be impossible to detail all of its possible uses.
However, a few useful examples may be illustrative of the types of things you can do with it.

The first example, shown in Listing 9-7, is including content from one blog onto another. This
is most often done for link blogs where categories in the primary blog are already heavily used
so as not to pollute the category hierarchy.

Listing 9-7: Entries in a Side Blog

<h3>Side Blog</h3> 
<MTMultiBlog include_blogs=”7”>
<MTEntries lastn=”10”>
<div class=”entry”>
<h4><$MTEntryTitle$></h4>
<p><MTEntryBody></p>
</div>
</MTEntries>
</MTMultiBlog>

Another example is local blog aggregation. Suppose you have a number of blogs in the system
but want to provide your users with a system view of all blog entries (this is especially great as a
syndication feed). Listing 9-8 provides code to aggregate the last 15 entries, total, from blogs 2,
3, and 5 (not 15 each, but 15 overall).

Listing 9-8: Local Blog Aggregation

<MTMultiBlogEntries include_blogs=”2,3,5” lastn=”15”>
<div class=”entry”>
<h3><a href=”<MTBlogURL>”><MTBlogName></a>: <a
href=”<MTEntryPermalink>”><MTEntryTitle></a></h3>
<MTEntryBody>
</div>
</MTMultiBlogEntries>

15_57499x ch09.qxd  6/17/05  8:06 PM  Page 167

TEAM LinG



168 Part IV — Hacking with Plugins

Workflow
The Workflow plugin, written by David Raynes, is a masterful plugin that enables one author
to pass along an entry to another and enforces author permissions for publishing an entry to
the blog.

As you can imagine, this plugin is essential for anyone working in a collaborative environment
with divisions of labor among writing, editing, and publishing.

Workflow is PHP-compatible.

How to Install It
Download the latest version of the plugin from www.rayners.org/plugins/workflow,
create a directory in your MT_DIR/plugins/ directory named Workflow, and unpack the
plugin into it. Make sure that the permissions of the workflow.cgi file are set correctly (on
a UNIX system, that means 755).

If all you wish to do is transfer entries from one author to another, the setup is already com-
plete. If, however, you wish to enable the publishing permissions system, there is a further step.
Browse to the blog for which you want to set up permissions and click the Administer Publish
Permissions link provided. If you currently have permission to edit all posts for that particular
blog, you will be given some setup options for the permissions.

You can choose to use the current settings (meaning anybody who can currently post to the
blog will still be able to), in which case, you can then trim the list to who can publish after-
ward. Or, you can select the restricted setting (meaning anybody who can edit all of the posts
will still be allowed to publish, but nobody else will), in which case, you can then build up the
list of authors who are allowed to publish.

No template changes are required to use Workflow’s features.

The Result
From then on, whenever an author who does not have permission to publish for that blog saves
an entry with the status set to Publish, the entry status will be reset to Draft by the plugin,
effectively denying publishing.

Transferring an Entry
This procedure could not be simpler. Browse to the entry edit page for the entry you wish to
transfer and click the Transfer Ownership of This Entry link at the bottom. You will then be
given a list of authors to which the entry can be transferred. Select one and send it their way.
They will be sent an e-mail notifying them of their new responsibility.

15_57499x ch09.qxd  6/17/05  8:06 PM  Page 168

TEAM LinG



169Chapter 9 — The Wonderful World of Plugins

KeyValues 1.53
Movable Type’s roots are in blogging and of that there is no doubt. Just looking at the new
entry screen, the input fields make it patently evident: entry body, extended entry, excerpt, key-
words, and category. Of course, as hackers, we all know that Movable Type is far more than just
a blogging application — it’s a publishing platform. Imaginative people have created link blogs,
photoblogs, project management tools, merchant catalogs, to-do lists, day planners, and more
just by thinking outside the box and using the existing fields creatively as containers for things
that are published on the other side, with no attention paid to the label above the box.

Still, all of us have run into the problem of needing just a few more fields. This is why the
KeyValues plugin was developed. KeyValues, written by Brad Choate, enables you to overload
any input field on the entry editing screen with key-value pairs, essentially providing you with
an infinite number of fields. With KeyValues, Movable Type breaks out of blogging and
becomes a powerful front-end database access tool.

KeyValues is not PHP-compatible.

How to Install It
Download the archive from www.bradchoate.com/weblog/2002/07/27/keyvalues.
You will also have to download the Regex plugin, also written by Brad Choate, to use a couple
of the tags. You can find the Regex plugin at www.bradchoate.com/weblog/2002/
07/27/mtregex.

After unpacking each archive, you should upload the following files to the locations listed:

� MT_DIR/plugins/keyvalues.pl

� MT_DIR/plugins/regex.pl

� MT_DIR/extlib/bradchoate/regex.pm

� MT_DIR/extlib/bradchoate/postproc.pm

� MT_DIR/extlib/bradchoate/keyvalues.pm

You may have to create the bradchoate directory if it doesn’t exist inside of extlib.

How to Use It within a Template
KeyValues provides you with several tags for use within your templates that enable you to
access the entry information in different ways:

� MTKeyValues — Container tag for accessing your key/value data in an iterative 
manner.

� MTKeyValuesHeader — The contents of this container block will be printed at the
start of a KeyValues block.

15_57499x ch09.qxd  6/17/05  8:06 PM  Page 169

TEAM LinG



170 Part IV — Hacking with Plugins

� MTKeyValuesFooter — The contents of this container block will be printed at the
end of a KeyValues block.

� MTIfKeyExists — Given a key name, this conditional block tests whether a key
exists.

� MTIfNoKeyExists — Given a key name, this conditional block tests whether a key
does not exist.

� MTIfKeyMatches — This conditional block tag will test the name of a key against a
value or pattern.

� MTIfKeyNotMatched — Outputs contained text if a given key is not matched using
an IfKeyMatches tag.

� MTKeyName — Outputs the name of a key (only useful when iterating over key/value
pairs).

� MTKeyValue — Outputs the value of a key. Can output value by name or will output
the value of the current key when iterating over key/value pairs.

� MTKeyValuesStripped — Outputs the source of your key/value pairs without the
key/value data. This enables you to retain the use of your field(s) for regular blog data
and use them to store key/value data at the same time.

Now that you have the overview, let’s look at all of those in detail.

MTKeyValues
The following attributes are allowed:

� delimiter — Defaults to =

� pattern — Only processes key/value pairs matching the regular expression provided.
(Requires the Regex plugin — see the previous installation instructions.)

� source — Defines the source of the key/value pairs. Default source is the current
entry’s Additional Text field.

� iterate — If this attribute is given (iterate=”1”), the contained data is output for each
key/value pair that exists.

This tag has two modes of operation. The normal way it works is to output anything contained
within the tag once (regardless of the key/value pairs you have defined). The other way is to
output the contained data multiple times for as many keys as you have defined.

For example, this extended entry text

Blah blah blah. Blah blah blah.... This is the regular text
followed by the key/value pairs which are in the form of
key=value.
rating=3
link=http://www.bradchoate.com/
name=Brad Choate

15_57499x ch09.qxd  6/17/05  8:06 PM  Page 170

TEAM LinG



171Chapter 9 — The Wonderful World of Plugins

and a portion in an Individual Archive Template such as

<MTKeyValues>
Extended entry (without key value data):
[[<MTEntryMore>]]<br />

Name: <MTKeyValue key=”name”><br />
Link: <a href=”<MTKeyValue key=”link”>”>

<MTKeyValue key=”link”></a><br />
<MTIfKeyExists key=”rating”>
Rating: <MTKeyValue key=”rating”><br />
</MTIfKeyExists>
<MTIfKeyExists key=”favorite”>
This is my favorite site!<br />
</MTIfKeyExists>
</MTKeyValues>

will output the following:

Extended entry (without key value data):
[[Blah blah blah. Blah blah blah.... This is the regular text
followed by the key/value pairs which are in the form of
key=value.]]<br />

Name: Brad Choate<br />
Link: <a href=”http://www.bradchoate.com/”>

http://www.bradchoate.com/</a><br />
Rating: 3<br />

The other way to use KeyValues is like this:

<MTKeyValues iterate=”1”>
<MTKeyName>: <MTKeyValue><br />
</MTKeyValues>

This will output (again using our preceding sample data) the following:

name: Brad Choate<br />
link: http://www.bradchoate.com/<br />
rating: 3<br />

Now you might want to just output some of those key/value pairs:

<MTKeyValues iterate=”1” pattern=”m/a/”>
<MTKeyValuesHeader>
Here are the keys with ‘a’ in their name:<br />
</MTKeyValuesHeader>
<MTKeyName>: <MTKeyValue><br />
</MTKeyValues>

The preceding code will output all keys with ‘a’ in their name:

Here are the keys with ‘a’ in their name:<br />
name: Brad Choate<br />
rating: 3<br />

15_57499x ch09.qxd  6/17/05  8:06 PM  Page 171

TEAM LinG



172 Part IV — Hacking with Plugins

The source attribute enables you to define where your key/values are coming from. The
default is the additional entry text field for your blog entries. However, you can put key/value
pairs anywhere. You might want to store some in your blog description. If you do, this is how
you would extract them (note that for the source attribute, you use [ and ] instead of < and >
to delimit the MT tags):

<MTKeyValues source=”[MTBlogDescription]”>
<body bgcolor=”<MTKeyValue key=”bgcolor”>”>
</MTKeyValues>

That might look weird, but if you have bgcolor=#ff0000 in your blog description, this will
produce the following:

<body bgcolor=”#ff0000”>

A red background — not recommended for those with a weak stomach. You can also write
multiline values. You can use this syntax in your entry data:

address==
123 Anywhere Street
Anytown USA
==address

Or substitute your delimiter of choice for =. (You just use two instead of one to indicate the
multiline format.) To be recognized, there shouldn’t be any blank space to the right of the
opening ==, and the closing == should be at the start of the line. If you want to assign the
value of your delimiter to a key, you’ll have to write it like this:

mykey==
=
==mykey

MTKeyValuesHeader
This tag may be used within the KeyValues tag to produce a header if there are keys available.
This is only useful when using the iterating attribute of the KeyValues tag.

MTKeyValuesFooter
This tag may be used within the KeyValues tag to produce a footer if there are keys available.
This is only useful when using the iterating attribute of the KeyValues tag.

MTIfKeyExists
This tag enables you to test for the existence of a particular key.

The key attribute identifies the name of the key:

<MTKeyValues>
<MTIfKeyExists key=”somekey”>
‘somekey’ exists!

</MTIfKeyExists>
</MTKeyValues>

15_57499x ch09.qxd  6/17/05  8:06 PM  Page 172

TEAM LinG



173Chapter 9 — The Wonderful World of Plugins

MTIfNoKeyExists
This tag enables you to test that a particular key does not exist. The key attribute represents
the name of the key to look for:

<MTKeyValues>
<MTIfNoKeyExists key=”somekey”>
‘somekey’ doesn’t exist!

</MTIfNoKeyExists>
</MTKeyValues>

MTIfKeyMatches
This tag enables you to test whether or not a given key matches a particular value or whether
the value matches a given pattern. These attributes are allowed:

� key: Name of the key to test

� value: Value to compare against

� pattern: Regular expression pattern to test the value against

<MTKeyValues>
<MTIfKeyMatches key=”color” value=”blue”>
Color is blue

</MTIfKeyMatches>
<MTIfKeyMatches key=”color” value=”red”>
Color is red

</MTIfKeyMatches>
<MTIfKeyMatches key=”color” value=”green”>
Color is green

</MTIfKeyMatches>
<MTIfKeyNotMatched key=”color”>
Color is not red, green or blue

</MTIfKeyNotMatched>
</MTKeyValues>

Here’s how you would use the pattern attribute:

<MTKeyValues>
<MTIfKeyMatches key=”color”
pattern=”m/(red|green|blue)/”>
Color is red, green or blue

</MTIfKeyMatches>
<MTIfKeyNotMatched key=”color”>
Color is not red, green or blue

</MTIfKeyNotMatched>
</MTKeyValues>

15_57499x ch09.qxd  6/17/05  8:06 PM  Page 173

TEAM LinG



174 Part IV — Hacking with Plugins

MTIfKeyNotMatched
This tag enables you to output data if a given key has not been matched against using the
IfKeyMatches tags. This attribute is allowed: key, which is the name of the key to test.

See the IfKeyMatches tag for examples.

MTKeyValue
This tag produces the value of a particular key; or if it is within an iterating KeyValues tag, it
will print the current value. This attribute is allowed: default, which is an expression to use
as a default in case the key does not exist. This value can contain nested MT tags in the form
of [MT...].

See the KeyValues tag for examples.

MTKeyName
This tag produces the key name of the current key from an iterating KeyValues tag. See the
KeyValues tag for examples.

<MTKeyValuesStripped>
This outputs the source of your key/value pairs without the key/value data. This enables you to
retain the use of your field(s) for regular blog data and use them to store key/value data at the
same time.

Here’s how you’d use it:

<MTKeyValues>
<MTKeyValuesStripped>

</MTKeyValues>

The Result
The result, as you can probably already imagine, is that Movable Type can be used as a very
powerful, lightweight data input and publishing system. Anything you can dream of to put into
the database, you can publish out of the database with no attention paid to the blogging-centric
labels of the text fields. Given this, it’s not hard to build just about anything that involves the
publication of structured data.

Summary
This chapter highlighted some of our favorite plugins. However, they are by no means the only
ones or the best ones for every situation. If you really want to wield the full power of Movable
Type, go to www.sixapart.com/pronet/plugins and find your perfect set of plugins.

You won’t be sorry.

15_57499x ch09.qxd  6/17/05  8:06 PM  Page 174

TEAM LinG



Writing Plugins

So you want to write a plugin? This chapter will walk you through cre-
ating a Hello World plugin and show you how to integrate what you
want into the Movable Type system.

Hello World Plugin
To provide an example, this chapter will develop a Movable Type plugin
that defines the MTHelloWorld tag, which will take an argument, name,
that causes the tag to output a greeting for that particular name.

Plugin Registration and Metadata
You must first create an MT::Plugin object. It then needs to be popu-
lated with a name (and optionally a description), a link to a configuration
script, and a link to documentation.

Then, use the add_plugin method of the MT class to add the new 
plugin to the system, as laid out in Listing 10-1.

Listing 10-1: Hello World Plugin

package MTPlugins::HelloWorld;

use MT;
use MT::Plugin;

# Create and populate the MT::Plugin object
my $plugin = MT::Plugin->new;
$plugin->name (“Hello World”);
$plugin->description (“This is my first plugin.”);

# Add the plugin to the system
MT->add_plugin ($plugin);

˛ Hello World plugin

˛ Expanding Hello
World

˛ Global attribute
filters

˛ Text formatting
plugins

chapter

in this chapter

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 175

TEAM LinG



176 Part IV — Hacking with Plugins

Adding a Simple Tag
Simple tags are created by calling the add_tag method of the MT::Template::Context
class:

MT::Template::Context->add_tag ( TagName => \&tag_routine );

� TagName is the tag that the template builder will recognize. All Movable Type template
tags begin with MT, which will automatically be prepended to the name provided. Note
that there is no requirement that the name of the tag be a fixed string; it only has to eval-
uate to a string when the function call is made.

� tag_routine is a reference to a subroutine, either anonymous or named.

The subroutine takes arguments, which we will discuss later, and it should return the text to
which the tag should evaluate.

Therefore, after adding the tag to the plugin, the code looks like that shown in Listing 10-2.

Listing 10-2: Creating a HelloWorld Tag

package MTPlugins::HelloWorld;

use MT;
use MT::Plugin;
use MT::Template::Context;

# Create and populate the MT::Plugin object
my $plugin = MT::Plugin->new;
$plugin->name (“Hello World”);
$plugin->description (“This is my first plugin.”);

# Add the plugin to the system
MT->add_plugin ($plugin);

# Create the MTHelloWorld template tag
MT::Template::Context->add_tag ( HelloWorld => \&hello );

# Tag Handler Routine for MTHelloWorld
sub hello {

return “Hello world!”;
}

Now that a tag is defined, you can use the plugin in a template, as follows:

<$MTHelloWorld$>

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 176

TEAM LinG



177Chapter 10 — Writing Plugins

When that template is built, the following will be output:

Hello world!

Handling Tag Attributes
Okay, so our plugin doesn’t do much at the moment, but it’s a good start. Now it’s time to add
attribute handling to our tag — specifically, handling an attribute named name.

Attributes are passed to the tag routines as a reference to a Perl hash, with the keys of the hash
being the attribute names. This hash is passed as the second argument to the subroutine; we
will explore the first attribute later. Listing 10-3 shows our code with the attribute added.

Listing 10-3: Adding a Name Attribute

package MTPlugins::HelloWorld;

use MT;
use MT::Plugin;
use MT::Template::Context;

# Create and populate the MT::Plugin object
my $plugin = MT::Plugin->new;
$plugin->name (“Hello World”);
$plugin->description (“This is my first plugin.”);

# Add the plugin to the system
MT->add_plugin ($plugin);

# Create the MTHelloWorld template tag
MT::Template::Context->add_tag ( HelloWorld => \&hello );

# Tag Handler Routine for MTHelloWorld
sub hello {

my (undef, $args) = @_;

# Get the ‘name’ attribute
my $name_arg = $args->{‘name’} || “world”;
return “Hello $name_arg!”;

}

If the name attribute is provided, the name_arg variable will be set to it; otherwise, it will be
set to “world.” That variable is then used in the return statement that will be passed back to the
template output.

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 177

TEAM LinG



178 Part IV — Hacking with Plugins

Take a look at the template code thus far:

<$MTHelloWorld name=”Brian”$>

Following is the Hello World template output:

Hello Brian!

Using the Context
Suppose you want to have this name value default to the author of the current entry. How can
you get that information? By using the context. The MT::Template::Context object rep-
resenting the current context is passed into the subroutine as the first argument. Values in the
current context can be accessed via the stash method. Listing 10-4 shows our code with the
context being passed in the first attribute.

Listing 10-4: Getting Values from the Template Context

package MTPlugins::HelloWorld;

use MT;
use MT::Plugin;
use MT::Template::Context;

# Create and populate the MT::Plugin object
my $plugin = MT::Plugin->new;
$plugin->name (“Hello World”);
$plugin->description (“This is my first plugin.”);

# Add the plugin to the system
MT->add_plugin ($plugin);

# Create the MTHelloWorld template tag
MT::Template::Context->add_tag ( HelloWorld => \&hello );

# Tag Handler Routine for MTHelloWorld
sub hello {

my ($ctx, $args) = @_;

# Get the ‘name’ attribute
my $name_arg = $args->{‘name’} || 

(defined $ctx->stash (‘entry’) &&
defined $ctx->stash (‘entry’)->author) ?
$ctx->stash (‘entry’)->author->name : “world”;

# Return the text for the template
return “Hello $name_arg!”;

}

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 178

TEAM LinG



179Chapter 10 — Writing Plugins

Now, if there is an entry in the current context, accessed via the entry key to the stash
method (and if that entry’s author still exists), you can get the author’s name. If not, the plugin
will fall back on “world.”

Entries are certainly not the only objects stored in the stash. Table 10-1 lists some other com-
monly encountered stash keys.

Table 10-1 Common Stash Keys

Key Description

blog MT::Blog object for the current blog

blog_id Blog_id for the current blog

category MT::Category object for the current category in context (for example, if
within the MTCategories container tag)

comment MT::Comment object for the current comment in context (for example, if
within the MTComments container tag)

tag Name of the current tag being evaluated (without the MT prepended to it)

builder MT::Builder object used to build templates

tokens Compiled template code for the current container

uncompiled Uncompiled template code for the current container

Expanding Hello World
A simple tag can support more sophisticated capabilities, functioning as a container tag that
encloses other tags, dealing with errors, and adding to the context in which the tag exists.

Adding a Container Tag
First, let’s move the Hello World plugin beyond defining a single simple tag and onto a more
complex and flexible plugin.

To begin, we will convert the MTHelloWorld tag into a container tag. Container tags are dif-
ferent from simple tags in two very important ways:

� Container tags require a start and end tag, instead of just a single tag (that is,
<MTContainer> . . . </MTContainer> instead of <MTTag>).

� Container tags are responsible for building the template code between the start and end
tags, though they still return only a text value.

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 179

TEAM LinG



180 Part IV — Hacking with Plugins

To create a container tag, simply use the add_container_tag method of
MT::Template::Context, which behaves exactly the same as add_tag except that it will
be creating a container tag. Therefore, let’s create the container tag for our expanded plugin:

# Create the MTHelloWorldContainer container tag
MT::Template::Context->add_container_tag 

( HelloWorldContainer => \&helloWorldContainer );

Then we define the helloWorldContainer subroutine to handle the tag:

# Tag Handler Routine for MTHelloWorldContainer
sub helloWorldContainer {

my ($ctx, $args) = @_;

# The MT::Builder object
my $builder = $ctx->stash (‘builder’);

# The compiled tokens for the template code
# between the opening and closing tags
my $tokens  = $ctx->stash (‘tokens’);

# Build the contained template code
my $out = $builder->build ($ctx, $tokens);

# Return the text for the template
return $out;

}

This subroutine will get the MT::Builder object and the set of compiled tokens contained
within the container, build them, and then return the results. It doesn’t do much yet, but it is
something that every container tag needs to do.

Handling Errors
What if the template code with the MTHelloWorldContainer tag contained an error? How
would you let the user know what happened?

It is the responsibility of every container tag to catch and return any errors it may encounter
(there are exceptions to that rule, but we won’t be covering them here). It is an easy condition
to check for. The build method of MT::Builder will return an undefined value if an error
occurred and save the error message. Then you should call the error method of the context,
which will return the undefined value and save the error message, thus cascading the error up
the call stack. The updated subroutine to handle that condition follows:

# Tag Handler Routine for MTHelloWorldContainer
sub helloWorldContainer {

my ($ctx, $args) = @_;

# The MT::Builder object
my $builder = $ctx->stash (‘builder’);

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 180

TEAM LinG



181Chapter 10 — Writing Plugins

# The compiled tokens for the template code
# between the opening and closing tags
my $tokens  = $ctx->stash (‘tokens’);

# Build the contained template code
my $out = $builder->build ($ctx, $tokens);
if (!defined $out) {

# build method return undefined
# must be a build error
return $ctx->error ($builder->errstr);

}

# Return the text for the template
return $out;

}

The error method of MT::Template::Context is not available solely to container tags;
simple tags can also return errors (for example, if a simple tag needed to be in an entry context,
but no entry were available).

Adding to the Context
With our skeleton container tag handler routine completed, let’s have it add a value into the
context that a simple tag, which we will define, can read and display. To generate that value, we
can use the argument handling code we wrote for the original MTHelloWorld plugin:

# Tag Handler Routine for MTHelloWorldContainer
sub helloWorldContainer {

my ($ctx, $args) = @_;

# The MT::Builder object
my $builder = $ctx->stash (‘builder’);

# The compiled tokens for the template code
# between the opening and closing tags
my $tokens  = $ctx->stash (‘tokens’);

# Get the ‘name’ attribute
my $name_arg = $args->{‘name’} || 

(defined $ctx->stash (‘entry’) &&
defined $ctx->stash (‘entry’)->author) ?
$ctx->stash (‘entry’)->author->name : “world”;

# Stash the ‘name’ argument
$ctx->stash (‘helloWorldGreeted’, $name_arg);

# Build the contained template code
my $out = $builder->build ($ctx, $tokens);
if (!defined $out) {

# build method return undefined

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 181

TEAM LinG



182 Part IV — Hacking with Plugins

# must be a build error
return $ctx->error ($builder->errstr);

}

# Return the text for the template
return $out;

}

Now we simply have to define another tag to read that value out of the stash, as follows:

# Create the MTHelloWorldGreeted template tag
MT::Template::Context->add_tag 
( HelloWorldGreeted => \&helloWorldGreeted );

# Tag Handler Routine for MTHelloWorldGreeted
sub helloWorldGreeted {

my ($ctx, $args) = @_;

# Get the ‘name’ argument from the context
my $name = $ctx->stash (‘helloWorldGreeted’);
if (!defined $name) {

# If ‘name’ is not defined we must not be with
# a MTHelloWorldContainer container
# so return an error
return $ctx->error (“MTHelloWorldGreeting must be used

within a MTHelloWorldContainer container tag.”);
}

# Return the text for the template
return $name;

}

Notice that the simple tag will return an error if the value does not exist in the context.

Listing 10-5 pulls the whole plugin together.

Listing 10-5: Extending the Plugin’s Capabilities

package MTPlugins::ExpandedHelloWorld;

use MT;
use MT::Plugin;
use MT::Template::Context;

# Create and populate the MT::Plugin object
my $plugin = MT::Plugin->new;
$plugin->name (“Extended Hello World”);
$plugin->description (“This is my second plugin.”);

# Add the plugin to the system
MT->add_plugin ($plugin);

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 182

TEAM LinG



183Chapter 10 — Writing Plugins

# Create the MTHelloWorldContainer container tag
MT::Template::Context->add_container_tag 

( HelloWorldContainer => \&helloWorldContainer );

# Tag Handler Routine for MTHelloWorldContainer
sub helloWorldContainer {

my ($ctx, $args) = @_;

# The MT::Builder object
my $builder = $ctx->stash (‘builder’);

# The compiled tokens for the template code
# between the opening and closing tags
my $tokens  = $ctx->stash (‘tokens’);

# Get the ‘name’ attribute
my $name_arg = $args->{‘name’} || 

(defined $ctx->stash (‘entry’) &&
defined $ctx->stash (‘entry’)->author) ?
$ctx->stash (‘entry’)->author->name : “world”;

# Stash the ‘name’ attribute
$ctx->stash (‘helloWorldGreeted’, $name_arg);

# Build the contained template code
my $out = $builder->build ($ctx, $tokens);
if (!defined $out) {

# build method return undefined
# must be a build error
return $ctx->error ($builder->errstr);

}

# Return the text for the template
return $out;

}

# Create the MTHelloWorldGreeted template tag
MT::Template::Context->add_tag 
( HelloWorldGreeted => \&helloWorldGreeted );

# Tag Handler Routine for MTHelloWorldGreeted
sub helloWorldGreeted {

my ($ctx, $args) = @_;

# Get the ‘name’ attribute from the context
my $name = $ctx->stash (‘helloWorldGreeted’);
if (!defined $name) {

# If ‘name’ is not defined we must not be with
# a MTHelloWorldContainer container
# so return an error

Continued

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 183

TEAM LinG



184 Part IV — Hacking with Plugins

Listing 10-5 (continued)

return $ctx->error (“MTHelloWorldGreeted must be used
within a MTHelloWorldContainer container tag.”);

}

# Return the text for the template
return $name;

}

Here is how you could use this plugin in a template:

<MTHelloWorldContainer name=”Fred”>
Hello <MTHelloWorldGreeted>!
</MTHelloWorldContainer>

And that template would output the following when built:

Hello Fred!

Adding a Conditional Tag
Conditional tags are the third and final type of tag that can be created. They are handled as a
special type of container tag. If the return value of the tag handler routine evaluates to true, the
template code between the start and end tags is built.

Normally, any defined value will evaluate to true, except an empty string.

Let’s now create a conditional tag to determine whether or not a name has been provided
for our plugin (as opposed to the “world” default). To create a conditional tag, you use the
add_conditional_tag method of MT::Template::Context:

# Create the MTHelloWorldIfNameProvided conditional tag
MT::Template::Context->add_conditional_tag 

( HelloWorldIfNameProvided => \&helloWorldIfNameProvided );

# Tag Handler Routine for MTHelloWorldIfNameProvided
sub helloWorldIfNameProvided {

my ($ctx, $args) = @_;

# Get the ‘name’ attribute from the context
my $name = $ctx->stash (‘helloWorldGreeted’);

# Return true if the ‘name’ attribute is defined
# and not equal to ‘world’
return (defined $name && $name ne ‘world’);

}

It is important to note that a conditional tag handler routine cannot return an error; it would
simply be interpreted as a false value.

Listing 10-6 shows the extended HelloWorld plugin with the conditional tag added.

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 184

TEAM LinG



185Chapter 10 — Writing Plugins

Listing 10-6: Adding a Conditional Tag

package MTPlugins::ExpandedHelloWorld;

use MT;
use MT::Plugin;
use MT::Template::Context;

# Create and populate the MT::Plugin object
my $plugin = MT::Plugin->new;
$plugin->name (“Extended Hello World”);
$plugin->description (“This is my second plugin.”);

# Add the plugin to the system
MT->add_plugin ($plugin);

# Create the MTHelloWorldContainer container tag
MT::Template::Context->add_container_tag 

( HelloWorldContainer => \&helloWorldContainer );

# Tag Handler Routine for MTHelloWorldContainer
sub helloWorldContainer {

my ($ctx, $args) = @_;

# The MT::Builder object
my $builder = $ctx->stash (‘builder’);

# The compiled tokens for the template code
# between the opening and closing tags
my $tokens  = $ctx->stash (‘tokens’);

# Get the ‘name’ attribute
my $name_arg = $args->{‘name’} || 

(defined $ctx->stash (‘entry’) &&
defined $ctx->stash (‘entry’)->author) ?
$ctx->stash (‘entry’)->author->name : “world”;

# Stash the ‘name’ attribute
$ctx->stash (‘helloWorldGreeted’, $name_arg);

# Build the contained template code
my $out = $builder->build ($ctx, $tokens);
if (!defined $out) {

# build method return undefined
# must be a build error
return $ctx->error ($builder->errstr);

}

# Return the text for the template
return $out;

}

Continued

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 185

TEAM LinG



186 Part IV — Hacking with Plugins

Listing 10-6 (continued)

# Create the MTHelloWorldGreeted template tag
MT::Template::Context->add_tag 
( HelloWorldGreeted => \&helloWorldGreeted );

# Tag Handler Routine for MTHelloWorldGreeted
sub helloWorldGreeted {

my ($ctx, $args) = @_;

# Get the ‘name’ attribute from the context
my $name = $ctx->stash (‘helloWorldGreeted’);
if (!defined $name) {

# If ‘name’ is not defined we must not be with
# a MTHelloWorldContainer container
# so return an error
return $ctx->error (“MTHelloWorldGreeting must be used

within a MTHelloWorldContainer container tag.”);
}

# Return the text for the template
return $name;

}

# Create the MTHelloWorldIfNameProvided conditional tag
MT::Template::Context->add_conditional_tag 

( HelloWorldIfNameProvided => \&helloWorldIfNameProvided );

# Tag Handler Routine for MTHelloWorldIfNameProvided
sub helloWorldIfNameProvided {

my ($ctx, $args) = @_;

# Get the ‘name’ attribute from the context
my $name = $ctx->stash (‘helloWorldGreeted’);

# Return true if the ‘name’ argument is defined
# and not equal to ‘world’
return (defined $name && $name ne ‘world’);

}

The extended HelloWorld template now looks like this:

<MTHelloWorldContainer>
<MTHelloWorldIfNameProvided>
Hey, <MTHelloWorldGreeted>!  How are you?
<MTElse>
Hello <MTHelloWorldGreeted>.
</MTElse>
</MTHelloWorldIfNameProvided>
</MTHelloWorldContainer>

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 186

TEAM LinG



187Chapter 10 — Writing Plugins

If this template were built within an entry context, with that entry having been written by
Steven, it would output the following:

Hey, Steven!  How are you?

