
TE
AM
FL
Y

Team-Fly®

Viruses Revealed

David Harley, Robert Slade, Urs Gattiker

Osborne/McGraw-Hill
New York Chicago San Francisco

Lisbon London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore Sydney Toronto

Blind Folio i

Copyright © 2001 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the
United States of America. Except as permitted under the United States Copyright Act of 1976, no part
of this publication may be reproduced or distributed in any form or by any means, or stored in a data-
base or retrieval system, without the prior written permission of the publisher.

The material in this eBook also appears in the print version of this title: 0-07-213090-3.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit
of the trademark owner, with no intention of infringement of the trademark. Where such designations
appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales pro-
motions, or for use in corporate training programs. For more information, please contact George
Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors
reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted
under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not
decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use;
any other use of the work is strictly prohibited. Your right to use the work may be terminated if you
fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUAR-
ANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF
OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMA-
TION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the func-
tions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inac-
curacy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work.
Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental,
special, punitive, consequential or similar damages that result from the use of or inability to use the
work, even if any of them has been advised of the possibility of such damages. This limitation of lia-
bility shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort
or otherwise.

DOI: 10.1036/0072228180

0-07-222818-0

It has been said, in regard to computer network
communities, that no community is worthy of the name
until it has had a wedding and a funeral. We, in the
computer virus research tribe, have had both. We will not
embarrass the newlyweds here. We wish, however, to
dedicate this book to the memory of Ysrael Radai and
Harold Joseph Highland. Their contributions to our field,
and to so many others, are appreciated, and they will be
sorely missed.

To the Meeter Machine, and its viral output.
—Robert Slade

To my daughter Katie, my constant reminder that
computer security should not be confused with real life.
Now, perhaps, we’ll have time to play Monopoly.
Also to my mother, Gwendoline Harley, for being an
honorary parent to Katie when I had to find time for
Baby Book.

—David Harley

Dedicated to my friends Inger Marie, Melanie, Lars,
Rainer, Stefano, and all my current and past students who
continue in keeping me going when obstacles seem
insurmountable.

—Urs Gattiker

Blind Folio iii

This page intentionally left blank.

ContentsTable of Contents

Foreword . xxi
About the Authors . xxv
Acknowledgments . xxix
Introduction . xxxi

I The Problem

1 Baseline Definitions . 3
Computer Virus Fact and Fantasy . 4
Definitions . 5

Viruses and Virus Mechanisms . 6
Virus Structure . 7
Damage . 7
Damage Versus Infection . 8
Stealth Mechanisms . 9
Polymorphism . 10
What Is This, a UNIX Textbook? . 10
Diet of Worms . 12
Trojan Horses . 12
In the Wild . 13

Instant Guide to Anti-Virus Software . 15
Summary . 16

2 Historical Overview . 17
Virus Prehistory: Jurassic Park to Xerox PARC . 18

Wormholes . 19
Core Wars . 19
The Xerox Worm (Shoch/Hupp Segmented Worm) 20

Real Viruses: Early Days . 22

v

For more information about this title, click here.

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

1981: Early Apple II Viruses . 22
1983: Elk Cloner . 23
1986: © BRAIN . 25
1987: Goodnight Vienna, Hello Lehigh . 26
1988: The Worm Turns . 27

The Internet Age . 30
1989: Worms, Dark Avenger, and AIDS . 30
1990: Polymorphs and Multipartites . 32
1991: Renaissance Virus, Tequila Sunrise . 33
1992: Revenge of the Turtle . 34
1993: Polymorphism Rules . 36
1994: Smoke Me a Kipper . 37
1995: Microsoft Office Macro Viruses . 38
1996: Macs, Macros, the Universe, and Everything 39
1997: Hoaxes and Chain Letters . 40
1998: It’s No Joke . 40
1999: Here Comes Your 19th Server Meltdown 41
2000: Year of the VBScript Virus/Worm . 43

And So It Goes... . 48
Summary . 49

3 Malware Defined . 51
What Computers Do . 52
Virus Functionality . 53

Application Functionality Versus Security . 53
In-the-Wild Versus Absolute Big Numbers . 54
What Do Anti-Virus Programs Actually Detect? . 57

Viruses . 58
Worms . 61
Intendeds . 62
Corruptions . 63
Germs . 64
Droppers . 64
Test Viruses . 65
Generators . 65
Trojans . 66
Password Stealers and Backdoors . 70
Jokes . 71

v i V i r u s e s R e v e a l e d

Remote-Access Tools (RATs) . 74
DDoS Agents . 75
Rootkits . 77
False Alarms . 77

Summary . 79

4 Virus Activity and Operation . 81
How Do You Write a Virus? . 83
Tripartite Structure . 87

Infection Mechanism . 87
Trigger . 88
Payload . 88

Replication . 90
Non-Resident Viruses . 91
Memory-Resident Viruses . 91
Hybrid Viruses . 92

Generality, Extent, Persistence . 93
Payload Versus Reproduction . 94
Damage . 96

Impact of Viral Infection on the Computing Environment 96
Direct Damage from Virus and Trojan Payloads 97
Psychological and Social Damage . 98
Secondary Damage . 98
Hardware Damage . 99

Ban the Bomb . 100
Logic Bombs . 100
Time Bombs . 101
ANSI Bombs . 101
Mail Bombs and Subscription Bombs . 102

Summary . 102

5 Virus Mechanisms . 103
Hardware-Specific Viruses . 104

Boot-Sector Infectors . 105
The Boot Zone . 109
File Infectors . 112

Prependers and Appenders . 114
Overwriting Viruses . 115

C o n t e n t s v i i

Misdirection . 117
Companion (Spawning) Viruses . 118

Multipartite Viruses . 119
Interpreted Viruses . 121

Macro Viruses . 121
Scripting Viruses . 122

Concealment Mechanisms . 123
Stealth . 126
Polymorphism . 129
Social Engineering and Malware . 132

Summary . 134

II System Solutions

6 Anti-Malware Technology Overview . 139
Great Expectations . 140
How Do We Deal with Viruses and Related Threats? . 143

Pre-emptive Measures . 144
What Does Anti-Virus Software Do? . 151
Beyond the Desktop . 162
Outsourcing . 169

Summary . 170

7 Malware Management . 171
Defining Malware Management . 172

Proactive Management . 173
Reactive Management . 184

Cost of Ownership Versus Administration Costs . 186
Summary . 190

8 Information Gathering . 193
How Can I Check Whether Advice Is Genuine or Useful? 194
Books . 196

The Good . 197
The Bad (or Mediocre, at Least) . 198
The Really and Truly Ugly . 199
Related Topics . 200
General Security . 201

v i i i V i r u s e s R e v e a l e d

Legal . 204
Ethics . 205
Fiction . 206

Articles and Papers . 208
Online Resources . 216

Mailing Lists and Newsgroups . 217
Free Scanners . 218
Online Scanners . 218
Encyclopaedias . 219
Virus Hoaxes and False Alerts . 220
Evaluation and Reviews . 221
Anti-Virus Vendors . 222
General Resources . 223
Various Articles . 224
General Advice . 225
Specific Viruses and Vulnerabilities . 225
General Security References . 229

9 Product Evaluation and Testing . 237
Core Issues . 238

Cost . 239
Performance . 245
It’s Not My Default . 251
Disinfection and Repair . 253
Compatibility Issues . 255
Functional Range . 256
Ease of Use . 261
Configurability . 262
Testability . 264
Support Functions . 264
Documentation . 267
Outsourced Services . 269

Test Match . 269
Detection Versus Usability . 270
Other Ranks . 270
Upconversion . 271
It’s All Happening in the Zoo . 273
We Like EICAR . 277

C o n t e n t s i x

Further Information . 280
Summary . 281

10 Risk and Incident Management . 283
Risk Management . 285
The Best Form of Defence Is Preparation . 286

The Computer . 287
The Office . 288
Preventive Maintenance . 290
First, Do No Harm . 293

Reported Virus Incidents . 295
Help Desk Investigations . 295
Dealing with Virus Incidents . 297
Virus Identification . 299
General Protective Policies . 299

Summary . 300

11 User Management . 301
Managing the Managers . 303

Policies Count . 303
Security and Insurance . 304
Viruses and Insurance . 304

Risk/Impact Analysis . 305
Management Costs . 306
Policy Issues . 309
Help Desk Support . 311
Other IT Support Staff . 314
IT Security and Other Units . 314
Training and Education . 315
Positive Reinforcement . 319
Proactive Malware Management . 319
Safe Hex Guidelines . 320

Check All Alerts and Warnings with Your IT Department 320
Don’t Trust Attachments . 320
Take Care in Newsgroups and on the Web . 321
Don’t Install Unauthorized Programs . 322
Be Cautious with Microsoft Office Documents . 322

x V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

Use and Ask for Safer File Formats . 323
Continue to Use Anti-Virus Software . 323
Keep Your Anti-Virus Software Updated . 323
Up to Date Doesn’t Mean Invulnerable . 324
Super-users Aren’t Super-human . 324
Disable Floppy Booting . 324
Write-Protect Diskettes . 324
Office Avoidance . 325
Reconsider Your Email and News Software . 325
Show All File Extensions in Windows Explorer . 326
Disable the Windows Script Host . 326
Introduce Generic Mail Screening . 326
Utilize Microsoft Security Resources . 326
Subscribe to Anti-Virus Vendor Lists . 327
Scan Everything . 327
Don’t Rely on Anti-Virus Software . 327
Back Up, Back Up, Back Up . 328

Hoax Management . 329
Form Response . 329
A Quick Guide to Hoaxes . 330

Summary . 331

III Case Studies: What Went Wrong, What Went Right,
What Can We Learn?

12 Case Studies: The First Wave . 335
Brainwashing . 336

Who Wrote the Brain Virus? . 337
Banks of the Ohio . 338

The MacMag Virus . 339
Give Peace a Chance . 340
The Wanton Seed . 342
Macros Mess with Your Mind . 343

Scores . 343
Lehigh . 346
CHRISTMA EXEC . 347

C o n t e n t s x i

The Morris Worm (Internet Worm) . 347
The WANK Worm . 352
Jerusalem . 353
The “AIDS” Trojan . 355
Everybody Must Get Stoned . 356

Michelangelo, Monkey, and Other Stoned Variants 357
Don’t Monkey with the MBR . 362

Form . 364
The Modem Virus Hoax . 365
The Iraqi Printer Virus . 366
Summary . 370

13 Case Studies: The Second Wave . 371
The Black Baron . 373
Good Times Just Around the Corner . 374

Text Appeal . 375
Blowing in the Wind . 375
Loop de Loop . 375
Big Bang . 376

Proof of Concept . 377
Programs Versus Data . 378
The Name of the Game . 379
When Is a Payload Not a Payload? . 380
Auto Macros . 382

The Empire Strikes Back—Slowly . 383
WM/Nuclear . 384
Colors . 387
DMV . 388
Wiederoffnen and FormatC . 389
Diddling: Green Stripe and Wazzu . 389
WM/Atom . 390
WM/Cap . 391
Excel Viruses . 392
Variations on a Theme . 393
Word 97 . 395
Thank You for Sharing . 395

x i i V i r u s e s R e v e a l e d

Macro Virus Nomenclature . 396
Anti-Macro Techniques . 397
Hare . 399
Chernobyl (CIH.Spacefiller) . 400
Esperanto . 401
Summary . 402

14 Case Studies: Turning the Worm (the Third Wave) 403
The AutoStart Worm . 404
W97M/Melissa (Mailissa) . 406

Consider Her Ways . 406
Infection Versus Dispersal . 407
Sans Souci . 408
The Commercial Virus . 409
I Used to Love Her (But It’s All Over Now?) . 409

W32/Happy99 (Ska), the Value-Added Virus . 410
PrettyPark . 411
Keeping to the Script . 412
VBS/Freelink . 413
I Wrote a Letter to My Love—VBS/LoveLetter . 414
VBS/NewLove-A . 417
Call 911! . 418
VBS/Stages . 419
BubbleBoy and KAKworm . 420
MTX (Matrix, Apology) . 421
Naked Wife . 425
W32/Navidad . 425
W32/Hybris . 427
VBS/VBSWG.J@mm (Anna Kournikova) . 428
VBS/Staple.a@mm . 429
Linux Worms . 430

Ramen . 430
Linux/Lion . 431
Linux/Adore (Linux/Red) . 431

Lindose (Winux) . 432
W32/Magistr@mm . 432

C o n t e n t s x i i i

BadTrans . 434
Summary . 435

IV Social Aspects

15 Virus Origin and Distribution . 439
Who Writes This Stuff? . 441
Social Engineering . 442
Social Engineering Definitions . 444

Password Stealers . 448
This Time It’s Personal . 449

Why Do They Write This Stuff? . 450
Secondary Distribution . 455
Does Education Work? . 456
Global Education . 458
Summary . 459

16 Metaviruses, Hoaxes, and Related Nuisances 461
Chain Letters . 463
Hoaxes . 465
Urban Legends . 465
Chain Letters and Hoaxes . 466
Hoaxes and Virus Alerts . 466
Misinformation under the Microscope . 468

BIOS, CMOS, and Battery . 468
The JPEG Hoax . 469
The Budget Virus . 470
Rude Awakening . 471
Wheat and Chaff . 471
Hoax Identification Heuristics . 472

Spam, Spam, Spam (Part 2) . 481
Motivations . 482
Common Themes . 484

Spamology and Virology . 484
Metaviruses and User Management . 486

What Should I Tell My Customers? . 487
Handling Spam, Chain Letters, and Hoax Alerts 488

x i v V i r u s e s R e v e a l e d

Summary . 490

17 Legal and Quasilegal Imperatives . 491
Malware and the Law . 492
Grounds for Criminal Proceedings . 493
The Computer Misuse Act . 495
Some Broad Concepts . 496
Data Protection Legislation . 497
Data Protection Principles . 498
BS7799 and Virus Controls . 500
ISO 9000 . 505
Security Architecture . 505

Who Is Responsible for Security in a Given Context? 509
What Systems Are Protected? . 509
What Are the Details of Implementation and Configuration? 510

Policy Outlines . 511
Acceptable Use of Facilities and Resources . 512
Acceptable Use of Email . 512
Anti-Chain Mail Policy . 515
Anti-Spam Policy . 515
Acceptable Use of the World Wide Web and USENET 516
Anti-Virus Policy . 516

Summary . 518

18 Responsibility, Morality, and Ethics . 519
The Two-Minute Guide to Ethics . 520
Demographics . 523

Age . 523
Gender . 525

Cultural and National Norms . 526
National Issues . 527
Motivational Factors . 530
Cross-National Differences . 531

Familiarity and Ethics . 532
End Users and Responsibility . 533
Is Anti-Virus a Profession? . 535
Vendors and Ethics . 536

C o n t e n t s x v

Commercial Ethics . 538
Do No Harm . 539
Developing Codes of Conduct . 540

A Minimum Code of Conduct . 540
EICAR . 541

Article 1: The Public Interest . 542
Article 2: Legal Compliance . 542
Article 3: Duty to Employers, Clients, and Colleagues 543
Article 4: Duty to the Profession . 543
Article 5: Specialist Competence . 543

Do Codes of Conduct Make a Difference? . 544
Summary . 547

19 Wrap Up . 551
Predictions . 552
Closing Comments . 553

Bad News: Security Specialists Don’t Know Much—About Viruses 553
Good News: A Little Education and Basic Policies Can Really Help 554
Bad News: Convergence Is Going to Get Worse 555
Good News: Just the Same, but More . 555
Bad News: Multiple Points of Attack Can Scale the Problem 556
Good News: Existing Tools and Some Diligence Can Work 557

Stop Press . 557
RTF Is Not a Panacea . 558
Poly/Noped . 559
Mandragore . 559
SULFNBK Hoax . 560
Sadmind . 561
Cheese . 561
Lindose/Winux . 561
MacSimpsons . 562
Outlook View Control . 562
Code Red/Bady . 562
Sircam . 563

Summary . 564

x v i V i r u s e s R e v e a l e d

V Appendixes

A Frequently Asked Questions on VIRUS-L/comp.virus 567
Primary Contributors . 568
What are the known viruses? . 568
Where can I get more information on viruses and related topics? 569
What are computer viruses? . 570
What is a worm? . 572
What is a Trojan horse? . 572
What are the indications of a virus infection? . 573
What steps should be taken in diagnosing and identifying viruses? 574
What is the best way to remove a virus? . 574
What are “false positives” and “false negatives”? . 576
Could an anti-virus program itself be infected? . 577
Where can I get a virus scanner for my UNIX system? . 578
Why does my scanner report an infection only sometimes? 579
I think I have detected a new virus; what do I do? . 579
CHKDSK reports 639KB (or less) total memory on my DOS system; am I infected? 580
I have an infinite loop of subdirectories on my hard drive; am I infected? 581
Can a PC not running DOS be infected with a common DOS virus? 581
My hard disk’s file system has been garbled; do I have a virus? 582
Is it possible to protect a computer system with only software? 582
Is it possible to write-protect the hard disk with software only? 583
What can be done with hardware protection? . 583
Does setting a file’s attributes to read-only protect it from viruses? 584
Do password/access control systems protect my files from viruses? 584
Do the protection systems in DR DOS work against viruses? 585
Does a write-protect tab on a floppy disk stop viruses? 586
Do local area networks (LANs) help to stop viruses, or do they facilitate their spread? 586
What is the proper way to make backups? . 587
Can boot-sector viruses infect nonbootable DOS floppy disks? 589
Can a virus hide in a PC’s CMOS memory? . 590
Can a PC virus hide in Extended or in Expanded RAM in a PC? 591
Can a virus hide in a PC’s Upper Memory or in High Memory Area? 591
Can a virus infect data files? . 591

C o n t e n t s x v i i

Can viruses spread from one type of computer to another? 592
Are mainframe computers susceptible to computer viruses? 592
Some people say that disinfecting is a bad idea. Is that true? 594
Can I avoid viruses by avoiding shareware, free software, or games? 595
Can I contract a virus on my PC by performing a DIR of an infected floppy disk? 596
Is there any risk in copying data files from an infected floppy disk to a clean PC’s

hard disk? . 597
Can a DOS virus survive and spread on an OS/2 system using the HPFS file system? 597
Under OS/2 2.0+, could a virus-infected DOS session infect another DOS session? 597
Can normal DOS viruses work under MS Windows? . 598
Can I get a virus from reading email? . 598
Can a virus “hide” in a .GIF or JPEG file? . 599
How often should we upgrade our anti-virus tools? . 600
Is it possible to use a computer virus for something useful? 600
Wouldn’t adding self-checking code to your programs be a good idea? 601
Is my disk infected with the Stoned virus? . 602
I was infected by both Stoned and Michelangelo. Why has my computer

become unbootable? . 603
I was infected with Flip, and now a large part of my hard disk seems to

have disappeared. What has happened? . 604
What does the GenB and/or the GenP virus do? . 604
How do I “boot from a clean floppy”? . 604
My PC diagnostic utility lists “Cascade” among the hardware interrupts (IRQs).

Does this mean I have the Cascade virus? . 606
When I do a DIR | MORE, I see two files with random names that are not there

when I just use DIR. On my friend’s system, they cannot be seen. Do I
have a virus? . 606

B Viruses and the Macintosh . 609
How Many Viruses Affect the Macintosh? . 610
Mac-Specific Viruses . 610

Mac-Specific System and File Infectors . 611
HyperCard Infectors . 614
Mac Trojan Horses . 615
Macro Viruses, Trojans, and Variants . 616

PC Viruses on Emulated PCs . 617
Esperanto.4733 . 618
PC Scripting Viruses . 618

Welcome Datacomp . 618

x v i i i V i r u s e s R e v e a l e d

The EICAR Installation Test File . 618
Information Resources . 619

Mac-Related Newsgroups . 619
Books . 619
Web Sites . 620
Virus Bulletin . 621
Macro Virus Information Resources . 622
Other Virus Resources . 622

Mac Troubleshooting . 623
Questions Received at Mac Virus . 624

C Social Engineering . 629
IT Security . 630
What the Intruder Wants to Know . 631
People Hacking . 632

Shouldersurfing . 632
Eavesdropping/Surveillance . 633
Inappropriate Access . 633
Being Sociable . 633
Phone Phonies . 633
Dumpster Diving . 634
Electronic Leftovers . 634

Targeting the Help Desk . 634
Attacks on the Help Desk . 635
Do I Need to Disclose My Password? . 635
Wouldn’t I Notice Unwarranted Interest in Security Issues? 635
How Big Is the Risk? . 636
What Are the Solutions? . 636
Good Password Practice . 638
Why Do Password Practices Matter? . 638

Passwords: Good Systems Enforcement Practice 638
Best Practice . 639

Where Do I Get Further Information? . 640

Glossary . 641

Index . 667

C o n t e n t s x i x

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

Foreword
David and Rob asked me to write a foreword to this new book. I’ve corresponded

with both over the years, and their work with viruses has been of great value to many
of us. After browsing a draft of their comprehensive effort, I am pleased at the amount
of useful information they present in such an accessible manner (although, as an
academic, I wish they provided more specific references to their sources—something
to look forward to in the second edition). In fact, their book is so comprehensive,
I wondered what I could address that they had not already covered. However, as I
thought more about it, I realized that they haven’t completely addressed what is yet
to come. To understand the future, it helps to consider the past as context. Thus, I
will reflect some on the past and how it relates to the present. After that, I challenge
you to read this book with thoughts of what the present portends for the future—and
how your awareness and action may have an effect. As George Santayana wrote,
“Those who forget the past are condemned to fulfill it”. (Yes, that is the correct
quote. Many people cite it incorrectly.)

Twelve years ago, I coauthored the first general, English-language technical
reference on computer viruses (“Computer Viruses: Dealing with Electronic
Vandalism and Programmed Threats,” by E. H. Spafford, K. A. Heaphy, and D. J.
Ferbrache, ADAPSO (now ITAA), 1989). At that time, there were fewer than 100
viruses in general circulation—about 75 for DOS/Windows, 20 for the Apple Macintosh,
and a few dozen for other platforms, including the Amiga. This had grown from the
first virus in the wild, the Elk Cloner virus for Apple II computers in 1982, through a
half-dozen new viruses for the Intel-based platform in 1986–1988, to the IBM Christmas
Tree EXEC worm/virus, and then to the Morris Internet and WANK worms.

As of mid-2001, there are thousands of computer viruses—perhaps as many as
75,000. Some vendors claim to receive reports of as many as 20 new viruses a week.
In fact, with the ease of creating macro viruses for popular email and word processing
software, the rate at which new viruses are being reported appears to be increasing.
Throw the various worms, Trojan horses, backdoors, and other malware into the
mix, and the numbers grow even larger.

If you do a little analysis of the historical data, you can project the trends of the
past two decades forward with some statistical tools. Within a few short years, we
will be seeing a new worm or virus released more frequently than once every hour.
How is anyone going to keep up with that rate of attack? What defences can we

xxi

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

possibly employ? And how much of our processing power will we need to employ
to gain reasonable protection?

It really didn’t have to be like this.
Fred Cohen wrote extensively about computer viruses in the 1980s, but only a

few people seemed to pay attention. The late Harold Highland focused attention
on viruses in his editorials in Computers & Security, along with publishing articles
on viruses. The book I coauthored, along with other references of the time, warned
about good computer hygiene and the potential for future problems. At many
conferences and workshops, we discussed the future of computer viruses and
malware. In 1990 and 1991, both Harold and I made presentations at the NYC
DPMA Virus conferences (the premier virus research meetings of the time) on
macro viruses, and their potential—long before the emergence of the Concept virus.

However, several of the major software vendors failed to send anyone to those
meetings, nor did they appear to read any of the security publications. The vendors
told researchers that viruses weren’t their concern, because only a few of their
customers had problems with them at the time.

One major company in particular was notably absent from the scene, and the results
are painfully obvious today. For instance, that company designed features into its
software that helped viruses spread more easily, despite warnings to the contrary. That
same software company labelled the first major macro virus a “prank”, and apparently
never tried to find or discipline the employee who wrote it. Can you guess which
company that might be? Here’s a hint: more than 99 percent of all known computer
viruses and worms run solely on its products, out of proportion to its actual share of the
market. Here’s another hint: the Melissa and LoveBug incidents affecting its software
and causing billions of dollars of damage were almost identical in overall nature to the
extensively documented Christmas Tree EXEC incident in 1987. Today’s problems
should surprise only those who forgot the past—or never bothered to learn it.

Unfortunately, the dominant software architecture that runs our national defences,
underlies our public utilities, powers our government agencies, and supports our
banks, medical establishments, and educational organizations is also from this same
company. Our whole computing infrastructure is highly vulnerable to malware as a
result. And in addition to being susceptible to computer viruses, those products seem
to be subject to a never-ending stream of critical security patches, many as a result
of sloppy coding (for example, buffer overflows) that have been known for decades
to present security problems. We are now operating in a world where a 12-year-old
with a web browser and a text editor can run self-duplicating software to execute
network attack scripts—software that can disrupt a government agency or multinational
corporation. If some attack software isn’t on a WWW site this week, then all an
attacker needs to do is wait a few weeks for a few more vulnerabilities and attacks
to be discovered and posted.

x x i i V i r u s e s R e v e a l e d

Remember the Aztecs? They ruled a mighty empire until exposure to a few
hundred Spaniards with smallpox and measles incapacitated or killed 90 percent of
their population and left them too weak to resist conquest. With no immunity, they
were easy pickings for a vastly smaller (and weaker) force. Do you think we might
have something to learn from the past?

Of course, the fault is not solely that of the software vendors. Consumers are not
demanding better quality, are not making informed choices, and are not holding vendors
accountable for shoddy goods. Thus, vendors are providing what the consumers seem to
want to buy without complaint, and it is hard to fault them (completely) for that. Many
computer users today accept computer viruses, crashes, and security flaws as a standard
part of their everyday computing existence. They don’t understand other alternatives, or
they think the cost of switching to something else will be too high. However, before long,
the cost of anti-virus and security software, recovery efforts, incident response, and Help
Desks will overwhelm the cost of the systems to which they are so attached. Then what?

We also have a real problem with effective deterrence by way of penalizing the
authors of malware. Since 1980, I am aware of fewer than 10 people who have been
charged and convicted in a criminal court for writing malware. I am aware of only
two civil suits for damages. Given the attitudes expressed by authors of viruses (see
Chapter 15), what is being done to deter them? Without some credible threat of
exposure and penalty, it seems unlikely we will reduce the population of virus
writers. In fact, as more computers come online, the tools become more accessible,
and the attitude continues that viruses are a part of “business as usual”, we should
expect the number of authors to increase, perhaps even faster than it already has.

So, we have an environment that is very susceptible to viruses, vendors to whom
security has historically seemed to be a secondary concern (if it has been a concern
at all), consumers who accept the pitiful status quo as normal, and perpetrators who
have no credible fear of reprisal. Is it any wonder that the anti-virus vendors are
profiting....and are necessary?

Despite all that has happened, I do not believe that the future needs to be like the
past. Each of us can make a difference. We can start by modifying our own behavior:

� If even 10 percent of people would stop accepting email attachments in formats
that can carry malware (macro-related or otherwise), then perhaps people would
stop sending them. That would eliminate or at least curtail one common method
of transmission.

� If each time a new threat appeared we all referred to it with a more precise
name than “computer virus”, perhaps users would develop a little more
awareness. In most cases, “Microsoft virus” would be a far more accurate term.

� If we all stopped using the same three or four applications for everything,
perhaps we wouldn’t see malware that would threaten the majority of users
on the planet when the next vulnerability is found or virus released.

F o r e w o r d x x i i i

� If one out of every five users would evaluate alternative platforms for reasons
of safety rather than cost, then perhaps we would eventually have more
credible choices available with security as a design goal.

Armies that stuck with cavalry because of their investment in saddles, stables, and
training received a rude awakening in the first half of the 20th century, when the tank
and machine gun were widely deployed. Having a platform immune to common
security threats is a competitive advantage in any arena, even if it costs more and
requires some additional training to employ.

So, as you read through all the history and advice compiled in this book by these
accomplished researchers, keep your eyes and mind open for hints on how to design
your own protection and shape the future. Resolve to make a new future as one who
remembers the past, and actually learns from the experiences of others.

Safe computing, all.

—spaf
July 2001

Eugene H. Spafford is a professor of computer sciences at Purdue University,
a professor of philosophy, and is director of the Center for Education Research
Information Assurance and Security (CERIAS). CERIAS is a campuswide
multidisciplinary centre, with a broadly focused mission to explore issues related
to protecting information and information resources. Spaf has written extensively
about information security, software engineering, and professional ethics.

Spafford is a fellow of the Association for Computing Machinery (ACM), fellow
of the American Association for the Advancement of Science (AAAS), fellow of the
Institute of Electrical and Electronics Engineers (IEEE), and is a charter recipient of
the Computer Society’s Golden Core Award. In 2000, he was named as a CISSP,
honoris causa. Among his many activities, he is co-chair of the ACM’s US Public
Policy Committee, a member of the board of directors of the Computing Research
Association, and a member of the US Air Force Scientific Advisory Board. He was
the year 2000 recipient of the National Institute of Standards and Technology/
National Center for Standards and Certification (NIST/NCSC) National Computer
Systems Security Award, generally regarded as the field’s most significant honour in
information security research. In 2001, he was named as one of the recipients of the
Charles B. Murphy Awards, Purdue University’s highest award for outstanding
undergraduate teaching. In 2001, he was elected to the Information Systems Security
Association (ISSA) Hall of Fame, and he was awarded the William Hugh Murray
medal of the National Colloquium for Information Systems Security Education
(NCISSE) for his contributions to research and education in infosec.

x x i v V i r u s e s R e v e a l e d

About the Authors

Robert Slade
Rob Slade is a data communications and security specialist from North Vancouver,
British Columbia, Canada.

His research into computer viral programs began when they first appeared as a
major problem “in the wild”. Acting initially as the unofficial archivist for the
budding research community, he has since become known for “Mr. Slade’s lists”.
One of the working group for the VIRUS-L FAQ, he has produced a series of review
and tutorial articles that have been published as Robert Slade’s Guide to Computer
Viruses. He is the founder of the DECUS Canada Security SIG. He still considers
data security to be a minor sideline, and was astounded to hear himself referred to
recently as a “leader” in the security community.

Rob is more widely known for his series of technical book reviews. If you
would rather not have to scour USENET looking for them, you can now place
yourself on a mailing list to receive new ones either by sending any message to
techbooks-subscribe@egroups.com or by visiting the eGroups web site at
www.egroups.com/list/techbooks/, which also has an archive of recent postings. Full
archives of the book reviews are kindly hosted by both Victoria Telecommunity Net at
http://victoria.tc.ca/techrev/mnbk.htm and the Computer Underground Digest
at Northern Illinois University (http://sun.soci.niu.edu/~rslade/mnbk.htm). The reviews
form the basis of a column in TeleManagement (www.angustel.ca/teleman/tm.html).

At present, he takes every available opportunity to teach operating systems to
his grandchildren. He is married to the world’s best executive secretary, which is
probably the only reason he actually got the book finished. His next book will
be a computer security glossary. It is next to impossible to get him to take “bio”
writing seriously.

Rob Slade can be reached as rslade@sprint.ca or rslade@vcn.bc.ca.

xxv

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

David Harley
David Harley has a work history more chequered than most chessboards, embracing
music, nursing, various aspects of the building trade, computing, and administration.
He worked from 1989 to 2001 at the Imperial Cancer Research Fund in London,
originally as an administrator and programmer, then as a network engineer and support
analyst, latterly as a security specialist. He now works for the United Kingdom’s NHS
Information Authority as Support Services Manager, where he still specializes in
security, but is now allowed to express himself more pompously.

He is an active member of EICAR (the European Institute for Computer Anti-Virus
Research) and a charter member of AVIEN (the Anti-Virus Information Exchange
Network), where he is participating in projects concerned with certification of
anti-virus personnel and virus analysis, not to mention the Disciplinary Committee,
which is much less exciting than it sounds.

His other affiliations include the WildList Organization and ICSA Labs, where
he is working on Apple Macintosh-related security projects. He has something of a
reputation as an expert in the Mac arena, largely because no one else actually cares
about Macs except those who don’t own an Umbrella. He maintains a number of
security-focused web sites (when time allows), including Mac Virus II.

His previous security-related writing includes several Internet FAQs, a curious
assortment of conference papers, magazine articles, chapters on viruses and Trojan
horses for the third edition of Maximum Security, and a chapter on security and
healthcare for the fourth edition of the Computer Security Handbook (with Paul Brusil).

His hobbies include parenting, flippancy, blues guitar, not getting to the opera,
and spending money he doesn’t have on software he doesn’t have time to use. His
ambitions include getting a life and returning to some nontechnical writing.

David Harley can be reached as macvirus@dircon.co.uk.

Urs E. Gattiker
Urs Gattiker is Obel Family Foundation Professor of Innovation and Technology
Management at the University of Aalborg. His previous positions include Stanford
Center for Organization Research, the Melbourne Business School, the University of
Lethbridge, the University of the German Federal Armed Forces at Hamburg, and
the Aarhus School of Business. He is a member of the supervisory board of KonNet
GmbH (Germany), and a member of Bankinvest’s Advisory Board for its BI
Technology A/S’ IT Venture Fund (http://www.BankInvest.dk). He also is a board
member of various organizations, including B2B Agro Scandinavia A/S, Naventi
A/S, Vigilante Inc. (USA), and Vupti A/S.

x x v i V i r u s e s R e v e a l e d

His books include Technology Management and Organizations (Sage, 1990), and
The Internet as a Diverse Community: Cultural, Organizational and Political Issues
(Lawrence Erlbaum, 2001); he is currently writing Electronic Patient Records,
Internet and Data Security with Inger Marie Giversen and Christine Orshesky
(Lawrence Erlbaum). He has recently edited a book with Laurie Larwood, Impact
Analysis: How Research Can Enter Application and Make a Difference (Lawrence
Erlbaum, 1999) and is currently writing on a book about entrepreneurship and
start-ups.

Gattiker served as Chair for the Technology & Innovation and Research Method
divisions of the U.S. Academy of Management (the leading association for academics
and consultants in management in the United States). He is one of the founders and
was an executive member of the Canadian Association for the Management of
Technology (CANMOT), now the Innovation Management Association of Canada
(IMAC) and the Technology Management Division of the Administrative Sciences
Association of Canada (ASAC). Gattiker also chairs the Task Force for Trust and
e-Commerce of the European Institute for Computer Anti-Virus Research (EICAR)
and is a member of EICAR’s Scientific Advisory Board as well as the EICAR Board.

He is currently spearheading the efforts of a virtual research organization on
e-commerce, new media, and technology policy. Research and white papers can be
found at http://Papers.WebUrb.net.

Urs Gattiker can be reached as WebUrs@WebUrb.net.

About the Technical Editor
Christine M. Orshesky, with more than ten years of information security experience,
has supported information security efforts, including malware protection and
incident response at various government and corporate organizations. Her most
notable responsibility included managing malware response initiatives for the
Department of Defense at the Pentagon. After her experiences there, Orshesky
founded i-secure Corporation to provide vendor-neutral malware-protection
strategies and education. She has participated in numerous information security
and other industry conferences, and maintains her professional certifications in
information security and quality assurance.

A b o u t t h e A u t h o r s x x v i i

This page intentionally left blank.

Acknowledgments

We owe too much to too many people to list them all. In particular, we must mention
our families, for their patience and support through a long and demanding project.

We acknowledge the work of many people at Virus Bulletin, AVIEN, EICAR,
ICSA Labs, the WildList Organization, the Universities of Hamburg, Tampere, and
Magdeburg, and the anti-virus (AV) companies. Thank you for your expertise, for
your help, and just for holding the line. We can’t possibly list everyone who deserves
a mention, but any such list would have to include a number of people who may not
have contributed directly to this book, but without whose hard work and generosity
in sharing information, our work would have been even harder. We list just a few
here, and in no particular order: Alan Solomon, Paul Ducklin, Vesselin Bontchev,
Jimmy Kuo, Sarah Gordon, Robert Vibert, Henri Delger, Joe Wells, Larry Bridwell,
Bruce Burrell, Shane Coursen, Nick FitzGerald, and Graham Cluley. We also thank
Rob Rosenberger and George Smith, for not letting anyone get away with anything;
those virus writers and former virus writers who felt it was worth maintaining a dialogue
and discussing the issues; and the volunteers of VIRUS-L, alt.comp.virus, alt.comp
.antivirus, security-focus, and elsewhere, who continue to provide help and advice
because so many people seem to need it. We don’t always agree with them, but their
public-spiritedness makes a real difference.

A book is almost always a team effort. This one is no exception—fortunately,
given the difficulties that arose during the production stage. Many people deserve
credit: Urs, for kicking the project off in the first place; David, for attempting to
keep the thing in some sort of order; Rob, for holding it together when family illness
and a drastic change of career and location nearly knocked David off the project
altogether; Christine, whose contributions went far beyond technical review; Spaf,
for saying what needed to be said (as always); the long-suffering production team
at Osborne, for their never-ending struggle to keep an overstretched and sometimes
irascible team of authors focused; and Gloria, for copyediting services beyond the
call of marital duty.

xxix

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

Introduction

Why Did We Write This Book?
We intend to make available high-quality and broadly useful information about
malicious software (malware) in general, viruses in particular, and about anti-virus/
anti-malware technology and its application in the real world and in the context of
general security. We also want to ensure that we cover the most contemporary trends
in regard to viruses and malware, which have diverged significantly in recent years
from traditional forms. Finally, while we are particularly addressing systems
administrators and IT managers, we want to make sure that this material is available
for any computer user, and not just those who have made a special study of the field.

Perhaps even more urgently, we mean to counter the extremely poor information
that bedevils the security field in general and the virus field in particular. To this end,
we include not only analysis of threats and countermeasures, but also information
on sources of further information with some indication as to our assessment of
their reliability.

We also hope to be the first authors ever to make a million out of a book on
computer viruses, but we’re not counting on it.

Why This Book Is Different
This book isn’t quite like the majority of works on security. Many security volumes are
good sources of information on other areas of security, yet inaccurate on virus specifics.

General security books are also often inclined to a full-disclosure mode, which
isn’t altogether appropriate for a virus book. Not that we necessarily advocate the
paternalist, “Gods and Ants” mindset that characterizes some sectors of the anti-virus
industry, who usually lean towards the nondisclosure end of the continuum. We
hope that you will, as far as possible, test what we tell you and make up your own
mind. But the greatest disclosure problem in virus literature concerns actual virus code.

The indiscriminate inclusion of virus code (existing or new) in previous books
and elsewhere has, in our opinion, been of more use to the aspiring virus writer than
to the hard-pressed systems administrator. As Gene Spafford has famously said,
showing people how to pour sugar into the gas tank doesn’t teach them much about

xxxi

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

auto mechanics. You have to know a bit about how viruses operate in order to protect
against them, but the finer details of virus coding are completely irrelevant. So we
won’t publish virus code (let alone original virus code).

Roll-your-own viruses are generally the opposite of helpful, except in very carefully
controlled circumstances. We can’t say that no bona fide researcher ever modified or
created a virus to test a concept (though some highly capable individuals will not do
so under any circumstances, and some companies flatly forbid it). However, publishing
viable virus code is not where we want to go.

Dissecting individual viruses doesn’t give you the means of defending against all
viruses. You can’t implement countermeasures to their maximum effect without
knowing more than a little about the attacks. However, most readers will rely heavily
on commercial solutions, although we hope you won’t put this book down convinced
that anti-virus is always enough. We consider it generally more useful to concentrate
on the details of evaluation and implementation of solutions than the minutiae of a
few of the tens of thousands of viruses and variants. Where we do focus on particular
viruses, we will be more concerned with their significance in terms of social impact
and the defensive measures they necessitate than with the fine detail of their code.

However, we will tell you more than enough about virus mechanisms to understand
what the threat is, and, more importantly, how commercial anti-virus software
protects against it. Furthermore, unlike most vendor manuals and web sites, we’ll tell
you about some cracks that anti-virus software can’t paste over. Virus authors are
already exploiting these, directly or indirectly, and you’ll need to know about them
too if you’re to maximize your own security.

Roll-your-own anti-virus software is a pretty limited option: systems administrators
and home users may be able to block certain classes of threat, but can’t compete
with the professionals at detecting and disinfecting the tens of thousands of distinct
known viruses. We are aware of attempts to sell books on the premise that “If you
read this, you can write your own anti-virus software, and the security vendors will
be lining up to give you a job”. This premise is based on the mother of all fallacies.
You can fill in some of the gaps left by commercial anti-virus products. You can
sometimes bypass the need for commercial products by avoiding vulnerable operating
systems, applications and utilities, or configurations. You can (at a price) use generic
defences, such as change detection software, rather than distribute definitions updates
as new viruses are discovered. What you can’t do is compete with the industry on its
own terms on detecting known viruses. The chances are you don’t have the time or
access to every new virus.

Isn’t virus management a security issue? Of course it is, and it’s best implemented
within the context of a holistic security strategy, when it’s done right by people who
know viruses as well as or better than they do other areas of security. Unfortunately,
people who are competent in some areas of security sometimes overestimate their
own competence in other areas, and viruses seem to attract a particularly virulent

x x x i i V i r u s e s R e v e a l e d

brand of ultracrepidarianism (“acting or speaking outside one’s ability or knowledge”).
(A tip of the hat here to Rob Rosenberger, whose article on “False Authority
Syndrome” first introduced at least one of us to the word; you can find the article
at www.vmyths.com/fas/fas1.cfm.) Of course, this principle also works the other
way. For instance, only the bravest, most nervous, or least experienced systems
administrator is likely to let an anti-virus vendor write his or her firewall policy,
however good the product may be.

This book also differs a little from other virus books. After all, aren’t there
enough virus books already? Well, there are good virus books, and there are recent
virus books, and at the time of starting this project, these are disjoint sets. Unfortunately,
the most accurate books aren’t usually current, so that they miss out on some of the
issues that have come to concern us all since. Meanwhile, most of the current books
aren’t accurate. One or two exceptions are noted in the book, but not here, since we
want to keep you focused on buying this one....

Neither do we think that we’ve included everything you’ll ever need to know, but
this book is as up-to-date, accurate, and comprehensive as we can make it, and that
in itself makes it somewhat unique. Just to make sure we don’t have to eat those
words, we include at the end of Chapter 19 information on hot issues that started to
warm up as we were completing the last few chapters. Mind your fingers.

Who Should Use This Book?
This book is also somewhat different as regards its target audience. There is a
notable absence of books in this area that are aimed specifically at the information-
technology (IT) professional with a “need to know” about virus management. This
group might include systems and network administrators, security analysts and
specialist anti-virus engineers, other support engineers, power users, management,
the computing press, and even students of computer science. We aim to redress
that deficit. However, this book makes few assumptions about levels of technical

I n t r o d u c t i o n x x x i i i

Ultracrepidarianism
The term derives from the Latin ultra crepidem (beyond the sole of the shoe).

The story goes that a cobbler criticized Apelles, a painter in ancient Greece, for
his representation of a human figure in a painting. Apelles accepted the criticism
as applied to the figure’s slipper, but not ultra crepidem, regarding the representation
of the leg as beyond the cobbler’s specialist expertise. Why he did so in Latin
rather than Greek is not altogether clear.

knowledge (though it rather assumes that you use computers). Home computer
users or non-specialists within corporate organizations will also be able to follow
this book and benefit according to their needs. Education is a vital component in
the fight against virus infestations. We expect that technical managers should be able
to hand this book (marked as to appropriate chapters) to the ordinary office worker
or executive, and raise his or her awareness of specific topics.

The book isn’t intended for anti-virus professionals within the industry: full-time,
competent researchers, virus analysts, and such will not need us to fill them in on the
technical detail of their own jobs. On the other hand, much time spent in conversation
with anti-virus sales staff and marketroids has convinced us that knowledge of one
product is no substitute for knowledge of product-nonspecific virus/anti-virus technology.
Often, these people aren’t even aware that they’re selling you what they have, not
what you need, and that their sales pitches are based on fallacies as much as facts.
(Q: What’s the difference between a computer salesperson and a used-car salesperson?
A: A car salesperson can usually drive, and knows when he or she is lying to you.)
Furthermore, we can think of some high-powered anti-virus researchers who have
yet to learn that knowledge of that technology is only part of virus management. If
we can’t rely on the vendor information providers to get it right, we can at least hope
that you’ll be better equipped to evaluate their expertise once you’ve read this book.

The clarion calls “Trust me: I’m a vendor” or “Trust me: I’m a consultant”, or
even “Trust me: I’m an Instant Expert” make no more sense than “Trust me: I’m a
virus writer”. We don’t want you to trust anyone (even us) because of who that person
claims to be, or what he or she claims to know. Too many people are already willing
to relieve you of all responsibility for your virus problems. We aim to empower you
to make at least one decision about virus management yourself. If that decision is to
hire others to deal with the problem, at least make that decision on the basis of your
own knowledge, not on wishful thinking (yours or theirs).

Clearly, this isn’t a book for virus writers, either. We’ve already explained our
reluctance to demonstrate or reproduce certain types of code, so the book will be of
little use to the kind of virus writer who makes trivial modifications to existing code
to make his or her own variant. Yes, we know that lots of legitimate and useful code
is based on other people’s code. In our experience, though:

� Virus code isn’t generally legitimate or useful.

� Many virus variants are changes so trivial (such as the modification of a
nonessential text string) that they can only be intended to allow the writer to
claim authorship without more than the barest minimum of effort.

Perhaps a virus writer will catch a passing idea from something mentioned here
and develop it into something startlingly novel, and possibly malevolent. This is one
of the risks taken by all writers in the security field. We can take a stand on not

x x x i v V i r u s e s R e v e a l e d

publishing what is useful only to the bad guys, but most technical information is
value-free. If it’s useful to you, it might be useful to your enemy too. We take each
case on its own merits.

Sometimes, anti-virus researchers play off-duty games (usually at security
conferences), such as testing each other’s help lines or swapping nightmare scenarios.
In general, we intend to keep our nightmares to ourselves unless there is something
you can do about them right now.

How This Book Is Organized
The book is divided into five main parts, as described in the following sections.

Part I: The Problem
Malware takes many forms, and we’ll deal with nearly all of them. However, single
instances of malware are not necessarily or even usually dealt with individually.
Although we will sometimes suggest a specific approach to a specific type of problem,
usually we explore general classes of malware, then (in Part II) the general classes of
anti-malware technology that can be used to deal with them.

We intend this book to be useful to a wide range of computer users, including
(indeed, especially) the highly computer-literate. However, experience indicates that
it’s unsafe to assume that expertise in one field of computer use, including security
(or systems administration and security), necessarily indicates expertise in anti-virus
issues. We therefore start with some baseline definitions, just to ensure that we all
understand approximately the same thing when we talk of key concepts like Trojan
horses, viruses, worms, damage, and infection. If you are familiar with older books
and other resources on the subject, not all this material will be new to you. However,
Part I does reflect recent trends in the way we think about older threats, which may
be of interest in its own right. We will of course focus on current threats and classes
of threat. These are likely to be of particular interest given that they have appeared
since the first wave of classic texts, and are therefore not covered there, while recent
books have generally demonstrated a poor grasp of the technology and its implications.
A detailed analysis of classes and subclasses of malware follows in later chapters,
while malware meriting individual attention is examined in detail in Part III.

Part II: System Solutions
Part II considers anti-virus and anti-malware technology in detail, then goes on to
discuss their real-world application within the enterprise.

Part III: Case Studies
In Part III we provide a detailed look at some specific virus/malware incidents—what
makes them noteworthy, and what lessons can we learn from them.

I n t r o d u c t i o n x x x v

Part IV: Social Aspects
Part IV looks at social issues. We believe that viruses are a social problem, and social
problems cannot be solved by purely technological means. Sadly, it will take more
than this book to solve the social problems of which computer vandalism is a small
component. Certainly, though, the virus management professional cannot afford to
ignore the human dimension, whether it concerns the vandals themselves or their
victims. Part IV also contains the summary of summaries and the “stop press” chapter.

Part V: Appendixes and Glossary
The final part includes a detailed glossary and some extra material donated by the
authors and others.

Where to Go from Here
There is a fair amount of reading in this book, and some suggestions for hands-on
work on systems protection. The book won’t turn you into a top-flight anti-virus
expert, but if that’s your ambition, reading the book straight through will certainly
give you a reasonable grounding and links to enough further information to keep you
going for years. You may be accustomed to books like this coming with a CD full of
free software and documentation. This doesn’t work very well with anti-virus software,
since by the time the book hits the bookshelves, many programs will already be out
of date. Our experience suggests that making anti-virus software available for
evaluation can actually become counterproductive as it gets increasingly past the
software’s sell-by date. Furthermore, while there is some freeware and shareware
that we have no hesitation in recommending, it’s probably better to give you pointers
to current versions and information. We can do this better from a dynamic information
source—that is, the web site—than we can from a CD, which may go out of date
between the date of press and the publication of the book. We specifically mention
free software in Chapter 8, and on web pages at the following sites:

http://victoria.tc.ca/techrev/vrfresft.htm
http://sun.soci.niu.edu/~rslade/vrfresft.htm

You can also check for updated web links at these sites:

http://www.osborne.com/errata/errata.shtml
http://www.viruses-revealed.org.uk/

We hope these sites will keep you safe enough to read the rest of the book.

x x x v i V i r u s e s R e v e a l e d

PART

I
The Problem

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

CHAPTER

1
Baseline Definitions

3

IN THIS CHAPTER:

Computer Virus Fact and Fantasy

Definitions

Instant Guide to Anti-Virus Software

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

You might call this the executive summary of the whole book, or the two-
minute guide to viruses and related problems. This chapter may not tell
you anything you do not already know, but bear with us. The computer

security field is over-populated by “instant experts” who “know everything”
about security in general and viruses in particular, without actually having done
the research. We therefore prefer to level the playing field a little with some basic
definitions to ensure that you are not “infected” with some of the misconceptions
perpetuated by some sectors of the press and other undependable resources.

NOTE

This may sound anti-journalist. In fact, we all know responsible, capable journalists. We even
know computer journalists who could reasonably be described as virus experts (and we turn in the
occasional article ourselves). However, a journalist without specific expertise in a particular area
is highly reliant upon the quality of information received from others, and some have been very
unfortunate in their choice of expert informants on anti-virus issues. In this way, misinformation
from individuals who should have known better has become widely distributed.

This chapter does not go into full details of virus and other mechanisms, but is
restricted to broad principles. Malicious software (malware) is an area where there
are very few indisputable definitions, and misconceptions are rife, so we prefer to
start with a few simple baseline definitions. We will proceed to the heavy-duty
jargon and hair-splitting later.

Some examples in Chapter 2 will give you an idea of how viruses can work, and
more details are given on actual viral operations in Chapters 3, 4, and 5. Part III
includes detailed case studies.

Computer Virus Fact and Fantasy
We already have said, and will in the future say, unkind things about other virus
“experts”, the media, various software companies, other virus book authors, and a
few other people as well. Are we a bunch of arrogant twits who think we alone have
the secret knowledge? Not at all. (Well, we would say that, wouldn’t we?) We know
dozens of legitimate virus experts, some of whom have quite literally forgotten more
about specific technical fields than we will ever know.

The problem is that the computer virus field has generated an enormous amount
of misinformation and myth. In fact, one entire subject of research is that of the “virus
hoax”, which we’ll discuss in more detail later in the book. Frankly, we aren’t

4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

completely certain why legends and lies have become so prevalent in the discussion
of viruses. (We’ll give you some more thoughts on that later.) The plain fact is that
the vast majority of articles in the general media and even computer trade media
(better than 97 percent according to one of our collections) contain significant and
substantial fallacies. We are not talking about trivial errors such as the wrong date
for the discovery of a virus or a slight mistake in the wording of a message. We are
talking about the central thesis of essays that are not only flatly wrong, but that
recommend to computer users that they take steps more detrimental to computer
operation than the viruses themselves.

Some people who buy this book may be real virus experts. (And to our colleagues,
we say hello again, and be kind in your reviews, OK?) Some of you may sincerely
regard yourselves as experts in this field, having worked hard to gain knowledge
and experience. In such a case, you might take offence at some of what we say and
at being put in the same box as those instant experts whose expertise is based on
misapprehension and guesswork. To those of you who are feeling offended at this
point, we hope that you will keep an open mind and stay with us. Bear in mind that
we have, between us, somewhere near 30 years of full-time research. That’s not just
X years since we first saw a virus. That’s full-time, serious study, often in addition
to our regular jobs. As we say, we have met, along the way and in that time, dozens
of virus experts. However, we have also met thousands of “instant experts” with
just enough experience behind them to illustrate the truth of the saying that a little
knowledge is a dangerous thing.

Even between us, we don’t know everything about viruses. We are going to be as
careful as we can, but there are going to be some errors in this book. (We hope they
are small enough not to cause you trouble.) Yet, we’re willing to bet that you’ve
been told some unbelievable things about viruses—we certainly have. Please be
patient while we challenge some of those common and misplaced assumptions.

Definitions
A major problem with viruses, as we shall try to make clear in this and the next
chapter, lies in the fact they are not automatically identifiable. Viruses, or any kind
of self-reproducing programs, only use functions that are used by other programs
and that are necessary for other operations. Admittedly, the use of certain functions
can suggest viral (self-replicating) activity. Indeed, detecting such functionality is
one of the ways in which some anti-virus software attempts to detect new, hitherto
unknown viruses.

C h a p t e r 1 : B a s e l i n e D e f i n i t i o n s 5

6 V i r u s e s R e v e a l e d

However, the fact that this comes under the umbrella term “heuristic analysis”
indicates a basic problem. Heuristic means a “rule of thumb”, or proof by trial and
error. Heuristic analysis is in part a scoring system. We define criteria, then we note
that the suspect program meets or exceeds a threshold score, suggesting that it is viral.
What those criteria are, and how a scanner establishes conformity or non-conformity
with those criteria, will be explored in due course. However, it has been demonstrated
that it is impossible to write a program that can analyse a file and state with 100
percent certainty that it is or isn’t viral. (This demonstration actually bears closer
examination, but we’ll save that for Chapter 4.)

Furthermore, there is no absolute test for malice, making it effectively impossible
to detect hitherto unknown non-viral malicious software (such as Trojan horses)
automatically. We can’t say that a given program is malicious just by analysing
the code, even if we can say it replicates, and we can sometimes only confirm
replication by testing.

By malware, we mean (primarily) viruses, worms, and Trojan horses, and those
are the main types considered in this chapter. However, other subclasses will also be
considered in Chapters 3, 4, and 5.

Viruses and Virus Mechanisms
By virus, we mean a program meeting the much-used definition included by Dr.
Frederick Cohen in A Short Course on Computer Viruses: “...a program that can ‘infect’
other programs by modifying them to include a, possibly evolved, copy of itself”.

By infect, we mean that a virus inserts itself into the chain of command, so that
attempting to execute a legitimate program results in the execution of the virus as
well as (or instead of) the program.

We do not define every program that destroys or steals data as a virus. A virus
need not have any sort of payload (malicious or otherwise). That is, it doesn’t have
to do anything explicitly or deliberately damaging; it doesn’t even have to operate
covertly (though most of them do); all it has to do is replicate. We will not, therefore,
call programs that cause damage “viruses” if they don’t replicate. We might call
them Trojan horses, but that’s a discussion for later. We will not assume that a virus
causes any intentional damage (though it can be argued that all viruses do some
collateral damage).

C h a p t e r 1 : B a s e l i n e D e f i n i t i o n s 7

Virus Structure
We are assuming here a common tripartite model of virus structure; that is, we
assume up to three main component mechanisms:

� Infection The infection mechanism may be defined as the way or ways in
which the virus spreads.

� Payload The payload mechanism is defined as what (if anything) the virus
does apart from replicate.

� Trigger The trigger mechanism is defined as the routine that decides
whether now is the time to deliver the payload (if there is a payload).

As previously indicated, only the presence of the infection mechanism is mandatory if
the program is to be defined as viral: payload and trigger are optional. Be aware, though,
that this is a somewhat simplified model: in some circumstances the dissemination of
the viral program itself may be described as the payload. Some worms (and we’ll get to
defining worms shortly) have been described in this way. Furthermore, if the virus is at
all selective about the circumstances under which it will attempt to infect, the infection
mechanism may also be said to incorporate a trigger.

Damage
By virus damage, we mean, primarily, one or more of the following:

� Deliberate damage inflicted by the virus payload mechanism, if it exists, such
as the trashing or intentional corruption of files.

� Accidental damage caused when the virus attempts to install itself on the
victim system (the newly infected host), such as corruption of system areas
preventing the victim system from booting.

� Incidental damage that may not be obvious or severe but is nevertheless inherent
in the fact of infection. Nearly all viruses entail damage in this category, since
their presence involves loss of performance due to theft of memory, disk space,
clock cycles, system modification, or a combination of two or more of these.

Attempts to conceal the presence of the virus (or other malware) may also entail
a measure of intentional or accidental damage as the environment is manipulated or
reconfigured. Examples include the following:

� The disappearance of Word menu options relating to the presence of macros

� Encryption or displacement of system areas, such as the Master Boot Record

� Manipulation of the Windows Registry

� The trashing or corruption of legitimate macros as part of the installation of
a macro virus

However, the physical manifestations of a virus are often trivial. Viruses certainly
exist that inflict savage, intentional damage on the victim system, and they are in
some cases widely distributed. However, many exemplify the maxim that by not
killing its host, a parasite tends to enhance its own chances of long-term survival.
The most damaging aspects of viruses, in general, are social rather than technical.
Social damage includes such phenomena as:

� The scapegoating of virus victims

� Secondary damage to systems caused by inappropriate responses to a perceived
virus threat (low-level formatting of the hard disk to eradicate a macro virus,
for instance)

� Legal or quasi-legal issues, such as failure to comply with data-protection
legislation and policies

Hold that thought: we’ll have much more to say on social implications in Part IV.

Damage Versus Infection
We are particularly anxious to avoid the common confusion between infection
and damage. Virus incidents are often reported in terms of damage, where infection
would be a more appropriate term. We would also prefer to distinguish between the
presence of a virus on a system and an actual infection. A computer user may have
dozens of infected attachments sitting within his or her mail Inbox. However, as long
as none of the infected programs are actually run (that is, the infective code is not
executed), the system is not said to be infected. Infective objects in this state of
dormancy are sometimes described as latent viruses.

8 V i r u s e s R e v e a l e d

C h a p t e r 1 : B a s e l i n e D e f i n i t i o n s 9

Use of the term latency in this context may invite confusion, since it is sometimes
used in networking (especially in the context of firewalls) to indicate delay rather
than inactivity. In the networking context, the usage probably derives from the use
of the term “latency period” in neurology to refer to the delay between the moment
a nerve impulse reaches a muscle fibre and the moment that fibre starts to contract.
In fact, the notion of latency as entailing delay has its uses in discussion of virus
issues, so dormancy may be a better term.

A special case of dormancy occurs when a virus is found on a system on which it
cannot be executed. For example, a PC-specific program infected by a PC-specific
file virus cannot normally be executed on a UNIX server or a Macintosh, but may
nevertheless be found in an FTP directory or as a mail attachment. The risk here is
that such a virus might later be passed on to a system on which the viral code could
be executed, even though the replicative code is not executed at this stage of its
dissemination. This mechanism is sometimes referred to as heterogeneous virus
transmission, though it closely parallels the mechanism that drives the dissemination
of other malware.

NOTE

A number of papers and presentations by Peter Radatti have alluded to this phenomenon, including the
1992 paper “Heterogeneous computer viruses in a networked UNIX environment” (Proceedings of the
First International Virus Prevention Conference and Exhibition (NCSA), Washington, DC).

Stealth Mechanisms
Viruses that use concealment mechanisms are often described as stealth viruses. This
term has become so popularly debased as to include virtually any virus that neither asks
permission to infect nor announces its presence by a characteristic message, graphic,
sound effect, and so on. Stealth methods and classification are discussed in Chapter 3.

Despite the tendency of the media and instant experts to scream “Arggghhh!!! It’s
a stealth virus!”, stealth and stealth classification are, while technically interesting,
of little consequence to the everyday user of anti-virus software. Once a virus has
been analysed by an anti-virus vendor’s researchers, circumvention of any novel
stealth techniques it uses is incorporated into the process of adding recognition of
that virus to a scanner’s capabilities. Nonetheless, the tricks used by viruses to
conceal their presence can have implications for their victims that disinfection by an
anti-virus program may not address. Viruses and worms may introduce changes into
the environment, such as modification of Word menus or the Windows Registry, that

anti-virus software cannot (or in some instances chooses not to) reverse as part of the
disinfection process.

Polymorphism
Another word that inspires panic in the press is polymorphism, a concept poorly
understood by instant experts and generally overestimated in its long-term impact
on the malware problem in general. A polymorphic (“many shaped”) virus attempts
to make detection of its presence more difficult by changing its “shape” from one
infection to another. (The mechanisms for achieving such shape-shifting will be
considered later.) This is often mistaken (not only by the press, but by writers of
low-grade books on security and/or viruses) as meaning that the virus becomes a
different virus or virus variant at each infection. This is not the case. A polymorphic
remains the same virus but cannot be detected by looking for a characteristic scan
string within the possibly infected file (or other infectable object). The code remains
essentially the same, but the expression is different, so that the same program is
represented by a different sequence of bytes.

This by no means indicates, however, that polymorphic viruses are undetectable,
though the first examples contributed to the disappearance of a number of early
anti-virus products published by vendors who couldn’t handle the problem. It does
mean, of course, that the anti-virus programmer has to think beyond grep-like
scanning of infectable objects using pattern matching with regular expressions.

NOTE

grep, egrep, and fgrep are a group of UNIX tools used to search text files for lines that match
regular expressions, as defined in the next section of this chapter. Similar (and similarly named)
tools have been created to run under DOS, Windows, and other operating systems. The scripting
language awk (also found as nawk and gawk) and editing tools such as sed and vi also support
regular expressions. The perl language combines the functionality (and in some cases the syntax)
of these and other tools, and is available for many platforms. We should make it clear that these
tools do not all use the same sets of regular expressions, still less in exactly the same way.

What Is This, a UNIX Textbook?
No, although UNIX has its issues with viruses too, whatever the Linux zealots may
say, and we’ll consider those too, in the fullness of time. Indeed, we’ve already
discussed one of them: the question of heterogeneous virus transmission. However,
the UNIX shell programmer’s obsession with regular expression parsing can also
help us to understand how scanner technology works on platforms other than UNIX.

1 0 V i r u s e s R e v e a l e d

C h a p t e r 1 : B a s e l i n e D e f i n i t i o n s 1 1

Simple scanning for fixed strings (sequences of text or binary characters) is
Stone-Age technology, and no competent modern virus scanner relies exclusively
on it. UNIX-like regular expressions involve applying search or filtering criteria
that mix normal characters with special metacharacters to find not only fixed strings,
but also relevant variations, thus allowing a far more flexible approach to pattern
matching. Tools like grep, awk, and perl allow you to search for a character by
string using criteria such as:

^.fruitcake[^0-9]\.$

This expression would be Really Useful for searching a text file for lines consisting of

� Any single character;

� Immediately followed by the fixed string literal “fruitcake”;

� Immediately followed by any non-numeric character;

� Immediately followed by a literal period (full stop) character;

� Immediately followed by the end of the line.

The metacharacters used here include “^” (beginning of line), “.” (any single
character), “[^0-9]” (any character not included in the set of characters 0, 1, 2, 3,
4, 5, 6, 7, 8, or 9), “\” (treat the next character as a literal period character, not a
metacharacter denoting any character), and “$” (end of line). Thus, either of the
following lines will match:

%fruitcake&.

XfruitcakeX.

The following lines will not match:

%fruitcake&. Plus any other text whatsoever.

(No line break after the period character.)

%FRUITCAKE&.

(Literal string “FRUITCAKE” is not the same as the string “fruitcake”.)

Xfruitcake7.

(Character following literal string is numeric.)

1 2 V i r u s e s R e v e a l e d

Finding a set of circumstances under which looking for this particular expression
would ever be useful (let alone in the context of virus detection) is left as an exercise
for the reader. Furthermore, grepping a text file for a string isn’t exactly the same as
scanning a binary file for a search string. In fact, looking for a text string (even where
the virus author is considerate enough to provide one) inside a (possibly) infected
binary file is, more often than not, neither efficient nor dependable. However, it may
not surprise you that we can find uses for tools like grep in virus management to fill
in some of the corners that commercial anti-virus products don’t quite reach, such
as the management of log files.

Diet of Worms
By worm, we mean a self-replicating program that may or may not be a virus.
We’ll discuss the finer distinctions later. For the moment, we’ll use the following
rough-and-ready definition: a program that usually spreads across networks and
doesn’t attach itself parasitically to another program. (However, it can be said to
“infect” an operating system, a mail application, or a network, if you really want to
make your life complicated.) Be aware, though, that many anti-virus researchers
regard worms as a special case of virus, not a completely different class of malware.
In fact, we’d go so far as to say that an insistence on maintaining an artificial and
unspecified distinction between the two species often suggests the sort of instant
expert whose (self)-perceived authority exceeds his or her actual knowledge.
Furthermore, many of the current malicious programs described popularly as worms
may be more properly regarded as viruses or as worm/virus hybrids: Melissa or
MTX, for example. (Both Melissa and MTX are considered at length in Part III.)
Certainly, most experts consider the Internet Worm of 1988 and today’s email
worms to be beasts of quite a different colour, both in concept and in execution.

Trojan Horses
When we refer to a Trojan horse (or a Trojan, for short), we mean something that
probably isn’t a virus, or a worm, because it doesn’t self-replicate. That is, it can
only move from system to system if someone is persuaded to move it deliberately,
since it doesn’t include a programmed infection routine. However, worms are
sometimes described by vendors as Trojans, and some people regard viruses as a
special case of Trojan. Both these arguments are defensible, but such usage confuses
the issue somewhat. Certainly, if we ever use a term like “Trojan horse virus” in this
book, we’ll probably be quoting a hoax rather than using it in all seriousness. If not,
you’ll be entitled to ask for your money back (though you probably won’t get it).

Trojan horses are often defined as “programs that claim to do something useful or
desirable, and may do so, but also perform actions that the victim wouldn’t expect or
want”. These actions may include payloads such as password stealing or out-and-out
destruction.

However, this presumption of malice is not common to all researchers. Some use
the term “accidental Trojan” to describe programs that include an undesirable effect
the programmer did not intend to include. Such a problem may be differentiated
from other software bugs by their severity, such as a situation that results in the
destruction of data, for example. A particularly notorious (and apt) illustration of
this idea is documented in Vesselin Bontchev’s “Vircing” the InVircible, a highly
critical analysis of InVircible, a generic anti-virus product. Bontchev reported that
running some of the tools in this product suite during testing resulted in the deletion
of a legitimate data file with the filename SOFIA. This problem appears to have
arisen because of the undocumented use of a temporary file of the same name by
InVircible. The effect caused Dr. Bontchev to classify it “as a Trojan Horse destroying
data” without going so far as to accuse the program’s author of deliberate malice.

NOTE

InVircible is a product that stands somewhat outside the mainstream of anti-virus technology. Its author,
Zvi Netiv, has a forceful personality and an aggressive approach to marketing that has resulted in fierce
controversy. The war between Mr. Netiv and the rest of the industry is interesting, but a little beyond the
scope of this chapter. In later chapters we will consider in more depth the ideological and technical
differences between generic and virus-specific approaches to virus management. We will, however,
avoid dwelling on the flame wars and personality clashes associated with specific products.

In the Wild
How many viruses are there? Well, it depends on what and how you measure, of
course. This may be a good point at which to note that many of the objects detected
by anti-virus software are not actually viruses at all. We’ll come back to what else
they may be in the next chapter.

Of those objects that really are bona fide viruses, most will never be seen on your
desktop or anywhere else within your organization, unless someone goes out of his
or her way to collect them. At the time of writing, anti-virus vendors are claiming to
detect between 50,000 and 60,000 PC viruses. This is a somewhat spurious claim,
incidentally, but we’ll take that particular diversion further down the line. However, the
WildList Organization’s report for July 2001 lists 698, including the Supplemental
List as well as the WildList proper, which lists only 214. Who is correct?

C h a p t e r 1 : B a s e l i n e D e f i n i t i o n s 1 3

1 4 V i r u s e s R e v e a l e d

NOTE

The WildList Organization is a volunteer group consisting of a number of anti-virus researchers
who are well-placed and well-qualified to contribute information concerning viruses currently seen
in the field. We will look more closely at this organization in Chapter 8.

Actually, neither total is (nor can be) strictly correct, but the WildList is a much better
guide than vendor marketing as to which viruses seriously threaten your organization.
The vendor’s packaging massively overstates the problem (in a sense) by claiming
detection of all the viruses that are known to exist (and some variants and non-viruses
that shouldn’t be quoted, from a purist point of view). The WildList and Supplemental
List include viruses that have been reported by businesses and other computer users as
spreading on their systems, and that have been verified by the highly qualified anti-
virus professionals who report to the WildList Organization. By definition, these lists
understate the problem, because there are always viruses that are “out there” in the field
but that haven’t made the list yet. However, the difference between the viruses that
constitute the WildList and those that are out there but not included in the WildList is
usually assumed to be measurable in hundreds rather than in tens of thousands. This
does not mean that the vendors are purposely misleading you, by the way (at least,
not always). It simply means that the problem is too complex to be served well in the
context of this introduction. If you want to know more right now, you’ll have to skip
ahead to Chapter 3 (on virus epidemiology in general) and Chapter 8 (on information
gathering and risk assessment).

So let’s go back to the question we asked at the beginning of this section. How
many viruses are there? Answer: tens of thousands, by almost anyone’s reckoning.
How many should you be concerned about? All of them, since you can’t tell whether
one of them might get lucky and escape into “the wild”. However, it makes sense
to worry more about those that are known to be in the field now, especially those
conspicuous enough to have made the WildList. What do we mean by in the wild?
To quote Paul Ducklin (of Sophos, the UK anti-virus company), we mean viruses
that are “spreading as a result of normal day-to-day operations on and between the
computers of unsuspecting users”. (See the WildList Organization’s FAQ (Frequently
Asked Questions) document at http://www.wildlist.org/faq.htm). Viruses found only
in collections, e-zines, or VX (Virus eXchange) web sites are not considered to be in
the wild. Such viruses are sometimes described as “zoo viruses” or even “in the zoo”.

The terms “in the wild”, “In the Wild”, and “ItW” lead to a certain amount of
confusion, and we should try to clarify our usage of these terms:

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 : B a s e l i n e D e f i n i t i o n s 1 5

� By “in the wild” (without capitals), we mean “in the field”, or conforming
to Ducklin’s definition without particular reference to the WildList. In other
words, viruses that are out there on everyday computer users’ desktops but not
necessarily on the current (or an earlier) WildList. In fact, we will usually use
the term “in the field” rather than “in the wild” in this more general sense, in
the hope of reducing confusion.

� Use of the term “In the Wild” is restricted here to the context of “included on
the WildList or possibly on the Supplemental List”. However, this restriction is
not, by any means, adhered to by all researchers. The eccentrically capitalized
abbreviation ItW will be avoided in this book but is frequently found where
anti-virus (AV) and pro-virus (VX) people gather and exchange email.

Instant Guide to Anti-Virus Software
Finally, here’s a brief summary of what anti-virus programs are and how they work.
We’re keeping the details in reserve for Part II, but a cursory scan of almost any
anti-virus software comparative review indicates that we can’t assume that you already
have a realistic broad understanding of anti-virus technology. We don’t mean you
personally, of course, but the guy next to you reading over your shoulder. (Especially
if he happens to be a journalist.)

There are two main streams of anti-virus thinking: virus-specific and generic. By
virus-specific, we mean what is sometimes referred to as Known Virus Scanning (KVS).
This means that every time a new virus or variant is discovered, it is analysed and
a suitable identifying pattern is extracted. Virus-specific scanners are then (if
necessary) modified so that they will detect and identify that specific virus or variant
using that pattern. Generic scanners detect viruses (hopefully), but don’t identify
them (at least, not exactly). Whereas a virus-specific scanner says “Object X is
infected with the Y virus”, a generic scanner says “Object X is (or may be) infected
with an unidentified virus”. Clearly, it’s easier for a virus-specific scanner to disinfect,
where disinfection is possible. A generic scanner is more likely to suggest that you
discard or replace the (possibly) infected object X, or else that you check it with a
virus-specific scanner.

However, some (most, these days) virus-specific scanners can also use a generic
technique called heuristic analysis to detect new (unknown) viruses. Simplistically,

they look for indications of virus infection in object X by seeing what the code actually
does. This is closely allied to behaviour monitoring and behaviour blocking. The
differences and resemblances between these techniques are beyond the scope of this
introductory chapter, but we’ll have lots to say on the subject later.

NOTE

There is an important distinction here between disinfection and detection. Some products don’t
disinfect all classes of viruses, and commercial virus-specific scanners can’t usually disinfect all
the viruses they detect—some types of infection are not repairable. The word disinfection implies
that the virus code has been removed from the infected object. However, this does not necessarily
indicate that the object has been returned to its pre-infection state. Nor does it mean that the
object will necessarily function as it did before it was infected, although it will in many cases. It
does not mean that the environment in which the infected object exists is restored to its former
state, either, nor that all the damage caused by the infection or the payload is reversed.

Scanners are broadly divided into two main types: on-access (real-time) scanners,
and on-demand scanners. Real-time scanners are memory-resident: they check infectable
objects (files, diskettes, system areas) as they are accessed. On-demand scanners
may also check one or more files, disks or other media, or whole systems, but they
aren’t memory-resident. Either the user calls them as needed (when you want to
verify that a CD you just received is virus-free, for instance), or else they’re called
by scheduling software at predetermined times. They may also be called by the
operating system at fixed times, by an entry in AUTOEXEC.BAT, for instance.

Summary
We know of many people in management positions (including security managers)
who would know a great deal more than they do now if they were to read this
chapter. However, we’ve probably said enough to indicate that the virus-management
problem is far too complex to allow the anti-virus professional to hope that clicking
on the Anti-Virus icon will solve all his or her problems. Certainly, if you have the
deep joy to be a systems administrator or security professional, we have a lot more
to share with you. In Chapter 2, we take a look at some historical background.

1 6 V i r u s e s R e v e a l e d

CHAPTER

2
Historical Overview

17

IN THIS CHAPTER:

Virus Prehistory: Jurassic Park to Xerox PARC

Real Viruses: Early Days

The Internet Age

And So It Goes...

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

A major problem in providing a history of viruses lies in knowing where to
start. Some people have insisted that they were writing viral programs as
far back as 1956. Since computers then had very little similarity to computers

now, and since the methods of use were so different, these claims have to be taken
with a very large grain of salt. There are some operations that could have been
considered viral, such as the opcode in early machines that simply copied itself into
the next memory location. (This was used to overwrite the entire memory space,
leaving it in a known state.) However, only by the most strained definition of “virus”
can these functions be seen as similar to modern viruses.

NOTE

An opcode in assembly language is the part of an instruction or directive that identifies the specific
operation to be performed. (An instruction is a statement to be translated into machine language;
a directive is a statement that gives directions to the assembler.)

On the other hand, as we shall also see, computer viruses have changed radically
in the 15 years that they have been widely known. Certain patterns do, though, tend
to recur.

Much of this chapter will concentrate on the MS-DOS and Windows platforms.
Viruses have been written for just about every major, full-blown computer operating
system (with the possible exception of CP/M). However, as you will see, the basic
viral ideas remain the same. In addition, the prevalence of viruses has little to do with
questions of operating system design or even security. Viruses are, in general, most
frequent in those operating systems that are most widely used. The Wintel platform
(Windows running on a PC driven by an Intel processor or equivalent) has the dubious
honour of having the greatest number of viral examples.

With this history, we intend to give you a very basic overview of fundamental
virus concepts. Although the technology is changing constantly, the underlying ideas
never change very much at all. The story starts before viruses were known, or even
contemplated, at least under that name.

Virus Prehistory: Jurassic Park to Xerox PARC
While there is no proof that true viruses existed in the early days of computing, it is
important to note certain programs and activities that did. These exercises and studies
probably did not presage the development of viruses themselves, but they did influence
opinions and later examinations.

1 8 V i r u s e s R e v e a l e d

C h a p t e r 2 : H i s t o r i c a l O v e r v i e w 1 9

Wormholes
As computer technology advanced, it became possible to run more than one program
at a time on a single machine. In even the most rudimentary multitasking environment,
it was important that each program be contained within certain bounds, known as
partitions. Programs would perform inappropriate operations on the data, or on other
programs belonging to different procedures, or would transfer control to random areas
and try to execute data as program instructions.

NOTE

Because the design of most computers is based on what is known as von Neumann architecture,
there is no inherent difference between data and programs. Thus, there is no way to tell the
difference between a scrap of data and a section of program without trying either to run it or to
make sense of it.

Programs that encroach upon another program’s personal space in this way tend
to generate random operations and damage. (Even now, we can see all the Windows
support engineers out there nodding and muttering “protection fault” and wincing.)
Attempts to trace the “path” of damage or operation would show random patterns of
memory locations. Plotting these on a printout map of the memory made irregular
curving traces, which began and ended suddenly. Since these looked like holes in
worm-eaten wood, the model became known as a “wormhole” pattern, and the rogue
programs were sometimes known as “worms”.

Nowadays, the term worm is often used for viral programs that spread by some
method other than attachment to, or association with, other program files. However, this
use of the word probably derives from the Shoch and Hupp experiment that resulted in
the Xerox worm, which we discuss later in this chapter. Rogue programs that created
wormhole damage were haphazard mistakes, and very little like today’s premeditated
viral programs, except that they wreaked havoc where they shouldn’t have.

Core Wars
Programmers being the individuals they are, the development of such rogue programs
became a subject of contests, specifically the game of “Core Wars”. In this game,
program is run to set up an environment like the core memory of older computers.
A standard set of computer opcodes, known as Redstone Code (because the simulator
version was developed at the Redstone missile development or testing facility of the US
military) or just Redcode, is used to build programs that which then do battle with each

2 0 V i r u s e s R e v e a l e d

other within the simulated environment. The program’s objective is survival, rather
than reproduction and spread. However, virus researchers have an interest in the use of
such tactics as attack, avoidance, and replication, as well as the trade-off between
complexity of design and chance of destruction.

For example, a very simple, but effective, Core Wars program is one referred to
as an Imp. An Imp simply tries to run through the memory, overwriting locations as
it goes. Since it is very small, an Imp is hard to find and kill. Larger programs may
have more sophisticated means of detecting other programs, or of defending against
attacks, but, because of their size, are more likely to have part of the program
destroyed by an Imp. In the same way, small and simple viruses have sometimes been
more successful at surviving and reproducing than more complicated programs.

Core Wars is most widely known due to a series of articles done by A. K. Dewdney
in his “Computer Recreations” column in Scientific American. The first of these
articles was printed in the March 1984 issue. Images of these articles can be found
at http://www.koth.org/info/sciam/. More details on Core Wars can be found at
these sites:

� http://www.koth.org/info.html

� http://www.sci.fi/~iltzu/corewar/guide.html

� http://www.cs.ucla.edu/~jperry/corewars.html

� http://kuoi.asui.uidaho.edu/~kamikaze/documents/corewar-faq.html

The Xerox Worm (Shoch/Hupp Segmented Worm)
We have given one possible derivation of the term “worm”. There is another, and this
is the one that is more likely the source of the current definition of the word in the
field of computer virology. It is interesting that two completely separate routes should
give rise to the same term and that the meanings should complement so well. It is
also interesting, given the ongoing debate as to whether viruses can ever be useful,
that this story arises from an early attempt to use viral programming for beneficial
purposes.

NOTE

Vesselin Bontchev has written a useful paper on the non-usefulness of “good” viruses. You can find it
at a number of sites:

ftp://ftp.informatik.uni-hamburg.de/pub/virus/texts/viruses/goodvir.zip
http://www.virusbtn.com/OtherPapers/GoodVir/

Fred Cohen, to whom we’ll introduce you shortly, has taken an opposite view in books such as
A Short Course on Computer Viruses.

C h a p t e r 2 : H i s t o r i c a l O v e r v i e w 2 1

John Shoch and Jon Hupp were researchers at Xerox PARC in Palo Alto, California,
where one of the earliest examples of a local area network (LAN) had been set up.
They were interested in the concept of distributed processing, the ability of computers
to work cooperatively on single or related tasks. Specifically, they were testing an
experimental program whose function was to check other computers on the network
to see if they were active.

If a computer were idle after normal working hours, for example, the program
would submit a copy of itself to the idle machine. In this way, the original program
would spawn multiple copies of itself to idle machines in order to make use of the
CPU time, which would otherwise go to waste. This system was a precursor of
systems that have now become very popular on the Internet and have already made
significant contributions in fields such as encryption and decryption. A problem can
be broken down into small chunks, and if each sub-problem can be addressed and
resolved on one of the machines on a network, this is functionally equivalent to
running a single, large program. However, the actual processing is done by small
program segments working on individual machines, rather than by sharing a single
processor. Since biological worms are defined by the fact that they have segmented
bodies, Shoch and Hupp called this new type of program a “worm”. In many references,
you will also find mention of John Brunner’s novel, Shockwave Rider. This book
refers to a “tapeworm” program that could be said to have some resemblance to the
cumulative computing effort.

Alas, the experiment, at that time, was not an altogether unqualified success. One
night, a programming error was made. This glitch caused the computers running the
worm program to hang, and since the program had been sent to many computers over
the course of the night, the researchers arrived in the morning to find an institution
full of dead computers. This program became known as the Xerox worm or, in many
references, the “infamous Xerox worm”. Shoch and Hupp detailed their experiences
in a paper published in the March 1982 issue of the Communications of the ACM
(“The Worm Programs—Early Experience with a Distributed Computation”).

As noted, the Shoch and Hupp worm program did reproduce by submitting itself
to other computers, but it was written as part of research in the field of distributed
computing. The program had no malicious or security-breaking intent. Nor did it attempt
to hide its presence or operation. On the other hand, as we pointed out in Chapter 1,
neither malicious intent, nor covert operation, constitute defining characteristics of
a virus (or worm).

NOTE

Some abstract notes are available at http://ftp.unina.it/pub/docs/rfc/ien/ien159.txt. A German
account is available at http://www.cert.dfn.de/tutorial/wuermer/kap211.html, and can be
roughly translated by AltaVista’s Babelfish (http://world.altavista.com/).

2 2 V i r u s e s R e v e a l e d

Real Viruses: Early Days
The earliest case of a virus, as we know them to today, that actually succeeded in the
wild, goes back to late 1981. In fairness, this activity does not appear to have been
noted by many until long after the fact. Those who have followed Apple’s “Think
different” advertising campaign may not be surprised that an earlier generation of
Apple hardware “gave birth” to this novel concept.

1981: Early Apple II Viruses
We have reports of two very similar programs with almost identical features and
histories. Here, for the sake of simplicity, we will discuss the first one that was
related on the Internet. The other instance was startlingly similar, even to the state
in which it took place.

The idea was sparked by a speculation regarding “evolution” and “natural selection”
in pirated copies of games at Texas A&M: the “reproduction” of preferred games and
the “extinction” of poor ones. This led to considerations of programs that reproduced
on their own, and the term “computer virus” was apparently used in the context of that
idea. There is no obvious reason to doubt the author’s contention that there was no
malice involved. At the time, it was one originator’s belief that a virus had to be
relatively “benign” in order to survive. Indeed, there is some truth in that assertion,
though it can’t be described as an absolute. Viruses with no destructive payload do
tend to survive better over the long haul.

Apple II computer diskettes of that time, when formatted in the normal way, always
contained the disk operating system.

The programmer attempted to find the minimum change that would make a viral
version of the operating system, and then tried to find an “optimal” viral DOS. A
group came up with the first version of such a virus in early 1982, but didn’t let it
spread because of side-effects. The second version was allowed to “spread” to a limited
extent through the disks of group members.

Eventually, the virus escaped into the general Apple user population. It was only
then observed that the additional code length caused some programs, and one computer
game in particular, to crash. A third version was written, and the developers made
strenuous efforts to avoid the memory problems. This version was subsequently found
to have spread into disk populations previously considered to be uninfected, but no
adverse reactions were ever reported.

1983: Elk Cloner
This virus seems to have been written around 1983. It became well known in the Apple
community, probably because of the message (in doggerel verse) that it presented. It
also created nuisances in the computer, such as displaying the wrong file type, inverting
the video, and clicking the speaker. The virus worked only under AppleDOS 3.3;
any other disks, such as those based on HackerDos, DiversiDos, and ProDOS, tended
to be rendered unusable. The author is known, and his claims to have intended no
real harm appear credible. All damage generated by the virus seems due to simple
carelessness.

By way of an epilogue, in 1989 a virus appeared for the then-current Apple IIGS
and ProDOS. Apple users were used to rebooting in order to change operating systems
or boot special disks. Load Runner trapped the reset command (holding down the
CONTROL key plus the COMMAND (Apple) key plus the RESET key) and, when it was
issued, wrote itself to the diskette in the drive, thus surviving a reset.

C h a p t e r 2 : H i s t o r i c a l O v e r v i e w 2 3

1984: Fred Cohen, Computer Viruses—Theory and Experiments
Fred Cohen first presented his ideas to a graduate class in information security in
1983, and history credits his seminar advisor, Len Adleman, with the assignment
of the term “virus” to Cohen’s concept. Of course, this isn’t Adleman’s only claim
to fame. The RSA encryption algorithm derives its name from those of its inventors:
Rivest, Shamir, and Adleman. Cohen did extensive theoretical research, and he
also set up and performed numerous practical experiments regarding viral-type
programs. Cohen’s first virus paper was published in 1984, and his dissertation
was presented in 1986 as part of the requirements for a doctorate in electrical
engineering from the University of Southern California. This work is foundational,
and any serious student of viral programs disregards it at his or her own risk.
Cohen’s major contributions lie in the foundations of basic theory and analysis
in virus research, and the development of the defensive techniques that have
historically been most effective and are now the most widely implemented. His
work experimentally demonstrated and theoretically resolved vital issues. He
outlined every basic antiviral concept that is now in use; despite what vendors
may tell you, nobody has ever found any other way to deal with viruses.

2 4 V i r u s e s R e v e a l e d

1984: Fred Cohen, Computer Viruses—Theory and
Experiments (continued)

Dr. Cohen’s definition of a computer virus as “a program that can ‘infect’ other
programs by modifying them to include a, possibly evolved, copy of itself” is generally
accepted as a standard. Indeed, we couldn’t get through Chapter 1 without quoting it.
Occasionally, it is unclear as to whether it can include, say, boot-sector viral programs,
or entities such as the Internet/UNIX/Morris Worm. It is not, however, fair to Dr.
Cohen to hold him responsible for the misuse of his work by others. The definition
given above was an attempt, in the 1984 paper, to express a mathematical concept in
English. The English version is only an approximation.

Fred Cohen’s work was never given the credit or value it deserved. From the
very beginning, systems administrators and the security community have seen his
work as either negative or as an academic curiosity. In addition, viruses have advanced
the plot of many a book or movie, and Cohen has never received a royalty check from
Hollywood. Viruses even save the world on occasion, but no one phones Fred to
thank him. This situation is decidedly odd, but it may have been aggravated by
the perception of Cohen as a bit of a grouch. Fred’s friends, however, argue
against the negative characterization, noting that he has a very keen sense of
humour. This last is amply demonstrated in A Short Course on Computer Viruses,
a book that goes a long way towards bridging the gap between the practicalities
of virus and anti-virus technology, and their theoretical, mathematical basis.

This overview is the merest introduction to his work. Indeed, computer virology
plays little part in his more recent writing. The most important aspects of his early
work are the demonstration of the universality of risk and the limitations of
protection. His practical work proved the technical feasibility of a viral attack
in any computing environment more complex and interactive than a pocket
calculator. (This feat was achieved within a closed environment and could not,
by its nature, have predicted the social and psychological factors that have
contributed to the pandemic spread of viral programs in the wild.) Equally
important, his theoretical study proved that the “universal” and purely automatic
detection of a virus is impractical. Although monitoring and analytical programs
have a place in the antiviral pantheon, this fact means that they, and all other
antiviral software, can never give 100 percent guaranteed protection.

You can find out more about Dr. Cohen and his more recent work in other
areas of security at http://www.all.net/.

TE
AM
FL
Y

Team-Fly®

1986: © BRAIN
1986 was not only the year in which Fred Cohen presented his dissertation, it was also
the year in which Ralf Burger demonstrated VIRDEM, a .COM infector. Over the next
few years, many more .COM and .EXE infectors would be written than boot-sector
infectors, but parasitic file viruses were comparatively unsuccessful at spreading in
the wild (with some very notable exceptions, including Jerusalem, discussed later
in this chapter). This trend has changed course in recent years, however, with the
advance of the email worm/virus juggernaut.

The Brain virus is probably the earliest PC virus, and at one time, it was the most
widespread of PC viral programs. Extensive study has been done on the Brain family.
In spite of this, and in spite of the existence of address and phone number information
for the supposed author, we still have only second-hand reports of the production of
the virus. Consequently, little can be said with absolute certainty about its origins.

Brain is a boot-sector infector (BSI), somewhat longer than some more recent BSIs.
Brain occupies three sectors itself, and, as is usual with BSIs, repositions the normal
boot sector in order to mimic the boot process. As the boot sector is only a single sector,
Brain, in infecting a disk, reserves two additional sectors on the disk for the remainder
of itself, plus a third for the original boot sector. This is done by occupying unused
space on the diskette and then marking those sectors as “bad” so that they will not
be used and overwritten. The “original” Brain virus is relatively harmless. It does
not infect hard disks or disks with formats other than 360K. (Other variants are less
careful and can overlay FAT and data areas.)

The Brain family is prolific, although less so than Jerusalem, for instance.

NOTE

Seemingly, any successful virus spawns a plague of copies if virus-writer wannabes use it as a
template. This has become more so as macro viruses and other script viruses have made virus
coding easier. The code requires less programming knowledge and no specialized development
tools. In addition, when and if interpreted viruses go wild, they tend to spread faster and farther,
and the actual code is often freely available (including to people who aren’t actually looking for it).

Again, like the Jerusalem virus, it seems that one of the lesser variants of Brain
might be the “original”. The Ashar version appears to be somewhat less sophisticated
than the most common Brain, but Brain contains text that makes no sense unless Brain
is derived from ashar. Brain contains other timing information: a “copyright” date of
1986 and an apparent “version” number of 9.0.

C h a p t e r 2 : H i s t o r i c a l O v e r v i e w 2 5

1987: Goodnight Vienna, Hello Lehigh
By 1987, the virus scene was heating up. Bernt Fix’s disassembly of the Vienna
virus was included in Ralph Burger’s book Computer Viruses: A High Tech Disease,
published in that year, though the code for Burger’s own VIRDEM was not included.
VIRDEM did spawn a number of variants, but was never any real threat or of major
importance in the wild, unlike the widely copied Vienna.

The Lehigh virus, on the other hand, was described in the book, although its
real impact outside Lehigh University was virtually non-existent. Lehigh was
the first file infector that came to public attention, but the virus only infected the
COMMAND.COM file, which rather restricted its capacity to spread. After infecting
four disks, Lehigh would erase all data on all disks in the machine at the time.

This immediate, and fairly devastating, payload ensured that Lehigh would be noticed.
The same factors guaranteed that the virus would be actively pursued and eliminated.
It received a great deal of publicity, and had a direct impact on the anti-virus scene.
Ken van Wyk, who was working at Lehigh at the time, and later went on to join CERT
(the Computer Emergency Response Team), set up the VIRUS-L/comp.virus mailing
list and newsgroup. Moderated by Ken, and then by Nick FitzGerald, later an editor
of Virus Bulletin, VIRUS-L became an extremely useful resource for the exchange
of anti-virus information, but it hasn’t been consistently active for some years.

Stoned/New Zealand, one of the most successful boot-sector viruses ever, was
written at the University of Wellington. (The other main contender for most common
boot-sector virus is Form, which appeared a little later.) Written by a student, and
apparently let loose by the author’s brother, the virus had no damaging payload, and
a minimal display payload. The infection mechanism was sturdy, and the code had
few incompatibilities with normal computer operations. All of these factors contributed
to the success of the virus in the wild, and also meant that it was used as a model for
many other variants. Stoned and its derivatives are considered at length in Part III.

Cascade was the first encrypted virus. The encryption was an early and very simple
form of polymorphism. Only the decryptor stub was detectable by “signature scanning”.
The self-encryption idea was developed subsequently (mostly by Mark Washburn,
author of the V2P polymorphic virus family) into the use of variable encryption as
a polymorphic mechanism. However, Cascade is probably best remembered for the
visual effect it displays (letters “falling” out of their proper place on the screen into
a heap at the bottom of the screen).

Rob Slade started to collect some messages about an intriguing new idea in operating
system function: that of programs which copied themselves. By making this compilation
available to interested security mavens, he accidentally became the unofficial archivist
of what eventually became the international virus research community.

2 6 V i r u s e s R e v e a l e d

CHRISTMA EXEC, an email worm specific to IBM mainframes, was a precursor
of the Windows scripting viruses of the late 1990s. It promised a Christmas card for
the user, and did actually draw a vaguely coniferous shape on the terminal screen, using a
scripting language called REXX. This screen display meant that the virus was sometimes
known as “The Christmas Tree”, but there is also an MS-DOS virus called “Christmas
Tree”, which appears to have been written in homage to the original.

Characteristics CHRISTMA had in common with the later scripting viruses included
the use of social engineering in the subject header (to stop the victim from reading the
REXX code), self-mailing to everyone in the victim’s address book, and exploitation
of the trusted source fallacy.

NOTE

To this day, we hear of people puzzled to find that they’re infected by an email worm, despite
opening only attachments received from people they know. Moral: trusting the person doesn’t
mean you have to trust the object. In general, people receive viruses and similar threats from
other victims, not directly from the virus creator: that’s one of the major weaknesses exploited
by self-replicating malware. You have to trust not only the intentions of everyone you deal with,
but also their ability to protect themselves from infection.

The attempt to fool the user distinguishes CHRISTMA EXEC from the Internet
Worm that appeared almost a year later. The Internet Worm and other related beasts,
as well as some of the more recent Linux viruses, tried to use system functions and
programming bugs in order to avoid alerting or involving the user at all.

The first Amiga virus seems to have appeared in late 1987. It was essentially a
boot-sector infector (boot-block, for the Amiga—it actually uses two sectors). It
employs a form of stealth, and so may well be modelled after the MS-DOS Brain
virus. The virus had message text that was displayed on occasion, and probably
referred to the movie “2010”, which had been released in 1984: “Something
wonderful has happened Your AMIGA is alive !!!”

1988: The Worm Turns
Scores, a Macintosh system virus, was apparently intended to target a specific company
(EDS, in Dallas, Texas). This incident is discussed at some length in Part III.

The first instances of the Jerusalem virus were discovered in the wild late in 1987.
It was known variously as “Israeli” (because of the initial discovery in Israel by Yisrael
Radai), “PLO” (because of supposed terrorist intentions), “1813” (for the infective
length), “suMsDos” (after a text string found in the body of virus code), and a variety
of other names (for other reasons). Jerusalem had a destructive payload programmed

C h a p t e r 2 : H i s t o r i c a l O v e r v i e w 2 7

into it, but it also had an unintended bug which led to early detection: Jerusalem would
infect the same file again and again, leading to a noticeable increase in file size for
some programs. This led to the common assertion that viruses can be detected by
changes in file size, even though most other file infectors are tiny scraps of code in
comparison to their targets. Of course, even a few bytes difference between file sizes
might denote virus infection. Indeed, an increased size is one of the heuristics used by
some generic anti-virus software, but only one, and by no means the most important.

While Lehigh did infect program files, it was limited to only one specific file,
COMMAND.COM, because of both targeting and the infection mechanism. Jerusalem
was the first MS-DOS virus to infect the full range of program files, including both
COM and EXE formats. In addition, the basic infective code in Jerusalem is remarkably
clear and straightforward, and three early versions—sURIV 1, sURIV 2, and sURIV 3,
respectively—demonstrate how to infect .COM files, .EXE files, and both. Therefore,
Jerusalem has become the precursor to a whole family of viruses. Initially, copycat
virus writers merely changed trigger dates for the destructive payload, but eventually the
infection module was found in a variety of other viruses with other payloads. Jerusalem
itself spread worldwide, but also lives on in many other file-infecting viruses.

NOTE
In fact, most of the viruses in the late 1980s did spawn such virus families, and did pioneer various
virus technologies. Therefore, we have covered more of the details in the chapters dealing with case
studies in Part III. For the remainder of Chapter 2, we will only be touching on highlights, and following
broad trends, particularly for standard file and boot-sector infectors.

Jerusalem is thus an important milestone on the virus road, and will be considered
in greater length with the case studies in Chapter 12.

The MacMag Macintosh virus was the first major infection for that platform. MacMag
earned several other firsts, such as the first time a virus was written on commission,
the first use of a non-viral “dropper”, and the first time a perceived data file was
used for transmission. It also infected several thousand release copies of Aldus
Freehand—probably the first instance of commercial software being infected before
it left the pressing plant.

The virus was instigated, though not written, by the editor of MacMag magazine,
probably as a publicity stunt. Internal evidence in the code does seem to suggest the
name of someone else as the author. No damaging payload was included with the
program, although it did have a message designed to trigger on a certain date.

Part of the spread of MacMag was facilitated by a file that purported to contain
information about new Macintosh models that were due to be released near to that
time. The file was a HyperCard stack, a type of free-form database with graphical

2 8 V i r u s e s R e v e a l e d

and other features. (“Stack” is the term for a HyperCard data file, a reference to a
stack of cards.) Most users saw HyperCard stacks only as data, but it was possible to
associate programming functions with and in the stacks. The MacMag virus is said
to be the first example of a HyperCard virus, but HyperCard was only used to “drop”
the virus into a system; the infective mechanism did not use HyperCard, and MacMag
did not infect other HyperCard stacks.

One interesting vector was traced from a game, to a party, to a consultant, and
then to the companies using the consultant. One of those companies was Aldus, and
the master copy of the disks containing the Freehand program became infected. The
infected disk was duplicated and distributed to dealers. Fortunately, the company, very
responsibly, admitted to the problem as soon as it was discovered, and so further
spread was minimized. Few companies in similar situations have acted with the
same degree of integrity.

IBM entered the research field when their site at Lehulpe in Belgium was infected
with Cascade. While IBM’s anti-virus technology is now channelled through Symantec,
the impact of their research has been and continues to be considerable.

Utility software guru Peter Norton was quoted in Insight as saying that computer
viruses were an urban myth, like the alligators said to inhabit the sewers of New
York. Later, however, he lent his name to what became one of the top-selling
anti-virus programs.

The Internet Worm, also known as the Morris Worm (after the author) and the UNIX
Worm (after the targeted operating system) swept through UNIX-based systems and
brought the Internet to a near-halt in the early part of November. This was probably
the first mention most people ever heard of the computer virus phenomenon. News
stories about the event appeared in the general media, and, for many years afterward,
no news story about viruses failed to mention the Internet Worm, regardless of the
fact that it used technologies radically different from the other, more common, viruses.

The Internet Worm exploited a number of known weaknesses and loopholes in
the networking and email software common to UNIX systems connected to the
Internet. It used these vulnerabilities to transmit itself to new systems and to start
running new copies of itself. Other parts of the program would then try to guess at
common passwords and try to increase the level of privilege on the new target. In
contrast to most viruses, the Internet Worm did not rely on any user actions at all,
except for laziness on the part of managers who did not patch known problems,
and account holders who chose bad passwords.

Using many of the same ideas, the WANK.COM and HI.COM worms spread through
DEC (Digital Equipment Corporation) VAX model computers running an operating
system known as VMS.

C h a p t e r 2 : H i s t o r i c a l O v e r v i e w 2 9

On the Atari ST computer, most disks were not bootable. (Hard disks were common
by this time, and usually the system would be booted from the hard drive.) However,
Atari disks had a boot sector, and it was read in order to obtain information about the
format of the disk. If the first byte of the boot sector had a value of 60H, then the boot
sector was marked as executable, and the contents would be run. In early 1988, an
Atari ST virus appeared. It used the boot sector, and it only infected floppy disks.
However, if a disk was present in the floppy drive when the computer booted up, the
virus was executed before the system loaded from the hard drive. (Because bootable
disks were few, leaving a floppy in the drive seems to have been a common practice.)
The virus would copy itself to each uninfected floppy disk, and would add this infection
to a counter. When the counter reached a certain number, the virus would trigger a
payload that overwrote the system areas of the disk.

The Internet Age
The late 1980s and early 1990s saw the development of many technologies within the
basic virus model that had been laid down in earlier years.

1989: Worms, Dark Avenger, and AIDS
Eugene Spafford’s “Crisis and Aftermath” and Rochlis and Eichin’s “With Microscope
and Tweezers: the Worm from MIT’s Perspective” (both in Communications of the
ACM) analysed the Morris Worm of the previous year. A number of CHRISTMA
EXEC knockoff worms appeared. The WANK worm infected VMS systems using
techniques synthesized from the Morris Worm and HI.COM.

Jerusalem panic struck as the virus’s next trigger date (Friday, 13th January, 1989)
approached. Indeed, every Friday the 13th became Jerusalem panic day for years
afterwards. Datacrime (or Columbus Day) became one of the first media viruses
(a virus that is mostly significant because of the media attention it attracts) later
in the year. Datacrime was a minor variant of Jerusalem, and, like its ancestor,
triggered on Friday the 13th. In October, Friday the 13th fell near the Columbus Day
weekend, and this fact seemed to capture media attention. There was no other reason
to pay particular attention to the Datacrime virus.

Virus Bulletin, still the most significant publication in the anti-virus field, was launched.
Dark Avenger’s eponymous virus, better known among the research community

as Eddie, introduced the concept of slow random damage as a virus payload. Thus,
scrupulous backup procedures ceased to be a universal cure for virus damage, if they
ever had been. The program stayed resident in memory once it had been run, and not

3 0 V i r u s e s R e v e a l e d

only infected programs that were invoked, but also files as they were opened or
copied. The Bulgarian author included programming targeting the Bulgarian virus
researcher, Vesselin Bontchev.

NOTE

Dark Avenger was ugly, but innovative (the virus, that is): it also introduced the concept of fast
infection. A memory-resident virus that infects files as they are opened for reading can spread
quickly across a PC’s hard disk (or, under the right circumstances, a network). Later viruses used
modifications of this technique, such as infecting all executables in the current directory, or in all
directories listed by the DOS PATH variable.

Frodo, the first full-stealth parasitic (file) virus, was detected in Israel. Also known
as 4096 or 4K because of the length of the code, it attempted to hide the increase in the length
of files from the user. While the virus was active in memory, any directory listing of files, as
well as certain other utilities, would only show the original file size. However, because
this was not consistent with the number of sectors being used to store the files, cross-linking
of infected files would occur in the system areas of the disk. In addition, because of the
way the virus chose targets, data files would sometimes be corrupted. Frodo contained
a message payload, but all known versions contain bugs, and it is unlikely that it ever
successfully displayed the message without hanging the host machine.

Dr. Popp distributed his AIDS information diskette, which used a Trojan mechanism
in an attempt to extort money for the recovery of the victim’s data. The disk, purporting
to be information on the user’s risk of AIDS, did present a quiz in the foreground,
but would also encrypt the contents of the hard disk. A message would then pop up
saying that the free trial period was over, and that in order to recover your information,
you would have to pay a licence fee to obtain the key. The AIDS Trojan is the subject
of a case study in Part III.

In October of 1989, an interesting virus was demonstrated at an Amiga Users Group
meeting. Referred to as the 2608 virus, after the length of the code, this program would
associate itself with the first program in the start-up sequence. However, the file did
not simply append itself to the original file, as most viruses did at that time. Instead,
it copied the first program into the devs directory, and copied itself into the old position
in the C directory. When the computer was started, the virus would run, and would
then call the real command. Some subsequent Amiga viruses, such as Smiley, worked
the same way. This technique is similar to a function later used in an MS-DOS virus
family called DIR, which caused file directory entries to point to the virus, which in
turn pointed to the original file. More recently, some malware has varied the technique
further by changing the Windows Registry to point to the virus code, which then
passes control to the legitimate program.

C h a p t e r 2 : H i s t o r i c a l O v e r v i e w 3 1

Commodore’s reaction to the news of early Amiga malware was to dismiss the whole
subject as a hoax. Later, they moved on to ignoring the issue altogether. The Amiga has
also been more or less ignored by commercial anti-virus vendors, but the number of
Amiga viruses is surprisingly high (higher than the number of native Macintosh viruses,
for example).

NOTE

Doesn’t this contradict our earlier assertion that the frequency with which viruses are found on
a given platform is related to how widely used that platform is? First, we didn’t state it as an
immutable law: after all, someone with the time, programming skills, and inclination to swamp a
relatively little-used platform might do so with the express intention of disproving such a “law”.
Second, the total of viruses to which the Macintosh is subject far exceeds the number associated
with the Amiga. The Amiga does not support Microsoft Word, and so has not been subject to the flood
of Word and other macro viruses that have appeared since 1995. Macintosh versions of Word,
however, have supported first WordBasic and later Visual Basic for Applications since version 6.0.
While macro virus payloads are usually PC-specific, many (even most) macro viruses can and do
infect irrespective of whether they are executed on a Macintosh. Since 1995, unprotected Macs
(or machines on which protection has not been consistently updated) have been a major channel
for the dissemination of Office macro viruses. This issue is explored in much greater depth in
Appendix B.

1990: Polymorphs and Multipartites
In 1990, polymorphic viruses started to make serious waves, using technologies more
complex than simple self-encryption. Without a definite decryption stub, these more
advanced forms were slightly harder to detect. This had a number of consequences:
vendors who couldn’t handle variable decryption started to look for alternative careers,
and false alarms began to be a serious problem.

One of the first of the new breed was Whale: a virus so complex and unwieldy that
it was practically impossible to get it to replicate, so it never really made it into the
wild. However, as an exercise in making a virus difficult to analyse, it became somewhat
notorious. The virus was also one of the longest found up to that time, with over nine
thousand bytes of code. In spite of the size of the program, it only produced some thirty
different forms.

Bulgaria gave the world what may have been the first virus-exchange bulletin board.
Flip/Omicron became, arguably, the first successful multipartite virus, infecting

.COM and .EXE files, as well as the Master Boot Record. However, the infection
could only spread further via .EXE files. In addition to a poor infective mechanism,
Flip had a number of other coding errors, and infected systems generally developed

3 2 V i r u s e s R e v e a l e d

C h a p t e r 2 : H i s t o r i c a l O v e r v i e w 3 3

errors with cross-linking of files. The name Flip came from the payload of the virus:
at a certain time and day of the month, the monitor display on infected systems would
flip horizontally.

EICAR (European Institute for Computer Anti-virus Research) was founded in
Hamburg and became a forum for cooperation between vendors, academics, and
corporate customers.

Peter Norton got over his disbelief in viruses enough to lend his name to Symantec’s
new anti-virus program—Norton Anti Virus.

Harold Highland’s Computer Virus Handbook was published. Although dated in
certain specifics, the book contains a wealth of research and opinion that is still valid
today. It was a compilation work, as were, oddly enough, both Peter Denning’s
Computers Under Attack and Lance Hoffman’s Rogue Programs, published the
same year.

In 1990, as now, there were myriad requests for information as to which current
anti-virus program was “the best”. Since no one else seemed to be responding, Rob
Slade started his longstanding series of reviews of anti-virus programs.

1991: Renaissance Virus, Tequila Sunrise
Michelangelo, a seriously destructive boot sector virus, was first identified in February
of 1991. Based on the solid infection mechanism of the Stoned virus, it carried a
destructive payload that would use random information to overwrite the first 256
tracks of the disk used to boot the computer. Usually this would be the hard disk,
and these areas contained most of the system information for the computer.

