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Background

• Sebastian: cs Professor for information security
at Münster University of Applied Sciences

• Former talks at CCC:
– 28c3: Time is on my side

– 29c3: Time is not on your side

• This Talk is based on academic paper:

(c) Prof. Sebastian Schinzel 212/28/2014

“Revisiting SSL/TLS Implementations: New Bleichenbacher Side Channels and Attacks”
Meyer, Somorovsky, Weiss, Schwenk, Schinzel, Tews.
23rd Usenix Security Symposium 2014.



Background

Lots and lots of SSL/TLS bugs in the last few years
• Recently: Heartbleed, goto fail, POODLE, CRIME, BEAST, 

BREACH, Lucky 13, RC4 bias, Triple Handshake attack, ...

• >10 years ago: Bleichenbacher attack, Brumley-Boneh attack, …

• Some were protocol-level bugs, some were implementation-
level bugs
 Designing crypto protocols is hard
 Implementing crypto protocols is hard

• Some protocol-level decisions lead to fragile implementations
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Revisting SSL/TLS implementations
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• Hybrid crypto in TLS:
– symmetric encryption for actual TLS 

payload
– asymmetric encryption for 

exchanging the symmetric 
“MasterSecret”

• Client generates random 
PreMasterSecret (PMS)

• Client encrypts PMS with server’s 
public key and sends it so server

• MasterSecret is derived from PMS
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Attacker can decrypt 
PreMasterSecret using an 
adaptive chosen ciphertext attack
1. Attacker records encrypted 

TLS handshake
2. Attacker decrypts 

PreMasterSecret of that 
handshake by sending many 
modified cipher texts to the 
server and watching the 
server’s behavior

Attacker Scenario
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Our attack works against 
flawed implementations 
of RSA-based TLS cipher 
suites

no ECC suites

no Diffie-Hellman suites

RFC4162   TLS_RSA_WITH_SEED_CBC_SHA

RFC4346   TLS_RSA_EXPORT_WITH_RC4_40_MD5

RFC4346 TLS_RSA_EXPORT_WITH_DES40_CBC_SHA

RFC4346 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

RFC5246   TLS_RSA_WITH_RC4_128_MD5

RFC5246   TLS_RSA_WITH_RC4_128_SHA

RFC5246   TLS_RSA_WITH_3DES_EDE_CBC_SHA

RFC5246   TLS_RSA_WITH_AES_128_CBC_SHA

RFC5246   TLS_RSA_WITH_AES_128_CBC_SHA256

RFC5246   TLS_RSA_WITH_AES_256_CBC_SHA

RFC5246   TLS_RSA_WITH_AES_256_CBC_SHA256

RFC5288   TLS_RSA_WITH_AES_128_GCM_SHA256

RFC5288   TLS_RSA_WITH_AES_256_GCM_SHA384

RFC5469 TLS_RSA_WITH_DES_CBC_SHA

RFC5469   TLS_RSA_WITH_IDEA_CBC_SHA

RFC5932   TLS_RSA_WITH_CAMELLIA_128_CBC_SHA

RFC5932   TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256

RFC5932   TLS_RSA_WITH_CAMELLIA_256_CBC_SHA

RFC5932   TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256

RFC6209 TLS_RSA_WITH_ARIA_128_CBC_SHA256

RFC6209   TLS_RSA_WITH_ARIA_128_GCM_SHA256

RFC6209   TLS_RSA_WITH_ARIA_256_CBC_SHA384

RFC6209 TLS_RSA_WITH_ARIA_256_GCM_SHA384

RFC6367   TLS_RSA_WITH_CAMELLIA_128_GCM_SHA256

RFC6367   TLS_RSA_WITH_CAMELLIA_256_GCM_SHA384

RFC6655   TLS_RSA_WITH_AES_128_CCM

RFC6655   TLS_RSA_WITH_AES_128_CCM_8

RFC6655 TLS_RSA_WITH_AES_256_CCM

RFC6655   TLS_RSA_WITH_AES_256_CCM_8
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The RSA encryption algorithm

• Encryption: 𝑐 = 𝑚𝑒 𝑚𝑜𝑑 𝑛

• Decryption: 𝑚 = 𝑐𝑑 𝑚𝑜𝑑 𝑛

• RSA is malleable: changes in ciphertexts have 
predictable effects on cleartext

𝑐 = 𝑐0 𝑠
𝑒 𝑚𝑜𝑑 𝑛 = 𝑚0 𝑠

𝑒 𝑚𝑜𝑑 𝑛
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• PMS uses padding defined by PKCS#1 v1.5

