
Revisiting SSL/TLS implementations
31c3

Sebastian Schinzel

Email: schinzel (a) fh-muenster (.) de
Web: https://www.its.fh-muenster.de/
Twitter: @seecurity

(c) Prof. Sebastian Schinzel 1

Background

• Sebastian: cs Professor for information security
at Münster University of Applied Sciences

• Former talks at CCC:
– 28c3: Time is on my side

– 29c3: Time is not on your side

• This Talk is based on academic paper:

(c) Prof. Sebastian Schinzel 212/28/2014

“Revisiting SSL/TLS Implementations: New Bleichenbacher Side Channels and Attacks”
Meyer, Somorovsky, Weiss, Schwenk, Schinzel, Tews.
23rd Usenix Security Symposium 2014.

Background

Lots and lots of SSL/TLS bugs in the last few years
• Recently: Heartbleed, goto fail, POODLE, CRIME, BEAST,

BREACH, Lucky 13, RC4 bias, Triple Handshake attack, ...

• >10 years ago: Bleichenbacher attack, Brumley-Boneh attack, …

• Some were protocol-level bugs, some were implementation-
level bugs
 Designing crypto protocols is hard
 Implementing crypto protocols is hard

• Some protocol-level decisions lead to fragile implementations

12/28/2014 (c) Prof. Sebastian Schinzel 3

Revisting SSL/TLS implementations

12/28/2014 (c) Prof. Sebastian Schinzel 4

• Hybrid crypto in TLS:
– symmetric encryption for actual TLS

payload
– asymmetric encryption for

exchanging the symmetric
“MasterSecret”

• Client generates random
PreMasterSecret (PMS)

• Client encrypts PMS with server’s
public key and sends it so server

• MasterSecret is derived from PMS

5

Attacker can decrypt
PreMasterSecret using an
adaptive chosen ciphertext attack
1. Attacker records encrypted

TLS handshake
2. Attacker decrypts

PreMasterSecret of that
handshake by sending many
modified cipher texts to the
server and watching the
server’s behavior

