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TUring Machine: In 1936 Dr. Turing wrote a paper on the design and the

limitations ofcomputing machines. For this reason they are sometimes known by

his name. The umlaut is an unearned and undesirable addition, due, presumably, to

an impression that anything so incomprehensible must be Teutonic.

- Faster Than Thought: A Symposium on Digital Computing Machines (1953)
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Introduction

A nyone who has explored the history, technology, or theory of computers has
likely encountered the concept of the Turing Machine. The Turing Machine

is an imaginary - not quite even hypothetical - computer invented in 1936
by English mathematician Alan Turing (1912-1954) to help solve a question
in mathematical logic. As a by-product, Tunng founded a new field of research
known as computation theory or computability, which is the study of the abilities
and limitations of digital computers.

Although the Turing Machine is a rather implausible computer, it benefits from
being extremely simple. The basic Turing Machine performs just a few simple oper
ations. If the machine did anything less than what it does, it wouldn't do anything
at all. Yet, through combinations of these simple operations, the Turing Machine
can perform any computation that can be done on modem digital computers.

By stripping the computer to the raw basics, we can understand better the
abilities of digital computers - and Just as importantly, their inabilities. Years
before anyone had demonstrated what a computer could do, Tunng proved what
computers could never do.

The Turing Machine remains a popular topic for exposition and discussion.
(Try the term 'Turing Machine" in your favonte Internet search engine.) Yet,
I suspect that Alan Turing's original paper describing his invention is rarely
read. Perhaps this neglect has something to do with the title: "On Computable
Numbers, with an Application to the Entscheidungsproblem." Even if you can say
that word - try accenting the second syllable and pronouncing it like "shy" and
you won't be far off - and you know what it means ("decision problem"), the
suspicion remains that Tunng is expecting his reader to have basic knowledge of
heavy German mathematical matters. A quick glance through the paper - and
its use of a German gothic font to represent machine states - doesn't help allay
these fears. Can a reader today take on a paper published 70 years ago in the
Proceedings of the London Mathematical Society and stay afloat long enough to glean
a few insights and even (perhaps) satisfaction?

That's what this book is all about. It contains Turing's original 36-page paper1

"On Computable Numbers, with an Application to the Entscheidungsproblem"
and the follow-up 3-page correction2 With background chapters and extensive

I Alan Turing, "On Computable Numbers, with an Application to the Entscheidungsproblem," Proceedings
of the London Mathematical Society, 2nd series, Vol 42 (936), pp 230-265

2Alan Tunng, "On Computable Numbers, with an Application to the Entscheidungsproblem A

Correction," Proceedings of the London Mathematical Society, 2nd senes, Vol 43 (937), pp 544-546
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annotations. Reading Turing's original paper allows a unique journey inside his fer
tile and fascinating mind as he constructs the machine that has had such profound
implications for computing and, indeed, our understanding of the limitations of
mathematics, the workings of the human mind, and perhaps even the nature of
the universe. (The term "Turing Machine" doesn't appear in Turing's paper, of
course. He called it a "computing machine." But the term 'Turing Machine" was
used as early as 19373 and has remained the standard term ever since.)

In my annotations to Turing's paper, I have found it useful to interrupt his
narrative frequently with explanations and elaborations. I have tried (without total
success) not to interrupt him in the middle of a sentence. For the most part I
retain Turing's own terminology and notation in my discussion, but at times I felt
compelled to introduce terms that Turing doesn't use but which I found helpful
in explaining his work.

The text of Turing's paper is identified by a shaded background, like so:

We shall avoid confusion by speaking more often of computable
sequences than of computable numbers.

We (meaning my publisher and 1) have attempted to preserve the typography
and layout of the original paper, except where oddities (such as spaces before
colons) cause panicky reactions in modem editors. All original line breaks are
retained. Turing's paper has a few typographical errors, mistakes, and omissions.
Although I have left these uncorrected, I point them out in my commentary.
Turing often refers to early parts of his paper by the page numbers in the original
journal. I've left those references alone, but provided help in my commentary
for finding the particular page in this book. Occasionally you'll see a number in
Turing's text in brackets:

When the letters are replaced by figures, as in § 5, we shall have a numerical
[243]

description of the complete configuration, which may be called its descrip
tion number.

That's the original page break and the original page number. My footnotes are
numbered; Turing's footnotes use symbols, and are also identified by shading.

If you were to remove the pages from this book, cut out and discard everything
that doesn't have a shaded background, and then tape the remnants back together,
you'd be left with Turing's complete paper, and one sad author. Perhaps a more
interesting strategy is to read this book first, and then go back and read Turing's
paper by itself without my rude interruptions.

3Alonzo Church, review of "On Computable Numbers, with an Application to the Entscheidungsproblem,"

The]oumal of Symbolic logIC, Vol 2, No 1 (Mar 1937),42-43
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Turing's paper is spread out between pages 64 and 297 of this book, and
the correction appears between pages 309 and 321. Tunng's paper is divided
into 11 sections (and an appendix) that begin on the following book pages:

1. Computing machines
2. Definitions
3. Examples of computing machines
4. AbbreVIated tables
5. Enumeration of computable sequences
6. The universal computing machine
7. Detailed descnption of the universal machine
8. Application of the diagonal process
9. The extent of the computable numbers

10. Examples of large classes of number which are computable
11. Application to the Entscheidungsproblem
Appendix

68
72
79

113
131
143
149
173
190
235
260
290

Turing's original motivation in writing this paper was to solve a problem formu
lated by German mathematician DaVId Hilbert (1862-1943). Hilbert asked for a
general process to determine the provability of arbitrary statements in mathemati
cal logic. Finding this "general process" was known as the Entscheidungsproblem.
Although the Entscheidungsproblem was certainly the motivation for Turing's
paper, the bulk of the paper itself is really about computable numbers. In Tur
ing's definition, these are numbers that can be calculated by a machine. TUring's
exploration of computable numbers accounts for the first 60 percent of the paper,
which can be read and understood without any familiarity with Hilbert's work in
mathematical logic or the Entscheidungsproblem.

The distinction between computable numbers and "real numbers" is crucial to
Turing's argument. For that reason, the preliminary chapters of this book prOVIde
a background into our classification of numbers, encompassing integers, rational
numbers, irrational numbers, algebraic numbers, and transcendental numbers, all
of which are also categonzed as real numbers. I have tried not to rely on any prior
knowledge more sophisticated than high-school mathematics. 1 am aware that
several decades may separate some readers from the joys of high school, so I have
tried to refresh those memories. 1apologize if my pedagogical zeal has resulted in
explanations that are condescending or insulting.

Although I suspect that this book will be read mostly by computer science
majors, programmers, and other techies, I have tried to make the non-programmer
feel welcome by defining chummy jargon and terms of art. Turing's paper is "one
of the intellectual landmarks of the last century,,,4 and I hope this book makes that
paper accessible to a much broader audience.

4john P Burgess, preface in George 5 Boolos, john P Burgess, and Richard C jeffrey, Computability and
LogIC, fourth edition (Cambndge University Press, 2002), xi
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To accommodate the needs of different readers, I have divided this book into
four parts:

Part I ("Foundations") covers the historical and mathematical background
necessary to begin reading Turing's paper.

Part II ("Computable Numbers") contains the bulk of Turing's paper and will be
of primary interest to readers interested in the Turing Machine and issues related
to computability.

Part III ("Das Entscheidungsproblem") begins with an all-too-brief background
in mathematical logic and continues with the remainder of Turing's paper.

Part IV ("And Beyond") discusses how the Turing Machine has come to be
an essential tool for understanding computers, human consciousness, and the
universe itself.

The mathematical content of Part III is necessarily more difficult than that
of earlier chapters, and covered at a faster pace. Those readers not particularly
interested in the implications of Turing's paper for mathematical logic might even
want to skip the five chapters of Part III and jump right to Part IV.

This book touches on several large areas in mathematics, including computabil
ity and mathematical logic. I have picked and chosen only those topics and concepts
most relevant to understanding Turing's paper. Many details are omitted, and this
book is no substitute for the rigor and depth you'll find in dedicated books on the
subjects of computability and logic. Those readers interested in delving further
into these fascinating areas of study can consult the bibliography for guidance.

Alan Turing published about 30 papers and articles during his lifetimeS but
never wrote a book. Two of TUring's papers account for most of his continued
fame: "On Computable Numbers" is the first, of course. The second is a far less
technical article entitled "Computing Machinery and Intelligence" (published in
1950) in which Turing invented what is now called the Turing Test for artificial
intelligence. Basically, if a machine can fool us into believing that it's a person, we
should probably grant that it's intelligent.

The Turing Machine and the Turing Test are Alan TUring's two bids for lexical
and cultural immortality. They may at first seem like two entirely different con
cepts, but they're not. The Turing Machine is really an attempt to describe in a
very mechanistic way what a human being does in carrying out a mathematical
algorithm; the Turing Test is a human evaluation of the functioning of a computer.
From his earliest mathematical researches through his last, Turing explored the
relationship between the human mind and computing machines in a manner that
continues to be fascinating and provocative.

5These and other documents are available in the four volumes of The Collected Works of A M Tunng
(Amsterdam ElseVier, 1992, 200I) Much of the important matenal has been collected by B Jack
Copeland into The Essential Tunng (Oxford University Press. 2004) and Alan Tunng's Automatic Computing
Engine (Oxford University Press, 2005) The former book contains articles and papers related to the Tunng

Machine The latter book is about the ACE computer project in the mid- to late 1940s
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It is possible to discuss Turing's work WIthout mentioning anything about
Turing the man, and many textbooks on computability don't bother with the
biographical details. I have not found that to be possible here. Turing's secret
work in cryptanalysis dunng World War II, his involvement in seminal computer
projects, his speculations about artificial intelligence, his sexual orientation, his
arrest and prosecution for the crime of "gross indecency," and his early death by
apparent suicide at the age of 41 all demand attention.

My Job of recounting the highlights of Tunng's life has been greatly eased by
the wonderful biography Alan Turing: The Enigma (Simon &1 Schuster, 1983) by
English mathematician Andrew Hodges (b. 1949). Hodges became interested in
Turing partly through his own participation in the gay liberation movement of the
1970s. Hodges's biography inspired a play by Hugh Whitemore called Breaking the
Code (1986). On stage and in a shortened version adapted for television in 1996,
the role of Alan Turing was portrayed by Derek Jacobi.

Like the earlier English mathematicians and computer pioneers Charles Babbage
(1791-1871) and Ada Lovelace (1815-1852), Turing has become an icon of the
computer age. The Turing Award is an annual prize of $100,000 given by
the Association for Computing Machinery (ACM) for major contributions to
computing. There is a Tunng Programming Language (derived from Pascal) and
Turing's World software for assembling Tunng Machines.

TUring's name has become almost a generic term for computer programming 
so much so that A. K. Dewdney can title his "Excursions in Computer Science"
as The Turing Omnibus (Computer Science Press, 1989). A book about "Western
Culture in the Computer Age" by]. David Bolter is called Turing's Man (Univer
sity of North Caroline Press, 1984), and Brian Rotman's critique of traditional
mathematical concepts of infinity Ad lrifinitum (Stanford University Press, 1993) is
amusingly subtitled "The Ghost in Turing's Machine."

Alan Turing has also attracted some academic interest outside the mathematics
and computer science departments. The collection Novel GaZing: Queer Readings in
Fiction (Duke University Press, 1997) features an essay by Tyler Curtain entitled
'The 'Sinister Fruitiness' of Machines: Neuromancer, Internet Sexuality, and the
Turing Test." Dr. Curtain's title refers to the famous William Gibson "cyberpunk"
novel Neuromancer (Ace, 1984) in which the Tunng Police help ensure that
artificial intelligence entities don't try to augment their own intelligence.

Turing has also shown up in the titles of several novels. Marvin Minsky (the
famous M.LT. researcher into artificial intelligence) collaborated with science
fiction novelist Harry Harrison on The Turing Option (Warner Books, 1992), and
Berkeley Computer Science professor Christos H. Papadimitriou has weighed in
with Turing (A Novel About Computation) (MIT Press, 2003).

In TUring's Delirium (trans. Lisa Carter, Houghton Mifflin, 2006) by Bolivian
novelist Edmundo Paz Soldan, a cryptanalyst nicknamed Tunng discovers the
dangers of using his skills for a corrupt government. In Janna Levin's A Madman
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Dreams of Turing Machines (Knopf, 2006), the fictionalized lives of Alan Turing
and Kurt G6del strangely interact through space and time.

Alan Turing is a character in Neal Stephenson's Cryptonomicon (Avon, 1999),
Robert Harris's Enigma (Hutchinson, 1995), John L. Casti's The Cambridge Quintet:
A Work of Scientific Speculation (Perseus Books, 1998), and, of course, Douglas
Hofstadter's Godel, Escher, Bach (Basic Books, 1979). Alan Turing even narrates
part of The Turing Test (BBC, 2000), a Dr. Who novel by Paul Leonard.

While it's nice to see Alan Turing honored in these many ways, there's a danger
that Turing's actual work becomes neglected in the process. Even people who
have formally studied computation theory and think they know all about Turing
Machines will, I hope, find some surprises in encountering the very first Turing
Machine built by the master himself.

* * *
This book was conceived in 1999. I wrote a little then and irregularly over the

next five years. The first eleven chapters were mostly completed in 2004 and 2005.
I wrote the last seven chapters in 2007 and 2008, interrupting work only to get
married (finally!) to my longtime best friend and love of my life, Deirdre Sinnott.

Many thanks to the London Mathematical Society for permission to reprint
Alan Turing's paper "On Computable Numbers, with an Application to the
Entscheidungsproblem" in its entirety.

Walter Williams and Larry Smith read early drafts of this book, caught a number
of errors, and offered several helpful suggestions for improvements.

To the folks at Wiley, I am eternally grateful for their work in turning this
pet project of mine into an actual published book. Chris Webb got the book
going, Development Editor Christopher Rivera and Production Editor Angela
Smith conquered the many structural and typographical challenges, and Technical
Editor Peter Bonfanti helped me to be a little more diligent with the technical stuff.
Many others at Wiley worked behind the scenes to help make this book as good
as possible. Any flaws, imperfections, or hideous errors that remain can only be
attributed to the author.

Any author stands on the shoulders of those who have come before. The
selected bibliography lists a few of the many books that helped me write this one.
I'd also like to thank the staff of the New York Public Library, and especially the
Science, Industry, and Business Library (SIBL). I've made extensive use ofJSTOR
to obtain original papers, and I've found Wikipedia, Google Book Search, and
Wolfram MathWorld to be useful as well.

* * *
Information and resources connected with this book can be found on the

website www.TheAnnotatedTunng.com.

Charles Petzold
New York City and Roscoe, New York

May, 2008
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This Tomb Holds
Diophantus

Many centuries ago, in ancient Alexandria, an old man had to bury his son.
Heartbroken, the man distracted himself by assembling a large collection

of algebra problems and their solutions in a book he called the Arithmetica. That
is practically all that is known of Diophantus of Alexandria, and most of it comes
from a riddle believed to have been written by a close friend soon after his death1:

This tomb holds Diophantus. Ah, what a marvel! And the tomb
tells scientifically the measure of his life. God vouchsafed that he
should be a boy for the sixth part of his life; when a twelfth was
added, his cheeks acquired a beard; He kindled for him the light
of marriage after a seventh, and in the fifth year after his marriage
He granted him a son. Alas! late-begotten and miserable child,
when he had reached the measure of half his father's life, the
chill grave took him. After consoling his grief by this science of
numbers for four years, he reached the end of his life.2

The epitaph is a bit ambiguous regarding the death of Diophantus's son. He is
said to have died at "half his father's life," but does that mean half the father's age at
the time of the son's death, or half the age at which Diophantus himself eventually
died? You can work it out either way, but the latter assumption - Diophantus's
son lived half the number of years that Diophantus eventually did - is the one
with the nice, clean solution in whole numbers without fractional years.

Let's represent the total number of years that Diophantus lived as x. Each part
of Diophantus's life is either a fraction of his total life (for example, x divided by 6
for the years he spent as a boy) or a whole number of years (for example, 5 years

tThomas L. Heath, Diophantus ofAlexandna' A Study in the History ofGreeh Algebra, second edition

(Cambndge University Press, 1910; Dover Publications, 1964), 3

2Greeh Mathematical Works II. Anstarchus to Pappus of Alexandria (Loeb Classical Library No 362),

translated by Ivor Thomas (Harvard University Press, 1941),512-3
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from the time he was married to the birth of his son). The sum of all these eras of
Diophantus's life is equal to x, so the riddle can be expressed in simple algebra as:

x x x x
-+-+-+5+-+4=x
6 12 7 2

The least common multiple of the denominators of these fractions is 84, so multiply
all the terms on the left and right of the equal sign by 84:

14x+ 7x + 12x + 420 + 42x + 336 = 84x

Grouping multipliers of x on one side and constants on the other, you get:

84x - 14x - 7x - 12x - 42x = 420 + 336

Or:
9x = 756

And the solution is:
x=84

So, Diophantus was a boy for 14 years and could finally grow a beard after 7 more
years. Twelve years later, at the age of 33, he married, and he had a son 5 years
after that. The son died at the age of 42, when Diophantus was 80, and Diophantus
died 4 years later.

There's actually a faster method for solving this riddle: If you look deep into the
soul of the riddle maker, you'll discover that he doesn't want to distress you with
fractional ages. The "twelfth part" and "seventh part" of Diophantus's life must be
whole numbers, so the age he died is equally divisible by both 12 and 7 (and, by
extension, 6 and 2). Just multiply 12 by 7 to get 84. That seems about right for a
ripe old age, so it's probably correct.

Diophantus may have been 84 years old when he died, but the crucial historical
question is when. At one time, estimates of Diophantus's era ranged from 150 BCE
to 280 CEo 3 That's a tantalizing range of dates: It certainly puts Diophantus after
early Alexandrian mathematicians such as Euclid (flourished ca. 295 BCE4) and
Eratosthenes (ca. 276-195 BCE), but might make him contemporaneous with
Heron of Alexandria (also known as Hero, flourished 62 CE), who wrote books
on mechanics, pneumatics, and automata, and seems to have invented a primitive
steam engine. Diophantus might also have known the Alexandrian astronomer
Ptolemy (ca. 100-170 CE), remembered mostly for the Almagest, which contains
the first trigonometry table and established the mathematics for the movement
of the heavens that wasn't persuasively refuted until the Copernican revolution of
the sixteenth and seventeenth centuries.

3Those dates persist in Simon Hornblower and Antony Sprawfonh, eds , Oxford Classical Dictionary,
reVIsed third edition (Oxford University Press, 2003), 483

4All further dates of Alexandnan mathematicians are from Charles Coulston Gillispie, ed , Dictionary of
Scientific Biography (Scnbners, 1970)
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Unfortunately, Diophantus probably did not have contact with these other
Alexandrian mathematicians and scientists. For the last hundred years or so,
the consensus among classical scholars is that Diophantus flourished about 250
CE, and his major extant work, the Arithmetica, probably dates from that time.
That would put Diophantus's birth at around the time of Ptolemy's death. Paul
Tannery, who edited the definitive Greek edition of the Arithmetica (published
1893-1895), noted that the work was dedicated to an "esteemed Dionysius."
Although a common name, Tannery conjectured that this was the same Dionysius
who was head of the Catechist school at Alexandria in 232-247, and then Bishop
of Alexandria in 248-265. Thus, Diophantus may have been a Christian.5 If so,
it's a bit ironic that one of the early (but lost) commentaries on the Arithmetica
was written by Hypatia (ca. 370-415), daughter of Theon and the last of the
great Alexandrian mathematicians, who was killed by a Christian mob apparently
opposed to her "pagan" philosophies.

Ancient Greek mathematics had traditionally been strongest in the fields of
geometry and astronomy. Diophantus was ethnically Greek, but he was unusual in
that he assuaged his grief over the death of his son with the "science of numbers,"
or what we now call algebra. He seems to be the source of several innovations in
algebra, including the use of symbols and abbreviations in his problems, signifying
a transition between word-based problems and modem algebraic notation.

The 6 books of the Arithmetica (13 are thought to have originally existed)
present increasingly difficult problems, most of which are quite a bit harder than
the riddle to determine Diophantus's age. Diophantus's problems frequently have
multiple unknowns. Some of his problems are indeterminate, which means they
have more than one solution. All but one of the problems in Arithmetica are abstract
in the sense that they are strictly numerical and don't refer to real-world objects.

Another element of abstraction in Diophantus involves powers. Up to that time,
mathematicians had been familiar with powers of 2 and 3. Squares were required
for calculating areas on the plane, and cubes were needed for the volumes of solids.
But Diophantus admitted higher powers to his problems: powers of 4 (which he
called a "square-square"), 5 ("square-cube"), and 6 ("cube-cube"). These powers
have no physical analogy in the world that Diophantus knew and indicate that
Diophantus had little concern for the practicality of his mathematics. This was
purely recreational mathematics with no goal but to strengthen the mind.

Here's the first problem from Book IV.6 Diophantus states it first in general
terms:

To divide a given number into two cubes such that the sum of
their sides is a given number.

SHeath, Diophantus ofAlexandna, 2, note 2 Heath himself seems to be skeptical

6Heath, Diophantus ofAlexandna, 168
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Then he provides the two numbers:

Given number 370, given sum of sides 10.

Visualized geometrically, he's dealing with two cubes of different sizes. As a
modem algebraist, you or I might label the sides of the two cubes x and y:

The two sides (x and y) add up to 10. The volumes of the two cubes (x3 and y3)
sum to 370. Now write down two equations:

x+y = 10

x3 +i = 370

The first equation indicates that y equals 00 - x), so that could be substituted in
the second equation:

x3 + 00 - x)3 = 370

Now multiply 00 - x) by (10 - x) by 00 - x) and pray that the cubes eventually
disappear:

x2 + (1000 + 30x3
- 300x - x3

) = 370

Fortunately they do, and after a bit of rearranging you get:

30x2
- 300x + 630 = 0

Those three numbers on the left have a common factor, so you'll want to divide
everything by 30:

x2
- lOx + 21 = 0

Now you're almost done. You have two choices. If you remember the quadratic
formula,? you can use that. Or, if you've had recent practice solving equations
of this sort, you can stare at it and ponder it long enough until it magically
decomposes itself like so:

(x - 7) (x - 3) = 0

The lengths of the two sides are thus 7 and 3. Those two sides indeed add up to
10, and their cubes, which are 343 and 27, sum to 370.

Diophantus doesn't solve the problem quite like you or I would. He really can't.
Although Diophantus's problems often have multiple unknowns, his notation

7For ax2 + bx + c = 0, solve x = -b±~
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allows him to represent only a single unknown. He compensates for this limitation
in ingenious ways. Rather than labeling the sides of the two cubes as x and y, he
says that the two sides are (5 +x) and (5 - x). These two sides are both expressed
in terms of the single unknown x, and they indeed add up to 10. He can then cube
the two sides and set the sum equal to 370:

(5 +x)3 + (5 _x)3 = 370

Now this looks worse than anything we've yet encountered, but if you actually
expand those cubes, terms start dropping out like crazy and you're left with:

30x2 + 250 = 370

With some rudimentary rearranging and another division by 30, it further simpl
ifies to:

x2 = 4

Or x equals 2. Because the two sides are (5 + x) and (5 - x), the sides are really 7
and 3.

Diophantus's skill in solving this problem with less sweat than the modem
student results from his uncanny ability to express the two sides in terms of a single
vanable in precisely the right way. Will this technique work for the next problem?
Maybe. Maybe not. Developing general methods for solVIng algebraic equations is
really not what Diophantus is all about. As one mathematician observed, "Every
question requires a quite special method, which often will not serve even for
the most closely allied problems. It is on that account difficult for a modem
mathematician even after studying 100 Diophantine solutions to solve the lOpt
problem."s

Of course, it's obvious that when Diophantus presents the problem of cubes
adding to 370 and sides adding to 10, he's not pulling numbers out of thin air. He
knows that these assumptions lead to a solution in whole numbers. Indeed, the
term Diophantine equation has come to mean an algebraic equation in which only
whole number solutions are allowed. Diophantine equations can have multiple
unknowns, and these unknowns can be raised to powers of whole numbers,
but the solutions (if any) are always whole numbers. Although Diophantus often
uses subtraction in formulating his problems, his solutions never involve negative
numbers. "Of a negative quantity per se, i.e., without some positive quantity
to subtract it from, Diophantus had apparently no conception.,,9 Nor does any
problem have zero for a solution. Zero was not considered a number by the ancient
Greeks.

8Herrnann Hankel (874) as quoted in Heath, Diophantus of Alexandna, 54-55 Other mathematicians find

more explicit patterns in Diophantus's methods See Isabella Gngoryevna Bashmakova, Diophantus and
Diophantine Equations (Mathematical Association of Amenca, 1997), ch 4

9Heath, Diophantus ofAlexandna, 52-53
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Modem readers of Diophantus - particularly those who are already
acquainted with the requirement that Diophantine equations have solutions
in whole numbers - can be a bit startled when they encounter rational numbers
in Diophantus. Rational numbers are so named not because they are logical or
reasonable in some way, but because they can be expressed as the ratio of two
whole numbers. For example,

3

5
is a rational number.

Rational numbers show up in the only problem in the Arithmetica that involves
actual real-world objects, in particular those perennial favorites: drink and drach
mas. It doesn't seem so in the formulation of the problem, but rational numbers
are required in the solution:

A man buys a certain number of measures of wine, some at 8
drachmas, some at 5 drachmas each. He pays for them a square
number of drachmas; and if we add 60 to this number, the result
is a square, the side of which is equal to the whole number of
measures. Find how many he bought at each price. 10

Bya "square number," Diophantus means a result of multiplying some number
by itself. For example, 25 is a square number because it equals 5 times 5.

After a page of calculations, 11 it is revealed that the number of 5-drachma
measures is the rational number:

79

12
and the number of 8-drachma measures is the rational number:

59

12
Let's check these results. (Verifying the solution is much easier than deriving

it.) If you multiply 5 drachmas by 79/12, and add to it 8 drachmas times 59/12,
you'll discover that the man paid a total of 72~ drachmas. Diophantus says the
man pays "a square number of drachmas." The amount paid has to be a square of
something. Curiously enough, Diophantus considers 72~ to be a square number
because it can be expressed as the ratio

289

4
and both the numerator and denominator of this ratio are squares: of 17 and 2,
respectively. So, 72~ is the square of 17/2 or 81. Diophantus further says that "if

lOHeath, Diophantus of Alexandna, 224
11 Heath, Diophantus of Alexandna, 225
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we add 60 to this number, the result is a square, the side of which is equal to
the whole number of measures." That phrase "whole number of measures" is not
referring to whole numbers. What Diophantus (or rather, his English translator,
Sir Thomas Heath) means is the total number of measures. Adding 60 to 72~ is
132 ~, which is the rational number:

529

4

Again, Diophantus considers that to be a square because both the numerator and
denominator are squares: of 23 and 2, respectively. Thus, the total number of
measures purchased is 23/2 or 11 i, which can also be calculated by adding 79112
and 59/12.

Perhaps the most famous problem in the Arithmetica is Problem 8 of Book II:
"To diVIde a given square number into two squares," that is, to find x, y, and z
such that:

x2 +l=Z2

This problem has a geometrical interpretation in the relationship of the sides of a
right triangle as described by the Pythagorean Theorem:

y

x

z

The problem has many solutions in whole numbers, such as x, y, and Z equaling
3,4, and 5, respectively. (The squares 9 and 16 sum to 25.) Such a simple solution
apparently doesn't appeal to Diophantus, who sets the "given square number"
(that is, Z2) to 16, which makes the other two sides the rational numbers 144/25
and 256/25. To Diophantus, these are both squares, of course. The first is the
square of 12/5 and the second the square of 16/5, and the sum is the square of 4:

It doesn't really matter that Diophantus allows a solution in rational numbers
because the solution is equivalent to one in whole numbers. Simply multiply both
sides of the equation by 52 or 25:

122 + 162 = 202
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Or, 144 plus 256 equals 400. It's really the same solution because it's only a
different way of measuring the sides. In Diophantus's statement of the problem,
the hypotenuse is 4. That could be 4 inches, for example. Now use a different ruler
that measures in units of a fifth of an inch. With that ruler, the hypotenuse is 20
and the sides are 12 and 16.

Whole numbers came about when people started counting things. Rational
numbers probably came about when people started measuring things. If one carrot
is as long as the width of three fingers, and another carrot is as long as the width
of four fingers, then the first carrot is ~ the length of the second.

Rational numbers are sometimes called commensurable numbers because two
objects with lengths expressed as rational numbers can always be remeasured with
whole numbers. You just need to make your unit of measurement small enough.

Diophantus wrote the Arithmetica in Greek. At least parts of the work were
translated into Arabic. It was first translated into Latin in 1575 and then into a better
edition in 1621, when it began to have an influence on European mathematicians.
Pierre de Fermat (1601-1665) owned a copy of the 1621 Latin translation and
covered its margins with extensive notes. In 1670, Fermat's son published those
notes together with the Latin Arithmetica. One such note accompanied the problem
just described. Fermat wrote:

On the other hand it is impossible to separate a cube into two
cubes, or a biquadrate [power of 41 into two biquadrates, or gen
erally any power except a square into two squares with the same
exponent. I have discovered a truly marvelous proof of this,
which however the margin is not large enough to contain. 12

Fermat is asserting, for example, that

x3 +y3 = Z3

has no solutions in whole numbers, and neither does any similar equation with
powers of 4, or 5, or 6, and so forth. This is not obvious at all. The equation:

x3 +l+1 =Z3

is very, very close to

x3 +l = Z3

and it has many solutions in whole numbers, such as x, y, and Z equaling 6, 8, and
9, respectively. The equation

12Heath, Diophantus of Alexandna, 144, note 3
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is also quite similar, and it too has many solutions in whole numbers, for example,
9, 10, and 12. Why do these two equations have solutions in whole numbers but

x3 + y3 = Z3

does not?
All the problems that Diophantus presented in Arithmetica have solutions, but

many Diophantine Equations, such as the ones Fermat described, seemingly have
no solutions. It soon became more interesting for mathematicians not necessarily
to solve Diophantine Equations, but to determine whether a particular Diophantine
Equation has a solution in whole numbers at all.

Fermat's nonexistent proof became known as Fermat's Last Theorem (some
times known as Fermat's Great Theorem), and over the years it was generally
acknowledged that whatever proof Fermat thought he had, it was probably wrong.
Only in 1995 was Fermat's Theorem proved by English mathematician Andrew
Wiles (b. 1953), who had been interested in the problem since he was ten years
old. (For many special cases, such as when the exponents are 3, it had been
determined much earlier that no solutions exist.)

Obviously, proving that some Diophantine Equation has no possible solution is
more challenging than finding a solution if you know that one exists. If you know
that a solution exists to a particular Diophantine Equation, you could simply test
all the possibilities. The only allowable solutions are whole numbers, so first you
try 1, then 2, and 3, and so forth. If you'd rather not do the grunt work yourself,
just wnte a computer program that tests all the possibilities for you. Sooner or
later, your program Wlll find the solution.

But if you don't know that a solution exists, then the brute-force computer
approach is not quite adequate. You could start it going, but how do you know
when to give up? How can you be sure that the very next series of numbers you
test won't be the very ones for which you're searching?

That's the trouble with numbers: They're Just too damn infinite.





The Irrational
and the
Transcendental

W e begin counting 1, 2, 3, and we can go on as long as we want. These
are known as the counting numbers, the whole numbers, the cardinal

numbers, the natural numbers, and they certainly seem natural and intuitive
enough because the universe contains so many objects that we can count. Natural
numbers were likely the first mathematical objects conceived by early humans.
Some animals, too, it seems, have a concept of numbers, as long as the numbers
don't get too large.

For many centuries, zero was not included among the natural numbers, and
even now there is no firm consensus. (Text books on number theory usually
tell you on the first page whether the author includes zero among the natural
numbers.) On the other side of zero are the negative whole numbers. To refer to
all the positive and negative whole numbers as well as zero, the word integer does
just fine. The integers go off into infinity in two different directions:

... -3 -2 -1 0 1 2 3 ...

To refer to only the positive whole numbers starting at 1, the term positive integers
works well. For positive numbers starting with zero (that is, 0, 1, 2, 3, ...) the
term non-negative integers is unambiguous and not too wordy.

Rational numbers are numbers that can be expressed as ratios of integers, except
that a denominator of zero is not allowed. For example,

3

5
is a rational number, also commonly written in the decimal form:

.6

Rational numbers also encompass all the integers, because any integer (47 , say)
can be written as a ratio with 1 on the bottom:

47

1
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Any number with a finite number of decimal places is also a rational number.
For example,

-23.45678

can be represented as the ratio:

-2,345,678

100,000

1

3
require an infinite number of digits to be represented in a decimal form:

0.3333333333 ...

This is still a rational number because it's a ratio. Indeed, any number with a
repeating pattern of digits somewhere after the decimal point is a rational number.
This is a rational number,

0.234562345623456 ...

if the digits 23456 keep repeating forever. To demonstrate that it's rational, let x
represent the number:

x = 0.234562345623456 ...

Now multiply both sides by 100,000:

100000x= 23456.23456234562346 ...

It's well known that if you subtract the same value from both sides of an equality,
you still have an equality. That means that you can subtract the two values in the
first expression from the two values in the second expression: Subtract x from
100000x and 0.23456 ... from 23456.23456 ... and the decimals disappear:

99999x = 23456

So:
23,456

x=---
99,999

That's a ratio, so it's a rational number.
Just offhand, rational numbers seem to be quite complete. If you add two

rational numbers, you'll get another rational number. Subtract, multiply, or
divide rational numbers, and the result is also rational.

One might assume (as people did for many years) that all numbers are rational,
but consider the hypotenuse of this simple right triangle:
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According to the Pythagorean Theorem,

x2 =12+12

or

or

Does there exist a ratio of two integers that, when multiplied by itself, equals
2? One can certainly search and find many rational numbers that come very close.
Here's one:

53,492

37,825

This one is just a little bit short. Multiplied by itself it's about 1.99995. Maybe if
we keep searching we'll find one that's perfect.

Or are we wasting our time?
It's hard to prove that something doesn't exist, but mathematicians have

developed a type of proof that often comes in handy in such circumstances. It's
called an indirect proof or a proof by contradiction, or the Latin reductio ad absurdum
("reduction to absurdity"). You begin by making an assumption. Then, you logically
follow the implications of that assumption until you run into a contradiction. That
contradiction means that your original assumption was incorrect.

Reductio ad absurdum proofs seem roundabout, but they are probably more
common in real life than we realize. An alibi is a form of reductio ad absurdum. If
the defendant were at the scene of the crime and at his mother's house, it would
mean he was at two different places at the same time. Absurd.

Let's begin by assuming that the square root of 2 is rational. Because it's rational,
there exist whole numbers a and b such that:

Are aand b both even? If so, divide them both by 2 and use those numbers instead.
If they're still both even, divide them both by 2 again, and keep doing this until
either a or b (or both) is odd.
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Square both sides of the equation:

a2

b2 = 2

Or:

Notice that a squared is 2 times b squared. That means that a squared is even,
and the only way that a squared can be even is if a is even. Earlier I indicated that
a and b can't both be even, so we now know that b is odd.

If a is even, it equals 2 times some number, which we'll call c:

(2c)2 = 2b2

Or:

Or:

That means that b squared is even, which means that b is even, which is contrary
to the original requirement that a and b can't both be even.

Hence, the original assumption that the square root of 2 is a rational number is
flawed. The square root of 2 is incontrovertibly irrational. Expressed as a decimal,
the digits keep going with no discernable pattern:

1.4142135623730950488016887242097 ...

The number can't be expressed exactly without an infinite supply of paper, pen,
and time. Only an approximation is possible, and the ellipsis acknowledges our
defeat. The closest you can come to expressing this number finitely is providing
an algonthm for its calculation. (I'll do precisely that in Chapter 6.)

There's a reason why the terms that we use - rational and irrational - oddly
seem to pass judgment on the mental stability of the numbers. Irrational numbers
are also sometimes called surds, to which the word absurd is related. The ancient
Greeks were familiar with irrational numbers but they didn't like them very much.
According to legend (but not reliable history), it was Pythagoras's disciple Hippasus
who in the sixth century BCE determined that the square root of 2 is irrational.
The legend continues to report that this finding was so disturbing to these logical
and rational Greeks that Pythagoras and his followers tried to suppress it by
tossing Hippasus into the Mediterranean Sea. They would certainly have preferred
that irrational numbers didn't exist. Diophantus, in rejecting irrational numbers
as solutions to his problems, was cartylng on a long tradition in finding irrational
numbers not quite to his taste.

With the decimal notation that we have (but the ancient Greeks did not), it's
easy to create numbers that are clearly irrational. Just wnte down something nutty
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without a repeating pattern of digits. For example, here's a number with some kind
of crazy pattern in the decimals, but it's certainly not repeating:

.0010110111011110111110111111 ...

After the decimal point, there's a 0 and one 1, then a 0 and two Is, then a 0 and
three Is, and so forth. This is not a rational number! It cannot be represented by a
ratio of two integers. It is, therefore, irrational.

The square root of 2 is a solution to the following equation:

x2 -2=0

It's the same as an equation I showed earlier except that the 2 has been moved to
the other side of the equal sign. The cube root of 17 (which is also an irrational
number) is a solution to the following equation:

x3 -17=0

Both of those equations are called algebraic equations. Here's another algebraic
equation:

-12x5 + 27x4 - 2x2+ 8x - 4 = 0

An algebraic equation has one variable, usually called x. (Algebraic equations
are not the same as Diophantine equations because Diophantine equations can
have multiple variables.) The algebraic equation has a series of terms - five of
them in this last example - that sum to zero. Each term contains the variable
raised to a power, which is a whole number or zero. (Because anything to the
zero power equals 1, the fifth term can be interpreted as -4 times x to the zero
power.) Each variable raised to a power is multiplied by an integer coefficient, in
this example, the numbers -12, 27, -2,8, and -4. These coefficients can be
zero, as is the case WIth the "missing" term of x to the third power.

Algebraic equations tend to show up a lot in real-life problems, so they've come
to be considered quite important. The general form of an algebraic equation is:

aN~ + aN_l~-l + ... + a2x2 + alX + ao = 0

where N is a positive integer and ai are integers. It's possible to wnte this more
concisely as a summation:

N

Laixi=O
i=o

Here's the example I showed earlier:

-12x5+ 27x4 - 2x2+ 8x - 4 = 0

In this equation, N (the highest exponent, called the degree of the polynomial) is
5, and a5 equals -12, a4 equals 27, a3 equals 0, and so on.
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The solutions to an algebraic equation (also called the roots of the equation) are
called algebraic numbers. An N-degree polynomial has at most N unique solutions.
In Chapter 1, the algebraic equation

x2
- lOx + 21 = 0

came up. That equation has solutions of 3 and 7.
The square root of 2 is one solution of the algebraic equation:

x2 -2=O

The negative square root of 2 is the second solution.
The category of algebraic numbers also includes all integers and all rational

numbers. For example, the integer 5 is the solution of the algebraic equation

x-5=O

and 3/7 is the solution of:

7x - 3 = 0

Some algebraic equations can be solved only with square roots of negative
numbers:

This equation looks insolvable because any number multiplied by itself is a positive
quantity, so adding 5 to it won't ever yield zero. Square roots of negative numbers
are called imaginary numbers. (The square root of -1 is assigned the letter i for
convenience.) Despite the name, imaginary numbers are very useful and have
actual real-world applications, but imaginary numbers play no role in Turing's
paper or this book.

Sometime in the eighteenth century, mathematicians began speaking of real
numbers in contrast to imaginary numbers. By definition, the category of real
numbers includes everything except numbers involving square roots of negatives.

Real numbers are also referred to as the continuum because real numbers can be
visualized as all the points on a continuous line:

-3
I

-2
I

-1
I

o
I

2
I

3
I

Some integers are labeled on this line, but by themselves the integers obviously
could not form a continuous line.

But neither can rational numbers. Rational numbers certainly seem very dense
on the line. Between any two rational numbers, for example, a and b, you can
insert another rational number which is the average of the two:

a+b
2
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But there still exist gaps between the rational numbers where irrational numbers
reside. For example, one such gap corresponds to the square root of 2.

Now, we're coming at the subject of categorizing numbers from two directions.
We've defined a category called algebraic numbers that are solutions to algebraic
equations. This category of numbers includes integers, rational numbers, and
many irrational numbers such as square roots and cube roots. We've also defined
a category called real numbers, which are all numbers that do not involve square
roots of negative numbers. The question that now poses itself is this:

Are all real numbers also algebraic numbers? Or are there some real numbers that
are not solutions of algebraic equations?

In the 1740s, Leonhard Euler (1707-1783) - the indefatigable Swiss-born
mathematician, whose name is pronounced "oiler" - speculated that non
algebraic numbers do indeed exist, and these he called transcendental numbers
because they transcend the algebraic. Proving that transcendental numbers existed
was tough. How do you prove that a particular number is not the solution of some
extremely long and unspeakably hairy algebraic equation?

The existence of transcendental numbers was an open question until 1844,
when French mathematician joseph liouVIlle (1809-1882) devised a number that
he was able to prove was not algebraic. Displayed with the first 30 decimal places,
the number Liouville chose was:

.110001000000000000000001000000 ...

But that excerpt doesn't quite reveal the complete pattern. Liouville constructed
this crazy number with factorials. The factorial of a number is the product of
the number and all positive integers less than itself, and is represented by the
exclamation point:

I! = 1

2! = 1 x 2 = 2

3! = 1 x 2 x 3 = 6

4! = 1 x 2 x 3 x 4 = 24

5! = 1 x 2 x 3 x 4 x 5 = 120

and so forth. Liouville's Number (as it is sometimes called) contains a 1 in the 1st ,

2nd , 6th , 24th , 120th , and so forth, decimal places. Liouville designed this number
specifically for proving that it was not the solution of any algebraic equation. The
increasing scarcity of nonzero digits is the key to the proof. I

tThe proof is discussed in Edward B Burger and Robert Tubbs, Making Transcendence Transparent An
Intuitive Approach to Classical Transcendental Number Theory (Sprtnger, 2004),9-26
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In 1882, German mathematician Ferdinand Lindemann (1852-1939) proved
that one of the most famous irrational numbers of all time was also transcendental.
This is n, the ratio of the circumference of a circle to its diameter:

n = 3.1415926535897932384626433832795 ...

Lindemann showed that n was not the solution to an algebraic equation, and
this fact provided an insight into a very old problem: For over two millennia,
mathematicians and non-mathematicians alike had been trying to "square the
circle." The problem can be stated simply: Given a circle, use a straightedge and
compass to construct a square with the same area as the circle. (A similar problem
is called the rectification of the circle, and it requires constructing a straight line
with a length equal to the circle's circumference.) So fanatically did people try
to solve this problem that the ancient Greeks even had a word for the obsessive
activity: rerpaywvi~eLV, literally, to tetragonize.2

Using a straightedge and compass to construct geometrical shapes is equivalent
to solving certain forms of algebraic equations. Because n is not a solution to an
algebraic equation, you cannot represent the number in a geometrical construction.
Squaring the circle with a straightedge and compass is impossible.

Another famous transcendental number is symbolized by the letter e (for Euler).
If you calculate this number

for increasingly large values of N, you'll approach e:

e=2.7182818284590452353602874713527 ...

You can also calculate e by this infinite series involving factorials:

1 1 1 1 1
1+-+-+-+-+-+···

I! 2! 3! 4! 5!

You can calculate it, but it's not a solution to any algebraic equation.
Over the past century many numbers have been shown to be transcendental, but

there exists no general process for determining whether a number is transcendental.
For example, the jury is still out on:

Turing's paper (and this book) restricts itself to real numbers (not imaginary
numbers), and the following diagram summarizes the most important categories
within the realm of the reals:

2E W Hobson, Squanng the Circle' A History of the Problem (Cambndge University Press, 1913), 3
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Real Numbers
r Rationals Irrationals \
r \r \
I Integers 111/3,7/2, etc·1 1,f2,,f3, etc. II 1t, e, etc. I
\ J\ J

Algebraic Numbers Transcendentals

This diagram is not to scale.
Wait: What do I mean by that?
All those categories of numbers are infinite, right? There are an infinite number

of integers, an infinite number of fractions, an infinite number of irrationals, right?
Infinite is infinite, right? There aren't different sizes of infinity, are there? There
can't be an infinity that's larger than another infinity, can there?

Right?
Infinity has never been an easy subject, regardless of whether it's approached

from a philosophical, theological, or mathematical perspective. In mathematics,
however, infinity can scarcely be avoided. We are compelled to examine this
concept of infinity with all the bravery we can summon.

The relentless persistence of the natural numbers to get bigger and bigger seems
to lie at the very root of our concept of the infinitely large. Whatever number we
count to, we can always count one more. Real numbers can get infinitely large as
well, of course, but only because they tag along with the natural numbers. Real
numbers also allow us to ponder the infinitely small as we divide and subdivide
the continuum into smaller and smaller pieces.

Are these two infinities - the infinity of the never-ending natural numbers,
and the infinity of the density of the continuum - similar in some way? Or are
they completely different?

The following discussion will be a little easier if we're armed with some
rudimentary set theory. A set is a collection of objects, which are called the
elements of the set. A set is often symbolized with a pair of curly brackets. For
example,

{ 1, 2, 3, 4 }

is the set of the first four positive integers. The elements in a set are unique. Two
4s in the same set isn't allowed, for example. The order of the elements in a set
doesn't matter. The set

{4, 1, 3, 2 }

is identical to the previous one. The number of elements in a set is called the
cardinal number of the set, or the set's cardinality. The cardinality of the finite set
shown above is 4. Sets that have the same cardinality are said to be equivalent.

Some sets have a finite cardinality; others have an infinite cardinality. Consider
the set of positive integers:

{ 1, 2, 3, ... }
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The cardinality is certainly infinite. That's also true for the set of even positive
integers:

{ 2, 4, 6, ... }

What is the relationship between the cardinalities of these two sets?
Perhaps our immediate instinct is to say that the first set has double the number

of elements as the second set because the second set is missing all the odd numbers.
That's certainly one way of looking at it, and that would be true if the two sets were
finite. But how can we speak of one set having "double the number" of elements
of another set when they're both infinite?

Let's try to count the elements of the second set. What does it really mean to
count something? It means to put the items into correspondence with the natural
numbers: "Number 1, number 2, number 3, ..." we recite, as we touch the noses
of our subjects.

We can count the even positive integers in the infinite set by corresponding
each of them to the natural numbers:

1 2

~ ~
2 4

3 4

~ ~

6 8

5

~
10

6
~
12

7

~

14

8
~

16

For every positive integer, there's a corresponding even number. For every even
number, there's a corresponding positive integer. Looking at it this way, now the
two sets appear to be exactly the same size, which means that they're equivalent. Is
this a paradox or what? (Actually, this peculiar characteristic of infinite collections
was noted by Galileo in 16383 and is sometimes called Galileo's Paradox.)

Nobody seems to have worried too much about this paradox until Georg Cantor
(1845-1918) began wrestling with it. Cantor, the mathematician largely credited
with founding set theory, was born in St. Petersburg. His father was a merchant
who drove his son to excel in whatever he did. Cantor's mother was a member
of the Bohm family of musicians. Cantor himself displayed talents in art as well
as music, but at the age of 17 he decided to "devote his life to mathematics.,,4
He attended the Polytechnicum in Zurich, and the University of Berlin. In 1869,
Cantor got a teaching job at the University of Halle, where he remained for the
rest of his life.

In 1873, in a letter to mathematician Richard Dedekind (1831-1916), Cantor
pondered correspondences such as the one between natural numbers and even
numbers, and wondered whether a similar correspondence could be established

3Galileo Galilei, Two New Sciences, second edition, trans Stillman Drake (Wall &: Emerson, 2000), 40-4l.
The translation is based on Opere di Galileo Galilei (Florence, 1898), VIII, 78-79 Apparently Galileo wasn't

the first to notice the paradox For a list of others, see Stephen Cole Kleene, Mathematical logIC (Wiley,

1967, Dover, 2002), pg 176, footnote 121
4]oseph Warren Dauben, Georg Cantor His Mathematics and Philosophy of the Infinite (Harvard University

Press, 1979, Pnnceton University Press, 1990),277
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between the natural numbers and real numbers. He suspected not, but he couldn't
see why. "I cannot find the explanation which I seek; perhaps it is very easy,"
Cantor wrote.5 Famous last words.

A set whose elements can be paired off with the natural numbers is now said
to be enumerable (or sometimes denumerable or countable). A set is enumerable
if we can order the elements or list them in some way, because any list can
be numbered - that is, paired off with the natural numbers starting with I, 2,
3, and so on. All finite sets are enumerable, of course. The real problem involves
infinite sets.

For example, consider the integers including negative and positive integers as
well as zero. Is this set enumerable? Yes, it is, because we can list all the integers
starting at zero:

o
I

-I

2

-2

3

-3

That's not the way the integers are usually listed, but this particular pattern clearly
demonstrates that a single list contains all the integers.

Interestingly enough, the rational numbers are also enumerable. Let's begin
with positive rational numbers, and let's not worry if we have a few duplicates in
the list:

1/1

1/2

2/1

1/3

2/2

3/1

1/4
2/3

3/2

4/1

SGeorg Cantor, letter of November 29, 1873, in From Kant to Hilbert' A Source Book in the Foundations of
Mathematics (Oxford University Press, 1996), Vol. II, 844
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Do you see the pattern? With the first item in the list, the numerator and
denominator add up to 2. The next two items on the list have numerators
and denominators that add up to 3. The next three items on the list have
numerators and denominators that add up to 4. And so forth. A list that continues
like this contains all the positive rational numbers. We can include negative
rational numbers by just alternating between positive and negative. Therefore, the
rational numbers are enumerable.

In a paper published in 1874, "On a Property of the Set of Real Algebraic
Numbers,,,6 Cantor showed that even the algebraic numbers are enumerable. As
you'll recall, algebraic numbers are solutions to algebraic equations, which have
the general form

where N is a positive integer and aj are integers. For any particular algebraic
equation, let's add up all of the coefficients (the ai values) and N itself. Let's call
that number the equation's height. For a particular height (for example, 5), there
are a finite number of algebraic equations. Each equation has at most N solutions.
Thus, all the algebraic numbers can be listed in order of their heights and their
solutions. The algebraic numbers are therefore enumerable.

What about the transcendentals? Can the transcendental numbers be listed in
some manner? It hardly seems likely!" There's not even a general procedure for
determining whether a particular number is transcendental!

What about the real numbers, which encompass algebraic numbers and tran
scendental numbers? Can the real numbers be enumerated?

In that same 1874 paper where Cantor demonstrated that the algebraic numbers
are enumerable, he also demonstrated that the real numbers are not enumerable.

Cantor began his proof by assuming that the real numbers are enumerable.
He assumes that there exists some way to enumerate the real numbers, and that
they've been enumerated in a list like so, symbolized by subSCripted omegas:

WI W2 W3 W4 W5 W6

Cantor is going to show that this list is incomplete - that no matter how this list
was made, it simply cannot contain all the real numbers.

Pick any number a (alpha) and a larger number f3 (beta). You can represent
these two numbers on a number line like so:

a fJ
J

Now start going through your enumerated list of real numbers until you find the
first two real numbers that are between a and f3. These two numbers are greater
than a and less than f3. Call the lesser of these two numbers a' and the greater f3':

6Most conveniently available in From Kant to Hilbert, Vol II, 839-843



a a'

The Irrational and the Transcendental 25

{3' {3
I I

Continue going through your list of real numbers from where you left off until
you find two new numbers between a' and f3'. Call these two numbers a" and f3"

a a' a" {3" {Y {3
I I I

And again:

a a' a" a'II {Y" {Y' {Y {3
I I I I

It should be obvious that this process must continue forever. You'll always be able
to find two more numbers between the last two numbers.

How do you know this? Easy: Suppose you get stuck at this point

a a' a" am ••• a(v) {3(v) ••• {Y" {Y' {y {3

I I I I I I

where the superscript (v) indicates v prime marks, maybe a million billion trillion
or so, but a finite number. Now, no matter how much you continue to search
through the list of enumerated real numbers, you can't find another pair of
numbers that falls between a(v) and f3(v). Then it's obvious that your list of real
numbers is incomplete. The list is missing every number between a(v) and f3(v).

For example, the number midway between a(v) and f3(v) is the average of the
two, or:

a(V) + f3(v)

2
And that's just for starters. Your list is missing lots of numbers.

That's how you know the process must continue forever. The alphas keep
getting larger and the betas keep getting smaller, but the largest alpha can't get
larger than the smallest beta. (When you find two new numbers that fall between
the last alpha and beta, the smaller one is always the alpha and the larger one the
beta.) Both the alphas and the betas have a boundary - a limit - that Cantor
symbolizes using a superscripted infinity sign: a oo and f3°O.

Is it possible that a oo is less than f300? Take a look:

I " II'a a a a If" {Y' {Y {3
I I I I

No, that's not possible. If the alphas never get larger than a oo and the betas never
get smaller than f3°O , then the list of real numbers is missing every number between
a oo and f3°O, for starters:
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It must be that a oo is equal to j:3oo. Cantor calls this limit 17 (the Greek
letter eta):

ex ex' a" a'" ,.,
I

{3''' f3" {J' {J
I I

Because this has to be an infinite process (we've already established that it can't
stop at some point), the alphas never reach 17 and neither do the betas. Now, you
know what that means, don't you? That means that 17 is not in the original list of
real numbers!

If 17 were in the list, then it would tum up sometime when you were searching
for the next alpha and beta, but consider the alpha and beta that turned up in the
list right before 17:

ex a' a" a'" {J'" {3" {J' (J
I I I I

Now the list of real numbers is missing every number between a(v) and j:3(v)

except 17.
We've run out of scenarios here. Nothing works, nothing makes sense, and it's

all the fault of the original assumption - the assumption that we were able to
enumerate the real numbers. It must be that we can't do that.

Integers are enumerable. Rational numbers are enumerable. Even algebraic
numbers are enumerable. Real numbers, however, are not.

Cantor considered the non-enumerability of real numbers to be a new proof
of the existence of transcendental numbers. (If transcendental numbers did not
exist, real numbers would be the same as algebraic numbers and hence would be
enumerable.) What Cantor eventually realized is that there are at least two kinds
of infinity: There's an enumerable infinity and a non-enumerable infinity - an
infinity of the natural numbers and an infinity of the continuum. Infinite sets of
natural numbers, rational numbers, and even algebraic numbers are enumerable.
When we throw in the transcendentals, suddenly we're in a whole different
universe. We're looking at two different infinite cardinalities: One cardinality
applies to natural numbers, rational numbers, and algebraic numbers. The other
cardinality is that of the real numbers and the continuum.

Cantor's work was controversial in his day and has never entirely shed that
controversy. Since Cantor, however, no mathematician has thought about infinity
in quite the same way. Moreover, the distinction between enumerable and
non-enumerable infinities has proved to be extremely useful, even if imagining
just one simple type of infinity boggles the human mind.

In the popular mythology, Cantor himselfwent mad from contemplating infinity
too much. It's true that Cantor spent the last twenty or so years of his life in and out
of psychiatric hospitals, but it probably was a form of manic depression that would
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have manifested itself regardless of his occupation. 7 Still, the worst of Cantor's
bouts with mental illness seem to have been triggered by fatigue and stress, and
the stress may have been related to problems connected with the acceptance of his
unconventional mathematical theories. In recuperation, Cantor pursued interests
other than mathematics. He explored philosophy, theology, metaphysics, and the
hypothesis that Francis Bacon wrote the plays attnbuted to William Shakespeare.

Finite sets and infinite sets have quite different characteristics. One big difference
involves proper subsets, which are subsets that are not the same as the sets
themselves. A proper subset of a finite set always has a smaller cardinality than the
set itself. That much is obvious. A proper subset of an infinite set can also have
a smaller cardinality than the set. (For example, the set of natural numbers is a
proper subset of the set of real numbers, and the two cardinalities are different.)
In some cases, however, a proper subset of an infinite set has the same cardinality
as the set itself. This can only be true of infinite sets. The set of natural numbers
is a proper subset of the set of integers, which is a proper subset of the set of
rational numbers, which is a proper subset of the set of algebraic numbers. All
these infinite sets have the same cardinality. They are equivalent.

It's also the case that various proper subsets of the real numbers are equivalent
to each other. Consider the real numbers between 0 and 1. These can be placed
in a one-to-one correspondence with the real numbers greater than 1. Just divide
each number into 1. For example, 0.5 corresponds with 2, 0.25 corresponds with
4,0.1 corresponds Wlth 10, and 0.0001 corresponds with 10,000. This little fact
proves to be very useful: It means that we can examine certain properties of real
numbers restricted to the range between 0 and 1, and what we find will apply to
all the real numbers. (Turing uses this concept in his paper, and Cantor used it as
well.)

As Cantor explored infinite sets, he made other astonishing discoveries:
He found that he could establish a one-to-one correspondence between the
continuum - the real numbers on a line - and the two-dimensional points on a
plane, and indeed the points in any N-dimensional space.

For example, let's restrict ourselves to that segment of the plane Wlth x and
y coordinates between 0 and 1. Each point on the plane can be expressed as a
number pair (x, y), and each of the two numbers contains infinite digits following
the decimal point. In the following expression, each digit ofx following the decimal
point is symbolized by a subscripted a:

Similarly for y:

7Dauben, Georg Cantor, 285
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Now take these digits and interweave them into a single number:

.al bl a2 b2 a3 b3 a4 b3 ...

That's one real number encapsulating two real numbers. Each two-dimensional
point corresponds to a real number on the continuum. Hence, the collection of
points on the plane has the same cardinality as the real numbers on a line. Cantor
was so astonished by this discovery that German failed him. "Je Ie vois, mais je ne Ie
crois pas," he wrote to Dedekind.8 I see it, but I don't believe it.

In 1891, Cantor published another proof of the non-enumerability of real
numbers,9 and this proof has been blowing people's minds ever since. Cantor's
proof involved sets rather than numbers and was more general than the example
I'm going to show you, but the idea is the same. For reasons that will be very
apparent, it's called the diagonal proof or the diagonal process or the diagonal
argument or diagonalization. Whatever you call it, a diagonal is involved.

Let's restrict our attention to real numbers between 0 and 1. Suppose we have
devised some way to list all these real numbers. (As you may be anticipating,
this is yet another reductio ad absurdum proof.) Suppose the list begins something
like this:

.1234567890

.2500000000

.3333333333

.3141592653

.00101l0111

.4857290283

.0000000000

.9999999999

.7788778812

.2718281828

We seem to be off to a good start. The list includes 0, 1/4, 1/3, 7tl1O, el10, that
weird irrational number I showed earlier with the varying number of Is, and
some others that aren't quite recognizable. Each number has an infinite number
of decimal places (even if they're just Os) and the list has an infinite number of
numbers.

Even though this list is infinite, we can persuade ourselves that it's missing
something. Let's look at the digits that form a diagonal through the list from

8 Leuer of June 29. 1877 in From Kant to Hilbert, Vol 11,860

9Georg Cantor, "On an Elementary Question in the Theory of Manifolds," From Kant to Hilbert, Vol 11,

920-922
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upper-left to lower-right. These digits are shown here in bold face:

.1234567890 .

.2500000000 .

.3333333333 .

.3141592653 .

.0101101110 .

.4857290283 .

.0000000000 .

.9999999999 .

.7788778812 .

.2718281828 .

Now, use those bold-face digits to form a number:

.1531190918 ...

Because the list of real numbers is infinite, and the number of digits in each
number is infinite, this number has an infinite number of digits. Now increase
each individual digit in this number by 1. If the digit is 9, make it 0:

.26422010259 ...

Is this new number in the original list? Let's be methodical about it: Is this new
number the first number in the list? No, it's not, because the first digit of the first
number in the list is 1, and the first digit of the new number is 2.

Is it the second number in the list? No again, because the second digit of the
second number in the list is 5, and the second digit of the new number is 6.

Is it the third number in the list? No, because the third digit of the third number
in the list is 3, and the third digit of the new number is 4.

And so forth. The new number is not the N-th number in the list because the
N-th digit of the N-th number in the list is not equal to the N-th digit of the new
number.

Thus, the list is incomplete and our original premise is flawed. It's impossible
to list the real numbers between 0 and 1. Once again, we see that the real numbers
are not enumerable.

What happens when you perform this same experiment on a list of algebraic
numbers? We already know how to list algebraic numbers, so that's not a problem.
When you construct a diagonal and change all the digits, the resultant number is
not in the list. That means the resultant number is not an algebraic number. The
resultant number is transcendental.
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You could order your list of algebraic numbers in many different ways; you
could create different rules for making the diagonal different from any number in
the list; each time, you'll be creating another transcendental number.

In 1895, Cantor chose to represent the cardinality of the enumerable set of
natural numbers (and thus, any enumerable infinite set) using the first letter of the
Hebrew alphabet with a subscripted zero: ~o, pronounced "aleph null." Cantor
called this the first transfinite number. He combined this WIth other transfinite
numbers (~l, ~2, ~3, and so on) to create an entire mathematics of the transfinite.

If the cardinality of enumerable sets is ~o, what is the cardinality of the
non-enumerable set of real numbers? Can we even represent that cardinality?

Perhaps. Let's begin with an example involvmg finite sets. Here is a set of just
three elements:

{ a, b, c }

How many subsets of this set can you construct? (The set of all subsets of a set is
called the power set.) You can try it manually, but Just don't forget the empty set
and the set with all three elements:

{ } {a, b }
{a } {a, C }

{b } {b, C }

{ C } { a, b, C }

There are eight subsets of a set of three elements, and not coincidentally:

The exponent is the number of elements in the onginal set. The result is the
number of subsets of that set. A set of 4 elements has 16 (2 to the 4th power)
subsets. A set of 5 elements has 32 subsets.

There's a more methodical way to enumerate these subsets that better reveals
this relationship. Let's create a table with a column for each element in the original
three-element set. Use Os and Is to indicate whether that element is in each
particular subset:

a b c Subset
0 0 0 { }
0 0 1 { C }

0 1 0 {b }
0 1 1 {b, C }

1 0 0 {a }
1 0 1 {a, C }

1 1 0 {a, b }
1 1 1 {a, b, C }
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The successive combinations of Os and Is in the three columns are the same as the
binary numbers from 0 through 7. Three bits yield 8 binary numbers. The general
rule is:

Cardinality of a power set = 2cardinality of the onginal set

A set of 10 elements has a power set of 1,024 elements. A set of 100 elements has
a power set of 1,267,650,600,228,229,401,496,703,205,376 elements.

Now let's look at the natural numbers (including 0 for this purpose):

{O, 1, 2, 3, 4, 5, ... }

The cardinality of this set is ~o. How many subsets does it have? In other words,
what is the cardinality of its power set? By analogy, it's

2~o

Perhaps further convincing is required. Let's construct a table similar to that for
the finite set (except obviously not so complete). At the top of the columns we have
all the elements of the set of natural numbers. Each column has a 0 or 1 indicating
whether that number is included in each particular subset. The resultant subset is
shown at the right:

0 1 2 3 4 5 Subset
0 0 0 0 0 0 { }

1 0 0 0 0 0 { 0 }
0 1 0 0 0 0 { 1 }
1 1 0 0 0 0 { 0, 1 }
0 0 1 0 0 0 { 2 }
1 0 1 0 0 0 { 0, 2 }
0 1 1 0 0 0 { 1,2 }
1 1 1 0 0 0 {0,1,2}

What we are actually attempting here is a list of all possible infinite combinations
of 0 and 1. Let's put a little period before each of the sequences of numbers in
the list:

.000000 .

.100000 .

.010000 .

.110000 .

.001000 .

.101000 .
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.011000

.111000

These are binary numbers between 0 and 1, and (judging from the way we
created these numbers) all the binary numbers between 0 and 1, and hence all the
real numbers between 0 and 1.10 I showed earlier how the real numbers between
oand 1 can be put into a correspondence with the totality of real numbers, which
means that the real numbers can be put into a correspondence with the members
of the power set of the natural numbers. This power set therefore has the same
cardinality as the continuum.

The cardinality of the continuum is thus

2~o

where ~o is the cardinality of the natural numbers.
Cantor proved that it is not possible for the members of any nonempty set to

be put into a one-to-one correspondence with the members of its power set, a
fact that's obvious for finite sets but not so obvious for infinite ones. This is now
known as Cantor's Theorem, and it was the primary result of the 1891 paper that
introduced the diagonalization technique. Just as a set can have a power set, a
power set can have its own power set, and so on. All these sets have different
cardinalities.

Cantor speculated that the cardinality of the continuum was the next higher
transfinite number after ~o, which is the transfinite number he called ~l' This
speculation is called Cantor's continuum hypothesis, and it can be expressed
mathematically like this:

~l = 2~o

Cantor struggled to prove his hypothesis, but was never able to do so. The problem
is that there could be some other transfinite number between ~o and the cardinality
of the continuum.

Regardless, the profound implication of all this is that the cardinality of
enumerable sets is not only smaller than the cardinality of the continuum

~o < 2~o

but much, much, much, much, much smaller:

~o ««««««««««««< 2~o

lOll may also seem as if we've stumbled on a method to enumerate all the real numbers between 0 and 1

The pattern is already eVIdent - the first digit after the penod alternates between 0 and 1, the second digit

alternates at half the speed, and so on - and we could easily continue this list as long as we want The

fallacy, however, is that the list WIll never contain a transcendental number Every number in the list has a

finite number of non-zero digits after the penod
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The only difference between the continuum and enumerable sets is the inclusion
of transcendental numbers. We are compelled to conclude that transcendental
numbers - which were not even proved to exist before 1844 - really account
for the vast majority of all possible numbers - indeed, virtually all possible
numbers.

For millennia, our ideas about numbers have been completely skewed and
distorted. As humans we value neatness, order, and patterns, and we live in a
world of compromise and approximation. We're interested only in numbers that
have meaning to us. From counting farm animals, we have invented the natural
numbers. From measurement, we have invented the rational numbers, and from
higher mathematics, we have invented the algebraic numbers. We have plucked all
these numbers from the continuum while ignoring the vast depths in which they
swim like microscopic bacteria in the ocean. We live under the comforting illusion
that rational numbers are more common than irrational numbers, and algebraic
numbers are more numerous than transcendental numbers, and certainly they are
in our manufactured lives. In the realm of the continuum, however, virtually every
number is transcendental.

What are all these transcendental numbers? Most of them are just sequences
of random digits, without rhyme, reason, or meaning. Indeed, any sequence of
random digits is almost assuredly transcendental.

Toss a dart at a dart board. Now measure the distance between the dart and
the exact center of the bull's eye using progressively higher magnification and
finer rulers. First measure to the whole number of inches, and then to the whole
number of tenths of an inch, and then to the whole number of hundredths of an
inch, and you'll be going on forever. The probability that the distance is a rational
number - 1.437 inches exactly, for example - is negligible.

Of course, at some point when measuring the dart we're going to have to deal
with the real world. It's not like the dart is going to split an atom! No, the dart will
wedge between discrete molecules of cork, and as our magnification gets into the
realm of these molecules, we see that they're vibrating too much for an accurate
measurement, and there are visual distortions due to the finite wavelength of light,
and at some point the Heisenberg Uncertainty Principle kicks in, and then we
can't really be sure of anything any more.

At those magnifications, the whole idea of a "continuum" seems hopelessly
quaint, and we may even be tempted to look outwards from the molecules to
the universe at large, and speculate whether infinity exists at all in the real
world - particularly considering that the Big Bang very likely unleashed only a
finite amount of matter and energy at a point in time in a finite past to create a
universe seemingly characterized by a discrete rather than continuous structure.

We might wonder, too, if Cantor's exploration into enumerable and non
enumerable sets is just some highly abstract (and still somewhat suspect) area of
speculative mathematics, or if there's actually some utility in this exercise.
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Although it's hard to find infinity in the real world, there is still much usefulness
in the mathematical concepts of infinity. It turns out that certain mathematical
proofs that have actual real-life implications - including the one in Turing's
paper - hinge on the difference between enumerable sets and non-enumerable
sets, as illustrated by this diagram:

~ The tools we have.

~O << << < << << << << < <<< << <<< <<< 21(0

The jobs we need to do. /

You see the problem?



Centuries
of Progress

A s the seconds ticked down to midnight on Friday, December 31, 1999,
the festivities that normally accompany any new year were tempered by

anxiety and fear. At the stroke of midnight, it was possible - some even
thought inevitable - that major technological crashes and shutdowns would
ripple through the world's interconnected computer systems. This crisis wouldn't
be an act of global terrorism, but instead the momentous result of a simple little
shortcut used by computer programmers for nearly half a century. In programs
written for a variety of different applications on multitudes of different systems,
programmers had saved valuable computer storage space by representing years
by only their last two digits, for example, 75 rather than 1975. At midnight, that
two-digit year would roll over from 99 to 00, suddenly getting much smaller rather
than larger. What had once been an innocent shortcut had become a treacherous
bug referred to by the high-tech nickname Y2K.

Programmers themselves, of course, had known of the impending problem for
decades. Alarmist warnings to the general public began around 1998 with books
such as Y2K: The Day the World Shut Down; Deadline Y2K; Y2K: It's Already Too Late;
Y2K: An Action Plan to Protect Yourself, Your Family, Your Assets, and Your Community
on January 1, 2000; 101 Ways to Survive the Y2K Crisis; Y2K for Women: How to
Protect Your Home and Family in the Coming Crisis; Crisis Investingfor the Year 2000:
How to Profit from the Coming Y2K Computer Crash; Y2K: A Reasoned Response to Mass
Hysteria; Spiritual Survival During the Y2K Crisis; Y2K: The Millennium Bug - A
Balanced Christian Response; Awakening: The UpSide of Y2K; and, for children,
Y2K-9: The Dog Who Saved the World. Television news features and magazines soon
joined in. The April 1999 issue of Wired magazine featured an ominously black
cover with the big words "Lights Out" and the smaller text "Learning to Love
Y2K."r

We were informed that computers were embedded in nearly all of our electronic
technologies, and the disaster scenarios ranged from massive electrical blackouts

1Wired, Volume 7, Issue 4 (April, 1999), archived at wwwWlred comlWlreclJarchive/7.04
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and water cutoffs, to planes falling out of the sky and automobiles going haYWire,
to recalcitrant microwave ovens and videocassette recorders.

The twentieth century had been an era of enormous scientific and technological
progress, and now this technology was about to take a big bite out of our
complacent posteriors.

No such fears accompanied the previous tum of the century. The nineteenth
century had been an era of enormous scientific and technological progress, but
nothing was due to blow up at midnight and the new century was greeted with
optimism. Scientists were on the verge of total knowledge. Prominent physicists
such as Lord Kelvin (1824-1907) predicted imminent solutions to the last few
remaining riddles of the physical universe, including the nature of the ether that
pervaded all space and provided a medium for the propagation of light and other
electromagnetic radiation.

In mathematics - perhaps the nineteenth-century discipline closest to com
puter science - great progress had been made as well, and more was anticipated.
A potential crisis had been weathered gracefully, and mathematics seemed stronger
than ever.

The potential mathematical crisis in the nineteenth century involved a field
that dated from about 300 BCE: geometry as defined by Euclid. (Although Euler's
name is pronounced "oiler," Euclid's is pronounced "yoo-clid.")

Euclid's Elements begins with a series of definitions followed by five postulates
and some common notions (also known as axioms). From these few basic assump
tions, Euclid derives hundreds of theorems.

Euclid's first four postulates are so obvious it seems barely necessary to spell
them out. In Sir Thomas Health's translation, the first three state that it is possible
to draw lines and circles using a straightedge and compass and the fourth is equally
simple:

1. To draw a straight line from any point to any point.
2. To produce a finite straight line continuously in a straight line.
3. To describe a circle with any centre and distance.
4. That all right angles are equal to one another.

Compared to the brevity and self-evidence of the first four postulates, the fifth is
notoriously lengthy and awkward:

5. That, if a straight line falling on two straight lines make the interior angles
on the same side less than two right angles, the two straight lines, if pro
duced indefinitely, meet on that side on which are the angles less than the
two right angles. 2

This postulate defines the conditions under which lines are not parallel.

2Thomas L Heath, The Thirteen Books of Euclid's Elements, second edition (Cambndge University Press,
1926, Dover Publications, 1956), Vol 1, 154-155
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Beginning with the very earliest commentaries on Euclid's Elements, that fifth
postulate was controversial. Some mathematicians thought that the fifth postulate
was superfluous or redundant, and that it could actually be derived from the
first four, but all attempts to derive the fifth postulate failed. The only successes
occurred when implicit assumptions were made that were equivalent to the fifth
postulate.

In the early nineteenth century, some mathematicians began exploring another
approach: Suppose you assume something contrary to the fifth postulate. Perhaps
two straight lines always meet regardless of the angle they form with the other
line. Perhaps two straight lines never meet. If Euclid's fifth postulate were truly
superfluous, then a contradiction would tum up somewhere down the road, and
the fifth postulate would be proved by reductio ad absurdum.

It didn't quite work out that way. In Germany, Hungary, and Russia, Carl
Friedrich Gauss o777-1855),Johann Bolyai 0802-1860), and Nicolai Ivanovitch
Lobachevsky 0792-1856), all working independently, discovered that alternatives
to Euclid's fifth postulate didn't result in contradictions, but instead led to the
creation of strange - but entirely consistent - geometric universes.

In a less sophisticated era, mathematicians might have rejected these non
Euclidean geometries as abominations, or despaired that basic geometry had
been rendered invalid by these absurd constructions. Instead, mathematicians
accepted these alternatives to Euclid and learned a major lesson about the nature
of mathematics.

Euclid had been right to include the windy fifth postulate among his basic
assumptions. That postulate was necessary to distinguish Euclid's geometry as the
geometry of the plane, but that postulate wasn't the only possibility. Replacing
it with something else yielded geometries that were just as legitimate as Euclid's
and just as interesting (if not more so). Did these non-Euclidean geometries
have anything to do with what we so blithely call "the real world"? Sometimes,
certainly. One non-Euclidean geometry describes the surface of a sphere, and in
some respects a sphere is more "real world" than the plane is.

Nineteenth-century mathematicians also developed a new and deeper appreci
ation of the axiomatic method that Euclid had employed in his Elements. (Although
Euclid and Aristotle distinguished between postulates and axioms,3 that difference
has largely disappeared in modem times.) A mathematical system begins with par
ticular axioms and continues by proving implications of those axioms. Depending
on our mood, those axioms mayor may not coincide with our intuitive notions
of the real world. For two millennia, the idea of mimicking the real world had
actually imprisoned geometry. If the axioms could be liberated from the real word

3See Thomas Heath, Mathematics in Anstotle (Oxford University Press, 1949, Thoemmes Press, 1998),

50-57 or Howard Eves. Foundations and Fundamental Concepts of Mathematics, 3rd edition (PWS-Kent,

1990, Dover, 1997),29-32
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and made sufficiently abstract, then mathematics itself could be freed, as well, to
explore new vistas. The axioms and the mathematics that result must be treated
abstractly without any implicit assumptions.

Or as a young mathematics instructor once pondered, "One must be able to say
at all times - instead of points, straight lines, and planes - tables, chairs, and
beer mugs.,,4

That young mathematics instructor was David Hilbert (1862-1943), who was
then on his way to becoming one of the preeminent mathematicians of his age.
Hilbert was born near Konigsberg, a port city on the Baltic Sea and at the time the
capital of East Prussia. In mathematical lore, Konigsberg was already a famous city
by the time Hilbert was born. It was the city where the seven bridges that crossed
the Pregel River found their way into a topological puzzle solved by Leonhard Euler.

Konigsberg was also home to the University of Konigsberg, where philosopher
Immanuel Kant (1724-1804) studied and taught. Hilbert also attended that
university and briefly taught there as well, but in 1895 a position opened up at
the University of Gottingen; Hilbert accepted it. Hilbert had first visited Gottingen
nine years earlier, "and he found himself charmed by the little town and the pretty,
hilly countryside, so different from the bustling city of Konigsberg and the flat
meadows beyond it.,,5

The University of Gottingen was also famous before Hilbert arrived. There,
in 1833, Gauss and physicist Wilhelm Weber (1804-1891) had collaborated on
an electromagnetic telegraph. With a mathematics department run by Hilbert
and Felix Klein (1849-1925), Gottingen was about to become a mecca for
mathematicians around the world.

In his early years, Hilbert had made a name for himself by tackling unsolved
problems in the areas of algebraic invariants and number fields, but in the
1898-1899 school year, his interests took an unusual tum. Hilbert taught a class
on geometry - a subject not usually taught on the university level- to students
who had already received a full dose of Euclid in their elementary education.

Hilbert's geometry was familiar in structure to Euclid's - it began with axioms
(actually, several groups of axioms) and from these axioms many theorems were
derived - but the level of rigor was unsurpassed. Hilbert had entirely rethought
and re-axiomatized geometry. It was a Euclid for the modem age with all the
knowledge of non-Euclidean geometries entering into its conception. In 1899,
Hilbert published his geometry lectures in the book Grundlagen der Geometrie
(Foundations of Geometry), which became an instant classic of mathematics. (The
second English edition based on the tenth German edition was published by Open
Court Press in 1971 and remains in print.)

Hilbert's book wasn't called the elements of geometry like Euclid's; it was the
Grundlagen - the groundwork or foundations - of geometry. Putting geometry

4Constance Reid. Hilbert (Spnnger-Verlag, 1970, 1996),57

sReid, Hilbert, 25
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on a firm axiomatic foundation was more important to Hilbert than solving the
theorems. Part of establishing a foundation for geometry was demonstrating that
the axioms were consistent - that they could never lead to contradictions. Hilbert
did this by constructing an analogue of his geometry on the real-number plane.
This was basically analytic geometry within the Cartesian coordinate system. The
consistency of Hilbert's geometry then became a problem in the consistency of
real-number arithmetic.

Hilbert wasn't the only mathematician interested at the time in establishing
foundations in mathematics. In 1889 Giuseppe Peano (1858-1932) had applied
the axiomatic method to an area where few non-mathematicians would think it was
needed - the formulation of the arithmetic of natural numbers. Less well known
at the time (but highly regarded now) was Gottlob Frege (1848-1925), who had
reconceived mathematical logic with a radical new notation that he described in an
1879 pamphlet called Begriffschrift (roughly "concept script").6 Frege had written a
Grundlagen ofhis own, the Grundlagen der Arithmetik (1884), in which he attempted
to establish a foundation for real-number arithmetic through mathematical logic.
Frege then elaborated on this system in a larger work, and in 1893 published
the first volume of his Grundgesetze (or Basic Laws) der Arithmetik, in which set
theory and mathematical logic were combined to establish the legitimacy of the
real numbers.

With these foundations being nailed into place shortly before the tum of the
century, mathematics seemed to be on a good track, and David Hilbert was invited
to give a major address at the Second International Congress of Mathematicians to
be held in Paris in August 1900. The address would kick off the new century of
mathematics, and Hilbert was unsure what to say.

Hilbert turned to his good friend from the University of Konigsberg, the
Lithuanian-born mathematician Hermann Minkowski (1864-1909) for advice.
Minkowski suggested that Hilbert's address look forward rather than back:

Most alluring would be the attempt at a look into the future and
a listing of the problems on which mathematicians should try
themselves during the coming century. With such a subject you
could have people talking about your lecture decades later'?