Or, if it were built by itself (that is, without an entry in the context), it would output the fol-
lowing instead:

Hello world.

Container Tag Looping
While a fairly easy implementation, it’s worth demonstrating how to have a container tag loop
more than once over the template code contained within its start and end tags.

Let’s add a new feature to the MTHelloWorldContainer tag: the ability to loop through
multiple names. You can do this one of two ways:

� Embed the multiple names in the name argument, separated with a text delimiter (for
example, “Name 1,Name 2,Name 3”).

� Write code to handle a variable number of attributes. You may have already noticed that
nowhere are the attributes to a tag predefined.

Personally, I prefer the latter. It looks cleaner in the template, and it’s just more fun to code. For
the time being, however, to keep us from having to change the code too drastically, we will use
the former.

First, we allow the users of our plugin to pass in the delimiter that they wish to use in the
glue attribute, with a comma as the default:

# Get the ‘glue’ attribute, and default to ‘,’
my $glue = $args->{‘glue’} || ‘,’;

Then we use the delimiter, along with the value we worked out for $name_arg, to produce
the list of names over which we will be looping:

# Split the ‘name’ attribute on the ‘glue’ attribute
my @names = split ($glue, $name_arg);

Finally, the call to the build method of MT::Builder, along with the line that actually
places the name to display in the stash, is placed into a foreach loop, with the results 
aggregated:

# Overall results
my $res = ‘’;

# Step through each name
foreach my $name (@names) {

# Stash the ‘name’ attribute
$ctx->stash (‘helloWorldGreeted’, $name);

# Build the contained template code
my $out = $builder->build ($ctx, $tokens);

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 187

TEAM LinG



188 Part IV — Hacking with Plugins

if (!defined $out) {
# build method return undefined
# must be a build error
return $ctx->error ($builder->errstr);

}

# Append the build results to the overall results
$res .= $out;

}

Putting all of this together, the tag handler routine for MTHelloWorldContainer will look
like what is shown in Listing 10-7.

Listing 10-7: Looping within a Container Tag

# Tag Handler Routine for MTHelloWorldContainer
sub helloWorldContainer {

my ($ctx, $args) = @_;

# The MT::Builder object
my $builder = $ctx->stash (‘builder’);

# The compiled tokens for the template code
# between the opening and closing tags
my $tokens  = $ctx->stash (‘tokens’);

# Get the ‘name’ attribute
my $name_arg = $args->{‘name’} || 

(defined $ctx->stash (‘entry’) &&
defined $ctx->stash (‘entry’)->author) ?
$ctx->stash (‘entry’)->author->name : “world”;

# Get the ‘glue’ attribute, and default to ‘,’
my $glue = $args->{‘glue’} || ‘,’;

# Split the ‘name’ attribute on the ‘glue’ argument
my @names = split ($glue, $name_arg);

# Overall results
my $res = ‘’;

# Step through each name
foreach my $name (@names) {

# Stash the ‘name’ attribute
$ctx->stash (‘helloWorldGreeted’, $name);

# Build the contained template code
my $out = $builder->build ($ctx, $tokens);
if (!defined $out) {

# build method return undefined
# must be a build error

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 188

TEAM LinG



189Chapter 10 — Writing Plugins

return $ctx->error ($builder->errstr);
}

# Append the build results to the overall results
$res .= $out;

}

# Return the text for the template
return $res;

}

Therefore, if you used the following template code

<MTHelloWorldContainer name=”Thomas,Richard,Harold”>
Hello <MTHelloWorldGreeted>!
</MTHelloWorldContainer>

you would produce the following output:

Hello Thomas!
Hello Richard!
Hello Harold!

Embedded Movable Type Tags
Often, users will want the flexibility to pass Movable Type template tags into the arguments for
another tag. MT::Builder does not support this. This kind of functionality can be built into a
plugin, however.

Suppose, for example, a user is making significant use of Brad Choate’s wonderful KeyValues
plugin throughout his site, and he wants to use it to pass the name argument to
MTHelloWorldContainer. The template code could be written like the following, using the
de facto standard notation for embedded Movable Type template tags:

Brad Choate’s KeyValues plugin (http://sixapart.com/pronet/plugins/plugin/
keyvalues.html) enables users to easily retrieve and embed metadata into various fields in
Movable Type, most commonly the extended entry.

<MTHelloWorldContainer name=”[MTKeyValue key=’greet_names’]”>
Hello <MTHelloWorldGreeted>!
</MTHelloWorldContainer>

To support this notation, we will need to transform it into normal template code, and then use
MT::Builder to compile and build it:

# Check for possible embedded Movable Type template tags
# and change them into actual template tags
if ($name_arg =~ s/\[(\/?MT[^\]]+)\]/\<$1\>/g) {

# Compile the template tags passed in
my $tok = $builder->compile ($ctx, $name_arg);

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 189

TEAM LinG



190 Part IV — Hacking with Plugins

# Build the tokens generated from the template tags
defined ($name_arg = $builder->build ($ctx, $tok))

or return $ctx->error ($builder->errstr);
}

Listing 10-8 shows the code that puts together the Extended HelloWorld plugin.

Listing 10-8: Embedding Template Tag Output

package MTPlugins::ExpandedHelloWorld;

use MT;
use MT::Plugin;
use MT::Template::Context;

# Create and populate the MT::Plugin object
my $plugin = MT::Plugin->new;
$plugin->name (“Extended Hello World”);
$plugin->description (“This is my second plugin.”);

# Add the plugin to the system
MT->add_plugin ($plugin);

# Create the MTHelloWorldContainer container tag
MT::Template::Context->add_container_tag 

( HelloWorldContainer => \&helloWorldContainer );

# Tag Handler Routine for MTHelloWorldContainer
sub helloWorldContainer {

my ($ctx, $args) = @_;

# The MT::Builder object
my $builder = $ctx->stash (‘builder’);

# The compiled tokens for the template code
# between the opening and closing tags
my $tokens  = $ctx->stash (‘tokens’);

# Get the ‘name’ attribute
my $name_arg = $args->{‘name’} || 

(defined $ctx->stash (‘entry’) &&
defined $ctx->stash (‘entry’)->author) ?
$ctx->stash (‘entry’)->author->name : “world”;

# Check for possible embedded Movable Type template tags
# and change them into actual template tags
if ($name_arg =~ s/\[(\/?MT[^\]]+)\]/\<$1\>/g) {

# Compile the template tags passed in
my $tok = $builder->compile ($ctx, $name_arg);

# Build the tokens generated from the template tags

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 190

TEAM LinG



191Chapter 10 — Writing Plugins

defined ($name_arg = $builder->build ($ctx, $tok))
or return $ctx->error ($builder->errstr);

}

# Get the ‘glue’ attribute, and default to ‘,’
my $glue = $args->{‘glue’} || ‘,’;

# Split the ‘name’ attribute on the ‘glue’ argument
my @names = split ($glue, $name_arg);

# Overall results
my $res = ‘’;

# Step through each name
foreach my $name (@names) {

# Stash the ‘name’ attribute
$ctx->stash (‘helloWorldGreeted’, $name);

# Build the contained template code
my $out = $builder->build ($ctx, $tokens);
if (!defined $out) {

# build method return undefined
# must be a build error
return $ctx->error ($builder->errstr);

}

# Append the build results to the overall results
$res .= $out;

}

# Return the text for the template
return $res;

}

# Create the MTHelloWorldGreeted template tag
MT::Template::Context->add_tag 

( HelloWorldGreeted => \&helloWorldGreeted );

# Tag Handler Routine for MTHelloWorldGreeted
sub helloWorldGreeted {

my ($ctx, $args) = @_;

# Get the ‘name’ attribute from the context
my $name = $ctx->stash (‘helloWorldGreeted’);
if (!defined $name) {

# If ‘name’ is not defined we must not be with
# a MTHelloWorldContainer container
# so return an error
return $ctx->error (“MTHelloWorldGreeting must be used

within a MTHelloWorldContainer container tag.”);
}

Continued

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 191

TEAM LinG



192 Part IV — Hacking with Plugins

Listing 10-8 (continued)

# Return the text for the template
return $name;

}

# Create the MTHelloWorldIfNameProvided conditional tag
MT::Template::Context->add_conditional_tag 

( HelloWorldIfNameProvided => \&helloWorldIfNameProvided );

# Tag Handler Routine for MTHelloWorldIfNameProvided
sub helloWorldIfNameProvided {

my ($ctx, $args) = @_;

# Get the ‘name’ attribute from the context
my $name = $ctx->stash (‘helloWorldGreeted’);

# Return true if the ‘name’ attribute is defined
# and not equal to ‘world’
return (defined $name && $name ne ‘world’);

}

Global Tag Attributes
A global tag attribute is an argument that can be given to any Movable Type template tag,
which is handled by a separate routine. To create a new global tag attribute, use the
add_global_filter method of MT::Template::Context.

For example, suppose that you want to write a filter to translate the output of a template tag to
all uppercase, as follows:

# Create the global filter
MT::Template::Context->add_global_filter ( to_uppercase =>
\&to_uppercase );

# Filter Handler Routine for to_uppercase
sub to_uppercase {

my ($text, $arg_value, $ctx) = @_;

# Translate all lowercase characters to uppercase
$text =~ tr/a-z/A-Z/;

# Return the translated text
return $text;

}

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 192

TEAM LinG



193Chapter 10 — Writing Plugins

Notice that the filter handler routine takes different arguments than a tag handler routine:

1. The text output for the template tag

2. The value of the argument used (often “1,” which is unofficial shorthand for “on”)

3. The current context

An example use in a template follows:

<MTHelloWorldContainer name=”Kyle” to_uppercase=”1”>
Hello <MTHelloWorldGreeted>!
</MTHelloWorldContainer>

The MTHelloWorldContainer would produce the following:

Hello Kyle!

This information would then be passed into the to_uppercase filter handler routine as the
text argument, along with “1” for the argument to the attribute, and finally the current
MT::Template::Context object.

After running through the filter handler routine, the final output of the template would be as
follows:

HELLO KYLE!

While any number of global tag attributes can be applied to a given Movable Type template tag,
there is no guaranteed order in which they will be called by the post process handler.

Text Formatting Plugins
Text formatting plugins are handled in a similar manner to global tag attributes. They can be
added to the system with the add_text_filter method of MT:

MT->add_text_filter ( ‘hello_world’ => {
label  => ‘Hello World’,
docs   => ‘http://www.example.com/docs/hello_world.html’,
on_format    => \&hello_world,

});

sub hello_world {
my ($text, $ctx) = @_;

# split the text into individual lines
my @lines = split (“\n”, $text);

# add “Hello “ and “!” to the start and end of each line
@lines = map { “Hello $_!” } @lines;

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 193

TEAM LinG



194 Part IV — Hacking with Plugins

# Put it all back together again on separate lines
return join (“\n”, @lines);

}

Therefore, for an entry such as the following, with “Hello World” chosen for text formatting

Ben
Mena
Anil

when the entry is output from a template, the MTEntryBody tag would return the following:

Hello Ben!
Hello Mena!
Hello Anil!

Plugin Best Practices
The plugins that you create for Movable Type must be able to peacefully coexist with other
plugins that may be present on a user’s installation. For this and other reasons, adhering to a
few best practices for your own plugins will minimize compatibility problems and improve your
code in other important ways.

Avoid Plugin Collisions
� Declare a package for your plugin.

� Use a unique prefix for the keys for all of your stashed values, preferably based on the
name of the plugin.

� Use a unique prefix for all of the tags you declare so that there is no confusion as to the
plugin from which the tag originates.

Code Readability and Reuse
� Declare all of your tags, filters, and formatters at the beginning of your plugin code.

� While anonymous subroutines can be used for handler routines, if named subroutines are
used, they can be reused by other tags. For example, if a tag handler routine is written to
return a particular value, a conditional tag can use that same handler routine to determine
whether or not that value is present.

Code Efficiency
Do not load any external modules at compile time (via Perl’s use directive). Load them as
needed, if possible via the require directive. With each invocation of Movable Type’s CGI
scripts, all plugins are loaded and compiled. The less that is required to build the plugin code,
the less work the server will have to do with each execution of a Movable Type CGI script.

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 194

TEAM LinG



195Chapter 10 — Writing Plugins

Summary
The ability to develop plugins for Movable Type should be within the capabilities of any Perl
programmer. The software offers a well-planned, object-oriented design that serves as a frame-
work upon which to design your own scripts.

Most plugin developers begin with simple noncontainer tags that collect input from one or
more attributes and produce useful output. The experience of turning a Perl script into a func-
tioning template tag can be an intoxicating hack.

By starting small and increasing the capabilities of your plugins as they become more ambi-
tious, you can learn the ins and outs of the software’s application programming interface (API).

Before you know it, you’ll be completely plugged in to the mindset of a professional Movable
Type developer.

16_57499x ch10.qxd  6/17/05  8:10 PM  Page 195

TEAM LinG



16_57499x ch10.qxd  6/17/05  8:10 PM  Page 196

TEAM LinG



Advanced Plugin
Writing

While template tags seem easy enough, there is plenty more that
can be done with a plugin these days.

An imaginative programmer can code plugins that expand the boundaries
of Movable Type beyond the weblog and image publishing features for
which the software has become known.

Two particular aspects of plugin development — data persistence and 
callbacks — enable a program to participate in the software’s decision-
making and storage processes.

A sample program drafted in this chapter shows how this is performed,
filtering out comments selectively on the basis of objectionable content.
These capabilities can be inserted directly into the browser-based interface
of Movable Type, appearing as if they were a standard part of the software.

Data Persistence
You may recall from Chapter 4 that Movable Type’s database includes
mt_plugindata, a table that provides a place for the storage of data that
plugins need to store and retrieve persistently.

All plugins share the table, so each record has an identifier associated with
the plugin that created it.

˛ Data persistence

˛ Callbacks

˛ Putting it all
together

˛ Giving the user
some control

chapter

in this chapter

17_57499x ch11.qxd  6/17/05  8:02 PM  Page 197

TEAM LinG



198 Part IV — Hacking with Plugins

Configuration Data
While configuration data can be stored in variables defined in the plugin file itself, it requires
users of the plugin to edit the plugin code, and it makes upgrading plugins more difficult
because the data is stored in the file. The MT::Plugin class has a very handy set of helper
methods for the storage and retrieval of plugin configuration data in the database:

� set_config_value

� get_config_value

� get_config_hash

The name of the plugin (that is, the value passed to the name method) is used as the plugin
name in the stored data, so do not put the version number of the plugin in there.

Both set_config_value and get_config_value operate in a manner similar to the
stash method of MT::Template::Context.

General Data Persistence
MT::PluginData enables developers to store and retrieve any arbitrary bit of data they so
desire. This data can be cached data from an expensive data processing routine, configuration
data, or anything else you can come up with.

Callbacks
Callbacks were first introduced with Movable Type 3.0. They have given plugin developers
many hooks into the Movable Type system. A callback is hooked into the system by calling the
add_callback method of the appropriate class:

ClassName->add_callback ($method_name, $priority,
$plugin_object, \&callback_method);

Callback Priorities
Registering a callback includes specifying a priority number. For most callbacks, that number
will fall somewhere in the 1–10 range, with callbacks of priority 1 being called first, and call-
backs of priority 10 being called last. Special cases are priorities 0 and 11, which are exclusive.
Only one callback method is allowed to be given priority 0 or 11, and if more than one request
for either is made, an error will result. Callbacks of priority 0 will run before any other callbacks
are handled, so they get first crack at the data, but they also may get lost in the shuffle with all
the other callback methods being called. Callbacks of priority 11 will run last, after every other
relevant callback has been handled. They get the absolute final chance to touch the data.

17_57499x ch11.qxd  6/17/05  8:03 PM  Page 198

TEAM LinG



199Chapter 11 — Advanced Plugin Writing

Error Handling
Callback routines are passed different arguments depending on which callback is being imple-
mented. The first argument is always an MT::ErrorHandler object, from which the error
method previously discussed originates:

sub callback_routine {
my ($eh) = @_;
...
if ($error_condition) {

return $eh->error 
(“Error occurred in callback_routine.”);

}
}

The error is recorded in the activity log and processing will continue.

Object Callbacks
Object Callbacks can be used to inject code into the loading and saving processes. Any subclass
of MT::Object can have callbacks applied to it in this manner. These callbacks can be applied
either before or after any call to load, save, remove, and remove_all, simply by prepend-
ing either pre_ or post_ to the method name.

The following code will add a callback to MT::Entry that will run after it is saved at priority 4:

MT::Entry->add_callback (‘post_save’, 4, $plugin,
\&post_save_callback_method);

A post_save callback method, for example, is called immediately after the object in question
is saved, but before any follow-up processing is done. In the case of MT::Entry, this means
that while the entry may have been saved, its categories that are stored with MT::Placement
have not yet been saved. Therefore, if the entry is a completely new one, even if categories were
selected in the edit entry interface, it would appear to the callback method that this entry has
no categories at all.

A pre_save callback is called before the object is saved. If the object is new to the system, it
will not have a value in the id field.

Application Callbacks
Application callbacks can be used to inject code into overall MT processes, instead of at the
lower level of object callbacks.

Comment Callbacks
Several callbacks jump into the process of submitting a comment on a Movable Type site, mak-
ing alterations to its content or blocking it from being stored in the database.

17_57499x ch11.qxd  6/17/05  8:03 PM  Page 199

TEAM LinG



200 Part IV — Hacking with Plugins

CommentThrottleFilter
With the increase in Internet abuse, a technique that has come into vogue is throttling, a soft-
ware limit that determines how frequently a specific user can be allowed to make a request.
Attempts to surpass the limit are rejected in some manner.

The CommentThrottleFilter callback supports this functionality in Movable Type. Any
callback methods hooked into this callback need to return a Boolean value (that is, a true or a
false value), which is then used to determine whether the incoming comment will be built and
stored in the system. If any of the methods hooked into this callback return false, the incoming
comment is discarded and the submitter receives a message about comment throttling.

This callback is passed the MT::ErrorHandler object, followed by the MT::App::Comments
object and the MT::Entry object representing the entry on which the comment is being placed.

CommentFilter
Any callback methods hooked into this callback need to return a Boolean value, just as with
CommentThrottleFilter. If any of the methods hooked into this callback return false,
the comment that was built will not be saved.

This callback is passed the MT::ErrorHandler object, followed by the MT::App::Comments
object and the MT::Comment object representing the comment that was built but has not yet
been saved.

TrackBack Callbacks
Callbacks also interpose themselves in the process of submitting TrackBack pings, messages
sent by a website that tie together related weblog entries on different sites.

TBPingThrottleFilter
Any callback methods hooked into this callback need to return a Boolean value. If any methods
hooked into this callback return false, the incoming TrackBack ping will be ignored.

This callback is passed the MT::ErrorHander object, followed by the MT::App::Trackback
object and the MT::Trackback object representing the destination for the incoming ping.

TBPingFilter
Any callback methods hooked into this callback need to return a Boolean value. If any methods
hooked into this callback return false, the ping that was built will not be saved.

This callback is passed the MT::ErrorHandler object, followed by the MT::App::
Trackback object and the MT::TBPing object representing the ping that was built but has
not yet been saved.

Other Callbacks
Additional callbacks can be employed to participate in weblog entry submission, site rebuilds,
and file storage.

17_57499x ch11.qxd  6/17/05  8:03 PM  Page 200

TEAM LinG



201Chapter 11 — Advanced Plugin Writing

AppPostEntrySave
Any callback methods hooked into this callback are called after an entry is saved and all of its
other information is stored in related database tables, such as the assignment of categories.

This callback is passed the MT::ErrorHandler object, followed by the MT::Entry object
representing the entry that was just saved.

BuildFileFilter
This is one of the more unusual callbacks in the system. It is used to determine whether a given
file should be rebuilt as part of the current rebuild process. If any callback method returns
false, the file will not be rebuilt.

This callback is passed the MT::ErrorHandler object, followed by a hash with the following
keys:

� Context — The current MT::Template::Context object

� ArchiveType — The archive type of the file

� TemplateMap — The MT::TemplateMap object pertaining to the current template
and the file to be written

� Blog — The MT::Blog object representing the current blog

� Entry — The MT::Entry object representing the current entry

� PeriodStart — The timestamp representing the start time of the included entries if this
is a date-based archive

� Category — The MT::Category object representing the current category if this is a
category archive

BuildFile
Similar to the BuildFileFilter method, this callback is called after a file has been 
built. It is passed the same arguments as BuildFileFilter, with one additional hash key,
FileInfo, which is the MT::FileInfo object representing the file that was just built, with
the virtual field of that object set to true if the file was actually created on disk, or false if
the template is intended for dynamic building.

Putting It All Together
Suppose that you want to write a plugin that will prevent flame wars from erupting in the com-
ments for any given entry on your blog. For simplicity’s sake, we will define a flame comment
as one that contains the word jerk in the comment body.

17_57499x ch11.qxd  6/17/05  8:03 PM  Page 201

TEAM LinG



202 Part IV — Hacking with Plugins

Jerk Filter
First you write a callback to catch comments that contain the verboten word in the comment
body:

sub jerk_filter {
my ($eh, $app, $comment) = @_;
# If it is not defined, we don’t care
# Only when it is defined _and_ contains the word
# ‘jerk’ do we want to return false
return !(defined $comment->text && 

$comment->text =~ /\bjerk\b/i);
}

Now, to add this into the system, call the add_callback method:

MT->add_callback (‘CommentFilter’, 1, $plugin, \&jerk_filter);

Jerk Throttle
The filter prevents comments containing the word jerk in the body from making it into the
system, but that is only the first step. If a person really wants to flame somebody else, they will
most likely find another way to express themselves which does not contain the word jerk any-
where. In that event, writing a comment throttle callback to give them 20 minutes to cool
down after they’ve tried to submit the initial flame comment is a good idea.

First, you will need to modify the jerk filter to record the IP of whomever is trying to leave the
flame comment. Use the IP as the key column for the MT::PluginData record, with the
timestamp stored in the data column:

sub jerk_filter {
my ($eh, $app, $comment) = @_;
# If it is not defined, we don’t care
# Only when it is defined _and_ contains the word
# ‘jerk’ do we want to return false
if (defined $comment->text &&

$comment->text =~ /\bjerk\b/i) {
# Create a MT::PluginData object to store
# where the user came from and when they
# attempted to submit a flame
my $pd = MT::PluginData->new;
$pd->plugin (‘FlamePrevent’);
$pd->key ($app->remote_ip);

# Get the current time
my $ts = time;
# Note: pass the reference to the data
# you wish to store
$pd->data (\$ts);
$pd->save;

17_57499x ch11.qxd  6/17/05  8:03 PM  Page 202

TEAM LinG



203Chapter 11 — Advanced Plugin Writing

# Return false because we got a flame comment
return 0;

} else {
# Return true because the comment appears fine
return 1;

}
}

Next, you need to create a callback method to throttle the comments coming from this person:

sub jerk_throttle {
my ($eh, $app, $entry) = @_;
# Check the database to see if the current commenter
# recently tried to submit a flame comment
my $pd = MT::PluginData->load ({ plugin => ‘FlamePrevent’,

key => $app->remote_ip });

# If there was a record, we need to check and see
# how long it has been
if ($pd) {

# When did they try to submit it
my $then_ts = ${$pd->data};
# What time is it now
my $now_ts = time;
# if it has been 20 minutes
if ($now_ts >= $then_ts + (20 * 60)) {

# Remove the record so that they can now
# leave comments freely
$pd->remove;
# And return true
return 1;

} else {
# Hasn’t been long enough so return false
return 0;

}
} else {

# No record of attempted flames, return true
return 1;

}
}

Then you hook this callback method into the system:

MT->add_callback (‘CommentThrottleFilter’, 1, $plugin,
\&jerk_throttle);

What if you decide to make the throttle a little less harsh? For example, what if a user has
managed to calm herself down and wants to comment on another entry? The user is no longer
in the original context where she attempted to leave a flame comment, and the jerk filter will
catch it if she tries to leave another one, so you should give people the benefit of the doubt.

17_57499x ch11.qxd  6/17/05  8:03 PM  Page 203

TEAM LinG



204 Part IV — Hacking with Plugins

Because you are doing this based on the entry instead of globally via the user’s IP address, you
have to change the storage mechanism you are using, if for no other reason than you are cur-
rently not tracking the entry for which the comment was intended:

sub jerk_filter {
my ($eh, $app, $comment) = @_;
# If it is not defined, we don’t care
# Only when it is defined _and_ contains the word
# ‘jerk’ do we want to return false
if (defined $comment->text &&

$comment->text =~ /\bjerk\b/i) {
# Check to see if there is an existing
# set of records for the relevant entry
my $pd = MT::PluginData->load (

{ plugin => ‘FlamePrevent’,
key => $comment->entry_id });

# if it does not exist, create it
if (!$pd) {

$pd = MT::PluginData->new;
$pd->plugin (‘FlamePrevent’);
$pd->key ($comment->entry_id);

}

# Get the current time
my $ts = time;

# Retrieve the current set of timestamps
my $stamps = $pd->data;

# Add an entry to the referenced hash
# for the current user
$stamps->{$app->remote_ip} = $ts;

# Store the resulting hash reference
# Notice that the variable is not explicitly
# referenced (via ‘\’) because it is already
# a reference
$pd->data ($stamps);
$pd->save;

# Return false because we got a flame comment
return 0;

} else {
# Return true because the comment appears fine
return 1;

}
}

17_57499x ch11.qxd  6/17/05  8:03 PM  Page 204

TEAM LinG



205Chapter 11 — Advanced Plugin Writing

Because the storage structure has changed, the throttle callback method will need to be
updated:

sub jerk_throttle {
my ($eh, $app, $entry) = @_;
# Check the database to see if the current entry
# has a record defined associated with the jerk filter
my $pd = MT::PluginData->load ({ plugin => ‘FlamePrevent’,

key => $entry->id });

# If there was a record for the entry
# we need to check and see if there is a timestamp
# for the current IP address
if ($pd) {

# Get the timestamp hash
my $stamps = $pd->data;

# If an entry exists for the current
# IP address
if (exists $stamps->{$app->remote_ip}) {

# Get the timestamp for when the user
# tried to submit the flame comment
my $then_ts = $stamps->{$app->remote_ip};

# What time is it now
my $now_ts = time;

# if it has been 20 minutes
if ($now_ts >= $then_ts + (20 * 60)) {

# Remove the record so that they
# can now leave comments freely
delete $stamps->{$app->remote_ip};

# Update the MT::PluginData object
$pd->data ($stamps);

# Save the updated object
$pd->save;

# Return true
return 1;

} else {
# Has not been long enough yet
# So return false
return 0;

} else {
# No record of attempted flames
# from this IP address, so return true
return 1;

}

17_57499x ch11.qxd  6/17/05  8:03 PM  Page 205

TEAM LinG



206 Part IV — Hacking with Plugins

} else {
# No record of attempted flames for this entry
# so return true
return 1;

}
}

Now we can assemble all of the parts into a complete plugin, as shown in Listing 11-1.

Listing 11-1: Flame Prevention Plugin

Package MTPlugins::FlamePrevent;

use MT;
use MT::Plugin;
use MT::PluginData;

use MT::App::Comments;
use MT::Entry;
use MT::Comment;

# Create and populate the MT::Plugin object
my $plugin = MT::Plugin->new;
$plugin->name (“Flame Prevent”);
$plugin->description (“A plugin that will discourage flaming and
encourage cooler heads.”);

# Add the plugin to the system
MT->add_plugin ($plugin);

MT->add_callback (‘CommentFilter’, 1, $plugin, \&jerk_filter);
MT->add_callback (‘CommentThrottleFilter’, 1, $plugin,

\&jerk_throttle);

sub jerk_filter {
my ($eh, $app, $comment) = @_;
# If it is not defined, we don’t care
# Only when it is defined _and_ contains the word
# ‘jerk’ do we want to return false
if (defined $comment->text &&

$comment->text =~ /\bjerk\b/i) {
# Check to see if there is an existing
# set of records for the relevant entry
my $pd = MT::PluginData->load (

{ plugin => ‘FlamePrevent’,
key => $comment->entry_id });

# if it does not exist, create it
if (!$pd) {

17_57499x ch11.qxd  6/17/05  8:03 PM  Page 206

TEAM LinG



207Chapter 11 — Advanced Plugin Writing

$pd = MT::PluginData->new;
$pd->plugin (‘FlamePrevent’);
$pd->key ($comment->entry_id);

}

# Get the current time
my $ts = time;

# Retrieve the current set of timestamps
my $stamps = $pd->data;

# Add an entry to the referenced hash
# for the current user
$stamps->{$app->remote_ip} = $ts;

# Store the resulting hash reference
# Notice that the variable is not explicitly
# referenced (via ‘\’) because it is already
# a reference
$pd->data ($stamps);
$pd->save;

# Return false because we got a flame comment
return 0;

} else {
# Return true because the comment appears fine
return 1;

}
}

sub jerk_throttle {
my ($eh, $app, $entry) = @_;
# Check the database to see if the current entry
# has a record defined associated with the jerk filter
my $pd = MT::PluginData->load ({ plugin => ‘FlamePrevent’,

key => $entry->id });

# If there was a record for the entry
# we need to check and see if there is a timestamp
# for the current IP address
if ($pd) {

# Get the timestamp hash
my $stamps = $pd->data;

# If an entry exists for the current
# IP address
if (exists $stamps->{$app->remote_ip}) {

# Get the timestamp for when the user
# tried to submit the flame comment
my $then_ts = $stamps->{$app->remote_ip};

Continued

17_57499x ch11.qxd  6/17/05  8:03 PM  Page 207

TEAM LinG



208 Part IV — Hacking with Plugins

Listing 11-1 (continued)

# What time is it now
my $now_ts = time;

# if it has been 20 minutes
if ($now_ts >= $then_ts + (20 * 60)) {

# Remove the record so that they
# can now leave comments freely
delete $stamps->{$app->remote_ip};

# Update the MT::PluginData object
$pd->data ($stamps);

# Save the updated object
$pd->save;

# Return true
return 1;

} else {
# Has not been long enough yet
# So return false
return 0;

} else {
# No record of attempted flames
# from this IP address, so return true
return 1;

}

} else {
# No record of attempted flames for this entry
# so return true
return 1;

}
}

Giving the User Some Control
This flame prevention plugin appears to work well enough on the surface, with our rather sim-
plistic view of what constitutes a flame, but what if users of the plugin want more control over
what they consider a flame? Maybe they want to discourage the use of profanity on their site.
We should give them the option to alter the prohibited word to look out for, or even to build a
list of bad words.