The name “Michelangelo” was assigned solely based on the trigger date of 6th March,
which was the birthday of the Renaissance artist. No formal identification has been made
of the author, although there are strong indications that the virus was written and released
in Taiwan.

The total number of known viruses climbed towards a thousand. More and more
anti-virus programs appeared, as did more VX (Virus eXchange) bulletin boards.

Tequila, the first widespread polymorphic virus, seems to have been based on the
earlier Flip. Tequila contained a number of viral technologies, including multipartite
form, stealth, and variable encryption polymorphism. Like its predecessor, Flip, Tequila
could result in cross-linking. File corruption often resulted from attempts to deal with
the problem.

At about the same time, another virus to use variable encryption was Maltese
Amoeba. It was a standard file infector, but carried a somewhat destructive payload,
overwriting the first sector of available disks on two days a year. Slightly before work

began on the first version of the VIRUS-L FAQ (to which he became a contributor),
Rob Slade began to publish a weekly series of computer virus tutorials on the Internet
and on FidoNet.

NOTE

Before the popularization of the Internet, bulletin board systems (BBSs) were the most popular
means of mass communication. FidoNet was a means of communication between BBS users,
somewhat similar to the way that the Internet links networks. This communication included not
only mail, but echomail, which extends the availability of local discussion topics to anyone on
FidoNet. By the time the World Wide Web started to take off, there were tens of thousands of
bulletin boards connected in this way, but interest has declined as Internet take-up has
accelerated. A number of FidoNet discussion echoes have dealt specifically with pro-virus and
anti-virus issues.

The Saddam virus used the Commodore Amiga’s validation function (run on new
disks) for reproduction and infection. It would place itself on a disk, identified as the
validator program. When an infected disk was inserted, the system would, for some
reason, use the validator program on the disk, and thus infect itself. The computer was
infected simply by putting an infected disk in the drive, without the operator running
any programs. This virus seems to have appeared in the spring of 1991. The operation
of the virus was very similar to the earlier WDEF virus on the Mac, and it included
a form of stealth, to hide its existence.

Interestingly, there was also a Saddam (or SADAM) virus for MS-DOS at the same
time. Although the virus contained numerous bugs (including egregious spelling errors
in the message payload), it was never a major problem.

1992: Revenge of the Turtle
The VCL (Virus Creation Laboratory) virus authoring package allowed virus generation
capability to those with no programming skills at all. VCL didn’t exhibit much coding
proficiency, and generic detection of VCL viruses presented no problems. Virus creation
or authoring “kits” can create thousands of different viruses, but the base code modules
used are all the same. The infective code for any virus created by such a kit is generally
identical to every other virus produced by the same “laboratory”, and detection of one
can generally detect all of them. We must note, however, that the recent VBSWG virus
generator is something of an exception. Some products are more successful than others at
detecting new viruses generated from that particular kit.

Michelangelo
Michelangelo became something of an epidemic (see the case study in Part III), although
it didn’t quite live up to its advance publicity. Nevertheless, thousands of systems went
down on the day it triggered, and perhaps there would have been many more if the

3 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 : H i s t o r i c a l O v e r v i e w 3 5

publicity hadn’t been so widespread before the trigger date. Michelangelo became
another media virus, and this led to a very strange denouement. Since the media
played up the story, many people were encouraged to check for viruses, in some
cases for the first time. When cases of Michelangelo were detected, they were, of
course, eliminated. Therefore, while millions of instances of the virus were found,
only a few (possibly less than a million) triggered on what the media saw as “Michelangelo
Day”: 6th March, 1992. When the world did not end, the media, oddly disappointed,
did an about-face, and decided that Michelangelo was some type of hoax.

NOTE

In fact, Michelangelo was present and active in the wild for many years thereafter. In the
mid-1990s it constituted the major infection in some countries. Michelangelo still survives to
this day, although, because of changing computer patterns, in greatly reduced numbers.

One PC company in the UK distributed a number of brand-new PCs with this
particular shard of “added value” (one of which ended up on David Harley’s desk).
A couple of anti-virus companies caused a certain amount of distress by issuing
free Michelangelo “special editions” of their software without making it clear that
Michelangelo was the only virus they could detect.

Dark Avenger
Dark Avenger (or one of a number of virus authors who may have used this “handle”)
released the Self Mutating Engine (MtE): not a virus itself, but a means of adding
polymorphism to a virus with a minimum of coding. Fortunately, the MtE left a
signature, and therefore became a generic means of identifying a suspected virus.

The same author’s Commander Bomber made the job of virus detection harder
by forcing the scanner either to scan the whole file or to “step through” the code.
Instead of inserting code or a pointer at the beginning or end (referred to in the
research community as the “top and tail”) of the infected program, the virus body
was inserted, as fragments, in the middle of the file. The pieces were connected to
each other by a complicated series of links. This was a nuisance at the time, but a
useful addition to the scanner’s armoury as technology advanced on both sides of
the AV/VX divide. The virus itself was rather simple, despite its enormous code size,
infecting only .COM files.

Altair
In the summer of 1992, another Atari boot-sector virus appeared, carrying a message
indicating that it was an antiviral program. It is possible that the code was intended
to be a kind of (incompetent) anti-virus, since it would overwrite any existing

boot-sector virus. However, since the common Atari boot-sector viruses of the time
only wrote to disks that were not already executable, it was more virulent than most
viruses on that platform. As with other attempts at antiviral viruses, this was a failure.
(It’s not uncommon, either, for virus-infected files or virus droppers to masquerade
as anti-virus software.)

1993: Polymorphism Rules
Trident Polymorphic Engine (TPE), Nuke Encryption Device (NED), and Dark Angel’s
Multiple Encryption (DAME) built on the work started by Dark Avenger in MtE. None
caused the end of virus signature scanning as we know it.

MS-DOS version 6 was released, incorporating the not-very-good Microsoft Anti-
Virus (MSAV), based on a not-very-good product owned by Central Point, which was
acquired and eventually dropped by Symantec. The package contained an extremely
weak “on-access” component, which has become famous primarily because it
encouraged virus writers to include a short section of code that turned off the target
system’s antiviral protection.

NOTE

Yisrael Radai’s review of MSAV is reprinted in Pamela Kane’s book PC Security and Virus Protection
Handbook (M&T Press, 1994). His essay is a textbook example of a solid product review, and is an
amusing read even if you have no responsibility for antiviral protection.

Joe Wells posted the first WildList, an attempt to list and track the activity of viruses
known to be out in the field and causing problems. The WildList Organization, which
grew out of this list, was discussed in Chapter 1, and we will return to it in Part II.

Computers and Epidemiology
IBM researchers Jeffrey Kephart, Stephen White, and David Chess published their
paper on “Computers and Epidemiology”. Anti-virus researchers have always been
attracted by the application of an epidemiological model based on biological infection
mechanisms. In biological life, a body invaded by pathogenic organisms from outside
identifies and reacts against these assaults automatically. The use of this model has
led to the introduction of models of virus management based on biological immune
systems. Recently, some have wondered whether a model based on metastasis (the
spread of a malignant growth from its point of origin) might be a more appropriate model
for recent malware than the traditional pathogenic infection model. In fact, both models
have their uses, the former being more generic, and the latter reacting more quickly.

3 6 V i r u s e s R e v e a l e d

Amiga Obscene
In June of 1993, Fuck, an extremely malicious Amiga virus, was released.

NOTE

Look, it’s not our fault. That’s what the darned thing was called. Actually, a number of viruses
have been blessed with this unattractive name, including a formerly widespread Macintosh virus.
In addition to finding names in this book that some might find offensive, you will also notice, as
we provide more details of specific viruses, that many messages and text inclusions in the body
of the virus contain errors in grammar and spelling. In the interests of accuracy, and because
the specific strings can be used to identify the presence of a virus, we have left the messages
as they are, warts and all. In all quotations, any mistakes you see are deliberate.

It was initially spread by a Trojan dropper program that was advertised as a program
to check your modem. The virus would replace a system file called loadWB. The viral
code would be run when the computer started, and it would then call the real system
file. The virus would wait out a time period determined by the screen refresh rate, and
would then start overwriting the disk with the titular obscenity, eventually trashing
everything.

Like other viruses of that general era, this one checked for the presence of a popular
antiviral program and, if found, turned it off.

1994: Smoke Me a Kipper
Black Baron’s Smeg.Pathogen and Smeg.Queeg caused real (albeit overstated)
damage to some corporates. If Pathogen’s payload was triggered, a message was
displayed that included the words “‘Smoke me a kipper, I’ll be back for breakfast...’
Unfortunately some of your data won’t!!!!!!” and then the first 256 cylinders of the
hard disk were trashed.

Kaos4 was posted to a newsgroup specializing in erotic pictures. This was not the
last time this particular vector was exploited, of course. Indeed, some victims of the
later Hare virus were caused additional embarrassment. Not understanding how quickly
a virus can be passed on by secondary infection, people assumed that they were infected
as a result of haunting unsavoury newsgroups.

Virus hoaxes, by no means new, became a serious problem with the rise and rise
and rise of the Good Times alert, followed by a wave of copycat hoaxes. In fact,
most current hoaxes can still be said to belong to this group, conforming as they do
to a stereotyped pattern. “Don’t open email with such and such a title: it contains a
virus that will perform sundry devastating acts. Send this on to everyone you know.”
Virus hoaxes have been somewhat neglected by the anti-virus community in the last

C h a p t e r 2 : H i s t o r i c a l O v e r v i e w 3 7

3 8 V i r u s e s R e v e a l e d

couple of years, but continue to be a major problem. We will consider that problem at
some length in Chapter 16.

The first edition of Robert Slade’s Guide to Computer Viruses was published. (And
the title was not his idea.)

1995: Microsoft Office Macro Viruses
Christopher Pile (the Black Baron, see 1994) was convicted and imprisoned under the
UK’s Computer Misuse Act. (Did ever a virus writer have a more appropriate surname?)
Somewhat depressingly, the next highly publicized arraignment of a virus author was not
until that of the author of Melissa in 1999.

FAQs and Figures
The Good Times FAQ (Frequently Asked Questions) document was released, as
was Version 2 of the VIRUS-L FAQ (see Appendix A). At this time, many former
inhabitants of comp.virus had migrated during a period of dormancy to the altogether
wilder (unmoderated) newsgroup alt.comp.virus. At about this time also, at the
suggestion of Dr. Alan Solomon, work started on the alt.comp.virus FAQ. (The FAQ
was drafted, edited, and maintained by David Harley, but, like the VIRUS-L FAQ,
included material contributed by some major names in anti-virus research.)

Proof of Concept
Wm.Concept, the “first” macro virus, was closely followed by several more MS Word
(and MS Excel) viruses. Arguably, the first macro viruses in the wild were earlier
Macintosh HyperCard infectors. There had also been unpublicized test viruses using
macro languages such as Lotus 123, but Microsoft Office viruses changed the whole
profile of the industry, which took a fair while to weather the change. Concept appears
to have originated within Microsoft, which for a while referred to it as a “prank macro”
rather than a virus. (No-one else was willing to accept the Microsoft assessment.)

The original version of Concept carried a comment, “That’s enough to prove my
point”, buried in its code, instead of a payload. It became the most widespread virus
in the world for a while, and spawned a major virus subclass that continues to trouble
PC and Macintosh users.

Protection against the very first Word viruses was relatively easy to achieve by
disabling automacros, which took only a line or two of WordBasic, and several
experts quickly published appropriate code. Eugene Kaspersky, a prominent anti-
virus researcher, published a Microsoft Word template containing protective
macros: dishearteningly, a subverted version of this file appeared soon afterwards

C h a p t e r 2 : H i s t o r i c a l O v e r v i e w 3 9

on a web site, infected with the then unknown Nuclear macro virus. Of course,
virus authors soon found other methods of infection.

Introducing proper detection of macro viruses into scanner technology, however,
proved a major, time-consuming undertaking: indeed, changes to Office file formats
and the macro language technology that underpins MS Office applications continue
to provide researchers with interesting little puzzles.

NOTE

Proof-of-concept viruses have become something of a growth industry in their own right. Viruses
have been written simply to prove that a specific loophole exists. However, the author gets the
“glory” of being the first to exploit the vulnerability, irrespective of the likelihood of having a
virus achieve widespread dissemination. Thus, viruses have been written for applications, such
as MS PowerPoint or MS Access, that support Visual Basic for Applications (VBA) or related macro
languages such as CorelScript, even though they are not normally associated with the routine
exchange of macro-infected documents.

1996: Macs, Macros, the Universe, and Everything
More macro viruses appeared, inevitably. Boza, a mediocre file virus, materialized. Its
only real importance was that it was the first Windows 95 virus using the new PE-EXE
format, rather than the earlier MS-DOS .EXE structure. Hare was also launched via
USENET, and was probably more significant as a media virus than for its actual
impact. Laroux became the first MS Excel infector to be a real problem in the wild.

The second NCSA/ICSA survey was conducted in 1996, and from this year on,
it became a yearly event.

PC users began to become accustomed to the idea that macro viruses are here to
stay: Mac users, and others, acclimated to the idea that viruses were mostly a PC
problem, continued to put their trust in Disinfectant and Gatekeeper. However, since
neither program detected Microsoft Word or Excel macro viruses, macro epidemics
started to build up across the Mac/PC divide. David Harley began work on the “Viruses
and the Mac” FAQ, in the hope of addressing this problem.

Some people still have trouble understanding that a macro virus can be problem
on any hardware platform supporting applications that themselves support the
relevant macro language. In other words, macro viruses aren’t necessarily specific
to a single hardware architecture or operating system. In fact, as more applications
(including some not published by Microsoft) offer support for Visual Basic for
Applications (VBA), it may even be a little misleading to say that macro viruses
are application-specific.

4 0 V i r u s e s R e v e a l e d

1997: Hoaxes and Chain Letters
Good Times and a number of related hoaxes continued to resonate, and the 1997 Virus
Bulletin conference included several related papers (as well as a presentation on Mac
issues by David Harley).

“Stormbringer”, an ex-virus writer, delivered a presentation to the assembled industry
representatives on why they should give him a job as an anti-virus developer. In vain—
it seems no company thought his (genuine) programming skills were worth the bad
publicity they were likely to reap by employing someone from the Dark Side.

Away from the conference circuit, “Red Team” started to blur the borders between
hoaxes, spam, and real viruses. It exploited the fear inspired by Good Times, and offered
an alleged anti-virus program that was actually a virus dropper.

AOL trojans became a growth industry. Worm revival began slowly with mIRC
worms, using the automated functions in that particular Internet Relay Chat client,
and email-aware macro viruses.

Most experts regard the second wave of worms as qualitatively different from the first
wave (such as the Internet Worm), in that they don’t usually spread independently of any
action on the part of the user. That is, they must persuade the victim in some way to
“invite them in” by running an infective program. Older worms were more likely to
exploit programmatic loopholes, and they infected vulnerable systems autonomously.

1998: It’s No Joke
Esperanto was a PC virus widely hyped as a cross-platform virus (that is, it was alleged
to infect Macs too). Some virus encyclopaedias continue to compound this error, derived
from the writer’s boastful and wishful thinking.

Joke/prank programs were becoming a serious nuisance: less because of their alleged
destructive or replicative properties than because anti-virus products insist on flagging
them as viruses.

The AutoStart worm/virus became the first significant Macintosh-specific threat in
many years. It was first noticed on the Pacific Rim, but quickly spread to the US and
Europe. Several variants were seen, some of them severely destructive. SevenDust and
a handful of other Mac viruses were discovered shortly afterwards, suggesting a short-
lived revival of interest in the creation of Macintosh malware.

CIH (Spacefiller, Chernobyl) was first reported in June. It was most noticeable for
the ugliness of the payload carried by some variants. On its trigger date, it would attempt
to rewrite the flash BIOS. (If it succeeded, the PC would become unbootable.) Since
the BIOS chip cannot economically be replaced on some motherboards, it was sometimes

necessary to replace the entire motherboard. For many years, there have been discussions
about viruses destroying hardware. Technically, CIH trashes firmware, not hardware,
but the distinction was, for many victims, completely academic. The virus would also
trash the victim’s hard disk.

Network Associates acquired Dr. Solomon’s, and many users of the Dr. Solomon’s
product range started to vote with their feet. This was probably due to widespread
distrust of the McAfee brand name, which already belonged to NAI.

1999: Here Comes Your 19th Server Meltdown
The first edition of Back Orifice was released in early 1999, or possibly late in 1998.
Back Orifice is a curious program. It is definitely not a virus, though anti-virus software
usually identifies it as such. Its creators don’t even want it to be seen as a Trojan, and
a later edition, BO2K (Back Orifice 2000), was promoted as legitimate commercial
software. To clarify the situation requires some deliberation.

Commercial “remote-access” programs, such as PC Anywhere, have been
available for many years. These programs make it possible to connect home and
office computers in such a way that your office computer can be run from your
keyboard and screen at home. This gives you access to all the programs and files
on your office machine. In fact, the programs that you run are executing on your
office computer—only the interface information is being communicated between
the two systems. In addition, of course, network functions like RAS (Remote
Access Service) on Microsoft Windows computers allow access to information
on one computer from another, even over the Internet.

Back Orifice permits similar functions, except that the access can be achieved
without the user of the computer being aware of the situation. The program is
designed such that once Back Orifice is run on a computer, it installs itself as a
service and alerts some remote user that the computer is accessible. Therefore,
it is only necessary to get someone to run an unknown program, once, and their
computer is open to you. In network support situations, “some remote user” is
defined as the technical support worker, and “someone” is the user having difficulty.
But in security breaking circumstances, “some remote user” is the attacker, and
“someone” is the victim. A similar function was used to gain access to Microsoft’s
own computer network in late 2000.

Back Orifice is not a virus, but it can certainly be defined as a Trojan, and in the
most classic sense. Once you have run a copy of Back Orifice on your computer, the
enemy is inside, controlling operations, and can even turn off anti-penetration systems.

Melissa, a macro virus/worm hybrid, was perhaps the first of the modern “fast
burners”: viruses/worms that go global in hours, or less, spreading quickly enough
to cause mail-server “meltdown” on some sites. Melissa achieved this effect by mailing

C h a p t e r 2 : H i s t o r i c a l O v e r v i e w 4 1

4 2 V i r u s e s R e v e a l e d

itself to the first 50 entries in each victim’s address book. It spawned many imitators
and variants, due both to the publicity and to the fact that, like a macro virus, it
carried its own source code. Its impact can be compared to that of the CHRISTMA
EXEC and Morris worms. These, too, spread within hours, although they infected a
specific subset of users. (The same could be said of Melissa, except that the subset
was rather larger.) The impact of the earlier worms was similar to that of Melissa,
although not as widespread since the ’Net wasn’t as big in those days. We should
reiterate, however, that researchers differentiate between first-generation worms like
the Morris worm, many of which are self-launching, and the current generation,
most of which can’t execute if the victim is cautious.

Happy99 (Ska) took a firm hold on the world’s email. Spanska, its author, likes to
give good value, so when the virus is launched it displays a graphic representation of
a fireworks display and a Happy New Year 1999 message. It replaces WSOCK32.DLL
with itself in order to make use of email functions. Fortunately, the original library is
kept under the name WSOCK32.SKA, so recovery is generally fairly simple. Each
time the victim sends email, a second message including the virus as an attachment
is sent to the same recipient. Happy99 is also compatible with USENET news, so
when you send a message to a newsgroup, a second posting will also be made in your
name and with the same subject, but containing the virus.

PrettyPark spreads via the victim’s address book, but also via IRC (Internet Relay
Chat). If it is able to spread this way, the virus author is able to use the program’s
back-door functionality to harvest information about the victim’s system. One of
PrettyPark’s unpleasant side-effects was that Registry changes introduced by the virus
impeded its removal with anti-virus software, once the antiviral was updated to recognize
the virus. In some cases, once the update had been applied, the memory-resident scanner
blocked an on-demand scanner from loading (and therefore from removing the virus),
since the latter was perceived as being infected—the nature of the Registry modification made it
seem as though all .EXE files were infected, since the virus was executed before the .EXE.

Script viruses started to creep out from under rocks. BubbleBoy fulfilled the Good
Times dream of a virus that can infect just by mail being read. (But this happened only
if you used Outlook, and Microsoft issued patches to repair that particular security hole.)

In the fall, trinoo (or tr1n00), one of the first pre-programmed distributed denial of service
(DDoS) packages, became available on malware distribution sites. DDoS systems are not
viruses, but we’ll talk more about them in relation to the year 2000 at the end of this chapter.

ExploreZip was notable for a number of reasons. It masqueraded as a self-extracting
zip file and piggy-backed valid messages by using a subject line that made it look like
a reply to legitimate mail. It also looked for shared network drives, installing itself on
shares giving access to other computers in a local or wide area network.

Shared volumes have long been a vector for virus infection. However, the fact
that ExploreZip uses the function means that it is able to evade the commonplace

precautions of mail hygiene, such as avoiding opening attachments. It does not matter
how paranoid A is about opening attachments: if A grants B significant write access
to his workstation or server through a shared volume, B’s lack of similar caution can
render A just as vulnerable (albeit indirectly) to an initially email-borne attack.

ExploreZip also carries a damaging payload, erasing the data contained in certain
types of files. Shared drives, even if uninfected, can also have files truncated. This
virus enjoyed a return to the charts later in the year when variants packed with diverse
compression packages appeared, requiring anti-virus vendors to update their detection.

Everyone covered their heads in anticipation of the breakdown of civilization as
we know it on New Year’s Day, 2000. Consultants and other Instant Experts described
(sometimes in absurd detail) an incoming wave of Millennium viruses, despite the
protests of anti-virus experts who expected no such deluge. There were minor indications
that some virus writers tried to instigate a massive flood of viruses and other malware.
Some companies chose to hibernate for days or even weeks in the hope that things
would still work when they were switched back on.

2000: Year of the VBScript Virus/Worm
No millennium virus worth mentioning appeared, despite the hyperbole. A handful of
minor viruses, Trojans, and hoaxes spread, however, by taking advantage of the
prevailing panic.

REVS (Rapid Exchange of Virus Samples) was launched in an attempt to improve
industry response time to “fast burner” viruses/worms, such as Melissa.

Wireless application protocol (WAP) malware started to look like a real possibility,
and personal digital assistant (PDA) malware appeared. Palm/Phage, though rare, was
capable of infecting the Palm OS, while the (also rare) Trojan horse Palm/Liberty-A
deleted Palm OS applications. While there is no known virus that uses Psion’s EPOC
operating system at the time of this writing, anti-virus products for wireless devices
and WAP gateways were already being announced as the year drew towards an end.

DDoS and DDon’ts
In February of 2000, the general public first became aware of DDoS (distributed denial
of service) attacks when a number of major commercial servers were affected. Denial of
service (DoS) has long been known as a risk in computer security circles, but has not
been the subject of much public discussion. News reports and marketroids have referred
to them as viruses, but DDoS systems and attacks are not viral, and, so far, have not
involved viruses. DDoS attacks are considered in detail in Chapter 3, which deals with
malware technology.

C h a p t e r 2 : H i s t o r i c a l O v e r v i e w 4 3

NOTE

Occasionally, there is confusion between the acronyms DOS and DoS—note the capitalization. DOS
normally stands for disk operating system. The acronym is often used as shorthand for MS-DOS,
Microsoft’s venerable operating system. It has no etymological connection with denial of service
(DoS) attacks.

KAKworm
VBS/KAKworm took the BubbleBoy concept (a virus that could infect on reading email,
and that didn’t need an attachment) into the wild (it was one of the most commonly
reported viruses of the year). Like BubbleBoy, it exploits a vulnerability (Scriptlet.
Typelib) in Internet Explorer that can be fixed by downloading and applying a software
patch described in Microsoft’s Security Bulletin MS99-032. In pre-patch versions of
Internet Explorer, it was possible for the infective code to be executed just by opening
or previewing an infected message. The infective script is contained in the signature,
but isn’t seen by the victim, as no displayable text is present. The script is, however,
very noticeable in other mail clients. KAKworm is considered in detail in Part III.

Curiously enough, KAKworm corresponds more closely to the old-style Morris-type
worm than most recent worms or viruses since it doesn’t have to trick the victim into
executing it.

How Was It for You?
In spring, a virus author’s fancy lightly turns to thoughts of love. The Love Bug
(LoveLetter) virus appeared on 4th May and spread faster and further than Melissa.
Several variants appeared almost immediately, due in part to the wide availability of the
original VBScript code. The first widespread version mailed itself out to everyone in a
victim’s address book, attached to a message with the subject line ILOVEYOU. The
message body read “kindly check the attached LOVELETTER coming from me”. The
attachment itself used the file name LOVE-LETTER-FOR-YOU.TXT.vbs. The trick
of giving an attachment two extensions has grown very common. In this instance, the
first extension suggests a harmless, non-executable text file, in the hope that the
second extension (indicating the real nature of the file) won’t be seen by the victim.

All charges against Onel de Guzman, suspected of having released and possibly
written the virus, were dropped by the Manila Department of Justice several months
later. Phillipine authorities said that, under the laws in force at the time of the incident,
sufficient evidence could not be produced to successfully prosecute the case.

LoveLetter uses Outlook to spread and, like other Visual Basic Script (VBScript)
viruses, can only execute if the Windows Script Host is active and enabled. LoveLetter and
its many variants will be examined at some length in Part III.

4 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

Social Engineering
Since worms have to work harder to persuade the victim to execute the malicious
program, the term “social engineering” was bandied about a lot. There’s a paradox here.
As we’ve previously mentioned, the first generation of worms tended to be more
autonomous. Yet conventional viruses don’t usually need social engineering in this
sense, since they (mostly) piggyback legitimate code, and are executed as a result of
an attempt to execute legitimate code. In some respects, most of the current generation of
worms resembles Trojan horses in needing to trick victims into colluding in their own
downfall. In fact, many vendors and general security discussion lists nowadays are
often referring to what we would call worms when they use the term Trojan horses.

NOTE

Social engineering is a term that has attracted a wide range of definitions, some of them
mutually exclusive. In this context, we offer a definition from David Harley’s Social Engineering
FAQ: “Psychological manipulation of an individual or set of individuals to produce a desired effect
on their behaviour.” A summarized version of the Social Engineering FAQ is included in the
resources section of this book, and the subject is also discussed in depth in Chapter 16.

Stages of Life
Stages of Life introduced a mild polymorphic twist. Many sites had noted that
LoveLetter variants could be blocked at the mail gateway by discarding mail with a
characteristic subject field, without the use of specialized filtering software. Stages
varied the subject line by using one of 12 possible permutations, some of which were
general enough to result in the discarding of legitimate messages if filtering wasn’t
carefully set. The attachment, a shell scrap file called LIFE_STAGES.TXT.SHS,
introduced an additional complication in that the SHS extension can remain hidden
in Windows even if Windows Explorer is set to show file extensions. If executed,
the virus created a number of randomly named SHS files, the number of possible
names being in the thousands.

Test Match
CNET, the sprawling information technology product portal, published an anti-virus
product review in September that plumbed new depths in incompetence. Inept reviews
are nothing new, of course, but this one triggered a concerted response from the anti-
virus community. Joe Wells, founder of the WildList Organization and editor of WarLab
Journal, wrote an open letter to CNET’s editorial staff, to which a number of anti-virus
professionals added their signatures. The letter contended that the review “did antivirus
product users a major disservice” and argued that case at some length.

C h a p t e r 2 : H i s t o r i c a l O v e r v i e w 4 5

NOTE

You can find out more about both the review and the open letter at http://www.warlabs.org/portal/
advisories.html. Some signatories of the letter also carry copies of the letter on their web sites,
including one of the authors of this book (http://www.sherpasoft.org.uk/).

We will consider some of the problems and issues of comparative testing at length in
Chapter 9. Naturally, we’d like you to have the best possible information on testing: you
wouldn’t believe how deleterious an incompetent review is to an expert’s blood pressure.

W95/MTX (Matrix, Apology)
This virus/worm hybrid first came to light around the end of August, but chose the
end of September, when most of the big guns of anti-virus research were at the annual
Virus Bulletin conference, to “get lucky”. MTX also made some use of the “double
extension” trick: when it mailed itself out from a victim’s account, the attachment
was given a number of potentially misleading names. In many cases, a first extension
suggested a JPEG or a text file, but the second extension was .PIF, indicating an
executable file. While the actual file format was that of an EXE, not a PIF, this did not,
of course, stop the program from being executed. Files with the .PIF extension can
include many objects, including executable code. MTX was notable for the fact that
it blocked browser access to some anti-virus vendor web sites, infected some files
with the virus component, and replaced others with files with the worm component
(necessitating replacement from the Windows installation CD). The author had gone
to some lengths to make its removal difficult.

Navidad
Feliz Navidad (“Happy Christmas”) was in some respects a very lame virus, a brilliant
example of a virus author who couldn’t be bothered to test his creation. If the victim
was rash enough to execute the infective mail attachment, the Windows Registry was
tweaked so that any time an .EXE file was run, the virus was executed first. However,
the file name referenced in the Registry was not the name given to the file actually
dropped by NAVIDAD.EXE, so after the PC was rebooted, it became virtually
unusable, since no .EXE file could be executed (including virus scanners). You might
think that this would restrict the spread of the virus, but since the virus managed to fire
itself off as soon as it infected, this was not necessarily so.

Unfortunately, the author proved abler at social engineering than at Quality Assurance.
The worm mailed itself out as if it were a reply to mail previously received by the
victim. Since it homed in on received messages that included an attachment, normally

4 6 V i r u s e s R e v e a l e d

cautious recipients were primed to expect an attachment in the “reply”. Happily, the virus
proved rather simple to remove with a little Registry editing and the manual removal
of a couple of files. Less happily, an “improved” version followed in due course.

Prolin/Shockwave/Creative
W32.Prolin caused a certain amount of confusion when one anti-virus vendor chose
to call it Shockwave. It is not a “Shockwave virus”, but is distributed as an .EXE file
that claimed to be a “great Shockwave flash movie”. Its author seems to have intended
some social engineering in a traditional sense, as well as in terms of manipulating the
victim into executing the program in the first place. .Zip, .MP3, and .JPG files are
moved to the root directory and renamed by having the string “change at least now
to LINUX” appended to the existing extension. It also generates a text file with a
hectoring message:

Hi, guess you have got the message. I have kept a list of files that I
have infected under this. If you are smart enough just reverse back
the process. I could have done far better damage, I could have even
completely wiped your harddisk. Remember this is a warning & get
it sound and clear... - The Penguin

What would we do without the superior intellects of virus writers to remind us of
the need to take precautions against—er, virus writers?

Update Viruses
Several viruses that emerged in 2000 suggested a movement towards a new type of
functionality. A number of recent viruses include in their code the ability to make calls
to a specific web or ftp site in order to download files. (Probably the most widely
known example is the Love Bug, which attempted to fetch a file from a site in the
Philippines.) In some cases, the file to be downloaded is an additional payload for the
virus, made available separately in order to reduce the size of the virus itself, thereby
making it less conspicuous. In other cases, the file may be an updated version of the
virus, so that the author can continue to “improve” his (or her) creation while it is out
in the wild.

Late in the year, Hybris demonstrated an additional use of this technique. The virus
appears to be built in a very modular fashion, and the downloading function can be used
to replace missing or damaged modules. The modular construction also makes updating
quite simple, and new features can very easily be plugged into the virus. W32.Music
attempted to call updates somewhat similarly, but from specific sites.

C h a p t e r 2 : H i s t o r i c a l O v e r v i e w 4 7

4 8 V i r u s e s R e v e a l e d

Fortunately, it is easy to detect the operation of such downloading functions, and
to determine the sites and files being called. Once these facts are known, requests to
site administrators to remove the files, or to remove access to the sites, are generally
honoured quite quickly. Once the sites or files have been removed, the danger of
updating is eliminated. Sadly, the danger of updating viruses cannot be completely
disregarded.

There are other, less easily identifiable means of communication over the Internet.
Hybris already uses USENET news postings for some of its downloads. Other viruses
have called on the functions of IRC (Internet Relay Chat) with a range of automated
“bot” technologies little known to casual users. Anonymizing remailers can be used
in various ways. (Lest this seem a slap at the cypherpunk movement, please note that
commercial “free email” servers like Hotmail have already been variously misused.)

Opening a channel of communication between an infected system and a remote
system outside the control of the victim offers possibilities beyond allowing the virus
author to track the progress of his or her creation, updating modules, or transferring
confidential data. The very fact that the victim system uses that channel announces
its vulnerability and reveals host information, not only to the controlling system, but
to other software probing for open ports (for example). This, in turn, can inspire and
enable other directed attacks using the vulnerabilities detected.

And So It Goes...
History continues, but chapters and books have to end at some point. New viruses, and
new virus technologies, are constantly evolving. As this book is in preparation, a virus
has been seen that advertises and spreads itself using one of the popular peer-to-peer
file-sharing systems. Some new Linux viruses have appeared, using network vulnerabilities
in a manner similar to that of the old Internet/Morris/UNIX Worm. There has even
been a file-infecting virus compatible with both the Microsoft Windows and Linux
executable file types.

But publishing deadlines beckon, so we must leave you with one final exhortation.
Keep watching.

C h a p t e r 2 : H i s t o r i c a l O v e r v i e w 4 9

Summary
It does not take much familiarity with Internet technology to see where some of these
trends are leading. Virus writing is heading for a convergence with other forms of
electronic vandalism. Email viruses such as Melissa and Love Bug (only slower, and
thus less noticeable) can be used to launch self-updating viruses, incorporating some
form of polymorphism from a modular updating capability. Payloads can include
backdoor programs, such as that carried by Back Orifice (which can be used to take
remote control of any net-connected computer), or client-side “zombie” programs
for large-scale distributed denial of service attacks. In fact, viruses with some sort of
backdoor functionality, such as “calling home” to send back data about the victim
system and its owner, have become increasingly common over recent years.
(W97M/Marker and W32/Babylonia are high-profile examples.)

Thus, anti-virus technology is no longer simply about keeping your own computers
safe. (It never was, actually, and we’ll explore this thought further when we consider
that technology at length in Chapter 6.) Anti-virus practices now have a larger role
to play in the security of the connected computing environment as a whole.

To understand anti-virus technology, we must first examine virus technology
more closely.

This page intentionally left blank.

CHAPTER

3
Malware Defined

51

IN THIS CHAPTER:

What Computers Do

Virus Functionality

In-the-Wild Versus Absolute Big Numbers

What Do Anti-Virus Programs Actually Detect?

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The term malware covers a wide range of threats, most of them addressed,
to some degree, by anti-virus software. In fact, the software we generically
describe as “anti-virus software” delivers both more and less than it promises.

Most antiviral software detects more than just viruses. Even single-shot anti-virus
programs that recognize only one virus need to distinguish between uninfected and
infected objects. On the other hand, no anti-virus program consistently detects all
known malware. Strictly speaking, no anti-virus software can even detect all known
viruses (if only because of the time lag between encountering a new threat and adding
detection to the program).

What about programs that claim to detect all known and unknown viruses? (Such
programs were memorably characterized by Padgett Peterson with the acronym
TOAST, from a product advertised as “The Only Antivirus Software That Won’t Be
Obsolete By The Time You Finish Reading This Ad”.) We need to clarify terms a
little at this point, by jumping ahead to the topic of anti-virus technology, covered in
much more detail in Part II of this book. In particular, we must distinguish between
detection and identification. Virus-specific scanners detect and identify known viruses,
and, where appropriate, remove them. Some products may be able to detect some
unknown viruses, but they don’t detect the presence of all unknown viruses. Generic
products may detect (or block without detecting) all viruses (known and unknown),
or at least all viruses in a certain class. However, they don’t identify them. This has
two major implications. Firstly, 100 percent correct detection of all unknown viruses
is not compatible with zero percent incorrect identification of all non-viruses: that is,
some non-viruses will be incorrectly identified as viruses. Secondly, what you can
disinfect is limited by what you can identify. If you conclude from this that detecting
viruses is only part of the solution of virus management, we will not disagree. But
more of that later.

What Computers Do
First, we must look at what computers are and what they do—briefly, and at a level
of abstraction that most computer users don’t normally need to consider. The functions
that we ask of computers tend to fall into a number of general categories, including
copying, automatic operation, and “decision” making.

Computers are great at copying. This makes them useful for storing and
communicating data and for much of the “information processing” that we ask them
to do, such as word processing. Computers are also great for the automation of
repetitive tasks. Programming allows computers to perform the same tasks, in the

5 2 V i r u s e s R e v e a l e d

same way, with only one initiating call. Indeed, we can, on occasion, eliminate the
need for the call to be initiated by the computer user, as programs can be designed to
use available data to make “decisions” without user intervention. Finally, computer
processors need not be specially built for each task assigned to them: computers are
multipurpose tools that can do as many jobs as there are programs available to them.

All computer operations and programs are comprised of these main components.
All computer operations and programs, in various combinations, can also fulfil many
more specific functions. It is no coincidence that it is these same functions that allow
computer viral programs to operate.

Virus Functionality
The first and defining function of a viral program is to reproduce—in other words, to
copy. This copying operation must be automatic, since the operator is not an actively
informed party to the function. In most cases, the viral program must come to some
decision about when and whether to infect a program or disk, or when to deliver a
payload. All of these operations must be performed regardless of the intended purpose
of the specific computer.

It should thus be clear that computer viral programs use the most basic of computer
functions and operations. It should also be clear that no additional, unique functions
are necessary for the operation of viral programs. Not only is it extremely difficult to
differentiate computer viral programs from valid programs, but there can be no single
identifying feature that can be used for such distinction. Without running the program,
or simulating its operation, there is no way to say that this program is viral and that
one is valid.

Application Functionality Versus Security
These difficulties in identification also indicate that it is very hard to defend against
intrusion by viral programs. If you want guaranteed protection, you can follow Jeff
Richards’ Laws of Data Security:

1. Don’t buy a computer.

2. If you do buy a computer, don’t turn it on.

On the other hand, as is often said, “a ship in a harbour is safe, but that is not what
ships are built for”. A completely protected computer is safe, but it is not useful. A

C h a p t e r 3 : M a l w a r e D e f i n e d 5 3

5 4 V i r u s e s R e v e a l e d

computer in operation is a useful device, but it is vulnerable. The prudent operator
will learn the reality and extent of the dangers and will take appropriate precautions,
while still taking advantage of the uses of the machine. Tools such as Word and
Outlook are very attractive to users because of the wide range of functionality they
offer. However, the security community has had to accept, grudgingly, the axiom
that “if the choice is between functionality and security, functionality will win out”.
Unfortunately, the way in which functionality is extended in these products has the
negative side-effect of reducing security.

Furthermore, as we have noted in Chapter 2, Fred Cohen proved that there is no
absolute means of identifying an unknown virus on sight. Don’t look for the Holy
Grail or Silver Bullet of anti-virus protection. You, and your customers, are going to
have to keep your eyes open.

However, if you pay due attention to where and how viruses act, you stand a far
better chance of spotting a possibly malicious anomaly.

In-the-Wild Versus Absolute Big Numbers
We must address the technical definition of the difference between viruses. Because
it is so very hard to determine even what a virus is, researchers have agreed that two
viruses are different if, when infecting the same object under the same circumstances,
they differ by as much as a single bit.

NOTE

An exact definition runs along the lines of “two viruses are different if they differ, even by a single
bit, in their constant code and data areas” (Vesselin Bontchev, Methodology of Computer Anti-Virus
Research; University of Hamburg, 1998). However, researchers also generally agree that this
definition isn’t entirely useful under all circumstances. The change of a single bit may create a
serious difference between the behaviour of two viruses, whereas major changes to the content of
the viral code may entail no behavioural changes. (Some viral programs use this fact as a means
of concealment.) Nor does differentiation between two samples necessarily affect the way in which
they are detected or even disinfected by a known-virus scanner.

Under this definition, there are generally agreed to be tens of thousands of computer
viruses: around 60,000 as this book was written, and possibly close to 100,000 by
the time it is published. If we didn’t include the proviso about infecting under the
same circumstances, the number would range into the billions, since polymorphic
viruses present themselves in many different ways, depending upon such circumstances
as encoding keys. However, subsequent instances of a polymorphic (shape-changing)
virus are not variants, since they originate from exactly the same program.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 3 : M a l w a r e D e f i n e d 5 5

It is also agreed that most viruses can be grouped into families, and that they have
major similarities within families. In some cases, all that is changed between one
variant and another is some text message, which has no bearing on how the virus is
programmed or operates. One virus, for example, contains the text “Legalise Marijuana”
buried within it. A variant in the same family has simply had the spelling changed
to read “Legalize”. Other changes can be more significant, of course. Nonetheless,
experienced researchers can point out similarities between different viruses. In some
cases, they may be able to say when one virus derives directly from another, which
was the original and which the derivative version, and whether the changes were
made by the original programmer.

As we hinted in Chapter 1, the number of detected viruses claimed by anti-virus
vendors is seriously suspect. Apart from the difficulties previously described, this
number reflects a difference in the way virus variants have been counted by anti-virus
vendors playing the “numbers game”. In 1998, anti-virus researchers received a CD
containing around 14,000 “new” viruses. However, they were kit viruses, generated
by a construction program. Previously, kit viruses were not counted as individual
viruses, since they can be detected by a “generic” driver or definition, and don’t
require individual detection for each created virus. However, one vendor chose to
claim them as 14,000 new viruses. Other vendors protested, but followed suit, anticipating
loss of market share if they were perceived as less successful at detecting overall
numbers of viruses. Moral: the number of viruses claimed by a given product is
mostly a marketing issue, not statistical.

NOTE

Peter Morley’s article “The Biggie” (Virus Bulletin, November 1998) gives more information on this
incident of inflated claims. Paul Ducklin’s conference paper “Counting Viruses” explores the issues
that complicate attempts to standardize virus-counting metrics (Virus Bulletin 1999 Conference
Proceedings). We describe kit viruses in more detail later in this chapter, in the “Generators” section.

Of greater significance is the fact that not all viruses are equally successful in
spreading, or even reproduce as intended. Therefore, the tens of thousands of viruses
that exist reduce to a few hundred that have actually made an impact in the real
world of computers and users. These viruses are said to be “in the wild”, in the same
sense that animals in the wild run free and unchecked. As we’ve already indicated in
Chapter 2, however, the question of “wildness” is far less straightforward than is
implied by that simple definition.

Distinctions must be made between different animals (and viruses) that are in the
wild. In the animal kingdom, there are thousands of viable species (that is, species
that aren’t on the verge of extinction, although, as human beings, we seem to be
trying to reduce that total on an ongoing basis). Some are regularly seen even in

5 6 V i r u s e s R e v e a l e d

cities (pigeons, rats, cockroaches); some are only seen by people who visit zoos or
spend time in the native habitats of those species; some are never seen except,
perhaps, by their Creator. The virus situation is somewhat similar.

A comparatively small number of viruses is known to be commonly found wild,
though not necessarily in all parts of the globe. These are carefully classified, and
sightings are confirmed by the WildList Organization.

There are viruses known to be wild, according to Paul Ducklin’s definition in
Chapter 1 (“spreading as a result of normal day-to-day operations on and between
the computers of unsuspecting users”), but not so carefully classified or reported.
The WildList is not a complete list of all viruses in the wild, for geographical and
chronological reasons—not all regions are well served by WildList reporters, and
viruses are in the wild before they are verified and make the WildList. At the other
end of the chronological scale, viruses become, in some sense, extinct. Sometimes
the virus is, in itself, time-limited and ceases to spread and/or trigger accordingly.
Sometimes the environment that enables it to spread declines in popularity, or is
modified so that it becomes more hostile to a given virus or class of viruses. Nonetheless,
viruses that are no longer formally in the wild may still exist somewhere, on an
unchecked floppy disk or a VX web site.

Finally, there are viruses in zoos (viruses that exist as source code, or as samples
in electronic magazines, or on web sites, or in collections, but that are never seen
spreading between the desktops of unknowing computer users), and their number
exceeds that of feral viruses by tens of thousands (unlike animal species, which are
much more numerous in the wild).

It is possible, perhaps, that the number of zoo viruses represents the tip of a much
larger iceberg. Given that replication is the whole point of a virus’s existence, though,
this seems unlikely. No doubt there are viruses that are known only to their creators.
However, given the vanity and craving for attention that characterizes so many virus
writers, we doubt that such viral programs exist in large quantities. Does this mean
that you only need to worry about a handful of viruses? Unfortunately, the answer is
no. Unlike extinct species of animals, computer viruses can be resurrected at any time.
Even time-limited examples can be given a new lease on life simply by turning back
the system clock. In addition, many successful viruses target, and can turn off,
anti-virus protection. Once that happens, you are subject to attack by many of the
less-successful programs, should they somehow find their way onto such a system.
The most usual justification for including detection of all known viruses, though, is
that we never know when a zoo virus might “get lucky” and find its way into the
wild. We will discuss this more fully in Part II.

NOTE

Increasingly, anti-virus researchers are coming round to the idea that adding detection for
every virus as it appears may be counter-productive. Joe Wells’s paper on the subject, found at
http://www.warlabs.com/journal/v1_i1/oldschool.html, may seem an extreme statement at
present. Its assertion that “the more viruses an anti-virus product detects the worse it is” is
somewhat against the flow, but rather persuasive. Less contentiously, David Harley has suggested
a number of times that an anti-virus product that offered scanning for zoo viruses as an option,
rather than as a default, might make itself quite a few friends. However, that’s an argument we’ll
consider when we discuss the evaluation of anti-virus software in Chapter 9.

What Do Anti-Virus Programs Actually Detect?
You will note that we have already spoken of viruses, worms, Trojan horses, and
other forms of malware. Researchers frequently use malware as the term for all
classes of malicious software, or programs that are designed with a malicious intent,
as opposed to merely being poor implementations of legitimate software.

Vendors of anti-virus software do not always agree on what should be detected
and reported to the user.

Most anti-virus programs of the scanning type detect both viruses and worms.
After all, even those who don’t consider worms to be a special case of virus consider
both classes of malware to be primarily self-reproducing programs. However, some
anti-virus programs are unable to examine all the types of objects that worms can
affect but that viruses cannot. In this case, the decision to exclude certain types of
malware depends on a technicality.

In other cases, the decision is made on a psychological basis. Should anti-virus
programs, intended to detect programs that reproduce, report the existence of Trojans,
which cannot?

NOTE

Sometimes modern worm/virus hybrids are defined as Trojans because they rely on tricking the
recipient of infected email into opening an attachment. We understand this viewpoint, but prefer
to define such programs according to their replicative function. Indeed, Ian Whalley (“Talking
Trojan”, Virus Bulletin, June 1998) has suggested abandoning the term Trojan altogether in favour
of the less catchy (but also less ambiguous) non-replicative malware. The term malware is sometimes
used specifically in the context of non-replicative malicious software, especially Trojans. We prefer
to avoid this usage: if we do use the term in this sense, we will qualify it as “non-replicative” in
accordance with Whalley’s suggestion.

C h a p t e r 3 : M a l w a r e D e f i n e d 5 7

5 8 V i r u s e s R e v e a l e d

There is already enough confusion between the different types of malicious
software: should an anti-virus program add to the problem, on the basis that it should
try to report on any security problem? And, if that is the case, should anti-virus
software try to report on intrusion detection, and other tenuously connected security
issues? In general, anti-virus software reports (more or less) all viruses known to it and
a selection of known Trojans. Many programs also report some ambiguous objects,
such as remote-access tools and DDoS agents (both of which we will consider at
length later in this chapter, but which could be described as Trojans or Trojan-like).

An even more difficult decision arises in the case of prank or joke programs. If a
user is running an anti-virus program and suddenly crabs start running around the
windows and “eating” the screen, will the user lose faith in the anti-virus software
and stop using it? Obviously some vendors think so, since they alert on joke programs,
such as CokeGift (Geschenk), which does nothing more sinister than offer the “victim”
the computer’s CD tray as a holder for canned soft drinks. On the other hand, if
anti-virus software reports the existence of a joke program, will the user panic, even
when the message clearly states that the file is only a prank? Probably we will only
know the answer to this when scanners stop reporting jokes with confusing messages
such as “!!!File myjoke.exe is infected with the virus W95.Joke.MyJoke”, or “Virus
Myjoke.exe is not a virus”. These examples are fictitious, but they are no sillier than
messages put up by real anti-virus software. Anti-virus scanners detect joke programs
because corporate customers wish to detect time-wasting, and because some jokes
mislead the victim into believing that they are real Trojans or viruses. However,
other vendors choose not to detect such programs.

Nonetheless, jokes are no joke. While working on this chapter, David Harley became
aware of email with the Bearded Trojan attached sent to one of his customers. Bearded
does no intentional damage to files or file systems: it changes the Windows desktop to a
graphic of a female nude. Potentially offensive or embarrassing, but not, you might think,
exactly dangerous. However, in the environment in which the mail was received, a
policy is in force forbidding the use of company resources for non-business use,
especially where there is a suggestion of pornography. Damage to file systems is by no
means the only possible destructive consequence of malware.

Viruses
Computer viral programs are not a “natural” occurrence. Viruses are programs
written by programmers. They do not just appear through some kind of electronic
evolution. Viral programs are written, deliberately, by people. (Having studied the
beasts almost from their inception, Rob Slade was rather startled when a young,
intelligent, well-educated executive proposed to him that viruses had somehow “just
grown” like their biological counterparts.)

C h a p t e r 3 : M a l w a r e D e f i n e d 5 9

NOTE

There are, for instance, many hundreds of variants of some Word 6.0 macro infectors that are all
“spontaneous” mutations of the original code, which in no sense came into being “accidentally”. It
is widely accepted, however, that macro viruses have proven to be highly susceptible to mutation
and corruption by such factors as the accidental capture of legitimate macros and unrelated viral
macros, and incomplete disinfection by anti-virus products.

Most people are now aware of the term “computer virus” even if they don’t use
computers. However, it is often the case that those who are otherwise technically
literate do not understand some of the implications of the name. A virus is an entity
that uses the resources of the host to spread and reproduce itself, usually without
informed operator action. Let us stress here the word “informed”. A virus cannot run
completely of its own volition. The computer user must always take some action,
even if it is only to turn the computer on. This is the major strength of a virus: it uses
normal computer operations to do its dirty work, and so there is no single unique
characteristic that can be used to identify a previously unknown viral program.

NOTE

We have stated that covert action is not a defining characteristic of a virus. A few viruses have
asked permission before infecting. (They don’t seem to have been particularly successful in terms
of widespread propagation.)

Fred Cohen was the first to formally define the virus phenomenon. His original
definition covers only those sections of code that, when active, attach themselves to
other programs. This definition is sometimes thought to neglect many of the programs
that have been most successful in the wild, such as boot-sector infecting viruses and
macro viruses. Some people still insist on a strict interpretation of Cohen’s definition
and use other terms, such as worm and bacterium, for those viral programs that do
not attach themselves directly to programs (though Cohen himself described worms
as a “special case” of virus). Most, however, agree that a virus is any program that
attaches in some way to an object that contains, or has the reasonable potential to
contain, other programming. This definition allows us to include boot-sector viruses
(since boot sectors generally do contain a program), but also macro viruses, which
infect an object that at the time of infection often contains no code.

The term worm has become more widely used (not always correctly) in relation
to network and email related programs. Do you think we overstate the problem of
getting people to agree on a definition of what a virus is? If you have a few spare
years, you can have some fun by getting together a group of academically oriented
computer people, and asking them to agree on a formal definition of what a
“program” is.

6 0 V i r u s e s R e v e a l e d

Viral programs cannot be considered a joke. Many may have been written as
pranks, but even those that were not intended to do any damage have had bugs. The
original author of Stoned knew nothing of certain drive specifications, and yet the
virus causes unintended damage to some disk formats. It appears that the trashing of
data by the Ogre/Disk Killer virus, one of the most damaging viruses, was originally
intended to be reversible, but is not, thanks to an error on the part of the programmer.
Any program that makes changes to the computer system without the knowledge
of the user can cause problems, the more so when the program is designed to keep
spreading those changes to other systems. Form is a fairly trivial boot-sector virus
that caused no significant damage to systems when it was written, a fact that no doubt
has a bearing on its continued survival in the field, many years after. However, because
it infects the DOS boot record rather than the partition sector, it can, unlike most
boot-sector infectors, prevent a PC running Windows NT—an operating system that
didn’t exist at that time—from booting.

Virii and Octopii
If one program is a virus, what are two of them called? Given that the term is
still in the realm of slang, this debate has been the longest, silliest, and most
bitter debate in the whole field of computer virus research. Various linguistic
“experts” have called for virae, vira, viri, virii, viren, and virides. The correct
plural in biology for virus has always been viruses, and that is, in fact, the most
common usage among computer virus researchers. Virus authors, distributors,
and collectors tend to prefer virii, though there is no etymological basis for
that particular plural form. Although the word virus was normally used in the
singular in Latin (as a mass noun meaning poison), the plural viri seems to have
been used occasionally, though inviting confusion with the plural of vir (man).
We are not aware that this usage has ever been found in biology. Viren is
probably imported from the German. Robert Slade’s personal favourite,
however, is the suggestion that it is one virus, two virii, three viriii, four viriv…
Viriiii might be more appropriate for computer-using clockmakers, who usually
use IIII rather than IV on clock faces. A tip of the hat goes to Ed Fenton for
drawing our attention to that horological quirk.

C h a p t e r 3 : M a l w a r e D e f i n e d 6 1

NOTE

This doesn’t let the author of Form off any hooks, though. Even at the end of the 1980s, not all
PCs were running versions of MS-DOS or PC-DOS. Any virus writer who says, “I don’t know what
the effects of this virus will be on all the systems it might infect...” is also saying “...and I don’t
care”. Of course, no programmer can claim to know that their program will work properly on
every possible system, but honourable programmers offer support when trouble occurs. In
fairness, it’s not unknown for a virus author to offer some help to someone accidentally infected
or sustaining unanticipated damage as a result of infection.

Worms
As noted in Chapter 2, there are many variant meanings proposed for the term worm.
However, most virus researchers now accept (sometimes reluctantly) the term as
applied to a viral or reproductive program that copies and spreads itself without
associating with a particular host program. More specifically, a worm usually spreads
over network links from one machine to another.

Worms have been around since the beginning of the virus plague in the wild.
CHRISTMA EXEC and the Morris Internet Worm are two examples. More recently,
there have been the mail storms associated with Melissa and the Love Bug. Note that
there are technical differences between some first-generation worms, not all of which
require user intervention to spread, and more recent worms, which usually rely on
some form of social engineering to trick the victim into running them.

Worms generally spread extremely rapidly, and the modern examples are challenging
the traditional models of virus spread. Because of the explosive nature of worms,
they have caught the attention and imagination of the news media. Therefore, when
non-specialists think of viruses, they are often thinking in terms of what may be
better described as worms.

Carey Nachenberg has suggested a classification scheme for worms along the
following lines (“Computer Parasitology”, Ninth International Virus Bulletin
Conference Proceedings, 1999).

By transport mechanism:

� Email Worms spread via email.

� Arbitrary Protocol Worms spread via protocols other than email protocols,
such as TCP/IP sockets.

By launching mechanism:

� Self-launching Worms, such as the Morris or Internet Worm, require no
interaction with the victim. These are currently rare; however, KAK,
BubbleBoy, and other script viruses that exploit a security hole in Microsoft
Outlook’s default (unpatched) environment to execute without user interaction
would certainly qualify as such.

� User-launched Worms must be executed by the user, and therefore incorporate
a degree of social engineering.

� Hybrid-launch Worms use both mechanisms.

Aside from the rapidity of their spread and some specifics about detection (many
worms are easily detected at the mail gateway even without virus-specific software),
the differences between worms and viruses are slightly academic. From the perspective
of the average user or systems administrator, worms and viruses can generally be
considered together.

Intendeds
When speaking publicly on the virus problem, we are frequently asked what our
favourite viruses are. (From our perspective, this is a curious question, along the
lines of “What way would you most like to be tortured to death?”) When Rob Slade
first encountered the question, he replied that his favourite virus was Pentagon.
Why Pentagon? Simple. It doesn’t reproduce. It doesn’t work. Many programs were
intended to be viruses, but fail to qualify. All virus collections contain programs that
were obviously supposed to reproduce, but don’t. Some researchers carefully weed
them out of their collections, but most vendors feel they have to detect non-viruses
because they are in other collections. Since software reviewers often use badly
maintained collections to test anti-virus software, vendors are obliged to detect
objects they know to be harmless. The alternative is to be penalized while less
scrupulously constructed products earn the Editor’s Choice awards.

Virus programmers include some of the sloppiest coders in the world (and, given
the state of many legitimate programs we’ve had to use, review, or support, that is
saying a great deal). In some viruses, the payload never triggers, although failure
of the payload doesn’t disqualify them as viruses. In some attempted viruses, the
reproductive function never triggers. Sometimes the infective mechanism triggers
but fails to attach the infective code to the host program. In other cases, the virus
may attach to the host program, but in such a way that the code is never executed.

6 2 V i r u s e s R e v e a l e d

Programs that match this last case are normally categorized as intended viruses,
or just as intendeds (much to the irritation of the authors’ spellcheckers). We must
distinguish here between attempted viruses that fail to reproduce unto the third and
fourth generation, and viruses that fail to reproduce under some circumstances. For
example, a VBA virus that flourishes on PCs running Office 97 but fails to replicate
beyond the global template on a Mac running Office 98 is not an intended. It is a
virus, but one that is not viable on all of the same platforms as its host application.

On occasion, of course, the code is so badly messed up that you simply have no
idea what the author was trying to do. Usually, though, it is not difficult to see what
was intended, and where it went wrong. In one virus, it is readily apparent that the
programmer wanted the damaging payload to trigger on Sundays. The virus waits
for the seventh day of the week. And waits. And waits. Computers start counting at
zero (unless they’re told otherwise), and DOS’s Get Date function returns a value
between 0 and 6, not 1 and 7. Furthermore, it returns a value of 0 for Sunday, not 6.
Do you still believe that virus writers are programming geniuses?

Of course, sometimes the errors don’t work out to anyone’s advantage. Some
mistakes create more serious problems. The Michelangelo destructive payload may
have been intended to overwrite the whole hard disk. Instead, it reportedly sticks in
an infinite loop (not to be confused with the “nth complexity binary loop” associated
with the Good Times hoax): however, that doesn’t work to anyone’s advantage, either.
The Morris Worm was obviously intended to be a slow infector, except that Morris
inverted two factors. Instead of sending out a copy of itself every once in a while, it
exploded, and drew attention to itself by bringing down systems with sheer overload.

Corruptions
Intendeds may be a failure to meet the programmer’s actual purpose, but it is common
for a viable virus to become corrupted as it spreads from system to system. In this
instance, the virus is modified under circumstances the virus author didn’t or couldn’t
anticipate, or didn’t bother to allow for. Since such modifications are accidental,
they rarely offer a Darwinian “improvement” to the viability of the virus, but they
don’t always prevent it from replicating either. This is particularly (not exclusively)
characteristic of macro viruses. The original virus (or rather, a later instance of the
virus) is modified by some transient system glitch. Causes may include inadequate
disinfection (this happened frequently in the early days of macro-virus detection),
picking up legitimate macros from an infected machine, or losing one or more
component macros. Anti-virus programs normally detect known instances of corrupted
viruses, just as they do intended viruses.

C h a p t e r 3 : M a l w a r e D e f i n e d 6 3

Corrupted non-viral programs may also find their way into poorly maintained
virus collections, perhaps because someone assumed that they were corrupt because
they’d been infected by an unknown virus. Anti-virus programs may detect corrupted
non-viral programs and other non-viral objects (even text files) known to exist in
widely available virus collections, for the reasons already discussed. That is, to avoid
being penalized by incompetent testers in comparative reviews.

Germs
This is a rarely used term for an infrequently met phenomenon. A germ is a first-
generation virus—an instance of a virus that hasn’t yet infected anything—and it
is not generated by the normal process of infection. A germ is, that is, the original
infective object (or an exact copy) created by the virus author, or by someone with
access to the original source code. For instance, a file virus that has not yet infected
a program may exist as only the virus code. Again, we must distinguish between
germs and droppers (discussed next), both of which are different from worms that
“infect” by spreading copies of the original, which don’t attach to a host file. Germs
are most likely to be found in collections and are detected by anti-virus software for that
reason. A germ cannot meaningfully be described as being in the wild.

Droppers
A dropper is not itself a virus, but a program written expressly to install a virus,
especially a boot-sector virus. We do not describe a virus-infected program as a
dropper, since the program was not written specifically for the purpose. What if a
dropper program is infected with another virus? The answer depends on the context.
If the program was written to install virus A and only virus A, then it remains a
dropper, even when infected with virus B. However, it is still not a dropper for
virus B. Confused? You should be.

A dropper may be designed as a sort of Trojan, though in this case the term
injector is sometimes preferred. The victim is tricked into running a program that
does not, itself, replicate, but that has a malicious payload. Red Team has been
described in these terms. However, droppers have often been intended as a convenient
means of transport, most commonly of boot-sector viruses, rather than as a means
of covert introduction to a system.

It’s often said that boot sector viruses cannot infect across networks, which is
more-or-less accurate. However, they can be transported across networks, either by
a dropper or as a binary image of an infected disk. BSIs (boot-sector infectors) are
examined in more detail later in Chapter 5. Initially a dropper would have been used

6 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

C h a p t e r 3 : M a l w a r e D e f i n e d 6 5

to spread boot-sector viruses via online systems. A BSI dropper would place the
virus in active memory, thus allowing it to infect the hard disk, and subsequently
spread via disk sharing.

Anti-virus software detects known germs, droppers, and injectors because of their
possible use as Trojans, and, of course, because they’re found in collections.

Test Viruses
Quite early on in the development of anti-virus technology, customers wanted to test
whether their anti-virus programs were installed and working properly. Some vendors
introduced detection of test “viruses” into their software. Such programs were not
viruses (they didn’t replicate), but they contained an arbitrary string (sequence of
characters) that triggered an alert similar (but not always identical) to that triggered
by real viruses. Originally, each vendor who adopted this approach used a product-
specific test string and instructed customers on how to use it in a test file. This was
considered preferable to supplying the test virus as a ready-made file that would
trigger an alert at inconvenient times. Later, this approach was consolidated into the
EICAR test-string. This is a sequence of ASCII characters that can be typed into a
file with a text editor, but that constitutes a stand-alone DOS program that will be
recognized by most anti-virus products as a “test virus”. The EICAR test string is:

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

Running the file displays the text

EICAR-STANDARD-ANTIVIRUS-TEST-FILE!

In the meantime, some individuals produced “neutered” versions of real viruses,
or even “harmless” real viruses, for similar purposes; however, most virus experts
loathe this approach, and we’ll explore the reasons for that in some detail in Chapter 9.
(We’ll also examine the use of the EICAR test string more closely.) Nonetheless,
simulated viruses are often detected by anti-virus programs, since the vendors are
aware that their products are liable to be tested against such simulations.

Generators
In the early 1990s, some virus writers started producing virus creation kits, or
generators. These programs allow you to create viruses, simply by selecting the
functions you want from a menu. No programming skills needed. Now you, too,
can create a destructive menace. Equal-opportunity vandalism.

In reality, of course, all that was happening was that certain pre-programmed
modules were being added together. No new virus could be produced by the generators,
since the user was simply connecting existing bits together. For example, the Virus
Creation Laboratory (VCL) could not create a macro virus because macro viruses
hadn’t been invented when this generator was developed. (There have been macro-
virus kits since, but they have made little real impact.) In fact, VCL wasn’t that good
at creating file viruses: many of the attempted viruses it created were not viable.

A number of virus kits exist, especially for the creation of DOS file infectors and
macro infectors, but they have never made much of a splash. Given a finite set of
modules, the kit could only produce a finite set of viruses. In fact, it was rather easy
to detect any virus produced from the generators, since every module was detectable
by scanning for a search string. Therefore, even “new” viruses generated from the
lab could be detected before they were created. For example, some scanners detected
the Kournikova virus at first sight, using a generic driver or advanced heuristics,
though it took others a little while to catch up. In short, even the competent generators
don’t merit the superstitious fear they sometimes inspire.

Trojans
At an EICAR conference in 1999, a vendor representative was heard to whimper,
“This is anti-virus software, not anti-Trojan software”. Anti-virus vendors have good
reason for wishing they’d kept out of the Trojan arena from the beginning: the species
presents considerable difficulties, not least of definition.

Trojan horses are often described as programs that pretend to do one thing while
performing another unadvertised and unwanted action. Common modern usage is
to describe them as non-replicating malware, or as programs with a payload but no
automatic replication mechanism.

This description is useful for distinguishing between viruses and Trojans, but
it depends on an implicit assumption of malicious intent. How do we detect an
unknown virus? We can’t say for sure that a program is replicative algorithmically,
but we can do a test run, as heuristic engines do. How do we detect an unknown
Trojan? Not by trial and failure. If we know that a program formats a hard disk, that
tells us nothing about the author’s intent, malicious or otherwise—it could be a
Trojan, or it could be a systems utility. It could even be a systems utility that has
been trojanized (the term trojaned is sometimes used) by describing it as doing
something quite different from disk formatting. However, examining the file or
stepping through the code only tells us that it formats a disk. It doesn’t tell us
anything about the author’s intent, the supplier’s intent, or the recipient’s expectations.

6 6 V i r u s e s R e v e a l e d

NOTE

Trojans are sometimes defined, according to the action they perform, as destructive or password-
stealing. However, it’s common for the same program to attempt both actions. Indeed, an attack
intended to gain unauthorized access or disclosure might well cause some destruction with the
intention of covering the intruder’s tracks. Destructive Trojans range from simple batch files,
shell scripts, IRC scripts, and the like, that call a system command such as rm or format, to more
sophisticated compiled programs. Their basic modus operandi, however, tends to be simple and
immediate destruction. Password stealers are more accurately regarded as a subset of a whole
range of privacy-invasive threats, concerned with stealing access rather than direct destruction.
They include AOL password stealers, backdoor Trojans, Remote Access Tools, and rootkits, all of
which are considered in the following sections.

Viruses and worms are sometimes described as “special cases” of Trojans. This is
defensible: you can describe a virus-infected object as being in some sense trojanized.
However, we prefer to distinguish between viruses and Trojans according to their
ability to replicate, as it seems less confusing. Worms still constitute a problem:
self-launching worms might be considered truly auto-replicative, but most modern
worms rely on tricking a victim into running a program that installs the worm or
virus and triggers the mechanism for mailing it on. Some sources, including anti-virus
vendors, therefore equate worms and Trojans. Even worse, some malware can be
described as being in some sense multipartite, combining a virus, a worm, and a
Trojan (MTX has been described in these terms). We suspect that most readers will
be less concerned with these niceties than with the practical issues of defending
against all these threats, so we will observe that the terminological problem exists,
rather than try to solve it.

We don’t consider Easter Eggs (harmless code concealed in production software
by the original production team) as Trojans here. This is not necessarily because we
like the idea of having a flight simulator concealed in our spreadsheet applications,
but because anti-virus software doesn’t usually target such things.

Joke programs are considered separately in this and the following chapters.
Installation routines and other programs that pass back information to the manufacturer
without the knowledge of the user might be considered Trojans, and we sometimes
see security alerts concerning such phenomena, but they aren’t usually detected by
anti-virus software. Accidental Trojans were touched upon in Chapter 1, and the
concept is not explored further here (mainly because anti-virus software doesn’t
usually detect them).

Trojan programs used to be spread almost entirely via public-access electronic
bulletin board systems (BBSs). Obviously, a damaging program that can be identified

C h a p t e r 3 : M a l w a r e D e f i n e d 6 7

6 8 V i r u s e s R e v e a l e d

Forget Solitaire
Did you know that there is a flight simulator concealed in Microsoft Excel 97?
To access this game use the following (presented by Larry Werring in the
RISKS-FORUM Digest mailing list, edition 19.53 on 5th January, 1998):

1. Open Excel 97.

2. Open a new worksheet and press F5.

3. Type X97:L97 and press ENTER.

4. Press TAB.

5. Hold CTRL-SHIFT and click the Chart Wizard button on the toolbar.

6. Once the Easter Egg is activated, use the mouse to fly around: right button
for forward, left for reverse. There are also keyboard controls.

We’re not going to go into detail about how to run the game. If you want, you
can play with it yourself. The point is, what is a game doing inside the spreadsheet
program? There is no reason for the inclusion of this code, even granted the
opinion that software bloat is not always a bad thing. But this game, the code for
it, the graphics, and other extraneous pieces, are taking up space on millions of
computers. Most users of those computers have no idea the function is there.

This says something about quality control at Microsoft. Here is an undocumented
feature, and a rather large one, coming out of a widely used office product.
However, Microsoft is not the only company at fault. You can find a large
number of such concealed functions at various web sites, including the following:

� http://geocities.com/ant_hill11/Eastereggs1.html

� http://www.anu.edu.au/mail-archives/link/link9804/0262.html

� http://www.jokingaround.com/eggs/

� http://www.microseconds.com/easter.htm

� http://www.logolinks.co.uk/computer/coegg.htm

� http://www.suite101.com/article.cfm/computer_security/36424

is unlikely to be distributed through a medium in which the donor can be held to
account. Some BBSs were hangouts for software pirates, and acted as distribution
points for security-breaking tips and utilities. Pirate BBS systems have now been
replaced by a variety of (generally short-lived) web sites and FTP download archives
(“warez servers”). These sites are usually killed as soon as system managers find
them, but given the ease of establishing personal web pages, a few dozen may be in
operation on any given day.

The original tie-in of Trojan and pirate software has led to confusion between
Trojan programs, viral programs, and system crackers, and this false association
has proven extremely resistant to correction. It has also led to a view of BBSs, and, by
extension, all download sites, as distribution points for viral programs. (One paper’s
computer columnist, normally better versed than this, dismissed the availability
of anti-virus software to combat Michelangelo by saying that no self-respecting
company would ever use a BBS.) This bias continued to survive for many years, in
spite of the fact that the most successful viral programs at the time, boot-sector viruses,
could not be transmitted over BBS systems in normal use.

We have suggested that Trojans normally include an element of pretence, or social
engineering. The extent of the pretence may vary greatly. Many of the early PC
Trojans relied merely on a deceptive filename and description on a bulletin board.
Login Trojans, popular among university students in mainframe days, mimicked the
screen display and the prompts of the normal login program. They often passed the
username and password along to the valid login program at the same time as they
captured the user data. Other Trojans may or may not contain actual code that does
what the Trojan is supposed to do, while performing additional and unpleasant acts
that the victim does not expect. Many distinguish between Trojans and joke or prank
programs on the basis that Trojans are always malicious. As we shall see, however,
this distinction is sometimes rather fuzzy.

C h a p t e r 3 : M a l w a r e D e f i n e d 6 9

Forget Solitaire (continued)
However, this also says something about security. Take another look at those

instructions. Think anybody would be likely to do all this in the course of a
day’s work? But with millions of curious computer users out there, even this
type of sequence is going to be found out. Which means that any kind of
security bug, no matter how deeply buried, is eventually going to be found.
Probably by the wrong people first.

One oft-quoted example of a Trojan is 1989’s AIDS Information Diskette, often
incorrectly identified in both the general and computer-trade press as a virus. Not
to be confused with the fairly rare AIDS I and II computer viruses, the AIDS trojan
program appears to have been part of a well-organized extortion attempt, as discussed in
Chapter 2. The “evaluation disks” were shipped to medical organizations in England
and Europe with covers, documentation, and licence agreements, just like any real
commercial product. When installed and run, the program did give information and an
evaluation of the subject’s risk of getting AIDS. However, it also modified the boot
sequence so that after 90 reboots of the computer, all files on the disk were encrypted.
The user was informed that, in order to get the decryption key, a “licence fee” had
to be paid.

Trojan horse programs, especially destructive Trojans, are sometimes referred to as
Arf, Arf or Gotcha programs. The phrases are taken from the screen messages presented
by one of the first examples, distributed as a program that would enable graphics on
early TTL monitors. This would have been quite a feat, if it had actually been possible.
Instead, it presented its message and erased the contents of the hard drive.

Password Stealers and Backdoors
While a Trojan without a payload would be a sorry piece of malware, that payload
doesn’t have to include sheer destruction. It might, for instance, entail data leakage
without direct harm to the original data.

Versions have been written for microcomputers as well, appearing to be network
login screens. A number of these have also been designed for the World Wide Web,
pretending to be a popular web site in order to steal passwords for that site. In recent
years, it has become common to distinguish password stealers as a separate class
of malware so that some software is specified as detecting both Trojans (that is,
destructive Trojans) and password stealers.

Not all password stealers use fake login screens: some use simple social engineering. The
most prominent examples of this group are AOL password stealers, many hundreds of
which have been reported. Some anti-virus software detects these routinely, not only by
signature recognition, but also heuristically. However, the simplest heuristic works well
in this context. If anyone from any company or system that you legitimately use sends
an email message asking for a username and password, they almost certainly are not
entitled to it. System administrators normally have privileges beyond those accorded to
other system users, and they are able to do any work they need to do on another user’s
account without needing to know that user’s password.

Mind Games
One of the factors involved in the success of malicious programs is a study of
the mindset of the user—a study of the psychology or sociology of the computer

7 0 V i r u s e s R e v e a l e d

community. Since the spread of viral programs usually requires some activity,
however innocent in appearance, from the operator, looking at the security-breaking
aspects of other programs can give us some insights.

Password stealers simulating a login program may send back a message to the
user that the login has been denied. Most users will accept this as an indication that
they have either made a mistake in entering the login data or that there is some
unknown fault in the system. Few users question the message, even after repeated
refusals. Some programs are sophisticated enough to pass the login information on to
another spawned process: few users know to check the level of nesting of processes.

Up and ATM
This type of activity has recently been repeated in less innocuous fashion. Criminals
have been known to build false fronts for automated teller machines at banks. These
devices fit over the regular machines and are similar in appearance. The false fronts
will accept cards, prompt for the holder’s personal identity number (PIN), and then
give a message about some problem and a suggestion to contact the bank in the morning.
After a few hours, the crooks collect the device, remove the cards, read the stored
PINs, and spend a few hours extracting as much cash as possible at legitimate bank
machines using the cards and access codes thus collected. Clearly, this isn’t a problem
that anti-virus vendors can be expected to do much about.

Backdoor Man
Backdoor or trapdoor are terms normally used to describe a means of accessing a system
with privileges higher than those normally granted to ordinary users. It’s not uncommon,
for example, to use such a privileged account during system or program development:
sometimes it is left in production software, deliberately or otherwise. It would be unusual
for anti-virus software to detect such a security breach. More recently, however, the term
has been used in the context of backdoor Trojans, which we consider at length in the
“Remote-Access Tools (RATs)” section later in this chapter.

Jokes
A famous, if relatively harmless, prank in earlier computers was the cookie program
which ran on PDP series computers. This program would halt the operation in progress
and present a message requesting a cookie.

Despite the fact that this program became rather widely known as a joke, it is often
reported in security books as a virus. The original cookie program had no reproductive
functions, however. It barely even qualifies as a Trojan, although it could certainly
be regarded as a nuisance.

C h a p t e r 3 : M a l w a r e D e f i n e d 7 1

7 2 V i r u s e s R e v e a l e d

NOTE

The cookies in this case were strictly virtual and had nothing to do with the “cookies” used by web sites
to track visitors. The latter type of cookie is accused from time to time of being a security risk. In fact,
such cookies are little globs of data rather than code: even if they contained a program (malicious or
otherwise), it is hard to see how that program could actually be executed. There are, certainly, privacy
issues associated with web cookies; however, these are not really in the scope of this chapter.

There were consistent reports of viral programs following this pattern, including
a very detailed report of a Spanish Cookie virus. None of us has ever seen this virus,
although one of us has been assured that it really exists. There have been commercially
produced joke packages offering “Stupid Mac (or PC) Tricks”. There are countless
pranks available as shareware or freeware. Some make the computer appear to insult
the user; some use sound effects or voices; some use special visual effects. A common
characteristic of such pranks is that the computer is, in some way, apparently non-
functional. Many pretend to have detected some kind of fault in the computer (and
some pretend to rectify such faults, of course making things worse). One such program
in our own field was PARASCAN, the paranoid scanner. This reported large numbers
of very strange viral programs, none of which, oddly, have ever appeared on the
WildList.

It can be argued that, aside from temporary aberrations of heart rate and blood
pressure, pranks do no damage, and that they can be distinguished from Trojans on
that basis. However, some researchers refer to accidental Trojans, whose intent is
non-malicious but whose effect is destructive.

At the same time, some joke programs are clearly meant to do psychological
damage. Some use “gotcha” messages to trick the victim into believing that they
have lost all their files. Furthermore, a victim may be prompted by such a message
to take ill-advised action in an attempt to recover “lost” data or to stop data from
being lost in the first place, resulting in actual damage. For instance, a panicking
victim might lose data or even access to the system by hitting the reset button while
the joke displays its symptoms. Most joke programs (and non-programs, such as
virus hoaxes) are plainly meant to humiliate the victim when they realize that
they’ve been duped, thus asserting the superiority of the joker or hoaxer.

UltraCool, for example, claims that “A LOW level Hard Disk format will procede
[sic] in 27 seconds if cancel button is not pressed”, but keeps moving the Cancel
button away from the mouse cursor until the countdown reaches zero. (It then displays
a “Just kidding…” message.)

Pranks have, in various ways, entered the realm of virus mythology. The PDP-series
cookie prank, as noted, has given rise to all manner of reports of a cookie virus. There

C h a p t e r 3 : M a l w a r e D e f i n e d 7 3

is also the crabs program. This initially ran on the Xerox Star system and was later
ported to Apple and Atari systems. More of a screen saver than anything else, it was
sometimes reported by careless security writers as a class of viral programs that
attack video displays. A similar program in the MS-DOS world was BUGRES,
which was reported as a virus by a major commercial anti-virus program. This is
how pranks do most damage: in addition to causing time to be spent getting rid of
a prank on a system, they tend to generate calls to researchers, and waste not only
time, but bandwidth.

Joke programs have become a major cause of annoyance, even where there is no
apparent malice intended. Thus arises the difficulty of deciding whether to alert the
user to prank programs on the computer. A program like this doesn’t do any harm,
and so generating a warning might be considered a false alarm. On the other hand,
anti-virus developers don’t want to have to contend with a bunch of calls about a
new virus every time somebody rediscovers BUGRES. Yet CokeGift probably holds
the world record for protests to the industry from consultants and systems administrators
who are called out to remove an essentially harmless program from PCs when anti-
virus software has reported infection by the “Joke/CokeGift Virus” or some similarly
misleading message.

Some vendors decline to detect jokes like this as a matter of policy. Others detect
jokes because “they may frighten victims” or “to discourage the promiscuous exchange
of executable programs”. A few offer a choice, and some are even considering
modifying their alert messages, by not describing non-viruses as viruses, in order to
reduce the Panic Factor. We recommend that you find out, before you deploy anti-
virus software, whether the package detects pranks or not. Alert users to the fact that
scanners can find joke software, and tell them to read the screen messages carefully.

Anti-virus vendor web sites are seriously inconsistent about the information they
offer on jokes, and there is no standard nomenclature or reporting mechanism for such
software. If you feel the need to research this topic further, here are some resources:

� http://hamptonroads.about.com/citiestowns/southeastus/hamptonroads/libr

� http://www.supershareware.com/Apps/4072.asp

� http://www.btsunlimited.com/shareware_nopass/shareware_prank.htm

� http://members.tripod.com/~wiseguysinc/joke.htm

� http://www.geocities.com/netsur24/gags.html

� http://www.sidor.ru/sick/index1.html

� http://looneytunes.acmecity.com/tune/213/

WARNING

Use at your own risk! Apart from the annoyance caused by the way in which they are reported by
some scanners, pranks have been used to spread Trojans or viruses in the past.

Remote-Access Tools (RATs)
A difficult subject to pin down is that of remote-control software. Some people
would like to refer to the programs as remote-access Trojans, while the “developers”
would rather have them called remote-access (or remote-administration) tools (RATs).
A moment of thought will make the problem plain: all networking software can, in a
sense, be considered to be remote-access tools. We have file transfer sites and clients,
web servers and browsers, and terminal-emulation software that allows a microcomputer
user to log on to a distant computer and use it as if he or she were on site.

Many remote-access programs are available commercially, ranging from simple
file-copying utilities, such as LapLink, to full remote-operation packages, like PC
Anywhere. The RATs considered to be in the malware camp tend to fall somewhere
in the middle of the spectrum. Once a client, such as Back Orifice, is installed on the
target computer, the controlling computer is able to obtain information about the
victim system, such as which programs and processes are currently running, and
what files and directories it contains. The master computer will be able to download
files from, and upload files to, the target. The control computer will also be able to
submit commands to the victim, allowing the distant operator to control a range of
activities. This activity goes on without any alert being received by the owner or
operator of the targeted system.

NOTE

The authors of some RAT programs assert that the software is not malicious. As “proof”, they point
out that such packages have valid uses. This is quite true. RAT programs can be used to support
computers over a LAN and even over the Internet. When a user rings technical support, the support
person can connect to the actual machine, and then gather information and diagnose and treat
problems without having to rely on questionable data and actions from customers who may have
very little computer knowledge. However, RAT programs are not necessarily configurable to
prevent misuse of the remote-access capability, and they are designed in such a way that the
malicious use of the software is quite easy and transparent to the victim. The authors of such
programs have also been known to attempt to legitimize them by introducing a charge for the
software. This reassures potential victims. It also allows the authors to complain about monopolistic
security vendors impeding legitimate business interests if they advertise detection of such programs.

7 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

C h a p t e r 3 : M a l w a r e D e f i n e d 7 5

When a RAT program has been executed on a computer, it can install itself in
such a way as to be active every time the computer is subsequently turned on.
Information is sent back to the controlling computer noting that the system is active.
The user of the command computer is then able to explore the target, escalate access
to other resources requiring a higher level of privilege, and install other software,
such as DDoS zombies, if so desired.

Once more, it should be noted that remote-access tools are not viral. When the
software is active, though, the master computer can submit commands to send the
installation program on, via network transfer or email, to other machines. These
programs must be executed on the other machines, but a little social engineering
via email can be enough to accomplish this.

DDoS Agents
A denial of service (DoS) attack generally does not attempt to crack security on a
computer system or network. It tries to use up some resource, and thus deny that
service to legitimate functions or users. For example, a massive spam (unsolicited
email) or mail bomb attack might be considered a denial of service attack, because
it ties up the network connection and also uses up great amounts of disk space for
the mail queue. No security is broken, and no data are corrupted, but the computer
system cannot be used for its intended purpose.

Other types of denial of service attacks might entail trying to log on to the target
computer, thus using up processing time as the host tries to validate the requests.
The most sophisticated of such attacks send network-control messages that request
the host to contact some other machine to verify information. These requests must be
honoured, because they are part of the dynamic configuration process of the Internet,
but the DoS attacks use fake addresses, and therefore the host computers make
repeated attempts to connect to computers that don’t exist.

A distributed denial of service (DDoS) attack goes one step further. By sending
out Trojan programs, crackers try to gain at least partial control of a number (possibly
thousands) of computers. At the designated time, the master computer sends a very
short command message to those computers running the Trojan server or agent
software. Thus one computer starts and controls hundreds, thousands, or tens of
thousands of computers, all sending some kind of DoS attack to a given target. One
computer sending DoS packets to a huge site like Yahoo is nothing more than a
nuisance. But with hundreds of computers participating, the effect is greatly magnified.

DDoS programs do not conform to commonly accepted definitions of the term
virus, but anti-virus packages often detect them. At one point, DDoS was called a

flood network attack, from the name given to the second program to employ the
concept. The structure of a DDoS attack requires a master computer to control the
attack, a target of the attack, and a number of computers in the middle that the master
computer uses to generate the attack. These computers in between the master and the
target are variously called agents or clients, but are usually referred to as running
zombie programs.

So, do the attackers own hundreds of computers? By no means: however, by
distributing Trojan programs, crackers try to gain at least partial control of many
computers, which may number in the thousands or even tens of thousands. The
zombie software is generally only a single program, which can be emailed to
potential suckers or, preferably, is posted on USENET newsgroups with names
such as Sheila_gets_undressed.exe. The zombie program, when run, installs itself
on the computer and then notifies the master computer that another agent is in
place. It usually also generates a spurious error message so that the user doesn’t
suspect anything when Sheila fails to perform as expected.

DDoS programs are not viral, and managing them is a systems issue, not just a
desktop issue. Nevertheless, checking for zombie software not only helps to protect
you and your system, but lowers the risk of attacks on others, as well. It is your
responsibility and it is in your best interest to ensure that no zombie programs are
active on any of your machines. If your computers are used to launch an assault on
some other system, you could be liable for damages. In addition, although it is a
very bad idea, some people talk about launching retaliatory strikes in the case of a
DDoS attack.

Why is retaliation a bad idea? All of the DoS attack packets are being launched by
zombie computers. The master computer never sends a packet directly to the target.
Therefore, striking back will only ever hit zombie machines, which, aside from a
little negligence, are probably all owned by completely innocent victims. In any case,
computer security reprisals are generally a bad idea. Attacking anyone is likely to
render you liable to prosecution or a lawsuit. Floods of mail storms, spam, and attack
packets only use up bandwidth, reduce cooperation, and ultimately damage the networks
that you are trying to use in the first place.

For more information on DDoS attacks and programs, you can look up information
at any of these sites:

� staff.washington.edu/dittrich/talks/cert/

� staff.washington.edu/dittrich/misc/stacheldraht.analysis

� staff.washington.edu/dittrich/misc/tfn.analysis

� staff.washington.edu/dittrich/misc/trinoo.analysis

7 6 V i r u s e s R e v e a l e d

� staff.washington.edu/dittrich/misc/ddos_scan.tar

� staff.washington.edu/dittrich/misc/sickenscan.tar

� www.cert.org/advisories/CA-2000-01.html

� www.cert.org/reports/dsit_workshop.pdf

� www.cisco.com/warp/public/707/newsflash.html

� www.fbi.gov/nipc/trinoo.htm

Rootkits
A rootkit is a suite of trojanized system applications that might be substituted for the
untrojanized originals. Such programs can include monitoring utilities and system
processes gimmicked so that they don’t draw attention to illegitimate processes.
They can also include utilities modified to enable an intruder to escalate account
privileges or to hide other component files. They are mostly associated with UNIX,
but examples have been reported for Windows NT. Anti-virus programs have not,
until recently, routinely detected such programs (in general) but there’s no absolute
reason why they shouldn’t. The recent upsurge of Linux worms that use social
engineering and other techniques to persuade users to execute a program that installs
a rootkit has ensured that vendors with a Linux product have begun to lead the way
in the detection of such programs.

False Alarms
No, these aren’t the virus hoaxes that we talked about in Chapter 2. The false alarms
we are talking about here are programming and implementation bugs. We know it
will come as a shock, but we have to tell you: anti-virus software is not perfect. When
we discuss the evaluation of anti-virus software in Chapter 9, we will go into more
detail about the two major problems: false positives and false negatives. For the
moment, false positive alerts are what are commonly known as false alarms. That is,
a virus is reported where none exists. A false negative is an instance of a virus not
being reported where one does exist.

Known-virus scanners are the most popular type of anti-virus software, and they
generally identify viruses by name and specific variant, although the latter is not
always reported. Unfortunately, the only way to be absolutely sure that you have a
specific virus is to have a complete copy of each of the tens of thousands of known
viruses in a database that is accessed by the scanning program. (This is sometimes
called exact identification.) Given the number of viruses and a rough estimate of the

C h a p t e r 3 : M a l w a r e D e f i n e d 7 7

average size, such a database would probably require many hundreds of megabytes
of disk space. Even that wouldn’t be sufficient, though, since there are small
changes to viruses depending on the object that they are infecting, which would
entail multiple database entries. Polymorphic viruses might require thousands, even
billions, of entries for each, just to be sure of finding every single match. Even for a
large corporation, having this volume of data for anti-virus protection is unrealistic,
and the processing overhead would be gigantic.

Developers of anti-virus software therefore take shortcuts. Or, to put it a little more
kindly, all known-virus scanning is to some extent heuristic. Anti-virus researchers
look for a reasonably short scan string that is unique to the virus and that does not
appear in other software. Careful vendors will try to find more than one such string,
and will also calculate a digital signature of the whole virus. However, every once
in a while, some arithmetic fluke is going to identify an oddball self-booting game
floppy disk as the Stoned virus.

Of course, some developers take more shortcuts than others. If a vendor just looks
for the first relatively complicated string, it won’t necessarily be unique. In one
infamous case, a major anti-virus vendor found a nice, seemingly arbitrary, string in
a virus that was written in a high-level language. The string was quite arbitrary, since it
didn’t do much: it was an identifier routinely included by a particular compiler. The
scanner concerned suddenly started flagging all kinds of innocent programs as being
infected. All these programs had been put together using the same compiler.

Once we move beyond the virus-specific scanning into generic anti-virus programs,
the problem becomes more acute. Activity monitors, change-detection software, and
heuristic scanners (all of which we will discuss in more detail in Part II of this book)
look for what might be termed circumstantial evidence of viruses. Although these
procedures can find new viruses that are not yet known in terms of scan strings, they
aren’t perfect. They are vulnerable both to false positives and to false negatives.

Therefore, any anti-virus program is, sooner or later, likely to give a false alarm.
Be aware, then, that not every alert you get will be valid. On the various virus-
discussion mailing lists and newsgroups, we are quite used to questions of the form
“I have the X virus, but it is supposed to do/be Y, and I don’t have that on my system.
How come?” The standard answer you will receive to all such questions is, “Have
you tried another scanner?” Using a second anti-virus program to confirm the report
of the first is standard practice.

7 8 V i r u s e s R e v e a l e d

Summary
It is, perhaps, inevitable that we have been obliged from time to time to jump ahead
to consider elements of anti-virus technology. Indeed, almost the whole of this chapter
has been based on the implicit assumption that malicious software is what anti-virus
software detects. This is, of course, an extraordinarily naive assumption, and not
universally held, even among non-experts. Looking at a recent comparative review
of anti-virus products in a non-specialist magazine, we find in the features table,
under “Type of software”, that a variety of software types and functions are listed:

� Detection of viruses of various types

� Tracking of suspicious behaviour and unusual file changes

� “Protection against hackers”

� Privacy protection

� Child surfing protection

� Blocking of hackers and unwanted banner ads

� Workstation and network-directory locking

� Cookie management

� Filtering of “inappropriate content”, which may mean spam (unsolicited bulk
email and/or newsgroup postings), hoax virus alerts and other chain letters, or
pornographic material

Elsewhere, we often see virus scanners, Trojan detectors, personal firewalls,
intrusion-detection software, and anti-spam software stuffed into the same bag.
There is some justification for describing some of the packages associated with spam
generation as malware, and it is possible to regard virus scanning as a special case of
content filtering. However, we have not felt it appropriate to discuss the more social
and less technological elements of content analysis in detail in this chapter: instead,
we shall consider them further in Part IV, when we turn to social issues. It is misleading
and short-sighted to consider perimeter protection in isolation from viruses and
Trojans, and we will discuss the integration of anti-virus technology with other
security software in due course. Before we even discuss core anti-virus technology,
however, we must take a closer look at virus technology, which is, after all, the main
subject of the book.

C h a p t e r 3 : M a l w a r e D e f i n e d 7 9

This page intentionally left blank.

CHAPTER

4
Virus Activity and

Operation

81

IN THIS CHAPTER:

How Do You Write a Virus?

Tripartite Structure

Replication

Generality, Extent, Persistence

Payload Versus Reproduction

Damage

Ban the Bomb

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

We now come to some specifics of virus operation and activity. This
section of the book may appear to be rather intricate, particularly for
those who have not previously studied the inner functions of operating

systems. However, it provides a background for understanding how, exactly, viruses
do what they do. This, in turn, shows where computers are vulnerable to virus attacks,
and where viruses are vulnerable to detection and prevention or removal.

For any of you who are expecting to learn how to program a virus in this or
the following chapter: you bought the wrong book (and we did warn you in the
introduction!). To make a virus requires some knowledge about programming and
operating system (or possibly Microsoft Word or Outlook) internals. Having that
knowledge, however, doesn’t protect you against viruses, any more than being a
gunsmith gives you an edge in making flak jackets.

NOTE

The truth is that most virus writers are less accurately compared to gunsmiths than to amateur
hit-men: their skill level is just about sufficient to fire a sawn-off shotgun. While many virus writers
play up to the image of the misunderstood or diabolical genius running rings around the men in
suits, most viruses are trivial modifications of someone else’s code, and may or may not work.
We have a rich store of anecdotes concerning “k00l d00ds” posting to alt.comp.virus and other
traditional hangouts of the ethically challenged, who needed help to compile or assemble a virus.
This doesn’t mean that virus writers are never capable of competent code, or better. Nor does it
mean that virus writers are never capable of useful input into ethical or technical discussions of
anti-virus matters, and even corporate virus management. However, the notion that the people
who write viruses know the most about them is a complete myth.

Unfortunately, the converse happens to be true: knowing how to protect against
viruses can help a programmer build a better virus. The information in this chapter
might assist those who know how to make viruses to design “better” ones. We feel
that the risk is worth it, since we hope to support more system administrators than
virus writers. We also consider that many people in the virus-writing game are there
because they don’t understand the consequence of their actions, and that some
wouldn’t consider themselves virus-writers, as such. We have in mind “white hat”
virus writers such as system administrators and product reviewers who are compiling
or otherwise modifying existing viruses for purposes of experimentation.

NOTE

Sarah Gordon’s paper “The Generic Virus Writer II” (Virus Bulletin Conference Proceedings,
September 1996) addresses some of the issues associated with virus writers who diverge from

8 2 V i r u s e s R e v e a l e d

the “spotty adolescent” stereotype. We will return to this subject in Part IV of this book, and we
will particularly point out the problems with inappropriate virus modification for experimental
purposes. The paper is also available at http://www.research.ibm.com/antivirus/SciPapers/
Gordon/GVWII.html and is referenced at Sarah’s own site at http://www.badguys.org/.

Our objective in this chapter is to present enough information about virus components
and functions to enable you to make smart decisions about getting protection for
your computer, system, or network. While we use pseudo-code from time to time to
illustrate a point, that’s as far as we go.

While we hope that any computer user should be able to understand this chapter,
a background with computer internals will be a big help in putting this information
to practical use. For example, knowing the structure of program files will give you
a clearer picture of the differences between viruses and worms. Knowing how the
operating system handles a call for an executable file will help you comprehend the
different ways a companion virus can work. For obvious reasons, we are not going
to include a full discussion of all the internal operations of all the operating systems
that are available. We will try to provide some examples, mostly from the Wintel
world, in order to explain the basic ideas for those without a serious technical
background. Those who do know the inside details, for whatever operating system
they use, should be able to extrapolate from the information given to their own
environments.

How Do You Write a Virus?
How do you write a virus? And what language do you use? These are standard
questions on alt.comp.virus, and they rarely earn a friendly answer from either
side of the black hat/white hat divide. However, while this is not intended to be
a programming text (far less a virus-writing primer), we need to make sure that
you understand some basics (no pun intended).

Human beings don’t generally write programs in raw machine code any more.
Programs are written in a higher-level computer language, ranging from the
inscrutable abbreviations of assembler language to those that attempt to emulate
“natural language” as spoken by human beings. Clearly, there has to be some sort
of translation process into the binary code that a computer can understand.

An assembler translates assembly language programs into machine-readable
code. Assembly language is as near “to the metal” (low level) as most people go.
High-level languages (HLLs) use two basic approaches to translation. A compiler
evaluates the syntactical correctness of a whole program and outputs it as machine

C h a p t e r 4 : V i r u s A c t i v i t y a n d O p e r a t i o n 8 3

language, whereas an interpreter scans and executes a program one statement at a
time. In the land of PCs, we tend to think in terms of compiled stand-alone programs
(.COM and .EXE files), drivers (.VxD files), or support files such as overlay files,
and link libraries such as .DLL files.

NOTE

On no account should the preceding be taken as implying that only a handful of traditional
file-type extensions (.DOC, .COM, .EXE, .OVL, and so on) are vulnerable to virus attack. Many
files with quite different name extensions have the same format as .EXE files (.SCR screensavers,
for instance), and are just as vulnerable. Many people are now aware that .VBS denotes a Visual
Basic script file. Fewer people are equally wary of files with a .VB, .VBE, or .VBX extension. In fact,
Robert Vibert lists nearly 200 types of infectable objects in The Enterprise Anti-Virus Book (Segura
Solutions, 2000) and doesn’t claim that list to be all-inclusive.

Most early PC viruses were written in PC assembler, with a few compiled in
high-level languages such as C or Turbo Pascal. In fact, even now many virus writers
regard proficiency in assembler as a necessary qualification for admittance to the
Worshipful Order of Computer Vandals, and don’t talk to people who are presumed not
to qualify (especially anti-virus people). The following snippet of assembler language
code illustrates a simple variation of the traditional Hello World program. As well as
giving you a feel for what an assembly language program looks like, if it is assembled
to a .COM file and executed, it displays a suitable response to assembler zealots.

code segment

; define a code segment (one stack only) for a .COM

; for an .EXE we'd have more work to do here.

assume CS:code, DS:code

; set code and data segment registers to this segment

org 100h

; because it's a .COM file we have to reserve

; 100 bytes for the PSP (Program Segment Prefix)

start: ; 'just' a label

mov ah,9 ; load AH with value 9h

; INT 21H Function 9H writes a character string

; to standard output

mov dx, offset message ; load character string

int 21h ; go ahead and do it

mov ah,4ch ; INT 21H Function 4C terminates process

int 21h ; do it

message DB 'Get a life.$'

; this is our character string. It may seem

8 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

; counter-intuitive to declare a constant

; at the end, but it shortens the code. In a more

; complex program, we'd have to be more careful

; with forward references.

code ends ; end of segment

end start ; all done.

By contrast, the following Turbo Pascal code compiles to a program that displays
the same message.

program raspberry;

const

BiteMe = 'Get a life'; {declare string constant}

begin

writeln(BiteMe); {Display string}

end.

Clearly, this is much easier to read (and to write—it’s one of the few programs in
our repertoire to compile correctly the first time). However, assembler (assembly
language) has its advantages. It can be used to perform tasks not easily achieved in
high level languages. Turbo Pascal would not be the language of choice for writing
a boot-sector virus, for instance, and assembler is potentially much more compact.
The previous assembly language program weighs in at 30 bytes when assembled
and linked, whereas the Pascal version compiles to 1,920 bytes. A compiled (Turbo)
BASIC version runs to 34,992 bytes!

In real life, this is less dramatic than it sounds. DOS allocates disk space to each
file in clusters (allocation units), and a cluster is one or more sectors. On a FAT16,
32MB hard disk (hard though it is to find such a thing nowadays), a cluster is
equivalent to four sectors or 2,048 bytes. Thus, our assembly language program
and Pascal program would essentially take up the same amount of space, despite
the disparity in file length. On a 32GB FAT32 partition, the cluster size is 32,768
bytes, so our BASIC version is just a little too large for a single cluster. It therefore
occupies two clusters, so that it is effectively only twice as long as the 30 byte
assembler program.

In the context of parasitic programs, however, file length can make a serious
difference. Most computer users nowadays don’t take much notice of file length
details, even in a purely DOS environment. Recent versions of the Windows
environment go to some lengths to shield the user from such minutiae (not to
mention other trivia, such as filename extensions, much to the virus writer’s
advantage). However, in the early days of PC viruses (when a 10MB hard disk cost

C h a p t e r 4 : V i r u s A c t i v i t y a n d O p e r a t i o n 8 5

several hundred dollars and a directory listing was, by default, ridiculously detailed),
small file changes could be quite noticeable in directory listings.

C:\WINDOWS>dir *.com

Volume in drive C is PC DISK

Volume Serial Number is 3AF1-41A7

Directory of C:\

COMMAND COM 93,812 08-24-96 11:11a COMMAND.COM

1 file(s) 93,812 bytes

0 dir(s) 61,571,072 bytes free

C:\WINDOWS>

In this context, the compactness of an assembly language program could be
advantageous in reducing the size discrepancy between an infected object and
the same object in its uninfected state, compared to a virus that added several
kilobytes or more to an infected program. By the end of the millennium, however,
10GB hard drives were considered entry-level, even UNIX had become an almost
exclusively GUI environment, and uninfected Word documents quickly grew
to sizes that ten years before would have been considered gross for a major
word-processing application. Second-generation worms, distributed as stand-alone
programs, exploited social- engineering techniques to trick victims into running
malicious software masquerading as legitimate software, so that size became
virtually irrelevant. Thus, compiled high-level languages such as C++ and Delphi
became increasingly popular among virus and worm authors.

Of course, not all high-level languages are compiled. It’s perfectly possible to
write a virus in an interpreted language such as MSBASIC or QBasic, for instance.
Indeed, it’s possible to call a program from the command line or a batch file almost
as if it were a stand-alone, compiled program. Visual Basic programs can be run
quasi-independently as long as the run-time module is available on the system.

It’s possible to write a virus in just about any language with minimal file input/output
capabilities, though the likelihood of such a virus spreading far is another matter. Trojans
written in Visual Basic, especially password stealers, became common in the latter half
of the 1990s. As we write this book, WordBasic and Visual Basic for Applications, the
native languages of most macro viruses, have become the most popular interpreted
languages among virus writers, followed shortly by VBScript.

8 6 V i r u s e s R e v e a l e d

C h a p t e r 4 : V i r u s A c t i v i t y a n d O p e r a t i o n 8 7

Tripartite Structure
As noted in Chapter 1, computer viruses are considered to have three parts to their
structure: the infection mechanism, the trigger, and the payload. We will not go into
elaborate detail on the constituent parts, since this is a book on protection against
viruses, rather than a treatise on how to build them. However, keeping the model in
mind will help you to read and understand virus warnings.

Infection Mechanism
The first, and only necessary, part of the structure is the infection mechanism. This
is the code that allows the virus to reproduce, and thus to be a virus. The infection
mechanism itself has a number of parts to it.

The first function is to search for, or detect, an appropriate object to infect. The search
may be active, as in the case of some file infectors that take directory listings in order to
find programs of appropriate size and format. Alternatively, the search may be passive,
as in the case of macro viruses that infect each document as it is saved.

There may be additional decisions taken once such an object is found. Some
viruses (sparse infectors) actually may try to slow the rate of infection in order to
avoid detection. Fast infectors, on the other hand, aim to infect as many objects as
possible, in as short a time as possible. Most viruses will check to see if the object
has already been infected with a test like the following pseudo-code (multiple
infections tend to be rather conspicuous):

BEGIN

IF (infectable_object_found)

AND (object_not_already_infected)

THEN (infect_object)

END

The next action will be the installation of a copy of the virus code into the
infectable object itself. This may entail one or more of a number of operations,
depending on the virus or worm type:

� The writing of a new section of code to the boot sector

� The addition of code to a program file

� The addition of macro code to the Microsoft Word NORMAL.DOT file

� The addition of code to standard system programs to intercept network services
so as to send an infected file attachment to harvested email addresses

There are additional sub-functions at this step as well, such as the movement of
the original boot sector to a new location, or the addition of jump codes in an infected
program file to point to the virus code. There may also be changes to system files,
to try to ensure that the virus will be run every time the computer is turned on.

At the time of infection, a number of steps may be taken to try to keep the virus
safe from detection. The original file-creation date may be conserved and used to
reset the directory listing, in order to avoid a change in date. The virus may have its
form changed, in some kind of polymorphism. The active portion of the virus may
take charge of certain system interrupts, in order to make false reports when someone
tries to look for a change to the system. There may also be prompts or alerts generated,
in an attempt to make any odd behaviour noticed by the user appear to be part of a
normal, or at least innocent, computer error.

Trigger
The second major component of a virus is the payload trigger. The virus may look
for a certain number of infections, a certain date and/or time, a certain piece of text,
or may simply blow up the first time it is used. (For obvious reasons, these latter
viruses are not widespread.) As noted, a virus does not necessarily need to have
either a trigger or a payload. A virus with a trigger and payload but no replication
mechanism is not, in fact, a virus, but may well be described as a Trojan. A simple
trigger mechanism might work like this:

BEGIN

IF (date_is_Friday_13th)

THEN (set_trigger_status_to_yes)

END

Payload
The payload mechanism is similarly simple in conception:

BEGIN

IF (trigger_status_is_yes)

THEN (execute_payload)

END

8 8 V i r u s e s R e v e a l e d

If a virus does have a trigger, then it usually has a payload (the term warhead is
sometimes preferred). The payload can be anything, from a simple, one-time message,
to a complicated graphical display, to reformatting of the hard disk, to mailing a
copy of the virus to addresses in the victim’s address book. However, the bigger
the payload, the more likely it is that the virus will be noticed. You may have seen
lists of symptoms to watch for. Some signs often quoted include text messages,
ambulances running across the screen, and letters falling down to the bottom of
the screen.

NOTE

We admit that the virus-fighter’s use of the terms warhead and payload to describe what a virus
actually does is somewhat imprecise. After all, we differentiate between a bomb, a flare, and a
firework: we don’t usually describe them all as bombs with different types of warhead. The term
payload differs significantly from the way it is normally used in the transport context: it would be
nonsensical to talk of the total weight of viruses carried. However, this usage is well established,
and we make no apology for following it.

Nonetheless, checking for payloads isn’t a very good way to detect (let alone keep
free of) viruses. The most successful viruses are generally far less conspicuous.
Sometimes the only time a characteristic display is observed is when the virus first
infects (as with WM/Concept, for instance). Most times, there is no display at all,
and it’s only when anti-virus software sounds an alert that a problem is noticed, thus
inspiring the Berkeleyesque thought that sometimes there is only a virus problem
because anti-virus software perceives the presence of a virus.

NOTE

Bishop Berkeley (1685–1753) denied the existence of matter, maintaining that material objects
exist only because they are perceived.

Some of the most successful viruses are sub-clinical in their effects: they have
no payload, and their presence causes no significant effect on the health of the
victim system, except the psychological damage to the system’s owner who is then
identified as a Typhoid Mary. Many viruses have less impact on victim systems
than the common cold does on human beings.

NOTE

Typhoid Mary was the popular nickname for Mary Mallon, a cook who carried typhoid without
showing any of the symptoms herself. She died in 1938 under permanent detention, having
refused to give up serving food.

C h a p t e r 4 : V i r u s A c t i v i t y a n d O p e r a t i o n 8 9

9 0 V i r u s e s R e v e a l e d

We have to wonder whether it’s helpful that all viruses are regarded as if they
were the computer equivalent of Ebola or Marburg. The panic that results from
routine detection of unremarkable viruses may be more damaging (at least
psychologically) than the presence of the virus on the infected system could ever
be. We don’t suggest completely abandoning attempts to detect and remove viruses,
of course, but less disinformation about the nature of the threat would remove much
of its sting.

Replication
Why are viral programs special? What is it about the simple fact that they reproduce
that puts them in a class by themselves? There is no shortage of malware (malicious
software) out there. Trojans and logic bombs were known long before viral programs
existed, and they continue to flourish. Why can we not simply classify viral
programs as another form of Trojan?

A Trojan program relies upon other programs to do the copying necessary for it
to spread beyond an initial target. The dangers (and the results) are self-limiting. If a
friend gives you a Trojan and it triggers, you lose trust in that friend. It is very
seldom that you will be hit from the same source twice. Trojan writers like to use
bulletin boards, web sites, or file archives, but even those methods of transmission
are limited. A non-anonymous posting of a Trojan program will usually get an
individual barred from archive sites.

These types of malware, therefore, can generally present an attack from a single
point. As any military strategist can tell you, defence against such an attack is
straightforward. Intelligence, in the form of advice from other users, can help to
eliminate the attack before it starts.

In theory, at any rate, the closely-related worm problem is easy to address. If you
don’t allow any unverified program received by email to execute, irrespective of
how well you know and trust the sender, most worms can’t become established. The
fact that worms continue to be effective only demonstrates the continued success of
social engineering in overriding common sense.