So, on August 8, 1900, Hilbert began his address fashioned just as Minkowski
had suggested:

Who of us would not be glad to lift the veil behind which the
future lies hidden; to cast a glance at the next advances of our

6An English translation is available in Jean van Heijenoon, ed ,From Frege to Glide!. A Source Book in

Mathematical LogIC, 1879-1931 (Harvard University Press, 1967), 1-82.

7Reid, Hilbert, 69.
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science and at the secrets of its development during future cen
turies? What particular goals will there be toward which the
leading mathematical spirits of coming generations will strive?
What new methods and new facts in the wide and rich field of
mathematical thought will the new centuries disclose?8

Hilbert then discussed rather generally some of the problems that would require
solutions by the mathematicians of the new century. He assured his audience that
these problems were just waiting to be solved:

However unapproachable these problems may seem to us and
however helpless we stand before them, we have, nevertheless,
the firm conviction that their solution must follow by a finite
number of purely logical processes.... This conviction of the
solvability of every mathematical problem is a powerful incentive
to the worker. We hear within us the perpetual call: There is the
problem. Seek its solution. You can find it by pure reason, for in
mathematics there is no ignorabimus.9

Although a rather unusual Latin word, the mathematicians in Hilbert's audience
could easily decode the verb and tense as "We shall not know." Some of Hilbert's
listeners possibly also made a connection with a famous 1876 lecture in which
physiologist Emil du Bois-Reymond (1818-1896) had pessimistically concluded
that "concerning the riddle of matter and force ... the scientist must concur once
and for all with the much harder verdict that is delivered: Ignorabimus."lO

To du Bois-Reymond, the nature of matter and energy would forever be
unknown. Hilbert's optimism just couldn't tolerate such an attitude. In mathemat
ics, he made clear, there is no "We shall not know."

Hilbert then challenged his colleagues to solve 23 outstanding problems in
several fields of mathematics. (Due to time constraints, only 10 were mentioned
in the spoken address; all 23 problems appeared in the published version.) While
some of the problems were quite esoteric, others were fundamental in their
scope.

Number 1 concerned "Cantor's Problem of the Cardinal Number of the
Continuum" - whether the cardinality of the continuum represented the next

8As quoted in Ben H Yandell, The Honors Class Hilbert's Problems and Their Solvers (A K Peters, 2002),

389 The English version of the address was originally printed in the Bulletin of the Amencan
Mathematical Society, Vol 8 0uly 1902) in a translation by Dr. Mary Winston Newson A slightly revtsed

version appears in Jeremy J Gray, The Hilbert Challenge (Oxford University Press, 2000), 240
9As quoted in Yandell, The Honors Class, 395
toAs quoted in Gray, The Hilbert Challenge, 58
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transfinite number after the cardinality of the natural numbers, or whether there
were other transfinite numbers between those to be considered. Georg Cantor's
work had become less controversial by this time, and Hilbert was one of
Cantor's biggest proponents.

Problem 2 focused on "The Compatibility of the Arithmetical Axioms." Hilbert
had based the consistency of his geometry on the consistency of the real number
system and arithmetic. Now the real numbers needed axiomatization and "To prove
that they are not contradictory, that is, that a finite number oj logical steps based upon
them can never lead to contradictory results."ll

Problem 10 in Hilbert's German read:

Entscheidung der Losbarkeit einer diophantischen Gleichung.

Take note of that word Entscheidung. It's a very important word in this book.
It means decision, decidability, determination. Hilbert's loth problem read in its
entirety:

10. Determination of the Solvability of a Diophantine Equation

Given a diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined by afinite
number oj operations whether the equation is solvable in rational
integers. 12

Yes, it was 1,650 years after Diophantus's Arithmetica, and mathematicians were
still wrestling with Diophantine equations. While some mathematicians worked
with specific forms of Diophantine equations, Hilbert asked for a general decision
process. Notice that he's not asking for a general method to solve all Diophantine
equations. What he wants is a determination of the solvability. Consider an
arbitrary Diophantine equation: Is it solvable? Does it have a solution? Hilbert
wants a process, and there doesn't seem to be the slightest doubt in his mind that
such a process exists. It only has to be found.

The words that Hilbert uses in defining this problem will set the tone for
this particular Entscheidung problem and other Entscheidung problems in the years
ahead. Hilbert wants a process with a finite number oj operations. In short, Hilbert
wants an algorithm, but that word (either in English or the German Algorithmus)

llYandell, The Honors Cass, 397

12Yandell, The Honors Class, 406. It's translated as "Decidability of solvability of Diophantine equations"

in Ivor Grattan-Guinness, "A Sideways Look at Hilbert's Twenty-three Problems of 1900," Notices of the
Amencan Mathematical Society, Vol. 47, No.7 (August 2000), 752-757 The tenn "rational integers"

means the regular integers with which we're familiar
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was not used at the time, at least not in its modem sense. The modem usage of
the word only became common in the 1960s in literature about computers. 13

In that 1900 address, Hilbert invited his audience to "lift the veil" behind which
the twentieth century lay hidden. Neither he nor anyone else could have imagined
quite the spectacle they would have seen. If physicists believed they were on the
verge of total knowledge, those hopes were dashed in 1905, the year now known
as the annus mirabilis of physicist Albert Einstein (1879-1955). In a single year,
Einstein published a doctoral thesis and four other papers that established the
basic principles of relativity and quantum mechanics.

No longer was there any sense that the universe was linear, Euclidean, and fully
deterministic. Space and time lost their moorings in a relativistic universe. In a
famous 1907 paper on relativity, Hilbert's friend Hermann Minkowski would coin
the word Zaumreit or spacetime. (Minkowski had come to G6ttingen in 1902, but
died suddenly of appendicitis in 1909.) Eventually, the century's best known result
of quantum mechanics would be something known as the Uncertainty Principle
(1927).

Perhaps in response to this new displacement and uncertainty, modem art
and music went in startling and provocative directions. Visual forms and objects
were broken apart and reassembled in cubist paintings and sculptures. As the
real-world "objective" universe became less reliable, surrealists looked inward to
their subconscious lives and irrational dreams.

In music, the chromaticism of late romantics like Wagner and Debussy seemed
almost tame as it gave way to the harsh dissonances and jagged new rhythms of
Igor Stravinsky's Rite ofSpring, which incited riots at its 1913 Paris premiere. In the
early 1920s, Austrian composer Arnold Schonberg's development of twelve-tone
music represented nothing less than a re-axiomatization of the principles of musical
harmony to create a non-Euclidean music.

Twentieth-century mathematics was not immune to these upsets. The first
jarring notes sounded in 1902.

Gottlob Frege, born in Wismar, Germany, in 1848, had received his Ph.D. at
G6ttingen two decades before Hilbert arrived there, and then began teaching at
the University oflena, where he would remain for 44 years. The first volume of his
life's work, the Grundgesetze der Arithmetik, was published in 1893, and attempted
a systematic development of all of mathematics beginning with mathematical
logic - a program now known as logicism. This first volume sold so poorly that
the publisher didn't want to hear about the second volume, so in 1902 Frege was
attempting to publish it at his own expense.

l3See Oxford English Dictionary. 2nd edition, I, 313. Also see the opening pages of Donald E. Knuth. The Art
of Computer Programming, Volume 1, Fundamental Algonthms, 3rd edition (Addison-Wesley, 1997) The most

famous algonthm of them all is Euclid's method to find the greatest common diVIsor of two numbers, but

the first known usages of the term "Euclid's Algonthm" seem to date only from the early twentieth century
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Meanwhile, the first volume of Grundgesetze der Arithmetik had acquired an
important new reader.

This was Bertrand Russell (1872-1970), an extraordinary figure whose first
mathematics papers were published in the reign of Victoria but who lived long
enough to protest the Vietnam War. Russell was born into an aristocratic and
intellectual family. His grandfather, John Russell (1792-1878), had been Prime
Minister of England; his godfather was the utilitanan philosopher John Stuart Mill
(1806-1873). Russell's interest in mathematics started early:

At the age of eleven, I began Euclid, with my brother as my tutor.
This was one of the great events of my life, as dazzling as first
love. I had not imagined that there was anything so delicious in
the world. After I learned the fifth proposition, my brother told
me that it was generally considered difficult, but I had found no
difficulty whatever. This was the first time it had dawned upon
me that I might have some intelligence. 14

In 1902, Russell was working on his book The Principles of Mathematics (to be
published the next year) and had discovered a problem in the set theones of both
Peano and Frege.

Sets can have other sets as members, and sets can even contain themselves as
members. Russell pondered: What about the set that contains all sets that do not
contain themselves? Does that set contain itself? If it doesn't, then it's a set that
does not contain itself, so it needs to contain itself, but if it does contain itself,
then it's no longer a set that doesn't contain itself.

This is now known as the Russell Paradox, and became the latest of several
paradoxes that have plagued mathematicians for at least two millennia. Russell
later made an analogy with a town barber who shaves all those who do not shave
themselves. Who shaves the barber?

Russell wrote a letter to Frege inquinng about the set that contains all sets
that do not contain themselves,15 and Frege was devastated. He quickly wrote an
appendix to the second volume of Grundgesetze der Arithmetik, but the problem
could not be fixed. The paradox was a basic flaw that rippled through Frege's
major life's work.

The paradox that Bertrand Russell had discovered resulted from the ability
of sets to contain themselves as members. If this sort of self-referentiality were
removed, set theory might be made free from the risks of paradox. Russell began
to develop a theory of types that he discussed a bit in The Principles of Mathematics

14Bertrand Russell, The Autobiography of Bertrand Russell, 1872-1914 (George Allen and Unwm Ltd,

1967), 36

15From Frege to Code!, 124-125
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and then in more detail in a 1908 paper. 16 Russell constructed a hierarchy of sets.
At the bottom of the hierarchy, a Type 1 set could contain only indiVIduals (for
example, numbers). Type 1 sets can only belong to sets of Type 2. Type 2 sets can
only belong to sets of Type 3, and so on.

By the time Russell published that 1908 paper, something much larger was
in the works. Russell had been ready to commence work on a second volume
of the Principles of Mathematics, and Russell's former teacher and mentor, Alfred
North Whitehead (1861-1947), was also preparing to write a second volume to
his earlier book, A Treatise on Universal Algebra (1898). Russell and Whitehead
realized that their goals overlapped and about 1906 had begun collaborating on
what was to become the most important book on logic since Aristotle.

The almost 2,000 pages of Principia Mathematica by A. N. Whitehead and
Bertrand Russell were published in three volumes in 1910, 1912, and 1913.
Unlike an earlier Principia Mathematica - the title under which Isaac Newton's
1687 Philosophice Naturalis Principia Mathematica is sometimes known - only the
title of Whitehead and Russell's work is Latin. Perhaps their choice of title was
also influenced by the much shorter Principia Ethica (1903) by their Cambridge
colleague George Edward Moore (1873-1958)Y Whitehead, Russell, and Moore
were all members of the Cambridge Apostles, the elite secret society devoted to the
presentation of philosophical papers and the consumption of sardines on toast.

Although Principia Mathematica wasn't written in Latin, it isn't exactly English
either. Much of the book consists of dense lists of formulas that cover the pages
"like hen-tracks on the barnyard snow of a winter morning," in the words of one
early reader. 18

Principia Mathematica incorporated a theory of types and a mathematical logic
largely based on Peano and Frege but with Peano's notation rather than Frege's
idiosyncratic graphics. The Principia Mathematica carnes on Frege's work in
logicism, and one of the climaxes comes when Whitehead and Russell prove:

1+1=2

It's harder than it looks! 19

Until this time, David Hilbert's interest in logicism was rather spotty. In 1904,
Hilbert had addressed the Third International Congress of Mathematicians (held

16Bertrand Russell, "The Theory of Types" in From Frege to Codel, 150-182
171 Grauan-Guinness, The Search for Mathematical Roots, 1870-1940 LogIcs, Set Theones and the Foundations
of Mathematics from Cantor through Russell to Codel (Pnnceton University Press, 2000), 380
18Grauan-Guinness, The Search for Mathematical Roots, 454

19The preliminary result is in section *54-43 "From this proposition it Wlll follow, when anthmetical

addition has been defined, that 1 + 1 = 2," most conveniently found in the abndgement Alfred North

Whitehead and Bertrand Russell, Pnncipia Mathematica to *56 (Cambndge University Press, 1997),360

Only in * 110643 in Volume II is the proof actually completed Wlth the modest observation, 'The above

proposition is occasionally useful "
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in Heidelberg) "On the Foundations of Logic and Anthmetic" in which he hinted
about some possible approaches, but the publication of Principia Mathematica
threw the whole issue of logicism into center stage.

It would certainly have been interesting for Hilbert and Russell to begin
collaborating on logic and mathematics following the publication of Principia
Mathematica, but world events interceded. On August 4, 1914, Great Britain
declared war on Germany, which had days earlier declared war on Russia and
France. The Great War was to last until 1918.

Neither Russell nor Hilbert was a militanst. In 1914 the German government
asked prominent scientists and artists to sign a declaration refuting the "lies and
slanders of the enemy." Hilbert could not determine whether these statements
made about Germany were true (a rather political Entscheidung problem), so he
refused to sign.2o Russell, who was to be a lifelong activist against war, engaged
in more public protests, and was dismissed from his position at Trinity College in
1916 and later imprisoned for five months. 21

Hilbert actually invited Russell to lecture at Gottingen in 1917. Even if Russell's
passport had not been confiscated by the British government, it is hard to imagine
such a visit occurring while the countries were still at war. 22

On September 11, 1917, Hilbert again publicly ventured into the field of
mathematical foundations with an address to the Swiss Mathematical Society
in Zurich on the subject of "Axiomatic Thought." (Although the war was still
going on, Hilbert was able to meet WIth mathematicians from other countries
in Zurich because Switzerland had maintained neutrality.) In this address we
can hear the origins of what became known in the early 1920s as the Hilbert
Program, which veered away from logicism but sought as its goal the rigorous
axiomatization of all of mathematics. For analyzing axiomatic systems Hilbert
conceived a "metamathematics" and "proof theory" that would use mathematical
logic to draw conclusions about the structure of other mathematical systems.

This is an approach in mathematics known as formalism. In Hilbert's conception,
the construction of a formal mathematical system begins with definitions, axioms,
and rules for constructing theorems from the axioms. Ideally, the resultant system
should exhibit four interrelated qualities:

• Independence
• Consistency
• Completeness
• Decidability

20Reid. Hilbert, 137

21 Mathematician G H Hardy later wrote a pamphlet descnbing these events, which was published by

Cambridge University Press in 1942 and pnvately circulated It was republished as G H Hardy, Bertrand
Russell and Tnnity A College Controversy of the Last War (Cambndge University Press, 1970)

22Grattan-Guinness, Search for Mathematical Roots, 471, footnote 28
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Independence means that there aren't any superfluous axioms - there's no axiom
that can be derived from the other axioms. Independence is what mathematicians
suspected that Euclid's five postulates did not exhibit. That's why they attempted to
derive the fifth postulate from the other four. It was later established that Euclid's
postulates were indeed independent.

Consistency is by far the most important characteristic of any axiomatic system.
It must not be possible to derive two theorems that contradict each other!

For example, suppose you devise some new mathematical system. This system
contains symbols, axioms, and rules that you use to develop theorems from the
axioms. That is mostly what you do: You use the axioms to derive theorems. These
are your proofs, but the rules also imply the syntax of a well-formed formula
(often called a wff, pronounced "woof') that is possible within the system. You can
assemble a well-formed formula without first deriving it from your system, and
then you can attempt to show that it's a consequence of the axioms by applying
the axioms and rules in a proof.

I'm going to show you two well-formed formulas in a hypothetical mathematical
system. Here's the first formula, which we'll call A:

gobbledygook = yadda-yadda-yadda

The equal sign means that the two expressions on either side are considered to be
equivalent in some way. Here's formula B:

gobbledygook =1= yadda-yadda-yadda

It's the same as formula A except a not-equal sign has replaced the equal sign.
Formula B is the negation, or contradiction, of A.

Formulas A and B are opposites. Only one or the other can be true. Now the
concept of "truth" is often as slippery in mathematical logic as it is in real life.
I have no desire to get into a metaphysical discussion here, so I'll merely define
truth as roughly meaning "harmonious with the axiomatic assumptions."

If you can derive both formulas A and B from the axioms, then the axiomatic
system is inconsistent, and not only is it inconsistent - it's worthless. It's worth
less because the inconsistency ripples throughout the entire system and makes
everything equally false and true at the same time, a logical disaster traditionally
known as ex falso quodlibet (from the false everything follows).

That's consistency.
Completeness is the ability to derive all true formulas from the axioms. You

derive true formulas using proofs. If you can't derive either formula A or B from
the axioms (that is, neither A nor B is provable), then the axiomatic system is said
to be incomplete. Which is true? Maybe you don't know at all, or maybe you have
a good idea which is true, but you simply can't provide a proof.

The distinction between truth and provability can be tricky: If something is
not provable we usually can't know for certain that it's true, but that doesn't stop
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us from asserting truth WIthout the corresponding proof. For example, almost
everyone believes that Goldbach's Conjecture is true: Every even integer greater
than 2 is the sum of two pnme numbers. Nevertheless, it is called a "conjecture"
because it remains one of the great unproven mathematical problems of all
time.

(I'm rather simplifymg the distinction between "proof' and "truth" for this
discussion. Provability is a syntactic concept; it's based on the axioms of the system
and the rules used to denve theorems. Truth, however, is a semantic concept that
depends on the actual meaning we give to the symbols in the system. I'll have
more to say about these issues in Part III of this book.)

Also important to Hilbert was decidability or Entscheidung. He wanted a deci
sion procedure - a general method to determine the provability of any given
well-formed formula.

If a mathematical system is revealed to be incomplete, does that also imply that
a decision procedure does not exist? Not necessarily. Suppose neither formula A
nor B can be proved. The system is incomplete, but there might be a decision
procedure that would analyze both formulas A and B and come to precisely the
same conclusion - that neither can be proved. The decision procedure would
exist even though the system was not complete.

Of course, a better, stronger decision procedure would be one that determined
not provability, but truth. Such a decision procedure would identify either A or
Bas true even if neither could be proved in the sense of being derivable from the
axioms.

Hilbert had first suggested the idea of a decision procedure in his 1900
Paris address in connection with Diophantine problems. Hilbert's 1917 Zurich
address on "Axiomatic Thought" also touched on "the problem of the decid
ability of a mathematical question in a finite number of operations." Of all
the aspects of axiomatic systems, he said, decidability "is the best-known and
the most discussed; for it goes to the essence of mathematical thought."23 (Of
course, it's likely that when Hilbert says something is "best-known and the
most discussed," he is referring to the core of his mathematical world - namely,
himself, his colleagues, and his students in Gottingen. In Principia Mathematica,
Whitehead and Russell weren't concerned at all with either completeness or
decidability.)

Perhaps Hilbert was the first person to concatenate the words Entscheidung and
Problem, but the first recorded use of the five-syllable composite is by one of
Hilbert's assistants, Heinrich Behmann (1891-1970), in a talk to the Gbttingen
Mathematical Society on May 10, 1921, entitled "Entscheidungsproblem und
Algebra der Logik." In retrospect, Behmann's description of the hypothetical

23William Ewald, ed , From Kant to Hilbert A Source Book in the Foundations of Mathematics (Oxford

University Press, 1996), Vol II, 1113
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decision procedure is jaw-droppingly astonishing. (The italics are in the original
German from an unpublished document in the Behmann Archives):

It is of fundamental importance for the character of this problem
that only mechanical calculations according to given instructions,
without any thought activity in the stricter sense, are admitted
as tools for the proof. One could, if one wanted to, speak of
mechanical or machinelike thought (Perhaps one could later let
the procedure be carried out by a machine).24

If Behmann had pursued this concept to its logical conclusions, we might today
be talking about Behmann Machines rather than Turing Machines!

In the 1922-23 school year, Hilbert taught a course on Logical Foundations
of Mathematics, and also began using the word Entscheidungsproblem,25 but the
Entscheidungsproblem really emerged from Gottingen into the larger mathematical
world in 1928. That was the year that Hilbert's assistant Wilhelm Ackermann
(1896-1962) helped assemble class lectures by Hilbert (some going back to the
1917-1918 school year) into a slim book published under the title Grundzllge der
Theoretischen Logik26 (translated as Principles of Mathematical Logic), a book that is
now known as "Hilbert & Ackermann."

Hilbert & Ackermann came nowhere close to the scope and ambition of Principia
Mathematica. The book covered only the basics of mathematical logic apart from
any set theory or logicism. In its own way, however, Hilbert & Ackermann proved
to be quite influential beyond the modesty of its 120 pages. At the core of the book
was an explication of engere Funktionenkalkul or "restricted functional calculus,"
better known today under the term "first-order predicate logic," that included
questions concerning completeness and decidability.

One early reader of Hilbert & Ackermann was an Austrian mathematics
student in Vienna named Kurt Godel (1906-1978). About first-order predicate
logic Godel read:

Whether the axiom system is complete, at least in the sense that
all logical formulas that are correct for every domain of individ
uals can be derived from it, is still an unresolved question.27

HAs quoted in Paolo Mancosu, "Between Russell and Hilbert Behmann on the Foundations of

Mathematics," The Bulletin of Symbolic Lopc, Vol 5, No 3 (Sept 1999),321

25Wilfned Sieg, "Hilbert's Programs 1917-1922," The Bulletin of Symbolic Lopc, Vol 5, No 1 (March

1999),22

26D Hilbert and W Ackermann, Grundzuge der Theoretischen Lopk (Verlag von]ulius Spnnger, 1928) A

second edition was published in 1938 reflecting additional research over the past decade, and an English

translation of the second German edition was published in 1950 by Chelsea Publishing Company There is

no English translation of the first German edition

27Hilbert &: Ackermann, Grundzuge der Theoretischen Lopk, 68
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The passage is referring to formulas in first-order logic that are true regardless of
the interpretation of the propositional functions (today known as predicates) and
the domain of these functions. Can all these "universally valid" formulas - as
they were called - be derived from the axioms? Godel took up the challenge,
and his 1929 doctoral thesis showed that first-order predicate logic was complete
in this sense. This is known as the Godel Completeness Theorem, and if proving
completeness was the extent of Godel's contribution to mathematical logic, he
probably wouldn't be remembered much today. But Godel was only getting
started.

The completeness of first-order predicate logic was an important although
expected result. It showed that the axioms and proof mechanisms were adequate
for deriving all universally valid statements. Mathematical logic does not exist in a
vacuum, however. One of the primary purposes of predicate logic was providing
a firm framework and foundation for numbers and arithmetic. Doing so requires
adding axioms to the logical system for establishing number theory. That was the
primary purpose of Principia Arithmetica. After adding these axioms, is first-order
predicate logic complete in a much stronger sense, in that every statement or its
negation is provable? This is sometimes known as "negation completeness," and
it's a much more difficult goal. This was the problem Godel tackled next.

In the spring of 1930, David Hilbert retired from teaching. He was 68 years
old. Later that year, he was awarded an honorary citizenship of Konigsberg, his
birthplace. Hilbert was as optimistic as ever as he delivered an address on "Logic
and the Knowledge of Nature.,,28 It had been 30 years since he told his Paris
audience that there was no "We shall not know" for the mathematician and now
he repeated that claim: "For the mathematician there is no ignorabimus, nor, in
my opinion, for any part of natural science." Hilbert tells how the philosopher
Auguste Comte once said that we would never know the compositions of distant
stars, and how that problem was solved just a few years later:

The real reason why Comte was unable to find an unsolvable
problem is, in my opinion, that there are absolutely no unsolv
able problems. Instead of the foolish ignorabimus, our answer is
on the contrary:

We must know.
We shall know.

Wir mussen wissen. Wir werden wissen.
On the day before Hilbert was made an honorary cltIzen of Konigsberg,

Godel was also visiting Konigsberg, attending a conference on mathematics.

28From Kant to Hilbert, Vol II, 1157-1165
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On September 7, 1930, Godel announced that he had shown that axioms added
to first-order predicate logic that allowed the derivation of arithmetic (including
addition and multiplication) rendered the system incomplete. He had derived from
within this system a formula and its negation. If arithmetic is consistent, then one
of these statements must be true. Neither, however, could be proved.

Through a technique later called Gbdel Numbering, Godel had used the
arithmetic developed within the system to associate every formula and every
proof with a number. He was then able to develop a formula that asserted its
own unprovability. This sounds like a mathematical form of the Liar's Paradox
("Everything I say is a lie, including this statement"), but it's really not. The formula
asserts nothing about its truth or falsehood, but instead that it's unprovable. If
arithmetic is consistent, then this formula can't be false, because that would lead to
a contradiction. The formula must be true - but true only in a metamathematical
sense because truth is not a concept of the logical system itself - which means
that it really is unprovable.

Godel's paper was published the following year under the title "On Formally
Undecidable Propositions of Principia Mathematica and Related Systems 1.,,29 The
Roman numeral I indicated that Godel intended to follow up his paper with
additional demonstrations, but the paper had such an immediate impact that a
second part wasn't required.

One crucial premise for the Incompleteness Theorem is that arithmetic is
consistent. As a corollary, Godel also showed that a consistency proof for arithmetic
within the system was impossible. Because certain formulas could not be proved or
disproved, it was possible that these formulas were inconsistent. (Does this mean
that anthmetic and elementary number theory is inconsistent? It's hardly likely,
and nobody believes that to be so. The problem is that the consistency cannot be
proved within the system itself.)

Upon hearing of Godel's Incompleteness Theorem, David Hilbert had a rather
strange reaction for a mathematician. He was "somewhat angry,"30 but eventually
he began to incorporate Godel's findings in his program.

29Actually, the title was "Uber formal unentscheidbare Satze der Pnncipia mathematica und verwandter

Systeme!" and it was published in the Monatshefteftir Mathematik und Physik, Vol. 38 (931),173-198
The first published English translation was by Bernard Meltzer of the University of Edinburg and appeared

in the book Kurt Godel, On Formally Undecidable Propositions of Pnncipia Malhematica and Related Systems
(Basic Books, 1962, Dover Publications, 1992) A second translation by Professor Elliott Mendelson of

Queens College, New York City, appeared in Martin Davis, ed The Undecidable Basic Papers on Undecidable
Propositions, Unsolvable Problems and Computable Functions (Raven Press, 1965),5-38 A third translation by

Jean van Heijenoort (WIth input from Godel) appears in his book From Frege to Godel, 596-616 This is also

the translation used in Kurt Godel, Collected Works, Volume 1,1929-1936 (Oxford University Press, 1986),
144-195 The paper is often referred to as "Godel 1931 "
30Reid, Hilbert, 198
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Other mathematicians simply lost interest in mathematical logic. Bertrand
Russell seemed to suffer permanent burnout from the experience of writing
Principia Mathematica:

[lIn the end the work was finished, but my intellect never quite
recovered from the strain. I have been ever since definitely less
capable of dealing with difficult abstractions than I was before.
This is part, though by no means the whole, of the reason for the
change in the nature of my work.31

Russell began pursuing other interests, such as writing about philosophy, politics,
and social issues. He won the Nobel Prize for Literature in 1950 "in recognition
of his varied and significant writings in which he champions humanitarian ideals
and freedom of thought."32 By that time many people had forgotten that he was
originally a mathematician.

Hungarian mathematician john von Neumann 0903-1957), who had been
at Gottingen in the mid-I920s, also abandoned logic after Godel (or so he said)
but was later instrumental in applying principles of mathematical logic to the
development of digital computers.

Godel's Incompleteness Theorem was certainly not the worst problem at
Gottingen. In 1933, the Nazi party ordered the removal of all jews from teaching
positions in German universities. For Gottingen, where for decades the sole
criterion was intellectual excellence, the edict was devastating. Richard Courant
(1888-1972) left for the United States, where he found a position at New York
University. (Today, the Courant Institute of Mathematical Sciences occupies a
building on West 4th Street in Manhattan.) Hermann Weyl (1885-1955) wasn't
jewish, but his wife was. Like Albert Einstein, Weyl went to the Institute for
Advanced Study in Princeton, New jersey. Paul Bernays (1888-1977) lost his
teaching job but kept his position as Hilbert's most loyal assistant until leaving for
Zurich. Bernays is largely credited with writing the two volumes of Grundlagen der
Mathematik (1934,1939) although the books were published under both Hilbert's
and Bernay's names.

At a banquet, Hilbert found himself sitting next to the Minister of Education.
"And how is mathematics at Gottingen now that it has been freed of the jewish
influences?" Hilbert was asked. He replied, "Mathematics at Gottingen? There is
really none anymore.,,33

For those mathematicians who continued to explore mathematical logic - now
increasingly not at Gottingen - problems still remained to be solved. As the

31 The Autobiography of Bertrand Russell, 1872-1914, 153.
32http://nobelpnze.orglnobel_pnzeslliteraturellaureateslI950

33Reid, Hilbert, 205.
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1928 edition of Hilbert &: Ackermann asserted with well-deserved italics, the
"Entscheidungsproblem mujS als das Hauptproblem der mathematischen Logik bezeichnet
werden." "The decision problem must be called the main problem of mathematical
logic.,,34 Godel's Incompleteness Theorem didn't imply that a decision process
couldn't exist, but it did mean that such a decision process could not determine
the truth of any arbitrary formula. It could at best determine the provability of a
formula.

Nine pages of Hilbert &: Ackermann were devoted to the Entscheidungsproblem
in first-order predicate logic, and nearly half of those pages discussed "Solutions of
the Decision Problem for Special Cases." For several standard (and common) types
of formulas in mathematical logic, decision processes had already been developed.
It didn't seem so unlikely that a general decision process was also possible.

It was not to be. In 1936, American mathematician Alonzo Church (1903-1995)
concluded (again with well-deserved italics) that "The general case of the
Entscheidungsproblem of the engere Funktionenkalkul [first-order predicate lOgic]
is unsolvable."35

Working independently of Church and using a completely different method
ology, Alan Turing came to the same conclusion, that "the Hilbertian Entschei
dungsproblem can have no solution,,,36 as he states at the beginning of his paper,
and towards the end in conclusion, "Hence the Entscheidungsproblem cannot be
solved."37

By the time Church and Turing had published their works, Hilbert was 74.
Even Hilbert himself had come under suspicion by the Nazis, who wondered
about his first name of David.38 Hilbert's final years were spent in loneliness and
senility. He died in 1943. On Hilbert's tombstone in Gottingen are the words

Wir mussen wissen.
Wir werden wissen.

We must know. We shall know. Except that now when people read Hilbert's words,
all they can think about is Godel and Church and Turing, incompleteness and
undecidability.

Hilbert's home town of Konigsberg was largely destroyed by Bntish bombing
during the war. It fell to the Russians in 1945 and became part of Russia following
the war. Konigsberg was renamed Kaliningrad in 1946 after a Soviet president.

34Hilbert & Ackennann, Grundzuge der Theoretischen Logth, 77
35Alonzo Church, "A Note on the Entscheidungsproblem," The Journal of Symbolic Logtc, Vol 1No 1
(March 1936), 41.
36Alan Turrng, "On Computable Numbers, with an Application to the Entscheidungsproblem," Proceedings
of the London Mathematical Society, 2nd Serres, Vol. 42 (1936), 231. (Page 67 of this book)
37lbid, 262 (Page 277 of this book)
38Reid, Hilbert, 209
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The Russians who moved there were intent on destroying all remnants of German
culture, and the Germans who stayed were victims of Stalinist atrocities. The
location of the city on the Baltic Sea made it ideal for a military naval base. For
decades it was closed to visitors.

Following the breakup of the Soviet Union, Kaliningrad remained part of Russia
but on an enclave separated from the rest of the country, tucked between Lithuania
and Poland, and known largely for its high crime rate.

The Y2K problem - which some had predicted would add a final crowning
catastrophe to the horrors of the twentieth century - didn't tum out so badly.
As the front page of the New York Times exhaled on the first morning of the
year 2000:

111/00:
Technology and 2000

Momentous Relief;
Computers Prevail

in First Hours of '00

Computer programmers hadn't really embedded time bombs in lots of crucial
systems. Programmers are generally much smarter than that! Moreover, they
had put in some hard work and long hours to locate many of the potential
problems. Changing computer programs is often fairly easy. That's why it's called
software.

Computer programs begin life and are maintained as text files called source
code. These text files can themselves be read and analyzed by other programs.
Programmers were able to write special programs to examine existing source code
to locate possible problem areas. Such programs, for example, could search for
variable names that include the letters "year" or "yr" and then a human programmer
might examine how the program treated calendar years.

As these potential Y2K bugs were being hunted down and extinguished, it
must have occurred to someone to ponder an even more ambitious scheme:
Could one write a program that analyzed other programs and located other bugs?
Such a program would be enormously difficult, of course, but after the program
was finished, it could be used to debug any other program, and that would be
extremely valuable.

Yes, it would be hard, but is it theoretically pOSSible?
And the answer is No. A generalized bug-finding algorithm is not possible. That,

too, is one of the unsettling implications of Alan Turing's paper on computable
numbers and the Entscheidungsproblem.
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The Education
of Alan Turing

W hen Alan Turing was 10 years old, someone gave him a book by Edwin
Tenney Brewster entitled Natural Wonders Every Child Should Know. This

book opened the young man's eyes to science, Turing later said,1 and perhaps had
an even more profound influence on his conception of the relationship between
human beings and machines. "For, of course, the body is a machine," the book
asserted:

It is a vastly complex machine, many, many times more compli
cated than any machine ever made with hands; but still after all
a machine. It has been likened to a steam engine. But that was
before we knew as much about the way it works as we know
now. It really is a gas engine; like the engine of an automobile, a
motor boat, or a flymg machine.2

By the early twentieth century, the idea that human beings are machines had
become so innocent a concept that it could now be discussed in a children's
book. This was not always so. Two centuries separated the life of Alan Turing
from that of Julien Offray de La Mettrie (1709-1751), the French doctor and
philosopher whose scandalous 1747 work L'Homme Machine (Machine Man)3 had
uncompromisingly portrayed man's body and even mind as the workings of a
machine. Alan Turing grew up With the recognition that his body was a machine;
he would be remembered most for exploring the connections between machines
and the human mind.

1Andrew Hodges, Alan Tunng The Enigma (Simon &: Schuster, 1983), 11 All biographical information

about Tunng comes from this book

2Quoted in Hodges, Alan Tunng, 13

3Julien Offray de La Mettne, Machine Man and Other Wntings, translated and edited by Ann Thomson

(Cambndge University Press, 1996)
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Alan Mathison Turing was born on june 23, 1912, in a nursing home in
Paddington, a borough of London. His father served the British Empire in the
Indian Civil Service; his mother had been born in Madras, the daughter of an
engineer who had made a fortune in India building bridges and railways. Turing's
parents met on a ship from India to England in 1907 and married later that year in
Dublin. They returned to India in early 1908. Alan, the second of two boys, was
conceived in India in 1911 but born in England.

During much of their early childhood, Alan and his older brother john were left
in England in the care of a retired couple while their parents lived in India - a not
uncommon practice at the time. In 1922, Alan began attending Hazelhurst, a prep
school in Kent. His primary interests were maps, chess, and chemistry.4 In 1926
he was accepted by Sherborne, one of the oldest of the English public schools. On
the first day of Turing's first term at Sherborne, a general strike prevented him
from taking the rail to the school. Alan decided instead to bicycle the 60 miles to
the school, a feat that was reported in the local newspaper. 5

Alan didn't mix well with the other boys at Sherborne. He was always shy
and solitary, and seemed to be perpetually disheveled and ink-stained. "All
his characteristics lent themselves to easy mockery, especially his shy, hesitant,
high-pitched voice - not exactly stuttering, but hesitating, as if waiting for some
laborious process to translate his thoughts into the form of human speech."6 He
might have redeemed himself by excelling in his studies, but that was not the
case. Only in mathematics did he show some inkling of authentic intellectual
talent.

By 1929, Alan became entranced by The Nature of the Physical World (928),
a popular and influential book by Cambridge astronomer Sir Arthur Eddington
that explored the implications of the new sciences of relativity and quantum
theory. Alan also became entranced by a schoolmate named Christopher Morcom
who shared Alan's interests in science and mathematics, and who came from a
much more interesting, scientific family than Turing's own. Christopher's maternal
grandfather was Sir joseph Swan, who had invented the incandescent light bulb,
in 1879, independently of Edison.

In retrospect, it seems likely that Alan Turing was discovering his homosexuality
at this time, and that Christopher was his first love. There is no indication
that anything physical occurred between the two teenagers, however. Together
they performed chemistry experiments, exchanged mathematical equations, and
explored the new astronomy and physics in books by Eddington and Sir james
jeans, another Cambridge professor of astronomy.

4Hodges, Alan Tunng, 17
'Hodges, Alan Tunng, 21
6Hodges, Alan Tunng, 24
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Cambridge was the place to go for aspiring English scientists, and the Cambridge
college with the best reputation for science and mathematics was Trinity. In
December 1929, Alan and Christopher Journeyed to Cambridge for a week to take
scholarship examinations and to bask in the alma mater of Francis Bacon, Isaac
Newton, and James Clerk Maxwell. The exam results were published in The Times
a week after they returned to Sherborne. Alan didn't make it, but Christopher
did. Christopher would be going to Trinity, and the best that Alan could hope
for was to try again for Trinity next year, or perhaps one of the other Cambridge
colleges.

Two months later, Christopher became suddenly ill and died within the week,
a consequence of the bovine tuberculosis he had contracted as a child. One of
their classmates at Sherborne wrote in a letter, "Poor old Turing is nearly knocked
out by the shock. They must have been awfully good friends."? While Alan Turing
was to have other, more sexual relationships with men, apparently nothing ever
came close to the love and adulation he had for Christopher Morcom.

In December 1930, Turing tried again for a Trinity scholarship and again didn't
make it. His second choice was King's. By this time he had decided to concentrate
on mathematics, and prepared himself by plowing into G.H. Hardy's classic, A
Course in Pure Mathematics, at the time in its fifth edition. Alan Turing began his
education at King's College, Cambridge, in the fall of 1931.

By the next year Turing was tackling a recent book on the mathematical foun
dations of quantum mechanics, Mathematische Grundlagen der Quantenmechanik
by the young Hungarian mathematician John von Neumann, whose last name
is pronounced "noy-man." Von Neumann had spent the mid-1920s working
with David Hilbert in Gottingen, the site of much of the early research on
the mathematics of quantum mechanics. He had immigrated to the United
States in 1930 to teach at Princeton, and had been among the first mathemati
cians recruited by the Institute for Advanced Studies in 1933. Now the lives
of John von Neumann and Alan Turing would begin to intersect in several
interesting ways.

Turing probably first met von Neumann in the summer of 1935 when von
Neumann took a break from his current post at Princeton University to lecture at
Cambridge on the subject of almost-periodic functions. Turing already knew the
subject and von Neumann's work in it: Just that spring Turing had published his
first paper, a two-pager on the "Equivalence of Left and Right Almost Periodicity"
(Journal of the London Mathematical Society, 1935) that expanded on a paper by von
Neumann published the previous year.

Neither man could possibly have guessed that they would meet again the
following year in Princeton, New Jersey.

7Hodges, Alan Tunng, 46
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Turing's interest in the rarefied world of mathematical logic might have begun
in 1933 when he read Bertrand Russell's 1919 work Introduction to Mathematical
Philosophy, which ends:

If any student is led into a serious study of mathematical logic by
this little book, it will have served the chief purpose for which it
has been written.8

In the spring term of 1935, Turing took a Foundations of Mathematics
course given by Maxwell Herman Alexander Newman 0897-1984), generally
known by the initials M.H.A. Newman and familiarly as Max. Max Newman's
reputation was for his work in combinatorial topology, but he was also prob
ably the person at Cambridge most knowledgeable about mathematical logic.
The climax of Newman's course was the proof of Godel's Incompleteness
Theorem. (Graduate-level introductions to mathematical logic are still structured
similarly.)

Also covered in Newman's course was the unresolved Entscheidungsproblem.
"Was there a definite method, or as Newman put it, a mechanical process which
could be applied to a mathematical statement, and which would come up with
the answer as to whether it was provabler9 By "mechanical process" Newman
didn't mean a machine, of course. Machines may be able to perform simple
arithmetic, but they can hardly do actual mathematics. No, Newman was alluding
to a type of process that would eventually be called an algorithm - a set of
precise (but basically "mindless") instructions for solving a problem. It's likely
that Turing began working on the decision problem in the early summer of
1935. 10 By this time he had been awarded a Cambridge fellowship, which
paid 000 a year. Turing later said that the main idea for approaching the
Entscheidungsproblem came to him while lying in Grantchester meadows, a
popular recreational spot for Cambridge students about two miles from King's
College.

By April 1936, Turing was able to give Max Newman a draft of his paper "On
Computable Numbers, with an Application to the Entscheidungsproblem."ll

Turing's paper takes an unusual approach for a mathematical proof: He
begins by describing a fictional computing machine capable of a few sim
ple operations. Despite the simplicity of this machine, Turing asserts that it

8Benrand Russell, Introduction to Mathematical Philosophy, second edition (George Allen lSI Unwm Ltd,

1920, Dover Publications, 1993),206

9Hodges, Alan Tunng, 93
IOHodges, Alan Tunng, 96
IlHodges,Alan Tunng, 109
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is functionally equivalent to a human being performing mathematical oper
ations. He sets these machines to work computing numbers. Turing's first
example machine computes the number 1/3 in binary form (.010101. ..).
The second computes an irrational number that is probably also transcenden
tal (.0010110 III01111... ). He persuades us that machines can also be defined to
calculate 7I, e, and other well-known mathematical constants. Turing even creates
a Universal Machine that can simulate the operation of any other computing
machine.

Yet, Turing Machines - as these imaginary devices came to be called - cannot
calculate every real number. The machines he designed have a finite number of
operations, and by representing these operations with numbers, he is able to
show that each machine can be uniquely described by a single integer called
a Description Number. Turing Machines are thus enumerable. The computable
numbers - the numbers that Turing Machines are capable of computing - must
also be enumerable, but real numbers (we know from Cantor's proofs) are not
enumerable. The computable numbers certainly include the algebraic numbers,
and they also include such transcendental numbers as 7I and e, but because
the computable numbers are enumerable, they simply cannot encompass all real
numbers.

Turing Machines are not infallible. It is possible to define a Turing Machine that
simply doesn't work right or that doesn't do anything worthwhile. Turing divides
his machines into "satisfactory" machines and "unsatisfactory" machines.

Because Turing Machines are entirely defined by a Description Number, it
might be possible to create a Turing Machine that analyzes these Description
Numbers to determine whether a particular machine is satisfactory or unsatis
factory. Turing proves that this is not the case: There is no general process to
determine whether a Turing Machine is satisfactory. The only way one Turing
Machine can analyze another is to trace through the operation of the machine step
by step. In short, you must actually run a machine to determine what it's going
to do.

What goes for Turing Machines also applies to computer programs: In general,
it's not possible for one computer program to analyze another except by simulating
that program step by step.

Turing also proves that no Turing Machine can be defined to do something
that seems very straightforward - for example, to determine whether another
machine ever prints the digit O. In the final section of his paper (which is
discussed in Part III of this book), Turing constructs a statement in mathe
matical logic equivalent to determining whether a particular Turing Machine
ever prints the digit O. Since he's already established that this determination is
not possible, this statement in logic is not provable, and hence, "the Entschei
dungsproblem cannot be solved" (page 262 of Turing's paper and page 277 of
this book).
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Around the same time that Max Newman was reading a draft of Turing's
paper, he received an offprint of a short paper by American mathematician Alonzo
Church entitled "A Note on the Entscheidungsproblem."12 Building upon a paper
published earlier,13 Church's paper also concluded that the Entscheidungsproblem
"is unsolvable."

Turing had been scooped. That would normally imply that his paper was
unpublishable and doomed to oblivion, but Max Newman realized that Turing's
approach was innovative and considerably different from Church's. He recom
mended that Turing submit his paper to the London Mathematical Society for
publication anyway. (The published paper indicates that the Society received
it on May 28, 1936.) Turing explained the situation in a letter to his mother
on May 29:

Meanwhile a paper has appeared in America, written by Alonzo
Church, doing the same things in a different way. Mr Newman
and I decided however that the method is sufficiently different to
warrant the publication of my paper too. Alonzo Church lives at
Princeton so I have decided quite definitely about going there. 14

On May 31, Max Newman wrote letters to both Alonzo Church and the secretary
of the London Mathematical Society. To Church he wrote:

An offprint which you kindly sent me recently of your paper
in which you define 'calculable numbers', and shew that the
Entscheidungsproblem for Hilbert logic is insoluble, had a rather
painful interest for a young man, A.M. Turing, here, who was
just about to send in for publication a paper in which he had
used a definition of 'Computable numbers' for the same purpose.
His treatment - which consists in describing a machine which
will grind out any computable sequence - is rather different
from yours, but seems to be of great merit, and I think it of great
importance that he should come and work with you next year if
that is at all possible. 15

12Alonzo Church, "A Note on the Entschiedungsproblem," TheJoumal of Symbolic LogIc, Vol 1, No 1 (Mar

1936),40-41
13Alonzo Church, "An Unsolvable Problem of Elementary Number Theory," Amencan Joumal of
Mathematics, Vol 58, No 2 (Apr 1936), 345-363 Both of Church's papers appear in Martin DaVIs, ed ,

The Undecidable (Raven Press, 1965)
14Hodges, Alan Tunng, 113
ISHodges, Alan Tunng, 112
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To F. P. White, the secretary ofthe London Mathematical Society, Max Newman
wrote,

I think you know the history of Turing's paper on Computable
numbers. Just as it was reaching its final state an offprint arrived,
from Alonzo Church of Princeton, of a paper anticipating Tur
ing's results to a large extent.

I hope it will nevertheless be possible to publish the paper.
The methods are to a large extent different, and the result is
so important that different treatments of it should be of interest.
The main result of both Turing and Church is that the Entschei
dungsproblem on which Hilbert's disciples have been working
for a good many years - i.e., the problem of finding a mechan
ical way of deciding whether a given row of symbols is the
enunciation of a theorem provable from the Hilbert axioms - is
insoluble in its general form. 16

Turing now needed to add an appendix to his paper shOWIng that his concept
of computability and Church's notion of "effective calculability" were equiv
alent. This appendix was received by the London Mathematical Society on
August 28, 1936.

Turing's paper was published in the Proceedings ojthe London Mathematical Society
in November and December, 1936.17 A three-page Correction was published in
December 1937. 18 A four-paragraph review of the paper by Alonzo Church in the
March 1937 Joumal oJ Symbolic Logic includes the statement, "a human calculator,
provided with pencil and paper and explicit instructions, can be regarded as a type
of Turing machine,"19 which is the first known occurrence of the term "Turing
machine" in print.

TUring's paper is divided into eleven sections and the appendix. It begins with
an introduction that launches right into a description of this new category of
numbers that Turing has conceived.

16Hodges, Alan Tunng, 113
17The paper was split between two monthly installments (called "parts") of the Proceedings The first 11
pages appeared in Volume 42, Part 3(dated November 30, 1936) and the remainder in Volume 42, Part 4
(dated December 23,1936) In 1937, parts published from October 1936 through Apnl1937 were
collectively published as 2nd Senes, Volume 42 This is why the publication date of Tunng's paper is
vanously given as 1936 (the year the indiVldual parts were published), 1937 (which is when the completed
Volume 42 was published) or 1936-1937 (which are the dates of all the parts included in Volume 42)
18Specifically, Volume 43, Part 7(issued December 30, 1937), which then appeared in 2nd Senes, Volume
43, which includes parts issued from May through December 1937
19Alonzo Church, ReVlew of "On Compulable Numbers, WIth an Applicalion 10 Ihe
Entscheidungsproblem," The Joumal of Symbolic logIc, Vol 2, No 1(Mar 1937),42-43
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[230J

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TlIRIN(;.

[Received 28 May, 1936. - Read 12 November, 1936.1

The "computable" numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.

Turing limits consideration here to real numbers, and he implies that the
computable numbers are a subset of the reals, which means there are some real
numbers that are not computable. This is certainly not immediately obvious.

By "expressions as a decimal" Turing means that 1/3 is to be expressed as
0.33333... , and 7I is to be calculated as 3.14159... , which immediately seems
to conflict with his notion of "finite means." Obviously we can never really finish
calculating the decimals of 1/3 or 7I. In Turing's paper, however, "means" refers
not to the actual process of determining the digits but to the method. A method
that says, "The next digit is 4. The next digit is 7. The next digit is O..." can
obviously be used to compute any real number, but it's not a finite method. Both
1/3 and 7I are calculable by algorithms (one less complex than the other), and the
means by which we calculate them (a long division or something messier) involve
a finite number of rules.

Although the subject of this paper is ostensibly the computable numbers,
it is almost equally easy to define and investigate computable functions
of an integral variable or a real or computable variable, computable
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and I have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com
putable numbers.

Turing never followed up on his paper in this way. Godel also intended to
write a follow-up to his famous paper on incompleteness, and even included the
Roman numeral I in its title in anticipation. Godel never wrote the sequel because
the results of his paper were accepted more quickly than he anticipated. Tunng,
on the other hand, got interested in other matters.
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Tunng concludes the first paragraph of his paper with the statement:

According to my definition, a number is computable
if its decimal can be written down by a machine.

This was rather a strange thing to say in 1936 because at the time no machine
had ever been built that could do what Turing required in a general way.

Turing probably knew about the work of Charles Babbage (1791-1871), the
English mathematician who had designed a Difference Engine to calculate pages of
logarithmic tables, and then abandoned that project sometime around 1833 to work
on an Analytical Engine that was more like a general-purpose computer. Babbage
had also attended Cambridge and parts of Babbage's uncompleted machines were
on display at the Science Museum in Kensington. Nevertheless, Turing doesn't
seem influenced at all by Babbage's conceptions or terminology.

Turing mayor may not have known about the Differential Analyzer constructed
by Vannevar Bush (1890-1974) and his students at MIT starting in 1927,
but this was an analog computer that solved differential equations with mostly
engineering applications. Turing might have been interested in such a machine
from a mathematical or engineering perspective, but it wouldn't have been much
help with this particular problem.

It is hard to imagine how Turing could possibly have been aware of other early
computer projects in the mid-1930s. Turing certainly didn't know that engineering
student Konrad Zuse (1910-1995) had in 1935 begun building a computer in
the living room of his parents' apartment in Berlin. It wasn't until 1937, after
Turing's paper was published, that George Stibitz (1904-1995) took home some
telephone relays from his workplace at Bell Telephone Laboratories and started
wiring up binary adders. It was in 1937, as well, that Harvard graduate student
Howard Aiken (1900-1973) began exploring automated computing, leading to a
collaboration between Harvard and IBM in the creation of the Harvard Mark I.20

In attacking problems of calculability and Hilbert's Entscheidungsproblem at
this particular time, Turing was part of a trend that included Alonzo Church,
Emil Post (1897-1954), and Stephen Kleene (1909-1994),21 but Turing can also
be counted among those in the mid-1930s who were thinking about automated
computing.

20An excellent introduction to these early computers is Paul E Ceruzzi, Reckoners The Prehistory of the
DIgttal Computer, from Relays to the Stored Program Concept, 1935-1945 (Greenwood Press, 1983)

21 Robin Gandy, "The Confluence of Ideas in 1936," in Rolf Herken, ed , The Universal Tunng Machine A

Half-Century Survey (Oxford University Press, 1988), 55-111, second edition (Spnnger-Verlag, 1995),

49-102
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Turing summarizes some of his conclusions that will appear in the later sections
of this paper:

In §§ 9, 10 I give some arguments with the intention ofshowing that the
computable numbers include all numbers which could naturally be
regarded as computable. In particular, I show that certain large classes
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions,
the numbers ][, e, etc.

Those "numbers which could naturally be regarded as computable" are numbers
that people have actually computed, and for which algorithms exist. Turing doesn't
even bother to mention that all rational numbers are computable. That's obvious.
He quickly adds algebraic numbers to the computable list as well. (He qualifies
algebraic numbers to the real parts because solutions to algebraiC equations
can have real and imaginary parts, and he's already restricted himself to real
numbers.)

With his assertion that algebraic numbers are computable, Turing has now
thrown this discussion into the realm of the transcendentals. Yet, he says, some
transcendental numbers are computable. Bessel functions are solutions to particular
forms of differential equations. The zeros are values where the functions equal zero.
These were once published in tables so they would be considered computable.
(They are now generally calculated by computer programs when needed.) Turing
doesn't mention them, but trigonometric and logarithmic functions generally have
transcendental values, and these are computable as well. So are the constants 7l

and e.
What Turing does not claim is that all transcendental numbers are computable.

OtherwIse the computable numbers would be the same as the real numbers.

The computable numbers do not, however, include
all definable numbers, and an example is given of a definable number
which is not computable.

So let that be a lure. Turing will define a number that neither he (nor this machine
of his) can compute.

Now Turing comes to the crux of the difference between real numbers and
computable numbers:

Although the class of computable numbers is so great, and in many
ways similar to the class of real numbers, it is nevertheless enumerable.
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Computable numbers are enumerable. The enumerability of computable num
bers implies that they are not the same as real numbers, because the real numbers
are not enumerable.

In § 8 I examine certain arguments which would seem to prove the contrary.
By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Godelt.

t Godel, "Uber formal unentscheidbare Satze der Principia Mathematica und ver
wandter Systeme, I", Monatshefte Math. Phys., 38 (1931), 173-198.

That's the famous Godel Incompleteness Theorem. Notice that Turing's footnote
refers to the German title of Godel's paper. An English translation wouldn't be
published until 1962.

These results

[231)

have valuable applications. In particular, it is shown (§ 11) that the
Hilbertian Entscheidungsproblem can have no solution.

This is the last mention of Hilbert for the next 18 pages of the paper.
Turing needed to add an appendix to the paper after he had learned about Alonzo

Church's proof and had determined that the two approaches were eqUivalent. The
last paragraph of the introduction was added at the same time.

In a recent paper Alonzo Churcht has introduced an idea of "effective
calculability", which is equivalent to my "computability", but is very
differently defined. Church also reaches similar conclusions about the
Entscheidungsproblem:j:. The proof of equivalence between "computa
bility" and "effective calculability" is outlined in an appendix to the
present paper.

t Alonzo Church, "An unsolvable problem of elementary number theory", American
J. ofMath., 58(936),345-363.

:I Alonzo Church, "A note on the Entscheidungsproblem", J. of Symbolic Logic, 1
(1936),40-41.
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That's the last mention of the Entscheidungsproblem for almost the next 28 pages
of Turing's paper. According to the Oxford English Dictionary (second edition), that
paragraph contains the first known use of the word "computability" other than an
1889 dictionary. There have since been well over 30 books published with the
word "computability" in the title; the first was Martin Davis's Computability and
Unsolvability, published by McGraw-Hill in 1958.

The first of eleven sections in Turing's paper now begins.

1. Computing machines.

We have said that the computable numbers are those whose decimals
are calculable by finite means. This requires rather more explicit
definition. No real attempt will be made to justify the definitions given
until we reach § 9. For the present I shall only say that the justification
lies in the fact that the human memory is necessarily limited.

Turing has said that computable numbers are those that can be written down
by a machine, but now he justifies the "finite means" part of the definition by the
limitation of human memory. This casual association of machine and human is
characteristic of Turing's work.

When Turing originally said that a computable number was calculable by finite
means, it sounded reasonable, but now that he justifies it by the limitations of the
human mind, he's raising certain issues about the nature of mathematical reality.
We call the real numbers "real" despite the fact that the vast majority of them
have never been seen by anyone. Moreover, Turing will show in this paper that
the vast majority of real numbers can't even be calculated by finite algorithms.
In what sense do real numbers exist? That is a philosophical question that
Turing touches upon only obliquely in the correction to his paper (Chapter 16 of
this book).

Turing next links a human being with a machine in terms of discrete states of
mind:

We may compare a man in the process ofcomputing a real number to a
machine which is only capable ofa finite number ofconditionsql,q2, ... ,qR
which will be called "rn-configurations".

The m stands for machine. A machine has a finite number of configurations
and does something different depending on its current configuration. A more
modem term is state, and later Turing makes reference to "states of mind" that
are analogous to these machine states. A simple washing machine, for example,
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has states called fill, wash, rinse, and spin. Performing a long division likewise
involves a number of different mental configurations or states of mind: "Now I
need to multiply." "Now I need to subtract." "Now I need to borrow." A machine
operates by switching between different configurations, often in a repetitive
manner.

The machine is supplied with a
"tape" (the analogue of paper) running through it, and divided into
sections (called "squares") each capable of bearing a "symbol".

Turing calls this tape "the analogue of paper" because paper is what a person
would use to compute a number. The tape in the Turing machine is often
visualized as a paper tape, but if a Turing machine were actually built, the tape
would probably be magnetic or simply a block of computer memory.

Humans generally use a two-dimensional sheet of paper, but Turing is limiting
his machine to a one-dimensional tape diVIded into squares. The symbols in these
squares could be the decimal digits 0 through 9, or they could include all the
letters of the alphabet, or the 95 symbols available from your computer keyboard.
(As you'll see, Turing even allows a "symbol" to consist of multiple characters.)

To represent these symbols in this section of the paper, Turing uses a capitalS
(standing for "symbol") in a gothic German font, so it looks like this: e. This is
not the last you'll see of that font.

At
any moment there is just one square, say the r-th, bearing the symbol e(r)

which is "in the machine".

Here Turing is assuming that the squares of the tape can be numbered for
identification. For example, e(3451) would refer to the symbol on square number
3451. If that square contained the character 'A' then e(3451) would be 'A'. Strictly
speaking, however, the squares on the tape are not numbered, and the machine
does not refer to a particular square using its number. (In other words, a square
has no explicit address.)

At any time, Turing says, just one square of the tape is "in the machine" and
can be examined by the machine.

We may call this square the "scanned
square". The symbol on the scanned square may be called the "scanned
symbol". The "scanned symbol" is the only one of which the machine
is, so to speak, "directly aware".
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The machine can't "see" the whole tape at once. It can only "look at" one square
at a time.

However, by altering its m-configu
ration the machine can effectively remember some of the symbols which
it has "seen" (scanned) previously.

A machine switches from one m-configuration to another depending on the
scanned symbol. For example, in the particular m-configuration q34, if the scanned
symbol is 'A', it could switch to m-configuration q17. If the scanned symbol were
'B', it could switch to m-configuration ql23- Thus m-configuration q17 "knows"
that the last scanned symbol was an 'A' and m-configuration q123 knows that the
last scanned symbol was a 'B'. (This is not entirely true; other configurations could
have switched to q17 and ql23 as well, but presumably the design of the machine
implies that q17 and ql23 know enough of what happened prior to carry out a job.)

The possible behaviour of the
machine at any moment is determined by the m-configuration qn and the
scanned symbol OCr). This pair qn, OCr) will be called the "configuration":
thus the configuration determines the possible behaviour of the machine.

The m-configurations are ql, q2, and so on. When an m-configuration is paired
with a scanned symbol, Turing calls it simply the configuration.

Turing has already implied that the machine switches from one m-configuration
to another depending on the scanned symbol. What else can the machine actually
do? Not much:

In some of the configurations in which the scanned square is blank (i.e.

bears no symbol) the machine writes down a new symbol on the scanned
square: in other configurations it erases the scanned symbol. The
machine may also change the square which is being scanned, but only by
shifting it one place to right or left.

I don't think I'm betraying Turing's conception if I refer to the mechanism that
reads and writes symbols as the machine's head. Just like in a tape recorder or a
camcorder, the head is in contact with the tape at only one point. The head in
Turing's machine can read a symbol from the tape, or erase a symbol from the
tape, or write a new symbol to the tape. It can also move one square left or right.
(Although the head is probably stationary and the tape is moving through the
machine, it's best to think of the head as moving relative to the tape.)
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In addition to any of these operations
the m-configuration may be changed. Some of the symbols written down

[232]

will form the sequence of figures which is the decimal of the real number
which is being computed. The others are just rough notes to "assist the
memory". It will only be these rough notes which will be liable to erasure.

Because Turing wants his machine to compute a number, the machine will need
to print figures (or digits), and in general, an infinite sequence of digits. To assist
itself in this process, the machine may need to use part of the tape as a type of
scratch pad.

What does a Turing machine look like? You can certainly imagine some crazy
looking machine,22 but a better approach is to look in a mirror. To paraphrase the
climax of a famous science fiction movie,23 'Turing Machines are people" - but
living people carrying out an algorithm in a very limited but precise manner.

It is my contention that these operations include all those which are used
in the computation of a number.

That is, a computation by a human being. If you think that this machine is
missing some basic arithmetical operations such as addition and subtraction,
you're absolutely right. Addition and subtraction are not built into the Turing
Machine. Instead, a Turing Machine can perform arithmetical operations if it has
the right configurations.

The defence of this contention will be
easier when the theory of the machines is familiar to the reader. In the
next section I therefore proceed with the development of the theory and
assume that it is understood what is meant by "machine", "tape",
"scanned", etc.

We are probably ready to begin looking at some actual machines, but Turing
won't gratify us yet. He wants to throw out some definitions first.

110ne of the best - complete with bells and whistles - accompanies the anicle Gregory j. Chaitin,

"Computers, Paradoxes and the Foundations of Mathematics," American Scientist, Vol 90 (March-Apnl

2002), 168 See http.llwwwcs.auckland ac nzlCDMTCSlchaitinlamsci.pdf for an online version.

13Soylent Green (1973)
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2. Definitions.

Automatic machines.

Ifat each stage the motion ofa machine (in the sense of§ 1) is completely
determined by the configuration, we shall call the machine an "auto
matic machine" (or a-machine).

For some purposes we might use machines (choice machines or
c-machines) whose motion is only partially determined by the configuration
(hence the use of the word "possible" in § 1).

When describing how a machine's behavior is determined by the configuration
(page 70) Turing used the expression "possible behaviour of the machine." The
behavior had to be qualified because in some machines it can be altered somewhat
by some human interaction - an external "operator" of the machine:

When such a machine
reaches one of these ambiguous configurations, it cannot go on until some
arbitrary choice has been made by an external operator. This would be the
case if we were using machines to deal with axiomatic systems. In this
paper I deal only with automatic machines, and will therefore often omit
the prefix a-.

TUring's distinction between automatic machines and choice machines is
somewhat reminiscent of the traditional separation of programming into batch
processing and interactive computing. So much of our computing experience is
interactive today that we may forget there are still many computer programs that
run without heeding a user's every keystroke and mouse click.

While choice machines may be interesting, they play almost a negligible role in
Turing's paper. The behavior of the automatic machines in Turing's paper will be
completely determined by the machines' configurations.

Computing machines.

If an a-machine prints two kinds of symbols, of which the first kind
(called figures) consists entirely of0 and 1 (the others being called symbols of
the second kind), then the machine will be called a computing machine.

Before he even begins showing us sample machines, Turing has decided to
restrict the machines to printing figures of 0 and I, the two digits needed for
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representing binary numbers. 24 Using binary numbers is a smart move, but it
probably wouldn't have been as obvious to most 1937 readers as it is to us. Claude
E. Shannon (1916-2001), whose 1937 MIT Master's thesis A Symbolic Analysis
of Relay and Switching Circuits demonstrated the equivalence between circuits and
Boolean algebra, certainly would have appreciated the choice, but the use of binary
numbers in early computers was certainly not universal: Although Zuse used
binary numbers, Eiken's and Stibitz's machines were decimal based. The ENIAC
(1943-1945) was also a decimal computer. The word "bit" (which is short for
"binary digit") did not appear in print until 1948 in a later Shannon paper.25

Turing doesn't attempt to justify the use of binary numbers for his machines.
The advantage really only becomes apparent on page 245 of his paper (page 159
of this book), but just to put all doubts to rest I'll show a comparison of simple
binary and decimal machines in the next chapter.

If the machine is supplied with a blank tape and set in motion, starting
from the correct initial m-configuration, the subsequence of the symbols
printed by it which are of the first kind will be called the sequence computed
by the machine.

A machine is set in motion with a blank tape. The machine prints Os and Is
(symbols of the first kind) and other symbols (of the second kind). The Os and Is
constitute the computed sequence. Turing differentiates between this computed
sequence and the computed number.

The real number whose expression as a binary decimal is
obtained by prefacing this sequence by a decimal point is called the
number computed by the machine.

That sentence is somewhat painful to read because the terminology is not quite
right. We must, however, forgive Turing's confusion because people at that time
were simply not accustomed to discussing binary numbers. Even today, people
who are fluent in binary are often not entirely comfortable with binary fractions.

24An oveIVlew of binary numbers can be found in Charles Petzold, Code The Hidden Language of Computer
Hardware and Software (Microsoft Press, 1999)

25Claude E Shannon, "A Mathematical Theory of Communication," The Bell System Technical]oumal, Vol

27 Ouly, October 1948). Shannon credits the coining of the word to Amencan mathematician j. W. Tukey

The word got a bad reVIew from Lancelot Hogben in The Vocabulary of Science (Stein and Day, 1970), 146:

"The introduction by Tukey of bits for binary digits has nothing but irresponsible vulganty to commend it "

I disagree Bits are so common in our modem life that a tiny word is ideal, rather like the things themselves
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Even the Windows Calculator in Scientific mode is no help: It simply truncates
fractions when converting to binary.

The word "decimal" derives from the Latin for "ten" and the use of this word
should be restricted to numbers based on ten. These are decimal fractions:

.25

.5

.75

The decimal point separates the integer part (if any) from the fractional part.
Those same three values are represented in binary as:

.01

.1

.11

But that dot is not a decimal point. It really must be called a binary point.
Just as the individual digits of binary integers represent powers of 2, fractional

binary numbers represent negative powers of 2:

.1 is the binary equivalent of 2-lor the decimal ratio 1/2

.01 is the equivalent of r 2 or 1/4

.001 is r 3 or 1/8

.0001 is r 4 or 1/16

.00001 is 2-5 or 1/32

and so forth. The binary number .10101 is

1 . r 1 + 0 . r 2 + 1 . r 3 + 0 . r 4 + 1 . r 5

or perhaps visually clearer,

1 0 1 0 1
2+ 4+ 8+ 16 + 32

The decimal equivalent is 21/32 or .65625. Just as in decimal, many binary
fractional numbers have repeating patterns of digits. Here's 1/3 in binary:

.01010101 ...

And this is 2/3:

.10101010 ...

Similarly:

1/5 is .001100110011 .
2/5 is .011001100110 .
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3/5 is .100110011001 .
4/5 is .110011001100 .

TUring's statement is more correctly worded: 'The real number whose expres
sion as a binary fraction is obtained by prefacing this sequence with a binary point
is called the number computed by the machine."

While we're at it, let's rework the sentence even further: "The number computed
by the machine is the binary fraction obtained by prefacing this sequence with a
binary point."

For example, if one of Turing's computing machine prints a 0 and a 1 and
nothing more, then the "sequence computed by the machine" is:

01

The "number computed by the machine" is obtained by prefacing this sequence
with a binary point:

.01

That's the binary equivalent of 1/4.
Because a binary point is always assumed to precede the computed sequence,

Turing's machines will compute only binary numbers between 0 and 1, but this
short range should be fine for any insights into enumerability that might be
needed.

At any stage of the motion of the machine, the number of the scanned
square, the complete sequence of all symbols on the tape, and the
m-configuration will be said to describe the complete configuration at that
stage.

This is Turing's third use of the word configuration in discussing aspects of these
machines, and it WIll be important to keep them straight:

• The m-configuration is one of the states of the machine.
• The configuration is a combination of an m-configuration and a scanned

symbol.
• The complete configuration is basically a "snapshot" of the entire tape at some

point in time, plus the current m-configuration and the position of the head.

The changes of the machine and tape between successive complete
configurations will be called the moves of the machine.
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The next two definitions are not used until somewhat later in the paper:

[233J

Circular and circle-free machines.

If a computing machine never writes down more than a finite number
of symbols of the first kind, it will be called circular. Otherwise it is said to
be clrcle-free.

A machine will be circular if it reaches a configuration from which there
is no possible move, or if it goes on moving, and possibly printing symbols
of the second kind, but cannot print any more symbols of the first kind.
The significance of the term "circular" will be explained in *8.

Earlier I mentioned a machine that pnnts 0 and I and then nothing more.
That's a finite number of figures, so it falls under Turing's definition of a circular
machine. The machine is stuck somewhere and can't print any more numbers.
This is no good. Turing wants his machines to keep printing digits forever.

The circle-free machines are the good machines. A machine that prints just 0
and 1 and nothing else is not a circle-free machine. If the machine really wants to
compute the binary equivalent of 1/4, it should print 0 and 1 and then continue
printing Os forever.

Although Turing hasn't addressed the issue, he seems to be implYIng that his
computing machines print digits from left to right, just as we would read the digits
following the binary point.

Computable sequences and numbers.

A sequence is said to be computable ifit can be computed by a circle-free
machine. A number is computable if it differs by an integer from the
number computed by a circle-free machine.

Turing is making a distinction between sequences and numbers. A computable
sequence is:

010000 ...

The corresponding computable number is:

.010000 ...
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The number

1.010000 ...

is also considered to be computable because it differs by an integer from the
number computed by the machine. So is

10.01000 ...

and negatives as well.

We shall avoid confusion by speaking more often of computable
sequences than of computable numbers.





Machines
at Work

T uring undoubtedly realized that the introduction of an imaginary computing
machine into a mathematical paper was both novel and daring. Like a good

mathematician, he has provided definitions and a formal description of these
machines. It's not necessary for him to show any examples, but I imagine he
knew that his readers wouldn't be satisfied with the merely abstract. They needed
something concrete. He will now satisfy that craving.

3. Examples ofcomputing machines.

I. A machine can be constructed to compute the sequence 010101 ....

The machine prints a tape that looks like this:

Well, not exactly. As Turing will later explain, he prefers his machines to use only
alternate squares for printing numeric sequences. The first example machine will
actually print a tape like this:

To denote the m-configurations of his machines, Turing uses lower-case letters
of a German gothic font. These may take some getting used to, so I'1l take care to
point out potentially troublesome characters. The letters that Turing uses for this
first machine are b, c, k, and e. (Watch out: The German k looks like an f.)

The machine is to have the four m-configurations ''b'', "e", "f", "r"
and is capable of printing "0" and "I". The behaviour of the machine is
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described in the following table in which "R" means "the machine moves
so that it scans the square immediately on the right of the one it was
scanning previously". Similarly for "L". "E" means "the scanned
symbol is erased" and "P" stands for "prints".

A P in these tables is always followed by the particular symbol to be printed.
For example, PO means print a 0, PI means print aI, and Px means print an x.

This table (and all
succeeding tables of the same kind) is to be understood to mean that for
a configuration described in the first two columns the operations in the
third column are carried out successively, and the machine then goes over
into the m-configuration described in the last column.

The table has four columns, separated into two pairs:

Configuration Behaviour

m-config. symbol operations final m-config.

What the machine does depends on the configuration, which is the combination
of the m-configuration and the symbol in the scanned square. The third column
contains operations (which can only be P, E, L, and R) and the fourth column is
the next m-configuration.

Often the second column explicitly indicates a particular scanned symbol, such
as °or 1, but Turing also uses the word "Any", which means any symbol, or
"None" to mean no symbol, that is, a blank square. (This may be just a little
confusing to modem programmers who are accustomed to treating a blank space
as a symbol much like any other. When Turing uses the word "Any" he usually
means "any non-blank" symbol.) The case for any symbol including blank squares
is handled this way:

When the second
column is left blank, it is understood that the behaviour of the third and
fourth columns applies for any symbol and for no symbol.

Fortunately, the potential ambiguity is minimal.

The machine
starts in the m-configuration h with a blank tape.
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Turing's machines always start in m-configuration b (for begin, or rather, begin).
Here's the long-awaited machine:

BehaviourConfiguration

m-config. symbol

l' None

None

None

None

operations

PO,R

R

Pl,R

R

final m-config.

h

These lines can be read like so: "For m-configuration b, when the scanned
square is blank (the symbol "None"), print 0, move the head right, and change to
m-configuration c."

Let's crank up this machine and watch it work. We begin in m-configuration
bwith a blank tape. Although the tape is theoretically infinite in both directions,
the machines that Turing describes in this paper require only that the tape extend
infinitely towards the right because that's where the digits of the computable
sequences are printed:

The reacllwrite head can be symbolized in many ways. I've chosen a thick
border around the current scanned square. The head can initially be positioned
anywhere on the tape:

There is no symbol in that square. The table tells us that for m-configuration band
no symbol, print 0 and move to the right:

The new m-configuration is c. If the square is blank, move to the right and go into
m-configuration e:

For m-configuration e, if there's no symbol, print 1 and move right:
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Now we're in m-configuration f. Move right:

The machine is now in m-configuration b- back to the first state, and the cycle
begins again. In this way, the machine prints an infinite sequence of Os and Is.

It is tempting to refer to each of the four lines of the table as an instruction,
and indeed, Turing later adopts that terminology. Recognize, however, that these
lines are not instructions to the machine; they instead represent a description
of the machine. That's why a better term is state. If we think of these lines
as instructions, then we're implying that we can replace them with something
else and the same machine would perform differently, but that would mean
that the machine is interpreting these instructions, and that's just not so. (Not
yet, anyway.) This machine is performing a specific task. It doesn't matter
how the machine actually works; what's important is that we can denote the
working of the machine in a standard way based on configurations, symbols, and
operations.

Can this machine be built? This particular machine could be built in a variety
of ways. It could have a revolving wheel with self-inking rubber stamps on
its circumference that print alternating Os and Is. Building a Turing Machine
that works in the same way it's described - a machine that actually scans
characters and interprets them - probably requires more sophisticated computer
logic internally than the machine exhibits externally. Turing Machines are most
commonly "built" as computer simulations.

Turing Machines jump around from m-configuration to m-configuration
depending on the scanned character. This "conditional branching" (as it's known
in computer science) is something that early computers of this era didn't do
well. Konrad Zuse coded his machine instructions by punching holes in old
35-millimeter film stock. In his first machine, the ZI, the instructions had
to be executed sequentially. The Z3 machine could branch but conditional
branches were awkward. It wasn't until computers began storing programs
in memory (the "stored program computer") that branching became easy and
routine.

The symbol column of this particular table always indicates "None", which
means that the configuration applies only when the square is blank. If this
particular machine happened to scan a square in which a symbol were actually
present, the machine would not know what to do. It might grind to a halt. It might
crash. It might burst into flames. It might reformat your hard drive. We don't
know. Whatever happens, such a machine would not be considered a "circle-free"
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machine. As long as this particular machine begins with a blank tape, however,
that's not a problem.

Because Turing has defined a machine to print the sequence

01010101 ...

he has shown that this is a computable sequence. This sequence can be converted
into a computable number by prefacing it with a period:

.01010101 ...

Now it's clear that the machine is calculating the binary equivalent of the rational
number 1/3. If you switched the order (l first then 0), the machine would compute
the binary number

.10101010 ...

which is 213.
Let me show you a machine that computes 1/4, which in binary is:

.01000000 ...

This machine complies with Turing's conventions and uses German letters b, c, d,
e, and f for the m-configurations:

Configuration Behaviour

m-config· symbol operations final m-config·

b None PO,R

None R b

b None Pl,R ~

~ None R f
f None PO,R ~

In particular, notice the last two m-configurations, ~ and f. These just alter
nate so the machine ends up printing an infinite series of Os. Continuing to
print Os is necessary for the machine to comply with Turing's definition of
"circle-free."

It should be very, very obvious that similar computing machines can be defined
to compute any rational number. The rational numbers are not the issue here.

Earlier (in the second paragraph of Section 1) Turing said, "The machine may
also change the square which is being scanned, but only by shifting it one place to
right or left." Now he wants to be a little more flexible.
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[234]

If (contrary to the description in § 1) we allow the letters L, R to appear
more than once in the operations column we can simplify the table
considerably.

m-config· symbol operations final m-config.

1N~ne
PO l'

b R,R,P1 b

R,R,PO b

(Turing will also soon allow a configuration to have multiple P operations.)
Now, the table has only one m-configuration, and everything depends on the
scanned symbol. If the scanned square is blank (which only happens when
the machine first starts up), then the machine simply prints a 0:

The head does not move. The machine remains in the same m-configuration,
but now the scanned symbol is O. The machine moves two squares right and
prints 1:

Now the scanned symbol is a 1, so the machine moves two places right and
prints 0:

Once again, this machine prints 0 and 1 on alternate squares.
The important lesson is that any particular sequence can be computed by a

variety of different machines. However, a particular automatic machine starting
with a blank tape always computes the same sequence. (I'm referring to automatic
machines here, of course, because choice machines allow a human operator to
intervene, and thus can create different sequences, but Turing barely considers
choice machines in this paper.) There is no way to insert any indeterminacy or
randomness into one of Turing's automatic machines, or to obtain information
(such as the date and time, or longitude and latitude, or a Web page) from the
"outside world."
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Using multiple L, R, and P operations in a single configuration can simplify
machines considerably, but keep in mind that these simplified tables can always be
converted back into the more rigid style that allows only one L, R, or P operation
per state. This may seem like a trivial distinction now, but it becomes important
later on.

II. As a slightly more difficult example we can construct a machine to
compute the sequence 001011011101111011111. ...

Slightly more difficult? Notice what Turing is proposing here. The sequence
contains increasingly longer runs of Is separated by Os. First one 1, then two
Is then three Is, and so on. Turing is obviously already bored with computing
rational numbers. What he wants to tackle now is an irrational number, and one
that very likely is also transcendental.

When this new machine is printing a run of Is, it must somehow "remember"
how many Is it printed in the previous run, and then print one more. By scanning
back and forth, the machine always has access to the previous run so it can use that
information to build the next run. It will be interesting to study Turing's strategy
for accomplishing this feat.

Again, Turing uses lower-case letters of a German font for his m-configurations,
in this case the letters 0, q, p, f, and b.

The machine is to
be capable of five m-configurations, viz. "0", "'1", ''p'', "f", "b" and of
printing "a", "x", "0", "1". The first three symbols on the tape will
be "aaO"; the other figures follow on alternate squares.

This is where Turing first mentions printing the figures (Os and Is, or symbols
of the first kind) on alternate squares. Assuming that the leftmost symbols appear
on the left edge of the tape, he's proposing that the tape end up like this:

Of course, the tape will never "end up" as anything because the machine goes on
forever. It has to print forever to qualify as "circle-free."

The a character is known in phonetics and linguistics circles as a schwa. Turing
uses the schwa for what programmers call a sentinel. It's a special character that, in
this case, indicates the boundary of the number. The machine can move its head
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to the very beginning of the tape by moving left whenever the scanned square is
not the schwa. (Why are there two schwas? Only one is required in this example,
but Turing later creates a machine that requires two schwas for a sentinel. Perhaps
he added a second schwa in this example just for consistency.)

In the first example machine, the blank squares between the 0 and 1 digits
served no purpose. Here they will play an important role.

On the inter
mediate squares we never print anything but "x". These letters serve to
"keep the place" for us and are erased when we have finished with them.