17_57499x ch11.qxd  6/17/05  8:03 PM  Page 208

TEAM LinG



209Chapter 11 — Advanced Plugin Writing

Configuring the Bad Word
Pull the bad word, jerk, out of the if statement and drop it into a configuration variable to
place at the beginning of the file, where a user of the plugin can edit it easily:

my $bad_word = ‘jerk’;

Then incorporate it into the if statement for the jerk_filter method:

if (defined $comment->text &&
$comment->text =~ /\b$bad_word\b/i) {

Making It Easier for the User
Though storing configuration information within a plugin file is not difficult, asking a user to
edit lines of source code in a plugin invites trouble. An inadvertent change to a line of code
could render it nonfunctional. A much easier alternative is to create a configuration application.

Subclassing MT::App
The easiest way to quickly build a configuration application is to build a CGI script that makes
use of a custom subclass of MT::App. Subclassing MT::App involves writing an init
method, as well as methods for handling actions taken by the script:

package MTPlugins::FlamePreventCgiApp;

use MT::App;
@ISA = qw( MT::App );

sub init {
my $app = shift;
$app->SUPER::init (@_) or return;
$app->add_methods (

show_word => \&show_word,
save_word => \&save_word,

);
$app->{default_mode} = ‘show_word’;
$app->{template_dir} = ‘cms’;
$app->{requires_login} = 1;
$app->{user_class} = ‘MT::Author’;

$app;
}

The first two lines of the init method are necessary for the subclassing to work correctly. The
call to add_methods will tell MT::App which methods to call when the CGI script is passed
the key in the __mode parameter. Setting the default_mode hash key will tell MT::App
what the default value for the __mode parameter is. If the requires_login key is set to a
true value, the application will require the user to log in before, and the user_class key
will tell MT::App what class to validate the user against. The template_dir key tells

17_57499x ch11.qxd  6/17/05  8:03 PM  Page 209

TEAM LinG



210 Part IV — Hacking with Plugins

MT::App in which directory under the tmpl/ directory to look for templates to use to build
the interface. Templates can be built by calling the build_page method of MT::App, which
in turn builds the templates with HTML::Template. Details on how to write templates with
the syntax used in HTML::Template are beyond the scope of this book.

The __mode handler methods simply need to return the text that is intended for the web
browser. The two __mode handler methods mentioned earlier would look something like the
following:

sub show_word {
my ($app) = @_;

# Generate HTML that will display the configured word
return $html;

}

sub save_word {
my ($app) = @_;

# Save the word and generate HTML to indicate success
return $html;

}

Now for the fun part: saving and retrieving the word the user has provided. The parameters
passed to a CGI script are available through the query key of the MT::App object:

my $query = $app->{query};
my $param_name = $query->param (‘param_name’);

Retrieve the MT::Plugin object from the MTPlugins::FlamePrevent class, and use its
set_config_value and get_config_value methods to store and retrieve the word:

sub show_word {
my ($app) = @_;

# Get the current bad word
my $bad_word = $plugin->get_config_value (‘bad_word’);

# If it has not yet been defined, use ‘jerk’
# as the default value
if (!defined $bad_word) {

$bad_word = ‘jerk’;
}

# Generate HTML that will display the configured word
return $html;

}

sub save_word {
my ($app) = @_;

# Get the query object

17_57499x ch11.qxd  6/17/05  8:03 PM  Page 210

TEAM LinG



211Chapter 11 — Advanced Plugin Writing

my $query = $app->{query};
# Get the bad_word CGI parameter
my $bad_word = $query->param (‘bad_word’);

# Set that as the bad_word value
$plugin->set_config_value (‘bad_word’, $bad_word);

# Save the word and generate HTML to indicate success
return $html;

}

Now just replace the configuration line in the plugin file to use the config value stored in the
database, with the default value being ‘jerk’:

my $bad_word = $plugin->get_config_value (‘bad_word’)
|| ‘jerk’;

All that is needed now is a CGI script that will call the subclassed MT::App class. The 
quickest way to do that is simply to copy the mt.cgi script and replace the mentions of
MT::App::CMS with our new MT::App class, MTPlugins::FlamePreventCgiApp.

Without too much difficulty, the plugin could be expanded to handle a list of “bad” words
instead of just one single word. Give it a try on your own.

Adding to the Movable Type Interface
Any comment that contains what the user of the plugin would consider to be a bad word now
triggers the cool-down period encouraged by our plugin. What if a flame comment were sub-
mitted without making use of any of the bad words? What recourse does the blog administra-
tor have? You can give plugin users the option to mark a comment as a flame and give the user
that submitted it the cool-down period.

How do you add something to the Movable Type interface? The MT class has a method
named add_plugin_action that does exactly that:

MT->add_plugin_action ($where, $link_url, $link_text);

To add a link to the interface in the individual comment page, just use the following:

MT->add_plugin_action (‘comment’, 
‘link-to-flame-prevent-cgi-app?&__mode=cool_down’,
‘Let this commenter cool down.’);

The second parameter, the link url, will be appended with the where parameter, and then
the id of the individual object if the where is for an individual page instead of a list page. The
appended text will always start with an ampersand (&), so if the link url does not contain
any CGI parameters, be sure to end the text with a question mark (?).

Because the __mode parameter we are passing to the CGI script is not currently in the list of
methods, it must be added.

17_57499x ch11.qxd  6/17/05  8:03 PM  Page 211

TEAM LinG



212 Part IV — Hacking with Plugins

First, change that portion of the init method:

$app->add_methods (
show_word => \&show_word,
save_word => \&save_word,
cool_down => \&cool_down,

);

Then construct the method to handle the cool_down mode:

sub cool_down {
my ($app) = @_;

# The variable that will hold the result to return
my $result_html = ‘’;

# Get the query object
my $query = $app->{query};
# Get the comment id
my $id = $query->param (‘id’);

# Load the comment
require MT::Comment;
my $comment = MT::Comment->load ($id);

# If it exists, go ahead and setup the user to 
# hit the jerk throttle
if ($comment) {

# Check to see if there is an existing
# set of records for the relevant entry
my $pd = MT::PluginData->load (

{ plugin => ‘FlamePrevent’,
key => $comment->entry_id });

# if it does not exist, create it
if (!$pd) {

$pd = MT::PluginData->new;
$pd->plugin (‘FlamePrevent’);
$pd->key ($comment->entry_id);

}

# Get the current time
my $ts = time;

# Retrieve the current set of timestamps
my $stamps = $pd->data;

# Add an entry to the referenced hash
# for the current user
$stamps->{$comment->ip} = $ts;

# Store the resulting hash reference

17_57499x ch11.qxd  6/17/05  8:03 PM  Page 212

TEAM LinG



213Chapter 11 — Advanced Plugin Writing

# Notice that the variable is not explicitly
# referenced (via ‘\’) because it is already
# a reference
$pd->data ($stamps);
$pd->save;

$result_html = ‘User at ip ‘.
$comment->ip.
‘ will be given a cool-down period.’;

} else {
$result_html = ‘Unknown comment’;

}

$result_html;
}

Now, when a user views an individual comment in the Movable Type interface, a link will
appear at the bottom of the page that, if clicked, will cause the person who left the comment to
enter the cool-down period enforced by the jerk throttle.

Summary
As this chapter demonstrates, Six Apart isn’t kidding when it bills Movable Type as a com-
pletely extensible program.

Through callbacks, data persistence, and a robust Perl API, the software has attracted a dedi-
cated following of Perl tinkerers. After installing a few must-have plugins, even the most expert
MT user will find it difficult to determine where Six Apart ends and the plugin developers
begin.

The jerk throttle demonstrates how a plugin can jump into the middle of an action. After a
weblog user submits a comment and before it becomes a part of a weblog, a Perl script can
make decisions about what to do with it.

Greater capabilities are made possible through hooks into the software’s browser interface.

17_57499x ch11.qxd  6/17/05  8:03 PM  Page 213

TEAM LinG



17_57499x ch11.qxd  6/17/05  8:03 PM  Page 214

TEAM LinG



Hacking Dynamic
Publishing

Movable Type 3.1 introduced a new layer that enables you to pub-
lish pages dynamically instead of the traditional static publishing
for which the software has become identified.

The new layer has been implemented with PHP, a popular programming
language for web applications that has widespread support on several oper-
ating systems.

This chapter explores the new dynamic publishing architecture and how to
use it to the fullest extent.

Dynamic Publishing Architecture
The first thing to understand is the architecture behind it all. In terms of
PHP scripts, the following shows the order of invocation from request to
response:

1. HTTP request

2. .htaccess rule/error document

3. mtview.php

4. MT class (MT.php)

5. MTViewer class, aka Smarty (MTViewer.php)

6. PHP

7. HTTP response with output

An examination of each stage of this process follows:

1. Requests are sent to the web server from a client (usually
a web browser or an RSS/Atom client such as a news-
reader). The web server attempts to resolve the request.
If it can resolve the request to a physical file, it returns
the appropriate file. This allows for a mix of static and
dynamic publishing.

˛ Dynamic publishing
architecture

˛ Hacking dynamic
templates

˛ Hacking dynamic
plugins

chapter

in this chapter

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 215

TEAM LinG



216 Part IV — Hacking with Plugins

2. If the request cannot be resolved by the web server, it will adjust the request according
to the active rules (.htaccess for Apache, error documents for Microsoft Internet
Information Server [IIS]). The default .htaccess rule set for dynamic publishing
basically instructs Apache to forward any request that cannot be resolved to a physical
file or directory to the mtview.php script. The error document approach on IIS
accomplishes the same thing (although less gracefully because it only logs requests of
mtview.php to the log file instead of the original request).

3. If the rules point the web server to use the mtview.php script for the weblog, the
request is passed to it for handling. When Apache does this, it sets the original request
in a server variable named REQUEST_URI. IIS simply invokes the mtview.php script,
sending the original URL as a query parameter.

4. The mtview.php script loads the primary MT class, which is responsible for the bulk
of the URL resolution logic. The URL is resolved and a Smarty object is instantiated to
render the page.

5. The MTViewer/Smarty object created in Step 4 is given the data it needs to build the
page. Initially, this is just the active weblog ID, perhaps a start and end timestamp, and
what archive type is being used (if any). The template is loaded for the active request
and processed. If the template has not already been compiled by Smarty into native
PHP code, this is done next (and the result of the template compilation is stored in the
templates_c directory).

6. Smarty loads the compiled template (a PHP script) and executes it.

7. As the template is executed, the output is sent back to the client.

If any error occurs in this process, the MT Dynamic Pages Error Template is used to relay the
error to the end user.

Smarty is a template publishing system for PHP that forms the foundation of Movable Type’s
dynamic rendering capabilities. Copious documentation and how-to tutorials can be read on
Smarty’s web site, http://smarty.php.net. You can supplement MT’s template-driven fea-
tures by working directly with Smarty, as you’ll discover later in this chapter.

mtview.php
mtview.php is the primary script for invoking the PHP publishing engine. When you run
the mtview.php script, it simply does the following (within these examples, ‘MT_DIR’ is a
placeholder for the actual path to the Movable Type directory; please substitute this with the
Movable Type directory on your server):

$mt = new MT(1, ‘MT_DIR/mt.cfg’); # your blog id here
$mt->view();

The view method takes the default course of action, which is to determine the active request
and attempt to serve it based on locating the URL in the Movable Type database.

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 216

TEAM LinG



217Chapter 12 — Hacking Dynamic Publishing

The MT Class
Now, what is available in the MT class piece of the puzzle? Here are the primary methods it
provides:

� init_plugins() — Configures for available plugins

� context() — Retrieves Smarty instance (actually an MT-flavored subclass of Smarty)

� db() — Retrieves the database instance

� configure() — Loads the MT configuration file

� configure_paths() — Establishes MT path locations

� view() — Mainline for dynamic publishing

� resolve_url() — Returns database records for a given URL

� display() — Utility function that displays a particular Smarty template

� fetch() — Utility function that returns output of a particular Smarty template

� error_handler() — Custom error handling method

� doConditionalGet() — Handles conditional GET operations

The nice thing about the MT class is that it is, in fact, a class. This means you can customize it,
so if you don’t like the way it does particular things, you can change it to your liking. Or, if you
don’t want to delve that deeply, you can do certain things from the calling script (mtview.php)
to customize what happens between the request and serving the output.

The MTDatabase Classes
The database access layer for MT/PHP is the biggest departure from the MT/Perl
architecture. It is very simple by comparison. We are utilizing the ezSQL package as the base
class because it provides an abstraction layer between different database vendors (MySQL,
PostgreSQL, SQLite). But instead of having separate objects for each table in the MT
database, we are simply retrieving PHP arrays (hashes of data). Therefore, there is no “load”
method at the table level for retrieving entries or other types of data. Instead, there is a method
in the database class itself for fetching each type of data. This simplification was made to save
precious milliseconds of CPU time, because in dynamic publishing, every millisecond counts.

There is an MTDatabaseBase class that is sort of an abstract class. The vendor-specific
subclass is what is actually instantiated. Those classes are MTDatabase_mysql,
MTDatabase_postgres, and MTDatabase_sqlite (the MySQL class is the only one
that is functional at this time). The vendor-specific classes override or implement base class
methods where there are vendor-specific differences in the SQL query syntax.

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 217

TEAM LinG



218 Part IV — Hacking with Plugins

Here are some of the methods available in the database class (the MTDatabaseBase inherits
from the ezSQL class):

� resolve_url() — Returns relevant contextual data necessary to serve a given URL.

� load_index_template() — Fetches mt_template data for a particular index
template.

� load_special_template() — Fetches mt_template data for a particular class
of template.

� get_template_text() — Returns the template source for a particular named
template.

� get_archive_list() — This is a workhorse function for the
<MTArchiveList> tag.

� archive_link() — Returns the URL for a given timestamp and archive type.

� fetch_blog() — Returns an individual blog record for the given blog ID.

� blog_entry_count() — Returns the number of entries for a given blog ID.

� fetch_entry() — Returns an individual entry record for the given entry ID.

� fetch_entries() — Returns an array of entry records that match the requested
criteria.

� entry_link() — Returns the URL for a given entry ID and archive type.

� entry_comment_count() — Returns the number of comments for a given entry ID.

� entry_ping_count() — Returns the number of pings for a given entry ID.

� fetch_category() — Returns an individual category record for the given
category ID.

� fetch_categories() — Returns an array of category records that match the
requested criteria.

� category_link() — Returns the URL for a given category ID.

� fetch_author() — Returns an individual author record for the given author ID.

� fetch_comments() — Returns an array of comment records that match the
requested criteria.

� fetch_pings() — Returns an array of ping records that match the requested criteria.

The fetch methods in the preceding list attempt to cache as much as possible. For example, if
multiple entry records are fetched with fetch_entries, it will precache the comments and
pings for those entries (doing a single select statement for all entry IDs rather than a sepa-
rate query for each entry). In some cases, this gathers more data than necessary, but in most
cases, it saves on execution time.

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 218

TEAM LinG



219Chapter 12 — Hacking Dynamic Publishing

The MTViewer Class
The last major piece to cover is the MTViewer class. This class is a descendant of the Smarty
class and has the following methods (inherited from the Smarty class):

� add_global_filter() — Registers a global filter, just as you would do with
MT/Perl.

� error() — Triggers an error during runtime.

� this_tag() — Within plugin routines, this returns the active MT tag name.

� stash() — Much like the MT stash method, this lets you place/retrieve data on
the stash.

� localize() — Saves the state of a list of elements that are in the stash.

� restore() — Restores the state of a list of previously localized stash elements.

� tag() — Invokes an MT tag handler and returns the result.

In addition to the preceding methods, this class also customizes the way templates are pro-
cessed. It declares a custom Smarty prefilter called mt_to_smarty, which takes care of trans-
lating MT templates into Smarty-compatible syntax.

Customizing mtview.php
As previously mentioned, the main MT class is an object, so it lends itself to customization if
you require it. For example, you may want to override the resolve_url method to have it try
alternative search methods to find an entry based on the request. A little adjustment to the
mtview.php script would be in order:

<?php
include(“MT_DIR/php/mt.php”);
class MyMT extends MT {

function &resolve_url($path) {
$data =& parent::resolve_url($path);
if (!$data) {

# now try harder!
$data =& $this->fuzzy_resolve_url($path);

}
return $data;

}
function &fuzzy_resolve_url($path) {

# fuzzy logic to locate a given $path follows...
}

}

$mt = new MyMT(1, “MT_DIR/mt.cfg”); # use OUR MT class
$mt->view();
?>

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 219

TEAM LinG



220 Part IV — Hacking with Plugins

And consider this PHP snippet:

<?php
include_once(“MT_DIR/php/mt.php”);
$mt = new MT(10); # blog id 10 is my ‘linkblog’
$ctx =& $mt->context();
$ctx->caching = 2; # each cache file has its own lifetime
$ctx->cache_lifetime = 60 * 30; # cache for 30 minutes
$output = $mt->fetch(“mt:My Linkblog”);
echo $output;

?>

Here we have invoked the MT dynamic publishing engine to render a specific index template
(“My Linkblog” — the “mt:” prefix causes it to be pulled from the database. Smarty also
provides a “file:” prefix that is the default resource type if you want to load templates from
the file system), causing the output to be cached for up to 1,800 seconds (30 minutes). This can
be done from any PHP script. You could publish your entire site statically and still pull a por-
tion of MT data this way using the PHP engine.

Within dynamic templates, you have convenient access to your data. Having a full scripting
language at your disposal may alleviate the need to create MT-specific plugins. You could just
use the wealth of functions available through PHP itself or other PHP libraries/modules that
already exist. The following example illustrates how you can access your MT content directly
from PHP, manipulate it, and then output it in whatever manner you choose:

<MTEntries lastn=”10”>
<MTEntriesHeader><ul></MTEntriesHeader>
<?php
$title = $this->tag(‘MTEntryTitle’);
$raw_body = $this->tag(‘MTEntryBody’,

array(‘convert_breaks’ => ‘0’));
$raw_body = preg_replace(‘/[^A-Za-z0-9\s]/’, ‘’,

strip_tags($raw_body));
$raw_words = preg_split(‘/\s+/’, $raw_body);
echo “<li>” . $title . “ (approx. word count: “ .

count($raw_words).”)</li>”;
?>
<MTEntriesFooter></ul></MTEntriesFooter>
</MTEntries>

Using MT Tags in PHP
One shortcoming (at least for now) is that you cannot mix MT tags inside PHP code blocks.
This is possible in a static publishing model, but with dynamic publishing, the MT tags are
translated into PHP code. Therefore, putting an MT tag within a PHP code block will cause
the template-to-PHP translation to output a PHP open tag within another PHP block, which
would result in a syntax error. Therefore, the preceding tag method is the recommended way to
invoke tags within PHP code blocks.

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 220

TEAM LinG



221Chapter 12 — Hacking Dynamic Publishing

With the Smarty framework, there are even more ways to customize the rendering of your
page. Another feature available through Smarty is the output filter. An output filter is some-
thing that runs after the template has been executed. If, for example, you want to apply a text
filtering process over your entire page (not just individual entry text), you can load an output
filter to do that.

I created a file in my PHP plugins directory named outputfilter.smartypants.php
with this in it:

<?php
include_once(“smartypants.php”);
function smarty_outputfilter_smartypants($text, &$ctx) {

return SmartyPants($text);
}
?>

Then, within my mtview.php script, I simply load the filter:

# put this above the $mt->view() step...
$ctx =& $mt->context();
$ctx->load_filter(‘output’, ‘smartypants’);

Now I get educated quotes for the entire web page, rather than just the MT content.
Fortunately, the SmartyPants parser gracefully ignores HTML, scripts, and so forth.

Smarty Templating Works Too
Because we’re using Smarty as the underlying engine to process our templates, you can actually
use the full Smarty template syntax if you prefer. You can even mix Smarty template code and
MT template syntax together (the default delimiters for Smarty are changed from { and } to {{
and }} because the single brace delimiters cause problems if you have JavaScript within your
template). You can invoke PHP script as well.

For example, Smarty has a neat little function tag called cycle that enables you to cycle
through a list of values. Each time cycle is used within a loop, it will output the next one in
the set. Here’s how you might use it:

<MTEntries>
<tr bgcolor=”{{cycle values=”#eeeeee,#d0d0d0”}}”>
<td><$MTEntryTitle$></td>

</tr>
</MTEntries>

This would alternate the background color of the rows of the table for each entry output.

I encourage you to read the excellent documentation available for Smarty to discover every-
thing that is at your disposal.

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 221

TEAM LinG



222 Part IV — Hacking with Plugins

Hacking Dynamic Templates
Templates that are dynamically published are far more flexible than their static counterparts. In
addition to being able to use the basic MT tags, you can do the following:

� Use any MT tags available from any MT/PHP plugins installed.

� Use <?php ... ?> blocks to invoke native PHP code.

� Use Smarty template code (when using {{ and }} to delimit the Smarty template code).

In fact, it is possible to write your Movable Type dynamic templates using only Smarty tem-
plate syntax. For example, say you have a MT tag written like this:

<$MTBlogName$>

The Smarty way to write that follows:

{{MTBlogName}}

If you have a container tag, such as

<MTEntries lastn=”10”>
<p><$MTEntryTitle$></p>
<$MTEntryBody$>
</MTEntries>

you would write it in Smarty template form like this:

{{MTEntries lastn=”10”}}
<p>{{MTEntryTitle}}</p>
{{MTEntryBody}}
{{/MTEntries}}

As you can see, the differences are fairly minimal. You can mix and match the syntax as well:

<MTEntries lastn=”10”>
<div class=”{{cycle values=”odd,even”}}”>
<p><$MTEntryTitle$></p>
{{MTEntryBody}}
</div>
</MTEntries>

You can also refer to variables directly. For example, when processing entries, the current entry
is assigned into Smarty’s variable namespace as entry. Here is how you would refer to the title
from the active entry:

{{$entry.entry_title}}

All the fields associated with the entry can be referenced like this. Note that the values you get
this way are completely unprocessed — they contain the raw data taken directly from the
database.

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 222

TEAM LinG



223Chapter 12 — Hacking Dynamic Publishing

You can manipulate these variables using the variable modifiers Smarty provides:

{{$entry.entry_created_on|date_format:”%A, %B %e, %Y”}}

And there are some useful modifiers for counting things:

Paragraphs: {{$entry.entry_text|strip_tags|count_paragraphs}}

In MT template syntax, it would be as follows:

Paragraphs: <$MTEntryBody count_paragraphs=”1”$>

You can even use regular expressions without having to install any additional plugins. The fol-
lowing will replace all tabs and newline characters with a space:

{{$entry.entry_text|regex_replace=”/[\r\t\n]/”:” “}}

You can do the same thing using MT template syntax (the “:” separator for multiple attribute
values is only valid syntax for dynamic templates currently):

<$MTEntryBody regex_replace=”/[\r\t\n]/”:” “$>

One thing you can’t do is embed PHP code into an MT tag and expect it to work. This syntax
is currently unsupported:

<MTEntries lastn=”<?php echo $limit ?>”>

Instead, you would place a regular PHP variable into the Smarty variable stash where it can be
accessed by Smarty tags:

<?php
$this->stash(‘limit’, $limit);
?>
<MTEntries lastn=”`$limit`”>

The following is also unsupported:

<?php
$title = ‘<$MTEntryTitle encode_php=”1”$>’;
/* do something with $title, like transform it into an image */
?>

The second example is something that works in a static publishing world, where the MT tags
are evaluated first and then PHP is processed later. However, with dynamic publishing, the
MT tags are translated into PHP code. Therefore, the previous example would produce some-
thing like this:

<?php
$title = ‘<?php /* code to execute the MTEntryTitle tag */ ?>’;
?>

Instead, you should use the tag method of the Smarty variable:

<?php
$title = $this->tag(‘MTEntryTitle’);
?>

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 223

TEAM LinG



224 Part IV — Hacking with Plugins

Dynamically Paging Entries
With a static publishing model, it’s difficult to get paged views of your content. With a
dynamic model, it becomes very easy. Let’s look at how to adjust a Movable Type index tem-
plate to view 10 entries at a time.

The goal is to display the last 10 entries from the weblog by default, but also provide links to
navigate backward and forward by 10 more entries. These hyperlinks should display or hide
themselves depending on the situation.

First, we should decide on a navigation scheme. Let’s use a query parameter to identify the
offset to be used when fetching the entries to display. If the offset parameter isn’t provided,
the last 10 entries will display. If an offset of 10 is specified, entries 11–20 will be shown, and
so forth.

Accessing a query parameter from Smarty is quite easy. It is made available in a special Smarty
variable called $smarty.request. To retrieve a specific parameter such as offset, just add
that to the end of the variable name, as shown in the following example:

You requested:  {{$smarty.request.offset}}

Now we want to put that value to work. The goal is to pass it into the <MTEntries> tag,
using it as the offset parameter for that tag. Here is how to do it:

<MTEntries offset=”`$smarty.request.offset`” lastn=”10”>

If the offset parameter isn’t given, it will default to no offset. If it is a non-numeric value, it
will also default to no offset.

Next, we want to display the navigational aids, to enable users to move backward and forward
through the entries:

{{capture assign=”count”}}<$MTBlogEntryCount$>{{/capture}}

{{if $smarty.request.offset > 0}}
<a href=”?offset={{math equation=”max(x-10,0)”
x=$smarty.request.offset}}”>Previous</a>
{{/if}}

{{if $smarty.request.offset < $count-10}}

{{if $smarty.request.offset > 0}}
|
{{/if}}

<a href=”?offset={{$smarty.request.offset+10}}”>Next</a>
{{/if}}

The first statement stores the count of entries in the weblog in a Smarty variable named
count. The next section displays a Previous link if the current offset is 1 or more. That pre-
sents a link with an offset query parameter of the current offset minus 10 entries. It will use
an offset of 0 as a minimum in case the previous offset calculation is less than 0. Next, a Next

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 224

TEAM LinG



225Chapter 12 — Hacking Dynamic Publishing

link is conditionally displayed if the current offset is less than the count of weblog entries
minus 10. This prevents the Next link from being shown if the last entry is already in view.

Now you have a functioning paged view of your weblog content with just a few additional lines
of Smarty code.

Dynamically Paging an Entry
You could use a similar approach to display multiple pages of content for a single entry. If you
create a marker of some kind to serve as a page delimiter, you can use it to break up a single
entry into multiple pages.

Lets make <page> the marker for this example. Create an entry that has multiple pages of
data in the extended entry field, as follows:

This is page one
<page>
This is page two
<page>
This is page three

Now, in your Individual Archive template, you need to add some code that breaks these up and
displays them properly. You also have to create a query parameter to fetch the right page. Use
page as the query parameter.

We’ll use a bit of regex magic to do two things. First, we need to know how many pages are
available for the entry. Second, we want to select out the proper page from the field that con-
tains all of the pages. Add these two lines to the top of the template:

{{capture
assign=”page_count”}}{{$entry.entry_text_more|escape:”javscript”|
regex_replace:”/<page>/”:”\n\n”|count_paragraphs}}{{/capture}}
{{capture
assign=”page_text”}}{{$entry.entry_text_more|regex_replace:”/^
(.*?<page>\s*){`$smarty.request.page-1`}/s”:””|regex_replace:
”/<page>.*$/s”:””|convert_breaks:”1”}}{{/capture}}

If you look closely, you can follow what’s going on here. Two capture tags are being used to
set a couple of variables. The first one is going to calculate the number of pages in the extended
entry text field. It takes the extended text of the entry and converts all of the newline characters
using the escape modifier. Next, all of the <page> markers are replaced with newline charac-
ters and that result is fed to the count_paragraphs modifier to get a count of the pages.
This works because it effectively translates each page into a paragraph.

The second capture tag is going to select out the individual page to be displayed. The first
regex operation deletes the number of pages requested minus 1 from the entry text. It then
deletes any page markers and content from what is left. Then it runs the text through the
convert_breaks text filter and formats the text into HTML. Finally, the result is stored
in the Smarty variable “page_text”.

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 225

TEAM LinG



226 Part IV — Hacking with Plugins

We should now alter the main entry text so that it is only displayed on page 1. Here’s a bit of
logic to handle that. Replace the <$MTEntryBody$> tag in your template with the following:

{{if $smarty.request.page <= 1}}
<$MTEntryBody$>
{{else}}
<p>
<em>(continued from <a href=”?page={{$smarty.request.page-
1}}”>page {{$smarty.request.page-1}}</a>)</em>
</p>
{{/if}}

This will display the <$MTEntryBody$> tag for the first page; and for the others, it will show
some text to give users some context as to the page they’re looking at.

Finally, we’ll display a row of page navigation so users can get to the other pages available. The
following should replace the <$MTEntryMore$> tag:

{{$page_text}}

{{if $page_count > 1}}

<div>
{{section name=i loop=$page_count}}
{{if ($smarty.request.page > 0 || $smarty.section.i.iteration > 1)
&& $smarty.section.i.iteration != $smarty.request.page}}
<a href=”?page={{$smarty.section.i.iteration}}”>page
{{$smarty.section.i.iteration}}</a>
{{else}}
page {{$smarty.section.i.iteration}}
{{/if}}
{{/section}}
</div>

{{/if}}

You should now have an easy solution for composing and displaying multi-paged entries.