Attacker Scenario

6

Our attack works against
flawed implementations
of RSA-based TLS cipher
suites

no ECC suites

no Diffie-Hellman suites

RFC4162 TLS_RSA_WITH_SEED_CBC_SHA

RFC4346 TLS_RSA_EXPORT_WITH_RC4_40_MD5

RFC4346 TLS_RSA_EXPORT_WITH_DES40_CBC_SHA

RFC4346 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

RFC5246 TLS_RSA_WITH_RC4_128_MD5

RFC5246 TLS_RSA_WITH_RC4_128_SHA

RFC5246 TLS_RSA_WITH_3DES_EDE_CBC_SHA

RFC5246 TLS_RSA_WITH_AES_128_CBC_SHA

RFC5246 TLS_RSA_WITH_AES_128_CBC_SHA256

RFC5246 TLS_RSA_WITH_AES_256_CBC_SHA

RFC5246 TLS_RSA_WITH_AES_256_CBC_SHA256

RFC5288 TLS_RSA_WITH_AES_128_GCM_SHA256

RFC5288 TLS_RSA_WITH_AES_256_GCM_SHA384

RFC5469 TLS_RSA_WITH_DES_CBC_SHA

RFC5469 TLS_RSA_WITH_IDEA_CBC_SHA

RFC5932 TLS_RSA_WITH_CAMELLIA_128_CBC_SHA

RFC5932 TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256

RFC5932 TLS_RSA_WITH_CAMELLIA_256_CBC_SHA

RFC5932 TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256

RFC6209 TLS_RSA_WITH_ARIA_128_CBC_SHA256

RFC6209 TLS_RSA_WITH_ARIA_128_GCM_SHA256

RFC6209 TLS_RSA_WITH_ARIA_256_CBC_SHA384

RFC6209 TLS_RSA_WITH_ARIA_256_GCM_SHA384

RFC6367 TLS_RSA_WITH_CAMELLIA_128_GCM_SHA256

RFC6367 TLS_RSA_WITH_CAMELLIA_256_GCM_SHA384

RFC6655 TLS_RSA_WITH_AES_128_CCM

RFC6655 TLS_RSA_WITH_AES_128_CCM_8

RFC6655 TLS_RSA_WITH_AES_256_CCM

RFC6655 TLS_RSA_WITH_AES_256_CCM_8

Revisiting SSL/TLS implementations

The RSA encryption algorithm

• Encryption: 𝑐 = 𝑚𝑒 𝑚𝑜𝑑 𝑛

• Decryption: 𝑚 = 𝑐𝑑 𝑚𝑜𝑑 𝑛

• RSA is malleable: changes in ciphertexts have
predictable effects on cleartext

𝑐 = 𝑐0 𝑠
𝑒 𝑚𝑜𝑑 𝑛 = 𝑚0 𝑠

𝑒 𝑚𝑜𝑑 𝑛

12/28/2014 (c) Prof. Sebastian Schinzel 7

Revisiting SSL/TLS implementations

• PMS uses padding defined by PKCS#1 v1.5

• Example for a 2048 bit public key:

12/28/2014 (c) Prof. Sebastian Schinzel 8

Revisiting SSL/TLS implementations

Bleichenbacher’s attack enables adversary (in possession
of an RSA ciphertext 𝑐0) to recover the plaintext 𝑚0

• Only prerequisite for this attack is the ability to access an
oracle 𝑂
1. that decrypts a ciphertext 𝑐
2. and responds with 1 or 0, depending on whether

a) the decrypted message m starts with 0𝑥00 0𝑥02
b) or not

• If the oracle answers with 1, the adversary knows that
2𝐵 ≤ 𝑚 ≤ 3𝐵 − 1 with 𝐵 = 28(𝑙−2)

12/28/2014 (c) Prof. Sebastian Schinzel 9

Revisiting SSL/TLS implementations

“Strength” of 𝑂

• Bleichenbacher’s attack requires ciphertexts that
decrypt to plaintexts beginning with 0𝑥00 0𝑥02

• But: PKCS#1 v1.5 performs several more checks
besides the initial two bytes

• Fewer checks results in
stronger 𝑂

12/28/2014 © Sebastian Schinzel 10

Revisiting SSL/TLS implementations

Countermeasures for Bleichenbacher’s attack

• Idea:
– “Let’s stick to PKCS#1 v1.5 padding for compatibility

reasons!”

– “But: Make processing of valid records and invalid records
indistinguishable”

• Unify all error conditions and prevent attacker
from creating a Bleichenbacher oracle

12/28/2014 (c) Prof. Sebastian Schinzel 11

Revisiting SSL/TLS implementations

12/28/2014 (c) Prof. Sebastian Schinzel 12

First channel:
Distinguishable error message in Java Secure Socket Extension (JSSE)
• IF: cleartext starts with 0x00 02 AND cleartext contains a 0x00 byte

preceded with non-0x00 bytes
• THEN JSSE responds with INTERNAL_ERROR alert
• 𝑂 Strength:

– ~0,2% for 1024 bit keys
– ~36% for 2048 bit keys
– ~74% for 4096 bit keys

• Attack performance:
– Hundreds of millions for 1024 bit keys
– 176.797 requests for 2048 bit keys (12 hours)
– 73.710 requests for 4096 bit keys

(6 hours)

Related work: Bleichenbacher attack against XML Encryption

• Bleichenbacher’s original paper from
1998 exploited explicit TLS error
handling, but he suggested that timing
channels might be possible

• First timing-based Bleichenbacher attack
was against XML Encryption in 2012

12/28/2014 (c) Prof. Sebastian Schinzel 13

Tibor Jager, Sebastian Schinzel, Juraj Somorovsky

Bleichenbacher's Attack Strikes again: Breaking PKCS#1 v1.5 in XML Encryption

17th European Symposium on Research in Computer Security (ESORICS 2012)

http://www.nds.rub.de/research/publications/breaking-xml-encryption-pkcs15/

http://www.nds.rub.de/research/publications/breaking-xml-encryption-pkcs15/

14

• Decrypting XML Encryption messages
1. Decrypt session key m = decrsa(ckey)