Turing is dividing the squares of his tape into two categories. The machine
prints the Os and Is on every other square. With the exception of the sen
tinel, no other symbols appear on these squares. Turing uses the intermediate
squares as a temporary scratchpad of sorts. We can thus refer to "numeric
squares" that contain Os and Is and "non-numeric squares" that can contain
other symbols. (Turing later calls these F-squares and E-squares for figures and
erasable.)

We also arrange that in the sequence of figures on alternate squares there
shall be no blanks.

As the machine progressively computes the Os and Is, it prints them sequentially
from left to right. Every new figure that the machine computes is printed on the
next available blank numeric square. No numeric squares are skipped. These
restrictions are a collection of rules (some explicit and some implied) that Emil
Post later called a "Turing convention-machine,"1 which is a little more restrictive
than the generalized "Turing Machine." A Turing convention-machine never erases
a numeric square, or writes over an existing figure on a numeric square with a
different figure. These implicit rules become important later on.

Here's Turing's table for the machine to compute the irrational number he's
defined:

lin an appendix to the paper Emil Post, "Recursive Unsolvability of a Problem of Thue," The Joumal of
Symbolic LogIC, Vol 12, No 1 (Mar 1947),1-11 The entire paper is repnnted in Martin DaVIS, ed, The
Undecidable (Raven Press, 1965), 293-303 The appendix is reprinted in B Jack Copeland, ed , The
Essential Tunng (Oxford University Press, 2004),97-101
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Configuration Behaviour

m-config· symbol operations final
m-config·

b Pa,R,Pa,R,PO,R,R,PO,L,L 0

{ 1 R,Px,L,L,L 0
0

° q

{ Any (0 or 1) R,R q
q

None P1,L p

!~one
E,R q

p R

L,L p

{ Any R,R

None PO,L,L 0

As usual, the machine begins in m-configuration b. It prints two schwas and two
zeros. The tape looks like this:

The m-configuration b performs duties that a programmer might call initializa
tion. The machine never goes into m-configuration bagain.

Before we get all greasy exploring the innards of this machine, let's get a general
feel for what the other m-configurations do. In several configurations (g, p, and Y,
specifically), the operations column shows movement of two squares at a time: R,
R or L, L In these cases, the machine is effectively moving along numeric squares
(in the cases of g and f) or non-numeric squares (p).

All the m-configurations except b also circle back on themselves depending
on the scanned symbol. Programmers often call such an operation a loop. Loops
perform repetitive tasks, even those as simple as searching for a particular symbol.

The m-configuration 0 moves from right to left through a run of Is on the
numeric squares. For every I it finds, it prints an x to the right of the I and
then goes left to check the next numeric square. When it's finished, it switches to
m-configuration g.

The m-configuration g moves from left to right along numeric squares until it
encounters a blank. That's the end of the current sequence. It then prints a I,
moves left (to a non-numeric square) and switches to p.
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Similarly, the m-configuration f also moves rightward along numeric squares
until it encounters a blank. It then prints a 0, moves 2 squares left and switches
to o.

The m-configuration p is a dispatcher of sorts. It spends most of its time moving
leftward on non-numeric squares searching for x symbols. When it finds an x, it
erases it, moves right, and switches to q. If it reaches the sentinel, it moves right
and switches to f.

Turing uses the x symbols in a very clever manner. When constructing a new
run of Is, the machine begins by printing an x after each 1 in the previous run. The
machine prints a 1 at the end of the existing sequence, and then prints another 1
for each x, thus increasing the run by one.

Although it's possible to illustrate what the tape looks like after each and every
operation, for this example it might be best to view the tape after each configuration
has completed.

From the m-configuration 6, the machine goes to 0; however, for a scanned sym
bol of 0,0 does nothing and zips right into m-configuration q. For m-configuration
q, if the scanned symbol is °or 1, the head moves two squares right and remains in
the same m-configuration. When a blank square is encountered, however, it prints
1 and moves left. Overall, m-configuration q moves right along numeric squares
until it encounters a blank. It then prints a 1 and moves left.

The next m-configuration is p, which generally moves along non-numeric
squares. It moves two squares left until it encounters a non-numeric square with
either an x or a schwa. In this case, it'll be a schwa. It moves right:

The m-configuration f moves the head along numeric squares. It keeps moving
two squares right until a blank is scanned. Then it prints a °and moves two
squares left:

That's how a °is printed between each run of Is.
We're now in m-configuration o. This m-configuration always begins at the

rightmost 1 in a run of Is. Its job is to print an x after every 1. It ends up at the °
to the left of the run of Is:

Back to m-configuration q. This one moves right on numeric squares until a
blank is encountered. Then it prints a 1 and moves left.
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The m-configuration p moves left on non-numeric squares until it encounters
an x or a schwa. When it hits an x, it will erase it and move right:

Back to m-configuration q again. Move right on numeric squares until a blank,
then print 1 and move left:

Now we're in m-configuration p. Move left on non-numeric squares until the
schwa is scanned. Then move right:

The m-configuration f then moves right on numeric squares until it finds a
blank. It then prints a 0 and moves two squares left:

This seems to be working. We now have a run of one 1 and a run of two Is. Let's
see if it continues to do what we want it to do.

The m-configuration 0 has the job of printing an x after every 1 in the last run
of Is.

The m-configuration q moves right along numeric squares until it scans a blank.
It then prints 1 and moves left:

Now notice there are two x's and two remaining Is for this run. For every x
that will be erased, another 1 will be printed. The m-configuration p moves left on
non-numeric squares until it finds an x. It erases it and moves right:

The m-configuration q moves right on numeric squares until it finds a blank.
Then it prints a 1 and moves left:

Back to m-configuration p, which moves left until it hits the x. It erases it and
moves right.
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The m-configuration q prints another 1 at the end:

Now the m-configuration p moves the head left until it encounters the schwa:

The m-configuration f moves right on numeric squares until it gets to the end
and prints a 0:

Now the machine has successfully printed a run of three Is and another O.
How did Turing develop the technique used by this machine? I suspect he

tried computing the sequence by hand while resisting the temptation to count. He
might have found himself keeping track of the runs of Is using little check marks
above the digits. These check marks became the x characters that the machine
prints in the non-numeric squares.

The diagrams of the tape do not appear in Turing's paper. He is not interested
in providing such a blatantly "realistic" VIsual representation of the machine or
its operations. Instead, he has a different idea for notating the workings of the
machine.

In Section 2 of his paper (page 75 of this book) Turing said, "At any stage of the
motion of the machine, the number of the scanned square, the complete sequence
of all symbols on the tape, and the m-configuration will be said to describe the
complete configuration at that stage." Although Turing's reference to "the number of
the scanned square" seems a little peculiar because the squares are not explicitly
numbered, a tape that is infinite in only one direction has an implicit numbering.

Turing is about to show a method for notating the workings of the machine
using these complete configurations - essentially snapshots of the tape together
with the current m-configuration and scanned square.

To illustrate the working of this machine a table is given below of the
first few complete configurations. These complete configurations are
described by writing down the sequence of symbols which are on the tape,

[235)

with the m-configuration written below the scanned symbol. The
successive complete configurations are separated by colons.
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What follows in the paper are four entnes of a "table" with two lines each that at
first glance looks rather like complete gibberish. Here's the first of the four entries:

:aaO O:aaO O:aaO
~ 0 q

0: a aO o :aaO 0 1:

Heed the colons! Between each pair of colons are successive snapshots of the
tape. Some of the spacing between the Os and (later) between the Os and Is is
a little wider than the regular space. This WIder space represents a blank square.
Taken together with the m-configuration shown under the tape, these constitute
the first six complete configurations of this machine, showing all the symbols
printed on the tape so far.

The first b indicates the starting configuration. The tape is initially blank. That
configuration prints the sequence between the first two colons, shown earlier as:

Instead of using a heavy box to show the position of the head at the next scanned
symbol, Turing indicates the next m-configuration under the next scanned symbol:

: aaO 0:
o

Because m-configuration 0 doesn't do anything when the scanned symbol is 0,
the next snapshot of the tape is the same, but now the m-configuration is q:

: aaO 0:
q

When m-configuration q scans a 0, the head moves two squares nght, and the
next configuration is also q:

: aaO 0:
q

The scanned square is 0 again. The head moves two squares right, and the
m-configuration is still q:

: aaO 0
q

Notice how the tape seems to become wider as the head moves beyond the
last printed number. Now, the scanned square is blank, so the machine prints 1,
moves one square to the left, and sWItches to configuration p:

:aaO 0 1:
p
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While less visually satisfying than the physical tape, Turing's notation provides
more information, in particular by indicating the next m-configuration at the
current position of the head. These successive complete configurations show
a complete history of the machine's operations. It's easy to look at anyone of these
complete configurations, match the m-configuration and scanned symbol to the
machine's states, and come up with the next complete configuration.

The next sequence that Turing provides shows m-configuration p searching
backward until it finds the schwa, then switching to configuration f, which
searches forward looking for a blank:

;);)0 0 l:;)aO 0 1:000 0
j.' j.' t

Next entry: Still in m-configuration f, the machine finds a blank numeric square
(notice how the space between the colons is widened again), prints a 0, moves two
squares left, and switches to configuration o.

:aaO 010:
t l'

The m-configuration 0 responds to a scanned 1 by moving right, printing an x,
then moving three squares left:

0aO 0 1xO: ....
l'

That's all that Tunng shows, but if this representation of the tape's history isn't
concise enough for you, Turing proposes an alternative:

This table could also be written in the form

b:a0l'0 O:aa'lO 0: (C)

in which a space has been made on the left of the scanned symbol and the
m-configuration written in this space.

Turing has flagged this format with the letter C (for "configuration"). He will
refer to it in Section 6. The complete configuration shown previously as:

: aaO 0:
o
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now becomes:

: aa cO 0:

Now, we see at least one reason why Tunng used German letters for the
m-configurations: In this format the m-configurations might not be so easily
distinguished from the symbols printed by the machine. The sequence of characters
between each pair of colons is no longer exactly like the tape because an extra
space is required for the next m-configuration. Even Turing admits it's a bit
awkward.

This form is less easy to follow, but
we shall make use of it later for theoretical purposes.

Actually, in a still more modified form, it will become essential. Turing is
already gearing up for a major presentation: He will unveil a Universal Com
puting Machine - today commonly termed the Universal Turing Machine or
UTM - that is a functional (if not exactly commercial) equivalent of a modem
computer.

Try to notice what's good about this final format: The entire history of the
operation of a machine has been arranged into a single stream of characters, a
format much beloved by programmers. When reading or writing files or engaging
in digital communications, the ideal approach is reading or writing a stream of
characters, one after another from beginning to end without skipping forward or
backward.

Also, notice that Turing has slipped the next m-configuration in front of the
next scanned character. These two items in combination were defined by Turing
as a configuration, and this pair of items occurs in the complete configuration in
the same order as they occur in the first two columns of a machine table. You
can take that m-configuration and symbol pair and scan through the m-config and
symbol columns of a machine table looking for a match. (Obviously, this works
better when the machine contains actual symbols in the symbol column rather than
"Any" or "None" or blanks.) Turing WIll actually automate this searching process
when constructing his Universal Machine.

Turing next discusses his choice to print the numeric sequence on alternate
squares:

The convention of writing the figures only on alternate squares is very
useful: I shall always make use of it. I shall call the one sequence of alter-
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nate squares F-squares and the other sequence E-squares. The symbols on
E-squares will be liable to erasure. The symbols on F-squares form a
continuous sequence. There are no blanks until the end is reached.

Earlier 1 referred to these as numeric squares and non-numeric squares. You
can remember which is which by the words figures (meaning Os and Is) and
erasable. The comment about "no blanks until the end is reached" refers only to
the F-squares. The digits of a computable sequence are always printed sequentially
from left to right, never skipping an F-square and never rewriting a figure on an
F-square. These rules are required for Turing's Universal Machine.

The E-squares are a type of scratchpad, perhaps equivalent somehow to human
memory.

There
is no need to have more than one E-square between each pair ofF-squares :
an apparent need ofmore E-squares can be satisfied by having a sufficiently
rich variety of symbols capable of being printed on E-squares.

Turing's second machine used a technique of identifying characters by printing
x symbols in the E-squares. This is a general technique he'll exploit often so he'll
give it a name.

If a
symbol f3 is on an F-square S and a symbol ex is on the E-square next on the
right of S, then Sand f3 will be said to be marked with ex. The
process of printing this ex will be called marking f3 (or S) with ex.

This 0 (on an F-square) is said to be marked with x:

. ~.

These markers tum out to be very handy, and are one of Turing's best inventions.
However, markers are not strictly needed. It is possible to define machines that

use only two symbols, or which differentiate solely between a blank square and
a marked square. Such an approach was explored by mathematician Emil Post
in an interesting paper2 that independently described a configuration similar to

1 Emil L Post, "Finite Combinatory Processes Fonnu\ation \ ,n The Joumal of Symbolic Loglc, Vol I, No 3

(Sep. 1936), 103-105 Repnnted in Marrin DaVIS, ed, The Undecidable, 289-291 Although Post's paper

was published pnor to Tunng's, Post's paper was received by The Joumal of Symbolic Loglc on October 7,
1936, the Proceedings of the London Mathematical Society received Tunng's paper on May 28, 1936
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Turing's. Post has a "worker" with a collection of "boxes" arranged in a sequence.
The worker is capable of:

(a) Marking the box he is in (assumed empty),
(b) Erasing the mark in the box he is in (assumed marked),
(c) Moving to the box on his right,
(d) Moving to the box on his left,
(e) Determining whether the box he is in, is or is not marked.

Post doesn't actually show his worker performing real applications. Working
with squares or boxes that can be only marked or unmarked is obviously much
more laborious than TUring's shortcut.





Addition and
Multiplication

A s early as May 1935 Alan Turing had considered attending Princeton Uni
versity, and had applied for a visiting Fellowship.1 A year later, when he

discovered that Princeton mathematics professor Alonzo Church had also pub
lished a paper on the Entscheidungsproblem, Turing "decided quite definitely,,2
that he wanted to go there.

Max Newman helped. In the same letter in which Newman informed Church of
Turing's work (page 62), he also pleaded for help in getting Turing a scholarship:

I should mention that Turing's work is entirely independent: he
has been working without any supervision or criticism from any
one. This makes it all the more important that he should come
into contact as soon as possible with the leading workers on this
line, so that he should not develop into a confirmed solitary.3

The tendency to work alone without outside influences was actually one of
Turing's big problems. Earlier in his life, Turing had reinvented the binomial
theory and developed his own notation for calculus. In attacking the Entschei
dungsproblem, perhaps it was best that he wasn't familiar with the earlier work of
Church and his colleagues, or he might not have developed such an interesting
solution. In general, however, knowing what's going on in the rest of the world
is essential, and for the field of mathematical logic, Princeton was the place to be.
Turing failed to get the Procter Fellowship he applied for, but he was able to get
by on his King's College fellowship.

The intellectual aura around the town of Princeton, New Jersey, had recently
grown even brighter with the establishment of the Institute for Advanced Study.
The lAS was founded with a $5,000,000 endowment from Louis Bamberger, who

lAndrew Hodges. Alan Tunng' The Enigma (Simon &: Schuster, 1983),95
2Hodges, Alan Tunng, 113

3Ibid
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had previously created the Bamberger's department store chain and then sold it to
Macy's right before the 1929 stock market crash.

From the very beginning, the Institute for Advanced Study was intended as
a place to foster scientific and historical research. In the early years, the IAS
School of Mathematics shared a building with the Mathematics Department at
Princeton University, so there was considerable cross-fertilization between the
two institutions. The lAS quickly became a mecca for talented scientists and
mathematicians, some of them fleeing the increasingly dangerous atmosphere of
Europe. The most famous of these was Albert Einstein, who came to the IAS in
1933 and stayed there for the rest of his life.

When Turing arrived in Princeton in September 1936, he was very much
interested in meeting Kurt Godel. Godel had also been at the IAS the year before,
and he would later return, but he and Turing never met.

John von Neumann, whom Turing had met in Cambridge, was at the IAS, and
so was G.H. Hardy from Cambridge. Both Richard Courant and Hermann Weyl
were at the IAS as well, having fled Gottingen a few years earlier.

Tunng stayed two years at Princeton University, and got the Procter Fellowship
(a sum of $2,000) for his second year. Church became Turing's thesis advisor, and
under Church's supervision Turing wrote a thesis4 and received his Ph.D. onJune
21, 1938. He was back in England a month later, having turned down an offer
from John von Neumann to be his assistant at the lAS with a salary of $1,500 a
year.

In the spring of 1939, Alan Turing returned to Cambridge to teach a Foundations
of Mathematics course. Four years earlier, Turing had taken Foundations of
Mathematics with Max Newman and had learned about the Entscheidungsproblem.
Now Turing was able to ask a question on the final exam about the unprovability
of the Entscheidungsproblem based on his own work on computable numbers. 5

In his paper, Turing is asking for a little faith from his readers that these
machines of his can actually calculate nontrivial numeric sequences. So far, we
haven't really seen anything we would call calculation. The machine in Turing's
first example ostensibly pnnted the binary equivalent of 1/3, but it did it by
just stupidly alternating Os and Is. Surely it's not dividing 3 into 1. Nor does
the machine implement a general process for computing any rational number by
dividing the numerator by the denominator.

Even programmers who work at the low levels of processor machine code are
accustomed to computer hardware that performs the basic mathematical operations

4Alan Tunng, "Systems of Logic Based on Ordinals," Proceedings of the London Mathematical Society, 2nd

Senes, Volume 45 (939), 161-228 Republished in Alan Tunng, Collected Works ofA M Tunng
Mathematical logIC (Elsevier, 2001), 161-228, and B Jack Copeland, ed, The Essential Tunng (Oxford

University Press, 2004) 146-204
5Hodges, Alan Tunng, 152



Addition and Multiplication 99

of addition and subtraction. For that reason we may be skeptical - and even a
bit frightened - of a machine in which even addition has to be accomplished
through the definition of configurations and operations.

Let's confront our fears head on by building machines that transcend the trivial.
Let's convince ourselves that Turing Machines can indeed add and multiply (and
hence, also subtract, divide, calculate powers, and perhaps even write poetry).

The first example is a small Turing Machine that calculates all the positive
integers in sequence. This machine does not comply with Turing's conventions
because it writes each new number over the previous one. It doesn't skip any
squares when printing the results, and it replaces each result with the next highest
number. Also, given that these are integers, I have designed the machine to print
the digits as we would normally write integers - with the more significant digits
extending to the left of the tape rather than the right. Despite noncompliance with
Turing's conventions, this machine does show how a number can be incremented
by adding I to it, which is at least one basic feat we require of a modem computer.

Rather than using German letters in my examples, I've chosen descriptive words
in boldface, and (in later examples) sometimes more than one word joined by
dashes. As Turing did, I use the word "none" to refer to a blank square. As Turing
did not, I use the word "else" to indicate that a configuration is to apply to all other
characters not explicitly listed. This particular machine begins with configuration
begin and has just three m-configurations:

m-config· symbol operations final m-config·

begin none PO increment

Un,
PI rewind

increment PO,L increment

PI rewind

ran, L increment
rewind

else R rewind

The m-configuration begin simply prints a single °and then switches to
increment. The m-configuration increment reads a digit. If it's a 0, then increment
changes that to a 1. It has then finished incrementing the entire integer. If it reads
aI, then increment changes it to a °and moves left for the carry. It must
now increment the next highest digit. The m-configuration rewind moves the
head right to the least significant digit of the number in preparation for the next
increment.

Once you start writing machines that do arithmetic, it becomes obvious why
binary numbers are so convenient. Here's the equivalent machine that generates
all the positive integers in decimal rather than in binary:
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m-config· symbol operations final m-config·

begin none PO increment

0 PI rewind

1 P2 rewind

2 P3 rewind

3 P4 rewind

4 P5 rewind
increment 5 P6 rewind

6 P7 rewind

7 P8 rewind

8 P9 rewind

9 PO,L increment

none PI rewind

r e L increment
rewind

else R rewind

You see the problem. The machine needs to handle every decimal digit explic
itly. The binary number system is simpler because it has fewer options. The binary
addition and multiplication tables are tiny:

+
o
1

o 1
o 1
1 10

and
x
o
1

o 1
o 0
o 1

I'1l make use of these addition and multiplication rules in the second example in
this chapter. This is a machine that adheres to Turing's conventions and calculates
the square root of 2 in binary. Actually, if the binary point is assumed to precede
all the digits, the machine calculates

which in decimal is 0.70710678.... In describing the machine, I'1l assume it's
calculating "fi for the sake of clarity and familiarity.

The algorithm implemented by the machine calculates one binary digit at a
time. Suppose the machine has been running awhile and has already determined
the first four digits. The first four digits of "fi in binary are 1.011, equivalent to
1~ in decimal or 1.375. What is the next digit? The machine's strategy is always
to assume that the next digit is 1. To test whether this is correct, multiply 1.0111
by itself:
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1.0111
x 1.0111

10111
10111

10111
00000

10111
10.00010001

The product exceeds 2, so that assumption was incorrect. The fifth digit is
instead 0, so the first five digits are 1.0110. Let's determine the sixth digit
similarly. Assume that the sixth digit is 1 and multiply 1.01101 by itself:

1.01101
x 1.01101

101101
000000

101101
101101

000000
101101

1.1111101001

That result is less than 2, so the assumption was good. We now have six digits:
1.01101, which in decimal is 1~2 or 1.40625.

Obviously, the square-root-of-2 machine needs to multiply. In general, a
multiplication of two multidigit numbers requires that each digit of one number
be multiplied by each digit of the other number. If one number has n digits, and
the other number m digits, the total number of digit-times-digit multiplications is
(n x m).

When doing multiplication by hand, we generally multiply a single digit of
one number by the whole other number, yielding n or m partial products, which
are then added together. The machine I'll show does the multiplication a little
differently - by maintaining a running total during the multiplication. The result
of each bit-by-bit multiplication is added to this running total. What makes this
particular addition tricky is that each bit-by-bit product is generally not added to
the least significant bit of the running total, but somewhere in the middle of it.

For example, consider the multiplication of 1.01101 by itself. Each of the
six bits must be multiplied by itself and by the other five bits, so 36 bit-by-bit
multiplications are required. The multiplications themselves are trivial: When
multiplying 1 times 1, the result is 1; otherwise, the result is O. Where this result
is deposited in the running total depends on the placement of the bits within the
number. If the third bit from the right is multiplied by the fourth bit from the



102 The Annotated Turing

right, the result is added to the sixth place from the right in the running total.
(This makes more sense when you number the bits beginning with zero: The third
bit from the right is bit 2; the fourth bit from the right is bit 3; the sum is 5, and
that's the bit position where the product goes.)

In determining the binary square root of 2, we're always multiplying an n-bit
number by itself. If the result has (2n - 1) bits, that means the product is less than
2 and the assumption that the new last digit is indeed 1 was correct. If the result
has 2n bits, the product exceeds 2, so the new last digit must be O. The machine
will make use of this fact to determine whether each new digit is a 0 or 1.

The machine I'll be showing adheres to Turing's conventions, which means that
the only things it prints in the F-squares are the successive digits of the square
root of 2 as they are being calculated. Everything else - including maintaining
the running total of the multiplication - is done on E-squares.

The machine begins in m-configuration begin. The machine uses an at sign (@)

rather than a schwa for the sentinel. (Let's Just say it's an easier symbol on today's
computers.) The machine begins by printing the sentinel and the digit 1:

m-config· symbol operations final m-config.

begin none P@, R, PI new

Thus, the only initial assumption the machine makes is that the square root of 2
is at least 1 but less than 2.

The machine always comes back to the m-configuration new when it's ready to
calculate a new digit. The configuration moves the head to the leftmost digit:

new
R

L

mark-digits

new

The rest of the machine will be easier to understand if we look at what it does
after it's already calculated a few digits. Here's the tape with the first three digits
already computed, which is the binary equivalent of 1.25. The machine will print
the fourth digit (which I'll refer to as the "unknown" digit) in the square marked
with the question mark:

That question mark is for our benefit only; it does not actually appear on the tape
and is not used by the machine!

In preparation for the multiplication, the machine marks the digits of the
number. (Recall that Turing defined "marking" as printing a symbol to the right
of a figure.) The machine uses multiple x markers in a manner similar to Turing's
Example II (page 85) machine. The m-configuration mark-digits marks all the
known digits with x, the unknown digit with a z (which I'll explain shortly) and
prints one r in the least significant place of the running total:
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mark-digits

The tape is now:

R,Px,R
R,Px,R

R, Pz, R, R, Pr

mark-digits
mark-digits
find-x

That r is the least significant digit of the running total and should be interpreted
as a O. The next section prints two more r's for every x, erasing the x markers in
the process.

t: E first-r
find-x N find-digits

L,L find-x

leI~
R,R last-r

first-r
first-rR,R

In:ne
R,R last-r

last-r
Pr, R, R, Pr find-x

The tape now has a 7-digit running total symbolizing an initial value of 0000000:

The bit order of the running total is reversed from that of the calculated number.
The least significant bit of the running total is on the left. The seven initialized
digits of the running total are sufficient if the assumption is correct that the
unknown digit is a 1. If an eighth digit is required, then the unknown digit is O.

The number the machine must multiply by itself consists of the number
computed already (101 in this example) and a new digit assumed to be 1, so the
number is actually 1011. To keep track of what digits are being multiplied by each
other, the machine marks the digits with x, y, and z characters. At any time during
the multiplication, only one digit is marked with x and one digit with y, and the
digit marked x is multiplied by the digit marked y. If the x and y markers happen
to coincide, the character z is used, so any digit marked Z is multiplied by itself.

That's why the unknown digit (assumed to be 1) is initially marked with a z.
The first multiplication involves that unknown digit times itself; however, it will
help in the analysis of the follOwing configurations to keep in mind that during
the multiplication, any digit could be marked with x and any digit with y, or just
one digit with Z.
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We're now ready for the first bit-by-bit multiplication. The machine multiplies
either the two digits marked x and y by each other, or the single digit marked z by
itself. The m-configuration find-digits first goes back to the sentinel and then goes
to find-1st-digit to find the left-most digit marked x, y, or Z.

find-digits

find-1st-digit

{e: R,R find-1st-digit

L,L find-digits

{L
L found-1st-digit
L found-1st-digit
L found-2nd-digit

R,R find-1st-digit

If find-1st-digit detects an x, y, or z, it positions the head over the digit.
Depending on the letter, the machine goes to found-1st-digit or found-2nd-digit.

If the first marked digit is 0, the second digit isn't required because the product
will be 0 anyway. So we can add 0 to the running total by going to add-zero:

found-1st-digit
R

R,R,R

add-zero

find-2nd-digit

If the first digit is aI, the second digit must be found. The machine searches
for the second digit marked x or y:

find-2nd-digit
L
L

R,R

found-2nd-digit
found-2nd-digit
find-2nd-digit

The second digit determines what must be added to the running total:

found-2nd-digit
R
R
R

add-zero
add-one
add-one

Notice that a blank F-square is the unknown digit, which is assumed to be 1.
In our example, the digit marked Z is the unknown digit, so add-one will be used
to add a 1 to the running total.

Adding a 0 onto the running total normally wouldn't affect it; however, this
machine must perform some maintenance of the running total regardless of what's
added to it.

When I described how the running total is initialized on the E-squares to
the right, I indicated that the letter r symbolizes O. The letters sand t also
symbolize 0, and the letters u, v, and w all represent 1. This multitude of letters is
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required to keep track of the bit position where the bit-times-bit product is added
to the running total.

The m-configuration add-zero changes the first r it finds to an s, or the first u

to a v:

add-zero
Ps
Pv

R,R

add-finished
add-finished
add-zero

The change of the r (meaning 0) to an s (meaning 0) and the u (meaning 1) to a
v (also meaning 1) ensures that the next time a digit is added to the running total,
it gets added one place over.

Adding a 1 to the running total is more involved. The first r (meaning 0) is
changed to a v (meaning 1), or the first u (meaning 1) is changed to an s (meaning
0). For the latter case, a carry is also required:

add-one
Pv

Ps, R, R
R,R

add-finished
carry
add-one

If the carry results in a digit being written into a blank square, then the running
total has exceeded 2, so the configuration becomes new-digit-is-zero:

carry
Pu
Pu

Pr, R, R

add-finished
new-digit-is-zero
carry

After the first bit-by-bit multiplication and addition to the running total, the
tape is:

Notice the first r has been changed to a v (meaning 1).
Now the x, y, and z markers must be shifted around to indicate the next pair

of bits to be multiplied. In general, the x marker is moved left one character.
(A z marker, you'll recall, simply indicates that the x and y markers coincide, so a
Z marker becomes a y marker and an x marker is printed one digit to the left.) But
when the x marker gets to the end (past the most significant bit), the y marker is
moved left one character and the x marker is moved back to the rightmost digit.
When the y marker gets to the end, the multiplication is complete.

First the head is moved to the sentinel:

add-finished
R,R

L,L

erase-old-x

add-finished
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If erase-old-x finds an x, it erases it; if it finds a z, it is replaced with a y. In
either case, the head moves to the next E-square to the left:

erase-old-x
E,L,L
Py,L,L

R,R

print-new-x
print-new-x
erase-old-x

The next x marker can now be printed:

print-new-x

That multiplication will result in another 1 being added to the running total, but
this time, it will be added one place over because it's always added to the leftmost
r or u:

The machine then shifts the x marker one place over to the left:

This multiplication results in a 0 being added to the running total. The value of
the total doesn't change, but the leftmost r is changed to an s:

Again, the x marker is shifted left:

Another bit-by-bit multiplication results in the leftmost r being changed to v:

Now the x is about to be shifted into the sentinel. That case is handled by
erase-old-y and print-new-y:

erase-old-y

print-new-y

{e: E,L,L print-new-y

R,R erase-old-y

{e: R new-digit-is-one

Py,R reset-new-x
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Notice that if the y marker is about to be shifted into the sentinel, then the
entire multiplication has concluded without the running total spilling over beyond
the area allotted for it. We now know that the unknown digit is a l.

Otherwise, the x marker must be reset to the least significant bit of the number,
which is the unknown digit:

reset-new-x Inone

else

R,Px

R,R

flag-result-digits

reset-new-x

The example tape now has the x and y markers set like this:

More still needs to be done. The next bit-by-bit product should be added to
the second digit of the running total. To accomplish this feat, the first s or v in the
running total is changed to a tor w (respectively):

flag-result-digits
Pt, R, R
PW,R,R

R,R

unflag-result-digits
unflag-result-digits
flag-result-digits

The remaining s and v markers are changed to rand u (respectively):

unflag-result-digits
Pr, R, R

PU,R,R
N

unflag-result-digits
unflag-result-digits
find-digits

This process ensures that the next bit-by-bit multiplication is added to the running
total in the correct spot.

The tape is truly ready for the next bit-by-bit multiplication, the result of which
will be added to the running total at the first r or u.

The multiplication completes in one of two ways, both of which you've already
seen. If the machine attempts a carry from the running total into a blank square,
then the result is known to exceed 2, the unknown digit is known to be 0, and the
configuration becomes new-digit-is-zero. Otherwise, if the next destination for
the y marker is the sentinel, then the entire multiplication has completed without
the running total exceeding 2, and new-digit-is-one takes over.

These two sections are essentially the same. First, the machine goes back to the
sentinel:

new-digit-is-zero
R

L

print-zero-digit

new-digit-is-zero
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Now the machine can locate the blank square, and print the °there. In moving
through all the digits, it can erase any markers still left:

print-zero-digit
R,E,R
R,E,R

PO,R,R,R

print-zero-digit
print-zero-digit
cleanup

Similarly, the m-configuration new-digit-is-one prints a 1 as the new digit and
also goes into cleanup mode:

new-digit-is-one L:, R print-one-digit

L new-digit-is-one

Un'
R,E,R print-one-digit

print-one-digit R,E,R print-one-digit
PI,R,R,R cleanup

After the new digit has been printed, the m-configuration cleanup removes the
running total and then goes to new for the next digit.

cleanup
{

none

else

N

E,R,R

new

cleanup

The example tape has a new fourth digit and is ready for the fifth:

Obviously, the Turing Machine is not a programmer-friendly medium. Most
programming languages have functions called sqrt (or something similar) that
calculate square roots not only of 2 but of any other number.

Yet, these square-root functions are often limited in precision. Most computer
languages these days store floating-point numbers in a format that complies
with standards set by the Institute of Electrical and Electronics Engineers (IEEE).
A double-precision floating-point number stores numbers accurate to 52 bits
or approximately 15 to 16 decimal digits. Until fairly recently (when special
collections of math functions with greater precision became available), if you
wanted something more precise than that, you'd be pretty much on your own.
In duplicating the power of the Turing Machine to perform calculations to an
arbitrary number of digits, you might find yourself doing it much like the process
I've just described.
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On a real computer, you'd at least have the convenience of addition and
multiplication. If you were faced with the job of implementing several different
types of functions on a Turing Machine, you might consider assembling a
collection of common machine tables that you could then use as building blocks
in implementing more complex tables.

This is precisely what Turing does next, although his real goal is a Universal
Machine that can simulate any other machine.





Also Known
as Subroutines

Every programmer knows that certain types of tasks are frequently encountered
in almost all programmingjobs. Sometimes the tasks are identical; more often

they tum up with some variations. Even within the square-root-of-2 machine,
several m-configurations were rather similar. For example, look at these three:

new
R

L

mark-digits

new

new-digit-is-zero { @

else

new-digit-is-one {@
else

R

L

R

L

print-zero-digit

new-digit-is-zero

print-one-digit

new-digit-is-one

These m-configurations all move the head left in a loop until the sentinel is
encountered. Then the head is moved one place right (over the leftmost digit), and
the machine switches to another m-configuration.

It might be advantageous to determine beforehand that certain similar m-config
urations will be required in a machine, and to predefine special m-configurations
just for those chores. Doing so might help clarify certain strategies used in
programming a Turing Machine, and to make the final job easier.

Let's call the m-configuration that moves the head back to the sentinel
goto-sentinel. Then, when we're writing the states for a particular machine,
and we want the head to be positioned over the figure to the right of the sentinel,
we just specify goto-sentinel and we don't have to figure out how to do it all
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over again. Not only would it make the machine description a bit smaller, but (in
theory) it would help anyone who had to look at the machine understand it.

We might define goto-sentinel on its own like so:

goto-sentinel
R

L

?????

goto-sentinel

A

goto-sentinel(A)L

R

and immediately we see a problem indicated by that insistent squad of ques
tion marks. After the machine finds the sentinel, it must go into some other
m-configuration, but that isn't known until we actually need to use goto-sentinel
in a machine. We need some way to specify the final m-configuration in a general
way so that goto-sentinel remains flexible.

The solution is to define goto-sentinel much like a mathematical function,
where the final destination is an argument to the function:

goto-sentinel(A) {@
else

The new, new-digit-is-zero and new-digit-is-one m-configurations can now be
eliminated. At the beginning of the square-root machine, instead of haVIng begin
go to new, and new go to mark-digits, we can specify:

begin none P@, R, PI goto-sentinel(mark-digits)

Instead of defining carry to go to new-digit-is-zero, like this

carry
Pu add-finished
Pu new-digit-is-zero

Pr, R, R carry

it can instead refer to goto-sentinel to go back to the sentinel and then SWItch to
print-zero-digit:

carry
Pu
Pu

Pr, R, R

add-finished
goto-sentinel(print-zero-digit)
carry

Speaking of print-zero-digit, did you notice that it's functionally identical to
print-one-digit except for the digit it prints? We can profitably define a generalized
print-digit function. The argument for this function is the character to print:

print-digit(a)I~
none

R,E,R
R,E,R

Pa, R, R, R

print-digit(a)
print-digit(a)
cleanup



Also Known as Subroutines 113

Notice the "Pa" operation in the last line indicating that the character to be
printed is the argument to print-digit. Now the m-configuration carry becomes:

{

r Pu add-finished
carry none Pu goto-sentinel(print-digit(O))

u Pr, R, R carry

The m-configuration print-new-y (which was responsible for detecting when
it's time for new-digit-is-one) now becomes:

print-new-y 1@

else

R

Py,R

goto-sentinel(print-digitO))

reset-new-x

Today's programmers will recognize this concept immediately. Although diff
erent programming languages proVIde this facility in the form of procedures or
functions or methods, the most general term is subroutine. For decades, subroutines
have been the most universal structural element of computer programs.

Programmers reading this book might want to exercise a little caution in
applying too much of what they know about subroutines to these configurations
with arguments. These configurations exist primarily to clarify the structure of
Turing Machines and to make them easier to write. There's no concept of "calling"
one of these configurations or of "returning" from a configuration.

Turing calls these configurations with arguments "skeleton tables" before settling
on the better term "m-function." A machine table that makes use of skeleton tables
he calls an "abbreviated table."

4. Abbreviated tables.

There are certain types of process used by nearly all machines, and
these, in some machines, are used in many connections. These processes
include copying down sequences of symbols, comparing sequences, erasing
all symbols of a given form, etc. Where such processes are concerned we
can abbreviate the tables for the m-configurations considerably by the use
of "skeleton tables". In skeleton tables there appear capital German
letters and small Greek letters.

Astonishingly, the capital German letters are even more difficult to read than
the lower-case letters are. Fortunately, Turing doesn't go beyond the letter E, but
it might be helpful to get familiar WIth them in large-type versions:

A
ill

B
Q)

D
tJ
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Notice, in particular, that the A looks more like a U, and take heed of the subtle
difference between the C and the E. The Greek letters that Turing uses in this
section are italicized versions of alpha, beta, and gamma: a, f:3, and y.

These are of the nature of "variables".
By replacing each capital German letter throughout by an m-configuration

[236)

and each small Greek letter by a symbol, we obtain the table for an
m-configuration.

Where I used a capital Latin letter in my example to represent an m-config
uration, Turing uses a capital German letter. Where I used a small Latin letter to
represent a symbol, Turing uses a small Greek letter. Turing's examples often have
multiple arguments.

These days subroutines (such as sqrt) are stored in files called libraries that allow
programmers to use them by just specifying their names. It could even be said
that entire operating systems - such as Unix, Microsoft Windows, or the Apple
Mac as - consist primarily of subroutines made available to applications that
run under them.

For Turing, however, the skeleton tables exist solely to make his larger machines
easier to construct (from his perspective) and easier to read and understand (from
our perspective).

The skeleton tables are to be regarded as nothing but abbreviations:
they are not essential. So long as the reader understands how to obtain
the complete tables from the skeleton tables, there is no need to give any
exact definitions in this connection.

The skeleton tables are not essential, he says, and that's true. If the skeleton
tables were presented solely as a matter of interest and restricted only to this
section of the paper, they could easily be skipped. However, Turing is setting the
stage for his Universal Machine, which makes extensive use of the skeleton tables
presented in this section. Without these tables, the Universal Machine would be
much longer and more complex than it is.

For that reason, knowing a little about Turing's ultimate intentions can help
make these tables just a bit more comprehensible. As he WIll discuss in Section
7, the Universal Machine interprets a tape that contains a computing machine
encoded as a series of letters. At the far left is a schwa sentinel. The tape alternates
between F-squares and E-squares. The E-squares are, as usual, erasable. In the
Universal Machine, the F-squares contain mostly letters rather than digits. Even
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so, the machine always prints the F-squares sequentially from left to right, and
without erasing a previous symbol. For that reason, two blank squares in a row
indicate that no F-squares exist to the right of that point.

Let us consider an example:

m-config. Symbol Behaviour Final
m-config·

f(0-, ~\ a) {a
not a

fr(~, Q), a) I~ot a

None

L

L

R

R

R

R

h(~, ~\a)

f(~, ~\a)

~

h(~, ~\a)

~

h(~, ~\a)

From the m-configuration
f(~, ~\ a) the machine finds the
symbol of form a which is far
thest to the left (the "first a")

and the m-configuration then
becomes ~. If there is no a
then the m-configuration be
comes ~\

Well, he might also have started with a simpler example, but this one has the
advantage of showing off all the features. Turing's explanation appears to the right
of the table. (Turing will also put explanations to the right of his tables when
defining the Universal Machine.)

Although Turing is really defining a function named f, the function requires
two other functions named fI and h. They all have the same three arguments:
two m-configurations and one symbol. The m-configuration f moves the head left
until it encounters a schwa. The m-configuration becomes fI. That m-configuration
moves right whenever the square is not an a. (Notice that a is the third argument
to f.) If it encounters an a, it goes to m-configuration @;, the first argument to f.
The m-configurations fI and h are very similar. Together, they effectively search
for two blanks in a row. Whenever fI encounters a blank, it switches to h. If the
next character is not a blank, it switches back to fl. Only when h encounters a
blank - which must be the second blank in a row - does it give up and go to
m-configuration m, the second argument to f. The a character was not found in
this case.

So, f stands for find. If it finds an a, it goes to m-configuration @;, and the
head will be sitting on the first (leftmost) a. If it can't find an a, then it goes to
m-configuration m.

There's actually a little confusion in this table. In the two m-configurations
fI and f2, the terms "not a" seem to mean "any non-blank square that's not a"
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because another configuration takes care of the "None" or blank square; however,
the first m-configuration does not have a "None" case and, to be consistent, it
should. The None case should be the same as "not a."1

In a table for a complete machine, this skeleton table would be referred to by
an entry in the final m-config column that looks something like this:

m-config. symbol operations final m-config.

f(q, r,x)

The m-configurations q and r would be defined elsewhere in the machine, and
x would be a symbol used by the machine.

If we were to replace ~ throughout by q (say), Q.'\ by r, and a by x, we
should have a complete table for the m-configuration f(q, r, x).

In the context of the complete machine, this skeleton table effectively expands
into this table:

m-config· symbol operations final m-config·

f In;.
L fI

L f

{n:tx q

fl R fI
None R f2

{n:tx q

f2 R fI
None R r

Because the f function may be used several times in the same machine, the
expanded versions of the m-configurations f, fI, and f2 would all need different
names each time they're used.

IS called
an "m-configuration function" or "m-function".

I This is one of several correclions identified in a footnole to the appendix of the paper Emil Post,
"Recursive Unsolvability of a Problem of Thue," The]oumal of Symbolic Logzc, Vol 12, No 1 (Mar 1947),

1-11. The entire paper is repnnted in Martin DaVIS, ed, The Undecidable (Raven Press, 1965),293-303

The appendix (WIth the footnote incorporated into the text) is repnnted in B Jack Copeland, ed , The
Essential Tunng (Oxford University Press, 2004),97-101
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That's a much better name than "skeleton table." I hope there's no confusion if
I generally refer to them simply as functions.

The only expressions which are admissible for substitution in an
m-funetion are the m-configurations and symbols of the machine. These
have to be enumerated more or less explicitly: they may include expressions
such as p(r, x); indeed they must if there are any m-functions used at all.

If an m-function named p has been defined, and if a machine refers to this
m-function in its final m-config column, then p must be considered to be an
m-configuration of the machine.

Turing is a little nervous here because arguments to m-functions can be other
m-functions. In other words, m-functions can be nested. (Don't worry: You'll
see plenty of examples.) The problem results from implicitly allowing infinite
recursion - that is, a function referring to itself, or referring to a second function
which in tum refers to the first. If infinite recursion is allowed, then a machine
could end up with an infinite number of m-configurations, and that's in violation
of Turing's original definition of a computing machine.

If we did not insist on this explicit enumeration, but simply stated that
the machine had certain m-configurations (enumerated) and all m-configu
rations obtainable by substitution of m-configurations in certain m-func
tions, we should usually get an infinity of m-configurations; e.g., we might
say that the machine was to have the m-configuration q and all m-configu
rations obtainable by substituting an m-configuration for ~- in p(~). Then
it would have '1, P('1), P(p(q)), p(P(p(q))), ... as m-configurations.

We must ensure that after substituting all the m-functions into the machine, we
still have a finite number of m-configurations.

Our interpretation rule then is this. We are given the names of the
m-configurations of the machine, mostly expressed in terms ofm-functions.

Again, Turing is looking ahead to his Universal Machine, which will indeed be
expressed mostly in terms of m-functions defined in this section.

We are also given skeleton tables. All we want is the complete table for
the m-configurations of the machine. This is obtained by repeated
substitution in the skeleton tables.
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Perhaps at this point, he's being a little too paranoid. We don't usually need to
enumerate all of the m-configurations of a machine explicitly. We really just need
to know that there's a finite number of them.

[237]

Further examples.
(In the explanations the symbol "--+" is used to signify "the machine

goes into the m-configuration. " .")

By "explanations," Turing means the often cryptic descriptions that appear
to the right of the skeleton tables. The columns of these tables are rather
smushed together, and there are no column headings. Some tables contain only
m-configurations and final m-configurations. Others contain columns for scanned
characters and operations that must be differentiated based on their contents.

Turing's next example shows an m-function that appears as an argument to
another m-function:

r(~, Q),a)

E

f(el(~' Q),a), 'i<..\a)

~

From r(~, ~\ a) the first a is
erased and -? ~. If there is no
a-?~'\

The l' stands for "erase." This function starts by using f to search for the first
(leftmost) occurrence of ex, which will leave the head positioned over the character.
Notice how the first argument of f is the function l'r. What that means is that when
f finds the character ex, it will then go to l'r, which simply erases the character and
goes to m-configuration @;. If f doesn't find the character ex, then it goes to Q).

If you're really examining these things and not just accepting Turing's word
that they work, you may question why l'r needs so many arguments. It does not.
It could be defined more simply as l'r (@;).

Programmers, be warned: You may know too much to interpret nested
m-functions correctly. Resist the almost irresistible inclination to believe that l'r

must be "evaluated" in some way before it is passed to f. Instead, think of the first
argument to f as a reference to fs eventual destination after it finds the character ex.

Turing defines a second version of the l' function with two arguments rather
than three:

r(Q.\ a) From r('i<..\ a) all letters a are
erased and -? Q.1.



Also Known as Subroutines 119

The definition of two different functions with the same name but distinguished
by a different number of arguments is a rather advanced programming technique
(called function overloading) that is not allowed in many older programming
languages.

This two-argument version of l? makes use of the three-argument version to
erase the first a, but notice that it specifies the two-argument l? as the first argument
to the three-argument version! When the three-argument l? has successfully located
and erased the first a, it then goes to the two-argument version, which proceeds
to use the three-argument version again to erase the next a. This continues until
all the a characters have been erased.

Very clever. Turing has now effectively used nesting and recursion to symbolize
the implementation of repetitive tasks.

Nevertheless, the use of the two-argument l? as an argument to the three
argument l? to implement the two-argument l? seems to invoke the dreaded specter
of infinite nesting of m-configurations.

The last example seems somewhat more difficult to interpret than
most. Let us suppose that in the list of m-configurations of some machine
there appears r(b, x) (= '1, say).

The m-function l? can only playa role in a machine only if it appears somewhere
in the machine's final m-config column, for example, as l?(&, x), where &is an
m-configuration used in the machine. We can now say that l?(&, x) is another
m-configuration of the machine and - as long as we haven't used g to represent
any other m-configuration in the machine - we can also refer to this new
m-configuration as g.

By using l?(&, x) in the final m-config column of the machine, we've essentially
added another state to the machine, which Turing gives in two different forms:

The table is

or

(The period at the end of the last line is there because it's considered part of a
sentence that begins 'The table is.") This table implies that the m-configuration
l?(g, &, x) is also another m-configuration of the machine, as well as l?l (g, &, x), as
shown by the following expansion:
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Or, in greater detail:

r('1, b, x)

r('1, b,x)

q(q,b,x) E '1.

(Again, a period follows the q on the last line because this table is considered
part of a sentence.) Notice that after erasing the character, rr goes back to q, which
is already an m-configuration of the machine, so there's no infinite generation of
m-configurations.

In this we could replace q ('1, l', x) by \1' and then give the table for f (with
the right substitutions) and eventually reach a table in which no
m-functions appeared.

Just as Turing used q to represent the configuration reb, x), he can use q' to
represent the configuration rl (q, b, x), and additional configurations to represent
rl and f.

Now that we've got the hang of these functions (yeah, right), Turing relentlessly
piles them on. I know that it's hard right now to see how these will all fit together.
To construct his Universal Machine, Turing requires several common types of
functions useful in manipulating individual characters and strings of characters.
You've already seen find and erase functions. He essentially needs cut, copy, and
paste as well, and some standard printing routines.

The pr function stands for "print at the end." It prints the symbol represented
by fJ in the first blank F-square.

pr(~, {3)

!AnY R,R
pq(~, {3)

None P{3

f(pq(~', {3), ~', a)

pq(~,{3)

~

From pr (~, {3) the machine
prints f3 at the end of the
sequence of symbols and ~~.

Some implicit assumptions hide inside this function. The f function normally
finds the leftmost occurrence of its third argument, but here that argument is a
schwa, which is the same symbol f looks for to get to the far left of the sequence.
The pr function is therefore assuming there are two schwas in a row, just as in
Turing's second machine example on page 85. The m-function f first finds the
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rightmost of the two schwas (the one on an E-square) and then moves the head
left to be positioned on the left schwa, which is on an F-square. The P~1 function
then moves right along F-squares until it finds a blank. It prints a f:3, which for
most computing machines will be either a 0 or 1.

These next examples are cute. Turing first defines functions named ( (for left)
and r (for right) and then uses them in conjunction with f to create two more
functions f and f' that move the head left or right after finding the desired
character.

1(~)

r(~)

f'(~, ~\ a)

L

R

f(((~), 'iB, a)

f(r(~), 'iB, a)

From f'(~, 'iB,O') it does the
same as for f(~, Q.\ a) but
moves to the left before -7 ~.

1would have called them ~ and fr rather than f and f', but that's me.
The Universal Machine will require moving characters from one location to

another on the tape. The, function performs a "copy." The character a is likely to
be a marker. The function obtains the character in the F-square to the left of that
marker and uses P~ to copy it to the first empty F-square at the end.

c(~, 'iB, a)

q(~) 13

f'(q(~), Q.\ a)

pr( ~-, 13)

c(~, Q.\ a). The machine
writes at the end the first sym
bol marked a and -7 ~.

Notice the function uses f to find the a character, so that the head ends up to the
left of the marker, which is the figure that the marker marks.

The q function has an unusual syntax: The scanned character becomes the
second argument to p~. Turing says:

[238]
The last line stands for the totality of lines obtainable from it by

replacing 13 by any symbol which may occur on the tape of the machine
concerned.

p~(~, 1)

p~(~,O)

q(~)

If, for example, the, function were to be used only for copying Os and Is, then '1

would actually be defined like:

g



122 The Annotated Turing

The ce function stands for "copy and erase." It exists in two-argument and
three-argument versions.

l(r(~, ~\ a), ~\ a) cr(~\ a). The machine
copies down in order at the

lC(lC('~\ a), ~\ a) end all symbols marked a

and erases the letters a; -7 ~\

The three-argument ce first uses c to copy the leftmost figure marked WIth ex,
and then uses e to erase that marker. The two-argument version of ce uses the
three-argument version to copy the first figure and erase the marker, but then goes
back to the two-character version. In effect, all symbols marked with ex are copied
to the end of the tape in the first available F-squares. (Turing's second example on
page 87 could have used this function to copy a run of Is to the end of the tape.)

Now might be a good time to raise the ugly issue of efficiency. Turing is
defining functions that look nice and compact, but that actually hide an enormous
amount of activity. To perform each copy-and-erase, the c function uses f to
find the marker (and remember that f backtracks all the way to the sentinel)
and then goes to the e function, which uses f again to find the same marker
so it can be erased. A more efficient scheme has ce erasing the marker when
it's first located and before it copies the character. (In honor of the notonous
inefficiency of Turing Machines, the term Turing tar-pit descnbes excessively
generalized computer routines that spend much more time flapping their wings
than flying.)

But Turing is not interested in mundane issues of efficiency. The machine is,
after all, imaginary. If he wants, he can run it at a million zettahertz and nobody
will realize how much needless activity is going on.

The re function is "replace." The ex and f3 arguments are assumed to be markers.
The function finds the leftmost ex and replaces it with f3. (We know that ex and
f3 are markers because Turing doesn't allow replacing figures already marked on
F-squares.)

rCJ(~', ~\ a, {3) E, P{3

f(rrl(~, ~\ a, fJ), ~\ a) rr(~', ~\a,fJ).The machine
replaces the first a by {3 and
-7~' -7~) ifthere is no a.

The three argument version replaces all ex markers with f3:

rr(~\ a, {3) rr(rr(~\ a, {3), ~\ a, fJ) rr(~\ a, f3). The machine re
places all letters a by fJ; -7~\
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For consistency, that explanation at the right should have its first line indented.
If you've got the hang of Turing's methodology and naming scheme, you'll

know that the cr function is "copy and replace":

(t'(~, Q.\ a)

(r(Q), a)

a(Q.\ a) differs from
cr(Q.\ a) only in that the
letters a are not erased. The
m-configuration (r(Q.\ a) is
taken up when no letters
"a" are on the tape.

These functions are not used elsewhere in Turing's paper.
The Universal Machine requires a facility to "search and replace," and Turing

next presents half a page of functions that begin with the letters cp ("compare")
and cpr ("compare and erase"). The final m-configurations in these functions are
so long that Turing's explanations appear under each table instead of at the right.
(There's a typo in the first line. In the final m-config column the subscripted I on
the ~ should be a comma. Also, some periods appear in the final m-config column
where they serve no purpose.)

CP2(~-, ~l, y) { y

not y

i'(q\1 (~1 ~1, ~), i(~l, ~, 13), a)

t'(cP2C~, ':II, y), ':Il,~)

~

The first symbol marked a and the first marked 13 are compared. If
there is neither a nor 13, ~ ~~. Ifthere are both and the symbols are alike,
~ ~. Otherwise ~ ~1.

(pr(~-, ':Il,~, a, 13) differs from (p(~, ':II, ~,a, 13) in that in the case when
there is similarity the first a and f:i are erased.

(pr(':Il, ~, a, In. The sequence of symbols marked a is compared with
the sequence marked 13. ~ ~- if they are similar. Otherwise ~ 'i?l. Some
of the symbols a and f:i are erased.
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By "similar" Turing means "identicaL"
Turing has now exhausted his supply of mnemonic function names, for he

names the next one simply q, which unfortunately is the same letter he Wlll shortly
use to represent m-configurations in general. What's worse is that he later refers to
this function as g.

I believe that Turing meant for this function to be named 9 rather than q. Just
as the f function finds the first (that is, leftmost) occurrence of a panicular symbol,
this function finds the last (rightmost) occurrence of a symbol. It makes a bit
of sense that the related f and 9 functions should be represented by consecutive
letters. For that reason, although the following table describes the function q, I'll
refer to it as g.

The single-argument version of 9 moves to the right until it finds two blanks
in a row. That is assumed to be the rightmost end of the tape. The two-argument
version of 9 first uses the one-argument 9 and then moves left looking for the
character a.

'1(0') IAny

None

'11(0', a) I a

nota

R

R

R

L

[239)
'1(0', a}. The machine

finds the last symbol of
form a. -? 0',

Tunng finishes this section with a few miscellaneous functions with familiar
names.

You'll recall the pr function that printed a character in the last F-square. The pr2
function pnnts two characters in the last two F-squares:

pr2(0', a, f3}. The machine
prints a Ii at the end.

Similarly, the cr function copied characters marked with a to the end. The cr2
function copies symbols marked with a and f3, while cr3 copies characters marked
a, f3, and y.



(r«(r(~\ {3), a)

(r«(r2(~\ {3, y), a)
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(r3(~\ a, {3, y). The mach
ine copies down at the end
first the symbols marked a,
then those marked {3, and
finally those marked y; it
erases the symbols a, (3, y.

These copies are performed sequentially: First, all the symbols marked with a
are copied, then the symbols marked with f3, and so on. Later on, Turing uses a
function called crs with six arguments that he's never described, but the operation
of it should be obvious.

Finally, a single-argument r function erases all markers.

I~ota R L'J (0') From r(0-) the marks are
r(0:) erased from all marked sym-

L r(0') bois. ~ 0:.

IAny
R,E,R q(0')

q(0:)

None ~

Programmers of a certain age may remember a book by Niklaus Wirth (b.
1934), inventor of the Pascal programming language, with the wonderful title
Algorithms + Data Structures = Programs (Prentice-Hall, 1975). As the title indicates,
a computer program requires both code (algorithms) and some data for the code
to crunch. Turing has now presented many of the algorithms that his Universal
Computing Machine will require, but he hasn't yet described how he will transform
an arbitrary computing machine into crunchable data. That's next.





Everything
Is a Number

I n this digital age of ours we have grown accustomed to representing all
forms of information as numbers. Text, drawings, photographs, sound, music,

movies - everything goes into the digitization mill and gets stored on our
computers and other devices in ever more complex arrangements of Os and Is.

In the 1930s, however, only numbers were numbers, and if somebody was
turning text into numbers, it was for purposes of deception and intrigue.

In the fall of 1937, Alan Turing began his second year at Princeton amidst
heightened fears that England and Germany would soon be at war. He was
working on his doctoral thesis, of course, but he had also developed an interest
in cryptology - the science and mathematics of creating secret codes or ciphers
(cryptography) and breaking codes invented by others (cryptanalysis).1 Turing
believed that messages during wartime could be best encrypted by converting
words to binary digits and then multiplying them by large numbers. Decrypting
the messages without knowledge of that large number would then involve a
difficult factoring problem. This idea of Turing's was rather prescient, for it is the
way that most computer encryption works now.

Unlike most mathematicians, Turing liked to get his hands dirty building
things. To implement an automatic code machine he began building a binary
multiplier using electromagnetic relays, which were the primary building blocks
of computers before vacuum tubes were demonstrated to be sufficiently reliable.
Turing even built his own relays in a machine shop and wound the electromagnets
himself.

The German Army and Navy were already using quite a different encrypting
device. The Enigma was invented by a German electrical engineer named Arthur
Scherbius (1878-1929). After Scherbius had unsuccessfully attempted to persuade
the German Navy to use the machine in 1918, it had gone on sale for commercial

lAndrew Hodges, Alan Tunng The Enigma (Simon &: Schuster, 1983), 138
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purposes in 1923. The Navy became interested soon after that, eventually followed
by the rest of the German military.2

The Enigma had a rudimentary 26-key keyboard arranged like a typewriter
but without numbers, punctuation, or shift keys. Above the keyboard were 26
light bulbs arranged in the same pattern. Messages were encrypted by typing
them on the keyboard. As each letter was pressed, a different letter would
light up. These lighted letters were manually transcribed and then sent to the
recipient. (The encrypted message could be hand delivered or sent by mail;
later, encrypted messages were sent by radio using Morse code.) The per
son receiving the message had his own Enigma machine, and would type the
encrypted message on the keyboard. The flashing lights would then spell out
the original text.

The keys of the keyboard were electrically connected to the lights through
a series of rotors. Each rotor was a small disk with 26 contacts on each side
representing the letters of the alphabet. Inside the rotor, these contacts were
connected symmetrically: If contact A on one side connected to contact T on the
other, then T on the first side would connect to A on the other. This symmetry is
what allowed the machine to be used for both encrypting and decrypting.

The standard Enigma had three connected rotors, each of which was wired
differently, and each of which could be set to one of 26 positions. The three
rotors on the encrypting and decrypting machines had to be set identically. The
three-letter keys to set the rotors could, for example, be changed on a daily basis
in accordance with a list known only to the Enigma operators.

50 far, nothing I've described about the Enigma makes it capable of anything
more than a simple letter-substitution code, easily breakable by even the most
amateur cryptanalysts. It's even simpler than most letter-substitution codes because
it's symmetrical: If D is encoded as 5 then 5 is also encoded as D.

Here's the kicker: As the user of the Enigma pressed the keys on the keyboard,
the rotors moved. With each keystroke, the first rotor moved ahead one position.
If a string of 26 A's were typed, for example, each successive A would be encoded
differently as the rotor went through its 26 positions. When the first rotor had
completed a full tum, it would move the second rotor ahead one position. Now
another series of 26 A's would encode to a different sequence of letters. When
the second rotor finished a revolution, it would bump the third rotor up a notch.
A fourth stationary rotor routed the electrical signal back through the rotors in
reverse order. Only after 17,576 keystrokes (that's 26 to the third power) would
the encryption pattern repeat.

But wait, it gets worse: The rotors were replaceable. The basic machine was
supplied with five different rotors, which could be used in any of the three rotor

2David Kahn, Seizing the Enigma. The Race to Break the German V-Boat Codes, 1939-1943 (Houghton-Mifflin,

1991), ch 3
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slots. Another enhancement involved a plug-board that added another layer of
letter scrambling.

In 1932, three Polish mathematicians began developing methods to decode
Enigma messages.3 They determined that they needed to build devices that
simulated the Enigma in an automated manner. The first "bombs" (as they were
called) became operational in 1938 and searched through possible rotor settings.
One of these mathematicians was Marian Rejewski (1905-1980), who had spent
a year at G6ttingen after graduation. He wrote that the machines were called
bombs "for lack of a better name,,4 but it's possible the name was suggested by
the ticking sound they made, or by a particular ice cream sundae enjoyed by the
mathematicians.5

Traditionally, the British government had employed classics scholars for break
ing codes under the reasonable assumption that these were the people best trained
to decode difficult languages. As the war approached, it became evident that for
analyzing sophisticated encoding devices like the Enigma, the Government Code
and Cypher School (GC &: CS) would require mathematicians as well.

When Alan Turing returned from Princeton to England in the summer of 1938,
he was invited to take a course at the GC &: CS headquarters. It's possible the
government was in touch with him as early as 1936.6 In 1939, the GC &: CS
purchased a large estate with a Victorian mansion called Bletchley Park 50 miles
northeast of London. In a sense, Bletchley Park was the intellectual focal point of
England - where the rail line between Oxford and Cambridge connected with
the rail south to London.

On September 1, 1939, Germany invaded Poland. Two days later, Great Britain
declared war on Germany, and on September 4, Alan Turing reported for duty
at Bletchley Park. Eventually about ten thousand people would be working there
intercepting and decoding covert communications. To accommodate everyone,
huts were built around the grounds. Turing was in charge of Hut 8, dedicated to
the decryption of codes used by the German Navy. The Germans used these codes
to communicate with submarines, which were a particular threat to convoys in the
Atlantic between the United States and Great Britain.

Earlier in 1939, the British had met with the Polish mathematicians to learn
about the Enigma and the bombs. Soon after Turing started at Bletchley Park, he
began redesigning and improving the devices, now known by the French spelling
bombe. The first Turing Bombe (as they are sometimes called) became operational

3Manan Rejewski, "How Polish Mathematicians Deciphered the Enigma," Annals of the History of
Computing, Vol 3, No 3 Uuly 1981), 213-234 See also Elisabeth Rakus-Andersson, ''The Polish Brains

Behind the Breaking of the Enigma Code Before and Dunng the Second World War," in Chnstof Teuscher,

ed, Alan Tunng Life and Legacy of a Great Thinker (Spnnger, 2004), 419-439
4Rejewski, "How Polish Mathematicians Deciphered the Enigma," 226

5Kahn, Seizing the Enigma, 73
6Hodges, Alan Tunng, 148
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in 1940. It weighed a ton and could simulate 30 Enigma machines working in
parallel.7

Prior to attacking the message with the Turing Bombe, it was necessary to
narrow down the possibilities. The cryptanalysts searched for "cribs," which were
common words or phrases that often appeared in the encoded messages. These
would establish the initial position of the first rotor. Much valued were cases
where the same message was transmitted using two encodings: These were known
as "kisses." Another technique used heavy white paper in various widths and
printed with multiple rows of the alphabet, much like punched cards later used
in computers. The analysts would punch holes in the paper corresponding to the
letters of the encoded messages. Different messages from the same day (which
would all be based on the same settings of the Enigma) could then be compared
by overlapping the sheets. Because the paper used for this came from a nearby
town named Banbury, the procedure was called "banburismus."

These varieties of techniques were refined to a point where, by mid-1941, the
successes achieved in decoding Enigma communications had greatly decreased
naval losses.8 Many people working at Bletchley Park deserve some credit for this
success, although Alan Turing's work played a significant role.

Even in the unusual assemblage of mathematicians and classics scholars at
Bletchley Park, Turing established a certain reputation for eccentncity:

In the first week of June each year [Turing) would get a bad
attack of hay fever, and he would cycle to the office wearing a
service gas mask to screen the pollen. His bicycle had a fault: the
chain would come off at regular intervals. Instead of having it
mended he would count the number of times the pedals went
round and would get off the bicycle in time to adjust the chain
by hand.9

In the spring of 1941, Alan Turing made a proposal of marriage to Joan Clarke,
one of the rare women at Bletchley Park who wasn't relegated to a mindless clerical
job. Joan Clarke had been studying mathematics at Cambridge when she was
recruited for code-breaking. A few days after the proposal Turing confessed to her
that he had "homosexual tendencies,,10 but the engagement continued for several
more months before he felt he had to call it off.

7Stephen Budiansky, Battle of Wits. The Complete Story of Codebreahing in World War II (Free Press, 2000),

155 See also Jack Gray and Keith Thrower, How the Tunng Bombe Smashed the Enigma Code (Speedwell,

2001)

BHodges, Alan Tunng, 218-9
91 J Good, "Early Work on Computers at Bletchley," Annals of the History of Computing, Vol 1, No 1
Ouly 1979), 41
lOHodges, Alan Tunng, 206
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In November 1942, Turing was sent on a mISSIOn to Washington, D.C.,
to help coordinate code-breaking activities between England and the United
States. Following that assignment, he spent the first two months of 1943 at Bell
Laboratories, at the time located on West Street in New York City. There he met
Harry Nyquist (1889-1976), who pioneered the theory of digital sampling, and
Claude Elwood Shannon (1916-2001), whose paper "A Mathematical Theory
of Communication" (1948) would found the field of information theory and
introduce the word "bit" to the world.

For Turing the primary object of interest at Bell Labs was a speech-scrambling
device that was intended to secure telephone communications over the Atlantic.
Sound waves were separated into various frequency ranges, digitized, and then
encrypted by modular addition, which is addition that wraps around a particular
value (such as the value 60 when adding seconds and minutes). On the receiving
end, the numbers were decrypted and then reconstituted as speech.

In Nyquist's research and Shannon's work, and in the speech-encryption device,
we can see the origin of ideas that would later result in the technologies used
for digitizing images in JPEG files and sound in MP3 files, but these particular
innovations required decades to come to fruition. The earliest digital computers,
on the other hand, did little but emit numbers. Even Babbage's original Difference
Engine was conceived solely to print error-free tables oflogarithms. In this context,
it's not surprising that Turing Machines also generate numbers rather than, for
instance, implement generalized functions.

Turing is about to take the paper in a more unusual direction by using
numbers to encode other forms of information. The next section of Turing's paper
demonstrates how numbers can represent not photographs or songs, but the
machines themselves.

Yes, everything is a number. Even Turing Machines are numbers.

5. Enumeration ofcomputable sequences.

A computable sequence y is determined by a description of a machine
which computes y. Thus the sequence 001011011101111. .. is determined
by the table on p. 234, and, in fact, any computable sequence is capable of
being described in terms of such a table.

That's the Example II machine on page 87 of this book.

It will be useful to put these tables into a kind of standard form.

Turing actually started out with a standard form that he described in Section 1
(page 70 of this book). He indicated that a particular operation can cause the
machine to print or erase a symbol, and to move one square to the left or right.
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After showing one machine in this format (Example I on page 81, the example
that Turing will also soon mention), Turing quickly abandoned his own rules.
He allowed printing multiple symbols and moving multiple squares in single
operations. This was done solely so the machine tables didn't go on for pages and
pages. Now he'd like to return to his original restrictions.

In the
first place let us suppose that the table is given in the same form as the first
table, for example, I on p. 233. That is to say, that the entry in the operations
column is always of one of the forms E: E, R: E, L: Pa: Pa, R: Pa, L: R: L:
or no entry at all.

Turing uses colons to separate the nine different possibilities. These possibilities
result from the three types of printing (erase, print a character, or neither) in
combination with the three kinds of movement (left, right, or none).

The table can always be put into this form by intro
ducing more m-configurations.

For example, the table for Example II (page 87) began with configuration b:

Configuration Behaviour

m-config. symbol operations final
m-config·

Pa,R,Pa,R,PO,R,R,PO,L,L o

To adhere to Turing's original (and reinstated) restrictions, this single configu
ration must be split into six simple configurations. For the additional configuration
I'll use the German lower-case letters for c, d, e, g, and h (f was already used in the
original table).

Configuration Behaviour

m-config· symbol operations final m-config·

b Pa,R

Pa,R &

& PO,R e

e R 9

9 PO,L ~

~ L 0
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Now each operation consists solely of a printing operation (or not) followed by
possible left or right movement by one square.

Now let us give numbers to the m-configu
rations, calling them ql, ... , qR, as in § 1. The initial m-configuration is
always to be called ql.

Behaviour

final m-config·

q2

q3

q4

q5

q6

q7

operations

Pa,R

Pa,R

PO,R

R

PO,L

L

If there happen to be 237 different m-configurations in a machine, they are now
to be labeled q1 through q237.

For the revised beginning of Example II, the first six m-configurations can be
renamed q1 through q6. The initial m-configuration that Turing always named b
becomes q1. The table is now:

Configuration

m-config. symbol

We also give numbers to the symbols 8 1, ... , 8 m

[240]

and, in particular, blank = 8 0 ,0 = 8 1, 1 = 82.

It's a little confusing that a subscripted 1 means the symbol °and a subscripted
2 means the symbol 1, but we'll have to live with it. The Example II machine also
needs to print a and x, so the following equivalencies would be defined for this
machine:

So means a blank,
51 means 0,
52 means 1,
53 means a, and
54 meansx.

The machine that computes the square root of 2 requires symbols up to 514.
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The first six configurations of the Example II machine are now:

Configuration Behaviour

m-config· symbol operations final m-config·

ql P53,R q2

q2 P53,R q3

q3 P51,R q4

q4 R q5

q5 P51,L q6

q6 L q7

The imposition of a uniform naming system has resulted in these lines taking on
very similar patterns. In the general case, Turing identifies three different standard
forms:

The lines of the table are

now of form

Final
m-config· Symbol Operations m-config·

qi S PSk,L qm (Nr )J

qi Sj PSk,R qm (Nz)

qi S PSk qm (N3 )J

At the far right, Turing has labeled these three standard forms Nl, N2, and N3.
All three print something; the only difference is whether the head moves Left,
Right, or not at all.

What about erasures? Because Turing defined 50 as a blank symbol, erasures
can be performed by printing simply 50:

Lines such as

qi Sj E,R qm

are to be written as

qi SJ PSo,R qm
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Operations that consist of a Right or Left shift without printing anything can be
written to reprint the scanned symbol:

and lines such as

qi Sj R qm

to be written as

qi Sj PSj,R qm

In this way we reduce each line of the table to a line of one of the forms
(NI), (Nz), (N3).

To illustrate the process of standardizing the table, I've been using the first
configuration of the Example II table, but that first configuration doesn't even
have anything in its symbol column because the configuration does the same thing
regardless of the symbol. A machine starts with a blank tape so we know that the
symbol it reads is a blank. The first configuration of the Example II table converted
to standard form becomes:

Configuration Behaviour

m-config· symbol operations final m-config·

qI So PS3,R q2

q2 So PS3,R q3

q3 So PSI, R q4

q4 So PSo,R q5

q5 So PSI, L q6

q6 So PSo,L q7

That's easy enough, but let's take a look at the second m-configuration of the
Example II machine:

1

o
R,Px,L,L,L o

q

The m-configuration 0 will become the numbered configuration q7. When the
scanned character is 1, the head must move right once, and then left three times.



136 The Annotated Turing

These three left-shifts will require three more m-configurations, qs, q9, and qlO.
The m-configuration q then becomes qll. Here's m-configuration q7:

Configuration

m-config. symbol

q7 52

51

Behaviour

operations

P52,R

P51

final m-config.

qs

In both cases, the machine prints the scanned character. Here are m-configurations
qs, q9, and qlO:

The problem is the symbol column. To fill it in correctly you really have to know
what the machine will be encountering. For qS, the machine is scanning a blank
square and printing an x. Once it moves left, what's the next scanned character?
It's the 1 that was scanned in q7, but in other cases it might not be so obvious. The
words "Any" or "Not" or "Else" don't work with this scheme, and in some cases
you may have to add specific configurations for every single character the machine
is using.

It's a mess, but there are always a finite number of characters involved, so it can
definitely be done. Let's assume that we have converted all the configurations of a
particular machine into the standard forms that Turing denotes as (Nl), (N2), and
(N3). When we're finished, and we dispose of the original table, have we lost any
information? Yes, we have lost a little bit. We know that 50 is a blank, 51 is a 0,
and 52 is a 1, but we no longer know the exact characters meant by 53,54, and so
on. This shouldn't matter. The machines use these characters internally. All that
matters is that they're unique. We're really only interested in the Os and Is that
the machine prints, and not what it uses as a scratchpad.

Instead of a table, we can express each configuration with a combination of the
m-configurations, symbols, L, and R.

This form is sometimes known as a qUintuple because it's composed of five
elements. Despite its cryptic nature, it's still readable: "In m-configuration qi, when
character 5j is scanned, print character 5k, move Left, and switch to m-configuration
qm." Similarly for N2 and N3:
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from each line of form (Nz) we form an expression qiSjSkRqm;
and from each line ofform (N3 ) we form an expression qi Sj Sk N qm'

Notice that when the head is not to be moved, the leuer is N (meaning No
move).

Let us write down all expressions so formed from the table for the
machine and separate them by semi-colons. In this way we obtain a
complete description of the machine.

Turing will show an example shortly. Each configuration is a quintuple, and an
entire machine is now expressed as a stream of qUintuples. (Interestingly enough,
the qUintuples don't have to be in any specific order. It's like a programming
language where each statement begins with a label and ends with a goto.)

The next substitution is a radical one. It gets rid of all those subscripts and
turns the machine into a stream of capitalleuers:

In this description we shall replace
qi by the letter "D" followed by the letter "A" repeated i times, and Sj by
"D" followed by "c" repeatedj times.

For example, q1 is replaced by DA and q5 is replaced by DAAAAA. (Remember
that the first configuration is q1. There is no qo.) As for the symbols, 50 (the blank)
is now denoted by D, 51 (the symbol 0) is DC, and 52 (the symbol 1) is DCC.
Other symbols are assigned to 53 and greater and become DCCC and so on.

This new description of the
machine may be called the standard description (S.D). It is made up
entirely from the letters "A", "C", "D", "L", "R", "N", and from
".", .

The L, R, and N indicate the moves. Semicolons separate each configuration.

If finally we replace "A" by "1", "C" by "2", "D" by "3", "L"
by "4", "R" by "5", "N" by "6", and ";" by "7" we shall have a
description of the machine in the form of an arabic numeral.

This is an important step. Turing has standardized his machines to such an
extent that he can now uniquely identify a machine by an integer, and this
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integer encodes all the states of the machine. Turing was undoubtedly inspired
by the approach Godel took in his Incompleteness Theorem in converting every
mathematical expression into a unique number.

The integer
represented by this numeral may be called a description number (D.N) of
the machine. The D.N determine the S.D and the structure of the

[241]

machine uniquely. The machine whose D.N is n may be described as
J\(n).

Turing has now introduced another font. He will use this script font for repre
senting entire machines.

To each computable sequence there corresponds at least one description
number, while to no description number does there correspond more than
one computable sequence.

Since the order of the quintuples doesn't matter, the quintuples can be scrambled
without any effect on the sequence the machine computes. It is very clear, then, that
multiple description numbers are associated with each computable sequence, but
each description number defines a machine that generates only one computable
sequence (at least when beginning with a blank tape).

Without much fanfare Turing concludes WIth a result he mentioned in the very
beginning of the article:

The computable sequences and numbers are
therefore enumerable.

You can enumerate the computable sequences by listing all possible description
numbers, since these are just integers. The unstated implication is that the
computable numbers are only an enumerable subset of the real numbers. Because
the computable numbers are enumerable and the real numbers are not, there are
many real numbers that are not computable. This, however, is a subject that will
be explored more in later sections.

Let us find a description number for the machine I of § 3.
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That machine was originally defined by this table:

Configuration

m-config. symbol

b None

None

None

None

Behaviour

operations

PO,R

R

PI, R

R

final m-config·

When we
rename the m-configurations its table becomes:

So

So

So

So

PSj,R

PSo,R

PS2,R

PSo,R

This is a very straightforward translation.

Other tables could be obtained by adding irrelevant lines such as

q2

That is, other tables that produce the same computable sequence could be obtained
by adding lines that never come into play. If the tape is blank when the machine
begins, and it always shifts nght when a square is printed, the machine WIll never
scan the digit O.

Our first standard form would be

That's just taking the four-line table and separating the configurations with
semicolons. Converting this to the Standard Description form requires replacing
qi with D followed by a quantity of i A's (one or more) and replacing Si with D
followed by i Cs (zero or more).
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The standard description is

DADDCRDAA;DAADDRDAAA;

DAAADDCCRDAAAA;DAAAADDRDA;

The Standard Description can be hard to read, but it's used a lot so you should
try to get accustomed to it. To decode it into its components, begin by taking note
of each D. Each D represents either a configuration or a symbol.

• If the D is followed by one or more A's, it's a configuration. The configura
tion number is the number of A's.

• If the D is not followed by any A's, it's a symbol. The D in this case is fol
lowed by 0 or more C's. D by itself is a blank, De is a 0, Dee is a 1, and
more C's indicate other symbols.

Turing does not use the Description Number as much as the Standard Descrip
tion. The Description Number exists more in abstract; Turing doesn't perform any
calculations with the number. For the example Turing is showing, you can replace
A with 1, e with 2, D WIth 3, R with 5 and the semicolon with 7 to create a
description number:

A description number is

31332531173113353111731113322531111731111335317

and so is

3133253117311335311173111332253111173111133531731323253117

The second of those numbers is the same as the first except it has extra
digits at the end (1323253117) corresponding to the "irrelevant" configuration
qlSlSlRq2 that Turing defined. The point is this: These two numbers define
two different machines, but the two machines both compute exactly the same
number, which (as you'll recall) is the binary version of 1/3. A machine with its
configurations rearranged still calculates the same number, but its Description
Number is different.

These numbers are huge! Turing obVIOusly doesn't care how large the numbers
are. To represent q35, for example, he might have figured out some way to embed
the number 35 in the Description Number, but no. To represent q35, the Standard
Description uses:
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and the Description Number includes the digits

311111111111111111111111111111111111

not only once, but at least twice!
The accomplishment here is quite interesting. Consider a Turing Machine that

calculates n. Normally, we indicate the digits of n with an infinite sequence:

n = 3.1415926535897932384626433832795 ...

Now we can represent n with a finite integer - the Description Number of the
Turing Machine that calculates the digits. Which is the better representation of
n? The first 32 digits followed by an ellipsis? Or the Description Number of the
Turing Machine that can generate as many digits as our patience will allow? In a
sense, the Description Number is a more fundamental numencal representation of
n because it describes the algorithm of calculating the number.

By reducing each machine to a number, Turing has also made it possible, in
effect, to generate machines just by enumerating the positive integers. Not every
positive integer is a valid Description Number of a Turing Machine, and many valid
Description Numbers do not describe circle-free machines, but this enumeration
certainly includes all circle-free Turing Machines, each of which corresponds to a
computable number. Therefore, computable numbers are enumerable.