NOTE

We must stress that the activation or execution of the virus is not the same as the activation of
the payload that a virus may carry. For example, the payload of the original Stoned virus was
a message, which appeared on the screen saying “Your PC is now Stoned!” This message only
appeared when the PC was rebooted, and even then only one in eight times. The virus, however,
was active and infectious all the time, once the hard disk had been infected.

The virus has three main possibilities for the moment of infection: direct action
(one-shot), during program run (while-called), or from then on (memory-resident).
A resident virus may remain in memory but be actively infecting only when a disk
is accessed. A while-called virus may infect a new program only when a directory is
changed, for example.

Non-Resident Viruses
One-shot (direct-action) viral programs get only one chance to propagate on each
run of the infected program. The viral code will seek out and infect a target program.
The viruses then pass control to the original program and perform no further actions.
These are, of course, the simplest of the viral programs. Mainframe mail viruses are
generally of this type.

Memory-Resident Viruses
Resident viral programs (often, and somewhat misleadingly, referred to as
terminate-and-stay-resident, or TSR, viruses) become active when an infected
program is run (at boot time for BSIs), and remain active until the computer is
rebooted or turned off. Note that some viral programs (Joshi, for example) trap
the rebooting sequence, which is normally called when you press CTRL-ALT-DEL

on an MS-DOS PC, and are thus able to survive a warm boot.
The most successful of pre-Windows file infectors, the Jerusalem virus, was memory-

resident, as are all boot-sector viruses. (The boot sector is never called in normal
operation once the boot process is completed, so the virus can only be called if it
stays in memory.)

If a DOS virus is active in memory, it can be difficult to disinfect a file or disk.
(In fact, file disinfection is a contentious issue at the best of times, but we’ll get
back to that in Part II of this book.) No sooner is the file cleaned than it becomes a
suitable target for reinfection, unless there is an anti-virus product already in memory
preventing further execution of the infective code. Attempts to disinfect a hard disk
may be as extreme as performing a low-level format. Even if this were ever necessary,
it’s perfectly possible that when a high-level format was executed subsequently, the
disk might be infected all over again. Nonetheless, many products are capable of
detecting and cleaning some viruses while still in memory, even in DOS.

The term TSR is applied to DOS programs that pop up when a “hot key” is pressed
(Borland Sidekick, for example) while another application is running, or that execute

C h a p t e r 4 : V i r u s A c t i v i t y a n d O p e r a t i o n 9 1

in the background, like the PRINT command. Such programs use the MS-DOS TSR
function (INT 21h Function 31h or INT 27h) to leave a portion of their own code
in memory. Hardware interrupts (INT stands for interrupt), such as INT 9h (the
keyboard handler), are intercepted by pop-up TSRs so that the program “knows”
when its presence is required. The application of this idea to viral software has
obvious advantages. Joshi, for instance, intercepts 9h to trap the CTRL-ALT-DEL

reboot sequence and survive a warm boot. File viruses intercept various sub-functions
of INT 21h for purposes of infection and/or concealment. Boot-sector viruses tend to
hook INT 13h, which handles low-level disk access.

NOTE

DOS TSR programming is beyond the scope of this book. Two useful resources are Undocumented
DOS, by Andrew Schulman et al. (Addison Wesley), which has pointers to further in-depth
information, and Ray Duncan’s Advanced MS-DOS Programming (Microsoft Press). (Neither of
these books makes the smallest reference to virus programming, by the way.)

In a modern, Windows-based environment, the mechanisms of memory-resident
viruses are different, though the principles are similar. A Windows-savvy file
infector is not constrained by the same limitations of available space as a DOS TSR
program, and it doesn’t have to worry about the niceties of directly accessing DOS
services. It may be implemented as a VxD (virtual device driver) or NT service.

Calls to the Windows application programming interface (API) are handled with
varying degrees of transparency by a high-level language rather than raw assembly
language, since compact, fast code is less of an issue now than in the days of DOS.
(The assumption that assembler is necessarily faster than compiled code is not
altogether well founded, but that’s a discussion for a completely different book.)
Mail-borne viruses and worms often use Windows scripting and messaging services
to scan and parasitize email, and Internet traffic may be directly or indirectly
monitored to harvest mail addresses not in the victim’s address book. (Hybris does
something like this.)

Hybrid Viruses
A hybrid or while-called virus will activate when the infected program is called.
It will then pass partial control to the original program. The virus, however, will
remain operational during the time that the infected program is running. It is only a
slight “progression” from residence while an infected program is running to a fully
memory-resident virus, independent of the original infective file.

9 2 V i r u s e s R e v e a l e d

Macro viruses may be considered somewhat similarly. A Word macro virus is
effectively memory-resident by virtue of having infected the global template, which
is normally resident and referenced as long as Word is active. In an unprotected
environment, this allows the virus to infect documents as they are created or opened
for editing, and also to implement stealth measures, such as substituting its own code
for standard menu options.

Generality, Extent, Persistence
Fred Cohen described the virus threat in terms of three characteristics:

� Generality Whereas most threats before viruses were specific to a particular
application or operating environment, viruses are generally far from specialized
and may be able to replicate through an entire system or network.

� Extent Viruses tend to be long range: once they start to replicate, they may
spread fast and far.

� Persistence Viruses can keep coming back.

It is usually considered a truism in virus research that viruses are prevalent in
those operating systems that are used by the most people. There are more Wintel
viruses than Mac viruses because more people have and use Wintel machines. In
the same way, even within a particular operating system, a virus that uses general
functions is more successful than one with special requirements.

For example, one of the earliest viruses is called Lehigh, since it was discovered
at Lehigh University. The Lehigh virus only infects the COMMAND.COM file,
which exists on bootable DOS disks. Even at the time Lehigh was written, hard disks
were becoming common, and bootable DOS disks were becoming less so. This
factor, along with Lehigh’s extremely dangerous and visible payload, ensured that
the virus was never discovered in the field outside of the university campus.

Generality is not limited to operating systems, and in virus research, the term
platform has a greater range than in any other computer field. Word macro viruses
have been enormously successful, partly because they operate in Microsoft Office
on both Windows and Mac systems. The recent spates of email viruses are not,
strictly speaking, Windows scripts, but rather Windows/Outlook scripts. If you use,
for example, the Pegasus email program, your system might be damaged, but you
will not send forth any more copies of the worms.

C h a p t e r 4 : V i r u s A c t i v i t y a n d O p e r a t i o n 9 3

9 4 V i r u s e s R e v e a l e d

Other factors can limit the extent of a virus. Boot-sector infectors can only spread
via infected disks. Therefore, it was rather interesting, in the early 1990s, to note that
the Stoned virus was far and away the most common virus in North America, while
Form held a commanding lead in the UK. Throughout the history of virus research,
similar geographic pools of infection have been noted. At the same time, the
Michelangelo virus, probably starting from a base in Taiwan, spread worldwide in
little over six months.

It is interesting to note that the model of virus infection is starting to change.
Viruses of the Stoned family, including Michelangelo and Monkey, persisted for
years. Indeed, they can still be found in the field. Melissa and the Love Bug spread
worldwide within hours, but aside from variants, it is comparatively rare to find
them today in the field; hence, the frequent contemporary use of the term fast burner.

Viruses can also “die” for other reasons. At one point, the Macintosh WDEF virus
was extremely infective, since any disk, inserted at any time, into a running Mac
would have the WDEF resource read and run. This behaviour was changed in Mac
OS 7, and the WDEF virus, deprived of its main entry point, is now considered a
mild historical curiosity. (On the other hand, since modern commercial anti-virus
software needs a comparatively recent version of the operating system to run, who
knows what old-time system viruses are still lurking on obsolete systems?)

Out in the PC mainstream, though, things may be changing further. Traditional
boot-sector viruses have become rarer—or at least reported instances of them have.
New BSIs are rarely seen, and older ones have a rapidly decreasing “market share”.
Newer operating systems (OS/2, Windows NT, Windows 2000) can be damaged
by boot-sector infectors, but don’t generally allow them to replicate.

Payload Versus Reproduction
Network and mail viral programs carry, in a sense, their own payloads. The reproduction
of the programs themselves uses the resources of the hosts affected and, in the cases
of both the Morris Internet and CHRISTMA worms, went so far as to deny service
by using all available computing or communications resources.

Most other viral programs seem to be written “for their own sake”—a kind of
electronic, self-writing, self-replicating graffiti. However, even these can do unintended
damage. Of those viral programs that do include a payload mechanism, relatively
few carry a deliberately damaging payload. Those that do attempt to erase infected
programs or disks are, fortunately, self-limiting, though the more successful

TE
AM
FL
Y

Team-Fly®

examples give themselves time to fan out to other systems before trashing the
currently infected system.

The most iniquitous form of payload is, perhaps, the gradual corruption over time
of the environment or of data. The term data diddling is sometimes used in this
context, not altogether appropriately. The term is also used when data are modified
for fraudulent purposes. However, slow corruption from a virus is generally just
destructive: the author derives no benefit except the kick of knowing that damage
has been done. Dark Avenger gets much of the “credit” for this innovation: the Dark
Avenger viruses and Nomenklatura specifically target those careful souls who back
up data regularly. In this case, data files are corrupted, not infected, and the damage
is more-or-less random, so anti-virus software can neither detect nor repair affected
files, even after the presence of the virus is known. Any backup subsequent to the
initial infection is unreliable at best, useless at worst. And, of course, it’s often
impossible for the victim to ascertain which backups predate the infection, even
if exist.

Characteristically, macro viruses modify data within infected files, so identification
of the infection gives some indication of the integrity status of the infected file.
Clearly, it’s unsafe to trust the integrity of the data contained in a file infected by
a virus that makes random modifications, and anti-virus software can’t usually be
expected to reverse random changes. Of course, many macro viruses don’t make
any modifications to actual data, so removal of infected or corrupted macros is often
sufficient to reverse the effects of the virus. However, this isn’t always the case.
Removal of viral macros isn’t enough to restore menu options such as Tools | Macro
(removed by WM/Cap, for instance), or to reverse the effects of a virus that passwords
Word files. Furthermore, it would be unsafe to assume that a currently uninfected
document has never been infected or otherwise touched by malicious software.
A disinfected document may have been left with unnoticed modifications, or even
fragments of viral code.

NOTE

This, incidentally, is one of the disadvantages of the (understandable) urge to deal with virus
infections as transparently as possible. If infected data files are “transparently” detected and
cleaned by anti-virus software (whether at the perimeter or the desktop), can you trust the
product to completely reverse the effects of the infection? We will return to that thought in
Part II of this book, but will just point out now that if you can’t, you might be better off going
against the flow and discarding infected files instead of disinfecting them.

C h a p t e r 4 : V i r u s A c t i v i t y a n d O p e r a t i o n 9 5

9 6 V i r u s e s R e v e a l e d

Damage
We have spoken of damaging payloads in viruses, and should probably address that
topic more carefully. Viruses can do any kind of damage that software can do. This
includes overwriting data, erasing files, scrambling system information, reformatting
disks, disabling security systems, corrupting software, or killing program processes.

NOTE

In principle, a virus can do anything that other software can do: hence the persistent idea of
“useful” viruses, such as the maintenance viruses described by Cohen. It’s a sad reflection of
human nature, however, that most authors of viruses and other malware prefer payloads that
are at best trivial, at worst damaging.

Primary damage is normally associated with viruses and other malicious code not
identified and prevented from executing at the point of entry, and can be defined as
damage to systems and data caused when the computing environment is modified by
virus or Trojan attack.

A virus can cause significant damage simply by being installed, independently
of delivering any payload. This type of primary damage frequently arises from
boundary conditions not taken into account by the virus author.

Viruses that don’t normally cause visible damage on older DOS or Windows systems
can suddenly cause difficulties if it becomes necessary to remove them from a
FAT32 system. They may damage an executable file by modifying it in such a way
that the operating environment will no longer run it, or they may bring down a PC
running Windows NT by displacement or encryption of system areas.

Impact of Viral Infection on the Computing Environment
Irrespective of payload, just the presence of the virus may be enough to cause damage.
Theft of memory may result in loss of functionality and performance: some code
may no longer run. A spectacular example is that of the first version of the Navidad
worm. After an infected system was rebooted, a combination of a logical error in
the code and the use of a change in the Registry meant that no file with the filename
extension .EXE could be run.

Theft of disk space may have the same effects. Data, application files, or system areas
may be partly or totally overwritten, and infected files may no longer function properly.

C h a p t e r 4 : V i r u s A c t i v i t y a n d O p e r a t i o n 9 7

Theft of clock cycles may result in a noticeable slowing of processes, time-critical
processes may behave unpredictably, and resource-intensive software may lose
functionality and performance.

General incompatibility and destabilization may give rise to the following
symptoms:

� System software, applications, or utilities display unpredictable behaviour.

� General Protection Faults (GPFs) and similar conflicts and errors are encountered.

� Parity and checksum errors are observed.

� Loss of performance due to loss of (for example) 32-bit access may be observed.

� Overwritten disk-management software may result in loss of availability.

� Loss of access to system areas may be observed, possibly entailing lost access
to normally mounted volumes and the subsequent unavailability of data and/or
applications.

NOTE

Any “real” virus entails some form of “damage”: that is, impact on performance in one or more
of the classes of impact described in the preceding list. Both real and imagined viruses (the latter
including those described in hoax alerts) can also have psychosocial consequences. Assessing the
real impact of a perceived threat can be a serious drain on systems administrators, the Help Desk,
management, and users or clients. Damage due to inappropriate reaction to a perceived threat is
better considered as secondary damage.

Direct Damage from Virus and Trojan Payloads
Direct damage can be considered in terms of the classic tripartite security model
(Availability, Integrity, Confidentiality). Viruses and malware have an impact across
all three areas described by this model, as well as other areas, such as accountability.
The type of damage that might be caused includes the following:

Attacks on Availability

� Deletion of files and subdirectories

� Renaming of files

9 8 V i r u s e s R e v e a l e d

� Encryption of files, disks, or system areas

� Unauthorized calls to system software, such as FORMAT, FDISK, and so on

Attacks on Integrity

� Corruption of system files and system areas (for example, the DOS and Master
Boot Records, the File Allocation Table, and so on), by random or non-random
disk writes, including displacement of system areas

� Data diddling—modification of targeted data files, such as garbling of
spreadsheet formulas

� Corruption of application files and data files by unauthorized file writes

Attacks on Confidentiality

� Capture and forwarding of passwords

� Forwarding of personal and confidential files to newsgroups and elsewhere

Viruses, in particular, often have a more trivial payload, such as a visual or audio
effect or message, which in itself may not merit classification as primary damage.

Psychological and Social Damage
Malware may also do damage that might be better considered as psychological.
All viruses can be described in these terms, since discovering that one’s system is
infected is potentially frightening. If one is perceived by others to be a virus carrier,
the consequences are at least embarrassing. This phenomenon is further explored in
the next section (“Secondary Damage”). However, some malware is specifically
designed to have a psychological effect (fear, amusement, titillation, and so on).
Malware displaying a message announcing its intention to reformat the hard drive
could thus be described as doing direct psychological damage. In general, this is
characteristic of Trojans and jokes rather than viruses.

Secondary Damage
Unfortunately, a computer user faced with some visible symptom may react
inappropriately and cause more damage than the virus itself does. This is a
manifestation of what might be called secondary damage, which can be defined as:

� A fan-out of direct damage, as defined above, to other PC systems as a result
of secondary infection.

� Damage caused by misunderstanding and inappropriate response to problems,
such as scrapping of systems or system components, unnecessary reformatting,
inappropriate use of disk-recovery utilities.

� Indirect damage as a result of secondary infection, including psychosocial
risks, such as damage to morale through insecurity and scapegoating. Other
potential damage includes business risks, such as loss of confidence, reputation,
and credibility; legal risks, such as litigation resulting from infection, and
possible damage sustained by peer organizations; and punitive action for
breach of prescribed standards and policies, contracts, and so on (penalty
clauses, withdrawal of previous agreements, penalties associated with
non-compliance with Data Protection legislation).

� Damage as a result of attempts at concealment of an incident, including
inappropriate physical measures, and secondary infection due to the
concealment of relevant information.

� Traumatic costs, such as time spent on checking, restoring, or repairing
operating environments, programs, and data; or the cost of implementing
or upgrading anti-malware defences.

Hardware Damage
There is one type of damage missing from the previous lists. Software does not usually
damage hardware, though it remains a possibility. The myth of viral programs damaging
hardware seems to be one of the more enduring. No viral program yet found has been
designed to damage hardware. However, it is possible for certain pieces of hardware to
be damaged by programming.

Certain older types of display monitors (notably early IBM monochrome graphics
adapters) could be made to “freeze” the sweep of the electron beam, and thus burn
in a section of the screen phosphors. No one has ever burned a hole in a monitor, nor
have they ever caused one to overheat and blow up because of software.

Except for some very specific and limited functions dealing with powering down
in advanced computers, power supplies cannot be addressed by software. No one has
ever “melted down” a power supply with software.

As with any physical or mechanical devices, printers can be damaged by getting
them to do any one thing for too long. This, of course, depends upon the machine
running unattended for a long time. Some disk drives can be damaged by “pushing”

C h a p t e r 4 : V i r u s A c t i v i t y a n d O p e r a t i o n 9 9

the heads beyond normal limits. Some IDE controllers and drives do not allow for
the calls used to generate a low-level format of earlier types of hard drive. If such a
call is made on a system with an IDE controller, the results are uncertain. The drive
will not be formatted, but it may not be left in a usable state. IDE drive manufacturers
have not always shipped programs for low-level formatting, and so a call for a
low-level format on an IDE drive appears, to the normal user, no different from
hardware damage. As this has become known in the user community, more IDE
manufacturers have made such formatting software generally available.

The CIH/Spacefiller virus, while it doesn’t literally destroy hardware, can
effectively render some PCs unusable by writing garbage to a flashable BIOS chip.
In some cases, it may be cheaper to discard a flashtrashed motherboard than to
replace a soldered BIOS, and in this case the distinction between hardware and
firmware damage starts to look pretty academic. Furthermore, BIOS chips are only
one instance of the use of flash EPROMs.

In fact, CIH was by no means the first virus capable of conning the victim into
discarding apparently dysfunctional hardware. However, no useful statistics exist as
to how many serviceable hard disks have been dumped as a result of virus action.

Ban the Bomb
A number of security-related phenomena have been described as various types of
bombs, with varying degrees of justification and relevance to this chapter and to the
anatomy of malware in general. We have included several in the hope of reducing confusion.

Logic Bombs
A logic bomb is a routine or set of routines that are activated when a particular set of
conditions is met (for example, the nth time the program is executed), and may be a
component of a virus or Trojan. A logic bomb might also be inserted into a legitimate
program as a precursor to blackmail, or pre-emptive revenge in anticipation of
dismissal, or with some sort of backdoor functionality. (Backdoors are described in
Chapter 3.) Clearly, anti-virus software is unlikely to be useful in the context of such
one-off programs.

1 0 0 V i r u s e s R e v e a l e d

C h a p t e r 4 : V i r u s A c t i v i t y a n d O p e r a t i o n 1 0 1

Time Bombs
Time bombs are a special case of logic bomb, where the trigger condition is a particular
time and/or date.

ANSI Bombs
ANSI bombs are not viral, in that they do not reproduce, and have never been
particularly common. They may be considered Trojans or logic bombs. An ANSI
bomb is a sequence of characters that is interpreted by ANSI.SYS as redefining a
key, or keys, on the keyboard. Thereafter, these keys will not send the normally
assigned characters, but rather the redefined string. This string may contain any
ASCII characters, including <RETURN> and multiple commands. Therefore, the
space bar, for example, can be redefined to:

"DEL *.*<cr>Y<cr>"

This sequence would, in an MS-DOS environment, delete all files in the current
directory.

ANSI bombs can be carried in normal text files or messages. They are triggered
when text is sent to the “console” device while ANSI emulation is active, normally
by reading the file with the TYPE command. Reading a text file with a word processor
generally does not port the data to the console, since the text is interpreted by the
word processor before it is displayed to the screen. Only a very few older word
processors use the ANSI.SYS program for screen control. However, reading an
email message with a terminal program that uses ANSI.SYS could have the same
effect, as could extraction of an archived file that contains the ANSI sequence in the
text comment header.

Reading all text files with an editor, a file viewer such as list, or a word processor
is a protection against ANSI bombs, but it still leaves the possibility of being affected.
The best protection is to remove ANSI.SYS from the system and not to use terminal
emulators or other programs that require it. You can also replace ANSI.SYS with
shareware versions that do not have the key-binding mechanism. In fact, very few
programs still in use require ANSI.SYS to be present, which is fortunate, as anti-virus
software rarely offers any protection against this particular, albeit uncommon, threat.

ANSI bombs apart, ANSI.SYS is not intended for use with modern versions of
Windows, though it continues to be supplied.

NOTE

In the RISKS-FORUM Digest (March 1988: 6–42), there was a story about the use of the intelligent
features of Wyse 75 terminals. This was a specific instance of the use of peripherals for security
cracking. The Wyse terminal in question had a feature that allowed keys to be remapped from the
host system, and another feature that permitted the keys to be called for from the host. Thus, the
subject lines in email messages could present commands that would remap a key to correspond to
a command, and then have the command submitted by the terminal. With only a little thought, an
email virus could be written taking advantage of this fact. This is quite similar to the phenomena
of ANSI bombs on MS-DOS machines that, while not viral, use the ANSI.SYS key remapping facility
to assign deletion or formatting commands to specific keys.

Mail Bombs and Subscription Bombs
These are mail abuses that anti-virus software cannot realistically address. A mail
bomb is a denial of service attack performed by bombarding the victim’s mailbox
with email messages. A subscription bomb achieves a similar effect by subscribing
victims to a multiplicity of mailing lists so that they receive an avalanche of mail
from the lists. These threats are mentioned here for completeness, and in the hope
of reducing confusion.

Summary
While some of the content of this chapter has been fairly low-level, we have so
far focused on the effects of infection rather than on the internal mechanisms of
malicious software. Next, we complete our survey of the virus problem with a
closer look at virus anatomy.

1 0 2 V i r u s e s R e v e a l e d

CHAPTER

5
Virus Mechanisms

103

IN THIS CHAPTER:

Hardware-Specific Viruses

The Boot Zone

File Infectors

Multipartite Viruses

Interpreted Viruses

Concealment Mechanisms

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

We have considered in some depth the effects of virus infection, and
given an overview of virus structures. We must now move from basic
anatomy to physiology. It is no more possible to understand viruses

fully by a study of their basic structure than it is to understand human biology by the
study of the skeleton.

We have pointed out several times that covert operation is not a defining
characteristic of computer viruses. However, it is an almost universal characteristic,
for the compelling reason that covert operation is generally a prerequisite for the
dissemination of malicious software. (Though we sometimes suspect that if a
malicious program arrived as an attachment that said “Danger! Do not execute this
program: it will trash your system!!!” a number of people would still try to run it,
just to see if it really did.) Since self-concealment is a major contributing factor to
the size of the virus problem, it occupies a considerable proportion of this chapter.
First, however, we must look in more detail at virus types and infection mechanisms.

Hardware-Specific Viruses
We have noted that operating platforms for viruses don’t have to be linked to operating
systems. Microsoft Office, whether running on Wintel or Mac, can spread macro
viruses. At the other end of the hardware/software spectrum, some viruses thought
to be DOS viruses are not. Most boot-sector infectors aren’t DOS viruses, but BIOS
viruses, specific to hardware rather than the operating system.

A boot-sector virus runs when the boot sector is executed, and this is before
DOS, or any other operating system, gets a chance to start. (We’ll get to the details
of that in a moment.) A BSI runs before any program on the disk, and, therefore,
the only programming that starts earlier is the ROM (read-only memory) BIOS
(basic input/output system) programming required by all ISA machines. (ISA—
Industry Standard Architecture—is the rather pretentious title for the basic design
of IBM PC compatibility.)

NOTE

There are, of course, other operating systems that use this same architecture, such as Windows,
OS/2, and Linux. We have seen boot-sector viruses happily infect OS/2 and NT machines.
However, if the infected machine’s operating system does not use the interrupts trapped by the
virus, the BSI won’t proceed to infect diskettes accessed subsequently by the PC. This doesn’t
mean that there are no NT virus problems, as we are sometimes told. File viruses and macro
viruses can often execute and infect just as well on an NT platform as on a Windows 95 PC.

1 0 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

Boot-Sector Infectors
Most people think of viral programs in terms of a variation on Cohen’s definition:
that is, a virus is a program that always “attaches” to another program. This has
given rise to misconceptions concerning boot-sector infectors.

Boot-sector infecting viral programs do (in a sense) attach to another program.
Most people are unaware of the fact that there is a program on every disk, even those
that are blank (that is, contain no files). Every formatted disk has a boot sector,
located at the first physical sector (or logical sector, in the case of a hard drive).
When the computer is booted, the BIOS programming looks for a disk, and then runs
whatever happens to be in the boot sector of that disk as a program.

In most cases, with non-bootable disks, the program placed there by the formatting
process simply displays a message informing the user that the disk is not bootable.
However, any viral program that places itself in that boot-sector position on the disk
will be the first thing, other than BIOS code, to be executed when the computer
starts up. Once installed onto a system, BSIs will copy themselves onto floppy disks
and infect a new host computer when the “target” machine is booted (usually
inadvertently) with one of the infected diskettes in the A: drive.

BSI terminology is derived from MS-DOS systems, and this leads to some additional
confusion. The first physical sector on a hard drive is not the operating-system boot
sector. The hard drive’s boot sector is the first logical sector. The number one position
on a hard drive is the Master Boot Record (MBR). The MBR contains the partition
table—the data specifying the type of hard disk and the partitioning information.
The terms “Master Boot Record”, “partition table”, and “partition boot record” are
often used interchangeably, although they are not exactly the same thing. Some viral
programs, such as the Stoned virus, always attack the physical first sector: the boot
sector on floppy disks and the Master Boot Record on hard disks. Thus, viral programs
that always attack the boot sector might be termed “pure” BSIs, whereas programs like
Stoned might be referred to as an “MBR type” of BSI. The term boot-sector infector is
used for all of them, though, since all of them infect the boot sector on floppy disks.

In saying that every disk has a boot sector, we are using the term “boot sector” in
its most generic sense. In the MS-DOS environment, “boot sector” has a more limited
technical definition, and a hard disk actually starts with a Master Boot Record rather
than a boot sector. In either case, however, one system area gives the computer some
definition of the disk and information about the next step in the boot sequence.

In most cases, the boot sector does not point to the next step in the boot sequence,
because system files are not available on most diskettes. In the case of a bootable
disk, the “bootable” sector points to the location of files containing both the
programming necessary for input and output activity and a program for the interpretation

C h a p t e r 5 : V i r u s M e c h a n i s m s 1 0 5

1 0 6 V i r u s e s R e v e a l e d

of operating-system commands. A data, or non-bootable, disk may simply contain
information on the disk specification, and a small program informing the system, or
operator, that the disk is “not a system disk”.

The important points, however, are that there is a program in every boot sector,
and that the boot program isn’t visible in normal operation. There is no entry for it in
the directory listing of the disk, and therefore most people are not aware that it exists.

The existence of a boot sector on every disk is the major strength of boot-sector
infecting viral programs, and it is a psychological, rather than a technical, advantage.
Because a “data disk” does not contain any recognizable “programming”, it is
often seen as safe. However, there is, in fact, a “hidden” program on the disk, and
it can be infected.

NOTE

We should clarify the fact that in the MS-DOS world, “hidden” also has a technical meaning as a
file attribute. Files with that attribute are invisible to the casual observer, and are also a little
more difficult to modify. However, this should not be taken as offering significant protection
against viruses: most virus authors have learned by now how to modify file attributes.

Boot-sector infectors either displace or replace the existing boot sector. Usually
they move it to another location on the disk. This means that the viral program gets
first crack at control of the computer before most protective measures have a chance
to kick in. It installs itself in memory and then passes control to the original boot
sector. Thus, the disk appears to behave normally unless the virus carries some
noticeable payload.

A BSI, to be effective at all, must be memory-resident. However, because BSIs
modify the environment pre-emptively when the PC powers up, and make changes
to system areas that are not normally seen, their changes are often undetected in
normal operation.

When the machine is first powered up, there is a certain amount of programming
contained in boot ROM. The amount varies greatly between different types of
machines, but this programming describes the most central devices, such as the screen
and keyboard, and points to the location of disk drives. These operations allow the
system to make use of those peripherals.

The boot record (or boot sector) contains further information about the structure
of the disk and the location of subsequent operating system files. Because this
information is in the form of a program rather than data, and because this sector is
writable, in order to allow for different structures, the boot record is vulnerable to attack

C h a p t e r 5 : V i r u s M e c h a n i s m s 1 0 7

or change. BSIs may overwrite either the boot record or the boot sector, and may or
may not move the original boot sector or record to another location on the disk. The
repositioning of the original sector’s program allows the viral program to “pretend”
that everything is as it was by presenting the original sector code for inspection
rather than the infected code.

This pretence is not absolute. A computer with an active viral program will differ
in some way from the normal environment. The original sector position will contain
different information than is normally located at that address. The viral program
will need to “hook” certain vectors for its own use in order to monitor activity in the
computer and to execute its infection and payload mechanisms. The virus occupies
a certain portion of memory, and its presence may be deduced from the unavailability
of that memory.

These indicators are not conclusive, though. There may be various reasons why
the top-of-memory marker is set to indicate less than 640KB on a DOS machine.
Each different type of disk drive, and each drive of the same type that is partitioned
differently, will have a different boot record. As operating systems or versions
change, so will the boot sector.

It is possible, however, to compare any machine with itself in a “known clean”
state. Indeed, this is the foundation of change detection or integrity checking as an
antiviral measure and technology. By saving information about the environment
after a minimal clean boot and comparing this with subsequent boots, changes can
be detected and the user alerted to a potential problem. The boot record can also be
replaced with a program that will check the state of the disk, memory, and interrupt
table in order to detect the changes that a virus must make. (A program like this can
also function as the foundation of a security system that cannot be avoided by
“escaping” out of the boot sequence.)

Obtaining the state of the environment immediately after the boot sector code has
been run is not as easy as it might sound at first. The computer, while functional,
does not have all the parts of the operating system installed at this point, and it is the
“higher” levels of the operating system with which users generally interact. Even
low-level code may not be able to access information on programs not yet executed.

There are some interesting variations in the boot process with implications for
security on other platforms. Macintosh-specific system viruses are rarely reported
today, with a few notable exceptions (AutoStart, SevenDust, MacSimpsons), and
they are not considered further in this chapter. This isn’t to say that there is no virus
problem on Macs: Microsoft Office macro viruses continue to constitute a major
Mac problem, although it’s not the same problem as we see in the PC world.

1 0 8 V i r u s e s R e v e a l e d

NOTE

The whole issue of virus management on Macintosh computers is examined in depth by David
Harley in the “Viruses & the Macintosh” FAQ, which is included as Appendix B in this book. The
subject is also examined in more detail in the 1997 Virus Bulletin Conference paper “Macs and
Macros”, available at http://www.sherpasoft.org.uk/MacSupporters/macvir.html.

The Atari computer may reserve up to six sectors for the boot sector: only one
is ever used in the normal course of events. This, of course, provides an excellent
hiding place for a virus. The additional five sectors can contain a reasonably capable
virus, and there is no danger of overwriting other files, nor any need for the virus to
try to avoid detection from file size changes.

However, most Atari programs, and even boot disks, do not require any executable
code in the boot sector. Start-up files, including system accessories, are placed in a
standard directory, and all such files found in the directory are run at boot time.
Many Atari anti-virus programs do nothing more than overwrite executable boot
sectors. The overwriting action will eliminate any boot-sector viruses (although it
will not provide protection against any that may be installed in the start directory).
Since Atari computers are able to read MS-DOS formatted disks, some of these
antiviral utilities may corrupt DOS disks.

We have already pointed out that an Intel-based PC running UNIX (for example,
Linux, 386BSD, SCO UNIX, and so on) can also be infected by a boot-sector virus
if booted from an infected disk. The same goes for PCs hosting other operating
systems, such as NetWare and Windows NT, of course. Such systems are not usually
associated with secondary infection (that is, viruses won’t fan out to other systems),
since the viruses are not usually able to infect floppy disks (although systems with
multiple operating systems open up interesting possibilities). However, infection of
the boot sector may be enough to cause noticeable damage.

NOTE

There are very few non-experimental UNIX viruses at present, although this situation is beginning
to change with the massive increase of interest in the operating system among corporate and
home users. In the past, UNIX viruses tended to be shell scripts rather than binary executables,
since scripts are far more portable—UNIX runs on a wide range of system architectures. There
have been some UNIX-specific worm incidents, most notably the Morris Worm (a.k.a. the Internet
Worm) of 1988. Some Linux viruses exist (as binary executables, rather than shell scripts), but
they are not widespread. As this chapter is being written, the Ramen worm, which infects Red Hat
Linux 6.2 and 7.0 installations, is known to be in the wild. UNIX servers running as web servers
and FTP servers are still considered a major potential source of files infected with viruses specific to
other platforms, even if they are not directly infectable themselves. This problem is sometimes
referred to as the “latent virus” problem, or “heterogeneous virus transmission”.

On MS-DOS computers with extended partitioning of the hard disk, the Master
Boot Record may be read while accessing a different logical drive. It is therefore
possible, even if the computer has been booted from a clean floppy disk, for an
infection on a drive to show up in memory. Although there is almost no chance that
a virus will become active in this way, such partitioning will often trigger a “virus
in memory” alert from scanning programs.

BSIs were the most “successful” of traditional viral programs in terms of the
number of copies made and the number of systems infected. This may seem odd,
given that BSIs can only make, at most, one copy per disk.

On the other hand, once they are “installed” on a hard drive or boot disk, BSIs are
always active, since they start at boot time and remain in memory, if the operating
system allows for that type of activity. Unless the system is booted from a clean
disk, the virus will continuously infect any and all disks that are proper targets for it.

It is sometimes possible for more than one boot virus to infect a disk. This scenario
is sometimes referred to as a cocktail. Some cocktails conflict in their use of the
same areas of the disk. Some combinations (such as Stoned and Michelangelo) can
render the system unbootable, and thus alert the user to a problem.

NOTE

Some sources advocate the use of the DOS command FDISK with the / MBR switch, thereby
rewriting part of the MBR but leaving the partition table intact, as a generic means of dealing with
boot-sector viruses. This actually works much of the time, but we cannot recommend it. First, it
doesn’t help with pure BSIs (such as Form) that don’t infect the boot sector. Second, if it’s done
with the wrong virus in memory (Monkey, for instance), the system can become inaccessible. We’ll
return to this issue in Part II of this book.

The Boot Zone
Let’s consider the continuation of the boot sequence that we started earlier. When
setting up antiviral defences, it is important to know the sequence of events in the
boot process in order to know which programs will protect to which level. The
MS-DOS sequence provides the clearest example, and those knowledgeable in other
systems can use the illustrations it provides to analyse the specific details of their own
systems. This becomes a bit of a grey area, since we are no longer dealing with
hardware-specific boot sectors but aren’t yet into ordinary files, which are the
subject of the next section.

The last part of the boot-sector program points to the files or areas on the disk
containing the next step in the start-up sequence. At this point, of course, the specific

C h a p t e r 5 : V i r u s M e c h a n i s m s 1 0 9

1 1 0 V i r u s e s R e v e a l e d

files and steps begin to diverge greatly from one operating system to another.
However, it is common for operating systems to have hidden files along this route
that may be subject to viral attack. Given that these files are not evident to the user,
they are even more vulnerable—not to attack, but to an undetected change.

After the Master Boot Record and boot sector have been read and executed,
MS-DOS normally runs two additional programs that set up input/output routines
and the most basic operating system. (As these programs are called by the boot
sector, it is possible to reroute this process to call specialized driver programs first or
at the same time. Some esoteric disk drives use such a process.) After they have run,
the system has sufficient information to interpret a text file (CONFIG.SYS) that
contains listings of various additional programming that the user wishes to have in
order to run specialized hardware.

After the programs listed in CONFIG.SYS are run, the command interpreter is
invoked. The standard MS-DOS interpreter is COMMAND.COM, but this may be
changed by an entry in the CONFIG.SYS file. After COMMAND.COM is run, the
AUTOEXEC.BAT batch file is run, if it exists. AUTOEXEC.BAT is the most
commonly created and modified boot file, and many users and antiviral program
authors see this as the point at which to intervene. It should be clear by now,
however, that many possible points of intervention are open to the virus before
AUTOEXEC.BAT is run.

In spite of the greater number of entry points, viruses that attack the programs of
the boot sequence are rare and not very successful. For one thing, while every disk
has a boot sector, not every disk has a full boot sequence. For another, different
versions of a given operating system may have different files in this sequence. (For
example, the hidden files have different names in MS-DOS, PC-DOS, and DR-DOS.)
Finally, viral programs that can infect ordinary program files may not work on
boot-sequence files, and vice versa.

Even though Windows 95, 98, NT, and 2000 use some of the same filenames as
MS-DOS, their functionality and importance to the operating system’s start-up
sequence have been drastically modified. The DOS sequence is described here as an
example, not as a definitive description. It is, however, a sequence assumed by many
older viruses. A more generic summary of the PC boot sequence is given in the
“Typical PC Boot Sequence” sidebar.

C h a p t e r 5 : V i r u s M e c h a n i s m s 1 1 1

Typical PC Boot Sequence
In general, PCs boot up according to the following sequence of events:

1. The user powers up the computer.

2. The computer runs a power supply self-test.

3. ROM BIOS code is executed.

4. ROM BIOS performs a test of central hardware.

5. The computer runs a video test.

6. The computer runs a memory test.

7. On a cold boot, the full POST (Power On Self Test) would be run here—
it is skipped on a warm boot.

8. The computer tests for the partition boot record at the first sector of the
default boot drive. (The default is usually specified in the BIOS set-up menu.)

9. The partition boot record is executed.

10. The computer initializes specified system files, or displays a message if
these are not available. In DOS, the specified files are IO.SYS and
MSDOS.SYS. (Other names may be used by related operating systems,
such as PC-DOS.) Under Windows 9x, most of the functionality of the
original MSDOS.SYS file is transferred to IO.SYS. Under NT and
Windows 2000, the operating system loader is NTLDR; NTDETECT
.COM is responsible for checking hardware; NTOSKRNL.EXE initializes
the operating system.

11. The base device drivers are initialized and device status is checked.

12. The computer reads configuration files (CONFIG.SYS, SYSTEM.DAT,
USER.DAT and so on, according to operating system).

13. The command shell (COMMAND.COM, for instance) is loaded.

14. The shell’s start-up command files (AUTOEXEC.BAT, for instance) are
executed.

File Infectors
File-infecting viral programs are variously known as file viruses or parasitic viruses.

NOTE

The term link virus is sometimes used in the context of platforms other than PCs. We prefer
to avoid this usage, however, since the term link virus or linking virus is also sometimes used by
PC-centric researchers to refer to viruses (most notably DIR-II) that are more often described as
cluster viruses.

File viruses link, or attach, to their program file targets in many different ways.
There are, in fact, four main ways to attach code to an existing program.

� Overwrite existing program code

� Add code to the beginning of the program

� Add code to the end of the program

� Insert viral code into the chain of command so that it is run when the legitimate
code is executed.

File- or program-infecting viral programs, while possibly not as numerous as
BSIs in terms of actual infections, represent the greatest number of known viral strains,
at least in the PC world. This may be due to the fact that file infectors are not as
constrained in size as BSIs or that file infectors do not require the detailed knowledge
of system internals that may be necessary for effective boot-sector viral programs.
As “easier” routes to malware programming are discovered (Microsoft Office macro
viruses, AOL password stealers, VBScript viruses), there are fewer viruses that
require extensive knowledge and industry on the part of virus writers.

File-infecting viruses spread by adding code to, or associating code with, existing
executable files. (It can be argued that macro viruses are a special case of file infector,
but we consider them separately later in this chapter.) File infectors become active
when an infected program is run. Whereas BSIs must be memory-resident in order to
spread, file-infecting programs have more options in terms of infection. This means
that there is greater scope for writing file-infecting viral programs, but it also means
that there may be fewer opportunities for a given virus to reproduce itself.

With two exceptions, file-infecting viral programs must, of necessity, make some
kind of change in the target file. If normal DOS calls are used to write to the target
file, the file-creation date will be changed. If code is added to it, the file size will
change. Even if areas of the file are overwritten in such a way that the file length

1 1 2 V i r u s e s R e v e a l e d

remains unchanged, a parity, checksum, cyclic redundancy, or Hamming code check
should be able to detect the fact that there has been some change. The Lehigh and
Jerusalem viral programs, the first to become widely known to the research community
on the Internet, were both initially identified by changes they made to target files
(Jerusalem being widely known by its length—1813). Change detection, therefore,
remains a viable means of virus detection on the part of antiviral software producers,
though it is not often used currently.

Because change detection does not require sophisticated programming (in some
cases, no programming at all), virus writers have attempted to camouflage changes
where they can. It is not a difficult task to avoid making changes to the file creation
date, or to return the date to its original value. It is also possible to overlay the original
code of the program so that the file is not increased in size. Many virus authors have
also been using stealth programming to bypass the operating system and return only
the original, unchanged, values when a request for information is made.

In DOS there are three main types of executable programs that can be called
directly from the command-line prompt: files with .BAT, .COM, and .EXE filename
extensions. Even in DOS there are many other types of files that can contain executable
code; Windows environments however, not only increase the range of files that can
contain code, but the range of ways in which such files can be called.

Executable files with .BAT filename extensions are referred to as batch files,
although they have little in common with the batch processing of mainframe
computers. Batch files are text files with collections of DOS commands, and are
thus restricted to the operations that are possible with those commands. They are
similar in concept to shell scripts, which are widely used on some multi-user operating
systems (especially UNIX), but are comparatively limited in functionality. .BAT file
viruses have been written, but they are generally regarded only as curiosities.

.COM and .EXE files are the “real” programs. They are structures of machine
instructions, or opcodes. Of the two, .COM files are much more basic. A .COM file
is a fairly straightforward list of opcodes with no reference to outside files and few
jumps from one section of code to another. .COM files are therefore much simpler to
infect, not least because they always start from the same address.

An .EXE program has a more complicated structure. For example, it starts out
with a section of data describing the structure of the program. This data section
has a length that can vary, but only in multiples of a specific size. Viruses that infect
.EXE programs have to make changes to this data section and, depending on the
original size, have to increase its length. Therefore, virus-infected .EXE files do not
increase by a specific length related to the virus, as is the case with .COM files, but
have an increase that partly depends upon the structure of the original program.

C h a p t e r 5 : V i r u s M e c h a n i s m s 1 1 3

Windows 1, 2, and 3.x generally ran DOS programs without too much problem,
and the program structures for Windows-specific programs were only marginally
more complex. However, with Windows 32-bit versions (Windows 95, 98, NT, Me,
and 2000) the programs began to use a new format, called PE-EXE (Portable
Executables). DOS viruses could usually infect Windows 1, 2, and 3 version programs,
though the functionality of those programs was often impaired. PE-EXE files are
sufficiently different that the techniques used by old .COM and .EXE infectors no
longer work, although there are viruses that can infect all types of .EXE files.

Prependers and Appenders
Most file viruses place the bulk of the viral code towards the end of the program
file, with a jump sequence at the beginning of the file that points to the main body
of the virus. Some viral code attaches to the beginning of the file—this is simpler
in concept, but actually more difficult in execution. These two techniques are known
as appending and prepending, respectively, but these terms are used less now than
in years past.

Adding code at the beginning of the original program ensures that the viral code
is run whenever the program is run. (This also ensures that the virus is run before the
program runs, giving the virus priority in terms of operation, possible conflicts, and
detection.) By adding code to the beginning of the program, it is possible to avoid
any change to the original code. It is, however, necessary to alter at least the file/disk
allocation table to ensure that the program call starts with the viral code, and that the
viral code is not overwritten by other changes to the disk or files. Also, while the
original code may be left unchanged, the file will nevertheless be altered, and unless
techniques are used to disguise this, the file will show a different creation date, size,
and image.

It is also possible to add viral code to the end of the original program and still ensure
that the viral code is run before that of the original program. All that is necessary is
to alter the file header information to reflect the fact that you want to start executing
the file towards the end, rather than at the normal location. At the end of the viral
code, another jump returns operation to the original program.

This kind of operation is not as odd as it may sound. It is not even uncommon.
A legacy from the days of mainframe “paging” of memory, it is used in a great many
MS-DOS executables, either in single .EXE files or in overlays. It is, therefore, not
a coding indication that can be used to identify viral type programs or infected files.

Appending, or prepending, viral code to an existing program avoids the problems
of damage and potential failure to run, which plague the overwriting type of viral

1 1 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

C h a p t e r 5 : V i r u s M e c h a n i s m s 1 1 5

programs. Even these viral programs, however, are not foolproof. Programs that load
in very non-standard ways use the header information that the viral programs alter.
Although not originally designed for virus detection, the “Program abort—invalid
file header” message thus generated is an indication of viral infection, though not a
very reliable one. In a complex operating environment such as Windows, there are
all too many possible non-viral reasons why a program may stop functioning properly.

Overwriting Viruses
Some viral programs do not attach to the beginning or end of the file, but write their
code into the target program itself. Most often this is done by simply overwriting
whatever is there already. Most of the time, the virus will also make a modification
to the beginning of the program that points to the virus, but on occasion the virus
will rely on chance for a computer operation to stumble upon the code and run it.

Of course, if a virus has overwritten existing code, the original target program is
damaged, and there is little or no possibility of recovery other than by deleting the
infected file and restoring from a clean backup copy. However, some overwriting
viruses are known to look for strings of null (or NUL) characters that may provide
a space to overwrite. If such a string can be identified, the viral code can be removed
and replaced with nulls again. (The Lehigh virus, for example, attaches “behind” the
COMMAND.COM file, in a sense, but overwrites slack space at the end of the file so
as not to change the file size. The details of this virus will be explained in Chapter 12.)

Overwriting existing code is a very simplistic answer to the problem of adding
code to an existing program without changing the file size. By simply overlaying
code that is already on the disk, the original size remains unchanged. There are a few
problems with this approach. The most obvious is that preserving file size is an
ineffective means of avoiding detection. Probably no competent anti-virus program
using generic techniques would check file size alone, without checking content, if
only by a simple checksum.

Then there is the problem of how to make sure the virus is called when the infected
program is run. If the code is just inserted anywhere, it may not be in a part of the
program that is used every time the program is run. (Every programmer is aware of the
Pareto Principle’s application here: 20 percent of the code does 80 percent of the work.
Some code never gets called at all.) It is possible, by an analysis of the target
program’s code, to find an entry point that is used extensively. It is also possible, and a
lot easier, to place a jump at the beginning of the program that points to the viral code.

The second problem is much more difficult to deal with. If the virus code overwrites
existing portions of the program code, how do you know whether the loss of that

program code is fatal to the target program? Analysis of this type, on the original
code, is very difficult indeed. Successful overwriting viral programs tend to be short
and to look for extensive strings of NUL characters to replace (ZeroHunt is an example).
The NUL characters tend to be used to reserve stack space, and thus are not vital to
the program. However, even if the original code is not vital to the program, it may
cause the program to exhibit strange behaviours if replaced, and thus lead to
detection of the viral infection.

We should also mention the Nina virus, which overwrites the beginning of a file,
and the Phoenix family, which overwrites a random section of a file. Both Nina and
Phoenix append the overwritten part to the end of the infected file. The Number of
the Beast/512 virus and 1963 both overwrite the beginning of the file and then move
the contents of the overwritten section beyond the physical end of the file into a
portion of the last cluster that the file occupies. The clusters are always of a fixed
size, and because it is very unusual for a file to exactly match a multiple of the
cluster size, there is generally some space past the “end” of the file that is, essentially,
invisible to the operating system.

While overwriting viral programs solve the (trivial and often irrelevant) problem
of maintaining file size, they bring with them some inherent problems, which appear,
at this time, to severely limit their effectiveness. To this date, while many overwriting
viruses have been written, none have enjoyed great success nor have they become
major, widespread problems.

There is still one class of overwriting virus that we have not yet considered, and
this is perhaps the lowest form of virus writing. Some virus authors bypass the
comparative complexities of the overwriting techniques just described by using code
like this:

If (infectable_object_exists)

then

(replace_object_with_self)

Such code makes it easier to guarantee that the infected program is viable.
However, the fact that no attempt is made to preserve the functionality of the target
program drastically restricts the chances that such a virus will survive. The
non-functioning program draws attention to the presence of a problem, even if the
implication of a viral program is overlooked. In fact, it can happen that the infected
file can be replaced by a fresh copy without the victim ever realizing what the
problem actually was, though in such a case the possibility of reinfection remains.
Where such an overwriter is detected by conventional anti-virus software, it’s
normally only possible to erase the infected file. It can be replaced, but not repaired.

1 1 6 V i r u s e s R e v e a l e d

Recent worms have modified this approach by targeting and overwriting specific
program files (characteristically, .DLL files associated with email). The replacement
file has the functionality of the file it replaces, but is modified (subverted) to suit the
purpose of the worm (that is, to propagate itself). We must distinguish here between
this type of overwriting (as performed by MTX) and that performed by LoveLetter.A,
which replaces graphics files with VBScripts but doesn’t attempt to maintain the
original content of the graphics files.

In the world of prependers, the Rat virus uses a technique similar to overwriting.
.EXE file headers are always multiples of 512 bytes in size, so there is often an
unused block of space in the header, itself, that the Rat assumes to be available.
The sURIV 2.01 works a bit harder: it moves the body of the file and inserts itself
between the header and original file, and then changes the relocation information
in the header.

Misdirection
DIR-II, often referred to as a cluster virus, takes a different approach. The viral code
is written to one section of the disk, the last available cluster (even if the cluster is
already in use). Directory and file-allocation information is altered in such a way
that all programs seem to start in that one section of the disk, enabling the viral code
to be executed without its being directly attached to any of those programs. Because
of the convoluted way this virus works, it is possible to “lose” all the programs on
the disk by attempting to “repair” them.

NOTE

This doesn’t mean it isn’t possible to repair infected files, by the way. In spite of the fearsome
reputation that DIR-II originally acquired, it is actually rather easy to detect and remove—it
doesn’t even require anti-virus software—as long as you know how it works.

At one time, this type of operation was referred to as a FAT virus, because of the
change made to the File Allocation Table (FAT). However, this usage is confusing,
since it can be misinterpreted as meaning that the FAT itself becomes infected.

The most successful and current variation on this theme involves modifying the
Registry so that when a given file type is called (characteristically, any .EXE file),
the virus is also executed. This trick has been used by a number of recent viruses
and worms. Time and again in computer virology, we encounter this principle of
misdirection. Like an illusionist, the virus writer attempts to distract us with smoke
and mirrors from the real mechanism at work. Companion viruses provide a
particularly interesting example of misdirection.

C h a p t e r 5 : V i r u s M e c h a n i s m s 1 1 7

1 1 8 V i r u s e s R e v e a l e d

Companion (Spawning) Viruses
The simplest way for a viral program to avoid the detection that results from
modifying the code of an existing program is to not modify the original program.
The virus must then find another way to insert itself into the chain of command so
that it will still be called when the (unmodified) original file is called. Companion
viruses take advantage of a feature of the MS-DOS operating system. As we’ve
previously indicated, three types of executable file are recognized at the MS-DOS
command line, denoted by the .COM, .EXE, and .BAT filename extensions.

Because the different extensions provide an additional means to distinguish a file,
three different executable files under MS-DOS can exist in the same directory with
the same filename, but different filename extensions: for example, MYFILE.COM,
MYFILE.EXE, and MYFILE.BAT. Normally, a program is only invoked by calling
the filename; the extension is “filled in” by the operating system.

How, then, does the computer decide which of these three to run? It uses the
following rules of precedence. First, a search is made for an “internal” command
listed in the command interpreter. If that succeeds, that command is run. Thus,
under MS-DOS, when you give the command DIR, the system generally runs the
directory-listing subroutine provided by COMMAND.COM, even if a file named
DIR.COM exists. If the search for an internal command does not succeed, the
computer looks for a file with that filename and a .COM extension, then an .EXE
extension, and then a .BAT extension. At each stage, if the search succeeds, the
file is run; if it fails, it goes to the next level. Thus, in MS-DOS, .COM takes
precedence over .EXE, which takes precedence over .BAT. A companion virus can
thus “infect” a MYFILE.EXE file by making a copy of itself called MYFILE.COM.
MYFILE.COM file will take precedence, and typing MYFILE at the DOS prompt
will always call the virus first. In order to avoid detection, the viral file will
generally end with a call to the original program, and the viral program’s file
attribute is set to “hidden” so that the program is invisible to a cursory directory
listing. Variations on this scenario include renaming the original file and giving the
virus file the name of the original file.

Fortunately, companion viral programs are by no means perfect. For one thing,
they are limited to acting on those programs that are lower in the order of precedence.
For another, the hidden attribute is relatively easy to overcome (particularly in
MS-DOS), and an alphabetical listing of files will quickly turn up the anomaly of
identical names. (Oddly, antiviral packages generally do little to alert the user to
duplicate filenames. Often the user will be asked to validate a file without any suggestion
that something might be amiss if the file has not just been added to the system.)

C h a p t e r 5 : V i r u s M e c h a n i s m s 1 1 9

There is a valid argument that says that companion (or spawning) viral programs
are not viral at all. Companion viral programs certainly do not link to existing
program code, at least not in a physical way. They use a certain provision of the
system to trick you into running them rather than the program you meant to run.
Thus, they might be said to be closer in definition to a Trojan.

On the other hand, companion viruses do reproduce. They also form, in a sense,
a logical link with existing programs. They certainly behave in a viral fashion by
inserting themselves into the chain of command.

In GUI operating systems, it is possible for a virus to take precedence by overlaying
an existing icon with another that is either transparent or identical to the first. Windows
provides some additional means for companion viruses to operate, since it has a rather
complicated sequence for searching directories when an executable program is called,
and some of the “early” directories are almost completely unused.

Multipartite Viruses
At first glance, file infectors have many advantages over BSIs. There are many more
program files on a given system than boot sectors and, therefore, more opportunities
or targets for infection. Also, multiple copies of a given virus can reside on any system.
While some viral programs may conflict in the use of memory or interrupts, multiple
viral programs can often quite happily infect the same program file. Files can also be
transferred via bulletin boards, web sites, and networks. On the other hand, a virus
that has infected a file must still wait until that file is executed in order to be successful.

Most people trade data far more readily than they do programs, and, in the
olden days, that meant they passed around diskettes, which could be infected by
boot-sector infectors. (In trading Microsoft Office documents, of course, they may
be trading both data and viruses. However, the perception of Word documents and
Excel spreadsheets as data rather than as potential hosts for programs means that
they are freely traded, whether by email, between networked machines, or on
removable media such as diskettes.)

Removable media provide a better vector for BSIs (except that BSIs are restricted to
diskette exchange), than for file infectors. Also, program files tend to be passed in
“archived” form, usually as zip files, and even if the program becomes infected on
one system, the original archive, itself, is unaffected. Usually the original archive is
passed along, rather than a re-archived copy that might have become infected. Unless
the original archive was infected, it will likely not become a vector, even if it passes
through an infected system.

BSIs, therefore, have certain advantages, while file infectors have others. To get
the greatest “spread”, a virus writer wants to build a virus that will infect both files
and boot sectors—a multipartite virus. In practice, these programs have had some
success, but they have not spread as widely as you might expect. Multipartite, or
dual-infection, viral programs have the potential to infect both program files and boot
sectors, which expands the range of possible vectors. Dual infections can theoretically
travel on any disk, and multiple copies may travel on a disk if program files are
present. Multipartite infectors can also usually travel on networks and via files
passed over bulletin board systems and other communications channels.

Are multipartite infectors a terrible new threat? Well, no. They’ve been around
for a few years now. Why haven’t they taken over the world?

There are disadvantages, as well as advantages, to multipartite viral programs.
One of the major disadvantages is complexity. A number of file infectors infect only
one type of program file, an MS-DOS .COM file, for example. A virus that infects
both .COM and .EXE files generally has more than twice the code of one that infects
.COM files alone. The virus must not only know how to deal with both file types,
but also how to distinguish between the target files. The same logic holds true for
multipartite infectors. The virus must carry with it the means to infect two radically
different types of targets, as well as the means to identify two very different types of
potential hosts. The necessary size of the program is much larger, as is the requirement
for processing. The multipartite virus can be reduced in size, but this generally means
a reduction in function as well.

Classic “file and boot” infectors are not actually the only multipartite viruses. There
have long been examples, for instance, of macro viruses that install DOS file viruses.
The current generation of worms illustrates a disturbing trend towards multipartite
configurations. MTX, for example, spreads both as a non-parasitic worm and as a
file virus. Multipartite worms are likely to survive better than the previous multipartite
generation, because they work in an environment where file size matters less. Recent
versions of Windows demand generous resources (disk space, main memory, processor
speed). The truism that programs expand to fill the available workspace is as true of
malware (and anti-virus software) as it is of office applications.

The choice of targets might seem to be an easy matter, but the reality is slightly
more complex. The most effective means of spreading would be a “get-everything”
policy, but this might also lead to conflicts and detection. Some programs might
choose to alternate: a program infector would infect boot sectors, and a boot-sector
infector would infect program files. This seems reasonable, until you realize that it
merely makes the virus sequentially a BSI or a file infector in alternating generations.
Statistically, this means that it will be slightly less effective than a boot-sector virus,
rather than more.

1 2 0 V i r u s e s R e v e a l e d

C h a p t e r 5 : V i r u s M e c h a n i s m s 1 2 1

Interpreted Viruses
Macro viruses dominated the mid-1990s (since the emergence of WM/Concept in
1995, though Concept was not, strictly speaking, the first macro virus). As the decade
came to an end, virus writers turned their attention to other scripting environments,
especially VBScript.

Macro Viruses
Macro viruses are currently, as they have been since their inception, restricted
primarily to Microsoft Office applications. Many are associated with Word, most
of the rest with Excel. There are a handful of viruses for other Office applications
(proof-of-concept viruses, mostly). A few other proof-of-concept viruses are associated
with non-Microsoft products using licensed versions of Visual Basic for Applications
(AutoCAD) or a similar macro language (CorelSCRIPT, for instance). Some
examples of unrelated macro malware (Lotus 123 Trojans, and HyperCard infectors,
for instance) exist. Not all Office-based malware is viral: there are Trojans and
virus generators, too. We will start off with some general discussion of macro viruses,
and then move into specifics of the Microsoft technology.

Macros were originally intended to be small items of user-defined (or definable)
programming that automated routine tasks. In fact, older applications often had no
way of writing or editing macro code directly. The only way to create a macro was
to record a series of actions (keystrokes and mouse movements) that could be played
back as required later, but not edited.

While some people make distinctions between macros, scripts, and programs, the
differences are largely matters of degree in terms of breadth of functionality, ease
of use, and connection to a given application. Macros and scripts are supposed to be
small, simple, easy to use, and they are generally interpreted, rather than compiled,
so they carry their own source code. However, Visual Basic for Applications (VBA)
and similar languages are full-blown programming languages whose functionality
exceeds that of many older compiled or interpreted languages.

NOTE

The fact that macro viruses carry their own source code doesn’t necessarily make them easier
to spot. Like QBasic and GW-BASIC before them, VBA and most of its siblings have the ability to
save code in an encrypted format (what GW-BASIC used to call “protected” files, and WordBasic
called “execute-only” macros). Microsoft Office viruses generally go to some lengths to “hide”
their presence (though to the practised eye, the absence of macro-related menu options can be
something of a giveaway). Furthermore, they take advantage of an execute-only macro’s ability
to prevent the VBA editor from loading it for examination.

1 2 2 V i r u s e s R e v e a l e d

Macros or scripts, in order to be run, have to be executed by an appropriate
application. They are (in principle) application-specific rather than specific to a
particular hardware platform, operating system, or operating environment. In
practice, though, they are restricted to platforms that support the host application.
In some cases, the virus may be a stand-alone program, as in the case of Microsoft
Windows shell scrap objects or Windows Script Host (WSH) files. However, in
most cases, it is an advantage to be able to associate the macro with a data file or
object. Thus, you can hide a JavaScript program in an HTML email, or a Word
macro in a Word document file.

Actually, you can’t put a Word macro into a document file in older versions of
Word. However, you can put data into a macro template file. A template file should
have a .DOT extension in DOS or Windows, but Microsoft doesn’t want to bother
you with those details. As a result, it is quite possible to create a file with a macro
and some data in it, call it a document, and have Word figure out that there is executable
content. And run it. In more recent versions of Word, documents containing macros
are legitimate and distinct from templates.

You can create names for macros in Word, and some names are better than others.
If a macro is named “AutoOpen”, for example, it will run every time the associated
file is opened. If you called it “FileSaveAs”, it will perform the action specified
every time the Save As item is chosen from the File menu. Therefore, virus writers
can create files that appear, to the user, to be documents, but which can automatically
perform some operation when read in the Word program, and which can change
the functions of Word itself.

Macros can also be persistent. The global template file (called NORMAL.DOT
in DOS and Windows versions—on the Macintosh, where filename extensions are
less significant, it’s just called NORMAL) contains those macros that you want to
use in different documents. It is quite possible for a macro to copy itself into that
global template file, thus sticking around long after the original infective document
has been deleted.

VBA is a very functional language. Some purists would insist that it no longer
qualifies as a macro language: certainly it no longer allows you the quick and dirty
operations that macros were intended for, before the advent of programming Wizards.
However, it is definitely capable of producing some of the most damaging viral
programming on the planet.

Scripting Viruses
As noted earlier, the difference between macros and scripts is one of degree. The
difference between macro viruses and script viruses generally lies in the details of the

C h a p t e r 5 : V i r u s M e c h a n i s m s 1 2 3

virus itself. As noted earlier, the difference between macros and scripts is one of degree.
The difference between macro viruses and script viruses likewise generally lies in the
details of the virus itself. Certainly, the difference between a VBA macro and a VBA
script, both contained in an ostensible document, is definitely one for the internals books.

At the moment, the difference between what is considered a script virus and what
is considered a macro virus generally turns on the association with a data file. If it is
buried in a .DOC or .XLS file, it is a macro; if it comes as a .VBS attachment in an
email, it is a script.

Concealment Mechanisms
Viral programs have almost no defence at all against disinfection. Ninety-nine
percent of viral programs are almost trivially simple to get rid of—simply replace
the infected file (or boot sector) with an original copy. Some more recent boot-sector
and system viruses require slightly more knowledge in order to perform effective
disinfection, but few require drastic measures. The same is not, unfortunately, true
of worms. Some recent worms (MTX springs to mind) are awkward to remove, and
it is unsafe to rely upon anti-virus software to do the whole job. Note that disinfection
is not the same as complete recovery from the changes made by a virus.

NOTE

Far from their image as the predators of the computer world, viral programs behave much more
like prey. Their survival is dependent upon two primary factors: reproductive ability and avoidance
of detection. Viruses are more like the rabbits of the computer kingdom, except that stopping
them can be as simple as basic computer hygiene. Exercising caution with disks and files from
outside and keeping anti-virus software up-to-date is easier than culling virus authors with
myxomatosis. If only life were really so simple.

Using the standard system calls to modify a file leaves very definite traces. The
change in a file’s creation or last-modified date is probably more noticeable than a
growth in file size. File size is rather meaningless, whereas dates and times do have
significance for users. Changing the date back to its original value, however, is not a
major programming challenge. Adding code while avoiding a change in file size is
more difficult, but not impossible. Overwriting existing code and adding code to
“unused” portions of the file or disk are two possible methods discussed in the “File
Infectors” section of this chapter.

Some viral programs, or rather, virus authors, rely on psychological factors. There
are a number of examples of viral programs that will not infect program files under
a certain minimum size, knowing that an additional 2KB is much more noticeable on

a 5KB utility than on a 300KB spreadsheet. Not only because in the former case
2KB represents a 40 percent increase and in the latter case less than 1 percent,
but because it’s normal for data files to increase their size, whereas it is not for
system utilities or applications.

In a sense these are all stealth technologies, but this term is most often used for
programs that attempt to avoid detection by trapping calls to read the disk and
“lying” to the interrogating program. By so doing, they avoid any kind of detection
that relies upon perusal of the disk. The disk gives back only that information
regarding file dates, sizes, and makeup appropriate to the original situation, providing,
of course, that the virus is active at the time of checking. Although this stealth
method avoids any kind of “disk” detection, including checksumming and signature
scanning, it leaves traces in the computer’s memory that can be detected. (Some
viral programs also try to “cover their tracks” by watching for any analysis of the
area they occupy in memory and crashing the system if it occurs, but this tends to be
rather noticeable behaviour.)

Although the majority of viral programs spread via disk boot sectors, the infection
of programs, Word documents, and email attachments, it is possible (and nowadays
increasingly common) to use other means of replication. The important factor is the
ability of a system component to submit information, which is then run as a program.
It is, therefore, possible for terminals, peripherals, and network devices to operate as
viral vectors.

NOTE

To quote Fred Cohen, “Three basic things allow viruses to spread: sharing, programming, and
changes. All we have to do is eliminate those three things and we will be perfectly free of viruses”.
(A Short Course on Computer Viruses, second edition.)

In order to function as a viral vector, a peripheral device needs three features
(or components):

� The computers using the peripheral must be able to submit information or
programs to the peripheral.

� The peripheral must have access to a certain minimum amount of memory or
storage and must be able to perform certain levels of automated processing.

� The peripheral must be able to communicate with other computers making
use of that peripheral, and the information communicated must be accepted
by those computers as executable code with access to at least a minimum
level of resources.

1 2 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

Once those conditions are met, any peripheral, be it printer, modem, disk pack,
or terminal, can act as a means of replication and spread.

However, as with hardware damage, there is a major weakness in the use of
peripherals as viral vectors. Peripheral command sets, particularly those dealing with
the more powerful functions, tend to be very hardware-specific. In the case of the
programmable function keys mentioned in Chapter 4, one command set was used for
Teleray terminals, for example, while another was used for Wyse terminals. The
commands for these terminals are not interchangeable, although the functions are
almost identical. This is an advantage of the current incoherent computing environment.
However, as open-systems initiatives gain strength, many new viral vectors may
become possible.

Peripherals are not the only unusual vectors for viral programs. Consider the
common boot sector. A knowledge of the structure of the boot (and Master Boot)
sectors and boot sequence is practically a prerequisite for any serious viral study.
However, the VIRUS-L mailing list and FidoNet discussion echoes (the equivalent
to a bulletin board) were formerly inundated with frequent postings by users claiming
to have contracted Stoned (or Michelangelo, or Monkey, or...), to have deleted all
the files on the disk, and yet to still be infected! To the vast majority of users, the
fact that a program can be located at a physical position on the disk but not be
referenced by the file directory list is a foreign concept. This confusion may contribute
to the longstanding success of boot-sector infectors. (Some boot-sector viruses
still in the wild date back to the 1980s.)

The boot sector on any write-enabled disk, and the partition boot record on a
hard disk, are accessible to dedicated amateurs armed with utility software.
However, there are other places to hide code or data on a disk, and these are not as
easily examined. It is quite possible to format an additional track outside the normal
range, for example. In order to avoid problems between drives with variations in
tolerance, the software does not push the limits of the hardware. There are various
programs for MS-DOS and other operating systems that provide greater storage on
the same-sized disks.

In addition to tracks outside of and between normal formats, there is substantial
space between the sectors on a disk (slack space), and there are programs that can
increase the number of sectors so as to increase the space on disk. However, it is
also possible to use the additional space without formatting additional sectors by
writing information to slack space. Commercial software sometimes uses this technique
for copy protection purposes. Both of these hiding places are so well concealed
that viral programs infecting them never have a chance to become active. Viral
code using these techniques has to provide the means to access the extra tracks or
extra sector space, and then use the hiding space in order to store additional code.

C h a p t e r 5 : V i r u s M e c h a n i s m s 1 2 5

1 2 6 V i r u s e s R e v e a l e d

Some hiding places are definitely a part of the system, while not being necessarily
obvious. The Mac OS, for example, associates a number of resources with each
program and data file. Most of these resources can have code associated with them,
and therefore provide a number of additional hooks for viral access. It is interesting
to note that undocumented features in the 32-bit versions of Windows are starting to
allow the same type of function and are being identified as potential security risks.

Stealth
A virus usually contains some kind of identifiable string or code that can be used
to identify it. Even if the virus is new or polymorphic, it still adds its code to the
infected program, thus adding to the size of the program. If the virus overwrites
original code so that it does not add to the length of the file and even tries to match
a “checksum” calculated on the code overwritten, a sophisticated cyclic redundancy
check (CRC) will still find a change. So how can a virus hide from all of these
detection mechanisms? By tricking the operating system into concealing the virus’s
“footprint”, the changes it has made in the environment.

Stealth technology, as applied to computer viral programs, most broadly refers to
all the various means that viral programs use to hide themselves. Specifically, however,
it refers to the trapping mechanisms that viral programs use to avoid detection.
These mechanisms are only effective once the virus is active in the computer (active
in memory). The virus will trap calls intended to read the data on the disk and in
response return only the information that the original, uninfected, program would
have returned.

Viral programs can trap all functions that perform disk access in order to hide the
fact that the virus is copying itself to the disk under the cover of a directory listing.
Viral programs can also trap system calls in order to evade detection. Some viral
programs will sense an effort to read the section of memory that they occupy and
will cause the system to hang. Others trap all reading of disk information and will
return only the original information for a file or disk.

Because of possible differences in hardware, and also because these functions are
generally fairly standard, the manipulation of the disk (whether by a virus or a legitimate
application) is accomplished by calls to the operating system and underlying software
and hardware, rather than being performed directly by applications. The operating
system provides standard system calls and hooks to the required functions. When a
program wishes to read data from the disk, it asks the operating system to do it by
calling a standard operating system function.

However, since the function is standard, virus writers know it as well. Code
inserted at the standard address can redirect the call to code provided by the virus.
This stealth code may indeed use the original programming provided by the operating

C h a p t e r 5 : V i r u s M e c h a n i s m s 1 2 7

system, but it filters the data returned to the calling program. If an infected file is
being read, the infection simply does not appear in the information that the calling
program receives.

Stealth is a technology, not a virus per se, though the name Stealth has been applied
to individual viruses from time to time. Most viral programs implement stealth in
one form or another. Stealth is not, in fact, limited to viral programs. Antiviral software,
and even utilities, use similar means to avoid compatibility problems with the wide
range of computers and programs now operating (though the preferred term in this
case is transparency). Stealth mechanisms have sometimes been classified as follows:

� Negative (level -1) These are usually overwriting viruses, discussed in the
“Overwriting Viruses” section earlier in this chapter. Not only is there no
attempt at concealment, but the virus author didn’t care whether the infected
program file would function or not after infection, and coded the virus
accordingly. Viruses that accidentally stop an infected program from running
because of a programming error, or because of an unanticipated environmental
condition, are not included in this category. There is a potential problem with
this classification, because, to some extent, it depends on assumptions about
the virus author’s state of mind. It’s not always easy to tell whether the author
was indifferent as to whether the virus would be detected, or simply failed to
anticipate some of the consequences of infection.

� Non-stealth (level 0) The targeted program is expected to run more-or-less
normally after infection, but no specific measures are taken to avoid detection.
These viruses may even put up characteristic graphic displays and text messages.

� Elementary (level 1) These viruses don’t draw the victim’s attention to
themselves by any characteristic display. Basic anti-detection steps are taken,
such as preserving an infected file’s time and date stamp.

� Intermediate (level 2) These viruses use more sophisticated stealth
measures. Characteristically, an image or a partial image is retained of an
object in its uninfected state—the original boot sector, for instance. If
information is required by the system, the image is shown rather than the real
(infected) object. Sometimes the image is a complete copy, but it may be as
basic as a record of the size of an infected file before it was infected. This
approach may involve modifying the environment as well as the infected object.

� Advanced (level 3) These viruses use concealment methods intended to hide
them from anti-virus software. Viruses that attempt to protect themselves from
specific anti-virus software using known loopholes are sometimes referred to
as retroviruses, using a slightly forced biological analogy.

1 2 8 V i r u s e s R e v e a l e d

Tunnelling
Somewhat related to stealth technology is the concept of tunnelling. Again, this
is a technology, not a virus per se, and one that is used in both viral and antiviral
programs.

Before there were viral programs, there were Trojans. Anti-Trojan software was
(and is) largely based on change detection, or else on activity monitoring and the
restriction of operations (activity blocking), much as is done by a number of antiviral
programs today. Activity monitors do not really monitor activity: they place traps
and interrupts at certain points in the operating system. Certain system calls are
either potentially dangerous themselves (such as the function that formats a disk)
or are precursors to dangerous activities. Therefore, when a program calls one of
these functions, the activity monitor is triggered. Again, this relies upon the fact that
operating-system functions must be made available in a known location so that valid
programs can use them. The activity monitor can then alert the user, and the user can
choose to stop the action or to allow the action, in which case the original
operating-system code is run.

Since the state of the system is generally well known, a virus can be written to
examine these system entry points, and it can tunnel or trace back along the
programming associated with the system call. If an activity-monitoring program is
found (and this generally means anything other than the original operating-system
code), the trap can be reset to point to the original system call. The activity-monitor
program is now bypassed, and will not trigger—at least, not for that particular
function.

This same type of activity can be used against viral programs. Viruses often trap
certain system calls in order to trigger infection activities. Antiviral software can
tunnel along the various interrupts, looking for changes. Viral programs can thus
be disarmed.

Anyone who has ever tried to manage accounts on mainframes or local area
networks (LANs) will recognize that there is a constant battle between the aspects of
security and user friendliness in computer use. This tension arises from the definition
of the two functions. If a computer is easy to use, it is easy to misuse. If a password
is hard to guess, it is hard to remember. If access to information is simple for the
owner, it is simple for the cracker.

NOTE

This axiom often gives rise to two false corollaries. First, the reverse—that those systems that are
difficult to use must therefore be more secure—does not hold. Second, many people assume that
restricting the availability of information about a system will make that system secure. While this
application of the STO (Security Through Obscurity) strategy may work in the short term, its
effectiveness as protection is limited. Indeed, it often has the unfortunate side effect of making
information less accessible to those who should have it, such as systems managers, while slowing
the attackers only marginally.

User-friendly programs and operating systems tend to hide information from the
user. There are two reasons for this. In order to reduce clutter and the amount of
information that a user needs to operate a given system, it is necessary to remove
options and, to a certain extent, functionality. A user-friendly system is also more
complex in terms of its own programming. In order for the computer to behave
intuitively, it must be able to accommodate the many counter-intuitive ways that
people work. Therefore, the most basic levels of a graphical user interface system
tend to be more complex than the corresponding levels of a command-line interface
system. These levels are hidden from the user by additional intervening layers, which
also add more complexity. (Hence the rule of thumb that the easier an operating
system is to use, the harder it is to program.)

The additional layers in an operating system, and the fact that a great deal of
management takes place automatically, without the user’s awareness, furnish the
ideal environment for a viral program. Since many legitimate and necessary operations
and changes are performed without the user’s knowledge, viral operations can also
proceed at a level completely hidden from the user. Also, because the user is largely
unaware of the structure and operations of the computer, changes to that structure
and operation are difficult to detect.

Polymorphism
Virus-specific or known-virus scanning software is, for all of its limitations, still the
most widely used type of antiviral software. The idea behind this software is that you
can identify a virus by a unique scan string or (less correctly) signature within the
virus that will not be found in any other program. There is an art to the choice of a

C h a p t e r 5 : V i r u s M e c h a n i s m s 1 2 9

1 3 0 V i r u s e s R e v e a l e d

scan string. Code is preferable to text, which may easily be altered—some variants
differ only by trivial modifications of text messages from the original virus. The
code should also be integral to the operation of the virus. Ideally, you want a string
that may identify future mutations of this virus, as well as the current infection.
Once you have a suitable signature, you can identify the virus.

Unless, that is, the virus changes in some way so that it doesn’t contain a constant
pattern that can always be used for identification.

This is the idea behind polymorphism. There are a number of ways to change the
“shape” of a virus. One way is to start with a simple “random” number, such as the
value of the seconds field of the system time when the infection occurs. Then
perform a simple encryption on the value of each byte in the viral code. Only a short
chunk is left at the beginning to decrypt the rest of the virus when the time comes to
activate it. Encryption can be used in other ways: encrypting a regular, but arbitrary,
number of bytes, or encrypting most of the code as a whole, rather than on a per-byte
basis. From a scanning point of view, this isn’t too much of a problem. Extracting an
identifiable string from the code of the decryptor/loader stub is quite possible. This
signature can be used to check for the presence of the virus.

In programming, there are always at least half a dozen means to the same end. Many
programming functions are commutative—it doesn’t matter in what order certain
operations are performed. This means that very small chunks of code, pieces too
small to be used in isolation as scan strings, can be rearranged in a different order
each time the virus infects a new object. Meaningful instructions can be randomly
interspersed with instructions that perform some non-essential task, or do nothing
at all (a NOP, or null operation). Single instructions or subroutines can be replaced
with different but functionally identical instructions or subroutines. These approaches
may be combined with one or more encryption routines to produce a variable
decryptor/loader that can’t easily be scanned by using a fixed scan string.

A distinction tends to be made between the first, and limited, self-encrypting viral
programs, and the later, more sophisticated, polymorphs. Earlier, self-encrypting viral
programs had limited numbers of variants: even the enormous Whale virus had fewer
than 40 distinct forms. However, it was noticeable for the layers of obfuscation put in
the way of anyone trying to analyse it in detail. (It isn’t actually necessary to analyse
Whale to that level of detail in order to detect it, of course.) Later polymorphic viruses
have been more prolific: Tremor is calculated to have almost 6,000,000,000 forms.

An even later development was the polymorphic “engine”. This is not a virus as
such, but code that can be added to any virus in order to make it polymorphic. The
most widely known of these is the Mutating Engine, known as MtE, written by one

C h a p t e r 5 : V i r u s M e c h a n i s m s 1 3 1

of the virus writers who used the “handle” Dark Avenger. There is no MtE (or
DAME: Dark Avenger’s Mutating Engine) virus—only other viral programs that
have had the code attached. MtE is not the only such program around; many others
have been developed, such as TPE (Trident Polymorphic Engine).

Polymorphic engines are sometimes confused with virus kits, or generators, which
we dealt with in Chapter 3. The polymorphic engine, if properly attached to the
original virus, will re-form the viral code on each new infection. A virus kit is a
program to automate the actual writing of a virus—the user picks characteristics
from a menu of choices, and the kit program sticks together pre-programmed pieces
of code to make a virus. A polymorphic engine, then, is code added to a virus to
make the same virus change its appearance each time it reproduces. A virus kit is
a non-replicating, non-viral program that automates the process of generating viral
programs, each with different characteristics. Unless polymorphism is one of the
available options, viral programs produced by a kit will retain their signatures from
that point on.

Fortunately, polymorphism in any form and at any level has not been that great a
threat, despite the superstitious dread that the term arouses in non-experts. Polymorphs
are as easily detected by change-detection and activity-monitoring software as any
other viruses. Even virus-specific scanners have not (in the long term) had great difficulty
dealing with polymorphic programs, though some scanners that were unable to adapt
to early polymorphic threats have become (deservedly) extinct. The early self-encrypting
programs usually provided readily identifiable signatures, since the decryptor stub
had to be left unencrypted. Even those programs that performed significant encryption
or used variable encryption routines generally had only a few forms, which could all
be recognized. Later polymorphs are sometimes more difficult to analyse and identify
initially, but algorithmic analysis, as opposed to pure signature scanning, is generally
successful. Indeed, in the case of the polymorphic engines, the use of these encryption
techniques has sometimes been advantageous to the antiviral researcher. When you
can identify the MtE code, you can also identify, as a virus, every new virus to
which it is attached.

Recently, a less sophisticated form of polymorphism has been seen in the worm
arena. One of the side effects of the Love Bug epidemic was that system administrators
were encouraged to block at the mail gateway email attachments that had particular
filenames associated with particular email Subject headers. Inevitably, malware
authors were inspired to introduce a measure of polymorphism into worm creation.
Some subsequent worms have been characterized by variable Subject headers and
filenames. It is likely that some malware authors will continue to develop this theme.

1 3 2 V i r u s e s R e v e a l e d

Social Engineering and Malware
Social engineering refers to breaking security through non-technical means. In fact,
social engineering has always been a very effective computer-cracking tool, and is
used extensively in all manner of viruses and Trojans. Despite the fancy name, social
engineering refers to plain, old-fashioned, garden-variety fraud and psychological
manipulation. Social engineers are con men (and women), and deceit is the oldest
(remember talking snakes in gardens?) and most banal form of crime that exists.
There is absolutely nothing novel about computer crime: only the tools have changed.

NOTE

The original Trojan horse, as recounted in Virgil’s Aeneid, was a great piece of social engineering.
Can’t get through the walls? Pretend to go away and leave a jolly great trophy outside the walls of
your enemy. If they are stupid enough to drag your troops into the city, you’re laughing. Trojan
programs do the same thing. Would anybody run a program labelled “Erase the whole disk
immediately?” Of course not. So you call it “Greatest sexxx scenes” instead. Gets ’em every time.

Old-style viruses don’t need extensive social engineering, since they are designed
to spread without needing to trick the victim into executing a program they would
not otherwise execute. Most of the programs we currently refer to (with varying
degrees of accuracy) as worms, however, would not usually be executed unless some
means of deception was employed. In Nachenberg’s terminology, they are not
self-launching. Another way of looking at the whole virus issue is to regard social
engineering as integral to the ability of a virus to spread promiscuously without the
knowledge of the victims who pass it on, since the trickery depends on the ability of
the malicious program to infect legitimate code. Most people don’t receive viruses
from a computer vandal with a black eye patch and a cutlass between his teeth, but from
a friend or colleague. They trust the infective object because they trust the sender.

Boot-sector infectors relied on the fact that most people had hard disks, and most
diskettes were not bootable. Most computer users did not know that all DOS disks,
including diskettes, contained a program in the boot sector. Nobody bothered about
whether you put a diskette in the drive before the computer was turned on. There
was no possible problem: if the computer told you “Non-system disk”, you just
ejected it and hit any key—except that, by that time, the virus on an infected diskette
had already taken hold on your computer.

By the time Word macro viruses came along, the virus community had been
telling people for many years that you couldn’t get a virus from data, only from

C h a p t e r 5 : V i r u s M e c h a n i s m s 1 3 3

programs. Microsoft, however, found a way to include executable content in what
was supposedly a data file. Thus, macro viruses took off like a rocket. (After all, you
didn’t have to check .DOC files, since they were just data.)

NOTE

Other word processors have macro languages, so why is it that only Word and Excel get successful
macro viruses? One reason is the huge functionality built into WordBasic and Visual Basic for
Applications: more features than any sane person would ever use in a word processor. The other
factor, however, is that Word can have both macros and data in the same file. A WordPerfect
macro is stored in a separate file, and you’d tend to notice if someone tried to get you to run this
macro when you were supposedly just trying to read the document. To be fair, Microsoft didn’t
invent the concept of combining programs and data in the same file: PostScript and spreadsheets
have done something similar for years, and experimental spreadsheet viruses had been known for
some time previously.

Email viruses and worms use social engineering extensively. The original
CHRISTMA EXEC worm displayed all its code clearly, if people only looked at it.
However, the accompanying message stated that browsing the code was no fun at
all, and suggested that the victim just run it. And most people did just that.

More recently, Melissa used extensive social engineering. For starters, it was
posted on alt.sex, a great place to find a lot of people with, shall we say, a lack of
discrimination. It was posted as a document supposedly containing passwords for
pay sex sites. (Oh, good, sex and something for free.) When active, it mailed itself
from your email program to people in your address book. In other words, it would
always come from someone you knew: someone you could probably trust. The
subject line is “Important Message From: [name of sender]” with the name taken
from the registration settings, so the message is 1) generic, 2) important, and 3)
again, from someone you know. The text of the body states “Here is that document
you asked for ... don’t show anyone else ;-)”. The document obviously has to do with
some prior conversation (that you have, for the moment, forgotten), and it is
confidential. This makes it irresistible.

Love Bug used much the same features (who can resist a love letter from
an unknown admirer?) with one addition: the filename of the attachment was
LOVE_LETTER_FOR_YOU.TXT.vbs. Obviously you were supposed to notice the
.TXT extension. Text files are harmless. The fact that the last extension, in spite of its
lowercase unimportance, is the “real” extension was generally ignored. Again, the
code was clearly visible to anyone who cared to look at it (and the fact that it contained
a routine called InfectFiles was, one would think, something of a giveaway).

1 3 4 V i r u s e s R e v e a l e d

NOTE

But what if you really can’t even program well enough to modify an easy worm like Melissa?
One possibility is to warn people about the virus you wish you could write. Tell them there is a
terrible virus on the loose, and it is just going to destroy everything. Tell them to tell everybody
they know to stop reading email and avoid this horrible plague. Be sure to give your virus a good
name, though. Maybe something like “Good Times”. We will have much more to say about Good
Times and other hoaxes in Part IV of this book.

The most recent example of a social-engineering virus is unlikely to do anybody
any harm, but it replicates nicely. In the wake of Melissa and the Love Bug, an email
joke started doing the rounds. Most variants note that it is the “honour system” virus.
If you feel left out of the latest email virus furor, you are invited to randomly delete
half the files on your computer, and send the joke message off to everyone you know.
(While computer virology is not a suitable pastime for the humorously disadvantaged,
we feel we have been delighted enough by this particular example of gallows
humour. And it’s still a chain letter. Please don’t send us any more.)

Summary
It may seem odd that we have not offered a technical section dealing specifically
with worm technology in this chapter, especially in view of the fact that email
viruses and worms constitute one of the major current threats. However, the class
“worm” is at a higher level of abstraction than the subclasses addressed here, such
as file viruses and macro viruses. The term worm may be applied to particular
examples of a wide range of malware, including script viruses, macro viruses, file
viruses, overwriters, and even Trojans. In fact, worms exemplify the trend towards
convergence to which we have alluded previously. It seems to us to be more useful
to examine particular examples of the breed in more detail than to attempt to impose
a contextual straitjacket onto viral programs that may or may not meet a particular
definition.

There are all kinds of subtle variations on the themes covered in this chapter,
and some less-subtle ploys that will only become obvious after some virus writer
explores techniques not yet used. However, it is important to note that the most
successful viral programs, in terms of numbers of infections, are not necessarily the

TE
AM
FL
Y

Team-Fly®

new models, but the older and often less-sophisticated versions. On the one hand,
this indicates that novelty is not necessarily a viral survival factor. On the other
hand, it points out, in a rather depressing manner, that most computer users are still
not employing even the most basic forms of antiviral protection.

This has been a long introduction to a complex subject. Now that we have considered
the technological basis on which current malicious software is based, it is time to
look at the technology for countering it, and see how best to use it.

C h a p t e r 5 : V i r u s M e c h a n i s m s 1 3 5

This page intentionally left blank.

PART

II
System Solutions

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

CHAPTER

6
Anti-Malware

Technology Overview

139

IN THIS CHAPTER:

Great Expectations

How Do We Deal with
Viruses and Related Threats?

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

What is anti-virus software? Better, what do you want (or expect) your
anti-virus software to do? When we ask this question in a seminar
context, the first answer is almost inevitably, “To stop viruses”.

Here comes the first disappointment: anti-virus software can’t “stop” viruses, any
more than a police station can “stop” crime. In a perfect world, a global social
engineering programme (as social scientists understand it, rather than hackers) might
attempt to educate computer users of all ages and persuasions in the mysteries of
“ethical” computing. However, it is not realistic to expect the application of a purely
technological approach to individual systems to solve what is essentially a special
case of a worldwide social problem.

Great Expectations
If we take this discussion a little further, we generally find that what the respondent
to our question actually means is “to stop viruses on my desktop or on the desktops
of my users”. Well, we can’t all be altruists. Most people just don’t want to be
bothered with malware at all; they want anti-virus software (and maybe other
defensive measures) to take care of all virus protection totally transparently. Such
solutions might work for some individuals, but really would not work at all for
corporate institutions, even if they were technically feasible. In real life, of course,
they are not at all feasible. It can be proved formally that it is not possible to detect
all viruses, let alone block them.

Total transparency is approximately equal to a process like this:

1. A sends an infected or otherwise dangerous object to B.

2. B’s defences kick in and discard the dangerous object.

3. B gets on with his or her life, blissfully unaware.

A moment’s thought suggests that this process might not be the optimal strategy.
It’s probably based on the assumption that A is an evil malware author sending
malicious programs to B, a potential victim. Viruses and worms are sometimes
injected into the mainstream (into the wild, if not Into the Wild) this way. However,
most people who receive worms and viruses get them from people they trust—
colleagues, friends and relatives—people who are indeed fellow victims, not villains.
If A is an innocent party, it may damage a social or commercial relationship if
communications are bounced back with no explanation or a curt automatic message,

1 4 0 V i r u s e s R e v e a l e d

or simply not acknowledged. Wouldn’t B want to let A know that A has a problem
(and, if possible, what it is, and even how to deal with it)? Wouldn’t B want to know
that a trusted party has become (knowingly or unknowingly) a vector for incoming
malware? You may recall that we said in Chapter 2 that anti-virus technology is
not all about keeping your own computer safe. Alerting other people to the fact that
they’re virus victims is not an act of altruism (or not exclusively); it can benefit you
too, in the following ways:

� If you handle the situation diplomatically, you score brownie points.

� If the victims improve their defences, the warning reduces the risk of your
receiving other viruses from them. In a sense, you extend your perimeter
defences.

� The victims are encouraged to act maturely and responsibly when they, in turn,
receive infected objects from others. The beneficial effects ripple outwards,
peace gets given a chance, the Age of Aquarius begins in earnest, and virus
writers give up and take up gardening.

Perhaps we have been asking the wrong question here. We need to broaden it
from “What do you want anti-virus/anti-malware software to do for you?” to “How
do you want to manage virus incidents?” When we ask this, we often find that what
people really want is based on unrealistic expectations of the software available to
them. We usually find that what they really, really want is a combination of some or
all of the following goals:

� To detect known viruses

� To detect other known malware

� To detect stuff that isn’t really malware (some organizations would like their
anti-virus vendors to block spam, for instance)

� To detect unknown viruses (preferably all unknown viruses) and other
malicious software

� To stop viral and other malware from being executed, so that it can’t infect or
deliver a malicious payload

� To repair legitimate but infected incoming objects

� To discard illegitimate objects

� To advise the sender of the unwanted object that he or she has a problem

C h a p t e r 6 : A n t i - M a l w a r e T e c h n o l o g y O v e r v i e w 1 4 1

1 4 2 V i r u s e s R e v e a l e d

� To block loopholes brought to light by virus incidents

� To record the incident and/or advise the appropriate person. Recording is
essential to monitor the performance of the measures implemented, if only to
justify ongoing licensing of security products. It also helps to keep track of
whether an organization is catching “friendly fire” from a peer organization
who may have failed to apply “due diligence”.

The question then becomes, how realistic are these expectations? While some are
attainable, they are not attainable by all anti-virus software, they are not necessarily
fully attainable by anti-virus software, and they are not necessarily reconcilable with
the desire for complete transparency.

The degree to which customer expectations are at variance with the technology
available deserves more attention than we can give it here. The European Institute
for Computer Anti-virus Research (EICAR) has undertaken an initiative to improve
information security by a closer binding of customer needs (and expectations) and
actual functionality. The first stage of the EICAR Anti-Virus Enhancement Program
(EAVEP) is a survey, presented to the EICAR conference in March 2001, of the
views of network and system administrators, security officers, and other technical
decision makers on what weaknesses they perceive in current technology. Similarly,
the Anti-Virus Information Exchange Network (AVIEN) is increasingly drawing
attention to the shortfall between what vendors are happy to offer and what
customers really want.

Virus management is often seen as exclusively (or primarily) a desktop issue.
Indeed, for a home user, this perspective offers probably the only way of looking
at the problem that makes sense. In the corporate environment, virus management
may be seen as (primarily) a networks/systems issue. However, the virus/malware
problem ranges across desktop management, LAN management, and Internet/
intranet/extranet management, as well as less obvious areas such as human resources
management. Only by defining the problem globally is it possible to work towards
holistic solutions that cross boundaries within the organization, rather than relying
on piecemeal relief of individual symptoms. To this end, anti-malware technology
and the functionality behind it are considered in some detail in this chapter. We
will also consider how anti-virus technology might be better mapped to the client
organization’s needs. The chapter generally considers anti-malware technology in
terms of functional specification rather than in terms of detailed implementation.
After all, anti-virus vendors are unusually secretive about some aspects of the ways
in which their products work. They are concerned not only with keeping proprietary
code hidden from potential rivals, but also with staying a step or two ahead of the
virus writers.

C h a p t e r 6 : A n t i - M a l w a r e T e c h n o l o g y O v e r v i e w 1 4 3

How Do We Deal with
Viruses and Related Threats?
Management of viruses and other malicious software is sometimes divided into
two main areas: proactive anti-virus measures and reactive incident management
(sometimes referred to as “playing first” and “playing second”). Strictly speaking,
this distinction is illusory. All anti-virus software is essentially reactive—that is,
it exists only because viruses and other programmed threats existed first. That
somewhat academic point aside, it is common to distinguish between virus-specific
scanning or Known Virus Scanning (KVS) on the one hand and generic measures
on the other, as if they were on opposite sides of the proactive/reactive divide. This
distinction is also illusory. For example, change detection, the most commonly used
generic approach, can be considered more reactive than a virus-specific scanner that
denies entry proactively to a recognized virus by discarding it at the mail gateway.

The essential distinction here is between detection of viruses at (or before) the
point of entry and identification of viruses after they have entered the protected
environment. However, anti-virus software leans towards the reactive. The most
popular technology is based on the identification and disinfection of a virus either
at the point of entry or after it has entered the system. We prefer to consider the
technological aspects of anti-virus software in terms of three main approaches:
pre-emptive measures, virus-specific measures or KVS, and generic detection:

� Pre-emptive measures are those that do not attempt to identify specific viruses
or deduce the presence of an unknown virus. Rather, they simply attempt to
render the environment so inhospitable to viruses that they cannot enter that
environment or cannot be executed if they do. Many of these measures barely
qualify as anti-virus technology, but implement commonsense precautions
along the same lines as the “Safe Hex” guidelines included in Chapter 11.
However, the implementation of these precautions involves rather different
strategies and tools for a systems administrator in a complex environment than
it does for a single home computer user.

� Virus-specific software takes the approach, “I have identified virus X. Do you
want me to sort it out for you?” Such scanners look for search strings whose
presence are characteristic of a known virus, and usually can remove the virus
from an infected object. However, some objects cannot be repaired. Even
where an object can be repaired, it is often held to be preferable (in fact, safer)
to replace the object rather than repair it, and some scanners are very selective
about which objects they repair. (Boot sectors and Microsoft Office documents
are usually easily repairable; binary executables are much more difficult.)

1 4 4 V i r u s e s R e v e a l e d

� Generic detection software deduces the presence of a virus from environmental
anomalies. It doesn’t identify a specific virus by name. This approach might be
defined as “You might have a virus. Message ends”. Usually it is much easier
to replace an infected object than to repair it, even where the virus is known.
Repairing an object (especially a binary executable) infected with an unknown
virus is far harder.

Pre-emptive Measures
Creating policies or educating users in safe practices can reduce the risk of becoming
infected, even when a virus enters the organization. There are many possible
pre-emptive measures:

� Avoiding the use of applications that are vulnerable to macro viruses, such as
the constituents of the Microsoft Office suite.

� Disabling PC floppy booting to block the entry of boot sector infectors.

� Disabling or removing floppy drives to block the entry of all disk-borne viruses.

� Denying entry to mail attachments that are likely to be vectors for inbound
viruses. These can include program files such as those with .EXE, .COM,
.SCR, and other filename extensions indicating binary executables, files
carrying double filename extensions such as in badfile.txt.vbs, Word and
Excel documents, and others.

Such measures can be very effective at addressing aspects of anti-virus damage
that reactive anti-virus software doesn’t deal with very well, and we’ll return to them
in due course. However, they have two major drawbacks. First, they may impair
productivity. Second, we should recall the latent virus problem. In this scenario, the
virus is inactive in the protected environment. However, since the virus has not been
detected or known, it may become active again if that environment is modified or if
an infected file or disk is transferred to a vulnerable environment. (Such a transfer
of infected material via an uninfectable environment is sometimes referred to as
heterogeneous virus transmission.)

Some measures are similar in intent but less effective in practice. For example,
it’s possible to reduce the risk of macro virus infection in Word 6 and above by
disabling auto macros and using built-in or add-in measures to block all macro
execution unless explicitly permitted by the user (or authenticated by digital
certificate, for instance). However, it is not possible to eliminate the risk entirely.
The binding of the underlying macro language to the application interface and
infrastructure precludes the complete “turning off” of the macro language that
would be necessary for full security.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 6 : A n t i - M a l w a r e T e c h n o l o g y O v e r v i e w 1 4 5

Access Control and Anti-Virus
You can use access-control software suites to minimize the possibility of a virus or
Trojan gaining entry, by enforcing authentication of program files, disks, users, or
any combination of the three. (By program files, incidentally, we imply not only
unequivocal applications but also data objects, such as Word documents, that can
also contain program code in the form of macros.) This approach is sometimes
combined with virus-specific or generic scanning. Applying such a “moat and wall,”
or multilayered strategy, can be much more effective than using only one of these
approaches, but the strategy’s success in avoiding threats has to be balanced against
the probable impairment of performance that multilayering entails.

One formerly popular scenario works like this: individual workstations belong to
a domain or group of machines on which access-control software is installed. The
software blocks the use of unvalidated diskettes on standard workstations. To be
validated, a diskette must be authenticated on a “gateway” machine, which checks
and modifies the diskette and its contents so that it can be used on workstations
within that group. This series of checks may include scanning with one or more
anti-virus scanners (or other anti-malware measures), in which case the operation
is hybrid rather than purely proactive. This scenario can be regarded as an instance
of what is sometimes referred to as integrity management. This is a more systems-based
approach to managing malicious code that is not entirely focussed on specialized
virus-specific software, even though it is likely to involve the deployment of
such software.

We should, however, note a significant difference between access control as it is
used in this example and access control as it is sometimes understood by systems
administrators. Access-control systems determine the appropriate allocation of
access privileges to individuals, and grant systems access to authenticated individuals.
In other words, if the system recognizes an individual, he or she is allowed to use
that system to the extent that the user’s privileges allow. However, as by now we
hope to have convinced you, authenticating the individual is not enough in the
virus/malware arena, since viruses and worms are usually spread (unwittingly) by
trusted individuals. Confirming the identity of the individual doesn’t tell us anything
about his or her good intentions, though we would usually hope that the human
resources department has applied the appropriate checks. It tells us still less about
the individual’s competence at following security guidelines, or the currency and
acuity of his or her anti-virus measures.

In short, trusting the individual is not necessarily sufficient justification for
trusting modifications in the local environment introduced by that individual.
Organizations are aware of this principle in other contexts; for example, a group
with a change management policy will not authorize a privileged individual to

make changes in a “live” environment without the appropriate checks and balances.
However, many administrators (or their managers) lack sufficient knowledge of the
virus field to enable them to apply the same principles in the area of code integrity
management. Like most computer users, they fall into the trap of trusting the object
because they trust the individual. “I don’t open attachments from people I don’t
know”, usually means, “I do open attachments from people I do know”. The problem
here is that much of the difficulty of managing current worms and viruses lies in the
fact that most people will not receive infected material from strangers with malicious
intentions. Rather, they will receive them from people they know and trust, and who
are unaware that they are being used as a channel for transmission of malicious code.

Firmware Settings
There are a number of ways specific to the hardware by which to secure a PC. Most
of these involve the so-called CMOS (Complementary Metal Oxide Semiconductor)
settings, pieces of information stored in CMOS memory that govern how your
computer runs at a basic level.

The first, and easiest, is the boot order sequence. On older computers, the default
CMOS setting would be to check for a bootable disk in the first floppy drive (A)
of the machine, and then, if no diskette was found, to boot from the hard disk. This
method, of course, allowed boot sector viruses to infect machines if an infected
floppy had been left in the drive of the machine when it shut down or rebooted.
Later, it became possible to configure a setting to change the boot order so that the
hard drive was always accessed first. It was even possible to force the computer to
boot only from the hard drive, regardless of whether there was a diskette in the first
floppy drive and whether it was bootable. Nowadays there are other selectable
settings, including booting from a CD-ROM or over a network.

An additional security feature is password protection. This feature is of little use
in antiviral protection. In some cases, it is of little use at all. We recall one computer
where the password protection didn’t appear to protect anything except the password.
However, in most cases, modern CMOS passwords prevent anyone else from booting
up your computer and using it in your absence.

NOTE

This CMOS password protection is by no means absolute. It is relatively simple for a knowledgeable
person to remove the password protection from even the best of systems, and ways of doing so
are widely documented. The DISKSECURE anti-virus program has a password protection feature
that is much harder to get around, as do other programs that encrypt some or all of the hard disk.

1 4 6 V i r u s e s R e v e a l e d

Hardware Solutions
It is often held in the security field that whatever software can do, software can
undo. Therefore, any anti-virus software can be circumvented by a virus that targets
vulnerabilities in the software. Viruses that target weaknesses in specific anti-virus
software are sometimes called retroviruses, although this mechanism is not an
altogether appropriate analogy for the biological model from which it is borrowed.

NOTE

In biology, a retrovirus contains RNA (ribonucleic acid). Genetic material from the virus is inserted
into the host’s DNA (deoxyribonucleic acid). Computer retroviruses, however, conceal their
presence from antiviral agents in ways that are product-specific. They might be described as
anti-virus-specific.

The converse also holds: no virus is impossible to remove from an infected
system, although removal is not always cost-effective and does not always restore
the system to full functionality.

There are some hardware antiviral measures. Indeed, the simplest one is the
write-protect tab on floppy disks and certain types of removeable cartridge drives.
Virus researchers have long wanted someone to make hard drives (or CD-RW
drives) with write-protect switches, but this approach has not found favour. There
are also some specific examples of antiviral hardware. Most are activity blocking
systems—very fancy forms of write protection. One involved a very specific
configuration of the motherboard and the system support chips. Various “secure”
computers have also been built. None of these systems has had much success.

Chipaway was a simple antiviral system designed by Trend, makers of the
PC-cillin antiviral packages. Chipaway, as the name suggests, was intended to
be included with the BIOS programming in the ROM chip. It primarily addressed
some basic types of boot-sector viruses. Someone at Trend, though, had either an
unfortunate sense of humour or a lack of facility with the English language. When
active, the Chipaway system would tell the user that his or her computer had the
Chipaway virus. Other antiviral companies had many calls asking about the
Chipaway virus—which, of course, did not actually exist.

A more recent device uses a hardware/software hybrid approach to the problem
of worms and viruses. StopIT consists of an internal PC card and a hardware device
that sits between the modem and the Internet. Network traffic is scanned against an
automatically updated internal database of definitions. Whether this product offers
improved security and/or performance over an on-access scanner is a debatable
question, and one that doesn’t seem to have been taken up.

C h a p t e r 6 : A n t i - M a l w a r e T e c h n o l o g y O v e r v i e w 1 4 7

1 4 8 V i r u s e s R e v e a l e d

Secure Software
It is frequently suggested (with a variable degree of flippancy) that the easiest way
to render an environment virus proof is to avoid Microsoft operating systems or
applications. While there is enough truth in this assertion so as to be embarrassing
to Microsoft, this solution is rather like reducing fire risks by removing all oxygen
from the atmosphere. Right now, most of the market for desktop and laptop
operating systems and network file servers seems to belong to Microsoft. Even
in more rarified atmospheres, such as those occupied by firewall servers and web
servers, Microsoft has a substantial presence. In environments where Microsoft’s
presence is less obvious, such as the Macintosh world—Macs probably still
constitute the nearest thing to a competitive operating system—Microsoft applications
(including Word, Excel, Outlook, and Internet Explorer) are almost as predominant
as they are on PCs. Even the Linux success story owes something to the availability
of a Microsoft-compatible Office suite (StarOffice).

NOTE

You might have noted certain statements in this book that indicate a lack of enthusiasm for
Microsoft software. Are we saying these things because we are fanatical Mac, Linux, VMS, OS/400,
or CP/M devotees, and we seek to trash the evil empire? No. We say these things because they are
true. And because we have been paid enormous sums to spearhead a return to dominance of the
Commodore Pet.

There is some software, the use of which places you at higher risk of virus
infection. This is a simple fact. As we have noted, the more widely an operating
system is used, the more likely it is that someone has written a virus for it. The same
is true for application platforms, such as email programs and word processors. But
there are other factors that can increase or decrease risk. What you choose to use is,
of course, up to you. But we would be remiss in our responsibility if we did not point
out that certain software designs are more dangerous than others.

Microsoft Windows is the most widely used desktop operating system by a
considerable margin. It is, therefore, the one currently most subject to attack, in
terms of the number of people attempting to produce malware. However, specific
strategic factors render Windows more vulnerable than it needs to be. It may be
necessary to point out that the assumption of the overriding importance of security
is far from universal, except possibly among security specialists. Financial analysts
are inclined to resent the restrictions that a highly secure environment imposes on
the pursuit of business aims. Management often pays lip service to the importance of

C h a p t e r 6 : A n t i - M a l w a r e T e c h n o l o g y O v e r v i e w 1 4 9

security in meetings and reports, but cuts corners on implementation. Computer
users frequently resent the obtrusiveness of most security measures.

Windows continues to stress ease of use above any consideration of security,
despite having outgrown its origins on single-user systems, where security is rarely
a primary consideration. Windows 95, 98, and Me are less secure than MS-DOS, in
that they can give the user a sense of false security. Time and again, people tirelessly
type in their Windows password, unaware that simply pressing the ESCAPE key
would be just as effective for many systems. This lack of intrinsic security is less
acute with Windows NT and 2000, which have the same basic security features as
older multi-user systems, though an “out-of-the-box” configuration is not noticeably
secure. However, this was often true of older systems, too.

Windows also tries, as much as possible, to hide system information from the
user. In most cases, users can obtain information about the system and ongoing
processes easily enough—if they know where to look. By default, the system
automates many processes that allow access to the system. For example, network
access and resource sharing are generally enabled by default, and must be turned off
if the user does not want to make access available. This makes it very easy to set up
networks, but it also means that access can be permitted over dedicated Internet links
without the user even being aware of the fact.

Microsoft holds the source code for the operating system closed (as opposed to
open-source systems) and has consistently refused to document a great many functions
of the package. This is, of course, the corporation’s right as a business with proprietary
information, but it does mean that finding security holes is a matter of hit-and-miss
testing rather than direct analysis of code.

Microsoft is trying to tighten the links between its operating system and its
applications. This interrelation between platform and programs is behind a number
of the recent email viruses. Outlook and Internet Explorer cannot be easily secured,
since they use programming that is also foundational to the operating system.
Making a change to the operating system can affect applications and computer
operations in a variety of ways, and therefore patches for security bugs have to be
made very tentatively and tested extensively before being released. More than once
Microsoft has released a patch for one problem, only to create another. Microsoft
also tries (not altogether unreasonably) to make the minimum change necessary to
fix the current problem, often leaving related loopholes still open in the software.
Where Microsoft offers a major fix, it may be either a fix to the wrong problem
or so extreme as to reduce drastically the functionality of the product. The latter
occurred with a security patch for Outlook, which turned a highly relaxed mail

1 5 0 V i r u s e s R e v e a l e d

client into a monster that refused to allow access to any attachment with an .EXE
filename extension.

