GreedyBTS – Hacking Adventures in GSM
GreedyBTS – Hacking Adventures in GSM

Agenda

• Who am I?

• Technical overview of 2.5G environments

• Cellular environment diagnostics and tools

• Security vulnerabilities in GSM

• Creating an open-source 2.5G simulation environment for analysis.

• Implementations of GSM attacks

• Demo
2.5G Technical Overview

Introduction to GSM

• June 2008 – **2.9 BILLION** subscribers use GSM.

• Replaced Analogue “Total Access Communication System” in the UK. (TACS)

• GSM is a European Wide Standard started in 1982 by Groupe Spécial Mobile.

• Digital standard with new Security attempting to address losses due to Fraud.

• GPRS created to work with GSM and address data needs, 2.5G.

• UMTS and LTE, 3\(^\text{rd}\) and 4\(^\text{th}\) generation networks have arrived – 2.5G still here.

• How vulnerable are 2.5G networks & GSM communications today?
2.5G Technical Overview
GSM Architecture

- Mobile Station is your phone.
- BSS provides the air interface between network & phone.
- Network Switching subsystem provides authentication, identity, billing and more.
- The architecture shown is a typical 2G GSM environment.
2.5G Technical Overview
Mobile Station (MS).

- International mobile station equipment identity (IMEI)
 - Contains uniquely identifiable information on device.

- SIM card contains subscriber information.
- International mobile subscriber identity (IMSI).
- Mobile Subscriber Identification Number – MSIN – (max 10).

- SIM card also holds encryption keys.

- Your phone contains a baseband processor and RTOS used by GSM.
2.5G Technical Overview

What is a SIM card?

- Subscriber Identity Module.
- Stores the IMSI and Ki key.
- Ki key needed for network authentication & Air encryption.
- Programmable card can be used which has a writeable Ki key.
- GSM test cards with a writeable Ki key can be bought online.
2.5G Technical Overview
ISO7816 & SIM Toolkit

- ISO7816 defines a physical smart card standard.
- SIM Application Toolkit (STK) is implemented by GSM smart cards.
- GSM application provides authentication APDU's.

- COMP128v1 is an encryption algorithm that was found to be flawed.
- A “stop” condition was found that allows Ki to be brute forced.
- COMP128v1 attack takes 12-24 hours and requires physical card.
- COMP128v3 is used more widely today and COMP128v1 is rare.
- Chinese vendors sell cheap COMP128v1 multi-SIM cards & cloner.

- SIM Trace http://bb.osmocom.org/trac/wiki/SIMtrace
- For more information on SIM attacks THC have a SIM Toolkit Research Group project that contains a lot more information!
2.5G Technical Overview

What’s a Base Transceiver System (BTS)?

- Transmitter and receiver equipment, such as antennas and amplifiers.
- Has components for doing digital signal processing (DSP).
- Contains functions for Radio Resource management.
- Provides the air (UM) interface to a MS.
- This is part of a typical “cell tower” that is used by GSM.
- BTS provides the radio signalling between a network and phone.
- Base Station Subsystem (BSS) has additional component Base Station Controller that provides logic & intelligence.
2.5G Technical Overview
Radio & Cellular?

- The spectrum is divided into uplink/downlink “channels”.
- GSM uses Absolute Radio Frequency Channel Number (ARFCN).
- Cellular Network means channels can be re-used within different spatial areas.
- This is how a small number of frequencies can provide a national network!