Creating Web Applications with Smarty
With PHP and Smarty under the hood, there’s not much you can’t do. You also have a live
connection to the database that holds your Movable Type data. You could add some custom
tables to that database and draw data from them for your templates, as shown in the following
example:

<?php
$blog = $this->stash(‘blog’);
# assign a selection of rows to the smarty ‘rows’ variable
$this->stash(‘rows’, $this->mt->db->get_results(‘select distinct
comment_url from mt_comment where comment_blog_id=’ .
$blog[‘blog_id’], ARRAY_A));
?>

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 226

TEAM LinG



227Chapter 12 — Hacking Dynamic Publishing

{{section name=row loop=$rows}}
URL:  {{$rows[row].comment_url}}
{{/section}}

In this example, we’re selecting all of the unique URLs from the comments table and display-
ing them in the order returned. You could just as easily select all of the comments that match a
particular URL.

Writing to the Database
The MT dynamic publishing framework currently only reads data from the MT database.
However, it is also possible to write back to the database. For example, you might update a
counter on the entry currently being viewed to help identify which of your entries are more
popular. To do this, a new field is required in the mt_entry table. We’ll call it entry_dyn_
view_count. To add it, execute the following SQL command on your MySQL database 
(this command will not affect MT’s operation):

alter table mt_entry add entry_dyn_view_count integer default 0

Now you will need to update this field whenever a specific entry is viewed. A good place to do
that is on your Individual Entry Archive template (or templates). You just need to execute a
single statement to increment the counter for that entry:

<?php
$entry = $this->stash(‘entry’);
$this->mt->db->query(“update mt_entry

set entry_dyn_view_count = entry_dyn_view_count + 1
where entry_id = “ . $entry[‘entry_id’]);

?>

You can also refer to this value in your Individual Entry Archive template so you can reveal
how many hits it has accumulated:

Number of views:  {{$entry.entry_dyn_view_count}}

Hacking Dynamic Plugins
Just as there is a Perl API available for developing Movable Type plugins in Perl, the dynamic
side of Movable Type provides a PHP API for creating custom plugins. This section delves
into how to create plugins using that API.

Use the Source, Luke!
To get you started, a whole host of MT tags have been ported from Perl to PHP. These would
be the core MT tag set. Both the Perl and PHP source is available with the 3.1 (and later) dis-
tribution, so that should give you a good feel for how to do a number of different types of tags.
If you’re comfortable with how the Perl API works, you can compare the Perl and PHP imple-
mentations for standard MT tags that are similar to your own and see how the Perl code was
translated to work for PHP.

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 227

TEAM LinG



228 Part IV — Hacking with Plugins

In creating the PHP implementation, we tried to preserve some concepts from the MT/Perl
API. However, some things are drastically different and/or simplified, partly due to the Smarty
integration and partly due to the nature of dynamic publishing — execution speed overrides
everything else.

One thing that will be immediately noticeable is that the PHP API has a much simpler
object model. In fact, there are just a handful of classes compared to the Perl implementation.
For example, instead of having classes defined for each table, we simply use a PHP array to
hold data.

Speed, Speed, Speed
Speed is critical to dynamic publishing, so it is very important that your plugin execute effi-
ciently. Every tag used on a dynamic template will take some time to execute. If your plugin
uses even 1 second of time, that will be very noticeable to someone browsing that page. And if
20 people are viewing it at once, chances are good it will take even longer per person for that
page to render. This is the cost of dynamic publishing.

Creating Custom Tags
Let’s start by looking at what you need to do to create a plain custom tag. In Smarty-speak,
these are called function tags:

1. Create a PHP script named function.MTMyTag.php.

2. Within that script, define a PHP function named smarty_function_MTMyTag.

That’s it! The file-naming convention is a requirement of Smarty. This is done so that Smarty
can locate and load the appropriate source code at runtime to invoke the tags necessary for a
given page. Unlike MT, where each individual plugin file is processed and loaded, Smarty only
loads the PHP scripts that will be necessary to execute a given template. Ultimately, this winds
up being a more efficient approach and a good technique to follow for the dynamic publishing
model.

The Obligatory “Hello, World” Tag
Let’s say you want to create a template tag that offers a greeting. Let’s call it MTHello. The
first step would be to create a PHP script named function.MTHello.php. This script
would be stored in the MT_DIR/php/plugins directory (substituting your MT installation
path for MT_DIR, of course).

Within the file, you would define the following function:

<?php
function smarty_function_MTHello($args, &$ctx) {

return “Hello, World!”;
}
?> 

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 228

TEAM LinG



229Chapter 12 — Hacking Dynamic Publishing

This is the simplest of all tags. It merely returns a string. We can do better with the following:

<?php
function smarty_function_MTHello($args, &$ctx) {

$name = $args[‘name’] or ‘World’;
return “Hello, $name!”;

}
?> 

We can now accept a name attribute with the MTHello tag. It would be used like this:

With name attribute: <$MTHello name=”Visitor”$>
Without name attribute: <$MTHello$>

Producing:

With name attribute: Hello, Visitor!
Without name attribute: Hello, World!

But we can do even better. If the user has signed in using TypeKey, we should be able to per-
sonally greet her with the following:

<?php
function smarty_function_MTHello($args, &$ctx) {

$name = $_COOKIE[‘commenter_name’] or $args[‘name’] or
‘World’;

return “Hello, $name!”;
}
?> 

Now, if I am logged in, the preceding template code would produce the following:

Hello, Brad Choate!

Creating Container Tags
Let’s look at what you do to create a custom container tag. We’ll also create a related custom
tag that is to be used within the container tag. Container tags are called block tags in the
Smarty vocabulary.

The container tags work quite differently in PHP compared to the Perl approach. This is due
to the nature of how the block functions are called from the compiled templates. Some pseu-
docode is in order to illustrate the process. Consider this template:

<MTMyContainerTag>
I’m content being contained.

</MTMyContainerTag>

The preceding template would be compiled into something like the following. (This is similar
to what Smarty would produce when compiling the preceding template. This is not code that
you or a user has to create by any means. I’ve just added comments and spacing to make it
more readable.)

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 229

TEAM LinG



230 Part IV — Hacking with Plugins

<?php
# push the active tag onto the tag stack
# (and any attributes it uses)...
$this->_tag_stack[] = array(‘MTMyContainerTag’, array());

# call the block function once to do the initialization
# step. it could set the $repeat parameter to false to
# prevent *any* output.
smarty_block_MTMyContainerTag(

$this->_tag_stack[count($this->_tag_stack)-1][1],
null,
$this,
$_block_repeat = true);

# start a loop that ends once the $repeat parameter is
# set to false (which it is by default-- the container
# tag handler must explicitly set it to true to continue
# looping)
while ($_block_repeat) {

# start output buffering since mixed php/plain text
# usually follows...
ob_start();

# the stuff within the container tag comes next:
?>

I’m content being contained.

<?php
# now grab the buffered content and store it so
# we can pass it back to the container tag handler:
$this->_block_content = ob_get_contents();
ob_end_clean();

# echo out whatever the container tag returns as
# the result...
echo smarty_block_MTMyContainerTag(

$this->_tag_stack[count($this->_tag_stack)-1][1],
$this->_block_content,
$_block_repeat = false);

}

# our loop is complete; remove the tag from the stack
array_pop($this->_tag_stack);

?> 

This should help you see what is taking place when the actual block function is being called
and how the block function can control the while loop it lives within. The form of the
actual block handler looks like this:

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 230

TEAM LinG



231Chapter 12 — Hacking Dynamic Publishing

<?php
function smarty_block_MTMyContainerTag($args, $content, &$ctx,
&$repeat) {

$localvars = array(‘one’, ‘two’, ‘three’);
if (!isset($content)) {

# initialization and setup...
$ctx->localize($localvars);

} else {
# code that executes iteratively while $repeat == true
# optionally set $repeat to true to loop
# manipulate the data in $content if so desired

}
if (!$repeat)

$ctx->restore($localvars);
return $content;

}
?>

Compare the compiled template shown previously with the code for the block handler and you
will start to see the relationship between them. In the compiled template on line 8, the block
handler is called and winds up executing the section of code on line 5 (“initialization and
setup”). Because this happens outside the loop, it’s a good place to do any database fetch opera-
tions that determine whether or not the loop should execute. You can take advantage of the
$ctx->stash() method to store any data you want to maintain or make available for any
contained custom tags.

Preserving Stash Elements
Because PHP doesn’t have a local statement like Perl does, a pair of routines have been
created to provide the same function. The $ctx->localize() method receives an array
of named stash elements whose values are to be saved for later restoration using the 
$ctx->restore() method. It is important to pair these properly whenever they are used.

Traditional Container Tags
Now that you understand how container tags operate and are coded, let’s look at a real
example:

<?php
function smarty_block_MTMySuckyTag($args, $content, &$ctx,

&$repeat) {
$localvars = array(‘myvar’);
if (!isset($content)) {

$ctx->localize($localvars);
$ctx->stash(‘myvar’, $args[‘string’]);

} else {
$myvar = $ctx->stash(‘myvar’);
if (strlen($myvar) > 0) {

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 231

TEAM LinG



232 Part IV — Hacking with Plugins

$repeat = true;
$myvar = substr($myvar, 0, strlen($some_var)-1);
$ctx->stash(‘myvar’, $myvar);

}
}
if (!$repeat)

$ctx->restore($localvars);
return $content;

}
?> 

Then, to complement this wonder block tag, is a tag to output the value of ‘myvar’:

<?php
function smarty_function_MTMySuckyVar($args, &$ctx) {

return $ctx->stash(‘myvar’);
}
?> 

Then, using these tags like this

<MTMySuckyTag string=”Testing”>
<$MTMySuckyVar$>

</MTMySuckyTag>

would produce the following:

Testing
Testin
Testi
Test
Tes
Te
T

Conditional Container Tags
Conditional tags operate a little differently. The <MTElse> tag is the issue here. We need a
way to process that tag effectively:

<?php
function smarty_block_MTIfRandom($args, $content, &$ctx,

&$repeat) {
if (!isset($content)) {

$condition = rand(0, 1);
return $ctx->_hdlr_if($args, $content, $ctx, $repeat,

$condition);
} else {

return $ctx->_hdlr_if($args, $content, $ctx, $repeat);
}

}
?> 

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 232

TEAM LinG



233Chapter 12 — Hacking Dynamic Publishing

Then, you can use the conditional tag like this:

<MTIfRandom>
You got this message by chance.

</MTIfRandom>

Or you can use the <MTElse> tag to complement it:

<MTIfRandom>
You’re a winner!

<MTElse>
You’re a loser!

</MTElse>
</MTIfRandom>

Global Filter Plugins
Global filters are called modifiers in Smarty. They are very easy to create. Their filename 
prefix is “modifier,” so an example of a modifier plugin filename would be “modifier.my_
modifier.php”:

<?php
function smarty_modifier_my_modifier($text, $attr = null) {

# do something with $text
$text = strtoupper($text);
return $text;

}
?> 

If you have a third-party module you want to use, just use the include_once PHP statement
to include the library and then call the text-processing routine in the modifier function, return-
ing the result.

Initialization Plugins
Initialization plugins are also supported. These have an “init” prefix for plugin scripts. With
MT/Perl, all .pl plugin files in the plugins directory are loaded at startup. Initialization 
scripts are the counterpart to that mechanism. To take advantage of this, you will need to name
your script so that it has an “init.” prefix and a “.php” suffix. Any files in the MT_DIR/php/
plugins directory will be processed by the $ctx->init_plugins() method before the
request is processed. The script is simply loaded with a PHP include statement.

Instructing the Template Compiler
The process that translates MT templates into Smarty templates requires some hints about
particular tags and attributes in order to do that translation properly. In particular, conditional-
style tags (any tags that are used in combination with the <MTElse> tag) are treated differ-
ently. Tags that have “If” in their name are recognized as such, but those that do not (such as
<MTEntriesHeader>) must be declared as a conditional tag. In addition, global filters

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 233

TEAM LinG



234 Part IV — Hacking with Plugins

(Smarty modifiers) have to be declared so they are not processed as parameters to the tag han-
dlers (however, these will be recognized automatically because they can be discovered by scan-
ning for files that have a “modifier” prefix in the plugins directory).

Finally, if you have a tag that recursively calls itself (the <$MTSubCatsRecurse$> tag fits
this category), that has to be known as well. If your plugin has a tag or tags that need to be
declared, you should write an init.myplugin.php script to do that, as shown in the follow-
ing example:

<?php
global $mt;
# This retrieves the Smarty instance we use to
# declare our template compilation hints...
$ctx =& $mt->context();

# Declares a conditional tag that doesn’t have “If”
# already in the tag name.
$ctx->add_conditional_tag(‘MTMyConditionalTag’);

# Declares a tag that requires a “token” function.
$ctx->add_token_tag(‘MTMyTokenTag’);
?>

Summary
The PHP side of Movable Type provides a powerful way to build dynamic websites from your
Movable Type database, and having the capability to mix static and dynamic publishing puts
the power of both Perl and PHP at your command.

18_57499x ch12.qxd  6/17/05  8:09 PM  Page 234

TEAM LinG



Hacking Powerful
Blog Applications
Together

Chapter 13
Photo Blogs

Chapter 14
Linklogs

Chapter 15
Blogroll

Chapter 16
Events, Reminders, 
To-Dos

Chapter 17
Polls

Chapter 18
LazyWeb

Chapter 19
Creating a Community-
Authored Web Site

part

in this part

18_57499x pt05.qxd  6/17/05  8:08 PM  Page 235

TEAM LinG



18_57499x pt05.qxd  6/17/05  8:08 PM  Page 236

TEAM LinG



Photo Blogs

Just as weblogs make it easy to post your writing online for the entire
world to see, photo blogs help photographers share their images with
an online audience.

Photo blogs rely on easy-to-use software such as Movable Type (MT) and
the proliferation of high-quality, inexpensive digital cameras. Currently,
however, only a few services are specially made for creating and maintaining
photo blogs and they don’t offer much flexibility or customizability.

With MT’s template-driven publishing system, you can build a powerful
photo blog manager that is custom tailored to exactly how you want your
photos to be shown. Along with MT’s plugin system, you will be able to
produce thumbnails, send photos from your phone, and display photo infor-
mation in ways no other photo hosting service provides.

While MT was originally designed for text with an occasional image, photo
blogs are typically image driven, with a little bit of text. You should set up
your photo blog based on its use and how you want the output to display.
Most photo blogs are MT blogs that stick to individual entry archives, with
an index page showing the most recent photo entry. Using the built-in tools
that MT provides, you’ll be able to upload photos directly from MT, and
post on the go just as if you were writing.

Creating a Simple Photo Blog
When you create a photo blog, it’s important to plan how you want the out-
put to look and behave.

Planning
If you’ve already got a standard weblog that features text and links and want
to add a companion photo blog, there are several ways to do that. You might
want to display just the latest photo along the side of your weblog, with a
link to the full-sized image. You might want to list the past five photo titles
with links to view them. Or, you might want to do something ingenious like
have the header of your weblog be your latest photo of the day. All of these
options will require tweaking the Main Index (or a custom index you cre-
ate). If you want to start a new standalone photo blog, how you want to dis-
play photos, indexes, and archives will also determine how you go about
creating templates.

˛ Creating a photo
blog

˛ Linking to photo
archives

˛ Presenting
embedded photos

˛ Publishing photos
from phones

˛ Presenting
descriptive
information stored
in photos

chapter

in this chapter

19_57499x ch13.qxd  6/17/05  8:12 PM  Page 237

TEAM LinG



238 Part V — Hacking Powerful Blog Applications Together

Another important point to think about up front is how you will organize your photos. Photo
management software (both online and on your desktop) typically offers some options to orga-
nize your photos into galleries. Because Movable Type isn’t a photo manager per se, by organiz-
ing your photos into a MT weblog, you are essentially creating a single gallery, with each entry
being part of the gallery. This is worth noting because many photographers are accustomed to
having several galleries arranged around locations, time periods, and/or subject matter, and the
typical way MT is used for photo blogs is to limit items to one big gallery.

Although MT version 3.1 doesn’t offer specific photo management capabilities out of the box,
it is worth noting that the Movable Type hosting service Typepad currently offers photo gal-
leries that add a variety of upload tools and template output in addition to multiple galleries.
These galleries appear to be separate weblogs in a programmatic sense, so every new gallery in
Typepad is a streamlined process of creating a new blog. The layout and output of Typepad
photo galleries can certainly be reproduced with MT and a couple of plugins described in this
chapter. Future versions of MT may include photo gallery functionality, but for now these sim-
ple hacks will help you create the ultimate photo blog.

Setting Up an Example Photo Blog
Imagine you’d like to create a photo blog that displays the most recent photo on the index page,
with individual archives. To make things simple, limit your photo blog to navigation by Next
and Back links. For now, there will not be an archives page listing every photo; visitors will
have to page through photos one by one, from the most recent to the oldest.

Your Index template will be fairly simple to set up. Listing 13-1 shows the code that would
be used.

Listing 13-1: Index Template

<MTEntries lastn=”1”>
<$MTEntryTrackbackData$>
<a name=”<$MTEntryID pad=”1”$>”></a>

<h1><$MTEntryTitle$></h1>

<h2><$MTEntryDate format=”%x”$></h2>

<$MTEntryBody$>

<p>Posted by <$MTEntryAuthor$> at <a
href=”<$MTEntryPermalink$>”><$MTEntryDate format=”%X”$></a></p>

</MTEntries>

<MTEntryPrevious>
<a href=”<$MTEntryPermalink$>”>&laquo; <$MTEntryTitle$></a> |
</MTEntryPrevious>

19_57499x ch13.qxd  6/17/05  8:12 PM  Page 238

TEAM LinG



239Chapter 13 — Photo Blogs

Your Individual Entry Archive will look fairly similar to what is shown in Listing 13-2.

Listing 13-2: Individual Entry Archive Template

<p><MTEntryPrevious>
<a href=”<$MTEntryPermalink$>”>&laquo; <$MTEntryTitle$></a> |
</MTEntryPrevious>
<a href=”<$MTBlogURL$>”>Main</a>
<MTEntryNext>
| <a href=”<$MTEntryPermalink$>”><$MTEntryTitle$> &raquo;</a>
</MTEntryNext></p>

<h1><$MTEntryTitle$></h1>

<h2><$MTEntryDate format=”%x”$></h2>

<$MTEntryBody$>

<p>Posted by <$MTEntryAuthor$> at <$MTEntryDate$></p>

If you’ve got MT installed on your server along with the ImageMagick Perl module, you can
use MT’s existing feature set to add new entries to your photo blog. The Upload File option in
the main administration navigation can be used for adding a new photo, and if you choose the
Embedded Image option and create a new post, MT will write the image display code for you.

Managing Photos
You can either embed image tags (for uploaded, uniquely named images) within posts using
MT’s upload file menu shortcut, use a separate, unused field for tracking images, or use the
filesystem to manage your photos.

The first method is easiest, but aside from making blog posts containing photos, reusing pho-
tos once they are coded into posts is difficult to do.

Although you would limit your blog to exactly one photo per post, using a separate field would
enable you to call up that image to do other things or use it in other ways (as you will see in the
next section).

If you’d like to build a daily photo blog, you can name your images ahead of time, based on the
date, and then upload those before making new posts, though this limits you to one photo
posted per day.

Both the unused field method and the date/filesystem naming method enable you to predict
what an image URL will be for each post, letting you create various templates based on it.

19_57499x ch13.qxd  6/17/05  8:12 PM  Page 239

TEAM LinG



240 Part V — Hacking Powerful Blog Applications Together

Using EmbedImage to Hack Images
MT uses the ImageMagick module to determine the height and width of uploaded images and
perform some rudimentary thumbnailing, but ImageMagick is capable of much more in terms
of photo manipulation functionality. The MT plugin EmbedImage exploits some of the image
manipulation features in ImageMagick and builds upon what MT ships with.

Among the features available to your MT templates, EmbedImage enables you to figure out
the file properties and dimensions of the original image and enables the creation of thumbnail
images (and provides all the file properties and dimensions of those too). As an example, we’ll
create an archive template for an example photo blog that uses the date to name images. MT
EmbedImage is available for download at http://bradchoate.com/weblog/2002/08/
07/mtembedimage.

After installing the plugin contents into your /plugins/ and /extlib/bradchoate/
directories, you will have the following properties available in your MT templates:

� <MTEmbedImageHeight>: Provides the height of the given image in pixels.

� <MTEmbedImageWidth>: Provides the width of the given image in pixels.

� <MTEmbedImageScaleHeight>: Provides the scaled height of the given image in
pixels.

� <MTEmbedImageScaleWidth>: Provides the scaled width of the given image in pixels.

� <MTEmbedImageSize>: Provides the size of the given image.

� <MTEmbedImageFilename>: Provides the filename of the given image.

� <MTEmbedImageFullFilename>: Provides the full filepath and name of the given
image.

� <MTEmbedImageThumbHeight>: Provides the thumbnail image height.

� <MTEmbedImageThumbWidth>: Provides the thumbnail image width.

� <MTEmbedImageThumbSize>: Provides the size of the thumbnail image.

� <MTEmbedImageThumbFilename>: Provides the filename of the thumbnail image.

� <MTEmbedImageThumbFullFilename>: Provides the full filepath and name of the
thumbnail image.

The base tag for this plugin, <MTEmbedImage>, carries the following attributes:

� basename: Defines the prefix of the image you want to embed. If you specify a file
without an extension, EmbedImage will hunt for that file with a .gif, .jpg, or .jpeg exten-
sion (in that order).

� thumbsuffix: Defines the suffix to use for creating a thumbnail version of the image.
This is useful only if the height or width attributes are used as well. MT must have write
access to the directory in which your original image is stored in order to create the
thumbnail image.

19_57499x ch13.qxd  6/17/05  8:12 PM  Page 240

TEAM LinG



241Chapter 13 — Photo Blogs

� height: Enables you to specify an alternate height for the image. If width is unspeci-
fied, the width will be set proportionate to the height you’ve given.

� width: Enables you to specify an alternate width for the image. If height is unspeci-
fied, the height will be set proportionate to the width you’ve given.

� fit: You can specify either crop, scale, or fit (the default is scale). This option is for cre-
ating scaled thumbnails only.

� default: An expression (which can use embedded MT tags, escaped with [ and ]
instead of < and >) that is returned in case the image could not be found.

Suppose you have a photo blog posting daily photos, all named using the YYYYMMDD.jpg
convention and relying on the filesystem to predict image locations. A standard archive might
look something like this:

<MTArchiveList>
<$MTArchiveDate format=”%x”$> <a
href=”<$MTArchiveLink$>”><MTEntries><$MTEntryTitle$></MTEntries>
</a><br />
</MTArchiveList>

This type of archive would produce a list like the one shown in Figure 13-1.

FIGURE 13-1: Presenting links to photo archives

19_57499x ch13.qxd  6/17/05  8:12 PM  Page 241

TEAM LinG



242 Part V — Hacking Powerful Blog Applications Together

Adding MT EmbedImage into the template, you could create a small thumbnail of the daily
photograph at any size you like. If daily images are posted to the /images directory on the
server, the code to add 60px by 60px thumbnails to the archive list would be as follows:

<MTArchiveList>
<MTEmbedImage basename=”images/[MTEntryDate format=’%Y%m%d’].jpg”

height=”60” width=”60” thumbsuffix=”-60”>
<MTEntries lastn=”1”>
<img src=”<MTEmbedImageThumbFilename>”

width=”<MTEmbedImageThumbWidth>”
height=”<MTEmbedImageThumbHeight>”
alt=”<$MTEntryTitle$> | <$MTEntryDate format=’%Y/%m/%d’$>” 
title=”<$MTEntryTitle$> | <$MTEntryDate

format=’%Y/%m/%d’$>” 
hspace=”5” vspace=”5” /></a> <$MTArchiveDate format=”%x”$> <a
href=”<$MTArchiveLink$>”><$MTEntryTitle$></a><br />
</MTEntries></MTEmbedImage>
</MTArchiveList>

The preceding code will look something like the image shown in Figure 13-2.

FIGURE 13-2: Presenting links and thumbnails

Keep a few things in mind here. All MT tags that show up within MT EmbedImage tags are
escaped with [ and ] in place of < and >. In addition, attributes within those escaped MT tags
are set with single quotation marks.

19_57499x ch13.qxd  6/17/05  8:12 PM  Page 242

TEAM LinG



243Chapter 13 — Photo Blogs

When this template is rebuilt, it will create 60px by 60px thumbnails with the suffix -60. This
would mean that the image 20040927.jpg (the daily photo for September 27, 2004) would
have a thumbnail within the images directory called 20040927-60.jpg. Next, that new file-
name is passed to the image tag along with the height and width of the thumbnail image. You
could hardcode 60 and 60 here, but with the code like this, you can adjust the size of thumb-
nails later and the template will still work. The great thing about MT EmbedImage is that
your thumbnails will be created only once, after which the cached image will be called up,
instead of the script having to recreate all your thumbnail images.

This is one possible use of MT EmbedImage, but there are many other possible uses. If you
have unpredictable image sizes in your blog, you can use MT EmbedImage to determine the
height and width, often useful for specialized HTML layouts. You can use the plugin to extract
the file size of an image, so if you want to warn users ahead of time how large your images are,
perhaps in a RSS feed, you can do that. In photo blogs of any stripe, MT EmbedImage is a
helpful power-user tool that enables you to manipulate images, and it is often a solution to
many custom photo blog problems.

Setting Up a Mobile Phone Photo Blog
Over the past couple of years, the availability of cameras within cell phones has exploded, pro-
viding a new way for people to take and share photos with family and friends.

Most camera phones and cellular plans offer the capability to e-mail images either for a set rate
or based on the number of images or total monthly bandwidth. However, most phones do not
offer the capability to easily upload images to the web. With a bit of software tinkering, MT
can be used as a photo blog for your camera phone, enabling you to post photos on the go for
the world to see, in just a few presses of buttons thanks to the magic of Perl and XML-RPC.

Using pop2blog
The easiest way to get photos off your phone and onto the web is to use an e-mail-to-weblog
gateway program such as pop2blog. It is available for free download at http://bixworld.
com/pop2blog and is licensed under the GPL open source license. pop2blog will check an
e-mail account and then process messages on the server for inclusion in an MT weblog.
Depending on your carrier’s message format, pop2blog can post and format images, titles, and
text entries directly from your phone.

pop2blog carries with it a few requirements in order to function properly. First, you’ll need to
have the following Perl modules installed on your server: Net::Blogger, Mail::Box,
File::Temp, and File::Basename. These packages (especially Mail::Box) may require
additional packages in order to function.

Next, you will need a special e-mail account set aside for your mobile phone blog. Because
pop2blog checks an account and processes unread messages, it’s good to set up a secret, specific
account like photoblog@example.com (where example.com is your e-mail host). You can also
set the security of pop2blog to only post messages with a specific e-mail in the From: field, so even
free e-mail providers will suffice in this case. Be sure to make an entry in your phone’s address
book with this e-mail in it, to make sending photos to the e-mail address as easy as possible.

19_57499x ch13.qxd  6/17/05  8:12 PM  Page 243

TEAM LinG



244 Part V — Hacking Powerful Blog Applications Together

On the MT side of things, you will likely want to set up a new blog specifically for this pur-
pose, following earlier instructions about how to set up a photo blog. You will also want to cre-
ate an images directory off your archive directory into which pop2blog can place photos.

Configuring pop2blog
With everything set, you need to edit the following configuration into pop2blog.pl, the
main script, customizing it for your specific settings:

� $imgdir = “file path to image/” — This is the filesystem location of the images folder
created. If you put it within your archive directory, just add ‘/images’ to the “Local
Archive Path” as defined under your blog config in MovableType.

� $imgpath = “web path to image/” — This is the actual path to the images on your web
server. If you put the images within your archive directory, just add ‘/images’ to the
“Archive URL” as defined under your blog config in MovableType.

� $blogsite = http://example.com/mt/mt-xmlrpc.cgi — This is the URL of
your mt-xmlrpc.cgi script.

� $blogid = “1” — This is the blog ID to which you wish to post entries. To figure this out,
log into MT, click the Manage Blog link under the blog to which you wish to post
entries, and read the URL of the page that loads. It will be something like http://
example.com/mt/mt.cgi?__mode=menu&blog_id=1. Copy the blog_id from
the URL to this setting.

� $bloguser = “username” — Your MT username under which entries will be posted

� $blogpass = “password” — The password that goes with the account

� $popsite = “mail.example.com” — The pop3 mail server the script will be checking

� $popuser = “username” — Username of the pop3 account created for photo blogging

� $poppass = “password” — Password for the pop3 account

� %allowed = (‘myphone’,1) — This is a list of usernames of e-mail accounts you would
like to allow to post to your blog. If your phone’s From: address in e-mail were
myphone@example.com, the previous example would only allow e-mail from that
address to be posted to the blog.

The pop2blog code itself is a Perl script that is meant to be run from the command line, not from
your plugins directory, so you will likely want to run the script periodically with a regularly exe-
cuted cron job command, as described in Chapter 5. Depending on how often you post photos
from your mobile phone, you might want to set it to check the account every 10 to 15 minutes.

Depending on how your cell phone carrier formats your e-mail, you may want to tweak the
pop2blog.pl script further. Some carriers append photos from your phone as attachments.
In that case, you’ll likely want to set blog post titles as the subject of your e-mails, with the
attachment as the image, ignoring the message body entirely. If your carrier puts images inline
within e-mail messages, some regular expressions may need to be employed. Either customiza-
tion technique can be achieved by commenting out and modifying lines of the pop2blog.pl
script as appropriate.

19_57499x ch13.qxd  6/17/05  8:12 PM  Page 244

TEAM LinG



245Chapter 13 — Photo Blogs

With pop2blog and a bit of server hacking, you’ll soon find out how incredibly useful camera
phones can be, and you will enjoy the freedom of blogging on the road, far away from comput-
ers and using only your phone.

Using ImageInfo to Display Extra Photo Data
The vast majority of photographs uploaded to weblogs are taken with digital cameras. These
cameras, almost without exception, embed a considerable amount of additional data into the
picture file: the date and time the shot was taken, the focus and aperture settings, the make and
model of the camera, and so on. This data conforms to the Exchangeable Image File Format
standard, commonly called Exif.