Microsoft is not the only company in the world with software subject to security
weaknesses, and it isn’t even the worst. In fact, anti-virus software is often subject to
analogous problems, for some of the same reasons. Vendors are aware that customers
often value transparency above security, and may be tempted to set unsafe defaults
so that an out-of-the box installation is fast and unobtrusive, but not very good at
detecting viruses. For instance, the Novell version of a highly rated scanner (now
extinct) by default checked only the standard system directories on a server. While it
is reasonable to check files that are accessed by all users (such as LOGIN.EXE), it
has to be remembered that on a competent server installation, everyday users don’t
have write permission to such files. In general, they can write only to directories
they own or of which they share ownership, and these are the directories in which
infected games, Word documents, and so on are most likely to be found.

There are some general guidelines of which you should be aware. The more
automated a system is, the more it does for you without asking, and the greater the
possibility of a security problem, particularly one involving viruses. The more
difficult it is to look at the internals of a system, the less secure it is. The more flash
and glitz on the surface, the less solid the underlying structure may be—although,
the history of programming offers many examples of programs that are neither
flashy nor stable.

In general, you can use Windows and reduce your risk of virus infection by using
other software. Microsoft Word is almost the only platform susceptible to macro
viruses; WordPerfect is largely free of them. If you want something that looks like
Word, there is the StarOffice package, which is also less expensive than Word.
Outlook is the major platform for email viruses, but other email programs are
available. For example, Pegasus is a highly functional product available for free.
Internet Explorer appears to have the greatest problem with active content; Netscape,
Opera, Mosaic, and many others are safer.

Some of the problems with Windows do not allow for an easy solution. One of the
recent email viruses used the shell scrap object file format. This format can contain
just about anything: the Windows system will execute text, binary data, programming,
and any active content in this format. In addition, Windows does not display the file
extensions for shell scrap object files, even if you request that Windows display all
file extensions. The icon for a shell scrap file differs very subtly from that for a text
file; most users would not notice the difference.

NOTE

To see the difference for yourself, open Notepad. Type in some text (a word or two is fine) and
then save the file in the C:\TEMP directory. Save the file under the names “test1.ini”, “test2.txt”,
and “test3.txt.shs”. Remember that you will have to put quotation marks around the filename or
Notepad will just add .TXT to each filename. Now look at the directory with Windows Explorer.
Note that the icons are superficially similar, although the Type column identifies them correctly.
(You will have to select Details under the View menu in order to see the Type column: by default it
is not displayed.) Note also that, regardless of your settings, the “test3.txt.shs” file will display as
“test3.txt”. You can force Windows to display the scrap object extension, but only by making a
change to the Registry. (Edit the Registry entry HKEY_CLASSES_ROOT\ShellScrap from NeverShowExt
to AlwaysShowExt. Remember to back up your Registry before doing any work on it: editing the
Registry can get you in a lot of trouble.)

Microsoft’s attitude regarding these security issues is interesting. In the late
1990s, the company was taken to task about the number of security problems
associated with its product line. In one particular speech, Steve Ballmer reportedly
admitted that the products were insecure. He said that Microsoft made insecure
products because Microsoft made what the market wanted, and the market didn’t
want security. Ballmer went on to say that he could prove his assertion, given that
Microsoft wasn’t broke; if people wanted secure products, they would buy other
products that were secure, and Microsoft would go broke.

What Does Anti-Virus Software Do?
All antiviral software fits into one or more of three main categories. Scanners read
information on disk and in memory, looking for recognizable patterns characteristic
of a known virus. Activity monitors examine operations as they occur in the computer,
sounding the alarm when a possibly dangerous event happens. Change-detection
software takes a snapshot of the details of the system, alerting the user when some
modification has been made. In general, anti-virus software performs one or more of
the following functions, according to the class of software to which it belongs and
how it is configured:

� Identification of known viruses (virus-specific detection). This is the core
function of most contemporary anti-virus software, and the main advantage,
flawed though it is, to this approach is its conceptual simplicity: as a virus
comes to light, the vendor adds detection to its product. However, the main
disadvantage of this approach is that it is essentially reactive.

C h a p t e r 6 : A n t i - M a l w a r e T e c h n o l o g y O v e r v i e w 1 5 1

� Detection of suspected viruses not yet known to virus-specific software
(generic detection).

� Blocking of possible viruses, implying generic detection.

� Disinfection of infected objects (usually associated with virus-specific products).

� Deletion, overwriting, and/or replacement of infected objects. This function is
common to both generic and virus-specific products, where disinfection is
technically impossible or considered unsafe.

What does disinfection mean? It certainly doesn’t mean that everything is put
back to exactly the same state it was in before the virus infected the host object.
Some effects of infection or triggering of a payload can’t be reversed, and others,
such as Registry changes, while reversible, are not characteristically addressed by
anti-virus software. A few vendors offer “single-shot” tools to remove well-entrenched
viruses such as these rather than attempting to incorporate removal of such recalcitrant
viruses into their main scanner.

Checksum disinfectors are unsuitable in environments where a virus infection is
known to be present, suspected of being present, or could be present. This type of
software uses checksum, CRC, hamming, or image calculations that must be done
while the software is clean, since this software only tries to return the disk, drive, or
program files to an “original” state. Even then, checksum disinfectors have a very
low success rate and would undoubtedly fail any test created to measure a set of
“cleaning” programs. Heuristic disinfectors are even worse; they sometimes harm
“good” programs. While disinfection is often not recommended, in some situations
you want to keep an existing program rather than replace it with an original copy,
which may not contain setup information. In this case, you may need the services of
a disinfection program that does not rely on a database of known viral programs.
The chance of this situation happening is slight, but should it arise, “generic”
disinfectors could be useful when ordinary disinfectors fail.

These basic types of anti-virus programs have a great many variations. You
can run antiviral software as manual utilities (on demand) or set them up to be
memory-resident and to scan automatically as potentially infected objects are
accessed (on-access or real-time scanning). Some systems cover the entire computer
and network in depth; others check only the likeliest areas in order to avoid requiring
more processing overhead than the virus risk merits. The vital point to keep in
mind is that no single antiviral program is the best for all situations. Software that
is great for the data entry pool may be useless in the development office. You must
understand both anti-malware technology and your own work environment in order
to find the best fit. Many people are interested only in the “best protection program

1 5 2 V i r u s e s R e v e a l e d

they can get” and do not want to endure any talk about what a virus is or how it
works. They want to buy something that enables them to forget about the whole
virus situation.

This attitude ignores three vitally important points. The first is that “the best” may
not be good enough by itself. No security force would ever pick “the best” guard
and then leave him to guard an entire refinery by himself. There is a trade-off
between security and cost, but it often makes sense to use multiple antiviral
programs—different products, of different classes, and at different operational levels.

Second, even within the limited realm of antiviral programs, data security
software operates in many different ways. Thus, one type of security may be better
in one situation while another may be better in a different environment.

The final point is that security, of every type, is always a “moving target,” and the
virus world moves faster than most. Not only are new viral programs being written
every day, but new types of viral functions are being coded all the time (albeit at a
much slower rate than the run-of-the-mill copycat viruses). Any developer who
claims that its antiviral program “guarantees” protection against “all known and
unknown” viral programs simply does not comprehend the reality of the situation.

Generic Solutions
There are two main sub-branches of the generic approach to virus detection:
behaviour monitoring/blocking and integrity checking. Monitors and behaviour
blockers remain memory-resident throughout a computing session and watch for
suspicious processes. If they observe one, they sound an alert. They may, for
example, check for any calls to format a disk or attempts to alter or delete a program
file while a program other than the operating system is in control. They may be more
sophisticated and check for any program that performs “direct” activities with
hardware, without using the standard system calls.

Although the analogy should not be stretched too far, behaviour or activity monitors
do suggest some characteristics, though not functions, of medical vaccines, being
memory-resident and preventive in nature. In addition, blockers actually prevent
the execution of the suspicious process. Unfortunately, legitimate programs often
perform operations that might look very suspicious, such as writing directly to disk,
modifying system areas, deleting files, and so on.

Activity monitors can detect “unknown” (that is, not previously identified)
viral programs, and do not require a database of signatures of known viruses. They
generally require less frequent updates than do scanners. Activity monitors do not
require the same level of setup as do authentication or change-detection systems,
and they may be able to function on already infected systems.

C h a p t e r 6 : A n t i - M a l w a r e T e c h n o l o g y O v e r v i e w 1 5 3

1 5 4 V i r u s e s R e v e a l e d

Despite some recent announcements, activity monitors represent some of the
oldest examples of antiviral software. Generally, such programs followed in the
footsteps of the earlier anti-Trojan software, such as BOMBSQAD and WORMCHEK
in the MS-DOS arena, which used the same “check what the program tries to do”
approach. This tactic can be startlingly effective, particularly given the fact that so
much malware is slavishly derivative and tends to use the same functions over and
over again. However, activity monitors demand more of the user. Because there is
no absolute difference between a legitimate and illegitimate operation, these
programs need constant reassurance that operations are legitimate. When they do
detect a genuine malicious program, the decision as to what action to take generally
remains with the user, who would much rather have the activity monitor deal with
the problem automatically.

Also, viral programs that do low-level programming rather than use the standard
operating system calls, or those programs that actually replace the standard system
calls with viral triggers, may bypass activity monitors. In addition, while viral
technologies such as stealth and polymorphism have little effect on activity monitoring,
new approaches in viral spread require that new checks be added to monitors.

Activity monitors have a good chance to detect viral activity of new and unknown
viral strains, but it would be very difficult to agree with those that claim to be able to
detect “all current and future” viral programs. Unfortunately, activity monitors tend
to encourage a set-and-forget mentality toward viral protection. You should avoid
adopting this attitude at all costs. If activity-monitoring software is your protection
method of choice, continue to keep up to date with viral methods and to test your
software regularly. We suggest that you use it as a complement to other means of
protection rather than as a substitute.

As with mainframe security “permission” systems, operation-restricting packages
allow you to restrict the activities that programs can perform, sometimes on a
file-by-file basis. However, the more options these programs allow, the more time
they will take to set up. You must modify the program each time that you make a
valid change to the system, and, as with activity monitors, some viral programs may
be able to evade the protection by using low-level programming.

“Sandbox” products, such as SAFETNET, monitor Internet protocols (for
example, SMTP, HTTP, and FTP) and/or applications (such as the Office suite),
scanning code not for virus signatures, but for conformance with a security policy
database. These products do not permit code from a monitored channel to run
outside of them unless the code complies with corporate policy. Such applications

TE
AM
FL
Y

Team-Fly®

have advantages in restricting the user’s ability to subvert security, but require
careful preconfiguration.

Integrity checkers (change detectors) look for changes in system areas and files
compared to what one product calls a “baseline snapshot”. A change detector examines
system and/or program files and configuration, stores the information, and compares
it to the actual configuration at a later time. Most of these programs perform a
checksum or cyclic redundancy check (CRC) that will detect changes to a file even
if the length is unchanged. Some programs will even use sophisticated encryption
techniques to generate an authentication signature that is, if not absolutely immune
to malicious attack, prohibitively expensive in processing terms, from the point of
view of a virus. If a sufficiently broad overview of the system is taken, this signature
will provide 100 percent effective detection of a viral infection, but it also may raise
a number of false alarms.

NOTE

Strictly speaking, “100 percent effective detection” applies only if you can guarantee that
the “day zero” baseline snapshot is of a genuinely clean system, that no malicious code is
executed while the database is set up, and that the authentication mechanism can’t be spoofed.
In other words, it’s not quite 100 percent effective.

The integrity-checking approach is fine for monitoring changes to static code such
as system utilities, but hopeless for monitoring most Word documents, for instance.
Furthermore, this approach works only if you can be sure that the system was clean
when you took the “snapshot”. Absolute certainty is not usually a possibility; in
theory, even a day zero (brand-new) installation of the operating system might have
been compromised before delivery. In the end, all generic measures either assume
that you’ve blocked all the entry points or alert you to a possibility that you have
malicious code on your system. The decision on how to react to the alert is generally
up to you.

Authentication refers to strong encryption systems which both guarantee that a
program is unaltered and identify its source. Change detection can be seen as a
weaker version of authentication.

A sufficiently advanced change-detection system, which takes into account all
factors including system areas of the disk and the computer memory, has the best
chance of detecting all current and future viral strains. Even with the most esoteric
stealth technology, a virus must change something in the system. Therefore,

C h a p t e r 6 : A n t i - M a l w a r e T e c h n o l o g y O v e r v i e w 1 5 5

1 5 6 V i r u s e s R e v e a l e d

adequately broadly based change detection is the best bet for absolute detection of
all viral programs—if you can put up with the false alarms.

NOTE

Some vendors have a problem with the term “false alarm”, pointing out, quite reasonably, that
change-detection software is simply doing its job when it flags a change, irrespective of whether
the change really is due to malicious code. In this context, an alert could be reasonably described
as a false alarm only if it flagged a change where none had been made. Nonetheless, you must
investigate each alert and take appropriate action. The increase in security (arguably, the software
will detect all viruses) is offset by the probable increase in incident-management overhead.

Change detection has the highest probability of false alerts, since it will not
know whether a change is viral or valid. Additional thought put into the installation
of change-detection software will go a long way towards reducing the level of
false-positive results. As always with security systems, there is a trade-off between
the easy and the effective. The addition of intelligent analysis of the changes
detected may mitigate this shortcoming.

Retail Viruses
Rob Slade frequently (all too frequently) receives a certain type of call from
people who think their systems are infected. After some questioning, it
generally turns out that they are correct, and they start wondering about how
they got the virus, prompting Rob to ask about the last change they made to
the system. “But that’s just it,” they say, “I just got the computer an hour ago!”
Then it was infected when you got it: you’d better contact the store and tell
them that they are selling infected computers.

This type of call is inevitably followed up 45 minutes later by another from
the same, now totally bewildered user. “I called the shop,” the user will say,
in a mild state of shock. “They said that, yeah, they’d had the virus around and
didn’t know what to do about it.”

We do not mean to leave the impression that all computer retailers are
malevolent and ignorant oafs who don’t care whether they infect you. But the
plain fact is that knowing how to put a computer together and take it apart does
not automatically give you the skills to identify and deal with computer virus
infections. Most computer retailers or repair shops take some precautions, but
few of them have any security expertise.

And, unfortunately, some truly don’t care.

Change-detection software provides no protection, but only after-the-fact
notification of an infection. It is, therefore, quite possible to install an infected
program on your system and have it continue to infect other programs. The
change-detection software will (or should) detect the subsequent infections, but
will not identify the original culprit. However, deductive reasoning, along with the
software’s assistance, may help.

You must inform the software of any changes you make to the system; otherwise
the change-detection software will generate a false positive. This means that you
must have sufficient knowledge of the system to know when you are making changes.
Each invocation of the DOS SETVER program, for example, changes the program
file, whereas setup changes made to an older version of WordPerfect sometimes alter
the program file and/or change an external data file.

The increasing complexity of graphical operating systems with extensive
networking capabilities implies that simply opening and closing windows may make
significant changes to log files, system files, configuration files, or the Windows
Registry (or its equivalent). Opening a Word document and then closing it again
may result in the creation of temporary files, adjustment to the global template and
other templates, and calls and changes to macros and customizations associated
with the menu structure. It is not practical for an external program to assess the
“legitimacy” of such transactions. In fact, it is often impractical for the operating
system or a vulnerable application itself to distinguish generically between legitimate
and illegitimate code. The only long-term solution—short of reengineering operating
environments and applications—is to conform to a model whereby code and data are
properly separated and users’ access and modification privileges are properly defined.

As with scanning software, change-detection software may not see changes made
and hidden by stealth viral programs if the software inspects file sizes alone.

There are numerous implementations of change-detection software. Some
versions of this software run only at boot time; others check each program as it is run.
Some of these systems attach a small piece of code to the files they are protecting,
and this may cause programs that have their own change-detection features, or
nonstandard internal structures, to fail. Some packages protect only system software;
others protect only application files. Some change detectors keep the signature file in
the root directory, others in the “local” directories. Some allow you the option of
keeping the file on a diskette offline and out of the reach of viruses that might try
to damage the file.

An approach sometimes used to reduce the processing overhead associated with
virus-specific scanning is to use a hybrid scanning approach, where a change
detector is used in conjunction with a virus-specific scanner. An object is first
checked for changes; if the software observes no change since it last scanned the

C h a p t e r 6 : A n t i - M a l w a r e T e c h n o l o g y O v e r v i e w 1 5 7

1 5 8 V i r u s e s R e v e a l e d

object, or since the scanner was last updated, no further action is necessary.
However, if the object has changed, the scanner has been updated, or the object has
not been scanned previously, the software invokes the virus-specific scanner.

Virus-Specific Scanning
Virus-specific software is effective as long as Virus X (or something closely enough
related to it to be detectable by the same scan string) is in the product’s current virus
definitions database. If you’re hit by a virus that your scanner doesn’t recognize, you
may find that it’s a very dumb piece of software indeed. In fact, although we have
distinguished between known-virus scanning and generic scanning, all KVS programs
are actually hybrid, since all scanning requires a degree of heuristic analysis to work
in real time.

Scanners, particularly signature scanners, are currently the most popular of antiviral
software. This popularity is probably due to three factors: the fact that viral programs
are specifically identified, because disinfecting software is included with most
scanners, and because it’s easy to play numbers games with signature-scanning
programs.

Scanners can find infections only after they occur, but this does not mean that
scanners cannot play a preventive role in protecting the system. If you use properly
maintained scanning software consistently to check each disk or file that enters a
system (as should happen with an on-access scanner), you greatly reduce the chance
of allowing a viral infection to enter your system.

Scanners look for known viral scan strings. Because of this, scanning software
usually will detect only known viruses and must be updated regularly. Most
commercial scanners now have provisions for online updating on a weekly, or even
daily, basis. Some scanners will alert users to programs that are “close” to a given
signature. (The MS-DOS scanner F-PROT uses at least two signatures to identify a
given virus and has always been particularly good at identifying “new” variants.)

There are tens of thousands of PC viruses and variants known at the time of
writing (depending on what measurement criteria are used). When a scanner checks
for all those viruses and variants, checking for every byte of viral code each time
would impose a huge processing overhead. To keep this overhead to a minimum,
scanners check for the shortest search strings they can afford and deduce the
presence of a given virus accordingly. Scanners may apply a number of heuristics
according to virus type, including simple virus string scanning (a long search string
in a known location) and complex wildcard searches. In fact, as we’ve pointed out
previously, virus-specific scanning as it is currently implemented is essentially
heuristic. The processing overhead of comprehensive checking makes exact
identification too resource-intensive for general scanning. Virus-specific scanning is

C h a p t e r 6 : A n t i - M a l w a r e T e c h n o l o g y O v e r v i e w 1 5 9

most useful for confirming a possible infection flagged by heuristic scanning, or in
support of file disinfection, where the aim is to restore the file to its pre-infected state.

However, the term heuristic analysis is also applied to the process of stepping through a
program before it is executed and searching for suspicious code. In fact, an on-access
scanner in heuristic mode is very nearly a cross between a known-virus scanner and a
monitor. If such a scanner is configured to disallow execution of suspicious code (as is
normal), it is for all intents and purposes a behaviour blocker as well. In this mode, a
scanner effectively leaves the question of what you do about the suspicious program up
to you. That is, you can remove it, take whatever steps are necessary to verify the presumed
infection, assume that it’s a false alarm and exclude the object from scanning, or reconfigure
the scanner so that the offending program is not flagged or blocked from execution.

Heuristic scanning, an analysis of suspect code or files based upon possible
activities rather than specific patterns, is nowhere near being a dependable form
of viral detection. A great many programs, including antiviral software and other
powerful utilities, have been accused (falsely) of being “suspicious” when checked
by an aggressively heuristic scanner. At the same time, such scanners may fail to
catch a number of other malicious programs. Thus heuristic scanning would fail
miserably at the sort of evaluation criteria used to judge KVS software.

It would, though, be a great pity to inhibit the development of heuristic scanning
software. This field is really the application of “expert systems” to antiviral software.
Using a heuristic scanner is a little like having an “expert” antiviral disassembler check
the code for you. Along with hoped-for advances in change detection, this field’s
development bodes well for the future of antiviral software. Indeed, not only does a
heuristic scanner identify suspect viral programs, but it may also, with only minor
additions, detect some Trojans and other malware too. A heuristic scanner looks for
covert file modifications, unusual calls to the system or to networking software such as
the WSOCK32.DLL library and email clients, or other activities associated with virus
attacks. When the number and type of such activities exceed a “threshold of tolerance”,
the software flags the program under examination as being infected. In general, scanners
are not either KVS or heuristic; most scanners are virus-specific by default, but can
perform heuristic analysis too, as an option. This default mode is probably inevitable,
given the additional processing overhead that heuristic scanning software entails.

On-Demand Scanning On-demand KVS scanners run a scan on one or more mounted
disks (or individual files or folders) when the user runs them. They can also scan
more or less automatically at set times using scheduling software. A primitive
implementation of this approach is to run a scan at bootup by calling the scanner
from AUTOEXEC.BAT (on DOS-based machines) or using an equivalent
script-based approach. Many modern scanners have built-in scheduling and scan
in the background by default at set times or when the system is comparatively idle.

On-demand scanners vary widely in their functionality. The fine points will be
considered in much more detail when we evaluate anti-virus software.

On-Access Scanning On-access scanning, as the name suggests, tests for the presence
of a virus every time an object is accessed. This may occur when a file is read or
when a program is executed. On-access scanners are also referred to as resident or
TSR (Terminate and Stay Resident) scanners, since in the DOS world the programs
had to stay resident in the background in order to operate. Usually the terms on-access
and memory-resident are applied only to known-virus-scanning programs. Activity
monitors must, by their nature, be resident at all times. Some change-detection
software systems also check “on-access”, but usually aren’t seen as a separate class
of software. However, the hybrid change-detector/virus-specific scanner model
described earlier suggests that such scanners may be much more useful than their
comparative rarity suggests.

In the days of DOS, slower processors, and the 640KB memory limit, resident
scanners were sometimes seen as more trouble than they were worth. These programs
must, after all, consume memory space and processor cycles every time the system
accesses a program or file. In these days of bloatware, and the attendant necessity of
huge memories and fast processors, on-access scanners are not so often perceived as
significantly draining resources, perhaps because their performance in this respect is
not consistently benchmarked.

On-access scanners are often seen as the best form of antiviral software. After all,
they operate all the time and do not require any intervention by the user. Nobody has
to remember to scan the disk every Monday morning, and a virus infection on Tuesday
doesn’t have most of a week to spread before the next scanning run. In addition,
many modern on-access antiviral programs add capabilities to check automatically
any material that comes in via the Internet and Web. On-access or real-time
virus-specific scanners don’t have to be executed as a conscious act by the user:
they’re implemented as DOS TSRs, Windows VxDs, Macintosh control panels, and
so on, and sit in memory. Such scanners don’t usually (by default) scan whole volumes
(though they might check floppies as they hit the drive); they scan individual files as
they’re accessed. This makes them useful for keeping a clean system clean (as long
as they’re updated regularly), but not very suitable for performing batch disinfection
of a heavily infected system.

DOS TSR (memory-resident) scanners are generally rather restricted, mostly due
to processing overheads and memory limitations. They are rarely aware of macro
viruses (which is reasonable, since some macro viruses cannot normally be executed
in a DOS environment). Such scanners are usually unable to detect complex
polymorphic viruses, and in modern GUI environments such as the various flavours

1 6 0 V i r u s e s R e v e a l e d

of Windows, are of secondary importance. Windows-hosted on-access scanners
normally remain resident even when a DOS shell process (DOS box) is spawned
within the Windows environment. They do still have a use on Windows 9x/Me PCs
when booting directly into DOS—for instance, they can be used to disinfect viruses,
recover data, or aid in reconfiguration. It’s unusual however, for a TSR scanner to
remove viruses as well as detect them.

NOTE

TSR stands for Terminate and Stay Resident, referring to a DOS-specific system call (INT 21h,
Function 31h). Characteristically, the call is used to load a utility or driver into memory so that
it can be reentered through a hardware or software interrupt.

Windows 16-bit and 32-bit VxD (virtual device driver) scanners are also
memory-resident, but are not subject to the same limitations as DOS TSRs. They
usually detect (almost) the same range of viruses as an associated on-demand
scanner (and often use the same virus definitions file). Some VxD scanners can
remove viruses on the fly as well as detect them. They may also be capable of
enhanced detection similar to that offered by advanced on-demand scanners.
Unsurprisingly, these capabilities may entail a noticeable processing overhead.
Scanners implemented as Macintosh control panels, system extensions, and so on
are approximately equivalent to Windows 95/98/Me VxD scanners. In Windows
NT and 2000, on-access scanners are implemented as system services.

However, some serious limitations are ascribed to resident scanners. On-access
scanners have sometimes had poorer detection capabilities than their on-demand, or
manual, counterparts. The memory resident and on-demand components of a modern
anti-virus suite may use the same definitions database and still not score identical
results with the identical test set. This is particularly true in respect to encoded and
archived file formats. These formats are the very ones that are used to transfer
material over the Internet, and therefore there is a rather cruel irony: the antiviral
systems that are supposed to provide protection against material from the Internet
may perform very poorly in doing so. On the other hand, some modern memory-
resident scanners, freed from the tyranny of DOS, may be configurable to include
all the functionality of an on-demand scanner. For example, such scanners may be
configured to perform heuristic analysis, recursive scanning of archived files (nested
zip files, for example), macro and polymorphic detection, disinfection, and on-the-
fly decryption of files using low-grade encryption algorithms. Clearly, accepting all
these options will have a processing overhead.

Another point in regard to on-access scanners is that, as with any scanning
software, the system is only as good as the definitions (scan strings) database.

C h a p t e r 6 : A n t i - M a l w a r e T e c h n o l o g y O v e r v i e w 1 6 1

The fact that resident scanners operate all the time does not mean that they update
themselves. Indeed, it is important to update on-access scanners more frequently
than on-demand scanners, since users tend to rely more on them and dismiss other
indications of virus infection.

Beyond the Desktop
All of the preceding types of antiviral programs are available in desktop, or stand-
alone, versions. Indeed, for many years, stand-alone antiviral software was the only
real choice, and network versions merely added some frills to ease updating of files.

LAN Servers
Back when LANs (local area networks) and viral programs were both fairly esoteric
phenomena, people used to ask if viral programs would work on a network. “Why
should they?” would be the reply. “Nothing else does”.

Well, times and technologies have changed. Incompatibility is no longer an issue,
and therefore no longer any protection. Within limits, viral programs will work, and
infect, on networks as well as on stand-alone machines. Indeed, stand-alone
machines are the minority in most corporate organizations. All modern operating
systems are to some extent multi-user, and the distinction between workstation and
server is no longer absolute.

LANs do have certain advantages. Boot-sector infectors, for one thing, will not
infect across networks. (Note, however, that we are not claiming that they cannot be
transported across networks.) Since LANs have cut down on diskette exchange and
“sneakernet”, the risk of infection from what was once the most successful class of
virus is vastly reduced. However, the risk has only been reduced, not eliminated.
And this reduction has little impact on the spread of file infectors and macro viruses.

Novell has been the target of a number of accusations in regard to antiviral
security. Understandably, the corporation has been a bit touchy in response. Let it be
said, then, that no known virus has successfully been able to subvert Novell’s security
attributes—when they have been properly implemented.

That said, it must be admitted that very few LAN administrators know how to set
up proper security. The establishment of appropriate rights, privileges, and attributes
is a task that not all mainframe systems operators understand, and few network
managers take the time to ground themselves thoroughly in security concepts.
Microsoft does no better; some security experts have opined that the reason it is
so hard to understand the Microsoft networking security model is that Microsoft
networking does not actually have a security model.

1 6 2 V i r u s e s R e v e a l e d

C h a p t e r 6 : A n t i - M a l w a r e T e c h n o l o g y O v e r v i e w 1 6 3

Network security, over the years, has also received some knocks from deliberate
attacks. A group of Dutch hackers wrote a program that would look for passwords
on the network traffic. Another program exploited an unusual bug in the LOGIN
program in an attempt to gain SUPERVISOR access. Both of these programs,
however, required physical access to a node on the network for a length of time.
Neither was in any way viral.

One Novell-specific virus is known. The GP-1 virus is rather old. It does not
manage to break Novell’s security and infect properly protected programs. It is
designed, however, to reside on workstations and collect passwords as network users
log in. These passwords are then broadcast on the ‘Net, supposedly to a receiver
program. The receiver program has never been found. (This circuitous means of
stealing passwords seems to be an unnecessary bit of overkill: it is quite easy to
write a program to obtain any passwords transmitted over an Ethernet backbone.)

Most microcomputers in the business environment nowadays are connected to
some form of LAN, and the majority of these are also connected to the Internet. You
may have noted that the discussion of antiviral software so far has not addressed the
use of local area networks. There are two reasons for this. The first is, basically, that
any antiviral program can work in a microcomputer attached to a LAN almost as
easily as in a microcomputer that is not attached. The second is that LAN-specific
antiviral programs follow the same basic operating principles as their desktop
counterparts. Indeed, on Microsoft networks, the server and the workstation might
be running essentially the same operating system and the same anti-virus program.
The same does not apply to Novell networks, by the way. Server-side scanning in
such an environment is done with a Novell native executable (a NetWare Loadable
Module, or NLM). In principle, though, any server that can be mounted as a virtual
drive (irrespective of its native operating system) can be scanned with workstation
software from an account with appropriate privileges. Indeed, this strategy was at
one time the only way of scanning most servers.

Many LAN functions do not vary among systems. For example, email is almost
universal these days. Some of the specialized LAN anti-virus programs use email,
text paging, and SMS (Short Messaging System) messaging to alert the administrator
to a security breach or possible infection. This is an admirable feature—and one that,
with a minimum of time and batch or script programming skills, can be duplicated
on many networks. (The more homogenous the network environment, the easier it
is in general to introduce such technologies reliably.) The same can be said of
centralized logging of scanning and audit reports, updating of scanners from a
central resource, and a number of other supposedly advanced features. One need not
accept an inferior antiviral product simply because it has LAN capabilities. In fact,
since most developers assume a Microsoft network when designing specialized

1 6 4 V i r u s e s R e v e a l e d

network anti-virus distribution and remote management software, organizations that
haven’t wholeheartedly embraced Windows as a server operating system are often
forced to introduce home-brewed substitutes.

The network administrator can find many uses for LAN features and functions.
These do not necessarily require specialized programs for LAN antiviral protection,
although small utility programs might assist an administrator for some uses. Each
function requires some level of programming skills, and some features and functions
may tax the limits of intermediate-level computer users. However, LAN
administration is not for the faint of heart anyway.

So you want to make sure that all copies of your antiviral programs are kept up
to date? Well, why not just have one copy? It may be possible to call the antiviral
program from the server with a memory-resident program on the workstation.
Unfortunately, this approach can be network-intensive.

If you really do need copies on each machine, there are a number of ways to
ensure regular updates. A solution could be as simple as invoking a copying process
when a user signs on to a client-server LAN. In fact, administrators routinely use
such techniques as a fallback for sophisticated self-updating mechanisms that don’t
always work. Small utility programs could compare file dates, or a copy program
might only copy a source to a destination if the destination is older than the source.

If you want to collect all audit or report logs to one location, nothing could be
simpler. Invoke the antiviral program from a batch file. The batch file will also
create a file noting the workstation, date, and time. You can easily append both the
identification file and the report file to a master report file in a central location or
server. Generally, this appending requires a simple copy function. If you have any
problem creating a master file, you can collect separate files in one directory, or in
subdirectories for each workstation.

Many antiviral programs will return one code or error level if they find a virus
and another if they don’t. You can use these codes to decide whether or not to send
a mail message. Voilà! We have an automated virus-alert reporting system that can
send a warning to the LAN administrator or to the security specialist. The message
can be a simple, “Come look at Larry’s machine”. Alternatively, the report log
generated by the anti-virus program could be written to disk and sent as well. Most
LAN email systems write messages as a text file in the first place. The log file can
simply be sent as a message every time it is run (similar to the collecting of reports
at a central location), or, since you really only want the exception reports, sent only
if the “found something” flag has been set.

It may be desirable to check for the presence or activity of resident activity
monitors or scanners. The better antiviral packages, which contain resident program
components, also contain programs that will check for the background program. You

TE
AM
FL
Y

Team-Fly®

C h a p t e r 6 : A n t i - M a l w a r e T e c h n o l o g y O v e r v i e w 1 6 5

can run these checking programs during login on a client-server network—and log
out the workstation user if the checks fail.

Intranet Servers
Generally, an intranet is simply a local or wide area network that makes extensive
use of Internet (TCP/IP, Transmission Control Protocol/Internet Protocol) and
particularly Web (HTTP, HyperText Transfer Protocol) technologies. Most of the
points relating to LANs apply also to intranets.

One additional point should be made: TCP/IP is a layered protocol. For example,
web pages may contain many different types of content, transferred by HTTP
standards. The HTTP-formatted material may be sent over the network within TCP
packets. The TCP packets are probably physically transmitted inside Ethernet packets.

This means that different types of data may be encapsulated inside other types.
Therefore, antiviral programs have to be able to analyse material in some depth,
particularly if a program is examining material on the fly. As we noted with
on-access scanners, the more layered the system, the more likely it is that scanner
developers will take shortcuts to avoid slowing down and blocking network traffic.

The most obvious point about an intranet server, though, is that like any other file
server, it can contain infective and infected files, irrespective of whether the server
itself (or its operating system) is vulnerable to the malware in question. You
therefore must protect the server with much the same anti-virus measures as you
would a LAN server. The most common intranet platforms are addressed by
anti-virus vendors as regards server-hosted solutions.

WAN Protection
LANs and intranets usually are controlled by a single organization. As one
progresses into the world of wide area networks (WANs), that control may lessen.
WAN links are generally provided by an outside utility, and may in fact be shared
among a number of enterprises. Therefore, WANs may entail additional security
considerations.

Most of these security vulnerabilities do not relate to virus infection or risk.
However, to the extent that outside users communicate with the network, there are
additional sources of infected files or objects, and administrators are obliged to take
appropriate measures.

Internet Servers
Aside from the problems of a layered network environment, there are few special
considerations in protecting an Internet server from virus infection. Arguably, if you
have vulnerabilities that allow someone to submit a virus infection to your server,

1 6 6 V i r u s e s R e v e a l e d

you have far greater security problems than virus infections. But virus infections
do happen.

However, you should bear in mind one factor when considering virus protection
for your Internet servers. A server will be distributing files and objects to users both
within and without your organization. As with any other file server, an Internet
server may carry material infected with latent viruses—code to which the server
itself may not be susceptible. When you are implementing server-side protection,
detection of native viruses is unlikely to be enough. Distributing an infected file can
lose you a lot of goodwill. Servers deserve extra protection on the basis that, by
providing infected files to outside users and customers, you are advertising that you
are not competent to protect yourself and others, and are therefore to be avoided.

Gateway Scanning
The theory is an obvious, and even logical, one: if you want to keep viruses away
from the desktop, examine everything before it gets to the desktop. Therefore, if you
scan all materials as they come through your gateway to the Internet, you can keep
yourself clear of all known viruses.

The idea is certainly attractive. You only have to install antiviral software at a
single chokepoint, and it will deal with everything—file viruses, macro viruses,
email viruses, and malicious web pages—before anything ever reaches your users.
Updating desktop machines becomes less important as long as the scanner at the
main entry point is up to date.

Unfortunately, the theory has a couple of problems. Diskettes, while not as
important as they used to be, still exist. Viruses can come into the organization on
CD-ROMs. And email viruses usually spread so fast that they have run around the
world 17 times before anybody has updated a scanner. (For this reason, the question
of the location of the scanner to be updated actually becomes academic. But it’s still
easier to update one gateway scanner than a whole bunch of workstations.) Still,
the argument holds that the best single point to protect is the desktop, since it is
the intended target of almost all viruses (including boot-sector viruses, which are
difficult to detect anywhere else). On the other hand, the stricture against putting
all the eggs in one basket also applies. A single-point solution is a single point of
failure, so it’s best not to think of this as an “either/or” proposition. Two layers
are better than one, especially if you use different products at the gateway and at
the desktop.

Still, gateway scanning can catch most carriers of infection. Nevertheless, you
should check a few points before you sign up. Be sure that you know what the
system will do when it finds an infection, and be prepared to deal with it. Does the
software just alert the administrator? Alert the user? Quarantine the file? Delete it?
Just stop working?

C h a p t e r 6 : A n t i - M a l w a r e T e c h n o l o g y O v e r v i e w 1 6 7

Real-time gateway scanners, like all real-time or on-access scanners, take
shortcuts in order to increase scanning speed. Remember that detection is a weakness
in all such products. Also note the performance itself. Gateway scanners have to
check everything that is coming into your LAN or WAN, and you need a box that
is big enough and sufficiently powerful to handle the task.

In addition, remember that Internet traffic is encoded, and therefore in a sense
encrypted, in a variety of ways. Make sure that scanning accuracy and performance
speed remain high when scanning encoded, archived, and compressed materials. The
software also needs to handle layers of encoding and nested compressed files. Unless
the package can deal with 8-to-7-bit conversions, uuencoding, xxencoding, MIME,
base64, zip, arc, arj, lha, and all the other possible file format complications, you
need to make stern decisions about quarantining or discarding files that can’t be
scanned. Otherwise, use your second-line defence at the desktop to plug the gaps.

Firewall Scanning
Firewalls have become the magic word in Internet security to many people. While
they are valuable and useful tools, they are not silver bullets. Firewalls are complex
and poorly understood utilities (or suites of utilities), requiring constant tuning in
order for them to remain effective. Like virus-scanning software, they only protect
against known attacks, and not all of those. Like a gateway scanner, they don’t
protect all vectors.

At its simplest, a firewall looks at where a packet is coming from, where it is
going, and what type it is, and then makes a send/trash decision. This type of
firewall is generally known as a filtering router. At a higher level, some firewalls
examine the packet type and then do additional analysis and negotiation on behalf of
the user. This activity is usually referred to as proxy or application service; the proxy
server is interposed between the client and the remote application server. However,
the same firewall can maintain both filtering and proxy services.

There are plenty of books on firewalls. The classic is generally thought to be
Firewalls and Internet Security by William R. Cheswick and Steven M. Bellovin
(Addison-Wesley, 1994), but the second edition of Building Internet Firewalls
by Elizabeth D. Zwicky, Simon Cooper, and D. Brent Chapman (O’Reilly and
Associates, 2000), is more thorough and addresses today’s technology. In any case,
we will not try to write another firewalls text here. We will, however, make two points.

Firewalls, especially proxy firewalls, do perform somewhat the same function
as virus scanners (both types of program are essentially filters), so adding the
functionality to a firewall does make some sense. However, the analysis done by
a firewall is not really the same as the full, byte-by-byte reading of an incoming
stream that a scanner does. In principle, a firewall is concerned with scanning packets
for source addresses, destination addresses, and port numbers rather than the

1 6 8 V i r u s e s R e v e a l e d

details of the whole stream. Even simple signature scanning requires that the data
stream is identified as a program and that the signature be found in the right place
(which implies assumptions about the form of the program). Therefore, adding virus
scanning to a firewall may seriously slow performance of the network connection as
a whole (this drag on performance is sometimes called latency).

In addition, note that firewall scanners are subject to all the same problems
and limitations discussed for gateway scanners. Some firewalls (Firewall-1 is a
well-known example) can be used with virus scanner plug-ins. Since anti-virus
technology at the perimeter works best with store-and-forward technologies
(especially email) where the user doesn’t notice reasonable latency, some vendors
have found it easier to separate the firewall and virus-scanning functions onto
separate servers. Sometimes the term viruswall is used to describe a firewall-like
server that focuses on real-time virus scanning rather than packet filtering, though
the term is often associated with one particular vendor’s product (Trend Micro).
It’s also increasingly common to find a third type of server somewhere near the
DMZ (de-militarized zone) doing content filtering (for spam, pornographic material,
and so on). Generally, an anti-virus product will be plugged in to such a product
(MIMEsweeper, for example) rather than the firewall. Recently, we have been
encountering the hideous term contentwall to describe such products. The complementary
functionality of these three types of product enhances security, as long as the servers
are sufficiently well specified and the network bandwidth is available.

In recent years, personal firewalls have become popular. These sometimes include
some intrusion detection capabilities, as well as packet filtering and filtering by
source port. This combination provides some potential defence against backdoor
Trojans such as NetBus, Sub7, and similar programs. However, for (fairly) complete
protection, most home users use such programs as complements to anti-virus
programs, not as substitutes.

Intrusion Detection Systems
The latest hot topic in security is intrusion detection. As with any “next great thing”,
there are a few good (and some really bad) books on the subject, in this case many
with pretty much the same title. Edward G. Amoroso’s Intrusion Detection
(Intrusion.Net Books, 1999) and Rebecca Gurley Bace’s Intrusion Detection
(Pearson Higher Education, 1999) are both excellent, while Intrusion Detection, by
Terry Escamilla (John Wiley & Sons, 1998), is merely a promotional pamphlet for
one commercial product. You might also be interested in some research by SRI
International posted at http://www.sdl.sri.com/intrusion/index.html and the IDS
FAQ at http://www.sans.org.

Intrusion detection is not firmly nailed down yet as a subject or specialty.
However, it shares many of the functional characteristics of activity-monitoring

C h a p t e r 6 : A n t i - M a l w a r e T e c h n o l o g y O v e r v i e w 1 6 9

software. It involves collection of data concerning activities, a comparison against
known dangerous activities in the past, and some analysis of vulnerability. Still,
activity monitors look at files on disk, whereas intrusion detection systems (IDS) are
concerned with entire networked systems, so the analysis is considerably different.
DDoS attacks and some types of worms/Trojans are often effectively detected in this
manner. However, consumers and even IDS specialists are sometimes misled by the
use of the term signature scanning in IDS and in virus detection into assuming that
the technologies are more similar than is actually the case. While further
convergence is likely, these are complementary technologies, not alternatives.

Outsourcing
Some Internet service providers are now offering scanning services, (or buying them
from third parties) such as MessageLabs. These services are essentially gateway,
firewall, or content scanners that operate offsite. Note that everything that applies to
the previous sections also applies to these scanners, but there is an extra consideration.
You don’t get to choose how serious the service providers are about your protection.

Outsourcing is less a matter of an alternative technology than of alternative
implementation. However, such attempts to extend virus protection beyond the
organizational perimeter, and graft such technologies onto the infrastructure of the
Internet itself, are having a noticeable impact on the tracking and detection of viral
threats, especially through email.

In addition to outsourcing email security, you can also outsource your complete
security requirements. Some companies will do a security analysis for you, and
then will undertake all the necessary management to take care of normal security
activities.

On the one hand, outsourcing such security elements is a terrifying prospect. Your
entire business is in the hands of strangers. They will control you completely. The
most basic of management tasks will be completely controlled by an outside firm,
and taking that control back, if you find you don’t like how the firm manages these
tasks, will be extremely difficult, and perhaps impossible.

On the other hand, most companies do not need serious security protection, as
evidenced by the fact that most firms currently have almost no security. Hiring
security can be very expensive, and it is difficult to judge the expertise of
professionals. An outside firm probably has more experience in more areas than
you can hope to hire. Nonetheless, we’ve talked to (and been patronized by)
consulting firms whose staff would clearly be more at home with a six-gun and
branding iron than a full suite of anti-virus software.

One thing to do before signing a contract with an outsourcing firm is to ensure
that you have developed your own security policy. This serves two purposes. First,

it ensures that you have decided what level and types of security you want. Second,
it will greatly assist in ensuring that you get what you want from the contract you
eventually sign, which should make reference to your policy.

Having a policy also helps you to evaluate security firms. If they try to take things
out of your policy or sell you on additional points, go back and do the policy process
over again, yourself. Under no circumstances should you let the firm that is bidding
for the security contract also define the policy.

Summary
By now you should have a clear idea of the basic mechanisms of malicious software
technology and of the technology available to counter them. However, knowing
what a word processor does is not, in itself, sufficient qualification to write a
best-selling novel. Anti-virus software is an essential tool, but doesn’t comprise
a security architecture.

Clearly, even if you intend to farm out your malware management function to a
third party, you will need to understand what that function is before you can evaluate
the fitness of that party to exercise it properly. By a remarkable coincidence, that is
the subject of the next chapter.

1 7 0 V i r u s e s R e v e a l e d

CHAPTER

7
Malware Management

171

IN THIS CHAPTER:

Defining Malware Management

Cost of Ownership Versus Administration Costs

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

1 7 2 V i r u s e s R e v e a l e d

We’d like to think that our previous chapters have added substantially to
the malware-related information available to the systems professional.
However, that additional information, although needed by anti-virus

professionals and more accurate and/or up-to-date than the information to be found
in most books on the subject, is similar in kind to that offered in other works.

This chapter, however, deals with management of viruses and other malware as
a formal function, within a formally defined organizational infrastructure, and that
perspective is rather more novel. Some client organizations have long been aware of
the need to define such a function, but have not necessarily done so successfully, for
lack of reliable information.

Various writers have considered parts of that function in some detail—ready-
made security policies often include an anti-virus policy, though nonspecialists in
the field, even security practitioners in other fields, may mislead by giving advice
based on misconceptions. In any case, it is the task of the individual or unit
responsible for virus management to apply policies and strategies in a technically
sound manner.

Defining Malware Management
Virus management is often seen as (primarily) a desktop issue. Historically, this
makes some sense. Most viruses target the desktop in some way, though this is less
true in the age of the worm. Furthermore, desktop software was, for a long time, the
primary focus of most anti-virus product ranges, and maintenance was often seen as
a conceptually simple matter. A secretary’s time would be allocated to checking
incoming media and to distributing update diskettes to individuals, who would apply
the updates themselves.

In fact, the virus/malware problem ranges across several areas: desktop
management, LAN management, and Internet/intranet/extranet management, as
well as less obvious areas such as human resources management. Thinking of
anti-virus protection as a desktop issue because that’s where the software is visible
to everyday users is as inappropriate as treating UNIX support as a desktop issue
because the desktop is where the telnet client is located. However, organizations that
don’t run to a full-time security team, let alone a dedicated virus management team,
increasingly consider malware management a network/systems issue. This is a more
practical approach in a modern environment, where most viruses and worms are
email-borne rather than diskette-borne, and distribution of anti-virus updates over
networks is taken for granted. Clearly, individuals cannot be relied upon to respond
appropriately and in a timely fashion to threats spreading in minutes and hours rather

C h a p t e r 7 : M a l w a r e M a n a g e m e n t 1 7 3

than months. Furthermore, the convergence we have already noted between classic
virus technology and other forms of malicious code traditionally addressed by
security teams and network administrators argues for a corresponding functional
consolidation.

However, grafting the anti-malware function onto the normal network and
systems management functions (even when seriously focused on other aspects of
security) is insufficient. Instead, by regarding and defining the malware problem
globally, we can work towards holistic solutions that cross boundaries within the
organization. This approach is much more reliable than concentrating on the piecemeal
relief of individual symptoms. We can best achieve a global definition by considering
the anti-virus management function independently of assumptions about who is
responsible and where those responsible are situated in the infrastructure. Only then
is it practical for the individual manager to consider how to apply that functionality
within the security architecture of an individual organization.

Security literature has insufficiently analysed what constitutes a comprehensive
malware-management function. General security books rarely consider it at all: they
assume anti-virus management to be a matter of (somehow) distributing the software
and running it (sometime) to check incoming media or to remove an infected file.

NOTE

Security books almost invariably assume that virus outbreaks are associated with parasitic file
viruses, even though historically the most widespread viruses have tended to be boot-sector
viruses, macro viruses, and worms, which are not necessarily parasitic.

Specialist anti-virus books (even the competent and fairly current ones) tend to
focus on technology rather than strategy, and are often vendor-oriented. We would
prefer you to think of malware management as a vendor-independent, enterprise-wide
element of the organizational infrastructure. Anti-virus vendors usually fail to address
certain significant aspects of malware management, while others require more than
an out-of-the-box solution. An individual or team with appropriate expertise and
experience must tailor any solution to the needs and attributes of the client organization,
irrespective of whether the individual or team works for the client organization, an
anti-virus vendor, or a third-party consultant.

Management of viruses and other malicious software can be divided into two main
areas: proactive measures and reactive incident management.

Proactive Management
Proactive management includes three main areas: strategy, systems and network
administration, and development.

Strategy
The strategic subfunction can be further subdivided into a number of areas:

� Information gathering

� Risk analysis

� Formulation and implementation of standards, policies, and guidelines

� Education and training

� Integration of malware management into the IT infrastructure

Information Gathering and Risk Analysis The broad principles of the analysis-audit
feedback cycle are well known and well documented in terms of general security,
and we don’t intend to consider them at length. The basic principle is to consider the
current security status of the organization (security audit). This match ignites a fiery
cascade of documentation: business impact analysis, security policy, security plan,
disaster recovery plan, another security audit, and back round the loop (perhaps we
should say Catherine Wheel).

Risk analysis in the malware management field tends, historically, to be threat-
oriented. You compile a list of possible attacks, and then assess the system’s degree
of exposure and vulnerability to each. The main drawback to this approach in the
virus context is that it’s better at assessing vulnerability to known risks than to
unknown risks. As we’ve seen with macro viruses, DDoS attacks, and email-borne
worms, a hitherto unnoticed or insufficiently anticipated loophole may take months
or even years to block completely.

Mission-oriented risk analysis is more generic: instead of compiling a list of
specific attacks, the analyst examines systems for potential loopholes (security fault
analysis). Threat analysis examines the capability of a potential attacker to succeed
with an attack. Risk reduction aims to ameliorate the exposure to weaknesses
identified by the preceding analyses, while security evaluation provides a metric for
testing the effectiveness of implemented measures.

Risk analysis in this context is concerned with assessing the likelihood of security
breaches and their possible impact on the business if and when they do happen.

Information gathering is a more general, less formal term, and may include risk
analysis. It includes such exercises as keeping up with trends in malware and anti-
malware technology, strategic and tactical thinking, market trends, legal requirements
and other external standards, and product certification status. Tracking such product
data actually constitutes the preliminary stage of product evaluation. However,
keeping up with anti-malware technology is by no means the same as keeping up

1 7 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

C h a p t e r 7 : M a l w a r e M a n a g e m e n t 1 7 5

with the market. Sometimes a vendor’s marketing department makes claims
that outstrip the capabilities of the product, or even its readiness for shipping.
Information resources for tracking these data are considered in Chapter 8.

Most organizations keep particular watch on products for which they have a
current licence. The scope and functionality of a given utility may (in fact certainly
will) change, for reasons including the following:

� Features are added or removed. For instance, over the last few years, some
products based primarily on a known-virus scanner have moved away from
providing additional generic tools such as change detectors, behaviour blockers,
behaviour monitors, and goat files. On the other hand, they have added other
features such as on-access scanning, recursive scanning of compressed files,
macro heuristics, disinfection of infected files, and other features we’ll
consider in more detail when we discuss product evaluation in depth.

� Older platforms or configurations are no longer supported. Examples of such
platforms include Windows 286, PC/XTs, and Novell 3.x and earlier.

� Products are removed from or added to a product range. Linux scanners are
increasing in popularity, while DOS scanners and Mac scanners that support
68xxx processors and Mac OS 6.x are hard to find.

� Anti-virus professionals who regularly evaluate anti-malware programs
probably do so at intervals roughly coincident with the expiry of current
licence arrangements. Some reevaluate a program only when extreme
circumstances, such as the withdrawal of a core product or inability to meet
service levels, force them to do so. Lazy evaluators obtain a number of
pseudo-benefits, such as: the avoidance of financial and opportunity costs
of regular or rolling (continuous) evaluation, deinstallation of obsolete
software, and installation of new products.

� A more stable environment (as long as the virus software does work) that
doesn’t require rejigging of system policies, configuration, and user training.

� Larger discounts to encourage brand loyalty.

However, reevaluating only when inertia is no longer enough entails trusting the
good faith of the vendor and its competence in fields such as development and
maintenance. Development competence is reflected by the vendor’s proficiency at
meeting new types of threats. Maintenance competence is reflected by such features
as regular definitions updates that meet all current threats, and support of older
configurations and platforms.

Vendors often emphasize their timely response to new viruses. Where once they
offered quarterly or (at extra cost) monthly updates, they may now offer weekly,
daily, or even hourly definitions updates, or simply provide updates as often as they
are needed. Responding in a timely manner matters when a new virus or variant,
especially a destructive one, suddenly becomes widespread through distribution via
newsgroups and mailing lists, for instance. While someone has to be the first to be
hit by a new “In The Wild” virus, a good and up-to-date anti-virus product, safe
computing practices, and a closely monitored global early-warning system can
combine to restrict the impact of incoming viruses. Indeed, many administrators
are now becoming as reliant on generic blocking of suggestive filenames such as
badfile.jpg.vbs or “badfile.txt .exe”, and on formal or informal information
exchange networks such as AVIEN (http://www.avien.org/), as they are on vendor
information distribution and timely updates.

However, the appearance of a new type of threat can expose computer users to
malicious code known to be already In the Wild while vendor labs put together safe
and effective approaches to deal with the code. Informed system administrators were
aware of the macro virus problem almost as soon as WM/Concept appeared. Some
people inside and outside the security industry were aware of the potential for such
an attack long before that first successful “data” virus. However, it took some time
(and reverse engineering) before vendors were able to implement effective scanning
of the complex and sparsely documented Microsoft Office file formats.

The appearance of seriously polymorphic viruses seems to have been a significant
factor in the disappearance of some anti-virus products from the market, while the
AutoStart worm had a similar effect on Macintosh packages. System administrators (or,
in our terminology, malware managers) were for a while reliant upon home-brewed
WordBasic and Visual Basic for Applications (VBA) solutions, such as disabling
auto macros and filtering generically for the presence of all macros.

The problem is not only with the varying reaction times of vendors, though, but
with the perceptions of consumers. The “Viruses & the Mac” FAQ in Appendix B
was written to raise awareness of the cross-platform potential of the macro virus
problem. It has been six years since the appearance of the first In the Wild Word
macro virus and the warnings that such viruses operated across operating systems,
yet we still find Mac users who don’t realize that their chosen platform is not
invulnerable. Now, however, they are also confused by the differences between
Visual Basic scripts (to which they are not generally vulnerable) and VBA macros
(to which they may be). Vendors must bear some responsibility for these phenomena:
marketing departments are much better at talking about strengths than weaknesses,
and products are inconsistent in the range of threats they detect (especially across
platforms). However, customers are (despite the frequently voiced suspicion that

1 7 6 V i r u s e s R e v e a l e d

anti-virus vendors write most viruses) often inclined to believe that the vendor
knows best. Furthermore, there’s often a wide divergence between the ethically and
technically informed observations of anti-virus researchers and the pronouncements
of the marketing department.

NOTE

Curiously, some computer users go to the opposite extreme, and trust the virus writer before the
vendor. Some virus writers and distributors have noted this tendency with glee, pointing out that
it is not they who benefit financially from their creations, but the vendors. This view seems to go
hand in hand with the self-image of virus writers as performing a public service by educating their
victims. But that’s enough surrealism for one note.

Policies, Standards, and Guidelines There is considerable disagreement on how useful
policy documents are, depending on the environment. Even when ignored by staff
and management alike, these documents define and, in a sense, underpin the whole
anti-malware strategy. How effectively and enthusiastically they are accepted and
implemented determines how successful they are in practice. However, the formulation
process, by defining the aims of the organization, is an important milestone on the
road to implementing a security architecture.

Policies define what is to be protected (and why), and define the responsibilities
of concerned parties. While the fine detail of malware-related policies is considered
in Chapter 11, areas of concern might include the following:

� General security policy (anti-virus/anti-malware policies should not be confused
with general security policies, but shouldn’t be held in isolation, either)

� Anti-virus/anti-malware policy

� Acceptable use of computing resources

� Acceptable use of networking resources

� Acceptable use of the Internet

Standards define platform-independent codes of practice and provide a means
of measuring performance. They may evolve in response to the need for conformance
with internal policies, external standards, and certification processes (ISO 9000
and ISO 7799, for instance). They also respond to the requirements of legislation,
such as data protection legislation and laws relating to computer system and
network abuse.

Guidelines define how standards are implemented in specific environments.

C h a p t e r 7 : M a l w a r e M a n a g e m e n t 1 7 7

1 7 8 V i r u s e s R e v e a l e d

NOTE

Policies, standards, and guidelines (however their content is defined) should be sensibly integrated
into a properly maintained document tree (a structured body of documents classified by function
and appropriately cross-referenced—in some organizations the term document library is
preferred). At the same time, it has to be emphasized that documentation is a foundation, not
a complete building.

Education, Training, and Information Provision Education generally takes two main
directions:

� It provides necessary information (urgent alerts, policies, information on
procedures and protocols, etc.).

� It offers training, which may range from general user education in “practising
safe hex” (through broad training in remote diagnosis for front-line support
staff, and strict hygienic practices for engineers) to specialized training for
individuals, or, in larger organizations, for response teams involved with
incident management.

Part of the malware management function is not only to keep abreast of malware
and anti-malware technology (self-education), but also to arrange internal and
external training and information flow. This function may include authoring and
delivering in-house courses, arranging third-party training, outsourcing educational
services, and so on. Particular targets may include IT support staff, Help Desk staff,
dedicated response teams, and management (inside and outside the IT department).

NOTE

If you can get the message over to the Board of Directors, educating users is a cinch. In fact, you
might want to consider exploiting your gifts in other fields, such as herding cats and nailing jelly
to walls.

Other channels for disseminating information may include online services such as
mailing lists and the intranet, hardcopy documentation, and in-house periodicals. An
established and coherent document tree, available across the whole organization, is
an instrument not only of disseminating information, but of enforcing policies such as:

� Desktop anti-malware policies and configuration

� Network anti-malware policies and configuration

� Acceptable use of Internet resources such as the Web, email, and chat

Systems and Network Administration
Responsibility for virus management is often a subfunction of system security in
general. This subfunction is inevitably part of a system manager’s job description.
There is no absolute boundary between systems administration and system security.
Tying together desktop administration, network administration, and systems
administration is correct in principle, but often breaks down in practice in the
security area, especially in the rather specialized area of virus management.

A UNIX administrator, for instance, may and should be well acquainted with
issues relating to maintaining system and file integrity on servers. However, working
within a comparatively virus-free environment may blind an administrator to the
perils of latent viruses. As we’ve already pointed out, a UNIX box used as an ftp
or HTTP server may be a channel for secondary infection through files including
code that can’t execute at all under UNIX. NT administrators are also at risk of
underestimating the direct and indirect vulnerabilities associated with their chosen
platform.

Anti-virus/anti-malware tasks tend to be divorced from the mainstream of
security, and the same terminology can be applied quite differently according to
context. The worms detected by some PC or Mac desktop software are by no means
the same threat as was posed by the Internet Worm. An enthusiastic advocate of
intrusion detection and a virus management specialist may be talking about two very
different phenomena when they talk about signatures. The term Trojan horse in the
context of multi-user systems has largely been associated with password stealing.
In the context of desktop machines, the emphasis has tended to be on programs that
trash disks or file systems. This is not to deny that threats against both confidentiality
and availability may be encountered in both contexts.

The administrator should be aware of a number of considerations relative to virus
management:

� The need to protect server-side systems and applications from direct infection.

� The need to protect shared files/directories from direct infection.

� The need to protect against latent viruses—that is, preventing inadvertent
distribution by protecting ftp servers, intranet servers, shared network volumes,
and other services against malicious software that cannot activate on the server
platform. These considerations must take into account both inbound and
outbound situations.

These listed factors may point to a need to establish communication between
disparate units. For instance, where virus management is seen as a desktop issue,

C h a p t e r 7 : M a l w a r e M a n a g e m e n t 1 7 9

1 8 0 V i r u s e s R e v e a l e d

the latent virus issue may be missed altogether, because no one has the authority,
responsibility, or even the technical overview to come to the right conclusions and
act accordingly.

Virus management comes within the domain of conventional systems administration
(or overlaps with it) because of the need to address such issues as:

� Limiting sharing of files (and therefore of file-infecting viruses—in this
instance, we can regard macro viruses as a special case of file infection)
through access control.

� Limiting transitivity through access control—that is, reducing spread by
reducing the possible routes by which a virus can fan out.

Clearly, the principle of least privilege applies, by which the administrator assigns
the lowest possible level of privileged access to all account holders. By “the lowest
possible level”, we mean the lowest level compatible with the requirements of each
user’s job. For example, an account holder who needs to read shared data files may not
need to be able to modify or delete those files, and will be given read-only permissions.
In general, only systems administrators and operators need write access to shared
applications, and even then, good practice is to use a privileged account only when
specifically logging on to do systems work. This principle has a direct consequence
in the anti-virus context: if an infected account holder doesn’t have write access,
neither does the virus. Thus, the administration of user and group policies and user
authentication through passwords has a direct influence on the system’s susceptibility
to virus infection.

NOTE

Restriction of privilege can have an adverse impact on automation and transparency. For example,
making objects in Microsoft Office read/execute only will increase the need for education on how
to answer prompts that result, since MS Office modifies various program files that traditionally
shouldn’t require write permission. We should therefore stress the necessity to determine and
review appropriate levels of access control—being aware that they may have residual effects in
some applications.

The anti-virus administrator’s sphere of responsibility within the organization
extends far beyond the desktop and workgroup to the LAN file server, internal ftp
server, intranet web server, and internal mail services. Looking beyond the perimeter,
probably no anti-virus professional in the 21st century can afford to ignore Internet
mail services, inbound or outbound. An outbound virus may harm the organization’s
reputation more than an inbound virus harms the organization’s data. The problem is

not only with outbound infected messages, but also outbound traffic resulting from
the infection—such as LoveLetter’s attempt to connect to an outside resource and
send information to remote locations. While rebroadcasting a virus is not inherently
embarrassing, it does expose and publicize the company’s vulnerability to outsiders.
It may also provide a method to come back into the enterprise network through a
backdoor (as allegedly occurred with a recent server at Microsoft). Only administrators
with absolute confidence in their desktop product and in the adherence of their
customers to safe computing guidelines can afford not to protect the mail gateway.

Other Internet and extranet services also pose risks. Most organizations are both
consumers and providers of SMTP (mail), ftp (file transfer), and HTTP (Web)
services, and possibly others such as chat and NNTP (USENET), so malicious code
can go out as readily as it can come in. The malware manager may not have control
over content on web servers and the like, but needs to be in close contact with those
who do. Even if the manager has no control, he or she may be able to force some
comparisons between known correct web content versus the current state of web
content, to detect unauthorized or inappropriate modifications.

Defence in depth entails the use of mix-and-match anti-malware measures,
integration of different technologies such as intrusion detection, on-access and
on-demand virus scanning, and content analysis, and use of similar software at
different locations. It may also entail the use of more than one product line
performing the same essential function. We address the issues of best practice
and multilayered protection in Chapter 11.

Nor is this the only area in which malware management overlaps with other
aspects of security. The association of virus infection with pirated software has
been overstated, but exists nonetheless. Regulation through policy and by technical
means of software auditing and metering lessens the associated risks.

Business continuity plans (BCPs) or disaster recovery plans (DRPs) may have
to take into account the specialized risks associated with the action of malicious
software. A BCP starts off from the list of possible scenarios brought to light by
risk/business impact analysis, and allocates operational and administrative
responsibility for dealing with those scenarios if they arise. Operational issues
include, for instance, working through predefined protocols such as traversing
a telephone tree, with each node being a person or unit with a need to know.
Administration issues include such factors as relocation, insurance, replacement
kits, and data restoration or re-creation. The latter may be of particular importance
where malware has resulted in the loss (or, worse, gradual corruption) of data.
Clearly, simple restoration from the most recent backup will not suffice if a slow-
burning data diddler is known to have left its footprints.

C h a p t e r 7 : M a l w a r e M a n a g e m e n t 1 8 1

1 8 2 V i r u s e s R e v e a l e d

NOTE

Data diddling is a term commonly applied to the unauthorized alteration of data. We regard this
as being of particular concern when the diddling consists of long-term, inconspicuous, and often
random modifications, because of the difficulty of returning the data to a pre-diddled state.

Most viruses (but not all malware) target the desktop. Historically, the priority
has been to protect the desktop, despite the difficulties of updating, distribution,
and maintenance. Gateway protection has long been regarded as a highly effective
supplementary defence for an organization that can afford the extra software and the
performance overheads. (The better the network and hardware specifications, the
less that cost and overhead are issues.) However, this supplementary defence can’t
be a complete substitute for desktop protection. After all, a high proportion of
malware still gains access via removable media. Other danger areas include:

� Sharks in the modem pool (any modem connection, even a corporate dial-in or
dial-back connection, is likely to constitute a hole in the firewall)

� Home machines with concurrent connections to other providers whose security
is an unknown quantity

� Web-hosted email, such as Hotmail

� File/disk transfer between office and home, where home may also involve
files/media traded with school, friends, or other businesses

� Special risks associated with road warriors, whose systems may rely on
intermittent direct connection to the corporate network for anti-virus updates,
and may be connected to all sorts of unsafe systems when away from the office

Server protection is an extension of desktop protection as well as a server-side
issue. If installed and configured appropriately, it can offer early warning of desktop
problems on specific systems, and a tool for distribution of updates (for example,
through login scripts). You can still install, distribute, and update anti-virus and
anti-malware software by performing one-to-one installations to individual desktops.
However, most modern organizations can perform these tasks more efficiently by
using the network as a channel for distribution from a central resource, using pull,
push, or hybrid distribution models, such as the following:

� Email

� Snailmail (remote units, home workers)

� Pull from a central repository (ftp, HTTP, and automated mail list)

C h a p t e r 7 : M a l w a r e M a n a g e m e n t 1 8 3

� Push from a central repository using remote administration software (provided
by the vendor specifically for anti-virus administration, or by a third party for
a variety of remote administration tasks)

� Update from login scripts

� Remote management systems

� Pull from an external source, such as a vendor’s web site or bulletin board

� Push from an external source, such as a vendor’s update mailing list

Development
Many organizations do not do a hands-on evaluation of anti-malware software.
Instead, they rely on third-party reports from consultants and comparative reviews
in magazines to feed their initial short list. Such organizations then filter the final
candidates by selecting a product based on criteria such as market share and cost.
Clearly, this isn’t what we mean by development.

Hands-on evaluation can range from skimming the manuals to conducting
configuration testing with limited detection testing, perhaps using the EICAR test
file or a virus collection. We will discuss detection testing in Chapter 9, and will
note here that large-scale detection testing is not necessarily the best practice. As
Bruce Burrell remarked in a 1997 Virus Bulletin conference paper, “...testing is not
for general users: it should be done by trained anti-virus professionals”. To this
statement we would add that there is also a need for a fully resourced test environment,
resembling but insulated from live production systems.

All but the largest corporate institutions tend to regard malware management as a
fairly low-grade occupation and resent engineers spending time on such issues that
they could instead spend changing printer cartridges. Comparison of installation and
update rollouts, as practiced by anti-virus vendors with an outsourcing service and as
practiced by corporations in-house, indicates quite a different sense of priorities.
Vendors are sensitive to the constraints of an accelerated development cycle, since
they may have to produce stable definitions files, patches, or recompiled executables
with a frequency and regularity inconceivable in other areas of software development.
Long beta programs are strictly reserved for new products and major upgrades.
Minor updates and patches might be released monthly, weekly, or even more
frequently, and vendors are often painfully aware of the fragility of their current
product. Perhaps for this reason, they tend to favour a protracted testing phase when
they actually roll out an upgrade or update on a customer’s site. Customers who do
their own rollouts, on the other hand, usually have more faith in the stability of their
chosen product, and are happier to take shortcuts. It’s surprising that more disasters
don’t occur, considering how often a product is supposed to “just work”. In fact, in a

1 8 4 V i r u s e s R e v e a l e d

sane environment, development should be an ongoing process. The following list
summarizes the elements of the development function:

� Product evaluation

� Configuration testing (ease of installation, configuration, and removal)

� Function testing

� Performance testing (detection rates, transparency)

� Installation/rollout/update testing

� Pilot schemes

� Compatibility testing

� Incident management testing

� Investigating and meeting threats that the market doesn’t yet address

Reactive Management
Reactive management of malicious software is essentially incident management—
firefighting, in a word, from the logging of a problem with the Help Desk, through
identification of the nature of the problem as malware-related, to taking appropriate
remedial action and post-traumatic documentation. Thus, reactive management of a
problem may include implementing proactive measures (technical, administrative,
and educational) to prepare for the next problem, building on experience.

Incident Management
The precise meaning of “appropriate” might vary widely, according to the nature
of the incident. An incident might be a hoax alert, a known threat identified at the
point of entry and before the malicious code can be executed, a known threat
identified post-traumatically, or a completely new threat. The last case presents
particular problems in identifying the nature of the threat and taking the necessary
countermeasures. A threat that uses a previously unexploited loophole and doesn’t
broadcast its presence too soon with a conspicuous symptom may evade discovery
for many weeks.

The incident management function can be split into many steps:

� Reporting and logging an incident, and allocating it to the appropriate team
or individual.

� Confirming the existence of a virus, Trojan horse, or other threat, if necessary
by submitting samples to a vendor or other research facility.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 7 : M a l w a r e M a n a g e m e n t 1 8 5

� Disinfecting a virus, where practical, or removing an infective or otherwise
malicious object.

� Dealing with direct damage where malicious code has been executed before
diagnosis.

� Recovering damaged files or file systems.

� Backing up or restoring data when recovery by repair is unfeasible.

� Handling forensic issues—finding the breach that allowed the incident, and
taking appropriate action to plug it. This may include punitive action against
individuals, though we don’t recommend punishing the victim as a morale-
building exercise.

� Dealing with the direct actions (damaging or otherwise) of the virus payload or
infection mechanism; for example, installing scripts that will collect possibly
confidential data, or information about vulnerabilites and potential entry points,
and send it to remote locations. Understandably, users really want to perform
a single point of detection/repair. Sadly, this is no longer enough. Incident
management and response require more than using an anti-virus product and
backup media. They might entail putting in outbound blocks at the firewall/router,
monitoring for access to specific sites as indications of infections, and
looking for, altering, or removing ancillary files and system/registry entries
that the malware’s own installation process may install or modify.

� Advising sources of infection that they have a virus problem, and alerting those
to whom the infection may have fanned out subsequently that they, too, may
have a virus problem.

� Alleviating secondary damage (limiting damage).

� Discouraging panic responses and inappropriate measures.

� Discouraging damage to morale, such as scapegoating of victims.

� Addressing external fan-out of infection risks that might harm corporate
goodwill and damage the organization’s reputation, or even inspire litigation.
The malware manager must either try to reverse the effects, or put the matter
into the hands of those who are better able to limit the damage, whether the
effort requires simple public relations, legal, or technical measures.

After recovery, the next stage is assessment. What lessons has the organization
learned, and can it avert a similar situation in the future by blocking an entry point or
reconfiguring malware-management software? Finally, the incident documentation is
completed. This may simply be a matter of signing off a trouble ticket from the Help

1 8 6 V i r u s e s R e v e a l e d

Desk. Sometimes it may entail a one-off report to a line manager or someone further up
the management hierarchy. Often it will involve adding an entry to a database, for use in
the compilation of subsequent routine reports. Metrics are important here when you are
asked to provide expanded incident logging information. How can you tell if your AV
product or your other efforts are working if you don’t record some basic metrics about
the situation, such as point of detection, file loss, time expended, and financial impacts?

Incident management isn’t always so dramatic, of course. Characteristically, it
often involves dealing with false alarms and hoaxes, but the basic steps will be much
the same. Indeed, the damage from an uncontrolled hoax may be far greater than that
from an initially undetected but comparatively mild virus attack.

NOTE

Incident management, of course, has a proactive dimension, in that the better you design your
incident management initiative, the more effective it’s likely to be—although that effectiveness
is likely to derive in part from (often painful) experience.

You need to ask a number of questions when designing incident management
protocols:

� How are problems reported?

� Who deals with them?

� How do first- and second-line support staff interact?

� Who signs off a completed job?

� How are statistics maintained?

Cost of Ownership Versus Administration Costs
The functions and subfunctions described in the preceding section do not have to be the
sole province of one individual. In a large organization, some sharing of routine tasks
among teams is inevitable, and indeed desirable. Nevertheless, effective incident management
demands expertise, authority, and resources (a sufficiency of finance and manpower)
in proportion to the size of the organization and the vulnerability of its systems.

Administering anti-malware technology can be seen as a series of attempts to
strike a balance between conflicting factors, such as the following:

� Cost of potential damage versus cost of ownership of the software

� Functionality versus transparency

� Bandwidth versus ease of administration

C h a p t e r 7 : M a l w a r e M a n a g e m e n t 1 8 7

Cost of ownership is rather conspicuous—it’s hard to pass off anti-malware
precautions as anything but a cost centre. The accounts ledger shows money going
out to the vendors, but no incoming revenue.

Metrics can be crucial for showing trends, potential improvements or reductions
in exposure versus infections, and the like—but only if you have metrics before,
during, and after implementations of new processes and products. Metrics can then
help quantify prevention of damage when compared to incidents that occurred prior
to a certain set of implemented processes or products.

Potential damage defies quantification: the more successful an anti-malware
strategy is, the less there is to show for it. Indeed, anti-virus vendors currently seem
to find that total transparency is a particularly saleable concept. As we’ve seen,
though, transparency is illusory unless you have complete confidence in the ability
of your chosen software to handle all eventualities appropriately. Sadly, we have
never quite managed that leap of faith. The alternative is to accept one of a number
of compromises:

� Trust the software and live with its deficiencies, repairing them as best you can
after the event.

� Be sceptical. Test at the evaluation stage, test before the rollout, and keep
testing throughout the life cycle of the software. Live with the cost of
scepticism, and hope you can justify the cost by pointing to occasions where
caution has forestalled a crisis.

� Trust but verify. Test at evaluation and rollout, and test regularly but not
obsessively afterwards (unless you really have no other calls on your time).

� Hope that something doesn’t go drastically wrong at a time when you’re
looking the other way.

Testing is crucial; experience shows that while a deployment scheme may work
in the lab and in pilot tests, it may not work on all systems at all times—typically
failing during an important update. It’s not unusual—or unreasonable—to undertake
random checks of the desktops and other systems to see if the protection status and
configurations are in place as they are intended to be. It is not uncommon for
automated deployment schemes to be thwarted by users who have their computers
powered off during a crucial update. Sometimes the users may not log off, causing
login script–based updates to be left in a hibernation state of sorts. Recently we
came across an instance where a LAN server scanner could not be updated: an
unprivileged user’s zombie process had a lock on the on-access component, so
attempting to replace it resulted in a sharing violation. Assuming that all systems
will be in the state to which they are automatically updated leads to a false sense
of security.

1 8 8 V i r u s e s R e v e a l e d

Hopefully, one of these compromise positions will result in a comparatively
transparent experience for the everyday user, but will tend to be at the expense of
the administrator’s enhanced need for therapy. Maintaining transparency is often an
administrative nightmare. Bulletin boards, newsgroups, and mailing lists dealing
with these issues often feature posts from computer users who assert that their
chosen product is the best because they’ve used it since the fall of Troy and have
never had a virus. Realistically, these users’ belief that they have never had a virus
doesn’t necessarily mean that they actually have not had a virus. It simply means
that the user’s product has not detected any virus. This could be because there’s
never been a virus, but it could also be because the product is:

� Obsolete or otherwise useless, and can’t detect any of the viruses that have
come a-calling

� Misconfigured and can’t actually detect anything

� Configured to disinfect any visiting virus automatically, without making any
attempt to notify the user except to write to a log file that no one ever inspects
because no one knows that it exists

The last possibility may be the most preferable, but it’s far from ideal, and begs
a number of questions. Does the product dependably identify malware? Does it
disinfect properly? How does it deal with overwriting viruses, Trojan horses, or
jokes? Is it generating false alarms and removing or corrupting innocent files? How
well does it cope with standard types of file encryption? Answering these questions
is the responsibility of the hapless individual who fulfils the malware management
function. However, you can gather such information only if you are actively
monitoring the situation and collecting metrics by checking log files, Help Desk
trouble tickets, and so on. These measures are time-consuming to evaluate, implement,
and maintain, and resource costs may be prohibitive in smaller organizations.

Absolute transparency is fine for products in which the malware manager has
absolute trust. A more useful aim is moderate transparency for the user, but not
necessarily for the malware manager. At the very least, the malware manager may
need a record of what has been dealt with so as to have statistics on hand to help
justify the budget impact next time the licence is due for renewal. The manager may
well be prepared to trade off some transparency for the user against enhanced ability
to track incidents, or to intervene where an automated response may not be appropriate:
a viral infection that can’t be repaired by a given scanner, for instance, or by any
scanner, or that could be misrepaired through misidentification. There are also issues
that the anti-malware product may not be able to address, such as residual changes to
system configuration (for example, disabling of macro protection), additional scripts
or files that may be installed, and so on.

C h a p t e r 7 : M a l w a r e M a n a g e m e n t 1 8 9

Nonreplicative malware and borderline cases such as test files and joke programs
can cause particular difficulties in terms of identification. The same program may be
defined as a utility or as malware according to context. A disk format is, in a sense,
destructive only if it’s not what the user intended, and even then it may be the result
of accident or misunderstanding rather than malice. Implementing a heuristic to
detect possibly destructive behaviour, such as attempting a track format or zeroing
a FAT entry, is trivial compared to recognizing whether a program that implements
such behaviour is intentionally malicious. Setting appropriate default actions on
detection is not necessarily straightforward, either, especially if some form of
heuristic analysis is in use:

� The Ignore setting is obviously unsafe.

� The Alert Only setting is neither transparent nor safe.

� Alert and block execution is obtrusive.

� The Delete setting is obtrusive and may be seriously inappropriate, depending
on the prevailing corporate culture.

While this chapter focuses primarily on malware management and especially
virus management, malware and viruses are only part of the problem. Many other
applications of content analysis and filtering resist complete automation: these
include intrusion detection, spam control, monitoring for illegal or unethical content
such as pornography or copyrighted material, and hoax management.

As the virus total rises ceaselessly, the issue of detection impacting on performance
continues to preoccupy both users and vendors. Over time, user dissatisfaction with
processing overhead has prompted vendors to devote development resources to the
reduction of scanning speed and footprint in memory. This is a significant challenge,
given the need to detect an ever-increasing range of threats, accessing a widening
range of vulnerabilities.

The trend away from routine (scheduled) use of on-demand scanners and towards
checking files as they’re accessed indicates the need to distribute the processing load
and reduce the visible impact on system performance as a whole. Anti-virus suites
have, in the past, incorporated a wide range of measures. These may include not only
a mixture of known virus scanners (nowadays normally including heuristic analysis
for detection of unknown viruses), but also some form of integrity checking. They
might also include supplementary tools such as disk editors, bait files, drivers to
counterfeit write protection for fixed disks, diskette authentication, and so on. Many
of these tools are no longer supplied. In some cases, such tools may be omitted
because they’re no longer seen as universally safe and effective. Others may be
unavailable because there appears to be no particular demand for them in a market

1 9 0 V i r u s e s R e v e a l e d

that favours more automation or third-party intervention rather than users applying
a primarily hands-on approach to virus management.

Are we swimming against the flow by advocating a hands-on approach? While
management, vendors, and the media are trying to turn anti-virus into a consumer
product, administrators are gritting their teeth and accepting the need to learn the
malware management job, since no one else is going to do it properly.

There is a serious shortage of quality data in the anti-virus/anti-malware area.
Anti-malware professionals spend a lot of time dealing with “what everyone knows”.
How well do we measure what we are dealing with? There is a considerable
emphasis on quantitative data, which is notoriously hard to gather in the security
field. Anti-virus administrators outside large organizations are still likely to have
low status unless they’re general security people (in which case they may be less
virus-literate than their job status might indicate). They don’t necessarily have
access to sufficient information and resources to offer accurate quantitative data,
even if they have the expertise (in malware management and statistics).

What does the everyday customer really want from his or her anti-malware
software, and how can the customer (or the periodicals he or she reads) usefully
evaluate packages individually or comparatively? Are the methodologies used
currently in anti-virus testing applicable to other types of malware?

There’s an accepted need for certification of anti-virus and other security software
such as firewalls and intrusion detection systems. It’s possible for the individual who
uses that software to get professional security certification or a higher degree in
security, but anti-virus training is somewhat restricted. A few vendors run fairly
short workshops—unsurprisingly, they are focused on the products of the vendor
running the workshop. Security organizations such as SANS have started to
introduce “independent” certification standards for virus management, but still focus
on the one or two products with the highest profile and market share. In any case, an
organization whose orientation is towards general security may not be best qualified
to understand and teach anti-virus management, and we look forward to seeing more
real, independent experts give the instant experts a run for their money.

Summary
Concerns with malicious software have increased in scope from classic boot-sector
viruses, file viruses, and simple Trojan horses. Recent preoccupations include
provider-specific password stealers (especially AOL Trojans), IRC worms, macro
viruses and Trojans, scripting viruses, and email-borne worms. Computing platforms
requiring protection have changed, too—not just workstation desktops and servers,
but mail gateways and firewalls as well—to take into account a proliferation of
Internet-related protocols and transmission media.

Administrators are required to provide protection not only from a few hundred
viruses known to be formally In the Wild, or the many thousand others that might
get lucky, but also from a whole range of other threats. Vendors don’t necessarily
see these threats as their problem, since they involve technologies presenting quite
different technical challenges: spam, intrusion detection, and content analysis for
blocking incoming undesirable material or outgoing sensitive data. Consequently,
it becomes the malware manager’s responsibility to develop strategy and policy,
evaluate product, plan and implement rollout, integrate disparate technologies,
and plug the gaps that technology can’t reach. If this is your role, you need reliable
information. In the next chapter, we consider the question of where to find it, and
how to assess its value.

C h a p t e r 7 : M a l w a r e M a n a g e m e n t 1 9 1

This page intentionally left blank.

CHAPTER

8
Information Gathering

193

IN THIS CHAPTER:

How Can I Check Whether
Advice Is Genuine or Useful?

Books

Articles and Papers

Online Resources

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

We have dedicated quite enough space in this book to presenting ourselves
as the founts of all viral wisdom. What makes us so smart? As usual,
listening to other people.

The listings in this chapter collect sources that we have gathered over the years, and
still use today. These are the books, articles, and online sources that you can use to go
beyond what we’ve told you here, and to keep up with the field as it moves beyond the
current state.

Organization of this chapter has been a bit of a problem, since the different types
of resources don’t seem to fit into any of the same categories. Therefore, we present
books, then articles and papers, then online resources, arranged as seems suitable
within those groups.

We’ve already indicated that information gathering is an important part of risk
assessment and of the malware management function generally. Good information
comes from dependable sources. What are good and bad sources? As with most of
life, if you can tell good advice from bad advice, you probably don’t need any advice.
Good judgment, of resources in this case, comes from experience.

Experience, unfortunately, often comes from bad judgment.

How Can I Check Whether
Advice Is Genuine or Useful?
Check with an expert. Unfortunately, this isn’t as easy as it sounds: everyone is a
virus expert. Rob Rosenberger’s writing on “False Authority Syndrome” should be
required reading for all computer professionals (among others):

http://www.vmyths.com/fas/fas1.cfm

We have already railed against “instant experts” in this book, and probably often
enough that you are beginning to be sick of reading the term. We should, however,
address some of the other authorities that people tend to rely on for advice about
virus problems and protection. Most of these specialists aren’t.

Managers have to pay attention to everything, and can’t afford to spend a lot
of time on a particularly arcane topic within a specialty in a technical subject that
may be only dimly related to the business objective they are supposed to be trying to
accomplish. The staff on the Help Desk are run off their feet trying to keep everyone
working, and have very little time to educate themselves on side issues. Computer
journalists must produce a given number of words on a variety of issues every day,

1 9 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

week, or month, and can’t devote hours to investigating every issue. Consultants, in
our hard-driving, fast-paced, high-energy world, have to sell all the time, and, in all
too many cases, sales are more important than knowledge. Computer vendors, even
of antiviral products, must similarly concentrate on market share even at the expense
of accuracy, or they don’t remain vendors for long. Fame is seldom based on erudition,
and many a distinguished name in the technical field has made foolish statements in
regard to viruses. Retail and repair shops are busy places run on thin margins—a
number have become virus vectors without realizing it. And just because someone
was once hit by one virus does not mean that he or she has any real knowledge of
the rest of the genre.

There is one final population that we should mention, and that is the one
consisting of legitimate security experts. Leaving aside the great many consultants
who are little more than salespeople, there are those hard-working and knowledgeable
souls who spend years educating themselves in the security specialty. They need to
know about security management, access control, law and investigation, physical
security, business continuity and disaster recovery, security architecture, cryptography,
telecommunications and networking, application and systems development, and
operations security. Those who are in the field will recognize this list as the ten
domains that the (ISC)2 (International Information Systems Security Certification
Consortium, Inc.) describes in preparing the CISSP (Certified Information Systems
Security Professional) examinations. Each one of these fields is a specialty in and of
itself. You will notice that viruses don’t appear on the list as such. (There is a brief
mention of them in one domain—and it probably isn’t the one you’re thinking it is.)

Most real security experts come from backgrounds in corporate management,
mainframe computing environments, network management, physical security, or
accounting. (Yes, accounting. For some reason, businesspeople think that someone
with the skills to audit financial statements can also audit computer systems.) Security
workers obviously try to broaden their horizons and keep up with everything they
can, but the task of following any single one of these fields is enormous, and
companies generally see security as some kind of cost, with little or no benefit
to the enterprise. Therefore, experts have very limited time to study, and actually
can pursue only the most important areas in the field. To date, most people have not
considered viruses to be a vital area of concern. Security experts will not knowingly
mislead you about viruses, but they simply may not know much about them. Later
in this chapter, we will point out that many general, and otherwise very useful,
security texts contain some serious errors in regard to viruses.

Having said all that, we realize that we are not the final word in all things viral,
and you will need to get updated information about new viruses, and virus types,
as they appear. Sources of information are available that you definitely can trust.

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 1 9 5

1 9 6 V i r u s e s R e v e a l e d

Advisories from independent security organizations such as CERT (the Carnegie
Mellon University Software Engineering Institute’s Computer Emergency Response
Team) are usually much more formally structured than vendor advisories, with a
serial number of some sort, a series of standard fields (problem, platform, risks,
damage, solution), a document history, a copyright notice, a disclaimer, a digital
signature, and so forth. However, such organizations tend to handle virus alerts less
competently than other types of advisories. Nor is a formal structure a guarantee
that such a document can’t be forged. A digital signature is no test of anything if it
isn’t checked.

If your organization or ISP has a security specialist you can contact directly, that’s
a place to start. However, unless you’re prepared to try out the source’s knowledge
of some of the resources listed at the end of this document, you’re probably in a poor
position to assess that source’s expertise.

There is a vacant market niche for an organization with relevant experience on tap
to offer a verification service. In the meantime, volunteers offer most of the expertise,
which is something of a mixed blessing.

If you feel paranoid, untrusting, and obliged to check these things for yourself,
welcome to our world.

Books
As a source of background information, books are often considered your first stop.
They cannot, of course, keep you abreast of the latest developments in the field. As
authors, we have a vested interest in promoting the medium of “dead trees”, but the
fact does remain that books are your best bet for an overview of the field. We have
included as many titles as we could find, both good and bad. We have also indicated
which ones we think are most worthwhile, but, again, we encourage you to form
your own opinion—or test ours.

Generally, books on viruses have not dealt specifically with one topic or another,
so we have simply grouped all of them by our assessment of quality. We have also
included lists of general security texts that touch on virus problems, works on legal
issues, examinations of ethics, and fiction involving viruses.

To date, most titles in the field are 180 to 500 pages in large paperback format
(with the exception of one video). The lowest-priced title we could find was $10.95,
and we believe that it is no longer available. (All the prices here are given in US
dollar currency unless noted otherwise; C$ refers to Canadian dollars and UK£ to
British pounds).

In addition, only a few books have been published in the field between 1994
and 2000. Scant recent books realistically address the topic of Microsoft Word
macro viruses, and, of course, the earlier works don’t mention them at all.

Entries in the list include the author, book name, publisher, date of publication,
ISBN (International Standard Book Number), and price (if known or available), as
well as a short annotation. Entries within sections are sorted by publication date,
with the latest first.

Complete reviews of these and other books can be found at the following sites:
http://sun.soci.niu.edu/~rslade/mnbkscvr.htm and http://victoria.tc.ca/techrev/
mnbkscvr.htm. (These sites should be identical mirrors.)

The Good
Robert M. Slade, Robert Slade’s Guide to Computer Viruses, 2nd Edition,
Springer-Verlag, 1996, 0-387-94663-2, $39.95. In our completely unbiased opinion,
this is the best computer virus book ever written! (And the title was not Rob’s idea!)
However, our opinion is somewhat reinforced by the fact that the book did make the
VIRUS-L FAQ, and is, as of mid-2001, the only virus book in the (ISC)2 resource list.
This volume contains a number of appendices, lists, and reviews that are definitely
dated but still surprisingly (even to the reviewer) applicable, as regards general
tone and approach, if not details.

Alan Solomon, Dr. Solomon’s Virus Encyclopedia, S&S International PLC, 1995,
1-897661-00-2, UK£19.99. A good listing of MS-DOS viral programs but little
general information. The book was primarily an adjunct to a software product and
may no longer be sold separately.

Fred Cohen, A Short Course on Computer Viruses, John Wiley & Sons, 1994,
0-471-00768-4, $44.95. An excellent analysis providing thorough guidance for
antiviral policy and procedures. Cohen is considered to be the grandfather of all
virus research and very reliable, and his book has some humour as well.

Pamela Kane, PC Security and Virus Protection Handbook, M&T Books, 1994,
1-55851-390-6, $39.95. A good overview for the MS-DOS arena, with additional
material on general desktop security. It contains Yisreal Radai’s exemplary review
of the Microsoft Anti-Virus program.

David Ferbrache, A Pathology of Computer Viruses, Springer-Verlag, 1992,
0-387-19610-2, $49.00. A good technical overview, considered the classic text
for the serious academic researcher.

Harold Joseph Highland, Computer Virus Handbook, Elsevier, 1990, 0-946395-46-2,
$100.00. This book is a very good overview, unfortunately dated and with little

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 1 9 7

practical material. Despite its age, this book is remarkably prescient and a classic in
the field.

Lance Hoffman (ed.), Rogue Programs: Viruses, Worms, and Trojans, Van Nostrand
Reinhold, 1990, 0-442-00454-0. A good collection of essays for academic study,
although not necessarily for the user.

Peter Denning (ed.), Computers Under Attack, Addison-Wesley, 1990, 0-201-53067-8,
$34.95. A collection of essays roughly related to security and also to the ’Net. The
book does not provide all that much material on viruses, but the essays included are
classic papers.

The Bad (or Mediocre, at Least)
Roger A. Grimes, Malicious Mobile Code, O’Reilly & Associates, 2001,
1-56592-682-X, $39.95. This is not a good book on viruses or malware. The breadth
of coverage and detailed content on macro and email virus technology does save it
from being really awful: up to the summer of 2001, no other book has dealt with
those topics in sufficient depth. And the MS-centrism does have one very positive
advantage. If you absolutely must use Microsoft software and applications, the
prevention sections of the various chapters do contain a lot of detail that will be
useful in reducing the risk that you face.

Robert S. Vibert, The Enterprise Anti-Virus Book, Segura Solutions, 2000,
0-9687464-0-3, C$99.95. We are not in complete agreement as to the utility of
this book. For the expert, it can provide a useful, though expensive, checklist for
reviewing antiviral software. The nonexpert reader, though, may find the material
daunting, and not a little confusing. We will be discussing this book in more detail
in Chapter 9.

Virus Bulletin, Survivor’s Guide to Computer Viruses, Virus Bulletin, 1993,
0-9522114-0-8, UK£19.95. A relatively accurate book, but disappointing coming
from the Virus Bulletin, and now somewhat dated.

Philip Fites, Peter Johnston, and Martin Kratz, Computer Virus Crisis, Van Nostrand
Reinhold, 1992, 0-442-00649-7. This is a somewhat sloppy book with a number of
errors, and little practical user material.

Chris Feudo, The Computer Virus Desk Reference, Business One Irwin, 1992,
1-55623-755-3. A collection of basic virus reference sources for readers without
online access, but it is now out of date.

1 9 8 V i r u s e s R e v e a l e d

Jan Hruska, Computer Viruses and Anti-Virus Warfare, Ellis Horwood, 1992,
0-13-036377-4. MS-DOS-specific, this book is technically reasonable but provides
suspect commentary. The details and specifics are now out of date.

Alan Solomon, PC Viruses: Detection, Analysis and Cure, 1991, Springer-Verlag,
0-387-19691-9. A very accurate book, but somewhat demanding technically. It is
now out of date in some areas.

Robert V. Jacobson, The PC Virus Control Handbook, Miller Freeman, 1990,
0-87930-194-5, $24.95. Although this book is dated and uneven, it features a good
chapter on how to deal with infections.

Allan Lundell, Virus!, Contemporary Books, 1989, 0-8092-4437-3, $10.95. This
book presents a lot of research, but a lot of errors as well. It will not be much help to
the practical user. It is now out of date, and possibly out of print.

The Really and Truly Ugly
For reasonably obvious reasons, it is difficult to get complete information for some
of the following titles.

Brian Bagnall, Chris O. Broomes, and Ryan Russell, E-mail Virus Protection
Handbook, Syngress Media, Inc., 2000, 1-928994-23-7, $39.95. This book doesn’t
provide enough information about email, and almost nothing about viruses.

Phil Schmauder, Virus Proof, Prima Publishing, 2000, 0-7615-2747-8, $34.99.
This book does not actually deal much with viruses. It provides undependable
information, and is inflated to several times its useful length by repetition and
redundant screen dumps.

Ken Dunham, Bigelow’s Virus Troubleshooting Pocket Reference, McGraw-Hill,
2000, 0-07-212627-2, $19.99. A well-meaning but incomplete and unreliable effort.
Two of us saw a few drafts of this text, and one of us requested to be taken off the
reviewers list when the disappointing quality of the work became apparent. When the
book was finally published, it contained many errors and misleading analyses even
though they had been pointed out in the review stage. The author seems to have little
understanding of the underlying technologies.

Rune Skardhamar, Virus Detection and Elimination, Academic Press, 1996,
0-12-647690-X. Untrustworthy, badly written, and likely from one of the virus
exchange crowd.

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 1 9 9

Janet Endrijonas, Rx PC: The Anti-Virus Handbook, McGraw-Hill, 1993,
0-8306-4202-1, C$59.95. This book is ultimately dated and unreliable.

Webster, Gwartney, and Heuckendorf, PC Virus: Understanding and Prevention,
1992, 0-922264-01-5. This selection is actually a video and possibly useful, but there
are many gaps in the information it provides the viewer.

Peter Norton and Paul Nielsen, Inside the Norton Antivirus, Prentice Hall, 1992,
0-13-473463-7. Not much good as a general guide, and provides outdated
documentation for the program.

Robert V. Jacobsen, Using McAfee Associates Software for Safe Computing, Miller
Freeman, 1992, 0-9627374-1-0, $16.95. Printed documentation for the McAfee
software of that era. It’s out of date and fairly useless.

Bruce Hodge, Rid Me of This Virus!, Pickaxe Media, 1992, 0-646-07713-9, $10.95.
This book is too short and uneven, and is out of print.

Ralf Burger, Computer Viruses and Data Protection, Abacus, 1991, 1-55755-123-5,
$19.95. A poorly written book with little solid information, and some viral programs
in source code.

Richard B. Levin, Computer Virus Handbook, McGraw-Hill, 1990, 0-07-881647-5,
$24.95. This vague and undisciplined book presents specifics that are out of date.

John McAfee and Colin Haynes, Computer Viruses, Worms, Data Diddlers, Killer
Programs and Other Threats to Your System, St. Martin’s Press, 1989,
0-312-02889-X, $16.95. Contains some interesting speculations buried in a mass of
undisciplined garbage.

Ralph Roberts, Compute!’s Computer Viruses, 1988, 0-87455-178-1, $14.95. This
book is old and out of print.

Related Topics
Fred Cohen, It’s Alive!, John Wiley & Sons, 1994, 0-471-00860-5, $39.95. This
book provides an intriguing, provoking, and practical exploration of computer
programs as “artificial life”, but is somewhat narrow.

2 0 0 V i r u s e s R e v e a l e d

Mark Clarkson, Windows Hothouse, Addison-Wesley, 1994, 0-201-62669-1, $34.95.
This book explores lots of artificial life fun with Visual C++.

Ellen Thro, Artificial Life Explorer’s Kit, SAMS Publishing, 1993, 0-672-30301-9,
$24.95. This book is good fun, but offers little analysis.

Steven Levy, Artificial Life: A Report from the Frontier Where Computers Meet
Biology, Random House/Vintage, 1992, 0-679-73489-8, $13.00. This book takes an
interesting wander through fields studying artificial life but has no strong points.

Mark Ludwig, Little Black Book of Computer Viruses, American Eagle
Publications, 1990, 0-929408-02-0, $14.95. This MS-DOS-specific book is not very
accurate, presenting viral source code rather than protection information. The book is
also available in French as Naissance d’un virus, translated by Jean Bernard Condat.

General Security
Reviews can be found through http://sun.soci.niu.edu/~rslade/mnbksc.htm or
http://victoria.tc.ca/techrev/mnbksc.htm.

Anonymous, Maximum Security, 3rd Edition, SAMS Publishing, 2001,
0-672-31871-7, $49.99. The first edition was really bad and the second improved to
merely mediocre on security overall, but neither edition deals with viruses well at all.
The third edition (out since May 2001) does better than the first two on viruses and
Trojans, since David Harley overhauled the relevant chapters.

Bruce Schneier, Secrets and Lies: Digital Security in a Networked World, John
Wiley & Sons, 2000, 0-471-25311-1, $29.99. This book serves as an excellent
introduction to security and more. Unfortunately, the chapter that concentrates on
viruses is one of the weakest in the book.

Elizabeth D. Zwicky, Simon Cooper, and D. Brent Chapman, Building Internet
Firewalls, O’Reilly & Associates, 2000, 1-56592-871-7, $44.95. The other classic
firewalls text. This book provides realistic consideration of the difficulties and
limitations of defending against viruses at the firewall.

Jeff Crume, Inside Internet Security, Addison-Wesley, 2000, 0-201-67516-1, $29.95.
After starting badly, the book provides a good overview of security in general. It
includes a short but reasonable piece on viruses.

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 2 0 1

Harold F. Tipton and Micki Krause (eds.), Information Security Management
Handbook, Auerbach, 2000, 0-8493-9829-0/0-8493-0800-3, $155.00. For the most
respected work in the general security field, this has a lot of very good material, but
a lot of fluff, too. In two volumes, however, only one piece directly addresses
viruses (in a very academic tone), and the only other article that does devote some
space to the issue has a massive number of mistakes.

Winn Schwartau, CyberShock, Thunder’s Mouth/Inter.Pact Press, 2000,
1-56025-246-4, $24.95. Aimed at managers, this is a good nontechnical guide to
security attacks and dangers on the ’Net, although it is somewhat sensational. The
discussion of viruses is not bad, but not very practical.

William C. Boni and Gerald L. Kovacich, I-Way Robbery, Butterworth- Heinemann,
1999, 0-7506-7029-0, $34.95. An unfocused and undisciplined “look” at security,
this book deals with viruses as poorly as it does with everything else.

Wallace Wang, Steal This Computer Book, No Starch Press, 1998, 1-886411-21-2,
$19.95. This loose amalgam of roughly security-related topics definitely is not worth
buying, including the section on viruses.

Dorothy E. Denning and Peter J. Denning, Internet Besieged: Countering Cyberspace
Scofflaws, Addison-Wesley, 1998, 0-201-30820-7, $39.95. This is a good collection of
essays, although an academic and big iron bias shows. It seems to be the update of
Computers Under Attack, although almost all the virus material is gone.

Donald L. Pipkin, Halting the Hacker, Prentice Hall, 1997, 0-13-243718-X, $44.95.
This book offers banal security advice, but includes a good collection of information
on the CD-ROM. Unfortunately the coverage of viruses is poor.

Tim Meyers, Tom Sheldon, and Joel Snyder, Internet Security, Macmillan Computer
Publishing, 1997, 1-56205-760-X, $65.00. This book’s coverage is random and
incomplete.

Laura E. Quarantiello, Cyber Crime, Limelight Books/Tiare Publications, 1997,
0-936653-74-4, $16.95. A pedestrian and frantic warning about security issues;
the author misunderstands viruses, as is typical for books on security.

Daniel J. Barrett, Bandits on the Information Superhighway, O’Reilly and Associates,
1996, 1-56592-156-9, $17.95. This book provides no useful information on real viruses.
However, it does include a short but pertinent section on the Good Times hoax.

2 0 2 V i r u s e s R e v e a l e d

Peter T. Davis and Barry D. Lewis, Computer Security for Dummies, IDG, 1996,
1-56884-635-5, $19.99. This book has a chapter on viruses, worms, and other such
stuff. It gets some general principles right, but is technically weak. There is rehashed
material from various widely available FAQs, not always portrayed accurately.
Some advice is very poor, such as the suggestion to do a low-level reformat of
infected hard disks as a general recommendation for dealing with infected PCs.

Marc Farley, Tom Stearns, and Jeffrey Hsu, LAN Times Guide to Security and Data
Integrity, Osborne/McGraw-Hill, 1996, 0-07-882166-5, $29.95. This pedestrian
guide to security is big on backups, and almost dismissive of viruses.

Michael Alexander, The Underground Guide to Computer Security, Addison-Wesley,
1996, 0-201-48918-X, $19.95. This is an OK introduction for desktops, but includes little
on viruses.

Simson Garfinkel and Gene Spafford, Practical UNIX and Internet Security, 2nd

Edition, O’Reilly & Associates, 1996, 1-56592-148-8, $39.95. This is very much a
UNIX book, although the authors outline the principles well enough to be useful for
readers protecting other systems. It has a brief but pretty accurate page or two on
virus implications in a UNIX environment.

David J. Icove, Karl A. Seger, and VonStorch, Computer Crime: A Crimefighter’s
Handbook, O’Reilly & Associates, 1995, 1-56592-086-4, $19.95. This book makes
several passing references to virus issues, but is technically very patchy.

Arthur E. Hutt, Seymour Bosworth, and Douglas B. Hoyt, Computer Security
Handbook, John Wiley & Sons, 1995, 0-471-11854-0, $90.00. Concentrating on big
iron and accounting and lacking in depth, this collection of essays has breadth, but
also repetition. There is one article on viruses, but it is terrible.

Karanjit Siyan and Chris Hare, Internet Firewalls and Network Security, New
Riders, 1995, 1-56205-437-6, $35.00. This book makes only one reference to viruses,
and that’s a pointer to the now defunct VIRUS-L mailing list.

Aaron Weiss, The Complete Idiot’s Guide to Protecting Yourself on the Internet,
Que, 1995, 1-56761-593-7, $16.99. This book devotes a whole chapter to viruses,
which doesn’t mention boot-sector infectors, multipartite or macro viruses—it assumes
that all viruses are file infectors. The book provides brief notes on F-Prot’s scanner,
Vshield, and Disinfectant, but offers poorly informed material on virus and
anti-virus technology and virus control.

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 2 0 3

Charles Cresson Wood, Information Security Policies Made Easy, Baseline Software,
1994, 1-881585-01-8, $495.00. This book is expensive, but if it makes the difference
between having a security policy and not having one, it’s worth it. Unfortunately, the
virus policies were unworkable, but the book changes editions frequently and may
have improved.

William R. Cheswick and Steven M. Bellovin, Firewalls and Internet Security:
Repelling the Wily Hacker, Addison-Wesley, 1994, 0-201-63357-4, $36.95. This is
the classic firewalls text. It doesn’t consider virus issues beyond vaguely suggesting
that PC-heavy sites might want to filter for viruses at the firewall (a somewhat
contentious suggestion, especially in 1994).

David Stang, Network Security Secrets, International Data Group, 1993,
1-56884-021-7. This book serves as a practical and thorough security guide at the
right level for most LAN managers. Although Stang taught virus seminars at one
time, this book does not feature much coverage of viruses.

N. Derek Arnold, UNIX Security: A Practical Tutorial, McGraw-Hill, 1993,
0-07-002560-6, $26.95. This pedestrian and dated textbook includes source code
for a UNIX virus.

Deborah Russell and G. T. Gangemi, Sr., Computer Security Basics, O’Reilly and
Associates, 1991, 0-937175-71-4, $29.95. This book features several pages on
viruses and other programmed threats, but they are not particularly accurate nor
helpful. It does include some useful nonvirus material.

Legal
We won’t be getting to legal aspects until Chapter 17, but in the meantime, here’s a
list. Few of these works touch directly on virus issues, and the law surrounding the
writing and spreading of viruses is far from clear.

Brian Kahin and Charles Nesson, Borders in Cyberspace, MIT Press, 1997,
0-262-61126-0, $25.00. This is an excellent collection of essays on law as it relates
to the ’Net.

Jonathan Rosenoer, CyberLaw: The Law of the Internet, Springer-Verlag, 1997,
0-387-94832-5, $34.95. This book surveys US case law in regard to the ’Net.

Paul Jacobsen, Net Law: How Lawyers Use the Internet, O’Reilly and Associates,
1997, 1-56592-258-1, $29.95. This selection is very useful for lawyers.

2 0 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

Michael Gross, Law on the Internet, SYBEX Computer Books, 1996, 0-7821-1792-9,
$12.99. This book is a good, well-written guide.

Lance Rose, NetLaw: Your Rights in the Online World, Osborne/McGraw-Hill,
1995, 0-07-882077-4, $19.95. This is a good overview of legal matters in relation to
the online world, but is still US-centric.

Edward A. Cavazos and Gavino Morin, Cyberspace and the Law, MIT Press, 1994,
0-262-53123-2, $19.95. This book explains Internet law for the common person.

Gene K. Landy, The Software Developer’s and Marketer’s Legal Companion,
Addison-Wesley, 1993, 0-201-62276-9, $34.95. This book offers good, solid,
general guidance.

Lance Rose/Jonathan Wallace, Syslaw, PC Information Group Inc., 1992. This book
explores legal aspects of BBSs and online systems.

Ethics
The topic of ethics is a major one in all areas of security, but the debate is most
heated in the virus arena. Again, we will discuss ethics at more length in Chapter 18,
but here is a reading list.

Reviews can be found at http://sun.soci.niu.edu/~rslade/mnbkscet.htm or
http://victoria.tc.ca/techrev/mnbkscet.htm.

Winn Schwartau, Internet and Computer Ethics for Kids, Inter.Pact Press, 2001,
0-9628700-5-6, $15.95. To be effective, this book must be used with your children,
and not simply handed to them. But it is an important and unique work in the field.

Nancy E. Willard, The Cyberethics Reader, McGraw-Hill, 1997, 0-07-070318-3,
C$17.95. This text is not good on ethics, but is great on netiquette.

Sara Baase, A Gift of Fire: Social, Legal, and Ethical Issues in Computing, Prentice
Hall, 1997, 0-13-458779-0, $48.00. This book takes a not-very-good look at the
social issues and ethics of computing.

M. David Ermann, Mary B. Williams, and Michele S. Shauf, Computers, Ethics and
Society, Oxford University Press, 1997, 0-19-510756-X, $29.95. This textbook for
computer ethics courses is not great.

Peter Ludlow, High Noon on the Electronic Frontier, MIT Press, 1996,
0-262-62103-7, $32.50. This book compiles a good collection of essays on
philosophical issues related to the ’Net.

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 2 0 5

Deborah G. Johnson and Helen Nissenbaum (eds.), Computers, Ethics and Social
Values, Prentice Hall, 1995, 0-13-103110-4, $70.00. This collection of papers
doesn’t extend Johnson’s earlier work, Computer Ethics (listed later in this section).