<table>
<thead>
<tr>
<th>Band</th>
<th>Designation</th>
<th>ARFCN</th>
<th>f_UL</th>
<th>f_DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM 400</td>
<td>GSM 450</td>
<td>259-293</td>
<td>450.6+0.2(n-259)</td>
<td>f_up(n)+10</td>
</tr>
<tr>
<td></td>
<td>GSM 480</td>
<td>306-340</td>
<td>479+0.2(n-306)</td>
<td>f_up(n)+10</td>
</tr>
<tr>
<td>GSM 700</td>
<td>GSM 750</td>
<td>438-511</td>
<td>f_up(n)+30</td>
<td>747.2+0.2(n-438)</td>
</tr>
<tr>
<td>GSM 850</td>
<td>GSM 850</td>
<td>128-251</td>
<td>824.2+0.2(n-128)</td>
<td>f_up(n)+45</td>
</tr>
<tr>
<td>GSM 900</td>
<td>P-GSM</td>
<td>1-124</td>
<td>890+0.2n</td>
<td>f_up(n)+45</td>
</tr>
<tr>
<td></td>
<td>E-GSM</td>
<td>0-124</td>
<td>890+0.2n</td>
<td>f_up(n)+45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>975-1023</td>
<td>890+0.2(n-1024)</td>
<td>f_up(n)+45</td>
</tr>
<tr>
<td></td>
<td>GSM-R</td>
<td>0-124</td>
<td>890+0.2n</td>
<td>f_up(n)+45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>955-1023</td>
<td>890+0.2(n-1024)</td>
<td>f_up(n)+45</td>
</tr>
<tr>
<td>GSM 1800</td>
<td>DCS 1800</td>
<td>512-885</td>
<td>1710.2+0.2(n-512)</td>
<td>f_up(n)+95</td>
</tr>
<tr>
<td>GSM 1900</td>
<td>PCS 1900</td>
<td>512-810</td>
<td>1850.2+0.2(n-512)</td>
<td>f_up(n)+80</td>
</tr>
</tbody>
</table>
2.5G Technical Overview
Physical Interface

- Waterfall views of GSM ARFCN downlink (left) and uplink (right).
- ARFCN is 200kHz channel and this is divided into TDMA slots.
- Five different types of “bursts” are modulated within.
2.5G Technical Overview

Radio & Cellular?

- GSM communicates using Time Division Multiple Access / Frequency Division Multiple Access (TDMA/FDMA) principles.
- Space Division Multiple Access gives the cellular concept.
- Traffic transmitted as “bursts”.
- Radio modulation is using Gaussian Minimum Shift Keying (GMSK).
- GMSK is variant of frequency shift keying (FSK) designed to reduce bandwidth, minimum shift keying (MSK) with further Gaussian bandpass (GMSK).
2.5G Technical Overview
Network Switching Subsystem

• The GSM core network components usually not visible to attacker.

• Mobile Switching Centre (MSC).
• Home Locality Registrar (HLR).
• Visitor Locality Registrar (VLR).
• Equipment Identity Registrar (EIR).

• These are components or databases that handle subscribers information, IMSI/encryption keys and perform processes like billing.

• Also where the call switching and routing takes place and connecting to other networks e.g. PSTN.
GSM Logical Channels

- GSM implements logical channels to allow for signalling between handset and network.
- There is a defined Traffic Channel (TCH) – Full-rate and Half-rate channels are available as TCH/F (Bm), TCH/H (Lm).
- There are Signalling channels (Dm).
- Many exploitable weaknesses in GSM are due to “in-band” signalling.
- This same class of vulnerability is what allows phreaker “blue boxes” to function and responsible for “format string attacks.” – where management capability is accessible it has potential for subverting.
2.5G Technical Overview

Broadcast Channel (BCH)

• The BCH is used by a MS to synchronize it’s oscillator and frequency with the BTS.

• The BCH consists of sub-channels that assist with this process.

• Broadcast Control - BCCH

• Frequency Correction - FCCH

• Synchronization – SCH

• The channels are used during the preliminary stages of a MS being powered on and are integral part of “getting a signal”.

© 2014 MDSec Consulting Ltd. All rights reserved.
2.5G Technical Overview

Common Control Channel - CCCH

- The CCCH is used by MS and BTS for communicating requests for resources with network and handset such as when a call attempt is placed.
- Random Access Channel - RACH
- Access Grant Channel - AGCH
- Paging Channel - PCH
- Notification Channel – NCH
- Temporary Mobile Subscriber Identity (TMSI) is used to help prevent tracking of a GSM user, can be frequently changed and has a lifetime limit.
The DCCH and it’s associated sub-channels perform authentication requests, cipher selection & signalling of call completion.

Standalone dedicated control - SDCCH

Slow associated control - SACCH

Fast associated control – FACCH

Summary of the three control channels and purpose of each.

Attacker could exploit GSM signalling weaknesses to access subscriber mobile usage. We will look at this in more detail.
What about Over-the-Air Encryption?