Professional photographic databases use the Exif data to index their collections; and happily, MT
is also capable of getting at the data and doing things with it. You won’t be using it to index the
photographs per se, although displaying the contents of the Exif data will enable regular search
engines to do this for you, but you will be able to use the Exif information to provide informa-
tion to the reader, and, very importantly, loosely link your MT site to other web services.

Exif has evolved quite rapidly over the past few years as more and more digital devices are
brought to the market; the number of possible data fields grows ever larger; and work continues
to include quite considerable amounts of information within a file. A single Jpeg can carry
many kilobytes of text data, plus audio. Here’s an example of some Exif data:

BitsPerSample => (8, 8, 8)
color_type => YCbCr
ComponentsConfiguration => YCbCr
CompressedBitsPerPixel => 2/1
CustomRendered => Normal process
DateTime => 2003:08:02 12:17:27
DateTimeDigitized => 2003:08:02 12:17:27
DateTimeOriginal => 2003:08:02 12:17:27
ExifImageLength => 1200
ExifImageWidth => 1600
ExifVersion => 0220
ExposureBiasValue => 0/10
ExposureMode => Auto exposure
ExposureProgram => Program
ExposureTime => 10/500
filename => cute_kitten.jpg
FileSource => (DSC) Digital Still Camera
file_ext => jpg
file_media_type => image/jpeg
Flash => Flash fired, compulsory flash mode, red-eye reduction
mode, return light detected
FlashPixVersion => 0100
FNumber => 38/10
FocalLength => 63/10
height => 320
ImageDescription =>
InteroperabilityIndex => R98

19_57499x ch13.qxd  6/17/05  8:12 PM  Page 245

TEAM LinG



246 Part V — Hacking Powerful Blog Applications Together

InteroperabilityVersion => 0100
ISOSpeedRatings => 400
JFIF_Version => 1.01
JPEG_Type => Baseline
LightSource => unknown
Make => SONY
MakerNote =>
MaxApertureValue => 62/16
MeteringMode => Spot
Model => CYBERSHOT
Orientation => top_left
resolution => (72 dpi, 72 dpi)
SamplesPerPixel => 3
SceneCaptureType => Standard
SceneType => Directly Photographed Image
WhiteBalance => Auto white balance
width => 240
YCbCrPositioning => 2

You won’t be dealing with the audio, but it can be very useful to pull out this sort of text. To do
this, as ever, there is an MT plugin — ImageInfo.

Introducing ImageInfo
ImageInfo can be downloaded from the website of its author, David Phillips, at http://
tweezersedge.com/archives/stories/mtimageinfo_plugin.html.

It consists of a container tag and a single tag to represent the properties of the image. The con-
tainer tag, <MTImageInfo>, takes up to four attributes:

� img, which is the only required attribute, specifies the local path of the image file. The
file must be on the local filesystem, so this cannot be a URL.

� leading_text, which defines text and markup to display before image information.

� trailing text, which defines text and markup to display afterward.

� show_empty, which can equal 1 or 0, chooses whether to display image information for
empty fields.

Here’s a simple use of the plugin to display a fetching feline:

<MTImageInfo image=”images/cute_kitten.jpg”>

This tag uses a relative path reference to the kitten photo. For more control, the tag could take
advantage of MTImageInfo’s support for other template tags. To include tag output in an
attribute, place the tag within square brackets instead of angle brackets, like so:

<MTImageInfo img=”[MTBlogSitePath]images/cute_kitten.jpg”>

However, note that if the embedded tag requires one or more arguments, you need to enclose
the value of the argument(s) in single quotes:

<MTImageInfo img=”[MTBlogSitePath][MTEntryCategory
dirify=’1’]/cute_kitten.jpg”>

19_57499x ch13.qxd  6/17/05  8:12 PM  Page 246

TEAM LinG



247Chapter 13 — Photo Blogs

To include XHTML tags, replace the angle brackets with square ones, as shown in the follow-
ing example:

<MTImageInfo img=”../cute_kitten.jpg” leading_text=”[li]”
trailing_text=”[/li]”>

The leading and trailing text settings are not displayed if the field is empty in the image’s Exif
data, so you might not be clear as to what would happen in the following template code when
no width variable is set in the Exif data of the image:

<MTImageInfo img=”../cute_kitten.jpg” leading_text=”[li]”
trailing_text=”[/li]”>
<p>Width = <$MTImageInfoField name=”width”$></p>
</MTImageInfo>

The following output results (unless, that is, you set the final parameter as show_empty):

<p></p>

This attribute defaults to 0, in which case the leading text, trailing text, and labels of empty
fields are not shown. If set to 1, the little bits of text will be shown, but the value will not. The
<MTImageInfoField> tag displays the different fields within the Exif data. It takes the fol-
lowing three parameters:

� name takes the name of the variable in the Exif data, or it can take “all” which will print
out all of the data within the picture.

� label, which is optional, takes the string with which you want to label the data. If the
field is empty, the label isn’t printed (unless the show_empty attribute is set, as above).

� format takes the standard Movable Type date formatting codes, and will come into
effect if the field you are querying contains a date.

Regarding the final attribute, the Exif standard represents dates in the format yyyy:mm:dd
hh:mm:ss, so this comes in handy when you want things to look a lot neater. For example:

<MTImageInfoField name=”DateTime” format=”%a %d %b %Y”>

Continuing the Example
To continue the example started earlier, to start to look at the data contained within a daily
photograph, you open the block with this:

<MTImageInfo img=”images/[MTEntryDate format=’%Y%m%d’].jpg”>

You then insert the <MTImageInfoField> tags you need to show the information you want.
If you are always using the same camera, it’s a good idea to first build a template with
<MTImageInfoField name=”all”> and check what information your camera is giving
you. Assume you’re getting the date and time the picture’s taken, the ISO speed of the shot,
and the exposure time. You can build this into the template with these lines:

<MTImageInfoField label=”Taken: “ name=”DateTime” format=”%a %d %b
%Y”>
<MTImageInfoField label=”ISO: “ name=”ISOSpeedRatings” >
<MTImageInfoField label=”Exposure: “ name=”ExposureTime” >

19_57499x ch13.qxd  6/17/05  8:12 PM  Page 247

TEAM LinG



248 Part V — Hacking Powerful Blog Applications Together

The <MTImageInfo> tag is closed up, as follows:

</MTImageInfo>

Of course, this isn’t very nicely formatted, so you can make it a bit more stylable and XHTML
compliant:

<div id=”ExifDetails”>
<ul>
<MTImageInfo img=”images/[MTEntryDate format=’%Y%m%d’].jpg”
leading_text=”[li]” trailing_text=”[/li]”>
<MTImageInfoField label=”Taken: “ name=”DateTime” format=”%a %d 
%b %Y”>
<MTImageInfoField label=”ISO: “ name=”ISOSpeedRatings” >
<MTImageInfoField label=”Exposure: “ name=”ExposureTime” >
</MTImageInfo>
</ul>
</div>

You can now put this into your template and add the necessary styling to your CSS file.

Summary
In this chapter, you learned how to set up a basic photo blog using MT EmbedImage to create
rich thumbnails of your archives. You also learned how to create a photo blog for your mobile
phone camera using pop2blog. Finally, you learned how to display Exif photo metadata for
your readers.

Thanks to MT’s flexibility and extensibility, you’ll find that with some simple hacking, you can
create a photo blog custom-tailored to exactly how, when, and where you take photos to share
with the world.

Embedding Additional Information

Japanese mobile phones habitually come with cameras, and some of these are being introduced
to the market with GPS units included as well. The Exif data in the pictures these phones can
take does contain the GPS location of the photograph, but currently there is no standard for this
data, which affords many intriguing possibilities.

In addition, at the time of writing, interesting uses for the embedding of RDF data within images
are emerging, which will enable different sections of an image to be isolated and labeled. See the
proposed Fotonotes specification site at www.fotonotes.net for more information on these
developments.

19_57499x ch13.qxd  6/17/05  8:12 PM  Page 248

TEAM LinG



Linklogs

As weblogging evolved, many of the original weblogs evolved from
logs of interesting and wacky links to more journal-type entries.
However, the more compulsive bloggers found that their need to

post interesting stuff was limited by the time they had to write about it, and
things came full circle. In the past couple of years, linklogs, or link-driven
blogs, have grown in popularity.

Often seen on the sidebars of regular blogs, these links are easy to post and
are a way of keeping track of interesting bookmarks in a public manner.

They usually contain entries with a fairly specific format: a single link to an
offsite destination, with a short description. Sometimes linklog authors
include some pithy commentary in a title tag on the link or companion text,
and often authors will credit other blogs where they found the links with a
via link.

This chapter describes how to design a Movable Type template for linklogs,
explains ways to further enhance the storage and output, and shows you
how to link your MT weblog into the most popular external linklogging
service, Del.icio.us.

Templating Your Linklog
Structurally, linklogs are simple creatures, making them much easier to for-
mat within Movable Type, as you can reuse existing fields within the MT
database for storing the entries, in much the same way as you do with
blogrolls.

Let’s look at an example linklog entry, break it down into each part, and
then examine how you can store the information within MT.

A linklog entry consists of the following:

� The URL of the website

� The title of the website

� The description text

˛ Introducing linklogs

˛ Templates for
linklogs

˛ Using linklog
services

˛ Integrating
Del.icio.us

chapter

in this chapter

20_57499x ch14.qxd  6/17/05  8:16 PM  Page 249

TEAM LinG



250 Part V — Hacking Powerful Blog Applications Together

Put together, these elements create some HTML that looks like this:

<p><a href=”The URL of the website” title=”The title of the
website”>The Title of the Website</a> - The Description Text</p>

This translates to an MT template rather like this one:

<MTEntries><a href=”<$MTEntryExcerpt$>”
title=”<$MTEntryTitle$>”><$MTEntryTitle$></a>
<$MTEntryBody$></MTEntries>

All you need to do is set up another weblog within your own installation, and use it to store
your linklog. Place the link in the Entry Excerpt component, its title in the Entry Title, and
the accompanying witticisms in the Body, as usual.

Then it’s an easy matter to add code to your blog. Using the Plugin Manager, or manually,
install David Raynes’ OtherBlog plugin, which you can find at the following URL:
www.sixapart.com/pronet/plugins/plugin/otherblog.html.

Once the plugin has been downloaded and installed in MT’s plugins directory, you can cre-
ate the template for a linklog: Add this code to your main blog’s template — changing, of
course, the blog_id attribute at the top to reflect the id of the linklog you have set up:

<div id=”linklog”>
<MTOtherBlog blog_id=”6”>
<ul>
<MTEntries>
<li>
<a href=”<$MTEntryExcerpt$>”
title=”<$MTEntryTitle$>”><$MTEntryTitle$></a><$MTEntryBody$>
</li>
</MTEntries>
</ul>
</MTOtherBlog>
</div>

Using this method, it’s easy to set up RSS and Atom feeds of your links, and even offer the
capability to comment or TrackBack to the postings. This is rarely done among existing link-
logs but easy to implement if you’d like to buck the trend by using an MT weblog as the stor-
age place for your links.

Using Linklog Services
Along with the growing popularity of linklogs, third-party web applications have appeared for
creating these sites. Del.icio.us, found at http://del.icio.us, is perhaps the most well
known, and certainly the most hackable.

Del.icio.us enables entries to be assigned the usual link title and description, and a set of key-
words to categorize it. We’ll touch on those in a moment. Figure 14-1 shows what Del.icio.us
looks like as I write this.

20_57499x ch14.qxd  6/17/05  8:16 PM  Page 250

TEAM LinG



251Chapter 14 — Linklogs

FIGURE 14-1: The Del.icio.us application

Posting links to the Del.icio.us application is easy. Most people use a JavaScript bookmarklet
that, when clicked, loads a form on Del.icio.us and populates the fields of the submission form.
You fill in the description and the keywords, hit the Submit button, and you’re returned back to
the page you were reading.

Altogether it takes only a few seconds to post a new link, and it’s much simpler than posting a
new entry to your blog. Furthermore, various social aspects of Del.icio.us make it worth using
in its own right.

20_57499x ch14.qxd  6/17/05  8:16 PM  Page 251

TEAM LinG



252 Part V — Hacking Powerful Blog Applications Together

Integrating Del.icio.us and Movable Type
That’s all very well, but this is a book about MT. How do you combine the two? There are two
straightforward ways of doing it, each with its own advantages and disadvantages. First, there’s
the RSS method.

Using RSS
Del.icio.us automatically produces an RSS feed of your links at a URL matched to your user-
name, http://del.icio.us/rss/username, so it’s an obvious move to use this feed to
display your linklog in your main template.

Doing that is easy. Tim Appnel’s RSS Feed plugin, available at www.sixapart.com/pronet/
plugins/plugin/rss_feed.html will help. Install that, and then add this code to your
main template and style as necessary with your CSS:

<div id=”linklog”>

<MTRSSFeed file=”http://del.icio.us/rss/username”>
<ul>

<MTRSSFeedItems lastn=”5”>
<li><a href=”<$MTRSSFeedItemLink$>”><$MTRSSFeedItemTitle$></a>
<MTRSSFeedItemDescriptionExists> -
<$MTRSSFeedItemDescription$></MTRSSFeedItemDescriptionExists></li>
</MTRSSFeedItems>

</ul>
</MTRSSFeed>

</div>

Don’t forget to change the RSS feed URL to reflect your own Del.icio.us username.

This method has one small disadvantage in that you need to rebuild the front page manually
for new links to appear. This can be done with the mt-rebuild.pl script included with the
RSS plugin. Set up a cronjob to run it, say, every hour, and your site will never be entirely out
of date.

This method will be improved greatly once a PHP version of the RSS plugin has been written
and you can use dynamic pages with it. Until then, however, a cron-processed rebuild will do.

You could use the RSS Digest service at www.bigbold.com/rssdigest/ and have it cre-
ate a snippet of JavaScript that will display the RSS as well; but that doesn’t solve the refresh
problem, as it would be very bad manners indeed to ask a third-party service to refresh itself
from the feed more than once an hour.

Using a Scheduled Post
There is an alternative. If you would rather not run a separate linklog within your template, you
can automatically post your day’s collected links en masse, as a normal entry. This, to my mind,
is more elegant anyway. The simplest way to do it is with a Perl script to query Del.icio.us and

20_57499x ch14.qxd  6/17/05  8:16 PM  Page 252

TEAM LinG



253Chapter 14 — Linklogs

post the result using the MT Perl API. Happily, Jeffrey Veen wrote just this sort of script and
released it under a Creative Commons license. From www.veen.com/jeff/archives/
000424.html, here it is:

#!/usr/bin/perl
#
# Post Delicious Links to MovableType with XPath
# (MT installed on local machine)
#
# Jeffrey Veen
# jeff at veen dot com
#
# 10 December 2003
#
# Distributed under the Creative Commons “Share Alike” license.
# http://creativecommons.org/licenses/sa/1.0/
#
###

# load modules

use POSIX;
use lib “/path/to/your/mt/lib”; # change to your installation
use MT;
use MT::Entry;
use XML::XPath;

# set up local variables - change to suit your needs

my $MTauthor = “1”;
my $MTblogID = “2”;
my $MTconfig = “/path/to/your/mt/mt.cfg”;
my $delUser  = “veen”;
my $delPW    = “****”;

# get today’s date and format it

my $date=strftime( “%Y-%m-%d”, localtime());

# go get the xml file

my $xml = `curl -s -u $delUser:$delPW
http://del.icio.us/api/posts/get?dt=$date`;

# get a new XPath object

my $xp = XML::XPath->new(xml => $xml);

20_57499x ch14.qxd  6/17/05  8:16 PM  Page 253

TEAM LinG



254 Part V — Hacking Powerful Blog Applications Together

# see if anything was posted to day

if ($xp->exists(‘/posts/post’)) {

my $title = “Links: $date”;
my $guts  = “<ul>\n”;

# grab XML values and write HTML

foreach my $posts ($xp->find(‘//post’)->get_nodelist){

$guts .= “    <li><a href=\”” . $posts->find(‘@href’) .
“\”>”;

$guts .= $posts->find(‘@description’)  . “</a><br />”;
$guts .= “<em>Posted: “   . $posts->find(‘@time’);
$guts .= ‘ (categories: ‘;

# loop through category tags and build a link for each

foreach my $tag (split(/ /, $posts->find(‘@tag’))){
$guts .= “<a

href=\”http://del.icio.us/$delUser/$tag\”>$tag</a> “
}
$guts .= “)</em></li>\n”;

}
$guts .= “  </ul>\n”;

# post to MT

my $mt = MT->new( Config=>$MTconfig) or die MT->errstr;
my $entry = MT::Entry->new;

$entry->blog_id($MTblogID);
$entry->status(MT::Entry::RELEASE());
$entry->author_id($MTauthor);
$entry->title($title);
$entry->text($guts);
$entry->convert_breaks(0);
$entry->save

or die $entry->errstr;

# rebuild the site

$mt->rebuild(BlogID => $MTblogID )
or die “Rebuild error: “ . $mt->errstr;

# ping aggregators

$mt->ping($MTblogID);

} # end of “check if there are posts”

20_57499x ch14.qxd  6/17/05  8:16 PM  Page 254

TEAM LinG



255Chapter 14 — Linklogs

You should have all of the required modules already installed, as XML::Xpath comes with
MT. Copy this script over to your MT directory, changing the variables at the top to reflect
your own setup. Set up a cronjob to run the script once a day, or at your preferred interval.

Other Uses for Del.icio.us
A minor digression to close this chapter: The keyword tagging used at Del.icio.us is quite
addictive. I’ve started to use it to categorize my own main blog postings, too, using the
Keywords field.

The first thing to do, therefore, is to show these tags and provide links to the related tag direc-
tories within Del.icio.us. To do this, I’m using a bit of PerlScript in the template, which
requires the MT-PerlScript plugin.

This plugin can be viewed and downloaded from Six Apart’s plugins directory at www.six
apart.com/pronet/plugins/plugin/perlscript.html. Here’s the template code,
which embeds a Perl script in a template by enclosing it within an MTPerlScript tag:

<MTPerlScript package=”delicious_links”>
# MT PerlScript to split keywords into Del.icio.us tags, and then
append the links
my $keywords=”<MTEntryKeywords>”;

if ($keywords eq “”) { 
print “<!-- No Del.icio.us Tags to print out //-->”;
} else {

my @split_keywords = split(/ /, $keywords);
my $split_keyword;
print ‘<br/><br/><h2>Related Posts Elsewhere</h2>’;
print ‘<br/><a href=”’.’http://del.icio.us/”
title=”del.icio.us”>del.icio.us</a> ‘;

foreach $split_keyword (@split_keywords) {
print ‘ / <a
href=”’.”http://del.icio.us/tag/$split_keyword”.’”>’.”$split_keywo
rd”.’</a> ‘;
}
}
</MTPerlScript>

Place this template code on an index or archive template that displays one or more weblog
entries, positioning it within an MTEntries container tag if you’re editing an index template.

Entry keywords will be presented as a list of tags, each tag linking to related entries from other
sites on De.licio.us.

20_57499x ch14.qxd  6/17/05  8:16 PM  Page 255

TEAM LinG



256 Part V — Hacking Powerful Blog Applications Together

Summary
The World Wide Web has been described as an attention economy, a place where the primary
unit of exchange is the link. Providing a link to an interesting site attracts more attention to it,
and you can probably imagine many different ways that such attention would be valued by a
web publisher.

Linklogs can be implemented quickly with Movable Type using the Otherblog plugin. Devote
an MT weblog to the links and you can incorporate its entries into another weblog, presenting
them in a distinct sidebar, syndicated RSS or Atom feed, or in some other fashion.

By providing more links on your weblog, you bestow more attention on the sites and writers
who draw your interest. There aren’t many better ways than that to pay a compliment on the
Internet.

20_57499x ch14.qxd  6/17/05  8:16 PM  Page 256

TEAM LinG



Blogroll

One traditional feature of a weblog is the blogroll: a list of Web sites,
usually other weblogs, that the author regularly visits. There are
online tools to build these things — Blogrolling.com being the

best known — but with some MT wizardry you can go a few steps further.

In this chapter, you’ll learn how to set up a simple blogroll using Movable
Type, and then how to tie Movable Type into a web service to provide other
information. You’ll be using a variety of plugins to demonstrate different
ways of doing this, and considering the various choices you need to make
regarding your site’s coding in relation to loosely joined web services.

Setting Up Your Blogroll
Create a new weblog within your MT installation. From now on, we’ll refer
to this as the blogroll blog. Don’t worry. No matter which license you have
MT under, this additional weblog will not count against your per-weblog
limits, as its contents are only going to be displayed inside your main site,
albeit in a variety of ways.

In this new blog, you can delete all of the templates except for the
Individual Entry Archive — you don’t need them. Make sure weblogs.com
and blo.gs pinging is turned off, and that archiving is set to Individual Only.
Basically, turn everything off. What you’re going to do is store each URL as
an individual entry within this blog and then use various plugins on your
main site to pull that data out and display it. Therefore, you don’t need any
of MT’s cool features turned on and wasting disk space.

Now, create entries within your blogroll blog, one for every URL, with the
URL as the entry body, and the title you want to give it as the entry title.
Note that the title you give it and the site’s actual title need not be the same.
Through the power of the Internet you can display both. Right now, how-
ever, you only need to enter the name you want it to have.

When you’re done, scoot over to your main blog and decide where you want
to put this blogroll: on every page, on one page only, or on its own page.
If you’re going to have it in more than one place, create a template module.
If you’re giving it its own page, create a new index template. Not sure? Err
on the side of the template module. That way, it’s easily reusable around
your site.

˛ Creating a blogroll
linking to favorite
sites

˛ Storing a blogroll as
a secondary weblog

˛ Reading blogroll
links with a plugin

˛ Pulling weblog data
from Technorati

˛ Creating a blogroll
in OPML format

chapter

in this chapter

21_57499x ch15.qxd  6/17/05  8:13 PM  Page 257

TEAM LinG



258 Part V — Hacking Powerful Blog Applications Together

Before getting into this, you need to install a few plugins. Using the Plugin Manager (or man-
ually), install David Raynes’ OtherBlog plugin from Six Apart’s website at www.sixapart.
com/pronet/plugins/plugin/otherblog.html.

You’ll also need Brad Choate’s PerlScript plugin from www.sixapart.com/pronet/
plugins/plugin/perlscript.html.

That done, you can start building your template. Consider what you have: another weblog with
a link URL and a link title, one per entry. Using the OtherBlog plugin, you can do this:

<MTOtherBlog blog_id=”6”>
<ul>
<MTEntries sort_by=”title” sort_order=”ascend”>
<li>
<a href=”<$MTEntryBody convert_breaks=”0”$>”>
<$MTEntryTitle$></a>
</li>
</MTEntries>
</ul>
</MTOtherBlog>

Make sure that you change the blog_id=”6” to reflect the real id number of the blogroll
blog. Save that into the template module and place a <MTInclude module=”blogroll”>
within the template in which you want the blogroll to appear, and you’re done.

Going Deeper with Technorati
A static blogroll is handy to have around, but it doesn’t reflect the dynamic nature of the web:
how things change, how weblogs move on, how stale a blogroll can become.

You only have two bits of information, but either of them can go astray without you knowing
it. Plus, and this is really nice, there is a lot of other information available about the sites in
your blogroll that other people, not to mention yourself, might like to see. The place to get this
information is via Technorati.com, and happily enough, that fine site provides an API for pro-
grammers to get to it. At first you’ll be doing this with the PerlScript plugin.

For now, however, get yourself over to www.technorati.com/developers/index.html
and register for an API key. You need one to use the service, and you’re not having mine.

Okay, let’s recap. Here’s the key bit of the code that you want to augment:

<MTEntries sort_by=”title” sort_order=”ascend”>
<li>
<a href=”<$MTEntryBody convert_breaks=”0”$>”>
<$MTEntryTitle$></a>
</li>
</MTEntries>

21_57499x ch15.qxd  6/17/05  8:13 PM  Page 258

TEAM LinG



259Chapter 15 — Blogroll

In this code, <$MTEntryBody convert_breaks=”0”$> represents the URL. Here’s the
code with a PerlScript plugin–enabled block of Perl, which takes this URL and runs it through
Technorati’s bloginfo query, and uses what it retrieves to replace the <$MTEntryTitle$>
part of the link:

<MTEntries sort_by=”title” sort_order=”ascend”>
<li>

<MTPerlScript package=”BlogrollTechnorati”>
use warnings;
use strict;
use XML::Simple;
use LWP::Simple;

my $technorati_api_key = “PUT YOUR KEY HERE”;
my $blogroll_url = “<$MTEntryBody convert_breaks=”0”$>”;

my $technorati_result =
get(“http://api.technorati.com/bloginfo?url=$quotation-
>{url}&key=$technorati_dev_token”) or die “Could not connect to
Technorati”;

my $technorati_result_xml = XMLin($technorati_result);

print ‘<a href=”’.”$blogroll_url”.’”>’.$technorati_result_xml-
>{document}->{result}->{weblog}->{name}.’</a>’;

</MTPerlScript>

</li>
</MTEntries>

This is nice, but not as far as you can go. Technorati returns a great deal of information about
the URL you give it. This is the XML returned by an example query:

<?xml version=”1.0” encoding=”utf-8”?>
<!-- generator=”Technorati API version 1.0 /bloginfo” -->
<!DOCTYPE tapi PUBLIC “-//Technorati, Inc.//DTD TAPI 0.01//EN”
“http://api.technorati.com/dtd/tapi-001.xml”>
<tapi version=”1.0”>
<document>
<result>
<url>http://www.benhammersley.com</url>
<weblog>
<name>Ben Hammersley</name>
<url>http://www.benhammersley.com</url>
<rssurl>http://www.benhammersley.com/index.rdf</rssurl>

21_57499x ch15.qxd  6/17/05  8:13 PM  Page 259

TEAM LinG



260 Part V — Hacking Powerful Blog Applications Together

<inboundblogs>709</inboundblogs>
<inboundlinks>834</inboundlinks>
<lastupdate>20040517T10:05:02Z</lastupdate>
<rank>180</rank>

</weblog>
<inboundblogs>709</inboundblogs>
<inboundlinks>834</inboundlinks>

</result>
</document>
</tapi>

As you can see, you can fish out other data: the URL to the RSS feed, the numbers of inbound
links, the ranking in the Technorati popularity league, last update date and time, and so on. You
can change the PerlScript to use this data with little difficulty.

Better Living Through Plugins
The previous system is very simple and direct and shows you how the Technorati service can be
loosely tied to Movable Type with a PerlScript. Indeed, any REST-based web service that can
be controlled with URLs can be used in the same way. There are, however, serious flaws with
this method.

One problem with this system is that it is quite fragile if Technorati is down when you attempt
to rebuild your pages. As it stands, in fact, the script will die, and take your rebuild with it.
Therefore, you need to add in some fault tolerance to the script, and drop back to the
<MTEntryTitle> when you can’t get the data you want. Plus, if you’re including this as a
template module in your individual entry archives, the first time you rebuild your entire site
you’ll probably be trying to pass a few thousand queries to Technorati in a row, with all but the
very first few totally pointless. You need to deal with both of these issues, and to do so with the
PerlScript method would mean writing your own caching and fault tolerance code. It’s far too
nice a day to be stuck inside doing that, so let’s cheat.

The way to accomplish both of these fixes is to use another plugin — Kevin Shay’s GetXML
from www.staggernation.com/mtplugins/GetXMLReadMe.html.

GetXML can replace the entire PerlScript code shown previously, taking care of retrieving the
query, parsing the result, caching the result, and fault-tolerance. Here’s the template with
GetXML instead of MTPerlScript:

<MTOtherBlog blog_id=”6”>
<MTEntries sort_by=”title” sort_order=”ascend”>
<MTGetXML location=”http://api.technorati.com/bloginfo”
url=”<$MTEntryBody convert_breaks=”0”$>” key=”PUT YOUR KEY HERE”
cache=”10800” suppressempty=”1” errors=”ignore”>

<MTGetXMLElement name=”document”>
<MTGetXMLElement name=”result”>
<MTGetXMLElement name=”weblog”>

21_57499x ch15.qxd  6/17/05  8:13 PM  Page 260

TEAM LinG



261Chapter 15 — Blogroll

<li><a href=”<$MTEntryBody convert_breaks=”0”$>”
title=”<MTIfXMLElementExists name=”name”><$MTGetXMLValue
name=”name”$></MTIfXMLElementExists><MTIfXMLElementNotExists
name=”name”><MTEntryTitle></MTIfXMLElementNotExists>”>
<MTIfXMLElementExists name=”name”><$MTGetXMLValue name=”name”$>
</MTIfXMLElementExists><MTIfXMLElementNotExists
name=”name”><MTEntryTitle></MTIfXMLElementNotExists></a>
<MTIfXMLElementExists name=”rssurl”> - <a href=”<$MTGetXMLValue
name=”rssurl”>”>RSS Feed</a></MTIfXMLElementExists></li>

</MTGetXMLElement>
</MTGetXMLElement>
</MTGetXMLElement>
</MTGetXML>
</MTEntries>
</MTOtherBlog>

GetXML offers two major improvements to the hand-rolled PerlScript code. First, it caches
the results. The cache=”10800” attribute to the <MTGetXML> line means that it will cache
the results for 10,800 minutes — one week. You can change this, however.

Second, as you can see from the code, it allows for fallbacks if certain information is not there.
In the example shown, you’re not printing anything about an RSS feed if Technorati doesn’t
know about one.

