Ipsysctl tutorial 1.0.4

Oskar Andreasson

blueflux@Xkoffein.net

Ipsysctl tutorial 1.0.4
by Oskar Andreasson

Copyright © 2002 by Oskar Andreasson

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.1; with the Invariant Sections being "Introduction” and all sub-sections, with the Front-Cover Texts being "Original Author:
Oskar Andreasson”, and with no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free
Documentation License".

All scripts in this tutorial are covered by the GNU General Public License. The scripts are free source; you can redistribute them
and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, version 2 of
the License.

These scripts are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License within this tutorial, under the section entitied "GNU General
Public License"; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Dedications

This document is dedicated to all of you who send me reports of bugs and errors in what | have
written, and to everyone else for that matter who reads this and other documentations in order
to find errors and report them to the maintainers. This document is in other words dedicated to
everyone who uses what others produce and release for free under the Free Licenses that are
available.

| would also like to dedicate this to my family who has understood me when | didn’t deserve it,
who whacked my head off for being a bum when | deserved it, and for being a generally nice
bunch of people with a lot of humour.

Table of Contents

L =3 =TSRRI i
RTAY])Y 1 £ [Yo ULy q =T o | SR i
Intended audience & prerequisite KNOWIEAQE...........cooiiiiiiiiiiiiiiie e i
L [0 LT (I == Vo SRS i
Conventions used iN thiS dOCUMENT.........c.uiiiiiiiiie s e e e ii
o g0V] [To [o =T 0 0 =T o1 £ PR ii

I 1o To [o £ o o TP ERRP PSP 1
VirtUal filESYSIEIMS ..ttt e e e e e e e s et e e e e e e e e e eennnnes 1
The /ProC fESYSIEIM ...t e e e e e e s aee s 1
A brief /proc WalkthrOUQN ... 1

2. HOW 10 SEE VANADIES ...ttt ettt et e e e e e e et e e e e e e e e e aannnes 5
With the SYSCH apPliCALIONccoiiiiiiiieee e e e e e e e e 5
WWIER JPPOC ettt e e e ettt et e e e e e e s e anabe b e e e e e e e e e e aaannes 6

3. IPVA variable referEnCe ... 9
[P VATTADIES ...ttt e e e e e e e e e e e e e e e aaaaae 9

] & Tz L0 1 (o Yo o] o ¥ o 0 9
IP_defaUIt .. . ———————— 9
0T)41 =T [[9
19 T (0 411V L (o P PRERRR 10
T 9T (o Tor= 1IN o Yo] Al - Vg Vo [= 1S PRERRR 10
1o T (o TN o .21 (8 1o = o PREPRR 11
19T o] a1 o To7= 11 o 1T [P PRERRR 11
ipfrag_high threSh ... 11
IPFrag_lOW _thr@Sh.....eeeeeeee e 12
191 =T (141 PP PPOTPPRN 12
[a TSI oL 1 (0] =T [12
INETL_PEEI_gC _MAXLIME. .. .uiiiiiiiiiie ettt e e sab e e e e s bbeeeeeaaes 13
INEL_PEEI_gC MINTIME. ...ttt et e e et ee e e e 13
INET_PEEI_MAXIEL ...ttt e e e e 13
INET_PEEI_MINTEL ...ttt et e e e e aaes 13
inet_peer_threSNOoldcooiiii e 14
IO Y = T = o PP SS 14
tCP_abort_ ON_OVEIMIOW........eeiiiiiii e 14
TCP_ A0V _WIN_SCAIB......eeeeieeei e a e 14
(0T TN = 1] o T 1 o PP PPRPPR 15
(0o o 0 LS1- Tox PP PPRPPR 15
[(] o T =T o] o IO TP TP UPUPRPRP 15
(o o J 7= 0!GP TP PPPPTR 16
ECP_FIN_HIMEOUL...cci i e e e e e 16
tCP_KeePAlIVE_INIVI. ..o 17
tep_Keepalive_Probesooo e 17
tCP_KEEPAIIVE _tIME .o e e e 17
Lo o 1 = Q]] £ F= 1 1 USSR 18
tCP_MAX_SYN_DACKIOY ..eveiiiiiieiiieeeeeee e aaaaaaas 18

tCP_MAX_ W BUCKELS ... i e e e e e 19

TCP_IMEIM . e 19
TP _ONPRNAN_TEIIIES ...ttt e e e 19
(o I £=To1 (o [=T 40T DU O PSP PTP PR 20
TCP_retrans_COIAPSEoiiiiiiiii et 20
[(03 I 1= (=T O O PP U PPPPTPPPP P 20
(0 I (=] (12T TP P RSP PPRRPR 21
(o o T (031 S PP TP PPPPTP 21
[0 O T £ 0 11T 0 SO TSP UPPPRPRP 21
[0 o - T PP TP PPPPPP 22
[0 TS (o [(o PP PR P TP PPPPTP 23
(0o SV I = =SSP U PP UPPRPPPPPPP 23
TCP_SYNACK _FBIMES ..ceiiiiiiiieeeeeeeeeeeeee e e e e e e e e e e e e e e e e e e aaaaaaaeas 23
TCP_SYNCOOKIEScceieieiieie ettt e a e e e e e e a e e e e e e e e e aaaaaaeas 24
Lo o 1] 4[] =T] o1 SR 24
Lo A1V (=05 Y/ o = SR 24
TCP_WINAOW_SCAIING ...ciiieiieeeiieieeeeeee e e e e e e e e a e e e e e e e aaaaaaeas 25
L(o] 0T 4 1] o P PPN 25
ICMP VATIADIES ..o et e e s e nbae e e e e neeas 26
ol g o I =Tod s T T To | Lo £ = K- || PSP PREPRR 26
icmMp_echo_ignore_BroadCastS........ccccceiiicciiiiiiiiee et e e e e e e 26
icmp_ignore_bOoguS_EITOr _TESPONSESc..uvvrriireieeeeisiiiitieereeeeeessassrrnreeeeeesesannnnnes 26
o3 .41 o T = L (=] 110 11 SRR 27
ICIMP_FALEIMASK. ...ttt e e e e e st e e e e ane 27
IgMP_MaxX_mMemMbDEISNIPS.......ouiiiii i 28
The CONF/ VANADIESoeeeeiiiee e e e s e e e e e e e reaeees 28
conf/DEV/, conf/all/ and conf/default/ differencescccooviiiiiiieen 29
Yool =T o] QY (=T o [T =To! £ TSP PUPPT TP 29
ACCEPL_SOUICE_TOULEcoeiiiiiiiiiiiiiiieeee et 29
2T oI 111 (] SO PSP P TP OPPPTPPPP 30
DOOLP_FEIAY ... 30
FOPWAIAINGeeeeiee et s e e e e e 30
ToTo I 01 F=T g (=T o O PP PPPPPPTOTPPPRN 31
MC_FOTWAITING. ...ttt e et e e e b e e e e aaes 31
0] (0)4 V=1 ¢ ISP 32
L T {11 (= PRSP PPPPRPRN 32
SECUIE_FEAINECES ... e s e s e e e e e e e aaaaaaaas 33
51T Lo I =0 [T (=T o £ SRR 33
Shared _MEAIA ... 33
NEIGN FEIEIENCE ...t e e e e e e e 33
NELFIILEr FEIEIENCE ..o e e e e e e 33
ID_Ct_generiC_tiMEOUL........ccoeii i 34
o T A (e 0 o T 1] 0= 11 | 34
Ip_Ct_tCp_be _liberal.....ccccoeeeii i ————— 34
ip_ct_tcp_log_invalid_SCaleccoooeiieiei e 35
ip_Ct _tcp_log_0Ut Of WINAOWcuviiiiiiiiiiiiiieie e e e 35
IP_Ct_tCP_tIMEOUL _CIOSE ... e e e e e e e e e e eennnes 35
ip_Ct_tCp_tiIMEOUL_ClOSE_ WAteeeeiieeeeiiiciiiiiie e e e e e e e e e s eeannes 35