Duncan Langford, Practical Computer Ethics, McGraw-Hill, 1995, 0-07-709012-8,
$46.45. This book offers a reasonable, fairly lightweight discussion of practical
ethics in a computing context.

Deborah G. Johnson, Computer Ethics, Prentice Hall, 1994, 0-13-290339-3, $30.67.
The basic work in the field, this book provides thorough coverage and is a good
discussion starter.

Tom Forester and Perry Morrison, Computer Ethics, MIT Press, 1994, 0-262-56073-9,
$24.95. This book has lots of great stories, but is short on analytical depth.

Fiction
Why would we include fictional works in a section on resources? Well, primarily
because it provides a perspective on the common errors and misconceptions that you
will have to correct before you can educate users. And also because, occasionally,
fiction does provide neat and accurate examples to use in teaching.

Reviews can be found at http://sun.soci.niu.edu/~rslade/mnbkfc.htm or
http://victoria.tc.ca/techrev/mnbkfc.htm.

Bill Buchanan, Virus, Ace/Berkley/Charter/Diamond/Jove Books, 1997,
0-515-12011-1, $6.50. It isn’t. A virus, that is. Very poor technology in all areas.

Arthur C. Clarke, 3001: The Final Odyssey, Ballantine/Fawcett/Columbine
Books/Del Rey, 1997, 0-345-42349-6, $6.25. The story features generally acceptable
science, but a bad idea of what a computer virus is.

Joseph Finder, The Zero Hour, Avon Books/The Hearst Corporation, 1996,
0-380-72665-3, $16.95. This story includes some good stuff but is bad on
communications and viruses.

Philip Kerr, The Grid, McClelland and Stewart, Inc., 1995, 0-770-42740-5, C$8.99.
The author employs lousy technology all around and includes some facile ponderings
about artificial life.

James P. Hogan, The Immortality Option, Ballantine/Fawcett/Columbine Books/Del
Rey, 1995, 0-345-39787-8, $5.99. This story expresses some provoking ideas about
computer genetics, but the computer virus described is a poor example.

2 0 6 V i r u s e s R e v e a l e d

Allen Steele, The Jericho Iteration, Ace/Berkley/Boulevard/Charter/Diamond/Jove
Books, 1994, 0-441-00271-4, $5.50. Covers the p1 virus, but not as well as the Ryan
entry at the end of this section.

John Barnes, Mother of Storms, St. Martin’s Press, 1994, 0-812-53345-3, $5.99.
This story features some interesting explorations of self-replicating programs.

Rudy Rucker, Live Robots, Avon Books/The Hearst Corporation, 1994,
0-380-77543-3, $5.99. The author makes interesting points on genetic programming
and the “malicious utility” of a virus.

Neal Stephenson, Snow Crash, Bantam Books, 1992, 0-553-56261-4, $10.36. This
book features sound technical background for nets and programming, an interesting
plot line about an “information virus”, and is funny.

Dick Francis, Driving Force, Macmillan of Canada, 1992, 0449221393, $6.29. This
story draws on details (some false) about the Michelangelo computer virus.

Winn Schwartau, Terminal Compromise, Inter.Pact Press, 1991, 0-962087000-5,
$19.95. The story includes some virus stuff, but the most amusing aspect of the book
is playing “spot the error”.

John D. Randall, The Tojo Virus, Zebra Books/Kensington Publishing, 1991,
0-8217-3436-9, $4.95. Involves corporate insider information from IBM, but no
really accurate technical stuff. This book was possibly the inspiration for Terminal
Compromise.

David Gerrold, When H.A.R.L.I.E. Was One, Bantam/Spectra, 1972/1988,
0-345-02885-6/0-553-26465-6. Often cited as the first fictional reference to a computer
virus, although it seems to refer to an earlier short story by Gerrold. Interestingly, the two
editions describe very different approaches to virus technology.

Thomas J. Ryan, The Adolescence of P-1, Ace, 1977, 0-441-00360-5, $5.99. Rob
Slade’s personal favourite of the classic “computer virus” stories, although p1 is
more akin to a worm.

John Brunner, The Shockwave Rider, Ballantine Books, 1976, 0-345-32431-5, $6.99.
Security literature often refers to this book as including the earliest fictional
reference to a virus. Unfortunately, the “tapeworm” in the book has no relation to
any real virus or worm. But the book is a good read.

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 2 0 7

Articles and Papers
No bibliography can be complete without a slew of references to articles, although
we sometimes question how useful the practice is for those who don’t have a
massive periodical archive on hand. The idea, of course, is to be able to cite new
data that hasn’t yet made it into a book. In the very fast-paced world of computer
virus research, even journals are considered to be out of date before they are printed.
Online sources are far faster, and are covered in the next section.

We should make mention of the only real periodical dealing with computer
viruses, Virus Bulletin. Information about it can be found at www.virusbtn.com.
Virus Bulletin used to have competition in Virus New International, but VNI is now
Secure Computing, and no longer specific to viruses. You can find out more at
http://www.scmagazine.com/.

Robert Slade, “Computer Viruses”, Academic Press Encyclopedia of Information
Systems (in press).

Max Smetannikov, “Hackers May Profit From Spam”, Interactive Week
(2 July 2001), p. 18.

Chris Conrath, “Computer virus raises new ethical concerns”, ComputerWorld
Canada (29 June 2001), p. 10.

David Thompson, “The Social Engineering of Security”, eWeek (11 June 2001), p. 25.

Robert Slade, “Computer Security Weekly”, Suite101 (1999–2000) (available at
http://www.suite101.com/welcome.cfm/computer_security).

Lynn Grenier, “Seeking the Cause and Prevention of the Common Virus”,
Computing Canada (4 August 2000), p. 13.

David Harley, “Bookworms—and viruses”, Virus Bulletin (July 2000).

David Harley, “Living with Viruses”, Security Management, Vol. 44:8 (2000).

David Harley, “Childhood’s End—Demythologising Anti-Virus”, Virus Bulletin
(April 2000).

David Harley, “The E-mail of the Species: Worms, Chain-Letters, Spam and
other Abuses”, Virus Bulletin Conference Proceedings (2000) (also at
http://www.sherpasoft.org.uk/hoaxfaq/email.pdf).

2 0 8 V i r u s e s R e v e a l e d

Sarah Gordon, “Rx for AV”, Information Security (November 1999), p. 38.

David Harley, “Nine Tenths of the Iceberg”, Virus Bulletin (October 1999).

U. E. Gattiker and L. Kelley, “Morality and computers: Attitudes and differences in
moral judgments across populations”, Information Systems Research, 10 (1999),
pp. 233–254.

David Harley, “Policy, Education, Security and Computer Viruses”, Security
Magazine (1999).

Philip Carden, “Reviews: Antivirus Software”, Network Computing (8 March 1999),
pp. 68–81.

David Harley, “Managing Malware: mapping technology to function”, EICAR 1999
Conference Best Paper Proceedings (1999).

David Harley, “Malice aforethought”, BackOffice Magazine, Vol. 3:11 (1999).

David Harley, “Refloating the Titanic—Dealing with Social Engineering Attacks”,
EICAR Conference Proceedings (1998).

Andrew Brooks, “Attachments hasten virus epidemic”, Computing Canada
(9 February 1998), p. 23.

Computing, “Hacker turns to vendors as IT PI”, Computing (4 December 1997), p. 32.

Sarah Gordon, Richard Ford, and Joe Wells, “Hoaxes and Hypes”, Virus Bulletin
Conference Proceedings (October 1997).

David Harley, “Macs and Macros: the State of the Macintosh Nation”, Virus Bulletin
Conference Proceedings (1997).

Virus Bulletin, “Comparative Review”, Virus Bulletin (May 1997), p. 11.

David Harley, “Useful Techniques for Combating Social Engineers”, SANS
Network Security Technical Conference Proceedings (1997).

Network Computing, “Vaccinate Your NT File Services ...”, Network Computing
(1 April 1997), p. 94.

David Harley, “Dealing with Internet Hoaxes/Alerts”, EICAR News, Vol. 3:2 (1997),
pp. 10–11 (also at http://webworlds.co.uk/dharley/).

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 2 0 9

Virus Bulletin, “LAN Antivirals”, Virus Bulletin (March 1997).

Computer Underground Digest, “Notes from the Underground: 2 interviews with
Se7en”, Computer Underground Digest, Vol. 9:49 (1997).

IBM, “Virus prevalence study”, IBM (February 1997).

Virus Bulletin, “Comparative Review”, Virus Bulletin (January 1997).

Frederick B. Cohen, “Information System Attacks: A Preliminary Classification
Scheme”, Computers and Security, Vol. 16:1 (1997), pp. 29–46.

Robert Slade, “Information Security for the Business Manager”, National Seminars
(1996).

Virus Bulletin, “Comparison test”, Virus Bulletin (October 1996).

Robert Slade, “Evaluating Antiviral Software (series)”, VIRUS-L Digest (1991–1996).

Bob Violino, “Word Macro Viruses ...”, Information Week (1 April 1996), p. 22.

Virus Bulletin, “Comparison test”, Virus Bulletin (April 1996).

Robert Slade, “The Virus File”, DECUS Symposium (1991–1996).

Bundesamt für Sicherheit in der Informationstechnik, “IT Baseline Protection
Manual”, Bundesamt für Sicherheit in der Informationstechnik (1996).

Robert Slade, “The nightmare has arrived”, Toronto Computes (December 1995), p. 56.

Patricia Hoffman, “VSUM Certifications”, self-published (various dates).

Paul Wallich, “Meta-virus”, Scientific American (November 1995), p. 34.

U. E. Gattiker and B. Barrett, “Computer viruses in the wild: What is the threat for
Canada?” Proceedings of the 95 European Institute for Computer Anti-Virus
Research (EICAR) Annual Conference (1995), pp. 173–181.

Al Berg, “Cracking a social engineer”, LAN Times (6 November 1995), pp. 140–142.

2 1 0 V i r u s e s R e v e a l e d

Vesselin Bontchev, “Methodology of Computer Anti-Virus Research”, Ph.D.
thesis (1995).

U. E. Gattiker and H. Kelley, “Morality and technology, or is it wrong to create and
let loose a computer virus”, Proceedings of the 28th Annual Hawaii International
Conference on System Sciences (1995), pp. 563–572.

British Standard Institution, “BS7799 British Standard Code of Practice for
Information Security Management” (1995).

Network World, “Comparison test”, Network World (9 October 1995).

Jay Milne, “Taking the Measure ...”, Network Computing (15 September 1995), p. 126.

Symantec, “Understanding Virus Behaviour in 32-bit Operating Environments”,
Symantec (1995).

Joel Conover, “Security Vendors Put Virus ...”, Network Computing (15 May
1995), p. 106.

Robert Slade, “Computer Viral Programs” (weekly series), VIRUS-L Digest
(1991–1994).

William F. Katz, “Chips chomp life ...”, PC Week (24 October 1994), p. N/1.

Gary Stix, “Binary Disinfectants”, Scientific American (September 1994), pp. 97–98.

Eugene H. Spafford, “The Internet Worm Incident”, Purdue Technical Report
CSD-TR-933 (19 September 1994).

Laura Didio, “Trend ... Enhances ...”, Communications Week (4 July 1994), p. 35.

Vesselin Bontchev, “Are ‘Good’ Viruses Still a Bad Idea?”, Proceedings
of the EICAR ’94 Conference (1994), pp. 25–47 (also available at
ftp://ftp.informatik.uni-hamburg.de/pub/virus/texts/viruses/goodvir.zip).

The HAQ, “The Hack FAQ Edition 2.07” (11 June 1994).

Data Fellows, “Creating a Virus Prevention Strategy...”, F-PROT Professional 2.13
Update Bulletin (1994), p. 6.

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 2 1 1

U. E. Gattiker and H. Kelley, “Techno-crime and terror against tomorrow’s
organization: What about cyberpunks”, Proceedings of the 13th World Computer
Congress—IFIP Congress ’94 Hamburg (1994), pp. 233–240.

Hilgraeve, Inc., Newsletter (Spring 1994).

Data Fellows, “Polymorphic Generators”, F-PROT Professional 2.12 Update
Bulletin (1994).

Henri Delger, “Comparison review”, self-published (1994).

Mitch Wagner, “Possibilities Are Endless and Frightening”, Open Systems Today
(8 November 1993), p. 16.

Alan Solomon (attributed to Sarah Tanner), “A Reader’s Guide to Reviews”,
Virus News International (November 1993), p. 40 (reprinted at
http://www.softpanorama.org/Antivirus/Reprints/virus_reviews.html).

Eugene Spafford, “Computer Viruses”, ADAPSO (1989–1993).

Evan Schuman, “Robert Morris in 1993”, Open Systems Today (8 November
1993), p. 17.

Robert V. Jacobson, “Virus Facts, Not Frenzy”, Information Week (23 August
1993), p. 6.

Robert Gezelter, “Effective Hardware Protection ...”, JAS Technology presentation,
Infoexpo ’93 (1993).

Information Week, “Viruses: How Big? How Bad?”, Information Week (19 July
1993), p. 25.

Patrick Flanagan, “Keeping a Watchful Eye on Viruses”, Telecommunications (July
1993), p. 14.

Communications Week, “Lock Retooled”, Communications Week (28 June 1993), p. 27.

Scott Spanbauer, “Search and Destroy”, PC World (May 1993), p. 194.

Charles Haggerty, “An Rx for Viruses”, EBN (12 April 1993), p. 31.

2 1 2 V i r u s e s R e v e a l e d

David Stang, “Fighting the Virus ... with Hardware ...”, Infosecurity News
(March/April 1993), p. 24.

PC Magazine, “Antiviral Software Evaluations”, PC Magazine (16 March 1993).

Robin Raskin, “Keeping Up Your Guard”, PC Magazine (16 March 1993), p. 209.

Paolo Del Nibletto, “Viruses face new foe ...”, InfoCanada (February 1993), p. 13.

PC Week, “First Looks”, PC Week (8 February 1993), p. 73.

Michael Kei Stewart, “Attack of the Windows Viruses”, Windows User (February
1993), p. 49.

Tom Williams, “Hardware gives shot ...”, Computer Design (January 1993), p. 48.

PC Professional, “Comparison Test”, PC Professional (January 1993).

Paolo Del Nibletto, “Virus management for NetWare”, InfoCanada (December
1992), p. 15.

InformationWeek, “Cleaning Up the Biosphere”, InformationWeek (30 November
1992), p. 78.

PC Week, “Buyer’s Guide”, PC Week (9 November 1992), p. 146.

David Stang, “ISCA Antivirus Software Evaluation”, ISCA (1992).

Vesselin Bontchev, “MtE tests” (October 1992).

Datapro, “Virus Prevalence Report”, Datapro Reports (1992).

Vesselin Bontchev, “Possible Virus Attacks Against Integrity Programs And How
To Prevent Them”, Proceedings of the Second International Virus Bulletin
Conference (September 1992), pp. 131–141.

David Chaum, “Achieving Electronic Privacy”, Scientific American (August 1992),
pp. 96–101.

Kathy Chin Leong, “Networked PCs can suffer ...”, Information Week (13 July
1992), p. 20.

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 2 1 3

EICAR, “ChipAway Virus Enabled”, EICAR News, Vol. 1:1 (1992), p. 4.

Patrick Marshall, “Antivirus Software”, PC World (July 1992), p. 199.

David Stang, “In Defense of a Virus Description Language”, Virus News and
Reviews, (June 1992), pp. 249–252.

David Harley, “The PC Virus: Protect Your Computer”, IP Networking, Vol. 3:1 (1992).

Association for Computing Machinery, “Code of Ethics and Professional Conduct”,
Association for Computing Machinery (1992).

IEEE, “The Top 10 PC Viruses of 1992”, IEEE Spectrum (1992).

Datapro, “Computer Viruses”, Datapro Reports (May 1992).

Matt Kramer and David Berlind, “LANs Get Cure ...”, PC Week (2 March 1992), p. 16.

British Computer Society, “Code of Conduct”, British Computer Society (1992).

Fred Cohen, “A Formal Definition of Computer Worms and Some Related Results”,
Computers & Security, Vol. 11 (1992), pp. 641–652.

Wendy Taylor, “Virus Attacks”, PC/Computing (February 1992).

Ray Kaplan, “Heterogeneous Network Security”, Demax Software (February 1992).

Bob Violino, “Networks: No Immunity”, Information Week (6 January 1992), p. 18.

Carol Ellison, “On Guard”, PC Magazine (29 October 1991), p. 199.

Mark Schlack, “How To Keep Viruses Off Your LAN”, Datamation (15 October 1991).

Certus, “Virus Prevalence Survey”, Certus International (1991).

Fred Cohen, “Trends In Computer Virus Research”, ASP (1991).

Computer Ethics Institute, “10 Commandments of Computer Ethics”, Computer
Ethics Institute, Conference on Computer Ethics (1991).

Dataquest, “Virus Prevalence Survey”, Dataquest (1991).

2 1 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

Corporate Software, “Anticipation may be the Best ...”, Corporate Software,
(January 1991), p. 1.

Peter Tippett, “The Kinetics of Computer Virus Replication”, Certus
International (1991).

PC Magazine, “New & Improved”, PC Magazine (30 October 1990), p. 56.

Robert Slade, “Computer Virus”, Fisheries & Oceans Canada ITSD (1990).

Auditor General of Canada, “Report of the Auditor General of Canada Fiscal Year
Ended 31 March, 1990” (1990).

Robert Slade, “Data Security” (series), CAMsoc Update (1989).

Vinton Cerf, “Thou Shalt Not Create Worms”, Data Communications (July 1989), p. 69.

Touche Ross, “Computer Viruses”, The Owner Manager (Spring 1989), p. 1.

Fred Cohen, “Computational Aspects of Computer Viruses”, Computers & Security,
Vol. 8 (1989), pp. 325–344.

Mark W. Eichlin and Jon A. Rocklis, “With Microscope and Tweezers”, IEEE
Symposium on Research in Security and Privacy (1989).

Network Working Group, “RFC 1087: Ethics and the Internet”, Internet Activities
Board (January 1989).

Eugene H. Spafford, “The Internet Worm Program”, Purdue Technical Report
CSD-TR-823 (28 November 1988).

Peter Rossi, “The Iron Law of Evaluation and Other Metallic Rules”, Research in
Social Problems & Public Policy, Vol. 4 (1987), pp. 3–20.

Fred Cohen, “Computer Viruses—Theory and Experiments”, 7th Security
Conference DOD/NBS (September 1984), pp. 143–158 (available at
http://www.all.net/books/virus/).

John F. Shoch and Jon A. Hupp, “The ‘Worm’ Programs—Early Experience with
a Distributed Computation”, CACM, Vol. 25 (3 March 1982).

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 2 1 5

Online Resources
The Internet is the ultimate candy store for data junkies. As Ido Dubrawsky has said,
you cannot possibly outgrow the ’Net. However, there are a couple of caveats.

First, while the latest, and often the best, information is available online, the worst,
most erroneous, and most opinionated is also there in the same cyberspace. Unless you
are very careful, you risk being sadly misinformed. But we’ve already talked about that.

The second point to make is that the Internet, and particularly the Web, is ephemeral.
Links get broken, servers go out of service, pages get old, and companies vanish,
taking valuable resources with them. Recently two of the most highly regarded
and useful antiviral sites on the ’Net, Dr. Solomon’s Virus Encyclopedia and many
resources of the IBM anti-virus site, disappeared or changed radically in form, so
size and stature are not enough to guarantee continued existence. In the six months
between the first and final drafts of this book, fully half of a certain list of URLs
(Uniform Resource Locators) went 404—the code indicating that a page has
disappeared from a server.

We have provided a web page to address updates and changes at http://
www.viruses-revealed.org.uk/, and some tidbits can be found at http://victoria.tc.ca/
techrev/vrupdate.htm or http://sun.soci.niu.edu/~rslade/vrupdate.htm. As well, an
errata page can be found at http://www.osborne.com/errata/errata.shtml.

There are, of course, some standard actions to take when you find a page has
disappeared. You can move from the specific to the general by dropping filenames
or subdirectories off the end of the URL until you find a page that works. Or, you
might connect to the root index of that particular server, and see if a search engine
is available. When all else fails, you can always use the general search engines on
the ’Net to try to track down key words in a title or topic.

One other point should be made: the Internet, sad to say, is not perfect, and service
is not always reliable. If you don’t get through to a specific site, it may be that the
particular computer is temporarily overloaded, disconnected, unplugged, or down
for service. Try again in a few minutes, hours, or days, and you may get through.

We have arranged some of these references into topics that we hope will be
useful. The vast majority of these listings, as usual, will defy categorization. We
have also annotated some of the URLs when we think it appropriate, but not all of
them by any means. Some URLs are too long to fit on one line in this book; you
should type them in your browser as one continuous string, however, with no spaces.
Again, some of these are good, some are bad, and most fall in the middle; we’ll try
to note the extremes.

2 1 6 V i r u s e s R e v e a l e d

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 2 1 7

Mailing Lists and Newsgroups
The most useful entry we could give you would be a reliable mailing list for virus
information. Sadly, we can’t. VIRUS-L has been quiet for many years, and Henri
Delger, who ran different versions of the very valuable VirusHelp newsletter,
seems to have retired.

The only active virus mailing list we know of is Virus News. Unfortunately, despite
the name, the list has little to do with viruses. The list is a compilation of references to
security stories in other online sources, mostly general-media-connected web sites such
as CNN.com. SANS and comparable groups run other similar lists. Virus News, and
the related Spam News, can be found at www.petemoss.com. For other media-related
security mailing lists, you can email sans@sans.org with a subject line of “Subscribe
NewsBites”, or send any message to security-subscribe@News.WebUrb.dk.

What is left is the alt.comp.virus (or acv, in USENET news parlance, which
tends to refer to groups by initials only) newsgroup. This group does discuss virus
issues, but beware: the noise-to-signal ratio is extremely high. In addition, acv,
as an unmoderated group, tends to be something of a hangout for the VX crowd.
Their influence waxes and wanes, depending upon how interested AV types are
in reclaiming their turf. There are some related groups, such as alt.comp.antivirus,
alt.comp.virus.pro-virus, and alt.comp.virus.source.code.

However, there are a few good general security mailing lists:

RISKS-LIST: RISKS-FORUM Digest, http://catless.ncl.ac.uk/Risks, is a
great source of general security discussion, and one of the best moderated
lists on the ’Net as well.

Crypto-Gram Newsletter, http://www.counterpane.com/crypto-gram.html#sub,
provides great general commentary, and specializes in cryptography.

Cipher, the newsletter of the IEEE Computer Science Technical Committee
on Security and Privacy, is at http://www.ieee-security.org/cipher.html.

PRIVACY Forum: http://www.vortex.com/privacy.html

Security Mailing Lists: http://xforce.iss.net/maillists/otherlists.php

Free Scanners
So, the first thing you want to know in terms of the Internet is, where can you get
good software, right? Preferably, free. Well, the good part we will address at length
in Chapter 9. But to answer your question quickly, we recommend the following for
home use, emergency use, and even for regular use in many cases:

F-Prot, F-Macro: http://www.complex.is http://www.f-secure.com

F-Prot is tried, tested, and true. In many cases we actually prefer the MS-DOS
version, since it can be run on a “cold-booted” machine in order to test for Windows
viruses that may interfere with scanning operations when Windows is running. The
MS-DOS version is also, as far as we know, still free for home use.

MacroList by A. Padgett Peterson:
http://www2.gdi.net/~padgett/getmacro.htm
http://www.freivald.org/~padgett/getmacro.htm

MacroList is a specific tool for checking Microsoft Word documents for the
presence of possible macro viruses. While it is not an automated scanner, it is a
utility that is available for both Wintel and Macintosh machines.

garbo: ftp://garbo.uwasa.fi/pc/virus

The garbo archive, at the University of Vaasa, in Finland, is a long-established
and highly regarded resource. In terms of antiviral software, it is also an excellent
source of older programs and utilities.

Other companies may produce free or demonstration version products from time
to time.

Online Scanners
Online scanners present a number of problems, and even dangers. As both Tony
Buckland and Bruce Schneier have pointed out in different situations, the client
interface is the boundary of trustworthiness. In other words, the online scanner,
having submitted a program to run on your machine, really cannot foresee all the
possible configurations under which it might be running. It is, unfortunately, quite
possible that the online scanner, in attempting to open all files for examination, is
really doing identification work for a resident virus. If you already have a virus
active in your machine, you may end up infecting all of your files.

2 1 8 V i r u s e s R e v e a l e d

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 2 1 9

In addition, many online scanners require the use of ActiveX or Microsoft
Internet Explorer, and these technologies carry their own risks.

Still, this section provides a list of such scanners, for which we thank Axel Pettinger,
who posted it recently on alt.comp.virus.

McAfee—AVERT WebImmune: http://www.webimmune.net/

Command on Demand:
http://www.commandondemand.com/cod/index-ns.cfm

Symantec Security Check: http://security1.norton.com/us/home.asp

Trend Micro HouseCall: http://housecall.antivirus.com/

Central Command’s Free Online Virus Scanner:
http://www.centralcommand.com/scan.html

Panda ActiveScan: http://www.pandasoftware.com/

DrWeb on-line: http://www.DialogNauka.ru/english/www_av/home.htm

AV-Test made a short test with the preceding scanners (except DrWeb). You
can find the results at http://www.av-test.org/sites/tests.php3?lang=en#short.

Encyclopaedias
Lists of specific viruses and their characteristics tend to be called encyclopaedias,
after the first, foremost, late, and much lamented Dr. Solomon’s Virus Encyclopedia.

F-Secure’s Security Information Center: http://www.f-secure.com/v-descs/.
Since the passing of Dr. Solomon’s Virus Encyclopedia, this is probably the
most reliable and accurate source available.

Symantec Security Updates: http://www.symantec.com/avcenter/vinfodb.html

McAfee.com’s Virus Information Library: http://vil.mcafee.com/

Trend Micro virus encyclopaedia:
http://www.antivirus.com/vinfo/virusencyclo/

2 2 0 V i r u s e s R e v e a l e d

Virus Encyclopedia: http://www.cai.com/virusinfo/encyclopedia/

Mac Virus II: http://www.sherpasoft.org.uk/MacVirus/ or
http://www.macvirus.com

AVP Virus Encyclopedia: http://www.avp.ch/avpve/findex.stm

About.com Antivirus Encyclopedia (this source does not have many entries):
http://antivirus.about.com/compute/antivirus/library/blency.htm

Panda Software: http://www.pandasoftware.com/library/

Sophos virus analyses: http://www.sophos.com/virusinfo/analyses/

Virus Hoaxes and False Alerts
This topic will be dealt with in depth in Chapter 16.

Computer Virus Myths home page (considered the standard virus hoax site):
http://www.Vmyths.com/

Virus Hoaxes: http://www.yale.edu/its/security/virus-hoaxes.html

CIAC Internet Hoaxes: http://HoaxBusters.ciac.org/

F-Secure/Data Fellows HOAX warnings page:
http://www.fsecure.com/news/hoax.htm
http://www.fsecure.com/virus-info/hoax/

SARC—Virus Hoaxes: http://www.symantec.com/avcenter/hoax.html

The Hoaxkill service (let’s get rid of hoaxes now!):
http://www.hoaxkill.com/

Computer Virus Hoaxes: http://sassman.net/virus/

Don’t Spread that Hoax!: http://www.nonprofit.net/hoax/default.htm

Internet Hoaxes Email Rumors and Urban Legends—Current Netlore:
urbanlegends.about.com/science/urbanlegends/library/blhoax.htm?once=true&

Computer Virus Hoaxes:
urbanlegends.about.com/science/urbanlegends/cs/virushoaxes/index.htm

TruSecure: http://www.icsalabs.com/html/communities/antivirus/hoaxes.shtml

EFF “Hoaxes” Archive: http://www.eff.org/pub/Net_culture/Folklore/Hoaxes/

McAfee.com’s Virus Information Library—Virus Hoaxes:
http://vil.mcafee.com/hoax.asp

Symantec Security Updates’ Hoax Page:
http://www.symantec.com/avcenter/hoax.html

How to spot a hoax:
http://www.research.ibm.com/ antivirus/SciPapers/Wells/HOWTOSPOT/
howtospot.html

Les Jones’ Good Times FAQ:
http://www.public.usit.net/lesjones/goodtimes.html

Hoax verification: http://www.security-sceptic.org.uk

Also:

http://www.sherpasoft.org.uk/hoaxfaq/Mis-IT.html

http://www.sherpasoft.org.uk/anti-virus/hoaxes.txt

http://www.sherpasoft.org.uk/hoaxfaq/email.pdf

http://www.chekware.com/hoax/index.htm

http://www.korova.com/

http://urbanlegends.miningco.com/

Evaluation and Reviews
Oddly, very few sites on the Internet provide reviews of antiviral software. Then
again, perhaps it’s not so odd. One of the authors of this book has extensive
experience in the task, and it is a difficult one indeed.

Antiviral Software Evaluation FAQ:
http://www.freenet.victoria.bc.ca/techrev/avrevfaq.html

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 2 2 1

Alan Solomon (attributed to Sarah Tanner), “A Reader’s Guide to Reviews”,
Virus News International (November 1993), p. 40,
http://www.softpanorama.org/Antivirus/Reprints/virus_reviews.html

Virus Test Center—University of Hamburg:
http://agn-www.informatik.uni-hamburg.de/vtc/eng.htm

Checkmark: http://www.check-mark.com/checkmark/index.htm

C|Net: http://2.digital.cnet.com/cgi-bin2/flo?x=dAEuAugumAwKhAKuu

Response to C|Net: http://www.warlabs.org/portal/advisories.html

Anti-Virus Vendors
Some of these companies provide information and help, whereas others provide only
sales pitches.

Virus Bulletin Home Page (Virus Bulletin is unique in this list; it is a vendor,
but of a magazine rather than of software): http://www.virusbtn.com

F-Secure/Data Fellows World-Wide Web Server Main Index:
http://www.DataFellows.com/ (the datafellows.fi, datafellows.com,
f-secure.com, and fsecure.com domain names are all equivalent)

Frisk Software home page: http://www.complex.is/

Alwil Software: http://www.anet.cz/alwil/alwil.htm

Sophos home page: http://www.sophos.com/

Stiller Research: Integrity Master Virus Protection/Data Integrity:
http://www.stiller.com/

Security Solutions: Virus Clinic: http://www.cai.com/virusinfo/

SBABR home page: http://www.nikosystems.com/index2.htm

Dr. Solomon’s On-Line: http://www.drsolomon.com/

ThunderBYTE home page: http://www.norman.com/tbav.shtml

2 2 2 V i r u s e s R e v e a l e d

Norman: http://www.norman.com/

Symantec AntiVirus Research Center:
http://www.symantec.com/avcenter/index.html

Trend AntiVirus Center, Antivirus Solutions, Antivirus News:
http://www.antivirus.com/

Panda Software: http://www.pandasoftware.com/

Welcome to Leprechaun Software: http://www.leprechaun.com.au/

Command Software Virus Information:
http://www.commandcom.com/html/virus/virus.html

Sensible Security Solutions, Inc.: http://www.canada-av.com

General Resources
University of Tampere Virus Research Unit (highly regarded):
http://www.uta.fi/laitokset/virus/

Henri Delger’s VirusHelp home page:
http://pages.prodigy.net/henri_delger/index.htm

University of Michigan Virus Busters:
http://www.umich.edu/~wwwitd/virus-busters/

IBM Antivirus Research (the collection of papers at this site is particularly
valuable): http://www.research.ibm.com/antivirus/

Thomas Jefferson University Computer Virus Information:
http://www.tju.edu/tju/dis/virus/

Penn State Anti-Virus Page: http://cac.psu.edu/~santoro/cac/virus.html

UK Open University Antivirus home page: http://antivirus.open.ac.uk/

PC Virus Page: http://mft.ucs.ed.ac.uk/pcvirus/pcvirus.htm

Anti-Virus Information Exchange Network: http://www.avien.org

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 2 2 3

Computer Knowledge Virus Tutorial: http://www.cknow.com/vtutor/

Guillermito et les virus informatiques (French and English information, but
probably outdated): http://www.pipo.com/guillermito/darkweb/virus.html

Various Articles
Chat rooms hit by Internet flu:
http://www5.zdnet.com/zdnn/content/zdnn/1216/263771.html

What’s NOT a Virus: http://www.bocklabs.wisc.edu/~janda/notvirus.html

alt.comp.virus.pictures: http://members.aol.com/altcompvir/

mIRC SCRIPT.INI Infosheet: http://www.irchelp.org/irchelp/mirc/si.html

Mac Virus/Trojan Horse Alert:
http://www.frostyplace.com/NewsHTML/1998/May/VirusAlert/VirusAlert.html

Doug Muth’s Anti-Virus help page: http://www.ezweb.net/dmuth/virus/

Mountain Ridge Dataworks Macintosh Consultants:
http://www.mrdataworks.com/

Descriptions of Common Viruses: http://www.stiller.com/common.htm

Padgett’s AntiVirus Page: http://www2.gdi.net/~padgett/av.htm

Computer Viruses—Theory and Experiments: http://www.all.net/books/virus/

McAfee.com World Virus Map:
http://www.mcafee.com/anti-virus/virusmap.asp

Distributed Attack Detection:
http://www.incidents.org
http://www.dshield.org
http://www.mynetwatchman.com

Getting rid of WSH: http://www.F-Secure.com/virus-info/u-vbs/

Sendmail filter for Love Bug: http://biocserver.cwru.edu/~jose/iloveyouhack.txt

2 2 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

Are “Good” Viruses Still a Bad Idea?:
ftp://ftp.informatik.uni-hamburg.de/pub/virus/texts/viruses/ goodvir.zip

VBA Upconversion:
http://www.virusbtn.com/vb2000/Programme/papers/bontchev.pdf

One version of a naming standard:
http://www.symantec.com/avcenter/venc/vnameinfo.html

Macro Protection Techniques:
http://download.nai.com/products/media/vil/pdf/free_AV_tips_techniques.pdf

General Advice
http://ntbugtraq.ntadvice.com/safemail.asp

http://ntbugtraq.ntadvice.com/outlookviews.asp

http://2.digital.cnet.com/cgi-bin2/flo?x=dAEuAugumAwYomouA

http://2.digital.cnet.com/cgi-bin2/flo?x=dAEuAugumAwKhAhuP

Specific Viruses and Vulnerabilities
The articles listed in this section detail specific viruses or events.

Melissa

http://sun.soci.niu.edu/~rslade/melissa.txt

http://victoria.tc.ca/techrev/melissa.txt

http://www.cert.org/advisories/CA-1999-04.html

http://www.ciac.org/ciac/bulletins/j-037.shtml

http://www.antivirus.com/vinfo/security/sa032699.htm

http://www.melissavirus.com

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 2 2 5

Love Bug

http://www.ca.com/virusinfo/virusalert.htm

cbc.ca/cgi-bin/templates/view.cgi?/news/2000/05/05/lovebug000505

http://www.pcweek.com/a/pcwt0005041/2561671/

http://CNN.com/2000/TECH/computing/05/05/iloveyou.01/index.html

MTX

http://193.247.150.10/avpve/worms/email/mtx.stm

http://161.69.2.149/villib/dispvirus.asp?virus_k=98797

http://www.norman.no/de/virus_info/w32_mtx.shtml

http://www.antivirus.com/vinfo/virusencyclo/default5.asp?VName=PE_MTX.A

AutoStart 9805

http://www.opuscc.com/support/autostart9805.shtml

http://www.virusbtn.com/VirusInformation/autostart9805.html

http://www.sherpasoft.org.uk/MacVirus.archive/reference/autostart.html

http://lowendmac.com/virus/worm.shtml

http://www.unisa.edu.au/itsudesktop/sw/mac/virus/autostart.htm

http://www.internet-security.com/security/lists/security/ciac/0010.html

Shoch and Hupp’s Worm

http://ftp.unina.it/pub/docs/rfc/ien/ien159.txt

A German account is available at
http://www.cert.dfn.de/tutorial/wuermer/kap211.html

2 2 6 V i r u s e s R e v e a l e d

Linux Worms
Since worms tend to exploit specific loopholes in the operating system, most of these
discussions concentrate on the system vulnerabilities rather than the worms themselves.

http://www.sans.org/current.htm

http://www.cert.org/advisories/CA-2001-02.html

http://www.cert.org/incident_notes/IN-2001-03.html

http://www.cert.org/incident_notes/IN-2001-05.html

http://www.kb.cert.org/vuls/id/196945

http://www.sans.org/y2k/t0rn.htm

http://www.redhat.com/support/errata/RHSA-2001-007.html

http://www.debian.org/security/2001/dsa-026

http://www.suse.com/de/support/security/2001_003_bind8_txt.txt

http://www.caldera.com/support/security/advisories/CSSA-2001-008.0.txt

http://www.caldera.com/support/security/advisories/CSSA-2001-008.1.txt

http://www.whitehats.com/library/worms/lion/index.html

DDoS

http://staff.washington.edu/dittrich/talks/cert/

http://staff.washington.edu/dittrich/misc/stacheldraht.analysis

http://staff.washington.edu/dittrich/misc/tfn.analysis

http://staff.washington.edu/dittrich/misc/trinoo.analysis

http://staff.washington.edu/dittrich/misc/ddos_scan.tar

http://staff.washington.edu/dittrich/misc/sickenscan.tar

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 2 2 7

http://www.cert.org/advisories/CA-2000-01.html

http://www.cert.org/reports/dsit_workshop.pdf

http://www.cisco.com/warp/public/707/newsflash.html

Core Wars and Redstone Code

http://www.koth.org/info/sciam/

http://www.koth.org/info.html

http://www.sci.fi/~iltzu/corewar/guide.html

http://www.cs.ucla.edu/~jperry/corewars.html

http://kuoi.asui.uidaho.edu/~kamikaze/documents/corewar-faq.html

Pranks

hamptonroads.about.com/citiestowns/southeastus/hamptonroads/libr

http://www.supershareware.com/Apps/4072.asp

http://www.btsunlimited.com/shareware_nopass/shareware_prank.htm

http://members.tripod.com/~wiseguysinc/joke.htm

http://www.geocities.com/netsur24/gags.html

http://www.sidor.ru/sick/index1.html

http://looneytunes.acmecity.com/tune/213/

Other

ftp://ftp.microsoft.com/peropsys/IE/IE-Public/Fixes/usa/Eyedog-fix/x86/
q240308.exe

ftp://ftp.microsoft.com/peropsys/IE/IE-Public/Fixes/usa/Eyedog-fix/

http://www.microsoft.com/technet/security/bulletin/fq99-032.asp

2 2 8 V i r u s e s R e v e a l e d

http://support.microsoft.com/support/kb/articles/q240/3/08.asp

http://support.microsoft.com/support/kb/articles/q240/7/97.asp

http://www.microsoft.com/technet/security/default.asp

http://www.symantec.com/avcenter/venc/data/bat.chode.worm.html

http://vil.mcafee.com/dispVirus.asp?virus_k=98557

http://www.sans.org/giac.htm

http://www.cnn.com/2001/TECH/internet/03/07/virus.brazil.02/index.html

http://www.virusbtn.com/VirusInformation/michelangelo.html

http://sexyfun.net/
The Hybris virus uses the sexyfun domain in its return address. At the time
that the virus was released, the domain did not exist. Some enterprising souls
have registered it and use it as a platform for providing information about
Hybris and also about spam.

General Security References
TECS (The Encyclopaedia of Computer Security):
http://www.itsecurity.com/

Crypt newsletter: http://www.soci.niu.edu/~crypt/

@stake Research Labs—Advisories:
http://www.atstake.com/research/advisories/index.html

2600: The Hacker Quarterly: http://www.2600.com/

Sarah Gordon’s Papers: http://www.badguys.org/papers.htm

Spam, Unsolicited Commercial Email, Etc.

Coalition Against Unsolicited Commercial Email: http://www.cauce.org/

SPAM and the Internet: http://www.spam.com/ci/ci_in.htm

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 2 2 9

alt.spam FAQ or “Figuring out Fake E-Mail & Posts”:
http://digital.net/~gandalf/spamfaq.html

SPAM-L: http://peach.ease.lsoft.com/archives/SPAM-L.html
mailto:listserv@peach.ease.lsoft.com (include the following text line:
SUBSCRIBE SPAM-L firstname lastname)

http://www.sendmail.org/antispam.html

http://spam.abuse.net/spam/faq.html

http://www.petemoss.com/

http://www.cybernothing.org/faqs/net-abuse-faq.html

http://members.aol.com/emailfaq/emailfaq.html

http://ddi.digital.net/~gandalf/trollfaq.html

Encryption

Steganography & Digital Watermarking:
http://www.jjtc.com/Steganography/

Tiny IDEA Encryption Program:
http://www.dcs.rhbnc.ac.uk/~fauzan/tinyidea.html

The International PGP home page: http://www.pgpi.com/

Canadian Strategy: http://e-com.ic.gc.ca/english/crypto/631d1.html

Distributed Authentication in Kerberos Using Public Key Cryptography:
http://www.ini.cmu.edu/netbill/pubs/pkda.html

Security Agencies

The United States Navy INFOSEC home page:
http://infosec.navy.mil/content.html

The US Intelligence Community: http://www.cia.gov/ic/index.html

2 3 0 V i r u s e s R e v e a l e d

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 2 3 1

Center for the Study of Intelligence: http://www.cia.gov/csi/index.html

Central Intelligence Agency—Electronic Document Release Center:
http://www.foia.ucia.gov/

US Defense Intelligence Agency (DIA) home page: http://140.47.5.4/

National Security Agency: http://www.nsa.gov:8080/

Federal Bureau of Investigation Home Page: http://www.fbi.gov/

Canadian Security Intelligence Service: http://www.csis-scrs.gc.ca/

Canadian Security Establishment: ITS (Information Technology Security):
http://www.cse.dnd.ca/cse/english/home_1.html

RCMP Technical Security Branch: http://www.rcmp-grc.gc.ca/tsb/index.htm

Web Information Grabbers and Port Scanners

The Limit Software, Inc.: http://www.thelimitsoft.com/

The Consumer Information Organization’s Consumer.Net:
http://www.consumer.net/

Privacy Analysis of Your Internet Connection: http://privacy.net/analyze/

Fat-Free Software News: http://www.ffsoftware.com/

Shields UP!—Internet Connection Security Analysis:
http://grc.com/x/ne.dll?bh0bkyd2

E-Soft, Inc.: http://www.e-softinc.com/static/audit.html

Security Space: http://www.security space.com/sprobe/probe.html

Eye Digital Security:
http://www.eeye.com/html/Databases/Software/nmapnt.html

MC2 Security Wire Computer and Network/Security Solution:
http://www.mc2.nu/scan.php3

COTSE-IP Tools: http://www.cotse.com/iptools.html

network tool v2.41: http://nettool.false.net/

DSL—DSLreports.com: http://www.dslreports.com/scan

HACKER WHACKER Remote Computer Network Security Scan:
http://www.hackerwhacker.com/

Online Security Check: http://www.it-sec.de/vulchke.html

Security Space: http://www.securityspace.com/smysecure/

Miscellaneous

Smurfing: The Latest DoS Attack:
http://www.quadrunner.com/~c-huegen/smurf.cgi

Technical Incursion Countermeasures:
http://www.ticm.com/about/knowledge.html

Strategis: http://strategis.ic.gc.ca/sc_mrksv/privacy/engdoc/homepage.html

COAST: http://www.cs.purdue.edu/coast/

Fred Cohen & Associates: http://all.net/

Scott Schnoll’s Unofficial Microsoft Internet Explorer Security FAQ:
http://www.nwnetworks.com/iesf.html

The WWW Security FAQ:
http://www.w3.org/Security/Faq/www-security-faq.html

SekOrg Security Library:
http://www.sekurity.org/library/books.comp.infosec.html

DigiCrime, Inc.: http://www.digicrime.com/dc.html

CRACKS: http://www.focus-asia.com/home/mad96/cracks.htm

Gibson Research Corporation Home Page: http://grc.com/default.htm

The Attacks on GRC.COM: http://grc.com/dos/grcdos.htm

2 3 2 V i r u s e s R e v e a l e d

Professor Noboru Hidano, “Social Engineering”:
http://www.soc.titech.ac.jp/hidano/socialengineering.html

Ontrack Data International, Inc.: http://www.ontrack.com/

The Center for Democracy and Technology: http://www.cdt.org/

Books on the Social Aspects of Computing:
http://dlis.gseis.ucsd.edu/people/pagre/recent-books.html

Cult of the Dead Cow Back Orifice Backdoor:
http://www.iss.net/xforce/alerts/advise5.html

GNUPG—the GNU Privacy Guard:
http://www.d.shuttle.de/isil/crypt/gnupg.html

BugNet home page: http://www.bugnet.com/

National Cryptologic Museum: http://www.nsa.gov:8080/museum/

Media Awarness Network—the Three Little Cyber Pigs:
http://www.media-awareness.ca/eng/cpigs/cpigs.htm

SRI/CSL’s Intrusion Detection Page:
http://www2.csl.sri.com/intrusion/index.html

L0pht Heavy Industries Security Advisories:
http://www.l0pht.com/advisories.html

Counterpane home page: http://www.counterpane.com/

Deborah Quilter’s RSI Web Site: http://www.rsihelp.com/

PhD Thesis by Suzana Stojakovic-Celustka:
http://www.mystik-tours.hr/teza/teza.htm

Security Search—the Security Search Engine: http://www.securitysearch.net/

Ethics and Information Technology: http://www.wkap.nl/journals/ethics_it

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 2 3 3

Hack Canada—anything can be cracked when it’s forty below:
http://www.hackcanada.com/

SecurityFocus: http://www.securityfocus.com/

Common Vulnerabilities and Exposures: http://cve.mitre.org/

Generally Accepted System Security Principles (GASSP):
http://web.mit.edu/security/www/gassp1.html

Pueblo High Tech Crimes Unit—Slide Shows:
http://www2.co.pueblo.co.us/sheriff/htcu/slides.html

attrition.org: http://www.attrition.org/

Smithsonian Computer History—“The Bug”:
http://americanhistory.si.edu/csr/comphist/objects/bug.htm

ICSA Information Security Magazine: http://www.infosecuritymag.com/

ACM: ACM Transactions on Information and System Security:
http://info.acm.org/tissec/

JCS home page: http://www2.csl.sri.com/jcs/

SECURITY Magazine: http://www.securitymagazine.com/

CIPS Vancouver Security Special Interest Group: http://www.infosecbc.org/

(ISC)2 CISSP Study Guide: https://www.isc2.org/cissp_studyguide

The CISSP Open Study Guide (OSG): http://www.cccure.org/

IT Crime—IT Security and Crime Prevention Methods:
http://www.interpol.int/Public/TechnologyCrime/CrimePrev/ITSecurity.asp

Security News:
http://members.home.net/torelad/SysAdmin/SecurityNews.htm

Handbook of Information Security Management (1998 edition online):
http://secinf.net/info/misc/handbook/

2 3 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

C h a p t e r 8 : I n f o r m a t i o n G a t h e r i n g 2 3 5

Common Criteria Project home page: http://csrc.nist.gov/cc/

Security Publications: http://csrc.nist.gov/secpubs/

Rainbow Series (US security standards books):
http://csrc.nist.gov/secpubs/rainbow/

Computer Security Resource Center (CSRC):
http://csrc.nist.gov/welcome.html

Information Security Resources: http://security.isu.edu/

Frequently Asked Questions (FAQ):
http://www.alw.nih.gov/Security/security-faqs.html

Auerbach Publications, Information Systems Security:
http://www.auerbach-publications.com/iss/

Illegal Prime Number:
http://www.utm.edu/research/primes/curios/485...443.html

HoneyNet Project: http://project.honeynet.org/

The Security Writers Guild: http://www.securitywriters.org/about.php

SANS Institute Online home page: http://www.sans.org/newlook/home.htm

CERT Coordination Center: http://www.cert.org/

ICAT CVE Metabase: http://icat.nist.gov/icat.cfm

Linux Security—the Community’s Center for Security:
http://www.linuxsecurity.com/

Microsoft TechNet:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/
itsolutions/security/default.asp

rain forest puppy—exploits: http://www.wiretrip.net/rfp/

CyberCitizen partnership: http://www.cybercitizenship.org

Cyber Ethics for Kids: http://www.nicekids.net/indexf.htm

NT Security

Windows NT Frequently Asked Questions (FAQ): http://www.ntfaq.com/

NT Security—Frequently Asked Questions:
http://www.it.kth.se/~rom/ntsec.html

NTBugTraq—NTBugTraq home page: http://www.ntbugtraq.com/

NT Exploit(ed) Page: http://w3.aces.uiuc.edu/DLM/Ntexploits.html

NT Configuration Guide for the Paranoid:
http://www2.sysnet.net/~patton/securing_nt.html

NSA/Windows NT Security Guidelines:
http://www.trustedsystems.com/NSAGuide.htm

Nomad Mobile Research Centre—NT Files: http://www.nmrc.org/files/nt/

Russ Cooper’s NT Fixes Status Page: http://www.ntbugtraq.com/ntfixes.asp

Secure Windows NT Installation and Configuration Guide:
http://infosec.navy.mil/TEXT/COMPUSEC/ntsecure.html

Utilities for Windows NT: http://www.sysinternals.com/ntutil.htm

NT Security—Frequently Asked Questions:
http://hackerwhacker.com/faqs/ntsec.html

2 3 6 V i r u s e s R e v e a l e d

CHAPTER

9
Product Evaluation

and Testing

237

IN THIS CHAPTER:

Core Issues

Test Match

Further Information

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

2 3 8 V i r u s e s R e v e a l e d

It may seem strange that, unlike almost every other recent book on anti-virus
technology, this one has stayed resolutely vendor-independent. There are three
main reasons for this:

� We don’t have the time or space for furnishing the details of every package you
might be using. We know that NAI and Symantec have most of the market share,
but many other fine products are strongly represented in both the corporate and
the home-user markets, and while the core technology might not be dissimilar, the
interfaces can be very different.

� Technology changes quickly in anti-virus security, at least on a superficial
level. If we provided you with a few pages of illustrative screenshots, the
version we used would be obsolete and the product merged with something
else by the time this book hit the bookstores.

� In general, core functionality doesn’t change that much between products.
They all detect approximately the same range of viruses found in the wild. As
long as detection and provision of definitions updates are up to the mark, it’s
the details of implementation that matter. However, we cannot tell you which
implementation will work best for you (at least, not unless you are prepared
to pay substantial rates for individual consultancy). Instead, we feel that this
chapter will be more useful if we detail some of the issues that you need to
consider when you evaluate anti-virus software that suits your environment.

Before we get into the details of testing antiviral software, whether as part of the
corporate evaluation cycle or for purposes of reviewing, we need to consider:

� What features and issues are of most interest to you

� Which issues are susceptible to quantitative comparative testing

� Which features require a more qualitative and subjective evaluation

� Whether these latter features can be addressed usefully in comparative testing

Core Issues
The issues that concern most people can be classified quite simply:

� Cost

� Performance

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 3 9

� Functional range

� Ease of use

� Configurability

� Support functions

There is some overlap here, of course: functional range and performance are
interrelated, as are ease of use and configurability, and the effectiveness of the vendor’s
support has a major bearing on all these issues. Nevertheless, it is convenient to define
each issue in comparative isolation in the sections that follow.

Cost
You won’t be surprised to learn that we consider cost to be a somewhat more complex
issue than comparing unit costs over a range of products. Not that we consider unit
cost to be unimportant. However, many organizations seem to base their evaluations
almost entirely on this single factor. Even worse, they may focus on the issue of unit
cost at the expense of the operating costs that constitute the hidden 90 percent that
comprise the bulk of this particular iceberg. Smaller organizations may find it feasible
to procure a package, distribute it, and perhaps remind everyone when and if it needs to
be updatated.

NOTE

Although the latter solution might be feasible, it may not necessarily be enough. Certainly if your
strategy is based entirely on trusting your vendor of choice to make updates available to you as
soon as a new threat appears, sooner or later you probably will be hit with the latest fast-burning
mass-mailer while it is still making its initial impact, and before updates are available. Of course,
we don’t advocate such a narrow strategy, and we stress the need to take into account collateral
expenses such as education and distribution.

However, in larger organizations, even the most minimal strategy needs a little
more support than this, and realistic cost estimates will reflect that need, rather than
a procurement process along the lines of:

� Which products have I heard of?

� Which is the cheapest?

� I’ll take it.

Unit Cost
Sadly, even the initial consideration of unit cost can entail hidden costs in terms of
licence comprehension, let alone management (not to mention stress and headache
management). Like other modern software, anti-virus packages can be licensed in a
number of ways—per workstation, per user, per server, or a combination of these.
Furthermore, since few vendors nowadays deal exclusively with anti-virus software,
the cost may be calculated on the basis of a larger licensing deal including other
software such as desktop firewalls, cryptographic software, remote management
software, and so on. We are, in general, enthusiastic advocates of multilayering—that
is, virus management at a number of key entry points apart from the desktop (the mail
server, file servers, web servers, and so on).

Unsurprisingly, vendors who provide scanning services at all these levels are also
enthusiastic, and will usually offer highly advantageous licensing terms for all-in-one
deals. This reliance on a lone vendor can entail the vulnerabilities associated with
any potential single point of failure. You may have a problem with a scanning
engine used across a broad product range, or with a particular update, or you may
fall foul of a given feature or weakness in the general design specifically exploited
by a new threat. Multivendor solutions are less susceptible to such problems, and
one brand of scanner in use at the desktop, for instance, may pick up a problem with
the gateway scanner, or vice versa. However, this disadvantage may be considered
acceptable when weighed against the advantages of a substantial reduction in initial
outlay costs, a sole point of contact for all malware-related support needs, and a
reduced risk of conflicts between programs. There may be other opportunities for
negotiating a reduction in the cost, too: you may be able to act as a reference site,
and committing to a two- or three-year licence may carry a considerable discount.
However, for every loyalty discount, there’s a disloyalty discount. A dealer or vendor
who is keen to get your business will often offer the use of the software free until
your old licence expires. (Many vendors will not deal directly with customers, but you
will often find yourself dealing with sales and technical staff from the vendor as well
as from the dealer to whom they hope you will eventually pay the cheque.) This offer
is often described, optimistically, as a competitive upgrade. Having the use of a second
product when you’re already paying for another may not seem much of an advantage,
but if you get your timing right, it offers the opportunity for an extended testing and
rollout phase.

One consideration that you certainly should bear in mind here is whether the cost
of using the software on home or portable machines is a hidden extra. What other
hidden costs might you encounter?

2 4 0 V i r u s e s R e v e a l e d

Thank You for Your Support
It would be a bold vendor indeed that offered a product without any help-line support
at all. However, some vendors have learned over the years to offer less and charge
more. A common model is to offer options ranging from a nine-to-five service desk
accessed via a premium telephone rate, to 24/7/52 support options with paged and
emailed alerts, engineer onsite callout, and so on. The importance of such features
is, however, a matter of personal or organizational taste, depending on what other
third-party and in-house resources are available.

Via Media
We have been in the game long enough to remember receiving large cartons with disk
sets or CDs for each licenced user. Those days are gone—at least, this is no longer a
standard service. After all, everyone is connected nowadays, and it often makes sense
to distribute upgrades, updates, and interim definitions electronically, with one CD
sent to the primary site contact. Such distribution makes sense for small update files
and patches transmitted across fast network links. In fact, once a vendor goes this
route, updates supplied on conventional media may lag further and further behind the
version available on the web site. If, however, you are blessed with large numbers of
remote employees working over slow modem links, and a product that is regularly
updated as a complete set of programs, some of them recompiled monthly, your
mileage may vary considerably. If you find it necessary to burn CDs or even create
diskette sets, you will find that the media and opportunity costs (time spent on
duplication by staff who could be occupied elsewhere) quickly escalate. Even in a
small organization, these costs can grow to the point where purchasing professional
duplicating equipment, outsourcing to a third party, or paying an extravagant premium
to the vendor become surprisingly attractive options.

RTFM
The days of large boxes of documentation are also long gone. Additional documentation
sets are almost invariably an expensive extra. Vendors love electronic manuals, and hate
to pay postage. If you can’t get away with making .PDFs available on the intranet or a
similar resource, look forward to copious laser printing and photocopying. Check the
vendor’s position on duplicating such materials. In our experience, vendors are often
relaxed about this copyright violation—after all, they don’t really want to produce any
more hardcopy documentation than they need to, for obvious reasons. Even the biggest
vendors can expect less benefit from economies of scale than you might think, being in a
field of publishing where documentation changes and is updated almost as quickly as the
software. But don’t take our word for it: check with the copyright holder.

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 4 1

Of course, you may be able to condense vendor documentation to something less
verbose, paper-intensive, and time-consuming, with some judicious cutting and pasting.
However, this solution still imposes (at the very least) an opportunity cost.

Training
Some of the bigger vendors offer product training, on their site or yours. Some also
offer less (overtly) product-specific training in virus management, either directly or
through dealers. Caveat emptor: many (perhaps most) dealers are not anti-virus
specialists, and are not always as well versed in the products they sell as you might
expect. There are, of course, knowledgeable consultants and vendors. There are also
a good number of instant experts. Fortunately, having read this book, you will be in a
better position to tell one from the other. Training is usually an optional extra, and in
some cases a very expensive one. However, we cannot overstress the importance of
having at least one competently trained individual in all but the smallest organizations.
Having first-line support staff trained to similar standards may be preferable to having
the staff partly trained by an in-house specialist whose expertise might be in demand
elsewhere.

Definitions Updates
Let’s face it: the days when you could update every three months, perhaps applying
interim definitions if a particularly threatening virus appeared between quarterlies, are
long gone. Although not every virus that catches the public eye requires urgent attention,
sometimes a fast burner not only spreads within hours of its launch, but generates enough
copycats and variants to create a serious nuisance. Some vendors still maintain a policy
of free updates, but some have moved towards a subscription model, which they usually
enforce by requiring authentication before allowing the customer access to updates on
web sites. (Vendors that issue a complete, partly recompiled program suite every month
usually require authentication, too, not unreasonably.) Clearly, you will need to be sure
that the initial licence outlay includes updates (and upgrades).

Customizations
As anti-virus software has endeavoured to become more versatile, in the hope of
retaining market share in a high-pressure market, the range of threats (and non-threats)
detected has increased. Consequently, customers (especially large customers) want
more input into what the software actually detects. For example, some vendors have
moved away from detecting by default more or less harmless joke programs such as
CokeGift, but have made alternative definitions available on request that do detect
them. Some customers have gone further and have requested detection of other

2 4 2 V i r u s e s R e v e a l e d

programs that they consider unacceptable, such as games. Vendors with a gateway
scanning product are also asked to address issues such as spam and pornography.
These can often be handled more effectively with generic filtering techniques under
the control of the systems administrator, but some vendors attempt to comply with
customer requests for a more program-specific approach.

NOTE

To take an extreme example, subscribers to and maintainers of some specialist mailing lists are
all too aware of the number of unnecessary bounces that can be caused by a mail server that is
somehow configured to reject mail that contains a particular virus name in the subject line or
message text. The server will bounce the mail even if there is no other realistic indication that a
message is any likelier to be at risk than any other message. Indeed, the nonrecipient of such a
bounced message may actually be put at greater risk, in that he or she may not be able to receive
useful or essential information pertaining to that particular threat.

Older products may allow a degree of customization using a mechanism for entering
customer-defined patterns, but vendors have moved away from this model, and are
likelier to generate custom definitions themselves, where asked. If this works for you, go
for it, but expect additional costs . Where customization is still found, it’s likely that it is
intended to relax the iron grip of the default configuration rather than to tighten it, as in
the context of exclusion lists, whereby a customer can configure a scanner to refrain from
scanning certain objects in certain contexts. This customization can reduce security, as
when anything in the Recycle Bin is ignored for scanning purposes. On the other hand,
reduction of processing overheads entailed by scanning objects that can never be
executed may be considered a reasonable trade-off against such a reduction in security.

Administration
We don’t intend at this point to go over the details of evaluation and implementation
costs again. We must, however, point out again that unit cost is only a fraction of the
total cost of ownership. One viable formula goes like this:

Total Cost of Ownership = Licence Cost + Extras + Cost of Evaluation + Cost of Administration

Clearly, even an informal evaluation is at least an opportunity cost. A formal
evaluation with extensive testing can involve a number of people, including technical
staff, the procurement officer, financial staff, and so on. Watch that counter climb….

Evaluation may be as uncomplicated as comparing reviews from general computing
magazines (you may have gathered that we don’t think much of these as a resource,
in general), specialist magazines such as Virus Bulletin and Secure Computing,
mailing lists, and universities with virus testing facilities and specialist staff, such

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 4 3

2 4 4 V i r u s e s R e v e a l e d

as Hamburg, Tampere, and Magdeburg. On the other hand, evaluation may be as
resource-intensive as a full test environment, involving testing on standard configuration
workstations and servers. This may be restricted to installation and configuration
testing, a trial rollout, compatibility testing, network performance testing, testing of
update and upgrade distribution mechanisms, and so on. On the other hand, it may
also involve serious detection testing with live viruses, depending on many factors
such as the size of the organization, available expertise, and budget.

Testing the administrative and maintenance issues cannot be considered in detail
here: these issues are dependent on the organizational structure and philosophy,
resources available, and approach to security architecture. Nonetheless, they constitute
a major TCO (Total Cost of Ownership) component, and you will need to factor
something in to meet those future costs (not to mention the costs of incident and
problem management). Alternatively, you might plan to outsource this testing.

The costs associated with evaluation and testing are only the tip of an administration
iceberg. Once a product is selected, deploying and maintaining that product may also
include costs such as:

� Deploying definitions updates and product upgrades or crossgrades.
Who is responsible for regular updates—the vendor, the end user,
the systems administrator, or even the user support team? How
feasible is an automated solution?

� Responding to incidents.

� Dealing with false positives.

� Accessing and reviewing logs.

� Reviewing the contents of a quarantine area (if the product
offers such a feature).

� Responding to internal user issues. (“How do I turn this thing off?!?”)

� Selecting disinfection options and assessing the impact of that selection.
(For example, selecting deletion instead of disinfection requires the
availability of backups and restore options.)

Alas, these are questions that the vendor is unlikely to be able to answer very
easily. They are largely specific to the organization, and may take time and much
trial and error to establish.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 4 5

Performance
Performance may be considered in a number of contexts, but detection is the one that
matters most. After all, it is the only issue that even the most slippery of vendors cannot
weasel out of; the one function that all virus scanners have in common is virus detection.
However, just “detecting viruses” is too vague to be very useful, and well-founded
testing methodologies target a number of classes of virus:

� In the Wild (usually as defined by inclusion on the WildList). A test set may
include all the following classes of malware, though it is increasingly common
to advocate the separate testing of pre-Windows file infectors and all boot-sector
and partition-sector infectors.

� Boot-sector and partition-sector infectors, usually including file and boot
multipartite viruses.

� Macro viruses. These mostly consist of VBA (Visual Basic for Applications)
and other Microsoft Office-specific malware, including WordBasic macros
and Excel formula viruses.

� Collection viruses (zoo viruses).

� Polymorphic viruses.

With the possible exception of some generic products, it is not usually considered
realistic to expect scores of 100 percent in all these categories if a professionally
managed, up-to-date virus collection is used—at least, not always, even when testing
is intended to be confined to known viruses.

Testing a scanner’s heuristic ability by using unknown viruses is a very different
ballgame, and we consider some of the pitfalls in the final section of this chapter (“Test
Match”). How much store you put by a scanner’s heuristic abilities is a somewhat
subjective judgment, and may vary according to the kind of heuristics offered and the
location of the scanner. On the desktop, “high heuristics” may entail a heavy processing
overhead for little gain. On the mail server, even broad-brush heuristics such as filtering
by filename wildcards (*.*.vbs, for instance) may pay dividends in discarding or
quarantining unknown malware without adding noticeable overhead (noticeable to the
desktop user, that is). However, you may also want to know how prone the product is to
false alarms (always an increased risk with a heuristic scanner, as with any generic technique).

Home In on the Range
The range of viral threats detected is also a matter for concern. Obviously, it matters
if your scanner is not able to detect all the classes of malware that could affect or infect
the protected system, and the average PC user would consider it a matter for concern
if one of the following major classes of malware were not detected. We include the
Trojan category because most anti-virus software detects some Trojans (despite the
cries of “This is not anti-Trojan software!”), and the boundaries between certain kinds
of virus, worm, and Trojan are somewhat fuzzy. The range of malware you are most
likely to be interested in includes:

� System viruses that are hardware/firmware-specific. The most obvious examples
are PC boot-sector viruses, which may cause damage on Intel-driven machines
irrespective of operating system (although the choice of operating system has
a bearing on whether the virus can actually replicate).

� System viruses that are operating system (OS)-specific. These include file
infectors that may target (usually individual) system files under certain operating
systems. They also include viruses that work by modifying OS-specific system
components such as the Windows Registry.

� Parasitics (file infectors), which may also infect system files, but are distinguished
from the previous class by the fact that they target executable files in general,
irrespective of their actual function. In other words, a file might be infected
because it is an .EXE file, irrespective of whether it’s a component of the
operating system or an application such as a text processing program.

� Multipartite viruses. This term is most often applied to bipartite file and
boot-sector infectors. However, it can be extended in this context to include,
for instance, malware that includes two or more elements of virus infection,
worm infestation, and Trojanlike social engineering, or where one type of
virus includes a dropper for a different class of virus.

� Macro viruses, which can be described as application-specific. This description
doesn’t mean, of course, that you shouldn’t be concerned about receiving infected
documents if you don’t have the vulnerable application, but then it becomes a
matter of responsibility to others. You probably want to let people know that
they’re showering you with bugs, and you don’t want to pass them on yourself
passively, as can happen with latent viruses.

� Other script malware (such as VBS worms). These may be of specific interest
in particular environments—for instance, where the Windows Script Host is
routinely used for legitimate purposes.

2 4 6 V i r u s e s R e v e a l e d

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 4 7

� Worms and email-aware viruses. They are not, of course, always written in VBS,
and are not always PC- or Windows-specific.

� Trojans, in particular straightforward destructive Trojans. Other nonreplicative
malware may also be a concern. Increasingly, though, other classes of malware
detection software address Trojan horse programs, in some cases more
effectively than anti-virus software does.

From an evaluation standpoint, you should also take an interest in a scanner’s
capabilities as regards two closely related phenomena that are often not considered:

� Latent viruses

� Heterogeneous virus transmission

Latent viruses are viruses that have not been executed in the environment under
examination. Viruses and worms detected and blocked on arrival as mail attachments
are examples of this class of threat. We can also consider viruses that cannot be executed
in that particular host environment as latent (for example, Windows viruses on a Mac
and vice versa, or 32-bit Windows infectors in a 16-bit Windows environment—
Windows 3.1, for example). This latter case is an instance of something we have
described before as heterogeneous virus transmission. Some readers will certainly
want to take into account a scanner’s capabilities in a mixed environment. By mixed
environment, we mean not only offices with Mac and PC desktop machines, but also
environments where a mixture of platforms, such as Windows and UNIX, is in use.
To take an extreme example, a scanner that detects only UNIX malware if run on a
host that includes a mail server is a waste of space unless all the workstations are
also UNIX-based. Even then, the question of transmission remains unaddressed, since
non-UNIX malware can still be forwarded “passively” without the malicious code
being executed as part of the transmission process.

Evaluators should also take into account other targets, such as the following:

� Virus kits/generators (we refer here to the recognition of actual kits,
not the heuristic detection of kit viruses)

� Intendeds, corruptions, and other nonviable threats

� Distributed Denial of Service (DDoS) agents

� Nondestructive Trojans such as password stealers

� Jokes

� Games

NOTE

We are not saying that your software of choice should (or should not) detect all these things. We
are, however, saying that if detection of these things is important to you, you need to verify that
the software has such capabilities. Some products fail to detect whole classes of real viruses, let
alone more equivocal examples of malware and objects that are not universally accepted as
malware (jokes, for example).

Accuracy
We mention in the context of accuracy two factors related to detection that are
difficult to test, but are very important to most customers:

� Susceptibility to false positives is difficult to test; unless you already know the
sort of thing a given scanner misreports as viral (or otherwise malicious), the
only testing methodology that is likely to work is to subject it to a huge test
suite of applications known to be clean. You can perhaps reduce the load
slightly if you have particular classes of false positive in mind.

� Gateway scanners can be tested to see if heuristics are set too coarsely grained,
by sending mail including known trouble areas, such as plain text mail containing
the name of a known virus, or some string known to be associated with a known
worm, but out of the context of the particular virus. For example, mail that
includes the phrase “Iloveyou” (or even worse, “Good Times”) in the body of
the message should not, in our opinion, automatically flag that message as infected
with LoveLetter. In fact, some might regard it as a false alert if a message with
no attachment, but with the subject “Iloveyou”, is flagged as definitely infected,
even though that subject text normally indicates worm-cast.

While we were writing this chapter, W32/Sircam was making its rounds and
demonstrating another oddity we see increasingly often: messages sent by the worm
and created by the worm, but with the attachment corrupted or lost altogether. (It is not
unusual for gateway scanners or content filters to strip malicious or potentially malicious
attachments, but that’s not what we are talking about here.) Should anti-virus software
flag these accidents and misfires? Yes, because they give the good citizen of the Internet
the opportunity to point out to the sender—whether a friend, a colleague, or a complete
stranger—that he or she has an infection or infestation of malicious software.

Exact identification is difficult to test; not only do you need a test suite of virus
samples, but you also need to know exactly how the antiviral should report those
samples. This sort of information is very difficult to verify without specialized
resources that are not available to most systems administrators, journalists, and so

2 4 8 V i r u s e s R e v e a l e d

on. Yet this is an important issue. If a virus isn’t identified correctly, it cannot be
disinfected with 100 percent reliability. There is further scope for confusion, in that
scanners don’t always report what they find with a canonical name. For example,
sometimes you will see a virus reported as “xyz.gen”, suggesting that the virus has
been detected and removed using a generic driver that detects a family of viruses,
rather than identifying a specific variant.

Appearances may be deceptive, though. How a scanner reports a virus does not
necessarily indicate how well it discriminates between variants. After all, most vendors
assume that their customers don’t care whether the virus in question is W97M/
EvilVirus.GP or W97M/EvilVirus.GQ, though this assumption is increasingly unsafe.

In many cases (including CIH, AutoStart, and W97M/Marker), different variants
of the same virus have different payloads or levels of destruction or data leakage.
The difference between variants may have a serious impact on further containment
or source/scope issues, such as where the virus came from and how far it may have
penetrated into the organization. For example, a number of recent email-aware
viruses and worms write log files or contain internal information about previous
addresses “visited”. In general, scanners tend to ignore or simply delete such log
files, or bury the table along with the worm. However, a systems administrator
might well want to know about the log file, perhaps for forensic purposes, or about a
residual effect that could be needlessly exposing the presence of a previous infection
well after the infection itself has been eradicated.

Furthermore, while a misidentified virus cannot be removed reliably, it isn’t
always necessary to know the exact variant in order to disinfect a system effectively.
If disinfection involves removing all macros in an infected document, or deleting a
malicious Visual Basic script, slight variations aren’t particularly important. The
environment or infected object may not be restored to the state the customer might
have expected, even where malware has been exactly and correctly identified, if the
virus has made Registry changes or trashed legitimate macros. Registry changes are
also an area where variants may differ, and to make manual repairs, the administrator
needs to know specifics.

Most readers will not be able to get around these difficulties at first without recourse
to the vendor’s help line.

Speed of Execution
Scan speed is usually most noticeable when evaluating or testing an on-demand
scanner. Fortunately, this is not quite the big issue it was a few years ago, when the
on-demand scan was the mainstay of anti-virus strategy. Nowadays, it is common
for the on-demand scanner to be used only for removal of a virus already known to

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 4 9

be or suspected of being on the system, or in some instances for a weekly or daily
scheduled scan. In the latter case, modern multitasking operating environments allow
the scan to take place in the background, in which case the speed of operation may
matter less, and is certainly dependent on the type and resource intensity of the
operations taking place in the foreground. This dependence doesn’t make it impossible
to test scanning speed comparatively, as long as the testing takes place against the
same set of automated foreground processes. However, real-life performance in
this respect will vary widely according to the individual workstation, and the
tasks being performed at the time. A number of components contribute to overall
scanning speed:

� How long it takes to load the program initially, before the actual scan starts.

� Whether the scanner is set to maximize speed rather than thoroughness, or vice
versa. A “deep scan” is likely to incur considerable overhead by examining the
whole file, rather than just the part where a given virus footprint is expected to
be found. (We are not, by the way, falling into the common trap of thinking of
viruses and file viruses as being synonymous, in this case. However, it would
be very uncommon to find a system on which the number of files to be examined
was less than the number of boot sectors and other system areas, so file scanning
is the area in which we would expect to find most of the overhead.)

� Whether the scanner is set to examine all files, or only those defined as
“executable”. Nowadays, “executable” files include infectable documents,
such as those created by Microsoft Office applications, as well as system
and application files.

� Whether the scanner is set for heuristic analysis, whether heuristics are set
for all types of infectable object (some scanners have separate settings for
file heuristics and macro heuristics, for example), and whether different levels
of heuristic intensity can be applied. For example, some scanners differentiate
between heuristics and high heuristics, the latter being more resource-intensive.

� Whether the scanner allows a form of hybrid detection combining known-virus
scanning and checksumming. Specific objects are scanned only for specific
viruses if a checksum mismatch suggests that the object has been modified since
the last time it was checked. This can give the scanner a significant advantage on
a second run against a test suite, but puts it at a disadvantage on a first run, since
its speed on the first run will be less impressive than its performance on
subsequent runs. How this affects the scanner’s performance in a real-world
situation will vary widely according to local conditions and patterns of usage.

2 5 0 V i r u s e s R e v e a l e d

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 5 1

Similar considerations apply in the testing of on-access scanners. However, unless the
scanner is abnormally slow, differences in performance are less obvious on a file-by-file
basis, and can only be realistically tested using standardized test procedures and taking
into account possible variations introduced by operating system–specific speed reduction
strategies such as caching. Use of on-access scanners, which are memory-resident
and therefore running all the time, introduces the issue of compatibility and possible
contention with other processes running at the same time. It is not uncommon for an
on-access scanner to conflict with another memory-resident program (often something
not noticeably related functionally, such as a video driver). It is also possible that
such a conflict will arise with a given nonresident application, if it happens to be
running. On-demand scanners are less often associated with such difficulties,
although their use in conjunction with scheduling software has sometimes been
observed to cause problems.

It’s Not My Default
Modern anti-virus software has a wide range of capabilities and strengths, and some
products are better in specific areas than others. Default settings generally put scanning
speed before absolute caution, but some vendors’ products may vary drastically in regard
to a particular default setting. Many a review has castigated a product for poor detection
performance when the responsibility actually lay with a tester who had made unsafe
assumptions about default behaviour. Here are some issues that you might need to check.

Zipped Files
Most on-access scanners don’t check archived (compressed) files such as .ZIP files by
default, if at all. (The assumption here is that an infected file within an archive will be
detected when the file is actually extracted from the archive, which is when detection is
actually needed.) On-demand scanners often do scan inside some types of compressed
file, although not invariably. However, they rarely do so by default. Furthermore, while
most scanners can scan inside .ZIP files if the appropriate switch is used, they don’t
necessarily scan nested .ZIP files (that is, .ZIPs within .ZIPs). If they do, they may not
scan to an infinite depth of nesting. Most modern products scan in memory (which may
cause problems if there are multiple nesting levels or large files), but some may have
to extract the contents of an archive to disk before they can scan. Even if other
compression formats are supported, it is unlikely that any one product will scan all
variations of all likely compression formats, and oddball combinations, such as one
type of archive nested inside another, may also lead to difficulties. Even worse, a
scanner encountering such problems won’t always flag them.

Compressed Executables
Scanning of compressed (packed) executables also leads to complications, though the
situation here is somewhat different. This form of compression aims to reduce the
amount of space an executable takes up on disk, by allowing it to self-decompress
in memory on execution. Clearly, it is desirable for a product to support a variety
of packing formats, and anti-virus software has addressed this issue for some years
already. However, malicious programs have been known to reappear in a compressed
version; in these circumstances, scanners may fail to detect the compressed form.
Scanning of packed executables is worth a tick on the features table, but don’t expect
this process to perform miracles.

Compressed Disks
Disk compression isn’t as popular as it was around the middle of the 1990s. Disk
capacity is, after all, astonishingly cheap nowadays. Even in environments where
disk compression may still be in use, anti-virus software has moved away from
routine clean-boot on-demand scanning, which is where problems traditionally
arose. In simple terms, disk compression works by funnelling a whole physical disk
into a virtual disk, which is in reality a huge file. The virtual disk can be chock full
of viruses, but these can be detected only if the software driver is loaded that allows
the operating system to see the virtual disk as a disk rather than as a file.

Encryption
Encryption, in terms of password-protected files, causes some confusion, and not only
in terms of testing and evaluation. Some decryption, such as the native (invariable)
encryption that can be applied to VB scripts, has no impact on detection of malware; if
there is a high proportion of content that doesn’t change between infections, it doesn’t
matter whether the content is encrypted or not. Where the contents of a file cannot be
scanned effectively unless the file is decrypted, things get a little more complicated.
Note that decrypting a file does not always require pre-knowledge of a password, as
long as the algorithm is known. However, anti-virus vendors do not normally address
decryption issues except where the encryption is part of the virus, as is the case with
polymorphic viruses using variable encryption, for instance. The assumption here is
that the virus will be spotted when and if the object is decrypted in the normal way.

Obviously, it would not be practical for vendors to include autodecryption routines
for every known encryption package, and real-time autodecryption of files enciphered
with secure algorithms is not practical, Hollywood fantasies of universal decryption
tools notwithstanding. A common exception to this rule is the old-time Word or
Excel document. Some older versions of these applications were protected with a

2 5 2 V i r u s e s R e v e a l e d

simple-enough algorithm that it was feasible to decrypt and scan the files on the fly.
And, some vendors did so routinely, although at least one vendor declined to offer
this option, on the grounds that the vendor could not guarantee that its product would
perform the process correctly every time, and preferred not to risk a false negative.
More recently, Microsoft has enhanced the encryption in Office applications later
than Office 95, making it no longer feasible to decrypt in real time, so the importance
of this feature has declined.

Another commonly found encryption format is the one used by PKZip and other
products (notably WinZip) that use the same file format. This encryption, though no
longer considered highly secure (a number of “cracks” are available), is nevertheless
solid enough to render real-time decryption impractical. Industrial-strength algorithms
such as those employed by PGP, for example, should not be susceptible to real-time
automatic decryption without a pass phrase.

In general, if a scanner recognizes a file as being inaccessible because it is encrypted
(for example, password-protected MS Office files) it is preferable that the scanner
report this fact, because there are possibilities for confusion when, for instance, a
self-decrypting executable is scanned. The problem here is not dissimilar to that
found with self-extracting archive files. The scanner checks the file, finds that it is
a legitimate .EXE file, and doesn’t find a virus. However, there is no guarantee that
when the archived or encrypted component of the file is uncompressed or decrypted
that it will be similarly hygienic. However, this is not much of an issue if a reliable
on-access scanner is active in memory at the time the file is restored to its original form.

Corporate administrators are generally enthusiastic about gateway scanning; it’s far
easier to maintain, end users cannot switch it off, and it catches most current malware.
However, as more people use encryption routinely, we observe a shift of interest back to
desktop scanning. On-access scanning at the desktop, and at the moment of decryption,
is currently the best technological means of addressing the problem of transmission of
encrypted and possibly infected files. Anti-virus software may be integrated into the
Public Key Infrastructure (PKI) so that autodecryption can be effected while the file is in
transit between two end users. This latter scenario introduces some interesting questions
about technical implementation that does not compromise confidentiality. Unfortunately,
these questions are somewhat beyond the scope of this book.

Disinfection and Repair
A moment’s thought tells us that disinfection and repair are not altogether the same
thing, although the two terms are often used interchangeably. Rather as adding
disinfectant to drinking water renders it unfit for its primary purpose, so removing
a virus may render a system unusable. It’s not only in surgery that a successful

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 5 3

2 5 4 V i r u s e s R e v e a l e d

operation can leave the patient inert. Low-level formats and ill-advised MBR
replacement are drastic surgery indeed. However, dedicated anti-virus software
can also kill the patient.

Anti-virus software sometimes replaces an infected boot sector with a generic boot
sector that may leave the system unbootable, but this is far less likely to happen with
dedicated anti-virus software than with FDISK, the use of which with an undocumented
switch is still advocated in some quarters. In fact, we have seen it advocated in
anti-virus documentation (and protested accordingly).

Sometimes it isn’t possible to repair a true executable file so that it still functions. The
effects of the virus may not be altogether predictable, so that the host can’t be restored
exactly to its pre-infected form. This may not matter, but it may result in side effects.
Oddly enough, anti-virus scanners, which usually incorporate a test of their own integrity
when they start up, can be particularly vulnerable to this problem: a disinfected scanner
program may refuse to run because it can detect that it has been modified.

A macro virus is usually child’s play to neutralize. However, it may leave traces
that are detected by other scanners, and removal of the macro may not restore the
environment. WM/Cap is a classic example, in that it leaves customizations in the
global template that render some menu options unavailable. Anti-virus software does
not usually address this sort of problem, nor can it restore legitimate macros trashed
or corrupted by the virus itself.

A similar problem is found where a virus or worm modifies the Windows Registry.
Vendors have avoided making automatic repairs to the Registry, for a number of
reasons. The Registry is not a static object. Behind the scenes, changes may be going
on all through a computing session, and distinguishing between legitimate and viral
modifications is not always straightforward. Restoring a Registry key to a default
that usually works may, on occasion, result in destabilizing something else. Furthermore,
the Registry changes between versions, and not only between NT-based and 9x versions,
but between revisions.

Sadly, accurate information on how well a product addresses these issues is rarely
available from vendor marketing departments. A well-maintained vendor service desk
will have ready access to this information, and will add it to the database as calls on
individual incidents come in and are signed off, but this doesn’t help much at the
evaluation stage. More usually, you can only consider the issue pragmatically, by
testing with live samples (oh, dear…) or by talking to people with firsthand experience.

We will not deal at length with the question of product certification here. Not that
we regard independent testing and certification as irrelevant or unhelpful, but testing
for certification purposes usually focuses on detection. This is understandable: detection
is far easier (and cheaper) to test than issues such as disinfection and repair, let alone
elusive but expensive issues such as false positives. However, testing and certification
processes are changing quite rapidly, and such crucial issues as repair are addressed

TE
AM
FL
Y

Team-Fly®

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 5 5

more often by independent testers and certification specialists such as Virus Bulletin
(www.virusbtn.com) and ICSA Labs (www.icsalabs.com).

We agree that certification is a much better guide to a product’s capabilities if it
provides a trustworthy indication of how well the product handles disinfection and
repair. To quote Christine Orshesky:

I cannot tell you how many times I have gone through [situations where] the
“cure” was more destructive than the disease scenarios and would have liked
to know how a vendor handles disinfection and repair and how it compares
to other products before I chose the “auto-detect and repair” option. Lack
of confidence or assurance in a given product’s disinfection capabilities
combined with the need to handle residual effects and the need to determine
source, scope, and containment issues, sometimes leads me to disable any
disinfection options and simply quarantine or delete.

However, the fact that a product is certified in any respect does not spare you the
necessity of understanding what the testing process is intended to evaluate, how
appropriate the methodology is to that aim, and how well the certification maps to
the needs and requirements of your organization.

Compatibility Issues
Let’s consider the problem of virus damage for a moment. We know that some viruses
cause dramatic deliberate or accidental damage. However, the most permanent,
expensive consequence of virus action doesn’t even require the presence of a specific
virus, only the possibility that a virus may be present at some point in the future. We
are, of course, referring to the necessity of taking anti-virus precautions, which usually
means scanning software. We are not talking about the cost issues already discussed,
but rather the fact that this software has to coexist with other software: the system
software and operating system, other utilities (especially those that run memory-
resident), and those all-important applications. When PCs were largely DOS-based
and single-tasking, and scanning was primarily on-demand, the main issue was “down
time” while a system was being scanned, although from time to time a particular
combination of software might lead to unexpected side effects. On-access TSR
(memory-resident) scanning focused more attention on compatibility issues:

� Due to the restricted available memory in a DOS environment, the TSR’s
footprint had to be as small as possible in order to load at all, and was
influenced by such uncertainties as the order in which TSRs were loaded
and the state of the network.

� TSR programming was always something of a black art, fraught with
uncertainties and reliant on mystic incantations.

Inevitably, there were problems, if only the inevitable slowing down of processes where
CPU time was shared between resource-intensive or computation-intensive programs.

Windows, as a multitasking environment with a more relaxed memory model and
a formally documented programming interface, alleviated some of these problems.
However, the increasing complexity of the environment introduced whole new classes
of potential instability.

These problems are unpredictable; they can be fully tested only in the target
environment, over time. Known problems with particular software, exchange of
information in special interest groups such as AVIEN, and customers who are
prepared to act as reference sites may be helpful, but someone else’s experiences
are not a complete substitute for onsite evaluation and compatibility testing.

Functional Range
In a mixed environment (and most large organizations can be described as such),
you will need to know what platforms are protected and what virus entry points are
covered by antiviral protection:

� The desktop

� LAN servers

� Mail gateways, such as SMTP, Domino, and Exchange servers

� Gateways for other data transmission protocols, such as ftp, HTTP, and NNTP

Large organizations will be particularly interested in firewall plug-in scanning,
specialized viruswalls, and other content-filtering software and hardware, and the
question of how well these functions can be integrated within the same product range.

On-Demand Scanning
The anti-virus industry has moved away from routine on-demand scanning, at least as
a prophylactic measure. However, even where a product includes on-the-fly on-access
disinfection, on-demand scanners are still needed to deal with incidents where replicative
malware has already taken hold. In such cases, the hope is that on-demand scanners
will fix the problem, or at least clarify the extent of the problem. In any case, many
systems administrators prefer to run scheduled on-demand scans as a supplement to

2 5 6 V i r u s e s R e v e a l e d

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 5 7

on-access scanning, and sometimes as a substitute, for example, on a low-end system
where the processing overhead of on-access scanning is considered too onerous in a
low-risk situation, such as a machine that isn’t networked. Unless you are very certain
that you’ll never need it, the effectiveness of the scheduling may be of some interest.

Another likely scenario calling for a scheduled scan is after a new definitions
update or version upgrade. In this case, an on-demand scan may be the default or
even mandated as part of the installation/update process. If not, it may be desirable
to use a wrapper script that calls the installation/update and also runs a scan right
after the update. Alternatively, a rescan may be flagged as required at the next restart,
and end users may prefer this, since reinstalls and rescans always seem to happen at
the worst possible time. However, some machines are never normally powered down,
so some means of ensuring that a scan is run before the next weekly scan event (for
instance) may be a good idea, to ensure that any infected files that may have slipped
through before the update will be detected and handled in a more timely manner.
This, in turn, increases the system administrator’s ability to respond to a potential
latent infection and to contain the infection, but it may also be useful in the
comparatively rare case of a virus that isn’t properly detected by an on-access
scanner when the virus itself is already in memory.

Targeting is also an issue. Sometimes you’ll need to run an all-files, all-volumes scan.
Sometimes, though, you know exactly what for and where it is you’re hunting, in which
case it’s seriously annoying to have to scan the whole of drive C, knowing that your
target is Happy99.exe, and that it’s sitting in the attachments directory. Fortunately, few
scanners nowadays are this inflexible, but selecting the right module or menu is not always
straightforward. Some of the targeting issues that might concern you are these:

� Can you select scanning of the whole system, a single selected volume, a
number of selected volumes, one or more selected folders, or one or more
selected files?

� Can you use filename wildcards? Is there a browse button to allow you to navigate
to a given file, or do you have to type in a canonical or relative filename? Can you
select files or folders on a remote drive using UNCs? (UNC stands for Universal
Naming Convention, which is a way of pointing to a server share point using the
notation \\servername\share\subdirectory\filename or \\servername\volume\
subdirectory\filename rather than mapping to a virtual drive name. For instance,
the “public directory” on the server “rambo” might be mapped to drive Z, but
could also be accessed as \\rambo\sys\public. In this case, you would expect the
commands DIR Z and DIR \\RAMBO\SYS\PUBLIC to return the same directory
listing. As this Novell-flavoured example indicates, the convention doesn’t
assume an NT server.)

� Can you choose to scan or not scan subfolders within the target folder?

� Does the scanner support inclusion lists and exclusion lists? For instance, do
you want to make sure the Recycle Bin is scanned every time, or exclude the
directory tree that contains your virus samples?

� Does the scanner look for the tens of thousands of all known viruses, or can
it be configured not to look for some classes of malware (such as Macintosh
viruses, old-time DOS viruses, joke files, or even viruses unlikely to be found
in the wild)?

� Assuming that the scanner has a heuristic mode (not all scanners do), is the
mode graduated? (Some scanners support “high heuristics” that scan more
aggressively for viruslike code than “standard heuristics”.) Gateway scanners
may offer a particularly wide range of heuristic options, including content
scanning within mail messages as well as attachment scanning, scanning for
suspicious filename extensions, and so on. If you have particular requirements,
you’ll want to know that the product supports them.

On-Access Scanning
On-access scanning may offer a similar range of options. Again, if you have particular
requirements, you’ll need to check issues such as these:

� Is the range of malware detected what you expected? For example, DOS TSR
scanners don’t usually detect complex polymorphic viruses or macro viruses.

� Does the scanner have a heuristic mode? Is it configurable?

� What does “on-access” actually mean? Does it scan when a file is opened for
reading, for writing to, or only for execution? Is a file scanned when it’s closed?
(More is safer, but less is faster.)

� Can the scanner disinfect?

� Can it autodisinfect? That is, can it disinfect without prompting? If it can, does
it still write a log? If the scanner deals with viruses transparently and creates no
record that is available to you, this prevents you from letting the source of an
infection know it has a problem. It also means that the cost of the software can’t
be justified statistically. In this latter case, can alerts or prompts still be sent so
that the scanner prevents the administrator from having to review the logs manually
looking for infections? Many applications do generate logs, but rarely are the
resources available to review or even to act on them.

2 5 8 V i r u s e s R e v e a l e d

� Where alerts are generated, how are they sent? Email or paging might be preferred,
in case a server broadcast is not seen for a while (or even at all) because the
administrator doesn’t happen to be logged on to a particular server, or because a
remote console package may not be running at that point.

� How does the scanner deal with infected files? The most common options are
to rename the files with non-executable filenames in order to neutralize them,
to place the files in a protected quarantine directory, to disinfect them, and to
delete them. Not many scanners nowadays delete all infected objects, but they
may delete all examples of a given class, such as file infectors, for example. Of
course, some of these issues are applicable to on-demand scanners, too. Most
on-access scanners deny access to the infected file and flag it accordingly.
On-demand scanners do something similar when they change the filename (for
example, from MYFILE.EXE to MYFILE.VXE). However, not all operating
systems rely on file extensions to tell them whether a file is executable or not.
In Linux and other flavours of UNIX, as well as Mac OS, a filename extension
has no special meaning for the operating system, although it may for some
applications. Even in MS-DOS or Windows, it isn’t necessarily impossible to
execute a file with a nonstandard filename extension, or even no extension, but
doing so usually requires that you modify the environment by patching a system
file or by creating a secondary shell process.

Integrity Checking
This book has largely concentrated on known-virus and heuristic scanning, since
this is what the industry usually prefers. However, the day of the change detector
(integrity checker) is not yet over. Indeed, as part of a general strategy of integrity
management, this class of software is enjoying something of a resurgence of interest
in some quarters, and certainly it has its advantages in a multilayered defence strategy.
However, a change detector needs a wide range of options offering flexibility in
configuration, if it is not to be more trouble than it’s worth. In most environments, it
needs to be carefully targeted. There is rarely an advantage to detecting modifications
to documents; in general, documents are intended to be modified, as are executable
files generated by development software used by the owner of the protected system.
On the other hand, knowing that a system file or a “frozen” archive has been modified
is often an excellent indicator of a virus or some other intrusive program or behaviour.

If you plan to make use of such software, you’ll need to be aware of a number of
issues. Vendors don’t usually advertise the details of the checksum algorithms used
to detect modification of a protected object, but they should be able to tell you enough
to reassure you that the algorithms aren’t simple and relatively easy to spoof.

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 5 9

2 6 0 V i r u s e s R e v e a l e d

CRC (cyclic redundancy checking), for example, is perfectly adequate for
communications handshaking where security is not an issue, but is unsuitable for
secure integrity checking. Secure message digest algorithms such as MD5 are
normally considered a minimum requirement. Note, however, that the use of such
an algorithm is not an absolute guarantee of the security of an integrity checker,
any more than a massive key length is a guarantee of the security of an encryption
algorithm.

Integrity checkers are a common target of retroviruses, viruses that take
advantage of the known characteristics of anti-virus software. A classic attack
takes advantage of the fact that integrity checkers are useful only if they check for
divergence from a baseline image of a file (or other object) taken at a time when it
was known to be uninfected. If the checksum algorithm is feeble enough, a virus
may be able to falsify the checksum to conceal the change. If this isn’t possible,
simply trashing the file containing the checksum might be enough. In a number of
notorious instances, if the file was not found, the software simply ran the checksum
calculations again to re-create it (or them). If a virus had trashed the file(s), it was
now impossible for change detection to detect the presence of the virus, since it
had been “absorbed” into the baseline image. Countermeasures include avoiding
simple-minded measures, such as writing individual image files for each directory
within the imaged directory, in favour of using a single file with a random or
user-defined filename and location.

Exclusion and inclusion lists are useful features for integrity checkers, too. Exclusion
lists allowing particular directories or files to be excluded can cut down on time wasted
checking objects that don’t matter or that are expected to change from time to time.
Inclusion lists can also be helpful in keeping down the processing overhead by checking
only essential objects.

On-access integrity checkers are rarer than the on-demand variety, but have particular
advantages where hybrid checksumming and known-virus scanning are used. In these
scenarios, a file or other infectable object is scanned for known viruses only if it fails the
checksum test, indicating that the file or object has been modified since it was last
scanned. Such modification is not necessarily the result of viral action, of course. Also,
the one product we know of that makes heavy use of this strategy automatically refreshes
the checksums if its known-virus definitions database is updated.

We have not spent much time on old-time behaviour-blocking or monitoring software.
Most people get fed up with its false alarms and restrictive behaviour very quickly,
and such software isn’t very useful if people keep turning it off. If this approach attracts
you, you will want to be sure that the software is:

� Reasonably configurable (especially in terms of taking it down a notch if
it is too aggressive)

� Capable of “learning” so that it doesn’t set off false alarms monotonously
on the same harmless behaviour, day after day

� Not so obtrusive as to make your computing life impossible

� Economical in the memory and processing time it consumes

� Compatible with your standard desktop applications

Other Tools
Not everyone favours the minimal approach. While we don’t particularly advocate
the Swiss Army knife “blade for every possible job”, you may find some use for extra
tools, if they’re available, such as the following:

� Goat or bait files

� Tools that take various approaches to scanning for possible companion infectors

� Tools for rewriting system areas

� Tools for storing and restoring files that shouldn’t change

Other tools that may one day fall into the “wish I had one here” class include:

� Disk editing and viewing tools (we remember with some fondness a particular
tool that was a read-only disk viewer unless you knew the switch that
converted it to an editor)

� A binary file editor

� A small but stable text editor

� Last but not least, realistic tools for the deployment and management of
the software on remote machines

Ease of Use
If you could choose one attribute above all others for your anti-virus software, what
would it be? Detection of every known virus? Availability on every known platform?
We suspect that for most people, at least the nonexperts, their first choice would be
ease of use. The best virus detection abilities are of little value if it takes a rocket
scientist to employ the package.

Ease of use has two closely related aspects: user transparency and ease of
configuration and administration. End users want their anti-virus software to toil

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 6 1

2 6 2 V i r u s e s R e v e a l e d

invisibly, so that they never have to think about their own protection, which equates
to expecting a technological solution to solve a psychological problem. Still, wearing
our system administrator hats, we share the urge to let our customers get on with
their work.

However, there are really only two ways to achieve this enviable state. The first is
to use AV security software so easygoing and relaxed that it’s useless at providing
security. The second is to transfer the burden from the end user to the administrator.
This works best if the administrator can effectively generate, maintain, and distribute
preconfigured packages to end users. Most modern anti-virus packages with a corporate
customer base offer server-based tools for remote installation and maintenance, and
some systems also provide remote incident management. The more sophisticated
tools of this ilk almost invariably assume the presence of a Microsoft network, rather
than less common (nowadays) alternatives such as NetWare or UNIX-based networks.
If your network is not of the Microsoft variety, you can attain some of the functionality
of such tools by the judicious use of batch files and login scripts. However, our
experience is that most vendors don’t support such measures as well as they might.
The administrator in other environments can generally look forward to hand-coding
lots of scripts and macros, and long conversations with staff from the vendor’s
second-line support office.

Alternatively, you can grit your teeth and accept that end users have to take some
responsibility for their own anti-virus arrangements. Implementation in this case can
range from complete abdication of central control to the provision of vendor and, if
necessary, in-house documentation, training courses, and detailed guidelines. Such
measures do not avoid the need for you to provide comprehensive training of first-line
and second-line support teams, who will have to be prepared to plug the gaps, whether
through detailed telephone talk-downs or through the dispatch of engineers to
infected sites.

NOTE

The term talk-down in the context of telephone support seems to derive from those novels and movies
where an ex-pilot or other unlikely person finds himself or herself in improbable circumstances, alone
at the controls of an airliner, being talked down onto the runway by the control tower.

Configurability
You may be lucky. You may be using an anti-virus solution that comes out of the
box with default settings that are ideal for your purposes and environment. But we
doubt it, and we would at least urge you to check what the defaults actually are, even
if you’re administering a single machine. If you are running one or more networks,

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 6 3

you may be able to use a standard configuration on all machines, although it’s unlikely
that it will be the out-of-the-box configuration. (In such cases, you should probably
give serious thought to a product that allows you to distribute install-and-run
preconfigured packages, preferably over the network.)

Clearly, you will want to set sensible defaults. However, since anti-virus configuration
involves a trade-off between speed and transparency on one hand and extreme security
on the other, we cannot tell you what is “sensible” for you. Since your own views on
what is appropriate in your environment may change according to experience, you will
probably want to be able to adjust those defaults easily, when necessary. However, you
may also want to be able to lock down the configuration with a password, so that end
users don’t have the same freedom to change a configuration that you do. Furthermore,
you’ll probably want to implement such changes remotely, either by use of administration
software or by replacing configuration files when the end user logs in to the network.

Other issues that may need to be checked in a mixed environment include the
degree of integration between versions for different operating systems:

� Is the package available for all the servers and workstations that you run?

� If you update the workstations from servers (as is usually the case in a large
organization), how effective is the mechanism for automatically invoking the
update mechanism when necessary?

Our experience is that most products perform automatic updates quite effectively
as long as you run a very conventional network (which usually means Windows
everywhere). If you aren’t running such a network (and even if you are), we recommend
that you test these aspects of the software very thoroughly when evaluating a package:

� How does the server or console software check the currency of an attached
workstation’s protection?

� How does the software run the update?

� How easy is it to check that the update has “taken”?

� If the auto-updating mechanism fails, how easy is it to substitute a hand-crafted
replacement using login scripts and batch files?

� Can you easily fall back on a previous update/upgrade if the new one causes
dramatic problems? How does the console handle regression to previous
versions or updates—especially since many products ship small programming
changes along with their updated signatures?

� How scalable is the console—that is, how many systems can be updated from
one console or one task at a console?

Testability
As the previous section may suggest, blind faith has no place in anti-virus
implementation. We will explore some of the specifics of detection testing later in this
chapter, but you also need to be able to test your implementation. Specifically (but not
all-inclusively), you will need to test installation, configuration, updates, logging, and
compatibility with other software. Many administrators test every update before releasing
it to the organization as a whole (this is particularly important with products that are
recompiled every month), and cherish products that allow fast and easy rollback to a
previous “safe” version if a problem arises.

Testing your implementation could include spot checks of systems to ensure that
what the console (or script) was supposed to make happen really did. In our experience,
sometimes scripts report that things have worked as expected, but when you visit a
particular system at random, you do not find what you intended. It is worth the effort
to check systems periodically and randomly, to ensure that your implementation is
working. Checking and assurance avoids difficult confrontations with management,
explaining why a system became infected with a virus for which detection capability
has been available for weeks or even months.

Support Functions
When we are harassed by marketroids thirsting for a large, exclusive order of anti-virus
software, we frequently confound them by remarking that high scores in magazine
detection tests are not really the issue. Apart from our hard-earned scepticism in the
face of far too many tests that weren’t worth the paper on which they were printed,
we actually expect major anti-virus packages to score 100 percent on In the Wild
tests, but we don’t fly into a panic if a product occasionally misses. We are less
concerned about zoo tests, though we expect a high score there, and we don’t expect
much variation between vendors—not, at any rate, in the fairly leisurely world of the
magazine detection test. We are very interested in whether a vendor can produce a
timely and readily available update to meet the threat posed by a new fast-burning
mass mailer, but that isn’t the sort of thing that formal tests can easily measure.

The longer we spend in this field, the more concerned we are about the general
quality of support. While the primary task of an anti-virus package is to detect viruses,
brilliant detection capability is of limited use without an adequate support package.

The Service Desk
Reviews do not address support issues particularly well, so it is worth finding out
during the evaluation phase what that gold/platinum/dilithium support package

2 6 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 6 5

actually entails. You want to know not only when the service desk is available, but
how effectively the service desk staff deal with actual problems:

� Are the first-line support staff anti-virus professionals? The days when you
picked up the phone and found yourself speaking to an internationally
recognized guru are pretty much gone. Still, it’s worth establishing whether
your call will be answered by someone who can deal with common queries
competently, or someone who can only refer you (appropriately or otherwise)
to someone in second-line support.

� Do they have immediate access to good technical information? Do they have
good knowledge of their own product range? (This isn’t at all the same as
being an expert on viruses, by the way. Some support staff have immense
facility at telling you exactly how to get to every possible submenu without
having the faintest idea of whether those menu options are at all relevant to
the problem at hand.)

� Are the support/service desk staff professionals? Issues such as Service Level
Agreements (SLAs), the promptness with which calls are answered, escalation
protocols, and guaranteed call closure times are beyond this chapter’s scope, but
they are likely to be as important to you in this context as they are in other areas.

� Are they equipped for what we might call glitch management, by which we mean
the ability to deal competently with known problems? “Yes, that version does
that under some conditions. We’ll mail you a patch that fixes the problem”.

It is also useful to know if the vendor support personnel are available when you
have a problem—which is not always between 9 A.M. and 5 P.M., Monday through
Friday— particularly if you have signed up for one of the more comprehensive
packages, such as the gold or platinum editions. Another issue to look at is how
many people can call, and how the support team manages the call-handling process
(with access numbers, direct support by a specific individual or team, and so on).

Upgrades and Updates
The routine provision of program updates and patches and definitions updates is a
major issue:

� Are known bugs dealt with in a timely fashion and adequately documented?

� Are patches mailed out (on CD or by email), or are you referred to a URL on
an overloaded server?

� Is the distribution of definitions updates reliable?

2 6 6 V i r u s e s R e v e a l e d

NOTE

For some years, David Harley received monthly updates for a certain product. It invariably arrived
(on CD) a few days after the update for the following month became available on the vendor’s
web site. Clearly, these late updates were a waste of everybody’s time. Such ineffective distribution
practices are not at all unusual. Distribution targets are exactly the sort of issue you might want
to check out before you buy the product, rather than after.

� Can you trust the vendor’s quality assurance procedures?

� Can (and does) the vendor make interim drivers readily available (even in a
beta version, if necessary) between scheduled updates, where the appearance
of a new threat necessitates them?

Customizations
Some vendors accommodate special, individual requirements (especially from larger
companies, of course). Examples include customer-definable definitions for the
detection of nonstandard software, games, joke-programs, and so on. If your company
intends to go this route, you cannot be too careful about establishing the level of
support available before signing any contracts.

The Beta Business Bureau
Products change very fast in this sector, and the effectiveness of a vendor’s change
management procedures can sometimes be measured in the sudden disappearance of
a product’s functionality. It is worth checking the vendor’s commitment to sound
change management by asking a number of questions:

� Is there a guaranteed changeover time during which the vendor will continue to
support obsolescent versions?

� Do existing customers have early access to beta software and documentation?

� Are changes flagged well in advance by product circulars, email newsletters,
and seminars and briefings?

Information Flow
The quality of seminars and briefings is of major importance in many respects other
than changes in the existing product range. You may also want to know well in
advance about new additions to the product range (again, access to beta programs is
a good thing). Briefings on general virus management and other security issues, and
on current malware/anti-malware technology, are a good indication of a vendor’s

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 6 7

commitment to providing a comprehensive service. If you are able to attend such
briefings, you might find it interesting to note whether they attract good independent
speakers, and whether the researcher-to-marketroid ratio suits your needs and prejudices.

More specialized training may also be a strong selling point. If it is offered, you
may want to consider whether the vendor offers different levels of training for end
users, engineers, administrators, and security specialists (for example), and whether
onsite training for these groups is an affordable option. If you are considering a vendor
that offers a broad range of security solutions, you may be interested in a correspondingly
broad range of training options.

We advocate that you gather information on new malware from a variety of sources,
including a range of vendor and independent web sites and mailing lists. Nonetheless,
whether your specific vendor of choice offers such information will be of particular
interest, especially if it’s richer in technical information than PR and hype. The
information made available from independent sources will be of even more interest
to you if early warning systems from the vendor are an expensive optional extra.

From time to time, organizations of any size will inevitably find themselves faced
with what may be a new virus or worm. Is your prospective vendor prepared to receive
and process suspicious files or media, and in what form will the vendor accept them?
Do you have some feel for how fast and accurate the vendor’s response is likely to be?
It is when you need to answer questions like this that participating in special interest
groups (SIGs), such as AVIEN, and checking out reference sites become necessities. In
this respect, SIGs and vendors with a global membership or presence have a distinct
edge. Not only do you get variety in the level of detail and descriptions, but you get to
see what is causing a problem or what has percolated to the top in one area of the
country—which can in its own way be an early warning system. One example is the
LoveLetter incident, where Europe identified the problem well in advance of when it
reached the United States, but US alerts didn’t come out until after disaster had already
begun. Compare this to the containment of the Kournikova virus, where the presence
and the characteristics of the malicious mail spread quickly by a variety of resources
(including vendor and researcher mailing lists as well as AVIEN). The containment
measures were so timely that some customer organizations were protected very soon
after Messagelabs first flagged the problem, irrespective of how quickly their favoured
vendors made alerts and updates available, where necessary. Clearly, there are
arguments for not making your defences too vendor-specific.

Documentation
What do we really want to know about a virus? Traditionally, all we are expected to
care about is whether our chosen product can detect and, if necessary and possible,

2 6 8 V i r u s e s R e v e a l e d

disinfect it. This position, however, takes a lot for granted. If a product has never raised
false alarms, misdiagnosed one virus as another, fluffed disinfection by making a file
unusable while cleaning it, or could ever be misconfigured or presented with unexpected
bugs, this position might be tenable. However, systems administrators are aware that
anti-virus software is an imperfect solution to a growing and mutating problem, and
that absolute trust in the vendor’s competence is no longer appropriate (and probably
never was). Enquiring minds want to know a number of things from an online virus
information database, whether it exists on a web site or is supplied as part of the package:

� Is the information accurate? How are you supposed to know? We’re afraid that
you have to be on the way to being an expert in your own right in order to be
able to assess quality of virus information. But you know that, and that’s why
you bought this book.

� Is the database up to date? The day of the printed virus encyclopaedia is over; new
viruses and variants appear too often for such documentation to be very useful.