- Several over-the-air (OTA) encryption algorithms exist. These are used to encrypt *some* of the GSM logical channels data (such as TCH).

- A5/1 – publicly broken, rainbow tables exist.
- A5/2 – offers no real security.
- A5/3 – KASUMI Cipher, although some man-in-the-middle attacks are known – it has not yet been publicly broken in GSM.
- A3/A8 - used during the authentication process.

- Attacker can attempt to “passively” analyse traffic looking for weak encryption or perform man-in-the-middle attacks against subscriber MS and BTS.
2.5G Technical Overview
General Packet Radio Service

- Uses existing GSM concepts, e.g. timeslots.
- Introduces “Subscriber GPRS Service Node” (SGSN) and “Gateway GPRS Service Node” (GGSN).
- Adds Packet Control Unit to BSS.
- Data is sent in PCU frames.
- Introduces a new Radio Resource (RR) protocol.
- Radio Link Control (RLC) / Media Access Control (MAC)
Cell Diagnostics & Tools

Nokia NetMonitor

- Nokia shipped diagnostic tool in early phones.
- Can be enabled on phone such as 3310 using cable
- Provides a cellular diagnostic tool!
- ARFCN identification!
- Signalling channel display!
- Uplink Traffic capture!
- Very cool “feature” of Nokia ;)}
• eBay is your friend.

• GSM testing hardware prices vary wildly.

• Open-source tools are now more flexible.

• GSM testing hardware is often not very featured.

• The price of dedicated hardware can be very high.

• Vendors often not forthcoming with help.
Osmocom-bb allows you to write tools for MS baseband.

Lots of useful diagnostics already available in the public repository.

You can extend the code to visually represent the GSM spectrum or perform more detailed analysis of a GSM cell tower.

Requires a £30 phone to use.
Cell Diagnostics & Tools

GSMTAP

• Useful to debug the radio interface.

• GSMTAP encapsulates RF information and transmits it in a UDP encapsulated packet.

• This allows us to see the Um interface traffic from a BTS or MS of downlink and uplink.

• Extremely useful capability when analysing GSM.
Cell Diagnostics & Tools
AirProbe & Sniffing

- GNU/Radio is used to capture the RF of a GSM ARFCN.
- GSM receiver and toolkit exists for doing capture of GSM bursts & decoding of the data.
- £20< RTLSDR dongles can be used to capture GSM traffic.
- Purely passive analysis allows for identification of call requests. TCH channel should use encryption.
- Kraken tool can decrypt A5/1 on TCH, requires 1.6TB rainbow tables.
- Wireshark can parse the GSMTAP output and sniff the air interface.
GSM Security
MS Power-On Process

- MS starts a search for BCCH carriers performing RSSI measurements.
- After identifying the BCCH, the phone probes for presence of FCCH.
- The phone “syncs” and obtains information about the BTS it has identified.
- The phone now knows to monitor “neighbour cells” it has decoded from the transmission.
- This process is what is exploited by IMSI capture devices and fake BTS attack tools.
• During a Public Land Network Mobile (PLNM) Search (PLNMS) this is trivial. Only performed during MS Power-on & if no service can be found.

• MS has path loss criterion C1 and reselection criterion C2. These are dynamic variables used by the phone to determine if a “neighbour cell” has better radio conditions. These variables are taken dynamically and frequently.

• Manipulating C1 and C2 can force an MS to join our BTS without requiring the phone to perform a PLMNS.

• The network can also request an IMEI during this update location request.
IMEI & Device Fingerprint

- IMEI contains Type Allocation Code (TAC), serial number and checksum.

- TAC starts with two digit Reporting Body Identifier (RBI), determines country.

- Remaining six digits of TAC identify vendor who produced the device.

- RBI: 01 Org: PTCRB Country: United States

- TAC: 01303500 Manufacturer: Apple Model: iPhone 4S model MD239B/A
• Attacker needs to simulate condition to entice MS to fake BTS.

• Locates the MCC / MNC of target phone provider or roaming agreement.

• Identifies the Neighbor ARFCN for target MS by performing PLMN locally.