ip_ct_tcp_timeout_establiShed............cooiiiiii e 36

ip_Ct_tCp_tiIMeOUL_fIN_WAIL.........eoiiiiiiiiiiiiiie e 36
ip_Ct_tep_tiImMeouUt_1aSt ACK.........uueiiiiiieee i 37
IP_Ct_tCPp_tIMEOUL IISTEN ..o e e 37
IP_Ct_tCP_tIMEOUL NMONE ...ttt e e e et e e e e e e e e s anenes 37
IP_Ct_tCP_tIMEOUL_SYN_ FECV ...eiiiiiiiiiiee ettt ettt e et e e e e e e e e e anenes 38
IP_Ct_tCP_tIMEOUL _SYN_ SENT ...eiiiiiiiiiee ettt e e e e e e e e e aneees 38
ip_Ct_tcp_timeout_tiMe WaIL..........cooiiiiiiiiiie e 38
IP_CLUAP_TIMEBOUL.....eeeiiiiieee ittt e e e e e e e st e e e e e e e e e e anaeees 39
IP_Ct_UAP_tIMEOUL_SIFEAIM.......iiiiiiiiiiee ettt ettt e et e e e e e e e e e eaeees 39

ROULE TEIBIEINCE ...ttt a e e e e e e e e as 39
BITOE _DUISE .. aaaaaas 39

L] g (0] g o]0 1= S PPN 40

1110 L] PRSP 40
OC_ElASHICILY oo 40

Lo T 1] (= Y= | 41

Lo T 1011 T 101 (T Y | 41

Lo {1 (=T o USSP 41

Lo T3 111410 11 | SRR 41

L F o 1 - PREPRP 41

0T VT U PRERRR 41

01T =T VR 2T SRR 41
01T 0 =1 - SRR 41

00T T 1101 (0 PP PRPTPPRN 41
IMNEU_EXPITES .eteeee ettt ie ettt ettt e ettt e e e sttt e e e sab e e e e ab bt e e e e sabbe e e e s anbeeeeeeasbaeeeeabbeeeesanes 41

(=70 [T <Tox [0 T= o H PP PP PPOTPPRN 41

[g=To Tl A 0 0] o= PP PPOTPPRN 41
FEAINECT_SIENCE ... et e et e e 42

A. Measurements USed iN KEINEI iiiiii e e e 43
B 11115 PRRRRR 43

B. Other FESOUITES ...ttt ettt et e e e e e e e e et e et e e e e e e e e e e nbabeeeeeaaeaesaannnnbeeeeeas 44
O o 1153 (o] o PP PPPRPTR 47
D. GNU Free Documentation LICENSE ooiiiiiiiiiiiieiie ettt 48
0. PREAMBLE ...ttt ettt ettt e e sttt e e s st e e e s st e e e annsaeeeeanneaeee s 48

1. APPLICABILITY AND DEFINITIONSoiiiitiiie ittt 48

2. VERBATIM COPYING ...coeiitiiiie sttt ettt e ettt e e e st e e e s sntaeaeessntaeeeesnsbeeeeeanes 49

3. COPYING IN QUANTITY ttiiieiitiiie ettt e sttt ee e sttt e e sttt e e s sbaee e e s sntaeeeessnbaeeeesnsneeeesanes 49

. MODIFICATIONS ..ottt ettt ettt e sttt e e e st e e e s anbb e e e s anbae e e e anssaeeessnnseeeens 50

5. COMBINING DOCUMENTS. ... itiiiieiitiiiee e iiieee ettt e e sttt e e s staee e e s snbeeeeesnsaeeeeeanes 51

6. COLLECTIONS OF DOCUMENTSitiiiiiiiiiiee st esitiee e stieee e staee e e s snbeee e s snnneeeeennes 52

7. AGGREGATION WITH INDEPENDENT WORKSccoiiiiiiiiiiiiee it siieee e 52

8. TRANSLATIONceii ittt e et e e s ettt e e e sttt e e s snbee e e e s anbeeeeeanbbeeeeeanes 52

9. TERMINATION ..ottt ettt e ettt e e e sttt e e e snbe e e e s anbeeeeeabbeeeeeane 53

10. FUTURE REVISIONS OF THIS LICENSE.......cccoiiiiiiiiie e 53

How to use this License for your dOCUMENLSccuuviieiiieie e e e 53

E. GNU General PUBIIC LICENSE cuiiiiiiiiiiiiicc s 55

0. PreambIeooiii e 55
1. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 55
2. How to Apply These Terms to Your New Programs............ccccoceciiiiiiiieiiiec e 59

List of Tables

A-1. Jiffies on different hardware

Preface

Why this document

| started writing this documentation in the hopes that it would help people understand the IP
options provided by Linux 2.4, and what you can do with these options. This is a plain text
documentation, hoping to give the necessary understanding and help to configure your kernel
on the fly, and to get it up and running in a way that suites you. A lot of these options can also
be used to increase performance, as well as strengthen the security. We will not discuss all the
different sections of the sysctl in this document, but instead focus on the network sections of
the system control, or sysctl as it is called. Hopefully this documentation will fill a gap in the
documentation, and if you're reading this, it probably has. Mainly, there are no really good
documentations detailing the whole structure of all the ipsysctl from what | have seen that
documents all the networking options, except the ip-sysctl.txt file in the linux kernel
documentation, which is really really brief in explaining what the options could be used for.

| believe there is a lot of documentation out there detailing the usage of these options and
variables, however, none of them brings them together and describes them in detail. If you
found this document to be a good read, or interesting in general, feel free to donate, help out,
translate, or whatever you feel like. The main thing of all however, send bugreports so | can
update the document and see to it that there is no stale errors or problems due to changes in
the kernel etcetera. If you find an sysctl command that has not been documented here, or is not
listed, send me a mail and | will try to get it inserted as soon as possible.

Intended audience & prerequisite knowledge

This document is intended for evyerone with an intermediate through advanced understanding
of TCP/IP as well as the Linux operating system. You should understand TCP/IP fairly well, as
well as understand what a packet header is and what parts it consists of. You will also need a

lot of understanding of routing and the core of TCP/IP networking.

In general, this document was not intended for the novice Linux user, but you may have some
luck checking through this document if you are experiencing specific needs. Be absolutely
100% certain that you have understood the variables in question before you do change them
though, since some of them may cause really interesting results.

This document should be readable by anyone who has a interest in computers and computer
networks in specific, and prerequisite knowledge. It is aimed at giving a basic understanding of
the different variables available through the ipsysctl, but also to make it easier to go even
further in understanding what each specific variable do.