That's an important finding, although possibly a disturbing one, for it implies
that most - nay, from what we know about the extent of the real numbers,
virtually all - real numbers are not computable.

This revelation, combined with some mathematical paradoxes and investigations
into quantum gravity, have prompted mathematician Gregory Chaitin to ask "How
Real are Real Numbers?"ll The evidence of the existence of real numbers is slim
indeed.

To modem programmers it is natural to think of computer programs being
represented by numbers, because a program's executable file is simply a collection
of consecutive bytes. We don't normally think of these bytes as forming a
single number, but they certainly could. For example, the Microsoft Word 2003
executable is the file WinWord.exe, and that file is 12,047,560 bytes in size. That's
about 96 million bits, or 29 million decimal digits, so the number representing
WinWord.exe is somewhere in the region of 1029,000,0°°. That's certainly a big
number. In a book of about 50 lines per page and 50 digits per line, that number
would stretch out over more than 11,000 pages. That's a much larger number than
the famed googol (10 10°), but it's still a finite integer. WinWord.exe is one of many
possible executables that - like all the possible Turing Machines - tum up in

llGregory J Chaitin, "How Real are Real Numbers?", Intemational]oumal of Bifurcation and Chaos, Vol 16

(2006),1841-1848 Repnnted in Gregory J Chaitin, Thinking About Godel and Tunng Essays on CompleXity,
1970-2007 (World Scientific, 2007), 267-280
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an enumeration of the integers, along with every other word processing program,
even those that haven't yet been written.

For future use, Turing finishes this section with a definition.

A number which is a description number ofa circle-free machine will be
called a satisfactory number. In § 8 it is shown that there can be no general
process for determining whether a given number is satisfactory or not.

It's easy to determine whether a particular integer is a well-formed Description
Number, but Turing is now asserting that there's no general process to determine
whether a particular Description Number represents a circle-free machine and
prints a continuing series of Os and Is like it's supposed to. There's no general
process for determining whether the machine might scan a character it's not
expecting, or gets into an infinite loop printing blanks, whether it crashes, bums,
goes belly up, or ascends to the great bit bucket in the sky.



The Universal
Machine

T he machine that Turing describes in the next section of his paper is known
today as the Universal Turing Machine, so called because it's the only

machine we need. The individual computing machines presented earlier were not
guaranteed to be implemented similarly or even to have interchangeable parts.
This Universal Machine, however, can simulate other machines when supplied
WIth their Standard Descriptions. The Universal Machine is, we would say today,
programmable.

6. The universal computing machine.

It is possible to invent a single machine which can be used to com
pute any computable sequence. If this machine If is supplied with a tape
on the beginning ofwhich is written the S.D ofsome computing machine vl1,

[242]

then 'It will compute the same sequence as JI(. In this section I explain
in outline the behaviour of the machine. The next section is devoted to
giving the complete table for' If.

There's that script font again. Turing uses eM for an arbitrary machine and Cl.(

for the Universal Machine.
When speaking of computer programs, it's common to refer to input and output.

A program reads input and writes output. The machines described so far basically
have no input because they begin WIth a blank tape. The machines generate output
in the form of a sequence of as and Is, temporarily interspersed, perhaps, with
some other characters used as markers or a scratchpad.

In contrast, the Universal Machine Cl.( requires actual input, specifically a tape
that contains the Standard Description of eM - the sequences of letters A, C, D,
L, N, and R that describe all the configurations of eM. The Cl.( machine reads and
interprets that Standard Description and prints the same output that eM would
print.



144 The Annotated Turing

But that's not entirely true: The output of CU will not be identical to the output
of uI1. In the general case, there is no way that CU can perfectly mimic uI1. Machine
uI1 probably begins with a blank tape, but machine CU doesn't get a blank tape - it
gets a tape with the Standard Description of uI1 already on it. What happens if
uI1 doesn't quite follow Turing's conventions but instead writes output in both
directions? Any attempt to emulate uI1 precisely could easily result in writing over
that Standard Description.

Turing says that CU is supplied with a tape "on the beginning of which" is a
Standard Description of machine uI1. A tape that is infinite in both directions does
not have a "beginning." Turing is implicitly restricting the output of CU to that part
of the tape after the Standard Description.

If we limit our consideration to machines that print in only one direction (which
is Turing's convention anyway), can we write a Universal Machine that reads the
Standard Description of the machine located at the beginning of a tape, and then
exactly duplicates the output of the machine in the infinite blank area of the tape
beyond that Standard Description?

That doesn't seem likely either. Certainly this Universal Machine would require
its own scratchpad area, so its output will be different from the machine that it's
trying to emulate. Even if we require only that the Universal Machine duplicate the
uI1 machine's F-squares, that Universal Machine would probably be significantly
more complex than the one that Turing describes.

Turing doesn't guarantee that his Universal Machine will faithfully duplicate
the output of the machine that it is emulating. He says only that "CU will com
pute the same sequence as uI1." In reality, CU prints a lot of extra output in addition
to this sequence.

Turing approaches the design of the Universal Machine from a rather odd
direction.

Let us first suppose that we have a machine ..Ar' which will write down on
the F-squares the successive complete configurations of Ar.

As you'll recall, a complete configuration is a "snapshot" of the tape after an
operation has completed, together with the position of the head and the next
m-configuration. The successive complete configurations prOvide an entire history
of the operations of the machine.

These might
be expressed in the same form as on p. 235, using the second description,
(C), with all symbols on one line.
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That's page 92 of this book, in the form that shows the information in a single
stream:

b:aaoO O:aaqO 0: ...

In this notation the successive complete configurations are separated by colons.
Within each complete configuration, the German letter representing the next
m-configuration precedes the next scanned symbol.

Or, better, we could transform this
description (as in §5) by replacing each m-configuration by "D" followed
by "A" repeated the appropriate number of times, and by replacing each
symbol by "D" followed by "C" repeated the appropriate number of
times. The numbers of letters ''A'' and "C" are to agree with the numbers
chosen in §5, so that, in particular, "0" is replaced by "DC", "1" by
"DCC", and the blanks by "D".

Turing devised this Standard Description (as he called it) to encode the states
of a machine. Now he is proposing to use it to represent the complete config
urations.

These substitutions are to be made
after the complete configurations have been put together, as in (C). Diffi
culties arise if we do the substitution first.

I think what Turing means here is that m-configurations and symbols will now
be represented with multiple symbols (for example a 1 becomes DCC), so care
must be taken to slip in the next m-configuration so that it doesn't break up the
code for a symbol.

In each complete configura
tion the blanks would all have to be replaced by "D", so that the complete
configuration would not be expressed as a finite sequence of symbols.

The letter D represents a blank square. Turing doesn't want any breaks to appear
in the complete configurations. He wants each complete configuration to be an
unbroken series of letters. Turing's phrase, "so that the complete configuration
would not be expressed as a finite sequence of letters," is not quite clear. I suggest
the word "not" should be "now." Certainly he doesn't want an infinite series of D
symbols to represent a blank tape. Each complete configuration is finite.
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If in the description of the machine II of §3 we replace ",," by "DAA",
"a" by "DCCC", '\'" by "DAAA", then the sequence (C) becomes:

DA : DCCCDCCCDAADCDDC : DCCCDCCCDAAADCDDC : ... (Cd

(This is the sequence of symbols on F-squares.>

TUring's not mentioning all the substitutions he's making. He's also replacing b
with DA, blanks with D, and Os with DC.

The parenthetical comment refers to the output of the eM' machine that Turing
is proposing. The normal eM machine prints as and Is on F-squares and uses the
E-squares for other symbols to help it in computing the Os and Is. The eM' machine
prints the successive complete configurations of eM on F-squares and uses the
E-squares to aid itself in constructing these successive complete configurations.

The complete configurations represented in this way can be hard to read. As I've
said before, it helps to take note of each D, which represents either a configuration
or a symbol.

• If the D is followed by one or more A's, it's a configuration. The configura
tion number is the number of A's.

• If the D is not followed by any A's, it's a symbol. The D in this case is fol
lowed by zero or more Cs. D by itself is a blank, DC is a 0, DCC is a 1, and
more Cs indicate other symbols.

It is not difficult to see that if JI( can be constructed, then so can JI('.

The manner ofoperation of --A(' could be made to depend on having the rules
of operation (i.e., the S.D) of fir written somewhere within itself(i.e. within
A('); each step could be carried out by referring to these rules.

This idea of eM' having the Standard Description of eM "written somewhere
within itself' is an entirely new concept. Where is it written? How is it accessed?
Turing is pursuing this eM' machine in a way that's distracting from his goal,
although it does seem reasonable that eM' could be constructed.

We have
only to regard the rules as being capable of being taken out and ex
changed for others and we have something very akin to the universal
machine.
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Ahh, now it becomes a little clearer. Turing said at the outset of this section that
CU is supplied with a tape containing the Standard Description of eM. That's what
"capable of being taken out and exchanged for others" means. We can give CU a tape
containing the Standard Description of whatever machine we want CU to emulate.

Conceptually, CU now seems almost, well, not exactly straightforward, but much
less difficult. CU starts with a tape on which the Standard Description of eM is
printed. It is responsible for printing the successive complete configurations of eM.
The Standard Description and the complete configurations use the same encoding:
Each complete configuration contains a sequence of letters, mostly indicating
the symbols printed on the tape. Each complete configuration also includes a D
followed by one or more A's indicating the next m-configuration preceding the
scanned symbol, for example:

DAAADCC

This sequence of letters appearing in a complete configuration indicates that the
next m-configuration is q3 and the next scanned symbol is a 1. Somewhere in the
Standard Description of eM is a sequence of letters matching these letters exactly.
(If not, then something has gone wrong, and eM is not circle-free.) All that CU
needs to do to determine the next configuration is to find a match. When CU
finds the matching configuration, it has immediate access to the configuration's
operation - the symbol to be printed, a code indicating how to move the head,
and the next m-configuration. CU must then create a new complete configuration
based on the last complete configuration and incorporating the printed character
and the next m-configuration.

The Universal Machine might be easier to conceive if you consider that the
first complete configuration of a machine's operation is trivial, and each step from
one complete configuration to the next involves only a small change. It's really just
a matter of comparing and copying symbols, and Turing has already defined an
arsenal of m-functions that perform these very chores.

For now he's still talking about eM' rather than CU, and eM' only prints the
complete configurations of eM.

One thing is lacking: at present the machine v'H' prints no figures.

That's true. In all this excitement we've forgot that eM' (or CU) is only printing
successive complete configurations of eM on F-squares using letters A, C, and D
and the colon separators, and it's probably using E-squares as a scratch pad. The
real object of this game is to print Os and Is.
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We
may correct this by printing between each successive pair of complete
configurations the figures which appear in the new configuration but not
in the old. Then (C 1) becomes

DDA : 0 : 0 : DCCCDCCCDAADCDDC : DCCC. . . . (C2)

It is not altogether obvious that the E-squares leave enough room for
the necessary "rough work", but this is, in fact, the case.

The extra D at the beginning of line (C2) is a typographical error. The only
difference between (C2) and the beginning of (Cl) should be the two Os and the
colons. These are the result of the first operation, so they are printed after the first
complete configuration.

Turing wants eM' (and CU) to print the same Os and Is that eM prints, because
then it's possible to say that eM' computes the same sequence as eM. The only
difference is that these digits will now be buried in the output between successive
complete configurations of the machine.

This is why Turing requires his machines to print the computed numbers
consecutively, and to not change a number once it's been printed. Without this
requirement, the numbers printed by eM' (and CU) would be a total jumble.

Turing says that eM' should print all figures (Os or Is) "which appear in the new
configuration but not in the old." When you reduce a machine to the standard
form (that is, only one printed symbol and one head movement per operation),
there are frequently occasions when the machine scans a 0 or 1 symbol on its
way somewhere else. The machine must reprint the 0 or 1 in these cases. eM'
should ignore the times that eM prints a 0 or lover itself. eM' (and, by implication,
the Universal Machine) should print a 0 or 1 only when the scanned symbol is a
blank.

Turing concludes this section by suggesting that the complete configurations
could be expressed in numerical form, but this is something he never uses:

The sequences of letters between the colons in expressions such as
(Cd may be used as standard descriptions of the complete configurations.
When the letters are replaced by figures, as in §5, we shall have a numerical

[243]

description of the complete configuration, which may be called its descrip
tion number.
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Now let's forget all about ch'(' and start looking at CU.
It is well known that Turing's description of the Universal Machine contains a

few bugs. (It's quite surprising how few bugs it contains considering that Turing
wasn't able to simulate it on a real computer.) In analyzing the Universal Machine,
I am indebted to Emil Post's correctionsI and an analysis by Donald Davies.2

Because the Universal Machine is so essential to Turing's arguments in the rest
of his paper, he proves the existence of such a machine by actually constructing it
in full, excruciating detail. Once you understand the basic mechanism, however,
you might find these details to be rather tedious. No one will punish you if you
don't assimilate every symbol and function in Turing's description.

7. Detailed description of the universal machine.

A table is given below of the behaviour of this universal machine. The
m-configurations of which the machine is capable are all those occurring in
the first and last columns of the table, together with all those which occur
when we write out the unabbreviated tables of those which appear in the
table in the form of m-funetions. E.g., r (,1110 appears in the table and is an
m-function.

The m-configuration anf is part of Turing's Universal Machine. Towards the end
of the machine, a particular configuration has e(anf) in its final m-config column.
The skeleton table for e appears on page 239 of Turing's paper (and page 125 of
this book):

{~ota
R eI(~)

L e(~)

{AnY R,E,R eI(~)

None ~

lIn an appendix to the paper Emil Post, "Recursive Unsolvability of a Problem of Thue," The Joumal of
Symbolic Logic, Vo!. 12, No I (Mar 1947), 1-11 The entire paper is repnnted in Manin DaVIS, ed.,

The Undecidable (Raven Press, 1965),293-303. The appendix is repnnted in B Jack Copeland, ed , The
Essential Tunng (Oxford University Press, 2004), 97-101

2Donald W DaVIes, "Corrections to Tunng's Universal Computing Machine" in C. Jack Copeland, ed., The
Essential Tunng, 103-124 Anyone interested in programming a simulation of the Universal Machine wIll

want to study DaVIes' paper
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Turing now shows the unabbreviated table when anf is substituted for @;:

Its unabbreviated table is (see p. 239)

!:oto
R qCmf)

rCmf)
L rCmO

!AnY R,E,R qCmO
qCmO

None ,mt

Consequently q (,1110 is an m-configuration of 11.

Turing begins by describing a tape encoded with the Standard Description of
some machine. This is the tape the Universal Machine Wlll read and interpret.

When l/ is ready to start work the tape running through it bears on it
the symbol <) on an F-square and again <) on the next E-square; after this,
on F-squares only, comes the S.D of the machine followed by a double
colon "::" (a single symbol, on an F-square). The S.D consists of a
number of instructions, separated by semi-colons.

That, by the way, is Turing's first use of the word instructions in this paper. The
word is appropriate here because the configurations of the machines are now
playing a different role; they have become instructions to the Universal Machine.

Earlier (in Section 5 on page 140 of this book) Turing showed each configuration
followed by a semicolon, however, the Universal Machine requires that each
instruction begin with a semicolon. This is Just one of several little "bugs" in the
description of the Universal Machine.

To illustrate the workings of Clt, let's supply it with a simple uI1. This machine
is a simplified form of the machine that prints alternating Os and Is:

symbol

So

So

operations

PSI, R

PS2,R

final m-config·

q2

ql

This simplified machine has just two configurations rather than four and doesn't
skip any squares. Here's a tape prepared in accordance Wlth Tunng's directions,



The Universal Machine 151

but with the semicolons preceding each instruction. Because the tape is so long,
I've shown it on two lines:

Ia Ia I; I 101 IAI 101 101 IcI IRI 101 IA I IAI

I; I 101 IAI IAI 10 I 101 IcI IcI IRI 101 IAI I:: I I
The double colon separates the instructions of eM from the successive complete

configurations of eM that CU WIll print. Turing reminds us how these instructions
are coded:

Each instruction consists of five consecutive parts

(i) "D" followed by a sequence of letters "A". This describes the
relevant m-configuration.

At least one A must follow a D to signify an m-configuration; that is, the
configurations begin at ql and there is no qo.

(ii) "D" followed by a sequence of letters "C". This describes the
scanned symbol.

For symbols, a D by itself means a blank; a D with one C means 0, and with two
C's means 1.

(iii) "D" followed by another sequence of letters "C". This
describes the symbol into which the scanned symbol is to be changed.

(iv) "L", "R", or "N", describing whether the machine is to move
to left, right, or not at all.

(v) "D" followed by a sequence of letters "A". This describes the
final m-configuration.

The Universal Machine needs to print complete configurations, which re
quire the letters A, C, and D, and it also needs to print the computable sequence,
which is composed of Os and Is. The Universal Machine uses lower-case letters as
markers in the E-squares. In summary:

The machine II is to be capable of printing "A", "C", "D", "0",
"I", "u", "v", "w", "x", "y", "z".
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Turing forgot to include the colon (which separates the successive complete
configurations) in this list.

The S.D is formed from ";",
"A", "e", "D", "L", "R", "N".

Tunng next presents one last function that the Universal Machine requires.

[244]

(l'lI (~, a). Starting from
an F-square, S say, the se
quence C of symbols describ
ing a configuration closest on
the right of S is marked out
with letters a. ~ ~.

(L'TIj(~',a)

(l'1I2(~', a)

(NI(~,a)

(['111 (~', a)

A R,Pa,R
D R,Pa,R

Subsidiary skeleton table.

{
Not A R, R

A L,Pa,R

. {C R, Pa, R
(t'l12(~, a)

Not C R, R

(l'1I2(~,a)

~

(011 (~, ). In the final con
figuration the machine is
scanning the square which is
four squares to the right of the
last square of C. C is left
unmarked.

The m-function con stands for "configuration," and it's missing a line3:

conl(@:,a) None PO, R, Pa, R, R, R @:

We'll see how this missing line comes into play shortly.
The job of the con function is to mark a configuration with the symbol given

as the second argument. Suppose the head is on the semicolon preceding an
instruction:

r-Ia....' a-"-;'-I-'-1D::-1I----':'A"I-tr=D-"-ol-=-Dr-I....1c::-TI---r::1R"'-'I'-'"D-'-I-rl-=-AIr-"TIA"I-'

Cl IDI IAI IA, ID' 1DI IcI IcI IRI IDI IAI I:: I I

The con function moves right two squares at a time until it encounters an A. It
prints an a to the left of the A. The con} function continues printing markers to
the right of each A until it encounters a D. It prints a marker to the right of that

3As suggested by Post, "Recursive Unsolvability of a Problem of Thue," 7
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D as well and then goes to COn2. The con2 function prints markers to the right of
each C (if any). For this example, there are no C's in the configuration because the
scanned square is a blank, so the result is:

lalal;1 101 IAI 101 101 lei IAI lor IAI IAI

I ;I I0Ia IAIa IAIa I0Ia lor m IeI IAI I0I IAI I:: I

The explanatory paragraphs in the skeleton table for con are a bit confusing
because Turing uses the letter C to stand for a whole sequence of symbols defining
a configuration, and the same letter is part of the Standard Description. The
first sentence of the second paragraph (beginning "In the final configuration")
indicates that the head is left four squares to the right of the last square of the
configuration (that is, the last square of the scanned character). The sentence "C is
left unmarked" meaning 'The configuration is left unmarked" applies only when
the second argument to con is blank.

The description of the Universal Machine occupies just two pages in Turing's
paper. Turing has previously defined his m-functions with such skill that in many
cases, the m-configurations of q) simply refer to a particular function. As usual,
the machine begins with m-configuration &:

The table (or If.

[,

bl R, R, P:, R, R, PD, R, R, PA ,1I1t

b. The machine prints
: DA on the F-squares after
:: ~ ,mt.

The m-function f finds the double colon that separates the instructions from the
complete configurations. As you'll recall, each complete configuration shows all
the symbols on the tape, with the m-configuration preceding the scanned square.
When a machine begins, the first m-configuration is ql, which has a Standard
Description of DA. That's what &1 prints, starting with a colon that will delimit
each complete configuration:

ITJ[j IAI E ..
The next m-configuration of q) is anf, which Donald DaVIes suggests stands

for anfang, the German word for beginning. The 9 function in the first line was
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mistakenly indicated as q in the tables of functions. It searches for the last
occurrence of its second argument:

ant g(.mtI, :)

(On(f~nt, y)

ant. The machine marks
the configuration in the last
complete configuration with
y. ~ font.

After 9 finds the colon (which precedes the current complete configuration), con
marks the m-configuration with the letter y. The additional line I've added to conI
also comes into play: It prints a D (representing a blank square) and marks that
square as well:

Whenever con is marking an m-configuration in a complete configuration and
comes to a blank square when it is expecting to find a D that represents the
scanned symbol, conI prints a D. This is how the tape gets progressively longer as
more squares are required.

Now the machine must locate the instruction whose configuration matches
the symbols in the complete configuration marked with y. There are multiple
instructions, of course, but they are easy to locate because each one is preceded
by a semicolon. These instructions are tested starting with the last instruction
and working towards the beginning. The m-configuration fom looks like Jom but
is actually hom, possibly one of several abbreviations meant to suggest the word
compare.

R, Pz, L

L,L

L

\~n(fmp,x)

fL'tll

fom

fom. The machine finds
the last semi-colon not
marked with z. It marks
this semi-colon with z and
the configuration following
it with x.
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The first time through, fom finds the last (rightmost) instruction, prints a z
followmg the semicolon, and then marks the configuration that follows using con.

~ol 101 leI IRI 10[TI[]TI]

The z marker indicates that this instruction has been checked. On subsequent
attempts to find a match, fom skips past all semicolons previously marked
with z.

The m-configuration fmp (another abbreviation for compare?) uses cp~ to com
pare the configuration marked x (which is the m-configuration and scanned symbol
ofan instruction) and the configuration markedy (which is current m-configuration
and scanned symbol indicated in the complete configuration):

flllp \pt( t(felll, x, y), ~illl, X, y) flllp. The machine com
pares the sequences marked
x and y. It erases all letters
x and y. ~ ~illl if they are
alike. Otherwise ~ ft'm.

The cp~ function erases the markers as it compares the letters marked with those
markers. If there's a match, then all the x and y markers have been erased, and we
head to €im (meaning similar).

If the configurations marked x and y do not match (as they won't in our
example), then the first argument of cp~ takes over, which is an ~ (erase) function
that erases all the remaining x and y markers and eventually retreats to fom to try
the next instruction.

A little problem with the fmp function is that Turing never defined a version of ~

that has one m-configuration argument and two symbol arguments. Moreover, he
can't go back to fom because some or all of the y markers have been erased by cp~.

He really needs to go back to anY to mark the configuration again. Donald Davies
suggests that the instruction should really read:

fmp cp~(~(~(anf,x),y), €im,x,y)
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In our example, anfl will re-mark the m-configuration and scanned sym
bol in the complete configuration, and tom will mark the next instruction (working
backwards through the instructions):

This time, the cpr function invoked by tmp will detect a match and head to elm.
All the x and y markers will be gone, but the z markers remain. The leftmost z
marker precedes the instruction that q) must carry out. Turing summarizes the
progress so far:

.mf. Taking the long view, the last instruction relevant to the last
configuration is found. It can be recognised afterwards as the instruction
following the last semi-colon marked z. -> I)im.

Actually, it's the first (leftmost) semicolon marked z, but the last instruction
tested. The m-configuration elm begins by using f to find that marker and position
itself at the semicolon preceding the instruction. As you'll recall, the instruction
has five parts: The m-configuration, the scanned symbol, the symbol to print, an
L, N, or R, and the final m-configuration.

[245]

"im2 { AnotA

{
notAA

~'im3

f'(I)'ilJlI, 1)'lm1, z)

con(~im2, )

"iIJl3
R, Pu, R, R, R ~'im2

L,Py t(mf,z)

L, Py, R, R, R l) im3

I)im. The machine marks out
the instructions. That part of
the instructions which refers to
operations to be carried out is
marked with u, and the final m
configuration with y. The let
ters z are erased.

The m-configuration elm1 refers to the con function with a blank second
argument. This essentially skips past the m-configuration and the scanned symbol,
putting the head at the second character of the print operation.
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o 101 IAI 101 I ...

The second line for m-configuration aim2 IS Incorrect: Emil Post suggests it
should move the head left before printing a u. The two m-configurations 6'im2 and
aim3 mark the operation (the symbol to be printed and the head-movement letter)
and the next m-configuration. The c function erases the Z marker before heading
to me.

The m-configuration mf (which looks like mf but is actually mk and perhaps
stands for mark) now marks the last complete configuration. The first argument
to the 9 function (which is mistakenly q in the tables of functions) should be mfl
rather than mf.

R,Pv,L,L,L

g(mf, :) me. The last complete con
figuration IS marked out into
four sections. The configura
tion is left unmarked. The
symbol directly preceding it is
marked with x. The remainder
of the complete configuration
IS divided into two parts, of
which the first is marked with
v and the last with w. A colon is
printed after the whole. -+ >:Ii).

wn(I(I( mf5»)' )

mf5
0h

R,R
L,L,L,L

R,Pw,R
P:

R, PX,L, L,L

R, Px, L, L, L

{

Any

None

mf

The m-configuration mf uses 9 to find the rightmost colon. That colon pre
cedes the last complete configuration. The complete configuration is on F-squares
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and, in general, consists mostly of D's followed by zero or more Cs, each of which
represents a symbol on the tape. Buried somewhere within these symbols is an
m-configuration, which is a D followed by one or more A's.

The m-configuration mEl looks for the m-configuration buried within the
complete configuration. When it finds an A, it moves the head left to the last
symbol of the square that precedes the m-configuration. That square is marked
with x. Then, mE3 has the job of marking all the preceding characters with v.

When mE3 gets to the colon, mE4 takes over. It uses con to skip over the
m-configuration and the scanned character. It stops when it finds something other
than a C. Except for the scanned character, the other symbols are marked with w.
Finally, mEs prints a colon.

Here's a complete configuration that's a bit more complex than the simple
example we've been looking at:

This complete configuration represents a tape starting with a 0 (DC) and a blank
(D). The next square is the scanned square, indicated by the configuration ql (DA).
The scanned square is a 0 (DC), which is followed by a blank (D) and a 0 (DC).
When mE is through with this, it looks like this:

The only thing unmarked is the configuration (which consists of the
m-configuration DA and the scanned symbol DC).

In our much simpler example, there are no symbols to the left of the
m-configuration and no symbols to the right of the scanned square, so the v,
x, and w markers don't playa role:

Everything is now marked. The operation and final m-configuration of the
instruction is marked with u and y, and portions of the complete configuration are
marked with v, x, and w.

The Universal Machine needs to print a 0 or 1 if the instruction is printing a
o or 1 except in those cases when a machine reprints a 0 and 1 because it's just
scanned a 0 or 1. The Universal Machine should print a 0 or 1 only if the scanned
square is blank. That's the job of 6'6 (which may stand for show).
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~h f(,'hl, lIlN, u) "h. The instructions (marked

~111 L,L,L "h2
u) are examined. If it is found
that they involve "Print 0" or

{n~D
R,R,R,R ~h2 "Print 1", then 0: or 1 : is

~h2 printed at the end.lIlN

"h3 {no~c
R,R ~h4

IIlN

,'h4 {no~c
R,R ""5

PC2(illN, 0,:)

~h5 {no~c
lIlN

PC2(ln~t, 1,:)

First, 0'blocates the leftmost u marker, and 0'b1 moves the head left three places
to be positioned over the last symbol representing the scanned square. That symbol
will be a D if the scanned square is a blank. If it's not D, then the rest of these
m-configurations are skipped by heading to ine't.

If the scanned character is a blank, then e1)2 goes to 0'b3 (not 0'1)2 as the table indi
cates) and then 0'b3, 0'b4, and 0'1)5 check if the printed instruction is DC (to print 0)
or DCC (print 1). If so, then pe2 prints that figure and a colon at the end of the
tape. The example tape now looks like this:

The e1) section of the table is obviously simplified by the use of binary numbers
rather than decimal. Decimal numbers would require eight more m-configurations
(0'1)6 through 0'b13) to print digits 2 through 9.

Whether a 0 or 1, or neither, is printed, the Universal Machine goes to ine't
(which may stand for instruction but perhaps instigate is more descriptive). The last
remainingjob is to render the next complete configuration of cA1. The next complete
configuration includes all the symbols in the current configuration marked x, v,
and w because those symbols will remain unchanged. The m-configuration and
the scanned square, however, will be replaced. They will be replaced with the
m-configuration marked y and the symbol marked with u.
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The inel: table has another reference to the 9 function that was defined originally
as q. Also, the ~C5 function on the fifth line should be C~5 like the third and fourth
lines.

[246]

lll>:-t

inNl(L)

lllNl(R)

lllNl(N)

a

f1(I(lllNd, u)
R, E lllNl(a)

'C5 (N.I, v,y,x, u, w)

'C5 (l'tl, v, x, u,y, w)

C'5 (l't' , v, x,y, u, w)

c~llnf~

lll>:-t. The next complete
configuration is written down,
carrying out the marked instruc
tions. The letters u, v, w, x, y
are erased. -4 ant.

The function C~5 wasn't actually defined, nor was C~4. Basing them on C~3 we can
easily create them:

C~4(Q),ex,f3,y,8)

C~5 (Q), ex, f3, y, 8, c)

C~(C~3 (Q), f3, y, 8), ex)

C~(C~4 (Q), f3, y, 8, c), ex)

The C~5 function sequentially copies symbols marked ex to the end of the tape,
then symbols marked f3, and so forth, erasing the markers in the process.

The m-configuration inel: refers to g, which goes to the rightmost symbol marked
u; that symbol is L, R, or N. The m-configuration ine1l scans that symbol, erases
it, and then goes to inel:l (L), inetl (R), or inel:l (N) depending on the symbol. It's
clear what Turing wants to do here, but I really must protest the introduction of a
new syntax at this point in the machine, particularly when it's not necessary. Let's
replace the entire ine1l configuration with the following:

{:
R,E C~5 (01), v,y,x, u, w)

in0'tl R,E C~5 (01), v,X, u,y, w)

R,E C~5 (01), v,x,y, u, w)

In all three cases, the squares marked v are copied to the end of the tape
first, and those marked ware copied last. The symbols marked v are all those on
the left part of the complete configuration up to (and not including) the square
to the left of the scanned square. That square is marked x. The symbols marked w
are all those to the right of the scanned square.
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The three copies in the middle of C~5 depend on whether the head is movmg
left, right, or not at all. The order is:

Left: Next m-configuration / Symbol left of head / Printed symbol.
Right: Symbol left of head / Printed symbol/Next m-configuration.
None: Symbol left of head / Next m-configuration / Printed symbol.

For example, if the head is moving left, then the next m-configuration is inserted
before the square to the left of the previous head position. If the head is moving
right, the next m-configuration is to the nght of the pnnted symbol.

Each of the C~5 functions goes to 0'0 (which probably stands for over). The ~

function erases all E-squares, and goes to anf for the next move. Our tape now
looks like this:

Ia Ia I ; I 101 IAI 101 101 IcI IRI 101 IAI IAI

I; I 101 IAI IAI 10 I 10 I Ie I Ie I IRI 10 I IAI I:: I

I: I 101 IAI 10 I I: I 10 I I: I 101 Ie I 101 IAI IAI

The second complete configuration contains the symbols DC (meaning 0)
followed by DAA, which indicates the new m-configuration q2.

The Universal Machine as Turing has defined it has a few limitations. It cannot
emulate just any general Turing Machine. It won't work right Wlth any machine
that moves its head anywhere left of its initial position because it has no way
of inserting blanks to the left of the complete configurations. (Indeed, the
process of inserting blanks to the right is something that Turing omitted in
the con function.) The Universal Machine also works correctly only with machines
that replace blanks with Os or Is and do so in a uniform left-to-nght manner. The
Universal Machine can handle machines that perform otherwise, but it won't print
the correct sequence of Os and Is.

Despite these limitations, and the little misprints and bugs, Turing has done
something quite extraordinary. He has demonstrated the generality of computation
by showing that a single universal machine can be suitably programmed to carry
out the operation of any computing machine. Says one acclaimed book on
computability: ''Tunng's theorem on the existence of a universal Turing machine
[is] one of the intellectual landmarks of the last century."4

All of which prompts the question:
Did Alan Turing invent the computer?

4John P Burgess, preface, in George 5 Boolos, John P Burgess, and Richard C Jeffrey, Computability and
Logle, fourth edition (Cambndge University Press, 2002), xi
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By imagining a computing machine that does almost nothing, Turing was
actually conceiving a very versatile "general purpose" computer. This was a

revolutionary concept. The common assumption at the time was that computers
would be designed specifically for particular types of jobs. The early analog com
puter known as the Differential Analyzer (designed and built by M.LT. professor
Vannevar Bush and his students in the 1920s) exemplified this approach. The
Differential Analyzer did something very important - solve ordinary differential
equations - but that was all it did.

Even people deeply involved in building digital computers often didn't grasp the
generality of digital logic. Howard Aiken, for example, was one of the computer's
true pioneers and had been working with digital computers since 1937. Yet, in
1956 Aiken said:

[I] f it should tum out that the basic logics of a machine designed
for the numerical solution of differential equations coincide with
the logics of a machine intended to make bills for a department
store, 1would regard this as the most amazing coincidence 1
have ever encountered. 1

Turing, who visualized the computer as a logic machine, knew better. While
most early computer builders thought in terms of hardware, Turing had been
writing software since 1936. To Turing, even basic arithmetical operations like
addition could be achieved in software. Compare Aiken's 1956 statement with
what Turing wrote in 1950:

This special property of digital computers, that they can mimic
any discrete state machine, is described by saying that they are

1Paul Ceruzzi, Reckoners' The Prehistory of the Digttal Computer, from Relays to the Stored Program Concept,
1935-1945 (Greenwood Press, 1983),43 Ceruzzi's source is Howard Aiken, 'The Future of Automatic

Computing Machinery," Elektronische Rechenanlage und lnformationsverarbeitung (Darmstadt, 1956), 33
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universal machines. The existence of machines with this property
has the important consequence that, considerations of speed
apart, it is unnecessary to design various new machines to do
various computing processes. They can all be done with one
digital computer, suitably programmed for each case. It will be
seen that as a consequence of this all digital computers are in a
sense equivalent.2

Turing includes the important qualification "considerations of speed apart."
Some would argue that where computers are involved, speed isn't everything;
it's the only thing. Whenever people want specialized computers - for example,
to do computer-generated imagery (CGI) for a multimillion dollar Hollywood
blockbuster - speed is usually a primary consideration, and beefed-up memory
capacity doesn't hurt either. In actual number-crunching capabilities, however, all
digital computers are universal.

Alan Turing's status in the general history of computing has never been
quite clear. In one standard history3 he barely merits mention, but when an
eminent mathematician writes a history that treats the computer as a physical
embodiment of mathematical concepts,4 Turing becomes a principal player. How
Turing fares in the computing history books really depends on whether the
computer is approached from an engineering and commercial perspective, or from
a mathematical and academic one.

One intriguing role that Turing played involves his relationship with John
von Neumann. The two men first met in April 1935 when von Neumann came
from Princeton to Cambridge to deliver a lecture course on almost-periodic func
tions. Soon after that, Turing decided he wanted to go to Princeton University
himself. 5 They had contact again when Turing got to Princeton in the fall of
1936.6 Von Neumann once claimed to have stopped reading papers in mathemat
ical logic following the Gbdel Incompleteness Theorem,? so it's not clear when
von Neumann actually read "On Computable Numbers." The two mathemati
cians had other common mathematical interests (almost-periodic functions and
group theory), and those are the subjects mentioned in von Neumann's letter of
June 1, 1937, recommending Turing for a Procter Fellowship for his second year
at Princeton.

lAlan Tunng, "Computing Machinery and Intelligence," Mind, Vol LlX, No 236 (October 1950),

441-2.
3Manin Campbell-Kelly and William Aspray, Computer' A History oj the InJonnation Machine (Basic Books,

1996)

4Manin DaVIs, The Universal Computer' The Road Jrom Letbniz to Tunng (Nonon, 2000)

sAndrew Hodges, Alan Tunng The Enigma (Simon &: Schuster, 1983), p 95

6Hodges, Alan Tunng, 1I8

7Hodges, Alan Tunng, 124
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Before Turing left Princeton in July 1938, von Neumann offered him a job at the
Institute for Advanced Study as his assistant for $1,500 a year, but Turing turned
down the offer. By that time, von Neumann had almost certainly read Turing's
paper. For his biography of Turing, Andrew Hodges queried physicist Stanislaw
Ulam (who was also at the lAS) on von Neumann's estimation of Turing. (Von
Neumann himself died in 1957 at the age of 53.) Ulam recalled traveling with
von Neumann in the summer of 1938, when von Neumann suggested a game of

writing down on a piece of paper as big a number as we could,
defining it by a method which indeed has something to do with
some schemata of Turing's.... von Neumann had great admi
ration for him and mentioned his name and "brilliant ideas" to
me already, I believe, in early 1939.... At any rate von Neu
mann mentioned to me Turing's name several times in 1939 in
conversations, concerning mechanical ways to develop formal
mathematical systems.8

These early points of contact between Turing and von Neumann become
suddenly important in September 1944 when von Neumann arrived at the Moore
School of Electrical Engineering of the University of Pennsylvania. Already under
construction was a computer called the ENlAC (Electronic Numerical Integrator
and Computer), a 30-ton behemoth designed under the supervision of John
Presper Eckert (1919-1995) and John William Mauchly (1907-1980). Even as it
was being constructed, the limitations of the ENIAC had become apparent and
a successor was planned, to be called the EDVAC (Electronic Discrete Variable
Automatic Computer).

From the beginning, von Neumann's perspective was not simply
that of a potential user, but of a scientific and technical contnb
utor as well. In the remaining months of 1944 and throughout
1945, when he was not at Los Alamos, he took time to attend
technical conferences on the EDVAC and to make technical con
tributions and suggestions on logic design.9

Yet, when a document appeared dated June 30, 1945, entitled "First Draft of a
Report on the EDVAC"l0 with John von Neumann as the sole author, a controversy
was ignited, and the smoke has yet to clear. The report emphasizes important

8Hodges, Alan Tunng, 145

9Nancy Stem, 'John von Neumann's Influence on Electronic Digital Computing, 1944-1946," Annals of
the History of Computing, Vol 2 No 4 (October 1980), 353
lORepnmed in Bnan Randell, ed , The Ongms of DigItal Computers (Spnnger, 1973)
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concepts - that the computer should be electronic, that it should work with
binary numbers, and that programs should be stored in memory - but it's never
been fully determined whether von Neumann originated these concepts or if he
simply articulated ideas that that had been floating around the Moore School since
the ENIAC days. For decades, people have referred to "von Neumann architecture"
when describing digital computers, but this term is slipping out of use, partially
out of respect for those many others who contributed to concepts of computer
architecture.

The "First Draft of a Report on the EDVAC makes reference to just one other
publication: a paper entitled "A Logical Calculus of the Ideas Immanent in Nervous
Activity" published in the Bulletin of Mathematical BiophysicsJl This reference
reveals von Neumann's interest in the relationship between the computer and the
human brain, but it's also interesting that the authors of this paper had based
their concepts of the physiology of the brain on the functions of Turing Machines.
The McCulloch and Pitts paper is also cited by Norbert Wiener (1894-1964) in
his classic book Cybernetics, or Control and Communication in the Animal and the
Machine (1948). I'1l have more to say about McCulloch, Pitts, Wiener, and von
Neumann in Chapter 17.

The physicist Stanley Frankel, who worked with von Neumann at Los
Alamos, remembers von Neumann's enthusiasm about Turing's paper in 1943
or 1944:

Von Neumann introduced me to that paper and at his urging I
studied it with care. Many people have acclaimed von Neumann
as the 'father of the computer' (in a modem sense of the term)
but I am sure that he would never have made that mistake him
self. He might well be called the midwife, perhaps, but he firmly
emphasized to me, and to others I am sure, that the fundamen
tal conception is owing to Turing - insofar as not anticipated
by Babbage, Lovelace, and others. In my view von Neumann's
essential role was in making the world aware of these fundamen
tal concepts introduced by Turing and of the development work
carried out in the Moore school and elsewhere. 12

Throughout the latter 1940s, von Neumann seems to have mentioned the
importance of Turing to several people. For example, in 1946, he wrote to Norbert

11 W S MacCulloch and W Pitts, "A Logical Calculus of the Ideas Immanent in Nervous ActivIty," Bulletin

of Mathematical Biophysics, Vol 5 (1943), 115-133

l2Letter quoted in B. Jack Copeland, ed , The Essential Tunng' The Ideas that Gave Birth to the Computer
Age (Oxford University Press, 2004), 22 This letter is pan of a 6-page section on 'Tunng, von

Neumann, and the Computer" in Copeland's guide to the "Computable Numbers" paper
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Wiener of "the great positive contribution of Turing ... one, definite mechanism
can be 'universal.' ,,13

Although Alan Turing is remembered mostly for his writings, his name is also
linked to three major computer projects.

The first was the Colossus, a code-breaking computer developed and built at
Bletchley Park in 1943. It was designed by Max Newman, the mathematician who
had taught the Foundation of Mathematics class that inspired Turing to write "On
Computable Numbers" and had guided the paper to publication, and who had
been at Bletchley Park since the summer of 1942. Although some writers have
assumed that Turing was involved in the Colossus project,14 it appears he was
not. He knew about it, of course, but he "declined the invitation to take a direct
part.,,15 Nevertheless, the influence of Turing's paper on the logical design of the
Colossus was clearly acknowledged. 16

Turing was much more involved in a computer project at the National Physical
Laboratory (NPL) at Teddington in southwest London. In 1944 the director of
NPL was Sir Charles Darwin (1887-1962), whose grandfather had published some
influential books on biology. Darwin created a Mathematics Division which was
given the job of developing automated computing machines.

J. R. Womersley, the head of the Mathematics Division, summoned Turing to
NPL for an interview in]une 1945.17 Womersley had read "On Computable Num
bers" and wanted Turing to design a computer called the Automatic Computing
Engine, or ACE, and if the word "engine" evoked memories of Charles Babbage,
that was deliberate.

Turing, having read von Neumann's EDVAC Report and having a few ideas
about computers of his own, finished the "Proposal for Development in the
Mathematics Division of an Automatic Computing Engine (or ACE)" before the
end of 1945. Turing's report says that it "gives a fairly complete account of
the proposed calculator" but recommends that it "be read in conjunction with J.
von Neumann's 'Report on the EDVAC.,,18

Turing's proposed machine was electronic, used binary numbers, and had a
1 megahertz clock rate, although bits were transferred serially. It used mercury
delay line storage, which stored bits as acoustic pulses in tubes of mercury.

l3B. Jack Copeland and Diane Proudfoot, "Tunng and the Computer" in B. Jack Copeland, ed , Alan
Tunng's Automatic Computing Engine The Master Codebreaher's Struggle to Build the Modem Computer (Oxford

University Press, 2005), 116
14Myself included in Charles Petzold, Code' The Hidden Language of Computer Hardware and Software
(Microsoft Press, 1999),244
15Hodges, Alan Tunng, 268

16Hodges, Alan Tunng, 554 (note 5 7)
17Introduction to B.E Carpenter and R W Doran, A.M Tunng's ACE Report of 1946 and Other Papers (MIT

Press, 1986), 5-6
18ACE Report, 21.
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A five-foot tube of mercury could store 1,024 bits. Each bit required about a
millisecond to travel from one end of the tube to the other, whereupon it could be
accessed and recycled to the beginning of the tube. Turing expected an addition of
two 32-bit numbers to require 32 microseconds (that's one bit per clock cycle) and
a 32-bit multiplication to require "rather over two milliseconds."19

Turing's design has a fairly small number of primitive instructions, mostly
transfers between memory and registers. In this sense it resembles modem Reduced
Instruction Set Computers (RISC), which incorporate fast hardware and do more
complex jobs in software. Turing seems to have invented the stack - eventually a
common form of computer storage analogous to the stack of plates in a cafeteria
held aloft in a well by a spring. The last plate "pushed" on the stack becomes the
next plate "popped" from the stack. Turing's routines for these two operations are
called BURY and UNBURy.2o

Turing presented a more personal vision of computing in a lecture to the
London Mathematical Society on February 20, 1947. "[C]omputing machines
such as the ACE... are in fact practical versions of the universal machine." The
complexity of the job the machine must do "is concentrated on the tape" - that
is, in software - "and does not appear in the universal machine proper in any
way.,,21 Turing recognized the importance of speed in the computer, of course,
but he tended to emphasize the advantages of large storage:

I believe that the provision of proper storage is the key to the
problem of the digital computer, and certainly if they are to be
persuaded to show any sort of genuine intelligence much larger
capacities than are yet available must be provided. In my opinion
this problem of making a large memory available at reasonably
short notice is much more important than that of doing opera
tions such as multiplication at high speed. 22

As might be expected, Turing clearly recognized the advantages of binary numbers
over decimal:

Binary working is the most natural thing to do with any large
scale computer. It is much easier to work in the scale of two than
any other, because it is so easy to produce mechanisms which
have two positions of stability.23

19ACE Report, 116

20ACEReport, 76

21ACEReport, 112-113
22ACE Report, 112

23 ACE Report, 113-114
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Towards the end of the talk, Turing speculated about machines that can modify
their own instruction tables:

It would be like a pupil who had learnt much from his master,
but had added much more by his own work. When this hap
pens I feel that one is obliged to regard the machine as showing
intelligence.24

By September 1947, Turing was feeling frustrated about the lack of progress
being made on the ACE. He requested a year's sabbatical at half pay and departed
to Cambridge. The expectation at NPL was that he would return for at least another
two years, but that never happened. (The Pilot ACE wasn't ready until 1950, and
it deviated quite a bit from TUring's original proposal.)

Instead, Turing went to join Max Newman, who had been at the University
of Manchester since 1945. Newman had obtained a grant for a new Computing
Machine Laboratory and was building a computer called the Mark 1. In June 1948,
the Mark I became "the first EDVAC-type electronic stored-program computer to
be completed."25

Turing joined the Manchester mathematics faculty and Newman's project in
September. Two months later, an arrangement was reached with Ferranti Limited,
a Manchester manufacturer of electronics, to develop a machine that Ferranti
would market commercially.

Turing was mostly responsible for the programming aspects of the
Mark 1. Around 1951, Turing was given the job of writing the first "Programmers'
Handbook" for the production machine, in which Turing defined programming as
"an activity by which a digital computer is made to do a man's will, by expressing
this will suitably on punched tapes.,,26

Rather than mercury delay lines, the Mark I used cathode ray tubes for storage.
This type of storage - often called the Williams Tube - was pioneered by
F. C. Williams, who had come to Manchester in December 1946. The data to be
stored is sent to the CRT as electrical pulses, where it is displayed on the screen
as an array of dots, each representing one bit. A different intensity or size of
the dots distingUishes between °and 1. A metal plate in front of the tube picks
up the charges from these dots and allows the tube to be refreshed or read. A
second CRT would allow people to view the dots and examine the data. By 1947,
each CRT was capable of storing 2,048 bits.

24ACE Report. 123

25Manin Campbell-Kelly, "Programming the Mark I Early Programming ActiVIty at the University of

Manchester," Annals of the History of Computing, Vol 2, No 2 (ApnI1980), 134

26Campbell-Kelly, "Programming the Mark I", 147 The handbook is available at

www alamunng netltunn/Larchivelarchivelindexlmanchestenndex htm!
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The Mark I stored data in 40-bit words, which could also store two 20-bit
instructions. These words were displayed on the CRTs in 5-bit groups, and
so a base-32 notation developed where each 5-bit code was represented by
the teleprinter character corresponding to that code. To read a number, it was
necessary to know the code corresponding to each character. These character codes
were not in alphabetical order, so following Turing's gallant lead, everybody who
programmed for the Mark I was forced to memorize the 32-character sequence:

/E@A:SIUi DRJNFCKTZLWHYFQOBG"MXV£

Turing's involvement in these actual computer projects may cause us to
lose sight of the simple fact that Turing's intent in his "Computable Numbers"
paper was not to design a universal computing machine. The whole purpose of
the paper was to use this hypothetical computer to help resolve the Entschei
dungsproblem. There are still a few more steps. A crucial one is to demonstrate
that Turing's machines are intnnsically limited in what they can do.

Turing stated in the introduction to his paper, "Although the class ofcomputable
numbers is so great, and in many ways similar to the class of real numbers, it
is nevertheless enumerable" (his page 230; my page 66). In Section 5, he
demonstrated how "To each computable sequence there corresponds at least one
description number, while to no description number does there correspond more
than one computable sequence. The computable sequences and numbers are
therefore enumerable" (his page 241; my page 138).

Some doubts may still linger. It's obVlous that the class of computable numbers
contains at least some transcendentals. Turing Machines that calculate 7l or e or
Liouville's constant are certainly possible. Surely transcendentals whose digits have
some kind of order are computable by a Turing Machine. That's the game Ulam
and von Neumann played while traveling together.

Nevertheless, the vast majority - no, no, no, let's be realistic about this and
say virtually all - virtually all transcendentals are ostensibly streams of random
digits. In the realm of real numbers, orderly or calculable sequences of digits are
rare. Complete and total randomness is the rule.

How exactly do you make a machine that computes a number with no pattern?
Do you just generate digits randomly?

Randomness is not something computers do very well, and yet computers are
often called upon to behave randomly. Some statistics applications require random
numbers, and computer games routinely need random numbers to vary the action.
Without random numbers each hand of Solitaire would be exactly the same.

Programming languages often provide some standard way for programs to
generate random numbers. For example, a computer program written in the C
programming language can use a function named rand to obtain a random number
between 0 and 32,767. The rand function begins with a number known as a seed,
which by default is initially set to 1. Different rand functions may implement the
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actual algorithm in different ways; as an example, here's the implementation of
rand found in Microsoft's version of e27 :

int seed = 1;

int rand ( )

return (( seed seed * 214013 + 2531011) » 16) & 32767;

The rand function multiplies seed by 214,013 and adds 2,531,011, and then stores
that result back in seed for the next time rand is called; however, since seed is
defined as a 32-bit signed integer, overflow or underflow may result. The result
of the calculation is truncated to 32 bits, and if the highest bit is 1, the value
is actually negative.28 The calculation continues by shifting the result 16 bits,
effectively dividing it by 65,536 and truncating any fractions. Finally, a Boolean
AND operation is performed between the bits of that result and the bits of 32,767.
That eliminates all bits except the bottom 15 and ensures that the result is between
oand 32,767.

Even if you didn't follow this convoluted calculation, it should be obvious
that in no way is this rand function generating random numbers! The function is
entirely deterministic. Starting with a seed value of 1, repeated calls to the function
always result in the calculation of the same series of numbers:

41
18,467
6,334
26,500
19,169

The first time a program calls rand, the function returns 41, and the 30,546th time
a program calls rand, the function also returns 41, and then the cycle repeats.

Because this sequence is entirely determined by the seed and the algorithm, it is
not truly random. It is instead called a pseudo-random sequence. If you performed
certain statistical tests on the numbers generated by rand, they would appear
to exhibit characteristics of randomness. In some applications a pseudo-random
sequence is preferred to truly random numbers because it's possible to reproduce
results and test that the program is working correctly.

17 rand c © 1985-1997, Microsoft Corporation Some details in the rand function have been altered for

purposes of clanty

28A discussion of overOow and underOow may be found in my book Code, 153-154
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In games, however, generating the same sequence of random numbers is not
desirable. For that reason, every time you deal a new hand of Solitaire, the program
probably begins by obtaining the current time of the day down to seconds and
milliseconds, and then uses that to set a new seed. Assuming you don't deal at
the exact - down to the millisecond - same time of the day, you're getting what
appears to be a random hand.

John von Neumann once said that "Anyone who considers arithmetical methods
of producing random digits is, of course, in a state of sin.,,29 (This was right before
he described arithmetical methods for producing random numbers.) Because
computers generate random numbers incompetently, applications that really need
random numbers go outside the computer and use dedicated hardware for this
task. A hardware random number generator (RNG) might use ambient noise or
quantum processes to generate random numbers.

Curiously enough, Alan Turing seems to have onginated the idea of generating
random numbers in hardware. Turing requested that the production model of the
Mark I at the University of Manchester have a special instruction that generated
a random number from a noise source. It turned out to be not quite as random
as it should have been, but random enough to prevent it from being properly
debugged.3o

Let's assume we have a hardware RNG that works. We put it to use to generate
a sequence of Os and Is just like a Tunng Machine. Put a binary point in front and
you can watch a real number - doubtlessly a transcendental number - being
created right before your eyes. (If you tried this with a software pseudo-random
sequence, eventually the seed would be recalculated and the sequence would begin
again. The resultant number would have a repeating sequence of digits and that
means it would be rational.)

Now define a Turing Machine that generates the very same real number as the
hardware RNG. You can't do it. The only approach that duplicates the RNG is a
Turing Machine that explicitly prints exactly the digits you need, but that's not a
Turing Machine with a finite number of configurations.

Maybe the randomness of most real numbers is merely an illusion. After all,
the digits of 7I appear to be random, but 7I is definitely computable. Maybe
real numbers that appear to be random actually have some kind of underlying
structure that we just don't know about. Maybe if we approach this question from
a different direction, we might instead prove that the computable numbers are not
enumerable. We might then be able to get a good night's sleep because we'd be
comforted with the knowledge that every real number is computable.

29John von Neumann, Collected Works, Volume V, Design of Computer, Theory of Automata, and Numencal
Analysis (Macmillan, 1963),768 The statement was onginally made at a symposium on Monte Carlo

methods in 1949
30Martin Campbell-Kelly, "Programming the Mark I", 136
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Tunng needs to confront these possibilities head on.

8. Application of the diagonal process.

It may be thought that arguments which prove that the real numbers
are not enumerable would also prove that the computable numbers and
sequences cannot be enumerable". It might, for instance, be thought
that the limit of a sequence of computable numbers must be computable.

• Cf Hobson, Theory offunctions ofa real variable (2nd ed., 1921),87,88.

Turing is alluding to Georg Cantor's first (1874) proof of the nonenumerability
of the real numbers that I described beginning on page 24. It's likely that Turing
didn't have access to Cantor's original publication so he refers instead to a text
book by E. W. Hobson and published by Cambridge University Press.31 Hobson
follows Cantor very closely, even using much of the same notation.

Turing suggests that Cantor's exercise be repeated using an enumeration of
computable numbers rather than real numbers. In both cases, the numbers
approach a limit. In Cantor's proof, that limit has to be a real number (What
else could it be?), but Cantor was able to demonstrate that the limit wasn't in
the enumeration of real numbers, thus proving that the real numbers are not
enumerable.

When the same process is attempted with computable numbers, the computable
numbers also approach a limit. Could that limit also be a computable number?
Turing's answer:

This is clearly only true if the sequence of computable numbers is defined
by some rule.

By "sequence" Turing means the sequence of alphas and betas that approach the
limit. That limit is a computable number only if we can compute it - that is, we

31 The full title of this influential book by Cambndge mathematics professor Ernest William Hobson

0856-1933) is The Theory of Functions of a Real Vanable and the Theory of Founer's Senes, and the first

edition was published by Cambndge University Press in 1907 The second edition that Tunng refers to
dates from 1921, but so much new matenal had been added that a second volume had to be published in

1926 This Volume II was also referred to as a second edition Volume I was reVIsed as a third edition in

1927 The third edition of Volume I and the second edition of Volume II were republished by Harren Press

in 1950 and Dover Books in 1957, and these might be the easiest editions to track down The discussion
that Tunng refers to is on pages 84 and 85 of this third edition of Volume I It is followed on pages 85 and

86 by Cantor's diagonal proof
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can devise some algorithm that tells us the numeric limit approached by these
alphas and betas. That does not seem likely. If we don't have a way to compute this
limit, it is not a computable number. It is yet another uncomputable real number,
and hence we haven't disproved that computable numbers are enumerable.

Or we might apply the diagonal process.

Turing puts the rest of the paragraph in quotation marks as if an intruder has
burst into his paper trying to convince us that the computable numbers are not
enumerable. Turing's adversary pursues a more notation-laden arithmetic variation
of the diagonal process than the one I offered on page 28.

"If the computable sequences
are enumerable, let an be the n-th computable sequence, and let <p,,(m) be
the m-th figure in a".

It's just notation. Each computable sequence is a series of Os and Is, and each
of these binary digits is represented by <P, the Greek letter phi. The computable
sequences can be listed with a superfluity of subscnpts and indices like so:

((1 = <PI (1) <PI(2) <PIO) <Pr(4)

((2 = <P2(1) <P2(2) <P20) <P2(4)

((3 = <P3(1) <p3(2) <P30) <P3(4)

Let f3 be the sequence with 1 - <p,,(n) as its n-th

figure.

In other words, f:3 is the diagonal with the Os and Is flipped:

f:3 = (1- 4>1(1)) (1- 4>2(2)) (1- 4>30)) (I - <P4(4)) ...

Since f3 is computable, there exists a number K such that
1 - <Pn(n) = <PK(n) all n.
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That is, for some K, there's an aK in the enumerated list of computable numbers:

In general, for digit n,

1 - tPn(n) = tPK(n)

or

Turing's adversary now uses this arithmetic argument to demonstrate that f3 can't
exist:

Puttingn = K,

that is,

we have 1 = 2</JK(K), i.e. 1 is
even. This is impossible. The computable sequences are therefore not
enumerable".

Well, that's interesting. This mysterious intruder has just described how to
compute a number called f3 based on the computable sequences in the enumerated
list, but this computed number is not in the list. Therefore, the intruder says, the
computable sequences are not enumerable.

But Turing remains calm, and says:

The fallacy in this argument lies in the assumption that f3 is computable.

Fallacy? What fallacy? How can f3 not be computable? f3 is computed from the
enumeration of computable sequences, so it has to be computable, right?

Well, not exactly.
Let's step back a moment. Turing originally defined computable numbers as

those that are calculable by finite means. He constructed imaginary machines
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to compute these numbers, and he showed that each machine can be uniquely
identified by a positive integer called a Description Number. Because integers
are enumerable, Turing Machines are also enumerable, and therefore computable
sequences are enumerable.

In one sense, enumerating the Turing Machines is as easy as enumerating the
positive integers:

1
2
3
4
5

All the Turing Machines will appear in this list in the form of Description Numbers,
and from the Description Number we can get the Standard Description, and then
we can feed that to the Universal Machine to get the computable sequence.

Of course, we're missing something: We're missing a way to determine
exactly which positive integers in that list are Description Numbers of circle-free
machines.

As you may recall from the definitions in Section 2, a circle-free machine is one
that goes on printing Os and Is forever. Although a machine that never stops may
appear to be "out of control" or "gone crazy," circle-free machines are necessary
to compute irrational numbers and those rational numbers with repeating digits.
Even when printing rational numbers like .1 (the binary equivalent of t), it is
preferable for the machine to be circle-free by printing 1 and then a continuous
sequence of Os:

.10000000 ...

A circular machine, on the other hand, is one that gets stuck in an undesirable
loop. A circular machine could keep printing Os without advancing the head, for
example, or it could forever print symbols other than 0 and 1.

The terms circle-free and circular are not optimally descriptive: A circle-free
machine might spend the rest of eternity in a little loop that prints Os or Is, and
that might be fine. A circular machine could get jammed because it's directed to
an m-configuration that doesn't exist, and that's just one of many problems that
could befall it.

We need to identify the Description Numbers of circle-free machines because
those are the only ones qualified to be interpreted by the Universal Machine. We
may have successfully enumerated all the Turing Machines (somewhere within
that list of positive integers), but we haven't identified those that are circle-free, so
we can't use them to generate computable sequences.
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It's very clear that many integers are not Description Numbers of any machine
whatsoever. We can easily determine (by human inspection or a Turing Machine)
whether a particular integer is a well-formed Descnption Number, which means
that it's divided into well-formed instructions, each of which begins with an
m-configuration, and so forth. We might even determine whether the machine
refers to m-configurations that aren't present. We could check whether cer
tain m-configurations aren't used. We could also easily check to see whether
any m-configurations include instructions that actually print Os or Is. Such a
process would determine that the lowest well-formed Description Number is
31,334,317, and this is a circular machine. (It only prints blanks.) It's not until
313,324,317 that the first circle-free machine is encountered, and not until
313,325,317 that we find the first circle-free machine that prints from left to right.

Here's the very beginning of an enumeration of the positive integers where the
first two circle-free print-to-the-right Turing Machines are identified:

1
2
3
4
5

313,325,317 +- This one prints O's to the right

3,133,225,317 +- This one prints Is to the right

These, of course, are the simplest of simple machines, and the method to
identify them is simple as well. Much more difficult - actually, as Turing will
show, impossible - is a machine that implements a general process to determine
whether a particular integer is the Description Number of a circle-free machine.

That general process is precisely what we need to perform the diagonalization.
Each digit of f3 is based on a different computable number, so computing f3
requires that all the circle-free Turing Machines be identified. Turing will show
that these circle-free machines cannot be identified by finite means, which means
that we can't explicitly enumerate the computable sequences. It is therefore simply
not true that f3 is a computable sequence.

It would be true if we could enumerate the computable sequences by finite
means, but the problem ofenumerating computable sequences is equivalent
to the problem of finding out whether a given number is the D.N of a
circle-free machine, and we have no general process for doing this in a finite
number of steps.
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Turing now makes a subtle shift in focus. He started by attempting to apply
Cantor's diagonalization proof to computable sequences, but now he wants simply
to explore what happens when we try to identify all the Description Numbers of
circle-free machines.

In fact, by applying the diagonal process argument
correctly, we can show that there cannot be any such general process.

If, as Turing asserts, there's no general process for determining whether a particular
integer is a Description Number ofa circle-free machine, then f3 is not computable.
That would invalidate the interloper's "proof' that the computable sequences
are not enumerable. Nothing would then detract from our confidence that
computable sequences are indeed enumerable and hence can't include all the real
numbers.

Unfortunately, Turing begins the next paragraph rather vaguely:

The simplest and most direct proof of this is by showing that, if this
general process exists, then there is a machine which computes /3.

I think he's saying that there cannot be a general process to determine whether a
particular machine is circle-free because, if there were, we'd be able to compute f3,
and we know we can't compute f3, because then the diagonal argument would be
valid, and computable sequences would not be enumerable.

This
proof, although perfectly sound, has the disadvantage that it may leave
the reader with a feeling that "there must be something wrong".

The paradox still nags at our consciences. For that reason, Turing WIll now prove
more directly that there is no machine that will determine whether a particular
integer is a Description Number of a circle-free machine.

The
proof which I shall give has not this disadvantage, and gives a certain
insight into the significance of the idea "circle-free".

He might also have added that the implications go far beyond this little exercise in
number theory.
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All Turing wants now is a machine that extracts one digit from each computable
sequence. He doesn't have to bother with subtracting the digits from one. He's
actually going to try to compute something a little bit simpler than f3:

It depends not on
constructing /3, but on constructing pi, whose n-th figure is 4Jn(n).

On the very first page of Turing's paper (page 66 of this book) he said, 'The
computable numbers do not, however, include all definable numbers, and an
example is given of a definable number which is not computable." Both f3 and f31
are such definable numbers. f3' is definable because instructions can be given for
how to compute it: Enumerate the whole numbers starting at 1. For each number,
determine whether it's a well-formed Description Number of a Turing Machine.
If so, determine whether that machine is circle-free. If so, compute that number
up to the n-th digit (where n is one more than the number of circle-free machines
encountered so far). That digit is the n-th digit of f3'.

You can see that f3' is completely defined, but can it be computed?
Although Turing defined no instruction that would ever halt the machine,

the problem that Turing is now attacking is studied more in the variation
known as the Halting Problem. (The term originated in Martin Davis's 1958
book Computability and Unsolvability.32) Can we define a Turing Machine that
will determine whether another Turing Machine will either halt or go on for
ever? If we substitute the idea of circularity for halting, it's a similar problem.
Can one Turing Machine analyze another Turing Machine and determine its
ultimate fate?

Turing begins by assuming there exists a machine that determines whether
any arbitrary machine is circle-free. In the following discussion, he refers to the
machine's Standard Description rather than the Description Number, but it doesn't
really matter because it's trivial to convert between them.

[247]

Let us suppose that there is such a process; that is to say, that we can
invent a machine 'J) which, when supplied with the S.D of any computing
machine vir will test this S.D and ifvir is circular will mark the S.D with the
symbol "u" and if it is circle-free will mark it with "s".

32Manin DaVIs, Computability and Unsolvability (McGraw-Hill, 1958), 70. DaVIs believes he first used the

tenn in lectures in 1952 (See Copeland, The Essential Tunng, 40, footnote 61) The concept also shows up

in Chapter 13 of Stephen Cole Kleene, Introduction to Metamathematics (Van Nostrand, 1952)
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The machine :J) is the Decision machine. The "u" stands for unsatisfactory
(meaning a circular machine) and the "s" for satisfactory (circle-free). TUring
defined these terms at the end of Section 5 (his page 241, my page 142).

By combining
the machines :J) and qJ we could construct a machine t{ to compute the
sequence f3'.

Actually the 'if{ machine also needs to generate positive integers and then convert
them to Standard Descriptions, but that's fairly trivial. For every positive integer
that 'if{ generates, 'if{ uses:J) to determine whether the number defines a satisfactory
machine. If so, then 'if{ passes that Standard Description to the Universal Machine
CU to compute the sequence. For the n-th computable sequence, CU needs only to
run the machine up to the nth digit. That digit then becomes the nth digit of f3'.
Because CU is under the control of'if{, 'if{ can stop CU when it has the particular digit
it needs.

It's necessary for 'if{ to check the Standard Description with :J) first because
we don't want CU to get stuck running an unsatisfactory machine. If 'if{ gives CU
the Standard Description of an unsatisfactory machine, and that unsatisfactory
machine never prints a digit, then the process gets stuck and can't move forward.

Turing does not actually show us what this magic Decision machine :J) looks
like, so that should be a big hint that such a machine is impossible. Just offhand, it
seems like it would at least be very difficult. How can :J) determine that a particular
machine is circle-free except by mimicking the machine and tracing through its
every step?

At any rate, :J) is similar to CU in that it works with a Standard Description (or,
equivalently, a Description Number) encoded on a tape.

The machine:J) may require a tape. We may suppose that
it uses the E-squares beyond all symbols on F-squares, and that when it
has reached its verdict all the rough work done by 3) is erased.

It leaves behind only an s or u for its final verdict.

The machine t{ has its motion divided into sections. In the first N - 1
sections, among other things, the integers 1,2, ... ,N - 1 have been written
down and tested by the machine 3).

The term "divided into sections" does not mean that there exist different parts
of 'if{ that handle the different numbers. Separate sets of configurations for each
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number would require that ZR be infinite. Turing is really referring to sequential
operations over a period of time. The actual process must be a general one that
applies to all integers: The ZR machine generates positive integers one after another,
passes each in tum to:J) to determine whether it's satisfactory, and, if so, uses CU
to calculate a certain number of digits in the computable sequence.

A certain number, say R(N - 1), of
them have been found to be the D.N's of circle-free machines.

R just accumulates a count of circle-free machines that have already been
encountered. The machine needs R to determine how many digits to calculate for
each circle-free machine that turns up.

In the N-th
section the machine 'j) tests the number N. If N is satisfactory, i.e., if it
is the D.N of a circle-free machine, then R(N) = 1 + R(N - 1) and the first
R(N) figures of the sequence of which a D.N is N are calculated.

If N is 3,133,225,317, for example, then R(N - 1) is 1. (See the list above
of positive integers with the first two satisfactory machines identified.) Only one
satisfactory machine has been discovered so far. The machine :J) will determine
that N is indeed the Description Number of a circle-free machine. So, R(N) is set to
2, and CU calculates the first two digits of the machine defined by 3,133,225,317.
Those two digits will both be 1. ZR uses the second of those digits as the second
digit of f3'. It's on its way!

The
R(NHh figure of this sequence is written down as one of the figures of the
sequence 13' computed by -;f(.

The usual case, of course, is that the Description Number is either no machine
at all or a circular machine.

If N is not satisfactory, then R(N) = R(N - 1)
and the machine goes on to the (N + l)-th section of its motion.

The point is that ZR must look at the potential Description Numbers one after
another, and for each satisfactory Description Number, ZR must run the machine
until the R(N)-th digit.
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Turing now takes great pains to demonstrate that '2f( is circle-free. '2f( simply
runs:J) for each potential Description Number and :J) is circle-free by the original
assumptions.

From the construction of f{ we can see that -:f{ is circle-free. Each
section of the motion of f{ comes to an end after a finite number of steps.
For, by our assumption about '1), the decision as to whetherN is satisfactory
is reached in a finite number of steps. If N is not satisfactory, then the
N-th section is finished. If N is satisfactory, this means that the machine
),(N) whose D.N is N is circle-free, and therefore its R(N)-th figure can be
calculated in a finite number of steps. When this figure has been calculated
and written down as the R(N)-th figure of 13', the N-th section is finished.
Hence II' is circle-free.

'2f( is a Turing Machine, so '2f( has a Description Number (which Turing calls K).
At some point, '2f( WIll have to deal with its own Description Number. '2f( will have
to determine whether '2f( is circle-free.

Now let K be the D.N of 11. What does f{ do in the K-th section of
its motion? It must test whether K is satisfactory, giving a verdict "8"
or "u". Since K is the D.N of I{ and since f{ is circle-free, the verdict
cannot be "u".

Then Turing also adds:

On the other hand the verdict cannot be "8".

The fundamental problem is that '2f( gets into an infinite recursion. Before '2f(

encounters the number K (the Description Number of itselO '2f( has analyzed all
positive integers 1 through K - 1. The number of circle-free machines so far is
R(K - 1) and the first R(K - 1) digits of fit have been found.

What is the R(K)-th digit of fit? To get that digit, '2f( has to trace through its
own operation, which means it has to duplicate everything up to the point where
it encountered K, and then the process begins again. That is why '2f( cannot be
circle-free.

For if it
were, then in the K -th section of its motion l'{ would be bound to compute
the first R(K - 1) + 1 = R(K) figures of the sequence computed by the
machine with K as its D.N and to write down the R(KHh as a figure of the
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sequence computed by 7R. The computation of the first R(K) - 1 figures
would be carried out all right, but the instructions for calculating the
R(K)-th would amount to "calculate the first R(K) figures computed by
H and write down the R(K)-th". This R(K)-th figure would never be
found.

(In the penultimate line, H should be '2f(.)

'2f( is generating a sequence of digits based on the sequences generated by other
machines. That's pretty straightforward when we think of machines as generating
sequences like the binary equivalent of 1/3, 7l, and the square root of 2, but where
does '2f( get digit K of this sequence that it's generating? It has to get that digit from
itself, but that makes no sense because '2f( gets digits only from other machines.

OK, so '2f( has a little problem when encountering its own Description Number.
Can't it just skip that one? Well, yes, it can, but as we've seen, every computable
sequence can be calculated by a variety of different machines. Machines could
calculate the same sequence in different ways, or they could have superfluous
instructions. '2f( would need to skip those similar machines as well. What about
the machines that don't calculate f3', but calculate something close to f3', such as
f3' with its 27th and 54th digits swapped? There are an infinite number of such
machines and avoiding them all puts quite a burden on '2f( - an impossible burden.

I.e., 'J( is circular, contrary both to what we have found in the last
paragraph and to the verdict "s". Thus both verdicts are impossible
and we conclude that there can be no machine :.D.

There can be no general process to determine whether a machine is circle-free.
By implication, there can be no computer program that will determine the ultimate
fate of other computer programs.

Turing has also resolved the paradox of the diagonal process: He first established
that computable numbers are enumerable, yet the diagonal process seemed to
indicate that you could create a computable number not in the list. Turing has
shown that the diagonal could not be calculated by finite means, and hence is not
computable. Computable numbers may be enumerable, but they cannot actually
be enumerated in a finite number of steps.

Turing is not quite finished with this section. He now hypothesizes a machine
8, which might stand for "ever print."

[248]

We can show further that there can be no machine C; which, when
supplied with the S.D ofan arbitrary machine uri, will determine whether eft(

ever prints a given symbol (0 say).
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Turing needs this 8 machine in the final section of the paper when he uses it
to prove that the Entscheidungsproblem has no solution. Here he will prove that
8 cannot exist by first showing that the existence of 8 implies the existence of
a process for determining whether a machine prints 0 infinitely often, but that
implies the existence of a similar process to determine whether a machine prints
1 infinitely often. If you had the ability to determine whether a machine prints 0
infinitely often or 1 infinitely often (or both), you'd have the ability to determine
whether a machine is circle-free. It's already been proven that such a process is
impossible, so machine 8 must also be impossible.

We will first show that, if there is a machine f:, then there is a general
process for determining whether a given machine vH prints 0 infinitely
often.

Turing will demonstrate this through a rather odd method of defining variations
of the arbitrary machine eM.

Let .fi(l be a machine which prints the same sequence as vI-(, except
that in the position where the first 0 printed by vI{ stands, vI-(l prints O.
,.A(2 is to have the first two symbols 0 replaced by 0, and so on. Thus, if .fi(

were to print
ABAOIAABOOIOAB ... ,

then vI-(l would print

ABAOIAABOOIOAB ...

and vlh would print

ABAOIAABOOIOAB ....

If you had a machine eM, could you define a machine that reads the Standard
Description of eM and manufactures the Standard Descriptions of eM1, eM2, and so
forth? Turing says yes, and he calls this machine fJ:

Now let '7 be a machine which, when supplied with the S.D of v+(, will
write down successively the S.D of vI-(, of ,.A(l, of vI-(2, ... (there is such a
machine).
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To convince ourselves that gis plausible, let's consider that very simple machine
that alternatively prints 0 and 1, that is, the binary fonn of 1/3 without skipping
any spaces:

ql None PO,R q2

q2 None PI, R ql

That's machine uI1. Here's machine uI11:

ql None P(5,R q4

q2 None PI, R ql

q3 None PO,R q4

q4 None PI, R q3

All the original configurations (all two of them) have simply been duplicated and
given different m-configurations. In the first set of configurations, every line that
printed 0 now prints (5 and then jumps to the appropriate configuration in the
second set. uI12 has three sets:

ql None P(5,R q4

q2 None PI, R ql

q3 None P(5,R q6

q4 None PI, R q3

q5 None PO,R q6

q6 None PI, R q5

You might notice that these modified machines never enter configurations q2, but
that's just a fluke of this particular machine.

It is therefore entirely plausible that g exists. Notice the relationship between
these uI1 machines: If uI1 never prints 0, then neither does uI11, uI12, and so forth. If
uI1 prints 0 just once, then uI11 never prints 0, and neither does uI12, and so forth.
If uI1 prints 0 twice, then uI11 prints 0 once, uI12 never prints 0, and so forth. If uI1
prints 0 infinitely often, then so does uI11, uI12, and so forth.

You'll recall that [5 is assumed to determine whether a machine ever prints O.
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We combine g with 8 and obtain a new machine, g. In the
motion of g first g is used to write down the S.D of uI1, and then 8 tests
it,: 0 : is written if it is found that uI1 never prints 0; then g writes the S.D
of uI11, and this is tested, : 0 : being printed if and only if uI11 never prints 0,
and so on.

q uses 9"'to generate the Descnption Numbers of eM, eMl, eM2, and so forth,
and 8 to determine whether the resultant machine ever prints O. If the resultant
machine never prints 0, q prints O.

The result is this: If eM never prints 0, or prints 0 only a finite number of
times, then q prints 0 infinitely often. If eM prints 0 infinitely often, then (j never
prints o.

Now let us test g with 8. Ifit is found that g never prints 0,
then uI1 prints 0 infinitely often; if g prints 0 sometimes, then uI1 does not
print 0 infinitely often.

That means (j can tell us that eM prints 0 infinitely often. It tells us this by never
printing O.

Similarly there is a general process for determining whether uI1 prints 1
infinitely often. By a combination of these processes we have a process
for determining whether uI1 prints an infinity offigures, i.e. we have a process
for determining whether uI1 is circle-free. There can therefore be no
machine 8.

By another proof by contradiction, Turing has shown that 8 cannot exist because
it would ultimately imply the existence of 9) - the machine that determines
whether any machine is circle-free - and that machine cannot exist.

Turing finishes this section with a reminder that we really need to examine this
assumed equivalence between human computers and Turing Machines because
we've been relying on it quite a lot.

The expression "there is a general process for determining ..." has
been used throughout this section as equivalent to "there is a machine
which will determine ..". This usage can be justified if and only if we
can justify our definition of "computable".

That examination will come in the next section.
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Turing then hints at another aspect of this demonstration that won't be
explored until Part III of this book. Turing began by interpreting the output of
Tunng Machines as "computable numbers," but machines can be more flexible
than that. For example, consider a machine that prints a sequence like this:

0011010100010100010100010000010 ...

That might look like a number, but it's actually the output of a "pnme number"
machine that we might denote by IsPrime(n). For the nth figure in this sequence
(beginning with n equal to zero), IsPrime(n) is 1 if n is prime, and 0 if n is not
prime. The sequence printed by the machine indicates that 2, 3, 5, 7, 11, 13,
17, 19, 23, and 29 are all primes. Such a machine is entirely plausible, but it's
not really computing a number. Instead it's telling us something about the natural
numbers.

For each of these "general
process" problems can be expressed as a problem concerning a general
process for determining whether a given integer n has a property G(n) [e.g.
G(n) might mean "n is satisfactory" or "n is the Godel representation of
a provable formula"], and this is equivalent to computing a number
whose n-th figure is 1 ifG (n) is true and 0 ifit is false.

Tunng has now, in a very small way that will become more apparent in Part III
of this book, established a link between his computing machines and mathematical
logic. The symbols 1 and 0 not only serve as binary digits, but - as George Boole
realized many years ago - they can also symbolize true andJalse.

Consider a bunch of functions that have arguments of natural numbers and
which return values of true andJalse (or 1 and 0):

IsPrime(n)
IsEven(n)
IsOdd(n)
IsLessThanTen (n)
IsMultipleOJTwentyTwo(n)

and so forth. These are sometimes known as Boolean functions, and they can be
implemented by Turing Machines that print sequences of Os and Is for n equal to
0, 1,2,3, and so forth. The IsOdd function prints the same alternating sequence
as Turing's first example machine.

Tunng has established that these computable sequences are enumerable. So,
too, are the actual function names! They can be alphabetized, for example. In
Cantor's notation of transfinite numbers, the cardinality of the set of all computable
and alphabetizable Boolean functions of natural numbers is ~o, the cardinality of
enumerable sets.
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Each Boolean function returns true or 1 for a subset of the natural numbers.
For example, IsPrime returns 1 for the following set of natural numbers:

{2, 3, 5, 7,11,13, ... }

Each of these Boolean functions is associated with a different subset of the natural
numbers. As you might recall from Chapter 2, the set of all subsets is called a
power set, and if the original set has a cardinality of ~o, then the power set has
a cardinality of 2~o.

The set of all conceivable Boolean functions has a cardinality of 2~o , while the set
of all computable Boolean functions (and indeed, the set of all Boolean functions
that can be descnbed with a name in the English language) has a cardinality of XO.
That's another big gap between the conceivable and the computable.