Styling and Accessibility
The final thing to do to the code is to enable yourself to make it look pretty but also retain
accessibility. This means assigning class attributes to the list and titles to the links themselves:

<div class=”blogroll”>
<MTOtherBlog blog_id=”6”>
<MTEntries sort_by=”title” sort_order=”ascend”>
<MTGetXML location=”http://api.technorati.com/bloginfo”
url=”<$MTEntryBody convert_breaks=”0”$>” key=”PUT YOUR KEY HERE”
cache=”60” suppressempty=”1” errors=”ignore”>

<MTGetXMLElement name=”document”>
<MTGetXMLElement name=”result”>
<MTGetXMLElement name=”weblog”>

<li><a href=”<$MTEntryBody convert_breaks=”0”$>”
title=”<MTIfXMLElementExists name=”name”><$MTGetXMLValue
name=”name”$></MTIfXMLElementExists><MTIfXMLElementNotExists
name=”name”><MTEntryTitle></MTIfXMLElementNotExists>”><MTIfXMLElem
entExists name=”name”><$MTGetXMLValue
name=”name”$></MTIfXMLElementExists><MTIfXMLElementNotExists
name=”name”><MTEntryTitle></MTIfXMLElementNotExists></a>

21_57499x ch15.qxd  6/17/05  8:13 PM  Page 261

TEAM LinG



262 Part V — Hacking Powerful Blog Applications Together

<MTIfXMLElementExists name=”rssurl”> - <a href=”<$MTGetXMLValue
name=”rssurl”>”>RSS Feed</a></MTIfXMLElementExists></li>

</MTGetXMLElement>
</MTGetXMLElement>
</MTGetXMLElement>
</MTGetXML>
</MTEntries>
</MTOtherBlog>
</div>

As you have no doubt realized by now, the blogroll template does a lot of work. It pulls an entry
from the other blog, checks inside a cache, perhaps runs a query on a remote source, and checks
the site itself, before carrying on to the next entry. With a very large blogroll, this might take
quite a while the first time it is run.

Publishing the Blogroll as OPML
Many applications are capable of importing and exporting blogrolls formatted as OPML, an
XML dialect for representing outlines and other list-based information.

These OPML-capable applications range from RSS readers to social network analysis tools.
You can learn more about the format and supporting software by visiting the official OPML
website at www.opml.org.

Or perhaps you just want to back up your blogroll for your own amusement. Either way,
OPML is the way to do it.

Listing 15-1 contains a simple OPML file with only one site in it.

Listing 15-1: A Simple OPML Blogroll

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<opml version=”1.1”>

<head>
<title>mySubscriptions</title>

</head>
<body>

<outline text=”Ben Hammersley” description=”Ben
Hammersley’s Dangerous Precedent”
title=”Ben Hammersley” type=”rss” version=”RSS”
htmlUrl=”http://www.benhammersley.com”
xmlUrl=”http://www.benhammersley.com/index.rdf”/>

</body>
</opml>

21_57499x ch15.qxd  6/17/05  8:13 PM  Page 262

TEAM LinG



263Chapter 15 — Blogroll

Because OPML is an XML dialect, producing such output from techniques you’re using in this
chapter will be simple. Create a new Index template containing the text of Listing 15-2.

Listing 15-2: An OPML Blogroll Template

<MTOtherBlog blog_id=”6”>
<?xml version=”1.0” encoding=”<MTPublishCharset>”?>
<opml version=”1.1”>
<head>
<title>mySubscriptions</title>
</head>
<body>

<MTEntries sort_by=”title” sort_order=”ascend”>

<MTGetXML location=”http://api.technorati.com/bloginfo”
url=”<$MTEntryBody convert_breaks=”0”$>” key=”PUT YOUR KEY HERE”
cache=”60” suppressempty=”1” errors=”ignore”>

<MTGetXMLElement name=”document”>
<MTGetXMLElement name=”result”>
<MTGetXMLElement name=”weblog”>

<outline text=”<MTIfXMLElementExists name=”name”><$MTGetXMLValue
name=”name”$></MTIfXMLElementExists><MTIfXMLElementNotExists
name=”name”><MTEntryTitle></MTIfXMLElementNotExists>”
description=”<MTIfXMLElementExists name=”name”><$MTGetXMLValue
name=”name”$></MTIfXMLElementExists><MTIfXMLElementNotExists
name=”name”><MTEntryTitle></MTIfXMLElementNotExists>”
title=”<MTIfXMLElementExists name=”name”><$MTGetXMLValue
name=”name”$></MTIfXMLElementExists><MTIfXMLElementNotExists
name=”name”><MTEntryTitle></MTIfXMLElementNotExists>” type=”rss”
version=”RSS” htmlUrl=”<$MTEntryBody convert_breaks=”0”$>”
<MTIfXMLElementExists name=”rssurl”> - xmlUrl=”<$MTGetXMLValue
name=”rssurl”></MTIfXMLElementExists>/>

</MTGetXMLElement>
</MTGetXMLElement>
</MTGetXMLElement>
</MTGetXML>
</MTEntries>
</body>
</opml>
</MTOtherBlog>

21_57499x ch15.qxd  6/17/05  8:13 PM  Page 263

TEAM LinG



264 Part V — Hacking Powerful Blog Applications Together

Use the Output File field to give the template’s output a filename that ends in .opml, to indi-
cate its format.

When you render the template, it produces an OPML file containing all of the links in your
blogroll blog, which you can load with other programs and share for other purposes.

Summary
A weblog can be more strongly connected to other blogs through the use of one or more
blogrolls. The links between sites are analyzed and counted by services such as Technorati to
rate the relative prominence of different blogs. Some of the most widely read bloggers show up
on more than 1,000 blogrolls.

By organizing a blogroll as a separate weblog and reading the data with the OtherBlog plugin,
you can present a site list as easily as you present weblog entries.

21_57499x ch15.qxd  6/17/05  8:13 PM  Page 264

TEAM LinG



Events, Reminders,
To-Dos

In its simplest form, a day planner is just a collection of two kinds of
information: dates and notes. Movable Type is very good at managing
this kind of information. The goal of this chapter is to restructure that

content into a functioning day planner. It’s just a matter of some clever tag
and template work.

Without any help, Movable Type enables you to enter dated entries into a
weblog that can be output into monthly, weekly, and daily archives. This
gets you a long way toward your day planner functionality, but MT needs
help in a few areas. First, MT doesn’t have a way to handle recurring events.
Second, one of the views that you want to produce is a daily view showing
all of the hours of the day, with the day’s events properly interspersed. MT
can’t produce a view like that by itself. You’ll need to utilize a plugin to pro-
duce this view as well as to handle recurring entries.

Why would you want to use Movable Type to create a day planner or calen-
dar? There are certainly better and more natural ways to go about maintain-
ing a calendar. Isn’t this better left to an application written specifically for
this purpose? Perhaps, but there are advantages to having a MT-powered
calendar:

➤ It’s web-based and web-hosted. Because it is hosted on the web,
your calendar is accessible to everyone and from anywhere. You can
control who has access to it or leave it wide open for all to see.

➤ Multiple authors provide collaboration. If you set it up for multi-
ple users, your planner weblog can include the event information for
everyone in your family, or your department at work, or your softball
teammates.

➤ The power of publish and subscribe. You can publish your calendar
information in a variety of ways — for example, an Atom, RSS,
and/or vCalendar/iCalendar feed that keeps everyone in sync.

Creating the Day Planner Weblog
First you will want to create a new, separate weblog. Name it My Planner
or whatever you prefer. This weblog will be configured to be viewed 

˛ Creating the day
planner weblog

˛ Template design

˛ Yearly archives

˛ Exporting your
planner

˛ Extending your
planner

chapter

in this chapter

22_57499x ch16.qxd  6/17/05  8:15 PM  Page 265

TEAM LinG



266 Part V — Hacking Powerful Blog Applications Together

dynamically, so the local site path and local archive path settings are not necessary. The process
of configuring the weblog to be dynamic will be explained shortly.

Template Configuration
Create the following templates in your new planner weblog:

� Daily Archive

� Monthly Archive

You may also want individual archives so you can see the details of your event. You should edit
your Stylesheet template to append the additional stylesheet rules found on the companion
website.

Archiving Configuration
For archiving (the Archiving panel of the Weblog Configuration options), configure the
weblog for Individual, Monthly, and Daily archives at a minimum. You’ll also be creating a
yearly archive, but you’ll need to do that separately (see the “Yearly Archives” section later in
this chapter).

By default, the Daily and Monthly archives are linked to the same template, named Date-
Based Archive. But you want to use a different archive template for each of these. To fix this,
delete the existing Daily and Monthly archive options and create new Daily and Monthly
archives, linking them to the Daily Archive and Monthly Archive templates, respectively
(these were created in the preceding “Template Configuration” section). The result of this
will be more apparent once you’ve entered a few items.

Category Configuration
Create a few categories for the different types of entries that will be used in the planner. At a
minimum, you’ll want to create the categories shown in Table 16-1.

Table 16-1 Categories

Category Name Purpose

Event Dated event entry

Reminder Reminder entry

To-Do To-Do entry

Every Day Daily recurring events

Every Sunday Events repeating on Sunday

Every Monday Events repeating on Monday

22_57499x ch16.qxd  6/17/05  8:15 PM  Page 266

TEAM LinG



267Chapter 16 — Events, Reminders, To-Dos

Category Name Purpose

Every Tuesday Events repeating on Tuesday

Every Wednesday Events repeating on Wednesday

Every Thursday Events repeating on Thursday

Every Friday Events repeating on Friday

Every Saturday Events repeating on Saturday

Every Week Weekly recurring events

Every Month Monthly recurring events

Every Year Yearly recurring events

The Every categories will be used to establish basic recurring entries.

Whenever you create an entry that is to appear in your calendar views, assign it an Event cate-
gory. For reminder and to-do entries, assign them with those categories. You can define addi-
tional categories to further classify your planner entries. For example, Anniversary, Birthday,
Holiday, Movie, and Vacation might be useful to start with.

Creating Entries for Your Planner
Creating entries is the easy part. You use Movable Type as you normally would. Just take care
to assign the categories that are appropriate to the entry. For recurring entries, assign them into
the Every Year, Every Month, Every Week, Every Day, and so on categories as appropriate.
The recurring date will depend upon the creation date assigned to the entry. You can alter the
creation date for a particular recurring entry so that it begins at the proper date.

Template Design
You’ve already created the templates by using the examples that are provided with this book,
but it’s important to take a look at how they work. That way you can feel more comfortable
customizing them to your liking.

The templates use a plugin named MT-Planner, which can be downloaded from the website
for this book at www.hackingmt.com.

Introducing MT-Planner
The custom tags provided by the MT-Planner plugin provide similar functionality to MT’s
own Calendar tag. However, instead of being limited to producing a single month, the 
MT-Planner tags can also produce output for an entire year, a single week, or a day. Almost
any sort of calendar view you can image can be reproduced using these tags.

22_57499x ch16.qxd  6/17/05  8:15 PM  Page 267

TEAM LinG



268 Part V — Hacking Powerful Blog Applications Together

Installing the MT-Planner Plugin
To install MT-Planner, store the planner.pl Perl script and copy it into your plugins sub-
directory for Movable Type. That’s all you have to do to install the new tags that are necessary
to run your planner.

MT-Planner Tag Overview
To gather the entries to publish the web pages for your planner, you’ll be using some tags pro-
vided by the MT-Planner plugin. The primary tags provided by this plugin are as follows:

� <MTPlanner>

� <MTPlannerYears>

� <MTPlannerMonths>

� <MTPlannerWeeks>

� <MTPlannerDays>

� <MTPlannerHours>

� <MTPlannerEntries>

� <MTPlannerIfBlank>

� <MTPlannerIfEntries>

� <MTPlannerIfNoEntries>

� <$MTPlannerDay$>

� <$MTPlannerMonth$>

� <$MTPlannerYear$>

� <MTPlannerNext>

� <MTPlannerPrevious>

� <$MTPlannerTitle$>

� <$MTPlannerLink$>

The main <MTPlanner> tag is a controller for the others. It preloads the recurring entries, so
you should use it once in your template, placing it so that it surrounds all the other MT-Planner
tags. It also enables you to define what categories are to be considered for recurring entries.

The <MTPlannerYears>, <MTPlannerMonths>, <MTPlannerWeeks>,
<MTPlannerDays>, and <MTPlannerHours> tags will produce a list of years, months,
weeks, days, and hours, respectively. For example, if you were to create a daily archive template
for your planner, you would utilize the <MTPlanner> and <MTPlannerHours> tags. The
<MTPlannerHours> tag would produce the hours for that day. You can even limit the range
that is produced — for example, to be 8:00 A.M. to 6:00 P.M. (or whatever range you would

22_57499x ch16.qxd  6/17/05  8:15 PM  Page 268

TEAM LinG



269Chapter 16 — Events, Reminders, To-Dos

prefer). By placing a <MTPlannerEntries> tag inside any of these timely tags, you are given
the relevant entries available for that period of time.

Implementing Month Views
The Monthly Archives template is a full-page calendar view of a particular month (see
Figure 16-1). Each day within the calendar lists any of the events scheduled for that day. The
day itself is hyperlinked to the daily archive, which reveals more detail about the events of the
day. Of course, the presentation of the calendar view is driven by CSS, so you have a lot of
flexibility with respect to how the calendar is formatted.

FIGURE 16-1: Planner monthly view

Implementing Day Views
The Daily Archives template produces a single day’s events (see Figure 16-2). It is a familiar
view, mimicking what you might see in Outlook’s calendar. The calendar displays events for the
day divided by hour. The familiar Previous and Next navigation links at the top enable you to
browse to adjacent days.

22_57499x ch16.qxd  6/17/05  8:15 PM  Page 269

TEAM LinG



270 Part V — Hacking Powerful Blog Applications Together

FIGURE 16-2: Planner daily view

The Main Index Template
The Main Index template can be configured to your liking (see Figure 16-3). What would you
prefer to display on the home page of your planner? The current events for today? Or for the
month? The one provided with this chapter is a combination of both.

Now comes the main problem with Movable Type and implementing a day planner applica-
tion. Movable Type produces static Web pages by default. You don’t want that. You want to
view things dynamically, for the following reasons:

� Static page publication produces a lot of pages.

� MT doesn’t know to build the static pages for any of our recurring entries.

� Static pages will not update when new recurring entries are added (you’d have to do a
Rebuild All operation in MT for most entries you add to keep things in sync).

22_57499x ch16.qxd  6/17/05  8:15 PM  Page 270

TEAM LinG



271Chapter 16 — Events, Reminders, To-Dos

FIGURE 16-3: Planner main index view

Movable Type has a way to provide a dynamic view of your weblog. It isn’t enabled by default
and is still considered as an experimental feature, but it is working well enough for our pur-
poses. Here’s how you can enable dynamic rendering for your Planner weblog:

1. Edit your mt.cfg file and add SafeMode 0 to it (or change SafeMode 1 to SafeMode 0
if it is present). This is necessary to use the mt-view.cgi script that comes with
Movable Type.

2. Create a new index template named Make Dynamic and add this to it:
<$MTPlannerDynamic$>. Build that page once, and then you can delete it. This tag
will reconfigure the current weblog to operate as a dynamic weblog.

If you ever wish to reverse this and make your Planner weblog run as a static weblog again, do the
second step listed, substituting <$MTPlannerStatic$> for the <$MTPlannerDynamic$>
tag. If you do this, remember that Movable Type will only produce the archive pages that are
relevant to the entries in your Planner weblog.

22_57499x ch16.qxd  6/17/05  8:15 PM  Page 271

TEAM LinG



272 Part V — Hacking Powerful Blog Applications Together

Yearly Archives
You may also want to display your planner data in a yearly view (see Figure 16-4).
Unfortunately, Movable Type doesn’t offer a yearly archive option just yet, so we have to do a
little bit of manual labor. We have supplied a Yearly Archives template to be added to your
weblog as a template module (this is the bottom-most group of templates on the Movable Type
Templates configuration page). Once this template has been added, you will need to create a
single main index template. Name this template Yearly Archives and set the output filename to
be Years.

FIGURE 16-4: Planner yearly archive view

With this in place, you can browse to your yearly archive views using links like this:

http://myblog.com/mt/mt-view.cgi/1234/years?2004

Again, replace 1234 with the blog ID of your Planner weblog, and substitute the domain name
for your website and the proper path to the mt-view.cgi script.

22_57499x ch16.qxd  6/17/05  8:16 PM  Page 272

TEAM LinG



273Chapter 16 — Events, Reminders, To-Dos

CSS Design
Through the use of additional categories and CSS rules, you can further enhance the view of
your planner. You can add graphic icons for birthdays, anniversaries, holidays, and other events.
All categories assigned to the entry are added to the CSS class for the containing <div> or
<span> tag for the item in the planner views. Here’s a CSS rule for a Birthday category:

.birthday {
background-image: url(/images/icons/birthday.gif);
background-repeat: no-repeat;
background-position: top left;
padding-left:20px;

}

This rule would add a small birthday icon to the left of the event wherever it was shown.

In the templates provided, each assigned category is added to the class attribute of the span
that surrounds a particular event item. Therefore, if you assign an item to the Birthday and
Special Events categories, the CSS selectors .birthday and .special_events would
both be applied.

Exporting Your Planner
The iCalendar format is to calendar applications as RSS and Atom are to newsreaders. For
example, you can use iCal on the Macintosh or Mozilla’s Calendar on other platforms to sub-
scribe to an iCalendar formatted feed to import all the appointments it contains. The
iCalendar template included with the files for this chapter can be added to your weblog to pro-
duce such a feed. Simply add it to your list of index templates. Make the output filename 
calendar.ics. The URL for the feed would be as follows (replacing the number 123 with
the blog ID for your Planner weblog and using the proper domain and path to your Movable
Type CGI directory):

http://myblog.com/mt/mt-view.cgi/123/calendar.ics

You would use that URL to subscribe to the calendar produced by your Planner weblog. In
addition, upon adding or updating your MT planner, your subscription will keep your local cal-
endar application up-to-date.

Extending Your Planner
A daily planner can be enhanced by weekly archives and recurring entries based on complex
rules.

22_57499x ch16.qxd  6/17/05  8:16 PM  Page 273

TEAM LinG



274 Part V — Hacking Powerful Blog Applications Together

Implementing Weekly Views
We haven’t included a Weekly archive template, but using the examples for the Monthly and
Daily archives, you should be able to produce a Weekly archive template without much trouble;
and with the dynamic rendering support in Movable Type, you can create any number of views
of your planner using alternate templates. Because everything is dynamic, there is no penalty of
disk space usage or extra rebuild time for having these extra templates.

More complex recurring entries
The current implementation of recurring entries will handle most common recurring entries,
but it isn’t elaborate enough to handle all possible situations. Scenarios such as “every third
week” or “the second Tuesday of the month” aren’t currently possible with MT-Planner. You
could, however, extend the plugin to handle more complicated recurring rules. If you are inter-
ested in extending the Planner plugin in this way, we would recommend using the Keywords
field of the entry to enable users to supply a textual repeating rule. There is a free Perl package
called Date::Manip (available on CPAN) that includes a powerful language-parsing function
that will translate English phrases into a recurring rule. For example, it can understand phrases
like “last Tuesday of every month.” With a little work, you can use Date::Manip to extend
the capabilities of the MT-Planner plugin to handle most any recurring rule.

Summary
Movable Type was built for blogging, but as an extensible web-based application, it can be
manipulated to do much, much more. In this chapter, you’ve looked at how to transform it to
power a web-based day planner that can produce any number of dynamic, data-rich views.

The planner project serves as an apt demonstration that the software can manage any kind of
web content, with a little help from plugins and a hacker’s mindset.

22_57499x ch16.qxd  6/17/05  8:16 PM  Page 274

TEAM LinG



Polls

This chapter demonstrates how to implement a simple polling system
using Movable Type and the PerlScript plugin.

Polls are a great complement to a weblog site and can be an excellent way to
solicit feedback or input from your visitors.

Creating the Polls Weblog
First, create a new weblog that will hold the poll data. Don’t worry, you
will only need one, even if you create thousands of polls. Each entry in this
blog will be a separate poll. For each entry, the entry body text is the
description or question being posed. The extended entry text will hold the
poll options. Each poll option should be on a separate line. Figure 17-1
shows an example poll entry.

˛ Creating the polls
weblog

˛ Showing the results

˛ Knowing your
audience

˛ Sharing with other
weblogs

chapter

in this chapter

23_57499x ch17.qxd  6/17/05  8:02 PM  Page 275

TEAM LinG



276 Part V — Hacking Powerful Blog Applications Together

FIGURE 17-1: An example poll entry

Template Configuration
Some template changes will be necessary. Start by creating a template module named “Polls.”
You’ll be hacking poll support into MT using the PerlScript plugin.

If you haven’t downloaded it already for a previous chapter, you can find this add-on from
the Six Apart plugins directory at www.sixapart.com/pronet/plugins/plugin/
perlscript.html. Download the archive file containing the software, and then follow its
directions regarding where to install the perlscript.pl script and the perlscript.pm
module.

The Polls template will hold the code necessary to process the extended entry text to retrieve
the poll options and tabulated votes. Listing 17-1 contains the code for the Polls template.

Listing 17-1: A Polling Template

<MTPerlScript package=”polls” cache=”1” once=”1”>
sub list {
my ($tmpl) = @_;
my $blog = $ctx->stash(‘blog’);

23_57499x ch17.qxd  6/17/05  8:02 PM  Page 276

TEAM LinG



277Chapter 17 — Polls

my $entry = $ctx->stash(‘entry’);
my $out = ‘’;

# load the MT template we use to print a single day
my $template = MT::Template->load({blog_id=>$blog->id,
name => $tmpl});

my (%counts, $count);
$count = 0;
# if the “poll_option_votes” variable is referenced
# in the template, go to the extra step of counting
# votes...
if ($template->text =~ /poll_option_votes/) {
my %votes;
foreach my $comment (@{$entry->comments}) {
my ($vote) = $comment->text =~ m/(\d+)/;
next unless $vote;
my $vote_key = $comment->commenter_id || $comment->ip;
# remove the following line if you allow
# users to change their vote...
next if exists $votes{$vote_key};
$votes{$vote_key} = $vote;

}
$counts{$votes{$_}}++ foreach (keys %votes);
$count = scalar(keys %votes);

}

my @options = split /\r?\n/, $entry->text_more;

my $ln = 0;
my $vars = $ctx->{stash}{vars};
$vars->{poll_vote_count} = $count;
foreach my $option (@options) {
$ln++;
$vars->{poll_option_value} = $ln;
$vars->{poll_option_label} = $option;
if (exists $counts{$ln}) {
$vars->{poll_option_votes} = $counts{$ln};

} else {
$vars->{poll_option_votes} = 0;

}
# this builds the output for a single day
my $row = $template->build($ctx);
# display any error that might have occurred
warn $ctx->errstr unless defined $row;
$out .= $row if defined $row;

}

print $out;
}
</MTPerlScript>

23_57499x ch17.qxd  6/17/05  8:02 PM  Page 277

TEAM LinG



278 Part V — Hacking Powerful Blog Applications Together

Now add the following to the top of your Main Index and Individual Archive templates (and
any other MT templates that will be listing polls):

<$MTInclude module=”Polls”$>

The Polls template code assumes that there is an entry in context whenever it runs. The weblog
entry is the poll definition, so you need one of those for this routine in order to do anything.
When the list routine is called, you pass to it the name of a Movable Type template module to
process. It will iterate over each poll option and process the template, printing the result. Here’s
a template for listing the poll options as radio buttons. Name this template “Poll Radio
Option”:

<input type=”radio” name=”text”
value=”<$MTGetVar name=”poll_option_value”$>”
id=”poll_option_<$MTGetVar name=”poll_option_value”$>” />

<label for=”poll_<$MTEntryID$>_option_<$MTGetVar
name=”poll_option_value”$>”>
<$MTGetVar name=”poll_option_label”$>

</label><br />

Here’s another template that will list the options along with the number of votes that have
accumulated for them (name this one “Poll Option List”):

<li><$MTGetVar name=”poll_option_label”$>
(<$MTGetVar name=”poll_option_votes”$>)</li>

The Main Index template for this polling weblog can list the latest poll as shown (this is just a
portion of the main index template; please refer to the companion website for the complete
version that has support for TypeKey authentication):

<MTEntries lastn=”1”>

<h2>Latest Poll</h2>
<h3><$MTEntryTitle$></h3>

<$MTEntryBody$>

<form method=”post” action=”<$MTCGIPath$><$MTCommentScript$>”
id=”poll_form”>

<input type=”hidden” name=”static” value=”1” />
<input type=”hidden” name=”entry_id” value=”<$MTEntryID$>” />

<div id=”name_email”>
<p><label for=”author”>Name:</label><br />
<input tabindex=”1” name=”author” id=”author” /></p>

<p><label for=”email”>Email Address:</label><br />
<input tabindex=”2” name=”email” id=”email” /></p>
</div>

<p><label for=”url”>URL:</label><br />
<input tabindex=”3” name=”url” id=”url” /></p>

23_57499x ch17.qxd  6/17/05  8:02 PM  Page 278

TEAM LinG



279Chapter 17 — Polls

<p>
<MTPerlScript package=”polls”>
polls::list(‘Poll Radio Option’);

</MTPerlScript>
</p>

<div align=”center”>
<input type=”submit” name=”post” value=”Vote” />
</div>
</form>

<div class=”posted”>
posted @ <a href=”<$MTEntryPermalink$>”><$MTEntryDate

format=”%X”$></a>
</div>

</MTEntries>

Note that the usual textarea input field has been replaced with a call to our “polls” PerlScript
package, which lists the individual poll options as radio buttons. This is the primary change to
the comment form.

Showing the Results
On the individual archive template (you should enable these for the permalinks), you’ll want to
list the poll results. Here is the portion of the template that produces the poll results along with
the votes recorded so far:

<div class=”blog”>
<h2>Poll</h2>
<h3><$MTEntryTitle$></h3>

<$MTEntryBody$>

<MTEntryIfCommentsOpen>
<h4>Results So Far...</h4>

<MTElse>
<h4>Results</h4>

</MTElse>
</MTEntryIfCommentsOpen>

<ul>
<MTPerlScript package=”polls”>
polls::list(‘Poll Option List’);

</MTPerlScript>
</ul>

</div>

Figure 17-2 illustrates a sample poll results page.

23_57499x ch17.qxd  6/17/05  8:02 PM  Page 279

TEAM LinG



280 Part V — Hacking Powerful Blog Applications Together

FIGURE 17-2: Sample poll results page

Once you close comments for a poll, the heading for the results changes from “Results So Far. . .
“ to just “Results.” You can include the polling form on the individual archive page as well, but
you will want to wrap it in another <MTEntryIfCommentsOpen> block so that the form is
not available once the poll has been closed. I would also recommend disabling the comment
preview option and even customizing the comment preview template so that it doesn’t list any
comment history (doing so would reveal the identities and votes of others).

In addition, keep in mind that if you change the order or the content of the poll options after
you have received votes, those pre-existing votes will be mismatched because they are based on
the order of the polling options at the time the vote was cast.

Knowing Your Audience
Online polls are often used for entertainment. It is difficult to prevent fraud or abuse of the
polling system, but fortunately, with Movable Type 3, you can limit abuse by requiring user
registration through TypeKey or by moderating comments. This does not prevent fraud alto-
gether, but because it requires some level of identification, it will help to discourage abuse.

23_57499x ch17.qxd  6/17/05  8:02 PM  Page 280

TEAM LinG



281Chapter 17 — Polls

Sharing with Other Weblogs
You may want to include the latest poll on the main page of your website or weblog. To do this,
you would create another main index template that contains just the portion of the main index
template provided in this chapter. Name the output file something like latestpoll.html.
You could then pull the contents of that file into another web page using server-side includes
or a PHP include. See Chapter 2 for more information about these techniques.

Summary
The polling functionality covered in this chapter makes use of the most sophisticated Movable
Type hack you can drop into a template: Perl scripting.

The software’s template-driven publishing system was already ridiculously capable, with sup-
port for dozens of standard template tags and hundreds more by way of plugins.

By employing the PerlScript plugin, you can write Perl directly in a template and produce out-
put that is rendered statically on the pages of a site.

What do you think about that capability? We’re taking a poll.

23_57499x ch17.qxd  6/17/05  8:02 PM  Page 281

TEAM LinG



23_57499x ch17.qxd  6/17/05  8:02 PM  Page 282

TEAM LinG



LazyWeb

One interesting use of Movable Type has been the site at www.
lazyweb.org. There, an installation of Movable Type has been
appropriated to extend the idea that should you ever find yourself

yearning for a technological improvement, you need only announce this
need publicly and someone will either point out that it already exists or be
sufficiently excited to go off and build it themselves.

The LazyWeb site acts as an aggregator of these wishes. People make their
wish on their own site and then TrackBack to the LazyWeb site, where a
short excerpt of their post is displayed and a link back to them produced.
People can visit the LazyWeb site or subscribe to the RSS feed for continual
inspiration. Figure 18-1 shows the LazyWeb site.

This sort of site isn’t limited to the open Internet. In a corporate setting,
you could create multiple LazyWeb sites, using the same functionality to
highlight specific subject areas. Because it works by TrackBack, and because
you can configure MT to send a TrackBack ping whenever a post is made
within a certain category, it is easy to set this up as an automatic subject
aggregator. For such a simple application, it has hidden depths.

Having said that, it must be emphasized that this is a very simple applica-
tion, but it is an application. Movable Type, with only the addition of one,
almost trivial, script, can be made into an application with a good deal of
social sophistication. It is hoped that it gets you thinking about how your
use of MT might be made richer within your own environment, public and
intranet both.

˛ Very simple
applications

˛ Using the XML-RPC
interface

˛ Repurposing the
entry fields

chapter

in this chapter

24_57499x ch18.qxd  6/17/05  7:57 PM  Page 283

TEAM LinG



284 Part V — Hacking Powerful Blog Applications Together

FIGURE 18-1: The LazyWeb site

Using All the Entry Fields
One other thing that differentiates the LazyWeb set up from others is that it uses the existing
MT entry fields for its database. It doesn’t create any additional tables in the real MT database,
or require additional code within the templates to get at it. Instead, we’re using the more rarely
used fields to hold all the extra data the TrackBack ping gives us.

The ping, remember, gives us the pinger’s entry title, its URL, an excerpt, and the real name of
the pinging blog. Our code places them like this:

� Ping title = Entry title

� Ping excerpt = Entry Text

� Ping URL = Extended Entry

� Ping blog name = Entry keywords

24_57499x ch18.qxd  6/17/05  7:57 PM  Page 284

TEAM LinG



285Chapter 18 — LazyWeb

How the LazyWeb Application Works
To simplify things further, let’s look at the steps the application takes.

1. Someone writes a post on his or her own weblog containing a link to the LazyWeb site.

2. Their own installation of MT, with auto-trackback detection turned on, goes out to the
LazyWeb site and loads the page looking for the Trackback RDF snippet.