How to read

This documentation can be read any way you want. If there are specific sections you are

Preface

interested in, read those. If you have never set a kernel variable in linux before in your life, read
the first chapter after this and then read the sections you feel intrigued by. If you feel like
reading it from top to bottom, do that. If you feel like reading it backwards to find hidden
messages, do that. If you feel like reading in encrypted format, well, nothing is stopping you.

What | am trying to say is the following, read the sections that you want to read and that you
think would be informative to you, and if there is something you do not understand, read the
corresponding bits either here or in some other document. | will not tell you how to read this
document since everyone will probably have bits and pieces they already know how they work.

Conventions used in this document

The following conventions are used in this document when it comes to commands, files and
other specific information.

« Code excerpts and commandoutputs are printed like this, with all output in fixed width font
and userwritten commands in bold typeface:

[blueflux@workl neigh]$ Is

default ethO lo
[blueflux@workl neigh]$

« All commands and program names in the tutorial are shown in bold typeface

+ All system items such as hardware, and also kernel internals or abstract system items such
as the loopback interface are all shown in an italic typeface

« computeroutput is formatted in this way in the text.

. filenames and paths in the filesystem are shown like /proc/sys/net.

Acknowledgements

This document is loosely based upon the documentation found in
lusr/src/linux/Documentation/networking/ip-sysctl.txt. Before | say anything else, | would like to
thank the people who took the time to write that document. People who read both documents
will find that this document has borrowed some structure from it.

| would like to acknowledge the work done by all the people working on the networking stack
and the timeconsuming job they are putting into the Linux operating system. | hope | can give
something back by writing this, and other documents, to the community and by giving the
coders a little relief by maintaining documentation for what they have written.

| would also like to acknowledge Fabrice Marie for the wonderful help and support with
documentation standards and giving me a nudge in the right direction when there is something
| did not get to work. Also, a huge thanks to all of the people at the netfilter mailing list for

Preface

helping out with problems and questions, and the linuxsecurity people for listening to all of my
rants and waiting for all of my excuses for not getting things published in time.

In other words, a huge thanks to everyone for helping me out when | have problems and
guestions.

Chapter 1. Introduction

The /proc filesystem is a virtual filesystem, which means that it doesn't really exist except in the
"head" of the Linux kernel. The /proc filesystem as described here is specific to the Linux
kernel, even though it may very well be present in other operating systems as well, but with a
different functionality and a different meaning.

Virtual filesystems

By virtual filesystem, we simply mean that there is no trace of it on top of any of your
harddrives, which all filesystems would normally leave. Nothing that you ever do to a virtual
filesystem will ever do any changes to the actual harddrives themselves, but only in the primary
memory. Virtual filesystems are created "on the fly" by the kernel during bootup, and it is
always updated every single time you enter the filesystem, or do anything within it.

Note: Virtual filesystems may take several other incarnations as well. One such is a simple RAM
Harddrive, where you will be able to save files while the machine is running. On diskless Amigas this
was often used to move files from one floppy to another floppy by first moving the original file to the
RAM memory and then swap floppies and copy it to the new floppy. However, these files would
disappear as soon as you reset or restarted the machine.

The /proc filesystem

The virtual filesystem that we call /proc contains loads and loads of different datastructures and
information gathered from the kernel at runtime, and updated whenever you try to list or view
the information. The information is all gathered and shown as a normal filesystem, and hence
you can read files, traverse catalog structures, etcetera. Everything that you can do in a normal
filesystem in other words. However, most of the files available through the /proc filesystem are
only available read only, which means they can’t be changed. This is because they only supply
us with informational data.

One section is read-writable on the other hand, and that section is placed within the /proc/sys.
All of the variables located in this directory and subdirectories are writable as well as readable.

This document will focus on the Internet Protocol version 4 (IPv4) section of the /proc located in
/proc/sys/net/ipv4 which contains all the configurable settings for the IPv4 stack, including TCP,
UDP, ICMP and ARP tunable settings

A brief /proc walkthrough

The /proc filesystem contains a few basic directories and entries, which we will describe a little
bit closer in this section before we go on to the ipv4 system.

Chapter 1. Introduction

First of all, the filesystem contains a huge set of numbered directories that come and go. Each
and one of these numbered directories contains information pertaining to all of the currently
active processes on the machine. When a new process is started, a new directory is created in
the /proc filesystem for it, and a lot of data is created within it regarding the process, such as
the commandline with which the program was started with, a link to the "current working
directory", environment variables, where the executable is located, and so on.

Except this, we also have quite a few files as well as directories in the root of the /proc
filesystem. This is a complete listing of them all:

[blueflux@work1]$ Is -l /proc

total O

-r--r--r-- 1lroot root 0 Sep 19 18:09 apm
dr-xr-xr-x 4 root root 0 Sep 19 10:52 bus
-r--r--r-- 1root root 0 Sep 19 18:09 cmdline
-r--r--r-- 1root root 0 Sep 19 18:09 cpuinfo
-r--r--r-- 1root root 0 Sep 19 18:09 devices
-r--r--r-- 1root root 0 Sep 19 18:09 dma
dr-xr-xr-x 4 root root 0 Sep 19 18:09 driver
-r--r--r-- 1root root 0 Sep 19 18:09 execdomains
-r--r--r-- 1root root 0 Sep 19 18:09 fb

-r--r--r-- 1lroot root 0 Sep 19 18:09 filesystems
dr-xr-xr-x 2 root root 0 Sep 19 18:09 fs
dr-xr-xr-x 4 root root 0 Sep 19 18:09 ide
-r--r--r-- 1root root 0 Sep 19 18:09 interrupts
-r--r--r-- 1root root 0 Sep 19 18:09 iomem
-r--r--r-- 1lroot root 0 Sep 19 18:09 ioports
dr-xr-xr-x 18 root root 0 Sep 19 18:09 irq
e lroot root 268374016 Sep 19 18:09 kcore
“Femmmmeen lroot root 0 Sep 19 10:52 kmsg
-r--r--r-- 1root root 0 Sep 19 18:09 ksyms
-r--r--r-- 1root root 0 Sep 19 18:09 loadavg
-r--r--r-- 1root root 0 Sep 19 18:09 locks
-r--r--r-- 1lroot root 0 Sep 19 18:09 mdstat
-r--r--r-- 1root root 0 Sep 19 18:09 meminfo
-r--r--r-- 1lroot root 0 Sep 19 18:09 misc
-r--r--r-- 1root root 0 Sep 19 18:09 modules
Irwxrwxrwx 1 root root 11 Sep 19 18:09 mounts -> self/mounts
-fw-r--r-- 1root root 208 Sep 19 11:02 mtrr
dr-xr-xr-x 3 root root 0 Sep 19 18:09 net
dr-xr-xr-x 2 root root 0 Sep 19 18:09 nv
-r--r--r-- 1root root 0 Sep 19 18:09 partitions
-r--r--r-- 1lroot root 0 Sep 19 18:09 pci
dr-xr-xr-x 3 root root 0 Sep 19 18:09 scsi
Irwxrwxrwx 1 root root 64 Sep 19 12:01 self -> 2864
-rw-r--r-- 1 root root 0 Sep 19 18:09 slabinfo
-r--r--r-- 1root root 0 Sep 19 18:09 stat
-r--r--r-- 1root root 0 Sep 19 18:09 swaps
dr-xr-xr-x 10 root root 0 Sep 19 14:39 sys
dr-xr-xr-x 2 root root 0 Sep 19 18:09 sysvipc
dr-xr-xr-x 4 root root 0 Sep 19 18:09 tty
-r--r--r-- 1root root 0 Sep 19 18:09 uptime

Chapter 1. Introduction

-r--r--r-- 1root root 0 Sep 19 18:09 version
[blueflux@workl proc]$

Most of the information in the files are rather "human readable”, except a few of them. However,
a few of them you should not touch, such as the kcore file. The kcore file contains debugging
information regarding the kernel, and if you try to 'cat’ it, your system may very well hang up
and die. If you try to copy it to a real file on the harddrive, you will very soon have filled up your
whole partition, and so on. What all of this tells you is to be very careful. Mostly, none of the
variables or entries in the /proc filesystem is not dangerous to watch, but a few of them are. A
brief walkthrough of the most important files:

» cmdline - The command line issued when starting the kernel.