Of Machines
and Men

A lan Turing wrote at the beginning of the first section of his paper (page 68 of
this book) of his definition of computable numbers that "No real attempt will

be made to justify the definitions given until we reach §9." We have now reached
Section 9, and the pages that follow have been called by TUring's biographer
Andrew Hodges "among the most unusual ever offered in a mathematical paper."1

Turing will attempt to demonstrate that the capabilities of a Turing Machine are
equivalent to a human computer carrying out a well-defined mathematical process.
Therefore, if an algorithmic process is insolvable by a Turing Machine, it is also
unsolvable by a human. This idea - generally expressed more formally - has
come to be known as the Turing thesis or (in a related form) the Church-Turing
thesis. It's called a "thesis" because it's much too amorphous a concept to be
subjected to a rigorous mathematical proof. The thesis nonetheless extends to
other digital computers: Their computational capabilities are no greater than the
Turing Machine.

Only the first part of Section 9 appears in this chapter; the remainder requires
some background in mathematical logic and will conclude in Part III of this book.
For the most part, I will not interrupt Turing's analysis. Here's a summary by
Martin Davis:

Turing's "analysis" is a remarkable piece of applied philosophy
in which, beginning with a human being carrying out a com
putation, he proceeds by a process of elimination of irrelevant
details, through a sequence of simplifications, to an end result
which is the familiar model consisting of a finite state device
operating on a one-way infinite linear tape. 2

I Andrew Hodges, Alan Tunng The Enigma (Simon lSI Schuster, 1983), 104
2Martin DaVIS, "Why Godel Didn't Have Church's Thesis," Infonnation and Control, Vol 54, Nos 112,

Ouly/Aug 1982), 14
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[249]

9. The extent of the computable numbers.

No attempt has yet been made to show that the "computable" numbers
include all numbers which would naturally be regarded as computable. All
arguments which can be given are bound to be, fundamentally, appeals
to intuition, and for this reason rather unsatisfactory mathematically.
The real question at issue is "What are the possible processes which can be
carried out in computing a number?"

The arguments which I shall use are of three kinds.

(a) A direct appeal to intuition.

(b) A proof of the equivalence of two definitions (in case the new
definition has a greater intuitive appeal).

(c) Giving examples of large classes of numbers which are
computable.

The (b) argument is in Part III of this book; the (c) argument continues in
Section 10 of TUring's paper.

Once it is granted that computable numbers are all "computable",
several other propositions of the same character follow. In particular, it
follows that, ifthere is a general process for determining whether a formula
of the Hilbert function calculus is provable, then the determination can be
carried out by a machine.

The "Hilbert function calculus" is the system of mathematical logic today
commonly called "first-order predicate logic." It is within this logic that Hilbert
defined the Entscheidungsproblem. It is unlikely that Turing knew that a process
"carried out by a machine" is precisely what Heinrich Behmann called for in the
earliest references to the Entscheidungsproblem (page 48). Behrnann's address
remained unpublished until recently.

I. [Type (a»). This argument is only an elaboration of the ideas of § 1.

Computing is normally done by writing certain symbols on paper. We
may suppose this paper is divided into squares like a child's arithmetic book.
In elementary arithmetic the two-dimensional character of the paper is
sometimes used. But such a use is always avoidable, and I think that it
will be agreed that the two-dimensional character of paper is no essential
of computation. I assume then that the computation is carried out on
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one-dimensional paper, i.e. on a tape divided into squares. I shall also
suppose that the number of symbols which may be printed is finite. If we
were to allow an infinity of symbols, then there would be symbols differing
to an arbitrarily small extenti-. The effect of this restriction of the number
of symbols is not very serious. It is always possible to use sequences of
symbols in the place of single symbols. Thus an Arabic numeral such as
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17 or 999999999999999 is normally treated as a single symbol. Similarly
in any European language words are treated as single symbols (Chinese,
however, attempts to have an enumerable infinity of symbols). The
differences from our point ofview between the single and compound symbols
is that the compound symbols, if they are too lengthy, cannot be observed
at one glance. This is in accordance with experience. We cannot tell at
a glance whether 9999999999999999 and 999999999999999 are the same.

t Ifwe regard a symbol as literally printed on a square we may suppose that the square
is 0 :(; x :(; 1,0 :(; y ~ 1 The symbol is defined as a set of points in this square, viz. the
set occupied by printer's ink. Ifthese sets are restricted to be measurable, we can define
the "distance" between two symbols as the cost of transforming one symbol into the
other if the cost of moving unit area of printer's ink unit distance is unity, and there is an
infinite supply of ink at x = 2, .y = O. With this topology the symbols form a condition
ally compact space

In the next sentence, Turing refers to a "computer." He is, of course, talking
about a human computer.

The behaviour of the computer at any moment is determined by the
symbols which he is observing, and his "state of mind" at that moment.
We may suppose that there is a bound B to the number of symbols or
squares which the computer can observe at one moment. If he wishes to
observe more, he must use successive observations. We will also suppose
that the number ofstates ofmind which need be taken into account is finite.
The reasons for this are of the same character as those which restrict the
number of symbols. If we admitted an infinity of states of mind, some of
them will be "arbitrarily close" and will be confused. Again, the restriction
is not one which seriously affects computation, since the use ofmore compli
cated states of mind can be avoided by writing more symbols on the tape.
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In 1972, Kurt G6del wrote a brief note regarding Turing's analysis in this section
that he labeled "A philosophical error in Turing's work.,,3 G6del argued that "mind,
in its use, is not static, but constantly developing" and that mental states of mind might
even converge on the infinite. These disagreements represent a fundamental clash
between those who believe the mind to be ultimately a mechanical process of the
brain, and those who do not.

Let us imagine the operations performed by the computer to be split up
into "simple operations" which are so elementary that it is not easy to
imagine them further divided. Every such operation consists ofsome change
of the physical system consisting of the computer and his tape. We know
the state of the system if we know the sequence of symbols on the tape,
which of these are observed by the computer (possibly with a special
order), and the state of mind of the computer. We may suppose that in a
simple operation not more than one symbol is altered. Any other changes
can be split up into simple changes of this kind. The situation in regard to
the squares whose symbols may be altered in this way is the same as in
regard to the observed squares. We may, therefore, without loss of
generality, assume that the squares whose symbols are changed are always
"observed" squares.

Besides these changes of symbols, the simple operations must include
changes of distribution of observed squares. The new observed squares
must be immediately recognisable by the computer. I think it is reasonable
to suppose that they can only be squares whose distance from the closest
of the immediately previously observed squares does not exceed a certain
fixed amount. Let us say that each of the new observed squares is within
L squares of an immediately previously observed square.

In connection with "immediate recognisability", it may be thought
that there are other kinds of square which are immediately recognisable.
In particular, squares marked by special symbols might be taken as imme-
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diately recognisable. Now if these squares are marked only by single
symbols there can be only a finite number ofthem, and we should not upset
our theory by adjoining these marked squares to the observed squares. If,
on the other hand, they are marked by a sequence of symbols, we

3Kurt Godel. Collected Works, Volume II Publications 1938-1974 (Oxford University Press, 1990),306

Judson C Webb's introduction beginning on page 292 - and particularly the identification on page 297

of Godel's belief that the human mind has an existence separate from the physical matter of the brain - is

helpful in understanding Godel's remarks Another analysis is Oron Shagnr. "Godel on Tunng on Compu

tability," httplledelstein huji ac iVstafflshagnr/papers/Goedel_on_Tunn!Lon_Computability pdf
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cannot regard the process of recognition as a simple process. This is a
fundamental point and should be illustrated. In most mathematical
papers the equations and theorems are numbered. Normally the numbers
do not go beyond (say) 1000. It is, therefore, possible to recognise a
theorem at a glance by its number. But if the paper was very long, we
might reach Theorem 157767733443477; then, further on in the paper, we
might find" ... hence (applying Theorem 157767733443477) we have ... ".
In order to make sure which was the relevant theorem we should have to
compare the two numbers figure by figure, possibly ticking the figures off
in pencil to make sure of their not being counted twice. If in spite of this
it is still thought that there are other "immediately recognisable" squares,
it does not upset my contention so long as these squares can be found by
some process of which my type of machine is capable. This idea is
developed in III below.

When Turing describes "ticking the figures off in pencil," he is probably alluding
to the similar machine operation of "marking" squares with non-numeric figures.

The simple operations must therefore include:

(a) Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another square
within L squares of one of the previously observed squares.

It may be that some of these changes necessarily involve a change of
state of mind. The most general single operation must therefore be taken
to be one of the following:

(A) A possible change (a) of symbol together with a possible
change of state of mind.

(B) A possible change (b) of observed squares, together with a
possible change of state of mind.

The operation actually performed is determined, as has been suggested
on p. 250, by the state of mind of the computer and the observed symbols.
In particular, they determine the state of mind of the computer after the
operation is carried out.

That's just the previous page of his paper to which he's referring.



194 The Annotated Turing

We may now construct a machine to do the work of this computer. To
each state of mind of the computer corresponds an "m-configuration" of
the machine. The machine scans B squares corresponding to the B squares
observed by the computer. In any move the machine can change a symbol
on a scanned square or can change anyone ofthe scanned squares to another
square distant not more than L squares from one of the other scanned
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squares. The move which is done, and the succeeding configuration, are
determined by the scanned symbol and the m-configuration. The
machines just described do not differ very essentially from computing
machines as defined in § 2, and corresponding to any machine of this type
a computing machine can be constructed to compute the same sequence,
that is to say the sequence computed by the computer.

That is, the human computer.
At this point, we stop for now. Turing's second argument in this section begins

with a reference to the "restricted Hilbert functional calculus," followed by a
statement in that calculus, and for that some background is required that begins
Part III of this book.

Turing's fascination with the connection between human brains and machines
continued long beyond his 1936 paper on computable numbers. Turing's other
famous paper, "Computing Machinery and Intelligence," was published in the
October 1950 issue of the philosophy journal Mind.

"Can machines think?" Turing asks. He then devises a test with a human being
sitting at a teletypewriter. (The modem equivalent might be instant messaging, or
anything else that doesn't allow people to see or hear who they're communicating
with.) Let the person ask questions and receive answers. If there's actually a
computer on the other end, and the person can't tell that it's a computer, then we
should say that the computer is intelligent.

This has come to be known as the Turing Test, and it remains as controversial
as ever. Anybody who has a pat objection to the Turing Test should read Turing's
paper, which already has answers to many reasonable objections.

Turing prefers to deal with this question in terms of "intelligence" rather
than "thinking" because "thinking" implies a certain activity going on inside the
computer.

The original question, 'Can machines think?' I believe to be too
meaningless to deserve discussion. Nevertheless I believe that
at the end of the century the use of words and general educated
opinion will have altered so much that one will be able to speak
of machines thinking WIthout expecting to be contradicted.4

4Alan Tunng, "Computing Machinery and Intelligence," Mind, Vol UX, No 236 (October 1950),442.
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The end of the century has passed and, if anything, more people than ever know
that whatever computers do, it is not "thinking." We have not come to expect
our computers to be intelligent, and generally we work best with our computer
applications when we believe they will act in a completely deterministic way.
A computer program that attempts to do something "intelligent" often seems to
resemble a two-year old staring up from a newly crayoned wall and pleading, "But
I thought you'd like it."

In the alternative universe of science fiction, Turing's prediction was right on
target, as demonstrated by the most famous fictional computer of all time:

Whether Hal could actually think was a question which had
been settled by the British mathematician Alan Turing back in
the 1940s. Turing had pointed out that, if one could carry out
a prolonged conversation with a machine - whether by type
writer or microphone was immaterial - without being able to
distinguish between its replies and those that a man might give,
then the machine was thinking, by any sensible definition of the
word. Hal could pass the Turing test with ease.5

Alan Turing would have turned 56 years old in 1968, the year that both the
book and movie of 2001 came out. He might have been amused by the concept of
a computer so intelligent that it would experience a nervous breakdown.

In the summer of 1950, Turing moved to a house in Wilmslow, about ten miles
south of Manchester. He had become interested in morphogenesis, which is the
study of how cells in an organism develop and differentiate themselves to exhibit
various patterns and forms. The research involved running simulations on the
Manchester computer.

On March 15, 1951, Alan Turing was elected a Fellow of the Royal Society
in recognition of his work on Computable Numbers. His sponsors were Max
Newman and Bertrand Russell. That evening, the BBC broadcast a talk Turing had
recorded entitled "Can Digital Computers Think?" (No recording of this broadcast
or any recording of Turing speaking is known to exist.)

In December 1951, a chain of events was set in motion that would have serious
consequences. Turing met a young man on the streets of Manchester. Arnold
Murray had a working-class background, he was on probation for theft, and he
was unemployed. Turing and Murray had lunch, met again, and went back to
Turing's home together. They met several times over the next month.

Late in January 1952, Turing discovered that his house had been burgled. He
reported it to the police, who came and dusted for fingerprints. When Turing
confronted Arnold Murray, Murray pleaded innocent but said he knew who
did it - an acquaintance named Harry. The police also identified Harry from

5Anhur C Clark, 2001' A Space Odyssey (New Amencan Library, 1968), ch. 16
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the fingerprints taken from Turing's house. Harry was already in custody for
something else. When questioned about the Turing robbery, Harry gave the police
an earful about what was going on between Turing and his friend.

On February 7, 1952, the day after George VI died and his eldest daughter
Elizabeth ascended to the throne, the police called on Alan Turing. After some
questioning, Turing admitted to them the nature of his relationship with Murray.
This confession made Turing subject to arrest under Section 11 of the Criminal
Law Amendment Act of 1885:

Any male person who, in public or private, commits, or is a party
to the commission of, or procures or attempts to procure the
commission by any male person of, any act of gross indecency
with another male person, shall be guilty of a misdemeanor, and
being convicted thereof shall be liable at the discretion of the
court to be imprisoned for any term not exceeding two years,
with or without hard labour.6

The term "gross indecency" was not defined in the law, but was generally taken
to mean acts such as mutual masturbation and oral sex. Other statutes covered the
more serious offense of anal sex (or "buggery" as it was known within the British
legal system).

Section 11 was a notorious law that was controversial from its very beginning.
The Criminal Law Amendment Act of 1885 describes itself as "An Act to make
further provision for the protection of women and girls, the suppression of
brothels, and other purposes." The law raised the age of consent from 13 to 16,
and contained several provisions intended to prevent women from exploitation,
such as being drugged in brothels or abducted into prostitution.

The law had originally floundered in the House of Commons for a couple
years but then became more urgent following a series of articles by liberal
journalist William Thomas Stead 0849-1912) concerning child prostitution.
Stead's courageous expose culminated with his actual purchase of a 13-year old
girl from her parents.

Following the public uproar over Stead's articles, the Bill was revived. Section
11 was introduced by Member of Parliament Henry Labouchere on August 6,
1885, and was added to the Act the next day, just a week before the Act eventually
passed. There was some question at the time whether it was proper to add this
section to a bill whose focus was the protection of young girls and women.7

6Wording obtained from http//wwwswaTb.co ukiactsl1885Cnminal_Law_AmendmentAct.shtml

(accessed Apnl 2008)

7H Montgomery Hyde, The Love That Dared Not Speak Its Name' ACandid History of Homosexuality in Bntain
(Little. Brown and Company, 1970), 134 This book was onginally published in England under the title

The Other Love



Of Machines and Men 197

Section 11 specifically targeted men, and the acts covered under the term
of "gross indecency" had never been illegal in Britain before, at least not when
performed by consenting adults in private. Even at the time the "in private" clause
seemed to allow the law to be used for blackmail.8

The most famous victim of Section 11 was Oscar Wilde 0854-1900), who was
prosecuted under the law in 1895. Wilde served his time doing hard labor, which
probably hastened his death.

By the 1950s, however, different methods of punishment were available. Turing
pleaded guilty with the understanding that he was to be placed on a year's
probation, during which he was to have hormone treatments.

Experiments with treating homosexuality using sex hormones had begun in
the 1940s. At first it was believed that homosexuality resulted from insufficient
male hormones, but the administration of testosterone actually had the opposite
of the anticipated result. Female hormones were then tried on homosexual men,
and those seemed to have more of a desired effectY By the time of Turing's
conviction, this treatment was known as organotherepy, but was also called
"chemical castration" and seemed intended more to humiliate than anything else.
The estrogen rendered Turing impotent and made his breasts grow.

The early 1950s were not a good time to be identified as a homosexual. In the
United States, the "red scare" of the early 1950s soon metamorphosed into another
type of witch hunt. There actually weren't very many communists working in
the State Department, but there were plenty of closeted gay people working in
government jobs in Washington D.C. "Over the course of the 1950s and 1960s,
approximately 1,000 people were dismissed from the Department of State for
alleged homosexuality.,,10

In theory, the term "security risk" could be applied to anyone who might have
a tendency to divulge government secrets. In practice the term was basically a
euphemism for "homosexual."ll The assumption was that homosexuals could be
blackmailed into revealing state secrets. However, the best example anyone could
come up with of this actually happening involved the head of Austrian intelligence
before World War I, and it was never quite clear what the real story was. 12

What was happening to gays in the United States government also had
implications for Great Britain. In 1951, the u.s. State Department began advising
the British Foreign Office about "the homosexual problem" in the government,
and later pressured the British government to be more diligent about supposed
security problems regarding homosexuals. 13

8Ibid,136

9Hodges, Alan Tunng, 467-471

lODaVld K johnson, The Lavender Scare The Cold War Persecution of Gays and Lesbians in the Federal
Government (University of Chicago Press, 2004), 76

lljohnson, Lavender Scare, 7-8
12johnson, Lavender Scare, 108-109
13johnson, Lavender Scare, 133.
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Alan TUring's employment options were certainly becoming more restricted.
A top-secret government job such as Turing had during the war would now be
inconceivable, nor would Turing be able to travel to Amenca again. A 1952 law
prohibited admission to "aliens afflicted WIth psychopathic personality," which
was interpreted to mean homosexuality. 14

Was this enough to make Turing suicidal? We don't know.
On the streets of England as well as in the government, life was getting more

difficult for gay men. When Sir John Nott-Bower was appointed Commissioner of
the London Metropolitan Police in 1953, he swore he would "rip the cover off all
London's filth spots." The same year the Home Office issued directives for a new
drive against "male vice." At least one London magistrate was tired of coddling and
wanted convicted men to be "sent to prison as they were in the old days." From the
end of 1953 through early 1954, newspaper headlines heralded the prosecutions
of several men.1 5

Had Turing a new relationship with a man who was now threatening to
blackmail him?

Or was TUring's suicide merely a careless accident, as his mother believed?
It is indicative of our ignorance that one of the most persuasive explorations of

Turing's state of mind during this penod comes not from a history or biography
but from a novel. Novelist Janna LeVIn (who is also a professor of astronomy
and physics at Barnard College) portrays a man humiliated beyond his ability to
express it:

He doesn't know how to voice his humiliation or even how to
experience it. It rattles around in him like a broken part, dis
lodged and loose in his metal frame. The humiliation won't settle
on one place, sink in where it would no doubt fester but at least
could be quarantined and possibly even treated. If not steadily
eroded by the imperceptible buffing waves of time, then maybe
more aggressively targeted, excised by his Jungian analyst. But
the shame just won't burrow and bind. 16

We just don't know what was different about the evening of June 7, 1954. We
don't know what prompted Turing to dip his regular evening apple in cyanide
before he went to bed.

He was found dead the next morning. Alan Tunng was 41 years old.

14Hodges, Alan Tunng, 474

15Hyde, The Love That Dared Not Speak Its Name, 214-6
16Janna LeVin, A Madman Dreams of Tunng Machines (Alfred A Knopf, 2006), 214
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I n the summer of 1958, Chinese-born logician Hao Wang took a break from
his teaching duties at Oxford to log some time with a state-of-the-art IBM

704 computer at the IBM Research Laboratory in Poughkeepsie, New York. On
IBM punched cards Wang encoded theorems straight out of the pages of Alfred
North Whitehead and Bertrand Russell's Principia Mathematica, published almost
50 years earlier. For example, theorem *11.26 is stated in the notation of Principia
Mathematica as:

*11 . 26. ~: .(3x) : (y).ljJ(x,y) :~: (y) : (3x).ljJ(x,y)

In Wang's punched card notation this became:

11*26/EXAYGXY-AYEXGXY

Wang wrote three programs to read these cards and prove the encoded theorems
by applying various identities and inference rules that transformed the statements
back into axioms. The bulk of time spent by these programs consisted of the
mechanical processes of reading the cards and printing the steps of the proof.
Wang estimated that the actual processing time in proving 220 theorems from
chapters *1 through *5 of Principia Mathematica was less than three minutes, and
an improved version of his third program was later able to prove 158 theorems
from chapters *9 through *13 in about four minutes. 1

Wang's program was not the first attempt to solve theorems by computer.2

In 1954, Martin Davis used a computer built by the Institute for Advanced

tHao Wang, "Toward Mechanical Mathematics", IBMjoumal of Research and Development, Vol 4, No 1

Oan 1960), 2-22 Available at http //www research ibm com!Journallrdl0411ibmrd040 1B pdf

2Donald MacKenzie, "The Automation of proof A HislOncal and Sociological Exploration," Annals of the
History of Computing, Vol 17, No 3 (Fall 1995), 7-29



202 The Annotated Turing

Study in Princeton to program Presburger's procedure for a simple, addition-only
arithmetic. In the first known mathematical proof by computer, Davis's program
demonstrated that a sum of two even numbers is also an even number.3

In 1957, Allen Newell,].C. "Cliff' Shaw, and Herbert Simon published their
results of a "Logic Theory Machine" programmed for the RAND Corporation's
JOHNNIAC, a computer named for John von Neumann.4 Newell, Shaw, and
Simon also used Principia Mathematica as the source of the theorems. Being more
interested in artificial intelligence than in mathematical logic, they wrote their
program to imitate the way a human would prove the theorems (a "heuristic"
approach, they called it). Hao Wang later pursued a more algorithmic method for
better efficiency and a higher success rate.

Upon being informed by letter about the results of the Logic Theory Machine,
Bertrand Russell reputedly wrote back, "I am delighted to know that 'Principia
Mathematica' can now be done by machinery. I wish Whitehead and I had known
of this possibility before we wasted 10 years doing it by hand."5

Principia Mathematica, in its three volumes and nearly 2,000 pages, was a
monumental achievement in mathematics and logic. When Modem Library listed
the 100 best nonfiction works of the twentieth century, Principia Mathematica came
in at number 23.6 There are, however, very few people qualified to make such a
determination. Stephen Kleene, a student of Alonzo Church who later wrote the
influential Introduction to Metamathematics (1952) and Mathematical logic (1967),
freely admitted that he never read the Principia Mathematica7 and among the
people who have made their marks in mathematical logic in the years since 1913,
he is probably in the large majority.

The Introduction of Principia Mathematica states a goal of nothing less than
"the complete enumeration of all the ideas and steps in reasoning employed
in mathematics." This is the program (and philosophy of mathematics) known

3Manin DaVIs. "A Computer Program for Presburger's Algonthm," in ]org Seikmann and Graham

Wnghtson, eds , Automation of Reasoning 1. Classical Papers on Computational logIc, 1957-1966
(Spnnger-Verlag, 1983),41-48

4Allen Newell,] C Shaw, and H A Simon, "Empincal Explorations wnh the Logic Theory Machine' A Case

Study in Heunstics", Proceedings of the Westemjoint Computer Conference, Vol 15 (957), 218-239

Repnnted in Edward A Feigenbaum and]ulian Feldman, eds, Computers and Thought (MIT Press, 1995),
109-133

'Quoted in Michael] Beeson, "The Mechamzation of Mathematics," in Chnstof Teuscher, ed , Alan Tunng:
Life and Legacy of a Great Thinker (Spnnger, 2004), 93.

6http://www randomhouse comlmodemlibrary/lOObesmonfiction html

7William Aspray, The Princeton Mathematics Community in the 1930s An Oral-History Project An

interVIew wnh] Barkley Rosser and Stephen C. Kleene in Madison, Wisconsin, on 26 Apn11984,
http //www pnnceton edu/~mudd/findin&...aids/mathoraVpmc23.htm



Logic and Computability 203

as logicism - the use of logic as a foundation for the rest of mathematics.
To accomplish this feat, Whitehead and Russell employed a full arsenal of
set-theoretic and logical tools. The idea of deliberately restricting their mathemat
ical techniques would have seemed absurd.

Not so for David Hilbert, the man most closely associated with the philosophy
of mathematics called formalism. Formalism focuses on axiomatic theories, and
particularly in Hilbert's program, emphasized concepts such as consistency,
soundness, completeness, and decidability.

Partially for pedagogical purposes and partially for analytical purposes, David
Hilbert broke down the logic of Principia Mathematica into expanding subsets,
each of which could be studied on its own. This approach was the basis of a
course he taught at Gottingen in the winter of 1917-1918. In 1928 it became the
l20-page book Grundzuge der Theoretischen Logik (Principles of Mathematical Logic)
by David Hilbert and Wilhelm Ackermann, the book commonly known as Hilbert
& Ackermann. This book is the source of the Entscheidungsproblem that is the
primary focus of Turing's paper.

Turing refers explicitly to Grundzuge der Theoretischen Logik in his paper, as
well as a later book by David Hilbert and Paul Bemays, Grundlagen der Mathematik
(Foundations of Mathematics), the first volume of which was published in Berlin in
1934, and which is known as Hilbert & Bemavs. (The second volume appeared in
1939 after the publication of Turing's paper.)

The next part of Turing's paper requires some familiarity WIth mathemati
cal logic as developed in Hilbert & Ackermann. In the following overview of
that logic I will use Turing's notation, which is very similar to the notation used in
Hilbert & Ackermann. I will also mimic the approach of describing this logic as an
expanding subset of features; this has become standard and is found in textbooks
on mathematical logic by Alonzo Church, Stephen Kleene, Elliott Mendelson,
Herbert B. Enderton, and many others.

I will begin with what Hilbert & Ackermann called Aussagenkalkul, later
translated as the sentential calculus, but known better today as the propositional
calculus or propositional logic.

I will then expand the logic to what Hilbert & Ackermann originally called
the engere Funktionenkalkul or the restricted functional calculus. In the second
edition of the book (1938) this was renamed as the engere Pradikatenkalkul,
or restricted predicate calculus, but is better known today as first-order logic,
or first-order predicate logic, or the first-order predicate calculus. Once a few
concepts are introduced, I'll be able to distinguish between first-order logic
and second-order logic, termed by Hilbert & Ackermann as the erweiterte
Funktionenkalkul and later the erweiterte Pradikatenkalkul, or extended predicate
calculus.
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Propositional (or sentential) logic deals with entire declarative propositions (or
sentences) that have a truth value - that is, they can be judged to be either true
or false. Examples might be:

Today is Wednesday.
Seven is a prime number.
It's raining.
My mother's name is Barbara.
Ten is a perfect square.

Some of these sentences are true, some are false, and some may be true for me but
false for you. (No fighting!) In propositional logic, sentences have single consistent
truth values with no ambiguity, and the less we pretend that we're successfully
analyzing anything except mathematical propositions, the less confused we'll be.

In propositional logic, sentences are often represented by capital italic letters.
Letters from the early part of the alphabet (A, B, and C) often stand for particular
sentences with fixed truth values, while the latter part of the alphabet (X, Y,

and Z) are used as variable propositions.
We can combine individual propositions with certain connectives to make more

complex sentences.
The first of these connectives is a lower-case v, from the Latin word vel meaning

or, and specifically, an inclusive or, as opposed to aut, the Latin exclusive or. The
sentence

XvY

is true if either X or Y is true, or if both are true. A little truth table is helpful for
displaying the possible combinations of X and Y:

x y XvY
false false false
false true true
true false true
true true true

It is permissible to omit the v symbol when there's no confusion. The formula

XY

is equivalent to:

XvY

Notice that I did not represent this eqUivalence by writing the two formulas on the
same line separated by an equal sign. The equal sign is not part of the language
of the propositional calculus - or at least the propositional calculus as Hilbert &:
Ackermann formulated it.
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When we say that one sentence is equivalent to another, we mean they have the
same truth value if all the constituent sentences have the same corresponding truth
values. We are expressing this equivalence in a human language, also known as a
metalanguage. Carefully distinguishing the language of logic from the metalanguage
tends to avoid confusion.

Hilbert &:. Ackermann allowed a metalanguage abbreviation of aq. (for
"aquivalent" in German) or eq. (for "equivalent" in the English translation):

Xv Y eq. XY

Remember that this abbreviation is not part of the language of propositional logic
and is strictly for convenience.

The concept of "and" is represented by the ampersand, &:.. The formula

X&:.Y

is true only if both X and Yare true, as shown in this truth table:

x y X&y
false false false
false true false
true false false
true true true

The "and" operation is often called conjunction from the use of the word in
grammar; consequently, the "or" operation is often called disjunction, a much less
familiar word.

It is obvious from the truth tables that:

Xv X eq. X
X &:. X eq. X

You can use both connectives in a compound sentence, in which case v is
evaluated before &:., and if that's not what you want, you can override it with
parentheses, or you can use parentheses strictly for clarification.

X&:. Y v Z eq. X&:. (Y v Z)

Those sentences are not equivalent to:

(X &:. Y) v Z

For example, if X is false, Y is true, and Z is true, then the first pair of sentences is
false but the last sentence is true.

I won't belabor the various rules that exist to ensure that parentheses are always
properly paired, and that connectives appear in sensible positions. These rules
contribute to the concept of well-formed formulas or wffs (pronounced "woofs").
The words "true" and "false" are not part of the vocabulary of propositional logic,
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and neither are the letters ''T'' and "F", but for convenience you can use them to
substitute for propositional letters. You can think of T as a sentence that is always
true, and F as a sentence that is always false. From now on I'll use T and F in truth
tables as well.

The following equivalences are obvious from the truth tables:

XvT eq. T

XvF eq. X

X&T eq. X

X&F eq. F

It is also obvious from the truth tables that both operations are commutative:

Xv Y eq.

X&Y eq.

Both operations are also associative:

Xv(YvZ) eq.

X &(Y &Z) eq.

YvX

Y&X

(X v Y) v Z

(X &Y) & Z

Both operations are distributive over each other:

X v (Y & Z) eq. (X v Y) & (X v Z)

X & (Y v Z) eq. (X & Y) v (X & Z)

If you replace F in the truth tables with 0, and T with 1, you'll see that
conjunction is exactly equivalent to the multiplication of two one-digit binary
numbers, and disjunction is somewhat similar to addition. For this reason,
conjunction is sometimes called the "logical product" and disjunction is the
"logical sum." However, there is some inconsistency in the use of these terms, so
they're not encouraged.

Conjunction and disjunction are binary operations; the only unary operation
is called the "not" or "negation" and is symbolized by a dash much like a
minus sign:

~
x

F T
T F

Turing's notation differs from that of Hilbert & Ackermann, who use a bar over
the letter or larger expression. Negation is always evaluated first: The negation
sign applies only to the symbol immediately following it. A double negative
cancels out:

--X eq. X
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These two relationships are very basic:

Xv-X eq. T

X&:-X eq. F

Two of the most fundamental - but also the most interesting - logical rela
tionships combine disJunction, conjunction, and negation. These are called
De Morgan's Laws after the nineteenth century mathematician Augustus De
Morgan (1806-1871), although the basic concept was known to Aristotle:

-(X v Y) eq. -X &:-Y

-(X &: Y) eq. -X v-Y

These equivalences are evident in common speech. For example, "It's not rain
ing or snowing" or - (X v Y) is the same as "It's not raining, and it's not snowing"
or-X &:-Y. When I'm informed, "You're certainly not rich and handsome, alas"
or-eX &: Y), I can only conclude, "I suppose I'm either poor or I'm ugly ... or
both," or-X v-Yo

Notice that De Morgan's Laws can be written with all the negation signs clumped
together:

XvY eq. -(-X&:-Y)

X&:Y eq. -(-Xv-Y)

In the truth tables for the v and &: operations, you can change all the falses
to trues and all the trues to faises, and you end up with the truth table for the
opposite operation. This is known as the "pnnciple of duality" and it applies to
complex sentences as well. Here's one:

X&:-YvZ

Negate everything and swap v and &: (but remember to keep any implied
parentheses intact) and the new sentence is the negation of the original sentence:

-Xv(Y &:-Z)

If you wanted to venfy that these two sentences are, in fact, negations of each
other, you might construct a little truth table to test all the values:

x y Z X&-Yv Z -Xv(Y& -Z)
F F F F T
F F T F T
F T F F T
F T T F T
T F F T F
T F T T F
T T F F T
T T T T F
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The final two columns have opposite truth values, so:

X &-Yv 2 eq. -(-Xv (Y &-2))

There is no operator for the exclusive or, but the following formula does it:

(X v Y) & -(X & Y)

Here's a truth table that shows how the sentence works:

x y X vY X&Y (Xv Y)&-(X & Y)
F F F F F
F T T F T
T F T F T
T T T T F

The exclusive-or is just like the regular disjunction except when both X and Yare
true.

Ifyou apply De Morgan's Laws to the second halfof the sentence for exclusive-or,
you get:

(X v Y) & (-X v-Y)

You might like the symmetry of this version more.
Computer circuitry uses an exclusive-or to calculate the sum of two binary

digits, and a conjunction for the carry bit.8

The third binary operation is the tricky one. It's called "implication." You can
read X ~ Y as "X implies Y" or "if X, then Y." Be forewarned that many people
have a "something wrong here" reaction when first confronting the truth table for
implication:

X Y X~Y

F F T
F T T
T F F
T T T

The top two entries might seem strange. If X is false, why should X~ Y be true
regardless of the value of Y? One way to look at it is to begin by assuming X~ Y
is true. IfX~ Y is true and X is true, then Y must be true. However, if X isn't true
then what does that say about Y? Nothing. Y can be anything. That's why X ~ Y
can be true if X is false regardless of Y.

8Charles Petzold, Code The Hidden Language of Computer Hardware and Software (Microsoft Press, 1999),

ch 12
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Consider the sentence, "If it's raining then it's precipitating." That sentence is
true if it's raining but it's also true if it's not raining. The only time that sentence
is false is when it's raining but not precipitating.

Implication is used a lot in mathematical logic. Very often to the left of the
implication sign is a formula that we know to be true. If we can then show that
the sentence itself is true, we can conclude that the formula on the nght is true.

Implication is not commutative and not associative However,

x -+ Y eq. -Y -+ -X

The second sentence is called the contrapositive. If it's raining then I'm taking an
umbrella. I don't have my umbrella so it must not be raining. Implication has a
very simple relationship with diSJunction:

X -+ Y eq. -XvY

In other words, X -+ Y is true if either X is false or Y is true. It's also possible to
express implication in terms of conjunction:

X -+ Y eq. -(X &--Y)

If a conjunction of any number of terms is on the left of the implication sign,
then anyone of those terms can be on the right:

X&-Y -+ X

X&-Y -+ Y

Hilbert &- Ackermann describe a biconditional (or "if and only if') operation
symbolized with a tilde:

x y x,.....,y

F F T
F T F
T F F
T T T

X ,....., Y is true only if X and Y have the same truth values. Turing does not
use the biconditional at all In his paper Still, it's instructive to observe that it is
equivalent to the conjunction of implications going both ways:

X ,....., Y eq. (X -+ Y) &- (Y -+ X)

If you accept that this equivalence makes sense, then the only way it works is if
T -+T is true (which we all accept) and F -+ F is also true (which is one of the iffy
ones). Also, T -+ F and F-+ T must have opposite truth values. Everybody agrees
that T -+ F must be false, which means that F -+ T must be true. This confirms
the correctness of the truth table for implication.
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Suppose I give you the following sentence:

X v Yv (-X &-Y)

What can you tell me about it? Is it true or false? You might object and say that
you can't tell whether it's true or false unless you know the values of X and Y. I'll
then suggest that you set up a truth table to test all the combinations of X and Y.
Here it is:

x Y X vYv (-X &-Y)
F F T
F T T
T F T
T T T

Regardless of the individual values of X and Y, this sentence is always true. We say
that such a sentence is a tautology, or that it is universally valid. Universally valid
sentences are much loved in mathematical logic because they are true regardless
of the truth values of the individual propositions.

Let's try another:

X Y X&Y&-X
F F F
F T F
T F F
T T F

That sentence is never true. It is a contradiction. The negation of a tautology is a
contradiction, and the negation of a contradiction is a tautology.

Here's a third:

X Y Xv(Y &-Y)
F F F
F T F
T F T
T T T

This sentence is sometimes true and sometimes false depending on the values of
X and Y. This sentence is said to be satisfiable - the sentence has the ability to be
true with a certain combination of propositional values.

A sentence that is universally valid (a tautology) is also considered to be
satisfiable. A sentence is universally valid if and only if the negation of that
sentence is not satisfiable.

For any sentence, we can use a truth table to determine whether that sentence is
universally valid, a contradiction, or merely satisfiable. The process of evaluating
a truth table is mechanical. It doesn't require any special inspiration, insights,
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or intuition. If you're a computer programmer, you can easily imagine writing a
program that reads a sentence in propositional logic, evaluates it, and prints the
words "valid" or "contradiction" or "satisfiable."

For this reason, we say that sentences in the propositional calculus are decidable.
A decision procedure exists to determine the validity, or satisfiability, of any arbitrary
sentence in propositional logic.

In other words, the Entscheidungsproblem for the propositional calculus has
been solved. We can all go home early today.

This is not to say that a truth table is always practical. Suppose a sentence
has 100 propositional variables. The number of lines in the truth table is 2100
or 1,267,650,600,228,229,401,496,703,205,376, or about 1030, which is a very
large number. Even with a futuristic computer that processes each line in 1
nanosecond - a billionth of a second, or the length of time required for light to
travel approximately one foot - the processing time would be 38 trillion years,
about 3,000 times the current age of the universe.

The good news is this: If you restrict yourself to 55 propositional variables, and
you're still able to process each line in 1 nanosecond, you'd only have to wait
about a year. Each new variable doubles the processing time. In computability
and complexity theory, the computing time for processing truth tables is known
as exponential time because it relates exponentially to the size of the problem.

For those reasons, solutions other than truth tables are valuable for evaluat
ing sentences in propositional logic. These techniques often involve putting the
sentence in a normal form, which is either a conjunction of multiple terms, each
of which is a disjunction of vanables, or a disjunction of multiple terms, each of
which is a conjunction of variables.

This concludes my all-too-hasty overview of propositional logic. We must move
on because propositional logic is insufficient for many purposes. The big problem
with propositional logic is that we're dealing with entire declarative sentences,
and we can't relate the internals of different sentences to each other. Propositional
logic fails when attempting to analyze Aristotelian syllogisms ("All men are mortal;
Socrates is a man; hence...") or the straightforward sorites devised by Lewis
Carroll ("No kitten, that loves fish, is unteachable; No kitten without a tail can
play with a gorilla; Kittens with whiskers always love fish; No teachable kitten has
green eyes; No kittens have tails unless they have whiskers; hence...9).

We can make logic more powerful by introducing propositional functions or
predicates. (The first term is the one that Turing prefers; the second is somewhat
more modem. I'll use the two terms interchangeably.) The term predicate comes
from grammar, in which sentences are divided into subjects and predicates. For

9LeWlS Carroll, Symbolic logIC Part I Elementary (Macmillan, 1896), 118 The solution is "No kitten WIth

green eyes will play WIth a gonlla "But you knew that l
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example, in the sentence ''The politician speaks great truths," the subject is "The
politician" and the predicate is "speaks great truths."

The introduction of predicates is the first step to turning propositional logic into
first-order predicate logic. Whenever we use predicates, we're restricting ourselves
to a specific domain or population. In real life, this domain is very often the natural
numbers. Individuals from this population are arguments to the predicates.

In Hilbert &: Ackermann (and in Turing), predicates look like functions, but
they only have values of true and false. I like to use whole words or multiple words
for my predicates, such as IsPrime. The domain of the IsPrime predicate consists
of natural numbers, so that IsPrime(7) is true but IsPrime(9) is false. Individuals
from the domain can be symbolized by lower-case letters that serve as variables,
for example IsPrime(x).

Whenever a predicate has an explicit argument, then the predicate with its
argument becomes a proposition. For example, IsPrime(lO) is the same as the
proposition ''Ten is a prime." This is one way in which predicate logic relates to
propositional logic.

Predicates can have multiple arguments. Suppose you're dealing with a domain
consisting of your friends, all of whom have unique names. The predicate Loves

(x,y) is true if person x loves persony. For example, Loves(Pat, Terry) is the same as
the proposition "Pat loves Terry." Some predicates have commutative arguments,
but not this one, so Loves(Pat, Terry) is not the same as Loves(Terry, Pat).

We can combine predicates with the same connectives used with propositional
logic. The sentence

Loves(Pat, Terry) &: Loves(Terry, Pat)

is true if they both love each other, and

Loves(Pat, Terry) '" Loves(Terry, Pat)

is true if their feelings (whatever they may be) are reciprocated.
What does this mean?

Loves(x, Pat)

It's not quite entirely clear. If it has any meaning at all, we might guess that it
means that everybody loves Pat. Or maybe at least somebody loves Pat.

To avoid ambiguities like these, we must also introduce two quantifiers, which
Turing calls quantors. The first is the universal quantifier, which consists of the
variable enclosed in parentheses before the predicate:

(x)Loves(x, Pat)

The x in parentheses means "for all x." That formula is true if "for all x, x loves
Pat." It's true if everybody loves Pat. This formula

(x)Loves(Pat, x)
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is true if Pat loves everybody. The symbol V is often used for the universal
quantifier, but not by Hilbert &: Ackermann or Turing.

The second type of quantifier is the existential quantifier, which translates as
"there exists." Hilbert &: Ackermann use a regular E for the existential quantifier
but Turing prefers the more common 3. For example,

(3x)Loves(x, Terry)

means that "there exists an x such that x loves Terry" or somebody loves Terry - at
least one person, even if that person is Terry.

In first-order logic (what Hilbert &: Ackermann called the restricted calculus),
quantifiers are applied only to variables denoting individuals from the domain. In
second-order logic (or the extended calculus), quantifiers can be applied to variables
representing propositional functions. Turing's paper involves only first-order logic.

If we're dealing with a finite population, then the universal quantifier can be
expressed as a conjunction, and the existential quantifier as a disjunction. For
example, suppose our entire population consists of just Pat, Terry, and Kim. The
formula:

(x)Loves(Kim, x)

is equivalent to the conjunction:

Loves(Kim, Pat) &: Loves(Kim, Terry) &: Loves(Kim, Kim)

All those individual predicates must be true for the sentence to be true. The
formula

(3x)Loves(Kim, x)

is equivalent to:

Loves(Kim, Pat) v Loves(Kim, Terry) v Loves(Kim, Kim)

Only one of the predicates need be true for the sentence to be true.
If you recall the duality of De Morgan's Theorem and you apply that to these

two formulas, you probably won't be inordinately surprised to discover that the
universal and existential quantifiers can be represented in terms ofeach other when
negation is introduced. These two equivalent formulas are true if not everyone
loves Terry:

-(x)Loves(x, Terry) eq. (3x)-Loves(x, Terry)

The following two formulas are both true if nobody loves Terry:

(x)-Loves(x, Terry) eq. -(3x)Loves(x, Terry)

Similarly,
(x)Loves(x, Terry) eq. -(3x)-Loves(x, Terry)
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The formula on the right can be translated as, "it is not the case that there exists
someone who does not love Terry." Similarly,

(3x)Loves(x, Terry) eq. -(x)-Loves(x, Terry)

It is not the case that nobody loves Terry.
When American mathematician Charles Sanders Peirce (1839-1914) devel

oped his logical quantifiers, he used the symbol L:, commonly associated with
summation, for the existential quantifier and n, the symbol for a compound
product, for the universal quantifier, further emphasizing the relationship between
logic and binary arithmetic.

The x that I've been using in these formulas is known as a bound variable

because it is attached to the quantifier. It serves the same role as a variable function
argument. Any variable that is not part of a universal or existential quantifier is
known as afree variable. In the following formula, x is bound buty is free:

(3x)Loves(x, y)

Free or bound variables can be changed, but only if they don't clash with other
variables. For example, we can change the x in the preceding formula to z:

(3z)Loves(z, y)

The formula has exactly the same meaning, but we can't change the bound variable
to a y because it would then clash with the free variable and become something
completely different.

A single formula cannot contain a bound variable and a free variable that are
the same. A formula in first-order logic containing no free variables can be referred
to as a sentence or a proposition. It is not proper to use these words to describe
formulas that contain free variables.

Bound variables have a scope often indicated by parentheses. In the following
sentence, x is bound throughout the parenthetical expression:

(x) (Loves(x, Kim) &: Loves(x, Pat)]

Notice the use of brackets instead of parentheses just to make the statement more
readable. The sentence means that everybody loves Kim and loves Pat; it has the
same meaning as:

(x)Loves(x, Kim) &: (x)Loves(x, Pat)

Now those two bound variables are independent of each other, and one or the
other can be changed:

(y)Loves(y, Kim) &: (x)Loves(x, Pat)

The following statement is true if someone loves both Kim and Pat:

(3x)(Loves(x, Kim) &: Loves(x, Pat)]
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However, the meaning changes when you separate the two predicates:

(3x)Loves(x, Kim) &: (3x)Loves(x, Pat)

Now there's someone who loves Kim and someone who loves Pat, but it's not
necessarily the same person.

Now replace the conjunction I've been using in the last several formulas with a
disjunction:

(x) [Loves(x, Kim) v Loves(x, Pat)]

That's true if every person either loves Kim or loves Pat (or both). It's true if Terry
loves Kim but not Pat, and if Terry loves Pat but not Kim. The sentence meaning
changes when you separate the two predicates:

(x)Loves(x, Kim) v (x)Loves(x, Pat)

This is true only if everybody loves Kim or everybody loves Pat or everybody loves
both.

Here's an existential quantifier applied over a disjunction:

(3x)[Loves(x, Kim) v Loves(x, Pat)]

There exists a person who loves either Kim or Pat or both. Separating the two
predicates retains the meaning:

(3x)Loves(x, Kim) v (3x)Loves(x, Pat)

Two basic relationships apply to all propositional functions. In both examples,
A is a predicate and a is a member of the domain. The first relationship is:

(x)A(x) ---+ A(a)

If the predicate is true for everyone, then it's true for any individual. The second
is this:

A(a) ---+ (3x)A(x)

Quantifiers can be stacked. For example,

(3x)(y)Loves(x, y)

This is interpreted as if the quantifiers were grouped like this:

(3x)[(y)Loves(x, y)]

It's true if there exists a person who loves everybody. The meaning is not quite the
same when you switch the order of the quantifiers:

(y)(3x)Loves(x, y)
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This is true if everyone is loved by somebody, but not necessarily by the same
person. For example, if Kim loves Kim, and Terry loves Terry, but they don't love
each other, then:

(y)(3x)Loves(x, y)

is true but,
(3x)(y)Loves(x, y)

is not. If the sentence beginning with the existential quantifier is true, however,
then so is the other one. This relationship is encapsulated in Theorem *11.26 from
Principia Mathematica that you saw at the beginning of this chapter:

*11 ·26. 1-: .(3x) : (y).</>(x, y) :~: (y) : (3x).</>(x, y)

where </>(x, y) is a predicate. In the notation that Turing uses, that's:

(3x)(y)</>(x, y) ---+ (y)(3x)</>(x, y)

When a string ofconsecutive universal quantifiers appears in a formula, they can
be rearranged without changing anything. The same is true for a string ofexistential
quantifiers. (Convert the sentence to a compound conjunction or disjunction to
convince yourself this is so.) In general, however, a series of interspersed universal
quantifiers and existential quantifiers cannot be rearranged without changing the
meaning of the formula.

Just as with propositional logic, formulas can be evaluated without regard to
the meanings of the domain and the predicates. The formula

(x)[F(x) v -F(x)]

is considered to be universally valid because it's true regardless of the domain and
the definition of the propositional function F. The following formula, however, is
never true:

(3x)(F(x) & -F(x))

Such a formula is said to be refutable. Then there are the formulas that fall
somewhere in between. This one is very simple:

(x)F(x)

It's easy to come up with a domain for x and a function F where this is true.
Suppose the domain consists of natural numbers and F means "greater than or
equal to zero." It's equally easy to identify a domain and function where it's
false. Suppose F returns true if the argument is prime. This formula is said to be
"satisfiable" because it's true under some interpretations.

Validity and satisfiability are flip sides of the same problem because the concepts
are related: A sentence is either satisfiable or refutable. If sentence 2i is valid, then
it is also satisfiable (but not necessarily the other way around). If ill is satisfiable
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but not valid, then -~i is also satisfiable but not refutable. ill is valid if and only
if-~i is not satisfiable.

The words validity and satisfiability are sometimes associated with a semantic
approach to mathematical logic, so called because it's referring to the truth meaning
of the sentences involved.

Another approach to mathematical logic is syntactic in nature. You begin with
axioms and derive theorems. Such theorems are said to be provable, meaning that
they are a consequence of the axioms. With the syntactic approach to logic, it's
not necessary to get involved with messy - possibly metaphysical - concepts
of truth.

For propositional logic, Hilbert &: Ackermann stated four rather obvious axioms
derived from Principia Mathematica:

(a) Xv X -+ X
(b) X -+ X v Y

(c) X v Y -+ Y v X
(d) (X -+ Y) -+ (2 v X -+ 2 v Y)

Although the axioms refer only to disjunction and implication, we can apply
them to conjunction as well if we define X &: Y as an abbreviation for -(-X
v-Y).

For first-order logic, Hilbert &: Ackermann added two more axioms. For any
predicate F, the following statements are axioms:

(e) (x)F(x) -+ F(y)
<0 F(y) -+ (3x)F(x)

In addition to the axioms are rules for obtaining complex statements from
primitive statements:

1. Substitution: A propositional variable can be consistently replaced with a
formula while avoiding clashes among bound and free variables; free and
bound variables can be changed if clashes are avoided; predicates can be
replaced with formulas.

2. Implication: If formula ill is true, and if formula ill -+ Q) is true, then Q)
is true.

This second rule is known as modus ponens (mode of affirmation). It seems to
be obvious, but it really must be an axiom. You can't derive it, and if you think
you can, you might want to take a look at Lewis Carroll's essay "What the Tortoise
Said to Achilles.,,10

IOl.eWlS Carroll, "What the Tortoise Said to Achilles," Mind, New Senes, Vol 4, No 14 (Apr 1895),

278-280, and frequently republished



218 The Annotated Turing

Anything that can be derived from these six axioms and two rules is known as
a theorem. The derivation itself is known as a proof. Any formula that is the result
of a proof is said to be provable. A theorem is a provable formula.

For example, if 21 and Q) are both theorems, then by axiom (c) and rule (1) we
can say that

is provable and hence also a theorem.
The rules go both ways: You can begin with axioms and use the rules to derive

theorems, or you can begin with a formula and use the rules to convert it into an
axiom, in which case you can classify the formula as a theorem. The automated
proof programs I discussed at the beginning of this chapter began With theorems
from Principia Mathematica and applied the axioms and substitution rules to reduce
them to axioms.

As you can see, Hilbert's formalization of mathematics seemed to reduce it to a
mechanical process of symbol manipulation. This was evident to Henri Poincare
(1854-1912), who wrote that "we might imagine a machine where we put in
axioms at one end and take out theorems at the other, like that legendary machine
in Chicago where pigs go in alive and come out transformed into hams and
sausages."Il

You can even mechanically enumerate all the theorems in a systematic manner.
You begin with the axioms, which you extend to any number of propositional
variables and any number of predicates, and then you apply the substitution and
implication rules in every possible combination.

By definition, a theorem is a formula that is derivable from the axioms, so this
enumeration of theorems yields every possible theorem. A question then raises
itself: Are these theorems the same as the universally valid formulas? Or might
there be some universally valid formulas that cannot be generated based on the
axioms?

Using Hilbert and Ackermann's book as a springboard, Kurt G6del established
the equivalence between the semantic and syntactic approaches to first-order logic
first in his 1929 doctoral thesis, "Uber die Vollstimdigkeit des Logikkalkuls" ("On
the Completeness of the Calculus of Logic"), and then in the 1930 paper "Die
Vollstandigkeit der Axiome des logischen Funktionenkalkuls" ("The Completeness
of the Axioms of the Functional Calculus of Logic").

Prior to Godel, it had already been known that every provable formula was
also universally valid. This is known as soundness, and it's essential to a logical

IlHenn Poincare, Science and Method, translated by Francis Maitland (Thomas Nelson & Sons, 1914,

Dover, 2003), 147
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system. What Godel proved was that every universally valid formula was also
provable. This is one possible definition of "completeness" of a logical system, and
indeed, the titles of Godel's papers refer to Vollstandigkeit - completeness. Godel's
Completeness Theorem demonstrated that the axioms are complete - that the
axiomatic system proposed by Hilbert &: Ackermann for the pure predicate logic
is sufficient for enumerating every universally valid statement in that logic.

It might be supposed that the enumeration of theorems and Gbdel's Complete
ness Theorem provide the basis for a decision procedure for first-order logic. For
example, suppose you want to determine the provability of formula 21. You begin
enumerating all the theorems and comparing them with 21. If 21 is not provable,
however, you won't get a match, and you won't know when to stop.

Yes, I know that you're cleverer than that: Your approach is to enumerate all
the theorems and compare each theorem and its negation to 21 (or you compare each
theorem to 21 and its negation). You're still not guaranteed to get a match because
21 might be merely satisfiable and not universally valid or refutable. For this
reason, an enumeration-based decision procedure is said to be only semi-decidable.
Only if you know beforehand that either 21 or -21 is universally valid will the
procedure successfully come to a conclusion. Even after Godel's 1930 papers, the
Entscheidungsproblem for first-order logic was still an open question.

Godel's more famous paper was published in 1931, and involved an application
of first-order logic to basic arithmetic - addition and multiplication. Using this
arithmetic, Godel was able to associate a number with every formula and every
proof. Godel created a predicate named Bew for beweisbar, meaning provable, and
was able to apply this predicate to the Godel number of its negation, creating a
formula that asserts its own unprovability.

Thus, within a logical system supporting basic arithmetic, it is possible to
develop propositions that can be neither proved nor disproved. Although this
concept has come to be known as the Gbdel Incompleteness Theorem, the title of
the paper is actually "Uber formal unentscheidbare Satze der Principia mathematica
under verwandter Systeme I" ("On Formally Undecidable Propositions of Principia
Mathematica and Related Systems 1").12 The title refers not to completeness or
incompleteness but to unentscheidbare Satze - undecidable propositions.

Does Godel's Incompleteness Theorem spell doom for a general decision
procedure? Not necessarily, although a general decision procedure certainly
seemed more unlikely in 1931 than in 1930. Gbdel's Incompleteness Theorem
is about undecidable propositions, while the Entscheidungsproblem concerns the

12All three Godel papers I've cited are most conveniently available in Kurt Godel, Collected Works Volume I,

Publications 1929-1936 (Oxford University Press, 1986)
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existence of a general process to determine the provability of any given formula.
A decision procedure, if it existed, would classify an undecidable proposition as
unprovable.

The early computer programs that proved theorems from the pages of Principia
Mathematica definitely did not do so by starting with the axioms and systematically
deriving all provable formulas. The Newell-Simon-Shaw paper refers to this
as the "British Museum algorithm," so called because it's akin to searching through
the British Museum and examining each object in hopes of discovering the precise
one you want. This brute-force approach was rejected by these early researchers
as soon as it was considered. As Martin Davis put it,

[Ilt was all too obvious that an attempt to generate a proof of
something non-trivial by beginning with the axioms of some log
ical system and systematically applying the rules of inference in
all possible directions was sure to lead to a gigantic combinato
nal explosion. 13

Only one programmer operated without fear of combinatorial explosions, and
that was Alan Turing. TUring's imaginary computers have unlimited storage and
all the time in the world, so Turing can journey where more machine-bound
programmers fear to tread.

In the previous chapter I left off in the middle of Section 9, "The extent of the
computable numbers." Turing had begun Section 9 with a need to convince us
that the numbers computable by his machine include "all numbers which would
naturally be regarded as computable" (pg. 249 of Turing's paper; page 190 in this
book).

Turing then began with a section headed by Roman numeral I (meaning the
first of several arguments) and 'Type (a)" meaning "A direct appeal to intuition."
The next section coming up begins with a heading of Roman numeral II because
it's the second of Tunng's arguments, and 'Type (b)" which he indicated was "A
proof of the equivalence of two definitions (in case the new definition has greater
intuitive appeal)."

The single sentence that follows this heading has three footnotes. The first
footnote only clarifies that he's talking about the restricted functional calculus,
which is what we know as first-order predicate logic. I want you to ignore the
second footnote for the moment. I'll discuss it soon enough.

13Martin Davis, "The Early History of Automated Deduction," in Alan Robinson and Andrei Voronkov,

eds, Handbook of Automated Reasoning (MIT Press, 2001), Vol I, 3-15
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II. lType (hll.

If the notation of the Hilbert functional calculus t is modified so as to
be systematic, and so as to involve only a finite number of symbols, it
becomes possible to construct an automatic;: machine, rK, which will find
all the provable formulae of the calculus~.

; The expression "the functional calculus" is used throughout to mean the restricted
Hilbert functional calculus

It is most natural to construct first a choIce machine (* 2) to do this. But it is

then easy to construct the required automatic machine. We can suppose that the choices

are always choices betwpen two possibilities 0 and 1 Each proof will then be determined

by a sequence of chOIces 11.1~, ... ,I" ([I = 0 or 1,12 = 0 or 1, ... ,i" = 0 or 1), and hence

the number 2" + lj2" 1 H~2" 2+ ... +1" completely determines the proof. The automatic
machine carries out successively proof 1, proof 2, proof 3, ....

~ The author has found a descriptIOn of such a machine

I believe Turing calls the machine fJ< to stand for the German word Kalkii!.
Although not entirely obvious in this sentence, you'll see eventually that Turing is
describing a British Museum algorithm. The machine fJ< begins WIth axioms either
already encoded on the tape or, alternatively, the machine begins by wnting the
axioms on the tape. These are the basic axioms of first-order logic plus whatever
other axioms are required for additional predicates. The machine implements
the inference rules progressively to generate all the provable statements of the
calculus.

Tunng requires that the notation of first-order logic "be modified so as to be
systematic." Surely we don't want to worry about the equivalence of statements
that differ solely in the use of variable names or unnecessary parentheses. For
example, these three statements must be regarded as identical:

(x)(3y)¢(x, y)

(y)(3x)¢(y, x)

(x)(3y)(¢(x, y))

The notation can be made systematic by requiring that variables always be
of the form Xi, and that they must appear in a particular formula in numeric
order of the subscript. Moreover, parentheses must be used only where they're
needed to govern the order of operations. Alternatively (and most likely in a
practical machine), the formulas could be encoded in a prefix notation that makes
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parentheses unnecessary, such as the so-called Polish notation thatJan Lukasiewicz
0878-1956) invented specifically for propositional logic. Rather than

(A v B) & (C v D)

the statement would be encoded as:

&vABvCD

What's important here is that this machine generates all provable formulas. We
know from the Godel Completeness Theorem that this collection is the same as all
universally valid formulas.

I believe that Turing is attempting here to appeal to those early readers of
his paper who might be skeptical about the ability of his machines to compute
real numbers of any arbitrary degree of complexity. In 1936 there was much
more trust in the efficacy of first-order logic than computing machines. From an
implementation viewpoint, this 'J< machine seems quite feasible. It is certainly
much simpler than machines that compute real numbers such as the seventh root
of 10. Machine 'J< works solely with strings of symbols and pastes them together
in various ways through rules of substitution. Much of the string comparison and
substitution logic has already been presented in the functions Turing used in the
Universal Machine.

The second footnote of this sentence - the footnote that begins, "It is most nat
ural to construct ..." - actually seems to describe a somewhat different approach
that would be more suitable for propositional logic than first-order logic. Given a
fixed number n of propositional variables, you can develop a system to generate all
well-formed formulas by interspersing these variables with the logical connectives.
For each of these formulas, you then test whether the formula is a tautology using
a truth-table approach.

If this well-formed formula has n propositional variables, then 2n tests are
required to determine whether the formula is valid. If you think of true and false as
the binary digits 1 and 0, then each test corresponds to an n-digit binary number
where each digit represents the truth value of one variable. In Turing's footnote,
this n-digit binary number is slightly incorrect, and the 2n term at the beginning
must be deleted. The trials can be numbered beginning with 0 and ending with
(n-l) to correspond with the value of the n-digit binary number.

Although Turing needs to use this 'J< machine to generate statements in
first-order logic rather than propositional logic, you'll see that whenever he
requires integers, he only requires a finite domain of non-negative integers. At no
time does he require an infinite domain, so conceivably his first-order formulas
could be converted to propositional formulas, and he could then use a truth-table
solution.

The introduction of natural numbers into a system of first-order logic is always
somewhat messy but pretty much essential if we're going to apply the logic to
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numeric concepts. Merging numbers into logic usually begins with a variation of
the Peano Axioms. These are five axioms extracted from an original nine axioms
presented by Giuseppe Peano in his small 1889 book The Principles of Arithmetic,
Presented by a New Method,14 but based on Richard Dedekind's 1888 pamphlet
Was sind und was sollen die Zahlen? (What are and What should be the Numbers?). 15

The Peano Axioms are built around the concept of a "successor," which is
intuitively the number that comes right after a number. For example, the successor
to 12 is 13. The Peano Axioms ensure that every number has a successor, and that
this successor is unique. Only one number is not the successor to any number.
In Peano's formulation, that number is 1, but these days the natural numbers are
generally defined to begin with zero.

Here's one version of the Peano Axioms in plain English:

1. Zero is a number.
2. Every number has a successor that is also a number.
3. Zero is not the successor to any number.
4. Two numbers that are the successors to the same number are equal.
5. If something is true for zero, and if the fact that it's true for some number

implies that it's true for the successor of that number, then it's true for all
numbers.

The fifth axiom is commonly known as the principle of mathematical induction,
and it forms the basis of many mathematical proofs about the natural numbers.
(Turing will use it twice in proofs in the next two chapters.) Nevertheless,
expressing induction in the language of first-order logic is problematic. Induction
is inherently a concept ofsecond-order logic because it must apply to all predicates
that have arguments of natural numbers. The concept of equality is a second-order
concept as well, and that's why you'll see a reluctance among logicians - and
Turing in this paper - to introduce a predicate that is true if two arguments are
equal.

Even the task of encapsulating the first four Peano Axioms in the language
of first-order logic is not trivial and (as you'll see) Turing's representation is
inadequate. This problem has no real effect on his proof or conclusions, but it's
certainly disturbing.

Another problem involves representing the natural numbers themselves. The
quaint tradition of using 0, 1,2, 3, and so forth simply will not do. Nothing except
centuries of convention and the brutal indoctrination of grammar school tells us

14Excerpted in Jean van Heijenoort. ed, From Frege to Godel A Source Book in Mathematical Loglc,

1879-1931 (Harvard University Press, 1967),83-97 Complete version available in Selected Works of
Giuseppe Peano, translated and edited by Hubert C Kennedy (George Allen &: Unwin, 1973), 101-134

t5Repnnted in William Ewald, ed., From Kant to Hilbert A Source Book in the Foundations of Mathematics
(Oxford University Press, 1996), Vol n,787-833
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that the successor of 12 is 13. Particularly if we're conceiving mechanical forms of
symbol manipulation, a much better approach is to have symbols that themselves
convey the concept of successorship.

In the first volume of Grundlagen der Mathematik (1934) - a book that Turing
later refers to in his paper - Paul Bemays uses prime marks to indicate that one
number is the successor to another. For example, if a is a number, then a' is
the successor to that number, and a" is the next successor. Bemays also uses the
symbol 0 to represent zero, in which case 0' is the successor to zero, and 0" is
the next successor. 16 What number is it really? Just count the prime marks on the
O. The earliest example I've seen of this notation in the works of Hilbert and his
followers is in David Hilbert's 1927 "Foundations of Mathematics."17

Turing doesn't take quite this approach. He is apparently reluctant to use even
the 0 symbol. Instead he uses the symbol u as the first natural number. (He's
somewhat vague whether u is 0 or 1 or even if it matters. In my examples I've
assumed that u is 0.) The successors of u are then u', u", u'" and so forth. This
notation could get unwieldy for large numbers, and it doesn't let us represent an
arbitrary number such as n or x. Taking a cue from Hilbert & Bemays, Turing
uses the notation u(r) to indicate r prime marks on u. For example, u"'" can be
represented as U(5), which we know as the number of fingers on one human hand.

Turing defines a propositional function N(x) which is true ifx is a non-negative
integer. If we're restricting ourselves to a universe of non-negative integers anyway,
this function doesn't really tell us anything, but Turing finds it useful to express
the Peano Axioms.

Turing also defines a propositional function F(x, y) which is true if y is the
successor to x, or in common arithmetic, y = x + 1. Keep in mind that F does
not provide the successor or calculate the successor. It is what programmers call a
Boolean function. It is intended to be true only if y is actually the successor to x.

Once you have a good successor predicate (named Succ, for example, just to
distinguish it from Turing's), and you've established an axiom for mathematical
induction, it's possible to define a predicate named Sum(x, y, z) that is true if z

equals x +y. The Sum predicate is based on the following three axioms:

(x)Sum(x, u, x)

(x)Sum(u, x, x)

(x)Cy)(z)(r)(s)(Sum(x, y, z) & SuccCy, r) & Succ(z, s) ~ Sum(x, r, s))

The first two axioms define the addition of zero to any number. The third says
that if x + y = Z and r = y + 1 and s = Z + 1 then x + r = s.

160aVid Hilben and Paul Bemays, Grundlagen der Mathematik, Volume I (Spnnger, 1934),218

l70aVid Hilben, "Foundations of Mathematics," From Frege to Glide!, 467
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It's possible to define a Product(x, y, z) predicate similarly:

(x)Product(x, u, u)

(x)Product(u, x, u)

(x)(y)(z)(r)(s)(Product(x, y, z) &: Succ(y, r) &: Sum(z, x, s)

~ Product(x, r, s))

The first two axioms define multiplication by zero, and the third says that if x
x y = Z and r = y + 1 and Z + x = s then x x r = s.

Let's go a little further. The predicate IsEven(x) can be defined as:

(3y)Product(y, u", x)

IsEven(x) is true if there exists a y such that x = y x 2. The predicate IsOdd(x) is
the same as -IsEven(x) , and here I'll stop because I have enough for my examples.

Now let a be a sequence, and let us denote by G,,(x) the proposition
"The x-th figure of a is 1", so that l! -G,,(x) means "The x-th figure of a
is 0".

II The negation sign is written before an expression and not over it.

That footnote is where Turing indicates he's using a negation symbol that differs
from Hilbert's. This a is a sequence that we'd normally compute by designing a
dedicated machine. Turing suggests here that we instead derive predicates that
are true and false corresponding to digits 1 and O. For example, the sequence
corresponding to the square root of two, developed in Chapter 6, begins:

1011011010 ...

If we number the digits beginning with 0, then Ga(O) is true, GaO) is false,
Ga(2) is true, GaO) is true, Ga(4) is false, and so on. That's likely quite a complex
predicate. A much easier sequence is Turing's Example I machine:

0101010101 ...

This sequence, you'll recall, is the binary equivalent of 1/3. Apropositional function
that describes this sequence is easy if we define Ga(x) as IsOdd(x).

Suppose further that we can find a set of properties which define
the sequence a and which can be expressed in terms of G,,(x) and of the
propositional functions N(x) meaning "x is a non-negative integer" and
F(x, y) meaning "y = x + 1".
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Here is Turing's introduction of two predicates he will use through much of
the remainder of the paper. F is the successor function so crucial to defining the
natural numbers. I am much less convinced of the need for the N function if
the domain is explicitly restricted to the natural numbers.

I'm not sure what Turing means by a "set of properties." What we really want
here are axioms that support the propositional functions from which Ga(x) is
composed. In my simple example, these axioms would include the axioms for the
5um and Product predicates.

When we join all these formulae together
conjunctively, we shall have a formula, 9l say, which defines ct.

The conjunction of the axioms doesn't really define a so much as provide a
foundation for defining a.

Thetenns
of 21 must include the necessary parts of the Peano axioms, viz.,

(3u) N(u) & (x) (N(x) _ (3y) F(x,y») & (F(x,y) _ N(y»),

which we will abbreviate to P.

The P is for Peano, of course. This is a conjunction of three terms. The first
indicates that u exists; the second says that for every x there is a y that is its
successor, that the third indicates that a successor to a number is also a natural
number. This formula does not establish the uniqueness of zero, or the uniqueness
of successors, and that's a problem. Hilbert &: Bemays has the following three
axioms for the successor function (which they call 5).18

(x)(3y)5(x,y)

(3x)(y)-5(y,x)

(x)(y)(r)(s)(5(x, r)) &: 5(y, r) &: 5(s,x) -+ 5(s,y)

The first asserts that every number has a successor; the second says that there exists
a number that does not have a successor; the third says that if r is the successor
to x and y, and x is the successor to s, then y is also the successor to s, essentially
establishing the uniqueness of successors.

When we say "2l defines ct", we mean that - 9l is not a provable
formula, and also that, for each n, one of the following formulae (An) or

18Hilbert and Bemays, Grundlagen der Mathematik, Volume I, 209 I've modified the notation a bit to agree

Wlth Tunng's
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(Bn ) is provable.

21 & p.n) --+ Ga(u(n», (An)'I!

21 & p.n) --+ (-Ga(u(n»), (Bn),

where p.n) stands for F(u, u') & F(u', u") & ... F(u(n-l), u(n».

, A sequence of r primes is denoted by (r).

The footnote on the identifier for the (An) formula refers to the convention
of using a superscript in parentheses to indicate a series of prime marks. Turing
also uses a superscript on his successor function F to indicate a conjunction of
successor functions, essentially saying that 1 is the successor to 0,2 is the successor
to 1, and so forth.

Turing's conjunction of successor functions is inadequate because it does not
establish that these successors are unique. For example, what is the truth value of
F(u', u"')? Nothing is telling us that this is false. One simple possible correction
expands p<n) greatly (although still finitely) by including negations of all successor
predicates that are not true, such as-Feu, u") and-F(u', u), stopping at u(n).

The n here is the digit number, starting with digit 0 and progressively getting
higher. The sequence is generated from digit 0, digit 1, digit 2, and so forth. The
computation of each digit requires only a finite number of non-negative integers,
so the p<n) formula is a finite conjunction of terms. In some cases, however, the
formula might require a few more integers. For example, for digit 0, the formulas
indicate that only u is required, but in my example u" is also required for the
definition of the IsOdd function, so the superscript on F should really be the greater
of nand 2.

With that little fix, the following formulas will be provable:

Bo: ill &: F(2) ~ -lsOdd(u)

AI: ill &: P(2) ~ IsOdd(u')

B2: ill &: F(2) ~ -lsOdd(u")

A3 : ill &: P(3) ~ IsOdd(ulll
)

B4: ill &: F(4) ~ -lsOdd(u"")

As: ill &: P<S) ~ IsOdd(u"lII)

and so forth. ill, you'll recall, includes all the axioms required to support the IsOdd
function. These results correspond to the first six digits of the sequence: 0, 1,0, 1,
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0, 1. Notice that 1 digits correspond to An being provable, and °digits correspond
to the provability of Bn.

[253]

I say that a is then a computable sequence: a machine rKa to compute
a can be obtained by a fairly simple modification of r

/{.

The 'J<. machine, you'll recall, generated all provable formulas from the axioms.

We divide the motion of rKa into sections. The n-th section is devoted
to finding the n-th figure ofa. Mter the (n - l)-th section is finished a double
colon :: is printed after all the symbols, and the succeeding work is done
wholly on the squares to the right of this double colon. The first step is to
write the letter "A" followed by the formula (An) and then "B" followed
by (Bn ).

For this example and n equal to 5, the machine first writes "A" and "B" followed
by the two possibilities:

A ill & P(5) -+ IsOddCu lll
") B ill & P(5) -+ -IsOddCu"lII)

Not exactly, however: The "A" and "B" won't be boldfaced, the ill term will be the
explicit conjunction of all the axioms, P(5) will be an explicit conjunction of more
axioms, IsOdd will probably be a negation of the Product function shown earlier,
and all the functions will probably be given more cryptic names.

The point, however, is that one or the other of these two statements will be
provable. The machine has the entire tape to the right of these two printed formulas
to do its work. Perhaps it first writes the axioms on the tape and then begins the
work to derive the provable formulas.

The machine rKa then starts to do the work of '/{, but whenever
a provable formula is found, this formula is compared with (An) and with
(Bn ). If it is the same formula as (An), then the figure "I" is printed, and
the n-th section is finished. If it is (Bn ), then "0" is printed and the section
is finished. If it is different from both, then the work of 'I{ is continued
from the point at which it had been abandoned. Sooner or later one of
the formulae (An) or (En) is reached; this follows from our hypotheses
about a and 91, and the known nature of rl{. Hence the n-th section will
eventually be finished. rl<,. is circle-free; a is computable.
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It is conceivable that the 'J<a machine could be generalized much like Turing's
universal machine. It could begin with a tape on which the axioms have already
been encoded. Simply encode different axioms and a different function on the
tape, and the machine could calculate any sequence that is definable through
first-order logic.

It can also be shown that the numbers a definable in this way by the use
of axioms include all the computable numbers. This is done by describing
computing machines in terms of the function calculus.

Turing will actually describe a computing machine in terms of first-order logic
in the last section of his paper and the next chapter of this book. For now, he
wants to remind the reader that not every number can be computed by a machine,
particularly a sequence that tells us with Os and Is which Description Numbers
are those of satisfactory machines.

It must be remembered that we have attached rather a special meaning
to the phrase "91 defines a". The computable numbers do not include all
(in the ordinary sense) definable numbers. Let 8 be a sequence whose
n-th figure is 1 or 0 according as n is or is not satisfactory. It is an imme
diate consequence of the theorem of §8 that 8 is not computable. It is (so
far as we know at present) possible that any assigned number offigures of8
can be calculated, but not by a uniform process. When sufficiently many
figures of8 have been calculated, an essentially new method is necessary in
order to obtain more figures.

Turing has now finished with his second argument to justify that his machines
can compute numbers commonly regarded as computable. The third argument
follows. You might recall Turing's reliance on a human computer's "state of mind."
Some readers might regard that human state of mind as too amorphous a concept
to be encapsulated in a machine.

rlliet this chapter conclude without interrupting Turing's short description of
how a state of mind can actually be built into the structure of a machine.

III. This may be regarded as a modification of I or as a corollary of II.

We suppose, as in I, that the computation is carried out on a tape; but we
avoid introducing the "state of mind" by considering a more physical
and definite counterpart of it. It is always possible for the computer to
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break offfrom his work, to go away and forget all about it, and later to come
back and go on with it. Ifhe does this he must leave a note of instructions
(written in some standard form) explaining how the work is to be con
tinued. This note is the counterpart of the "state of mind". We will
suppose that the computer works in such a desultory manner that he never
does more than one step at a sitting. The note of instructions must enable
him to carry out one step and write the next note. Thus the state ofprogress
of the computation at any stage is completely determined by the note of

[254]
instructions and the symbols on the tape. That is, the state of the system
may be described by a single expression (sequence of symbols), consisting
of the symbols on the tape followed by t3. (which we suppose not to appear
elsewhere) and then by the note of instructions. This expression may be
called the "state formula". We know that the state formula at any
given stage is determined by the state formula before the last step was
made, and we assume that the relation ofthese two formulae is expressible
in the functional calculus. In other words, we assume that there is an
axiom ':11 which expresses the rules governing the behaviour of the
computer, in terms of the relation of the state formula at any stage to the
state formula at the preceding stage. If this is so, we can construct a
machine to write down the successive state formulae, and hence to
compute the required number.



Computable
Functions

W hen was the last time you put your personal computer to work calculating
the infinite digits of an irrational number? Unless you're one of those

people who recreationally run programs that calculate millions of digits of 'T{,

it's unlikely that any program you use calculates more digits than your favorite
calculator utility.

While it is obvious that Alan Turing established many principles and concepts of
computer programming in his paper, computing the infinite digits of real numbers
is certainly not typical of the activities of computers past, present, or future.

Instead, computers perform complex tasks that programmers have divided into
small chunks called functions or procedures or subroutines or methods (depending
on the particular programming language). These functions generally perform some
specific job in a finite period of time. They begin with some input, crunch that
input to create output, and then end, releasing control to some other function.

The concept of functions originated in mathematics. In general terms, a function
is a mathematical entity that transforms input into output. The input is known as
the argument to the function, or the independent variable; the output is known
as the function's value, or the dependent variable. Often functions are restricted to
particular types of numbers or other objects. The allowable input is known as the
function's domain. The possible resultant output values is known as the range.

Turing mentioned the concept of "computable functions" in the first paragraph
of his paper as a topic for future exploration:

Although the subject of this paper is ostensibly the computable
numbers, it is almost equally easy to define and investigate com
putable functions of an integral variable or a real or computable
variable, computable predicates, and so forth.... I hope shortly
to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a devel
opment of the theory of functions of a real variable expressed in
terms of computable numbers.
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x3 x5 xl
sin(x) = x - - + - - - + ...

3! 5! 7!
This is the formula that today's computers use to calculate the sine function,
although generally the calculation occurs in the computer's processor chip rather
than in software.

Computers cannot store arbitrary real numbers because real numbers have an
infinite number of decimal places. Instead, computers approximate real numbers
with rational numbers. In 1985, the Institute of Electrical and Electronics Engi
neers (IEEE) published the IEEE Standard for Binary Floating-Point Arithmetic
that's used by many computer systems to store numbers in a form suitable for rep
resentation with scientific notation. The popular double-precision format, for
example, stores a number using 64 bits: 1 bit for the sign (positive or negative),
11 for the exponent, and 52 for the mantissa, providing precision approximately
equivalent to 16 decimal digits.1 The real number 123.456 is essentially stored
as two integers: 8,687,443,681,197,687 (the mantissa) and 46 (the exponent),
because 8,687,443,681,197,687 -;- 246 approximately equals 123.456. That ratio
is a rational number, not a real number.

Turing didn't pursue these topics in precisely this way. As you'll discover in
Chapter 17, the concept of a computable function later became quite important
when Stephen Kleene (in his 1952 book Introduction to Metamathematics) and
Martin Davis (in his 1958 book Computability and Unsolvability) reformulated the
Turing Machine to calculate integer functions rather than to compute real numbers.

In a sense, we've already seen machines that implement functions. The Universal
Machine is such an animal because it takes as input a Standard Description of
a machine and creates output containing the complete configurations of that
machine, as well as the sequence the machine would have computed.

What about more traditional functions? What would they look like? Consider
the trigonometric sine function. The input is a number representing an angle,
generally in units of degrees or radians. That angle is assumed to be part of a right
triangle. The sine function calculates the ratio of the opposite side of that triangle
to the hypotenuse. More generally (and to define the sine function for angles
greater than 90 degrees) a line is drawn from the origin on a Cartesian coordinate
system to any point. For the angle that line makes with the X axis (measured in
a counter-clockwise direction), the sine function returns the ratio of the distance
from the end of the line to the X axis to the length of the line.