3. It finds the snippet and parses it for the path of the Trackback script.

4. It pings the Trackback script.

5. The LazyWeb site receives the ping and acknowledges it.

6. The LazyWeb site takes the ping data and creates an entry from it.

7. The LazyWeb site rebuilds.

The process requires three main changes to a standard MT weblog: a front page with a modi-
fied RDF snippet, a script to listen for TrackBacks and post them as new entries, and a tem-
plate system for entries that takes the additional data available into account. Let’s go through
these one by one.

The Front Page Template
Ordinarily, the Trackback RDF snippet would only appear inside individual entry archives. It’s
placed there with the <$MTEntryTrackbackData$> tag. This tag takes no attributes and is
basically unhackable, so we need to put in our own hardcoded snippet instead:

<!--
<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:trackback=”http://madskills.com/public/xml/rss/module/trackb
ack/”

xmlns:dc=”http://purl.org/dc/elements/1.1/”>
<rdf:Description

rdf:about=”http://URL.TO.SITE/index.html”
trackback:ping=”http://URL.TO.SITE/lazywebtb.cgi”
dc:title=”Generic LazyWeb Front Page”
dc:identifier=”http://URL.TO.SITE/index.html”
dc:subject=””
dc:description=”The Front Page of the Generic LazyWeb site.”
dc:creator=”Your Name”
dc:date=”2003-01-15T22:19:48+01:00” />

</rdf:RDF>
-->

You need to put this into your site’s front page, changing the obvious bits to point to your
own site.

24_57499x ch18.qxd  6/17/05  7:57 PM  Page 285

TEAM LinG



286 Part V — Hacking Powerful Blog Applications Together

In the main LazyWeb installation (www.lazyweb.org), we display only the last ping. You
might want more than that. Remember that we’re using the extended fields to hold all of the
data that the TrackBack ping gives us. Listing 18-1 holds the complete template.

Listing 18-1: LazyWeb Index Template

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”
lang=”en”>
<head>

<title>Generic LazyWeb</title>
<link href=”style.css” rel=”stylesheet” type=”text/css”

media=”screen” />
<meta http-equiv=”Content-Type” content=”text/html;

charset=utf-8” />

</head>
<body>

<h1>Generic Lazyweb</h1>

<!--
<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:trackback=”http://madskills.com/public/xml/rss/module/trackb
ack/”

xmlns:dc=”http://purl.org/dc/elements/1.1/”>
<rdf:Description

rdf:about=”http://URL.TO.SITE/index.html”
trackback:ping=”http://URL.TO.SITE/lazywebtb.cgi”
dc:title=”Generic LazyWeb Front Page”
dc:identifier=”http://URL.TO.SITE/index.html”
dc:subject=””
dc:description=”The Front Page of the Generic LazyWeb site.”
dc:creator=”Your Name”
dc:date=”2003-01-15T22:19:48+01:00” />

</rdf:RDF>
-->

<p> Do you have an idea that you think others might be able to
solve?<br/>
Make a <a href=”http://iawiki.net/LazyWeb”>LazyWeb</a> request by
writing it on your own blog, and then sending a Trackback ping to
the new url: 
<em>http://URL.TO.SITE/lazywebtb.cgi</em></p> 

<MTEntries lastn=”1”>
<MTDateHeader>

24_57499x ch18.qxd  6/17/05  7:57 PM  Page 286

TEAM LinG



287Chapter 18 — LazyWeb

<h3>The last LazyWeb plea was made <$MTEntryRelativeDate
format=”%B %e, %Y”$></h3>
</MTDateHeader>

<p><MTEntryKeywords> asks the Lazyweb,
<blockquote cite=”<$MTEntryMore$>”>
<$MTEntryBody validable=”1” smarty_pants=”1”$>
</blockquote>
</p>

<p>Visit <a href=”<$MTEntryMore$>” title=”A call to the LazyWeb
from <MTEntryKeywords>”><MTEntryKeywords></a> to lend your
wisdom.</p>

<p>Come back later for more LazyWeb ideas, or subscribe to the <a
href=”http://URL TO SITE/index.rdf” title=”The LazyWeb in RSS”>RSS
Feed</a> for the last five entries.</p>
</MTEntries>

</body>
</html>

The MTEntryBody template tag includes a smarty_pants attribute, as do the other templates
in this chapter. This attribute is supported by SmartyPants, a Movable Type plugin by John
Gruber that makes quotation marks, em dashes, and ellipses use more attractive characters (for
example, quote marks curl inward on the outside of the text they mark). This plugin is available
from Gruber’s website at http://daringfireball.net/projects/smartypants.

Listening for TrackBacks — mt-lazyweb.cgi
The heart of the application is the mt-lazyweb.cgi script. This listens for TrackBack pings
and takes their data payload to save as an entry. It does this via the XML-RPC interface. The
workings are more finely detailed in Chapter 6, “XML-RPC API.”

Look to Listing 18-2 for the code of this script.

Listing 18-2: The mt-lazyweb.cgi Script

#!/usr/bin/perl -w
use strict;
use CGI qw( :standard );
use XMLRPC::Lite; 
use Class::Struct; 

Continued

24_57499x ch18.qxd  6/17/05  7:57 PM  Page 287

TEAM LinG



288 Part V — Hacking Powerful Blog Applications Together

Listing 18-2 (continued)

# Put your own values in here.
my $username = “Ben Hammersley”; 
my $password = “XXXXXXX”; 
my $url=”http://www.mediacooperative.com/mt-xmlrpc.cgi”;
my $blogid = “5”;

######################################
######################################

my $struct;

struct( struct => { 
title => ‘$’,
description => ‘$’,
dateCreated => ‘$’, 
mt_text_more => ‘$’,
mt_excerpt => ‘$’,

mt_keywords => ‘$’,
mt_allow_comments => ‘$’,
mt_allow_pings => ‘$’,
mt_convert_breaks => ‘$’,
mt_tb_ping_urls => ‘$’
}

);

if (param()) {
my $i = { map { $_ => scalar param($_) } qw(title excerpt url

blog_name) };

$struct->{‘title’} = “$i->{title}”; 
$struct->{‘description’} = “$i->{excerpt}”;
$struct->{‘mt_text_more’} = “$i->{url}”;
$struct->{‘mt_keywords’} = “$i->{blog_name}”;

# Post the message to the blog 
my $rpc_call = XMLRPC::Lite->new; 
$rpc_call->proxy($url); 

my $call_result = $rpc_call->call(‘metaWeblog.newPost’ =>
$blogid, $username, $password, $struct, 1); 

print “Content-Type: text/xml\n\n”;
print qq(<?xml version=”1.0” encoding=”iso-

8859-1”?>\n<response>\n);
if ($call_result->fault) {

printf qq(<error>1</error>\n%s\n), xml(‘message’,
$call_result->faultstring);

24_57499x ch18.qxd  6/17/05  7:57 PM  Page 288

TEAM LinG



289Chapter 18 — LazyWeb

} else {
print qq(<error>0</error>\n) . ($_[1] ? $_[1] : ‘’);

}
print “</response>\n”;

} else {

print header;
print start_html();
print h1(“Lazyweb Trackback Listener”);
print p(“This URL is not for the likes of you. It’s for

Trackback enabled weblogs to ping.”);
print p(“Write your Lazyweb request on your own weblog, and

then link to this site’s frontpage”);
print end_html;

}

You should place this in your blog’s root directory, having changed the variables at the top to
suit your own setup. The script is a little more complex than it need be, as it tests for people
loading the script directly from their browser.

In earlier versions of this system, I found that people were loading the script (because I had
written the URL on the front page as somewhere to manually TrackBack too), which would
then leave an entry with empty values in every field.

That wasn’t good, so now it checks for the parameters passed by a usual TrackBack, and if
they’re not there, it displays a vaguely polite warning instead.

As yet, I haven’t heard of this breaking any implementations of TrackBack, as all known imple-
mentations follow the TrackBack specification to the letter; but there is always a risk.

Put the script in place, setting its file permissions to 755 to enable it to run. Load it up in a
browser at its URL and you should see the warning message, which provides a means of testing
whether it was properly installed.

When the script receives an actual TrackBack, it uses the XML-RPC interface to make the
entry. The script and Movable Type installation don’t even need to be on the same server to
communicate with each other over XML-RPC.

Using a Template System
As previously discussed, this little application uses the extended entry fields as its database.
Therefore, you will need to change your other templates to use the data. Listing 18-3 contains
the Individual Entry Archive template for a LazyWeb site.

24_57499x ch18.qxd  6/17/05  7:57 PM  Page 289

TEAM LinG



290 Part V — Hacking Powerful Blog Applications Together

Listing 18-3: LazyWeb Individual Entry Template

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html;
charset=<$MTPublishCharset$>” />

<title><$MTBlogName$>: <$MTEntryTitle$></title>

<link href=”http://www.lazyweb.org/style.css” rel=”stylesheet”
type=”text/css” media=”screen” />
<link rel=”alternate” type=”application/rss+xml” title=”RSS”
href=”<$MTBlogURL$>index.rdf” />
<link rel=”start” href=”<$MTBlogURL$>” title=”Home” />
<MTEntryPrevious>
<link rel=”prev” href=”<$MTEntryPermalink$>” title=”<$MTEntryTitle
encode_html=”1”$>” />
</MTEntryPrevious>
<MTEntryNext>
<link rel=”next” href=”<$MTEntryPermalink$>” title=”<$MTEntryTitle
encode_html=”1”$>” />
</MTEntryNext>

<script type=”text/javascript” language=”javascript”>
<!--

function OpenTrackback (c) {
window.open(c,

‘trackback’,

‘width=480,height=480,scrollbars=yes,status=yes’);
}

var HOST = ‘<$MTBlogHost$>’;

// Copyright (c) 1996-1997 Athenia Associates.
// http://www.webreference.com/js/
// License is granted if and only if this entire
// copyright notice is included. By Tomer Shiran.

function setCookie (name, value, expires, path, domain, secure) {
var curCookie = name + “=” + escape(value) + ((expires) ? “;

expires=” + expires.toGMTString() : “”) + ((path) ? “; path=” +
path : “”) + ((domain) ? “; domain=” + domain : “”) + ((secure) ?
“; secure” : “”);

document.cookie = curCookie;
}

24_57499x ch18.qxd  6/17/05  7:57 PM  Page 290

TEAM LinG



291Chapter 18 — LazyWeb

function getCookie (name) {
var prefix = name + ‘=’;
var c = document.cookie;
var nullstring = ‘’;
var cookieStartIndex = c.indexOf(prefix);
if (cookieStartIndex == -1)

return nullstring;
var cookieEndIndex = c.indexOf(“;”, cookieStartIndex +

prefix.length);
if (cookieEndIndex == -1)

cookieEndIndex = c.length;
return unescape(c.substring(cookieStartIndex + prefix.length,

cookieEndIndex));
}

function deleteCookie (name, path, domain) {
if (getCookie(name))

document.cookie = name + “=” + ((path) ? “; path=” + path
: “”) + ((domain) ? “; domain=” + domain : “”) + “; expires=Thu,
01-Jan-70 00:00:01 GMT”;
}

function fixDate (date) {
var base = new Date(0);
var skew = base.getTime();
if (skew > 0)

date.setTime(date.getTime() - skew);
}

function rememberMe (f) {
var now = new Date();
fixDate(now);
now.setTime(now.getTime() + 365 * 24 * 60 * 60 * 1000);
setCookie(‘mtcmtauth’, f.author.value, now, ‘’, HOST, ‘’);
setCookie(‘mtcmtmail’, f.email.value, now, ‘’, HOST, ‘’);
setCookie(‘mtcmthome’, f.url.value, now, ‘’, HOST, ‘’);

}

function forgetMe (f) {
deleteCookie(‘mtcmtmail’, ‘’, HOST);
deleteCookie(‘mtcmthome’, ‘’, HOST);
deleteCookie(‘mtcmtauth’, ‘’, HOST);
f.email.value = ‘’;
f.author.value = ‘’;
f.url.value = ‘’;

}

//-->
</script>

Continued

24_57499x ch18.qxd  6/17/05  7:57 PM  Page 291

TEAM LinG



292 Part V — Hacking Powerful Blog Applications Together

Listing 18-3 (continued)

<$MTEntryTrackbackData$>

</head>

<body>
<div id=”box”>
<div id=”head”><h1><a href=”/” title=”Back
Home!”>LazyWeb</a></h1></div>

<div id=”weblog”>

<h2><$MTEntryTitle$></h2>

<p>On <$MTEntryDate format=”%x”$> <a href=”<$MTEntryMore$>”
title=”A call to the LazyWeb from
<MTEntryKeywords>”><MTEntryKeywords> is asking the Lazyweb</a>,
<blockquote cite=”<$MTEntryMore$>”>
<$MTEntryBody validable=”1” smarty_pants=”1”$>
</blockquote>
</p>

<MTEntryIfAllowComments>

<h2>Comments</h2>

<MTComments>
<$MTCommentBody smarty_pants=”1” link_titles=”1” acronym=”1”
$><br/><br/>
<span class=”permalink”>Posted at
<$MTCommentDate$></span><br/><br/><br/>
</MTComments>

<MTEntryIfCommentsOpen>
<h2>Post a comment</h2>

<form method=”post” action=”<$MTCGIPath$><$MTCommentScript$>”
name=”comments_form” onsubmit=”if (this.bakecookie[0].checked)
rememberMe(this)”>
<input type=”hidden” name=”static” value=”1” />
<input type=”hidden” name=”entry_id” value=”<$MTEntryID$>” />

<div style=”width:180px; padding-right:15px; margin-right:15px;
float:left; text-align:left; border-right:1px dotted #bbb;”>

<label for=”author”>Name:</label><br />
<input tabindex=”1” id=”author” name=”author” /><br /><br />

<label for=”email”>Email Address:</label><br />
<input tabindex=”2” id=”email” name=”email” /><br /><br />

24_57499x ch18.qxd  6/17/05  7:57 PM  Page 292

TEAM LinG



293Chapter 18 — LazyWeb

<label for=”url”>URL:</label><br />
<input tabindex=”3” id=”url” name=”url” /><br /><br />

</div>

Remember personal info?<br />
<input type=”radio” id=”bakecookie” name=”bakecookie” /><label
for=”bakecookie”>Yes</label><input type=”radio” id=”forget”
name=”bakecookie” onclick=”forgetMe(this.form)” value=”Forget
Info” style=”margin-left: 15px;” /><label
for=”forget”>No</label><br style=”clear: both;” />

<label for=”text”>Comments:</label><br />
<textarea tabindex=”4” id=”text” name=”text” rows=”10”
cols=”50”></textarea><br /><br />

<input type=”submit” name=”preview” value=”&nbsp;Preview&nbsp;” />
<input style=”font-weight: bold;” type=”submit” name=”post”
value=”&nbsp;Post&nbsp;” /><br /><br />

</form>

<script type=”text/javascript” language=”javascript”>
<!--
document.comments_form.email.value = getCookie(“mtcmtmail”);
document.comments_form.author.value = getCookie(“mtcmtauth”);
document.comments_form.url.value = getCookie(“mtcmthome”);
if (getCookie(“mtcmtauth”)) {

document.comments_form.bakecookie[0].checked = true;
} else {

document.comments_form.bakecookie[1].checked = true;
}
//-->
</script>
</MTEntryIfCommentsOpen>
</MTEntryIfAllowComments>

</div>

</div>
</body>
</html>

The latest version of these templates and the script are always available at
www.lazyweb.org.

24_57499x ch18.qxd  6/17/05  7:57 PM  Page 293

TEAM LinG



294 Part V — Hacking Powerful Blog Applications Together

Summary
The LazyWeb project had its humble beginnings in 2002 as a central spot where people could
make a plea to the Internet-using world, hoping to get something they’d love to use, such as a
program, a simple software component, or another manner of helpful gadget.

The site is premised on two optimistic notions: Someone else has the same need and built it
already, or someone else could be persuaded to do so.

Amusingly enough, one of the most common pleas is to set up a LazyWeb for a subject other
than web programming and design. With a specially designed weblog and the mt-lazyweb.
cgi script, even the laziest Movable Type hacker can launch one of these sites.

24_57499x ch18.qxd  6/17/05  7:57 PM  Page 294

TEAM LinG



Creating a
Community-
Authored Website

As you already know, Movable Type takes the majority of the work
out of personal publishing. However, one of the limitations of the
platform (which, of course, viewed from another perspective is also

one of its strengths) is that outside of comments and TrackBacks, only reg-
istered authors can actually do any of the publishing.

The question at hand is would it be possible to create a Movable Type–
powered system that accepts entry submissions from anyone? For instance,
could MT power a threaded bulletin board, an open-submission recipe
database, or even the wildly popular Metafilter (www.metafilter.com)?

The answer is a big resounding yes.

Because of MT’s strict user authentication feature, there is no way to create
such a system by going through MT’s front door, the browser interface,
unless you were to create accounts for every single author. Luckily, Movable
Type supports several highly powerful APIs that enable you to interact with
the system through the back door.

Introducing MT-Filter
The functionality model I have followed for this example is Metafilter, my
Hacking Movable Type co-author Matt Haughey’s well-known community
blog. Metafilter is a custom application developed using a scripting/
database connectivity hybrid language called Cold Fusion, and it runs on
a Windows platform. If you are not familiar with Metafilter, you should
check it out at www.metafilter.com.

˛ Choosing the API

˛ Overview of 
MT-Filter

˛ Creating MT-Filter

˛ Improving MT-Filter

chapter

in this chapter

25_57499x ch19.qxd  6/17/05  8:14 PM  Page 295

TEAM LinG



296 Part V — Hacking Powerful Blog Applications Together

To match Metafilter’s feature set using one of the powerful Movable Type APIs while still
keeping this example concise and simple, I have settled on the following requirements:

� Accept entry submissions from anonymous users while minimizing security risks.

� Publish entries immediately after submission to a main index, individual archive, and
date-based archive.

� Provide comment and TrackBack functionality for each entry.

You will notice that user accounts, a major feature of Metafilter and an important element of
its community cohesiveness, has been omitted. This is not because it isn’t possible, but because
it adds a great deal of complexity and overhead in terms of code to the example. If you under-
stand fully what we do here, you will be able to extend the example using TypeKey or a local
authentication system to create the same effect.

The API Choice: Perl versus XML-RPC
In determining which language and API to use for this exercise, there were two main options:

� The Perl API and Perl

� The XML-RPC API and a random scripting language

Because we have devoted a very large portion of this book to Perl and the Perl API, I thought it
best to choose the road less traveled. This choice was further strengthened by the fact that a kind
soul named Keith Devens (www.keithdevens.com) has created and continues to maintain
a fabulous XML-RPC library for PHP for the world to use. This library makes the formation,
sending, and receiving of XML-RPC requests and responses as simple as a subroutine call.

I wrote a companion XML-RPC library for Movable Type that specifically aids in the creation
of the basic MT function calls (for example, publishing an entry, rebuilding a weblog, setting a
category, and so on) in the form of PHP functions.

Using these two libraries, communicating with MT via PHP has never been so easy, and this
seemingly monumental and complex task is really quite simple and merely a matter of setup
and configuration.

You may want to briefly review Chapter 6, “XML-RPC API,” to refresh yourself about the basic
details of the API. However, because most of the work is done for you in the form of these two
libraries, you actually don’t need to be an XML-RPC guru to build something really cool. Never
let it be said that we don’t love our readers.

25_57499x ch19.qxd  6/17/05  8:14 PM  Page 296

TEAM LinG



297Chapter 19 — Creating a Community-Authored Website

Overview of the Application
When a user submits the entry from the web form on the site, it is processed by a main data
processing script (submit_inc.php). Along with the two XML-RPC libraries it calls at
runtime, there are two main sections of the program (see Figure 19-1) that we shall concern
ourselves with:

1. The droll but dreadfully important data processing

2. The XML-RPC transformation and request

The procedures in the data processing step are really no different from processing any form on
the web via PHP. We typically look for three things:

� Completion of required fields

� Validity of the data (for example, e-mail address)

� Security of the data

Again, for the sake of clarity, I’ve minimized this step in this example because most of it is
fairly standard and out of the scope of this text. However, you should always pay careful atten-
tion to how data from unknown sources is handled, and modify the submit_inc.php library
before using this in a production setting. Figure 19-1 provides an overview of the application
from the initiation of a request to its delivery to MT.

FIGURE 19-1: Overview of the application from the initiation of the 
request to its delivery to MT

Once the data is verified and ready to be sent to MT, we will use our two XML-RPC libraries
to package it as a fully-formed entry and transmit it as an MT-compatible XML-RPC request.
MT parses this data and, if everything goes well, sends us back the XML-RPC version of a
thumbs-up. After that, our script will use the same method to kick off a rebuild of the pages so
that the entry is publicly visible.

Entry
form

Data
processing

PHP
XMLRPC

lib

MT
XMLRPC

lib

MT

25_57499x ch19.qxd  6/17/05  8:14 PM  Page 297

TEAM LinG



298 Part V — Hacking Powerful Blog Applications Together

Like Metafilter, MT-Filter will feature four major page types:

� A main index page

� Individual archives

� Date-based archives

� An entry submission page

These are completely customizable through the regular MT template editing interface.

Creating MT-Filter
As is often the case with more complex projects, you must first take care of some requirements
in order to build a community-authored site. Luckily, most of the requirements are standard in
the majority of web-hosting environments, and the ones that aren’t are a simple download away.

Following is a list of these requirements as well as the current versions (in parentheses) I used.
Other versions may be also work but have not been tested.

� Movable Type (v3.11)

� PHP (v4.3.2)

� Jay Allen’s XML-RPC library for MT (v1.0) and submission form handling code (v1.0)

� Keith Devens’ XML-RPC library for PHP (v2.5)

� Brad Choate’s KeyValues plugin for MT 

� Custom template code for the following:

■ Main index template

■ Individual archive template

■ Monthly (date-based) archive template

■ Submission handling script

The general steps we will undertake to create MT-Filter are as follows:

1. Download the code for this chapter.

2. Create a new weblog and user.

3. Upload the plugin, libraries, and scripts.

4. Configure the weblog.

5. Install the templates.

6. Configure the submission script.

7. Publish your blog.

25_57499x ch19.qxd  6/17/05  8:14 PM  Page 298

TEAM LinG



299Chapter 19 — Creating a Community-Authored Website

Step 1: Get the Code
All of the required code used for this exercise, except for PHP and Movable Type itself, is
available for download in zip and tar/gzip formats at www.hackingmt.com.

You may, however, want to check for the latest versions of Keith Devens’ XML-RPC library
for PHP and Brad Choate’s KeyValues plugin:

� http://keithdevens.com/software/xmlrpc

� www.bradchoate.com/weblog/2002/07/27/keyvalues

Step 2: Create New Weblog and User
Create a new weblog and MT user for the community-authored site. All submissions will be
posted to this weblog under this single author’s user ID.

For the purposes of this exercise, I called the blog MT-Filter and did not make a special
archive directory (meaning site path and archive path are the same, as are site and archive URL).

For the sake of security, the new MT user is essentially a dummy user who has rights only to
the MT-Filter weblog, and permission only to post entries. The actual user details (username,
password, e-mail, URL) are unimportant because they are only used by the script and never
seen in public, although the e-mail address should be a working one in case you want to receive
notifications or perform a password recovery.

I created a user called mtfilter_user with a password of secretpass. You should use a
different username and password, which you will enter again in Step 6.

Step 3: Upload Plugin, Libraries, and Scripts
In the code archive you downloaded in Step 1, you will find an includes directory that con-
tains the XML-RPC helper libraries and auxiliary submission code. Upload those files together
to a publicly accessible place on your web server.

For this exercise, I put them in a directory called includes at the root of my web server. You
can put them wherever you like, but you will need to change some minor details later in Step 6
if you deviate from the procedure outlined here.

Brad Choate’s KeyValues plugin should be installed as outlined in the README file in the plu-
gin archive.

Step 4: Configure the Weblog
After selecting Config ➪ Preferences, you must change default text formatting for new entries
to “None.” In keeping with the Metafilter style, you may also want to configure the following
options unless you have a reason not to:

� “Allow Trackback Pings” On by default - checked

� Accept Comments from Unregistered Visitors - checked

25_57499x ch19.qxd  6/17/05  8:14 PM  Page 299

TEAM LinG



300 Part V — Hacking Powerful Blog Applications Together

� Require Name and Email Address Information - checked

� Uncheck “Enable Unregistered Comment Moderation” - unchecked

� Accept Comments from Registered Visitors - checked

� Automatically Approve Registered Commenters - checked

� “Allow Comments” Default: Open

� Allow HTML in Comments - checked

After selecting Config ➪ Archive Files, ensure that the individual and monthly archiving
options are checked and that they have the following Archive File Templates:

� Individual:

<$MTArchiveDate format=”%Y/%m/”$><$MTEntryID pad=”1”$>

� Monthly:

<$MTArchiveDate format=”%Y/%m/index.php”$>

Step 5: Install the Template Code
Four main templates are used in this exercise:

� Main index

� Individual archives

� Monthly (that is, date-based) archives

� Submission form

The first three are already included in the default setup, but you will have to create the fourth
as a new Index template. You can name the output file whatever you like (I used
submit.php), but you must name the template itself “Submission form” in order for the
MTLink tag in the other templates to work correctly. To speed things up, you can uncheck the
Rebuild This Template option on this template if you like, but remember to manually rebuild
when you make changes.

If you like working with linked template files, you can simply upload the four template files
from the mt_templates directory found in the code archive you downloaded in Step 1 to
your web server and link them on their template editing pages. Otherwise, you will need to
copy and paste the code from each file into its respective template.

Step 6: Edit the Submission Configuration
If you have deviated from the default setup in any of the preceding steps, you may need to
change one or more of the configuration options at the very top of the submission form tem-
plate in the sections labeled “USER-DEFINED VARIABLES”.

25_57499x ch19.qxd  6/17/05  8:14 PM  Page 300

TEAM LinG



301Chapter 19 — Creating a Community-Authored Website

PATH_TO_LIBRARIES is the relative path from the document root of your website to the
directory in which the auxiliary submission handling script (submit_inc.php) and the 
two XML-RPC libraries are located. For example, if you put those files into http://
YOURSERVER.COM/misc/lib/, the PATH_TO_LIBRARIES setting should look like so:

define(‘PATH_TO_LIBRARIES’, ‘misc/lib’);

Be sure to omit any leading and trailing slashes.

The username and password of the user you created in Step 2 will also need to be entered into
XMLRPCREQ_USER and XMLRPCREQ_PASS unless you have chosen the following defaults:

define(‘XMLRPCREQ_USER’, ‘mtfilter_user’);
define(‘XMLRPCREQ_PASS’, ‘secretpass’);

Of course, you absolutely should not use the default password for security reasons, if that wasn’t
obvious.

Unless you want to alter the actual submission page template code located at the bottom of the
template, or you know from experience that you should alter something in the section entitled
“MT-DEFINED VARIABLES”, you are finished editing this template.

Step 7: Publish Your Blog
Rebuild all of the files in the MT-Filter weblog. Once the rebuild is finished, your pages will
be visible, although there won’t be any entries. You can click the Post an Entry link on the top
right-hand side of the main page to enter your first one.

Once you post your first entry, take a look at it inside of the regular MT interface. You will
notice that the title and entry body are entered into their respective fields. You will also see that
the extended entry field looks something like this:

&nbsp;
Name=Jay Allen
Email=mtfilter@hackingmt.com
URL=http://www.jayallen.org/
IPAddr=127.0.0.1

What you see here is the brilliant creation of the KeyValues plugin. The plugin enables you to
overload the MT field(s) of your choice to create an extensible database out of a simple Movable
Type entry. With KeyValues, you can stuff as much information in key-value pairs as you like
into one single field and pull them out as you need them in the publishing step. This is where
the actual submission user information is stored, as opposed to the single MT user profile.

Improving MT-Filter
Once you have the code working, you will see that you have created the essence of Metafilter — a
community-authored blog — using Movable Type as a platform for development.

Well, there is a lot more you can do.

25_57499x ch19.qxd  6/17/05  8:14 PM  Page 301

TEAM LinG



302 Part V — Hacking Powerful Blog Applications Together

First and foremost, everything remains to be done in terms of data verification and sanitizing.
With the PHP porting of the MT functions in MT 3 (see the php/lib directory in your
main MT application directory), you could, for example, tap directly into the sanitize func-
tion and beef up the security of the application.

Second, I didn’t bother to implement categories in this example, but it’s not difficult.
Furthermore, using parent/child categories provided by MT 3, you could easily create a very
interesting Yahoo!-directorylike site driven by the site’s own users.

Last, and much more on the exotic side, you could utilize TypeKey (or a local authentication
system such as Tim Appnel’s Tiny Orwell, www.timaoutloud.org/archives/
000357.html) to implement user authentication. All you need to do is examine the MT
comment form code to understand how to force user authentication before presenting a user
with the entry submission form.

Once you have user authentication in place, you can create a profile page and user statistics,
which you would store locally in a separate database. User banning, karma, moderation, and
administrator rights are not far behind with just a bit more thought.

In fact, I previously created a system for a client, based loosely on this same code, that had a
full administrative interface for selective moderation and differential publishing to intercon-
nected intranet or Internet websites depending on the identity of the submitting user or the
moderation status of the entry itself. All necessary MT functions were reimplemented in the
custom user interface (UI), and there was never a need for the system’s administrators to actu-
ally use the normal MT interface. The system was immense, powerful, and built entirely in
PHP and Movable Type using the XML-RPC API.

The power of the Movable Type APIs is truly limited only by your own imagination.

Summary
By using Movable Type’s Perl and XML-RPC APIs, you can power a website that doesn’t
require MT’s normal browser interface.

Movable Type still stores, retrieves, and publishes data for you, but it does so on your terms.
When you use the APIs, you select the few functions you wish MT to perform, and create an
infrastructure of your own to do the rest. Likewise, when you are creating backdoor access to
a system, the responsibility for the security and integrity of the system falls solely on your
shoulders.

The browser interface serves as a means for you to peer under the hood and see how well the
engine is running. No one else need see it.

The MT-Filter project, perhaps more than any other in this book, shows the flexibility and
power of Movable Type as a platform on which an inspired hacker can develop full-fledged
web applications.

So get hacking!