« cpuinfo - Information about the Central Processing Unit, who made it, known bugs, flags
etcetera.

» dma - Contains information about all DMA channels available, and which driver is using it.
« filesystems - Contains short information about every single filesystem that the kernel supports.

* interrupts - Gives you a brief listing of all IRQ channels, how many interrupts they have seen
and what driver is actually using it.

 iomem - A brief file containing all IO memory mappings used by different drivers.
* ioports - Contains a brief listing of all 10 ports used by different drivers.

* kcore - Contains a complete memory dump. Do not cat or anything like that, you may freeze
your system. Mainly used to debug the system.

» kmsg - Contains messages sent by kernel, is not and should not be readable by users since it
may contain vital information. Main usage is to debug the system.

* ksyms - This contains the kernel symbol table, which is mainly used to debug the kernel.
* loadavg - Gives the load average of the system during the last 1, 5 and 15 minutes.

* meminfo - Contains information about memory usage on the system.

» modules - Contains information about all currently loaded modules in the kernel.

* mounts - Symlink to another file in the /proc filesystem which contains information about all
mounted filesystems.

* partitions - Contains information about all partitions found on all drives in the system.

* pci - Gives tons of hardware information about all PCI devices on the system, also includes
AGP devices and built in devices which are connected to the PCI bus.

* swaps - Contains information about all swap partitions mounted.
 uptime - Gives you the uptime of the computer since it was last rebooted in seconds.

« version - Gives the exact version string of the kernel currently running, including build date
and gcc versions etcetera.

And here is a list of the main directories and what you can expect to find in there:

Chapter 1. Introduction
* bus - Contains information about all the buses, hardware-wise, such as USB, PCI and ISA
buses.
* ide - Contains information about all of the IDE buses on systems that has IDE buses.

* net - Some basic information and statistics about the different network systems compiled into
the system.

* scsi - This directory contains information about SCSI buses on SCSI systems.

* sys - Contains lots of variables that may be changed, including the /proc/sys/net/ipv4 which will
be deeply discussed in this document.

As you can see, there is literally hundreds of files in the /proc filesystem that may be read and
checked for information, and we haven’t looked at half of them here. As has already been said,
we will only look closer on the ipv4 part and the variables that are tunable through the sysctl
inside the /proc filesystem.

Chapter 2. How to set variables

The ipsysctl variables may be set in two different ways which entails two totally different
methods. The first one is via the sysctl application provided with most distributions per default
these days. The other way entails using the /proc filesystem, which should come with any linux
installation as long as you have a kernel that has /proc filesystem turned on. In other words,
any linux system you find should contain the /proc filesystem).

The sysctl command is a bit more complex than the /proc filesystem, depending on how you
see things. Also, as already mentioned, if you use the sysctl application you need more than
just the kernel which is almost all that is required via the /proc filesystem. One of the better
things with the sysctl command is that it is much easier to maintain a larger listing of changes
that we may want to do. All of the changes that we want to use on the system can then be
saved into a special configuration file which contains all of the variables and their values. This
way of doing things is in other words more suitable for setting variables that we want to use
under all circumstances.

The /proc filesystem way of doing things is a little bit easier while tweaking around with settings.
When we finally have figured out the proper setting, we may as well set it in the sysctl.conf file
and see to it that sysctl is run upon boot, and we will always have our settings set to kernel.
Command lines in a script which sets variables through the /proc filesystem will look much
worse than sysctl commands and they are generally less readable. Therefore, if you are
planning to implement a huge set of ipsysctl settings in a script or another, or if you figure out
that you need to set a lot of them, then you should generally try to use the sysctl command
instead.

With the sysctl application

The sysctl application can be used to either set variables through the command line, or to set a
larger set of variables through a configuration file as previously described. sysctl may also set
several variables through the command line at once if need be, and it may also be used to list
all variables and their respective values. First of all, to list all variables possible you could issue
the following command:

sysctl -a

This should list all the variables and their values separated by a "=" sign. The -a or -A sign will
display all possible variables and their values. The -a option will list all variables separated from
the values with a "=", while -A will show the variables and values in a table form. As of writing
this, -A does not work, but should hopefully do so in the close future.

As you can see there are a lot of variables really, but most of them do not pertain to ipsysctl in
specific. Also note the dotted notation of the variables. In sysctl, variables switch the "/" sign for
the "." sign to separate different levels. sysctl will accept "/" instead of "." and there should be
no problem really with this, but just as a note on how things look. If you would only like to read a
specific variable, you would do the following:

sysctl net.ipv4.tcp_sack

Chapter 2. How to set variables

If we would like to set a value with sysctl we would send the -w option to the command and
then the variable we would like to write to and the new value separated by an equal sign. This
would then look like this:

sysctl -w net.ipv4.tcp_sack=0

This will set the tcp_sack value to 0, then print the variable with its new value and exit. Nothing
strange in other words. If we would instead like to load the configuration file as explained
previously, we would run the following command:

sysctl -p

This will load all of the settings we have in the /etc/sysctl.conf file. If we would instead like to
use another file than the default one, we would specify the file we would like to use after the -p
option, like this:

sysctl -p /etc/testsysctl.conf

This would then load the testsysctl.conf configuration options instead of our default file. The
sysctl.conf file is very basic and don't take a lot of settings. First of all, a line starting with a ; or
is a comment as usual, and all commands starts with the path to the variable, including the
variable name, and then an equal sign followed by the value to set the variable to. The path to
the variable is relative to /proc/sys as with all of these settings. An example sysctl.conf file
would look like this:

This is a comment
net.ipv4.ip_forward = 0
net.ipv4.conf.all.rp_filter = 1
kernel.sysrqg =0

This file will set net.ipv4.ip_forward to O, or in other words turn it off, which means that no IP
packets will be forwarded between interfaces, if you want to share your internet connection to
one or more other computers, this should be turned on. net.ipv4.conf.all.rp_filter will turn on
routing policy filters. This setting tells the kernel to automatically filter packets based on their
source address depending on where they come from.

Finally, kernel.sysrq does not have anything to do with networking really, it is a setting that turns
off the sysrq key combination that can be used if the system has crashed. This value was
added to show that there exist a lot of other settings than the ipsysctl settings in sysctl.

With /proc

The proc filesystem may very well be used to set all values in ipsysctl, however, this way of
setting and reading variables should probably be more suitable for experimenting, and when we
do not have access to the sysctl tool. This is also very good when we are dealing with certain
variables that should not be turned on before a specific time in bootup. For example, it may be
a very bad idea to turn on ip_forward before we have all the firewall rules and routes up and
running.