2. Return error if m does not comply with PKCS#1, else:

3. Decrypt cdata (results in XML subtree)

4. Copy subtree in XML doc

5. Parse XML doc

6. Return error if XML doc is invalid

Related work: Bleichenbacher attack against XML Encryption

→ Determine PKCS#1 compliance through response time

Related work: Bleichenbacher attack against XML Encryption

valid

invalid
valid

invalid

Results:

Bleichenbacher

timing oracle

398,123 server requests

Localhost:

 less than 200 minutes

Internet:

 less than 1 week

Revisiting SSL/TLS implementations

Countermeasures for Bleichenbacher’s attack

• Idea: Make processing of valid records and invalid records indistinguishable

• How does the current TLS version (1.2) deal with Bleichenbacher’s attack?
RFC5246:

12/28/2014 (c) Prof. Sebastian Schinzel 16

1. Generate a string R of 48 random bytes

2. Decrypt the message to recover the plaintext M

3. If the PKCS#1 padding is not correct:

pre_master_secret = R

else If [...]

[...]

else:

premaster secret = M

Revisiting SSL/TLS implementations

Countermeasures for Bleichenbacher’s attack

• Generate random key 𝑃𝑀𝑆𝑅. In case of PKCS#1 v1.5-
invalid 𝑐, proceed with 𝑃𝑀𝑆𝑅 in protocol

• 𝑃𝑀𝑆𝑅 is always generated even if 𝑐 is
PKCS#1 v1.5-compliant

• provokes error condition
in later stage in protocol

12/28/2014 (c) Prof. Sebastian Schinzel 17

Revisiting SSL/TLS implementations

Countermeasures for Bleichenbacher’s attack

• What about TLS 1.0 and TLS 1.1?

12/28/2014 (c) Prof. Sebastian Schinzel 18

The best way to avoid vulnerability to this attack is to treat

incorrectly formatted messages in a manner indistinguishable from

correctly formatted RSA blocks. Thus, when it receives an

incorrectly formatted RSA block, a server should generate

a random 48-byte value and proceed using it as the premaster

secret. Thus, the server will act identically whether the

received RSA block is correctly encoded or not.

Revisiting SSL/TLS implementations

Countermeasures for Bleichenbacher’s attack

• TLS 1.0 and TLS 1.1 propose a slightly different schema:

• In case of PKCS#1 v1.5-invalid
𝑐 generate random 𝑃𝑀𝑆𝑅 and
proceed in protocol

• 𝑃𝑀𝑆𝑅 is only then generated if and
only if 𝑐 is not PKCS#1 v1.5-compliant

12/28/2014 (c) Prof. Sebastian Schinzel 19

20

Let’s do some timing measurements!

But, how can I perform timing attacks?

 See my 28c3 talk “Time is on my side”

How can I (not) prevent timing leaks?

 See my 29c3 talk “Time is not on your side”

Revisiting SSL/TLS implementations

Targets

Network Stack

Fingerprinting
Engine

Attack Engine

Attack
Report

Fingerprinting
Report

Comprehensive Report

Target list

Report

SSL/TLS Stack

Bleichenbacher
Module

Stack Identification
Module

21

T.I.M.E. TLS testing framework

• Credit to Chris Meyer

• Allows fine-grained
construction of TLS test cases

• Very nice for fuzzing

• buuut: written in Java!

Revisiting SSL/TLS implementations

22

• No memory-managed programming languages. Use C, Assembler, etc.
• Choose your part of the network wisely

– no wireless; as near as possible to target; high quality routing hardware

• Disable power management
– Intel SpeedStep (use “cpufreq-utils“ on Linux to fix frequency)
– CPU C states (use “idle=poll” kernel boot parameter on Linux)

• Use old and cheap network interfaces (e.g. RTL 8139)
– No interrupt coalescing

• Stop all tasks and daemons on your local machine, no GUI
• Skip the first few hundred measurements (cache warm-up)