25_57499x ch19.qxd  6/17/05  8:14 PM  Page 302

TEAM LinG



Symbols
% (percent sign) wildcard, 72

A
abstract class, 122
abuse, preventing

in online poll, 280
use-case-specific, 93

accessing
data, 125–126
database, 34–36
HTTP environment, 120

add_callback method, 198
add_global_filter method of

MT::Template::Context class, 192–193
add_tag method of MT::Template::Context class,

176
add_text_filter method, 193–194
anti-spam plugins, 152–157
Apache and SuExec, 9–10
API (Application Programmatic Interface). See also Atom

API; Perl API; XML-RPC interface
Blogger, 82, 84, 89
for community-authored website, 296
Metaweblog, 84, 89
phpMyAdmin, 35–38
plugin, 128–130
XML::LibXML, 102–103

appkey string, 82, 90
application. See also community-authored website;

LazyWeb site
callback entry points, 120–122
extending, 119–120
launching, 118–119
Smarty, creating with, 226–227

application callbacks, 199–201
Application Programmatic Interface (API). See also Atom

API; Perl API; XML-RPC interface
Blogger, 82, 84, 89
for community-authored website, 296
Metaweblog, 84, 89
phpMyAdmin, 35–38
plugin, 128–130
XML::LibXML, 102–103

AppPostEntrySave callback, 201
Archive filesystem, 4–6

archiving configuration for day planner, 266
assigning entry to category, 140
Atom API

author, setting, 107
category, setting, 106–107
description of, 99–100
entry

deleting, 111–112
editing, 108–110
posting, 105–106

posting date, setting, 106
retrieving Weblog information, 100–105
security, authentication, and, 100
toolkits, 100
uploading file, 110–111

attaching method to callback, 121–122
attributes of object class, 49
author

creating, 138–139
setting, 107

author identity, providing, 19
author_can_create_blog and

author_can_view_log fields, 45
author_created_by field, 45
author_email field, 45
author_name field, 44
author_nickname field, 44–45
author_password field, 45
author_preferred_language field, 45
author_public_key field, 45
author_remote_auth_username and

author_remote_auth_token fields, 45
author_type field, 44
avoiding plugin collisions, 194

B
background tasks, 135
backing up database

command line, using, 36
cron program and, 67–69
importance of, 67
phpMyAdmin interface, using, 37–38
schedule for, 69–70

BerkeleyDB, 33, 34
blocking blacklisted items, 156

Index

26_57499x bindex.qxd  6/17/05  8:06 PM  Page 303

TEAM LinG



blog_allow_anon_comments, blog_allow_
unreg_ comments and blog_allow_
reg_comments fields, 48

blog_allow_comment_html field, 47
blog_allow_comments_default field, 48
blog_allow_pings_default field, 48
blog_archive_tmpl_* field, 49
blog_archive_type field, 47
blog_convert_paras and blog_convert_paras_

comments fields, 48
Blogger API, 82, 84, 89
blogger.getUsersBlogs call, 81–82
blogger.newPost call, 85
blog_is_dynamic field, 49
blog_manual_approve_commenters field, 49
blog_moderate_unreg_comments field, 49
blog_remote_auth_token field, 49
blog_require_comment_emails field, 49
blogroll

description of, 257
publishing as OPML, 262–264
setting up, 257–258
styling and accessibility, 261–262
Technorati website and, 258–260

blog_status_default field, 48
booting Movable Type, 137
BuildFile callback, 201
BuildFileFilter callback, 201

C
caching data, 134
Cadenhead, Rogers (Movable Type Bible,

Desktop Edition), 3
call, adding to XML-RPC interface, 91–94
callback system

application callbacks, 199–201
description of, 120–122
error handling, 199
MT::Object class, 126
object callbacks, 199
priorities, 198

capture tag (Smarty), 225
category

for day planner, 266–267
setting, 106–107
subscription form, 160

category_allow_pings field, 50
category_author_id field, 50
category_ping_urls field, 50
CGI files and MT::App class, 116–117, 118–119
CGI.pm file, 94–96
class attributes, 49

classes, 39–40. See also specific classes
cloning install, 72–74
closing old comments, 71–72
CMS (content management system), 5, 31
code, readability, reuse, and efficiency of, 194
collection of objects, loading, 125
column, naming, 41
command-line access to database, 34–35
comment callback, 199–200
comment listings, 19–21
comment_author field, 51
CommentAuthorLink redirect, turning off, 20
comment_commenter_id field, 52
comment_email field, 51
<comment:encoded> element, 24
CommentFilter callback, 200
comment_ip field, 51
comments

closing old, 71–72
integrating with TrackBacks, 21
relocating stray, 76
time-out interval and, 8

CommentThrottleFilter callback, 200
comment_url and comment_text fields, 51
comment_visible field, 52
community-authored website

API choice for, 296
application overview, 297–298
creating, 298–301
improving, 301–302
MT-Filter and, 295–296
overview of, 295

conditional tag, 184–187, 232–233
configuration application, creating, 209–211
configuration data, storing, 129–130, 198
container tag

adding, 179–180
conditional, 232–233
creating for dynamic plugin, 229–231
stash and, 132–133
traditional, 231–232

container tag looping, 187–189
content management system (CMS), 5, 31
cookie-based deep contextual edit links

Cookie page, 16–17
Edit Link, 17–18

created field, 42–43
cron program, 67–69
CSS and day planner, 273
customizing mtview.php script, 219–220
cycle tag (Smarty), 221

304 Index ■ B–C

26_57499x bindex.qxd  6/17/05  8:06 PM  Page 304

TEAM LinG



D
Daily Archives template, 269–270
data

accessing, 125–126
caching, 134
configuration, storing, 129–130, 198

data persistence
configuration data, 198
description of, 197

database. See also tables
accessing, 34–36
backing up and restoring, 36–38, 67–70
classes stored in, 39–40
entry fields and, 284
mass changes to, 70–72
naming rules, 41–42
object-oriented programming and, 40
power of, 32–33
retrieving data from, 123–125
scheduling backup, 69–70
support for in MT, 33–34
writing to, 227

database-driven Web publishing, 32
Date::Manip package, 274
day planner

archiving configuration, 266
category configuration, 266–267
creating, 265–267
CSS design, 273
Day Views, implementing, 269–270
entry, creating, 267
extending, 273–274
iCalendar format and, 273
Main Index template, 270–271
Month Views, implementing, 269
MT-Planner plugin, 267–269
template configuration, 266
Yearly Archives template, 272

DBI class, 39
<dc.subject> element, 106
debugging techniques

Devel::ptkdb package, 136–137
messaging, 136

deleting
entry in Atom API, 111–112
MySQL and, 70–71
pings in TrackBacks, 75–76
RSD file, 7

del.icio.us
description of, 250–251
integrating with Movable Type, 252–255

keyword tagging and, 255–256
scheduled post and, 252–255

Devel::ptkdb package, 136–137
die statement (Perl), 136
Directory initialization parameter, 137
downloading database software, 34
dynamic plugin

container tags
conditional, 232–233
creating, 229–231
traditional, 231–232

custom tags, creating, 228
global filters and, 233
Hello World tag, 228–229
initialization plugin and, 233
MT tags and, 227–228
speed and, 228
stash elements, preserving, 231
template compiler, instructing, 233–234

dynamic publishing. See also dynamic plugin; dynamic
template; publishing mechanics

architecture behind, 215–216
customizing mtview.php script, 219–220
MT class and, 217
MTDatabase class and, 217–218
MTViewer class and, 219
mtview.php script, 216
Smarty template and, 221
Web application, creating with Smarty, 226–227
writing to database, 227

dynamic template
hacking, 222–223
paging multiple entries, 224–225
paging single entry, 225–226
PHP and, 164

E
editing

entry in Atom API, 108–110
index template, 14
linked file, 13

e-mail address of commenter, suppressing, 19
embedded tags, 189–192
EmbedImage plugin, 240–243
enabling SuExec, 9–10
entry

assigning to category, 140
for day planner, 267
deleting in Atom API, 111–112
dynamically paging, 224–226
editing in Atom API, 108–110

305Index ■ D–E

26_57499x bindex.qxd  6/17/05  8:06 PM  Page 305

TEAM LinG



entry (continued)
inserting new, 139
posting

with Atom API, 105–106
to LazyWeb, 86–88
with XML-RPC API, 85–86

in side blog, 167
subscription form, 160–161
transferring, 168

entry fields, 284
entry page, using SimpleComments plugin on, 147–148
entry_allow_comments field, 53
entry_allow_pings field, 53
entry_basename field, 54
entry_category_id field, 53
entry_convert_breaks field, 53
entry_pinged_urls field, 53
entry_status field, 53
entry_tangent_cache field, 54
entry_title, entry_text, entry_text_more,

entry_excerpt, and entry_keywords
fields, 53

entry_to_ping_urls field, 53
error handling

callback system, 199
publishing mechanics and, 134–135
writing plugin and, 180–181

Exchangeable Image File Format (Exif ) standard,
245–246

experimental template, working with, 14
extending

day planner, 273–274
MT::App class, 119–120
MT::Object class, 126–128

Extensible Markup Language Remote Procedure Calls
(XML-RPC) interface

adding call to, 91–94
call example, 81–84
community-authored website and, 296
description of, 81
mobile article trigger example, 94–97
Net::Blogger module and, 88–90
Perl API compared to, 83
post status and, 90–91
posting entry, 85–86
supported calls, 84, 90

F
FeedURI for entire installation, 101
fetch methods of MTDatabase class, 218
file, uploading, 110–111

flame prevention plugin
configuration application, creating, 209–211
configuring, 209
interface, adding to, 211–213
jerk filter, 202
jerk throttle, 202–206
listing, 206–208

FOAF (Friend of a Friend) element, 23–24
folksonomies, 163
foreign key, 42
forwarding address, 72
Fotonotes specification, 248
Friend of a Friend (FOAF) element, 23–24

G
get_unexpired_value method of MT::Session

class, 131
GetXML plugin, 260–261
global filter, 233
global search and replace, 77–78
global tag attributes, 192–193
GPS data, 248
granular permissions, 15

H
Hello World plugin. See writing plugin
HTTP environment, accessing, 120

I
iCalendar format, 273
ImageInfo plugin, 246–248
ImageMagick Perl module, 239, 240
images, placing in directory, 4
index template, editing, 14
initialization plugin, 233
initialization process, 137
inserting new entry, 139
installation, 7–8
installing

KeyValues 1.53 plugin, 169
MT-Blacklist plugin, 9, 152–153
MT-Moderate plugin, 162
MT-Notifier plugin, 158
MT-Planner plugin, 268
MultiBlog plugin, 166
phpMyAdmin interface, 35–36
plugins, 146
SimpleComments plugin, 147
TechnoratiTag plugin, 164
Textile or Markdown plugin, 151
Workflow plugin, 168

306 Index ■ E–I

26_57499x bindex.qxd  6/17/05  8:06 PM  Page 306

TEAM LinG



interface, adding to, 211–213
invoking rebuild, 140–141

K
key, putting into stash, 133–134
KeyValues 1.53 plugin, 169–174, 189
keyword tagging, 255–256

L
launching application, 118–119
LazyWeb site

description of, 283, 284
entry fields and, 284
Front Page template, 285–287
mt-lazyweb.cgi script, 287–289
posting entry to, 86–88
steps taken by, 285
template system, 289–293

lib subdirectory, 113
LIMIT modifier (SQL), 71
linked template files, 13
linklog

del.icio.us and, 250–255
description of, 249
elements of, 249–250

listings
assigning entry to category, 140
attaching method to callback, 121–122
author, creating, 138–139
blog subscription form, 160
category subscription form, 160
conditional tag, adding, 185–186
embedding template tag output, 190–192
entries in side blog, 167
entry subscription form, 160–161
extending

MT::App class, 119–120
MT::Object class, 126–128
plugin capabilities, 182–184

flame prevention plugin, 206–208
Hello World plugin, 175
Hello World tag, creating, 176
inserting new entry, 139
launching application, 118–119
LazyWeb

index template, 286–287
Individual Entry Archive, 290–293

local blog aggregation, 167
looping within container tag, 188–189
MT::App subclass, 117–118
mt-lazyweb.cgi script, 287–289
MultiBlog plugin examples, 167

name attribute, adding, 177
OPML blogroll

simple, 262
template, 263

page build procedure, 131–132
photo blog

index template, 238
Individual Entry Archive, 239

plugin package, 128–129
polling template, 276–277
SimpleComments plugin

CSS styling of comments and TrackBacks, 149
entry page, using on, 148
MT-Switch plugin and, 149–150

template context, getting values from, 178–179
load method of MT::Object class, 123–125
local blog aggregation, 167
log routine, 135
looping within container tag, 187–189

M
Main Index template, 270–271
maintenance and regular tasks, 6
Markdown plugin, 150–152
mass changes to database

closing old comments, 71–72
forwarding address, 72
safety and, 70–71

messaging, 136
Metafilter, 295
Metaweblog API, 84, 89
metaWeblog.newPost call, 85–86
mobile phone photo blog, setting up, 243–245
moderation of blacklisted items, 156
modified field, 42–43
Monthly Archives template, 269
Movable Type Bible, Desktop Edition

(Rogers Cadenhead), 3
Movable Type (MT)

booting, 137
description of, 3
use of, 283

moving install, 72–74
MT class, 116, 217
MT Plugins Directory, 145
MT::App class

accessing HTTP environment, 120
callback system, 120–122
extending applications, 119–120
overview of, 116–117
structure, 117–119
subclassing, 209–211

307Index ■ I–M

26_57499x bindex.qxd  6/17/05  8:06 PM  Page 307

TEAM LinG



MT::App::CMS package, 119–120
mt_author table, 43–45
MT-Blacklist plugin

blocking and moderating, 156
description of, 152
duplicate check, 157
encapsulation, 153
installing, 9, 152–153
matching, 154–156
max URL and old entry checks, 157
regular expressions, 154–155
strings, 154
URLPatterns, 155–156

mt_blog table, 45–49
MT::Builder class, 131
mt_category table, 49–50
mt_comment table, 50–52
MTCommentAuthorLink tag

no_email attribute, 20
spam_protect attribute, 19

MTCommentDate tag, 18
MTCommentEntry tag, 18–19
MTDatabase class, 217–218
MT_DIR directory, 146
MTEntries tag, 18
mt_entry table, 52–54
MT::ErrorHandler class, 114
MT-Feed plugin, 8
MT-Filter

code, getting, 299
creating, 298–301
description of, 295–296
improving, 301–302
page types, 298
plugin, libraries, and scripts, uploading, 299
publishing, 301
submission configuration, editing, 300–301
template code, installing, 300
weblog and user, creating, 299
weblog, configuring, 299–300

mt.getCategoryList call, 91
MTIfKeyExists tag (KeyValues 1.53 plugin), 172
MTIfKeyMatches tag (KeyValues 1.53 plugin), 173
MTIfKeyNotMatched tag (KeyValues 1.53 plugin), 174
MTIfNoKeyExists tag (KeyValues 1.53 plugin), 173
MTInclude tag, 12
mt_ipbanlist table, 54
MTKeyName tag (KeyValues 1.53 plugin), 174
MTKeyValue tag (KeyValues 1.53 plugin), 174
MTKeyValues tag (KeyValues 1.53 plugin), 170–172
MTKeyValuesFooter tag (KeyValues 1.53 plugin), 172
MTKeyValuesHeader tag (KeyValues 1.53 plugin), 172

MTKeyValuesStripped tag (KeyValues 1.53 plugin),
174

mt-lazyweb.cgi script, 287–289
MT::Log class, 135
mt_log table, 55
MT-Moderate plugin, 161–163
mt_notification table, 55–56
MT-Notifier plugin

description of, 157
installing, 158
management interface, 158–159
template, using within, 159–161

MT::Object class
accessing data, 125–126
callback system, 126
extending, 126–128
load method, 123–125
methods, 122–123

MT-Perlscript plugin, 21, 255
mt_permission table, 56–57
MT::Placement class, 140
mt_placement table, 57
MT-Planner plugin, 267–269
MT::Plugin class, 128–129
MT::PluginData class, 129–130, 198
mt_plugindata table, 58, 197
MT::Promise class, 133–134
MT::Request class, 134
MT::Session class, 130–131
mt_session table, 58–60
mt.setStatus call, 93–94
MT_STATIC directory, 146
MT-Switch plugin, 149–150
mt_tbping table, 60–61
MT::Template class, 131
mt_template table, 61–63
MT::Template::Context class

add_global_filter method, 192–193
add_tag method, 176
stash and, 133

mt_templatemap table, 63–64
MT-TemplatePro plugin, 14
mt_trackback table, 65–66
MT::Util class, 135
MTViewer class, 219
mtview.php script

customizing, 219–220
overview of, 216

MultiBlog plugin, 165–167
MySQL

database, accessing, 34–36
description of, 33–34

308 Index ■ M

26_57499x bindex.qxd  6/17/05  8:06 PM  Page 308

TEAM LinG



SELECT statement, 70–71
TMTOWTDI, 69
website, 34

N
names anchors, 19
naming rules, 41–42
nav-commenters.gif file, 4, 5
Net::Blogger module, 88–90
no_email attribute of MTCommentAuthorLink tag, 20

O
object callbacks, 199
object class, 49
Object class, 39
object-oriented (OO) Perl, 39, 40
OPML, publishing blogroll as, 262–264
OtherBlog plugin, 250, 258
output filter, 221

P
paging entry dynamically, 224–226
parameters for load method of MT::Object class,

123–124
password, recovering lost, 76–77
percent sign (%) wildcard, 72
Perl API

background tasks, 135
class hierarchy, 113–116
debugging techniques, 136–137
examples, 137–141
filesystem view, 114
functional view, 116
hierarchical view, 115
logging and communication, 135
MT class, 116–122
MT::Session class, 130
object persistence, 122–128
plugin architecture, 128–130
publishing mechanics, 131–135
XML-RPC interface compared to, 83

PerlScript plugin, 258
permalink to comment, 19
permission_author_id and permission_blog_id

fields, 56
permission_entry_prefs field, 57
permission_role_mask field, 56
photo blog

description of, 237
EmbedImage plugin and, 240–243

Exchangeable Image File Format (Exif ) standard and,
245–246

ImageInfo plugin and, 246–248
managing photos, 239
planning, 237–238
setting up, 238–239
setting up on mobile phone, 243–245

PHP. See also dynamic publishing
dynamic template option, 164
MT tags, using in, 220–221
no-rebuild static content and, 15
plugins, creating, 227–234
support for plugins, 147
XML-RPC interface and, 296
XML-RPC library for, 299

phpMyAdmin interface
backing up using, 37–38
installing, 35–36
restoring database using, 38

pings, deleting from TrackBacks, 75–76
planning photo blog, 237–238
plugin API, 128–130
Plugin Manager, 250
plugindata_data field, 58
plugindata_key field, 58
plugindata_plugin field, 58
plugins

dynamic plugin
container tags, conditional, 232–233
container tags, creating, 229–231
container tags, traditional, 231–232
custom tags, creating, 228
global filters and, 233
Hello World tag, 228–229
initialization plugin and, 233
MT tags and, 227–228
speed and, 228
stash elements, preserving, 231
template compiler, instructing, 233–234

EmbedImage, 240–243
finding, 145
flame prevention plugin

configuration application, creating, 209–211
configuring, 209
interface, adding to, 211–213
jerk filter, 202
jerk throttle, 202–206
listing, 206–208

GetXML, 260–261
ImageInfo, 246–248

309Index ■ M–P

26_57499x bindex.qxd  6/17/05  8:06 PM  Page 309

TEAM LinG



plugins (continued)
installing, 146
KeyValues 1.53, 169–174, 189
MT-Feed, 8
MT-Moderate, 161–163
MT-Notifier, 157–161
MT-Perlscript, 21, 255
MT-Planner, 267–269
MT-TemplatePro, 14
MultiBlog, 165–167
OtherBlog, 250, 258
PerlScript, 258
RSS Feed, 252
SimpleComments, 21, 147–150
SmartyPants, 287
static versus dynamic, 147
TechnoratiTag, 163–165
text-formatting, 150–152, 193–194
Textile and Markdown, 150–152
TypeMover, 6
types of, 145–146
Workflow, 168
writing plugin

best practices, 194
callbacks and, 198–201
conditional tag, adding, 184–187
container tag, adding, 179–180
container tag looping, 187–189
context, adding to, 181–184
context, using, 178–179
data persistence, 197–198
embedded tags, 189–192
global tag attributes, 192–193
handling errors, 180–181
MT::Plugin object, creating, 175
simple tag, adding, 176–177
tag attributes, handling, 177–178
text formatting, 193–194

polls weblog
creating, 275–276
fraud, abuse, and, 280
sharing with other weblogs, 281
showing results, 279–280
template configuration, 276–279

pop2blog gateway program, 243–245
post status, 90–91
PostgreSQL, 33, 34
posting date, setting, 106
posting entry

with Atom API, 105–106
to LazyWeb, 86–88
with XML-RPC API, 85–86

posting frequency, 7
post_save callback method, 199
pre_save callback method, 199
preventing use-case-specific abuse, 93
primary key, 42
publishing blogroll as OPML, 262–264
publishing mechanics. See also dynamic publishing

error handling and, 134–135
KeyValues 1.53 plugin and, 169, 174
MT::Promise class and, 133–134
MT::Request class and, 134
overview of, 131–132
stash and, 132–133

R
RDF data, 248
real-time remote text editing, 13
rebuild, invoking, 140–141
rebuilding

plugins and, 8
Stylesheet and RSD files, 7

Recent Comments List, displaying on front page of site,
18–19

recovering lost password, 76–77
redirects, turning off, 20
registering callback, 198
registration methods for plugin package, 129
regular expressions, 154–155
relocating stray comments, 76
replace() function (MySQL), 77–78
Resource Description Framework, 23–24
restoring database

command line, using, 37
phpMyAdmin interface, using, 38

results page for poll, 279–280
retrieving data from database, 123–125
retrieving weblog information

with Atom API, 100
from entire installation, 101–103
from single weblog, 103

RSD files, 7
RSS 1.0 feeds, 7, 22–26
RSS 2.0 feeds, 26–27
RSS feed and del.icio.us, 252
RSS Feed plugin, 252

S
scheduled post, 252–255
scheduling backup, 69–70
security issues, 9–10
sed utility, 73–74
SELECT statement (SQL), 70–71, 76

310 Index ■ P–S

26_57499x bindex.qxd  6/17/05  8:06 PM  Page 310

TEAM LinG



server-side includes (SSIs) and no-rebuild 
static content, 15

session data, 130–131
session_data field, 59
session_email field, 60
session_id field, 59
session_kind field, 60
session_name field, 60
session_start field, 60
simple tag, adding, 176–177
SimpleComments plugin, 21, 147–150
site architecture

Archive filesystem, 4–6
images, 4
overview of, 3

slogger, 31, 32
Smarty template publishing system, 216, 221–223,

226–227
SmartyPants plugin, 287
spam_protect attribute of MTCommentAuthorLink

tag, 19
SQL. See MySQL
SQLite, 33, 34
SSIs (server-side includes) and no-rebuild 

static content, 15
stash, 132–134
stash keys, 179
static blog as static content manager, 15–16
static content, no-rebuild, 15
storing configuration data, 129–130, 198
streamlining installation, 7–8
strings, 154
Stylesheet, rebuilding, 7
subscription form

for blog, 159–160
for category, 160
for entry, 160–161

SuExec, enabling, 9–10
suppressing e-mail address of commenter, 19
syndication feeds, improving

RSS 1.0, 22–26
RSS 2.0, 26–27

T
tables

mt_author, 43–45
mt_blog, 45–49
mt_category, 49–50
mt_comment, 50–52
mt_entry, 52–54
mt_ipbanlist, 54
mt_log, 55

mt_notification, 55–56
mt_permission, 56–57
mt_placement, 57
mt_plugindata, 58
mt_session, 58–60
mt_tbping, 60–61
mt_template, 61–63
mt_templatemap, 63–64
mt_trackback, 65–66
naming, 41

tag attributes, handling, 177–178
tag classification, 163
tags

capture (Smarty), 225
conditional, 184–187, 232–233
container, 132–133, 179–180, 229–233
core MT set, 227
cycle (Smarty), 221
embedded, 189–192
global attributes, 192–193
Hello World, 228–229
KeyValues 1.53 plugin, 169–174
MT

dynamic plugins and, 227–228
using in PHP, 220–221

MT EmbedImage, 240–242
MTCommentAuthorLink tag, 19–20
MTCommentDate, 18–19
MTCommentEntry, 18–19
MTEntries, 18
MTInclude, 12
MT-Planner plugin, 268
MultiBlog plugin, 166–167
simple, adding, 176–177
SimpleComments plugin, 147–148
stash and, 132–133

tbping_blog_name field, 61
tbping_excerpt field, 61
TBPingFilter callback, 200
tbping_ip field, 61
tbping_tb_id field, 61
TBPingThrottleFilter callback, 200
tbping_title field, 61
Technorati website, 258–260
TechnoratiTag plugin, 163–165
temp files, 8
template. See also template management

Daily Archives, 269–270
for day planner weblog, 266
dynamic template

hacking, 222–223
paging multiple entries, 224–225

311Index ■ S–T

26_57499x bindex.qxd  6/17/05  8:06 PM  Page 311

TEAM LinG



template, dynamic template (continued)
paging single entry, 225–226
PHP and, 164

for front page of LazyWeb site, 285–287
Individual Entry Archive for LazyWeb site, 289–293
KeyValues 1.53 plugin, using within, 169–174
Main Index, 270–271
Monthly Archives, 269
MT-Notifier plugin, using within, 159–161
MultiBlog plugin, using within, 166–167
for polls weblog, 276–279
smarty_pants attribute and, 287
TechnoratiTag plugin, using within, 165
Textile or Markdown plugin, using within, 151–152
using SimpleComments plugin within, 147–149
Yearly Archives, 272

template compiler, instructing, 233–234
template context

adding to, 181–184
getting values from, 178–179

template management
comment listings, improving, 19–21
cookie-based deep contextual edit links, 16–18
experimental editing, 14
linked template files, 13
MT-TemplatePro plugin, 14
no-rebuild static content, 15
overview of, 11
Recent Comments List, 18–19
SimpleComments plugin and, 21
Smarty template publishing system, 216, 221–223,

226–227
static blog and, 15–16
syndication feeds, improving, 22–27
template modules, 12

template modules, 12
template_linked_file field, 63
template_linked_file_mtime and template_

linked_file_size fields, 63
templatemap_archive_type field, 64
templatemap_file_template field, 64
templatemap_is_preferred field, 64
template_outfile field, 63
template_rebuild_me field, 63
template_type field, 62
text-formatting plugins, 150–152, 193–194
Textile plugin, 150–152 
There’s more than one way to do it (TMTOWTDI), 69
third-party services, 8
time-out interval, comments, and TrackBacks, 8
timestamp field, 43
Tiny Orwell local authentication system, 302

TMTOWTDI (There’s more than one way to do it), 69
TrackBack

deleting spam, 75–76
editing, 75
integrating with comments, 21
listening for, 287–289
specification, website for, 87
time-out interval and, 8

TrackBack callback, 200
TrackBack ping, 284
trackback_entry_id and trackback_category_

id fields, 66
trackback_is_disabled field, 66
trackback_passphrase field, 66
trackback_rss_file field, 66
trackback_title, trackback_description,

and trackback_url fields, 65
TypeKey username, 44–45
TypeMover plugin, 6
Typepad hosting service, 238

U
underscore in name, 41
updating, MySQL and, 70–71
Upload File dialog box, 4
uploading

file, 110–111
MT-Filter plugin, libraries, and scripts, 299

URLPatterns, 155–156
usability, improving

comment listings, 19–21
Recent Comments List, 18–19

use-case-specific abuse, preventing, 93
user authentication feature, 295

W
warn statement (Perl), 136
WarnDie plugin, 136
Web interface access to database, 35–36
Web publishing, database-driven, 32
<webMaster> element, 27
websites

Atom API
development documentation and specification, 99
toolkits, 100

community-authored
API choice for, 296
application overview, 297–298
creating, 298–301
improving, 301–302
MT-Filter and, 295–296
overview of, 295

312 Index ■ T–W

26_57499x bindex.qxd  6/17/05  8:06 PM  Page 312

TEAM LinG



companion to book, 14, 78
database software, 34
del.icio.us, 250
EmbedImage plugin, 240
Fotonotes specification, 248
Friend of a Friend (FOAF) project, 23–24
ImageInfo plugin, 246
listing of supported calls, 90
LazyWeb site

description of, 283, 284
entry fields and, 284
Front Page template, 285–287
mt-lazyweb.cgi script, 287–289
posting entry to, 86–88
steps taken by, 285
template system, 289–293

Metafilter, 295
MT-Perlscript plugin, 255
MT-Planner plugin, 267–269
Net::Blogger module, 88
PerlScript plugin, 258
plugins, 145
pop2blog gateway program, 243
RSS Feed plugin, 252
Smarty, 216
SmartyPants plugin, 287
Tcl/Tk scripting package, 136
Technorati, 258–260
Tiny Orwell local authentication system, 302
TrackBack specification, 87
XML-RPC library for PHP, 299
XML-RPC specification, 81

Workflow plugin, 168
writer identity, providing, 19
writing plugin. See also flame prevention plugin

best practices, 194
callbacks and, 198–201

conditional tag, adding, 184–187
container tag, adding, 179–180
container tag looping, 187–189
context

adding to, 181–184
using, 178–179

data persistence, 197–198
embedded tags, 189–192
global tag attributes, 192–193
handling errors, 180–181
MT::Plugin object, creating, 175
simple tag, adding, 176–177
tag attributes, handling, 177–178
text formatting, 193–194

writing to database, 227

X
XML::Atom Perl module, 100
XML::LibXML interface, 102–103
XML-RPC interface (Extensible Markup Language

Remote Procedure Calls)
adding call to, 91–94
call example, 81–84
community-authored website and, 296
description of, 81
mobile article trigger example, 94–97
Net::Blogger module and, 88–90
Perl API compared to, 83
post status and, 90–91
posting entry, 85–86
supported calls, 84, 90

XML-RPC library for PHP, 299
XMLRPC::Lite module (Perl), 82, 84
XMLRPCServer.pm file, 91, 93

Y
Yearly Archives template, 272

313Index ■ W–Y

26_57499x bindex.qxd  6/17/05  8:06 PM  Page 313

TEAM LinG