All you need to use this method of reading and setting variables is the cat and echo commands
as well as a standard shell such as bash. It is highly unlikely that you do not have any of these

Chapter 2. How to set variables

since all distributions carry these and should be more or less impossible to not install with the
installation process.

First of all, all variables that may be used to change the default behaviour on your system
resides in the /proc/sys/ directory. The settings that we are interested in during this tutorial are
all placed within the /proc/sys/net/ipv4 directory. In other words, all you need to do to go there is
the following command

cd /proc/sys/net/ipvd
To see all the variables available, issue the following command
Is

In other words, you should know about all of this already. If you don’t, you are probably reading
the wrong documentation. To see the setting in a specific variable, you would issue the cat
ip_forward command. This would look something like this:

[blueflux@work1 ipv4]$ cat ip_forward
0
[blueflux@workl ipv4]$

As you can see, these variables can be read by anyone who has an account on the machine in
guestion. This could pose as a small security problem since anyone who gets on to your linux
computer will be able to figure out all of your exact settings without too much hassle.

Caution

It is unfortunately impossible to block read access to the /proc filesystem as of
writing this. The problem is that all read/write permissions are hardcoded within
the /proc filesystem itself. and because of this, it is impossible to change the
settings manually. If you really really need to change these settings, you can do it
for the whole system from within the linux/fs/proc directory, which contains the
source code for the Linux /proc filesystem.

If we would like to change the above setting we would use the echo command. The echo
command will normally echo any line we provide it with back to us on the screen. However, this
could be piped via pretty much any standard shell to the file that we would like to save it in. This
could then look like the following in bash:

[root@work1 ipv4]# echo "1" > ip_forward
[root@work1 ipv4]#

As you can see, this time around we need to have root access to set the variable value. If we
do not have root access, we would get the following error message:

[blueflux@workl ipv4]$ echo "1" > ip_forward
bash: ip_forward: Permission denied
[blueflux@workl ipv4]$

Chapter 2. How to set variables

Do note that all the above examples takes into account that we are already within the the
correct directory in the proc filesystem. This is the reason why we have not written the
complete path to the variables.

Chapter 3. IPv4 variable reference

This chapter will go through each and one of the IPv4 variables possible to set via sysctl or the
proc filesystem. You will be provided with a basic explanation on what behaviour the variable
will change and how, as well as default behaviour, if possible, and what values the variable may
be set to. We will not go into any deeper discussion about why each variable should be
changed unless there are any very normal reasons to change the values. The structure used
within this reference chapter will follow the same structure as the structure used within ipsysctl
structure, as well as the default ipv4 directory being further structured due to its large size and
mix of many different variables.

IP Variables

This list contains all of the variables available in a standard 2.4.x kernel that pertains to the IP
settings. As you will see, there is a huge set of them, and some should be properly set from the
beginning for you, and others may not be so properly set. Most of them should look quite
proper, however, some do require some extra configuration depending on your needs, but most
should be decently set for you as is.

ip_autoconfig

ip_default_ttl

The ip_default_ttl variable tells the kernel what Time To Live to set as default on packets that
leaves this host. This tells how long the packets may live on the internet before they are
dropped. Each time the packet passes a router, firewall, computer, etcetera, the TTL is
decremented with one step.

The default value for ip_default_ttl is 64, which is a fairly good TTL which will not cause too
much trouble. It is very unlikely to time out in transit to the host in question. This variable takes
an unsigned integer, but the actual TTL field is only 8 bit long. The value may in other words be
as high as 255 and as low as 0, however 255 could be considered rude and 0 wouldn’t leave
your computer at all. 64 is a good value, unless you are trying to connect to computers
extremely far away counted in hops or jumps. These would then time out. As it looks today, |
have pretty much never seen a host that lives more than 30 hops away on the internet, so |
don't think there is any need to make this value higher than the default value for now.

Setting the TTL to 255 would be considered rude since this would make a packet live an
extremely long time on the internet. If there would be a glitch in 2 routers, this packet could
bounce back and forth for a huge amount of time, eating away on the bandwidth without any
reason at all. Normally, don't set this value higher than 100 or something alike.

Chapter 3. IPv4 variable reference

ip_dynaddr

The ip_dynaddr variable is used to allow a few problems with dynamic addressing to be fixed.
This allows diald oneshot connections to get established by dynamically changing packet
source address, and sockets if local processes. This option was implemented for TCP diald-box
connections and Masquerading connections. Masquerading will in other words work 100% with
this option, letting Masquerading switch source adress of packets if the boxes own address
change.

This option takes an integer, but only makes use of 3 possible states, 0, 1 or 2.

- 0 means that this option is turned off, which is also the default behaviour.
- 1 means that the option is enabled and running.

« Any non 0 or 1 values means that we have turned on verbose mode, which in turn will add
extra debugging messages that you may use to get things to work properly.

If this variable is turned on and forwarding interface changes, this is what may happen

« Socket and packet source address is rewritten on retransmissions while in SYN_SENT state.
This is the diald-box processes.

« Outbound masqueraded source address changes on output, when internal host does
retransmission, until a packet from the outside is received by the tunnel.

This is especially helpful for auto-dialup links (diald), where the actual outgoing address is
unknown at the moment the link is going up. This enables the same, local and masqueraded,
connection requests that brought the link up to actually establish their connections. This means
that we will not have to first issue an connection request just to bring the connection up, and
then have to issue the "real" connection request when we have actually established the
connection.

ip_forward

The ip_forward variable is used to turn IP forwarding on or off. This means that we can turn off
the functions for forwarding packets between interfaces, which lets the computer act as a
firewall, or router. Note that this is an extremely important variable for Network Address
Translation, firewalling, routing, masquerading, and all other things where we actually let
packets through the box to another network, as you can understand.

This is an boolean variable. In other words, it will take a 1 or a 0. The default value for this
variable is 0, or disabled. As you can understand, 0 means disabled and 1 means enabled.

Note that this is an very special variable since it will reset all configuration parameters to their
default states if it is changed. For a complete list of the exact states, look closer at RFC1122
(other/rfc1122.txt) for hosts and RFC1812 (other/rfc1812.txt) for routers.

10

Chapter 3. IPv4 variable reference

ip_local_port_range

The ip_local_port_range variable consists of two integers which tells the kernel which ports to
use for client connections. This means, all connections going from our box to some other box

and where we are the client. The first port is the lower bound and the second one is the upper
bound.

The default value in this variable depends on how much memory you have. If you have more
than 128 megabytes of physical memory, the lower bound will be 32768 and the upper bound
will be 61000. If the computer has less than 128 megabytes of physical memory, the lower
bound will be 1024 and the upper bound will be 4999, or even less.

This number defines the possible active connections which this system can issue
simultaneously (ie, at the same time) to other systems that does not support the TCP extension
timestamps.

If you have tcp_tw_recycle enabled (the default behaviour) range 1024-4999 is enough to issue
up to 2000 connections per second to systems supporting timestamps. In other words, this
should be more than enough for most of us.

ip_no_pmtu_disc

The ip_no_pmtu_disc disables PMTU (Path Maximum Transfer Unit) discovery if enabled. In
most cases this is good, so it is per default set to FALSE (ie, Path Maximum Transfer Unit is
used). However, in some cases this is bad and may lead to broken connectivity. If you are
experiencing problems like this, you should turn this option off and set your MTU to a
reasonable value yourself.