• Example for a 2048 bit public key:
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Bleichenbacher’s attack enables adversary (in possession 
of an RSA ciphertext 𝑐0) to recover the plaintext 𝑚0

• Only prerequisite for this attack is the ability to access an 
oracle 𝑂
1. that decrypts a ciphertext 𝑐
2. and responds with 1 or 0, depending on whether 

a) the decrypted message m starts with 0𝑥00 0𝑥02
b) or not

• If the oracle answers with 1, the adversary knows that 
2𝐵 ≤ 𝑚 ≤ 3𝐵 − 1 with 𝐵 = 28(𝑙−2)
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“Strength” of 𝑂

• Bleichenbacher’s attack requires ciphertexts that 
decrypt to plaintexts beginning with 0𝑥00 0𝑥02

• But: PKCS#1 v1.5 performs several more checks 
besides the initial two bytes

•  Fewer checks results in 
stronger 𝑂
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Countermeasures for Bleichenbacher’s attack

• Idea:
– “Let’s stick to PKCS#1 v1.5 padding for compatibility 

reasons!”

– “But: Make processing of valid records and invalid records 
indistinguishable”

•  Unify all error conditions and prevent attacker 
from creating a Bleichenbacher oracle
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First channel:
Distinguishable error message in Java Secure Socket Extension (JSSE)
• IF: cleartext starts with 0x00 02 AND cleartext contains a 0x00 byte

preceded with non-0x00 bytes
• THEN JSSE responds with INTERNAL_ERROR alert
• 𝑂 Strength:

– ~0,2% for 1024 bit keys
– ~36% for 2048 bit keys
– ~74% for 4096 bit keys

• Attack performance:
– Hundreds of millions for 1024 bit keys
– 176.797 requests for 2048 bit keys (12 hours)
– 73.710 requests for 4096 bit keys

(6 hours)



Related work: Bleichenbacher attack against XML Encryption

• Bleichenbacher’s original paper from 
1998 exploited explicit TLS error 
handling, but he suggested that timing 
channels might be possible

• First timing-based Bleichenbacher attack 
was against XML Encryption in 2012
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Tibor Jager, Sebastian Schinzel, Juraj Somorovsky

Bleichenbacher's Attack Strikes again: Breaking PKCS#1 v1.5 in XML Encryption

17th European Symposium on Research in Computer Security (ESORICS 2012)

http://www.nds.rub.de/research/publications/breaking-xml-encryption-pkcs15/

http://www.nds.rub.de/research/publications/breaking-xml-encryption-pkcs15/
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• Decrypting XML Encryption messages
1. Decrypt session key m = decrsa( ckey )

2. Return error if m does not comply with PKCS#1, else: 

3. Decrypt cdata (results in XML subtree)

4. Copy subtree in XML doc

5. Parse XML doc

6. Return error if XML doc is invalid 

Related work: Bleichenbacher attack against XML Encryption

→ Determine PKCS#1 compliance through response time



Related work: Bleichenbacher attack against XML Encryption

valid

invalid
valid

invalid

Results: 

Bleichenbacher

timing oracle

398,123 server requests

Localhost:

 less than 200 minutes

Internet:

 less than 1 week
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Countermeasures for Bleichenbacher’s attack

• Idea: Make processing of valid records and invalid records indistinguishable

• How does the current TLS version (1.2) deal with Bleichenbacher’s attack? 
RFC5246:
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1. Generate a string R of 48 random bytes

2. Decrypt the message to recover the plaintext M

3. If the PKCS#1 padding is not correct:

pre_master_secret = R

else If [...]

[...]

else:

premaster secret = M



Revisiting SSL/TLS implementations

Countermeasures for Bleichenbacher’s attack

• Generate random key 𝑃𝑀𝑆𝑅. In case of PKCS#1 v1.5-
invalid 𝑐, proceed with 𝑃𝑀𝑆𝑅 in protocol

• 𝑃𝑀𝑆𝑅 is always generated even if 𝑐 is
PKCS#1 v1.5-compliant

• provokes error condition
in later stage in protocol
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Countermeasures for Bleichenbacher’s attack

• What about TLS 1.0 and TLS 1.1?
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The best way to avoid vulnerability to this attack is to treat

incorrectly formatted messages in a manner indistinguishable from

correctly formatted RSA blocks. Thus, when it receives an

incorrectly formatted RSA block, a server should generate

a random 48-byte value and proceed using it as the premaster

secret. Thus, the server will act identically whether the

received RSA block is correctly encoded or not.