The domain of the sine function comprises all real numbers, although the
function cycles in value every 360 degrees or 2IT radians. The range - the values
of the function - consists of real numbers from -1 to 1, inclusive.

The actual calculation of the sine function involves an infinite series, where x is
in radians:

I Charles Petzold, Code The Hidden Language of Computer Hardware and Software (Microsoft Press, 1999),

ch 23
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When a computer calculates a sine, this approximation is essential because it
allows the function to finish in a finite period of time. Although the sine function is
calculated as an infinite series of terms, the absolute value of the terms gets smaller
and smaller. The function can stop when the terms no longer make a difference in
the desired precision of the result.

A Turing Machine, however, revels in infinite precision. When computing real
numbers, it just keeps going and going and gOing. When calculating the sine
function, that could be a real problem because each of the infinite number of
terms has an infinite number of digits. For example, suppose the angle is a simple
1 radian. The second term is 1/6, which requires an infinite number of digits
regardless of whether the number base is decimal or binary. If the machine needs
to calculate infinite digits of the second term, how can it move on to the third term?

One workable strategy is to calculate the first digit from each term in succession
until the term is so small that the first digit of the term is zero, and then calculate
the second digit from each term until the term is so small that the first two digits
of the term are zero, and so forth. This is obviously a complex process, particularly
if you don't want the machine to erase any digits of the result after it has calcu
lated them.

Implementing the sine function is only one problem. Where does the input
come from?

Perhaps our immediate instinct is to let a human user of the machine somehow
"type in" the angle when the machine needs it. This is a concept obviously inspired
by today's world of interactive computers and onscreen calculators, but the Turing
Machine would need to be redesigned somewhat to accept input of this sort. That's
a bit more work than we're ready for at this moment.

A second option is to "hard code" the input to the function within the machine
itself. For example, we could design a machine that specifically calculates the sine
of37.85 degrees. Although the machine would be limited to calculating the sine of
this particular angle, we might hope that we've designed the machine so it's fairly
easy to modify it for other angles.

A third approach is to encode the angle on the tape. The machine reads the
input, calculates the sine, and prints the result back on the tape. (I can tell you
like this approach! So do 1.)

A fourth approach is to let the machine generate its own input. For example, the
machine could first calculate the sine of zero degrees, then one degree, then two
degrees, and so forth, printing each result on the tape to create a whole "table" of
values. This approach would require the machine to limit itself to a finite number
of digits per result.

A fifth approach involves two different machines. The first machine computes
a real number, and the second machine computes the sine of that number. When
I speak of two machines, I'm really speaking of one machine that implements the
logic of the two machines. We've already seen machines combined in this way.
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In Section 8 (page 181-182 of this book) Turing combined a decision machine
gj with the Universal Machine CU to create a machine '2f( that analyzes standard
descriptions. The advantage to this approach is that we can "plug in" a different
first machine when we need to calculate the sine of a different angle.

None of these approaches is entirely free from problems. The big problem is
that the input to the sine function is a real number (at least in theory) and so is the
output, and real numbers have an infinite number of digits. It is not possible to
type in an infinite number of digits, or encode those digits on the tape.

In fact, even if you restnct yourself to nice, simple angles with a finite number
of decimal places, the sine function requires radians. There are 7l radians in 180
degrees, so a seemingly simple angle of 10 degrees is actually nl18 radians - a
transcendental number Wlth an infinite number of decimal places.

Now, we've got ourselves into a situation where one machine needs to calculate
nl18 while a second machine calculates the sine of that value, and both machines
are actually implemented in the same "meta-machine." The second machine can't
wait for the first machine to finish before beginning its own calculation! The two
machines need to work in tandem, a programming technique sometimes known
as dovetailing: As the machine calculating the angle completes a new digit, then the
machine calculating the sine of that angle must take over and calculate a new digit
of the result. This back-and-forth interplay between the two machines continues
forever.

At this point, you probably won't be surprised to learn that the Turing Machines
reformulated by Stephen Kleene and Martin DaVIs compute only number-theoretic
functions, that is, functions whose domains and ranges are both restricted to
non-negative integers. Both authors encode function input as strokes or tick
marks. For example, the number 7 is represented by simple vertical lines in 8
consecutive squares. (The number 0 requires 1 stroke.)

Generally, when you're calculating a function, you don't want the calculation to
go on forever. You want the function to finish so you can examine the result. For
this reason, the reformulated Turing Machines described by Kleene and Davis halt
when they're finished Wlth a calculation. Obviously, a machine dedicated to adding
or multiplying non-negative integers does not need to run forever. In the Kleene
and Davis formulation, machines that don't halt are considered bad machines.
Determining whether a Turing Machine will properly complete its calculation and
halt was termed - by Davis - as the halting problem. The halting problem has
subsequently become closely identified with Turing Machines, but the concept is
foreign to Turing's original paper.

Now that we've done a little bit of thinking about the inherent problems in
creating Turing Machines that work with functions of real numbers, we're ready
to study the approaches that Turing suggests in Section 10 of his paper.
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Section 10 is actually a continuation of Section 9. At the beginning of that
earlier section, Turing had promised three kinds of arguments concerning the
computing ability of his machines. The third was "Giving examples of large classes
of numbers which are computable" and that is the subject of Section 10. At the
same time, Turing veers somewhat from his primary focus of computable numbers
and instead voyages into the realm of computable functions.

Section 10 is probably the least analyzed part of Turing's paper, and often the
toughest to parse. He is terse and sometimes obscure, and I am not confident that
I have always nailed his arguments with complete accuracy.

It's perhaps not surprising that Turing begins by discussing a "computable
function of an integral variable," and that the "simplest" way of defining such
a function requires that both the domain and range be non-negative integers.

10. Examples of large classes of numbers which are computable.

It will be useful to begin with definitions of a computable function of
an integral variable and of a computable variable, etc. There are many
equivalent ways of defining a computable function of an integral
variable. The simplest is, possibly, as follows. If y is a computable
sequence in which 0 appears infinitely" often, and n is an integer, then let
us define l;( y, n) to be the number of figures 1 between the n-th and the
(n + 1)-th figure 0 in y. Then l{>(n) is computable if, for all n and some y,
l{>(n) = l;(y,nl.

;" If ch( computes y, then the problem whether ch( prints 0 infinitely often is of the
same character as the problem whether ch( is circle-free

I need an example. Let our function ljJ (the Greek letter phi) be something
simple like this

ljJ(n) = 2n + 1

for non-negative integer n. So,

ljJ(O) = 1

ljJ(l) = 3

ljJ(2) = 5

ljJ(3) = 7
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The sequence y (the Greek letter gamma) that corresponds to this function
is this:

010111011111011111110 ...

Notice between each successive pair of zeros are one 1, then three Is, then five Is,
seven Is, and so forth, corresponding to the values of the function <p(n) for each
successive non-negative integer n.

Is y a computable sequence? It certainly looks computable to me. That means
that <p(n) is a computable function, and the machine that computes y runs forever,
computing all the values of the function.

Turing approaches this computable function from a direction opposite to my
example: He presupposes a sequence y that contains 0 infinitely often, mentions
a function ~(y, n) (the Greek letter xi) that indicates the number of Is between
each consecutive pair of zeros, and equates <p(n) to ~(y, n).

In this sense, any machine that computes a sequence in which 0 appears
infinitely often is also computing a function of positive integers, although in
general we can't determine which machines actually fit this criterion.

Now Turing hypothesizes a predicate corresponding to the <p function, so that
the calculation of the function becomes analogous to the logic-based calculation of
numbers Turing demonstrated in Section 9 of his paper and the preVIous chapter
of this book.

An equivalent definition is this. Let H(x, y) mean
ljJ(x) =y.

Let's use the same example. The function with a change in the independent
variable is:

<p(x) = 2x + 1

We can define H(x, y) using the predicates I descnbed in the previous chapter:

(3z) (Product(u",x, z) &: Sum(z, u',y))

This formula is true if there exists a z such that it's true that 2 times x equals z,
and also true that Z plus 1 equals y.

Then, if we can find a contradiction-free axiom 'c\p, such that

2iiP must be a conjunction of the axioms for the predicates required to define H
(in this case Product and Sum) and P, so the implication holds triVIally.
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and if for each integer n there exists an integer N, such that

':?lq, & F(N) -> H(u(nl,u(q,(Il)),

You'll recall that pN) is an abbreviation for the conjunction of successor
functions. N must be at least as large as the greater of nand 4>(n), and possibly
larger. In our example, for n equal to 10, 4>(n) equals 21. Internal to the H function,
the numbers 1 and 2 are required, and z is 20. Therefore, N must be at least 21 in
order to define sufficient numbers, but it could be greater than both nand 4>(n)
in some cases.

and such that, if m i- </J(n), then, for some N',

':?lq, & pN') -> (-H(u(ll!, u(m)),

A right parenthesis is missing towards the end. In summary, the predicate H is
true when the first argument is n and the second is 4>(n), but false otherwise. For
this second formula, N must also be at least as great as m, but you'll see shortly
that values of m greater than n don't really get involved in the show.

then </J may be said to be a computable function.

There Turing ends his discussion without really describing how it's supposed
to work. It's another modification of the fK machine that enumerates all provable
formulas. The machine that Turing described in Section 9 enumerates these
provable formulas for successive values of n, printing a 1 or a 0 for each value of n
according to the truth value of the predicate G.

This new problem requires a fKy machine that will calculate the y sequence
described earlier

010111011111011111110 ...

where each run of Is is the value of the 4>(n) function for successive values of n.
The big difference is that this machine enumerates all provable formulas not just
for successive values of n but varying values of nand m.

For each new value of nand m, the machine begins by printing formulas A and
B (using the terminology established with the earlier machine)

A 21", & pN) -+ H(u(n) , u(m») B 21", & F(N') -+ (_H(u(n), u(m»))

and then tries to match one or the other of these formulas by generating all
provable formulas.
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The machine begins with n equal to zero. This is the argument to the function
<p(n) and the first argument to the predicate H(n, m). For each new value of n, the
machine prints a zero and sets m to zero. This m is possibly a result of the function
<p(n) and the second argument to the predicate H(n, m).

For each new value of m, the machine begins generating all provable formulas.
If formula Bis matched, then the machine prints a 1 because that value of m is not
the result of the <p(n) function. The machine increments m, prints new versions of
A and B, and begins generating provable formulas again. If formula A is matched,
then that value of m is the result of <p(n), and the machine moves on to the next
value of n. For the next value of n the machine begins by printing a zero and
setting m back to zero.

In this way, the machine prints the y sequence where each run of Is indicates
the value of the function for increasing integer arguments.

We cannot define general computable functions of a real variable, since
there is no general method of describing a real number,

This is the problem I discussed earlier with encoding a real number on a tape
for a function to access.

but we can define
a computable function of a computable variable.

This requires the calculation of the computable number and the computable
function to work in tandem. In perhaps the simplest case, after each new digit of
the variable is calculated, the computable function takes over and prints a new
digit of the result. Both the computable variable and the computable function
maintain the same level of precision in terms of significant digits.

Turing's example of such a function is the trigonometric tangent. Turing
wants to calculate the tangent for a variety of computable numbers - in fact, all
computable numbers - but he doesn't indicate any criterion for a calculation to
stop and the next one to begin.

If n is satisfactory,
let Yn be the number computed by ch((n), and let

an = tan (Jr (Yn - ~)) ,

[255)

unless Yn = 0 or Yn = 1, in either of which cases an = O.



Computable Functions 239

A footnote coming up indicates this is not the only possible function, but it
is a simple one for Turing's purposes. Because Turing Machines compute real
numbers between 0 and 1, the number Yn will be between 0 and 1 regardless of
the machine. The argument to the tangent function is between -1/271 and 1/271,
which are angles in units of radians, equivalent to angles from -90° to 90°.

Then, as n
runs through the satisfactory numbers, all runs through the computable
numbers+.

r A function (in may be defined in many other ways so as to run through the
computable numbers

The tangent of values between -900 and 90° range from -00 to 00, thus
sweeping through the entire continuum of real numbers. (Strictly speaking, the
tangents of -90° and 90° are undefined, which is why Turing treats those cases
separately.) With just a few exceptions, the results of the tangent function will be
transcendental numbers.

It is only later that Turing suggests that we can actually define a Turing Machine
that calculates the tangent of an angle. Like the sine function, the tangent is
calculated by an infinite series

x3 x5 x7

tan(x) = x + - + -- + + ...
3 3·5 3·5·7

where x ranges from -nl2 to nl2.

Now let ¢(n) be a computable function which can be
shown to be such that for any satisfactory argument its value is satis
factory*. Then the function (, defined by ((all) = atjJln), is a computable
function and all computable functions of a computable variable are
expressible in this form.

*Although it is not possible to find a general process for determining whether a given
number is satisfactory, it is often possible to show that certain classes of numbers are
satisfactory

The <p(n) function has a domain and range of descnption numbers ofsatisfactory
machines. Perhaps we're limiting ourselves to machines in a particular format
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simple enough to be established as satisfactory. The </>(n) function modifies the
description number, essentially reprogramming the machine, so that it calculates
something else. For example, </>(n) might reprogram a machine so that instead
of calculating x, it doubles the value and adds 1, essentially implementing the
function 2x + 1.

Similar definitions may be given of computable functions of several
variables, computable-valued functions of an integral variable, etc.

I shall enunciate a number of theorems about computability, but I
shall prove only (ii) and a theorem similar to (iii).

The ten theorems that follow are identified with lowercase Roman numerals.
The proofs of (ii) and (iii) occupy the last two pages of Section 10 of the paper.

(i) A computable function of a computable function of an integral or
computable variable is computable.

In other words, we can stack these things. We can start with a machine that
computes a number, and then apply another machine that implements a function of
that number, and then apply another machine that implements another function
of the result of the first function. Like the earlier machine based on the trigonomet
ric tangent, these machines can't wait until the previous stage has completed. The
machines must work in tandem, passing information from one stage to another,
perhaps as each digit is calculated.

(ii) Any function of an integral variable defined recursively in terms
of computable functions is computable. I.e. if ¢(m, n) is computable, and
r is some integer, then 1)(n) is computable, where

1)(0) = r,

1)(n) = ¢ (n, 1)(n - 1»).

Watch out: The Greek eta (,,) looks a bit like the italic n. The "function of an
integral variable" is ". The "computable function" is </>(m, n). As an example, let's
suppose that r equals 1 and the function </>(m, n) is defined simply as

</>(m, n) = m . n
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which I'm sure is computable. Let's calculate a few values of 1].

1](0) = r = 1
1](1) = </>(1, 1](0)) = </>(1, 1) = 1·1 = 1
1](2) = </>(2, 1](1)) = </>(2, 1) = 2·1 = 2
1](3) = </>(3, 1](2)) = </>(3, 2) = 3·2 = 6
1](4) =</>(4,1](3)) = </>(4, 6) = 4·6 = 24
1](5) =</>(5,1](4)) = </>(5,24) = 5·24 = 120

This 1](n) function is a recursive definition of the factorial function. Towards the
end of this section, Turing will prove that an integral function such as 1](n) defined
in terms of the computable function </>(m, n) is itself computable.

(iii) If</> (m,n) is a computable function of two integral variables, then
</>(n, n) is a computable function of n.

This sounds trivial, but Turing takes the opportunity to do something interest
ing. The proof concludes this chapter.

(iv) If </>(n) is a computable function whose value is always 0 or 1, then
the sequence whose n-th figure is </>(n) is computable.

For example, suppose the function IsPrime(n) returns 1 if n is a prime number
and 0 otherwise. Turing is asserting that the following sequence is computable:

0011010100010100010100010000010...

I've only shown the first 31 digits for n starting at zero. The digits set to 1
correspond to the prime numbers 2,3,5,7,11,13,17,19,23, and 29.

Turing next refers to Dedekind's theorem. Here's the statement of that theorem
from the first chapter of G.H. Hardy's A Course of Pure Mathematics, which is
possibly where Turing first encountered the theorem when he began reading the
book in 1931 in preparation for attending Cambridge that fall.

Dedekind's theorem. If the real numbers are divided into two
classes Land R in such a way that

(i) every number belongs to one or other of the two classes,
(ii) each class contains at least one number,

(iii) any member of L is less than any member of R,



242 The Annotated Turing

then there is a number ex, which has the property that all the
numbers less than it belong to L and all the number greater than
it to R. The number ex itself may belong to either class.2

This is apt to be a little mystifying on first encounter, but it describes a fundamen
tal difference between the rational numbers and the real numbers, and specifically,
how the real numbers form a continuum but the rational numbers do not.

Visualize a number line that runs from negative infinity on the left to positive
infinity on the right. If you want, you can consider just a section of this number
line. Cut it into two parts. (This is known as the Dedekind Cut.) Some of the
numbers are on the left (L in the theorem) and some are on the right (R).

You can cut the line at 1.5, for example, so that everything in L is less than
1.5 and everything in R is greater than 1.5. What about 1.5 itself? It's your choice
whether it's in L or R. You might put it in L, in which case it's the greatest number
in L. In that case, R has no lowest number. In other words, there's no number in R
that is lower than all the others. Or, 1.5 might be in R, in which case it's the least
number in R, and L has no greatest number.

Now cut the line at the square root of 2. If the number line consists of just
rational numbers, then everything in L is less than the square root of 2, and
everything in R is greater than the square root of 2. Because the square root of 2
is not rational, it belongs to neither L nor R. Moreover, L has no greatest number
and R has no least number. The line has a discontinuity at the square root of 2.

If the number line consists of real numbers, however, then the square root of 2
must belong to either L or R. You can't define a cut of the real numbers so that
the cut point doesn't belong to either L or R. This is why the real numbers form a
continuum but the rational numbers do not.

Dedekind's theorem does not hold in the ordinary form if we replace
"real" throughout by "computable".

2G H Hardy, A Course of Pure Mathematics, 10th edition (Cambndge University Press, 1952), 30 The

Dedekind Theorem is not covered in the first edition (1908) of Hardy's book but does appear in the

sixth edition (1933) I have not been able to examine editions between those. Tunng read Hardy's book
before going to Cambndge in 1931 and might have obtained the fifth edition (1928) at that time

Hardy's book is not the only place Tunng might have encountered Dedekind's Theorem A discussion

appears in Chapter 34 of Benrand Russell, The Pnnciples of Mathematics (Cambndge University Press,

1903), Chapter 7 of Bertrand Russell, Introduction to Mathematical Philosophy (George Allen & Unwm,

1919, 1920), and in the first chapter of E W Hobson's The Theory of Functions of a Real Vanable and
the Theory of Founer's Senes, a book that Tunng referred to in §8 of his paper Dedekind's pamphlet

"Stetigkeit und Irrationale Zahlen" descnbing this concept was published in 1872, the first English

translation appeared in Richard Dedekind, Essays on the Theory of Numbers, trans Wooster W Beman
(Open Court Press, 1901, Dover, 1963) as "Continuity and Irrational Numbers" The translation was

completely reVlsed for William Ewald, ed , From Kant to Hilbert A Source Book in the Foundations of
Mathematics (Oxford University Press, 1996), Vol II, 765-779
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The computable numbers do not form a continuum because you can make a
Dedekind Cut at a non-computable number. Perhaps the number is too complex
(that is, too random) to be defined algorithmically, or perhaps you can define
the number - for example, the number contains one digit from every com
putable number - but you can't compute that number. This cut divides the
computable numbers into two parts so that L has no greatest number and R has
no least number.

But it holds in the following form :

Note the Roman numeral that follows: This is Turing's theorem (v) coming
up. The propositional function G(a) that Turing introduces here is true if the
argument - a computable number - is less than (or perhaps less than or equal
to) some fixed number ~ (the Greek letter xi).

The G(a) function divides the computable numbers into two classes L - the
computable numbers for which G(a) returns true - and R - the numbers
for which G(a) returns false. In Hardy's statement of Dedekind's Theorem,
requirement (i) is satisfied because G(a) is either true or false for every computable
number.

(v) IfG(a) is a propositional function of the computable numbers and

(a) (3a) (3.B){G(a) & (-G(,8»)},

Turing's (a) formula is equivalent to Hardy's requirement (ii), that each class
contain at least one member.

(b) G(a) & (-GU))) -+ (a < {3),

Turing's (b) formula is equivalent to Hardy's requirement (iii). If G(a) is true, then
a is in L, and if G(f3) is false, then f3 is in R, and a is less than f3.

and there is a general process for determining the truth value ofG(a), then

[2561

there is a computable number ~ such that

G(a) -+ a ::s~,

-G(a) -+ a ~~.
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The "general process for determining the truth value of G(a)" is crucial. Because
~ is a computable number, in the general case it cannot be explicitly stored
somewhere within the definition of G(a). Nevertheless, it would be possible for
a machine to compute that number by narrowing in on the value. In fact, the
machine to compute ~ would do so by testing ever more accurate values in G(a).

In other words, the theorem holds for any section of the computables
such that there is a general process for determining to which class a given
number belongs.

In the next sentence, the term "sequence of computable numbers" might be a
little confusing because almost from the beginning of his paper, Turing has used
the term "computable sequence" to refer to the digits that a machine generates. The
"sequence" he's speaking of here is an ordered collection of computable numbers.

Owing to this restriction of Dedekind's theorem, we cannot say that a
computable bounded increasing sequence of computable numbers has a
computable limit. This may possibly be understood by considering a
sequence such as

-1, -~, -~, -~, --k,~, ....

This little passage was the subject of a discussion on the sci . logic
newsgroup a few years ago. The thread is archived beginning at http://sci.tech
archive.net/Archivelsci.logid2004-0812244.html. One supposition was that the
1/2 at the end was wrong, and it really should have been -1/32. That fix makes
the sequence look prettier but it can't be what Turing had in mind because now the
sequence is apparently approaching zero, which is certainly a computable limit.

The more plausible conjecture is that Turing is presenting a sequence that
seems to be heading toward a computable limit, but really is not. The sequence
might even be bounded by -1 and 1, perhaps, but that doesn't tell us whether the
limit is truly computable.

On the other hand, (v) enables us to prove

(vi) If a and {3 are computable and a < (3 and </J(a) < 0 < </J({3), where
</J(a) is a computable increasing continuous function, then there is a unique
computable number y, satisfying a < y < (3 and </J(y) = o.
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Turing is alluding to a computable function that is perhaps a polynomial:

4>(x) = 5x3 - 3x2
- 7

It is well known that any real polynomial with an odd degree (the largest exponent)
has at least one real root - that is, a value x for which the polynomial equals zero.

For polynomial 4>(x) you can narrow in on that root by observing that 4>0)
equals -5 and 4>(2) equals 21. The root must be between 1 and 2.

The numbers 1 and 2 are a and f3 in Turing's statement; you can see that a < f3
and 4>(a) < 0 < 4>(f3). Because the function is continuous (that is, it has no gaps),
there is a value y between a and f3 for which 4>(Y) equals zero. The objective is to
calculate it. We can choose a number midway between a and f3, which would be
1.5 in this example, and find 4>(1.5), which is 3.125. Because this value is greater
than zero, let 1.5 be the new f3. Now we know that the root is somewhere between
1 and 1.5. Now try 1.25; 4>(1.25) equals -1.921875, which is less than zero so
1.25 is the new a. Now we know that the root is between 1.25 and 1.5. Each step
restricts the root to a smaller interval and, in effect, computes it.

Roughly speaking, a sequence of numbers is said to converge if the absolute
values of the differences between successive numbers in the sequence get smaller
and smaller. (I say "roughly" because these differences might not get smaller at the
beginning of the sequence.) Any real number can be represented as a convergent
sequence of rational numbers. This is most simply demonstrated using a sequence
of rational numbers like these:

ao=3
aj =3.1
a2 = 3.14
a3 = 3.141
a4 = 3.1415
as = 3.14159

These are all rational numbers, yet they are getting closer and closer to the irrational
number we know as 7l:. The sequence is convergent because the difference between
successive numbers is getting smaller. The difference between a3 and a4 is 0.0005
but the difference between a4 and as is 0.00009.

Mathematically, this difference is often represented by a lower-case epsilon, €.

You can choose any arbitrary value of € as small as you want, for example 0.0001.
A particular sequence converges if there's some number N that corresponds to this
€ so that for all n > Nand m > N, the absolute value of the difference between
the numbers is less than the arbitrary number we've chosen: 1an - am I < €. In the
above example, for € equal to 0.0001, N is 3 because 1'4 - asl < 0.0001 and so
are the differences between all an and am where nand m are greater than 3.



246 The Annotated Turing

Turing defines computable convergence similarly.

Computable convergence.

We shall say that a sequence fin of computable numbers converges
computably if there is a computable integral valued function N(E) of the
computable variable E, such that we can show that, if E > 0 and n > N(E)

and m > N(E), then lfin - 13m [ < E.

The numbers in the sequence must be computable, and Turing also requires
that E be computable and N(E) be a computable function.

We can then show that

(vii) A power series whose coefficients form a computable sequence of
computable numbers is computably convergent at all computable points
in the interior of its interval of convergence.

A power series is an infinite summation of the form:

ao + alx + a2x2 + a3x3 + a4x4 + ...

As I showed earlier, you can represent a trigonometnc sine function as a power
series:

x3 x5 x7
sin(x) = x - - + - - - + ...

3! 5! 7!
The coefficients (that is, the ai values) are 1,0, -113!, 0, 1/5!, 0, 1/7!, and so

forth. These coefficients are certainly a computable sequence. Some power series
converge only when x equals zero. Other power senes converge for a range of x
values, called the interval oj convergence. It is well known that the sine function
converges for all x. Because the coefficients are computable, it's possible for a
machine to determine whether they're convergent.

(viii) The limit of a computably convergent sequence is computable.

It's also possible to have a sequence of functions that converge to a particular
function. If this convergence occurs for a particular value to the function, then it
is said to be pointwise convergence. A much stronger convergence of functions is
uniform convergence, which is independent of the value to the function.
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And with the obvious definition of "uniformly computably convergent":

(ix) The limit of a uniformly computably convergent computable
sequence of computable functions is a computable function. Hence

(x) The sum of a power series whose coefficients form a computable
sequence is a computable function in the interior of its interval of
convergence.

From these theorems, Turing concludes that all algebraic numbers are com
putable as well as some popular transcendental numbers:

From (viii) and IT = 4(1 - ~ + t, ~ .. .) we deduce that IT is computable.
1 1

From e = 1 + 1 + ! + ! + ... we deduce that e is computable.
2. 3.

[2571

From (vi) we deduce that all real algebraic numbers are computable.

Algebraic numbers, recall, are the roots of polynomial equations.

From (vi) and (x) we deduce that the real zeros of the Bessel functions
are computable.

The Bessel functions are solutions to a common form of differential equations,
and the zeros are where the functions have a value of zero. The last conclusion also
encompasses the tngonometnc functions, logarithms, exponentials, and a host of
lesser-known functions.

Turing promised a proof of theorem (ii), which asserted that any function
of an integral variable defined recursively in terms of computable functions is
computable.

Proof of(ii).

Toward the beginning of Section 10, Turing defined a predicate H(x, y) that is
true if 4>(x) = y, and then showed how a machine can prove formulas involving
H(u(n), u(</>(n))) and -H(u(n), u(m)) where m # 4>(n). That proof established the
computability of the function 4>(x).
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This current proof is based on the earlier one, but instead of the function ¢(x)

he has the function 1](x), where

1](0) = r

1](n) = ¢(n, 1](n - 1))

Let H(x, y) mean ",/(x) = y", and let K(x, y, z) mean "¢(x,y) = z".

For the factorial example,
¢(x,y) =x'y

so K(x,y, z) is simply Product(x,y, z).

I ~\I> is the axiom for ¢(x,y).

This 2(iP axiom requires support for the K(x, y, z) predicate. For the factorial
example, the axiom would include the axioms for the successor, Sum, and Product

predicates. The axiom for 1](x) is more elaborate:

We take ':\/ to be

':.)1", & P &(F(x,y) ~ O(x,y») & (O(x,yl & O(y,z) ~ O(x,z»)

& (F"ri ---> H(u,ul
')) & (F(v,w) & H(v,x) & K(w,x,z) ---> H(w,zl)

& [H(w,z) & O(z, 0 v Oit,z) ---> (-H(w, 0)].

This is TUring's third use of a predicate named G, all of which are defined
differently. This one, however, is fundamental: It's the "greater-than" function, and
amazingly, Turing didn't actually get around to clarifying what this function
does until the Proceedings of the London Mathematical Society published Tunng's
corrections to his paper. 3 (Those corrections appear in Chapter 16 of this book.)
In that correction paper, Turing says that G(x, y) is to have the interpretation
"x precedes y,,, or y > X. As usual the F predicate is the successor function.

2(7/ consists of a conjunction of seven terms, beginning with 2iiP and P. The
third term indicates that if y is the successor of x, then y is greater than x, and
the last term on the first line states the transitivity of the G function (if y is greater
than x and z is greater than y, then Z is greater than x).

3Alan Turrng, "On Computable Numbers, with an Application to the Entscheidungsproblem A

Correction," Proceedings of the London Mathematical Society, 2nd Serres. Vol 43 (1937). 544-546
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The first term on the second line asserts that H(u, u(r») is true, which means that
1](0) = r. The second term is this:

(F(v, w) &:. H(v,x) &:. K(w,x,z) ---+ H(w,z))

Translating to the functions that aren't predicates, if w = v + 1, and 1](v) = x, and
¢(w, x) = z, then 1](w) = Z, or:

1](v + 1) = ¢(v + 1, 1](v))

which is another way to state the general formula for 1](n) for n greater than O.
The final term of ilil/ is this:

[H(w, z) &:. G(z, t) v G(t, z) ---+ (-H(w, t))]

Notice the pair of G predicates with their arguments switched. This is the sole
reason for incorporating the G function into this axiom; either one or the other of
these G terms is true if Z does not equal t. The whole term asserts that if H(w, z) is
true, then for all values t that do not equal z, H(w, t) is not true, in other words,
1](w) # t.

I would be more comfortable if the formula for ilil/ included a bunch of universal
quantifiers, but in their absence they are implied.

I shall not give the proof of consistency of 'iJlry. Such a proof may be
constructed by the methods used in Hilbert and Bernays, Grundlagen der
Mathematik <Berlin, 1934), p. 209 et seq. The consistency is also clear
from the meaning.

This is the first volume of a book largely written by Swiss mathematician
Paul Bemays and begun when he was at G6ttingen. Being Jewish, Bernays lost
his professorship at the university in 1933 and moved to Zurich in 1934.
The second volume of Grundlagen der Mathematik (Foundations of Mathematics)
was published in 1939. The book was highly regarded at the time, but was
never translated into English. Bemays played another role in Turing's paper. In
the published correction to his paper, Turing indicates that he "is indebted to
P. Bemays for pointing out these errors." Alonzo Church's short paper showing
that the Entscheidungsproblem has no solution4 received similar scrutiny, and
it too was followed with a correctionS containing the footnote, "The author is
indebted to Paul Bemays for pointing out this error. .."

4Alonzo Church, "A Note on the Entscheidungsproblem," The Joumal oj Symbolic LogIC, Vol 1, No 1 (Mar

1936),40-41

5Alonzo Church, "Correction to A Note on the Entscheidungsproblem," The Joumal oj Symbolic LogIC, Vol 1,

No 3 (Sept 1936), 101-102
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Although Bemays was at the Institute for Advanced Study from 1935 to 1936,
he had gone back to Zurich before Turing arrived in Princeton, and apparently he
and Turing never met.

The page to which Turing refers is the beginning of a section on number theory.
It is on that very page that Bemays introduces an R predicate that is the same as
Turing's G predicate. The axioms that Bemays lists for his greater-than predicate
(which I've converted slightly to Turing's notation) demonstrate to what extent
Turing is gliding over the details:

(x)-R(x,x)

(x)(y)(z)(R(x,y) &: R(y,z) -+ R(x,z))

(x)(3y)R(x,y)

The third axiom reminds us that there exists a number that is not greater than
any other number. That number is usually 0 or I, depending on one's definition
of natural numbers. That same page in Grundlagen der Mathematik lists the axioms
for Bemay's successor function called 5:

(x)(3y)S(x,y)

(3x)(y)-S(x,y)

(x)(y)(r)(s)(S(x, r) &: S(y, r) &: S(s,x) -+ S(s,y))

It's quite surprising that Turing refers to a page of a book that defines predicates
that he uses in his paper, but with axioms that he ignores.

Turing's approach here is an induction proof, a type of proof particularly suited
for number theory and other applications where only natural numbers are involved.
In an induction proof, a formula (or something) is proved first for zero. This is
usually easy. Then, an assumption is made that the formula is true for n, and the
formula is proved for n + I based on that assumption. It's not necessary to prove
the formula for all n, only that truth for n implies truth for n + I. Since the formula
was first proved for 0, it's true for 0 + I or I, and because it's true for I, it's true
for I + I or 2, and so forth.

Turing's induction proof is a little different. He leaves the proof of the zero
case for later and begins with the induction part, showing that if the formula is
assumed to be true for n - I, it's also true for n. The assumption comes first.

Suppose that, for some n, N, we have shown

<')1 & F(N) -+ H(u(n-l) u(ry(n-l))
- 11 "

The following formula is a direct consequence of the 2!iP axiom that supports the
K propositional function.
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then, for some M,

~l<l> &FIM1 -4 K(ulll!,u(I/ln-ll),u(I/lnl)),

Also, since 211] ~ 21", trivially,

21 &: F(M) ~ K(u(n) u(l](n-l)) u(l](n)))
I] "

This also remains true if we form a conjunction with a couple terms on the right
side that we know to be true. One is a trivial successor function that is implied by
pM) and the other is the original H predicate assumption:

This is beginning to take the form of something in the 211] axiom, and Turing pulls
it out:

and

~I,/ & FIM ) -> [F(U{tl-l\U lnJ ) & H(ulll-11,u(lJln-I)))

& K(u lnl , u(,/ln-lJ), u(I/ln))) -4 H(u ln ), u(I/lnl))).

To the nght of the first implication sign is the penultimate term of the 211] axiom,
with values of u(n), u(n-l), u(l](n», and u(l](n-l)) substituted for w, v, z, and x,
respectively. Combining those two formulas,

Hence

This completes the induction part of the proof. Turing has not yet shown that the
formula is true for zero. This he does now.

This is just a term of the axiom with .,,(0) substituted for f. Now we know that the
formula is true for all n.

Hence for each n some formula of the form

~t,/ &F1M1 -4 H(uln),u(I/(nl))

is provable.
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It's now necessary to show that for m i= ,,(n) - not ,,(u) as Turing has it in the
next sentence - the axioms imply the negation of H.

Also, if M' ::: M and M' ::: m and m i= I/(U), then

That is, if m i= ,,(n) then m is either greater than or less than ,,(n).

[2581

and

91,/ & FlM'l ---+ [IG(u(I/lnl), u 1ml ) v G(u(ml, U('1 lnl»

&H(u1nJ,u(l/lnl)} ---+ (_H(u(n),u1nl »)].

To the right of the first implication sign is a restatement of the last term of the $211/
axiom, rearranged somewhat and with values of u(n), u(m), and u(l/(n) substituted
for W, t, and z, respectively. Combining these two formulas,

Hence

The conditions of our second definition of a computable function are
therefore satisfied.

By "second definition" Turing means the demonstration beginning with the
sentence "An equivalent definition is this," beginning on page 236 of this book.
He has established that he can create two statements of the following form:

$211/ &: pM) ~ H(u(n) , u(l/(n»)

2il/ &: F(M') ~ (_H(u(n) , u(m»))

For every value of nand m, one or the other is provable.

Consequently TJ is a computable function.

The next proof contains the final appearance of tables of a Turing Machine in
this paper (and this book). This machine is intended to prove Turing's theorem
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(iii), which states that if 4J(m, n) is a computable function of two integral variables,
then 4J(n, n) is a computable function of n.

This proof illustrates a technique of computing a function whose domain is the
natural numbers but whose range is real numbers. The function is computed for
multiple successive arguments (n equals 0, 1,2, and so forth), but the computation
of the function is stopped when n digits have been calculated.

Proofofa modified form of (iii).

Suppose that we are given a machine }/, which, starting with a tape
bearing on it aa followed by a sequence of any number of letters "F" on
F-squares and in the m-configuration b, will compute a sequence Yn

depending on the number n of letters "F".

The tape looks something like this:

What's interesting about this machine is that it's the closest that Turing comes in
this paper to describing something that works much like the reformulated Turing
Machines described by Kleene and Davis. This machine reads a non-negative
integer encoded on the tape as a series of letters "F" and then computes a function
of that integer. The Kleene and Davis machines implement number-theoretic
functions, but in the spirit of Turing's eternally running machines, he's implicitly
assumed that the sequence Yn is something more complex - perhaps the cube
root of n. If the machine begins by reading five "F" characters (like the tape shown
above), it will calculate the cube root of 5.

If ¢n(m) is the m-th figure of
Yn, then the sequence f3 whose n-th figure is ¢n(n) is computable.

For example, the function 4Js(l2) returns the twelfth binary digit of the cube
root of 5. Turing presents a new computable sequence f:3 that contains one digit
from the 4Jn function for each n. In my example, the first digit of the sequence f:3 is
the first digit of the cube root of 1, the second digit is the second digit of the cube
root of 2, and so forth.

Turing has begun by assuming that this machine (be it a cube-root machine or
something different) already exists. He is going to modify this machine, in part
by changing some of the existing instructions and in part by adding some new
instructions to create a somewhat different machine.
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The new machine must work with a variable number of "F" characters: First no
characters, then one "F", then two "F" characters and so forth. After calculating n
digits (where n is the number of "F" characters plus 1) it must essentially stop that
calculation and then start over with an additional "F" character governing what it
does. This new machine will not print its 0 and 1 digits in consecutive F-squares.
They will be printed in order from left to right, but they will be buried in other
output from the machine.

Turing wants his original machine in a standard form so he can modify it easily.

We suppose that the table for .X has been written out in such a way
that in each line only one operation appears in the operations column.

For these modifications, Turing needs to introduce some new characters,
including the Greek upper-case letters xi and theta. He also needs to replace three
characters anywhere they occur in the table for this machine.

We
also suppose that 2, (00),0, and T do not occur in the table, and we replace
a throughout by Eo), 0 by 0, and 1 by T.

When Turing says "replace a throughout bye," he doesn't mean on the tape.
The tape still needs to begin with two schwa sentinels. He means that any line in
the table that reads a schwa should be modified to read a theta.

Turing doesn't say it here, but the machine modifications also require that the
symbols hand k are not used by this machine, and that configurations c, U, U1, U2,

U3, \;1, \;11, \;12, \;13 are available for new definitions.

Further substitutions are then
made. Any line ofform

'91

we replace by

'91

a PO

PO rrN\ ll, h, k)

The line being replaced originally printed a 0 rather than a O. The 2i and Q)

configurations, and the scanned character ex, are just placeholders here. You may
recall rr as a "replace" function; here rr replaces the first h on the tape with a k,
and then goes to configuration Q). If it doesn't find an h, it goes to configuration u.
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As defined in Section 4, the re function uses the f function, which relies upon
a schwa sentinel. That function should not be altered to search for a theta sentinel
instead.

This is how the new machine essentially intercepts the operation of the original
machine whenever it prints a digit. When the machine begins working WIth a new
number of "F" characters, the number of h characters on the tape will be one more
than the number of "F" characters. Thus, the machine pnnts 0 rather than 0 h
times before going to configuration u.

and any line of the form

by

a

a

pI

pI rr(~\ t', h, k)

The u and \;l configurations need to print actual 0 and 1 characters without
overlines, and then prepare the tape for the next number of "F" characters and
essentially restart the machine. Turing WIll show only the u configuration but \) is
very similar.

and we add to the table the following lines:

II

III

ll2

113

R, Pk, R, P0), R, PH 112

r~(1I3, 113, k, h)

P~(ll2, F)

After the u configuration prints an actual 0, Ul prints a k and two thetas, which
to the machine represents a new sentinel. The U2 and U3 configurations replace
each k with an h. (Recall that the h characters were changed to k in the previous
alternation.) For each k changed to an h, an F is also printed at the end. In Turing's
table, an infinite loop exists because U2 always hops to U3 and U3 always hops to
U2. The replace function needs to be:

re (U3, b, k, h)

If no more k characters are available to change to h, the machine needs to start
over at configuration b, which is the starting configuration of the original machine.
The \;l configurations are similar except that \;l prints 1 rather than O.

and similar lines with t, for II and 1 for 0 together with the following line

R,P2.,R,Ph



256 The Annotated Turing

Another bug, unfortunately. It actually shouldn't print an h here, but should
print the new-style sentinel:

R, pc.:, R, PE>, R, PE>

We then have the table for the machine H' which computes 13. The
initial m-configuration is (, and the initial scanned symbol is the second .J.

Let's see if this really works. We have a machine J{' that is a modified version of
eX that calculates the cube root of however many "F" characters it reads from the
tape. Machine J{' begins with a tape with just two schwas in configuration c:

Configuration c prints a xi and two thetas:

The xi isn't actually used anywhere. Now the machine branches to configuration
band the machine proceeds normally but using the two thetas for a sentinel instead
of the schwas. There are no "F" characters to be read, so it's calculating the cube
root of zero. When it comes time to print the first 0 it also tries to replace the first
h with a k. There are no h characters so the machine branches to configuration u.
This configuration prints a real 0 on the tape, followed by a k and two thetas:

The U2 and U3 configurations comprise a little loop to replace each k with an h
and print an F:

There are no more k's to change to h, so now the machine goes to m-configuration
b, and the machine essentially starts over to calculate the cube root of 1. The first
digit is 1, so the machine prints a Tand changes the h to a k. It continues. The next
digit is a zero, so it prints a O. There are no more h's, so the machine branches to
u again to print the real zero, followed by a k and two thetas:
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Now for every k, the k is changed to an h and an F is printed:

There's another bug here, but this one I didn't fix. The "F" characters need to
be on F-squares so they need a space between them. Regardless, there are no more
k characters to change to h so the machine branches to m-configuration b to begin
calculating the cube root of 2

With the conclusion of Section 10, Turing is satisfied that he has defined a
model for computation that formally encompasses anything that an algorithm
might require. He is now ready to demonstrate that the Entscheidungsproblem
can have no solution.





The Major Proof

Some mathematical proofs are straightforward; others need to come through
the back door. This second category surely includes reductio ad absurdum

proofs, which begin by assuming the opposite of what needs to be proven, and
then demonstrate that the initial assumption leads to a contradiction.

Then there are the proofs that don't bother coming through the front door or
the back door. These proofs instead seem to avoid the subject entirely by building
an elaborate structure that at times appears both mysterious and indulgent. Just
when the whole point of the exercise has become entirely obscured and you've
long since abandoned hopes of ever seeing a solution, the clever mathematician
drops through the chimney and exclaims with a hearty "Ta-dah!" that the proof
has been completed. (Just don't get any soot on the carpet.)

In a sense, the final section of Turing's paper is the most important part because
it is here that he shows that "the Entscheidungsproblem cannot be solved." This was
an important conclusion at the time, but the structure Turing built to support this
result - the imaginary device now known as the Turing Machine - ultimately
would become more interesting and fruitful than the actual proof that must now
command our attention.

Turing laid the foundation for this proof in Section 8. It didn't seem to be very
important at the time, but he was careful to establish that you cannot design a
Turing Machine that implements a general finite process to determine whether
another Turing Machine ever prints the digit O. The two intermediary sections (9
and 10) served to establish that TUring's concept of machine computability was
equivalent to our conventional notions of human computability.

In Section 11, Turing shows how the functionality of a computing machine can
be expressed in the language of first-order predicate logic. He then constructs a
formula in this logic that is provable if and only if the machine ever prints the
digit o. If that formula is decidable - that is, if we can determine whether it's
provable - then we'd have a general process for determining whether a machine
ever prints 0, and we already know we can't have one.
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[259]

11. Application to the Entscheidungsproblem.

The results of §8 have some important applications. In particular, they
can be used to show that the Hilbert Entscheidungsproblem can have no
solution. For the present I shall confine myself to proving this particular
theorem. For the formulation of this problem I must refer the reader to
Hilbert and Ackermann's Grundzuge der Theoretischen Logik (Berlin,
1931), chapter 3.

The book was actually published in 1928. Chapter 3 is about a third of the
l20-page four-chapter book, and is entitled "Der engere Funktionenkalkul" or
'The Restricted Functional Calculus," what we know today as first-order predicate
logic. The authors state:

Das Entscheidungsproblem ist gelost, wenn man ein Veifahren kennt,
das bei einem vorgelegten logischen Ausdruck durch endlich viele
Operationen die Entscheidung aber die Allgemeingtlltigkeit bzw.
Eifallbarkeit erlaubt. . " [Das] Entscheidungsproblem mufl als das
Hauptproblem der mathematischen Logik bezeichnet werden. 1

The decision problem is solved when we know a procedure with
a finite number of operations that determines the validity or
satisfiability of any given expression.... The decision problem
must be considered the main problem of mathematical logic.

The use of the words validity and satisfiability by Hilbert and Ackermann
indicate a so-called semantic formulation of the decision problem. Twenty-five
years later, Wilhelm Ackermann continued examining the Entscheidungsproblem
from a semantic perspective in his short book Solvable Cases of the Decision Problem
(North-Holland Publishing Company, 1954).

Referring to Hilbert's restricted functional calculus with the letter K (perhaps for
Kalka!), Turing employs a somewhat different vocabulary to describe the decision
problem.

I propose, therefore, to show that there can be no general process for
determining whether a given formula 9/ of the functional calculus K is
provable, i.e. that there can be no machine which, supplied with anyone
21 of these formulae, will eventually say whether ,:!l is provable.

lDaVid Hilben and Wilhelm Ackermann, Grundzuge der Theoretischen Logth (Spnnger, 1928),73, 77
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By using the word provable rather than validity or satisfiability, Turing reveals
that he is approaching the decision problem from a syntactic perspective. The
syntactic approach to logic is relative to a system of axioms and inference rules.
A formula is considered to be provable (that is, the formula is a theorem) if the
formula is an axiom, or if it is derivable from the axioms using the inference rules.
The semantic and syntactic approaches to first-order logic were established to be
equivalent by Godel's Completeness Theorem of 1930.

Following the discussions in Sections 9 and 10, Turing has earned the right
to assert that if a machine can't be designed to implement a general decision
procedure, then there is no general decision procedure that a human could carry
out either.

Back in 1936, readers of Turing's paper not steeped in the nuances of com
pleteness, incompleteness, and decidability might have been confused about the
relationship between Godel's incompleteness proof - described in a paper whose
title actually mentioned "unentscheidbare Satze" or "undecidable propositions" 
and Turing's proof. Indeed, on the first page of his paper, Turing said that "con
clusions are reached which are superficially similar to those of Gbdel" (page 67 of
this book). He needs to elaborate on that subject a bit more.

It should perhaps be remarked that what I shall prove is quite different
from the well-known results ofGodel t . GOdel has shown that (in the forma
lism of Principia Mathematica) there are propositions 21 such that neither
':if nor - 21 is provable. As a consequence of this, it is shown that no proof
of consistency of Principia Mathematica (or of K) can be given within that
formalism. On the other hand, I shall show that there is no general method
which tells whether a given formula 21 is provable in K, or, what comes to
the same, whether the system consisting of K with - 21 adjoined as an
extra axiom is consistent.

t Loc. cit.

Godel's theorem and Turing's theorem approach decidability from opposite
directions. Gbdel's theorem shows the existence of propositions that can be
neither proved nor disproved; these propositions are said to be undecidable.

The "general method" that Turing refers to is a decision procedure - an
algorithm that analyzes any arbitrary formula and determines whether it is
provable or not provable. Turing will prove that no general decision procedure
can exist.

Even with the existence of undecidable propOSitions, a decision procedure
could still conceivably exist. When analyzing Godel's undecidable proposition, it
would identify both the proposition and its negation as unprovable.
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Ifthe negation ofwhat Godel has shown had been proved, i.e. if, for each
21, either 21 or - 2( is provable, then we should have an immediate solution
of the Entscheidungsproblem. For we can invent a machine 'X which will
prove consecutively all provable formulae. Sooner or later ~K will reach
either 21 or - 21. If it reaches 21, then we know that 21 is provable. If it
reaches - 21, then, since Kis consistent (Hilbert and Ackermann, p. 65), we
know that 21 is not provable.

Well, okay, but obviously Turing's handy-dandy fJ<. machine (now making its
final appearance in this paper) is certainly not what Hilbert had in mind when
he formulated the Entscheidungsproblem. Regardless of how "mechanical" or
"machine-like" any hypothetical decision procedure was supposed to be, it was
still envisioned as something that a human being could manage rather than a
computer requiring millennia of processing time and all the world's memory
resources.

Gbdel's result has not provided the basis of a general decision procedure.
Turing's proof is still required.

Owing to the absence of integers in K the proofs appear somewhat
lengthy. The underlying ideas are quite straightforward.

Corresponding to each computing machine clH we construct a formula
Un (uI'() and we show that, if there is a general method for determining
whether Un (cAO is provable, then there is a general method for deter
mining whether vir ever prints O.

Is Turing giving away the punch line by naming the formula Un for Undecidable?
This Un(uYO formula functions as a counter-example - a formula that no general
decision procedure can successfully analyze.

As you'll recall, a machine consists of a series of configurations associated with
operations. Beginning with the pages of his paper where Turing presented the
Universal Machine, he's been using the word instructions to refer to these elements
of the machine.

Turing needs to represent this computing machine in the language of first-order
logic. Each instruction will be converted to a formula that indicates how the
instruction affects the complete configurations of the machine. The complete
configurations, you'll recall, are snapshots of the tape after each move of the
machine. The complete configuration also includes the next m-configuration of
the machine and the next scanned character.

Turing first presents several propositional functions (known as predicates in
more modem terminology). Like all propositional functions, they have values
of true or false. In all cases, the arguments to these functions are non-negative
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integers signifying the squares of the tape and the complete configurations. The
squares of the tape are assumed to be numbered beginning at zero, which implies
that the tape has a beginning and is infinite in only one direction.

Complete configurations are also assumed to be consecutively numbered.
A number pair (x, y) identifies a particular square y in complete configuration x.
Although I'll be using actual numbers in my examples, no numbers or examples
appear in Turing's discussion.

Let's recall Turing's Example I machine that printed alternating Os and Is on
every other square. Here are the first IO complete configurations. I've identified
these complete configurations with numbers in the leftmost column. (The heading
means "Complete Configuration x.") I've identified the squares of the tape with
numbers across the top. I've also replaced Turing's original configuration letters
with subscripted q's.

------SQUARE y--------
CCx 0 1 2 3 4 5 6 7 ...
0 ql
1 0 q2
2 0 q3
3 0 1 q4
4 0 1 ql
5 0 1 0 q2
6 0 1 0 q3
7 0 1 0 1 q4
8 0 1 0 1

9 0 1 0 1

... 0 1 0 1

This particular machine prints only in every other square, so only the even
numbered squares contain numbers. An m-configuration appearing in a square
indicates that's the square being scanned in this complete configuration.

Many of Turing's propositional functions include subscripts that are part of the
name of the function. These propositional functions are defined in isolation, but
you'll soon see how Turing uses them to describe an entire machine.

The interpretations of the propositional functions involved are as
follows:

Rs/(x,y) is to be interpreted as "in the complete configuration x (of
-..AD the symbol on the square y is S".
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The final 5 before the end quotation mark is missing a subscripted I. As you'll
recall, the character 50 is a blank, 51 is 0, and 52 is 1. For the Machine I example,
RS2(5, 2) is true because digit 1 appears in complete configuration 5 on square 2,
but RS2(5, 6) is false because digit 1 does not appear in complete configuration 5
in square 6.

[260]

lex, y) is to be interpreted as "in the complete configuration x the
square y is scanned".

For the Example I machine, the function 1(6, 6) is true because in complete
configuration 6 the next scanned square is 6, but 1(6, y) is false for any other
squarey.

Kqm (x) is to be interpreted as "in the complete configuration x the
m-configuration is qm.

An end quotation mark is missing in that sentence. For the Example I machine,
the function Kq/5) is true but Kq3 (5) and Kq2 (7) are false.

F(x, y) is to be interpreted as ''y is the immediate successor ofx".

Or, in the quaint notation of anthmetic, y = x + 1. Using the notation for
natural numbers that Turing introduced earlier, the predicate F(u"!, u"") is true,
but with proper axiomatization, F(u"!, u""!) should be false.

So far, Turing has just developed propositional functions that describe the
complete configurations of a machine in operation. He hasn't equated these to
the table that describes the actual machine. The standard form of a machine
contains only one print instruction and one move instruction per line. Each line of
the table consists of an m-configuration qi, a scanned symbol 5j , a printed symbol
5k (which could be the same as 5j ), head movement left, right, or not at all, and a
new m-configuration ql.

Tunng next gives a definition for something he calls lnst (for "instruction").
This is not a propositional function, but an abbreviation for an expression
built from the propositional functions just presented. Each lnst expression is
associated with a line of the machine table. The expression describes how these
particular combinations of m-configurations, symbols, and head movement affect
the complete configuration:
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Inst !qi Sj Sk L q, I is to be an abbreviation for

Ix,Y,x',y')I(Rs, Ix,Y) &1Ix,y) &K" (x) & Fix, x') & F(y',y))

---> (/(XI,y/) &Rsk(x',y) & Kq/(x')

& 1z)[Fly',z)v (Rs/x,z) ~ Rs. Ix',z))J) j-

This is one of three possible Inst expressions and applies to the case where the
head moves left. That's what the L among the arguments of Inst means.

The initial (x, y, x', y') is an abbreviation for four universal quantifiers
(x)(y)(x')(y'). The bound variables x and x' are two consecutive complete config
urations; toward the end of the first line you'll see an F predicate (the first of two)
indicating that x' is the successor of x. The bound variables y and y' are two adja
cent squares. For an instruction in which the head moves left, y' equals y minus 1,
or y is the successor of y', as the second F predicate in the first line indicates.

The other three predicates in the first line indicate the conditions for this
particular instruction. The complete configuration is x, the scanned square is y,
the scanned symbol is Sj, and the configuration is qi.

The second line begins with an implication sign and applies to the entire
remainder of the expression. These are predicates that describe the complete
configuration that results from this instruction. In the next complete configuration
x', the square y' is scanned; square y now has the symbol Sk and the new
m-configuration is ql.

Inst concludes with an expression on the third line that should indicate that all
other squares except square y remain the same. These other squares are indicated
with the bound variable z. Either z is the successor of y' (in which case it's equal
to y and was the target of a print operation) or ... but here the rest of Turing's
formula is wrong. What it says is that in all other squares, Sj becomes Sk, which
makes no sense.

A better version of the lnst expression is among the corrections that Turing
listed in a follow-up paper published in the Proceedings of the London Mathematical
Society about a year after the original. That correction (page 310 of this book) is
not quite right either, but here's what the last line should be:

&'(Z{F(Y',Z) v ([Rso~X'Z) ~ Rso(x',z)] &' [Rs1(x,z) ~ RS1(x',z)]

& -- - & [RsM(x,z) -+ RsM<x',zll)]) }
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The 50, 51, ... 5M subscripts in the R function are all the symbols that eM can print.
In other words, for all squares z, either z is the successor ofy' (which means Z is
y - the square that was altered) or the symbol on that square remains the same
from complete configuration x to complete configuration x.

The lnst expression that Turing just presented is for the head moving left.

Inst {qi Sj Sk R qLl and Inst {qi Sj Sk N qtl

are to be abbreviations for other similarly constructed expressions.

Just for a little variety (and as a convenient reference in the pages ahead), the
following box shows the complete correct expression for an instruction where
the head moves nght:

lnst {qi5j5kRq!l is an abbreviation for:

(x,y,x',y') {(Rs/x,y) & I(x,y) & Kq,(x) & F(x, x') &FCy,y'))

---+ (I(x',y') & Rsk(x',y) & KIl(x')

& (z)[F(z,y') v ([Rso(x,z) ---+ Rso(x',z)] &

[Rs 1(x, z) ---+ RS r(x', z)] &

... &

[Rsm (x, z) ---+ RSm (x', z)])])}

This expression is mostly the same as the instruction for the head moving left
except that the FCy', y) term becomes FCy, y') to indicate that the new scanned
square is to the right of the last scanned square, and F(y', z) becomes F(z, y') in
the latter part of the expression to indicate that Z equals y.

For the Example 1machine, the m subscript in the RSm function has a maximum
value of 2 because the machine only prints symbols 50 (blank), 51 (zero), and
52 (one).

Let us put the description of A( into the first standard form of § 6. This
description consists of a number of expressions such as "qi Sj Sk L q( (or
with R or N substituted for L).

Actually it's Section 5 where Turing develops this standard form. The Example
1machine appears on page 241 of his paper (page 139 of this book) like this:

QI5051RQ2;q25051Rq3; Q35052RQ4;Q45050RQ1;

Each of these four quintuples becomes an lnst expression.
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Let us form all the corresponding expres
sions such as Inst {qiSJSkLq/} and take their logical sum. This we call
Des (..fi().

That is, the Description of machine uI1. The term "logical sum" can be a bit
ambiguous so in the corrections paper (page 311 of this book) Turing substitutes
the word "conjunction." In other words, all the Inst terms can be joined with
ampersands to represent a complete machine in the language of first-order logic.

Des(eM) for the Example I machine is an abbreviation for:

Inst{q15051Rq2} &: Inst{Q25051Rq3} &:

Inst{Q35052RQ4} &: Inst{q45050Rqr}

Now Turing will incorporate that Des(eM) formula into a larger formula he calls
Un(eM) for Undecidable. This Un formula is an implication of the form:

Some machine ~ Prints zero

The formula uses the successor function F as well as the propositional function N
that is true if the argument is a natural number.

The formula Un ()() is to be

(3U)[N(u) & (x)(N(x) ~ (3x')F(x,x'»)

& (y,z)(F(y,zl ~ N(y)&N(z») & (ylRso(u,yl

&I(u, u) &Kq , (ul & Des( j,( lJ

~ (3s)(3tl[N(sl&N(tl&Rs\(s,t»).

The implication sign at the beginning of the fourth line divides the formula into
the two parts. Each part has an expression in brackets preceded by one or two
existential quantifiers.

The last line is the easiest part: It simply says that there exist two numbers s
and t such that the character 51 (a zero) appears in complete configuration s on
square t of the tape. In Section 8, Turing proved that there is no algorithm that will
tell us whether an arbitrary machine ever prints zero, so I trust you're beginning
to see Turing on his way down the mathematical chimney.

The Un(eM) formula begins by asserting the existence ofa number u (the number
zero) that serves as both the number of the first complete configuration and the
first scanned square. The remainder of the first line just indicates that for each
number x there's another number x' that is the successor of x.
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The second line is a little wordy but simply asserts that for complete configu
ration u (zero) and every square y on the tape, the symbol on square y is So, or
blank. This is the initial condition of the tape. The third line contains an I function
to establish that in complete configuration zero, the scanned square is zero, and a
K function to set the initial m-configuration to ql. This is followed by the Des(uW)
expression that describes the machine itself.

From the previous formula Turing extracts just the part in square brackets and
provides another abbreviation:

[N(u) & ... & Des (.AD] may be abbreviated to A( .Ai).

The proposition A(uW) encompasses the starting conditions of the machine and the
machine's description, but has a free variable of u.

In the published correction to the paper, Turing took note of a problem that
ripples through this proof and which I discussed in Chapter 12. He has not
established that successors are unique. For this reason he defines a propositional
function G(x, y) that is true if y is greater than x, and an expression Q that is
intended to replace the P representation of the Peano Axioms:

Q is an abbreviation for:

(x)(3w)(y, Z){F(X, w) & (F(x,y) ~ G(x,y))

& (F(x,z) &G(z,y) --+ G(x,y))

& [ G(z, x)v(G(x,y) & F(y, z)) v

(F(x,y)&F(z,y)) ~ (- F(X,Z))J}

With this definition taking care of the natural numbers, the A(uW) abbreviation
becomes much simpler. It's a conjunction of Q, the starting conditions for the
machine, and the machine description:

A(uW) is an abbreviation for:

Q & (y)Rso(u,y) & leu, u) & Kql (u) & Des(uW)

In A(uW), u is a free vanable. That variable becomes bound in the Un(uW) formula:

Un(uW) is the formula:

(3u)A(M) ~ (3s)(3t)Rs1 (s, t)
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I've removed the N(x) predicates because the domain of all these propositional
functions is implicitly assumed to be the natural numbers Referring to the
definitions of the R, I, K, and F predicates, and the lnst and Des formulas, Turing
says:

When we substitute the meanings suggested on p. 259-60 we find that
Un ( .\1) has the interpretation "in some complete configuration of pi, 8 1

(z.e. 0) appears on the tape".

Because the expression on the left of the implication sign in Un(chO includes the
description of the machine and its starting conditions, it is our assumption that it
is true. These are the axioms. To the right of the implication sign is an expression
that is true if the machine prints a zero sometime during its run time. Therefore,
the formula Un(chO is itself true if the right side is true - that is, if the machine
ever prints zero - and false If the machine never prints zero. Does there exist an
algorithm that will determine whether Un(chO is provable? If so, then there also
exists an algorithm that will tell us if an arbitrary machine ever prints zero.

Notice that Turing refers to the "suggested" meaning of the propositional
functions. Much of the remainder of the proof will be based on a purely syntactic
interpretation of the formulas without requiring that we take into account the
precise meaning of these functions

Turing now wants to show that Un(chO is provable if and only if SI appears on
the tape. He tackles each half of this proof in two lemmas (subsidiary proofs) that he
soon refers to as Lemma 1 and Lemma 2, but which he first refers to as (a) and (b):

Corresponding to this I prove that

(a) If 8 I appears on the tape in some complete configuration of ~I(, then
Un( /If) is provable.

(b) IfUn( II) is provable, then 8 1 appears on the tape in some complete
configuration of .1'.

When this has been done, the remainder of the theorem is trivial.

The harder part is Lemma 1, which Turing now repeats verbatim.

[261]

LE~lMA 1. II' 8 I appears on the tape in some complete configuration 01'
)1, then Un( .11) IS provable.

We have to show how to prove Un( .\/).
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As before, u is what we commonly know as zero, u' is 1, u" is 2, and u(n) means
a u with n prime marks and represents the number n.

In addition, Turing slips in some new notation in the next sentence of his paper
that involves three new functions named r(n, m), i(n), and ken). These are not
propositional functions because they return integers. The n argument is a complete
configuration and m is a square of the tape.

The r(n, m) function returns an index of the character that appears in complete
configuration n on square m. This index is 0 for a blank, 1 for zero, 2 for a 1, and
so forth, so that Sr(n,m) is the character that appears in complete configuration n
on square m. Turing will combine this r function as a subscript for S with the R
propositional function:

RSr(n,m) (n, m)

That predicate is always true, although Turing will instead use superscripted u
terms for the arguments to R:

Rs (u(n) u(m))
r(n,m) ,

Turing allows himself to use nand m in the r function but requires u(n) and u(m) in
the R predicate.

The second new function that Turing introduces is i(n), which returns the
number of the scanned square in complete configuration n, so that the predicate

I(u(n), u(i(n)))

is always true because it refers to the complete configuration n and the scanned
square i(n). The third new function ken) returns the index of the m-configuration
in complete configuration n, so that qk(n) is the m-configuration in complete
configuration n. The predicate

Kqh(n) (u(n»)

is always true because it indicates that in complete configuration n, the
m-configuration is qk(n).

Let us suppose that in the
n-th complete configuration the sequence of symbols on the tape is
Sr(n, OJ,Sr(n, 1),'" ,Sdn, n), followed by nothing but blanks, and that the
scanned symbol is the i(n)-th, and that the m-configuration is qk(n)'

In complete configuration 0, the tape is entirely blank. In complete configuration
1, possibly one non-blank symbol appears on the tape. In general, in complete
configuration n, a maximum of n symbols appear on the tape (and quite likely
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fewer). Turing represents this sequence of symbols beginning at square 0 as Sr(n,O),
Sr(n,l), •• " Sr(n,n). If he's actually listed n + 1 symbols here rather than n, that's no
problem because some of these r functions undoubtedly return 0 and hence refer
to blank squares.

Then
we may form the proposition

R « n) & R «(n) ') & & R «(nl (ni)S"n, 0) U,U s"n, 11 U,U ... s,(n,n) U ,U

& (ylF(y,u')vF(u,y)vF(u',y)v ... V F(u(n-ll,y) v Rso(u(n>,y») ,

which we may abbreviate to CCn .

That is, "complete configuration n." The first line includes a conjunction of
functions corresponding to the symbols on the first n + 1 squares. The second line
includes functions referring to the scanned square i(n) and the m-configuration

qh(n)·

Toward the beginning of the third line, the F that appears right after the
universal quantifier should be inside the large parentheses. Just as the first line
indicates the symbols that appear on squares numbered 0 through n, this last
line indicates that squares numbered greater than n contain blanks. That's the R
predicate that appears at the very end. The universal quantifier of y ranges over
all squares. Either u' is the successor to square y (i.e., y is 0) or square y is the
successor to u (i.e., y is 1), or square y is the successor to u' (i.e., y is 2) and so
forth up through the case where the square y is the successor to n - 1 (i.e., y is n).
Ify is none of those cases, then square y contains a blank symbol.

Here's the corrected version:

CCn is an abbreviation for:

R « n») r~ R «n),) r~ r~ R «n) (n»)
s,(n,O) u , U ~ s,(n,I) U , U ~'" ~ s,(n,n) U , U

& I(u(n) u(i(n»)) & r< (u(n»)
, • "Ih(n)

& (y)(F(y, u') v F(u,y) V F(u' ,y) v , . , v F(u(n-l) ,y) v Rso(u(n) ,y)),

When n equals zero, the first line drops out, and much of the third line as well.
CCo is an abbreviation for:

I(u,y) & KqI(U) & (y)Rso(u,y)
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As before, F(u, u') & F(u', u") & ... & F(u(r-l), u(r» is abbreviated
to Fr).

I shall show that all formulae of the form A(vlO & F!n) -+ CCn (abbre
viated to CFn ) are provable.

The A(cht) formula, you'll recall, combined the starting condition of the machine
(a blank tape, an m-configuration of ql, scanned square number zero) with
the Des(cht) expression, which was a description of the machine. The Des(cht)
expression combined multiple lnst expressions. Each lnst expression indicated
how the instruction changed a symbol on the scanned square, changed the
m-configuration, and changed the square to be scanned.

Turing is essentially defining a CFn formula for each complete configuration n.

CFn is an abbreviation for:

A(cht) &: pn) -+ CCn

Here are the first few of these CFn formulas:

CFo: A(cht) -+ CCo
CFl: A(cht) &: F(u, u') -+ CCl
CF2: A(cht) &: F(u, u') &: F(u', u") -+ CC2

CF3: A(cht) &: F(u, u') &: F(u', u") &: F(u", ulll
) -+ CC3

The meaning of CFn is "The n-th complete
configuration of vi'( is so and so", where "so and so" stands for the actual
n-th complete configuration of vH. That CFn should be provable is
therefore to be expected.

Turing shows that the CFn formulae are provable with an induction proof. He
proves first that CFo is provable, and then shows that if CFn is provable, so is
CFn+l.

CFo is certainly provable, for in the complete configuration the symbols
are all blanks, the m-configuration is ql' and the scanned square is u, i.e.
CCo is

(y) Rso(u,y) & I(u, u) & K ql (u).

This is simply a rearranged version of the CCo formula I showed earlier. The
expression for A(cht) is this:

Q &: (y)Rso(u,y) &: leu, u) &: Kql (u) &: Des(cht)



The Major Proof 273

A(uI1) contains precisely the same R, I, and K predicates as CCo.

A (fir) -4 CCo is then trivial.
We next show that CFn -4 CFn+1 is provable for each n.

If you look at the expression for CFn, you'll see that

CFn -+ CFn+l

is just an abbreviation for the formula:

[A(uI1) & pnl -+ CCn] -+ [A(uI1) & pn+ll -+ CCn+1]

This is the much harder part of the induction proof, but proving this implication
will let us say that CFo -+ CFl is provable, CFl -+ CF2 is provable, and so forth,
so that all CFn expressions are provable.

There are
three cases to consider, according as in the move from the n-th to the
(n + l)-th configuration the machine moves to left or to right or remains
stationary. We suppose that the first case applies, i.e. the machine
moves to the left. A similar argument applies in the other cases.

In the first part of the next sentence Turing defines integers a, b, c, and d based
on the r, i, and k functions introduced earlier, but these definitions are a little
mixed up:

If
r(n,i(n») = a, r(n + 1,i(n + 1)) = c, k(i(n» = b, and k(i(n + 1») = d,

In Turing's published correction to this paper, he untangles the definitions.
They all refer to complete configuration n and should be:

a = ken), the index of the m-configuration
b = r(n, i(n)), the index of the symbol in scanned square i(n)
c = ken + 1), the index of the next m-configuration
d = r(n + 1, i(n)), the index of the new symbol in square i(n)

The a and c abbreviations are subscripts on q; the band d abbreviations are
subscripts on S. These abbreviations exist solely to simplify the remainder of the
sentence and a few items that follow:

then Des (flf) must include Inst {qa Sb Sd L qc} as one of its terms, i.e.

Des( flO -4 Inst{qa Sb Sd L qc}.
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Because Des consists of the conjunction of all of the lnst terms, if Des is true
then any individual lnst term is also true, and the implication is true. A(uW) is a
conjunction of Des and other expressions, hence:

A(uW) ~ Des(uW)

Combining these two implications, we have:

A(uW) ~ lnst {qaSbSdLqc}

The expression pn+l) is an abbreviation for a conjunction of F predicates that
are also assumed to be axioms. Because pn+l) is true, we can add it to both sides
of that formula as a conjunction:

Hence

But

is provable,

AUf) & Fn+l) ---'> Inst{qaSbSdLqcl & Fn+1).

Inst{qaSbSdLqc} & Fn+1) ---'> (CCII ---'> CCn+l)

Another fix is required: The conjunction on the left must also include Q to
affirm the uniqueness of the successors:

lnst {qaSbSdLqc} &Q&pn+l) ~ (CCn~ CCn+l)

If you replace the a, b, c, and d subscripts in the lnst expression, you'll see that
it refers to the particular lnst instruction that causes complete configuration n to
advance to complete configuration (n + 1):

lnst {qkCn)Sr(n,i(n))Sr(n+l,i(n))LqkCn+l)} & Q & pn+l) ~ (CCn~ CCn+l)

This formula is equivalent to

(CCn& lnst {qkCn)Sr(n,iCn))Sr(n+l,iCn))LqkCn+l)} & Q & pn+l)) ~ CCn+l

and intuitively it seems very obvious: CCn+1 is implied by CCn in conjunction
with the particular lnst instruction that causes CCn to advance to CCn+1. However,
showing that this is provable by manipulating the propositional functions involved
is rather messy due to the complexity of the lnst and CCn abbreviations.

The two statements that Turing has just presented are provable,

and so therefore is

That's a statement of the form X~ (Y ~ Z) and it's fairly easy to show that it's
equivalent to (X ~ Y) ~ (X ~ Z), so:
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(A(cfiO&pn+l) ---+ CCn) ---+ (A(cfiO&pn+l) ---+ CCn+l)

Recall that F with a superscript is an abbreviation for a conjunction of F
predicates, so that pn+l) ---+ pn) and (A(cfiO & pn+l)) ---+ (A(cfiO & F(n))

[262]

and

Both those parenthetical expressions are of the form of the abbreviation CFn ,

l.e.

CFn is provable for each n.

The induction proof showing that CFn is provable is concluded, but we're not
finished with the lemma yet because we really need to prove Un(cfiO.

Now it is the assumption ofthis lemma
thatS1 appears somewhere, in some complete configuration, in the sequence
of symbols printed by vH; that is, for some integers N, K,

where N is the number of a complete configuration and K is a square,

CCN has
RS

1
(u(N" u(K» as one of its terms, and therefore CCN -+ RS/u(N), u(K» is

provable.

This is so because any term in a conjunction implies that term.

We have then

and

CCN -+ RS
1
(u(N), u(K»

A(v\{) &]i'\N) -+ CCN .

That superscript on CC should actually be a subscript, but it's the definition CFN
which Turing has just shown is provable for all N (although previously he used a
lower-case n rather than upper-case N).

So far, Turing has been dealing with formulas that have contained a free variable
named u.
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We also have

(3u)ACAr) -+ (3u)(3u') . .. (3u(N'l)(A( AD & pNl),

where N' = max (N, K).

Actually, K (which is the square on which the zero appears) can never be greater
than N (the complete configuration), so N' is always equal to N. The expression
A(uI1) &: pN) on the right was just shown to imply CCN, which was just shown to
imply RS

1
(U(N) , u(K»)

And so

(3u)A( ."If) ~ (3u)(3u') . .. (3u(N')Rs
t
(u(N), u(K»,

The R function doesn't require the existence of all integers from u through
U(N'). It just requires U(N) and u(K), so most of those existential quantifiers can be
removed, and we're left with:

If we replace U(N) with sand u(K) with t, we get:

This is precisely the definition ofUn(uI1) that you'll see in a little box on page 268.
It is peculiarly not, however, the definition of Un(uI1) implied by Turing in his
original text. He had N(s) and N(t) in the expression on the right of the implication
sign, but those predicates simply indicate that sand t are natural numbers, and
that fact has been implied.

Beginning with the premise "If Sl appears on the tape in some complete
configuration of eM," we've just proved a formula that was defined as Un(uI1),

i.e. Un(AO is provable.

This completes the proof of Lemma 1.

The second lemma is much shorter, and requires only interpreting the formula
using the propositional functions defined earlier.

LEMMA 2. If Un(A() is provable, then 8 1 appears on the tape in some

complete configuration of N
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If we substitute any propositional functions for function variables in
a provable formula, we obtain a true proposition. In particular, if we
substitute the meanings tabulated on pp. 259-260 in Un(ul-O, we obtain a
true proposition with the meaning "81 appears somewhere on the tape in
some complete configuration of vl-f'.

Now Turing has established that Un(cAf) is provable if and only if 51 appears on
the tape in some complete configuration of uI1.

We are now in a position to show that the Entscheidungsproblem cannot
be solved. Let us suppose the contrary. Then there is a general
(mechanical) process for determining whether Un(cAO is provable. By
Lemmas 1and 2, this implies that there is a process for determining whether
vir ever prints 0, and this is impossible, by § 8. Hence the Entscheidungs
problem cannot be solved.

In retrospect, it was a piece of cake, wouldn't you agree?
It shouldn't be surprising at all that Un(cAf) is a rather complex formula. If it

were much simpler, it might be of a form that could be analyzed by a decision
procedure. Instead, Un(cAf) includes A(cAf) as one of its terms, and A(cAf) includes Q
and Des(cAf) among its terms, and Des(cAf) is a conjunction of all the lnst terms that
make up the machine. Each Inst term has five universal quantifiers, Qhas three
universal quantifiers and one existential quantifier, A(cAf) has another universal
quantifier, and Un(cAf) has three existential quantifiers.

This complex nesting of quantifiers wouldn't make a difference in the solv
ability of the proposition if it happened to contain only monadic predicates,
that is, predicates with only one argument. In 1915, Leopold Lowenheim
(1878-1957) proved that propositions containing only monadic predicates were
decidable.2

By the time Turing wrote his paper, much additional progress had been made
in finding decision procedures for special cases of formulas. Generally, when
applying decision procedures, a formula is first converted to prenex normal form,
which means that the formula is manipulated so that all quantifiers (in non-negated
form) are moved to the beginning of the formula and precede an expression called
the "matrix" that contains no quantifiers.

Over the years, various mathematicians discovered decision procedures for
classes of formulas in prenex normal form that begin with a particular pattern of

2Leopold L6wenheim, "Uber Moglichkeiten im Relativekalkiil," Mathematische Annalen, Vol 76 (1915),

447-470. Translated as "On Possibilities in the Calculus of Relatives," in Jean van Heijenoon, ed., From

Frege to Gbdel: A Source Book in Mathematical LogIC, 1879-1931 (Harvard University Press, 1967), 228-251
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quantifiers. In the literature on decision problems,3 this pattern of quantifiers is
shown using theY and 3 symbols for the universal and existential quantifiers. A
numeric superscript indicates a particular number of quantifiers; an asterisk means
any number.

In 1928, Paul Bernays and Moses Schonfinkel (1889-1942) published a decision
procedure for sentences beginning with 3*"1* (any number ofexistential quantifiers
followed by any number of universal quantifiers). In 1928, Wilhelm Ackermann
gave a decision procedure for 3*"13* (any number ofexistential quantifiers followed
by one universal quantifier, followed by any number of existential quantifiers). In
1932 Godel showed a decision procedure for two universal quantifiers between
any number of existential quantifiers: 3*"123*.

Also explored in connection with the decision problem were reduction classes.
A reduction class consists of all sentences that begin with a particular pattern of
quantifiers. Sentences in various reduction classes were proven to have a decision
procedure only if all sentences have a decision procedure. In 1920, Skolem proved
that "1*3* defines a reduction class and in 1933 Godel narrowed that to "133*.

Before the proofs of Church and Turing, it was not known whether these
reduction classes had decision procedures - only that if there existed a decision
procedure for the reduction class, there would also exist a general decision pro
cedure. A consequence of the Church and Turing papers was that these reduction
classes were undecidable. In 1932, Gbdel had shown a decision procedure for
sentences with the prefix 3*"123* and by extension "123*. After Turing's proof,
it was known that sentences with the prefix "133* were undecidable. With the
addition of one little universal quantifier, a decidable sentence of form "123* tips
to an undecidable sentence of form "133*.

In the following paragraph, Turing uses the word quantor to refer to quantifiers.

In view of the large number of particular cases of solutions of the
Entscheidungsproblem for formulae with restricted systems ofquantors, it

[263]

is interesting to express Un(vI'f) in a form in which all quantors are at the
beginning. Un(vI'() is, in fact, expressible in the form

(u)(3x)(W)(3ul) ... (3un )Q..\

where Q) contains no quantors, and n = 6.

(l)

Turing has proved that sentences with the prefix "13"136 (using the customary
notation) form a reduction class. There can be no decision process for sentences
with this prefix.

3Most notably, Egon Borger, Ench Gradel, and Yun GureVIch, The Classical Decision Problem (Spnnger,

1997) This book and its bibliography should be consulted for papers concerning the

Entscheidungsproblem and its partial solutions
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By unimportant modifications
we can obtain a formula, with all essential properties ofUn(vI1), which is of
form (I) with n = 5.

In the correction to this paper, Turing notes that this last number should be 4,
so the reduction class is further narrowed to ¥3¥34 .

In 1962, Swiss logician julius Richard Biichi (1924-1984) took another swing
at the Entscheidungsproblem using Turing Machines, and managed to simplify the
proof somewhat.4 He showed that sentences of the form 3&¥3¥ form a reduction
class. (Such a sentence is a conjunction of two terms, each preceded by its own
quantifier or quantifiers.) Biichi's paper also laid the groundwork for proving
that ¥3¥ sentences form a reduction class, which means there can be no general
decision procedure even for sentences with the seemingly simple prefix of ¥3¥.