Do note that MTU and PMTU are two different things. MTU tells the kernel the maximum
transfer unit for our connection, but not over the whole connection to the other end. PMTU
discovery tries to discover the maximum transfer unit to specific hosts, including all the
intermediate hops on the way there.

The default value is that the ip_no_pmtu_disc is FALSE, as already stated. If this is set to
TRUE, PMTU discovery is turned off. The ip_no_pmtu_disc takes a boolean value, in other
words either an 1 or a 0, where 1 is on and O is off.

ip_nonlocal_bind

The ip_nonlocal_bind variable allows us to set if local processes should be able to bind to
non-local IP addresses. This could be quite useful, in such cases where we want specific
programs or applications to be able to listen to non-local IP adresses, such as sniffing for traffic
to a specific host which may commit bad things, etcetera. The variable may, however, break
some applications and they will no longer work.

The ip_nonlocal_bind variable takes a boolean value which can be set to 1 or 0. If the variable
is set to 0, this option is turned off and if it is set to 1 it is turned on. The default value is to turn
this option off, or O in other words.

11

Chapter 3. IPv4 variable reference
ipfrag_high_thresh

The ipfrag_high_thresh tells the kernel the maximum amount of memory to use to reassemble
IP fragments. When and if the high threshold is reached, the fragment handler will toss all
packets until the memory usage reaches ipfrag_low_thresh instead. This means that all
fragments that reached us during this time will have to be retransmitted.

Packets are fragmented if they are too large to pass through a certain pipe. If they are to large,
the box that is trying to transmit them breaks them down into smaller pieces and send each
piece one by one. When these fragments reaches their destination, they need to be
defragmented (ie, put together again) to be read properly. Note that IP Fragmentation are in
general a good thing, but there are a lot of people that do bad things with them since fragments
are inherently a security problem.

The ipfrag_high_thresh variable takes an integer value, which would mean 0 through
2147483647 bytes can be assigned to be the upper limit of this function. The default value is
262144 bytes, or 256 kilobytes, which should work well in even the most extreme cases.

ipfrag_low_thresh

This option has a lot to do with the ipfrag_high_thresh option. The ipfrag_low_thresh is the
lower limit at which packets should start being assembled again. What this means, all in all, is
that our fragmentation handler has an queue that grows larger the more packets are waiting in
the queue to be defragmentized, when this queue grows to ipfrag_high_thresh byte size, the
fragmentation handler queue will stop queueing any further fragments until we reach the
ipfrag_low_thresh again. This stops our system from being overloaded with fragmentized
packets and may stop certain Denial of Service attacks.

This variable takes an integer value between 0 and 2147483647, and refers to the amount of
bytes used at which the fragmentation handler should resume the receiving of IP fragments
again. Per default it is set to 196608 bytes, or 192 kilobytes which should be a reasonable
amount of memory set aside for this task even in the hardest of attacks. This value should be
lower than ipfrag_high_thresh, or else it will be invalid.

ipfrag_time

The ipfrag_time variable tells the IP fragmentation handler how long to keep an IP fragment in
memory, counted in seconds. This only refers to fragments that has been impossible to
reassemble since fragments that has been assembled most probably has already been sent on
to either the next layer, or to the next host.

The ipfrag_time variable takes an integer as its input and the value is counted as seconds. In
other words, if you input 5 to this variable, it counts as 5 seconds.

12

Chapter 3. IPv4 variable reference

Inet peer storage

The inet peer storage contains information pertaining to specific peers, or nodes on the
Internet. However, it only contains information with a long life expectancy, and information that
is not dependant upon routes. For the moment, this means that it only contains information
about the ID field for the next outgoing packet. There are a few variables that changes the
behaviour of the inet peer storage today, mainly how often garbage collecting is done, as well
as how long time to live each peer has in the storage.

inet_peer_gc_maxtime

The inet_peer_gc_maxtime variable tells the garbage collector how often to pass over the inet
peer storage memory pool during low, or absent, memory pressure. This value is in effect
under the reversed conditions of the inet_peer_gc_mintime in other words. It works exactly the
same as the inet_peer_gc_mintime, except for the fact that it will be in effect under different
system loads. This variable is also measured in jiffies, which is explained closer in appendix A.

The inet_peer_gc_maxtime variable takes an integer value and has a default value of 120
jiffies. 120 jiffies should be a good value for most workstations and servers.

inet_peer_gc_mintime

The inet_peer_gc_mintime variable sets the minimum time between garbage collections (gc)
passes in the inet peer storage under heavy memory pressure. If the system is under heavy
utilization and there is a lot of constraints on the memory pool, this timer is used to tell the
garbage collector how often to pass over the memory pool used by the inet peer storage, in
jiffies. For a complete explanation of jiffies, see appendix A.

The inet_peer_gc_mintime variable takes an integer value and has a default value of 10 jiffies.
This should be a fairly good value for most users and servers.

inet_peer_maxttl

This is the maximum time to live for the inet peer entries. Unused entries will expire after this
period of time if there is no memory pressure on the pool. This would in other words mean
when the number of entries in the pool is very small, and likely situations.

The inet_peer_maxttl variable takes an integer value, and is measured in jiffies. For a complete
explanation of jiffies, see appendix A.

inet_peer_minttl

This is the minimum time to live for inet peer entries. This should be set to an high enough
value to cover fragment time to live in the reassembling side of fragmented packets. The
minimum time to live is guaranteed if the pool size is less than inet_peer_threshold.

13

Chapter 3. IPv4 variable reference

The inet_peer_minttl variable takes an integer value, and is measured in jiffies. For a complete
explanation of jiffies, see appendix A.

inet_peer_threshold

The inet_peer_threshold variable tells the approximate size of the inet peer storage. When this
limit is reached, peer entries will be thrown away agressively, using the inet_peer_gc_mintime
timeout. This threshold will also determine how long an entry may "live" in the peer storage, in
other word it is one of the parts which decides the entries time to live. To put it simple, the
higher this value is, the longer the time to live within your system.

This variable takes an integer and defaults to the value 65664 bytes.

TCP Variables

This section will take a brief look at the variables that changes the behaviour of the TCP
variables. These variables are normally set to a pretty good value per default and most of them
should never ever be touched, except when asked by authoritative developers! They are mainly
described here, only for those who are curious about their basic meaning.

tcp_abort_on_overflow

The tcp_abort_on_overflow variable tells the kernel to reset new connections if the system is
currently overflowed with new connection attempts that the daemon(s) can not handle. What
this means, is that if the system is overflowed with 1000 large requests in a burst, connections
may be reset since we can not handle them if this variable is turned on. If it is not set, the
system will try to recover and handle all requests.