• Creates a BTS using the MCC, MNC, ARFCN, LAC and any other parameters to match a weak signal ARFCN BTS to reduce interference.

• This will create an environment where target in close physical proximity to the BTS will trigger cell re-selection as MS sees a better RF environment.

• Cell diagnostics tools need to be used to obtain this data for attacker to use.
- Osmocom-BB is very versatile, GNU/Radio or gsm-receiver tool could also be used. Osmocom-BB mobile includes “monitor” command that provides RSSI monitoring of current and Neighbor ARFCN.
GSM Security
RACH & TMSI Paging Attacks

• Random Access requests have a finite resource.

• Attacker can continually request resources via RACH preventing users being able to place new calls once all available resources are consumed.

• TMSI is vulnerable to a race condition when the BTS is paging, attacker can answer all pages preventing legitimate communication.

• An attacker responds to pages made by the BTS to identify a particular phone causing the original request to be unanswered.

• Both attacks can be implemented in osmocom-bb.

• Both attacks could be used to perform a “DoS” of a BTS.
GSM Security
Downgrade & Jamming

• LTE, UMTS and GSM can be “jammed” to downgrade/force connections.

• Overpower the analogue components of a radio with a stronger signal.

• Asian devices are often multi-band 1-10Watt radios and go against EMC.

• Protocols attempt to address “noise” or “sawtooth” jamming.

• None suitable for researchers or testing.

• Effect can be simulated by disabling 4G/3G.

• Wireless & Telegraphy Act in UK forbids use.
2.5G Simulation
OpenBTS - Architecture
Implementation
GreedyBTS – USRP E100

- Gumstix Overo (computer-on-module)
- TI OMAP-3 SoC ARM Cortex-A8
- C64 DSP
- Xilinx Spartan 3A-DSP 1800 FPGA
- SBX (400Mhz – 4.4Ghz) 100 mW
- GPSDO Kit –or- Clock Tamer
- Ettus provide Angstrom Linux Image (e1xx-003) with GNU/Radio 3.6.4.1
2.5G Simulation
EMC & Shielding

TX 50 Ω (ohm) load & RX 900Mhz omnidirectional antenna.
Spectrum Analyser inside and outside enclosure (use a second SDR!)
2.5G Simulation
EMC & Shielding

Shielding Effectiveness
Ramsey STE3300 RF Shielded Test Enclosure
Ramsey STE2000, STE3000 & STE4000 Series Have Same Construction as STE3300 per EN61000-4-21

© 2014 MDSec Consulting Ltd. All rights reserved.
• Spent a lot of time trying to build Angstrom for USRP E-1xx from scratch with limited success.
• Used Ettus E1xx_3 firmware, cross-compiled new Kernel (no netfilter support or IP forwarding) and built packages from source with additional options such as ODBC and SQLite support.
• OpenBTS 5.0 and OpenBTS 2.8 (with mini-SGSN GPRS support) both installed.
• OpenBTS transceiver application has been broken for E1xx, modified for 5.0.
• I made minor patches to OpenBTS for more stealth operation (i.e. no welcome messages), increased logging in L3 Mobility Management events and disable SGSN firewalling for GPRS attacks.
• Asterisk configured with real-time SQLite support and automatic logging via monitor().
• Console interface script for interacting with components and BTS.
• Integrated DB for IMEI fingerprinting (50000+ devices) & MCC/MNC search.
Implementation
GreedyBTS – E100 firmware

22854: old priority 0, new priority 10
[+] Current CELL configuration
[-] ============================
[-] Shortname: 'Test'
[-] MCC: 1 MNC: 1 CO ARFCN: 51
[-] LAC: 1234 ARFCN's: 1 BAND: 900
[-]
[-] Radio Power
[-] ===========
[-] RxGain: 0 MaxPower: 10 MinPower: 0
[-] Waiting 60 seconds before configuring GPRS...
net.ipv4.conf.all.forwarding = 1
SIOCADDRT: File exists
[-] GPRS OK!