� Does the database list all the individual threats and classes of threat that
concern you, even if the package itself may not deal with all those classes?

� How useful is the information? Some technical information is of academic
interest only, whereas other detail may be essential. For instance, if disinfection
of the virus leaves the Registry in a state of disrepair, it helps to know what
changes need to be made. Unfortunately, vendors are sometimes reluctant to
give detailed information of this sort, for fear of publishing information useful
to other virus writers.

However, the quality of other documentation, whether electronic or printed, is
also important:

� Is the documentation comprehensive? Does it cover all the platforms
applicable within your organization?

� Is it clearly written, and does it use reasonably standard terminology?
Does it do a good job of explaining basic concepts?

� Is the documentation effectively indexed? Does it include contact information
and other resources, or does it assume that your 40-page manual contains
everything you’ll ever need to know?

� Does it include advice on generic solutions for unknown viruses?

� Does the documentation offer help with policy formulation, sample
login/update scripts, batch files, .INI files, and other help with automated
implementation in a real-life business environment?

Outsourced Services
If you have outsourced your anti-virus operation, many of the concerns we raise in
this chapter regarding testing are of less direct relevance to you. However, from the
point of view of contract negotiation and setting SLAs, you will still need to define
your requirements, based on the same type of evaluation. You still must track some
issues, including nearly all the issues we have described as support functions, and
especially the following:

� The compilation and distribution of up-to-date documentation, as necessary

� The effectiveness of the incident management operations

� How well incidents are reported and statistics are compiled

� The effectiveness of the outsourcing party’s help line or service desk

� How well and quickly the service provider reacts to new threats and passes on
information accordingly

� The quality of that information

NOTE

The length of this section is itself some indication of how seriously we take the question of
anti-virus software evaluation. Anti-virus software is too expensive to buy, implement, and
administer to take lightly. If you feel the need of an even more comprehensive and structured
resource to help you with evaluation, you might like to take a look at Robert Vibert’s The
Enterprise Anti-Virus Book, which is intended as the basis for an evaluation checklist. Find out
more at http://www.segurasolutions.com.

Test Match
How successful can you expect to be at detection testing on your own account? The
short answer is, not very—at least, not if this book is your main resource. This book
provides a starting point, but we are not going to pretend to give you all the knowledge
and tools you need for professional-quality detection testing. There are a number of

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 6 9

organizations that are better equipped and more experienced than most systems
administrators, and we recommend that you make as much use of their reports as
possible. Such organizations include the magazines Virus Bulletin (www.virusbtn.com)
and Secure Computing (www.westcoast.com), TruSecure (www.trusecure.com,
www.icsalabs.com), the University of Magdeburg (www.uni-magdeburg. de), and the
University of Hamburg Virus Test Centre (www.agn-www. informatik.uni-hamburg.de).
What we can do in this section is explore some of the issues and pitfalls of
detection testing.

Detection Versus Usability
Before going into detail on the testing of specific types of programs, we must address
certain issues that apply to reviewing any antiviral software. Aside from the specific
efficacy against large numbers and certain types of viral programs, there are
considerations of user aspects of the system in question. These considerations do not
relate solely to the chimera of user-friendliness, but to the fact that a given system is
intended not only to be somehow effective against viral programs, but must also be run
by a “user population” in a given work, social, and technical environment. The user
interface of an anti-virus program is an entirely legitimate subject for discussion—
indeed, it is the only aspect of its functionality that many reviewers are realistically
qualified to consider. However, the value placed on a particular scanner’s interface is
largely a subjective judgment, whereas the metrics to gauge the effectiveness of its
detection are relatively simple—conceptually, at any rate. In the real world, very few
non-specialists get the balance between usability and accuracy right. By non-specialists,
we mean people without in-depth knowledge of the virus world; it is very possible for
someone who is highly experienced at the evaluation and testing of other software to
make a complete pig’s ear of an anti-virus comparative test.

Other Ranks
It is very easy to “rank” antiviral software on the basis of how many viral programs
or strains that it will identify. However, it is only easy to rank known-virus scanning
software in this regard. Activity monitors, change detectors, and other generic software
have to be tested in completely different ways. Even heuristic analysis, a technique
employed (to some extent) by all known-virus scanners, presents special problems in
terms of testing—not only technically, but ethically. You can test heuristics by including
some rare, or even unknown, viral programs in the test suite. But where do you get them?

Unless you have unusual contacts, the chances are that the vendors’ own test
suites are much larger and more up to date than yours. Scouring VX web sites and

2 7 0 V i r u s e s R e v e a l e d

unmoderated newsgroups looking for additions to your collection is unlikely to give
you an edge in terms of new viruses, and poses a possible ethical problem, in that to
do so expresses tacit approval of such sites. (It also poses a number of problems in
terms of maintaining a collection up to “professional” standards.)

Does this mean that vendors do not do this, but simply wait for samples to come
to them, either from authors or victims? Different companies deal with this ethical
dilemma in different ways. Many take the view that their first priority is to offer the
best possible defence to their customers, and if that involves getting their hands a
little dirty, the end justifies the means. Others have chosen to take the more spiritually
elevated route. This doesn’t mean that their products are necessarily less effective
against real, in-the-field viruses. Since anti-virus companies share samples, all major
companies will, sooner or later, be able to detect viruses in the field (by which we
mean not only viruses formally or informally in the wild, but also viruses available
from VX resources). It might be suggested that reliance on this sharing of samples
means that companies who don’t themselves use “darkside” resources are nevertheless
implicated in using and encouraging the use of those resources. Personally, we can
only record our relief that our everyday work does not normally require us to face
this particular quandary. We are not suggesting that companies taking the ethically
more “correct” route are in some unscrupulous way taking advantage of the work of
other companies. Vendors (or at least researchers) cooperate at many levels, and
such companies and individuals make equally substantial contributions in ethically
constrained contexts.

Upconversion
A somewhat similar problem is associated with the thorny question of macro
upconversion, which involves importing a macro virus into a later version of the
application (usually Microsoft Word) so as to incorporate proactive detection of the
upconverted virus. This enables the product to deal with such a virus, should it later
turn up in the field. However, it also involves the creation of a virus that may never
otherwise exist, and some researchers have gone to enormous efforts to circumnavigate
the horns of this particular dilemma. If an upconverted virus does appear in the field,
researchers can incorporate detection in the usual way, and may even benefit from
the work of other companies in this area. A number of papers by Vesselin Bontchev
have dealt with these issues, and offer good technical background as well as a means
of detecting possible upconverted viruses without generating new viruses.

Notwithstanding the difficulties with finding suitably unknown malware, it doesn’t
seem right to leave unchallenged the assertion by some software producers that they
can catch all “known and unknown” viruses. One way to get completely unknown

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 7 1

viral programs is to make them up. This is beyond the capabilities of most users, of
course, and so it is not a realistic suggestion in most cases. Still, it presents an ethical
problem. We know that some bona fide researchers write functional virus code on
occasion for testing purposes, under strictly controlled conditions. (All testing should
be under strictly controlled conditions!) If it’s OK for researchers, why is it not OK
for you?

In the end, this is a personal decision. If you have the technical skills to write and
test viral code in a safe, controlled environment with no risk or intention of making
that code available to a wider audience, perhaps we have no right to ask you to desist.
But then, if you’re that well acquainted with the area, you probably weren’t planning
to ask for our approval anyway. Be that as it may, if you actually publish test results
(as people do, far too often) based on this type of testing, you lay yourself open to
accusations of unethical behaviour and incompetent testing. Even the vendor whose
product is the “Editor’s Choice” is unlikely to come to your defence in this scenario:
it may be his turn to cry foul next time.

NOTE

Anti-virus researchers do not conventionally share test code, even within a very restricted “web of
trust”. That is, you don’t share experimental code even with people with whom you are prepared
to swap other in-the-wild or zoo viruses.

Another possibility is to test earlier versions of a scanner against viruses that
weren’t known at the time when that version or definitions set was current. Clearly,
such testing is unsatisfactory. If we need to convey just one message in this section,
it is “Compare like with like”. It’s problematical enough to set up comparative
testing of current releases so that one scanner doesn’t have an unfair advantage over
another by virtue of using a later definitions set. To do so with outdated versions
is harder still, but if it isn’t done, a scanner may benefit by recognizing code
non-heuristically that it would be unable to recognize otherwise.

However, writing original code is not usually the problem. More common is to
modify existing code to see if the scanner still recognizes it. This is particularly easy
to do with script viruses, which are essentially text-based. However, this practice is
not a good idea. For one thing, you are creating a new variant. Not only do our previous
ethical misgivings about the creation of new virus code still apply, but the results of
testing with such variants can be misleading:

� Competent scanners don’t rely on simple text matching, so changing a
comment line, for example, doesn’t necessarily tell you anything about the
scanner’s heuristic capabilities. In the case of script viruses or worms,

2 7 2 V i r u s e s R e v e a l e d

identification doesn’t necessarily need to be particularly exact, since the file
can often only be deleted, not disinfected.

� Other alterations may effectively corrupt the virus, so that it can no longer
replicate. In this scenario, whatever your intention, you are no longer testing
virus detection, but detection of nonviruses. There may be some justification
for testing for detection of corruptions and intendeds, but only if that was what
you set out to do. Moreover, in this case you are not even testing detection of
known garbage files. There is something intrinsically unsatisfactory about
testing heuristic detection of viral code that doesn’t work.

� It’s not always safe to assume that your original sample is either a virus, or
the virus you thought you had. Once more, you run the risk of being branded
incompetent. We have observed that testers who create new variants do not
necessarily test the viruses by replication, as opposed to simply testing for
detection, by passing them under the nose of a scanner and seeing if its nose
wrinkles. Nor is it particularly helpful to “validate” a sample intended to test
detection by declaring it valid if a scanner identifies it as a virus. Yet most
amateur testers are totally reliant on this “circular” process.

It is not quite as easy to assess many other, more important, features. More important?
Isn’t it a scanner’s primary job to detect viruses? Certainly. But the best scanner in the
world (as regards detection rates) is a waste of disk space if the interface is so hostile that
the user cannot or will not use it, or configures it improperly, or if the interface cannot
coexist with standard software. It is entirely reasonable and desirable to consider and
evaluate these aspects; we only ask that you don’t confuse effectiveness at detection with
a pleasant interface, as so many poor reviews have done.

Although there may be (depending on how you measure) more than 50,000
different strains of viral programs in the PC world (fewer in the other environments),
it is likely that only 1 percent of that number is responsible for 99 percent of infections.
Thus it is of far greater importance that, for example, one particular antiviral program
does not prevent infection by Magistr or MTX than that it protects against literally
thousands of others.

It’s All Happening in the Zoo
Thus the choice of a test suite, sometimes called a zoo, is made more difficult than
it might be otherwise. Certain programs are very significant in terms of danger of
attack, and therefore must hold a higher ranking than others. It is not possible to say
that any collection of 80 viral programs is better than any collection of 10. If the 80

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 7 3

happen to be all “basement variants” of Jerusalem or Concept, that test suite is virtually
useless. First, a decent antiviral program should deal with variants. Second, basement
variants have a generally low survival rate in the wild, and are not likely to be a threat.
Third, basement variants tend to mutate nonfunctional aspects of viral programs
through the insertion of no-operation (NOP) codes and the changing of text.

The test suite should, however, contain a range of viral programs that are functionally
distinct. A good test suite should contain programs from different categories of viruses,
such as BSIs versus file infectors, and MBR infectors versus BSIs. Self-encrypting,
polymorphic, stealth, tunnelling, multipartite, and companion viral programs should all
be represented. Some of these programs are very rare in the wild, and so the value of
their inclusion may be questionable. (Indeed, there is some evidence that the more
sophisticated a virus is, the less likely it is to succeed.) However, it is advisable to test
antiviral programs against the known possible viral technologies.

The analysis of virus type and function may even be beyond the capabilities of some
reviewers. Many of the problems of numeric reviews are much more basic than that.

The test suites for numeric reviews should now generally contain in excess of
50,000 items. Each of those items should have gone through a screening process. At
a minimum, one should know certain things about the item, such as, is it actually a
virus? Does it reproduce? Under what conditions does it reproduce? Is it the same
for each type of object it infects? Is it the same for each succeeding copy? When
invoked, does it infect memory?

It is unlikely that each of these items has been tested against all these criteria.
Reviewers are much more likely to take shortcuts. One of the shortcuts is to obtain a test
suite from someone who has already done the work. The most obvious candidate here is
a developer of an antiviral scanner. Scanner developers have to do all of this anyway.

Unfortunately, there are two inherent problems in this approach. One is that if you
get a test suite from only one developer, the test suite will exactly match the capabilities
of the one product. Viral programs that this one scanner does not catch, but that
others do, will not be factored into the review. The other problem is that it is quite
possible that the developer has been careless. The zoo may contain nonviral items.
The one scanner will detect them, whereas no other scanner will (correctly, since
they are not viral). Thus, both factors will tend to boost the rating of the one product.

NOTE

One of the most forceful arguments against the use of real viruses by nonprofessionals is the
amount of work involved in correctly maintaining an adequate virus collection. Vesselin Bontchev’s
paper on “Analysis and Maintenance of a Clean Virus Library” (Virus Bulletin Conference
Proceedings, 1993) is required reading on this subject.

2 7 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 7 5

An untested zoo may also contain duplicate files. Particularly if one scanner catches
them while others don’t, duplicates may skew the results. Of course, in some cases
you should have duplicate files. If this virus infects more than one type of object, you
should have infected copies of the different types.

All of this may give the impression that numeric rankings against a test suite are of no
use. This is not the case. Ranking tests have a strong place in the evaluation of scanners.

In passing, we recommend to everyone the “Reader’s Guide to Antiviral Reviews”,
an article (supposedly by one Sarah Tanner but actually by Alan Solomon) in the
November 1993 issue of Virus News International. It has been reprinted electronically
at the following site:

http://www.softpanorama.org/Antivirus/Reprints/virus_reviews.html

Each of the 26 points that the article discusses is a way to skew the results to favour
one product or denigrate another. Some of them strain credulity, but each is known
to have been used in major published antiviral reviews.

This begins to point out some of the difficulties in choosing antiviral software.
There are, of course, matters of the type of viral program, the test suite against which
the system is effective, the user interface, and the style of the program. Still, surely
there must be some standard by which to measure antiviral software.

In the computer world, the nice thing about standards is that there are so many
from which to choose.

However you divide the different types of software, it is extremely difficult to apply
the same standards to various categories. Besides the problems of the “numbers game”
in testing a given program against a given suite of viral programs, the significance of
the test results varies in the context of a scanner, a change detector, and a behaviour
blocker. For operation-restricting software, it may be of no consequence whatsoever that
the program does not “catch” infections; so long as the restricting software is 100 percent
effective in preventing the spread of infection, it does not matter whether it ever identifies
any viral programs. Change-detection software may catch all infections, and yet be less
effective than a scanner that catches only 90 percent, but effectively identifies them as
well. (Unfortunately, we must also factor in the reality that change detectors will generate
a lot of false positives, particularly because software vendors continue to insist on writing
programs that modify themselves.) Therefore, a single numeric standard, based upon
the use of a test suite, would be of little utility in assessing the overall effectiveness of
antiviral software.

In addition, the environment is constantly changing. The number, specific strains,
and types of viral programs are increasing all the time. The companion, spawning, or
“precedence” virus does not change the files on disk at all, but rather takes advantage
of the order in which programs are “called for”. Thus those operation-restricting

2 7 6 V i r u s e s R e v e a l e d

programs that prevent changes to program files become useless, as do change detectors
that peruse only those files in the database at the previous run. Standards, therefore,
that are based upon the currently existing viral environment, will be very quickly
outdated, and mostly useless.

A single, or even multiple, numeric measure simply does not have sufficient
flexibility to gauge antiviral software. It may be possible to construct one that could,
after considerable work. However, even if a criterion reference could be made broad
enough to cover the various types of antiviral software, the gauge would have to be
dynamic. Thus, antiviral software tested at one point would have to be retested each
time the standard was renewed; at a minimum, that retest would likely need to be
done annually.

As viral programs are constantly developing new methods of attacking files and
avoiding detection, so too is antiviral software constantly developing new detection
methods, or at least new twists on old methods.

The problem here is the application of a single standard to diverse, and changing,
types of antiviral software. It is, however, complicated by the fact that we do not
know what the new features of antiviral software may be until they appear. Thus,
while it might be possible to gather a series of criteria broadly applicable to the wide
variety of antiviral software, and to balance and weight the various gauges in order
to come up with a “fair” assessment, it is impossible to use such criteria to judge a
feature that you have never considered.

Product suites can include many (not necessarily integrated) products (often for
all supported platforms and network environments, and on the same CD set):

� One or more on-demand scanners (multiple scanning engines, separate
Windows and command-line scanners)

� DOS and Windows on-access scanners

� Scheduling software (for on-demand scans, retrieval of updates from the
vendor’s web site, and so on)

� Behaviour monitors or behaviour blockers, or both

� On-demand integrity checkers

� On-access integrity checkers

� Goat files

� System console software for remote administration

� A virus encyclopaedia

� A rescue disk generator

� An EICAR test file or product-specific test file, or test file generator

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 7 7

Suites offering this range of functionality are not, perhaps, as popular as they
were—at least, a suite may contain many of the preceding components, but they
remain unused by most organizations. However, the Swiss Army knife approach
lives on in the consumer market in the form of the anti-virus/intrusion detection/
desktop firewall suite. Corporate bodies are also drawn to multilayered security
products, but may be likelier to consider a multivendor approach. Also, many
brand-new PCs arrive with an all-purpose program suite incorporating anti-virus,
personal cryptographic software, a personal firewall, diagnostics and recovery
utilities, spam-killing software, and filters for unsuitable web content. Even in the
pure anti-virus market, few vendors offer only a single type of utility. This offers the
unscrupulous or sloppy tester unlimited scope for marking down apples for not being
oranges. A particularly common and frustrating example is the kind of review that
includes a generic tool along with a handful of known-virus scanners, then makes
the tool the editor’s choice because it detects unknown viruses. Yes, such tools are
worth considering because they may do better than a known-virus scanner at
detecting some kinds of unknown threats. However, these tools are a different kind
of software, doing a different job, and they have their own disadvantages that do not
always show up in this sort of testing.

Testing for false positives as well as false negatives is even more important with
generic products than with known-malware detection products, and we do not know
at present of a testing body that has considered in depth the problems associated with
testing for false positives.

We Like EICAR
We have previously referred to the EICAR test file as a means of installation testing.
(How useful is it as a tool for other kinds of testing?)

The EICAR string is not a virus, and exhibits no viral behaviour. It simply
displays a message. (It can be said, very approximately, to simulate an overwriting
virus, or else a worm or Trojan that hasn’t made any changes in the environment.) A
scanner that doesn’t recognize EICAR is not failing in its primary function, which is,
after all, virus detection. It is, however, ignoring a de facto standard for installation
testing, which might be taken to imply a staggering insensitivity to consumer demand,
an unusual concern for avoiding what could be considered a false alarm, or a
disquieting ignorance of its existence.

If a scanner is supposed to recognize EICAR but doesn’t, that’s a minor indication
of unreliability. At the time when EICAR was being taken up, some scanners had
trouble recognizing it appropriately. At least one scanner recognized it only if it had
exactly the right number of characters. The string itself is 68 characters long. However,
some people pressed the RETURN key at the end of the line. In MS-DOS, end-of-line

is usually flagged by inserting a CR/LF pair (Carriage Return/Line Feed) that is,
two extra characters. Just to make things even more uncertain, some DOS editors
add the CTRL-Z character to any text file, as an EOF (End-Of-File) marker. Thus, the
actual length of the file could vary by several bytes, resulting in a potential false negative.

At the other extreme, some scanners not only disregarded the length of the file,
but alerted on the test string irrespective of where in the file it was found. According
to the specification, the EICAR string must make up the first 68 characters, as described
at http://www.eicar.org/anti_virus_test_file.htm.

In one highly publicized instance, a scanner alerted on a text file included with
another product. The file described the use of the EICAR test, and was reported as
“infected” even though the actual string was nowhere near the beginning of the file.
Clearly, this alert can be taken as a minor indicator of unreliability or carelessness in
the alerting scanner. Of course, it might have been the only bug in the whole program.

EICAR (the file, not the organization) is not universally admired; indeed, one
respected researcher has described it as a “very stupid idea”. To be strictly accurate,
he was describing not the EICAR test, but the principle of a counterfeit virus used
for installation and configuration, an idea that did not actually originate with EICAR
(the organization, not the file). The idea seems to have originated with Doren
Rosenthal, whose virus simulations and (real but short-life) test virus are, from time
to time, used (completely inappropriately) as a substitute for real-world viruses in
comparative tests. A number of vendors have provided product-specific test files, but
most have standardized on EICAR itself.

Rosenthal has claimed for many years that his software is superior to EICAR
(mainly because the registered version includes an actual virus), and that the EICAR
test was intended as a “spoiler” for Rosenthal’s product. In fact, many scanners do
detect the Rosenthal product, though they don’t necessarily advertise the fact.
Rosenthal’s product is disliked in the trade, however, for a number of reasons:

� Simulations of real viruses are based on the false premise that a product that
detects the real virus should also detect the simulation. This premise seems to
derive from the popular misconception that a virus “signature” is some sort of
constant. This misconception misses two points. First of all, scanners do not
detect many viruses by looking for a fixed string (byte sequence), but by using
an algorithm. Complex polymorphic viruses cannot usually be detected by
scanning for a fixed string; a more complex search algorithm must be used.
Second, if a fixed “signature” can be used, that doesn’t mean that only one
static scan string can be used. In theory, every scanner in the world might use a
different scan string than every other scanner, yet they could all detect the same
virus. Obviously, a simulation is not the real virus, and may be missed by a

2 7 8 V i r u s e s R e v e a l e d

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 7 9

scanner that would always detect the real thing. (This objection does not apply
only to the Rosenthal simulations, of course.)

� If a simulation is not a virus or an official “test” program, it may not be
considered appropriate to detect it; technically, it’s arguably a false alarm
if it is detected. Some vendors have actually declined to detect the simulation
on those grounds.

� The registered product includes a real virus. It isn’t destructive, and will
remove itself in due course even if anti-virus software doesn’t detect it.
However, it is a virus, and it is usually held to be a bad thing to give real
viruses to all and sundry. They may use it inappropriately, or carelessly,
or even use it as a template for a new variant. Furthermore, the fact that the
product contains what is technically a virus (that is, code which can replicate)
gives the product little real testing advantage over a nonreplicative test file
such as EICAR.COM. The fact that the virus is or is not detected tells you
nothing about the scanner’s ability to detect any other virus.

Is EICAR.COM any better, you may wonder? Well, it’s free. It definitely isn’t
a virus. Its functionality is so limited that it’s hard to envisage any circumstances
under which it could do any damage whatsoever, although virus infected copies have
been reported from time to time. As an executable file, EICAR.COM is open to
infection by a .COM infector.

However, EICAR.COM isn’t universally acclaimed and appreciated as The
Answer. One of the reasons for such lack of enthusiasm is the fact that it is
sometimes mistakenly considered to tell the user more than is possible. It doesn’t
even determine whether the product recognizes any viruses, because EICAR isn’t a
virus. A report of the presence of EICAR.COM doesn’t give you any information
about how many real viruses a scanner detects, but then neither does trying the scanner
on 10 or 20 or 200 real viruses. The file can tell you that a product is installed, but not
if it’s installed (or at least configured) properly. For instance, the fact that a scanner
reports correctly that a file called EICAR.COM contains the EICAR string doesn’t tell
you whether the scanner will detect macro viruses, for example. In fact, the report
doesn’t actually tell you anything except that the scanner detects the EICAR string.

EICAR can tell you a little about what the product does with viruses and worms
that it can’t disinfect:

� If the scanner flags EICAR.COM as the EICAR test file, that’s fine.

� If an on-access scanner refuses to let you run EICAR.COM as if it were
virus-infected, that’s a good sign.

2 8 0 V i r u s e s R e v e a l e d

� If the scanner deletes EICAR.COM and that isn’t how you want it to respond,
that’s a good sign because you can change the configuration.

� If the scanner deletes EICAR.COM and isn’t configured to do so, that’s not
such a good sign.

In short, EICAR is useful for convincing management that you’re earning your
crust by installing working software, or demonstrating to users what happens if a
virus does hit the system. You can use it in a limited fashion for testing other aspects
of a scanner’s functionality (whether it scans compressed files properly, for example).
To do this usefully, you need a pretty good idea of how AV software works, in which
case it’s debatable whether EICAR can tell you anything you didn’t know already or
couldn’t tell by other means. Furthermore, you need to understand the limitations of
this method of testing.

Randy Abraham’s paper “Giving the EICAR Test File Some Teeth” (Virus Bulletin
Conference Proceedings, 1999) describes in considerable detail some techniques for
extending the test file’s capabilities by wrapping it in nested zip files, or as an embedded
OLE-2 object in Office documents. If you wish to test these issues, there is usually
no reason to use a specific (real) virus to do so, and EICAR will do fine. EICAR will
also give you a limited means of checking on how your software is deployed (and to
a lesser extent, configured), or of checking or demonstrating corporate incident-
handling procedures.

To make use of the EICAR test string, type the following text into a file called
EICAR.COM, TEST.COM, or a similar filename, or else download the file from
www.eicar.org:

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

(The third character is an uppercase o, not a zero.) Running the file displays the text
“EICAR-STANDARD-ANTIVIRUS-TEST-FILE!”

NOTE

Sarah Gordon’s 1995 article “Are Good Virus Simulators Still a Bad Idea” provides an interesting
and by no means dated view of the pros and cons of the use of simulators as educational and
testing tools. You can find the article at www.commandcom.com/virus/simulator.html.

Further Information
Professional detection testing is beyond the scope of this book. It takes access to
substantial resources and a degree of expertise that you cannot expect to get from a

single book. If you wish to explore further and increase your understanding of the
field, here are some references worth checking:

� Sarah Gordon and Fraser Howard, “Antivirus Software Testing for the New
Millennium”, the 23rd National Information Systems Security Conference, 2000.
You can find this paper at
http://csrc.nist.gov/nissc/2000/proceedings/papers/038.pdf.

� Ian Whalley, “Testing Times for Trojans”,
www.research.ibm.com/antivirus/SciPapers/Whalley/inwVB99.html.

� Ian Whalley and Richard Ford, “Testing the Untestable: the Hidden Roadblocks
to Anti-Virus Testing”, Virus Bulletin Conference Proceedings, 1998.

� Sarah Gordon and Richard Ford, “Reviews and Evaluation of Antivirus
Software: The Current State of Affairs”, www.badguys.org.

� The WildList is commonly used as a basis for detection testing, and a number
of papers and articles at www.wildlist.org deal with related issues.

Summary
This has been an exceedingly long chapter. This is because our intention in writing
this book is not to give you all the answers, but to give you the baseline information
to enable you to ask the right questions and come to the conclusions that are right for
you. In the next chapter, we look at what might be thought of as the other end of the
process: incident management.

C h a p t e r 9 : P r o d u c t E v a l u a t i o n a n d T e s t i n g 2 8 1

This page intentionally left blank.

CHAPTER

10
Risk and Incident

Management

283

IN THIS CHAPTER:

Risk Management

The Best Form of Defence Is Preparation

Reported Virus Incidents

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

2 8 4 V i r u s e s R e v e a l e d

Assume that at some point you are going to fail.
Or rather, not to be too fatalistic about it, don’t assume you are going to
succeed. Any program that claims that it will be able to deal with all future

viral and other malicious programs is flat-out lying, and the software byways are
littered with the corpses of software developers who figured they knew it all. Make
redundant provisions for checking, and don’t trust any one antiviral program or
system. Keep testing your protection, and keep up to date. And remember our earlier
advice: two antivirals are better than one (although probably not if they’re both
running on-access at the same time, on the same machine). And as we keep saying,
we’re talking about a social problem here. There is no technology so secure that your
users can’t break it: they may bypass it, or they may literally break it so that they
are unable to use anything any more.

The essence of effective incident management is preparation. Risk management is
about knowing what the potential problems are (which is why you need the sources
of information in Chapter 8) and being prepared to manage them if and when they
arise. Incident management is dealing reactively with security breaches as they occur,
whereas problem management is concerned as much with taking proactive measures
as it is with managing crises.

Which brings us to a crucial point: inform yourself and inform others. Not every
computer user needs to read alt.comp.virus all the time. But every computer user
should know of someone who does read a decent virus or security publication on a
regular basis. You can’t trust CNN for the latest virus bulletin; the media still think
the US National Security Agency (NSA) shut down Iraq’s air defence with a printer.

NOTE

In fact, alt.comp.virus and its spin-off groups should carry a data health warning. The site posts
some excellent information from time to time, but the signal-to-noise ratio is excruciating, and
the quality of misinformation that is sometimes found there is impressive. It’s a fine place to
study the instant expert in his natural habitat, but caveat lector. Do not believe everything that
you read in the group.

By the same token, let the word out a bit more if you find you have been attacked
by a virus. If you get hit, make sure you send a copy of the infection to a researcher.
(It’s terribly frustrating to try to deal with the aftermath of a bad disinfection when
you don’t have a copy of the virus to work with. “Oh, we just reformatted the drive”.)
If you get hit, admit it. Don’t imagine that you can ignore the problem and it will go
away. (We are continually asked how bad the virus situation is … by the same people
who will not answer surveys so that we can find out how bad the problem is.) This

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 0 : R i s k a n d I n c i d e n t M a n a g e m e n t 2 8 5

last word of advice is a bit of a touchy issue with those who feel that anti-virus
experts should not say anything for fear of giving virus writers ideas. Never fear:
virus writers don’t need any help. Clifford Stoll’s book The Cuckoo’s Egg (Pocket
Books, 2000) proves that the only result of keeping information to yourself is that
the people who really need the data won’t have it. What we do counsel against is
making available copies of viruses or virus code to everyone who asks for them, or
even to everyone on a particular mailing list or newsgroup. There’s no good reason
to give such goodies to people who may not want or need them, and who may be
tempted to experiment.

Risk Management
Risk management and analysis are standard parts of information security management
practice. The general security texts cover this topic very well, and we will not try to
duplicate that material. Instead we will provide a very brief outline in case you have
not studied the topic, and quickly examine the virus topic in risk management terms.

A threat is the broadest concept in risk analysis. A threat may be something like
the possibility that the earth may fall into the sun, thus destroying our computing
capability (among other things). The threat discussed in this book is the existence of
malicious software, and the predilection of certain people to write new forms of it.

The next level down the risk chain is a vulnerability. This is, in a sense, the reason
that the threat is a potential problem for you. For example, the earth falling into the
sun could be bad since computer hardware is generally not sufficiently hardened to
withstand temperatures in excess of 6,000 degrees Celsius. Computer installations
are vulnerable to viruses since viral programs use only normal computer functions
and, therefore, can affect any computer system, can consume system resources, may
carry dangerous payloads, and take time to eradicate.

Having identified vulnerabilities, risk management next looks at exposures,
attacks, and exploits. These terms detail the specifics of a weakness in the system
under consideration. An exposure for the earth is that the sun exerts a gravitational
force, and the only thing keeping the earth away from the sun is orbital dynamics.
In viral terms, the fact that you are using a given operating system means that you
are potentially exposed to viruses able to infect that platform. Exploits may be the
parts of that system particularly susceptible to viral operations, and attacks would
be the specific viruses themselves.

In assessing the threats, vulnerabilities, and specific risks, the management planner
will also want to factor in probabilities. How likely is it that a problem will occur?

Good news: the earth probably will not fall into the sun any time soon. Viral risk,
however, is increasing steadily. The best estimates are that large companies now
encounter viruses several times each week, and that infections probably take hold
more than once per month.

The impact of an exposure or attack must be considered. If the earth did happen
to fall into the sun, that event very likely would cause the long-predicted “Death of
the ’Net”. The impact of a virus infection varies greatly, but the computer support
department will likely have to devote many hours to checking computers, disks, mail
queues, and file servers—and that would be the impact for the smallest potential
problem. An impact that is seldom fully considered is that of publicity: if your
company does become infected by an email worm, and the fact that employees or
systems send out infections to others becomes public, how would that affect the
corporate standing, customer goodwill, and perhaps even the stock price?

On the other side of the risk management page are safeguards. What actions can
you take to reduce the vulnerability for your company or systems? We could, for
example, equip the earth with rockets to keep it away from the sun. We can write
policies about practices that increase or reduce the risk of virus infections, educate
users, install scanners, and make backups of important data and programs.

Safeguards will range in effectiveness, and the security planner must gauge how
much a particular safeguard will mitigate a specific exploit, and then must calculate
the residual risk. The net danger, multiplied by the expected impact, multiplied again
by the number of times you expect it to happen over the year gives you a rough idea
of the problem.

Such a calculation also gives you some ammunition in support of budgeting for
antiviral protection, since senior management wants to know what the company is
getting for what it spends. Unfortunately, potential losses are seldom convincing to
management until they happen.

Chapter 11 will provide more specific details regarding risk analysis and virus
management policies.

The Best Form of Defence Is Preparation
Your best defence against malicious software is not some specialized program, but
something you should already have: data. Documentation is vital to programming,
network management, and desktop support. One of the horrible ironies of the information
age is that computer system records are possibly more neglected than any others.

2 8 6 V i r u s e s R e v e a l e d

The Computer
Each computer should have basic details close at hand. “Close at hand” does not,
in these days of networks and faxes, have to mean physically close to the computer.
Having such details handy can help enormously in other areas, such as technical
support quite aside from virus detection. With this in mind, an archive in the support
office makes a lot of sense, along with the documentation and software libraries. The
support department is also a likely site for remote-administration software. No large
site can ignore the potential of remote-access software for virus-specific and general
administration. Most industrial-strength anti-virus software includes some tool
for distributing upgrades and definitions updates, and in some cases for dealing
with disinfection, capturing quarantined viruses, and performing other incident-
management functions.

There should be a list of the programs run at start-up time. With the number
of background and resident programs running on computers today, it’s a wonder
anything can operate at all. If you don’t know what your computer is supposed to be
running, how can you know when something unusual has crept in? In the MS-DOS
world, you could obtain this list simply by printing a copy of the CONFIG.SYS and
AUTOEXEC.BAT files. The more recent versions of Windows, however, have a
bewildering variety of places to check. Some of these may not even be on the local
computer itself, since most networking systems provide for programs to be run at
login. Larger organizations will make heavy use of standardization, which is, after
all, a very efficient means of reducing support costs. Such an organization will build
workstations (and even servers) from a library of standard images, using tools such
as Ghost, rather than adding applications and configuration tweaks to an operating
system installed according to the manufacturer’s defaults. In tandem with an
effective backup strategy, this use of pre-configured software will usually mean that
even in the worst case, an infected machine can be rebuilt from scratch and data
restored as of the most recent safe backup. Use of mirrored servers, RAID technology,
and the other trappings of third-millennium risk management can actually make
“recent” very recent indeed.

Even where a rebuild or heavy use of imaging software and backups is considered
overkill, there can also be a description of the boot-sector and partition boot record.
This description can be as simple as a copy on a separate diskette or a “hex dump”
listing. But even this description is a formidable object for a novice user to understand,
let alone produce. The technical difficulty is not, however, an insurmountable problem.
The user does not have to understand what the listing means. The qualified people
who installed the system can generate the listing. Again, this data can help support
people with problems other than viruses.

C h a p t e r 1 0 : R i s k a n d I n c i d e n t M a n a g e m e n t 2 8 7

2 8 8 V i r u s e s R e v e a l e d

From the esoteric, we move back into the mundane, and some uncontroversial
measures.

Once again, backup “originals” of software could be kept in the support, or
main IT, office. The copies should be made after installation, should there be any
customization involved. These copies serve two purposes. First, they allow for quick
access to known clean software for reinstallation, if necessary. (These copies of the
software “originals” may reduce or eliminate the need for full backups of the system,
as the software is often the larger portion of material on the user’s disk, and generally
the most stable.) The copies also provide a baseline for a quick check for any changes
to the software.

The Office
“Each computer” is pretty easy to define. An office is less so.

For the purposes of this discussion, an office is defined as a group of people who
interact on a regular basis. “Regular”, for this purpose, need be no more than once
per week.

An office, therefore, is defined less in terms of locale and walls than in terms of
communication. For this definition, an office may consist more of those working on
a common project in far-flung cities than of those in the next cubicle to whom we
never speak. However, a group need not follow “official” reporting lines either. An
office could be defined more in terms of how fast you can find information when
you need it. The items in this section are those that may not be referenced for long
periods of time as long as things are going well, but that may need to be found
quickly once an anomaly has been identified.

Each office should have a description of current common viral programs and
hoaxes, or access to a common source of information, such as an intranet page.
Whatever list is used must be kept up to date, and it is essential that each organization
of any size assign someone to support the prepared lists with additional information.

The office should keep a minimal list of local virus information contacts.
One of the items that should be a part of any office computer “kit”, simply on

the basis of good management, is a list of all hardware and software purchased,
including the suppliers and serial numbers. The reason for including such a list in
your virus-fighting arsenal is partly to track the source of a virus. More and more
companies are becoming aware of the need to audit software, and the audit practice
may also become very helpful in fighting viruses. The hardware list is also valuable,
because certain pieces of hardware will affect the operation of the computer. Corporate
support staff will immediately nod and say in unison, “Modems!” Locking down

systems so that unauthorized software cannot be installed or maintained will be
too draconian for many organizations. However, where such measures can be
implemented, they may help control the influx of new threats, such as just-launched
fast-burners received through an unauthorized Hotmail account, or remote-access
Trojans picked up from warez servers.

C h a p t e r 1 0 : R i s k a n d I n c i d e n t M a n a g e m e n t 2 8 9

Virus-Busters?
However, we do recognize the immediate problem. After all, we’ve raised it
ourselves: Who are you going to call? It is very difficult to advise anyone on
this problem. For our part, we can probably cite, with confidence, perhaps 100
people in the world who are competent in the field. There may in fact be more,
but it is an esoteric field, with few standards by which to judge practitioners.
The information is hard to find, for one thing. The popular and even the
technology trade media have very little appreciation for the difficulties and
traps of virus hunting.

Virus experts, in common with most system-level hackers, tend to be charter
members of “Egos-R-Us”. This is bad enough. However, what is worse is that
everyone with an outdated copy of McAfee or Norton thinks he or she is a virus
expert and assumes the arrogance without necessarily having the expertise to
back it up. (Given that the general population, even of advanced computer users,
has very little background in the subject, the problem of proving credentials is
often moot.) We are not, by the way, slamming NAI or Symantec here (though
we have been known to do so elsewhere). Both products are, in the right hands,
extremely capable. In the wrong hands, any product can be a disaster.

In fact, in writing this book, Rob Slade went back to some earlier suggestions
he had made, and found that almost all the indications of a “good” antiviral
expert had become useless in the intervening six years.

So, if you can’t find a good local expert, the following indications will at
least help avoid the bad ones. Run from anyone who tells you that “one antiviral
fits all”. Anyone who boasts of the size of his or her virus collection is more
interested in collecting scalps than in keeping you safe, and very likely has
contacts in the virus exchange community. Anyone who warns against shareware
and online services doesn’t know the realities. Anyone who tells you that X is
the best scanner and Y is a waste of space should be required to defend his or
her position statistically, and be humanely disposed of if he or she fails to do so
convincingly. (“CNN said so” counts as a failure.)

2 9 0 V i r u s e s R e v e a l e d

The recommendation to have a designated machine for receiving and testing new
disks or software is bound to stir up a storm. Why spend good money on a machine
that is going to be used for nothing except testing software?

This argument appears to be based in the deeply rooted prejudice that says that the
only important part of a computer system is the part that you can see, feel, and throw
through windows at times of stress. Let’s look at the picture in real financial terms.
If you buy two copies of a commercial antiviral program (for an office of, for
example, 20 computers), plus the upgrade fees for a year, you’ve spent about $400.
Three hundred dollars will easily get you a bare-bones used machine for testing.
Besides, you probably already have a computer that no one in the office will use
because of its age and obsolescence. In addition to performing antiviral testing,
you can use the check-in machine to detect Trojans, which relatively few anti-virus
programs do. A designated machine also allows you proactive rather than reactive
protection.

We should stress that you may need to make sure that the hard disk you use for
testing is not empty. (Some prima donna viral programs refuse to operate unless it is
worth their while in terms of the amount of file space used.) Keep the drive about 80
percent full.

Along with the catalog of hardware and software, there should also be a log of
disks and/or programs received. Many large companies think they already have such
a log. Many small companies see this measure as far too draconian. As usual, the
truth lies somewhere in between.

Corporations, both large and small, and government departments often have
policies controlling the use of software. Usually these schemes make some statement
regarding bringing disks and software into the office. These policies are, of course,
universally disregarded, even by those who drafted them. Such procedures are
unnecessarily restrictive and unworkable, and they fail to address the issues that
prompted them in the first place.

The intent of such policies is good: the institution wishes to protect the copyrights
of authors and other companies (or at least wishes to avoid being sued for failing to
do so). The policies are also supposed to prevent the intrusion of viral and Trojan
software into the company and, in some cases, the extraction of sensitive data from
company files.

Preventive Maintenance
Some actions should be performed regularly. What is “regularly”? The definition
will depend on your situation, but, in general, it will mean more often than you do
now. The items under this section of our list of good practices are particularly those
that should be conducted for good maintenance and support in any case.

C h a p t e r 1 0 : R i s k a n d I n c i d e n t M a n a g e m e n t 2 9 1

Here Be Draconians
Unfortunately, we have yet to see such a policy actually achieve its intended
objectives. In most cases, the procedures are both insufficient for the intended
outcome and are damaging to normal business practice. We will use some
examples from the federal government in Canada. (Anyone gloating over the
foolishness of this particular institution does not know the policies in his or her
own company.)

The Treasury Board is the governing body in financial matters, and therefore
publishes directives covering pretty much all aspects of Canadian federal
government practice. Several years ago, the board published a circular stating
that all computer-related software or hardware had to have an associated
purchase order (PO) before it entered government premises. At first glance,
this policy would appear to be sound, and even an advantage for software
companies. Not so. If you are reviewing software, a local government office
cannot afford to purchase the necessary variety of software and still keep within
its budget. Of course, it is possible to cut a PO for the software for no money.
However, this takes about as long as the review process itself, and can also
potentially put the software company at risk (if the company has other policies
regarding minimum and maximum pricing). Even if you intend to purchase the
software during next fiscal year, you cannot review it in this fiscal year if you
have no funding left for that line item or cannot afford to “lose” that funding
this year.

This policy was, of course, intended to keep pirated software out of the
organization and to ensure that software publishers were paid for their efforts.
In fact, however, the policy was ignored, and evaluation software was obtained
under the table. In the end, all this policy did was prevent publishers who
had standardized policies for review software from competing in reviews by
local offices.

Canadian federal government policy also provides for tracking all inventory
through accession numbers. The system works well for desks and cars, but not
so well for computers and software. (Rob Slade had a hard time convincing the
“materiel management” people in one office that it made no sense to issue one
accession number to 12 video cards, but that it did make sense to issue one
number to one card, three disks of set-up software, and one manual—for the
same card.) Because of the difficulty involved in putting items into inventory
(personnel had to obtain the inventory coding for the item, obtain an accession
number, affix a label—have you ever had to try to find space for a 2×6cm label

2 9 2 V i r u s e s R e v e a l e d

Back Up Data
Our good old friend, the backup. Why stress data? For three reasons. First, programs
and structure should be backed up at installation and at every change in configuration.
They need not be backed up between these times, however. Second, backing up only
data reduces backup time and increases the frequency with which people are willing
to do a backup. Third, you can buy another copy of Perfect Writer tomorrow, but can
you buy another copy of your last month’s receivables?

In dealing with backups, of course, you must decide on the type. Full, differential,
and incremental backups all have their particular advantages and disadvantages. Full
backups are the simplest, comprising the whole of your data, but require the greatest
amount of time and number of tapes. Differential backups, storing only the data that
have changed since the last full backup, are quicker to perform but more complex
to set up. Backing up only the data that have changed since the last backup operation
of any type, and saving the incremental changes, makes for the fastest save operation,
but requires that you have access to the last full backup and every backup done since.

Here Be Draconians (continued)
on a video card?—and enter up to 46 fields of data into the inventory database
by paper form, since only two people in the local office had access to the
database itself), very few software-related items were ever entered into
inventory. Data disks were never labelled—after all, what do you do with a
carton of 100 blank disks that are probably headed for 30 different offices?

To track infections effectively, however, users need to be able to identify
even data diskettes and customer data diskettes. The system for doing so
must be easy, must not interfere with normal work, and must be rigorously
enforced—by the users.

The trouble with most policies of this type is that these considerations are not
planned for from the beginning. Trying to make transitory computer materials
fit an inventory system designed for permanent fixtures, or forbidding the entry
of disks into the company, simply leads people to ignore the policies in order to
achieve greater productivity. The specifics of recording and tracking will have
to vary with the corporate climate and culture. If an intent and some relevant
background (rather than a mandated procedure) are presented to employees, the
users will come up with a solution—and one that is far more effective than that
imposed by the head office.

Back Up Software Changes
Actions that you perform when installing or changing software should not require
any further explanation. We should, however, mention one thing in regard to the
term “change”. Unfortunately, a number of programs still modify their own code
when a change is made in the configuration. We are not including these minor
amendments in our definition of “change”. When changes have been made that
affect the size or composition of a program file, the program should be backed up
(either by itself or as part of a full system backup), and the printout list of program
file sizes should be redone.

Protecting original software is not as important as it used to be, now that most
packages come on CD-ROM. Make sure it is ROM, though; CD rewriteable disks
are just as vulnerable as floppies, and maybe more so.

First, Do No Harm
Once again, a trial run on an isolated system should be a part of general practice,
regardless of the existence of viral programs. A trial run allows you to find any
bugs in the program and to review the program’s usefulness. We recall that a
Trojan version of SCAN was uploaded to bulletin boards. It created all kinds of
havoc because the boards “approved” the version—on the basis, of course, of its
having passed a virus scan. A single run on an isolated system would have detected
the problem.

If you do find an infection, perform a minimal disinfection. Please let us stress
minimal. Do the least that you can do and still ensure security. Although there is
some doubt as to the wisdom of disinfecting program files, it is surely better to
delete one file than to restore the whole directory. It is better to delete and restore
one directory than to restore the whole disk.

AND. No one. Ever. (Yet.) Has found a virus that requires a low-level format.
No LLFs. Got that?

However, do perform a thorough disinfection. Many people, while going too far
in gouging an infection out of their workstation, will fail to check out their floppy
diskettes, backups, and Word documents. One of the most frequently asked questions
on every virus mailing list used to be, “I cleaned off Stoned, but now it’s back. How
come?” Easy answer: “You didn’t check your disks”.

Also, with few exceptions, power down cold when you are disinfecting and start
fresh. If you have a virus in memory, none of your disinfection methods can be
guaranteed, and some may even cause harm.

C h a p t e r 1 0 : R i s k a n d I n c i d e n t M a n a g e m e n t 2 9 3

2 9 4 V i r u s e s R e v e a l e d

Overkill
Once upon a time, Rob Slade’s little brother started an organization for
computer users who also happened to belong to the same religious group of
which they were members. The brother, of course, hit Rob up for some articles
for his newsletter, and got a series on computer virus protection. In trying to get
a certain bible college to join the association, the brother happened to mention
the benefits of virus education. The college declined.

Shortly thereafter, a rather simple boot-sector infector virus infected the
college computer system, a local area network serving the administration and
library. The college packed up the entire network and shipped the whole thing
back to the computer reseller. The computer geniuses at this particular shop
reformatted every single hard disk and shipped it back to the college. The
college had to hire additional staff and spend weeks retyping all the student
records, and the entire library catalogue, back into the system.

An hour or so with one of the many freeware or shareware antiviral programs
would have fixed the whole thing.

Yes, We Mean All Disks
Rob Slade was once asked to help clean up the laptop computer belonging to
the legal counsel for a government department. The lawyer was clearly annoyed
that the virus had hit him again: he had previously had the machine disinfected
by the technical support office. Rob explained that, since the virus had come
back again, all diskettes would have to be checked in addition to the computer
itself. The lawyer complied, although his attitude quite plainly betrayed that he
didn’t believe a word of this nonsense, and was only going along with it in
order to have grounds for really throwing the book at the next person who failed
to correct the problem.

Rob cleaned not one but two viruses off the laptop. He then tested the
diskettes, and found that a third of them were too badly corrupted to recover,
while a similar number were infected with various combinations of no less than
five different viruses.

The lawyer got back his clean laptop, clean disks, and the explanation. After
he picked his jaw up off the floor, he scrambled around the office and found
another 40 diskettes that had been missed on the first, rather cursory, pass.
Thirteen of those were infected as well.

TE
AM
FL
Y

Team-Fly®

Reported Virus Incidents
In general, the first point of contact when a virus incident takes place is the Help
Desk. However, the quality of computer-virus awareness in IT support units is
variable. If you haven’t already done so, pick the best wannabe guru you have
available, find him or her some third-party training (product-specific, if
necessary), and point this individual to the sources of information included
in Chapter 8. Then refer all action on suspected virus incidents to your newly
appointed guru in the first instance, while you get everyone else up to speed.
Start with the Help Desk staff.

Dealing with a virus outbreak is not just a question of cleaning the infected disk
with the current flavour-of-the-month scanner. At the very least, your reaction
should involve, as far as is practicable, stopping the loophole by which the malicious
software entered the enterprise, and limiting damage caused by any secondary
infection that might possibly have spread before the virus was detected. Cleaning
only the infection found is purely a matter of treating the symptom rather than the
illness. If technical training in general comes under the purveyance of the Help Desk
or a specialist documentation officer or unit, users and first-line technical support
staff faced with evidence of an infection must check with the designated person.

Certainly, the Help Desk staff should not mark virus reports as “closed” unless
all relevant staff are suitably qualified to do so. Any virus report should, in the first
instance, be treated as urgent.

Help Desk Investigations
What constitutes a virus incident? Any case where a program reports a potential
virus or Trojan symptom, such as the following:

� Microsoft Diagnostics (MSD) or a similar utility reports less than 640KB
base memory.

� Windows 3.x or Windows 95 reports problems with 32-bit disk access.

� Norton Utilities reports a possibly virus-related problem with, for example,
the Master Boot Record.

� Any anti-virus program, however weak, reports a possible virus.

� Classic visual or audio/visual virus symptoms are evident.

� A Microsoft Office application puts up a “macros and customizations” message
or displays a VBA error message.

C h a p t e r 1 0 : R i s k a n d I n c i d e n t M a n a g e m e n t 2 9 5

Anything along the lines of “There’s a problem here that I don’t understand”
qualifies as a possible virus incident. In such a case, it’s perfectly legitimate to run
an up-to-date and reputable anti-virus package under controlled conditions. By this,
we mean taking precautions, such as using a certified clean and write-protected boot
disk, disconnecting the machine from the network while scanning, scanning all files,
including archived files, and taking whatever other measures may seem appropriate.
In fact, it’s legitimate to scan for viruses even where there are no perceived virus
indicators whatsoever. It should be second nature for support staff to check that
anti-virus software is present, active, and up to date on any system they are working
on, irrespective of how relevant that software may seem to the job in hand. After all,
any end-user system on which it’s necessary for support staff to work should be
regarded as potentially hostile. (In real life, of course, we often find support staff
disabling anti-virus programs to stop them from getting in the way, in the hope of
dealing with a job as quickly as possible.)

2 9 6 V i r u s e s R e v e a l e d

Oh, Yes It Is!
A certain security system for laptop computers involves the installation of
a nonstandard Master Boot Record. While the product was in development,
the sales team called on many computer stores in the local area, in order to
demonstrate the system and, just incidentally, test it on as many different types
of computers as they could.

One particular store carried a new brand of laptop, and the security system
would not install properly on any computer of this new model. The development
team was sure that the problem must be due to the presence of a virus, but the
sales team members swore up and down that they had faithfully scanned all the
computers they tested.

After much trial and effort, it was found that the problem was a virus; almost
every machine in that computer store was infected. The sales team was using
a virus scanner that the security company had recently dismissed as inadequate.
They preferred the old scanner to the new one, because the old scanner didn’t
cause them as much trouble. The trouble to which the sales staff were referring,
of course, was the message telling them that a virus was present.

Dealing with Virus Incidents
If possible, calls suggesting a virus incident should be referred initially to the person
in the support hierarchy with virus knowledge (or training, at least). Often, we hope,
this will be the support person taking the Help Desk call. If front-line staff don’t
have any particular expertise, they can still follow a well-constructed protocol, even
a checklist along the lines suggested in the section “Virus Incident Checklist” later
in this chapter. The appropriate system manager should be informed immediately of
any problem relating to file servers and other central systems, but any problems with
a possible virus content should be referred or copied to the Help Desk in the first
instance, or to the local virus guru directly.

In general, the ideal short-term solution is to do as little as possible until you have
access to a competent source of advice, and you should strongly advise the user to
do likewise.

Help Desk Advice to Users
The following are pieces of advice for the Help Desk personnel to proffer to users:

� Do not attempt to continue to work with an infected system.

� Generally, it’s probably better not to switch off an infected machine until it’s
been inspected by a competent person, but make sure no one else tries to use it
in the meantime. (The obvious exception is where some malicious act seems to
be in the process of execution on the affected system.)

� If you have the means of checking other machines in the office for infection,
you should do so, and then take appropriate steps if you find an infection.

� If you are unable to check other machines, you must assume that all machines
are infected, and take all possible steps to avoid spreading infection any further.

� Infected and potentially infected systems should be quarantined—don’t use
them, and don’t let anyone else use them.

� Users of infected machines should not trade disks or email with other users
until the computer is declared clean by a competent authority.

� If the infected system is connected to any local area network, it should be
logged off all remote machines. If necessary, physically disconnect the
machine, but first advise the network’s administrator.

� No files should be exchanged between machines by any other means until
you’ve established that this can be done safely.

C h a p t e r 1 0 : R i s k a n d I n c i d e n t M a n a g e m e n t 2 9 7

2 9 8 V i r u s e s R e v e a l e d

� Ensure that all people in your unit and any other units at risk are aware
of the situation.

� Get all floppy disks in the unit together and ready for checking.

Virus Incident Checklist
You can use the following rough list as a starting point for gathering information:

� Why does the client think a virus is present?

� What sort of virus does the client think it is?

� What virus name did the anti-virus package report?

� If the virus was reported by an anti-virus package, which product was used?

We have seen instances where the operating system or a general diagnostic
package has suggested the presence of a virus—in a few cases, correctly. It’s
unlikely that the package will be considerate enough to name the virus, but it may
still be helpful to know the name of the package. While we were wearing our Help
Desk hats, users would contact us and report that “SCANDISK says we have a virus”.
Since SCANDISK is pretty limited as a disk diagnostic utility, it’s unlikely to do a
better job as a virus utility. Further questioning may elicit the following information:

� The person at the next desk thought the utility signified a virus.

� A real anti-virus program with a similar name made the suggestion.

� A completely different program running at about the same time displayed
the alert box that raised the alarm.

Knowing that one of these scenarios is applicable can make the difference
between solving the case over the phone and having to send in the anti-virus SWAT
team, possibly quite unnecessarily. (Trust us: we have been that SWAT team.)

To continue with the original checklist, you will need to know the following
information:

� What type of system is it? What type of hardware, operating system, and
network environment?

� What specification of hardware is involved, what version of the operating
system, network, and scanner is being used, and how recent are the virus
definitions?

C h a p t e r 1 0 : R i s k a n d I n c i d e n t M a n a g e m e n t 2 9 9

� Is there an apparent infection, or was the virus blocked at entry? (You may
have quite a problem eliciting the answer to this question. Most naive users,
and quite a few support professionals, don’t see a distinction. Does the hard
disk appear to be infected, or only a floppy? Or is just a single file flagged
as infected and located in the mail attachments directory?

Virus Identification
The principal reason for needing to identify a PC virus is to estimate the likelihood
of its spreading if work continues until the system has been cleared. A virus that is
identified as a boot-block infector (boot-sector virus [BSI or BSC], partition-sector
virus, DBR [DOS Boot Record] infector, or MBR [Master Boot Record] infector)
normally spreads when a PC is booted with an infected floppy in drive A, and
therefore doesn’t usually present a direct threat to a network. However, systems
infected with a virus that has a destructive payload or known destructive side effects
must be kept quarantined. In any event, you should disallow the use of diskettes
unless absolutely necessary. Diskettes should in all cases be write-protected
wherever possible.

General Protective Policies
Since the central characteristic of a virus is that it spreads, any means of data
communication is a potential vector. Such vectors include internal network links,
external network links, email, new software, disk exchange, and any other means
of getting ones and zeros between machines. The more rigorously you control the
channels of transmission, the safer you will be.

Disks brought in by engineers, sales representatives, and others are particularly
suspect, as are disks that have been used by friends, college students, computer
bureaux, or your children. Preformatted disks (including hard disks and CDs) are
also questionable, as are newly repaired systems.

Email file attachments should be, by default, untrusted. Firewall or gateway-based
virus or content scanners may help to reduce the risk of an email virus or worm, but
they definitely can’t eliminate the danger. Verify any attachments, and be quite
specific in describing anything you send by email. When in doubt, don’t
double-click.

Seriously consider security when evaluating software, particularly when planning
company standards. Ensure that software is up to date with regard to security patches
or recommended configurations. (Don’t be the first one on your block to buy the
latest new program; 1.0 releases are notoriously buggy.)

Summary
Having taken a brief look at some general guidelines for handling the virus situation,
in the next chapter we look in more detail at the entities responsible for initiating
most data transfers: the users.

3 0 0 V i r u s e s R e v e a l e d

Configuring for Safety
As we write this book, the most problematic type of virus is the email script
worm. Most of these programs use the Windows Script Host (WSH), which is
installed, by default, on every Windows 98 and Windows 2000 system. It is also
active on other Windows systems if Microsoft Internet Explorer 5.5 has been
introduced, or if WSH itself was downloaded from Microsoft. You can get rid
of the script capability by following the instructions for the appropriate system:

� Windows 95 On the desktop or in Windows Explorer, right-click on
My Computer. Select Open from the menu. In the My Computer window,
open the View menu and select Options. Click on the File Types tab.
If VBScript Script File is in the list of file types, select it and click the
Remove button.

� Windows 98 From the Windows taskbar, select Start | Settings | Control
Panel. In the Control Panel screen, double-click the Add/Remove Programs
icon. In the Add/Remove Programs window, open the Windows Setup
tabbed page. Select Accessories and double-click. In the Accessories list,
find Windows Script Host. Uncheck the Windows Script Host checkbox.
Click OK to return to the Add/Remove Programs window. Then click OK.

� Windows NT 4.0 or Windows 2000 Log on as Administrator. On the
desktop or in Windows Explorer, right-click on My Computer. Select
Open from the menu. In the My Computer window, open the View menu
and select Options. Click the File Types tab. If VBScript Script File is in
the list of file types, select it and click on the Remove button. If the program
prompts you to do so, confirm that you want to remove the file type.

CHAPTER

11
User Management

301

IN THIS CHAPTER:

Managing the Managers

Risk/Impact Analysis

Management Costs

Policy Issues

Help Desk Support

Other IT Support Staff

IT Security and Other Units

Training and Education

Positive Reinforcement

Proactive Malware Management

Safe Hex Guidelines

Hoax Management

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Richard’s Laws of Data Security apart, how possible is a 100 percent
secure environment? The single computer user might get pretty close
to that degree of security as long as he or she avoids:

� Local networking

� Electronic access to remote systems (including, of course, the Internet)

� Receiving data except as hard copy (that is, no incoming data via serial links,
removable or external media from any source but the owner of the system,
and so on)

We might stretch a point and allow such a reclusive user to give data to someone
else on write-protected media. However, he or she might not be able to use the media
again subsequently, in case someone had inadvertently or deliberately write-enabled
the media or introduced malicious code. There are, for instance, a number of ways
in which a write-protected diskette can be written to, even with the protect tab
physically removed.

Until someone comes up with a real virus that spreads via powerlines, they don’t
provide too many entry points for a virus. We could have fun putting together some
far-fetched ideas, such as malicious code embedded in printed material that takes
advantage of a buffer overflow vulnerability in OCR (optical character recognition)
software to install itself onto a system with a scanner attached. Apart from that, such
a system would be about 99 percent secure—we have to allow for unusual (but not
unheard of) vectors such as compromised hardware (a trojanized keyboard, for
example) or software (a virus-infected shrink-wrapped application, for example).

Does the system we’re describing sound like yours, or that of a significant
number of the computer users you support? Nevertheless, your aim is probably to
keep the systems in your domain risk free. Unless you are in the unusual position
of having absolute control over your users’ systems, you will need to assume that
you are going to fail.

Panicking your users by drawing their attention to the fragility of what they may
perceive as secure technologies isn’t always productive. Users are subject to attacks
of vertigo when they find that their assumptions about the privacy of their email or
the efficacy of the firewall at countering all sorts of threats are unfounded. However,
a little user paranoia is a healthy corrective to corporate complacency.

3 0 2 V i r u s e s R e v e a l e d

C h a p t e r 1 1 : U s e r M a n a g e m e n t 3 0 3

Managing the Managers
Managers frequently display a degree of paralysis when they are urged to ponder
security issues. Consider initiating a pilot project: task an individual or a working
group with information-gathering and making recommendations. It can be expensive
to engage outsiders for long enough to do a realistic assessment of the needs of your
organization, and there are too many anti-virus consultants whose expertise derives
from the back of a box of software. However, if you opt for in-house research, you’re
probably trading off knowledge of the organization against lack of experience in
an area where even security professionals are often not well-versed—and in many
organizations, security administration is not allocated to security professionals. If
you go this route, you must ensure that the individuals tasked with the mission have
the motivation, time, and resources to learn as they go along. And, of course, they
need to have a copy of this book.

Policies Count
Security policies are often regarded as a time- and paper-consuming waste of space,
or, alternatively, as a substitute for action. In the real world, the truth lies somewhere
in between. But, as a first principle, and as a means of prompting management to
take some kind of action, two facts are noteworthy. First, any reputable security
auditors will give you a terse report if you have no security policy: no policy, no
security. Second, you must have some kind of security policy in order to have any
chance of dealing with even the most egregious and blatant failures of employees.
You can’t necessarily (or reasonably) discipline a user for not conforming to an
unpublished policy, but you can begin to exert some leverage. This may be particularly
so where individuals in the higher echelons are responsible for poor practice and
could resent being brought to account for it.

Nor is it enough for management to pursue a policy of nonintervention while the
resident expert slogs away at the problem. If someone higher up the organizational tree
decides to stamp on the expert’s fingers, management must offer positive support.

Covering your back shouldn’t be the main concern in a healthy corporate
environment, but there’s no need to paint a bull’s-eye on the aforementioned
posterior. If management is concerned enough about the sorts of threats examined
here to task someone with establishing countermeasures, that person should not

3 0 4 V i r u s e s R e v e a l e d

be expected to handle the task wearing manacles. In this context, we like to
quote Eugene Spafford:

Spaf’s First Principle of Security Administration: if you have responsibility
for security, but have no authority to set rules or punish violators, your
own role in the organization is to take the blame when something big goes
wrong. (Simson Garfinkel and Eugene Spafford, Practical UNIX and
Internet Security, O’Reilly and Associates, 1996)

Without management support, the best you can hope for is the probably part-time
and strictly reactive application of band-aid solutions.

Security and Insurance
Security in general and anti-virus security in particular constitute a cost centre and
rarely offer opportunities for profit (except for security vendors). Like fire insurance,
security represents a large expense set against the risk of an attack that may never
come, and may not seem to have been worth the cost of proactive protection. Security
policies are not generally popular. They take time to put together properly and
are of no practical use without a realistic educational program to back them up.

However, policies represent the organization’s recognition of the problems to
be faced, the assessment of vulnerabilities, the degree of commitment to managing
security problems, and the fundamentals of practice. Without laying the foundations
of an informed implementation, you cannot fully understand the causes of such
breaches, so as to lessen the impact of similar future incidents. Policy issues,
including specimen policies, are examined in detail in Chapter 17.

Viruses and Insurance
It is possible to purchase virus incident insurance. Such insurance may require a
considerable initial outlay: many insurance companies display little enthusiasm for
including computing-related risks in a policy at all, let alone viruses. This reluctance
suggests the need to observe “due diligence” in the implementation of protective
measures, before purchasing or making claims under malware-specific clauses in
insurance policies. There is also a clear need to articulate losses accurately (or at least
convincingly), supporting our contention of a serious need for policies and reporting.

TE
AM
FL
Y

Team-Fly®

It seems likely that insurance companies will shortly start taking the issue of
information security more seriously. Obtaining insurance against business interruptions
may soon become difficult unless you can demonstrate that realistic security
policies and business continuity plans are in place.

Risk/Impact Analysis
Start off with a little risk analysis. If you cannot demonstrate the problems, management
will be understandably reluctant to allocate resources and alarm the users. A well-written
preliminary conceptual report may be sufficient to encourage the freeing of funds for
a serious risk analysis project. At the very least, it should be possible at this stage to
task a suitable person or persons to carry the project forward. Take time to consider their
qualifications. Do they have the expertise, or are resources available to enable them to
acquire expertise? Do or will they also have authority, resources, and time to implement
defences? This isn’t a job for the office boy, but neither is it a particularly technical job,
although technical knowledge is rarely a drawback.

Most people today are aware that viruses are a significant threat. The big security
organizations and consultancies who used to consider virus management a minor
distraction now offer information, advice, and even training in the field, though
not always of particularly high quality. By definition, the risks are to some extent
specific to the organization, but this section lists some of the factors we find
recurring time after time.

Viruses generally stop or hinder the use of computing resources, create hidden
damage in a system, generate visible changes to computer operations, and engender
fear, uncertainty, and doubt among the users affected. We can break these impacts
down into more detailed effects.

Loss of Productivity—Denial of Service Costs

� Degraded performance of infected systems

� Unreliability of damaged applications

� Unavailability of damaged systems

� Unavailability of damaged or inaccessible data

C h a p t e r 1 1 : U s e r M a n a g e m e n t 3 0 5

Unobserved Effects

� Performance degradation

� Undetected data damage

� Application damage

� Disk I/O impairment

� Illicit resource utilization

� Undetected propagation and secondary infection

Observed Effects

� Serious performance degradation

� Unintentional side-effects

� Undiagnosed system faults

� Long-term damage to disks or data

� Cost of service time spent on undiagnosed faults

� Unreliable applications

� Loss of competitive advantage due to loss of productivity

Post-Traumatic Psychological Damage

� Post-traumatic vertigo—being overwhelmed by the task ahead

� Post-traumatic shock—being overwhelmed by the amount of damage done

� Scapegoating and witch hunts—which are no substitute for real incident and
problem management

Management Costs
Against these costs, you should also consider the costs of virus management. After
all, higher management will have to justify the benefits of amelioration against the
attendant costs.

The benefits aren’t easily quantifiable, although attempts have been made to use
data such as that uncovered by the TruSecure surveys. You cannot usefully assemble

3 0 6 V i r u s e s R e v e a l e d

a spreadsheet that shows exactly how much you’d save if you implemented virus
protection for the first time, because you don’t know how much damage is being
done now. If you already have virus protection (and some large organizations still
do not), you are unlikely to be able to input realistic figures to indicate how much it
saves you. Even the presumptive savings to be made by increasing or decreasing the
level or type of protection are hard to measure, not least because of the unavailability
of a standardized reporting methodology.

In fact, even the post-traumatic losses inflicted by a virus attack seem to present
difficulties in assessment. The highly publicized cases of Christopher Pile (a.k.a.
the Black Baron) and David Smith (a.k.a. VicodinEs) are instructive. Estimates of
the damage suffered by a single company as a result of infection by Pile’s Pathogen
virus ranged from £40,000 to £500,000 (or about $58,000 to more than $700,000 in
US dollars). The damage caused by Melissa seems to have been estimated on the
basis of “think of a (big) number and double it”. If this is the best we can do by way
of estimating consequent damage in the rigorous context of the criminal justice
system, what chance do we have of usefully quantifying hypothetical attacks?

This doesn’t mean, however, that keeping good metrics about incidents,
exposures, and such is less than crucial. Damage costs are important and need to be
measured accordingly in an organization of any size. While such costs cannot directly
articulate savings from having virus protection, they can provide insight into trends,
changes in exposures, effectiveness of products, and time spent chasing windmills.
Collecting virus incident metrics continues to be a difficult and arduous task. However,
it is also necessary when and if insurance policies are in place and claims are to be made.
It won’t take insurance companies long to determine that not all claims are actual
virus infections, or that the damage estimates may be inflated. After all, they are
in the business of making money, not paying claims.

Some costs to consider include those discussed in the following sections.

Pre-Implementation Costs

� Gathering information

� Establishing criteria and terms of reference

� Benchmarking against peer organizations

� Formulating a policy

� Evaluating options such as:

� Outsourcing versus in-house

� Outsourcing and in-house

C h a p t e r 1 1 : U s e r M a n a g e m e n t 3 0 7

Cost Analysis

� Cost of procurement (unit cost)

� Cost of installation

� Cost of testing

� Cost of upgrading

� Cost in performance (overhead from memory-resident scanners)

� Cost in time (on-demand scanners, checksummers)

� Cost of failure (spread of undetected viruses despite the implementation
of virus management software)

� Incident management (this may seem an odd thing to list, but sometimes
dealing with a breach is more expensive than leaving it alone)

� Reaction to false negatives

� Accelerated spread of undetected file viruses

� Cost of monitoring effectiveness and other revaluation

� Cost of revaluation

� Cost of switching (reimplementation)

� Personnel opportunity costs (time that could have been spent on more
glamourous activities)

The Management Feedback Loop

� Arriving at decisions

� Reporting to higher management

� Fine-tuning

� Seeking endorsement from higher management

� Communicating strategy and policy to IT staff and their user constituency,
and incorporating feedback:

� Meetings

� Documentation

3 0 8 V i r u s e s R e v e a l e d

Training and Education

� In-house or third-party training:

� Training a response team

� Training Help Desk personnel

� Training users

� Training trainers

� Monitoring of training, including its short-term and ongoing effectiveness

� Ongoing revaluation of the malware management function, which should
consider:

� Changing needs

� Changing trends

� Changing policies or strategies

� Cost-effectiveness

Policy Issues
Draft as many policies as you need, not to mention guidelines and procedures.
A policy is not necessarily an acceptable substitute for action (it’s often a delaying
tactic, coming somewhere between the working party, steering committee, and
management approval), but it may be a very useful first step. At this point, it needn’t
(and probably can’t) be comprehensive. Having a policy at least demonstrates that
a problem has been identified and that the will exists to address it. Securing higher
management approval is the vital first step in securing an organization. Once you
have an acceptable draft policy, you have some authority, even before detailed
planning and implementation.

Some organizations still have no clear policy regarding the use of the Internet
(including electronic mail, the World Wide Web, newsgroups, etc.) or the desktop.
It is a mistake to leave the novice cybernaut without direction. It isn’t necessary
to teach everyone the fundamentals of TCP/IP or the history of ARPANET, but it
might be good practice to make sure that your system’s users know the following:

� Email is not necessarily private, but may be read by authorized or unauthorized
persons, and is increasingly likely to be scanned automatically at the gateway,

C h a p t e r 1 1 : U s e r M a n a g e m e n t 3 0 9

not only for malware but for other unacceptable content. A policy might
contain a notification to all employees that the company regards any email sent
to or from a company account to be open to company authorities, and that a
message may be read for diagnostic, quality control, investigative, disciplinary,
or other purposes. In fact, a good idea might be to have email sigblocks carry
this warning, to avoid later hassles over privacy.

� Email doesn’t always come from the source whence it appears to originate.
The fact that it comes from a trusted person’s account does not mean it was
sent with his or her knowledge or consent.

� Quoting or forwarding mail and other material without permission may not
only be a breach of netiquette, but may also have copyright implications.
Legislation applicable to the printed word may also apply to email or postings to
newsgroups, and material available for viewing on the Web is not necessarily
in the public domain. In some cases, however, textual content is not all that is
being forwarded. Attachments can, of course, contain or constitute malware,
but message text and HTML can also contain malicious embedded scripts.

� In most organizations, a degree of recreational browsing or Internet social
interaction is acceptable, but if that degree is quantified (and it probably should
be), users should be made aware of what is considered acceptable and what
is not. If it’s acceptable to use work resources at all for extracurricular (especially
commercial) activities, an organization may need to draw the boundaries very
clearly. Encouraging non-work-related use of the ‘Net has some advantages. As
one example, getting people to use company email for contacting net-connected
relatives is a good way to get them used to using email and the various options
available. It might be considered preferable to state that company resources
are provided for company purposes, but that not all breaches may be subject
to discipline, according to company judgment. Such a policy statement allows
some leeway for turning a blind eye to personal email, while leaving available
the option of prosecuting blatant and flagrant misuses such as distributing
pornography, harassing fellow employees, or using Microsoft Outlook. However,
it also allows a degree of interpretation and uncertainty that won’t find favour
in every organization.

The user of a desktop machine should understand clearly (when applicable)
that the desktop belongs to the organization, not the user, and be aware of the
organizational expectations that the user must meet regarding the following types
of policies and concerns:

3 1 0 V i r u s e s R e v e a l e d

� The system’s users should understand the proper use of authorized and
legitimate software and peripherals, especially modems, that may breach
security in a number of respects.

� Users must conform to company guidelines on such security issues as virus
management (of course).

� Mail-agent software on the desktop should be secured as much as possible.
Such systems rarely have the same rigorous safety provisions that are available
on a multi-user system, and often are very insecure, indeed, in default mode.

� It will probably also be necessary to address issues specific to the use of
laptop computers and other portable equipment, either in the policy at hand
or in a separate AUP (Acceptable Usage Policy). Such matters might deal
with additional levels of access-restricting software, encryption of data,
and remote-access concerns.

Good policies are an essential weapon in the fight against security breaches.
Effective implementation of policy entails not only raising the overall awareness
level among general users, but also paying special attention to a number of critical
support issues. We suggest that the company’s legal counsel should be involved,
at some point, in the wording of security-management policies—although, in the
interests of comprehensibility, the legal team probably shouldn’t write them.

Help Desk Support
Users frequently make a point of emphasizing the importance of their roles or those
of their superiors in order to gain preferential treatment. They may exaggerate the
length of time a trouble ticket has been outstanding or the gravity and/or urgency of
the problem. They may bypass normal channels, in order to get quicker, more senior,
or more expert service. In the context of social engineering, we have noted in other
publications some of the ways in which users can try to subvert normal processes
for their own gain, at the expense of others:

� Subtle intimidation

� Bluster

� Pulling rank

� Exploiting guilt

C h a p t e r 1 1 : U s e r M a n a g e m e n t 3 1 1

� Pleading for special treatment

� Exploiting a natural desire to be helpful

� Appealing to an underling’s subversive streak

Help Desk staff need a proper framework within which to work. First and
foremost, they need a superior who is willing, authorized, and knowledgeable
enough to make sensible decisions about when, if ever, to bend the rules, and who
won’t throw a thorny problem back at them. The staff needs a good understanding
of what the rules actually are, what their responsibilities are, and what recourse they
have in the event of a grievance. They also need to know that when they have a
run-in with a difficult user, they will have the backing of management, as long as
they conform to policy.

Malware management makes particular demands. First-line support staff must be
equipped to deal with false, real, and real-but-useless alerts, and know enough to
distinguish between them, or where to refer them if in doubt. Hoax management is
dealt with in some detail later in this chapter, as well as in Part IV.

3 1 2 V i r u s e s R e v e a l e d

Who Owns the Problem?
Rob Slade once did some management consulting for a technical company
attempting to implement a middle management layer for the first time, in
order to grow and meet competition. He found that the owners, used to running
everything, were still making direct contact with support and development staff
even after the appointment of managers for those sections. It took a lot of time
and careful preparation to prove to the owners that this was the case, but
finally they admitted that he was right. After thinking it over, however, they
acknowledged that while he was right, they still preferred to keep things
as they were.

The company continued on as before, struggling against competitors that
grew ever larger, and was finally bought out by one of the larger outfits. Sadly,
and because they were unwilling to change their management style, the owners
essentially lost their company. However, they did it with full knowledge of what
was happening, and it is important for security professionals to understand that
they are not the ones responsible for the ultimate protection of the company:
senior or executive management holds the reins of power. But security workers
are answerable for educating the top dogs—or at least trying.

First-line support staff should have enough knowledge and experience to
diagnose a possible virus-related incident, even when it’s reported as something
else. On the other hand, they should also know enough to avoid the “Something’s
not working: it must be a virus!” trap. It rarely hurts to check that anti-virus software
is working and up to date, or to scan the system, and such checks might be included
as part of the standard diagnostic procedure for indeterminate incidents. However,
any IT professionals finding themselves using an unidentified virus as an explanation
for an indeterminate system problem should immediately volunteer for urgent
reeducation. It never hurts to refer a “Could this be a viral problem?” call to
second- or third-line support (a process often referred to, disconcertingly, as
escalation) or to a third party (a consultant or vendor helpline).

The support staff should also have the confidence in themselves and line
management not to allow the customer to dictate priorities.

They should have enough informed scepticism to know when point-and-click use of
anti-virus software is or is not appropriate. Elimination of an incoming threat that hasn’t
infected is usually safe, barring such (hopefully unusual) circumstances as known false
positives. However, once malicious code has been executed, even known threats may
require manual intervention as a supplement or even as a substitute for anti-virus
software. The possible circumstances where such complications may arise are too
numerous to list, but we have in mind such instances as:

� Anti-virus software that deletes what it cannot clean

� Malware that modifies the Registry so that anti-virus software cannot execute
properly and thus may hinder more than it helps

� Disinfection or disinfestation that causes damage through misidentification of
the malicious program

Help Desk staff and technicians (and their management) also need training and
support to get past the “single point of detection and repair” syndrome. A staff
suffering from this syndrome will report to a user who suspects a virus, clean the
affected system, never ask about source and scope of what was detected, then close
that trouble ticket—only to have another user (or recipient) call in with the same
virus infection on his or her system. While this syndrome increases the Help Desk’s
turnaround statistics on individual trouble tickets, and reduces the staff’s response
time, in fact, it actually elevates the total incident time as the staff members run
around putting out individual fires. This syndrome also distorts the reporting
process, as these trouble tickets now appear to be individual and distinct
infections/incidents but may in fact be symptoms of the same incident.

C h a p t e r 1 1 : U s e r M a n a g e m e n t 3 1 3

Other IT Support Staff
IT staff in general both pose and are vulnerable to special risks. They’re often
assumed to have a wider range of knowledge than is really appropriate. We have
already referred to the dangers of “instant experts”, who overestimate their own
abilities. After all, IT professionals are often highly knowledgeable in their own
areas. They may have undergone training in other support areas that has actively
reinforced common misconceptions about security and malware. Courses leading
to Microsoft professional qualifications, for instance, tend to adhere to a very narrow
and Microsoft-centred view of security issues; this focus gets engineers through
examinations, but discourages them from questioning the built-in assumptions. You
may have gathered that we do not always regard Microsoft as the ultimate authority
on all things security-related, especially virus issues. We should not give the impression
that Microsoft owns this problem exclusively; we are aware of general security
courses, for instance, that are appallingly ill-informed on viral issues.

Support staff are under pressure to reinforce the view of themselves as experts, not
only to bolster their own self-image but to reflect well on the unit to which they belong.
They may have privileged access to particular systems (but not necessarily expert
knowledge of those systems). They are often encouraged to experiment, and are usually
expected to teach themselves as much as possible, and sometimes more than is possible.
This applies especially in the anti-virus arena. The people in the virus management
industry who know most about virus internals are, more often than not, committed to
strictly limited disclosure, while the people who are committed to full disclosure are
rarely in a position to display the same breadth of knowledge.

IT staff constitute a classic virus vector. In the absence of proper controls,
they are apt to flit from user to user without taking elementary precautions. Many
organizations virtually ignore training in security issues for staff in general—not
altogether surprisingly, given the cost and administrative overheads of enforcing
training in areas that are not often seen as relevant to the average user. However,
organizations that withhold training in these areas for IT support teams take serious
risks: IT team members make tempting targets for all manner of security attacks.

IT Security and Other Units
Physical and IT security personnel often have an uneasy and distant relationship,
even in institutions where they share a common node of the management tree:

3 1 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

� IT personnel should at least understand the need for physical controls and may
need some involvement in the physical securing of IT equipment, for instance,
when sophisticated technical controls such as hand-held authentication devices
are employed.

� Non-IT security people need at least a basic understanding of how IT hardware
hangs together in order to appreciate where the weaknesses are—not only in
terms of virus damage, sabotage, theft, and espionage, but even in terms of
accidental damage.

It’s not only people formally employed in security who need to be involved
with security and malware management. Staff who have access to critical systems
or data should be subject to special contractual and other controls and policies, and
temporary/contract staff should not be overlooked. Staff leaving or changing jobs
within an organization may entail changes to access controls in a number of
contexts, and it’s essential that access privileges reflect the current status of the
individual. Status should, in turn, be partly determined by exposure to relevant
training and experience.

Staff who work in personnel departments are tempting targets for social
engineering attacks, since they have privileged access to all kinds of interesting
and saleable information. But they are also prime targets for incoming macro virus
infections, since these employees receive curricula vitae (resumés) from individuals
outside the organization’s defensive perimeter.

Training and Education
General users should not be expected to become security experts. Indeed,
it’s unrealistic to assume them to be IT-literate beyond the requirements of their
work. This makes the quality of the educational and other resources available to
them particularly important, not only in terms of accuracy and pertinence, but also
accessibility. Training and first-line documentation should be as brief and clear as
possible, but more detailed resources should be available and known to be available.
In particular, such documentation should make as few assumptions as possible
about the technical knowledge of the reader; unfortunately, this objective is not
always consistent with the equally pressing requirement that the documentation
be as short as possible.

Make it clear what is forbidden (disabling anti-virus software, substituting an
unapproved package, and so on) and what the penalties are. Leave as few “I didn’t

C h a p t e r 1 1 : U s e r M a n a g e m e n t 3 1 5

think it mattered just doing such-and-such” loopholes as possible. Management
should be co-opted into setting a good example. Why should lower grades take
security more seriously than management? Furthermore, managers who are “too
important” or “too busy” to be inconvenienced by security precautions are excellent
targets for the social engineer, cracker, or virus writer.

It is commonly held to be secretaries and other low-status workers who are
most likely to be responsible for breaches of security. However, our experience out
in the field suggests that in a reasonably well-protected organization, management
is likelier to be responsible for the widespread dissemination of virus hoaxes, real
viruses, and worms. This may well reflect comparatively low levels of computer
literacy among older managers, though these levels are changing as business adjusts
to ubiquitous information technology. It can reflect impatience with anything perceived
as taking up valuable time; the proper response to this complaint is to point out the
loss of time and other damage that the company may sustain by post-infective
incident management.

Heads of departments require particular cultivation. They need to have a sufficient
understanding of the technological and other risks to which their staff may be vulnerable,
so that they take whatever measures are appropriate, including encouraging
subordinates to take advantage of educational opportunities and conform to
guidelines. Furthermore, many war stories are told at conferences of how a CEO
propagated a hoax or chose to favour functionality over security in the company’s
choice and implementation of email services, or how employees received a message
from the CEO, and assuming that the message was important, opened worm- or
virus-ridden attachments. We heard recently that this same CEO had been quoted
in a security publication on the topic of viruses, stating that eliminating vulnerabilities
can be one of the most positive steps an organization can take.

If management doesn’t take malware-related threats seriously, staff cannot be
expected to, either. Resources must be allocated to assessing the risks, defining
policies, and making sure that users know what management expects of them by way
of a realistic user-awareness programme. We repeat: you don’t have to turn everyone
into a security expert, but you do have to ensure that everyone has a minimum of training
to raise awareness of the issues and, most importantly, to ensure that employees know
where to go for information and guidance if they need it. Managers and system
administrators must also set a good example by personally conforming to good practice.

Different job functions require different levels of training. IT staff usually
need a deeper knowledge of security than most users, and a realistic appreciation
of what is required of them. Non-IT security staff need a passing acquaintance with
technology, even if they never use a computer themselves, if they’re to handle

3 1 6 V i r u s e s R e v e a l e d

physical security effectively. Units that are particularly vulnerable, such as
personnel/human resources departments, may need special consideration, too.

Nevertheless, technical inexpertise presents its own distinctive problems, and
the hoax management problem provides a telling example. A reactive response to
a user’s report of an email virus is relatively simple. You could simply say, “No,
there is no Good Times virus—it’s a hoax.”, which may be enough if your user is
considerate enough to ring the Help Desk and say, “I’ve just received a message
about a virus called Good Times”.

A more attractive approach might be to enhance your users’ technical grasp by
demonstrating the absurdity of the alert they’ve received. “You can’t burn out a CPU
by making it perform the operations it was built to perform, and anyway there’s no
such thing as an nth complexity binary loop”. Adding value by educating a customer
is, in principle, a good thing.

But what if the customer rings back and says “I know Good Times is a hoax, but
apparently there’s a Trojan horse virus that...” You can, of course, continue to raise
your user’s technical awareness: “Trojan horses and viruses aren’t the same thing”.
Should you then expound on the differences and disputed areas?

� Isn’t a virus a special case of Trojan horse?

� Isn’t a virus dropper a Trojan horse?

� Could a virus overdrive an antique monitor?

� Could it reprogram a modem or a flash BIOS?

It seems that the more you explain, the more questions you have to answer. The
logical end to this road is the point at which your user has become a security expert.
This is all to the good if your business is creating security experts, but that is a
market which is easily saturated.

Alternatively, you could focus on technical issues that relate specifically to
hoaxes rather than to computing and computers in general. “Here are some of the
features of the email you’ve received that imply that it’s a hoax. It’s all in capitals.
It has far too many exclamation marks. It asks you to forward it to everyone you
know”. This response is much better. It equips a receptive user with a heuristic
to trap any chain letter and most hoaxes (most of which are special cases of chain
letters). Such heuristics are actually as far as most of the current literature on the
hoax virus phenomenon goes, and we consider them at length in Chapter 16.

But let’s consider a warning that says, “There’s a new virus that [insert the
usual improbable characteristics here]. Don’t panic, I’ve enclosed a program as an
attachment that cures it”. This is a very rough approximation of what the Red Team

C h a p t e r 1 1 : U s e r M a n a g e m e n t 3 1 7

virus does. The virus it describes doesn’t exist, but the attachment is virus-infected.
The virus description in this case would be trapped by the previous heuristic (“P.S.
Make sure you warn all your friends of this new threat!”), but that’s no guarantee
that the real virus won’t get its place in the sun. The world is full of people who
haven’t caught up with this heuristic. Those who have are not safe. “It does sound
like a hoax, but just to be on the safe side....”

How should you react to a virus alert that acknowledges all the heuristics that
might be deployed against all known hoax viruses, but claims to be a special case?
What if the alert misrepresents a standard instance of social engineering as an
exception? How about, “Please warn everyone you know not to pass on alerts to
everyone they know”? What about an alert that avoids such crass hoax symptoms
as capitalization and multiple exclamation marks?

You could, of course, continue to attempt to raise the level of technical awareness
of your system’s users. Or you could go back to first principles: “If it doesn’t say
quack, doesn’t waddle, says it hates water, but has an orange beak, maybe it’s a duck
after all”. Red Team still says “quack”. Your hypothetical alert might not. It might
not say anything at all, and leave the victim to deduce that it would be a good idea to
pass the warning on. The alert might bypass all your anti-hoax heuristics: however,
it would still have to persuade its intended victim to execute it. In a well-protected
environment, such an alert would still fall foul of the Prime Directive: “Thou shalt
not run unauthenticated programs”. In this case, “a well-protected environment”
clearly implies educated users.

You can’t make realistic rules to cover every potential future threat. If you did,
no one would read all the way through the manual. The trick is to keep the rules few,
simple, and general, but concentrate on helping your system’s users to extrapolate
from a broad principle to a specific instance. That’s where education can counter
social engineering.

We often suggest that quite basic IT training, even where security is not normally
considered an issue, should include an introduction to computer ethics. Such an
introduction would raise awareness of what the Evil Hacker or Vile Virus Author
may be up to, but also highlight the responsibilities of users in terms of awareness
of the problem and the techniques involved. It also would give users a reinforced
appreciation of what is acceptable in their own computing activities. It is received
wisdom that most targeted attacks are still directed from inside rather than outside.
The majority of staff won’t have the knowledge or desire to write viruses or hack
into prohibited, secured areas, but may be seriously careless about using other
people’s systems, software, or data files without authorization. Indeed, some staff
members may be tempted to commit a small act of rebellion such as installing a joke
program or semi-Trojan, not realizing that an apparently small indiscretion may

3 1 8 V i r u s e s R e v e a l e d

create enormous breaches. If you train staff members to think about the grey areas,
they will be less likely to be pulled across the line that separates more-or-less
legitimate corner-cutting from breaches of policy or even illegal acts.

NOTE

The not particularly standard term semi-Trojan refers to software that occupies the hazy
hinterland between jokes and Trojans, which might, according to context, be regarded
as trivial or threatening. An example is a program that claims to overwrite the hard disk.

Positive Reinforcement
Employees are more likely to take pride in doing their jobs properly if they see that
management:

� Values the job function. Nothing is more dispiriting than feeling that no one
cares whether your job gets done or not.

� Values the contribution of the individual performing that function.

� Considers it important that the job is done well.

� Doesn’t shoot the messenger. A virus report is an indication that anti-virus
software and the people who use it are functioning as they should. There never
was a time when the mere presence of a virus constituted reasonable grounds
for dismissal of the person who received it, the engineer who set up the PC,
the systems administrators responsible for the local file server or mail server,
or the head of IT.

People with security responsibilities often respond well to being given a more
impressive job title or increased formal responsibility, enhancements that may cost
little or nothing. Of course, bigger paychecks help, too. On the other hand, inappropriate
use of such incentives can be seriously nonconstructive. There is such a thing as an
overenhanced sense of one’s own worth.

Proactive Malware Management
In the age of the fast-burning mass mailer, there are two ways to go: either we can
take the decisions out of the customers’ hands by applying extensive blocking or

C h a p t e r 1 1 : U s e r M a n a g e m e n t 3 1 9

quarantining of suspicious inbound (and preferably outbound) mail and other
network traffic, or we can eschew transparency and conscript customers by
encouraging them to follow good practice.

Safe Hex Guidelines
This section provides some guidelines to what is sometimes called Safe Hex, but
might be called (less amusingly but more accurately) safer computing. You will find
some tips on avoiding a few of the most common risks actually faced by computer
users today, and can form the basis of an informational resource. Some of the
suggestions here will be implemented by IT departments rather than individual
users, in organizations of any size. However, these suggestions are included because
anyone who works (or plays) at home, and does not have access to an IT department,
is advised to think about whether he or she needs to take similar precautions.

Check All Alerts and Warnings with Your IT Department
Warnings from any individual within the organization who is not authorized to
forward them should not be assumed to be accurate, but should still be checked with
the Help Desk facility or the security administration team. At the end of this chapter,
we include a Help Desk response form and quick guide to hoaxes that you can use as
the basis for dealing with the problem of users who forward inappropriate material.
Home users and the like might want to consider checking with their anti-virus
vendor of choice or an independent resource. David Harley maintains an advisory
verification service at http://www.security-sceptic.org.uk, while Rob Rosenberger’s
site at http://www.vmyths.com, an essential resource for checking hype and hoaxes,
also offers a mail-out service addressing major hoax-related issues.

Don’t Trust Attachments
In general, up-to-date anti-virus software and sensible precautions are still the
best bet for most people. Don’t open mail attachments from people you don’t know;
check with the sender if you get an attachment from someone you do know but from
whom you weren’t expecting an attachment, especially if there is no accompanying
message, or if the accompanying message doesn’t seem to make sense. (Worms
usually mail themselves without the knowledge of the person from whose mail
account they’re sent.)

3 2 0 V i r u s e s R e v e a l e d

A common entreaty is to trash anything you can’t trust. This solution may be
safest for the individual, but at the expense of others. If everyone trashed everything
unsafe, perhaps it wouldn’t matter whether we identified new threats, but that won’t
happen in the foreseeable future. Until it does, it’s better to avoid executing untrusted
code, and, instead, send it to a competent authority for examination or other
appropriate action. Individuals might want to forward such code to the vendor
of their choice; larger organizations should have an in-house designated individual
or team competent to make such decisions.

What, in any case, is trust? It’s reasonable to distrust anything from anyone
you don’t know, but more often than not, you will receive worms and viruses from
people you know and trust (for their goodwill, if not for their security awareness).
Should you mistrust an attachment from your boss, your spouse, or your mother?
Probably, but perhaps wholesale discarding of anything these users might send you
is not worth the embarrassment and ill feeling it is likely to entail. Better to verify
that they know they sent it (to lessen the risk from self-mailing viruses and worms)
and that what they sent is what you see before you. The problem with exhortations
to beware of attachments from unknown or untrusted sources is that they will be
read as equating “known” and “trusted”. Most viruses are received from known
and trusted sources. Trusting the source (i.e., the goodwill of the sender) doesn’t
mean it’s a good idea to trust the object.

We are sometimes told not to open anything from a trusted source unless it has
been verified, but this advice alone is not enough. A file intentionally sent is unlikely
to be a mail worm, but it can be virus-infected, without the knowledge of the sender,
and opportunities for infection are not restricted to attachments. This principle
addresses in some measure threats like Melissa and ExploreZip, but applies just
as much to floppy disks as it does to attachments or ftp downloads. The trick is not
to focus on the particular and miss out on the general. Better still, state the general
principle and the particular instances, probably in some detail. If you’re avoiding
MIME attachments, you need to avoid embedded uuencodes as well.

Take Care in Newsgroups and on the Web
Distrust executable files from unmoderated newsgroups, or any newsgroup that
doesn’t normally approve binary files. In fact, take the same care as you would with
email, but more so. After all, the chances are that more of the people in your web of
trust contact you through regular email than do through USENET. You should also
regard data files with suspicion, especially if they are Office documents. Pure text
and graphics files are fine, but only if you can verify them before you open them.

C h a p t e r 1 1 : U s e r M a n a g e m e n t 3 2 1

You should probably be particularly careful in groups specializing in erotica
(or worse), pirated software, hacking/cracking/virus-related material, and ethically
murky areas such as MP3 exchange. We say this not because these items are inherently
more likely to be infected, or even because of personal issues with the ethics of these
types of activity. The real problem is that such groups have a large pool of unregulated
materials that are highly desirable to many people. A virus or Trojan stirred into the
mix has a much higher chance of being downloaded and run. For this reason, virus
and Trojan writers are more likely to use these venues to launch their beasts into
the wild while feeling good about themselves for being “morally superior” to their
immediate victims.

You should be similarly cautious on web sites, ftp sites, and even chatrooms and
email lists dealing with similar material. Infected subscribers to mailing lists may
result in inadvertent forwarding of mass mailers. Accepting executable content from
someone you meet in a chatroom is asking for trouble.

Don’t Install Unauthorized Programs
Trusting the sender doesn’t mean you have to trust the message or attachment: most
virus victims receive the infected object from a trusted source (who normally isn’t aware
he or she has a virus problem). If someone does send you a program file such as a joke
program, screensaver, or game, even if the sender claims that the file is something less
frivolous such as a disk or file utility, you should regard the file as potentially dangerous
and forward it to an appropriate resource for analysis. We would discourage you from
using any unauthorized programs of any sort, whether received by email, on floppy,
as a download from the Web, or from any other source.

Joke program files, in particular, often generate a virus alert from anti-virus
software, and dealing with such alerts can be more of a problem than straightforward
detection and removal of a real virus.

Be Cautious with Microsoft Office Documents
Microsoft Word documents and Excel spreadsheets are frequent targets for macro
viruses. Other documents may also carry viruses, but far less frequently. If people
you don’t know send you unsolicited documents (or any other type of file), regard
the files as potentially dangerous and send them for analysis. If people you do know
send such documents unexpectedly, this may mean that a virus or email worm has
infected their system and is mailing itself out from their account without their
knowledge. Ask them to confirm that they sent the file.

3 2 2 V i r u s e s R e v e a l e d

Use and Ask for Safer File Formats
To lower the risk of receiving and forwarding macro-infected documents, use
Rich Text Format (.RTF) word processed documents (which do not directly support
Microsoft’s macro languages) and .CSV documents for spreadsheets, and ask other
people to send you documents in these formats where possible. Note, however, that
following this advice doesn’t provide complete safeguards.

A document that has the .RTF extension is not necessarily a Rich Text Format
document. Some viruses can intercept the attempt to save a document as RTF and save
it as a normal document, but with an .RTF extension, so that macros are preserved and
will be run as usual when the document is opened in Word.

It’s also possible to insert a Word document, Excel spreadsheet, or other
potentially infected or infective objects into an .RTF document created or edited
with Word, complete with macros, which may be executed when the embedded
document is opened even if Word’s own macro virus protection is active. A patch
is available from Microsoft to counter this latter type of attack. Many anti-virus
products now include .RTF as a default scanning option, rather than checking
for .RTF files only during an “all files” scan.

Where formatting is not crucial, plain text remains the safest option, and may be
less resource-intensive.

Continue to Use Anti-Virus Software
Always using these file formats does not, therefore, relieve you of the need to
run anti-virus software that scans files as or before they are opened. Additionally,
while you should not place your entire trust in the macro virus protection included in
recent versions of some Microsoft Office applications, it’s highly recommended that
you make full use of them. While this software will not identify specific viruses, it
will normally indicate the presence of “macros and customizations”. Any document
that gives rise to such a message should be forwarded to a responsible individual
or agency, such as an anti-virus vendor, for analysis.

Keep Your Anti-Virus Software Updated
Make sure that someone in your organization is ensuring that your anti-virus
software is up to date. If your scanner can be auto-updated from the vendor’s web
site (or some similar source), make sure that you or an administrator has configured
it that way. If you can’t or choose not to use some sort of automated scheduling,
make sure that updating manually is part of your regular routine.

C h a p t e r 1 1 : U s e r M a n a g e m e n t 3 2 3

Up to Date Doesn’t Mean Invulnerable
Scanning for known viruses is always second best. By the time you see an update,
other viruses have been found, and new viruses can go from unknown to a global
threat in hours, even minutes. At the moment, viruses don’t often spread that rapidly,
but that can change, and even an occasional Melissa or Love Bug can be very costly.
The fact that you’re running up-to-date software doesn’t mean you can’t possibly
have a virus.

Super-users Aren’t Super-human
Don’t assume that because someone else is responsible for keeping your anti-virus
software updated, it must be happening. An administrator may not have all the
necessary information about your system. The software or the updating mechanism
may have a problem. If you get messages from the software itself that it isn’t up to
date, or that there may be some sort of problem (including a possible virus), report it;
don’t assume that someone else will notice sooner or later. Someone may, but
perhaps too late.

Disable Floppy Booting
By default, most PCs will attempt to start up from a floppy disk, if there is one in
drive A. (Note that some systems can be made to boot from another floppy drive,
though such a configuration is unusual.) Changing CMOS settings so that booting
from a floppy disk doesn’t happen by default lowers the risk of infection from
boot-sector viruses such as Form, Stoned, Michelangelo, and Monkey.

Some systems allow you to disable floppy booting altogether, while others allow
you to change the boot sequence from A, C, to C, A, so that the system will boot
from drive A only if there is a problem with the hard drive or if the boot sequence
is changed back. It isn’t always obvious how to implement this sort of protection,
but that’s what Help Desks are for.

Write-Protect Diskettes
If you have to take a floppy disk to another system, write-protect the disk first.
Write-protecting the disk will not protect the other system from any viruses on the
diskette, but may protect the diskette from any infection present on the other system.

3 2 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

Office Avoidance
Avoiding using Microsoft Office applications is an obvious means of avoiding
trouble, but isn’t very practical for many corporate users and others who are required
to use a particular application, or even a particular version of an application. Use the
built-in configuration options for warning of the presence of macros, and other
protective measures, such as those described in Jimmy Kuo’s “Free Macro
Protection” white paper at the NAI site
(http://download.nai.com/products/media/vil/pdf/free_AV_tips_techniques.pdf).

Reconsider Your Email and News Software
Certain email software is particularly vulnerable to abuse, notably Outlook and
Outlook Express. If you don’t need the particular functions they offer, you might
consider using another (arguably more secure) mail client such as Eudora, or even
accessing mail from a less vulnerable platform (such as Macintosh or UNIX). If
you do use Outlook, consider upgrading to the more secure but less user-friendly
versions. These can be found at the Microsoft Office Outlook download page:

http://office.microsoft.com/downloads/
default.aspx?Product=Outlook&Version=95|
97|98|2000|2002&Type=Update|Converter|Add-In|Assistant|Stationery|
Document|Viewer|Template|Anti-Virus|Updates

(This URL is long enough that it must be wrapped in the book. It should all go on
one line with no spaces when you plug it into your web browser.) You will probably
want to download the “Outlook 97 Email Attachment Security Update” (published
6th September, 2000), the “Outlook 2000 SR-1 Update: E-mail Security” (published
7th June, 2000), or the related Macintosh versions. There are also updates that deal
with some security problems related to inappropriate use of Java. Be advised,
though, that these versions make the program much less functional, and you
can’t restore the functionality of the less secure versions without considerable
hassle and extensive reinstallation.

Whatever your email client, it makes sense not to let it do any of the following
automatically:

� Execute attached programs

� Open Office documents with any application (Word, Excel, PowerPoint,
Access) that will let macros run automatically

C h a p t e r 1 1 : U s e r M a n a g e m e n t 3 2 5

3 2 6 V i r u s e s R e v e a l e d

� Open your web browser and open embedded links

� Run any HTML scripts such as JavaScript, VBScript, and so on (an even
better idea is to decline HTML support altogether)

Show All File Extensions in Windows Explorer
You should configure Windows Explorer and, indeed, any other environment
that displays filenames to show all file extensions. Note that such a configuration
doesn’t guarantee defence against deceptive icons or double extensions intended to
persuade you that a file is of a trustworthy file type (myfile .txt.vbs, for instance).
In Windows, the icon is determined by the (last) file extension, but in some
environments, the icon can be edited into something deceptive.

Disable the Windows Script Host
Internet Explorer and Outlook are both subject to a particular vulnerability associated
with the Windows Script Host (WSH). If you don’t need this feature, disabling WSH
protects you against a whole class of email viruses and worms. File types associated
with this vulnerability include (among others) VBScript (.VBS) files and scrap
(.SHS) files.

Detailed information on disabling the Windows Script Host is given in Chapter 10.

Introduce Generic Mail Screening
Discarding or quarantining messages containing scripts or attached executable
files at the mail server or at the desktop rather than relying on detection of known
scripting viruses significantly increases security. Certainly any file that includes a
double extension, such as myfile.txt.vbs (so that it appears to be a simple text file),
or that contains a large block of spaces before the extension (so that the extension
itself may not be visible to the recipient), should be treated as suspicious.

Utilize Microsoft Security Resources
Microsoft maintains a number of security resources, including mailing lists for the
circulation of security bulletins. For the IT professional or the concerned home user
without an IT unit on which to rely, these are good sources of information on security
issues relating to Microsoft products (Windows in general, Microsoft Office, Internet

Explorer, Outlook, and so on) that are, unfortunately, often implicated in security
problems. They can be found at:

http://www.microsoft.com/security/default.asp
http://www.microsoft.com/technet/security/current.asp

Of course, Microsoft is far from being the only source of such information. Other
vendors offer discussion lists and advisory mail-outs for users of their software
and/or hardware, while third-party consultants offer similar services.

Subscribe to Anti-Virus Vendor Lists
Some anti-virus vendors maintain mailing lists relating to specific virus outbreaks
and alerts as well as to version upgrades, definitions updates, and so on. Although
it may expose you to a higher proportion of marketing hype and scare-mongering,
subscribing to several of these lists may also give you a more balanced view.

Scan Everything
Before opening any new or modified object, you should scan it with current
anti-virus software. At this point, it’s probably too much to hope that customers will
run on-demand scanners unprompted at any time, let alone every time you would
like them to. Fortunately, on-access scanning has removed most of the need to run
scheduled or on-demand scans for most people, though many competent administrators
prefer to run scheduled scans as a backup. After all, rigorous testing suggests that
even today, on-access scanners do not always dependably detect the same range of
threats as the corresponding on-demand scanners.

Don’t Rely on Anti-Virus Software
An organization that relies entirely on its anti-virus software, however reputable,
is dicing with disaster. Nowadays, a reasonably secure corporation protects itself
with multilayered anti-virus systems, intrusion detection systems, and firewalls.
DSL (Digital Subscriber Line) and cable modems introduce to the home user the
joys of continuous (fast) connection to the Internet, but also the increased risks of a
connection that is, potentially, always there and always identified by a consistent IP
address. Major hardware/software defensive measures such as a corporate firewall
are not an option for most people with one or two home machines, but “personal

C h a p t e r 1 1 : U s e r M a n a g e m e n t 3 2 7

3 2 8 V i r u s e s R e v e a l e d

firewalls”, anti-Trojan software, and other scaled-down weaponry are options
(and are sometimes very cheap or even free).

Back Up, Back Up, Back Up
Backing up is not the complete answer to viruses and other threats that it’s
sometimes claimed to be, but a well-planned backup strategy goes a long way
towards aiding recovery from the most destructive viruses. Lengthy consideration of
backup issues is worth a book in itself, but you should consider the following points.

Prioritize Data Backup
It’s usually more practical in cases of severe damage to restore a complex operating
environment from scratch by reinstalling from a standard image or from a “day zero”
backup, adding nonstandard applications, then restoring data. This strategy has the
advantage of minimizing the need for a full backup, requiring less expenditure of time
and resources, and placing the emphasis where it should be—that is, on the data.

Beware of Data Diddling
Remember that not all virus damage involves sudden catastrophic effects. Slow
corruption (viral or otherwise) of data that goes back over several generations of
backup makes it unsafe to rely on recycling media too frequently. Backing up data to
a diskette and leaving it there instead of (or, better, as well as) recycling media may
pay dividends one day. Don’t be afraid of redundancy (but manage it carefully).

Write-Protect Your Backups
If you do need to restore data, irrespective of whether you suspect virus action,
do it where possible from read-only media (write-protected diskettes, for instance).
We know of cases where attempting to repair damage from write-enabled media
has resulted in the progressive loss of backups as well as the original data.

Back Up Your Backups
If you back up your data to a server, it’s wise to ensure that the server is backed up too.

Test Backup Procedures
It’s also a good idea to test your backup procedures from time to time. Nothing is
sadder than to breathe a sigh of relief, and then discover that your diskettes are
corrupted, that your tapes haven’t been recording everything you thought they were,
or that the operator wasn’t aware that the tapes don’t rewind automatically.

C h a p t e r 1 1 : U s e r M a n a g e m e n t 3 2 9

Backups Are Dumb
Backup systems are not typically intelligent systems; they simply make a copy of
whatever is found on the item to be preserved onto the backup media. This means
that data, programs and infected files are backed up just as well—and so are empty
files or files of zero length, as in the case of ExploreZip-affected systems. The
backup system neither knows nor cares about the content of the files, their size
(unless they won’t fit), or whether or not they are infected. It is therefore important
to ensure that your backup strategy fits your needs, is not overused or recycled too
quickly, and is checked periodically for accuracy.

Hoax Management
It is usually considered good practice to request that users not distribute virus
warnings without checking with an individual qualified to assess the accuracy
and urgency of such warnings. Even better practice is to bar any dissemination
of warnings at all, except by one or more individuals authorized to do so.

Form Response
We sometimes find it useful to produce a form response for use by Help Desk staff. A
copy should be sent to the administrator or team responsible for anti-virus and related
security issues, along with a copy of the original alert, especially if it was received as
email, in which case it should be sent with all the original headers if possible. An
appropriate response form would contain the following suggested wording:

Thank you for the message concerning the <alert/advisory identifier>. We
appreciate notification of such things, and even more we appreciate it if
people check with us rather than send them on. Indeed, we ask that all virus
warnings be forwarded to the Help Desk and copied to <the anti-virus
administrator>, whose job it is to forward them if appropriate.