This variable takes an boolean value (ie, 1 or 0) and is per default set to 0 or FALSE. Avoid
enabling this option except as a last resort since it most definitely harm your clients. Before

considering using this variable you should try to tune up your daemons to accept connections
faster.

tcp_adv_win_scale

This variable is used to tell the kernel how much of the socket buffer space should be used for
TCP window size, and how much to save for an application buffer. If tcp_adv_win_scale is
negative, the following equation is used to calculate the buffer overhead for window scaling:

14

Chapter 3. IPv4 variable reference

Where bytes are the amount of bytes in the window. If the tcp_adv_win_scale value is positive,
the following equation is used to calculate the buffer overhead:

The tcp_adv_win_scale variable takes an integer value and is per default set to 2. This in turn
means that the application buffer is 1/4th of the total buffer space specified in the tcp_rmem
variable.

tcp_app_win

This variable tells the kernel how many bytes to reserve for a specific TCP window in the TCP
sockets memory buffer where the specific TCP window is transfered in. This value is used in a
calculation that specifies how much of the buffer space to reserve that looks as the following:

As you may understand from the above calculation, the larger this value gets, the smaller will
the buffer space be for the specific window. The only exception to this calculation is 0, which
tells the kernel to reserve no space for this specific connection. The default value for this
variable is 31 and should in general be a good value. Do not change this value unless you
know what you are doing.

tcp_dsack

This option is required to send duplicate SACKs which was briefly described in the tcp_sack
variable explanation. This is described in detail within the RFC 2883. This RFC document
explains in detail how to handle situations where a packet is received twice or out of order.
D-SACK is an extension to standard SACK and is used to tell the sender when a packet was
received twice (ie, it was duplicated). The D-SACK data can then be used by the transmitter to
improve network settings and so on. This should be 100% backwards compatible with older
implementations as long as the previous implementors have not tried to implement this into the
old SACK option in their own fashion. This is extremely rare and should not be a problem for
anyone.

The tcp_dsack variable uses a boolean value and is per default set to 1, or turned on. Of
course, this behaviour is only used if tcp_sack is turned on since tcp_dsack is heavily
dependant upon tcp_sack. In almost all cases this should be a good idea to have turned on.

15

Chapter 3. IPv4 variable reference

tcp_ecn

The tcp_ecn variable turns on Explicit Congestion Notification in TCP connections. This is used
to automatically tell the host when there are congestions in a route to a specific host or a
network. This can be used to throttle the transmitters to send packets in a slower rate over that
specific router or firewall. Explicit Congestion Notification (ECN) is explained in detail in the
RFC 3168 - The Addition of Explicit Congestion Notification (ECN) to IP document and there is
also a performance evaluation of the addition of ECN available in the RFC 2884 - Performance
Evaluation of Explicit Congestion Notification (ECN) in IP Networks document.

Briefly, this document details how we could notify other hosts when we are congested or not,
which in turn will make us able to choose other routes in preference over the currently used
route, or to simply send less data until we no longer receive congestion messages.

Caution

There are still some old firewalls and routers out on the Internet that will filter away
all IP packets that has the ECN bits set. They are fairly uncommon these days, but
if you are unlucky, you may run into them. If you do experience connection
problems to specific hosts, try turning ECN off and see how things go. If you find
the actual host blocking the ECN packets, try getting in touch with the
administrators and warn them about this. A deeper explanation of the problem, as
well as a list of the most common hardware that causes this trouble is available,
and can be found in the Other resources appendix, under the ECN-under-Linux
Unofficial Vendor Support Page heading.

The tcp_ecn variable takes a boolean value and is per default set to 0, or turned off. If you want
to turn this on in your kernel, you should set this variable to 1.

tcp_fack

The tcp_fack variable enables the Forward Acknowledgement system in Linux. Forward
Acknowledgement is a special algorithm that works on top of the SACK options, and is geared
at congestion controlling.

The main idea of FACK algorithm is to consider the most forward selective acknowledgement
sequence number as a sign that all the previous un(selectively) acknowledged segments were
lost. This observation allows to improve recovery of losses singificantly. This assumption
breaks in presence of packet reordering, in which case the FACK algorithm is automatically
turned off for that specific connection.

This algorithm was originally created by Matthew Mathis and co-authors. You can find the
papers describing the algorithm more closely over at http://www.psc.edu/~mathis/.

The tcp_fack variable takes a boolean value, and is per default set to 1, or turned on. This
behaviour is not used if tcp_sack is turned off since it is heavily dependant upon tcp_sack.

16

Chapter 3. IPv4 variable reference

tcp_fin_timeout

The tcp_fin_timeout variable tells kernel how long to keep sockets in the state FIN-WAIT-2 if
you were the one closing the socket. This is used if the other peer is broken for some reason
and don't close its side, or the other peer may even crash unexpectedly. Each socket left in
memory takes approximately 1.5Kb of memory, and hence this may eat a lot of memory if you
have a moderate webserver or something alike.

This value takes an integer value which is per default set to 60 seconds. This used to be 180
seconds in 2.2 kernels, but was reduced due to the problems mentioned above with
webservers and problems that arose from getting huge amounts of connections.

Also see the tcp_max_orphans and tcp_orphan_retries variables for more information.

tcp_keepalive_intvl

The tcp_keepalive_intvl variable tells the kernel how long to wait for a reply on each keepalive
probe. This value is in other words extremely important when you try to calculate how long time
will go before your connection will die a keepalive death.

The variable takes an integer value and the default value is 75 seconds. This is in the higher
regions and should be concidered the higher threshold on what values should be concidered
normal to use. The default values of the tcp_keepalive_probes and tcp_keepalive_intvl can be
used to get the default time it will take before the connection is timed out because of keepalive.

With the default values of sending 9 probes with 75 seconds for each, it would take
approximately 11 minutes before the connection is timed out, counting from when we start the
probing which in turn will happen 2 hours from the time we last saw any traffic on the
connection.

tcp_keepalive_probes

The tcp_keepalive_probes variable tells the kernel how many TCP keepalive probes to send
out before it decides a specific connection is broken.

This variable takes an integer value, which should generally not be set higher than 50
depending on your tcp_keepalive_time value and the tcp_keepalive_interval. The default value
is to send out 9 probes before telling the application that the connection is broken.

tcp_keepalive_time

The tcp_keepalive_time variable tells the TCP/IP stack how often to send TCP keepalive
packets to keep an connection alive if it is currently unused. This value is only used when
keepalive is enabled.

The tcp_keepalive_time variable takes an integer value which is counted in seconds. The
default value is 7200 seconds, or 2 hours. This should be a good value for most hosts and will
not take too much network resources from you. Do not set this value to low since it will then use
up your network resources with unnecessary traffic.

17

Chapter 3. IPv4 variable reference

tcp_max_orphans

The tcp_max_orphans variable tells the kernel how many TCP sockets that are not attached to
any user file handle to maintain. In case this number is exceeded, orphaned connections are
immediately reset and a warning is printed.

The only reason for this limit to exist is to prevent some simple DoS attacks. Generally you
should not rely on this limit, nor should you lower it artificially. If need be, you should instead
increase this limit if your network environment requires such an update. Increasing this limit
may require that you get more memory installed to your system. If you hit this limit, you may
also tune your network services a little bit to linger and kill sockets in this state more
aggressively.

This variable takes an integer value and is per default set to 8192, but heavily depends upon
how much memory you have. Each orphan that currently lives eats up 64Kb of unswappable
memory, which means that one hell of a lot of data will be used up if problems arise.

Note: If you run into this limit, you will get an error message via the syslog facility kern.info that looks
something like this:

TCP: too many of orphaned sockets

If this shows up, either upgrade the box in question or look closer at the tcp_fin_timeout or
tcp_orphans_retries which should give you some help with getting rid of huge amounts of orphaned
sockets.

tcp_max_syn_backlog

The tcp_max_syn_backlog variable tells your box how many SYN requests to keep in memory
that we have yet to get the third packet in a 3-way handshake from. The tcp_max_syn_backlog
variable is overridden by the tcp_syncookies variable, which needs to be turned on for this
variable to have any effect. If the server suffers from overloads at peak times, you may want to
increase this value a little bit.