Revisiting SSL/TLS implementations

Countermeasures for Bleichenbacher’s attack

• TLS 1.0 and TLS 1.1 propose a slightly different schema:

• In case of PKCS#1 v1.5-invalid
𝑐 generate random 𝑃𝑀𝑆𝑅 and
proceed in protocol

• 𝑃𝑀𝑆𝑅 is only then generated if and
only if 𝑐 is not PKCS#1 v1.5-compliant
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Let’s do some timing measurements!

But, how can I perform timing attacks?

 See my 28c3 talk “Time is on my side”

How can I (not) prevent timing leaks?

 See my 29c3 talk “Time is not on your side”

Revisiting SSL/TLS implementations



Targets

Network Stack

Fingerprinting
Engine

Attack Engine

Attack
Report

Fingerprinting
Report

Comprehensive Report

Target list

Report

SSL/TLS Stack

Bleichenbacher
Module 

Stack Identification
Module 
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T.I.M.E. TLS testing framework

• Credit to Chris Meyer

• Allows fine-grained 
construction of TLS test cases

• Very nice for fuzzing

• buuut: written in Java!

Revisiting SSL/TLS implementations
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• No memory-managed programming languages. Use C, Assembler, etc.
• Choose your part of the network wisely

– no wireless; as near as possible to target; high quality routing hardware

• Disable power management
– Intel SpeedStep (use “cpufreq-utils“ on Linux to fix frequency)
– CPU C states (use “idle=poll” kernel boot parameter on Linux)

• Use old and cheap network interfaces (e.g. RTL 8139)
–  No interrupt coalescing

• Stop all tasks and daemons on your local machine, no GUI
• Skip the first few hundred measurements (cache warm-up)

Timing measurement setup in a nutshell
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Starting & end point

for measurements

1. send n-1 bytes of request

2. ⌛ start timer

3. send last byte of request

4. wait for receival of nth byte of response

5. ⌛ stop timer
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Timing measurement setup in a nutshell
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Measurement setup

12/28/2014 (c) Prof. Sebastian Schinzel 24

Timing measurements 
with a patched version of
the TLS implementation
MatrixSSL
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Patched MatrixSSL version that performs timing 
measurements (1/3)

• MatrixSSL’s codebase
is relatively clean

• No complex API
wrappers

• Just send() and recv()
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$ ./client base64(pms)

=== INITIAL CLIENT SESSION ===

We're sending info

Got state: 0

We were receiving info after 653680 ticks

Validated cert for: Sample Matrix 

RSA-1024 Certificate.

PMS is now encrypted

We're sending info

Got state: 0

We were receiving info after 3088811 ticks

FAIL: No HTTP Response
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Patched MatrixSSL version that performs timing 
measurements (2/3)

• Sending data
and setting the
“start” timer
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Patched MatrixSSL version that performs timing 
measurements (3/3)

• Receiving response
and setting the
“end” timer

• Roundtrip:
t=end-start
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Second channel: Timing side channel in OpenSSL

• Let‘s look how OpenSSL treats Bleichenbacher‘s attack
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Source code of OpenSSL 1.0.1i
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s3_srvr.c:2216

s3_srvr.c:2251
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Second channel: Timing side channel in OpenSSL

• Generates random PMS if and only if cleartext was not 
PKCS#1-compliant 

• ~1,5 microseconds delta

• 𝑂 Strength: very weak: 
2,7 ∗ 10−8

• Attack performance (estim.): 
5 ∗ 1012 requests
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Third channel: 
Timing side 
channel in Java 
Secure Socket 
Extension 
(JSSE)

• Java’s TLS 
impl.
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Third channel: Timing side channel in JSSE

• JSSE TLS implementation is textbook object-oriented, 
e.g. with exception handling

• 𝑂 Strength:
~60% (very strong)

• Attack performance:
18.600 requests (19,5 hours)
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Fourth channel: Timing side channel in Cavium hardware 
TLS accelerators

• Processing of expensive crypto operations is performed 
on separate hardware

• Comes as PCI card

• Often used by big appliances that need to handle 
thousands of parallel TLS handshakes and connections
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Fourth channel: Timing side channel in Cavium hardware TLS 
accelerators
• e.g. used in F5 BIG-IP,

IBM Datapower
• Doesn’t verify first byte,

only second byte (0x?? 02)
• Needed extension to

Bleichenbacher’s algorithm
• Attack performance:

4.000.000 queries (41 hours)
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Summary:
• Timing attacks against single digit microsecond delays in 

TCP connections are practical in local networks
• Bad designs in cryptographic protocols may taunt you for 

decades to come
– MAC-then-encrypt *
– RSA + PKCS#1 v1.5
– …

• Implementing TLS is a minefield 
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* http://tools.ietf.org/html/draft-gutmann-tls-encrypt-then-mac-04



See you around at 31c3!
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