<The anti-virus administrator> is always pleased to advise on whether the
warning is authentic or accurate, whether it’s advisable or appropriate to
forward it to anyone, and whether any further response to the apparent
source of the warning is indicated.

This alert <delete as applicable>:

� Is a known hoax <insert source of further information>.

� Is probably or possibly a hoax—research continues <insert grounds for
mistrust>.

� Contains some element of truth but is not very/completely accurate
<enumerate inaccuracies as appropriate>.

� Is correct, but we wouldn’t regard it as particularly useful to forward it
indiscriminately.

� Raises an important issue and we take it seriously. A statement will
be/has been issued accordingly.

<Insert expanded material pertaining to this particular advisory/alert/
warning/hoax here.>

We would be grateful if you could point out to anyone in doubt that warnings
from any individual within the organization who is not authorized to forward
them should not be assumed to be accurate, and should still be checked with
the Help Desk. This applies irrespective of:

� The status of the sender. It is our experience that managerial status and
knowledge of security issues do not necessarily go together.

� Apparent endorsement of the warning by authoritative individuals or
organizations, including anti-virus and other security companies or
agencies.

� Your belief in the good intentions and technical competence of the
source of the warning.

A Quick Guide to Hoaxes
We have spent some years researching hoaxes, hoax management, and related
issues, and that body of work cannot be condensed to a few paragraphs. Hoaxes
and other manifestations of email abuse are considered at much greater length in
Chapter 16. However, this section offers a minimal guide to the field that you can
use as a basis for an informational supplement to the preceding form response.

Most of the hoaxes we see derive from the Good Times virus hoax that wasted
so much bandwidth in the mid-1990s. Usually the message says something like
“Don’t open mail with a particular subject”. “GOOD TIMES”, “DEEYENDA”,
“IT TAKES GUTS TO SAY JESUS”, “HOW TO DEEP FRY A CAT”, and
“WIN A HOLIDAY” are a few examples of subject lines that are alleged to be
associated with “lethal” email viruses. It is usually claimed that if you read the

3 3 0 V i r u s e s R e v e a l e d

C h a p t e r 1 1 : U s e r M a n a g e m e n t 3 3 1

message it will eat your hard drive (or at least reformat it) and send all your credit
card details to the “Legion of Doom”. (Hoaxes can be and occasionally are a lot
subtler than these examples. However, we have no intention of giving away a
guide to writing a hoax that might fool us.)

We used to say that viruses simply aren’t distributed this way, and that it’s not
possible to be infected by a virus simply by reading email. This is still true if you define
your terms rather carefully. Unfortunately, however, virus writers have muddied the
waters since the mid-1990s, when hoaxes really started to become a nuisance. Current
generation email viruses often do arrive in your mailbox with a characteristic subject
line. However, it’s very easy to change the subject line and the name of the infected
or otherwise dangerous file attachment each time it’s passed on, which makes it
more difficult to detect possibly infected attachments. (Virus and worm authors are
increasingly making use of this technique.) Any mail that asks you to forward its
contents to other people is, arguably, a chain letter, whomever or wherever it comes
from, and should be regarded with scepticism.

You should also be sceptical of a virus warning that states that “There is no cure
for this virus”. Anti-virus vendors have usually managed to address the high-profile,
high-impact, fast-spreading viruses and worms that excite the most profound media
attention in a matter of hours (or less), and it is most unlikely that there will ever be
an undetectable virus from which there is no protection. There are viruses whose
effects are so drastic that recovery of data (or, in rare instances, of systems) is
impractical; however, such viruses are no more difficult to detect and protect
against than any other virus.

Many virus alerts are pure fantasy, and are intended only to frighten you into
forwarding the message. Even if a message isn’t virus-related or a hoax, it doesn’t
necessarily serve any useful purpose to forward such a warning indiscriminately.
New viruses appear at a rate of several hundred per month, and unless the circumstances
are very unusual, it isn’t productive to point out the existence of a specific virus.
You might just as well say, “Keep your anti-virus software up to date”, which is
good advice but doesn’t bear undue repetition.

Except in this book.

Summary
This chapter reflects our conviction that malware is essentially a people problem,
and cannot be resolved by purely technological means. Indeed, the root problem can
be eradicated only by social means (teaching responsible behaviour and controlling
those users who cannot or will not be responsible), and we explore those issues
further in Part IV.

This page intentionally left blank.

PART

III
Case Studies: What Went

Wrong, What Went Right,
What Can We Learn?

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

CHAPTER

12
Case Studies: The First Wave

335

IN THIS CHAPTER:

Brainwashing

The MacMag Virus

Scores

Lehigh

CHRISTMA EXEC

The Morris Worm (Internet Worm)

The WANK Worm

Jerusalem

The “AIDS” Trojan

Everybody Must Get Stoned

Form

The Modem Virus Hoax

The Iraqi Printer Virus

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

It would be nice if we could give you a detailed analysis of every virus you
might need to know about. Unfortunately, to do so would make this book much
too long, even if we included only the few hundred viruses definable as In the

Wild by their inclusion in the WildList. Even then, detailed analyses of many viruses
and variants wouldn’t necessarily be particularly useful to you.

The case studies in this section aren’t always typical of all viruses, or even all
viruses of a particular class. They all have some intrinsic interest, and they tell us
something about virus technology, anti-virus technology, society and viruses, or all
three. At the very least, they will give you some insight into the strange, twilit
worlds in which virus writers and anti-virus researchers move. In the first chapter
of this section, we consider in more detail some of the oldest known viruses.

Brainwashing
Although old and seldom seen nowadays, the Brain family (Pakistani, Pakistani
Brain, Lahore, and Ashar), raises a number of interesting technical points.

Brain itself was the first known PC virus, aside from those written by Fred Cohen
for his thesis. Unlike Cohen’s viruses, however, Brain is a boot-sector infector. The two
earliest viral programs (for the Apple II family) were “system” viral programs, and it
has been suggested that these earlier, similar programs influenced the writer of Brain.

Brain has been described as the first stealth virus. A request to view the boot sector
of an infected disk on an infected system will result in a display of the original
(pre-infection) boot sector. Early editions of Dr. Solomon’s Anti-Virus Toolkit
included an account of how Alan Solomon, in his first encounter with the virus,
infected a number of diskettes before realizing that the virus was hiding the boot
sector from his disk editor. (Solomon, at that time a data recovery specialist,
went on to become one of the world’s best-known experts on viruses and anti-virus
technology.) The volume label of an infected diskette is set to “(C) Brain”, “(C)
Ashar”, or “Y.C.1.E.R.P”, depending on the variant. When the virus was written,
there was no widely used graphical alternative to the DOS prompt. If you wanted
to see what files were on a disk, the chances were that you used the DIR command
to display a list of filenames and file information. At the very beginning of such a
listing (depending on the version of DOS and any command-line switches in use),
comes something like this:

Volume in drive A is (C) Brain

Volume Serial Number is 3AF1-41A7

Directory of A:\

3 3 6 V i r u s e s R e v e a l e d

Brain was not, it seems, intended to blush forever unseen.

Who Wrote the Brain Virus?
In one of the most common Brain versions, you will find text, unencrypted, giving
the name, address, and telephone numbers of Brain Computer Services in Pakistan.
The virus is copyright by “Ashar and Ashars” or “Brain & Amjads”, so we have
two brothers running a computer store who have written a virus. Simple, right?

David Shenk’s Eleventh Law of Data Smog applies: beware stories that dissolve all
complexity (David Shenk, Data Smog: Surviving the Information Glut, Abacus, 1997).

Solomon’s analysis (which we are no longer able to trace in any public form)
indicates that Ashar is older than Brain. In fact, the address text isn’t present in the most
common version of Brain, and it would have been a very simple matter to have overlaid
the text in the Ashar or Brain programs with the address text.

Why would the owners of Brain Computer Services have written a virus? It is
frequently stated that they were selling pirated software, a practice that is legal in
Pakistan but not in the United States. According to this theory, the infected disks
were sold to Americans as punishment for their use of pirated software. One has
to wonder why Brain would have been intended to “punish” the United States
(its major source of software). In any case, the Brain infection was never limited
to the Western world—viruses are better at scattergun effects than at precision
marksmanship. This story has nevertheless been cited as a curious example of
Islamic logic. Cultural biases aside, this justification for Brain rests on the same
kind of argument that you will find in any virus exchange, ’zine, or web site—that
viruses are cool because they affect only people who deal in pirated software and
pornographic material, who are careless about backing up, and who open mail
attachments. As usual, blame attaches to the victims, not the perpetrators.

NOTE

It is true that viruses have been injected into the wild by way of sources of illegally copied
software, erotica, and so on, such as warez servers and alt.sex hierarchy newsgroups, with the
perpetrators blaming the downloaders for their vile appetites. It doesn’t seem to us, though,
that the same logic necessarily applies to a more or less legitimate commercial venture.

It has also been suggested that Brain Computer Services may have written some
software of its own, and was incensed when it became a victim, itself, of other software
pirates. This theory doesn’t seem particularly convincing, either. If infected disks
were sold by Brain Computer Services, a clean copy would more likely have been
pirated than a legitimate copy. It has been suggested that Brain is some kind of

C h a p t e r 1 2 : C a s e S t u d i e s : T h e F i r s t W a v e 3 3 7

3 3 8 V i r u s e s R e v e a l e d

copyright device. This theory also defies logic, since the virus would then “legitimize”
bootleg copies whenever it infected one.

Brain is not intentionally or routinely destructive, and it is possible that the virus
was written to publicize the company. It was the earliest known PC virus, at a time
when computer viruses did not inspire the same revulsion that they tend to do now.
Even some time after the later, more destructive viruses, Lehigh and Jerusalem,
viruses were still seen as possibly neutral or even in some way beneficial. It may be
that the author saw a self-reproducing program that “lost”, at most, 3KB of disk
space as simply a novelty. In a way, such a virus would not be dissimilar to those
ludicrous Easter Egg applets that programmers working for major application
publishers use to express their individuality.

It has recently been noted that Brain Computer Services appears to be alive, well,
and represented on the World Wide Web. Given the fact that poachers often aspire to
becoming gamekeepers in the wacky world of security, it seems surprising that they
aren’t offering anti-malware consultancy services.

Banks of the Ohio
Fridrik Skulason, whose F-Prot has provided the engine for a number of anti-virus
products over the years, analysed exhaustively the apparently later Ohio and Den Zuk
versions of the Brain virus.

The Ohio (Den Zuk 1) and Den Zuk (Venezuelan, Search) variants contain some
of the same code as Brain, so the virus will not infect or overlay them. Brain issues
an “Are you there?” call to ensure that a targeted disk is not already infected. However,
Ohio and Den Zuk identify Brain infections and overwrite them with themselves.
They can be described as single-shot anti-virus utilities targeting the Brain virus
(at the expense, however, of causing the Ohio and Den Zuk infections).

NOTE

Substitution of one virus for another has not seemed to us to be a useful basis for an anti-virus
program, in general, but viruses that seek out and overwrite older viruses have been surprisingly
common. We know of instances where virus writers have pleaded, on discovery, that they were
drawing attention to a security loophole (“Hey, look, you can write viruses in VBA!”). However, we
cannot think of an occasion where a serious attempt was made to justify the spreading of a virus
by passing it off as an anti-virus utility. Marketing remote-access Trojans as network administration
utilities might almost qualify. We also recall the author of a notorious “test virus” utility describing
his product as an anti-virus utility, apparently on the grounds that it removed the test virus after
the test. This leading contender for the 1990s Golden Chutzpah Award has also complained about
the fact that his test virus has never been featured on the WildList. Apparently, no publicity is
bad publicity...

C h a p t e r 1 2 : C a s e S t u d i e s : T h e F i r s t W a v e 3 3 9

Skulason also found that the Den Zuk version would overwrite an Ohio infection.
(This “seeking” activity gives rise to one of Den Zuk’s aliases: “Search”.)

It was also suspected that “denzuko” might have referred to “the search” for Brain
infections. Extensive searches for the meaning of the words “den zuk” and “denzuko”
in a number of languages, as an attempt to find clues to the identity of the virus
author, turned up closely related words meaning “sugar” and “knife” as well
as “search”. However, these turned out to be quite beside the point.

Both Den Zuk and Ohio contain text that suggests that they were written by the
same author. Ohio contains an address in Indonesia (and none in Ohio—the name
derives from Ohio State University, where it was first identified). Both contain a
ham-radio licence number issued in Indonesia. Both contain the same programming
bug. The FAT (File Allocation Table) and data areas are overwritten if a floppy disk
with a higher capacity than 360KB is infected. Den Zuk is a more sophisticated
exercise in programming. Skulason concluded, therefore, that Ohio was, in fact,
an earlier version of Den Zuk.

The virus’s author, apparently a college student in Indonesia, confirmed
Skulason’s hypotheses. In fact, Den Zuko turned out to be the author’s nickname,
derived from John Travolta’s character in the movie Grease.

Full details of Skulason’s analysis and his contact with the author were published
in an early edition of Virus Bulletin, but we do not know of a currently available source.

The MacMag Virus
On 7th February, 1988, users of Compuserve’s HyperCard Forum received a warning
message to the effect that the NEWAPP.STK HyperCard stack file had been removed
from the system. The message advised anyone who had downloaded the file not
to use it. A Mac user had earlier downloaded the same HyperCard stack from the
GEnie system. When he ran it, an INIT resource was copied into his system folder,
suggesting a program that was intended to be executed at start-up. INIT programs
include control panels and system extensions. These have similar background
functionality to DOS TSR (Terminate and Stay Resident) programs, Windows
VxDs, NT services, and other utilities that run in the background throughout a
computing session.

The Forum suggested that there was no danger of any such activity, since
HyperCard “stacks” are data files rather than programs. In fact, we recall almost the
same objection on the now defunct ICARO mailing list when WM/Concept, the first
In the Wild Word macro virus, was reported. The moderator checked and confirmed
the warning and found that everything happened as the user had said. Furthermore,
the INIT resource was “viral”: it spread to other systems with which it came in

contact. (At that time, “system” disks were as common among Mac users as “bootable”
disks were among MS-DOS users.)

Give Peace a Chance
The MacMag virus did no apparent significant damage. It simply attempted to
reproduce until 2nd March, 1988. If an infected computer was started up on that date,
the virus displayed the following message:

RICHARD BRANDOW, publisher of MacMag, and its entire staff would
like to take this opportunity to convey their UNIVERSAL MESSAGE OF
PEACE to all Macintosh users around the world.

Fortunately, on 3rd March the message appeared only once, and then the virus
erased itself. As a result, the virus is hardly ever found outside collections.

NOTE

MacMag was programmed to trigger on the first anniversary (2nd March, 1988) of the introduction
of the Macintosh II line. Oddly (but probably coincidentally), a bug in the virus caused system
crashes on the Mac II, but no other model of Macintosh.

Brandow was the publisher and editor of the Montreal-based MacMag computer
magazine, which had a circulation of about 40,000 and its own electronic bulletin board.
He claimed to have been thinking about the “message” for two years before creating the
virus. Brandow claimed “authorship” of the virus, according to an article in the Chicago
Tribune on 14th February, 1988. However, it appears that he actually commissioned
the programming of the virus, and the internal structure contains the name of Drew
Davidson, apparently a professor at an American university.

Brandow, like many subsequent virus writers and distributors, gave various
inconsistent reasons at different times for writing the virus. He claimed he wanted to
make a statement about software piracy, though neither the statement nor the logical
connection between piracy and viruses is particularly obvious. More often he fell back
on the somewhat irrational “message” that would somehow promote world peace. In
this regard, he made reference to the impressive number of handgun owners in the
United States. The logic behind any of these connections is tortured at best. It seems,
however, that Brandow did at least have disciples in Europe, among the free spirits
of the Chaos Computer Club and the Belgian virus factory, and they sometimes
applauded his actions.

3 4 0 V i r u s e s R e v e a l e d

The MacMag virus seems likeliest to have been intended as a publicity stunt, and
Brandow milked it for all it was worth, and more.

C h a p t e r 1 2 : C a s e S t u d i e s : T h e F i r s t W a v e 3 4 1

Viruses and Warez
Are viruses and software piracy connected? The assumption that such a
connection exists is often used as an argument against piracy. We do not in
the least advocate piracy, of course; we are aware of the compelling moral and
legal arguments against theft. We know of occasions when infected software
or Trojans (and even virus-infected Trojans) have been found on warez servers
(networked sources of pirated software) and dubious newsgroups. It is likely
that infected software has, from time to time, been deliberately made available
as a means of punishing those who use such resources, and some virus writers
have sought moral justification by claiming that “if people don’t use pirated
software, they won’t catch viruses”.

When David Harley first compiled the alt.comp.virus FAQ, he asked a
number of expert contributors, “Is the connection between viruses and piracy
a myth?” Most agreed that it was, and one said (more or less), “It’s a myth, but
I don’t object to you using it as an antipiracy argument”. There is an obvious
ethical problem here: surely the “good guys” should try to be more “honest” than
the “bad guys”. It seems to us, though, that there is another problem: if we push
this argument, are we not giving the impression that pirated software is the major
vector of virus transmission? It is doubtful whether this was ever true.

In 1995, boot-sector viruses were still the main virus problem. There is
no reason to suppose that diskettes carrying illegally copied software are, in
general, more likely to be virus-infected than are other diskettes. As the decade
wore on, macro viruses became the main problem, and there is no obvious
connection between macro viruses and pirated software; even a black market
copy of Word is not intrinsically more vulnerable to this class of virus. Modern
worm authors use a variety of hooks to trick their victims into executing their
malicious code, and programs that masquerade as ripped-off software are
not common if used for this purpose. We must conclude, therefore, that the
connection between piracy and viruses is at best overstated. Of course, you
should respect the rights of software authors and publishers, but you should
be cautious about executing any code. Malicious code is not restricted to
program files, and often arrives from innocent and legal sources.

The Wanton Seed
MacMag is one of the few viruses whose entry point into the field is documented,
albeit by a somewhat unreliable source. Brandow claimed that he infected two
computers in MacMag’s offices in December 1987 in order to “seed” the infection.
It has been suggested that some deliberately infected diskettes were circulated in
order to help it along.

Mac OS can be configured and customized by “dropping” resources into the
system folder. In this case, a resource (named DREW in the HyperCard stack and
DR in its viral form) was copied into the system folder on Mac systems.

Bootable Mac disks contain a system folder, in the same way that bootable
MS-DOS disks contain the hidden system files and COMMAND.COM. In those
days (1988, remember), system diskettes were commonly used as the means of
starting up a Mac or PC, although floppy-drive-only personal computers are rarely
seen outside museums now. In addition, Mac users would often create system disks
with specialized configurations. A number of Macintosh programs worked only
with one specific version of the Finder, so the user would have to “downgrade” the
computer each time one of these programs was to be run. The Mac OS “opens” each
disk inserted into the machine. On an infected machine, the MacMag virus found its
way in the form of an INIT into the system folder of any diskette that was inserted
into the drive. Thus the virus became one of the “initial” programs automatically
run on system start-up; it would remain resident throughout the computing session.
While memory-resident programs are often regarded as a test of a programmer’s
abilities, MacMag, according to analysis, was not a sophisticated piece of programming.

Early reports of the MacMag virus related to its appearance on the Compuserve
system, however Compuserve actually had nothing to do with the production of the
file. It was uploaded and distributed through other systems (notably GEnie) as well,
but the MacMag virus was distributed, among other routes, via a HyperCard stack
(that was for a time posted on Compuserve).

HyperCard, though often described as a solution in search of a problem, was the
first widely available implementation of the hypertext or hypermedia concept. Related
items of information are linked so that associated data can be seen concurrently, or at
least accessed quickly and in the nonlinear fashion exemplified by the World Wide Web.

HyperCard was also seen as a development tool, and still has its adherents, even
though Apple has all but stopped offering any support whatsoever. In fact, for several
years HyperCard infectors were the only new viruses seen on the Macintosh platform
at all, apart from Word and Excel viruses. HyperCard stacks are essentially databases
with internal link information. As such, the initial report of the fact that NEWAPP.STK,
supposedly a file of information on new Apple products, actually altered system data

3 4 2 V i r u s e s R e v e a l e d

met with scepticism. Even then, it was assumed that a viral program could not spread
via data files. It was erroneously reported that MacMag was an example of a virus that
could. In fact, the NEWAPP.STK might better be described as a “dropper”, and
HyperCard viruses are better described in general as precursors to later macro viruses.

Macros Mess with Your Mind
Increasingly, programs are being invested with the ability to interpret macros and
scripts, blurring the distinction between data and program code. HyperCard stacks
can contain a substantial command set as well as data. Originally, these commands
governed the ability to navigate between cards. The XCMD extended command set
allowed for additional functions used to effect the system changes.

Other systems, such as Lotus 1-2-3, had macro capabilities associated with data
files. In theory, it was always possible for a virus to be able to switch forms from
object to macro in the same way that multipartite viral programs switch from file
to boot-sector format. Macro and script viruses have become seriously widespread
problems in recent years, and some examples are discussed in the next chapter.

MacMag seems to have been the first virus to infect shrink-wrapped commercial
software. The president of MacroMind, a company producing educational material
for computer training, was given an infected copy of the Mr. Potatohead program.
MacroMind apparently delivered some infected training software to Aldus Corporation.
The virus eventually spread to the production copy of the new Freehand drawing
program. Seven to ten thousand copies of the program had been infected over three
days of production, and many of them were distributed by the time the infection
was discovered.

The characteristic media warning to avoid shareware and use only commercial
software seems to have been first observed with regard to this virus (http://www.ciac.org/
ciac/virdb/VIRS0068.TXT). The warning seems somewhat at odds with the reported
dissemination of the virus through commercial software. On the other hand,
MacroMind’s customers included Microsoft, Lotus, Apple, and Ashton-Tate, but
no infected copy was ever reported to have been shipped from those companies.

Scores
You may be surprised that we include two major analyses of Macintosh viruses in
this chapter, given the overwhelming preponderance today of PC and Office (Word
and Excel) viruses. At the time, however, there were no Office viruses, and the
disparity between the number of viruses for each platform was very much smaller.

C h a p t e r 1 2 : C a s e S t u d i e s : T h e F i r s t W a v e 3 4 3

3 4 4 V i r u s e s R e v e a l e d

The Scores Mac virus is of particular interest, as it was probably the first virus to
target a specific company and application.

Scores was probably detected in 1988, if not in late 1987. It did not appear to
carry any payload, but, when the actual code was studied and disassembled, it was
found to include a search for Mac “resources” identified as VULT or ERIC. At the
time, no applications containing such resources were known. In May 1988, EDS, of
Dallas, disclosed that these identifiers turned out to be used by resources internal to
the company. The company never did say whether these resources were associated
with a strictly internal utility or if they had been part of a project that was never
released in that form. Either way, it is clear that the Scores virus was “aimed” at
EDS since the resources are not part of any other program. It may be that the virus
was supposed to spread throughout the company and then interfere with vital internal
applications. Alternatively, the virus may have been intended to lie in wait until a
certain application was released for general use, so that infected Macs would misbehave,
leading to complaints, bug reports, or a bad name for the company in general.

NOTE

The Scores virus was first described by John Norstad, who also gave detailed instructions for
disinfection. He decided not to write a specific disinfection program for the virus, since two others
had already been produced. However, his reviews of the disinfection programs available at the
time noted their serious shortcomings. Norstad went on to create the widely acclaimed (and free!)
program Disinfectant. Until macro viruses became a major problem, Disinfectant provided the
Mac-using community with effective and unobtrusive protection from viruses at no cost; however,
it has not been supported or maintained for some years.

One of the early copies of Scores examined by researchers was recovered from
the NASA headquarters in Washington. This led to reports of the NASA virus, and
long afterwards major IS trade papers and security texts reported how the Scores
virus had swept through NASA, trashing hard disks. In real life, Scores was never
known to have done any actual intended damage.

In July 1988, a Texas man was charged with computer-related sabotage and burglary,
and it was reported, in error, that he was the author of Scores. In December 1988, Apple
sources were saying that they knew the author’s identity, and that the matter was in the
hands of their lawyers. In December 1990, it was reported that the Dallas prosecutor’s
office would be proceeding with charges and that reports of damage were being
solicited. We are not aware of any subsequent reports or proceedings.

TE
AM
FL
Y

Team-Fly®

Scores uses complex mechanisms, but starts simply enough. When an infected
application is run on a new system, the system folder is infected. The virus creates
two invisible folders, one named Desktop and the other Scores (hence the name).
Thus the Scores infection was launched early in the start-up process and went
resident. The virus then proceeded to accomplish the following:

� It created INITs of 6, 10, and 17. This led to later problems with other INITs
using the same numbering, since these INITs were sometimes assumed,
incorrectly, to be infected.

� The virus created the Notepad and Scrapbook files, if they were not
already present.

� It changed the file types, as well as the normal icons, for these files.

� The virus waited two days before beginning to infect applications.

� Four days after the infection of the system folder, the second part of the virus
would start up, scanning for applications that, when run, identified themselves
as ERIC or VULT. If such an application were ever executed, it would be
terminated after 25 minutes of operation.

� Seven days after the system folder infection, the final part of the payload would
come into play, affecting applications with the VULT resource. If such applications
were found, the virus would force them to display a series of errors and eventually
to crash, making use of a complicated sequence of timings and operations.

NOTE

Scores might almost be seen as an early form of the multipartite virus, since it toggles between
system and application files. However, the other activities take place only after the infection has
entered the system folder. Thus, Scores is actually analogous to some PC multipartite viruses that
spread more effectively through boot-sector infection than through file infection. However, terms
such as bipolar and tripolar are sometimes used to describe threats that include more than one
type of malicious program, but may have only one replication vector.

The timing sequences and arrangements for triggering errors and program
termination suggest that the author intended the virus to interfere with an application
in a normal environment and generate “normal” problems. An intermittent bug would
be difficult to trace and less likely to be effectively handled as a virus. This supposition
would tend to support the idea that the author meant to cause trouble for ERIC and
VULT as a released application. It does not, however, rule out the possibility that
the author of Scores intended to create trouble for an in-house utility.

C h a p t e r 1 2 : C a s e S t u d i e s : T h e F i r s t W a v e 3 4 5

Lehigh
For all the damage that the Lehigh virus caused, we should at least be grateful that it
generated sufficient interest for Ken van Wyk to start the VIRUS-L mailing list. For
a while this mailing list was also mirrored on USENET news as comp.virus. Unfortunately,
VIRUS-L seems to have disappeared, but it was, for a number of years, the primary
source of accurate virus information, and was largely responsible for ensuring that
the anti-virus research community did, in fact, become a community.

Not all students are even minimally computer literate. Student consultants at
universities and colleges are presented with a steady stream of disks from which files
have “mysteriously” disappeared. In November 1987, however, it appeared that certain
failed disks were due to something other than user carelessness.

File-infecting viruses generally (though not exclusively) attach to a file in one of
three ways. Some file viruses prepend, or bind themselves, to the beginning of the
file, so that they run first. Other files append, or connect themselves to the end of the
file, but modify the beginning of the file so that the virus runs first. Others overwrite
some part of the existing file. In the case of an overwriting virus, often a redirection
is also made at the beginning of the file so that the virus runs first. Sometimes the
virus overwrites code that is important to the original program, and sometimes a
virus looks for some section that it can overwrite without creating damage.

The Lehigh virus overwrote the slack space at the end of the COMMAND.COM
file. This meant that the virus did not increase the size of infected files. A later report
of a 555-byte increase in file size was due to confusion over the size of the overwriting
code. When an infected COMMAND.COM was run (usually upon booting from an
infected disk), the virus stayed resident in memory. When any access was made to
another disk—via the TYPE, COPY, DIR, or other normal DOS commands—the
virus would infect any uninfected COMMAND.COM files. The virus kept a counter
of infections; after four infections, the virus would overwrite the boot and FAT
areas of disks with bytes copied from BIOS.

Lehigh (the virus, not the campus) is remarkably stealthfree. The primary defence
of the virus, at the time, was that no one would have been looking for it. The virus
altered the date stamp of infected COMMAND.COM files. If attempting an infection
on a write-protected disk, the virus would not trap the “WRITE PROTECT ERROR”
message. This message was a serious giveaway if seen as a result of typing DIR:
generating the directory listing should not require writing to the diskette (unless
output is being redirected).

The virus was limited to targeting those disks that had a COMMAND.COM file,
and, more particularly, those that contained a full operating system. Admittedly, in

3 4 6 V i r u s e s R e v e a l e d

those heady bygone days, more users kept copies of the operating system on their
disks. However, the virus was also self-limiting in that it would destroy itself once
activated, and would activate after only four reproductions. To the best of our
knowledge, the Lehigh virus never did spread beyond the campus in that initial
attack. Although it is found in a number of private virus collections and may be
released into the wild from time to time, the virus has no real chance of spreading
given the change in computing environments.

CHRISTMA EXEC
CHRISTMA EXEC, the Christmas Tree Worm, sometimes referred to as the
BITNET chain letter, was probably the first major malware attack across networks.
It was launched on 9th December, 1987, and spread widely on BITNET, EARN, and
IBM’s internal network (VNet). It has a number of claims to a small place in history:

� It was written, unusually, in REXX.

� It was hosted on mainframes (on VM/CMS systems) rather than on
minicomputers, quaint though that distinction sounds nowadays when the
humblest PC can run UNIX.

� It was not self-launching; it presented itself as a chain letter inviting the
recipient to execute its code. When it was executed, the worm drew a Christmas
tree on-screen and mailed a copy of itself to everyone in the account holder’s
equivalent to an address book, the user files NAMES and NETLOG. Conceptually,
there is a direct line of succession from this worm to the social engineering
worm/Trojan hybrids of today.

In 1990, the spirit (though none of the code) of the worm was invoked by a
message displayed between 24th and 31st December, along with a Christmas tree
graphic, on systems infected with the XA1 (Tannenbaum) virus. “Und er lebt doch
noch: Der Tannenbaum!”—that is, “And it still lives: the Christmas tree!”

The Morris Worm (Internet Worm)
In autumn 1988, most people were blissfully ignorant of both viruses and the Internet.
Robert Slade, however, recalls that VIRUS-L had been established and was very
active. “At that time it was still an ‘exploder’ mailer, rather than a digest, but

C h a p t e r 1 2 : C a s e S t u d i e s : T h e F i r s t W a v e 3 4 7

postings were coming out pretty much on a daily basis, so I was quite surprised
when I didn’t receive any on November 3rd. I didn’t get one on November 4th, either.
It wasn’t until November 5th, actually, that I found out why”.

The Morris Worm didn’t actually bring the Internet in general, nor email in
particular, to the proverbial grinding halt. It was able to run and propagate only
on machines running specific versions of the UNIX operating system on certain
hardware platforms. However, given that the machines that are connected to the
Internet also comprise the transport mechanism for the Internet, a minority group
of server-class machines, thus affected, degraded the performance of the ’Net as a
whole. Indeed, it can be argued that despite the greater volumes of mail generated
by Melissa and LoveLetter, and the tendency of some types of mail servers to achieve
meltdown when faced with the consequent traffic, the Internet as a whole has proven
to be somewhat more resilient in recent years.

During the 1988 mailstorm, a sufficient number of machines had been affected by
the Morris Worm to impair email and distribution-list mailings. Some mail was lost,
either by mailers that could not handle the large volumes that backed up, or by mail
queues being dumped in an effort to disinfect systems. Most mail was substantially
delayed. In some cases, mail would have been rerouted by way of a possibly less
efficient path after a certain time. In other cases, backbone machines, affected by
the problem, simply processed mail much more slowly. In still others, mail routing
software would crash or be taken out of service, with a consequent delay in mail
delivery. Ironically, electronic mail was the primary means by which the various
parties attempting to deal with the problem were trying to contact each other. Some
things haven’t changed.

By Sunday 6th November, mail was flowing, distribution lists and electronic
periodicals were running, and the news was getting around. However, an enormous
volume of traffic was given over to one topic—the Internet Worm.

The Internet Worm still inspires fascination. Even today, no virus story in the
popular media is complete without some reference to it. In many ways, the Internet
Worm is the story of data security in miniature. The Worm used trusted links, password
cracking, security holes in standard programs, standard and default operations, and,
of course, the power of viral replication.

“Big Iron” mainframes and other multi-user server systems are generally designed
to run constantly—to be ready for action at all times, and to execute various types of
programs and procedures in the absence of operator intervention. Many hundreds of
functions and processes may be running at all times; some cooperate with each other,
while others run independently. In the UNIX world, such small utility programs are
referred to as daemons, after the supposedly subordinate entities that take over mundane
tasks and extend the “power” of the “wizard”, or skilled operator. Many of these

3 4 8 V i r u s e s R e v e a l e d

utility programs deal with the communications between systems. “Mail”, in the
network sense, covers much more than the delivery of text messages between users.
Network mail between systems may deal with file transfers, routing information for
reaching remote systems, or even upgrades and patches to system software.

When the Internet Worm was well established on a machine, it would try to
infect another. On many systems, this attempt was all too easy, since computers on
the Internet are meant to generate activity on each other, and some had no protection
in terms of the type of access and activity allowed.

The finger program is one that allows a user to obtain information about another
user. (Please: we’ve heard all the jokes.) The server program, fingerd, is the daemon
that listens for calls from the finger client. The version of fingerd common at the
time of the Internet Worm had a minor problem: it didn’t check how much

C h a p t e r 1 2 : C a s e S t u d i e s : T h e F i r s t W a v e 3 4 9

Mail Management
A typical pattern for dealing with a worm-related mailstorm in the 21st century
runs something like this:

1. An administrator receives alerts from vendors, security organizations, or
peer networks (the Anti-Virus Information Exchange Network, or AVIEN,
is the most public of these discussion lists, at present; you can find out
more about AVIEN and the Early Warning System, or EWS, at
http://www.avien.org), or notes attacks on his or her own network.

2. The administrator gathers information (by talking to vendors and other
sysadmins or by trawling web sites).

3. The administrator takes any available generic blocking measures (such as
discarding mail with a characteristic subject).

4. He or she applies and distributes anti-virus updates to desktop machines.

5. The administrator manages any subsequent incidents.

Characteristically, these peripheral measures take up much of the first hour
or two of an outbreak. The administrator is more likely to spend the next two
or three days handling public relations: forestalling or fielding enquiries from
customers, management, Help Desk staff, mailing lists, newsgroups, and, for
high-profile administrators or organizations, the media.

information it was given. It would take as much as it could hold and leave the rest.
“The rest”, unfortunately, could be used to start a process on the computer running
fingerd, and this process was used as part of the attack. This kind of buffer overflow
attack continues to be very common, taking advantage of similar weaknesses in a
wide range of applications and utilities.

The sendmail program is the engine of most mail-oriented processes on UNIX
systems connected to the Internet. In principle, it should allow only data received
from another system to be passed to a user address. However, a debug mode allows
commands to be passed to the system. Some versions of UNIX were shipped with
the debug mode enabled by default. Even worse, the debug mode was often enabled
for testing during installation of sendmail and then never turned off.

When the Worm accessed a system, the main program from the previously
infected site was fed to the new machine. Two programs were used, one for each
infected platform. If neither program could work, the Worm would erase itself. If the
new host was suitable, the Worm looked for further hosts and connections derived
from the new host.

The program also tried to break into user accounts on the infected machine. It used
standard password-cracking techniques such as simple variations on the name of the
account and the user. It carried a dictionary of words likely to be used as passwords,
and would also look for a dictionary on the new machine and attempt to use that as
well. If an account was successfully accessed, the Worm would then look for accounts
that this same user had on other computers, using standard UNIX tools.

The Worm did include an “Are you there?” call, a means of checking for copies
already running on a target computer. However, it took some time to terminate the
program, and through a bug, the Worm regularly produced copies of itself that
would not respond to the request for termination at all. The normal copies of the
Worm did destroy themselves—having first made new copies. In this way, the
process ID number would continually change.

The Worm was not intentionally destructive. However, the mere presence of
the program had implications for the infected systems and for those users associated
with them. Because the multiple copies of the program ran simultaneously on the host
machines, there was a serious impact on the performance of other processes. Also,
communications links and processes were being used to propagate the Worm rather
than to support the legitimate work for which they were intended.

Although the media usually misrepresent even the simplest virus attacks, it
managed to report the Morris Worm with astonishing accuracy. Highly accurate
newspaper reports were appearing even in regional newspapers as early as 5th November.
Even the inaccurate stories were better than we have come to expect. A story from
the New York Times on Sunday 6th November stated that Robert Morris was able to

3 5 0 V i r u s e s R e v e a l e d

track the progress of the Worm because “[e]ach second each virus broadcast its
location to a computer named Ernie at the University of California”. While this was
not altogether correct, it was true that the Worm was intended to send packets to
ernie.berkeley.edu, but the code that should have accomplished this was faulty.
Nevertheless, had the Berkeley system been configured as intended, it would
have been possible to track the Worm’s progress, albeit roughly.

One of the factors that contributed to this unprecedented (and unequalled until
Melissa) media accuracy has to be the number of researchers involved. Across
North America, dozens and perhaps hundreds of people were involved in a detailed
examination of the Worm, since very little other work was being (or could be) done
until the problem was resolved. Even nonresearchers were following the developments
closely so as to be able to repair their own systems. Also, there was less time for
misinformation to spread by way of “friends of friends” who had once seen a copy.

Robert Tappan Morris, son of Robert Morris of the National Security Agency
(NSA), was a student of data security at Cornell University when he wrote the Worm.
The release of the Worm seems to have been accidental, whatever the motive for
actually writing it may have been. This view is supported by the unfinished nature
of some of the code, and the fact that the author seems to have attempted to generate
(moderately) early alerts. The first recorded warning was sent anonymously by a
friend, about 10 hours after the initial release.

In general, expert opinion seems to favour the view that Worm exhibits a considerable
knowledge of security holes and demonstrates (mostly) competent but unspectacular
programming. The Worm contains a number of concepts that reoccurred in subsequent
self-launching worms and other malware.

Morris was convicted on 16th May, 1990, of violating the Computer Fraud and
Abuse Act, and was sentenced to three years’ probation, a $10,000 fine, and 400
hours of community service. His appeal failed, and the appeal court’s decision is
instructive, depending as it does on questions of intent and whether right of access
to a computer confers the same right of access to the network to which it is attached.

Debate over the sentence began even before the last copy of the Worm had been
shut down. It ranged from “Hanging’s too good for him”, to “He’s done us all a
great favor”. A range of opinion still exists today.

Estimates of the damage done by the Worm ranged from $100,000 to $97 million.
This “think of a number” approach to quantification is also typical of high-profile
virus reports or estimates used in actual trials of virus writers. The approach isn’t
confined to the virus arena, though. In The Hacker Crackdown, Bruce Sterling
describes how Craig Neidorf, a.k.a. Knight Lightning, was tried for the fraudulent
theft of a document called “Control Office Administration of Enhanced 911 Services
for Special Services and Major Account Centers”, which he published in the

C h a p t e r 1 2 : C a s e S t u d i e s : T h e F i r s t W a v e 3 5 1

electronic phreaking/hacking magazine Phrack. In the course of the proceedings,
Southern Bell variously estimated the value of the stolen document at $74,449 and
$24,639.04. The trial foundered in part because similar documentation was available
from a Bellcore catalogue priced at a whopping $13.

The WANK Worm
In October 1989, another network worm was found slithering around the Internet.
This time, rather than affecting UNIX machines, the worm targeted VMS machines
connected through DECnet. While it is open to debate as to what Morris originally
intended to do with the Internet Worm, the WANK (Worms Against Nuclear Killers)
worm was clearly intended as propaganda.

WANK could not use the same exploits as the Morris Worm (not least because it
ran on a different platform), but it had a number of comparable characteristics. It was
spread from system to system using mail functions, and exploited default “system”
and “field service” accounts and passwords to gain access. In fact, the author seems
to have borrowed ideas from the Morris Worm and from a previous DECnet
worm (HI.COM).

In addition to guessing system passwords, the WANK worm also attempted to
change them. As the program would have no further use for passwords, once running,
the purpose of changing passwords would appear to have been to inconvenience the
system operator, although it also mailed the new (random) DECNet account password
to a user on a SPAN node.

The worm carried a message (which was displayed if the worm breached an account
with system privileges) that announced that the infected system had been “WANKed”
and that contained the quotation, “You talk of times of peace for all, and then prepare for
war”. Apparently the author had encountered and believed reports of the Internet Worm
that had spoken of massive numbers of military computers being affected. Ironically,
few, if any, of the people who saw the WANK worm’s message would have had
anything to do with the military.

Some aspects of the worm were just plain obnoxious, such as:

� Appearing to delete all of a user’s files at login (it didn’t actually delete user files)

� Paging users with the PHONE program

� Attempting to find accounts where the account name and the password were
the same (“joe” accounts) or the password was null

� Disabling mail to the system account

3 5 2 V i r u s e s R e v e a l e d

Jerusalem
In terms of the number of infections (copies or reproductions) that a virus produces,
boot-sector viral programs long held an advantage with microcomputers. Among
file-infecting viral programs, however, the Jerusalem virus was the clear winner. It has
another claim to fame as well: it almost certainly has the largest number of variants of
any virus program known to date, at least in its class (parasitic file infectors).

Initially known to some as the Israeli virus, the version reported by Y. Radai in early
1988 (also sometimes referred to as “1813” or Jerusalem-B) was the most commonly
encountered version. Although it was the first to be very widely disseminated and was
the first to be discovered and publicized, analysis suggests that Jerusalem was the
outcome of previous viral experiments.

A few things are common to pretty much all of the Jerusalem family. They
usually infect both .COM and .EXE files. When an infected file is executed, the
virus installs itself into memory, thus remaining active even after the originally
infected program has been terminated. The virus code appended to the file infects
.EXE programs executed after the program goes resident. Prepending code infects
.COM files. Most variants carry some kind of date logic-bomb payload, often
triggered on Friday the 13th. Sometimes the logic bomb is simply a message;
often it deletes programs as they are accessed.

Although Jerusalem tends to work well with .COM files, the differing structure
of .EXE files has presented the virus with a number of problems. As David Chess,
a well known researcher working for IBM, has noted, it is a minor wonder that such
a buggy program has spread so widely. Early versions of Jerusalem, not content with
one infection, will reinfect .EXE files again and again so that they continually increase
in size. This growth renders pointless the attempt at stealth that the programmer built
in when he ensured that the file creation date was conserved and unchanged in an
infected file. Also, .EXE programs that use internal loaders or overlay files tend
to be infected in the wrong place and have portions of the original program overwritten.

Although the virus was reported to slow down systems that were infected, it seems
to have been the continual growth of .EXE files that led to the detection of the virus.
Jerusalem variants often don’t check the infection status of a file, so that a single
executable can be reinfected time and time again, until the delay on startup becomes
noticeable. An early infection was found in an office belonging to the Israeli defence
forces, giving rise to the occasional alias IDF. This pseudonym was actually problematic,
since it was more often used as a reference for the unrelated Frodo virus.

The great number of Jerusalem variants has contributed towards severe naming
and identification problems. Because a number of the variants are very closely based

C h a p t e r 1 2 : C a s e S t u d i e s : T h e F i r s t W a v e 3 5 3

on the same code, the signatures for one variant will often match another, thus
generating even more confusion. This situation is not unique to the Jerusalem
family, of course, and is an ongoing concern in the anti-virus research community,
as systems administrators grow increasingly vociferous in their demands for a
unified nomenclature.

The common Jerusalem payload (file deletion on Friday the 13th) begged the question
as to why the logic bomb had not activated on Friday 13th November, 1987. Subsequent
analysis has shown that the virus will activate the payload only if the year is not 1987.
The next Friday the 13th was 13th May, 1988. Since the last day that Palestine existed
as a nation was 13th May, 1948, it was felt that the virus might have been an act of
political terrorism. This supposition led to another alias, the PLO virus. However, Israel
celebrates its holidays according to the Jewish calendar (no surprises there), and the
independence celebrations were slated for three weeks prior, on 13th May, 1988. These
facts, and the links between Jerusalem and the sURIV family, suggest that there is no
intentional political link. It is almost certain that the Jerusalem virus is, in fact, two
viral programs combined:

� sURIV 1.01 is a .COM-file infector, .COM being the easier file structure
and therefore the easier program to infect.

� Virus sURIV 2 is an .EXE-only infector and has longer and more
complex code.

� Virus sURIV 3 infects both types of program files and contains considerable
duplication of code; it is, in fact, simply the first two versions concatenated
together.

Although the code in the sURIV programs and the 1813 version of Jerusalem is
not absolutely identical, the program duplicates all the same features. The payload
date for sURIV is 1st April, and the year has to be later than 1988. Although this
seems to suggest that sURIV is a descendant of Jerusalem, in fact the reverse is
probably the case. Certainly the code is less sophisticated in the sURIV variants.

The Jerusalem virus was immensely successful as a template for variants. The
code is reasonably straightforward and, for those somewhat familiar with assembly
language programming, an excellent primer for the writing of viral programs affecting
both .COM and .EXE files. It has a number of annoying bugs, though. It can misinfect
some .EXE files (this applies, to an extent, to any file virus that predates changes
in the .EXE format introduced by recent versions of Windows, for instance). It can
conflict with Novell NetWare, which requires the use of Interrupt 21h subfunctions
that are also used by the virus. One of the “Sunday” variants is supposed to delete

3 5 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

files on the seventh day of the week. The author didn’t realize that computers start
counting from zero and that Sunday is actually the “zeroth” day of the week. Since
there is no seventh day, the file deletions never actually happen.

The “AIDS” Trojan
We have included the AIDS Information Diskette Trojan in this section for a number
of reasons:

� It deserves a place in the history of malware as one of the more successful Trojans.

� For sentimental reasons. David Harley traces his assimilation into the security
industry from the day he was asked for help with this Trojan.

� It was so widely—and incorrectly—reported as a virus. As it happens, a number
of unrelated computer viruses, on a variety of platforms, are sometimes known as
AIDS. The one that everyone remembers, though, was not a virus at all.

In the fall of 1989, approximately 10,000 copies of an “AIDS Information”
package were sent out from a company calling itself PC Cyborg. Some were
received at European medical establishments, and a number were received at other
types of businesses. The packages appeared to have been professionally produced.
Accompanying letters usually referred to them as sample or review copies. However,
the packages also contained a very interesting “licence agreement”:

*In case of breach of license, PC Cyborg Corporation reserves the right to
use program mechanisms to ensure termination of the use of these programs.
These program mechanisms will adversely affect other program applications
on microcomputers. You are hereby advised of the most serious consequences
of your failure to abide by the terms of this license agreement.*

Warning: Do not use these programs unless you are prepared to pay for them.

The disks contained an installation program and a simple AIDS information and
risk assessment package. The installation program appeared only to copy the AIDS
program onto the target hard disk. However, a hidden directory was created with a
nonprinting character name, and a hidden program file with a nonprinting character
in the name was installed. The AUTOEXEC.BAT file was renamed and replaced
with one that called the hidden program and then the original AUTOEXEC. The

C h a p t e r 1 2 : C a s e S t u d i e s : T h e F i r s t W a v e 3 5 5

hidden program kept track of the number of times the computer was rebooted, and,
after a certain number, encrypted the hard disk. The program then presented the user
with an invoice and a demand to pay the licence fee in return for the encryption key.
One version, which waited for 90 reboots, was thought to be the “real” attempt; an
earlier version, which encrypted after one reboot, alerted authorities and was probably
released erroneously.

The Panamanian address for PC Cyborg turned out to be real. Four principals
were identified, as well as an American accomplice who seems to have had plans to
send 200,000 copies to American firms if the European “test” worked. The British
trial of the American was suspended, as his bizarre behaviour in court was seen as an
indication that he was unfit to plead. An Italian court, however, found him guilty and
sentenced him in absentia.

Everybody Must Get Stoned
The Stoned virus seems to have been written by a high school student in New
Zealand— hence its other name, New Zealand. All evidence suggests that he wrote
it only for study and that he took precautions to prevent its spread. These precautions
proved to be insufficient, as it turned out. It is reported that his brother stole a copy
and decided that it would be fun to infect the machines of friends.

NOTE

Tequila seems to have escaped into the wild under somewhat similar circumstances. On that
occasion, a friend of the author stole a copy and infected other disks. Sometimes virus authors
seem to be as careless about their choice of confidant as the rest of us.

The original version of Stoned is said to have been restricted to infecting floppy
disks. The current most common version of Stoned, however, infects all disks. It is
an example of a second class of boot-sector-infecting (BSI) viral programs, in that
it places itself in the Master Boot Record (MBR), or partition boot record, of a hard
disk instead of in the boot sector itself. As with most BSIs, Stoned moves the
original sector to a new location on the disk. On hard disks and double-density
floppies, this movement is not usually a problem. On high-density floppies, however,
it can overwrite system information, resulting in loss of data. One version of Stoned
is reported not to infect 3.5-inch diskettes; this version may well have been the
template for Michelangelo, which doesn’t infect 720KB disks either.

3 5 6 V i r u s e s R e v e a l e d

C h a p t e r 1 2 : C a s e S t u d i e s : T h e F i r s t W a v e 3 5 7

Stoned has spawned a large number of mutations ranging from minor variations in
the spelling of the payload message to the functionally different Empire, Monkey,
and No-Int variations.

Michelangelo, Monkey, and Other Stoned Variants
Michelangelo is generally believed by researchers to have been built on, or “mutated”
from, the Stoned virus. The similarity of the replication mechanism, down to the
inclusion of the same bugs, puts this theory beyond all reasonable doubt. Any
successful virus is likely to be copied, to some degree. Michelangelo is unusual
only in the extent to which the payload has been modified.

Michelangelo has been widely reported to have been discovered in Europe in the
spring or summer of 1991. However, Roger Riordan in Australia had reported and
named the virus in February 1991. He suspected that Michelangelo had entered the
victim company on disks of software received from Taiwan, but this hypothesis
remains unproven.

His report indicates that the virus existed prior to 6th March, 1991 (the trigger
date), which means that the virus can survive even though it destroys itself along
with the system tracks of disks overwritten on that date. This resiliency is not really
surprising: few computer users understand that boot viruses can, in principle, infect
any disk from any other disk, whether or not the disk is bootable, contains program
files, or contains any files at all.

Riordan determined that 6th March was the trigger date. It is often assumed from
the name of the virus that it was intended to trigger on 6th March because that is the
birthday of Michelangelo Buonarotti, Renaissance artist, sculptor, and engineer. In
fact, this misunderstanding was revived yet again in 2000 by Phil Schmauder’s book
on viruses. However, the body of the virus has no text, no reference to Michelangelo,
and no evidence of any sort that the author of the virus was aware of the significance
of that particular date. The name is simply the one that Riordan chose to give it
(and it has nothing to do with Ninja turtles, either).

By the beginning of 1992, production software was being shipped on Michelangelo-
infected floppies, and at least one company was shipping infected PC systems. It has
been suggested that by the end of that February, when the general public was
becoming aware of the problem, the number of infected floppies out in the field may
have been in the millions. Fortunately, most infected machines were checked and
diagnosed before 6th March of that year.

The replication mechanism of Michelangelo is basically that of Stoned. It replaces
the original boot sector on a floppy disk with a copy of itself. The virus moves the

3 5 8 V i r u s e s R e v e a l e d

original boot sector to sector 3 (for 360KB diskettes) or 14 (for 1.2MB or 1.44MB
diskettes), and the virus contains a “loader” that points to this location. After the
virus loads itself into memory, the original boot sector is run, and to the user, the
boot process appears to proceed normally. On hard disks, the original partition sector
is moved to (0,0,7).

NOTE

This (x,x,x) notation is frequently used to identify a particular sector. It denotes (head, cylinder,
sector), so in this case the partition sector is moved to head 0, cylinder 0, sector 7. Fridrik
Skulason’s detailed analysis of the virus can be found on the Virus Bulletin web site at
http://www.virusbtn.com/VirusInformation/michelangelo.html.

Michelangelo is no stealth virus. Examination of the boot blocks shows a clear
difference between a “valid” sector and the infected one. (The absence of the normal
system messages should also be a tip-off: Michelangelo contains no text whatsoever.)
In addition, Michelangelo reserves itself 2KB at the “top” of memory; a simple run
of DOS’s CHKDSK utility will show total conventional memory on the system,
and if a 640KB machine shows 655,360 bytes, then the machine does not have
Michelangelo. (If the number is less, there may be reasons other than a virus, and
if the number is 655,360, that does not, of course, prove that a virus is not present
or active.)

CHKDSK is still found on modern PC systems, but the information obtained from
the command MEM /C is a better tool for checking memory in recent versions of
Windows. Its output is similar to the following:

Modules using memory below 1 MB:

Name Total Conventional Upper Memory

-------- ---------------- ---------------- ----------------

MSDOS 33,008 (32K) 33,008 (32K) 0 (0K)

HIMEM 1,168 (1K) 1,168 (1K) 0 (0K)

CDROM 4,224 (4K) 4,224 (4K) 0 (0K)

IFSHLP 2,864 (3K) 2,864 (3K) 0 (0K)

SETVER 832 (1K) 832 (1K) 0 (0K)

WIN 3,728 (4K) 3,728 (4K) 0 (0K)

vmm32 7,488 (7K) 7,488 (7K) 0 (0K)

COMMAND 7,472 (7K) 7,472 (7K) 0 (0K)

Free 594,336 (580K) 594,336 (580K) 0 (0K)

Memory Summary:

Type of Memory Total Used Free

---------------- ----------- ----------- -----------

Conventional 655,360 61,024 594,336

Upper 0 0 0

Reserved 393,216 393,216 0

Extended (XMS) 15,728,640 176,128 15,552,512

---------------- ----------- ----------- -----------

Total memory 16,777,216 630,368 16,146,848

Total under 1 MB 655,360 61,024 594,336

Largest executable program size 594,320 (580K)

Largest free upper memory block 0 (0K)

MS-DOS is resident in the high memory area.

Disinfection is a simple matter of placing the original sector back where it belongs,
thus wiping out the infection. This can be accomplished with sector-editing utilities,
or even with DEBUG, though of course it is normally easier and safer just to use an
anti-virus utility (especially for viruses that have been around this long).

NOTE

There have been “cocktail” cases where a computer has become infected with both Stoned and
Michelangelo. In this situation, the boot sector cannot be recovered, since both Stoned and Michelangelo
use the same “landing zone” for the original sector, and the infection by the second virus overwrites the
original boot sector with the contents of the first virus.

When an infected computer boots up, Michelangelo checks the date via Interrupt
1Ah. If the date is 6th March, the virus then overwrites the first several cylinders of
the disk with the contents of memory (which doesn’t amount to much at this stage
in the start-up process). Interrupt 1Ah was not usually available on the earliest PCs
and XTs, with some exceptions. However, the disk that is overwritten is the disk
from which the system is booting; you can save a hard disk simply by booting
from a floppy. Also, the damage is triggered only at boot time, although this is not
altogether a positive. The fact that the damage occurs during the boot process means
that the payload, like the infection mechanism, is no respecter of operating systems,
it can and does trash non-DOS operating systems such as UNIX.

A number of suggestions were made in early 1992 as to how to deal with
Michelangelo without using anti-virus software. Since so many antiviral programs—
commercial, shareware, and freeware—identified the virus, it seems odd that people

C h a p t e r 1 2 : C a s e S t u d i e s : T h e F i r s t W a v e 3 5 9

were so desperate to avoid this obvious step of using a scanning program to find the
virus. Robert Slade observes:

The “computer expert” in one of our local papers wrote an article on
Michelangelo for his weekly column. It was packed with errors, and he was
roundly chastised by many people. A large contingent of his detractors were
local BBS sysops who urged him simply to get one of the shareware scanners
and make certain. His response, the next week, was to publish a column stating
that no self-respecting business would be caught dead with a modem.

Other people recommended backing up data, which is always a good idea. And,
given that Michelangelo is a boot-sector infector, the virus will not be stored on a
tape backup. However, diskettes are a natural target for BSIs. Nowadays, diskettes
are much less favoured for major backup purposes; zipdisks, tapes, and other high-
capacity writeable media are cheap and highly available. At that time, however, many
popular backup programs used proprietary non-DOS disk formats for reasons of speed
and additional storage. These, if infected by Michelangelo, would become unusable.

Changing the computer clock was also a popular suggestion. Since Michelangelo
was set to go off on 6th March, theoretically users could just set the computer clock to
make sure that it never reached 6th March. However, many people did not understand the
difference between the MS-DOS clock and the system clock read by Interrupt 1Ah.
The MS-DOS DATE command did not always alter the system clock. Network-connected
machines often have “time server” functions so that the date is reset to conform to the
network. The year 1992 was a leap year, and many clocks did not deal with it properly.
Thus, for many computers, 6th March came on Thursday, not Friday.

NOTE

An even sillier suggestion was to test for Michelangelo by setting the date to 6th March and then
rebooting the computer. This strategy became known as “Michelangelo roulette”. One vendor actually
reported an incident where a customer switched on a machine on the fatal morning, and when the machine
promptly died, switched on the other machines in the office to see if the same thing happened. It did.

Many people suggested a modem avoidance strategy. Such a strategy is, of course,
no defence worth mentioning against any pure boot-sector virus. Neither the master/
partition boot record nor the boot sector is an identifiable, transferable file, and
neither can be transmitted as a file over a modem or Ethernet connection, although
an infected disk can be transferred over a network connection as a binary image.
While dropper programs are theoretically possible, they are rarely used as a means
of disseminating a virus through unsuspecting users. The danger of getting a
Michelangelo infection from a BBS was therefore so small that, for all practical

3 6 0 V i r u s e s R e v e a l e d

purposes, it did not exist. Warnings against the use of bulletin boards or, more
recently, web sites merely proscribe a major source of advice and utility software.

Unlike the Columbus Day/Datacrime hypefest of 1989, the epidemic of Michelangelo
in the spring of 1992 had its basis in fact. Vendors were making unsubstantiated
claims for the numbers of infections, which, in retrospect, turned out to have been
surprisingly accurate. More importantly, the research community as a whole was
seeing large numbers of infections. The public was seeing them as well. No fewer
than 15 companies shipped commercial products that turned out to be infected
with the Michelangelo virus.

Instant experts arose to fill the need for press releases, confusing Michelangelo
with every other virus that had ever put a message on a screen. (One such “consultant”
called a researcher of our acquaintance for a “professional courtesy consultation”—
to ask what a “boot sector” was.)

Two producers of commercial antiviral programs released crippled freeware
versions of their scanners. The programs did briefly mention that they checked only
for Michelangelo, but certainly gave users the impression that they were checking
the whole system. Happily, the trend over recent years has been for vendors to
produce small, single-shot freebie programs, rather than crippled versions of free
packages, for dealing urgently with high-profile viruses. Even this approach has its
drawbacks: we recently came upon an instance where a Hybris infection was almost
overlooked because the freebie program used could detect only a single variant. Oddly,
it was a later variant than the one actually found on the machine in question: it seems
that the vendor assumed that anyone using it would already have updates of its product
for the previous versions. Since the vendor in question was also responsible for one of
the freebie Michelangelo scanners, perhaps the average vendor’s level of ethical
responsibility has not been raised as far as we would have hoped.

Because of the media attention, a number of checks were made that would not
have been done otherwise. Hundreds, even thousands, of copies of Michelangelo
were found within single institutions. Because many copies had been found and
removed, the number of “hits” on 6th March was not spectacular. Hundreds, perhaps
thousands, of machines were struck, but the damage was not nearly as great as it
might have been. Predictably, perhaps, media reports on 6th March started to dismiss
the Michelangelo scare as another overhyped rumour, completely missing the reality
of what had transpired.

In spite of its self-destruction on the trigger date, Michelangelo infections
continued to be discovered after March 1991, and even after the widely publicized
trigger date of 6th March, 1992. We no longer receive yearly media enquiries around
the trigger date (nowadays people ask us about CIH’s trigger date in April), but the
virus continues to be found in the field, and is still featured on the WildList.

C h a p t e r 1 2 : C a s e S t u d i e s : T h e F i r s t W a v e 3 6 1

Don’t Monkey with the MBR
Another Stoned variant, unrelated to Michelangelo, is Monkey (often classified as
Empire.Monkey). It was even more widespread than most realized because Central
Point Anti-Virus (and Microsoft Anti-virus, essentially the same program) misidentified
it as Stoned 3. Monkey added a further twist: the common “generic” forms of
boot-sector/MBR eradication did not work well against it. The classic method for
cleaning the Master Boot Record is to use the DOS utility FDISK with the /MBR
switch. However, using this method to clean Monkey will actually result in loss
of data, though the data loss is not irrevocable as long as no further inappropriate
action is taken.

If your computer is infected with Monkey and you boot from a clean system floppy
disk, you will find that you cannot access the hard drive. In addition to repositioning
the MBR, Monkey also encrypts it. The encryption is not a serious problem, as it uses
a simple XOR function with the 2Eh byte. However, the encryption does ensure that
you do not have valid partition-table data anywhere on your hard disk, and that you
will have to go through an extra step to get rid of the virus. Many single-virus detectors
and disinfectors have been developed, and few are considered to be important. In the
case of Monkey, though, Tim Martin’s KILLMONK has performed sterling service.

Monkey is still reported as being In the Wild, even though all competent known-
virus scanners have detected it for many years. It is one of the primary reasons that
virus experts discourage the use of FDISK /MBR. Indeed, for years, some of
us have referred in public to the command as FDISK /MUMBLE, to make it a little
harder for the unwary to fall prey. Since we’ve let the genie out of the bottle in this
chapter, we feel obliged to go into a little more detail about why you should, in
Bruce Burrell’s words, “Just say no to FDISK /MUMBLE”. The following points
are loosely based on material contributed by Bruce (anti-virus guru in residence at
the University of Michigan), Graham Cluley (who has many years of AV experience
at Dr. Solomon’s and Sophos), and David Harley (whoever he may be) for the
alt.comp.virus FAQ:

Use of FDISK /MUMBLE is contraindicated under the following circumstances:

� If you have reason to believe that the victim PC may be infected by a virus
(such as Monkey) that doesn’t preserve the partition table.

� If the PC may be infected by a virus (such as One_Half) that encrypts (parts of)
the hard drive and keeps the decryption key in the Master Boot Record. One_Half
gradually encrypts the infected hard drive, starting from the last sector and
working back towards the beginning, and the MBR stores the information

3 6 2 V i r u s e s R e v e a l e d

about how much of the disk has been encrypted. If the MBR is replaced, that
information is irrevocably lost, and part of the disk will remain encrypted.

� When security software that encrypts (parts of) the hard drive is in use.

� If your system is an older one that uses software such as Disk Manager, EZDrive,
or DriveRocket to overcome the restrictions in older operating systems as to how
large a hard drive can be used and how large a partition can be.

� When the system uses a controller card that stores data in the sector occupied
by the bootstrap program and partition table.

� If you have reason to believe that more than one boot-sector infector is active
(a condition sometimes known as a cocktail). This condition is particularly a
problem when both viruses move the original MBR to the same location, so
that the second infection overwrites the original MBR with the first infection.

� If you have reason to believe that a data diddler such as Ripper is active. In
anti-virus circles, a data diddler is a virus that gradually corrupts the contents
of the hard disk. If this corruption consists of random disk writes, a conventional
scanner will not be able to repair the damage; however, it can take some steps
to compensate for the possibility of specific problems.

� If you’re unsure of your ground. “When in doubt, don’t”.

Most people will have “reason to believe” only if they have already identified
the presence of a specific virus, which usually means that they have used a virus
scanner. If you have a scanner, you don’t usually need to use FDISK /MUMBLE.
However, we recognize that, on occasion, the method might be useful to someone
with a better-than-average grasp of the potential problems—preferably someone
basking in a life-long lucky streak. You can reduce the risks considerably by taking
the following steps:

1. Boot from a clean system floppy (this is mandatory). You must generate the
floppy from a recent and appropriate version of DOS/Windows, and the floppy
must contain guaranteed clean utilities.

2. Check that memory appears to be as you would expect (MEM or CHKDSK
can be helpful here).

3. Check that partitioning is as it should be with FDISK or UNFORMAT, as
appropriate.

4. Check that DOS can see your hard disks with DIR. If you can’t see all the
drives/partitions, you should abandon both hope and FDISK /MUMBLE.

C h a p t e r 1 2 : C a s e S t u d i e s : T h e F i r s t W a v e 3 6 3

5. Then start looking for a scanner that can name that virus.

Nonetheless, we would hate for you to think that we actually recommend the use
of FDISK as an anti-virus utility. If you are in doubt, don’t use FDISK. If you are
not in doubt, worry about whether you should be.

Form
Form is a boot-sector virus with an innocuous payload. If the current date is the 18th

of the month, the virus hooks Int 09h, so that every time a key is pressed, there is an
audible beep. (This payload is dependent on the keyboard driver loaded.) Infected
disks are marked as having 1KB in bad sectors, but the “bad” clusters actually contain
the original boot sector and part of the virus’s own code, which contains a string,
“The FORM-Virus sends greetings to everyone who’s reading this text. FORM
doesn’t destroy data! Don’t panic! Fuckings go to Corinne”. However, contrary
to common reports, the message is never actually displayed.

The fact that Form infects the DOS Boot Record (DBR) rather than the Master
Boot Record (MBR) on a hard disk has some interesting implications. One is that
you cannot disinfect an infected disk simply by cleaning the MBR using FDISK
(or an alternative tool), since the virus code is not contained in the MBR. Another
is that while the virus’s payload is innocuous, it can prevent a Windows NT system
from booting up simply by infecting a bootable NTFS partition, thus corrupting the
bootstrap loader program. This is generally true of viruses that infect the DBR rather
than the MBR on hard disks (diskettes do not have an MBR). However, a DBR
infector that uses stealth techniques (Form does not) may stay active long enough
to allow the system to boot.

This discussion offers an opportunity to summarize the implications of using
Windows NT or 2000 rather than Windows 95, 98, or ME, in the context of
boot-sector viruses:

� “Pure” boot-sector viruses are hardware-specific rather than operating
system–specific. They can infect NT, NetWare, and UNIX machines just as
easily as they can a Windows desktop machine, if the machine is started or
restarted (intentionally or otherwise) with an infected floppy (bootable or
otherwise) in drive A (assuming CMOS defaults).

� Dropper programs and multipartite viruses that use BIOS and DOS services
to install into the Master Boot Record cannot do so in an NT/Windows 2000

3 6 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

environment. However, NT machines that multiboot into DOS or a non-NT
version of Windows can be infected while the less secure operating system
is running.

� A boot-sector virus that succeeds in installing itself in the MBR can go memory-
resident and execute boot-time code in much the same way as it does on other
versions of Windows. However, once NT has loaded, direct disk services provided
by the BIOS are no longer available, since NT uses protected mode drivers.
This lack of available disk services blocks secondary infection of diskettes.

� Boot-sector viruses that don’t preserve the original boot record can prevent the
system from booting.

� Boot-sector viruses that infect the DBR rather than the MBR will probably stop
a machine booting from an NTFS partition unless they use stealth.

The Modem Virus Hoax
The Modem virus was first reported in VIRUS-L 1, No. 42 (December 1988), and
came from JPL (the Jet Propulsion Laboratory, a NASA research institute). Although
the reporting of this virus doesn’t constitute the very first virus hoax, it is worth
close examination, since many subsequent hoaxes have borrowed circumstantial
detail from it. The original report, which was supposed to have come from a
telecommunications firm in Seattle, claimed that the virus was transmitted via
the “subcarrier” on 2,400bps modems, so you should use only 300 or 1,200bps.

NOTE

Some versions of the later PKZip Trojan semihoax claimed that the virus affected transmissions
“at 14,400 or greater”. Hoaxes are, it seems, a renewable resource.

The subcarrier was alleged to be some secret frequency that the modem
manufacturers used for debugging. The frequency turned out to be so secret that no
modem manufacturer had ever heard of it; of course, all the bandwidth available is
used for modem transmissions, and unused pins in a serial (RS-232) cable are still
assigned, and are therefore not available for covert transmissions. The reports
claimed that the virus modified the internal registers of the modem (but registers
are data, not programs). They did not explain how the virus commuted between the
modem and the PC. The initial source of the hoax seems to have been a posting on
Fidonet (apparently on 6th October, 1988) by someone who gave his name as Mike

C h a p t e r 1 2 : C a s e S t u d i e s : T h e F i r s t W a v e 3 6 5

3 6 6 V i r u s e s R e v e a l e d

RoChenle. Ken van Wyk later suggested this pseudonym might be read as
“microchannel”, the then-new bus for IBM’s PS/2 machines.

The virus was frequently reported for most of 1989. Why, apart from the average
computer user’s ignorance of the technology and tendency to accept incomprehensible
pseudojargon without question, did the rumour persist for such a long time? The
rumour itself may have prompted a lot of interest in computer viral programs among
computer and modem users. Even though these people joined virus discussion groups
and saw that these groups were not discussing the modem virus, they continued to
post reports of it. One of the most likely reasons, however, is that people were primed
to believe the rumour. Bulletin boards and, by extension, modems have had consistently
(and unfairly) bad press over the years. BBSs were seen, despite all the evidence to
the contrary, as the ultimate source of all “evil” programs—viruses and Trojans—and
people seemed to accept without question anything bad said about them.

The Iraqi Printer Virus
In early 1992, reports surfaced of a virus that shut down Iraq’s air defence system
during Operation Desert Shield/Storm. This story seems to have started with Triumph
without Victory: The Unreported History of the Persian Gulf War by U.S .News and
World Report staff, and the serialization of the book in the periodical. The articles
were rerun in many papers and recycled by CNN, ABC, and other networks. The story
claimed that a French printer had been smuggled into Iraq through Jordan. Allegedly,
US agents intercepted the printer and replaced a microchip in the printer with one
reprogrammed by the NSA. The reprogrammed chip is supposed to have carried a
virus that invaded the air defence network to which the printer was connected and then
erased information on display screens when “windows” were opened for additional
information on aircraft.

Could a chip in a printer send a virus? Doesn’t a printer just accept data?
Both parallel/Centronics and serial RS-232 ports are bidirectional. Serial ports

are probably used more often for bidirectional exchanges of byte streams between
networked computers than for printer control. Centronics ports, though primarily
used to link PCs to printers, are also used for exchanging information between PCs.
Installation and execution of popular programs such as LapLink can literally be
initiated from a controlling PC, using appropriate cabling—either a null modem
cable or a suitable Centronics-to-Centronics cable.

NOTE

Cabling is not always bidirectional. Robert Slade recalls that in the early days of PCs, he had
to deal with serial ports that had been used as printer ports and could no longer be used as
modem ports because the “return” pin had been sheared off, a common practice used then
to “fix” balky printers.

Even where a Centronics cable is used for printer control, the information flow has
to be two-way. Otherwise, the printer driver on the PC is unable to determine whether
printing is taking place successfully and thus will usually display an error message.

A group of ROM BIOS functions is concerned with printer traffic. Int 17h function
02h is specifically intended to ascertain the status of the printer, and the function returns
a bit in the AH register accordingly. Other functions initialize the port or send a
character to it, but return the same values, so that the program calling the function
knows whether the operation was successful. Table 12-1 lists the status values.

However, the information that comes back over the line is concerned strictly with
whether or not the printer is ready to accept more data. The host never accepts this
information as a program.

The case of network printers is somewhat more complex. There are two possible
cases—network print servers and network printers (such as the Mac LaserWriters)—and
they are quite distinct. The print server may be a networked computer or a small,
dedicated computer appliance, accepting files from other network sources and spooling
them to a printer. This computer/printer combo is unable to submit programs to other
hosts on the ’Net. The program on the client workstation is controlled by the server
only in the sense that the program acts on information supplied from the server. The
Mac case is substantially different, since the Mac laser printers are attached as peers

C h a p t e r 1 2 : C a s e S t u d i e s : T h e F i r s t W a v e 3 6 7

Value Meaning
7 Printer not busy

6 Printer acknowledge

5 Out of paper

4 Printer selected

3 I/O (input/output) error

2 Unused

1 Unused

0 Printer timed-out

Table 12-1 Printer Status Report Bits

and have the ability to submit programs to other computers on the network. One Mac
virus was at one time reported to use the LaserWriter as a vector. However, it is
unlikely that the Iraqi air defence system was Mac-based, and few other systems
see printers as peers.

NOTE

Windows NT terminology is instructive here. NT administrators distinguish between the print
server (a computer administering requests to print), the printer (a software interface between
the application and the print device), and the print device (the actual printer hardware). Printer
hardware that includes print server functionality (either built-in or as an add-on card) is widely
used in corporations nowadays, but the server is still under the control of the client PC and the
user or administrator using it. The client machine receives information from the server, rather
than instructions.

If it were possible to send some kind of program from the printer to the computer
system/network, could it have been a virus?

Given the scenario of a new printer coming into an existing system, any damaging
program would probably have to be a virus. A Trojan horse could have the same
payload and would be far easier to implement, but would be reliant upon the printer
being attached to the network. In general, the first thing an engineer does when the
system malfunctions after a new piece of equipment has been added is to take out
the new part. Unless the chip could send out a program that could have survived by
itself in the network or system, or install itself elsewhere in the system, removing the
printer would also remove the problem. Furthermore, the program, irrespective of
how it entered the system, would need to be capable of self-installing and running
on that system (well, duh...), so the programmer would have to have very specific
knowledge of the target system. The program would need to know exactly what the
air defence software was and how it was set up in order to display the information. It
would also have to be sophisticated enough to masquerade as a bug in the software,
and persistent enough to avoid elimination by the reloading of software that would
immediately take place in such a situation.

There is, however, telling (if circumstantial) evidence that the Desert Storm virus
never existed. Infoworld (April 1991) carried an article reporting a computer virus
that the US authorities had used to shut down Iraqi computer systems. The Infoworld
article was an obvious April Fool’s joke (supported by the name of the virus: AF/91).
The article ended with the warning that the virus was out of control and was now
spreading through systems in the Western world. This hoax seems to have been
intended to satirize the rise of the then-new (and startlingly popular) Windows 3
operating environment.

3 6 8 V i r u s e s R e v e a l e d

The Triumph without Victory story was confirmed by sources in the Pentagon. A
book by James Adams called The Next World War (Random House, 1998) relates in
some detail how unspecified virus-bearing hardware had been inserted into supplies
intended for Saddam Hussein’s command and control network, but that American
bombs had destroyed the building before the virus could actually begin its work. We
know that US agencies have researched the use of malware in electronic warfare
(who hasn’t?). Yet the similarities to the Infoworld AF/91 prank article are simply
too great to ignore. Is this a case of official “sources” taking their own information
from gossip that had mutated from reports of the joke, or did the joke have its basis
in a real incident?

An earlier article in a French military aerospace magazine could have prompted
the Infoworld joke. This article stated that a virus had been developed that would
prevent Exocet missiles, which the French had sold to Iraq, from hitting French ships
in the area. The author used a mix of technobabble and unrelated facts, somehow
inferring from the downloading of weather data at the last minute before launch,
the programmability of target information on certain types of missiles, and the
radio destruct sequences used in testing, that such a “virus” was possible.

It is true that, at the time, the US military was calling for proposals regarding
the use of computer viral programs as computer weapons. The military subsequently
issued three contracts giving $50,000 to develop further proposals. At least one of
those contracts subsequently entered the second phase, which allowed a half-million
dollars for further refinement. It should be noted that the proposals were to have
covered defence against viral programs as well. We have received information
from normally reliable sources, far closer to the US government than any of the
authors are ever likely to be, suggesting that the story was closer to the mark than
we would have expected.

We remain sceptical: after all, a sophisticated grasp of computer security in general
and malware in particular has not generally been characteristic of government agencies
anywhere. Nevertheless, we are unable to back up our prejudices with irrefutable
evidence. What, then, do we learn from this case study, and why have we paid it so
much attention in this section? Obviously, we find it intrinsically interesting, and its
lack of a complete resolution adds to its piquancy, perhaps because computer science
teaches us to expect binary precision in our dealings with technology. Most of all,
though, it reminds us that the virus phenomenon is more psychological than
technological, and that the walls between fact and fiction are at least as thin in
the security arena as they are in society at large. We will return to this theme in
Chapter 16, when we discuss hoaxes and urban legends in exquisite detail.

C h a p t e r 1 2 : C a s e S t u d i e s : T h e F i r s t W a v e 3 6 9

Summary
We have now considered a number of virus-related events, from the earliest PC viruses
and first-generation worms, through the early 1990s. The next chapter continues this
series of case studies with a closer look at the Good Times hoax (the model for most
of the hoaxes that followed), the rise of the macro virus, and the first intimations of
the mailstorms that accompanied us across the divide between millennia.

3 7 0 V i r u s e s R e v e a l e d

CHAPTER

13
Case Studies:

The Second Wave

371

IN THIS CHAPTER:
The Black Baron
Good Times Just Around the Corner
Proof of Concept
The Empire Strikes Back—Slowly
WM/Nuclear
Colors
DMV
Wiederoffnen and FormatC
Diddling: Green Stripe and Wazzu
WM/Atom
WM/Cap
Excel Viruses
Variations on a Theme
Word 97
Thank You for Sharing
Macro Virus Nomenclature
Anti-Macro Techniques
Hare
Chernobyl (CIH.Spacefiller)
Esperanto

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

3 7 2 V i r u s e s R e v e a l e d

Nearly all classic computer virus books were written during the period
covered by the preceding chapter and don’t address the topics we will
cover here. The obvious exception is Robert Slade’s Guide to Computer

Viruses (second edition, copyright 1996, Springer-Verlag, New York, Inc.), of which
included a little material on the (then) brand new Word macro virus threat. More
recent virus books have addressed what we think of as “second wave” viruses—mostly
macro viruses, 32-bit Windows infectors, and the earliest email-aware viruses—but
not, we feel, particularly successfully or accurately, in general.

Of course, the previous generation of viruses did not all vanish as the second-
wave viruses that we discuss in this chapter began to appear. Some imposed their
own expiry date by self-destructing after the execution of a hard-coded, date-related
trigger. Others assumed technologies such as low-capacity 5.25-inch media, floppy-
only systems, obsolete processors like the Intel 8088 and other pre-80386 chips,
and obsolete operating environments such as MS-DOS and Windows 3.xx. These
were shed as hardware and operating systems progressed. No doubt some of these
viruses still linger on forgotten floppies somewhere, but are otherwise seen only in
collections, and it has been suggested that some of these museum pieces (Old- Fashioned
File Viruses) should be withdrawn from standard virus test suites. This is not a debate
we choose to enter here, however.

Still, a glance at any recent WildList indicates that some oldies but goodies continue
to maintain a foothold in the virus charts. Boot-sector infectors such as Form or Jumper
do not make number one with a bullet any more, but their continuing presence in the
WildList is a constant reminder that someone, somewhere, still sees no reason to use
anti-virus software.

Nevertheless, the case studies in this chapter bring us much closer to the present
day. We will focus less on particular examples (with the exceptions of Good Times
and WM/Concept) and more on classes and trends. For instance, a number of the
macro viruses cited in this chapter are worth mentioning because they add a piece
or two to the macro composite profile, but don’t require the same in-depth analysis
as many of the others that we have discussed.

By 1995 or thereabouts, a number of paradigm shifts had altered the viral landscape:

� Windows 95 was widening the range of virus vulnerabilities. Windows 98 and
ME, along with ancillary applications such as Internet Explorer and the various
flavours of Outlook, continue this trend into the present day. Windows 95 also
demanded serious work on the part of anti-virus vendors to port their on-access
scanners to a radically different environment.

C h a p t e r 1 3 : C a s e S t u d i e s : T h e S e c o n d W a v e 3 7 3

� Good Times became (arguably) the most successful hoax virus to date.

� Interpreted viruses brought do-it-yourself (D-I-Y) virus creation to a level
at which the comparatively inexperienced programmer could join the game.
Writing a macro virus required more programming skill than generating a kit
virus, but the result was much more satisfying to the virus author and was
harder to catch generically. Kit viruses usually have a family resemblance that
makes detecting new ones surprisingly simple. However, sometimes the only
resemblance between a macro virus and its derivatives is that both are macros,
making automated detection conceptually more difficult.

� Viruses had become enough a part of everyday computing that only the
occasional instant expert, black hat, or conspiracy theorist continued to assert
that viruses were the invention of anti-virus vendors’ marketing departments.
The Web was well on the way to making electronic communications accessible
to people who would have had a panic attack at the thought of learning to use
Archie or command-line ftp.

� More people had access to email at work or at school and, increasingly often, at
home. At the same time, the shift from boot-sector viruses to data-borne (macro)
viruses increased the susceptibility of email users to mail-borne viruses, real
and imagined.

� These and other factors were increasing the rate at which viruses could spread,
so that the vendors’ quarterly update cycle was starting to lose ground to the
monthly update cycle, pointing to the weekly, daily, and even hourly updates
boasted by some today.

The Black Baron
In terms of its technology and strict chronology, the Black Baron’s SMEG
(Simulated Metamorphic Encryption enGine) and the Pathogen and Queeg viruses
derived from it could be said to belong to the previous generation. However, the
legal and social consequences, which are arguably of more interest than the actual
malware, continued to reverberate into 1996. SMEG.Pathogen and SMEG.Queeg
were highly polymorphic DOS file infectors, using variable encryption. The viruses
infected .COM and .EXE files when they were executed or opened. Both viruses
incremented an internal counter when a file was infected, and triggered when the
counter reached 32. Depending on the time and day, either virus would display
a message and overwrite the first 256 cylinders of the hard disk, effectively trashing
the system.

In May 1995, the Black Baron was charged (under his real name, Christopher Pile)
with 11 offences under the UK’s Computer Misuse Act 1990. These included five
charges of unauthorized access, five of unauthorized modification, and one of incitement.
In an article in Virus Bulletin (“Regina v Christoper Pile: The Inside Story,” February
1996), Jim Bates describes how police searched Pile’s home in Plymouth and found only
a Sinclair Spectrum computer. This is not an IBM-compatible computer, and appeared to
have been used for games-related programming. However, a search of other premises
uncovered a Tandon PC, a modem, and a number of diskettes. Though the contents of
the disk had been defragmented and wiped, Bates found two documents that proved
to be job applications in Pile’s name, clearly linking him to the PC. Eventually, Pile
admitted his connection, and later supplied the password to an encrypted file on one
of the diskettes containing virus source code and documentation.

Bates disassembled and analysed a number of specimens supplied to the police
by complainants, and confirmed that they were instances of Pile’s virus. Nine of
the charges related to infection from a file shown to have been uploaded by Pile
to a bulletin board, from whence the victim downloaded the virus. The tenth charge
related to Pathogen infection sustained by software publishers, Microprose Limited.
This charge was particularly interesting, in that the infection did not appear to derive
directly from any BBS used by Pile. As Bates commented, “This shows that, if
someone writes a virus and someone else becomes infected by [the virus], it is not
essential that the link between the writer and the victim should be proven: presence
and identification of the virus is enough”.

The 11th charge (incitement) related to the distribution of the SMEG engine and its
documentation. According to other reports, the file SMEG03.ZIP contained instructions
on writing viruses with SMEG “as easily as possible”. Pile also expressed the hope
that SMEG users would “have fun with SMEG” and pass the software on to their
friends. While Pile seems to have suggested that the code had positive uses, the judge
disagreed. Pile was sentenced to six months, imprisonment for each of the charges of
unauthorized access and modification, to run concurrently; however, on the incitement
charge he was sentenced to 12 months’ imprisonment to run consecutively.

Good Times Just Around the Corner
Good Times is probably the most famous of all false alerts, and was certainly the
earliest that received wide distribution. Some controversy persists over the identity
of the originators of the message, but it is possible that it was a sincere, if misguided,
attempt to warn others. The hoax probably started in early December 1994. In 1995,
the variant of the hoax including mention of the FFC began circulating.

3 7 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 3 : C a s e S t u d i e s : T h e S e c o n d W a v e 3 7 5

It seems most likely that the Good Times alert was started by a group or an
individual who had seen a computer failure without understanding the cause, and
associated it with an email message that had “Good Times” in the subject line. (In
fact, there are indications that the message started out on the AOL system, and it
is known that there are bugs in AOL’s mail software that can cause the program to
hang.) The announcement states that there was a message, identified by the title of
“Good Times”, which, when read, would crash your computer. The message was
said to be a virus, even though there is nothing viral about that sort of activity
(even if it were possible).

Text Appeal
At the time of the original Good Times message, email was almost universally
text-based. Elsewhere, we discuss the possibility of ANSI bombs and other text-based
malicious software. Suffice it to say here that the possibility of a straightforward text
message carrying a virus in an infective form is remote. The fact that the warning
contained almost no details at all should have been an indication that the message
wasn’t quite right. It provided no information on how to detect, avoid, or get rid of
the “virus”, except for its warning not to read messages with “Good Times” in the
subject line. (The irony of the fact that many of the warnings contained these words
seems to have escaped most people.)

Blowing in the Wind
Pathetically (and, sadly, characteristically), a member of the VX community actually
did produce a Good Times virus. Like the virus named after the older Proto-T hoax,
the “real” Good Times was an uninteresting specimen, having nothing in common
with the original alert. It is generally known as GT-Spoof by the anti-virus community,
and was hardly ever found in the field. The source code, credited to virus author
Qark, also known as Rhincewind, appeared in issue 4 of VLAD (Virus Labs And
Dist), an underground e-zine. The code included the comment, “Remember to email
all your friends, warning them about Good Times!” but displayed no similarity to
the virus described in the hoax alerts.

Loop de Loop
The Good Times virus and its primary variants were predominant in 1994–95,
though close variants continue to appear. However, an extract from a report by
the Y2K Risk Assessment Task Force, chaired by Sam Nunn, illustrates that the
mythical “nth complexity binary loop”, characteristic of a common version of the
Good Times hoax, is not dead, although it has mutated somewhat.

Three other malicious viruses will actually lock a processor in a divide-by-zero
loop, which, if left running for a sufficient amount of time, will overheat the
Central Processing Unit, causing it to melt down and effectively reducing the
computer to scrap metal.

Big Bang
Les Jones’ FAQ describes the wide impact that Good Times had across the globe.
(The following extract omits some minor personal data, mostly email addresses.)

The virus hoax infects mailing lists, bulletin boards, and USENET newsgroups.
Worried system administrators needlessly worry their employees by posting
dire warnings. The hoax is not limited to the United States. It has appeared in
several English-speaking and non-English-speaking countries. One reader
sent me an English transcription of a radio broadcast in Malta.

Adam J Kightley […] said, “The cases of ‘infection’ I came across all tended
to result from the message getting into the hands of senior non-computing
personnel. Those with the ability and authority to spread it widely, without
the knowledge to spot its nonsensical content.”

Some of the companies that have reportedly fallen for the hoax include AT&T,
CitiBank, NBC, Hughes Aircraft, Microsoft, Texas Instruments, and dozens or
hundreds of others. There have been outbreaks at numerous colleges.

The U.S. government has not been immune. Some of the government agencies
that have reportedly fallen victim to the hoax include the Department of Defense,
the FCC, NASA, the USDA, U.S. Census Bureau, and various national labs.
I’ve confirmed outbreaks at the Department of Health and Human Services,
though they had the good sense to question the hoax, and ask for more
information on Usenet, before passing the hoax along to their employees.

The virus hoax has occasionally escaped into the popular media. [A
correspondent] reports that on April 4, 1995, during the Tom Sullivan show
on KFBK 1530 AM radio in Sacramento, California, a police officer warned
listeners not to read email labelled “Good Times”, and to report the sender to
the police. Other radio stations, including Australia’s ABC radio, have also
spread the hoax.

3 7 6 V i r u s e s R e v e a l e d

C h a p t e r 1 3 : C a s e S t u d i e s : T h e S e c o n d W a v e 3 7 7

The Good Times FAQ also gives an interesting example of how a real virus, a
hoax, and a misapprehension can converge and spread confusion further:

There has been one confirmation of a person who received a message with
“xxx-1” in the header, but an empty message body. Then (in a panic, because
he had heard the alert), he checked his PC for viruses (the first time he checked
his machine in months) and found a pre-existing virus on his machine. He
incorrectly came to the conclusion that the E-mail message gave him the
virus (this particular virus could NOT POSSIBLY have spread via an E-mail
message). This person then spread his alert.

While the Good Times FAQ has not been updated for several years, it remains
an excellent source of information, not only on the hoax itself, but on the hoax
phenomenon, and it has had as profound an influence on later writers and researchers
as the hoax itself did on the content of later hoaxes. (We are pleased to acknowledge
Les Jones’s kindness in allowing us to quote the FAQ at some length here. You can
read the full document at http://www.public.usit.net/lesjones/goodtimes.html.)

Proof of Concept
WM/Concept was by no means the first macro virus. HyperCard viruses were
already commonplace in the Macintosh arena when WM/Concept appeared, and a
number of anti-virus researchers had explored WordBasic and other malware-friendly
macro environments (notably Lotus 1-2-3) long before the virus appeared in 1995.

NOTE

The term malware-friendly may require some expansion here. Much has been made of the fact
that at least one proof-of-concept virus was created (and very strictly controlled) long before the
first Microsoft Office virus was written. However, 1-2-3 viruses were never much of a threat, even
when the package was at the height of its popularity. This was not just because only the “good
guys” had thought of the possibility or had thought it worth trying, but also because of the
comparative simplicity of the macro language and the fact that file access had to be via the menu
system, rendering a stealth infector almost impossible.

However, WM/Concept was the first macro virus to be publicly described as such,
and certainly the most successful in terms of spreading. For a while, it was easily the
most widely found virus in the world. Oddly enough, though, some quarters greeted

its appearance with disbelief. After all, a Word file is usually considered to be data
rather than a program file. However, there is no absolute distinction between program
and data.

Those of us concerned with the control of damage from viruses and other
programmed threats have held to a number of working assumptions, while aware
of theoretical possibilities that these assumptions may not be correct in every case.
One of these is that viruses can spread only by attaching themselves to executable
code, and cannot, therefore, be spread by data files. While the first part of this
proposition holds true, the second doesn’t, unless we reexamine our definition
of what constitutes a data file.

Programs Versus Data
We cling to the belief that because executable files run programs, and data files contain
data, there is a clear-cut distinction between the two types of file. In fact, this has
never been true. An executable file may contain a great deal of data: it may, for instance,
contain a whole database, as well as the instruction set for accessing, entering, and
deleting records. An extreme example might be a program that consists of a series
of instructions to write text to the screen, such as the following pseudo-code:

begin

string1="Hello World"

string2="Goodbye, Cruel World"

write string1

write string2

end

In this case, the two text strings that comprise the data are an intrinsic part of
the program.

What may be perceived as a data file may be, in reality, a program. A PostScript
file is, in fact, a program read and acted upon by a PostScript interpreter program. A
printer normally executes this program, but a program such as GhostScript can also
interpret a PostScript file and print it to the screen on the host computer. While the
syntax may be very different, the basic concept of a PostScript program is pretty
much the same as in the preceding pseudo-code.

After summer 1995, a number of viruses appeared that spread through data files,
specifically data files produced by applications using complex macro languages.
Data files written by or for such applications may include macros, which are no
more or less than small (and sometimes not-so-small) programs interpreted by the
application for which they were produced.

3 7 8 V i r u s e s R e v e a l e d

The first in-the-wild examples specifically targeted Microsoft Word version 6,
but code for viruses infecting Excel and Ami Pro also appeared very quickly. All
versions of Word for Windows and Word 6, and later for the Macintosh, include a
sophisticated macro language (WordBasic in older versions, and Visual Basic for
Applications, or VBA). The simplest form of macro language is based on the ability
to store and replay a sequence of keystrokes. Such applications are capable of all
the functions normally associated with a high-level programming language such as
BASIC. In fact, macro languages used by Windows applications are often versions
of BASIC based on Microsoft’s Visual Basic, and are capable of much of the
functionality (if not the efficiency) of a full-scale programming environment such
as Visual C++. More recently, other applications in the Office suite have included
VBA, and non-Microsoft applications sometimes also include the macro language,
under licence.

The Name of the Game
Since Concept was the first (officially) of its kind, the usual problem of what to call
a newly discovered virus was intensified. Microsoft, anxious to avoid the “V” word,
referred to it as Prank Macro. Some of the names you may still encounter include
WW6Macro and WinWord.Concept. In Mac circles, it was known for a while as
Word Macro 9508.

Concept spread far and (for its time) fast. It got something of a boost when two
companies accidentally shipped it in infected documents on CD-ROM. The first
instance was a Microsoft CD called MicroSoft Windows ‘95 Software Compatibility
Test. The CD was shipped to a number of large original equipment manufacturing
(OEM) companies in the summer of 1995, as a means of checking compatibility
with Windows 95, which was due for imminent release. However, the CD contained
a document called OEMLTR.DOC, which was infected with Concept. It is possible,
but unproven, that a staff member at Microsoft wrote the virus. A few months later,
Microsoft UK distributed the virus on another CD, The Microsoft Office 95 and
Windows 95 Business Guide, in a document called HELPDESK.DOC. (It wasn’t
exactly Microsoft’s year: only a little earlier, the corporation had distributed
Form-infected demo floppies.)

Meanwhile, another company called ServerWare distributed 5,500 copies of
a CD called Snap-On Tools for Windows NT, which contained a number of infected
documents. To its credit, ServerWare immediately withdrew the CD, warned recipients,
and sent out a clean copy. This is in some contrast to Microsoft’s reaction: it was
autumn before Microsoft admitted to the first infected CD. They did, however, make
available a macro-based fix for the virus, a somewhat tortuous piece of code that

C h a p t e r 1 3 : C a s e S t u d i e s : T h e S e c o n d W a v e 3 7 9

3 8 0 V i r u s e s R e v e a l e d

tended to fall over on a system with multiple infections. Eventually, Microsoft
also beefed up its quality assurance considerably by employing a virus specialist to
engineer a process for intensive checking of outgoing media. (Nowadays, Randy
Abrams is a respected speaker in his own right at security conferences.)

Concept was fairly obvious, and could be forestalled and even fixed (with
patience) without the aid of anti-virus software. When a Concept-infected file
was opened, a message box appeared containing the number 1 and an OK button.
Clearly, we are not talking extreme stealth here. You could also detect the virus’s
presence by checking the Tools | Macro submenu for the presence of macros. A
WM/Concept.A infection, specifically, is characterized by the presence of the
following macros:

� AAAZFS

� AAAZAO

� AutoOpen

� PayLoad

� FileSaveAs

Any document might legitimately use AutoOpen or FileSaveAs. However, macros
with the names Payload, AAAZFS, and AAAZAO are something of a giveaway.
The macros are not encrypted, and so it’s easy to spot the virus. On the other hand,
this lack of encryption also makes it easy to modify the code. Virus writers learned
almost straight away to conceal the internals of their macros by implementing them
as execute-only macros, which cannot be edited or easily viewed. With the onset of
Word 97, Microsoft managed to turn this technique against virus writers, by disallowing
the “upconversion” of execute-only Word 6/95 macros to Word 97 format. Thus,
there are upconverted versions of Concept, but not of Cap. You can identify
upconverted Concept variants by using a scanner that distinguishes between
(for instance) WM/Concept.A and W97M/Concept.A.

When Is a Payload Not a Payload?
Even though Concept.A has a Payload macro, it has no actual payload. Famously, it
contains the following string:

That's enough to prove my point

This string no doubt explains the name Concept (as in “proof of concept”).

C h a p t e r 1 3 : C a s e S t u d i e s : T h e S e c o n d W a v e 3 8 1

Concept.A was fairly harmless, as viruses go: it tampered with Word 6’s global
template (usually NORMAL.DOT, or Normal on a Macintosh) so that files were
saved as templates and ran the infective AutoOpen macro. This gave Mac users an
additional advantage, in that template files on the Mac have a different icon to
document files. As long as the virus infected only template files, this icon was a
frequently found heads-up to Mac users that they might have a virus problem.
However, in later versions of Word, the distinction between documents and
templates is less absolute, so this particular heuristic has become less viable.

In a sense, the main importance of Concept was that the code could be altered
very quickly to incorporate a destructive payload, alternative infection techniques,
and evasion of the first attempts at detecting it. This virus has been described as the
first cross-platform virus in that it works on any platform. However, this description
isn’t altogether accurate: it infected only systems running Word 6 or Word 95,
though versions are known that can infect Word 97 and later. Platforms capable of
running Word 6 included the following:

� PCs running Windows 3.x and Windows 95

� PCs and DEC AXP workstations running Windows NT

� Macintoshes and Power Macs

To the Next Level
We are not sure whether Microsoft’s blocking of execute-only upconversion

was intended as an anti-virus measure. Technically, this blocking derives from
the fact that VBA applies protection to projects, not individual macros.
Upconversion of viral macros is something of a problem in more respects than
one, and there has long been discussion as to how far anti-virus companies
should go in anticipating future upconverted viruses, especially if providing
detection means creating a variant that does not currently exist. Some companies
have taken the stance that they are entitled to give their customers maximum
protection. However, the the fact that some products already protect against the
upconversions is evidence that virus authors have been inspired to play with
upconversions of specific Word 6.xx viruses. A problem also arises if the
customer expects to be protected against upconverted viruses that may not exist.
In this case, the customer may not know whether his or her vendor of choice
offers detection. Conference papers by Vesselin Bontchev have examined many
of these issues in some depth, for example, the Virus Bulletin conference paper
at http://www.virusbtn.com/vb2000/Programme/papers/bontchev.pdf.

Infection took place when infected files were read in Word 6, but not by the
Word 6 document viewer, which can’t run Word macros. Later versions of the Word
viewer had some limited ability to run macros, but did not constitute an effective
vector for viral macros. Even in Word, Concept could not infect if auto macros
(AutoOpen, AutoClose, AutoNew, and AutoExit) were disabled. Indeed, it took
the anti-virus companies some time to fully appreciate the extent of the macro virus
problem, and one of the first suggestions was to run an AutoExec macro that would
disable auto macros. This simple technique was defeated very early on in the game
as a comprehensive protective measure, but we include a snippet of the sort of
code that was published at the time, just for completeness.

From the Tools menu in Word 6, select Macro. If you don’t already have an
AutoExec macro, use the Create option to create an AutoExec macro similar to the
following:

sub Main

MsgBox "Killing off Automacros", 48

DisableAutoMacros 1

end sub

A number of other measures were also suggested at the time that weren’t
altogether reliable, such as the following examples:

� Starting up Word with the /m switch, or starting up Word while holding down
the SHIFT key. These methods bypass only AutoExec, not the other auto
macros, and there are quite a few reports that they don’t work.

� Making NORMAL.DOT read-only with ATTRIB.

� Enabling the “Prompt to save NORMAL.DOT” option available from the
Tools menu. Word.Nuclear disables this option.

� Holding down the SHIFT key while opening a document. This technique allegedly
disables auto macros, but there were many reports of its not working reliably, either.

Auto Macros
Many modern versions of these applications include autoloading macros that, by
default, run when a file is opened or closed, without requiring the intervention of the

3 8 2 V i r u s e s R e v e a l e d

C h a p t e r 1 3 : C a s e S t u d i e s : T h e S e c o n d W a v e 3 8 3

person running the application and reading the file. The following examples are
taken from Word, but many applications have similar facilities:

Macro Name When It Runs
AutoExec When Word starts

AutoNew Each time a new document is created

AutoOpen Each time an existing document is opened

AutoClose Each time a document is closed

AutoExit When the application closes

Auto macros can be defined either globally or for a particular template, except
for the AutoExec macro, which will not run automatically unless it is stored in the
Normal template or a global template stored in the directory specified as the Startup
directory. Disabling auto macros worked fine for viruses like Concept and Nuclear,
which relied on the presence of auto macros. Unfortunately, it wasn’t long before
virus writers learned alternative infection techniques. Also, remember that AutoExec
macros continued to run when Word 6 or Word 7 was started up, even with auto
macros disabled.

The Empire Strikes Back—Slowly
Anti-virus vendors faced a number of problems in adding macro virus detection
and disinfection to their products. The Word document format was difficult to
parse. Microsoft met with anti-virus researchers to discuss the problem early on,
and offered documentation on the relevant file formats to researchers who signed a
Non-Disclosure Agreement (NDA). However, this documentation turned out to be
sparse and inaccurate, and some researchers found it easier to reverse engineer, with
or without the help of the documentation. Unfortunately, this problem has recurred
to some degree with any version of Office that uses a change of file format and one
that, in theory, doesn’t. Office 2001 (for Macintosh) was essentially file-compatible
with earlier versions, but it turned out that recompiling the application had altered
the way macros were stored just enough to stop some scanners from recognizing
some macro viruses in documents that had been saved in 2001.

A more basic problem was that adding routine scanning of files with a .DOC or
.DOT extension added significant overhead to on-demand scans. In fact, there is
no absolute requirement for a vulnerable Word file to use these filename extensions,

3 8 4 V i r u s e s R e v e a l e d

or any extension at all—on Macs, there is no requirement for any file to have a filename
extension. This problem matters less for a memory-resident scanner that scans every file
on access. However, at that time, some vendors had not yet successfully ported their
Windows 3.x VxD scanners to Windows 95, and most DOS TSR scanners never
did incorporate scanning for macro viruses (which were, after all, never operational
during a DOS session).

These problems may have influenced the spate of anti-virus scanners that appeared
over the next year or two, and that were themselves Word-hosted. In other words,
the scanners were macro-based, though often they made use of Word’s ability to
incorporate functions in .WLL (Word Link Libraries) library files compiled in other
languages. Some were at least in part virus-specific, and a few used a more generic
macro-blocking approach.

Microsoft’s Macro Virus Protection (SCAN831.DOC) was a Word 6 document
that included an AutoOpen macro to scan for infection by Concept and innoculate
NORMAL.DOT. The tool provided minimal protection, and was available on
CompuServe, AOL, and MSN, as well as from http://www.microsoft.com/. In
addition to detecting Concept.A (and adding detection for one or two of the other
early contenders later), this tool installed some protective macros. A Mac version
of SCAN.DOC was also available. The early releases of SCAN.DOC were notable
for the fact that they contained a notorious typographical error:

Dlg.Pat$ = "*.doc; *.dot"

This line set up the .Name argument for FileFind. However, the superfluous space
between the semicolon and the second asterisk effectively stopped the macro from
looking for .DOT files.

WM/Nuclear
The Nuclear virus was also known as Winword.Nuclear, Wordmacro-Nuclear, and
Wordmacro-Alert. It could be described as either multipartite or hybrid, since as well
as infecting Word documents, it attempted to drop a DOS file infector. (It is also
notable as the virus that nearly got David Harley into a great deal of trouble, as
described in “How to ‘Nuke’ Your Job”, just ahead.)

Nuclear is a two-stage missile. Stage one attempts to drop (install) a DOS/Windows
file virus called Ph33r.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 3 : C a s e S t u d i e s : T h e S e c o n d W a v e 3 8 5

NOTE

Malware authors, vandals, crackers, and so on often favour a somewhat idiosyncratic approach
to spelling involving the substitution of numerals for alphabetical characters, as well as eccentric
capitalization. Clearly, the name of the virus is supposed to strike Ph33r (fear) in the hearts of
those of us who are not 3l33t (elite).

The code is so buggy that the virus is never dropped. In stage two, Nuclear
attempts to erase system files if it happens to be 5th April. This routine is also buggy,
but can sometimes do minor damage.

How to “Nuke” Your Job
I was at a “seminar” (that is, a marketing session) at the headquarters of an
anti-virus company in London. After one presentation, the subject of macro
viruses came up during a table discussion. He recalls: It turned out I already had
a sample of Nuclear, and the anti-virus company didn’t. Since I actually had a
copy on a diskette that I had with me at the time, I offered the company’s
representatives a copy of the infected file, and they ran it on a test PC in my
presence. A few days later, a friend rang me and, knowing my interest in
viruses, asked whether I had seen that morning’s Observer (a UK Sunday
newspaper). Imagine how pleased I was to read, among other hysterical claptrap,
that the company to whom I had given that sample was credited with having
“helped” an “unnamed medical charity” (at the time I worked for a cancer
research organization). According to the Observer, a member of staff had
“unknowingly” infected PCs in the workplace by running a file found on the
Internet and had to be rescued from his or her own stupidity. Fortunately, my
employers either didn’t notice the article or didn’t make the connection, and I
was never asked to account for my alleged incompetence. (The infected file was
identified as soon as it was downloaded, and was examined and executed only
on one of my own test machines at home.) This was just as well, since I never
did receive the promised written apology, and the newspaper never retracted nor
corrected any of its errors. On the other hand, the company in question lost any
chance of ever doing business with me, and I learned a great deal in the process
about trust and business ethics.

The virus is characterized by the existence of the following macros:

� AutoExec

� AutoOpen

� FileSaveAs

� FilePrint

� FilePrintDefault

� InsertPayload

� Payload

� DropSuriv

� FileExit

Nuclear could be detected by running the Macros command under the Tools
menu. If the macros InsertPayload, Payload, and DropSuriv were listed, then it
was reasonably likely that the system was infected. As well as using execute-only
macros, Nuclear camouflaged its presence by disabling the “Prompt for changes
to NORMAL.DOT” option. Despite the name DropSuriv, the DOS virus concerned
was not a member of the Jerusalem/sURIV family described in the previous chapter.

NOTE

At the time Nuclear was discovered, the Tools | Macro command was frequently recommended
as a means of detecting macro viruses (both of them!). However, using this command can be
misleading. Some viruses modify the command as a primitive stealth measure, so that no macro
names are observed. Reportedly, Colors (described in the next section) actually executes its
harmless but irritating payload if Tools | Macro is executed.

The InsertPayload macro could add the following text to the end of printouts
when printing documents (but only if the system clock’s seconds counter is reading
between 55 and 59 seconds):

"And finally I would like to say:

STOP ALL FRENCH NUCLEAR TESTING IN THE PACIFIC!"

According to Richard Martin’s Macro Virus FAQ, this macro could also affect
faxes sent via a FAX Print Driver.

3 8 6 V i r u s e s R e v e a l e d

C h a p t e r 1 3 : C a s e S t u d i e s : T h e S e c o n d W a v e 3 8 7

Reportedly, the macro Payload attempts to delete IO.SYS, MSDOS.SYS, and
COMMAND.COM on 5th April. In general, this attempt fails, as WordBasic cannot
reset the attributes of a file that has the system attribute set; however, the sample
examined by David Harley did successfully delete COMMAND.COM.

The DropSuriv macro routine didn’t appear to work on any system, due to a
syntax error. Its author apparently intended the routine to use the standard DOS
utility DEBUG to generate an executable from the dropped debug script.

Nuclear found its way into the field by a particularly unpleasant route. While
anti-virus companies were working on assimilating macro virus detection into
their scanners, a number of fixes consisting of Word documents running protective
macros were made available, including WVFIX.DOC (from Command Software)
and a document by Eugene Kaspersky, developer of the AVP anti-virus utility.
Unfortunately, Kaspersky made some of the macros in this document execute-only,
meaning that the macros could not be edited or inspected. This seems to have given
some bright soul the idea of producing a document looking remarkably like Kaspersky’s,
but infected with a different virus.

Colors
Unfortunately, using the Tools | Macro option to see what macros were currently
in memory turned out to be potentially misleading, since a virus can subvert this
function. Indeed, one of the problems with having the macro programming language
so tightly bound into an application infrastructure is that it makes it depressingly
easy to subvert almost any function. Tools | Macro isn’t a safe check for macro
viruses. Colors, the next macro virus down the pike, not only intercepted the Tools |
Macro call and hid the macros, thus adding a measure of stealth to the macro virus
repertoire, but (reportedly) triggered if that call was made. It was, however, still
possible to detect the presence of unexpected macros using the File | Templates |
Organizer | Macros submenu.