Timing measurement setup in a nutshell

23

Starting & end point

for measurements

1. send n-1 bytes of request

2. ⌛ start timer

3. send last byte of request

4. wait for receival of nth byte of response

5. ⌛ stop timer

R
e
q
u

e
s
t

R
e
s
p
o

n
s
e

T T

Sender Receiver

p
e

r-
p
a

c
k
e
t

ti
m

in
g
s

Timing measurement setup in a nutshell

Revisiting SSL/TLS implementations

Measurement setup

12/28/2014 (c) Prof. Sebastian Schinzel 24

Timing measurements
with a patched version of
the TLS implementation
MatrixSSL

Revisiting SSL/TLS implementations

Patched MatrixSSL version that performs timing
measurements (1/3)

• MatrixSSL’s codebase
is relatively clean

• No complex API
wrappers

• Just send() and recv()

12/28/2014 (c) Prof. Sebastian Schinzel 25

$./client base64(pms)

=== INITIAL CLIENT SESSION ===

We're sending info

Got state: 0

We were receiving info after 653680 ticks

Validated cert for: Sample Matrix

RSA-1024 Certificate.

PMS is now encrypted

We're sending info

Got state: 0

We were receiving info after 3088811 ticks

FAIL: No HTTP Response

Revisiting SSL/TLS implementations

Patched MatrixSSL version that performs timing
measurements (2/3)

• Sending data
and setting the
“start” timer

12/28/2014 (c) Prof. Sebastian Schinzel 26

Revisiting SSL/TLS implementations

Patched MatrixSSL version that performs timing
measurements (3/3)

• Receiving response
and setting the
“end” timer

• Roundtrip:
t=end-start

12/28/2014 (c) Prof. Sebastian Schinzel 27

Revisiting SSL/TLS implementations

Second channel: Timing side channel in OpenSSL

• Let‘s look how OpenSSL treats Bleichenbacher‘s attack

12/28/2014 (c) Prof. Sebastian Schinzel 28

Source code of OpenSSL 1.0.1i

12/28/2014 (c) Prof. Sebastian Schinzel 29

s3_srvr.c:2216

s3_srvr.c:2251

Revisiting SSL/TLS implementations

Second channel: Timing side channel in OpenSSL

• Generates random PMS if and only if cleartext was not
PKCS#1-compliant

• ~1,5 microseconds delta

• 𝑂 Strength: very weak:
2,7 ∗ 10−8

• Attack performance (estim.):
5 ∗ 1012 requests

12/28/2014 (c) Prof. Sebastian Schinzel 30

Revisiting SSL/TLS implementations

Third channel:
Timing side
channel in Java
Secure Socket
Extension
(JSSE)

• Java’s TLS
impl.

12/28/2014 (c) Prof. Sebastian Schinzel 31

Revisiting SSL/TLS implementations

Third channel: Timing side channel in JSSE

• JSSE TLS implementation is textbook object-oriented,
e.g. with exception handling

• 𝑂 Strength:
~60% (very strong)

• Attack performance:
18.600 requests (19,5 hours)

12/28/2014 (c) Prof. Sebastian Schinzel 32

Revisiting SSL/TLS implementations

Fourth channel: Timing side channel in Cavium hardware
TLS accelerators

• Processing of expensive crypto operations is performed
on separate hardware

• Comes as PCI card

• Often used by big appliances that need to handle
thousands of parallel TLS handshakes and connections

12/28/2014 (c) Prof. Sebastian Schinzel 33

Revisiting SSL/TLS implementations

Fourth channel: Timing side channel in Cavium hardware TLS
accelerators
• e.g. used in F5 BIG-IP,

IBM Datapower
• Doesn’t verify first byte,

only second byte (0x?? 02)
• Needed extension to

Bleichenbacher’s algorithm
• Attack performance:

4.000.000 queries (41 hours)

12/28/2014 (c) Prof. Sebastian Schinzel 34

Revisiting SSL/TLS implementations

Summary:
• Timing attacks against single digit microsecond delays in

TCP connections are practical in local networks
• Bad designs in cryptographic protocols may taunt you for

decades to come
– MAC-then-encrypt *
– RSA + PKCS#1 v1.5
– …

• Implementing TLS is a minefield

12/28/2014 (c) Prof. Sebastian Schinzel 35

* http://tools.ietf.org/html/draft-gutmann-tls-encrypt-then-mac-04

See you around at 31c3!

(c) Prof. Sebastian Schinzel 3612/28/2014