© 2014 MDSec Consulting Ltd. All rights reserved.
Implementation

GreedyBTS - Features

- Useful events are sent to “greedyBTS.log” for logging and use by console app.
- Can dynamically provision a phone based on regex of IMSI or IMEI.
- Use’s real-time configuration, can be left to run “headless” in target area.
- Useful utilities (airprobe, osmo-arfcn, tshark, tcpdump, libpcap) built.
- CDR records keep detail of subscriber communication attempts.
- Call content is automatically recorded to “call-recordings” directory.
- Can use Asterisk for connecting users to PSTN or amusement.
- GPRS is auto-configured, if the BTS has an internet connection so does phone.
- Example background exploit iPwn attacks MS over GPRS.
- Designed to be used against a specific target (1 or 2 users) in a small geographical area.
- Clone the BTS environment of CEO office, enter RegEx of CEO IMEI and wait ;-)
- It’s Linux! You can roll your own attacks / backdoors on-top.

© 2014 MDSec Consulting Ltd. All rights reserved.
Implementation
GreedyBTS - Features

[+] HELP SCREEN

[-] dumpimei - lists all identified IMEI
[-] dumpassoc - lists all IMEI+IMSI associations
[-] dumpimsi - lists all identified IMSI
[-] startservice - provide immediate service to IMSI
[-] showservice - show all provisioned IMSI
[-] stopservice - stop providing service to IMSI
[-] seenservice - shows all seen IMSI and service status
[-] watchservice - provide service to IMSI via regex
[-] watchshow - show all IMSI provision regex
[-] watchstop - stop providing service to IMSI regex
[-] imeiservice - provide service to IMEI via regex
[-] imeishow - show all provisioned IMEI
[-] imeistop - stop providing service to IMEI regex
[-] fingerprint - show fingerprints of seen IMEI
[-] showipwn - show output of background ipwn attack
[-] cellconfig - configure cell parameters for spoofing
[-] cellinfo - dump information on current cell config
[-] cellfind - find MCC/MNC, Operator, Status, Country
[-] verbose - toggle real-time tracing
[-] restart - restart OpenBTS (load new config)
[-] exit - leave without shutdown to shell
[-] shutdown - terminate all processes!

© 2014 MDSec Consulting Ltd. All rights reserved.
• GPRS can be very slow to launch an exploit or extract data!
Implementation

Download

• You will need an 8GB MicroSD card to install in E100.
• Change default root password on login and change SSH keys.

• https://mega.co.nz/#!hAU2iJyB!GK54dtAxUVXavcZUGPJPDI7X3_OjpnPqs_qSZfc9iwE
• 726f9d810aca42ed5ba3034efe6b6a2a greedyBTS-44CON-v1.img.enc
• openssl aes-256-cbc -d -in greedyBTS-44CON-v1.img.enc -out greedyBTS-44CON-v1.img (Contact me for password.)
• 4667f83fdc4a30245fdcc49946833e5d greedyBTS-44CON-v1.img
• dd if=./greedyBTS-44CON-v1.img of=/dev/sdc bs=1024

• Discussed in Feb on OpenBTS / USRP mailing lists, 7:1 GSM researchers mailed in favor of image sharing in a controlled way.
Interested in GSM?

Here is a PCAP trace of 2.5G environment showing uplink/downlink, two MS devices, SIM APDU information!

Recommend reading a good book and review in wireshark!

https://github.com/HackerFantastic/Public/blob/master/misc/44CON-gsm-uplink-downlink-sim-example.pcap

BeagleBone Black and NanoBTS/USRP B200/BladeRF could be used in future for cheaper alternative!
Implementation Demo

Demo.
GreedyBTS – Hacking Adventures in GSM

Conclusions

• Information sent over your mobile phone may not be as secure as you think.

• Detection of GSM attacks is still in its infancy, some tools are beginning to surface which detect greedyBTS but they will require “active” use and aimed at power users.

• If you are transmitting sensitive information such as usernames or passwords consider using a non-wireless technology.

• An attacker can launch attacks against your mobile device without you being aware using 2.5G, we need baseband security enhancements and access to cell data.

E-mail: hackerfantastic@riseup.net
Twitter: @HackerFantastic
https://github.com/hackerfantastic/public
Thank you for all the hard work done by members of the open-source and security research communities in making 2.5G networks more accessible for analysis.

Twitter: @MDSecLabs
Blog: http://blog.mdsec.co.uk