This variable takes an integer value and is per default set to different values depending on how
much memory you have. If you have less than 128 Mb of RAM, it is set to a maximum of 128
SYN backlog requests. If you have more than 128 Mb of RAM, it is set to 1024 SYN backlog
requests.

Caution

If this value is raised to a larger value than 1024 it would most probably be better
to change the TCP_SYNQ_HSIZE value and recompile your kernel. The
TCP_SYNQ_HSIZE variable is set in linux/include/tcp.h. This value should be set
so to keep this formula true:

TCP_SYNQ_HSIZE*16<=tcp_max_syn_backlog

In other words, TCP_SYNQ_HSIZE times 16 should be smaller than or equal to
tcp_max_syn_backlog.

18

Chapter 3. IPv4 variable reference

tcp_max_tw_buckets

The tcp_max_tw_buckets variable tells the system the maximum number of sockets in
TIME-WAIT to be held simultaneously. If this number is exceeded, the exceeding sockets are
destroyed and a warning message is printed to you. The reason for this limit to exist is to get rid
of really simple DoS attacks.

The tcp_max_tw_buckets variable takes an integer value which tells the system at which point
to start destroying timewait sockets. The default value is set to 180000. This may sound much,
but it is not. If anything, you should possibly need to increase this value if you start receiving
errors due to this setting.

Caution

You should not lower this limit artificially. If you start receiving errors indicating this
problem in normal operation, you should instead increase this value if your
network requires so. This may lead to the requirement of more memory installed in
the machine in question.

tcp_mem

The tcp_mem variable defines how the TCP stack should behave when it comes to memory
usage. It consists of three values, just as the tcp_wmem and tcp_rmem variables. The values
are measured in memory pages (in short, pages). The size of each memory page differs
depending on hardware and configuration options in the kernel, but on standard i386
computers, this is 4 kilobyte or 4096 bytes. On some newer hardware, this is set to 16, 32 or
even 64 kilobytes. All of these values have no real default value since it is calculated at boottime
by the kernel, and should in most cases be good for you and most usages you may encounter.

The first value specified in the tcp_mem variable tells the kernel the low threshold. Below this
point, the TCP stack do not bother at all about putting any pressure on the memory usage by
different TCP sockets.

The second value tells the kernel at which point to start pressuring memory usage down. This
so called memory pressure mode is continued until the memory usage enters the lower
threshold again, and at which point it enters the default behaviour of the low threshold again.
The memory pressure mode presses down the TCP receive and send buffers for all the sockets
as much as possible, until the low mark is reached again.

The final value tells the kernel how many memory pages it may use maximally. If this value is
reached, TCP streams and packets start getting dropped until we reach a lower memory usage
again. This value includes all TCP sockets currently in use.

Tip: This variable may give tremenduous increase in throughput on high bandwidth networks, if used
properly together with the tcp_rmem and tcp_wmem variable. The tcp_rmem variable doesn’t need
too much manual tuning however, since the Linux 2.4 kernels has very good autotuning handlings on
this aspect, but the other two may be worth looking at. For more information about this, look at the
TCP Tuning Guide.

19

Chapter 3. IPv4 variable reference

tcp_orphan_retries

The tcp_orphan_retries variable tells the TCP/IP stack how many times to retry to kill
connections on the other side before killing it on our own side. If your machine runs as a highly
loaded http server it may be worth thinking about lowering this value. http sockets will consume
large amounts of resources if not checked.

This variable takes an integer value. The default value for this variable is 7, which would
approximately correspond to 50 seconds through 16 minutes depending on the Retransmission
Timeout (RTO). For a complete explanation of the RTO, read the "3.7. Data Communication”
section in RFC 793 - Transmission Control Protocol.

Also see the tcp_max_orphans variable for more information.

tcp_reordering

The tcp_reordering variable tells the kernel how much a TCP packet may be reordered in a
stream without assuming that the packet was lost somewhere on the way. If the packet is
assumed lost, the TCP stack will automatically go back into a slow start since it believes
packets may have been lost due to congestion somewhere. The TCP stack will also fall back
from using the FACK algorithm for this specific host in the future.

This variable takes an integer variable and is per default set to 3. This should in general be a
good value and you should not touch it. If this value is lowered, it may result in bad network
performance, especially if packets often get reordered in connections.

Note: This variable is overridden by the reordering option in the ip route command starting
with kernels 2.3.15 and higher. If reordering is not given to the ip route command, the default
is taken from the sysctl tcp_reordering.

tcp_retrans_collapse

This variable implements a bug in the TCP protocol so it will be able to talk to certain other
buggy TCP stacks. Without implementing this bug in the TCP stack, we would be unable to talk
to certain printers that has this bug built in. This bug makes the TCP stack try to send bigger
packets on retransmission of packets to work around bugs in those printers and other hardware
implementations.

This variable takes a boolean value and is normally set to 1, or on. Implementing this bug
workaround will not break compatibility from our host to others, but it will make it possible to
speak to those printers. In general, it should not be a dangerous workaround, but you may turn
it off if you receive weird error messages.

20

Chapter 3. IPv4 variable reference

tcp_retriesl

The tcp_retries] variable tells the kernel how many times it should retry to get to a host before
reaching a decision that something is wrong and that it should report the suspected problem to
the network layer. The minimal value here specified by RFC ???? is 3, which is also the default.
This corresponds to 3 seconds through 8 minutes depending on your Retransmission timeout
(RTO). For a good explanation of the Retransmission timeout, read the "3.7. Data
Communication" section in RFC 793 - Transmission Control Protocol.

This variable takes an integer, which is per default set to 3 as explained above. The lower limit
is 3 if you want to follow standards, and the upper bound should be lower than 100 or so since
timeouts could be worse than horrible if this high.

tcp_retries2

The tcp_retries2 value tells the kernel how many times to retry before killing an alive TCP
connection. This limit is specified to a minimum of 100 seconds in RFC 1122, but is normally
way to short.

The variable takes an integer value and is set to 15 per default. This value corresponds to
13-30 minutes depending on the Retransmission timeout (RTO). Generally this should be a
good timeout, you may bring it down but not necessarily.

tcp_rfc1337

The tcp_rfc1337 variable implements the solution found in RFC 1337 - TIME-WAIT
Assassination Hazards in TCP to TIME-WAIT Assassination. In short, the problem is that old
duplicate packets may interfer with new connections, and lead to three different problems. The
first one is that old duplicate data may be accepted erroneously in new connections, leading to
the sent data becoming corrupt. The second problem is that connections may become
desynchronized and get into an ACK loop because of old duplicate packets entering new
connections, which will become desynchronized. The third and last problem is that old duplicate
packets may enter newly established connections erroneously and kill the new connection.

There are three possible solutions to this according to the mentioned RFC, however, one
solution is only partial and not a long term solution, while the last requires heavy modifications
of the TCP protocol, and is hence not a viable option.

The final solution that the linux kernel implements with this option, is to simply ignore RST
packets sent to a socket while it is in the TIME-WAIT state. In use together with 2 minute
Maximum Segment Life (MSL), this should eliminate all three problems discussed in RFC 1337.

tcp_rmem

The tcp_rmem variable is pretty much the same as the tcp_wmem, except in one large area. It
tells the kernel the TCP rec