Mathematicians do the world big favors when they develop methods for solving
problems, but they perform an equal service when they prove that something has
no solution. There is no way to trisect an angle with ruler and compass, no way to
square the circle, and no way to prove Euclid's fifth postulate from the first four.
There are no integer solutions to x n +yn = zn for n greater than 2, there is no way
to establish consistency of arithmetic within the system, and there is no general
decision procedure for first-order logic.

We can stop wasting our time trying to find one. Knowing what's impossible is
just as important as knowing what's possible.

4]. Richard Biichi, 'Turing-Machines and the Entseheidungsproblem," Mathematische Annalen, Vol 148,
No.3 (June 1962),201-213.





The Lambda
Calculus

In 1983 or 1984, when Alonzo Church was about 80 years old, he was invited to
speak at the Center for the Study of Language and Information at Stanford Univer
sity, and was taken on a little tour featuring CSLI's Xerox Dandelion computers.
These computers were running LISP, a programming language developed by John
McCarthy (b. 1927). Church was told how LISP was based on the lambda calculus
that Church had invented some 50 years earlier.

Church confessed that he didn't know anything about computers, but that he
once had a student who did. 1 By that time, of course, everyone knew who Alan
Turing was.

The lambda calculus developed by Alonzo Church in the early 1930s provided
a means for Church to prove that that there is no general decision procedure for
first-order predicate logic. Alan Turing learned of this proof prior to the publication
of his own paper on computable numbers and the Entscheidungsproblem. He was
then obliged to add an appendix to his paper that described how his approach
and Church's approach were basically equivalent. That appendix is the subject of
this chapter.

If the concepts behind the lambda calculus seem familiar, it is because they have
been quite influential in the development of programming languages. Fairly early
it was noticed that a structural relationship existed between the lambda calculus
and programming languages classified as procedural or imperative, such as the
early programming language ALGOL,2 from which languages such as Pascal and C
derived, as well as the many derivatives of C such as C++, Java, and C#. Programs
written in procedural languages are structured around the concept of passing data
around to procedures (also called subroutines or methods) that process this data
in various ways.

1Mana Manzano, "Alonzo Church His Life, His Work and Some of His Miracles," History and Philosophy of
logiC, Vol 18 (1997), 212

2p. J Landin, "A Correspondence Belween ALGOL 60 and Church's Lambda-Nolalion," Communications of
the ACM, Vol. 8, No.2 (Feb 1965),89-101, Vol 8, No 3 (Mar 1965),158-165
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The lambda calculus has had a more direct influence on functional programming
languages, such as LISP, APL, Haskell, Scheme, and F#. In a functional language
the functions are arranged more like a chain where each function gets the output
from the previous one. Functional languages often allow the manipulation of
functions in much the same way that procedural languages manipulate data. While
functional languages have not achieved the mainstream popularity of procedural
languages, they have recently been enjoying something of a renaissance.

Alonzo Church was born in 1903 in Washington, D.c., and spent most of his
professional life at Princeton University. He attended Princeton as an undergraduate
and then earned his Ph.D. in mathematics at the age of 24. He spent two years
as a National Research Fellow, and then came back to Princeton, where he taught
from 1929 until his retirement in 1967. Church then had a supplemental career at
UCLA until 1990.

Church was a hard-working and meticulous man. He spoke in carefully
constructed complete sentences and worked late into the night. Church's classes
often began with an elaborate ritual of cleaning the blackboard, sometimes
involving a pail of water. When working on a mathematical problem, he would
use different colored inks, and when he needed more colors, he would mix his
own using various proportions of the standard colors. When he finished with a
page he wished to preserve, he would cover it with Duco, a lacquer that Church
found particularly suited for the purpose because it did not warp the paper.3

Church supervised 31 doctoral dissertations, including those of Stephen Kleene
(1931), John Barkley Rosser (1934), Leon Henkin (1947), Martin Davis (1950),
Hartley Rogers (1952), and Raymond Smullyan (1959), as well as Alan Turing
(1938).4

It is often assumed that Alonzo Church founded the Association for Symbolic
Logic because he was the first editor of The Joumal of Symbolic Logic. He did not
actually found the organization, but he did guide the journal on a very illustrious
course, highlighted by his valuable bibliographies on the literature of logic.

The story of the lambda calculus begins with work that Church did while he
was a National Research Fellow from 1927 to 1929. At the time, mathematicians
wanted to get a handle on the amorphous concept of effective calculability. To
understand the limits and capability of numeric calculations, it was necessary to
define functions in a formal and systematic manner, that is, as symbols and strings
with definite rules. What was the best way to do this? Could it then be shown that
these functions fully encapsulated effective calculability?

3Herbert B Enderton, "Alonzo Church Life and Work," introduction to Collected Works ofAlonzo Church
(MIT Press, forthcoming) Prepnnt available at http Ilwww math ucla edul~hbelchurch pdf
4Herbert B. Enderton, "In Memonam. Alonzo Church, 1903-1995," The Bulletin of Symbolic logIC, Vol I,

No 4 (995), 486-488.
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Church's first paper on the subject was received by The Annals of Mathematics
on October 5, 1931, and published the following ApriLS It is here that Church
introduced a lower-case lambda (A.) to represent functions.

Part of the impetus for a new notation was a certain ambiguity in the traditional
representation of functions. Consider the following expression:

x2 + 5x+ 7

By itself, that expression is syntactically correct, yet we're not sure what we're
supposed to do with it. This is much clearer:

f(x) = x2 + 5x + 7

That's a traditional function notation where x is a bound (or independent) variable.
We can change that bound variable to whatever we want, as long as there won't
be a collision with anything else in the function:

fCy) = i + 5y + 7

We can now represent a value of the function with an expression such as f(4).

We know to substitute the 4 for the independent variable and calculate a value of
the function:

f(4) = (4)2 + 5· (4) + 7 = 43

You may be amazed when you realize this, but there's no standard way to
represent the function expression (that is, the expression i + 5y + 7) together
with a specific value for y. Once we stick the 4 in for y, we lose the independent
variable. If you were put in charge of fixing this deficiency and developing a
notation for representing a function with a value, perhaps you might come up
with something like this:

Ii + 5y + 7)(4)

That's not too bad, but what if the expression had multiple independent
variables? This is rather ambiguous:

Ii + 5y + 18x - 2xy + 7)(4)

Even if you allowed this

[i + 5y + 18x - 2xy + 7)(4, 5)

you're assuming that the values for x and yare specified in a particular order.
In Principia Mathematica, Alfred North Whitehead and Bertrand Russell adopted

the notation of a circumflex for classes that satisfied certain functions: J. Church

5Alonzo Church, "A Set of Postulates for the Foundation of Logic," The Annals of Mathematics, 2nd Senes,

Vol 33, No 2 (Apr 1932), 346-366
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wanted to move the circumflex in front of the variable, like A y, but for typographical
reasons the symbol was soon changed to a lambda6 : Ay.

Church's notation evolved somewhat over the years. In the following discussion,
I will attempt to be consistent with the notation eventually used by Turing in the
appendix to his paper. A function of one variable is represented with this general
syntax

Ax[MI

where M is an expression containing the bound variable x. For the earlier example,
you can denote the function as:

AX[X2 + 5x + 71

A function with a value for the bound variable is written with the general syntax:

(F}(A)

F is a function, and if F has an independent variable, then the formula represents
the function where A can replace that independent variable. If the function has an
independent variable x, for example, the general notation is:

()...x[MI}(A)

For the example function, this becomes:

{AX[X2+ 5x + 71 }(A)

If the value of x is to be 4, then you can write it like so:

(AX[X2+ 5x + 7]}(4)

There we have it: We've successfully notated a function together with a value for
the independent variable.

A function with two independent variables has the general form

({F}(A)}(B)

but for convenience and readability it can be shortened to.

(F}(A, B)

If you put an actual function in for F, it looks like this:

(AXAY[i + 5y + I8x - 2xy + 7]}(A, B)

We now know that A is to be substituted for x and B is to be substituted for y
because that's the order of the lambdas at the beginning.

6) Barkley Rosser, "Highlights of the History of Lambda-Calculus," Annals of the History of Computing, Vol

6, No 4 (Oct 1984),337-349
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Additional notational shortcuts are allowed. The curly braces can be eliminated
if there's no confusion, so that

{F}(A, B)

becomes
F(A, B)

which looks like regular function notation, except that the F expression actually
contains some lambdas:

AXAy[M](A, B)

Church also allowed the brackets to be replaced by a single dot following the
string of lambdas:

AXAy.M(A, B)

This is the form in which you'll see most of the lambda expressions in the pages
that follow.

After Church established the basic lambda notation, he introduced expressions
for the common logical operators and rules of substitution to convert formulas
into equivalent formulas. Church defined these rules of conversion very formally,
but they can be boiled down to the following:

I. You can change a particular bound variable (for example, x to y) if the new
variable doesn't collide with anything else in the formula.

II. In a formula {Ax.M}(N), if N doesn't contain anything named x, you can
substitute N for all occurrences of x in M, at which point the formula
becomes just M with N substituted for the original x.

III. The reverse of II is allowed.

A year and a half after that first paper on lambda functions, Church published a
second.7 Church revised his list of postulates and emphasized "the entirely formal
character of the system which makes it possible to abstract from the meaning of
the symbols and to regard the proving of theorems (of formal logic) as a game
played with marks on paper according to a certain arbitrary set of rules.,,8 That
concept is very much in the formalist tradition.

Church also introduced the abbreviation cony meaning "by conversion" to
indicate one formula converted into an equivalent formula by rule I, II, or III. For
example,

Ax[X2+ 5x + 7](A) conv A2 + 5A + 7

Church concluded this second paper with a short section on positive integers.
He used lambda notation to define the symbol 1, the successor, addition, and

7Alonzo Church, "A Set of Postulates for the Foundation of Logic (Second Paper)," The Annals of
Mathematics, 2nd Senes, Vol 34, No.4 (Oct. 1933),839-864.
8lbid,842
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multiplication operations, and the five Peano Axioms, and declared, "Our program
is to develop the theory of positive integers on the basis which we have just been
describing, and then, by known methods or appropriate modifications of them, to
proceed to a theory of rational numbers and a theory of real numbers.,,9

The next steps in this process consisted of papers by Church's student Stephen
Cole Kleene - whose last name is pronounced "klay-nee" - with the assistance
ofJohn Barkley Rosser (1907-1989). In 1934 Kleene laid some foundational work
in "Proof by Cases in Formal Logic,,,l0 and simplified the notation for multiple
lambdas. Instead of

AxAyM

you can use
AxyM

Kleene's doctoral thesis was adapted and published in 1935 as the two-part "A
Theory of Positive Integers in Formal Logic."11 The prerequisites for this paper are
Church's two papers and Kleene's earlier paper, but the second part also alludes
to a forthcoming paper by Church and Rosser. 12

Although the lambda calculus as developed by Church, Kleene, and Rosser is
quite extensive and involves logic as well as arithmetic, I want to focus on some
elementary arithmetic just so you get a taste of how addition and multiplication
can be implemented through pure symbol manipulation.

When defining the natural numbers, it's always necessary to begin with either
oor 1; Church and Kleene begin with 1, and here's the symbol for itP

1~ Afxjex)

The arrow means "stands for" or "is an abbreviation for." The formula itself may
seem a little strange. Actually, it probably seems extremely strange, but it's merely
a definition, so it needn't make sense right away. With the more verbose notation,
it is:

1~ { Afxlfex)) }

Thus, 1 is actually a function with the two bound variables f and x. Just offhand,
those two variables seem like two more variables than are needed to define a
simple number.

9Ibid,864.

lOS. C Kleene, "Proof by Cases in Formal Logic," The Annals of Mathematics, 2nd Senes, Vol. 35, No.3 Ouly

1934),529-544

11 S C Kleene, "A Theory of Positive Integers in Formal Logic, Part I," Amencan Journal of Mathematics, Vol.

57, No lOan 1935),153-173, Vol 57, No 2 (Apr 1935),219-244

12Alonzo Church and J B. Rosser, "Some Propenies of Conversion," Transactions of the Amencan
Mathematical Society, Vol 39, No 3 (May 1936),472-482

131'1I be showing the definitions as they appear in the first 10 pages of Kleene's "A Theory of Positive

Integers in Formal Logic, Part 1"
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This is the successor function:

5 -+ J...pfxj(p(f,x))

Again, I agree, very strange. Although we expect the successor function to have a
bound variable, we hardly expect it to have three bound variables.

The symbol 2 is fortunately defined as you might expect:

2 -+ S(l)

If we actually want to apply the successor function to 1, we must make sure that
the bound variables are all unique, so let's use the following equivalent expression
for 1:

1 -+ J...ab.a(b)

When working with lambda expressions, functions and variables often shift
roles. In the progressive derivation of converted formulas below, I use curly
braces selectively to identify the function with a bound variable being replaced in
that step.

The function S(l) can also be written as {S}(l) or like this:

{ J...pfxj(p(f, x)) }(J...ab.a(b))

The first bound variable in the successor function is p, so the expression for 1
replaces p in that function, and the p after the J... disappears:

J...fxj(J...ab.a(b)(f,x))

This formula now contains another function with two arguments:

J...fxj({ J...ab.a(b) }(f,x))

Substitute the f for a and x for b:

J...fxj(f(x))

and we're done.
Whereas the number 1 was originally defined as

1 -+ J...fxj(x)

the number 2 is:
2 -+ S(l) conv J...fx.f(f(x))

Compare the converted expression for 2 with the expression for 1 and you'll see
an additionalf and pair of parentheses to the right of the dot. Now express 2 with
different variables as J...ab.a(a(b)) and try determining the next successor {S}(2):

{J...pfx.f(p(f,x)) }(J...ab.a(a(b)))

Again, substitute 2 for p:

J...fxj({ J...ab.a(a(b)) }(f,x))
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Substitutef for a and x for b:
Afxj(f(f(x)))

That's the lambda expression for 3. I suspect you're beginning to see the pattern.
What we want most from an abstract representation of the positive integers is
the sense of some kind of succession. This notation shows that succession: Each
successive integer has an additional nested appearance of the first bound variable.

Kleene defined the addition operator like this:

+ -+ Apafx.p(f, a(f,x))

Skeptical? Let's add 2 and 3. First we need to make all the bound variables
different. I'll use Aab.a(a(b)) for 2 and Acd.c(c(c(d))) for 3 so that {+}(2, 3) is:

{ Apafx.p(f, a(f,x)) }(Aab.a(a(b)), Acd.c(c(c(d))))

In the + function, substitute the formula for 2 for p and substitute the formula for
3 for a:

Afx.Aab.a(a(b))(f, { Acd.c(c(c(d))) }(f,x))

The substituted 3 is now a function where f is substituted for c and x for d:

Afx.{ Aab.a(a(b)) }(f,f(f(f(x))))

Now that substituted 2 is a function where f is substituted for a and f(f(f(x)))
for b:

Afxj(f(f(f(f(x)))))

And we're done. The answer is the same as 5(5(5(50)))) or what we commonly
refer to as 5.

Interestingly, the multiplication function is simpler than the addition function:

x -+ Apax.p(a(x))

Let's try it with 2 and 3. We can write {x }(2, 3) as:

{ Apax.p(a(x)) }(Aab.a(a(b)), Acd.c(c(c(d))))

Substitute the formula for 2 for p and the formula for 3 for a:

Ax.Aab.a(a(b)) ({ Acd.c(c(c(d))) lex))

Now 3 has become a function where x is substituted for c:

AX.{ Aab.a(a(b)) }(Ad.x(x(x(d))))

Now 2 has become a function. Substitute the expression on the right for a:

AX.Ab.Ad.x(x(x(d))) ({ Ad.x(x(x(d))) }(b))

In the function on the right, substitute b for d

AX.Ab. { Ad.x(x(x(d))) } (x(x(x(b))))
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and finish with the final substitution for d:

hb.x(x(x(x(x(x(b))))))

That's 6, which is certainly the product of 2 and 3.
The functional definition of numbers allows you to do some odd things, for

example
{2}(3)

or:
{Aab.a(a(b)) }(Acd.c(c(c(c(d)))))

If you carry out the laborious substitutions, you'll eventually end up with

Abd.b(b(b(b(b(b(b(b(b(d)))))))))

or 9, which not coincidentally is 3 to the second power. That's why exponentiation
of m to the n power is defined simply as:

Amn.nm

Here is a system where multiplication is seemingly simpler than addition
and exponentiation is the simplest of them all. As Church, Kleene, and Rosser
experimented with the lambda calculus, they found that they could express
anything they could think of in lambda notation - a characteristic later called
A-definability. "Church had been speculating, and finally definitely proposed, that
the A-definable functions are all the effectively calculable functions.,,14

Kurt G6del had come to the Institute for Advanced Study in 1933, and in the
spring of 1934 he delivered some lectures at Princeton on his Incompleteness
Theorem, and also on recursive functions, which are functions built up from basic
primitive functions. 15 The impetus for G6del's interest in recursive functions was
a letter he received in 1931 from Jacques Herbrand (1908-1931), the brilliant
young French mathematician who died while mountain climbing in the Alps.

At the time, however, G6del believed that neither lambda functions nor
recursive functions were sufficient to encompass all of what we think of informally
as effective calculability.

In 1936, Church published "An Unsolvable Problem of Elementary Number
Theory"16 that actually contains the first appearance of the term "A-definable."

14Stephen C K1eene, "Ongins of Recursive Function Theory," Annals of the History of Computing, Vol. 3,

No lUan 1981),59
15Based on notes taken by Kleene and Rosser, G6del's lectures were circulated but not formally published

until 1965 when they were included in Martin DaVls, ed., The Undecidable (Raven Press, 1965),41-71
They were subsequently published in Kurt Gooel, Selected Works: Volume 1, Publications 1929-1936 (Oxford

University Press, 1986),346-371.
16Alonzo Church, "An Unsolvable Problem of Elementary Number Theory," Amencan]oumal of
Mathematics, Vol 58, No.2 (Apr. 1936),345-363.
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(Previously Kleene had just used the terms "definable" or "formally definable" for
expressing logical and arithmetic operations in terms of the lambda notation.)
Church refers to his earlier papers and Kleene's two papers, as well as to two
forthcoming papers by Kleene that explore the relationship between recursive
functions and A-definable functions. 17 Using G6del numbering, Church was able
to construct an unsolvable problem just as G6del constructed an undecidable
proposition.

With this foundation, Church published the two-page "A Note on the Entschei
dungsproblem" in the very first issue of TheJournal ofSymbolic Logic (which he also
edited), with the conclusion, "The general case of the Entscheidungsproblem of the
engere Functionenkalkul is unsolvable. ,,18 The paper was received by the Journal on
April 15, 1936, six weeks before Turing's submission to the London Mathematical
Society on May 28, 1936.

Turing probably spent a good part of the summer of 1936 reading the various
papers by Alonzo Church and Stephen Kleene that I've cited here, learning the
lambda calculus and examining how it related to his computing machines. Turing's
three-page appendix is indicated as being received by the London Mathematical
Society on August 28; at the end Turing added "The Graduate College, Princeton
University, New Jersey, USA" in anticipation of his future home. He did not leave
England for the United States until September 23, arriving in New York on the
29th J9

Added 28 August, 1936.

APPENDIX.

Computability and effective calculability

The theorem that all effectively calculable (A-definable) sequences are
computable and its converse are proved below in outline.

The "in outline" qualification means that there will be some gaps in the proof.

It is assumed
that the terms "well-formed formula" (W.F.F.) and "conversion" as used

t7S. C. Kleene, "General Recursive Functions of Natural Numbers," Mathematische Annalen, Vol. 112, No.1

(Dec 1936),727-742, repnnted in Martin DaVIS, ed, The Undecidable (Raven Press, 1965),237-252. S. C.

Kleene, "J..-Definability and Recursiveness," Duke Mathematicaljoumal, Volume 2, Number 2 (936),

340-353

t8Alonzo Church, "A Note on the Entscheidungsproblem," The joumal ofSymbolic Logic, Vol 1, No 1 (Mar

1936),40-41 See also Alonzo Church, "Correction to a Note on the Entscheidungsproblem," Thejoumal
of Symbolic Loglc, Vol 1, No 3 (Sep 1936),101-102

19Andrew Hodges, Alan Tunng The Enigma (Simon & Schuster, 1983), 116
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by Church and Kleene are understood. In the second of these proofs the
existence of several fonnulae is assumed without proof; these formulae
may be constructed straightforwardly with the help of, e.g., the
results of Kleene in "A theory of positive integers in formal logic",
American Journal ofMath. , 57 (1935),153-173,219-244.

By "second of these proofs," Turing means the converse: that every computable
sequence is also A-definable.

The W.F.F. representing an integer n will be denoted by N n .

Using Kleene's definitions of 1 and subsequent numbers - but with bound vari
ables consistent with what Turing soon shows - Nl is Axy.x(y), N2 is Axy.x(x(y)),
and Nn is Axy.x(x(x(x ... (y) ...))).

We shall
say that a sequence y whose n-th figure is 4Jy(n) is A-definable or effectively
calculable if 1 + 4Jy(u) is a A-definable function of n,

The argument of the second occurrence of tPy should (like the first occurrence)
be n rather than u, so the expression is l+tPy(n). The nth digit of a computable
sequence y is either 0 or 1, but the lambda calculus as defined by Church and
Kleene involves only positive integers, not including zero. The function tPy(n) can't
be A-definable because zero is not A-definable. For this reason, 1 is added so the
numbers are 1 and 2.

i.e. if there is a W.F.F.
My such that, for all integers n,

{My} (Nn ) conv N"'y(n)+l,

i.e. (My}(Nn ) is convertible into .lxy.x(x(y») or into .lxy.x(y) according as
the n-th figure of Ais 1 or O.

The A in the last line is wrong; it should be the "nth figure of y." The function
My for the value Nn (indicating the digit of the sequence) is convertible into either
Axy.x(x(y)) , which is 2, or Axy.x(y), which is 1, corresponding to the digits 1
andO.

For example, if the fifth digit of y is 1, then tPy(5) is 1, and

{My}(Ns) conv Nl/>y(S)+l

which means
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To show that every A-definable sequence y is computable, we have to
show how to construct a machine to compute y. For use with machines it
is convenient to make a trivial modification in the calculus of conversion.
This alteration consists in using x, x', x", ... as variables instead of
a, b, C, •..•

Turing hasn't used any variables named a, b, or c here, but he has used x and y.
He wants all variables in a standard form because some comparing and matching
will be going on. This is similar to the requirement in Section 8 (page 221 of this
book) that first-order predicate logic be "modified so as to be systematic" before it
can be processed by a machine.

We now construct a machine ~which, when supplied with the
formula My, writes down the sequence y. The construction of;f is some
what similar to that of the machine 'J< which proves all provable formulae
of the functional calculus. We first construct a choice machine 5:1'1, which,
if supplied with a W.F.F., M say, and suitably manipulated, obtains any
formula into which M is convertible. ~1 can then be modified so as to
yield an automatic machine~ which obtains successively all the formulae

[264]
into which M is convertible (cf. foot-note p. 252).

Of the five footnotes on page 252 of his paper, Turing is referring to the second
(page 221 of this book) where he discusses the machine that proves all provable
formulae of first-order logic. This machine is similar and probably quite a bit
simpler considering the very systematic way in which lambda expressions are
converted.

The machine ~
includes '0:&. as a part. The motion of the machine ';.[ when supplied
with the formula My is divided into sections of which the n-th is
devoted to finding the n-th figure of y. The first stage in this n-th section
is the formation of IMy}(Nn ). This formula is then supplied to the
machine ~, which converts it successively into various other formulae.
Each formula into which it is convertible eventually appears, and each, as
it is found, is compared with

Ax[Ax' [lx}(lx}(x'»)]l i.e. N 2,

Ax [Ax' [lx}(x')]], i.e. Nl.

These are just verbose expressions for the numbers 2 and 1. In implementing a
machine to convert A expressions, you want absolute consistency in the notation,
and that's easiest with no syntactical shortcuts.
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Ifit is identical with the first of these, then the machine prints the figure 1
and the n-th section is finished. If it is identical with the second, then 0
is printed and the section is finished. If it is different from both, then the
work of~2 is resumed. By hypothesis, {My}(Nn ) is convertible into one of
the formulae N2 or N 1; consequently the n-th section will eventually be
finished, i.e. the n-th figure of y will eventually be written down.

Turing skips a line before commencing the more difficult converse of the proof:
How to develop a lambda expression that encapsulates the workings of a particular
machine.

To prove that every computable sequence y is A-definable, we must
show how to find a formula My such that, for all integers n,

{My}(Nn ) conv N 1+t/>y(n)'

That's just the same formula as before but with a rearranged subscript on the
final N. Now the job involves not describing a machine to manipulate lambda
functions, but defining a lambda function that imitates a machine.

Let ul( be a machine which computes y and let us take some description
ofthe complete configurations ofvH by means of numbers, e.g. we may take
the D.N ofthe complete configuration as described in § 6.

In the discussion that follows, I'm going to be referring to "configuration
numbers," which are simply consecutive integers 0, 1, 2, 3, and so forth that
increase as the machine operates. For any particular machine and for each
configuration number there is an associated Description Number of the complete
configuration. These are generally very large numbers that include codes to describe
the symbols already printed on the tape, as well as the next m-configuration.

Let ~(n) be
the D.N of the n-th complete configuration of vI{.

Turing's n is what I'm calling the configuration number, while ~(n) is a
Description Number.

The table for the
machine v!'( gives us a relation between ~(n + 1) and ~(n) of the form

~(n + 1) = py(~(n»),

where Py is a function of very restricted, although not usually very simple,
form: it is determined by the table for vH.
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This Py function converts from one Description Number to the next. The
input is generally a long number, and the output is another long number. This
function must basically find within this long sequence a pattern of numbers
corresponding to an m-configuration and scanned symbol, and construct the next
complete configuration based on the machine table, possibly including a new
printed symbol and changing the m-configuration and next scanned symbol.

Turing's description of this function as "not usually very simple" is right on
target. The function essentially needs to break apart the Description Number into
individual digits to examine them. Because the Description Number is a decimal
number, the function can extract a piece of any length by first dividing the big
number by a power of 10 and ignoring the fractional part, and then dividing by
another power of 10 and keeping the remainder. Although the Py function is
unquestionably complex, it's certainly conceivable.

Py is A-definable (l omit the proof
of this), i.e. there is a W.F.F. A y such that, for all integers n,

lAy I(N~(n» conv N~(n+l).

Ay is essentially the same function as Py except expressed in the language of
the lambda calculus. It converts Description Numbers to Description Numbers.

Let U stand for

where r = ~(O);

The uppercase U at the beginning of the sentence should have a subscripted
y because it is based on a particular computable sequence. Nr is the Description
Number of the complete configuration when the machine begins - the number
313. The number corresponds to the Standard Description DAD, which means
m-configuration ql (DA) and scanning a blank square (D). The variable u is the
configuration number, that is, 0, 1, 2, and so forth as the machine progresses.
The enclosure of u in curly brackets to indicate a function may not seem to make
sense, but you'll see shortly that it works just fine.

then, for all integers n,

The argument to the Uy function is the configuration number (0, 1, 2, and so
forth). Turing asserts that this function is convertible into the Description Number
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of that configuration. Let's try it out for configuration 4, which involves converting
the expression {Uy }(N4 ) or:

{Au[{{u}(Ay)}(N~(o»)1 }(A.xy.x(x(x(x(y)))))

I've used N~(o) rather than Nr in the Uy function just so we don't forget that
the subscript refers to a Description Number. Replace u in the function with the
expression for 4:

{{ Axy.x(x(x(x(y))))}(Ay)}(N~(o»)

Now replace x with Ay :

Finally, replace y with N~(o):

Ay(Ay(Ay(Ay(N~(o»))))

The first application of Ay on N~(o) results in NW) and the next application results
in N~(2) and so forth, so the final result is N~(4), as Turing claimed. Now you
see why it made sense for u to be a function in the Uy definition: It essentially
compounds u nested occurrences of the Ay function.

[2651
It may be proved that there is a formula V such that

conv N 1 if, in going from the n-th to the (n + l)-th
complete configuration, the figure 0 is
printed.

conv Nz if the figure 1 is printed.

conv N 3 otherwise.

The function V basically analyzes the Description Numbers of two consecutive
complete configurations and determines whether a 0 or 1 was printed, or neither.
It's another complex but conceivable function.

Let Wy stand for

AU[l {V} (lAy 1(IUy}(u»)) }(IUyl(u»)],

so that, for each integer n,
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The formula on the left side of this statement is the one that is convertible to
either N1, N2 , or N3 . It's easiest to demonstrate this conversion by starting with
the converted result or:

Replace Wy with the expression that Turingjust showed us:

Replace U with Nn:

{ {V} ( {A y } ( {Uy } (Nn) ) ) } ( {Uy } (Nn) )

The expression (Uy }(Nn) is convertible to N~(n), so:

The expression (A y }(N~(n») is convertible to N~(n+l), and this is what we were
after:

({ V}(N~(n+ 1))}(N~(n»)

With this little proof, we now know that (Wy}(Nn) is convertible to Nl' N2, or
N3, depending on whether the progress from the n-th to the (n+1)-th complete
configuration results in a 0 or 1 being printed, or otherwise.

and let Q be a formula such that

!lQ}(WY)1 (Nsl conv N,lz"

where r(s) is the 8-th intl'ger If f(,r which IWy I(Nq ) is convertible into either
N 1 orN'2.

In the formula, the subscript on the final N is obviously res) and not r(z). Only
some of the complete configurations involve a 0 or 1 being printed. The res)
function reveals which these are. For example, if a 0 or 1 was printed in complete
configurations 1, 4, 6, 7, and so forth, then r(l) returns 1, r(2) returns 4, r(3)

returns 6, r(4) returns 7, and so forth.

Then, if My stands for

AW [IWy } (! lQ}( WY)I (w))],

it will have the required propertyi·.

, In a complete proof of the i.-definabihty of computable sequence~ it would be bt'~t to
llIodi(y thi,; method by I"t'plaring tht' IlUlllPI ieal descriptioll of the complt'tp configurations
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by a description which can be handled more easily with our apparatus. Let us choose
certain integers to represent the symbols and the m-configurations of the machine.
Suppose that in a certain complete configuration the numbers representing the successive
symbols on the tape areSIS2. . Sn, that the m-th symbol is scanned, and that the m-configur
ation has the number t; then we may represent this complete configuration by the formula

[lNsl ,NS2 ,'" ,NSm _l l, [N/,Nsml, INsm + l ,··· ,Nsnl],

where

la, bl stands for AU[ /lu}(al!(bl],

[a,b,c] standSfOrAu[{ /lu}(al!(bl}(Cl}

etc.

In the second half of Turing's demonstration he set out for himself the job of
finding a formula My such that for all n,

(My}(Nn) conv Nl+l/ly(n)

The formula tells us whether the n-th digit of the sequence is a 0 or 1. Let's begin
with:

Substitute the formula that Turing just derived for My:

{AW[ {Wy }({(Q}(Wy ))}(w))] }(Nn)

Replace W with Nn:

The expression within the parentheses was shown to be convertible into Nr(n), so:

(Wy}(Nr(nl)

That formula was shown to be convertible into Nl, N2, or N3 depending on
whether 0 or 1 is printed in complete configuration r(n) or something else.
Nevertheless, r(n) is defined as returning only those complete configurations that
result in a 0 or 1 being printed.

The footnote shows a complete configuration separated into the parts of the
tape before the next scanned symbol and after the next scanned symbol. The
lambda expressions that Turing suggests represent these parts of the tape can be
quite long, and grow in size with each complete configuration.

Here the paper ends.

The Graduate College,
Princeton University,

New Jersey, U.S.A.



298 The Annotated Turing

Turing's more rigorous proof did not pursue the approach he outlined here
for the converse. The paper "Computability and A-Definability" was received by
The]oumal of Symbolic Logie on September 11,1937, less than a year after he had
arrived in Princeton.20 The paper begins:

Several definitions have been given to express an exact meaning
corresponding to the intuitive idea of 'effective calculability' as
applied for instance to functions of positive integers. The pur
pose of the present paper is to show that the computable func
tions introduced by the author are identical with the A-definable
functions of Church and the general recursive functions due to
Herbrand and G6del and developed by Kleene. It is shown [in
this paperl that every A-definable function is computable and
that every computable function is general recursive.

Turing first shows that A-definable functions are computable by showing a Tur
ing Machine - probably more complex than Turing's universal machine - that
can parse and convert A functions.

The second half of the proof shows that computable functions are recursive.
Turing didn't need to show that computable functions were A-definable because
Stephen Kleene had already shown (in "A-Definability and Recursiveness") that
recursive functions are A-definable. All three definitions of effective calculability
were then linked in equivalence.

In later years, Turing would often allude to those amazing imaginary machines
he conceived while lying in Grantchester meadows in the summer of 1935, but he
would never again show actual tables of a machine in any published article. When
he wrote his doctoral thesis21 under Church, it was all recursive functions and A
functions.

20Alan Tunng, "Computability and A-Definability," The Journal of Symbolic logic, Vol 2, No.4 (Dec. 1937),

pp. 153-163

21 Alan Tunng, "Systems of LOgic Based on Ordinals," Proceedings of the London Mathematical Society, 2nd

Series, Vol. 45, No.1 (1939), 161-228.



Conceiving
the Continuum

Deal life is often much messier and more complex than the histories that
ftattempt to capture it in a series of consecutive sentences and paragraphs.
Historians must smooth out the rough edges, omit peripheral personages, and
avoid distracting digressions. This simplification sometimes distorts as much as
it attempts to illuminate. The resultant series of events might seem unnaturally
inevitable, as if nothing could have happened to make it go differently, and even
imply that these events led to the best of all possible outcomes. Sometimes the
result is what British historian Herbert Butterfield (1900-1979) called "a Whig
interpretation of history" after those nineteenth-century writers who portrayed
the history of the British Empire as leading progressively and inexorably toward
modem parliamentary democracy.

Histories of science, mathematics, and technology are particularly susceptible
to Whig interpretations. We are the beneficiaries of the "correct" scientific theories
and the "proper" technologies, so we can identify a chain back through history,
associating effects to causes that have led to this inevitable outcome. Floundering
missteps are de-emphasized, and if historical disagreements or feuds are discussed,
they always result in the proper vanquishing of anyone trying to impede the
progress that led to the glorious moment we're all here to celebrate.

In relating the history of the Turing Machine, for example, it is tempting to mold
the past into a coherent series of progressive intellectual achievements - from
Cantor and Frege, through Russell and Hilbert, to Godel and Church and
Turing - culminating in a single mathematical paper published in 1936. To keep
this book reasonably short and focused, this is precisely what I've done.

In the process, I've ignored some dissenting views. As in any field of intellectual
endeavor, controversies and disagreements have often peppered the history of
mathematics. 1 In the late nineteenth century and throughout the twentieth century,
these controversies frequently involved the philosophy of mathematics, and very
often, the nature of infinity.

lSee Hal Hellman, Great Feuds in Mathematics Ten of the Liveliest Disputes Ever (Wiley, 2006), for

emenaining blow-by-blow recaps
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The philosophy of mathetnatics is a broad and complex field, but perhaps the
most fundamental question is both simple and unnerving:

To what extent do mathematical entities exist independently of the human beings who
study them?

Do mathematicians simply discover mathematical patterns that already exist
within the intrinsic fabric of the universe in much the same way that astronomers
discover stars and other celestial bodies? Or do mathematicians invent mathematics
like an engineer designs a new vacuum cleaner or a composer writes an opera?
As that great popularizer of mathematics history Morris Kline (1908-1992) much
more poetically put it,

Is then mathematics a collection of diamonds hidden in the
depths of the universe and gradually unearthed, or is it a col
lection of synthetic stones manufactured by man, yet so brilliant
nevertheless that they bedazzle those mathematicians who are
already partially blinded by pride in their own creations?2

On one side of this debate are the realists or Platonists, who believe, in Roger
Penrose's words, in "the objectivity of mathematical truth. Platonic existence, as I
see it, refers to the existence of an objective external standard that is not dependent
upon our individual opinions nor upon our particular culture.,,3

At the other extreme are the constructivists, who see mathematics as a strictly
human invention. To the constructivists, the seeming permanence and transcen
dence of mathematics is merely an illusion enhanced by the human skill of
pattern recognition - a skill engineered in our brains through millions of years
of evolution.

Between these two extremes lie plenty of gradations, each with its own
descriptive name and advocates, some of whom probably already resent my crude
categorization of a gradated range between two extremes.

Most working mathematicians would probably categorize themselves as residing
in the Platonic region of this landscape. The Platonic concept of mathematics
dominates our culture and appeals to our instincts. When we shout, "Eureka!" we
are saying "I have found it" and not "I have made it." Over 100 years after David
Hilbert addressed the Second International Congress of Mathematicians, we still
thrill at his words:

However unapproachable these problems may seem to us and
however helpless we stand before them, we have, nevertheless,
the firm conviction that their solution must follow by a finite

2Morns Kline, Mathematics' The Loss of Certainty (Oxford University Press, 1980), 323
3Roger Penrose, The Road to Reality. A Complete Guide to the Laws of the Universe (Alfred A Knopf, 2005), 13
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number of purely logical processes ... This conviction of the
solvability of every mathematical problem is a powerful incentive
to the worker. We hear within us the perpetual call: There is the
problem. Seek its solution. You can find it by pure reason, for in
mathematics there is no ignorabimus.4

Now that's a Platonist speaking: The solutions are out there. We need only to
find them. Even after Hilbert's hopes of proofs of completeness, consistency, and
decision procedures were dashed, the Platonist instinct still survived. Prominent
among the Platonists, in fact, was Kurt Godel.

Differences in mathematical philosophy are not just a matter of ideology, but
also focus on propriety. Certain basic assumptions underlie all mathematical
proofs. Yet, some of these assumptions were developed in the world of finite
objects and become problematic when applied to infinite collections.

'Thinking about infinity is not straightforward," Aristotle (384-322 BCE)
observed, and we can imagine his students nodding in solemn agreement. "There
are a lot of intractable consequences whether you assume that there is or is not
such a thing as infinity."s

To navigate this treacherous terrain in Book III of his Physics, Aristotle helpfully
differentiated between an actual or completed infinity, and a potential infinity. A
potential infinity is the infinity of the natural numbers: After each one comes
another. Subdividing something into smaller and smaller pieces is also a potential
infinity. These are processes that occur over time and which never end. "Generally
speaking, the infinite exists by one thing being taken after another. What is taken
is always finite on its own, but always succeeded by another part which is different
from it.,,6

Actual infinity, however, does not exist in Aristotle's cosmology, and he makes
several arguments why it can't exist. He very wisely notes, "Infinity turns out to
be the opposite of what people say it is. It is not 'that which has nothing beyond
itself that is infinite, but 'that which always has something beyond itself,.,,7

Aristotle does not even allow infinity to exist as a mental concept:

[lit is absurd to rely on what can be thought by the human mind,
since then it is only in the mind, not in the real world, that any
excess and defect exist. It is possible to think of anyone of us as

4As quoted in Ben H Yandell, The Honors Class' Hilbert's Problems and Their Solvers (A. K. Peters,

2002), 395

SAristotle, Physics, translated by Robin Waterfield (Oxford World's Classics, 1996), Book Ill, Chapter 4,

page 65

6Ibid, Book III, Chapter 6, page 72

7Ibid, Book III, Chapter 6, page 73.
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being many times bigger than he is and to make him infinitely
large, but a person does not become superhumanly large just
because someone thinks he is; he has to be so in fact, and then it
is merely coincidental that someone is thinking it.8

Aristotle was no Platonist.
Not everyone accepted Aristotle's rejection of infinity. Philosopher Stephan

Komer 0913-2000) observed that Aristotle's conceptions

were never unanimously accepted. Philosophers of the Platonic
tradition, including Augustinian theologians, always regarded
the notion of infinite given totalities, whether they are continua
or not, as legitimate. They were not troubled by the inapplica
bility of such a notion to sense experience, since for them math
ematics was not an abstraction from - much less a description
of - sense experience, but a description of reality; and reality
was not apprehended by the senses, but by reason.9

Mathematicians have often been troubled by completed infinities and try to
work with infinite processes in a safe way. It is precisely the recognition of the
difference between completed infinity and potential infinity that persuades us to
write the mathematical formula

lim (1 + ~)n
n->oo n

rather than:

The first formula expresses a limit. Where does that expression go when n gets
very, very, very large? It heads toward the number we know as the Euler constant
or e, approximately equal to 2.71828...

The second formula uses the symbol 00 as a completed infinity, and as a result,
is pure gibberish.

The rigorous definition of a mathematical limit was developed by German
mathematician Karl Weierstrass 0815-1897), although earlier mathematicians
had come close. The concept was essential for putting the differential and integral
calculus on a sound mathematical basis. Prior to the concept of the limit, calculus
was based on the "infinitesimal," a number not quite zero (because it could still

8lbid, Book Ill, Chapter 8, page 76-7.
9Stephan Komer, "Continuity," in Paul Edwards, ed , The Encyclopedia of Philosophy (Macmillan, 1967),

Vol 2,205
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be manipulated like a finite quantity) but close enough to zero that it could
eventually be ignored. Calculus still has remnants of these infinitesimals in the
notation dx.

Another nineteenth-century German mathematician, Leopold Kronecker
(1823-1891), had very strong views about the use of completed infinities in
mathematics. Kronecker is best known for the aphorism "God created the integers;
everything else is the work of man."l0 The mention of a supreme being - or more
precisely, the identification of mathematical entities that exist independently of
human beings - might seem to make Kronecker a Platonist, but it's the "every
thing else" that reveals him to be a strict constructivist. Kronecker wanted to base
all of mathematics on finite constructions involving finite integers. He had issues
even with the concept of limits and definitions of irrational numbers.

One of Kronecker's former students began purSUing mathematical research that
was completely outrageous - not only defining collections of infinite objects, but
promiscuously counting these infinite objects, and then performing arithmetical
operations on these values. Kronecker objected to these techniques and at times
even inhibited their publication, with the result that today Kronecker is best
known for the evil and maniacal persecution of this former student, Georg Cantor.

A Kronecker-centric view of these events reveals this persecution to reside
more in Cantor's paranoid worldview than in Kronecker's actual intentions. I I Still,
history is written by the victors. Cantor's set theory and his distinction between
enumerable and non-enumerable collections proved to be extremely useful, so
Kronecker has largely ended up with the discarded theorems of mathematics
history.

Cantor's concept of transfinite numbers is extremely Platonic - even a bit,
well, trippy. Here's Cantor writing in 1883:

We can speak of the actuality or existence of the integers, finite
as well as infinite, in two senses ... First, we may regard the inte
gers as actual in so far as, on the basis of definitions, they occupy
an entirely determinate place in our understanding ... But then,
reality can also be ascribed to numbers to the extent that they
must be taken as an expression or copy of the events and rela
tionships in the external world which confronts the intellect
... Because of the thoroughly realistic but, at the same time, no

IOThis quotation is not found in Kronecker's works It first appeared in pnnt in 1893 as "Die ganzen

Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk" See William Ewald, ed., From Kant to
Hilbert. A Source Book in the Foundations of Mathematics (Oxford University Press, 1996), Vol 11,942. In his

1922 address "The New Grounding of Mathematics First Report," Hilbert quoted it with integer in the

singular: "Die ganze Zahl schuf der liebe Gott, alles andere ist Menschenwerk " See From Kant to Hilbert,
Vol II, 1120

llHarold Edwards, "Kronecker's Place in History," in William Aspray and Philip Kitcher. eds. History and
Philosophy of Modem Mathematics (University of Minnesota Press, 1988), 139-144
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less idealistic foundation of my point of view, I have no doubt
that these two sorts of reality always occur together in the sense
that a concept deSignated in the first respect as existent always
also possesses in certain, even infinitely many, ways a transient
reality.... This linking of both realities has its true foundation in
the unity of the all to which we ourselves belong. 12

In previous chapters, I've discussed the logicism of Bertrand Russell (derived
from Frege and Peano) and the formalism of David Hilbert. In the early twentieth
century, another movement and philosophy stood in opposition to these endeavors.
This was called intuitionism, and it came from the mind of Dutch mathematician
Luitzen Egbertus]an Brouwer (1881-1966).

Gloomy and pessimistic with a mystical bent, Brouwer looms over the early
twentieth century like a stem schoolmaster appalled by the chaos he sees around
him. Brouwer scholar Walter P. van Stigt describes Brouwer's outlook on life as "a
blend of romantic pessimism and radical individualism." In an early treatise entitled
Life, Art and Mysticism (1905), Brouwer "rails against industrial pollution and man's
domination of nature through his intellect and established social structures, and
promotes a return to 'Nature' and to mystic and solitary contemplation.,,13

Brouwer attended and then taught at the University ofAmsterdam. Although his
dissertation was on the foundations of mathematics (presaging his later interests),
much of his early work was in the field of topology.

Brouwer coined the term "intuitionism" to describe his idea ofhow mathematical
entities are formulated by the mind. They are objects of thought, and their symbolic
representation on paper is a necessary evil to convey these thoughts from one
person to another. In contrast, formalism focuses more on a manipulation of
symbols that takes place entirely on paper - little more than a game with
meaningless rules.

As the programs of Russell and Hilbert began taking shape, it became clear that
Cantor's work had become widely accepted. In Brouwer's view (as well as that of
Henri Poincare), the extensive use of Cantor's set theory and transfinite numbers
could only lead to mathematical catastrophes.

Brouwer wasn't entirely opposed to conceptions of infinity. He accepted the idea
of infinite sets, but only if these sets were constructable and enumerable - that is,
could be placed in a one-to-one correspondence with the integers. As early as 1913,
Brouwer was emphasizing that "the intuitionist recognizes only the existence of
denumerable sets ... aleph-null is the only infinite power of which the intuitionists

12Georg Cantor, "Foundations of a General Theory of Manifolds. A Mathematico-Philosophical

Investigation into the Theory of the Infinite," in From Kant to Hilbert, Vol II, pgs. 895-6
t3Walter P. van Stigt, "Brower's Intuitionist Program," in Paolo Manco5u, ed , From Brouwer to Hilbert The
Debate on the Foundations of Mathematics in the 19205 (Oxford University Press, 1998), 5
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recognize the existence.,,14 A set of real numbers must be prohibited precisely
because the members are not enumerable. The only way you can define a set of
the real numbers is to assert that the set contains all real numbers. You can't show
the first few with an ellipsis, or define some kind of rule for inclusion. There is no
rule; there is no sequence; you can't construct the set; hence there can be no such
set. Much of Cantor's theory of transfinite numbers is therefore simply "without
meaning to the intuitionist." I 5

Between 1918 and 1928, Brouwer published papers on intuitionist critiques of
the formalist program, as well as papers attempting to provide a new foundation for
mathematics free of problems and paradoxes. In particular, Brouwer found fault
with the law of the excluded middle, which is the principle that either something
has a certain property or it does not. While such a law certainly applies to finite
collections, Brouwer felt it had been foolishly applied to infinite collections.

In one famous example,16 Brouwer took on the common belief that the limit of
a convergent sequence is always less than zero, equal to zero, or greater than zero.
(This is related to the law of the excluded middle in the sense that either the limit
is less than zero or it's not less than zero.)

Here's a definition of a sequence:

Cn = (-1r
Cn = (_D k

for n < k

for n ::: k

The first few values in the sequence are -1, *, -~, 116, - 3i ' so this sequence is
clearly converging to zero when n is less than k. Moreover, when n is greater than
k, then all the remaining Cn values are just (-1)k, so that's the value to which the
sequence converges.

Here's the catch: The value k is the position within the digits of 7I where the
consecutive digits 0123456789 first appear.

Does Cn converge to a value less than zero, or to a value greater than zero, or to
zero itself? It depends on whether k is odd, even, or nothing at all. The Platonist
would claim that the limit of the Cn sequence is an actual number, even if we don't
know what it is. The constructivist would counter by asserting that because this
limit can't be constructed, it does not exist. It is undefined. It falls through the
cracks of the law of the excluded middle.

14L E J Brouwer, "Intuitionism and Formalism," Bulletin of the Amencan Mathematical Society, Vol 20

(1913),81-96
151bid

16L E J Brouwer, "On the Significance of the Principle of Excluded Middle in Mathematics, Especially in

FunclJon Theory" (923), in Jean van Heijenoort, ed , From Frege to G6del' A Source Book in Mathematical
Logtc, 1879-1931 (Harvard University Press, 1967),337
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Brouwer was once lecturing about this indeterminate sequence and someone
pointed out that although we may not know how Cn converges, God certainly
knows. "I do not have a pipeline to God," Brouwer responded. 17

We know now that Brouwer's sequence actually does converge, although this
fact became known only some three decades after Brouwer's death. 18 Consecutive
digits of 0123456789 begin at the 17,387,594,880th digit of n, so Cn converges
to 2-17.387.594,880. Now that Brouwer's original sequence is ruined, it's easy to
come up with another criterion for k. Let's redefine k as the position within the
digits of n where a million consecutive 7s appear. Because the digits of n appear
to be equally distributed in a random manner, these million consecutive 7s are
likely to be out there somewhere. (Or maybe not. Although many mathematicians
might believe that any possible sequence of digits occurs in n, this has never been
proved. Some possible sequences in n simply can not be found without resources
greater than the universe.)

As a consequence of rejecting the law of the excluded middle for infinite sets,
Brouwer also denied the legitimacy of certain reductio ad absurdum proofs, and
even Hilbert's contention that every mathematical problem is solvable!

Logic is affected as well. The law of the excluded middle is expressed in
propositional logic as:

-XvX

In the classical logic of Whitehead and Russell and Hilbert, that formula is
equivalent to

X~X

and they're both equivalent to:

-(X & -X)

The implication X~ X is a symbolic representation of the ancient philosophical
principle of identity ("something is what it is"), while the last of the three formulas
symbolizes the principle of contradiction: Something can't both have a particular
property and not have that property. In Aristotelian logic, these are all separate
and distinct concepts, but with the "blunt instrument" of propositional logic they
collapse into synonymous formulas. 19

To David Hilbert, the restrictions that Brouwer wished to impose on mathe
matical thought were just too constricting. Hilbert was extremely reluctant to give
up his tools, even if he acknowledged that some care need be taken. "We shall
carefully investigate those ways of forming notions and those modes of inference
that are fruitful; we shall nurse them, support them, and make them usable,

17Constance Reid, Hilbert (Spnnger, 1970, 1996), 184.

18Jonathan Borwein, The Brouwer-Heyting Sequence, http /Iwww cecm sfu.ca/-jborwein/brouwer.html.

19F1oy E Andrews, 'The Pnnciple of Excluded Middle Then and Now. Anstotle and Pnncipia

Mathematica," Animus, Vol 1 (1996), http//www2 swgc mun.ca/animus/I996voll/andrews.pdL
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whenever there is the slightest promise of success. No one shall be able to drive us
from the paradise that Cantor created for us. ,,20 Still, Hilbert tried to adopt some
stricter criteria for proofs that would not require the use of infinity.

The sniping back and forth between Hilbert and Brouwer escalated to the
breaking point. In 1928 Hilbert dismissed Brouwer from the editorial board of the
journal Mathematische Annalen. Albert Einstein, who was one of the three principal
editors, resigned in protest. The event left Brouwer bitter and disillusioned, and
he barely published anything for a decade. He died at the age of 85 after being
struck by a car outside his home.

It is not known whether Turing had any contact with intuitionist concepts prior
to writing his paper on computable numbers. Max Newman - the Cambridge
professor whose lectures on the foundations of mathematics inspired Turing and
who guided Turing's paper to publication - almost certainly knew of Brouwer
from their mutual work in topology. Max Newman co-authored the official obituary
of Brouwer for the Royal Society.21 (This is no ordinary obituary: It's 30 pages long
and includes a 5-page bibliography of Brouwer's works.) Nevertheless, Newman
wrote only that section of the obituary about Brouwer's work in topology, and
even this was some three decades after Turing's paper.

Turing's paper occupies a strange secluded islet between formalism and con
structivism. His machines certainly reduce algorithms to a series of predefined
manipulations of printed symbols, yet Turing's distinction between real numbers
and computable numbers - and his identification of the computable numbers as
that subset of the real numbers that can actually be calculated - has a decidedly
constructivist flavor. Turing's definition of the computable numbers later led to
a mathematical theory of "computable analysis" that parallels the classical "real
analysis.,,22

Very much in tune with Brouwer's thinking is the idea that a computation of a
number is a process that occurs over time. The digits don't exist until the machine
computes them, and Turing Machines cannot be successfully analyzed by a finite
general process to determine what they might do sometime in the future. There is
no algorithm that lets you determine from the Description Number of a machine
whether the machine will ever print a 0 or a I, or whether it will print only a
finite number of Os and Is, or whether it will ever print the consecutive digits
0123456789. If there were such an algorithm, we could apply it to the machine
that computes the infinite digits of 7L We could determine whether the machine
will ever print the consecutive digits 0123456789 (or a million 7s in a row), and
we would know at least whether Brouwer's sequence converges to zero.

20DaVId Hilben, "On the Infinite" (1925) in From Frege to Godel, 375-6
21G. Kreisel and M. H. A Newman, "Luitzen EgbenusJan Brouwer 1881-1966," Biographical Memoirs of
Fellows of the Royal Society, Vol. 15 (Nov 1969),39-68.

22See, for example, Oliver Abenh, Computable Analysis (McGraw-Hill, 1980)
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The existence of such an algorithm would actually suggest the autonomous
Platonic existence of the infinite digits of n and every other irrational number.
These infinite digits would exist without actually being calculated. Such an
algorithm does not exist, however; we are forced to grind out the digits to know
what they are.

As you've seen, sometimes Turing likes to define a number whose digits require
analyzing other machines; these numbers tum out not to be computable. Brouwer
does something analogous in his 1921 paper "Does Every Real Number Have a
Decimal Expansion?,,23 in which he defines a real number whose digits are based
(once again) on the occurrences of certain patterns in the infinite digits of n.

Despite these interesting connections, I see no evidence of any familiarity
with Brouwer's intuitionism in the paper that Turing submitted to the London
Mathematical Society in 1936. Turing's work and his conclusions are so unusual
that I suspect he wasn't working within anyone's prescribed philosophical view of
mathematics.

In the fall of 1936, however, Turing went to Princeton to study with Alonzo
Church, and was subsequently likely exposed to a somewhat wider vista of
mathematical possibility and thought, possibly including Brouwerian intuitionism.

Church certainly had contact with intuitionism. When he received his Ph.D.
from Princeton in 1927, he had two years on a National Research Fellowship.

I spent a year at Harvard and a year in Europe, half the year
at G6ttingen, because Hilbert was there at the time, and half
the year in Amsterdam, because I was interested in Brouwer's
work, as were some of those advising me.... I think he wasn't
teaching. He was quite old. I used to take the train out to his
residence, way out in the country.24

The "quite old" characterization is a bit off: At the time Church gave this interview,
he was 80 years old, but in 1929, Brouwer was only 48. Perhaps Brouwer's battles
of the previous years had truly taken a toll.

Subsequently, Church seemed to have a certain sensitivity (though not an
allegiance) to intuitionist concerns. Church's first paper on the lambda calculus
begins with the sentence "In this paper we present a set of postulates for the
foundation of formal logic, in which we avoid use of the free, or real, variable,
and in which we introduce a certain restriction on the law of the excluded middle

13Repnmed in From Brouwer to Hilbert, 28-35
14William Aspray, The Princeton Mathematics Community in the 19305. An Oral-History Project An

interview with Alonzo Church at the University of California on 17 May 1984, http//www.pnnceton

.edul-mudd/findin&....aidsimathorallpmc05 htm.
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as a means of avoiding the paradoxes connected with the mathematics of the
transfinite. ,,25

An interest in intuitionism also shows up in the work of Church's student
Stephen Kleene. Kleene included a section on intuitionism in his book Introduction
to Metamathematics (1952) and later co-authored the book The Foundations of
Intuitionistic Mathematics (1965). A 1953 photograph of Brouwer - taken in
Madison, Wisconsin, where Kleene taught at the time - appears in Kleene's
anicle on the history of recursive function theory.26

Turing might also have been influenced by Hermann Weyl, who was at the
Institute for Advanced Study during this time. Weyl received his doctorate at
G6ttingen under Hilbert, taught at the University of Zurich, and returned to
G6ttingen in 1930 to succeed Hilbert, only to be forced to leave Germany in
1933 because his wife was Jewish. Between about 1919 and 1928, Weyl pursued
mathematics from an intuitionist perspective, and never lost interest in it.

Turing's brief foray into intuitionist thinking occurs in a short follow-up
paper he wrote while at Princeton containing some corrections to his paper on
computable numbers. As I described on page 63, the original paper appeared
in the Proceedings of the London Mathematical Society, Volume 42, Parts 3 (issued
November 20,1936) and 4 (issued December 23,1936). The pans published from
October 1936 through April 1937 were collectively published as Second Series,
Volume 42.

The follow-up paper appeared in the Proceedings of the London Mathematical
Society, Volume 43, Part 7 (issued December 30, 1937). It was later included in
the Second Series, Volume 43, which included parts issued from May through
December, 1937.

[544]

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM. A CORRECTION

By A. M. TURING.

In a paper entitled "On computable numbers, with an application to
the Entscheidungsproblem'" the author gave a proof of the insolubility
of the Entscheidungsproblem of the "engere Funktionenkalkiil". This
proof contained some formal errorst which will be corrected here: there

25Alonzo Church, "A Set of Postulates for the Foundation of Logic," The Annals of MathematiCS, second
Senes, Vol. 33, No 2(Apr 1932),346.
26Stephen C. Kleene, "Ongins of Recursive Function Theory," Annals of the History of Computing, Vol. 3.
No.1 Oan. 1981),62
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are also some other statements in the same paper which should be modified,
although they are not actually false as they stand.

•Proc. London Math. Soc. (2), 42 (1936-7), 230-265.

tThe author is indebted to P. Bernays for pointing out these errors.

This three-page paper is sharply divided into two parts. The first part involves
corrections to formulas and statements that appear in the proof of the insolubility of
the Entscheidungsproblem in Section 11 of the paper. I have already incorporated
those corrections into my commentary in Chapter 14. For the sake ofcompleteness,
here is that part of the paper. I will interrupt it only twice.

The expression for Inst {qj Sj Sk L qtl on p.260 of the paper quoted
should read

(x,y, x ,y')I(Rs}x,y) & I(x,y) & K",(x) & F(x, x) & F(y',y»)

- (I(X',y') & Rsk(x',y) & Kq/(x') & F(y',z) v [ (Rso(x,z) - Rso(x',z»)

& (Rs,(x,x) ~ Rs, (x',x») & ... & (RsMCx,x) ~ RsM(x' ,x») J) !'
SO,S1, ... ,SM being the symbols which vI'( can print.

This correction is not quite right either. It's missing a universal quantifier for
z that should appear right before the F(y', z) term in the second line and apply
to the remainder of the formula. The version shown on page 265 of this book is
correct.

The statement on
p. 261, line 33, viz.

"Inst{qa Sb Sd Lqcl & r n+1) - (CCn - CCn+1)

is provable" is false (even with the new expression for Inst {qaSbSdLqc}):
we are unable for example to deduce Ji"'n+1) _ ( -F(u, u"») and therefore
can never use the term

F(y',z) v [ (Rso(x,z) - Rso(x',z») & ... & (RsM(x,z) - RsM(x',z») ]

[545]



Conceiving the Continuum 311

This is where Turing acknowledges that his formulation of the natural numbers
was flawed.

To correct this we introduce a new functional
variable G [G(x, y) to have the interpretation "x precedes y"l. Then,
ifQ is an abbreviation for

(XX3W)(Y,Z)! 1'(x,w) & (F(x,y) ~ G(x,y») & (1'(x,z) & G(z,y) ~ G<x,y»)

& [G(Z, x) v (G(x,y) & F(Y,z») v (F(x,y) & F(z,y») ~ ( - F<x,z») ]I
the corrected formula Un(zfl() is to be

(3u)A(<.AO -+ (3s)(3t) RS1(s, t),

where A(<.AO is an abbreviation for

Q & (y)Rso(u,y) & I(u, u) & Kq1(u) & Dese-H).

The statement on page 261 (line 33) must then read

Inst{qa Sb Sd Lqcl & Q & Fn+1l
-+ (CCn -+ CCn+1 ),

and line 29 should read

r (n, i(n») = b, r (n + 1, i(n») = d, k(n) = a, k(n + 1) = c.

For the words "logical sum" on p.260, line 15, read "conjunction".
With these modifications the proof is correct. Un(zfl() may be put in the
form (I) (p. 263) with n = 4.

A blank line follows that paragraph to conclude the first of the two parts of the
correction. The second part concerns a different matter altogether, and refers to a
paragraph occurring much earlier in the paper.

Some difficulty arises from the particular manner in which "computable
number" was defined (p. 233).

The relevant paragraph is on page 76 of this book and reads: "A sequence is
said to be computable if it can be computed by a circle-free machine. A number is
computable if it differs by an integer from the number computed by a circle-free
machine."

Turing's use of the word "intuitive" in the next sentence must be interpreted
in its common sense; if Turing had been referring to anything related to Brouwer
he would have used the word "intuitionist." Moreover, it is clear from a statement
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that follows that this hypothesis does not satisfy intuitionist requirements, even if
it satisfies intuitive ones.

If the computable numbers are to satisfy
intuitive requirements we should have:

If we can give a rule which associates with each positive integer n two
rationals an, bn satisfying an :>;an+l < bn+1:>;bn, bn - an < 2-n, then there is
a computable number ct for which an :>; ct :>; bn each n. (A)

In intuitionist circles, a "rule" is a construction. For n starting at zero, 2-n

equals the binary numbers 1,0.1,0.01,0.001, and so forth, so this rule associates
successive pairs of rational numbers that get closer and closer to each other - one
binary digit closer in value for each new value of n. Normally we would claim this
process to be a convergent series.

A proofof this may be given, valid by ordinary mathematical standards,
but involving an application of the principle of excluded middle.

The problem is that the rule might involve something that cannot be established
one way or the other, such as the appearance of a particular unknown series of
consecutive digits in the infinite expansion of 7l:. Turing will come up with a more
Turingesque example shortly.

On the
other hand the following is false:

There is a rule whereby, given the rule offormation ofthe sequences an, bn

in (A) we can obtain a D.N. for a machine to compute ct. (B)

Take careful note that he's identifying this statement as false.

That (B) is false, at least if we adopt the convention that the decimals
of numbers of the form m/2n shall always terminate with zeros, can be
seen in this way.

Numbers of the form ml2n are a subset of rational numbers. They are of particular
interest in connection with Turing Machines because the binary representation of
such a number has only a finite number of Is. For example, the rational number
12345/65536 in binary is:

0.001100000011 10010000 ...
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Because 65,536 is 216 , only the first 16 binary digits after the decimal point are
potentially non-zero (depending on the numerator), and the rest are zero. Any
number of the form ml2n where m is less than 2n begins with a maximum of n
non-zero binary digits and then continues forever with zeros.

Turing is going to give a rule for the formation of an and bn , but this rule is
based on the sequence printed by another machine named Jf.

Let J' be some machine, and define Gil as follows:
ell = £if .v has not printed a figure 0 by the time the n-th complete configu
ration is reached Gil = ~ - 2-m - 3 if 0 had first been printed at the m-th

[5461

complete configuration (m :s n). Put all = Gn - 2-n - 2 , bn = Cn + 2-n - 2•

Let's look at an example. Suppose Jf is a machine that prints the sequence
1111101. ... Here's a calculation of Cn , an, and bn:

SEQUENCE Cnn

o
1

2

3

4

5

6

1

1

1

1

1

o
1

I
'2
I
'2
I
'2
I
'2
I
'2

127
256
127
256

1. _ .1. -- ill
2 16 -- 256

127 __1 125
256 128 -- 256
127 __1 126
256 256 -- 256

The value Cn is always t until the first zero in the sequence. If the first zero in
the sequence is at position m (5 in the example), then Cn becomes (2(m+2) - 1) I
2(m+3) for n greater than or equal to m.

Then the inequalities of (A) are satisfied,

The an values always increase; the bn values always decrease. The absolute
values of the differences between an and bn are always less than 2-n. (Actually, the
differences are always 2-n- 1.)

and the first figure of ex is 0 if ,\
ever prints 0 and is 1 otherwise.
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In the example, the limit is clearly 127/256, so the ex sequence calculated by
this machine is Oll1 1l1l0000... representing that rational number. If the first 0
in the sequence appears at n equal to 4, the limit is 63/128, so the ex sequence is
o11111100000.... Only if 0 never appears in the sequence will the limit be i,
equivalent to the sequence 100000000000....

We clearly have a rule for the formulation of an and bn, but this rule is based on
a sequence printed by some other machine Jf; such a rule requires a procedure to
determine whether a machine such as J{ever prints the digit zero.

The first figure of ex is 1 if J{never prints zero, and 0 otherwise, so,

If (B) were true we should have a means
of finding the first figure ofa given the D.N. of ,j(: i.e. we should be able to
determine whether j(ever prints 0, contrary to the results of§ 8 ofthe paper
quoted.

The "paper quoted" is Turing's original paper. The next statement is some
thing of a shocker, and it may initially seem wrong to you (as it did to me
at first):

Thus although (A) shows that there must be machines which
compute the Euler constant (for example) we cannot at present describe
any such machine, for we do not yet know whether the Euler constant is
of the form mj2n .

The Euler constant that Turing mentions here is not the famous e that serves
as the base of natural logarithms, but the somewhat less famous Euler constant y
(gamma) that is calculated like so,

(
1 1 1 )Y = lim 1 + - + - + ... - - In(n)

n->oo 2 3 n

or, perhaps more revelatory, as the difference between the summation and the
integral of the function l/x,

( n 1 In 1 )Y = lim L -:- - -dx
n->oo i=l 1 1 X

and which approximately equals 0.57721566490153286....
This Euler constant is also known as the Euler-Mascheroni constant. Euler came

up with the formula for the constant in 1734, and he calculated it to 16 digits in
1781. Lorenzo Mascheroni (1750-1800) got his name attached to the constant by
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calculating 32 digits in 1790 (although only the first 19 digits were correct) and
by first using the letter y to represent the number.27

Turing did not pick this constant randomly. One famous aspect of this constant
is that no one knows whether it's rational or irrational, and if it is irrational,
whether it's algebraic or transcendental. It was not known in 1937 and it is still
not known in 2008.

The quotation from David Hilbert earlier in this chapter referring to "unap
proachable" problems is actually preceded by the sentence: 'Take any def
inite unsolved problem, such as the question as to the irrationality of the
Euler-Mascheroni constant C, or the existence of an infinite number of prime num
bers of the form 2n + 1. However unapproachable these problems may seem to us
..."The status of the Euler-Mascheroni constant was considered so unapproachable
that Hilbert did not include it in his list of 23 challenges for the new century.

If the Euler constant is rational, it might be the case that its denominator is a
power of two. If that is so, the binary representation concludes with an infinite
string of zeros.

If you had a Turing Machine to calculate y, certainly there is no general process
to determine whether y is of the form ml2n because that would be eqUivalent to
determining whether the machine prints only a finite number of Is, and that is
not possible. That much is very clear.

Turing is asserting something much more severe: that knowledge of the
rationality or irrationality of the Euler constant is necessary to define a Turing
Machine that computes the number - that the machine itself needs to "know"
whether y concludes with an infinite string of Os or not. This might come as
a surprise to anyone who has actually coded computer algorithms to calculate
thousands and millions of digits of y.

Yet, Turing has a valid point, and it relates to the inability of his machines to
erase digits once they're printed: When a number is of the form ml2n where m
is less than 2n, we expect the machine to print all Os after the first n digits. A
machine that calculates the Euler constant will not behave in this manner because
the algOrithm approximates the Euler constant with ever smaller (but finite) terms.
If the Euler constant is truly of the form ml2n, the machine would indeed need to
"know" this fact to calculate the exact value. Otherwise, the machine would always
be approximating a number that it properly should nail precisely. Any non-zero
digit after the first n digits is Simply wrong - and very problematic because it
can't be erased under Turing's conventions - but these non-zero digits are also
unavoidable.

However much you may appreciate Turing's interesting analysis of the problems
with the Euler constant, you're likely to find his solution to be worse than the
problem.

27Julian Havil. Gamma Exploring Euler's Constant (Pnnceton University Press, 2003), 89



316 The Annotated Turing

This disagreeable situation can be avoided by modifying the manner in
which computable numbers are associated with computable sequences,
the totality of computable numbers being left unaltered. It may be done
in many ways· of which this is an example.

* This use ofoverlapping intervals for the definition of real numbers is due originally

to Brouwer.

If the intuitionist aura that hangs over this section of the paper wasn't quite
evident before, the proof is in the footnote, which alludes to Brouwer's definition
of real numbers.

The real-number continuum has always been a problematic concept because of
the way it combines discrete and continuous properties. Each real number appears
to be a precise point on the continuum, yet we don't feel entirely comfortable saying
that the continuum is the composite of all these discrete points - particularly
after Cantor has informed us that these discrete points can't even be enumerated.

Brouwer attempted to define real numbers in a manner that preserved both
the continuous and discrete qualities of the continuum while avoiding completed
infinities.

The tool that Brouwer invented for this process is known as a "choice sequence."
Choice sequences come in several varieties, but for use in constructing a real
number, they are potentially infinite sequences of pairs of rational numbers.
Each successive pair defines an interval nested within the preceding interval. For
example, here's a possible choice sequence of pairs of nested rational numbers:

[3,4]
[3.1,3.2]

[3.14,3.15]
[3.141,3.142]

In the classical sense, this choice sequence is converging, and we enthUSiastically
note that it seems to be converging to the number n. However, when speaking of
Brouwerian choice sequences, it is essential to avoid the concept of "convergence"
because that implies a completed infinity. Each of the items in the sequence
defines a continuous range between the two endpoints. This is how the choice
sequence preserves the idea of continuity. The sequence does not have a limit of
n. Instead, it maintains a type of hala28 around the number n. This halo indeed

28The term comes from Edmund Husserl (1859-1938). See Mark van Anen, Dirk van Dalen, and Richard

Tieszen, "Brouwer and Weyl The Phenomenology and Mathematics of the Intuitive Continuum,"

Philosophia Mathematica, Vol. 10, No.2 (2002), 207.
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gets smaller and smaller in time as the sequence grows longer and the intervals
get tighter, but the halo never shrinks to the precise dimensionless irrational
number.

One Brouwer scholar clarifies the difference between Brouwer's choice sequences
and traditional limits this way:

It is worth stressing that intuitionistically, the choice sequence,
growing in time, itself is the real number. ... On Brouwer's
construal, one knows very well what the real number is, for
it is the proceeding sequence itself. It is not the case that a
choice sequence is a method to approximate a real number
that lies in transcendent reality waiting to be reached by the
subject, 2<)

In the intuitionist continuum, real numbers are always incomplete - unfinished
and never to be finished - and exhibiting a non-zero dimension.

The choice sequence I showed above is probably generated from some kind
of algorithm. Consequently, it is called a "lawlike" choice sequence. There are
also "non-lawlike" or "lawless" choice sequences, in which each term is chosen by
some kind of agent (such as the mathematician) determining how the sequence
develops. The mathematician can even flip a coin to determine the items in the
choice sequence.

We can think of a non-lawlike choice sequence as a kind of intu
ition even though it is quite different in some respects from a
lawlike intuition. It is still a sequence carried out in time by
a subject (or transcendent ego), only part of which is actually
completed. We would actually complete only a finite initial seg
ment of it, it will be associated with filling out the horizon of an
intention directed toward a real number, and we should think of
it as a 'medium of free becoming.' It should be noted that we are
speaking here of a choice sequence as a process, as a sequence of
acts developing in time.30

Choice sequences can also be combinations of lawlike and lawless sequences,
for example, by performing predetermined arithmetical operations on multiple
lawless sequences.

29Mark van Allen, On Brouwer CWadswonh, 2004), 31

30van Allen, van Dalen, and Tieszen, "Brouwer and Weyl The Phenomenology and Mathematics of the

Intuitive Continuum," 212
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Two choice sequences might be considered equal if they start out the same and
continue to be the same for awhile, such as these two sequences:

[3,4]
[3.1,3.2]

[3.14,3.15]
[3.141,3.142]

[3,4]
[3.1,3.2]

[3.14,3.15]
[3.141,3.142]

Then an interval might come up that causes the sequences to be not equal but
overlapping:

[3.141,3.14175] [3.14125,3.142]

Perhaps the sequences become equal again:

[3.14125,3.14175] [3.14125,3.141751

What happens in the future is anyone's guess.
It may seem as if a lawlike sequence is completely defined by the algorithm that

produces it, and hence represents an actual discrete point on the continuum.

Even so, it is clear that for a correct understanding of a choice
sequence as representing a point on the intuitive continuum,
the sequence should be considered as a sequence in progress,
whether it is lawlike or not. In the case of non-lawlike sequences
this may be easiest to grasp, but the same holds for lawlike
sequences. For if, on the contrary, a lawlike sequence is con
ceived of as a finished object, we may be seduced into thinking
of the point in the classical atomistic way again. But then the
continuum would be disrupted. In other words, the condition
that the point never 'is' but always 'becomes' preserves the con
tinuum.31

These concepts should actually be somewhat familiar to readers of Turing's
paper because we have experience with Turing Machines. We think of a Turing
Machine (or its Description Number) as representing a real number, but the
machine always generates digits over a period of time. It is never finished, and we
can never determine from the Description Number of the machine exactly what
that number is actually going to become.

In binary, the digits of 7l!4 are:

.1100100100001111110110101010001000...

31Ibid.212-213.
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(I'm using n/4 rather than IT so the number is between 0 and 1.) A Turing Machine
that calculates the digits of n/4 can actually be interpreted as calculating choice
sequences. When the machine calculates the first digit of 1, that digit doesn't
indicate the number 0.1; the digit actually represents a range from 0.10000000...
to 0.11111111 ... because that's the range of possible real numbers that begin with
0.1. Keeping in mind that the sequence 0.11111111. .. is equal to 1, the nested
choice sequences generated by such a machine are:

[0.1, 1.01
[0.11, 1.001

[0.110,0.111]
[0.1100,0.11011

[0.11001,0.110101
[0.110010,0.1100111

[0.1100100,0.11001101

In this sense, a normal Turing Machine that follows Turing's conventions
(that is, never erasing a printed digit) generates a Brouwerian choice sequence
representing a computable real number. The process occurs over time and never
completes.

If Turing sees this elegant connection in the same way I do, he doesn't
acknowledge it. Obviously he didn't have the same opportunity I did to read
twenty-first century scholars decode Brouwer's difficult papers. If Turing read
any Brouwer - or received some Brouwerian concepts second-hand - it might
have been something like Brouwer's article "Die Struktur des Kontinuums,,32 from
1928, which describes using choice sequences as a type of tree structure that
fans out and covers a section of the continuum with overlapping intervals.
This could have given Turing an idea how to translate computable sequences
into computable numbers. Besides the need to fix the problem associated with
the Euler constant, Turing might also have been concerned that his machines
always compute numbers between 0 and 1, and he felt he needed to go beyond
that range.

In Turing's original conception, a computable sequence becomes a real num
ber simply by prefixing a binary point. The revised concept is much more
complex:

Suppose that the first figure
of a computable sequence y is i and that this is followed by 1 repeated n

32Translated as L. E. J. Brouwer, "The Structure of the Continuum" in From Kant to Hilbert, Vol. II,

1186-1197.
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times, then by 0 and finally by the sequence whose r-th figure is cr ; then
the sequence y is to correspond to the real number

00

(2i - l)n + L(2cr - 1)(~r.
r=l

2 4 8 16 32
±- ± - ± - ± - ± - ± ...

3 9 27 81 243
where the Cr figures determine whether each of the terms gets a plus sign (for 1)
or a minus sign (for 0).

For example, suppose a machine prints the following sequence:

The i figure represents the sign of the number: 0 for negative and 1 for positive.
The series of 1 figures repeated n times is the integer pan of the number. A zero
is required to terminate the run; it functions something like a binary point. The
figures that follow make up the fractional part of the number, which is always of
the form

111111011011 ...

I've inserted some spaces just to make it easier to translate into a number. The first
digit is 1 meaning a positive number. The next five digits are Is terminated with a
zero so the integer part is 5. The fractional part is:

2 4 8 16 32
:3 + 9 - 27 + 81 + 243

At this stage of the process the complete number is 5~~~ or 6 i:3' Notice that
the computed number actually has an integer part of 6 rather than 5. If the
figures representing the fractional part of the number are all Is, the fractional
part is

2 4 8 16 32
:3 + 9+ 27 + 81 + 243 + ...

which converges to 2. Similarly, if the figures representing the fractional part
are all Os, the fractional part converges to - 2. A sequence that has an encoded
integer part of N can actually resolve to N-2 through N + 2, creating overlapping
intervals.

If the machine which computes y is regarded as computing also this real
number then (B) holds.

That is, if there is a rule for formulating the sequences an and bn that close in
on a number, we can obtain a Description Number of the machine. Internally, the
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machine calculates an and bn and then chooses to print a 0 or 1 based on the need
to subtract or add (2/3)n to bring the computed number within this new range.

In the process, we're now stuck with this single method of computing numbers
based on converging bounds. It is no longer possible to write simple machines
that compute rational numbers such as 1, or *. These numbers must now be
approximated like all others. For example, the sequence for 1is now:

001010 1101 0100 1101. ..

The first two digits represent the sign (positive) and the binary point. The digits
that follow indicate terms of 2/3, -4/9, 8/27, -16/81, and so forth. The portion
of the sequence shown here computes 1to an accuracy somewhat greater than 3
decimal digits or 10 binary digits.

The advantage is that the machine doesn't have to "know" that it's really
computing a rational number of the form ml2n. It doesn't need to "know" when
to abandon the calculation and settle into an infinite string of Os. Even a sequence
that terminates in an infinite run of Os or Is is associated with a number built from
an infinite string of decreasing but finite terms.

There are other ways to compute 1. Here's one alternative:

o100101 0010 1011 0010...

The first digit is the sign (positive) but the next two digits represent the number
1. The digits that follow indicate terms of -2/3,4/9, -8/27, 16/81, and so forth,
the opposite of the digits in the first sequence.

The uniqueness of representation of real numbers
by sequences offigures is now lost, but this is oflittle theoretical importance,
since the D.No's are not unique in any case.

The Graduate College,
Princeton, N.J., U.S.A.

Here Turing's short paper of corrections ends, seemingly without pity that
this sudden paradigm shift has left us just a bit disoriented. We might feel some
satisfaction that we now have a definition of computable numbers that is less
mathematically troublesome, but it hardly compensates for the queasiness of being
set adrift on the philosophically uncertain waves of the continuum.





And Beyond





Is Everything a
Turing Machine7

N o matter how well you understand the concept and workings of the Turing
Machine, it won't help you actually build a computer. Digital computers are

built from transistors or other switching mechanisms, such as relays or vacuum
tubes. These transistors are assembled into logic gates that implement simple
logical functions, which then form higher-level components such as registers and
adders. 1

The Turing Machine is built from - well, Turing never tells us. Turing
didn't intend for his machines to function as blueprints for actual computers.
The machines serve instead as a simplified abstract model of computation,
whether performed by human or machine. Turing's initial purpose for creating
the Turing Machine was the very specific goal of proving that there is no general
decision procedure for first-order logic. Only later did the imaginary devices begin
contributing to our understanding of the theory of computing. This transition took
about 20 years, after which the Turing Machine became a subject of study within
the discipline we now know as computer science.

Adapting the Turing Machine for purposes other than Turing's proof required
that the machine be reformulated somewhat. Most of Turing's machines spend the
rest of infinity computing the digits of some real number between 0 and 1. A much
more common task in mathematics - as well as computer programming - is the
computation of a function. A function requires one or more numbers as input, also
called the arguments to the function. Based on that input the function calculates
output, also known as the value of the function.

One important class of functions is the number-theoretic functions, so called
because the input and output are both limited to natural numbers. Turing devised
a technique to compute number-theoretic functions in Section 10 of his paper
(page 235 of this book) by printing runs of consecutive 1 figures separated by
single 0 figures. The number of consecutive Is in the first run is the value of the

1This hierarchy is described in Charles Petzold, Code: The Hidden Language ofComputer Hardware and
Software (Microsoft Press, 1999).
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function for an argument of 0; the number of consecutive Is occurring next is the
value of the function for 1; and so forth.

One mathematician to take a good long critical look at Turing's number-theoretic
function machines was Stephen Cole Kleene. Kleene was a student of Alonzo
Church at Princeton and received his Ph.D. in 1934, after which he began teaching
at the University of Wisconsin in Madison.

Kleene later wrote, "While fully honoring Turing's conception of what his
machines could do, I was skeptical that his was the easiest way to apply them to
the computation of number-theoretic functions. In any case, only a total function
ljJ(x) could be computed in this way.,,2 Turing's technique doesn't work for partial
functions, which are functions valid for only a proper subset of the natural
numbers.

Beginning in the spring of 1941, Kleene began pursuing a different approach
in a seminar on the foundations of mathematics that he taught at the University
of Wisconsin. Kleene's reformulated Turing Machines were later featured in
Chapter XIII of his now-classic 1952 book Introduction to Metamathematics.

Kleene's version of the Turing Machine still reads symbols, writes symbols, and
moves left and right along a tape. However, it is limited to only one symbol, which
is a simple vertical line, called a tick or tally mark. The machine differentiates
between this symbol and a blank square. A natural number is represented by a
series of tick symbols in consecutive squares delimited by blank squares. Because
Kleene begins his natural numbers with 0, one tick mark represents 0, two tick
marks represents 1, and so forth. Kleene appears to be the first author to show a
sample Turing Machine tape as a diagram in his text. 3

Turing's machines generally begin with a blank tape. Kleene's reformulated
machines begin with a tape on which the input to a function is already encoded
as one or more runs of consecutive tick marks separated by blanks. Kleene's
machines then compute the value of the function and encode that number back on
the tape. The first example Kleene shows is a successor function that calculates the
next number after the encoded number; it performs this amazing feat by simply
printing another tick mark after the existing run of tick marks.

Kleene's function-calculating machines require only a finite period of time to
calculate, so the machine can stop when it's finished. There is no specific "stop"
or "halt" configuration, but there are what Kleene calls "passive situations" where
there is no place for the machine to go. When a machine is instructed to switch to
a configuration that does not exist, "the machine is said then to stop. The situation
in which it stops we call the terminal situation or outpUt.,,4

2Stephen C Kleene, "Ongins of Recursive Function Theory," Annals of the History of Computing, Vol 3. No

1 Uan 1981).61
3Stephen C Kleene, Introduction to Metamathematics (D Van Nostrand. 1952). 358-360

4Kleene, Introduction to Metamathematics, 358
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In Turing's conception, a good machine - which Turing calls a circle-free
machine or a satisfactory machine - never stops. In Kleene's reformulation, a
good machine finishes the function and then halts. A Kleene machine that gets
into an infinite loop and never stops is a bad machine. In this respect, Kleene's
machines obviously are much closer in concept to conventional mathematical and
computer functions that calculate output from input in a finite number of steps.

As I discussed in Chapter IS, by 1936 there existed three different formulations
of the intuitive notion of effective calculability:

• Turing Machines;
• recursive functions as defined by Kurt Godel in 1934 based on a suggestion

ofJacques Herbrand and further explored by Kleene; and
• A-definable functions developed by Church and his students, most promi-

nently Kleene.

The equivalence of these three formulations was established partially by Turing
in the appendix to his paper on computable numbers and more rigorously in
his 1937 paper "Computability and A-Definability," and by Stephen Kleene in his
1936 paper "A-Definability and Recursiveness." These days the term "recursive
function" is nearly synonymous with "computable function."

Stephen Kleene was the first person to come up with terms to describe how
these formalizations capture the intuitive notion ofcalculability. It is in Introduction
to Metamathematics that Kleene first states something he explicitly calls Church's
thesis: "Every effectively calculable function (effectively decidable predicate) is general
recursive." Two chapters later Kleene says: "Turing's thesis that every function
which would naturally be regarded as computable is computable under his
definition, Le. by one of his machines, is equivalent to Church's thesis.. :,5

In a 1967 book, Kleene combined the two theses into one:

Turing's and Church's theses are equivalent. We shall usually
refer to them both as Church's thesis, or in connection with that
one of its three versions which deals with "Turing machines" as
the Church-Turing thesis.6

Since then, "Church-Turing thesis" has become the preferred term.
Introduction to Metamathematics is obviously a book for mathematicians. Six

years later, another now-classic book crossed the line from mathematics into
computer science.

Martin Davis was born in 1928 in New York City. He took his Ph.D. at
Princeton University in 1950 with a dissertation entitled On the Theory of Recursive

5Kleene, Introduction to Metamathematics, 300, 376

6Stephen Cole Kleene, Mathematical Logic Oohn Wiley &: Sons, 1967; Dover, 2002), 232.
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Unsolvability. Davis's thesis advisor was Alonzo Church, who had also been Kleene's
thesis advisor in 1934 and Turing's in 1938.

In a course that Davis taught at the University of Illinois, he began speaking
of the problem of determining whether a Turing Machine finishes its calculation
as the "halting problem," perhaps as early as 1952.7 This phrase became more
widely known following the publication of Davis's book Computability and Unsolv
ability in 1958. In the book's Preface, Davis slyly notes, "Although there is little in
this volume that is actually new, the expert will perhaps find some novelty in the
arrangement and treatment of certain topics," and then clarifies: "In particular,
the notion of the Turing machine has been made central in the development."8

Whereas the Turing Machine doesn't make an appearance until page 321 of
Kleene's Introduction to Metamathematics, and doesn't get deeply involved in the
discussion until Chapter 13, in Davis's Computability and Unsolvability the Turing
Machine is right up front: on the first page of the first chapter.

Like Kleene, Davis denotes the natural numbers with successive tick marks
and uses the machines to compute functions. Examples of machines that perform
addition, subtraction, and multiplication begin on page 12.

Although Computability and Unsolvability is ostensibly a mathematics textbook,
Davis realized that the book "because of its relevance to certain philosophi
cal questions and the theory of digital computers [is] of potential interest to
nonmathematicians. ,,9

To further accentuate the difference, Computability and Unsolvability was pub
lished in a new McGraw-Hill Series in Information Processing and Computers.
Even within that series, the book was unique. Other books in the series focused on
the "practical" topics of computer hardware and programming. Titles published in
this series in 1958 and 1959 included Analog Simulation: Solution of Field Problems;
High-Speed Data Processing; Digital Computer Primer; Digital Computing Systems; and
A Primer of Programming for Digital Computers.

Martin Davis's Computability and Unsolvability can truly be said to have initiated
the study of computability as a topic that later became part of the standard
curriculum for computer science majors.

It is on page 70 of Computability and Unsolvability that Davis introduces a term
used frequently in connection with Turing Machines:

Now, let Z be a simple Turing machine. We may associate with
Z the following decision problem:

To determine, of a given instantaneous description a, whether or not
there exists a computation of Z that begins with a.

7See B Jack Copeland, The Essential Tunng (Oxford University Press, 2004), 40, footnote 61

8Martin DaVIS, Computability and Unsolvability (MCGraw-Hill, 1958. Dover, 1982), VIi-VIii

9DaVls, Computability and Unsolvability, VIi
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That is, we wish to determine whether or not Z, if placed in a
given initial state, will eventually halt. We call this problem the
halting problem for Z.lO

Later on that same page, Davis formulates a theorem: "There exists a Turing
machine whose halting problem is recursively unsolvable."

The widespread influence of Martin Davis's book is such that the halting
problem is now forever associated with Turing Machines despite the fact that
Turing's original machines never halt!

Aside from speed, memory capability, and ever fancier human-interface devices,
all modem computers are basically the same. Every computer that can emulate a
Turing Machine - and that's a very easy requirement - is a universal computer.
Moreover, any universal computer can emulate any other universal computer.

Some very early computers were not as powerful as the Turing Machine.
Apparently the first computer to be at least potentially universal was the machine
that Konrad Zuse built called the Z3, constructed between 1938 and 1941. 11 If
built, Charles Babbage's Analytical Engine of the 1830s would have qualified as a
universal machine, even though it would have been constructed from gears rather
than switching mechanisms. Virtually all computers built since 1944 have been
universal machines.

One crucial element of a universal machine is programmability. There must
be some way to introduce a stream of instructions into the computer and have
the computer respond. In modem computers, these instructions are bytes in
memory called machine code. In Zuse's machine, instructions were encoded as
holes punched in 35mm movie film. Babbage's machine would have used punched
cards similar to those that controlled Jacquard silk-weaving looms.

Some early computers could be programmed only with an inflexible sequence
of instructions. A universal machine must be able to skip around in the
instruction stream based on the values of previous calculations. This feature
is known as conditional branching, and it is essential for implementing calculational
loops.

Computer programming languages are often called "Turing complete" if the
syntax of the language allows them to mimic a Turing Machine.

The basic HyperText Markup Language (HTML) used extensively on the Web is
not intended for computation and is certainly not Turing complete. javaScript often
used within HTML is certainly Turing complete, as are virtually all programming
languages in use today. Any Turing-complete programming language can emulate
any other Turing-complete language.

lODaVlS, Computability and Unsolvability, 70
11 Raul Rojas, "How to Make Zuse's Z3 a Universal Computer," IEEE Annals of the History of Computing, Vol.

20, No 3 (1998),51-54.
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The Turing Machine not only established the basic requirements for effective
calculability but also identified limits: No computer or programming language
known today is more powerful than the Turing Machine; no computer or pro
gramming language can solve the halting problem; no computer or programming
language can determine the ultimate destiny of another computer program. You
can't get around these limitations with a "better" programming language or a
different kind of machine. At best you can only do jobs faster. You can rig
up thousands of processors to perform in parallel, and you can strive to create
quantum computers that perform massively parallel computations, but you simply
can't bring infinity any closer to this hopelessly finite world in which we live.

Regardless of the limitations of the Turing Machine, some mathematicians
have journeyed into the realm of hypercomputation and described machines that
transcend the Turing limit. Alan Turing himself partially instigated this research
by briefly describing a magical "oracle" in his Ph.D. thesis, the difficult 1939 paper
"Systems of Logic Based on Ordinals":

Let us suppose we are supplied with some unspecified means
of solving [undecidable] number-theoretic problems; a kind of
oracle as it were. We shall not go any further into the nature
of this oracle apart from saying that it cannot be a machine. With
the help of the oracle we could form a new kind of machine (call
them o-machines), having as one of its fundamental processes
that of solving a given number-theoretic problem. 12

Perhaps we'd all like a little oracle in our lives to help with the really tough
questions. Researchers exploring hypercomputation have built on the oracle idea
and introduced other features into Turing Machines so that they are not bound
by normal real-life limitations. While interesting mathematical constructs, these
hypercomputers are never quite practical because they violate basic laws of physics,
such as accelerating time so that each step of the computation takes half as long
as the previous step. Martin Davis has even gone so far as to refer to the "myth" of
hypercomputation and compares the hypercomputationalists to trisectors of the
angle and inventors of perpetual motion machines. 13

To my mind, explorations into hypercomputation are valuable more for the
questions they raise about computational universality. Alan Turing designed his
imaginary machine to model the basic operations of a human computer in

l2Alan Tunng, "Syslems of Logic Based on Ordinals," Proceedings of the London Mathematical Society,
Senes 2, Volume 45 (1939),172-173

13Mattin DaVIS, ''The Myth of Hypercomputation," in Chnstof Teuscher, ed , Alan Turing Life and Legacy of
a Great Thinker (Spnnger, 2004),195-211
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mechanically carrying out a precise algorithm. He discovered that these machines
have some inherent limitations. In the decades since, we have built computers that
are computationally equivalent to Turing Machines and hence have those same
constraints. We see no practical way to go beyond these limitations.

For that reason, the universality of computation - both in capability and
limitations - seems very fundamental to any type of data-processing activity.
These limitations seem as ingrained in the fabric of the natural world as the laws
of thermodynamics.

If the Turing Machine has inherent limitations that seemingly can't be overcome
without breaking the laws of physics, then what exactly are the implications
for natural mechanisms that perform computational or logical operations? This
question becomes most profound (and perhaps even a bit troubling) when we
consider the two most important "natural mechanisms" in our lives that we might
want to investigate in this way: the human mind, and the universe itself.

Strictly speaking, the Turing thesis involves only an equivalence between Turing
Machines and mechanical algorithms. It does not necessarily imply that there can
never be a computing machine that can outperform the Turing Machine, or that
such machines violate some kind of known universal law.14

Perhaps we're missing something. Perhaps there's some kind of mysterious
physical mechanism that can perform some powerful computational operation
that simply can't be emulated on the Turing Machine. Does the model of the
Turing Machine really help us to understand the human mind and the universe?
Or are we foolishly bringing the most complex objects we know down to the level
of a reductionist machine that can't even properly add?

The legacy of the Turing Machine outside the fields of mathematics and
computing began several years after the 1936 publication of Turing's paper with
the fortuitous meeting between Warren McCulloch (1898-1969) and Walter Pitts
(1923-1969).

As a youngster in Detroit, the brilliant Walter Pitts taught himself Latin and
Greek, philosophy and mathematics, and consequently was regarded by his family
as a freak. He ran away to Chicago when he was 15. Homeless, Pitts spent
much time in the park, where he made the acquaintance of an old man named
Bert. He and Bert had similar interests in philosophy and mathematics, and
Bert suggested that he read a book by University of Chicago professor Rudolf
Camap (1891-1970) - probably The Logical Syntax of Language published in
1937. Walter Pitts read the book and then headed to Camap's office to discuss

14For a concise cntique WIth a good bibliography see C Jack Copeland, 'The Church-Tunng Thesis,"

Stanford Encyclopedia of Philosophy, http//plato stanford edulentneslchurch-tunng
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some problems that he had discovered. The old man named Bert turned out to be
Bertrand Russell. 15

If you don't believe that story, perhaps this one is more plausible: During the
time that Bertrand Russell was teaching at the University of Chicago, he was taking
a stroll through Jackson Park when he spotted a young man reading Carnap's
book. They began talking, and Russell took Walter Pitts to Carnap's office. 16

Then there is this one: When Pitts was 12 years old and still living in Detroit, he
was chased by some bullies and took refuge in a library. When the library closed,
he was trapped inside. He decided to read Whitehead and Russell's Principia

Mathematica, and remained in the library for three days, finally sending a letter
to Russell pointing out some errors. When Russell wrote back inviting him to
Cambridge, Pitts decided to become a mathematicianY

What is known for sure is that Walter Pitts did attend a lecture by Bertrand
Russell in Chicago in 1938, and that he also visited Rudolf Carnap's office the
same year. Carnap was impressed with the young man and wanted to help him
out by giving him a student job, but he didn't even know Pitts' name, and there
was no way to find him. 18

Pitts was "a shy, introverted lost soul, with glasses, bad teeth, a habit of twirling
his hair, a slight nervous tremor, and a tendency to bump into things.,,19 (Later
on, during the Second World War, Pitts received a 4F classification from the draft
board and was labeled "pre-psychotic," yet he was also recruited for the Manhattan
Project and received top-secret clearance.20) After Carnap tracked down Pitts
almost a year after the office visit, Pitts began studying logic with Carnap and
attending classes at the University of Chicago, including seminars given by the
red-bearded Ukrainian-born Nicolas Rashevsky (1899-1972).

Rashevsky had received his doctorate in theoretical physics from the University
of Kiev, and immigrated to the United States in 1924. He became interested in
applying mathematical models to biological processes, a discipline that relied on
empirical research done by others, but which involved no laboratory work of

lSThe story is attnbuted to McCulloch's former student Manual Blum in Pamela McCorduck, Machines Who
Think A Personal Inquiry into the History and Prospects of Artificial Intelligence, 25'h anniversary edition
(A K Peters, 2004), 89 Blum also tells the story in Manual Blum, "Notes on McCulloch-Pitts' A LogIcal
Calculus of the Ideas Immanent in Nervous Activity" in Rook McCulloch, ed , Collected Works of Warren 5
McCulloch (Intersystems Publications, 1989), Vol 1,31 Avariation is recounted in an intelVlewwllh
Michael A Arbib in James A Anderson and Edward Rosenfeld, eds , Talking NelS An Oral History of Neural
Networks (MIT Press, 1998),218
161nterview with Jack 0 Cowan in Talking Nets, 104

171nterview with Jerome Y Letlvin in Talking Nets, 2 In Jerome Y Lettvin, "Warren and Walter," Collected
Works of Warren 5 McCulloch, Vol 11,514-529, Pitts spent aweek in the library reading Pnncipia
Malhematica, but only when the library was open
18Neil R Smalheiser, "Walter Pitts," Perspectives in Biology and Medicine. Vol 43, No 2(Winter 2000), 218
19Smalheiser, "Walter Pitts," 22
20lbid
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its own. By 1934, Rashevsky had even come up with a name to explain what
he was doing: mathematical biophysics. In 1935, he became the first Assistant
Professor of Mathematical Biophysics at the University of Chicago. A book
entitled Mathematical Biophysics followed in 1938, and then a journal, the Bulletin
ofMathematical Biophysics in 1939, devoted to publishing papers of Rashevsky and
his followers. 21

In 1942 and 1943, Pitts published three papers in the Bulletin of Mathematical
Biophysics, and around this time was introduced to Warren McCulloch.

Warren McCulloch grew up in New jersey and first attended Haverford, a
Quaker college in Pennsylvania. Shonly after McCulloch entered the college in
1917, the teacher and philosopher Rufus jones (1863-1948) - who about this
time helped found the American Friends Service Committee - asked McCulloch
"What is Thee going to be? ... And what is Thee going to doT' McCulloch said he
had no idea, "but there is one question I would like to answer. What is a number,
that a man may know it, and a man, that he may know a number?" To which Rufus
jones could only respond, "Friend, Thee will be busy as long as Thee lives.,,22

McCulloch attended Yale to study philosophy and psychology, got his M.D.
at the College of Physicians and Surgeons in New York in 1927, treated people
with severe brain injuries at Bellevue Hospital Center in New York City, and
worked with insane patients at Rockland State Hospital.23 Back at Yale in 1934,
McCulloch worked with Dusser de Barenne (1885-1940), who had pioneered
the technique of mapping functional areas of the brain by applying strychnine to
exposed portions ofa eat's brain and observing what happens. In 1941, McCulloch
moved to the Neuropsychiatric Institute of the University of Illinois.

McCulloch was a swashbuckling figure who "looked like Moses; he had this long
beard and bushy eyebrows [and] a strange gleam in his eye. He really looked like
he was crazy a lot of the time. He had gray eyes, and when they got really bright and
glaring, he looked like a spectacle.,,24 McCulloch was gregarious, "found a bottle
lof Scotch] each night a fine lubricant for his side of the conversion,,,25 and was a
big storyteller. (The stories about Walter Pitts meeting Bertrand Russell in jackson
Park all ultimately came from McCulloch.) McCulloch wrote poetry, discoursed
on philosophy, and flaunted his polymathic learning whenever possible.

21Tara H Abraham, "Nicholas Rashevsky's Mathematical Biophysics," Journal of the History of Biology, Vol
37, No 2(Summer 2004), 333-385.
22Warren S. McCulloch, "What is aNumber, That a Man May Know it, and a Man, That he May Know a
Number7", Collected Words of Warren S. McCulloch, Vol IV, 1226
23Much of the biographical information on McCulloch comes from Michael A Arbib, "Warren McCulloch's
Search for the Logic of the Nervous System," Perspectives in Biology and Medicine, Vol 43, No.2 (Winter
2000), 193-216.
24 InteTVIew WIth Jack D. Cowan in Talking Nets, 102.
25Arbib, "Warren McCulloch's Search for the LOgiC of the Nervous System," 202.
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It's not quite clear how Warren McCulloch and Walter Pitts were introduced,
but they immediately hit it off, even to the extent of Pitts moving into the
McCulloch household. McCulloch was attempting to formulate a theory of
the workings of the brain, and Pitts' knowledge of mathematical logic was
exactly what he needed. They hammered out a paper over the McCulloch kitchen
table with McCulloch's daughter Taffy drawing the article's illustrations.26 The
historic paper that resulted from this first collaboration between McCulloch and
Pitts was "A Logical Calculus of Ideas Immanent in Nervous Activity" published
in Rashevsky's Bulletin of Mathematical Biophysics in 1943.

From research in the second half of the nineteenth century, scientists had known
that the nervous system consisted of cells called neurons, and that these neurons
seemed to be connected in a network. Additional research in the twentieth century
had shown that these neurons worked much like switches that are triggered when
a stimulus reaches a threshold.27

To McCulloch and Pitts, these neurons resembled logical functions, so they
modeled the neurons with a form of propositional logic using Rudolf Carnap's
notation. One crucial element not in traditional logic was a time delay between
input and output; this time delay allowed neurons to be organized in circular
patterns so that signals could be kept active just circling through the network. The
McCulloch-Pitts paper defines axioms for this simplified model and then proceeds
to prove some theorems.

"A Logical Calculus of Ideas Immanent in Nervous Activity" doesn't have many
precursors. The bibliography consists solely of Carnap's Logical Syntax ofLanguage,
Hilbert and Ackermann's Grundzuge der Theoretischen Logik (spelled "Grunduge"),
and Whitehead and Russell's Principia Mathematica. On page 15 of this 19-page
paper, McCulloch and Pitts reveal a little broader reading when they conclude

first, that every net, if furnished with a tape, scanners connected
to afferents, and suitable efferents to perform the necessary
motor-operations, can compute only such numbers as can a
Turing machine; second, that each of the latter numbers can
be computed by such a net ... This is of interest in affording a
psychological justification of the Turing definition of
computability and its equivalents, Church's A-definability and
Kleene's primitive recursiveness: If any number can be com
puted by an organism, it is computable by these definitions and
conversely.28

26Arbib, "Warren McCulloch's Search for the Logic of the Nervous System," 199

27Tara H Abraham, "(Physio)logical Circuits The Intellectual Ongins of the McCulloch-Pitts Neural

Networks," Joumal of the History of the Behavioral Sciences, Vol 38, No I (Winter 2002), 19

28W S McCulloch and W Pitts, "A Logical Calculus in the Ideas Immanent in Nervous Activity,"

Bulletin of Mathematical Biophysics, Vol 5 (1943), 129. Also in Collected Works of Warren S McCulloch,

Vol 1,357
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Several years later, in 1948, McCulloch made the Turing connection more
explicit. He explained that he was searching for a way to develop a theory in
neurophysiology,

and it was not until I saw Turing's paper that I began to get
going the right way around, and with Pitts' help formulated
the required logical calculus. What we thought we were doing
(and I think we succeeded fairly well) was treating the brain as
a Turing machine; that is, as a device which could perform the
kind of functions which a brain must perform if it is only to go
wrong and have a psychosis.... The delightful thing is that the
very simplest set of appropriate assumptions is sufficient to show
that a nervous system can compute any computable number. It
is that kind of a device, if you like - a Turing machine.29

Still later (in 1955), McCulloch was blunter: "Pitts and I showed that brains
were Turing machines, and that any Turing machine could be made out of
neurons,,,30 although current knowledge was insufficient to put this equivalence
to any practical use:

To the theoretical question, Can you design a machine to do
whatever a brain can do? the answer is this: If you will specify in
a finite and unambiguous way what you think a brain does do
with information, then we can design a machine to do it. Pitts
and I have proved this construction. But can you say what you
think brains do?31

The McCulloch and Pitts paper might have languished in mathematical bio
physical obscurity had it not caught the attention of two major figures in
twentieth-century computing: Norbert Wiener and John von Neumann.

Norbert Wiener was the product of the most notorious experiment in
home-schooling since the regimen endured by John Stuart Mill. Both men later
wrote memoirs about the experience of being molded into a prodigy by overbear
ing fathers; in Wiener's case, the scars remained raw and unhealed for most of his
life. For years he battled a bipolar disorder without diagnosis, combining periods
of brilliant research with inexplicable rages and suicidal despair.

29Warren McCulloch in Lloyd A Jeffress, ed , Cerebral Mechanisms in Behavior. The Hixon Symposium
Oohn Wiley &: Sons, 1951),32-33
30Warren S. McCulloch, "Mystenum lniquitatis of Sinful Man Aspinng into the Place of God," The ScientIfic
Monthly, Vol. 80, No.1 Oan 1955),36 Also in Collected Works of Warren S McCulloch, Vol. llI, 985.
31 Ibid, 38
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Wiener entered Tufts University when he was 11 years old, received a B.A. in
mathematics at 14, and then became the youngest recipient of a Harvard Ph.D. at
the age of 18. Still, Wiener's father would tell members of the press that his son
was "not even exceptionally bright" and indeed, "lazy. ,,32 His parents also withheld
information from him: Norbert Wiener was 15 before he found out he was jewish.

After leaving Harvard, Wiener studied mathematical logic at Cambridge with
Bertrand Russell and number theory with G. H. Hardy, differential equations
with David Hilbert at Gottingen on the eve of the Great War, and philosophy
with john Dewey at Columbia University. In 1919, he joined the faculty of the
Massachusetts Institute of Technology.

In the period between the wars, Wiener pioneered in the fledgling fields
of communication engineering and analog computing. He was involved with
Vannevar Bush's analog-computing projects at MIT, and seems to have influenced
Claude Elwood Shannon in the development of communication theory. During
World War II, Wiener worked on systems to implement anti-aircraft fire. These
systems incorporated a more complex form of prediction than previous techniques
to anticipate the ways that the aircraft would try to avoid the missile being aimed
at it. Wiener was particularly interested in the concept of feedback - getting
information back to incrementally correct a process.

Norbert Wiener was not in attendance at the first historic meeting of physi
ologists, psychologists, and anthropologists who gathered at the Beekman Hotel
on May 13, 1942, under the sponsorship of the josiah Macy, jr. Foundation to
explore some interdisciplinary connections. Warren McCulloch was there as were
the husband-and-wife anthropology team of Gregory Bateson and Margaret Mead.
Wiener was present at the first postwar Macy conference entitled 'The Feedback
Mechanisms and Circular Causal Systems in Biology and the Social Sciences Meet
ing,,,33 as were Walter Pitts and john von Neumann, with everyone assimilating
everyone else's work and examining how everything seemed to fit together.

In 1947, Norbert Wiener wrote a book bringing together some of the research
that had been discussed at these conferences. He wanted a new word for studies
that encompassed communication and feedback in machines, living things, and
social structures. He chose the Greek word cybernetics, meaning steersman, or
helmsman, or pilot. Essential to the job of steering a ship is the incorporation
of feedback to compensate and correct for any drift off course. Wiener's book,
published in 1948, became Cybernetics: or Control and Communication in the Animal
and the Machine.

Time magazine proclaimed, "Once in a great while a scientific book is published
that sets bells jangling wildly in a dozen different sciences. Such a book is

32 Flo Conway and Jim Siegelman, Dark Hero of the Infonnation Age In Search of Norbert Wiener, the Father of
Cybernetics (Basic Books, 2005), 2l.

33Conway and Siegelman, Dark Hero, 155.
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Cybernetics.,,34 Read today, Cybernetics is an odd little book combining startling
visionary prose with dense pages of mathematics. In the introduction, Wiener pays
homage to the many people whose work he had assimilated, including Warren
McCulloch, "who was interested in the study of the organization of the cortex of
the brain," Alan Turing, "who is perhaps first among those who have studied the
logical possibilities of the machine as an intellectual experiment," Walter Pitts,
who "had been a student of Carnap at Chicago and had also been in contact with
Professor Rashevsky and his school of biophysicists," as well as early computer
pioneers "Dr. Aiken of Harvard, Dr. von Neumann of the Institute for Advanced
Study, and Dr. Goldstine of the Eniac and Edvac machines at the University of
Pennsylvania.,,35

Chapter 5 of Cybernetics is devoted to "Computing Machines and the Nervous
System." Wiener compares the switching mechanisms of digital computers with
the McCulloch and Pitts model of the brain:

It is a noteworthy fact that the human and animal nervous
systems, which are known to be capable of the work of a com
putation system, contain elements which are ideally suited to act
as relays. These elements are the so-called neurons or nerve cells.
While they show rather complicated properties under the influ
ence of electrical currents, in their ordinary physiological action
they conform very nearly to the "all-or-none" principle; that
is, they are either at rest, or when they "fire" they go through a
series of changes almost independent of the nature and intensity
of the stimulus.36

Two chapters later, Wiener notes that "the realization that the brain and the
computing machine have much in common may suggest new and valid approaches
to psychopathology and even to psychiatrics.,,37 Wiener was no blind technophile,
however. He was profoundly concerned about the impact that this new science
and technology would have on people, and wrote The Human Use ofHuman Beings:
Cybernetics and Society (Houghton Mifflin, 1950) as a follow-up to his 1948 book.

Cybernetics became a focal point for wide-ranging research until late in 1951
when Wiener suddenly and without explanation severed all ties with Warren
McCulloch and the group of cyberneticians who had formed around McCulloch's
charismatic personality, including Pitts, who had been writing his Ph.D. thesis

340ecember 27, 1948 issue, quoted in Conway and Siegelman, Dark Hero, 182
35Norben Wiener, Cybernetics: or Control and Communication in the Animal and the Machine Oohn Wiley &:

Sons, 1948; second edition, MlT Press, 1961), 12, 13, 14, 15. Page numbers refer to the second edition.

36Wiener, Cybernetics, 120
37Wiener, Cybernetics, 144.
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under Wiener's supervision. Several explanations have been suggested for this
split: One theory is that the emotionally damaged Wiener was unable to gauge
the nuances of McCulloch's personality. Sometimes Wiener couldn't distinguish
between McCulloch's recitation of facts and his wild speculations.38 Another
theory is that Wiener's wife, in jealously guarding her husband's reputation, had
falsely told him that McCulloch's "boys" had seduced their daughter. 39

Without the Wiener-McCulloch connection, cybernetics as a unified discipline
suffered greatly. Among those personally affected by the rift, perhaps Walter Pitts
took it hardest. He was emotionally devastated, destroyed his research and his
Ph.D. thesis, and began a long slow decline. "He did not simply drink - as
befitting a man of his talents, he synthesized novel analogues of barbiturates and
opiates in the laboratory and experimented on himself by ingesting long-chain
alcohols."4o Walter Pitts died in 1969 at the age of 46 from bleeding esophageal
varices, a problem often associated with chronic alcoholism.

Even without the split between Wiener and McCulloch, it's not certain that
cybernetics would have survived. The concept ofa broad interdisciplinary umbrella
doesn't quite fit into American academia, where specialization is the key to success.
Although there have been numerous attempts to revive the ideals of cybernetics, it
lives on mostly linguistically in popular culture with words like cyborg (short for
"cybernetic organism"), and the ubiquitous cyber- prefix in cyberspace, cybercafe,
cyberpunk, and the oxymoronic cybersex. Even the use of these cyber- words has
been diminishing in recent years in submission to the popular "e-" prefix.

The McCulloch and Pitts paper on the mathematical model of the neural
network also served as a catalyst for John von Neumann, who was involved in
the design of several seminal computer projects including the EDVAC (Electronic
Discrete Variable Automatic Computer). In the First Draft of a Report on the
EDVAC (dated June 30, 1945), von Neumann described the computer switching
mechanism: "Every digital computing device contains certain relay like elements,
with discrete equilibria. Such an element has two or more distinct states in which
it can exist indefinitely."41 Citing the McCulloch and Pitts paper, von Neumann
wrote: "It is worth mentioning, that the neurons of the higher animals are definitely
elements in the above sense.,,42

By the following year, von Neumann was exploring the connections between
living beings and machines using a Greek word for a mechanism that exhibits

38Arbib. "Warren McCulloch's Search for the Logic of the Nervous System." 201-202
39Conway and Siegelman, Dark Hero, 222-229

4oSmalheiser, "Walter Pitts," 223
41John von Neumann, First Draft of a Report on the EDVAC (Moore School of Electncal Engineenng. 1945),
§41
421bid. §4 2
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living characteristics: automaton.43 In a letter to Norbert Wiener, von Neumann
wondered aloud how they had ambitiously come to study the human brain, surely
the most complex of all natural or artificial automata:

Our thoughts - I mean yours and Pitts' and mine - were
so far mainly focused on the subject of neurology, and more
specifically on the human nervous system, and there primarily
on the central nervous system. Thus, in trying to understand
the function of automata and the general principles govern
ing them, we selected for prompt action the most complicated
object under the sun - literally ... Our thinking - or at any
rate mine - on the entire subject of automata would be much
more muddled than it is, if these extremely bold efforts - with
which I would like to put on one par the very un-neurological
thesis ofR. [sic] Turing - had not been made.44

To von Neumann, an automaton was anything with an input, output, and some
kind of processing in the middle. In September 1948, he gave the lead presentation
in a "Cerebral Mechanisms in Behavior" symposium at the California Institute of
Technology. His talk (entitled 'The General and Logical Theory of Automata")
contains much comparison of the human brain and 1948-era computers in terms
of size, speed, switches, and energy dissipation. He identified the need to develop
a new kind of logic, and speculated about something that was to become one of
von Neumann's major interests: self-reproducing automata.45

Wiener kidded von Neumann about the concept: "I am very much interested in
what you have to say about the reproductive potentialities of the future.... It may
be an opportunity for a new Kinsey report.,,46 To von Neumann, self-reproducing
automata were no laughing matter. He wondered whether there was some kind
of unknown law that prohibited a machine from building a replica of itself. Even
living things don't reproduce in this way (although DNA itself does) so the question
presents some interesting ontological issues as well.

Increased research into the theory of automata and Turing Machines made
possible the seminal book Automata Studies edited by founder of communications

43WilIiam Aspray, 'The Scientific ConceptualIZation of lnfonnation: A Survey," Annals of the History of
Computing, Vol. 7, No 2 (Apnl, 1985), 133.
44l.etter of November 29, 1946, from Mikl6s Rtdei, ed., John von Neumann: Selected Letters (American

Mathematical Society, 2005), 278.
45john von Neumann, 'The General and Logical Theory of Automata" in Lloyd A. jeffress, Cerebral
Mechanisms in Behavior: The Hixon Symposium (John Wiley &: Sons, 1951), 1-41.
46l.etter of August 10, 1949, quoted in Stevej. Heims,John von Neumann and Norbert Wiener: From
Mathematics to the TechnoleJgles ofUfe and Death (MIT Press, 1980),212
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theory Claude Elwood Shannon and artificial-intelligence pioneer and inventor
of the Lisp programming language john McCarthy, and published by Princeton
University Press in 1956. The book includes papers on automata by john von
Neumann, Stephen Kleene, and artificial-intelligence pioneer Marvin Minsky (b.
1927), and some of the first papers on Turing Machines by Claude E. Shannon
and Martin Davis.

As the Cold War of the early 1950s heated up, Norbert Wiener and john von
Neumann found themselves at opposing political poles. Wiener was appalled by
the use of nuclear weapons against the japanese cities of Hiroshima and Nagasaki
in the Second World War. He stopped taking government money for research
and his writings increasingly focused on social concerns prompted by the rising
use of technology in both war and peace. In contrast, the Cold War sparked john
von Neumann's anti-communist tendencies and he became a strong advocate of
nuclear weapons. In 1955, von Neumann discovered he had bone cancer. He was
hospitalized in 1956 and died the following year at the age of 53. It's possible that
the cancer was caused by exposure to radiation while witnessing atomic bomb
tests.47

john von Neumann left behind an unfinished series of lectures that were
published in 1958 as the book The Computer and the Brain. Ultimately unsatisfying,
the book contains many tantalizing hints of what the completed version might
have offered. A long unfinished manuscript on automata was edited and completed
by Arthur W. Burks (b. 1915) and published in 1966 under the title Theory of
Self-Reproducing Automata.

Early in his investigations into self-reproducing automata, von Neumann
imagined a machine that might live in a big soup with spare parts floating around,
and explored how the machine might assemble its duplicate from these parts.
These types of automata became known as kinematic automata, and might be
similar to what we commonly regard as robots.

In discussions with his friend Stanislaw Ulam (who was doing research into
crystal growth), von Neumann decided to investigate instead a much simpler
model called cellular automata.

Cellular automata are mathematical constructs that resemble a structure of
cells. Cellular automata can potentially exist in various dimensions, but most
studies have been restricted to a two-dimensional grid. Each cell in the grid is
affected by its neighbors as if the cells are linked in a simple network. Through
successive "moves" or "generations," cells change state according to certain rules.
Simple rules for cellular automata can often lead to complex behavior. john von
Neumann worked with cells that have 29 states, and proved that these can be
implemented to form a Universal Turing Machine.48

47Heims, john von Neumann and Norbert Wiener, 369-371

48William Aspray, john von Neumann and the Ongms of Modem Computing (MIT Press, 1990),203-204.



Is Everything a Turing Machine? 341

Cellular automata burst from their academic confines in 1970 when British
mathematician]ohn Horton Conway (b. 1937) designed a simple type of cellular
automata that he called the Game of Life (not to be confused with the board
game of the same name). The Game of Life automata have simple rules: In a
two-dimensional grid resembling graph paper, a cell is either alive (filled) or dead
(not filled). In each successive generation a cell potentially changes its state based
on its eight immediate neighbors: If a live cell is surrounded by two or three
live cells, it remains alive. If surrounded by only zero or one live cell, it dies of
loneliness; surrounded by four or more live cells, it dies of overcrowding. A dead
cell surrounded by exactly three live cells becomes alive as a result of an obscure
form of reproduction.

Several of Martin Gardner's "Mathematical Games" columns in Scientific Ameri
can popularized Conway's Game of Life ,49 and by 1974, Time magazine complained
that "millions of dollars in valuable computer time may have already been wasted
by the game's growing horde of fanatics.,,50 Of course, in 1974 these were not
personal computers, but corporate mainframes. Today the Game of Life is mostly
played on personal computers, about which Time magazine would presumably be
less frantic.

Despite the simple rules, Game of Life automata exhibit some very complex
patterns. It is possible to create patterns that continuously spawn offspring, for
example. Although it hardly seems possible, Turing Machines can be constructed
from these cellular automata. The Game of Life is Turing complete.51

Also interested in cellular automata was German engineer Konrad Zuse (whose
last name is pronounced "tsoo-za"). Zuse was born just two years and one day
earlier than Alan Turing, and while Turing was writing his paper on computable
numbers, Zuse was building a computer in his parent's apartment in Berlin.

In 1969, Zuse published a short, 74-page book entitled Rechnender Raum
(translated as Calculating Space) that pioneered the field of "digital physics" - the
interpretation of the workings and laws of the universe within a framework of
computability.

Historically, the laws of physics had been assumed to be continuous. Quantities
of distance, velocity, mass, and energy seem best described with real numbers
and manipulated through differential equations. Some aspects of quantum theory
instead suggest that the underlying structure of the universe might be discrete
and digital in nature, and the continuous nature of the real world might be

49These columns on the Game of Life were later collected in Martin Gardner, Wheels, Life, and Other
Mathematical Amusements (W. H. Freeman, 1983).

50!ssue ofjanuary 21,1974, quoted in William Poundstone, The Recursive Universe: Cosmic Complexity and
the LImits ofScientific Knowledge (William Morrow, 1985),24.

51 Paul Rendell, "A Tunng Machine in Conway's Game of Life," March 8, 2001,
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only an illusion. "Is nature digital, analog or hybrid?" Zuse asked. "And is there
essentially any justification in asking such a question?,,52 To explore physical laws
in a digital manner, Zuse created "digital particles" that he manipulated with the
rules of cellular automata. Rechnender Raum is a very tentative exploration into
the potential of digital physics to model the universe, but it is nonetheless an
ambitious step.

At first glance, it's hard to conceive of the universe as a massive computer. If we
ignore the relatively insignificant life forms inhabiting at least one celestial object
in the universe, there doesn't seem to be a lot of computational activity involved.
Isn't the universe really just a lot of rocks flying around?

It might help to view the broader temporal picture. The current cosmological
model indicates that the universe arose from the Big Bang 13.7 billion years ago,
the Earth formed about 4.5 billion years ago, life on Earth first appeared about 3.7
billion years ago, early primates perhaps about 10 million years ago, and modem
humans about 200,000 years ago. Certainly something's been happening that has
resulted in increased complexity. Immediately following the Big Bang, the universe
was completely uniform - the epitome of simplicity - and then more complex
particles and eventually atoms and molecules began developing. This progression
from the simple to the complex - presumably based on the relatively simple laws
of the universe - is very reminiscent of cellular automata.

Computational models of the universe often owe as much to the communi
cation theory of Claude Elwood Shannon and Norbert Wiener as they do to
Turing. The use of the concept of entropy to measure information has forged
a tight bond between communications and thermodynamics that has been the
subject of several entertaining popular books over the past few years. 53 Maxwell's
Demon, for example - that imaginary imp invented by James Clerk Maxwell
(1831-1879) who can operate a door to separate gases into fast-moving molecules
and slow-moving molecules and hence reduce entropy - turns out to be impos
sible because the demon is extracting information from the system.

American physicistjohn Archibald Wheeler (1911-2008) linked the existence
of the universe to the human observation of it. We ask yes-no questions in these
observations and receive information in answer. Wheeler's three-word description
of this process is the indelibly catchy phrase "It from bit":

52 Konrad Zuse. Calculating Space. translation of Rechnender Raum (MIT Technical Translation, 1970), 22

(page 16 in the German publication)

53Tom Siegned, The Bit and the Pendulum: From Quantum Computing to M Theory - The New Physics of
Information Oohn Wiley &: Sons, 2000) Hans Chnstian von Baeyer, Information The New Language
of Science (Harvard University Press, 2003). Charles Seife, Decoding the Universe' How the New Science of
Information is Explaining Everything in the Cosmos from Our Brains to Black Holes (Viking, 2006)
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It from bit symbolizes the idea that every item of the phys-
ical world has at bottom - at a very deep bottom, in most
instances - an immaterial source and explanation; that what
we call reality arises in the last analysis from the posing of yes-no
questions and the registering of equipment-evoked responses; in
short, that all things physical are information-theoretic in origin
and this is a participatory universe.54

While proposing a universe fabricated from information, Wheeler rejected the
concept of the universe as any type of machine because it "has to postulate
explicitly or implicitly, a supermachine, a scheme, a device, a miracle, which will
tum out universes in infinite variety and infinite number. ,,55

Quite a different conception is that of David Deutsch (b. 1953), one of the
pioneers ofquantum computing. Deutsch is a strong advocate of the "many worlds"
interpretation of quantum physics originated by American physicist Hugh Everett
(1930-1982). What we perceive as the paradoxes of the particle and wave duality
of quantum physics is actually interference from multiple worlds that branch off
with quantum events. The universe that we know is only one possible universe in
a complete multiverse.

In his 1997 book The Fabric of Reality, Deutsch sets out to explain the nature of
the universe through interweaving four strands:

• Epistemology as characterized by the Vienna-born philosopher of science
Karl Popper (1902-1994);

• Quantum physics in the framework of the many-worlds interpretation of
Hugh Everett;

• Evolution as described by English naturalist Charles Darwin (1909-1982)
and British evolutionary biologist Richard Dawkins (b. 1941); and

• Computation as pioneered by Alan Turing.

Within a discussion about virtual reality generators, Deutsch develops what
he calls the Turing principle. At first, the Turing principle seems to be about
mechanisms performing computations: "There exists an abstract universal computer
whose repertoire includes any computation that any physically possible object can
perform." Deutsch is actually identifying this computer as simulating every type
of physical process. He soon shows that these computations are equivalent
to generating a virtual-reality universe. Gradually the Turing principle evolves

54John Archibald Wheeler, "Infonnation, Physics, Quantum The Search for Links" (989) in Anthony

J G. Hey, ed , Feynman and Computation' Explonng the Limits of Computers (Perseus Books, 1999), 311.

"Ibid, 314 but here Wheeler quoted another paper he wrote from 1988.
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to a much stronger version: "It is possible to build a virtual-reality generator whose
repertoire includes every physically possible environment,,,56 which would certainly
include the universe in which we live.

Self-described "quantum mechanic" and MIT professor of mechanical engi
neering Seth Lloyd (b. 1960) prefers to interpret quantum physics in terms of
"weirdness" rather than multiple worlds, but he describes the universe and its
parts in terms of computation and information - 'The Big Bang was also a Bit
Bang." Lloyd rejects the idea of modeling the universe on a Turing Machine,
however. ''The universe is fundamentally quantum-mechanical, and conventional
digital computers have a hard time simulating quantum-mechanical systems.,,57
This is one reason why he finds the quantum computer more appropriate to
the task.

The universe is a physical system. Thus, it could be simulated
efficiently by a quantum computer - one exactly the same size
as the universe itself. Because the universe supports quantum
computation and can be efficiently simulated by a quantum
computer, the universe is neither more nor less computation
ally powerful than a universal quantum computer ... We can
now give a precise answer to the question of whether the uni
verse is a quantum computer in the technical sense. The answer
is Yes. The universe is a quantum computer.58

One feature that quantum computers add to the conventional Turing Machine is
the ability to generate true random numbers as a result of quantum processes.

Cellular automata have also reemerged as a model for the physical laws of
the universe in the work of British physicist, mathematician, and creator of the
Mathematica computer program Stephen Wolfram (b. 1959), culminating in
the huge, ambitious, and copiously illustrated 2002 book A New Kind of Science.
Wolfram was inspired in this quest by observing how cellular automata exhibit
great complexity based on simple rules. He closely ties his automata to the
universality of Turing Machines and describes how they can model physical
processes. Wolfram does not introduce quantum mechanics into his system, but
suggests he needn't because "it is my strong suspicion that the kinds of programs
that I have discussed ... will actually in the end tum out to show many if not all
the key features of quantum theory."59

56DaVId Deutsch, The Fabnc of Reality (Penguin Books, 1997), 132-135
57 Seth Lloyd, Programming the Universe A Quantum Computer Scientist Takes on the Cosmos (Alfred A Knopf,
2006), 46, 53
581bid, 54-55
59Stephen Wolfram, A New Kind of Science (Wolfram Media, 2002), 538
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In A New Kind ofScience, Wolfram finds computational universality in so many
manifestations that he defines a Principle of Computational Equivalence that

introduces a new law of nature to the effect that no system can
ever carry out explicit computations that are more sophisticated
than those carried out by systems like cellular automata and Tur
ing machines ... So what about computations that we perform
abstractly with computers or in our brains? Can these perhaps be
more sophisticated? Presumably they cannot, at least if we want
actual results, and not just generalities. For if a computation is to
be carried out explicitly, then it must ultimately be implemented
as a physical process, and must therefore be subject to the same
limitations as any such process.60

Once we become convinced that the universe is displaying no uncomputable
characteristics (whether ofconventional digital computers or quantum computers),
then nothing that is part of the universe can be an exception to the rule. Life, for
example, is pan of a computable universe, as well as one of the most mysterious
manifestations of life that we know - the human mind.

For centuries, philosophers, biologists, psychologists, and just plain folk have
struggled with the nature of the human mind. While we often freely acknowledge
that most of our bodily functions are mechanistic results of physical and chemical
processes in our various organs, we're not quite ready to attribute the workings
of the mind to similar mechanisms. The mind, we feel, is something special.
Certainly the brain has something to do with the mind, but surely, we plead, it
can't account for everything that goes on inside.

In Western culture, this belief is known as "mindlbody dualism" and is most
commonly associated with Rene Descartes (1596-1650) and particularly his
Meditationes de Prima Philosophia of 1641. Descartes believed that most of our
human bodies (and entire so-called lower animals) were basically machines, but
that the mind operated qUite differently.

In the 1940s, dualism began taking a beating. To neuroscientist and computer
scientist Michael A. Arbib, McCulloch and Pitts had resolved the question in their
1943 paper on the neuron. The brain had a suitable structure for performing
computation; hence McCulloch and Pitts "had shown that 'anything finite enough'
that could be logically conceived could be done by a neural network. They had
killed dualism."61

Several years later, philosopher Gilbert Ryle (1900-1976) took a swing at dual
ism in his book The Concept ofMind (1949), building a strong case without referring

601bid, 720, 721

61 Arbib, "Warren McCulloch's Search for the LOgiC of the Nervous System," 213
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to the McCulloch and Pitts paper. These days, dualism is certainly in eclipse. Most
people who research the mind (either philosophically or neurobiologistically) do
so from the perspective that the mind is solely a manifestation of the physical
workings of the human body, in particular the nervous system and brain.

Perhaps not surprising, this rejection ofdualism has coincided with an increased
understanding of computation and algorithms. The Turing Machine was conceived
as a model of a human computer performing a precisely defined algorithmic task,
so this connection between machine and mind has existed from the very beginnings
of automated computation. Perhaps not surprising as well is that one of the first
people to explore the notion of artificial intelligence was Alan Turing himself,
most famously in his 1950 Mind article "Computing Machinery and Intelligence,"
in which he invented what's now called the Turing Test.

Once dualism is abandoned, the mind must be viewed as a natural manifestation
of the physical brain (along with the rest of the body) and not as a supernatural
"something else." Despite our emotional reluctance, it becomes hard to avoid
these conclusions: First, that the mind is basically a Turing Machine with both the
capabilities and limitations ofTuring Machines; and secondly, that it is theoretically
possible to build an artificial mind.

As American philosopher Daniel Dennett (b. 1942) put it, "Alan Turing had
the basic move that we could replace Kant's question of how it was possible for
there to be thought, with an engineering question - let's think how can we make
a thought come into existence.,,62

What seems to bother us most about the Turing Test - and indeed, any
suggestion that the brain is a computer - is the nagging first-person voice inside
our heads that we call "consciousness." Consciousness gives strength to our feelings
of subjective autonomy and our belief in free will.

Consciousness is nonetheless elusive and slippery. Most of us would probably
claim to have the interior monologue of consciousness going on continuously
during our entire waking days, but by its very nature consciousness becomes
invisible when it's not working. Most of us interact with other people under the
assumption that they have similar consciousnesses as our own, and yet we can't
be sure that they do, and we'd be at a loss to convince others of the existence of
our own consciousness.

Determining how our brains manufacture self-awareness is what Australian
philosopher David Chalmers (b. 1966) calls the "hard problem" of consciousness
as opposed to the comparatively easy problems of how the brain interacts with our
organs of sensory input and output.

The Turing Test - which challenges machines to fool humans into thinking
they're smart - implicitly takes a behaviorist stance that it is unnecessary to know

62Daniel Dennett, interview in Susan Blackmore, Conversations on Consciousness What the Best Minds Think
About the Brain, Free Will, and What it Means to be Human (Oxford University Press, 2006), 81
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what's going on inside someone (or something) else's central processing unit to
classify an entity as "intelligent." We're treating whatever we're conversing with
as a "black box." This is how we ultimately interact with other human beings,
because we can't prove that anyone else has consciousness. Yet even if we can't
differentiate a machine from a human being, we seem to want very much to
differentiate between the machine and ourselves.

Everything we think we know about computers tells us that they're really only
following a set of rules. They don't know what they're doing the same way we
humans do. This is the issue raised by the famous thought experiment of American
philosophy professor John Searle (b. 1932) called the "Chinese room." A person
who knows no Chinese nonetheless has a book that lets him respond to questions
in Chinese with reasonable answers. This person might pass a Turing Test in
Chinese with absolutely no understanding of the questions or answers.63

The big problem is that computers deal only with syntax, while people can
handle semantics as well. To Searle, this means that a digital computer - no
matter how sophisticated it becomes - will never understand what it's doing in
the same way that a human can.

English mathematical physicist Roger Penrose (b. 1931) is also certain that the
mind is more than just a computational organ. In his books The Emperor's New
Mind (1989) and Shadows of the Mind (1994), Penrose asserts that consciousness
is beyond computation, and speculates that some kind of quantum process in
the brain performs non-algorithmic chores that transcend the capabilities of the
Turing Machine.

Penrose finds Godel's Incompleteness Theorem to be a particularly revealing
problem. We as human beings understand the truth of the unprovable statement
that Godel derives, yet no computation can show that truth because it doesn't
derive from the axioms. This is not a new observation: In their 1958 book
Codel's Proof (New York University Press), Ernest Nagel and James R. Newman
found in Goders theorem a similar rejection of machine intelligence, as did
philosopher John Randolph Lucas (b. 1929) in his famous 1961 essay on "Minds,
Machines and Godel."64 These seem to be arguments that while machines can
easily perform axiomatic mathematics, they can't perform metamathematics that
reqUire an understanding outside the axioms.

Daniel Dennett - who perhaps more than anyone else has combined a philoso
pher's thoughtfulness with a scientist's empiricism to fashion a portrait of the mind
in fascinating books such as Consciousness Explained (1991) - thinks differently.
Dennett has assimilated the concepts of computability and combined them with a

63John R. Searle, "Minds, Brains, and Programs," from The Behavioral and Brain Sciences, Vol 3 (Cambndge

University Press, 1980) Republished in Douglas R Hofstandter and Daniel Dennett, eds , The Mind's [.

Fantasies and Reflections on Self and Soul (Basic, Books, 1981), 353-373.

64J R Lucas, "Minds, Machines and G6del," Philosophy, Vol 36, No 137 (Apr.-Jul 1961),112-127
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solid understanding of evolution and a vast knowledge of modem neurobiological
research. His vision of the brain and mind seem an unlikely medium for a Turing
Machine: The brain is part of a nervous system that is itself part of a body; there
can be no separation. Get a little excited about a train of thought, and the heart
may pump a little faster to deliver more oxygen to the brain. Various drugs affect
the brain in a variety of ways. The brain receives a barrage of stimuli from the
eyes, ears, and other organs, and constantly interacts through the body with
the real world.

The brain is not a linear processing system. It is a massively parallel decentralized
system without even an area where it all "comes together" in one central "Cartesian
theater" (as Dennett derisively calls the concept). Dennett suggests instead a
"multiple drafts" model of the mind in which bits and pieces of sensory input,
visual data, and words remain unfinished, sketchy, and incomplete. If the brain is
a computer, it's not like a computer any rational engineer would design! It is truly
a mess in there.

Moreover, what we think of as consciousness is a more serial activity riding on
top of this parallel structure. Dennett posits,

the hypothesis that human consciousness (1) is too recent an
innovation to be hard-wired into the innate machinery, (2) is
largely a product of cultural evolution that gets imparted to
brains in early training, and (3) its successful installation is
determined by myriad microsettings in the plaSticity of the brain,
which means that its functionally important features are very
likely to be invisible to neuroanatomical scrutiny in spite of the
extreme salience of the effects.65

Consciousness is, in some sense at least, "talking" to oneself, and that reqUires the
cultural construct of language.

Certainly there would be little point in designing a computer to mimic the
human mind. It would need to have a heavy amount of fancy input, and wouldn't
even work satisfactorily without years of education and experience. Nonetheless,
is it theoretically possible to construct a computer that can pass an unrestricted
Turing Test (which Dennett believes to be a very difficult and just test) and
would such a computer have consciousness? Dennett believes the answer to both
questions is Yes.

Regardless of which mechanistic view of the brain you prefer, another chilling
implication is that the machinery determines our decisions rather than the other
way around. What's happened to free will?

The disappearance of free will in a mechanistic universe was really implied
long ago by the discovery that strict deterministic laws govern the movement

65Daniel Dennett, Consciousness Explained (Back Bay Books, 1991),219
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of every particle. Early in his book Essai Philosophique sur les Probabilites (1814)
Pierre-Simon, Marquis de Laplace (1749-1827) wrote,

Given for one instant an intelligence which could comprehend
all the forces by which nature is animated and the respective
situation of the beings who compose it - an intelligence suffi
ciently vast to submit these data to analysis - it would embrace
in the same formula the movements of the greatest bodies of the
universe and those of the lightest atom; for it, nothing would
be uncertain and the future, as the past, would be present to its
eyes.66

This concept is sometimes known as Laplace's Demon. It's hard to avoid the
implication that the motion of every atom in the universe - including those
atoms that make up the cells in our brains - became fixed at the time of the Big
Bang, and these atoms have been bouncing around in the predetermined pattern
ever since.

Of course, Laplace's Demon can't really exist. To store all the information
required to track every particle in the universe would require a computer larger
than the universe itself. The Heisenberg Uncertainty Principle tells us that we can't
know both the location and momentum of elementary particles. Mathematically
anticipating the outcome of these atomic collisions is classically known as the
"many-body problem," and even the three-body problem is enough for major
algorithmic headaches.

If the universe is truly a Turing Machine, and even if we could know the current
"complete configuration" and could have a table of all the configurations that
govern the machine, we could not predict where this universe is going without
actually "running" the "program."

Undecidability is essentially free will. Seth Lloyd notes that the halting problem,

foils not only conventional digital computers but any system
capable of performing digital logic. Since colliding atoms intrin
sically perform digital logic, their long-term future is uncomput
able ... The inscrutable nature of our choices when we exercise
free will is a close analog of the halting problem: once we set a
train of thought in motion, we do not know whether it will lead
anywhere at all. Even it if does lead somewhere, we don't know
where that somewhere is until we get there.67

66Pierre Simon, Marquis de Laplace, A Philosophical Essay on Probabilities, translated by Fredenck Wilson

Truscott and Fredenck Lincoln Emory Oohn Wiley &: Sons, 1902, Dover, 1995)

67Lloyd, Programming the Universe, 98, 36
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David Deutsch mulls over the possibilities that the brain is a "classical"
non-quantum computer or a quantum one:

It is often suggested that the brain may be a quantum computer,
and that its intuitions, consciousness and problem-solving abil
ities might depend on quantum computations. This could be so,
but I know of no evidence and no convincing argument that it
is so. My bet is that the brain, considered as a computer, is a
classical one.68

He then acknowledges that "the Turing explanation of computation seems to leave
no room, even in principle, for any future explanation in physical terms of mental
attributes such as consciousness and free will." Keep in mind, however, that in
the many-worlds interpretation of quantum physics, worlds constantly split off, so
that in this world you may choose to do one thing, while in another world, you're
really choosing another. If that isn't free will, then what is? Deutsch concludes,
"Turing's conception of computation seems less disconnected from human values,
and is no obstacle to the understanding of human attributes like free will, provided
it is understood in a multiverse context.,,69

When Stephen Wolfram began studying the complex structures that arise from
cellular automata, he tried to find ways to predict the outcomes and perhaps
make shortcuts through the generations. He could not, for "there can be no way
to predict how the system will behave except by going through almost as many
steps of computation as the evolution of the system itself ... For many systems
no systematic prediction can be done, so that there is no general way to shortcut
their process of evolution ..." The inability to make predictions in effect gives
freedom to the system to exercise free will, and Wolfram even provides a diagram
of a "cellular automaton whose behavior seems to show an analog of free wi11.,,70

It's a consolation. Even if the universe and the human brain have as their
foundations the simple rules and complex structure of a cellular automaton or
a Turing Machine, we can't predict the future based simply on those rules. The
future doesn't exist until the program runs the code.

Or, as Dr. Emmett Brown says to Marty McFly and Jennifer Parker at the
conclusion of the "Back to the Future" trilogy71, "It means your future hasn't been
written yet. No one's has. Your future is whatever you make it. So make it a good
one, both of you."

68Deutsch, The Fabric of Reality, 238.
691bid, 336, 339
7oWolfram, A New Kind of Science, 739, 741, 750
71 Screenplay by Bob Gale, based on the story and characters by Gale and Roben Zemeckis



The Long Sleep
of Diophantu5

Long after Alan Turing and Alonzo Church had proved that there can be
no general decision procedure for first-order logic, the very first decision

problem was still unresolved. This was the famous Tenth Problem listed by David
Hilbert in his address to the International Congress of Mathematicians in 1900 as
one of the challenges facing mathematicians of the twentieth century:

lO. Determination of the Solvability of a Diophantine Equation

Given a diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined by a finite
number of operations whether the equation is solvable in rational
integers. l

The algebra problems created by third-century Alexandrian mathematician
Diophantus in his Arithmetica can always be expressed as polynomials with integer
coefficients and multiple variables. Hilbert's Tenth Problem asked for a general
process to show if a particular Diophantine equation has a solution in whole
numbers.

Of course, after Godel's Incompleteness Theorem and the undecidability results
of Church and Turing, few mathematicians expected anyone to fulfill Hilbert's
wish and actually "devise a process" to determine the solvability of Diophantine
equations. Pretty much everyone expected a negative result - a proof that such a
general process was impossible.

Many mathematicians were fascinated by the Tenth Problem, and at least one
devoted almost her entire professional career to pursuing this elusive negative
proof. This was Julia Robinson.

One ofJulia Robinson's earliest memories was of arranging pebbles near a giant
saguaro cactus near her home in Arizona.

1Ben H Yandell, The Honors Class Hilbert's Problems and Their Solvers CA. K. Peters, 2002), 406
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I think that I have always had a basic liking for the natural num
bers. To me they are the one real thing. We can conceive of a
chemistry that is different from ours, or a biology, but we cannot
conceive of a different mathematics of numbers. What is proved
about numbers will be a fact in any universe.2

Julia Robinson was bornJulia Bowman in St. Louis in 1919. Her sister Constance
was two years older. When Julia was about 2, their mother died, and they were
sent to live with their grandmother near Phoenix. They were later joined by their
father with his new wife, and they moved to Point Lorna on San Diego Bay.

When Julia was 9 years old, she came down with scarlet fever, and then
rheumatic fever, and eventually missed more than two years of school. To help her
catch up, her parents hired a tutor who brought Julia through the fifth through
eighth grades in one year.

One day she told me that you could never carry the square root
of 2 to a point where the decimal began to repeat. She knew
that this fact had been proved, although she did not know how.
I didn't see how anyone could prove such a thing and I went
home and utilized my newly acquired skills at extracting square
roots to check it but finally, late in the afternoon, gave up.)

Julia entered San Diego High School in 1933, the same year that mathematicians
began fleeing G6ttingen and other German universities. Her childhood illnesses
had left her shy, quiet, and awkward, but also able to work alone with great
determination and patience.

As she progressed through the grades, eventually she became the only girl in her
class taking courses in mathematics and physics, and found herself getting the best
grades in those subjects as well. Her high school graduation present was a slide
rule, and in the fall of 1936, not yet 17 years old, she began attending San Diego
State College (now called San Diego State University) majoring in mathematics.
The tuition was $12 a semester and Julia expected she'd be a teacher. "At the time
I had no idea that such a thing as a mathematician (as opposed to a math teacher)
existed.,,4

2Constance Reid, Julia. A Life in Mathematics (Mathematical Association of Amenca, 1996),) This
quotation is from the pan of the book entitled 'The Autobiography of Julia Robinson," which was

actually wntten by Constance Reid based on intelVlews Wlth her sister The Autobiography was

prevIOusly published in the book Constance Reid, More Mathematical People (Academic Press, 1990),
262-280
3Constance Reid, Julia. A Life in Mathematics, 9
41bid,21.
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In 1937, Simon &: Schuster published the now-famous book Men ofMathematics
by mathematician Edward Temple Bell (1883-1960). Reading it, Julia got her first
insights into who mathematicians are and what they actually do. Despite its rather
fanciful interpretations of history and personalities, Men of Mathematics was a real
inspiration to Julia, as it has been for many budding mathematicians in the decades
since.

In 1939, Julia left San Diego State College for the University of California
at Berkeley, which at the time was building an impressive mathematics faculty.
During her first year, her teacher in a class in number theory was Raphael
M. Robinson, just about eight years older than Julia. "In the second semester there
were only four students - I was again the only girl - and Raphael began to ask
me to go on walks with him.... On one of our early walks, he introduced me to
Gbdel's results.,,5

Perhaps they spoke of other theorems as well, for Raphael Robinson and
Julia Bowman were married in 1941. Due to a nepotism rule, Julia could not
teach in the mathematics department at Berkeley, although she already had
a job as a teaching assistant in the statistics department. (When she applied
for that job, the personnel department asked what she did each day. She
wrote, "Monday - tried to prove theorem, Tuesday - tried to prove theorem.
Wednesday - tried to prove theorem, Thursday - tried to prove theorem,
Friday - theorem false."6)

Although Raphael and Julia Robinson wanted to raise a family,]ulia's childhood
illnesses had seriously weakened her heart. She had one miscarriage and their
doctor strongly advised against her continuing to try to have children.7

In the academic year 1946-1947, Raphael was a visiting professor at Princeton
University. He and Julia attended classes given by Alonzo Church, and heard
Kurt Godel lecture on the foundations of mathematics during the Princeton
bicentennial.

Back in Berkeley, Julia Robinson studied under famed Polish-born logician
Alfred Tarski (1902-1983), and received her Ph.D. in 1948. Even at that time her
dissertation revealed "that her main field of interest lay on the borderline between
logic and number theory."8

In 1948, Tarski got her working on a question peripherally connected to the
problem that would dominate her life as a professional mathematician: Hilbert's
Tenth Problem.

SIbid, 31,35

61bid,33

71bid,43

8Constance Reid with Raphael M Robinson, 'Julia Bowman Robinson (1919-1985)," in A Century oj
Mathematics in Amenca, Part III (Amencan Mathematical SOciety, 1989), 410
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Like most mathematicians, Julia Robinson had no illusions that the Tenth
Problem could have a solution that would have made Hilbert happy. As her first
paper on Diophantine Equations9 explained,

Since there are many classical diophantine equations with one
parameter for which no effective method is known to detennine
the solvability for an arbitrary value of the parameter, it is very
unlikely that a decision procedure can be found. For example,
no way is known to detennine the values for which the diophan
tine system,

is solvable. (This problem was first studied by the Arabs in the
Middle Ages.)

Some mathematicians trying to get a handle on Diophantine equations
approached the problem obliquely rather than head on. They defined a Dio
phantine set as the set of all solutions to a particular Diophantine equation. For
example, the set of all even numbers is actually the set of whole number values x
that are solutions to the following Diophantine equation:

x- 2y = 0

This equation has two variables, but the set is constructed from just the x values;
if x and yare whole number solutions, then x is always even.

It's also possible to define a Diophantine relation among multiple variables. For
example, suppose you want to express the relation x is less thany. The values x and
y that satisfy this condition are solutions to the following Diophantine equation:

x-y+z+l=O

Julia Robinson's paper didn't prove that certain sets and relations were Dio
phantine, but instead that certain sets and relations could be defined in tenns of
exponentiation - that is, xY , where both x and yare variables.

The introduction of exponentiation into a discussion of Diophantine equations
at first seems irrelevant. Exponentiation isn't allowed in Diophantine equations. A
Diophantine equation can contain variables raised to whole number powers, but
not a variable raised to a variable power.

Nevertheless, the paper showed that exponentiation was an important relation
ship because binomial coefficients, the factorial function, and the set of primes

9Julia Robinson, "Existential Definability in Anthmetic," Transactions of the Amencan Mathematical Society,
Vol 72 (1952), 437-449. Also published in Julia Robinson, The Collected Works ofjulia Robinson, ed

Solomon Fefennan (Amencan Mathematical Society, 1996),47-59
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could all be defined in terms of exponentiation. Was it possible that exponentia
tion was truly Diophantine because it could be defined as a Diophantine relation?
That was not clear, but Julia Robinson's paper also proved that exponentiation
could be defined in terms of any Diophantine relation that exhibited roughly
exponential growth. No such Diophantine relation was known, but it seemed to
her "very likely"l0 that one existed.

Strictly speaking, Fermat's Last Theorem (also known as Fermat's Great
Theorem) is not a Diophantine equation:

Fermat's Theorem states that the equation is not solvable in whole numbers for any
n greater than 2, which means that n is being treated as a variable. Replace n with
any whole number greater than 2 and only then does it become a Diophan
tine equation. If exponentiation turned out to be a Diophantine relation,
then Fermat's equation could actually be expressed as a normal Diophantine
equation - albeit one much more complex than its common form.

Julia Robinson's paper was presented in 1950 to the International Congress of
Mathematicians, held that year at Harvard. It was here that Julia Robinson first
met Martin Davis.

Martin Davis had been bitten by the Tenth Problem bug while an undergraduate
at City College in New York. Among the faculty in the mathematics department at
CCNY was Emil Post, who had written that the Tenth Problem just "begs for an
unsolvability proof.,,11

While a graduate student at Princeton, Davis found that he "couldn't stop myself
from thinking about Hilbert's Tenth Problem. I thought it unlikely that I would
get anywhere on such a difficult problem and tried without success to discipline
myself to stay away from it," although his Ph.D. thesis did touch on the topic.

Martin Davis had just received his Ph.D. when he attended the International
Congress, and Julia Robinson remembers Davis's reaction to her paper as rather
mystified: "I remember that he said he didn't see how my work could help to solve
Hilbert's problem, since it was just a series of examples. I said, well, I did what I
could.,,12 Davis later confessed: "It's been said that I told her that I doubted that
her approach would get very far, surely one of the more foolish statements I've
made in my life.,,13

Julia and her older sister Constance hadn't been close while growing up, but
in 1950, Constance married Neil Dan Reid, a law student at the University of San
Francisco. Now living nearby each other, the two sisters soon became friends. With

lORobinson, "Existential Definability in Anthmetic," 438.

llManin DaVIS, Foreword to Yun V. MatiyaseVlch, Hilbert's Tenth Problem (MIT Press, 1993), xiii

12Reid,Julia. A ufe in Mathematics, 61.
13DaVlS, Foreword to Hilbert's Tenth Problem, xiv
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encouragement from the Robinsons, Constance Reid wrote her first book From

Zero to Infinity (Crowell, 1955). Following a pilgrimage by the sisters to G6ttingen,
Constance Reid wrote a biography of David Hilbert (1970) that I greatly relied
on in Chapter 3 of this book. Constance Reid's later biographical subjects were
Richard Courant (976), Jerzy Neyman (982), E. T. Bell (993), as well as the
tribute to her sister, Julia: A Life in Mathematics (996).

In the summers of 1958, 1959, and 1960, Martin Davis had the opportunity
to work with Hilary Putnam (b. 1926), known more as a philosopher than a
mathematician, but skilled in both fields. In the summer of 1959, they began
combining their work with Julia Robinson's methods. Eventually Davis and
Putnam sent Julia Robinson a paper they had drafted. She improved some parts
and all three collaborated on a new paper, "The Decision Problem for Exponential
Diophantine Equations" published in 1961.14

As the title says, this paper was about exponential Diophantine equations, which
are a variation of Diophantine equations where exponentiation is allowed in several
forms: exponentiation either of one variable to the power of another, or a constant
to a variable power, or a variable to a constant power (as in normal Diophantine
equations). The second sentence of the Davis-Putnam-Robinson paper states the
result of the proof that "there is no general algorithm for deciding whether or not
an exponential Diophantine equation has a solution in positive integers."

A negative solution to Hilbert's Tenth Problem was now missing one crucial
piece, which Davis referred to as 'julia Robinson's hypothesis.,,15 This was the
existence of a Diophantine relation of roughly exponential growth, which would
then imply that exponentiation itself is a Diophantine relation, which would mean
that exponential Diophantine equations can be expressed as normal Diophantine
equations.

Throughout the 1960s, Julia Robinson was a lecturer in mathematics (and for
one semester, philosophy) at Berkeley, occasionally working on and publishing on
Hilbert's Tenth Problem. For a 1969 book Studies in Number Theory, she wrote a
40-page chapter that summed up the progress to that point, leaving open the one
major question:

Is the relation r = st diophantine? If so, then every exponen
tial diophantine equation could be replaced by an equivalent
diophantine equation in more variables. Also, every recursively
enumerable relation would be diophantine and hence Hilbert's

14Manin DaVIS, Hilary Putnam, and]uIia Robinson, 'The Decision Problem for Exponential Diophantine

Equations," Annals of Mathematics, Vol. 74, No.3 (November 1961),425-436. Also in The Collected Works
of}ulia Robinson, 77-88
lsDaVIs, Foreword to Hilbert's Tenth Problem, xiii.
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problem would be unsolvable. At present, we don't know the
answer to this question. 16

During the 1960s, Martin Davis taught at Rensselaer Polytechnic Institute and
New York University, and often had occasion to lecture about Hilbert's Tenth
Problem. If someone asked his predictions on its solvability or unsolvability,
he had a ready answer: Like a prophet from the Hebrew Bible, Davis would
pronounce, "I think that Julia Robinson's hypothesis is true, and it will be proved
by a clever young Russian.,,17

Yuri Vladimirovich Matiyasevich was born in Leningrad in 1947, and attended
high schools dedicated to mathematics and science. He went to Leningrad State
University at the age of 17, and spoke at the 1966 International Congress of
Mathematicians, held that year in Moscow. He received his Ph.D. in 1970 from the
Leningrad Department of the Steklov Institute of Mathematics, known as LOMI.

Matiyasevich had first heard about Hilbert's Tenth Problem in 1965 when he was
a sophomore at Leningrad State University. His advisor Sergei Maslov (1939-1981)
told him to 'Try to prove the algorithmic unsolvability of Diophantine equations.
This problem is known as Hilbert's tenth problem, but that does not matter
to you." He also recommended a course of action: "Unsolvability is nowadays
usually proved by reducing a problem already known to be unsolvable to the
problem whose unsolvability one needs to establish." What Maslov could not
recommend was any literature on the subject, only that "there are some papers by
American mathematicians about Hilbert's tenth problem, but you need not study
them.... So far the Americans have not succeeded, so their approach is most likely
inadequate.,,18

After pursuing some unpromising approaches to the Tenth Problem for a few
years, Matiyasevich's obsession became rather well known around the Leningrad
State University campus. One professor would taunt him, "Have you proved
the unsolvability of Hilbert's tenth problem? Not yet? But then you will not be
able to graduate from the university!,,19 Matiyasevich finally decided to read the
Americans' papers, including the crucial Davis-Putnum-Robinson paper of 1961.

Shortly after New Year's Day in 1970, Matiyasevich found a Diophantine relation
involving Fibonacci numbers that satisfied Julia Robinson's hypothesis. He was
22 years old. He gave his first public lecture on the unsolvability of Hilbert's
Tenth Problem toward the end of January, and word traveled around the world.

16Julia Robinson, "Diophantine DeciSion Problems," in W J LeVeque, ed , Studies in Number Theory
(Mathematical Association of Amenca. 1969). 107 Also in Collected Works ofJulia Robinson. 176.
17DaVls, Foreword to Hilbert's Tenth Problem, xiii

18Yun MatiyaseVlch. "My Collaboration wnhJulia Robinson," The Mathemattcallntelligencer, Vo\.l4, No 4

(1992),38-45 Repnnted in Reid,Julia A Life in Mathematics, 99-116
19Ibid
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Julia Robinson wrote to him, "If you really are 22, I am especially pleased to think
that when I first made the conjecture you were a baby and I just had to wait for
you to grow Up,,,20

Julia and Raphael Robinson went to Leningrad in 1971 to meet Yuri Matiyasevich
and his wife. In the next several years, they collaborated by mail on a few papers
on Diophantine equations.

Martin Davis wrote a popular article on the subject for Scientific American21 ,

and a more technical article22 that became Appendix 2 when his classic book
Computability and Unsolvability was republished by Dover Publications in 1982.
In May 1974, the American Mathematical Society held a symposium in pure
mathematics at Northern Illinois University focusing on the Hilbert problems.
Davis, Matiyasevich, and Robinson presented a paper, "Diophantine Equations:
Positive Aspects of a Negative Solution,,,23 in which they explored some promising
outcomes of the proof.

With her prominent role in the resolution of Hilbert's Tenth Problem, Julia
Robinson was now famous. In 1976, she was finally made a full professor at
Berkeley and became the first female mathematician elected to the National
Academy of Sciences. In 1982, she became the first female president of the
American Mathematical Society, and the Ladies Home Journal included her in a list
of the hundred most outstanding women in America.24

In 1983, Julia Robinson was awarded a MacArthur Fellowship (popularly
known as the "genius grant") and donated part of the money anonymously to
make possible the publication of the Collected Works of Kurt G6del by Oxford
University Press - books that are essential to anyone doing research in the field
of mathematical logic and computability.

In 1984, Julia Robinson was diagnosed with leukemia, and she died the
follOwing year at the age of 65. Her husband Raphael Robinson died in 1995 at
the age of 83.

Matiyasevich recently turned 60 years old, and Martin Davis will tum 80 years
old in the year this book is published. Both are still very active in mathematics.

In 1993, Yuri Matiyasevich wrote a book entitled Hilbert's Tenth Problem that
was quickly translated into English and published by MIT Press. Although the

20Reid, Julia: A Ufe in Mathematics, 73.
21 Martin Davis and Reuben Hersh, "Hilbert's 10th Problem," Scientific American, Vol. 229, No.5 (Nov.
1973),84-91.
22Manin Davis, "Hilbert's Tenth Problem is Unsolvable," The American Mathematical Monthly, Vol. 80,
No.3 (Mar. 1973),233-269.
23Martin DaVIS, Yuri MatijaseVlc, and Julia Robinson, "Hilbert's Tenth Problem. Diophantine Equations:
Positive Aspects of a Negative Solution," in Felix E. Browder, ed., Mathematical Developments Arisingfrom
Hilbert Problems (American Mathematical Society, 1976), Vol. 2,323-378. Also in Collected Works ofJuba
Robinson, 269-324
24Reid,Julia: A ufe in Mathematics, 81.
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proof that Hilbert's Tenth Problem is unsolvable occupies the book's first hundred
pages, Matiyasevich reworked the proof to be entirely self-contained and require
almost no prior knowledge of the topics involved.

Turing Machines enter the proof in Chapter 5 of Hilbert's Tenth Problem. As a
child of the computer age, Matiyasevich gives his machines names reminiscent of
keywords in modern programming languages, and then illustrates their linkages
with program-like statements. He proves that 'Turing machines are incapable
of deciding whether or not the equations belonging to one particular family
of Diophantine equations have solutions, to say nothing of arbitrary Diophantine
equations.,,25

The ancient riddle tells us that Diophantus was a boy for the sixth part of his
life, acquired a beard after another twelfth, married after another seventh, bore a
son five years later, and then saw his son die after reaching half the measure of his
father's years. He then spent the last four years of his life assuaging his grief by
writing a book of algebra problems.

Seventeen centuries later, Alan Turing died at very nearly the same age as
Diophantus's son. He had built a tool of the imagination that continues to allow
us to explore the capabilities and limitations of the human mind, and its logical
and mathematical pursuits.

Both Diophantus and Turing left behind mysteries. Like human motivations,
some Diophantine equations have solutions, some do not, and for many others,
we'll just never know.

lSMatiyaseVlch, Hilbert's Tenth Problem, 93
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