Colors derived its name (and the occasionally found alias Rainbow) from its
payload. The virus maintained a counter in the [windows] section of WIN.INI.
When the counter reached 299, and then every 300th time thereafter, the virus changed
Windows colour settings to random values. This payload failed on Macs, of course,
except if they used some Windows emulation. However, like so many macro viruses,
Colors replicated quite nicely.

The virus is thought to have originated in Portugal, and its perpetrators launched it
by posting to USENET newsgroups in October 1995.

The following macro names may signify infection by the Colors virus:

� AutoClose

� AutoExec

� AutoOpen

� FileExit

� FileNew

� FileSave

� FileSaveAs

� ToolsMacro

These macros are all named after perfectly legitimate WordBasic functions, and
therein lies the danger. If you open a document (or, strictly, a template—WordBasic
macros spread by passing templates off as documents) to which these macros are
attached, the infected file becomes the default template, so that closing the file, for
instance, calls the infective FileSave routine rather than the internal routine. This
scheme enables the virus to hide the presence of infective macros.

All macros included in Colors were execute-only. Legitimate macros with the
same names were overwritten at infection. The AutoExec macro was actually empty,
and may well have been intended to overwrite AutoExec macros such as the one listed
earlier that disables auto macros. Auto macros were reenabled, and the prompt to
save changes to the global template was disabled.

DMV
In the late 1980s, Professor Harold Highland wrote what may have been the first
(PC, or DOS, as opposed to Windows) macro virus. At the 1995 Virus Bulletin
Conference in Boston (Massachusetts, not Lincolnshire!), he described how he had
used Lotus 1-2-3 to test the concept. He subsequently destroyed all copies of the
virus. Then, as reported in December 1994, American security specialist Joel
McNamara wrote two demonstration macro viruses (one for Excel, one for Word).
Both viruses were called DMV (Document Macro Virus), and were also written
as a test as well as forming the basis for a paper. However, after Concept appeared,
McNamara chose to make some code available via the World Wide Web.

3 8 8 V i r u s e s R e v e a l e d

C h a p t e r 1 3 : C a s e S t u d i e s : T h e S e c o n d W a v e 3 8 9

Reportedly, the Excel virus did not actually work. The code as published was, in any
case, not a direct threat, since McNamara made no attempt to incorporate stealth.

The DMV viruses are mostly noteworthy because they were published supposedly
as “educational aids”. Publication raised the question as to whether the full disclosure of
virus code (macro or otherwise) is more useful as an educational aid to virus writers,
to anti-virus researchers, or to virus victims, a debate that rumbles on into the 21st

century. It also served to remind anyone who hadn’t been paying attention that Excel
was also a vulnerable platform. Curiously, the later WM/Imposter was largely noted
for the fact that it masqueraded as DMV: when it infected, a dialog
box appeared containing the single word, “DMV”.

Wiederoffnen and FormatC
Wiederoffnen is notable for two reasons. It was not a virus, but one of the first macro
Trojans. Furthermore, the document was actually a Word for Windows version 2
document; however, it worked perfectly well under Word 6. Wiederoffnen worked
by intercepting AutoClose and manipulating AUTOEXEC.BAT. As its name
implies, this Trojan appears to have originated in Germany.

FormatC, which found its way into the field by way of a newsgroup posting,
attempted to format drive C when the document was opened. The Trojan contained
only one AutoOpen macro. The macro was execute-only, but could be seen in the
macro list. When it triggered, the macro ran an unconditional format of drive C
in a minimized DOS box.

On the whole, Word macro Trojans haven’t had much impact in the general computer
world. Some macro programming environments (notably Lotus 1-2-3) saw more
Trojans than viruses, but these Trojans were rarely encountered in the field, and
we mention them only for completeness.

Diddling: Green Stripe and Wazzu
Concept was not, of course, the only proof-of-concept virus. There were others that
failed to capture the VX community’s imagination (if the word isn’t too inappropriate)
in the same way. Green Stripe, named from its main macro procedure, was not an
Office virus, but targeted Ami Pro. Like pre-VBA versions of WordPerfect, Ami Pro
stores macros in a separate file, instead of embedding them in data files or template

files. Since most people don’t knowingly share macro files, Green Stripe was never
likely to be a major contender, and is notable mainly because it indicates that no
activity is too banal or pointless to escape a virus author’s attention.

Green Stripe was first published in the final edition of Mark Ludwig’s virus
writing newsletter Underground Technology Review. Its presence was less than
stealthy, since the infection process was quite slow, due to the number of files it
attempted to infect. Removing the infected macros was simply a matter of deleting
the macro files, which had the .SMM filename extension. In the unlikely event that
the virus actually spread, Green Stripe reportedly changed all occurrences in a
document of the word its to it’s.

The logistic difficulties of tricking a potential victim into accepting the .SMM file
along with the .SAM main document probably would have sufficed to ensure that Green
Stripe’s place in virus history stayed unique, but Ami Pro’s spiral into comparative
oblivion sealed the virus’s fate. Much the same applies to such curiosities as Galadriel
(which is CorelScript-specific), AutoCad and Visio viruses, and the handful of Access
and Powerpoint infectors.

The primitive data diddling, however, may have appealed to the author of
WM/Wazzu, an otherwise unexceptional virus that takes this principle one step
further. Wazzu, which got an extra push into the wild when a victim, asking for help
in identifying it, posted a copy to alt.comp.virus, changed the location of words
within the infected document. Since the change was random, its effects could not be
repaired automatically. The virus also inserted the word wazzu into random locations
in the document.

WM/Atom
Atom appeared in February 1996 and did not spread significantly. It could infect
only via auto macros, and did not stop the prompt to save changes to the global
template. When active, Atom infected all files that were saved with FileSaveAs
or opened with FileOpen.

Atom had two destructive payloads. On 13th December, it attempted to delete
all files in the current directory. Also, if the system clock’s seconds count was 13 at
the time that a file was being saved, the virus would password-protect the file, using
the password ATOM#1. There followed something of a fad among virus writers for
password payloads, and one anti-virus vendor began offering a decryption utility to
address the problem. This decryption was easy enough: the document encryption in
older versions of Word is trivial. In fact, some anti-virus products routinely decrypt
Word 6 documents on the fly to enable scanning. However, Word 97 and later
versions use an algorithm that is more difficult to crack.

3 9 0 V i r u s e s R e v e a l e d

C h a p t e r 1 3 : C a s e S t u d i e s : T h e S e c o n d W a v e 3 9 1

WM/Cap
The Cap virus, to some extent, supplanted Concept as the world’s number one
virus. It had no payload, but did cause some collateral damage because of the way in
which it infected, deleting any macros that it could not identify as its own. Utilizing
a primitive stealth mechanism, Cap used empty macros to remove ToolsMacro
and associated menu items, so that active macro inclusions couldn’t be checked.
As stealth goes, this mechanism was less than effective. David Harley got used to
checking menus on problem machines even where no suspected virus action had
been reported, and was often able to identify a Cap infection over the telephone.

By default, Cap.A installed ten macros:

� AutoClose

� AutoExec

� AutoOpen

� FileClose

� CAP

� FileOpen

� FileSave

� FileSaveAs

� FileTemplates

� ToolsMacro

Of these, only the CAP macro contains substantial code; the others are empty
or call subroutines within the CAP macro. The virus also installs local language
versions of the equivalent macros, and flourishes under foreign versions by virtue
of its sophisticated (if ponderous) handling of infection of the global template: it
installs localized extra copies of FileClose, FileOpen, FileSave, and FileSaveAs.
Subsequent infections under English versions retain the extra macros.

WM/Cap does not rely on auto macros as an infection mechanism. Macros such
as FileOpen correspond to internal Word functions. In Word 6 and 7, such macros
attached to an open document are executed in preference to the internal function,
even when called through the menu system, so that infection is independent of auto
macros. The writer of Cap did not invent this technique, but certainly made the
most of its potential for spreading: the virus continues to feature strongly in virus
report statistics.

NOTE

Cap also had an impact on recommended procedures for dealing with file attachments and documents.
Until the more recent discovery of additional functions and tags added by Microsoft, virus researchers had
recommended the use of RTF (Rich Text Format) files instead of Word’s standard DOC format. RTF is a
text-only format, and cannot contain Word macros. However, the fact that Cap contained a FileSaveAs
macro allowed it to intercept the function called when the user tried to “SaveAs” a different file type.
All documents are saved in the Word DOC format, regardless of the format you choose. So, for example,
if a user tries to save a document as an RTF file, the extension of the document will become .RTF, but
internally the file is still a DOC and still contains the virus.

Excel Viruses
XM/Laroux was the first bona fide Excel virus, appearing in 1996, and continues
to be widely reported. It is actually a fairly simple virus (no one said that successful
viruses have to be sophisticated), consisting of two macros. AutoOpen runs when
an infected document is opened; it calls the check_files macro, then opens a file,
containing the viral macros, in the XLSTART directory. Since this file is opened
every time Excel is started (that’s why it is put into XLSTART), it infects all
subsequent workbooks. The original has no destructive payload, and doesn’t infect
on Macintoshes. A number of variants exist and are found in the wild, including
upconverted Excel 97-specific variants.

XM/Sofa uses a slightly different infection mechanism, putting the BOOK.XLT
file into the alternate startup directory. When an infected file is opened, the virus
changes the caption at the top of the screen to “Microsofa Excel” instead of the
normal “Microsoft Excel”. XF/Paix, however, excited a surprising amount of short-
term interest when it appeared early in 1998, considering that it didn’t spread far
outside France. Paix was mildly interesting in that it used an Excel 4.0 formula
rather than a VBA macro—hence the use of the XF prefix rather than XM.

X97M.Papa.A was intended as a macro worm, although it is not viable because
of a bug in the macro code. X97M.Papa.B, however, is a viable worm, mass-mailing
itself to addresses in Outlook’s address books. The mail arrives with the following
subject line:

L 13-6 Fwd: Workbook from all.net and Fred Cohen

The body of the email text was intended to circumvent Excel’s built-in macro
virus protection (such as it is), and reads as follows:

3 9 2 V i r u s e s R e v e a l e d

Urgent info inside. Disregard macro warning.

The payload, which is triggered randomly, involves using the ping utility to
repeatedly check two different IP addresses, thus creating the possibility of a mild
denial of service (DoS) attack through its potential impact on the network.

On every 24th April at 14:00 (2 P.M.), X97M/Barisada.A prompts the infected
user to answer a question or it threatens to clear the cells in the current spreadsheet.
However, the payload does not work as intended.

There are far fewer Excel viruses than there are Word viruses, and fairly common
viruses such as Barisada tend to inspire less interest than their Word equivalents,
perhaps because fewer people routinely use spreadsheets.

Variations on a Theme
There is, essentially, only one intentionally programmed WM/Cap, although WM/
CopyCap is very closely based on Cap. However, there are many variants. How
can this be? A variant can be generated “accidentally” in a number of ways without
deliberate human intervention. These scenarios are not restricted to Office viruses or
to macro viruses in general, or even to PC platforms, but the activities are particularly
noticeable and prevalent in WordBasic, though VBA macros may also mate with
each other. The following are some of the possible scenarios:

� Where more than one virus infection exists on a single system, it is sometimes
possible for them to mate. Mating between macro viruses is particularly likely
to happen if the two viruses incorporate one or more macros with the same name,
so that one virus copies the corresponding macro from the second virus. The
composite virus (if it remains viable) then infects other systems.

� A single virus may also acquire legitimate macros from the global template
(usually NORMAL.DOT) and copy them along with the viral macros during
subsequent infections.

� There are many ways of “disinfecting” a macro virus, one of the simplest and
least effective of which is simply to toggle the template bit so that macros are
left intact, but are unable to execute. This method is viable (if unforgivably
sloppy) in versions of Word up to and including Word 95 (Word 7), since
one of the distinctions between a document and a template is the ability to
run (but not contain) internal macros. More recent versions do not preserve this
distinction. A “better” product that checks more than just the template bit will

C h a p t e r 1 3 : C a s e S t u d i e s : T h e S e c o n d W a v e 3 9 3

report the presence of the virus, even though the virus is inactive unless the
template bit is flipped (turned back on). There are, however, other ways that
you might neutralize a document without completely removing the macro code.
Businesses that change their primary anti-virus product fairly regularly find
that a document thought to have been disinfected suddenly triggers an alert in
a new product (or, less often, a new upgrade to an old product). Characteristically,
this alert will not result in identification of the original virus. The alert is likely
to report that a document contains “traces of WM/xyz”, is “like WM/xyz”,
or is even an “unknown variant of WM/xyz”.

� An incompletely disinfected macro virus may not only leave traces, but leave
whole macros intact. Such a circumstance can arise when the disinfecting
scanner misidentifies a virus. Indeed, it has been suggested that problems with
disinfection associated with certain scanners partially accelerated the initial
explosive growth of the Word virus phenomenon. In this scenario, anti-virus
software that takes a generic approach and discards any detected macro has an
advantage. Publishers of virus-specific scanners, however, generally prefer to
keep the baby, even if it means keeping some of the bath water, and assume
that the virus victim might have legitimate macros and other customizations
that he or she might want to keep.

� We all know, of course, that viruses are the creations of “misunderstood genius”.
However, it appears that even a genius can occasionally write imperfect
replication code, so that under certain circumstances some component macros
are not copied to the next generation. This can result in a “devolved” variant.
If the loss of macros stops the virus from functioning, the resulting “nonviable
devolved virus” is normally still detected, and the scanner may still refer to it
as a “virus”, even though it no longer replicates. Sometimes, not all the blame
attaches to the virus author. In Word 6 and 7, I/O (input/output) errors during
macro copying are likely to result in corrupted macro copies. In fact, in a
highly recommended series of articles on macro viruses published in Virus
Bulletin in late 1999, Igor Muttik suggested that the 200 or so WM/NPad
variants were all the result of such corruption by copy errors. NPad was seen
extensively around the same time as Cap.

� VBA versions 5 and 6 are not susceptible to the same copy errors; they are not
immune to the “mating” mechanism, however, where two viruses use the same
class module. Again, the resulting cocktails may have a variety of effects. VBA
errors resulting from conflicting calls to the same functions may result in a
nonviable virus. On the other hand, a viable hybrid may be produced and
continue to replicate.

3 9 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

Word 97
Office 97 brought a slight respite in the virus war, though virus writers were
experimenting with the new requirements of Visual Basic for Applications before
the application left beta testing. Any hope that the renovated VBA technology, and the
improved native measures for detecting the presence of macros and customizations,
would prove a major obstacle to the generation and spread of viruses proved ill founded.

WM97/Class was first identified in summer 1998, and was found in the wild shortly
thereafter. While some WordBasic viruses had achieved a measure of polymorphism,
Class managed to refine the technique. W97M/Ethan proved once more that simplicity
is no barrier to viral success. W97M/Marker added data leakage to the mix: it mailed
summary information to the Codebreakers site. W97M/Caligula developed this theme
a little further, by leaking PGP-related information. While this leakage didn’t constitute a
major security breach, it was close enough to make people nervous. W97M/ColdApe
was remarkable only in that it targeted Nick FitzGerald, former editor of Virus Bulletin
and an outspoken critic of VX immorality and incompetence. ColdApe infected
through the AddFromString operator, but also dropped the VBScript virus Happy,
and used Outlook to mail a somewhat saucy message to FitzGerald.

Thank You for Sharing
In some ways, though, the most significant macro virus of this period was another
WordBasic virus. Technically, WM/ShareFun was mediocre; however, its importance
does not lie in its internal complexity, or lack thereof, but in its use of social
engineering and email as aids to dissemination. With the benefit of hindsight, the
virus appears to be a sort of precursor to Melissa, which itself is a bridge between
the macro viruses of yesteryear and the worms of today.

ShareFun passed from document to document within Word in an unremarkable
manner. However, its payload was rather more interesting. On a machine running
Microsoft Mail, ShareFun would attempt to mail itself to three randomly selected
mail addresses from the victim’s list of correspondents. If it succeeded, the next
potential victim would receive a message headed “You have GOT to read this!”, with
an infected file enclosed as an attachment. (Nowadays, even comparative newcomers
to computing are becoming aware that trusting the sender doesn’t mean you have to
trust the attachment, but that message was, at that time, still hard to convey.) ShareFun
did not, of itself, make huge waves. However, other virus writers had taken note.

C h a p t e r 1 3 : C a s e S t u d i e s : T h e S e c o n d W a v e 3 9 5

Macro Virus Nomenclature
Virus nomenclature has always been a sensitive issue, because of the lack of
standards. Where a “standard” naming system (most often that implemented by the
Computer Antivirus Research Organization, or CARO) is imposed retrospectively,
it is rarely universally adopted by vendors, let alone anyone else. VBS/LoveLetter.A
continues to be known as the Lovebug (or Love bug, or Love Bug), and who remembers
the real name of the Kournikova worm? (The answer is VBS/VBSWG.J@mm, should you
find yourself asked this question on a quiz show.)

However, there is a logic behind the standard(ish) naming system applied to
macro viruses. Names have three main parts: the platform identifier (followed by
a slash, /), the family name (e.g., Cap), followed by a period and the variant suffix.
The platform identifier indicates the vulnerable application. The variant suffix is a
guide to the exact variant in question. The first known version of the virus usually
has the suffix .A, and subsequent variants proceed alphabetically to .Z, then start
again at .AA. A number is appended to a devolved variant, as in WM/Rapi.A1, for
example. Macro viruses that are also considered to be worms may also have an
“-mm” (mass mailer) suffix appended, as in the case of W97M/Melissa.U-mm.
Where a variant replicates only under a specific language version of Word, a country
code preceded by a colon may be appended, as in WM/Boom.A:de, which replicates
only under the German version of Word 6.

Table 13-1 is by no means all-inclusive (or universally used), and includes only
Office macro viruses. It doesn’t include other common prefixes, such as VBS (for
VBScript), JS (for JavaScript), or other suffixes such as .HLL (high-level language),

3 9 6 V i r u s e s R e v e a l e d

Platform Identifier What It Denotes Example
WM WordBasic macro WM/Cap.A

XM Excel macro (VBA 3) XM/Laroux.A

A97M Access 97 macro A97M/AccessiV

W97M Word 97 macro W97M/Marker.AD

X97M Excel 97 macro X97M/Laroux.NU

O97M Office 97 macro (infects all
applications running VBA)

097M/Tristate.A

Table 13-1 Common Platform Identifiers

C h a p t e r 1 3 : C a s e S t u d i e s : T h e S e c o n d W a v e 3 9 7

.HLLC (C language), @M (mailborne virus), or @MM (Mass Mailer). A web
page giving a number of conventions used by Symantec can be found at

http://www.symantec.com/avcenter/venc/vnameinfo.html

But it must be stressed that the conventions used by this vendor are not exactly the
same as those used by others, and there is no true universal standard.

Anti-Macro Techniques
Macro viruses presented unique virus management problems in the mid-1990s.
Basic detection techniques did not work quite so well in this area as they had done
in previous contexts:

� One approach that immediately became obsolete was checksumming.
Documents are not necessarily designed to be static. Obviously, they change
while they’re under development. Furthermore, the development lifetime of
some types of documents might extend over many years, while an archived
document that could be considered static in itself might be hauled out of cold
storage to serve as a pattern for a different document. In some environments,
attempts were made to check Word .DOT (template) files regularly for changes.
However, Word makes changes in NORMAL.DOT, the default template file,
every time the user changes a setting, allowing lots of scope for false alarms.
In fact, many checksummers (change detector programs) do not have an option
for checking files of a type not usually considered to be an executable file—such
as any Word document or template. Other generic techniques such as behaviour
monitoring and blocking have similar problems, though heuristic analysis has
proved comparatively successful in detecting unknown macro viruses.

� On-demand scanners are now routinely upgraded to scan .DOC and .DOT files
and recognize known macro viruses and Trojans. However, Office has never
relied on filename extensions. Even in MS-DOS (there was a series of versions
of Word for DOS), data files are not required to have an approved extension,
or any extension at all. On some operating systems (Mac OS and UNIX,
for instance), filename extensions have no special meaning to the operating
system at all. Macro viruses rendered the “executables-only” on-demand scan
conceptually obsolete, though scanners still offer a choice and rarely use “scan

all files” as a default. Scanning data files introduced substantial overhead to any
on-demand scanning (scanning that you specifically call up from the command
line or by double-clicking on a program icon). This overhead became less of an
issue as memory-resident scanning under Windows became more common. DOS
TSR (memory-resident) scanners were never very effective in this context. In
general, they detect a subset of possible viruses—otherwise, just about any disk
I/O would slow the whole system while opened files were checked for all known
viruses, a problem aggravated by the limited memory available to a DOS
application. One of the more obvious advantages of a Windows environment
is that it acts as a “DOS extender”, allowing an application access to
extended memory.

� Polymorphic viruses, which cannot be detected with a simple scan string,
present a particular memory and processing overhead problem for TSR
scanners. Again, this issue has become less significant as more people use
Windows VxDs to do on-access or concurrent scanning.

In fact, there are very simple expedients that would eliminate most of this new
subclass of virus. (These are general principles and apply as much to WordPerfect
for DOS, for example, as to Word 6 or Visual Basic for Applications.)

� Don’t allow code to run automatically if you cannot trust it. (So would there
ever be a time when you could trust auto macros?)

� Don’t run any macro unless you know what it does.

Unfortunately, both of these expedients have problems:

� Many corporate applications rely on running macros of one sort or another.
If even one of these is an auto macro, disabling automatic macros becomes
a major problem.

� There is no simple command for turning off auto macros, let alone macros in
general, which are a fundamental part of the Word infrastructure. However,
later versions of Word make it possible to display a dialog box warning if a
document contains macros and offering a choice of opening with or without
macro execution (or not opening at all). In fact, this dialog box is an installation
default, though it is far too easy to disable permanently. There are, of course,
ways of hardening Word with third-party applications that detect and/or block
macros. Padgett Peterson’s MacroList, for example, is a free utility; a macro-based

3 9 8 V i r u s e s R e v e a l e d

C h a p t e r 1 3 : C a s e S t u d i e s : T h e S e c o n d W a v e 3 9 9

generic tool available at http://www.freivald.org/~padgett/. (Padgett is also the
author of the highly regarded DiskSecure, available at the same site.)

� We are not much in favour of running untrusted macros (especially unreadable
macros), or, in fact, reading any untrusted documents without some sort of
checking. However, it’s not always practical to enforce a policy of the
following sort:

1. Where practical, disable auto macros on all machines.
2. Establish guidelines as to what constitutes trusted and untrusted documents

and sources.
3. Check all untrusted documents on a sheepdip PC (just as you would check

an unvalidated program file). (Sheepdip machines have declined drastically
in popularity in recent years. They represent a major processing bottleneck,
an intrusive and obstructive anti-virus tool at its worst. The rise of the
on-access scanner has made this unpopular measure less necessary.)

4. Strictly control any exchange of documents. (Even before VBScript worms
became hot news, it was becoming unsafe to assume that anything received
from a given individual was knowingly sent by that individual.)

5. Enforce access control where considered necessary by using appropriate
software, so that only authorized diskettes can be used on critical machines.
(Keep in mind, however, that such access control is an extension of the
sheepdip principle, and subject to similar problems.)

6. Conduct training in virus control and general security issues.

Jimmy Kuo of Network Associates has published an excellent collection of free
macro anti-virus techniques, both in Virus Bulletin and elsewhere:

http://download.nai.com/products/media/vil/pdf/free_AV_tips_techniques.pdf

Hare
The rise of the macro virus did not result in the disappearance of older virus classes.
Hare was a multipartite, stealth, memory-resident, polymorphic virus. This sounds
pretty scary, but in fact, it was, comparatively, a damp squib. Its social impact was
out of proportion to its actual spread.

On 26th and 29th June, 1996, several forged posts with Hare-infected attachments
were posted to USENET. Since the target newsgroups included groups where erotic

material was commonly posted, victims were often assumed to be pornographers,
perverts, and pirates. Of course, this assumption ignored the fact that, irrespective
of how a virus is launched originally, its subsequent spread cannot be controlled
or predicted.

On 22nd August and 22nd September, when the system was booted for the first
time, diskettes in drives A and B were to be erased, as were the contents of drive C.
However, despite the astonishing media attention it received, the principle interest
in Hare lies in the comparative thinness of its spread.

Chernobyl (CIH.Spacefiller)
There is still no known virus that causes incontrovertible damage to hardware, though
we are not about to say that such damage could never happen under any circumstances.
However, the PC virus CIH can cause comparable damage to firmware.

NOTE

If the virus’s name is CIH, why is this section titled “Chernobyl”? Because we figured that anyone
looking for information on this specific virus might, thanks to the media, look for it under that specific
name. The virus actually acquired this name retrospectively. It was first identified in summer 1998,
and was most commonly referred to as CIH. Later, a particular vendor’s marketing department
noticed that one of its variants would trigger on 26th April ,1999, the 13th anniversary of the
infamous meltdown at a Russian nuclear power plant, and started to use the name as a hook to catch
public and media interest. In fact, there are several versions of CIH, and others trigger on 26th June or
the 26th of any month. Nonetheless, the name has stuck, and a recent book has perpetuated the small
but irritating myth that the virus author specifically chose the date to commemorate the meltdown.
The name of the virus actually derives from the initials of its author, Chen Ing-Hau.

CIH is a Portable Executable (PE) infector. (PE is the format used by 32-bit
Windows programs under Windows 9x, Me, NT, and 2000.) Apart from the matter
of its trigger date, it has a particularly interesting feature. The Chernobyl variant
includes a highly destructive two-fold payload. Part of Chernobyl’s payload that
makes recovery difficult is quite commonplace: it overwrites the first 2,048 sectors
of each hard disk with random data. However, the virus also takes advantage of a
vulnerability in PCs that use flash ROM BIOS technology (as most do nowadays).

Flash ROM technology allows a computer user to implement BIOS upgrades and
bug fixes without specialist skills or hardware. However, CIH takes advantage of
this capability to rewrite part of the system’s internal bootstrapping routine—actually,
the virus rewrites only a single byte, but this is enough to invalidate the boot block

4 0 0 V i r u s e s R e v e a l e d

and prevent a vulnerable machine from booting at all. This problem is independent
of damage to the hard disk, and booting from a system diskette doesn’t help. The
machine cannot boot at all until the BIOS is replaced. In some systems, the cost of
replacing a soldered chip is probably higher than replacing the motherboard. However,
this part of the payload can only trigger under very specific circumstances, including
an appropriate combination of chipset and ROM, and the availability of a programming
voltage. A jumper setting often enables the voltage on the motherboard. The setting
can be used for protection, but the default is often to enable the voltage. After all, PC
users may be happy to reflash ROM from diskette, but not to dive under the hood
and change jumper settings. Systems (such as many Compaq machines) that restrict
the initial boot code to a read-only stub have an advantage here, in that the machine
can still get far enough into the boot process to be reflashed. This arrangement
is also safer in the event of a mishap, such as a power outage, while flashing is
in progress.

Esperanto
The Esperanto virus is less interesting for what it does than for what it has been
claimed to do. This virus can infect a wide range of file types, depending on the
environment, including the following:

� DOS .COM files

� DOS .EXE files

� Windows 3.x NewEXE files

� Windows 95 PE .EXE files

� Windows NT PE .EXE files

However, it was by no means the first Portable Executable infector: that dubious
honour goes to Boza.

In the unlikely event of its infecting without corrupting the host file, Esperanto is
intended to trigger on 26th July, when it displays the following poem:

[Esperanto, by Mister Sandman/29A]
Never mind your culture / Ne gravas via kulturo,
Esperanto will go beyond it / Esperanto preterpasos gxin;
Never mind the differences / ne gravas la diferencoj,

C h a p t e r 1 3 : C a s e S t u d i e s : T h e S e c o n d W a v e 4 0 1

Esperanto will overcome them / Esperanto superos ilin.
Never mind your processor / Ne gravas via procesoro,
Esperanto will work in it / Esperanto funkcios sub gxi;
Never mind your platform / Ne gravas via platformo,
Esperanto will infect it / Esperanto infektos gxin.
Now not only a human language, but also a virus...
Turning impossible into possible, Esperanto.

Esperanto has also been credited with being the first and only virus (macro
viruses excepted) that infects Macintoshes as well as PCs. It appears that the author
embedded a mangled version of the Mac virus MDEF into the body of the PC virus.
The chances of it actually infecting a Macintosh system are slightly less than our
chance of turning this book into a Hollywood screenplay.

Esperanto has also been described as multipartite. This description is probably
more defensible: it is both a file infector and a hoax.

Summary
Some of the viruses reviewed in this chapter are seen comparatively rarely today.
Nevertheless, macro viruses continue to be a major problem, even if they are no longer
the main problem. The techniques developed by virus writers reviewed in this chapter
helped to shape the malware that dominates the present-day virus scene.

The next and final chapter on case studies takes us up to the present day and to the
dominance of the fast-burning mass mailer.

4 0 2 V i r u s e s R e v e a l e d

CHAPTER

14
Case Studies: Turning the
Worm (the Third Wave)

403

IN THIS CHAPTER:
The AutoStart Worm
W97M/Melissa (Mailissa)
W32/Happy99 (Ska), the Value-Added Virus
PrettyPark
Keeping to the Script
VBS/Freelink
I Wrote a Letter to My Love—VBS/LoveLetter
VBS/NewLove-A
Call 911!
VBS/Stages
BubbleBoy and KAKworm
MTX (Matrix, Apology)
Naked Wife
W32/Navidad
W32/Hybris
VBS/VBSWG.J@mm (Anna Kournikova)
VBS/Staple.a@mm
Linux Worms
Lindose (Winux)
W32/Magistr@mm
BadTrans

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

4 0 4 V i r u s e s R e v e a l e d

In Chapters 2 and 13, we gave a great deal of attention to macro viruses. Clearly,
the existence of macro virus technology is not a threat that conveniently went
away as soon as the Age of the Worm began. It is true that as worms and email

viruses have become more common, macro viruses have declined in “market share”.
A similar phenomenon was observed as macro viruses became more prevalent and
boot-sector viruses declined. However, the cases are not quite the same. Boot-sector
viruses were always a minority interest, being harder to write than file viruses. They
were more successful in the wild, so more recorded virus incidents involved boot-
sector infectors (BSIs), but fewer were written. New macro viruses and variants,
however, continue to be commonplace.

Macro viruses were an order of magnitude easier to write, and did not lose that
advantage when mail viruses kicked in. Indeed, as we’ve already indicated, there is
a close relationship between Visual Basic for Applications, the language of choice
for recent macro viruses, and VBScript, the Visual Basic scripting language in which
many worms are written. Later in this chapter we will examine this relationship a
little further. We will also examine Melissa, the macro virus/worm hybrid whose
appearance marked a watershed in email virus development, and perhaps was the
first “fast burner”. Before that, however, we examine a worm whose origins lie in a
field outside the mainstream of virus development, being neither a macro virus nor
PC-based. It was one of the first indications that worms were no longer restricted to
big corporate server systems.

The AutoStart Worm
AutoStart 9805 is usually considered to be a worm, rather than a virus—that is, it
replicates by copying itself, but doesn’t attach itself parasitically to a host program.
It affects only Power Macs; earlier models running a 68KB series Motorola CPU
cannot run the replicative code. The original took hold rapidly in Hong Kong and
Taiwan in April 1998, and, along with five later variants, subsequently spread
worldwide.

AutoStart does not require a particular version of Mac OS, the Macintosh operating
system, but it does require that QuickTime 2.0 or later be installed, and that CD-ROM
AutoPlay be enabled in the QuickTime Settings control panel. Disabling AutoPlay
on a clean system removes the vulnerability, though it doesn’t help significantly on
a system that is already infected, and the Disable option exists only in version 2.5 or

TE
AM
FL
Y

Team-Fly®

later. Also, infection can still take place if the system is booted from a volume with
an infected Extensions folder.

The AutoPlay setting enables a program contained on a CD to be launched when
the CD is inserted. CDs are not the only possible transmission media; any HFS
(Hierarchical File System) or HFS+ volume (hard disk, diskette, zipdisk, or even
disk images) can carry the infective program. However, audio CDs cannot carry
the infection, and it is not necessary to disable Audio CD AutoPlay in the QT
(QuickTime) control panel.

Infected media contain an invisible application file named DB, BD, or DELDB
in the root directory. Macintosh files include a file type identifier, in this case APPL,
and a creator field, in this case ????.

This is an AutoStart file; it will run automatically if CD-ROM AutoPlay is enabled.
If the host Mac isn’t already infected, the worm copies itself to the Extensions folder.
The new copy is renamed Desktop Print Spooler, Desktop Printer Spooler, or
DELDesktop Print Spooler, respectively (changing the file type to APPE). Unlike
files with the legitimate Desktop Printer Spooler extension, the worm file has the
invisible attribute set, and isn’t listed as a running process by the system software,
although the file can be seen with Process Watcher or Macsbug.

Initially, the most noticeable symptom of an infected system is that it will lock up
and churn with unexplained disk activity every 6, 10, or 30 minutes. This happens
because the system is rebooted after infection, and the worm launches every subsequent
time the system restarts. The disk activity matches the intervals at which the worm
examines mounted volumes to see if they’re infected; if they aren’t, the worm writes
itself to the root directory and sets up.

Most versions of AutoStart attack data. Files with names ending data, cod, or
csa are targeted if the data fork is larger than 100 bytes. The worm also attacks 2MB
files with names ending dat. AutoStart damages files by overwriting the data fork
(up to the first megabyte) with garbage.

AutoStart 9805-B can cause irreparable damage to files of type JPEG, TIFF, and
EPSF. AutoStart 9805-C and AutoStart 9805-D do not intentionally damage data.

The July 1998 edition of Virus Bulletin included a comprehensive analysis of
AutoStart and some of its variants. CIAC Bulletin I-067 was based on Eugene
Spafford’s information release on the original AutoStart worm, and can still be
found at http://www.ciac.org/, though the information contained in quick-response
virus advisories can become outdated quite rapidly.

AutoStart is notable for being the only Macintosh malware to be featured on the
otherwise PC-centric WildList. However, David Harley is working with the WildList
Organization on a MacWildList to track Mac-specific and crossplatform malware.

C h a p t e r 1 4 : C a s e S t u d i e s : T u r n i n g t h e W o r m (t h e T h i r d W a v e) 4 0 5

W97M/Melissa (Mailissa)
She came from alt.sex.

Now, as the old joke goes, that we have your attention ...
In this instance, though, the lure of sex was certainly employed to launch the

virus into the wild, and the statement is literally true. The source of the infestation
of the Melissa Word macro virus (more formally identified as some variation on
W97M/Melissa) was a posting on the Usenet newsgroup alt.sex. The message had
an attachment, a Word document, and the posting suggested that this document
contained account names and passwords for web sites carrying salacious material.
As one might expect in such a newsgroup, a number of people read the document,
which actually carried a macro that used the functions of Microsoft Word and the
Microsoft Outlook mailer program to reproduce and spread itself—rather successfully,
as it turns out. Melissa is not the fastest burning email-aware malware to date, but it
certainly held the record for a while.

Many mail programs, in the name of convenience, were by this time becoming
more and more automated. Much of this automation focused on running attached
files, or scripting functions included in HTML-formatted messages, without
requiring the intervention of the victim. (HTML, HyperText Markup Language, is
the data structure for web pages.) Padgett Peterson, author of MacroList, one of the
best available macro virus protection tools, has stated, “For years we have been
saying you could not get a virus just by opening E-Mail. That bug is being fixed”.

Consider Her Ways
To be susceptible to the effects of Melissa, a victim needed to be running Microsoft
Word 97 or later and Microsoft Outlook 98 or later. It was also necessary to receive
an infected file and read it into Word without disabling the macro capability. However,
all of these conditions are normal for many users. Microsoft, like any software publisher
(and yes, that does include anti-virus vendors), is in the business of locking customers
into an upgrade cycle. Receiving infected documents has never been a problem, from
WM/Concept onwards. Melissa increased the likelihood that any given user would
eventually receive an infected document by the sheer volume of reproduction of copies.
However, by judicious social engineering, the virus also increased the chances of
persuading a victim to open an infected document. Many mail programs will now detect
the type of a file from its extension and start the appropriate program automatically.
If you need to simply look at MS Word documents, a document viewer is available
(free, as it happens) from Microsoft, which will not execute most macros, thereby

4 0 6 V i r u s e s R e v e a l e d

protecting your system from infection. But you need to download and install the
program, and make it your default “reader” for .DOC files. Microsoft’s stranglehold
on the corporate market seriously reduces the possibility of computer users taking
the trouble to implement this solution.

On execution, the virus first checks to see whether an infectable version of Word
is running. If so, Melissa reduces the level of the security on Word so that it will not
display any future warnings regarding macro content. Under Word 2000, the virus
blocks access to the menu item that allows you to raise your security level and sets
your macro virus detection to the lowest level—that is, none. Restoring the security
level requires the deletion of the NORMAL.DOT file and the consequent loss of
legitimate macros and customizations.

The virus checks for the Registry key HKEY_CURRENT_USER\Software\
Microsoft\Office\Melissa?\ with a value of “... by Kwyjibo”. (The “Kwyjibo” entry
seems to be a reference to the “Bart the Genius” episode of The Simpsons television
cartoon program where Bart Simpson used this word to win a Scrabble match.) If
Melissa does not find that key, the macro starts up Outlook and sends itself as an
attachment to the “top” 50 names in each of your address lists. Most people have
only one (the default is “Contacts”), but if you have more than one, then Outlook
will send more than 50 copies of the message. Outlook also sorts address lists so
that other mailing lists are at the top of the list. In addition, if you have a Microsoft
Exchange Server, the macro can send copies to the “global” address lists on the
server. Therefore, a single infected machine may distribute far more than 50 copies
of the message/virus in the next “hop”.

Infection Versus Dispersal
Like most macro viruses, Melissa works by infecting the global template, then
infecting all documents thereafter. Each document created or reviewed is infected
when closed. Each infected document activates the macro when the file is opened.
Avoiding Outlook does not offer protection from the virus; it only means that the 50
copies will not be sent out automatically. If you use Word but not Outlook, you can
still be infected, and can still send out infected documents on your own.

The virus cannot invoke the mass-mailer-dispersal mechanism on Macintosh systems,
but it can be stored and re-sent from Macs. There was a great deal of confusion when
it was reported in early 2001 that Melissa had now “become” a Mac problem. David
Harley posted the following information to a number of Macintosh resources:

A number of people on Mac-related lists have been misled by a news report
at ZDnet suggesting that a new variant of Melissa has been found that targets

C h a p t e r 1 4 : C a s e S t u d i e s : T u r n i n g t h e W o r m (t h e T h i r d W a v e) 4 0 7

Macs. This is a travesty. The virus concerned is a common variant of Melissa.
Since Melissa is a macro virus (or virus/worm hybrid, if you prefer) any
variant may be infective (to a degree) on a Mac, but the mass mailing
component only works in Windows. This variant is no more or less a
danger to Mac users than the others, in principle.

However, there is an issue. It turns out that an accidental (minor) change
in the Office 2001 document format means that many scanners have not
consistently been able to detect macro viruses in documents saved in 2001
format. This affects PC scanners as much as it does Mac products.

Sans Souci
As with any Word macro virus, the source code travels with the infection, and
so it was very easy to create modifications to Melissa. Many Melissa variants with
different subjects and messages began showing up shortly after the original virus
appeared. The first similar Excel macro virus was called Papa, though this and its
progeny have never had the same global impact as Melissa. In fact, the source code
was more than usually widely published, in newsgroups, on the Web, and elsewhere.

In one distressing instance, a major security organization issued a “flash advisory”
including a range of information of varying quality and relevance. Unfortunately,
it also included the entire source code, trivially modified so that it would not run
without some tweaking. We understand that some security people view the question
of whether or not to publish substantial virus code differently than most people in
the anti-virus community, who are usually opposed to the practice. Indeed, we
will return to the full disclosure/nondisclosure debate in Part IV of this book.

Nevertheless, we consider the inclusion of the source code irresponsible and
inept, not only because it made the virus source code available to individuals who
might not otherwise have seen it, but because of those very modifications. While the
changes might have defeated the most terminally clueless of aspirant virus writers, it
would require only minimal understanding of VBA programming to restore the code
to functionality. It gets worse, however: the changes which were made effectively
turned the virus into an intended or nonviable virus. Restoring its functionality
would probably not restore the original virus, except possibly by accident. Instead,
it would create a variant. We doubt that the organization in question intended to
encourage systems administrators, the primary audience of the advisory, to create new
viruses, but it did unfortunately provide them with the means to do so.

4 0 8 V i r u s e s R e v e a l e d

C h a p t e r 1 4 : C a s e S t u d i e s : T u r n i n g t h e W o r m (t h e T h i r d W a v e) 4 0 9

Furthermore, it was already known that the “Dark Side” kept track of the mailing
list; indeed, someone had already distributed a spoofed version of the organization’s
newsletter not long before, using the organization’s own mailing list.

The Commercial Virus
At the height of Melissa mania, one rather appalling discussion took place on an Internet
marketing newsletter, in which the editor was exalting this new marketing tool, seeing it
as a kind of automatic spam. This idea, or something very similar, was taken up in due
course in the UK press. We are not aware that anyone has actually gone so far as using
an actual virus as a marketing tool, though chain letters and spam certainly invite
comparison with “memetic viruses”. Sooner or later, though, we fear that someone
will try. Such use of viruses is being referred to as “viral marketing”, though nowadays
the term also refers to such variations as services that are free as long as the user accepts
advertising material along with the service. We hope that any organization that would
go so far as to use a real virus as a marketing tool would gain only some short-term
notoriety at the expense of losing all its credibility. However, the worst consequence
of these discussions is that gradually they extend the borders of acceptability. Such
issues as implementing program code that covertly modifies the Registry to include
an advertisement or that passes information back to a remote site are increasingly
regarded with indifference.

A classic example is the automatic insertion of an advertising type signature block
that encourages the recipient to visit a specific web site to sign up for the free email,
as is prevalent with services such as Hotmail and Yahoo! mail. Entrepreneur Magazine
printed an enlightening article by Mark Henricks on viral marketing , titled “Viral
Marketing: You Want to Catch This ‘Bug’” (May 2000, pages 96–103). Henricks
cites an example of a company that (very profitably) used “viral marketing” to force
recipients of its client’s encrypted messages to visit the company’s web site—
presumably to decrypt the message. No wonder that an article at the time
asserted that “Melissa is a marketing tool”.

I Used to Love Her (But It’s All Over Now?)
As with many more recent mail-borne nuisances, a number of fixes, such as sendmail
and procmail recipes for mail servers and mail filtering systems, were devised very
quickly. However, these fixes were often not fully tested or debugged. One version
would trap most of the warning messages about Melissa. Mail filters can, of course,

4 1 0 V i r u s e s R e v e a l e d

become problems themselves. In the initial mailing of Robert Slade’s contemporary
report on the virus, the message was bounced from one system because of an automated
filter that interpreted it as a “hoax” virus warning.

Melissa was something of a nine-day wonder. The massive infection hit over a
single weekend and, almost immediately everyone learned how to protect against
the virus and the clones that quickly followed. (Of course, everyone knows how to
protect against Form, but it still turns up in the field, after more than ten years.)

Mail-based viral programs have always had a serious impact. In 1987 there was
CHRISTMA EXEC, in 1988 the Internet Worm, and in 1989 H.COM and WANK.
These viruses were all spread on and between mainframe and minicomputer systems,
but had rather startling similarities to Melissa, including short lifetimes. A problem
so obvious tends to be identified and dealt with in short order. However, the explosive
growth of simple data communications technology presents new opportunities for viral
infection and spread. A slow infector could be started on a web page and then sent
around via email, carrying a logic bomb set to go off on a specific future date. A simple
mail virus could itself do serious damage in the short term. Melissa shut down email
contact for many companies using the Microsoft Exchange Server for mail. Properly
timed, the release of just such a program could be part of a sabotage campaign against
either a corporate or a military target. The association with salacious sites could be used
as black propaganda against a victim. Furthermore, viruses like Melissa may send
sensitive internal information out on a quick trip around the world when a confidential
document is first opened after infection.

W32/Happy99 (Ska), the Value-Added Virus
Happy99 is another good example of the success of the mail-borne approach to viral
dissemination: it has spread very widely by sending itself out as an email attachment
whenever it infects a system. In this case, however, the virus is actually a full-blown
Windows application, not a macro or script virus. When run, it shows a “fireworks
display” claimed to commemorate New Year’s Day 1999. Spanska, the virus’s author,
has observed in alt.comp.virus that he likes to give his victims something interesting
to look at while he infects their systems. Indeed, he was a frequent poster to the
newsgroup at one time, and even contributed to some useful debates on ethics and
morality that attracted input from both sides of the Black Hat/White Hat divide.

When Happy99 infects, it modifies WSOCK32.DLL. After the modified .DLL
runs, then each time an email is sent, a second message—including a copy of the
worm as an attachment—is sent to the same recipient at the same time. The worm’s
presence is easy to detect (apart from the graphics). The original WSOCK32.DLL is

copied to a file called WSOCK32.SKA, and a file called LISTE.SKA is created,
containing a list of the addresses to which the infective mail has been sent. This list
is meant to ensure that the worm is mailed to each correspondent only once. Files
called SKA.EXE and SKA.DLL are also dropped when the system is infected.

Happy99 is kind of interesting. For a virus, it’s almost cuddly: it isn’t intentionally
destructive, it’s fairly easy to recover from (even without anti-virus software), and it
has some visual interest, which may explain why it continued to spread long after
New Year’s Day 1999. And it doesn’t even use sex as a hook.

PrettyPark
PrettyPark is versatile: not only is it a worm, it also steals passwords and has backdoor
functionality. PrettyPark had become widespread by the summer of 1999, and variants
also continue to be widely seen. Something of a resurgence of panic arose the following
year when a version appeared that some anti-virus products could not detect. Although
this version was not essentially a new variant, the executable had been packed
somewhere along the line. Packing is a form of compression; however, unlike
archive formats such as zip files created by compression utilities such as WinZip,
packed files are ready-to-run executables that take up less space than their unpacked
version. They do not have to be extracted, and differ from self-extracting files. A
self-extracting file’s function is to extract itself, not to run the application. In the case
of a packed file, part of the file is decompressed into memory in the execution of the
application; decompression is not a separate function.

PrettyPark arrives as an email attachment called the Pretty Park.Exe file. The file
icon represents a character from the South Park cartoon series. PrettyPark’s staying
power is impressive, given that it contains no significant social engineering. The
nearest it gets is to offer the unexplained attachment filename C:\CoolProgs\Pretty
Park.exe.

On execution and self-installation as \Windows\System\FILES32.VXD,
PrettyPark mails itself out to addresses in the Windows Address Book. It also mails
certain Internet Relay Chat (IRC) servers with system settings and password
information, and modifies the Registry setting as follows:

HKEY_CLASSES_ROOT

exefile\shell\open\command

This modification ensures that FILES32.VXD runs whenever any .EXE file is
executed. This has ugly side-effects when anti-virus software is updated on an

C h a p t e r 1 4 : C a s e S t u d i e s : T u r n i n g t h e W o r m (t h e T h i r d W a v e) 4 1 1

4 1 2 V i r u s e s R e v e a l e d

infected system. Memory-resident anti-virus software normally blocks access to
applications that it recognizes as virus-infected or malicious. If the memory-resident
software is unable to disinfect or remove the program itself, the victim may be unable
to use an on-demand scanner to disinfect if the scanner itself is an .EXE file, since
the memory resident software is probably unable to get past FILES32.VXD to execute
the scanner. Even if this were not the case, scanners do not reliably reverse Registry
settings. If a victim removes FILES32.VXD without amending the Registry, it
still is not possible to run .EXE files. As with many more recent worms and viruses,
removing PrettyPark from an infected system may require manual intervention by a
knowledgeable individual, rather than just point-and-click disinfection. Increasingly,
vendors are having to make available one-shot disinfection utilities with step-by-step
instructions for removal, and often with the sort of detail they would prefer to keep
from their customers and the prying eyes of virus authors. These utilities range from
simple .REG files to reverse Registry changes, to complex applications run from the
MS-DOS command line. Indeed, we often find it easier to clean worm-infested
systems with an assortment of command-line utilities than with the installed
Windows anti-virus applications.

The PrettyPark backdoor allows a remote machine to create and remove directories,
and to send, receive, delete, and execute files. However, this functionality is rarely
reported to have been exploited. Later in its history, the worm was sometimes found
to be infected with unrelated file viruses.

Keeping to the Script
Script viruses started in a small way. VBS/First is an unsophisticated overwriting
virus that appeared towards the end of 1998, and is not particularly interesting, from
a technical standpoint. VBS/First.B added a little camouflage, to conceal the fact
that it shelled to DOS. VBS/First.C was minimally bipartite: it infected VBS and
JavaScript files. VBS/First has one other interesting feature: on the 15th day of
any given month, it tries to connect to a VX site.

VBS/Seven.A was not an overwriter. However, it added a type of payload that
became almost a VBS virus standard within two years: it included a time bomb
that overwrote all .DOC and .TXT files with a graphic.

VBS/Internal infects HTML files using an infective Visual Basic script. For the
script to execute, the victim must be running a VBScript-aware browser. VBS/Luser.A

added self-encryption to the mix. JS/Charlene and VBS/Charlene try to infect over
the Internet, as well as locally, using vulnerabilities in Internet Explorer. VBS/Hopper
infected VBScript, Word, and HTML files.

These were small beginnings, but the genie was finding his way out of the bottle.
For more information on early VBS viruses, a useful resource is Katrin Tocheva’s
article “From VBS to VBA” (Virus Bulletin, March 1999). Marius van Oers
considered some of the technical issues associated with VBS in “Automating
MS Outlook VBScript” (Virus Bulletin Conference Proceedings, 1999).

VBS/Freelink
VBS/Freelink is an email worm, found in Europe in July 1999, which used encryption
similar to that of VBS/Luser (VBS/Zulu). The worm arrived as email with the subject
line “Check this” and an attachment called Links.VBS. The body of the message
contains the following text:

Have fun with these links.

Bye.

If the victim accepts the invitation and the worm is executed, an encrypted script
called RUNDLL.VBS is dropped into C:\Windows\System. The script modifies the
Registry to execute RUNDLL.VBS each time the system is started. A dialog box
now displays the following text:

This will add a shortcut to free XXX links on your desktop. Do you want

to continue?

Clicking on Yes creates a shortcut called FREE XXX LINKS on the desktop,
pointing to http://www.sublimedirectory.com. If there are any mapped network
shares, the worm is copied to the root of each share.

The worm uses Outlook to mass-mail itself to every address in all address books.
In an attempt at camouflage, the infective messages sent out by the worm are removed
from the victim’s Sent Mail folder.

After restart, Links.vbs is dropped to the Windows directory. If mIRC or Pirch98
(IRC chat clients) are found, the script modifies their .INI files so that the worm is
spread when the victim accesses an IRC channel.

C h a p t e r 1 4 : C a s e S t u d i e s : T u r n i n g t h e W o r m (t h e T h i r d W a v e) 4 1 3

I Wrote a Letter to My Love—VBS/LoveLetter
The Love Bug, as it will probably always be known, first hit the nets on 3rd May, 2000.
It spread rapidly, arguably faster than Melissa had done the previous year. However,
the Love Bug was not particularly sophisticated.

NOTE

Harley first became aware of the Love Bug early one morning when a customer reported receiving
an attachment containing gibberish. (One of the advantages of working in an environment where
Outlook was not commonly used as a mail client is that the client that was used, could not interpret
the program.) The Help Desk analyst who received the call, realizing that “gibberish” might indicate
program code, referred the call to Harley. Sure enough, cursory inspection of the code indicated
that the attachment was clearly meant to be infective. Harley forwarded a sample to an AV vendor
and prepared for an interesting day.

The original Love Bug came in an email with a subject line of “I LOVE YOU”.
The message consisted of a short note urging you to read the attached love letter.
The attachment filename, LOVE-LETTER-FOR-YOU.TXT.vbs, was a fairly
obvious piece of social engineering. The .TXT bit was supposed to make people
think that the attachment was a text file and, thus, safe to read. At that point, many
people had no idea that a .VBS extension indicates a Visual Basic script, and, in any
case might not have been aware that if a filename has a double extension, only the
last extension has any special significance to Windows. Putting vbs in lowercase was
also likely meant to play down the extension’s significance. However Windows, like
DOS before it, is not case sensitive.

If you clicked on the attachment, nothing much happened—unless you happened
to have Windows 98, Windows 2000, Internet Explorer 5, or Outlook 5. Since most
users have a combination of these applications, clicking the attachment had an effect
for most recipients. If any of those applications (or a few others) are present, then
Windows Script Host (WSH) will also be on your machine, and you will have a file
association binding the .VBS extension to wscript.exe. In that case, WSH would
read and interpret the contents of the “love letter”.

The infection mechanism included the installation of some files in the Windows
and System directories. These files were just copies of the original .VBS file, in one
case keeping the name of LOVE-LETTER-FOR-YOU.TXT.vbs, but in other cases
renaming files (to MSKERNEL32.vbs and WIN32DLL.vbs) to fool people into
thinking that they were system files.

The virus made changes to the Registry so that these files would run when the
computer started up. Notice that the .VBS extensions kind of give the game away.

4 1 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

Nowadays, many organizations routinely quarantine or bounce files with a .VBS
extension (especially a double extension) at the mail gateway.

LoveLetter infects files with the extensions .VBS, .VBE, .JS, .JSE, .CSS, .WSH,
.SCT, .HTA, .JPG, .JPEG, .MP2, and .MP3. The infection routines search local
drives, but also all mounted networks, so shared directories can be an additional
source of infection. The routines overwrite most of these files with a copy of the
script (that is, the original file is not preserved anywhere, even though the new file
has a different name), and change the filenames from (for example) picture.jpg to
picture.jpg.vbs. In some cases, the virus simply deletes the original file. MPEGs,
however, are not overwritten. The original file, say song.mp3, is marked as hidden,
and a new file, song.mp3.vbs, is created with a copy of the virus. The .VBS
extension must, of course, be added for the virus to be effective.

Once the virus has copied itself all over a host machine, it starts to spread to
other machines. If Outlook is present, the virus will use any addresses found in any
address book associated with the mail program to send copies of itself to each of
those addresses (but only once). As with Melissa, this means that when you get a
copy of the Love Bug, it will appear to come from someone you know. In addition,
the program tries to make a connection to IRC, using the mIRC chat program, and

C h a p t e r 1 4 : C a s e S t u d i e s : T u r n i n g t h e W o r m (t h e T h i r d W a v e) 4 1 5

We Love Macs
Macintosh users were more or less immune to the Love Bug, since Mac OS has
no Windows Script Host. A number of infectees first realized they had a problem
when Mac users mailed their “admirers”, asking how to open the file. However,
the Mac community should not be too complacent. There have also been instances
where Mac users whose systems remained uninfected passed on infected
attachments. (We have referred to this previously as heterogeneous virus
transmission.) In some instances, a Mac user has forwarded the attachment to a
PC user, asking that PC user to open and print the attachment for them. David
Harley sometimes refers to this as “Wormhausen-by-Proxy Syndrome”. However,
passive forwarding of attachments is not the only way in which a Macintosh user
can be implicated in the spread of PC-specific script viruses. As discussed shortly,
when we consider KAK and BubbleBoy, the use of HTML- aware browsers allows
scripts to be invisibly embedded in the body of a message. In this scenario, simply
forwarding the unedited text spreads the worm quite effectively, perhaps not quite
as efficiently as Good Times, but at a rate too great for comfort.

spread that way. The Love Bug creates another copy of the file, LOVE-LETTER-
FOR-YOU.HTM, in the Windows System directory, and then sends that copy to
any user who joins the IRC channel while the session is active.

When a system is infected, the worm attempts to download a Trojan application
from a web site in the Philippines by changing the startup URL in Internet Explorer.
The file, named WIN-BUGSFIX.exe, will try to collect your various password files
and email them to an address in the Philippines. If the file is executed, the Trojan
also creates a hidden window called BAROK and remains resident and active in
memory. However, this site was probably overloaded in the early hours of the Love
Bug infection, and was quickly taken down.

A very large number of Love Bug “cleaners” were made available (the same was
true for the AutoStart Mac worm, incidentally). Interestingly, most of them were
Visual Basic scripts themselves. Unfortunately, at least two variants of the virus
pretended to be disinfecting tools and did more damage than the original virus.

Since the virus is an unencrypted script file, it carries its own source code with it,
which meant that variants started appearing within hours. Over a dozen were reported
during the weekend after the virus first struck, and many more have been observed
since. One of the more successful of these variants thanked the recipient for the order
of a Mother’s Day gift, and claimed that the recipient’s credit card had been charged
$326.92 as per an attached invoice. Obviously, this ruse relied on people being too
angry to think about how anybody could charge their credit card when they had not
given the number to a vendor. The invoice, of course, was no such thing, merely a
modified version of the original script. The variants showed a certain amount of
innovation in the field of social engineering, if not in the actual code. One derivative
targets UNIX systems using shell scripts, but uses a very similar mechanism.

There are estimates of damage stemming from Love Bug in the billions of dollars,
but justifying such figures would be very difficult. Certainly, a number of email
systems were clogged, including those of some very large organizations. Many
administrators shut down mail entirely, rather than resort to the work of filtering.
In addition, the resetting of Registry entries is likely to be somewhat time-consuming.
Text in the virus includes the string “Manila, Philippines”.

The code also contains the two Philippine email addresses and the web site’s
URL. It doesn’t take too much brain power to figure out that somebody in the
Philippines might have some information about the origins of the bug. However,
the Manila Department of Justice eventually dropped all charges against the
long-suspected culprit.

4 1 6 V i r u s e s R e v e a l e d

C h a p t e r 1 4 : C a s e S t u d i e s : T u r n i n g t h e W o r m (t h e T h i r d W a v e) 4 1 7

VBS/NewLove-A
NewLove is an ugly little VB Script worm that has a number of aliases, including
VBS/Loveletter.Gen, SPAMMER, and Herbie. NewLove is a polymorphic Visual
Basic Script worm that changes its appearance in an attempt to avoid detection. Not
only does the body of the script change, but the worm randomly chooses a filename
in your Windows\Recent folder and attempts to forward itself to all addresses in the
Microsoft Outlook address book. The name of the file it forwards remains the same
as that of the randomly chosen file, but the worm appends a .VBS filename extension.
(Thus, MYFILE.DOC becomes MYFILE.DOC.VBS.) The filename attached will have
one of the following extensions, which makes filtering by extension comparatively
simple: indeed, any organization with extensive mail-filtering would probably
cover most of these combinations (and might well discard or quarantine all .VBS
files in any case). And, of course, disabling the Windows Scripting Host pretty
much removes the problem in any case.

� BMP.VBS

� DOC.VBS

� GIF.VBS

� HTM.VBS

� JPG.VBS

� MDB.VBS

� MOV.VBS

� MP3.VBS

� TXT.VBS

� URL.VBS

� XLS.VBS

The message has the subject line: “FW: filename”, where filename is the name of
the file it is forwarding, less the .VBS extension. The message itself contains no text.
The worm attempts to truncate all files on local and remote drives to a zero-byte file.

The worm increases in size each time it infects, so it could, in principle, have a
heavy impact on mail servers. However, the effect of the virus on the real world

4 1 8 V i r u s e s R e v e a l e d

proved far less than its reputation would suggest. Many email systems had been
configured to deal with such a close relative of the Love Bug, but the press were
glad of another chance to show off their newly acquired virus knowledge.

Call 911!
The first announcement concerning the BAT/W95/911/Chode/Firkin worm was made
on 1st April: the coincidence of its date and the inept manner of its announcement led
many to assume it to be an April Fool’s joke. A slightly hysterical FBI advisory on
this virus was widely distributed by other organizations. Because of its apocalyptic
tone and relentless use of uppercase “shouting” throughout the message, and the fact
that the message exhorted its recipients in classic chain-letter fashion to pass it on,
many people took it for a hoax.

This virus can also be spread via the Microsoft Windows networking “share”
function, when a resource connected to a local area network, a drive, folder, file, or
printer is set so that it is “readable” by anyone who accesses it. The 911 worm looks for
resources such that remote users have write permissions as well as read permissions.

When the virus finds a likely host, it tries to copy a number of files to it, including
some that will ensure that the virus executes at next boot time. After completing the
infection routine, the virus may display a message on the local machine, or it may
format a range of hard drives. Interestingly, the current version seems to avoid deleting
itself in the damage process. The worm may delete other files at specific times. It
may also attempt to place a call to 911 through the modem. Since the infection and
spread tend to be localized to one network, a major infestation in a given area could
have had some serious consequences for emergency services.

The best protection against a threat like this is to turn down the level of access to
your shares, or to turn off the share function altogether. On both Windows NT and
9x, bring up the control panel, either through the My Computer icon or under the
Settings entry on the Start menu. On Windows 9x, select the Network icon. Under
the Configuration tab, the File and Print Sharing button allows you to disable access
to files and printers. Under the Access Control tab, you can do a bit more tuning, but
it takes some work. On Windows NT, you can check what shares have been created
under the control panel, by clicking Server, then Shares, but restricting access is
somewhat more complicated.

The virus creates hidden directories on the local hard disk, with directory names
of chode, foreskin, or dickhair. Secondary infections were logged in C:\PROGRAM
FILES\chode\chode.txt or c:\PROGRAM FILES\foreskin\cool.txt. Infected computers
contained the files ASHIELD.EXE and ASHIELD.PIF somewhere.

On an infected system, on the 19th of each month, a .VBS script deletes files from
C:\Windows, C:\Windows\System, C:\Windows\Command, and the root directory.
It then displays two message boxes:

� You Have Been Infected By Chode

� You may now turn this piece of sh*t off!

Manual disinfection is usually possible by removing these directories and files,
where they exist:

� C:\Program Files\Chode

� C:\Program Files\Foreskin

� C:\Windows\Start menu\Programs\Startup\Ashield.pif

� C:\Windows\Start menu\Programs\Startup\Netstat.pif

� C:\Windows\Start menu\Programs\Startup\Winsock.vbs

VBS/Stages
VBS/Stages, also known as I-Worm.Scrapworm and IRC/Stages.ini, among other
names, spread via Pirch, mIRC (both Internet chat clients), email, and mapped network
drives. If it arrived by email, it displayed the following characteristics:

� The subject line is a combination of three variable terms. The first term is always
“FW:” or blank. The second term is always one of the following: “Life stages”,
“Funny”, or “Jokes”. The third term is either “text” or blank.

� The message always contains the text “The mail and female stages of life”.

� The attachment is always called LIFE_STAGES.TXT.SHS.

The .SHS extension denotes a Windows scrap object, a file that can, in principle,
be any kind of file. Windows Explorer does not show the .SHS file extension,
irrespective of whether file extensions are set to be displayed. If you check the file
under Properties, its type is shown as Scrap Object, but the Properties box and the
General tab show its name as LIFE_STAGES.TXT. However, the MS-DOS name is
shown in 8.3 format (LIFE_S~1.SHS), and the DOS DIR command shows the full
filename, complete with the .SHS extension. It is possible to change this behaviour

C h a p t e r 1 4 : C a s e S t u d i e s : T u r n i n g t h e W o r m (t h e T h i r d W a v e) 4 1 9

by editing the Registry entry HKEY_CLASSES_ROOT\ShellScrap from
“NeverShowExt”= to “AlwaysShowExt”. Remember, however, that a subsequent
virus could quite possibly change the entry back. (We gave details about testing the
visibility of the ShellScrap extensions in Chapter 6.)

The “Stages of Life” name derives from the text file displayed while the virus
installs itself. This text consists of an extended joke. The following extract gives
some of the flavour:

Age. Seduction Lines.

17 My parents are away for the weekend.

25 My girlfriend is away for the weekend.

35 My fiancee is away for the weekend.

48 My wife is away for the weekend.

66 My second wife is dead.

The virus moves REGEDIT.EXE to the recycle bin and renames it REGEDIT.VXD,
and modifies the Registry to use the relocated file. It also creates a handful of files with
fixed names, such as C:\Windows\System\Scanreg.vbs, and spreads over all available
drives a number of others with randomly generated names. Random filenames are built.
First, the name begins with one of the following words:

� IMPORTANT

� INFO

� REPORT

� SECRET

� UNKNOWN

This is followed by a hyphen or an underscore character, then a random number
between 0 and 999, then .TXT.SHS. A typical filename would therefore be something
like INFO_97.TXT.SHS.

BubbleBoy and KAKworm
In reports about Melissa, many references were made to the mythical and
nonexistent Good Times virus. Simply reading the text of a message still cannot
infect a system, with a rather important exception. BubbleBoy and JS/KAK take
advantage of a security hole in older, unpatched versions of Internet Explorer and

4 2 0 V i r u s e s R e v e a l e d

Outlook that allows two ActiveX controls (scriptlet.typelib and Eyedog) to run at an
inappropriate level of trust. This vulnerability allows a script virus embedded within
the body of a mail message to infect a system without attaching a separate file.

Infective email arrives with the subject line “BubbleBoy is back!” The message
contains the following text:

The BubbleBoy incident, pictures and sounds

http://www.towns.com/dorms/tom/bblboy.htm

It also contains an embedded HTML file containing the viral VBScript. The
message has no attachment. If the recipient is using MS Outlook, the script is executed
when he or she opens the email. In Outlook Express, the script can be run from the
preview pane as well.

BubbleBoy drops a file called UPDATE.HTA into the Windows start-up
directory. When the system next starts up, this file runs and edits the system Registry.
The virus then mails a copy of itself, using Outlook, to every address in the Outlook
address books.

BubbleBoy was a proof-of-concept virus rather than a serious threat in the field.
While JS/KAK employed used the same concept, it had a much greater impact. The
worm is embedded in an email message as an HTML signature. The recipient of
the message doesn’t see any evidence of the script running, because it contains no
displayable text, but the script is run if he or she opens or previews the message. The
file KAK.HTA is dropped into the Windows\Start Menu\Programs\Startup folder.
The next time the system starts, KAK.HTA creates C:\WINDOWS\ KAK.HTM and
modifies Outlook Express Registry settings so that KAK.HTM is included as a
signature in all outgoing messages. On the first day of any month, after 5 P.M., the
worm displays the message “Kagou-Anti-Kro$oft says not today” and shuts
Windows down.

Microsoft Security Bulletin (MS99-032), originally posted on 31st August, 1999,
has information on patching the scriptlet.typelib/Eyedog vulnerabilities in Internet
Explorer 4.0 and 5.0.

MTX (Matrix, Apology)
MTX is a particularly unpleasant piece of malware. It consists of three main
components: a worm, a parasitic virus, and a backdoor Trojan. The virus decompresses
and installs both the worm and the backdoor onto the system, then infects. The backdoor

C h a p t e r 1 4 : C a s e S t u d i e s : T u r n i n g t h e W o r m (t h e T h i r d W a v e) 4 2 1

4 2 2 V i r u s e s R e v e a l e d

downloads and spawns plug-in components, then infects 32-bit Windows
executables, which can usually be disinfected. It is common to find 60–70 or more
infected files when the virus has taken hold. Oddly, the worm cannot infect the
system on its own: it spreads because it is itself infected by the virus, which installs
the worm when executed. The virus code contains the following strings:

Software provide by [MATRiX] VX TeAm: Ultras, Mort, Nbk, LOrd DArk,

Del_Armg0, Anaktos

Greetz: All VX guy in #virus and Vecna for help us

Visit us at:

http://www.coderz.net/matrix

The worm and backdoor components contain similar (but not identical) text.
So as to make detection and disinfection more difficult, the virus component uses

EPO (Entry Point Obscuring) technology. The entry point for the virus code is not
at the infected program’s entry point, as would be expected from a prepending virus,
but further inside the code block. When the virus code executes, it decrypts itself,
then checks the Win32 kernel for the Win32 API functions needed in order to proceed.
It also checks for the presence of a number of anti-virus programs and exits if any of
them are found. Otherwise, it installs three decompressed files to the Windows directory:

� IE_PACK.EXE is the worm itself.

� WIN32.DLL is also the worm, but is infected by the virus component.

� MTX_.EXE is the backdoor.

The virus then infects Portable Executables in a number of directories,
characteristically Windows and Windows\System, before exiting. In our experience,
60 or more executables may be infected.

The worm uses a replication mechanism similar to that used by Happy99. It modifies
C:\Windows\System\WSOCK32.DLL so that a copy of the worm is sent in a second
message (unknown to the sender) that follows each legitimate mail message sent.
Since the WSOCK32 file controls the connection to the Internet, the victim is also
prevented from visiting a number of Internet sites and from sending email to the
same domains, mostly anti-virus and other informational sites. The virus detects
them by using four-character combinations such as the following:

C h a p t e r 1 4 : C a s e S t u d i e s : T u r n i n g t h e W o r m (t h e T h i r d W a v e) 4 2 3

afee mapl pand yman

avp. nai. soph

f-se ndmi tbav

lywa nii. yenn

The worm also blocks any attempt to send email messages to the following domains,
which include a number of anti-virus vendor sites or other informational sites.

bca.com.nz* f-secure.c* maple.com.* perfectsup*

beyond.com* HiServ.com* mcafee.com* singnet.co*

bmcd.com.a* hiserv.com* meditrade.* sophos.com*

cellco.com* il.esafe.c* metro.ch* successful*

comkom.co.* inexar.com* netsales.n* symantec.c*

complex.is* inforamp.n* newell.com* trendmicro*

earthlink.* mabex.com * pandasoftw* wildlist.o*

These measures make it difficult for the victim to obtain help or anti-virus
updates, so as to deal with the infection. Even with up-to-date anti-virus software,
disinfection can be awkward and time-consuming. It is often best done with a
command-line scanner, booting from DOS, so that the virus is not active in memory.
Infected files cannot always be safely disinfected, and must be replaced from .CAB
(cabinet) files (usually compressed system files) or other sources. Files dropped or
modified by the worm, as opposed to those infected by the virus, usually have to be
deleted and, in the case of modified files such as WSOCK32.DLL, replaced.

NOTE

One of the originators of the worm may have felt some subsequent remorse, or a need for some
PR-related damage limitation. At any rate, a page was put up suggesting ways of getting around
the blocking of some vendor web sites, notably by using IP addresses in URLs rather than domain
names. However, when we checked recently, the page had disappeared.

When the worm mails itself out, the target address receives two messages: the
original message, written by the sender, followed by a message with no subject or
message text. The second includes an attached file that contains one of the names
that is selected by the worm, based on the current date:

ALANIS_Screen_Saver.SCR

ANTI_CIH.EXE

AVP_Updates.EXE

BILL_GATES_PIECE.JPG.pif

BLINK_182.MP3.pif

FEITICEIRA_NUA.JPG.pif

FREE_xxx_sites.TXT.pif

FUCKING_WITH_DOGS.SCR

Geocities_Free_sites.TXT.pif

HANSON.SCR

I_am_sorry.DOC.pif

I_wanna_see_YOU.TXT.pif

INTERNET_SECURITY_FORUM.DOC.pif

IS_LINUX_GOOD_ENOUGH!.TXT.pif

JIMI_HMNDRIX.MP3.pif

LOVE_LETTER_FOR_YOU.TXT.pif

MATRiX_2_is_OUT.SCR

MATRiX_Screen_Saver.SCR

Me_nude.AVI.pif

METALLICA_SONG.MP3.pif

NEW_NAPSTER_site.TXT.pif

NEW_playboy_Screen_saver.SCR

Protect_your_credit.HTML.pif

QI_TEST.EXE

READER_DIGEST_LETTER.TXT.pif

README.TXT.pif

SEICHO-NO-IE.EXE

Sorry_about_yesterday.DOC.pif

TIAZINHA.JPG.pif

WIN_$100_NOW.DOC.pif

YOU_are_FAT!.TXT.pif

zipped_files.EXE

4 2 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 4 : C a s e S t u d i e s : T u r n i n g t h e W o r m (t h e T h i r d W a v e) 4 2 5

Naked Wife
W32/Naked (W32.HLLW.JibJab@MM) is a worm written in Visual Basic (actual
VB, not VBScript or Visual Basic for Applications). It cannot execute unless the
Visual Basic 6.0 or later run-time files are present.

The worm arrives as an email attachment called NakedWife.exe, and uses social
engineering techniques to persuade the victim to run it. If executed, the worm copies
itself to a temporary directory and displays a fake Flash movie window with a message
that reads “JibJab Loading”. However, no movie ever loads, and the worm proceeds
to mail itself to all the addresses in the Windows Address Book. It also tries to delete
all .COM, .DLL, .EXE, .BMP, and .INI files found under C:\Windows and C:\Windows\
System. Choosing the HELP|ABOUT menu in the Flash window displays a message
box that reads “You’re are now FUCKED! (C) 20001 by BGK (Bill Gates Killer)”.
The counterfeit Flash movie displays a logo like the one which belongs to JibJab
Media, Inc., based in New York. According to CNN, a JibJab executive was quoted
as saying that, “The virus did not come from the company and that the worm creator
likely used its logo to gain the trust of e-mailer readers”.

The message arrives with the subject “Fw: Naked Wife”. The body of the message
says, “My wife never look like that! ;-)”, and is signed with the sender’s name (though
without his or her knowledge, of course). The attached file, NakedWife.exe, is 70KB.

The worm itself is less interesting than the confusion concerning its origins, as
discussed in Chapter 15 and in the story found at the following URL:

http://www.cnn.com/2001/TECH/internet/03/07/virus.brazil.02/index.html

W32/Navidad
W32/Navidad is a mass-mailing worm that appeared around the beginning of November
2000. When it infects, the worm sends a copy of itself, via Outlook or any other MAPI
(Messaging Application Programming Interface) aware client, in reply to all incoming
messages that include a single attachment. The outgoing message has the same subject
line as the mail to which it poses as a response, and the worm is attached as a file called
NAVIDAD.EXE.

4 2 6 V i r u s e s R e v e a l e d

Responding only to mail that arrives with an attachment, thus indicating that the
user of the host system is already on attachment-exchanging terms with the sender of
the incoming mail, increases the likelihood that the recipient of the attachment will
open it. Bugs in the virus code, resulting in an inability to restart the infected system
properly, do not affect the worm’s ability to mail itself out, since the problem
doesn’t arise until after the system is rebooted.

When the worm infects, it displays an Error dialog box containing the letters UI.
Under a Windows 95 or Windows 98 system, the worm adds the following Registry key:

HKLM\SOFTWARE

\Microsoft\Windows\CurrentVersion\Run

\Win32BaseServiceMOD=\Windows\System\Winsvrc.exe

Under Windows NT or Windows 2000, the worm adds this key:

HKLM\SOFTWARE\

Microsoft\Windows\CurrentVersion\Run

Win32BaseServiceMOD=\Winnt\System32\Winsvrc.exe

However, when the worm is copied into \Windows\System (Windows 9x) or
\Winnt\System32 (NT or W2K), the new file is called WINSVRC.VXD, not
WINSVRC.EXE.

Under Windows 95 or Windows 98, the worm changes

HKEY_LOCAL_MACHINE\SOFTWARE\CLASSES

exefile\shell\open\command

and

HKEY_CLASSES_ROOT

\exefile\shell\open\command

to

\Windows\System\winsvrc.exe "%1" %*"

Under Windows NT or Windows 2000, the worm changes

HKEY_LOCAL_MACHINE\SOFTWARE\CLASSES

\exefile\shell\open\command

and

HKEY_CLASSES_ROOT

\exefile\shell\open\command

to

\Winnt\System32\winsvrc.exe "%1" %*"

The intention is to run the worm every time any other .EXE is launched. However, the
filename error effectively renders the PC unusable, since there is no WINSVRC.EXE.

Anti-virus software isn’t actually very good at removing the worm, once it infects;
in fact, it may be easier to copy regedit.exe to regedit.com so as to be able to edit the
Registry, reverse the changes, and delete the worm’s files, including WINSVRC.EXE,
WINSVRC.VXD, WINTASK.EXE, WINTASK.VXD, NAVIDAD.EXE, or
EMANUEL.EXE. The exact filenames vary according to whether the virus is the
original Navidad or the Emanuel variant, which corrects the filename error that makes
Navidad so obvious.

W32/Hybris
The Hybris worm started to make its mark in late September 2000. It’s disseminated
by an email message that is often but by no means always sent with a From: field of
hahaha@sexyfun.net. This address is actually forged to make it harder to trace the
infected source. However, the sexyfun.net domain was later set up and used as an
Hybris information resource. The worm may sometimes check the language settings
of the host computer and select a “story” relating to Snow White and the Seven
Dwarfs in English, French, Spanish, or Portuguese, used as message text to
accompany the copy of the worm when it is mailed out.

The attachment may have one of several different names, including, but not
limited to, the following:

� anpo porn(.scr

� atchim.exe

� branca de neve.scr

� dunga.scr

� dwarf4you.exe

C h a p t e r 1 4 : C a s e S t u d i e s : T u r n i n g t h e W o r m (t h e T h i r d W a v e) 4 2 7

� enano porno.exe

� joke.exe

� midgets.scr

� sexy virgin.scr

It may also come with a filename comprising a semirandom set of eight letters, of
which the first two and the last two always seem to be the same, in the same order,
such as abxxxxab.

When the worm attachment is executed, the WSOCK32.DLL file is modified or
replaced, so that it can track email and other Internet traffic. When the worm detects
an email address, it waits, then sends infected email to that address. It also connects
to alt.comp.virus and uploads encrypted plug-in modules to the group. If it finds
newer plug-ins, the worm downloads them for its own use. For several months,
alt.comp.virus was almost unusable because of the sheer number of plug-ins
clogging the group.

VBS/VBSWG.J@mm (Anna Kournikova)
This worm, also known as SST, Anna, Lee-O, or OnTheFly, appeared out of nowhere
on 12th February, 2001. The first indication of the problem came from MessageLabs,
which specializes in scanning email traffic on behalf of ISPs and other major corporate
customers, using multiple virus-specific scanners as well as generic tools. Shortly
afterwards, systems administrators in AVIEN (the Anti-Virus Information Exchange
Network) started to track the worm, and had blocked many thousands of infective
emails by the time most vendors had developed detection for it.

Anna is a VBS email worm generated using a virus creation kit. It was reported
subsequently that the worm’s author had been offered work and encouragement by
the mayor of his hometown, apparently on account of the author’s programming
skills. In fact, he didn’t write a line of code. He simply chose some menu options.

Infective mail arrives with an attachment called AnnaKournikova.jpg.vbs. The
message contains the following text:

Hi:

Check This!

The message has the following subject header:

Here you have, ;o)

4 2 8 V i r u s e s R e v e a l e d

This header made blocking infective mail a snap, even for systems administrators
who weren’t able to block by filename or filename extension.

On execution, the worm emails itself to everyone in the victim’s Microsoft Outlook
address book. On 26th January, the worm directs your web browser to a Dutch web
site, apparently chosen more or less at random, simply because it was a menu option.
The worm also creates the following Registry key:

HKEY_CURRENT_USER\Software\OnTheFly

It avoids sending infective mail more than once by setting the following key to 1:

HKEY_CURRENT_USER\Software\OnTheFly\mailed

VBS/Staple.a@mm
VBS/Staple is also known as Injustice or Justice. It is a Visual Basic script that
spreads by way of Outlook. Staple arrives attached to email with the subject “RE:
Injustice”. The message text reads:

Dear (name),

Did you send the attached message, I was not expecting this from you !

The attachment is called injustice.TXT.vbs; if executed, it copies itself to the
Windows\System directory and mails itself out to the first 50 names in the Outlook
Address Book, and to several other (mostly Israeli) email addresses, including:

� amuta@ehudbarak.co.il

� arie@kba.org

� doar@mof.gov.il

� doar@shaam.gov.il

� foundation@habonimdror.org

The virus updates a value in the Registry to ensure that a particular recipient
receives the email with the virus only once.

HKEY_CURRENT_USER\Software\Microsoft\WAB\"&malead,1,"REG_DWORD

C h a p t e r 1 4 : C a s e S t u d i e s : T u r n i n g t h e W o r m (t h e T h i r d W a v e) 4 2 9

A political message is displayed, followed by some URLs. The version shown next
has been snipped so as to give you the flavour without undue propaganda content:

PLEASE ACCEPT MY APOLOGIES FOR DISTURBING YOU.

Remember that one day YOU may be in this situation.

We need every possible help.

Israeli soldiers killed in cold blood 12 year old Palestinian child

Mohammad Al-Durra, as his father tried to protect him in vain with

his own body …... Similarly, approximately 40 children were slain,

without the media taking notice or covering these tragedies. THESE

CRIMINAL ACTS CANNOT BE FORGIVEN OR FORGOTTEN!!!!"

HELP US TO STOP THE BLOOD SHED!!

The code contains the following comment:

'Do not worry. This is a harmless virus. It will not do any thing to

your system.

'The intension is to help Palestinian people to live in PEASE in

their own land.

'S/N : 881844577469

Linux Worms
By spring 2001, a number of examples of Linux malware were indicating that anti-virus
researchers had not been joking when they argued that Linux users could not count
indefinitely on avoiding the attentions of virus authors. Interestingly, while the Windows
worms generally followed the CHRISTMA EXEC style of having users run the scripts
and programs, the new Linux worms are similar to the Internet/Morris/UNIX worm in
that they rely primarily on bugs in automatic networking software.

Ramen
The Ramen worm makes use of security vulnerabilities in default installations of
Red Hat Linux 6.2 and 7.0 (first edition) using specific versions of wu-ftp, rpc.statd,
and LPRng. The worm defaces web servers by replacing index.html, and scans for
other vulnerable systems. It does this initially by opening an ftp connection and

4 3 0 V i r u s e s R e v e a l e d

C h a p t e r 1 4 : C a s e S t u d i e s : T u r n i n g t h e W o r m (t h e T h i r d W a v e) 4 3 1

checking the remote system’s ftp banner message. If the system is vulnerable, the
worm uses one of the exploitable services to create a working directory, then
downloads a copy of itself from the local (attacking) system.

Compromised systems send out email messages to two Hotmail and Yahoo!
accounts, and ftp services are disabled. Ramen’s SYN scanning may disrupt network
services if the network supports multicasting.

Ramen is pretty much a proof-of-concept attack, since it makes no attempt to
conceal itself. However, similar attacks quickly followed Ramen.

Linux/Lion
Lion uses a buffer overflow vulnerability in the bind program to spread. When it
infects, Lion sends a copy of output from the ifconfig command, /etc/passwd and
/etc/shadow, to an email address in the china.com domain. Next the worm adds an
entry to etc/inetd.conf and restarts inetd. This entry allows Lion to download
components from a (now closed) web server located in China. Subsequently, Lion
scans random class B subnets in much the same way as Ramen, looking for vulnerable
hosts. The worm may install a rootkit onto infected systems. This backdoor disables
the syslogd daemon and adds a trojanized ssh (secure shell) daemon.

The worm replaces several system executables with modified versions:

� /bin/ls

� /bin/netstat

� /bin/ps

� /sbin/ifconfig

� /usr/bin/du

� /usr/bin/find

� /usr/bin/top

� /usr/sbin/in.fingerd

The files /bin/in.telnetd and /bin/mjy provide additional backdoor functionality
and attempt to conceal the rootkit’s presence by hiding files and processes.

Linux/Adore (Linux/Red)
Adore is a Linux worm, similar to Linux/Ramen and Linux/Lion. It uses
vulnerabilities in wu-ftpd, bind, lpd, and RPC.statd that enable an intruder to gain

4 3 2 V i r u s e s R e v e a l e d

root access and run unauthorized code. The worm attempts to send IP configuration
data, information about running processes, and copies of /etc/hosts and /etc/shadow
to email addresses in China. It also scans for class B IP addresses.

Adore drops a script called 0anacron into the /etc/cron.daily directory so that the
script runs as a daily cron job (the cron utility executes scheduled tasks at predetermined
times). This script removes the worm from the infected host. A trojanized version
that conceals the presence of the worm’s processes replaces the system program
/bin/ps, because the real ps program would show the processes.

Lindose (Winux)
Lindose is a proof-of-concept, cross-platform virus that can infect both Windows
PE and Linux ELF executables. At the time of writing, this virus has not been seen
in the field. While it does not look particularly likely that it will be, Lindose
is, perhaps, an indicator of things to come. If executed from Windows or Linux,
Lindose searches for and infects both PE and ELF executables. It is less unusual than
you might think to find both types of executables on the same system. Some Linux
versions can live on a DOS/Windows partition, and Windows emulators for Linux
are available.

Lindose infects ELF files by prepending the viral code. The virus infects PE files
by overwriting relocation data. If there is no relocation data section in the program,
or it is too small to accommodate the code, infection does not take place.

W32/Magistr@mm
Magistr is a memory-resident Win32 email worm/virus hybrid that was found in the
field in March 2001. It has a notably vicious payload: it may overwrite the contents
of hard disks with a vulgar message, and may corrupt flash BIOS in much the same
way as W95/CIH does. The virus is, unusually for one of its size, written in pure
assembly language. Its size derives from its unusual complexity: a similar program
in a high-level language would be quite a lot larger. Apart from the expected infection
and dissemination routines, a double polymorphic engine, and its payload mechanism,
Magistr incorporates a number of routines that make it harder to detect and remove.

The virus infects a file in the Windows directory and modifies the Registry and
WIN.INI so that the code is activated every time Windows starts up. It makes no

attempt to hand back control to the infected application. Magistr scans and infects
PE files, including both .EXE and .SCR files. Although the .SCR extension is normally
associated with Windows screensavers, .SCR files are essentially standard executables
and are run as such by Windows—hence the frequent use of .SCR as an extension
(sometimes following a harmless fake extension such as .JPG) for worms distributed
as email attachments. The virus spreads both to local directories and to shared volumes.
If it is able to find and write to the Windows directory on the remote machine, it
infects the remote system by modifying WIN.INI so that an infective file will be
executed at the next start-up.

The virus is not restricted to using Outlook to mail itself; it can also use Netscape
Messenger. Infected messages may have no subject or message text, but may have a
randomly constructed subject and message using text from .DOC and .TXT files found
on the system. Magistr may also use an internal dictionary of words and phrases in
several languages. The attachment is a file found and infected on the victim system,
so the virus is difficult to block by gateway filtering unless standard filtering practice
is to discard or quarantine attachments with an .EXE or .SCR filename extension.
The virus avoids mailing recently infected victims from a newly infected system by
maintaining an internal list of the last ten victims. The destructive payload triggers
one month after infection. Before that, the virus may prevent the victim from accessing
desktop icons by moving them away as the mouse cursor approaches. This less
destructive payload may have been suggested by joke and Trojan programs with
similar warheads, and may even be intended to suggest to the victim the presence of
a joke rather than destructive malware.

After the destructive payload triggers, the virus displays another vulgar message.
The virus code contains the following text:

ARF! ARF! I GOT YOU! v1rus: Judges Disemboweler. by: The Judges

Disemboweler. written in Malmo (Sweden)

Because the message attachment is a real file that has been infected, the filename
is that of a legitimate program. This became important in a false alarm, or hoax,
message that was prevalent while this book was in preparation. Many people were
warning each other about the file SULFNBK.EXE. Since it was a real file, found
in later versions of Windows, a number of people gave credence to the hoax, and
thought that they had been infected when they found the file. Most of the files thus
found, of course, were simply the original, uninfected, versions.

C h a p t e r 1 4 : C a s e S t u d i e s : T u r n i n g t h e W o r m (t h e T h i r d W a v e) 4 3 3

BadTrans
BadTrans is a Win32 email worm with backdoor functionality. It was found in the
wild in April 2001.

The worm uses MAPI functions to access and respond to unread messages (as does
ExploreZip). The Trojan component is a version of Hooker, a password-stealing
Trojan, and mails system information to ld8dl1@mailandnews.com.

On infection, the worm copies itself to \Windows as INETD.EXE and drops the
HKK32.EXE Trojan also to the Windows folder. The password stealer is executed,
then moved to the system directory as KERN32.EXE, dropping a keystroke-logging
DLL (Dynamic Link Library) at the same time. The worm modifies WIN.INI
(Windows 9x) or the Registry (Windows NT/2000) so that it is run on start-up.

When infective mail is sent, the worm randomly selects the attachment filename
from the following variants, some of them obviously influenced by previous worms:

� Card.pif

� docs.scr

� fun.pif

� hamster.ZIP.scr

� Humor.TXT.pif

� images.pif

� Me_nude.AVI.pif

� New_Napster_Site.DOC.scr

� news_doc.scr

� Pics.ZIP.scr

� README.TXT.pif

� s3msong.MP3.pif

� searchURL.scr

� SETUP.pif

� Sorry_about_yesterday.DOC.pif

� YOU_are_FAT!.TXT.pif

4 3 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

The subject field in worm messages is the same as in the original message,
preceded by “Re:” so that it appears to be a response to that message. The message
body also looks like a “reply” to the original, which the body quotes in full. At the
end of the quote, there is a single line:

> Take a look to the attachment.

The worm attempts to avoid answering the same mail twice, or answering its own
messages from other victim systems, by adding two spaces to the end of the subject
field and not responding to any mail with such a subject line. This mechanism is
unreliable, however, since mail servers are likely to discard trailing spaces. In this
event, an infective message received on a machine already infected will generate a
response from the local instance of the worm, thus initiating a potential loop. A loop
can also be initiated if the worm is unable to mark answered messages, as can happen
with certain mail clients. Such a loop can result in a mail server meltdown.

Summary
This chapter could have considered many other examples of malware. However, our
purpose in Chapters 12 to 14 was not to provide a complete encyclopaedia of malware,
interesting and instructive though such a project might be, but to look at innovative
features and trends. This chapter, we hope, has better equipped you to understand the
underlying technological and psychosocial mechanisms.

In accordance with our assertion that malicious software is as much a social problem
as a technical issue, the next section will focus on social issues rather than technology.

C h a p t e r 1 4 : C a s e S t u d i e s : T u r n i n g t h e W o r m (t h e T h i r d W a v e) 4 3 5

This page intentionally left blank.

PART

IV
Social Aspects

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

CHAPTER

15
Virus Origin

and Distribution

439

IN THIS CHAPTER:

Who Writes This Stuff?

Social Engineering

Social Engineering Definitions

Why Do They Write This Stuff?

Secondary Distribution

Does Education Work?

Global Education

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

On 8th March, 2001, CNN announced that “Tech firms disagree on source
of Naked Wife”. You can read the article at the following URL:

http://www.cnn.com/2001/TECH/internet/03/07/virus.brazil.02/index.html

Briefly, CNN reported from Sao Paulo that Brazilian and US anti-virus specialists
disagreed about the origin of the Naked Wife virus. Like the MTX virus in the
preceding autumn, this virus happened to spread across North America and Europe
while a major security conference was winding down (in this case, EICAR).
Symantec (in the US) reported that the virus appeared to have been written on
Monday 5th March on a personal computer owned by a company called AGF Brasil
Seguros, the Brazilian arm of a French insurance company, and registered to a user
named M. H. Santos. However, a Brazilian representative of McAfee said it was
certain the virus did not originate in Brazil, but from the United States. A representative
of Symantec in Brazil reported that the virus “could have possibly originated in
Brazil” but couldn’t confirm the involvement of a specific company. AGF Brasil
Seguros said in a press release that “The company found out about the incident
through press reports and is investigating them now”.

It would be nice to tell you where the virus really originated, but it seems to have
come and gone, leaving the anti-virus establishment and the public equally confused.
If you’ve read the case studies in the preceding chapters, you won’t be surprised that
anti-virus companies contradict each other, that victim companies are cagey about
their susceptibility to virus infection and distribution, or even that national pride
alters the onlooker’s viewpoint. What will probably be most obvious, though, is that
when it comes to virus dissemination, computer forensics seems to have regressed
since Alan Solomon and Fridrik Skulason analysed Brain and its siblings. Such a
regression is probably inevitable. Since then, more than 60,000 PC viruses have been
added to the VX arsenal. Even at the time Whale was discovered, researchers still
had time to play with its code. Nowadays, with multiple viruses appearing on a daily
basis, no one has the time, and only anti-virus marketing departments really care
about naming those possibly responsible.

A few years ago in alt.comp.virus, anti-virus people used to point to Christopher
Pile as an example of the terrible things that can happen to an unmasked virus
writer. Pile was convicted under the UK’s Computer Misuse Act and sentenced to
18 months’ imprisonment. After a while, pro-virus people started to jeer, “Isn’t
there anybody else?” They had a point. Virus writing is a comparatively low-risk
occupation, in terms of risk of discovery. No other high-profile virus-related trial
took place until the author of Melissa, David Smith, managed to attract the attention

4 4 0 V i r u s e s R e v e a l e d

of law enforcement agencies with the seriously disruptive and damaging impact of
his creation, and was obliging enough to leave the electronic equivalent of a footprint.
In fact, the importance of the GUID match in the infective document may have been
overrated: Smith seems to have been under police surveillance even before Richard
M. Smith (one of the founders of Phar Lap Software, and no relation to David)
suggested using GUID matches as a forensic tool. Somewhat inconsistently, Richard
M. Smith has subsequently cultivated a reputation as a crusader against privacy
abuse. Indeed, he had posted information about Microsoft’s hard-coding of hardware
information into Word documents some time previously as an illustration of privacy
abuse. Moreover, we have found in testing that the presence of the GUID information
in Word documents was somewhat inconsistent. Thus, the GUID match seems to
have afforded some confirmatory evidence, but might not have stood up so well if it
had been the only evidence.

Who Writes This Stuff?
There are certain widely known stereotypes. Every so often, it occurs to someone
(often very publicly) that those with the most to gain from an ever-increasing virus
glut are the vendors of anti-virus software.

NOTE

We are not necessarily among the biggest fans of the anti-virus industry. However, we have to
point out that if the industry, some representatives of whom are almost compulsively ethical,
turned its attention to virus creation and dissemination, the quality of code in the average virus
would improve drastically. Furthermore, who needs professionals when there are so many devoted
amateurs in the game?

In the anti-virus industry, quite a different stereotype reigns. The typical virus
writer, we are told, is young, almost invariably male, and tends to “grow out” of the
virus writing game as soon as he gets a real life. Anti-virus researchers tend to be
dismissive of the technical abilities of virus writers, a viewpoint with which we have
considerable sympathy. There exist virus writers who can write competent code;
there are many more who do not.

The industry’s lack of respect for the abilities of virus writers is well counterbalanced
by the media, who continue to be fascinated by the mythical boy genius running
rings around the incompetent anti-virus geeks and suits. Virus writers seem to like
this cliché too, and many go to some lengths to encourage the stereotype, whether or
not they believe in it. We suspect that a vociferous majority of wannabe virus writers

C h a p t e r 1 5 : V i r u s O r i g i n a n d D i s t r i b u t i o n 4 4 1

subscribe to the stereotype uncritically. The more competent virus authors tend to
monitor anti-virus technology as closely as anti-virus researchers watch malware,
and are generally less vocal about their views.

In fact, the undirected nature of virus epidemiological patterns means that tracing
an infection back to its original source is a little like tracing your ancestry back
through the aeons. Unless you have a little help from the Book of Genesis, you’re
unlikely to get back as far as Adam and Eve.

Unsurprisingly, there is little quantitative research available. Sarah Gordon, who
has written extensively in this area, has done some very capable qualitative and
ethnographic research, and her papers on “The Generic Virus Writer” are required
reading for anyone needing to understand this topic. Indeed, our heading for this
subsection is blatantly stolen from the title of one of her papers. “The Generic Virus
Writer” papers make heavy use of interviews with a handful of virus writers, and
challenge all the stereotypes described in this subsection. Many of Gordon’s papers
are available at http://www.badguys.org/papers.htm, and we recommend them.

Social Engineering
Naive and uninformed curiosity has been causing problems since Alice swallowed
the contents of a bottle labelled “Drink Me”. Nowadays, we have hostile applets
with a nice big button labelled “Click Me”, and Trojan horse programs that promise
interesting cultural experiences. There’s an element of social engineering in every
Trojan horse. Pornographic images are frequent carriers of viruses and Trojans in
some newsgroups. It’s often said (often by us) that viruses identifiable by subject
headers such as “Good Times” or “Join The Crew” are sheer fantasy, but the
ShareFun macro virus almost fit this description—it sent mail with the header “You
MUST read this!” and an infected Word document as an attachment. Such a header
is, of course, a nice piece of psychological manipulation later emulated by the Red
Team virus. In this latter case, an infected program is sent as an attachment to a
classic virus hoax alert. However, the attachment was claimed to be a cure for the
hoax virus. Many times in the past we have seen hoaxers subvert actual anti-virus
software by using it as a carrier for real viruses. Recent worms, except for the rarer
self-launching species, have used increasingly sophisticated social engineering
techniques to trick the victim into running malicious code.

We are not generally impressed by books that purport to be about viruses, but
consist largely of some thin chapters on viruses padded with some chapters on topics
that are included because the author thought he could write about them, not because
of their relevance to virus management. However, the term social engineering is

4 4 2 V i r u s e s R e v e a l e d

widely used in the context of worms and email viruses, yet poorly documented, and
we make no apology for exploring the subject in more detail.

Social engineering attracts such a range of definitions, covering such a variety of
activities (from password stealing, to scavenging through waste for useful information,
to spreading malicious misinformation) as to be confusing at best. The question is,
do accepted definitions of social engineering meet the needs of those tasked with
addressing this class of threat? The term originally derives from the social sciences,
but even there, it seems to have several shades of meaning.

While most managers and general users (and not a few security practitioners)
are still at the “Social engineering? What’s that?” stage, the bad guys are
cheerfully making use of psychological manipulation to subvert systems, and
the poachers turned gamekeepers are giving considerable attention to this type
of threat in conferences, training courses, and articles. They are not restricting
themselves to the password-stealing issue, and neither should we. We do not
advocate uncritical acceptance of bad guys past and present as the ultimate authorities
on what social engineering is and what we should do about it. Rather, we believe
that people should recognize there is a problem needing to be addressed, with
useful resource available.

In order to advance our understanding of the problem, it’s necessary to examine
some classic social engineering techniques and countermeasures. Formalizing the
problem makes it easier to work towards effective solutions, making use of realistic,
pragmatic policies. Effective implementation of such policies, however good they
are in themselves, is not possible without a thoughtful user education programme
and cooperation from management, and considerable attention should be paid to the
need to apply constructive social engineering to both management and users.

When David Harley first started talking about spam, hoaxes (especially hoax
virus alerts), and distribution of some real viruses and Trojan horses in the context
of social engineering, his approach was seen as somewhat controversial. However,
the method derived from the increasing recognition among some security practitioners
of a growth in the range and frequency of threats based on psychological manipulation.
Whether such threats qualify as social engineering might be an interesting topic for
debate, but is not a major issue as far as this book is concerned. What is important
here is that educational solutions to social engineering issues also equip computer
users to make better and more appropriate use of their systems in terms of general
security and safety.

The Tokyo Institute of Technology devotes considerable resources to social
engineering as an area of academic study. A 1996 paper by Noboru Hidano defines
the purpose of social engineering as resolving social problems, specifically by
“social recognition and measurement method, integrated theory of Psychology,

C h a p t e r 1 5 : V i r u s O r i g i n a n d D i s t r i b u t i o n 4 4 3

Sociology and Economics, spatial and social design theory, and people’s
participation and decision forum”.

A paper by J. J. Jacobs uses the definition “the discipline and quantitative
constraints of engineering ... applied to social legislation”. This describes rather
well the basis of laws that criminalize racial discrimination, for instance. However,
legislation has proved in practice a poor environment for the application of engineering
principles. As Jacobs pointed out, “The one engineering principle most often violated
is the obligation to recognize and acknowledge that the proposed process does not
work, and to learn from that experience”.

A paper by Ross Parish on the application of social engineering to the marketplace
echoes this theme. “The problem of evaluating programmes is compounded by the
tendency of governments and their agencies to attack any problem on a broad front
using several policies so it is difficult to disentangle the effects of any one of them
from those of the others”.

In malware management, we are already moving from too little recognition that
the social engineering problem exists, to a flurry of piecemeal attempts at resolution.
Clearly, we need to learn from past mistakes in the wide world of social legislation,
and attempt to deal with related problems in a holistic manner, rather than chipping
away at one problem at a time. Otherwise, we will inevitably fall foul of Peter
Rossi’s brass law of evaluation: “the more social programmes that are designed
to change individuals, the more likely net impact of the programme will be zero”.
(Peter Rossi, “The Iron Law of Evaluation and Other Metallic Rules”. Research
in Social Problems & Public Policy, Vol. 4 [1987], 3–20.)

Social Engineering Definitions
Here are a number of definitions of social engineering from a more vandal-oriented
perspective:

� “The skillfull (sic) manipulation of a governed population by misinformation
to produce a desired change”. —Keytel

� “Deceptive practices that attempt to obtain information from people using
social, business or technical discourse”. —SRI International

� “A method of ‘sounding’ information which is not generally accessible. Often,
perpetrators will pose as insiders by using pertinent keywords during conversations
and thus receive information useful for other purposes”. —Bundesamt für
Sicherheit in der Informationstechnik IT Baseline Protection Manual

4 4 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

� “social engineering n. Term used among crackers and samurai (hackers for
hire) for techniques that rely on weaknesses in wetware (people) rather than
hardware or software”. —Jargon File

� “The use of non-technical methods to obtain information”. —Ira Winkler

� “Plain old con games”. —Robert Slade

� “Psychological manipulation of an individual or set of individuals to produce
a desired effect on their behaviour”. —David Harley

Harley’s formal writings on this subject have made much use of the last definition,
since it allows consideration of a wider range of attacks: not just breaches of privacy
(attempts to steal passwords through primarily nontechnical means), but attacks on
the other cornerstones of IT security. It also has the advantage of allowing us to
reclaim the term and the methodology for user management. Let us consider the
classic tripod model of information security:

� Confidentiality/Privacy Information should be available only to those who
are entitled to it.

� Integrity Information should be protected against accidental or deliberate but
inappropriate modification.

� Availability Information should be available to those who are entitled to it
when they need it.

Social engineering is most often thought of as an attack on confidentiality (password
stealing). However, psychological manipulation can also be used as an attack on
integrity. Indirectly, password stealing can be a means of gaining unauthorized
access so as to effect unauthorized modification. We are using terminology here
borrowed from the UK Computer Misuse Act, but comparable terminology is used
in legislation worldwide. Social engineering can also be used directly as a means of
persuading/conning a mark (a victim or target) into introducing an inappropriate
modification. Most of today’s worm programmers gain access to a victim system by
tricking the victim into executing malicious code. The program then modifies the
host environment to facilitate the worm’s dissemination.

However, social engineering can also be seen as an attack on availability: for
instance, dissuading the victim from using a legitimate resource can be as effective a
denial of service (DoS) attack as flooding the target organization’s Internet gateway
with bad packets. Social engineering as described in the previous paragraph is also a
part of the process of flooding a mail server with worm-infested mail.

C h a p t e r 1 5 : V i r u s O r i g i n a n d D i s t r i b u t i o n 4 4 5

4 4 6 V i r u s e s R e v e a l e d

NOTE

We acknowledge here that we are making use of Simon Widlake’s distinction between worms and
viruses: “Viruses infect: worms infest”. This admittedly simplistic distinction between infection
and infestation is rather important. It’s the difference between the transparency of viral infection and
the worm writer’s characteristic need to trick the victim into actively running malicious code. Like
the Trojan victim, the worm victim must take the first step towards his or her own downfall. While
we dislike any image that encourages the quasidiabolical fantasies of self-aggrandizing vandals
with satanic nicknames, the worm really is rather like a vampire: it cannot enter uninvited.

Some virus writers attempt to maximize their creations’ chances of survival by
programming their viruses to replicate in a restrained manner (sparce infectors).
Other viruses are far more overt, and attempt to spread as far and fast as possible.
However, the fast infectors are not necessarily strongly reliant on social engineering
to reproduce, except as they might need it to kick-start themselves into the field in
the first place. We have lots of information on the file-to-file or system-to-system
infection mechanisms used by all common viruses. We know quite a bit about the
way in which certain individual viruses have been catapulted into the field, but these
are a minority, though a significant one:

� Tequila’s author probably did not intend the virus to spread. However, a friend
acquired a copy and infected his father’s master disks. Unfortunately, father
was a shareware vendor. The Swiss police arrested two people in connection
with the event.

� The AIDS Trojan diskette carried a Panamanian address that turned out to be
the real thing. Well, an extortionist has to have a drop box for his ill-gotten
gains. A man was arrested in the UK, but didn’t stand trial because he was
considered unfit to plead. (He was, however, tried and sentenced in absentia in
Italy. The incident is discussed in much more detail in Part III.)

� WM/Concept was probably written at Microsoft. It found its way onto at least
two official Microsoft CDs, among others. Harley recalls with some amusement
finding it infecting on-disk documentation for a trial version of a content-scanning
utility well known in anti-virus circles.

� Eugene Kaspersky wrote a fix for the original version of Concept in the form
of a Word template. The author of WM/Nuclear uploaded a version of the
same document infected with the new virus. The infected file was quickly
removed, as we remember, but collectors had already taken copies that were
soon freely available on VX sites, though Nuclear’s spread was far more
restricted than Concept’s.

C h a p t e r 1 5 : V i r u s O r i g i n a n d D i s t r i b u t i o n 4 4 7

� Hare-infected files were posted to USENET on 26th and 29th June, 1996,
and spread from there. The posts were forged, and the files posted were an
assortment of alleged utilities. Warez web sites and bulletin boards (where
pirate software is to be found) and newsgroups that allow the posting of binary
files (pirated and legitimate, pornographic or otherwise) have often been the
injection site for malicious software.

� The Black Baron (Christopher Pile) is reported to have uploaded infected files
(including an anti-virus utility) to public resources.

� According to Phil Schmauder’s less-than-competent book Virus Proof:
The Ultimate Guide to Protecting Your PC (Prima Publishing, 2000), macro
viruses are spread when “...the hacker would e-mail the document to multiple
recipients to spread the virus”. This is not, of course, normally the case. Most
macro viruses are received from innocent victims, not evil hackers with long
lists of potential victims. However, the author of Red Team did claim to be
disseminating the virus using spamming techniques—that is, mass mailing
to a precompiled list.

� More recently, the techniques used by the writer of Hybris include harvesting
email addresses from sources other than the victim’s address book (web cache
files and postings to alt.comp.virus, for example) and modifying headers to
make it harder to trace the sender’s real address. We should emphasize that in
the case of Hybris and other email worms, the sender is a victim of the virus,
not the perpetrator. The main issue here is not that it makes it harder to trace
the original source (though it does not help), but rather that it makes it harder
to let the sender know that he or she has an infection, since they may not be
readily identifiable.

We can trace other viruses back to their apparent source (the writer or distributor),
but not usually by tracking them back along a trail of infections. In most cases, we
don’t know exactly where the virus made the jump from the author’s PC to the wild,
and very few virus writers have even pretended to consider the question. However,
outside the realm of hoaxes, no one has yet figured out how to create malware that
can self-replicate or trigger without someone, somewhere, executing a program. Of
course, that person will often be the author, in the first instance, but not invariably;
surprisingly often, virus writers are too nervous to test their creations on their own
systems. If they do, and the replication or self-replication that takes place is confined
to that system, it’s of little interest to the rest of us. If the virus escapes accidentally,
or through the malicious action of another, that’s a different matter. In the case of
a very small subset of malware that seems at present to consist almost entirely of

self-launching worms, it may be enough for the author to run the program, whereupon
the worm goes its own way, freed of its originator’s control.

In most cases, some minimal social engineering is required to initially get the
program into circulation. This might consist of sending to an individual, newsgroup,
or mailing list a message which contains an infected attachment (or not, in the case
of KAK or BubbleBoy, for instance, where the viral code is embedded into the
message itself) and a deceptive subject line and/or message. In the case of a
fast-burning mass mailer, someone deliberately injecting the infective program into
the global bloodstream can easily fade into oblivion, one pseudo-victim among
many real victims. Even where the malware is comparatively lightly distributed, it’s
not that difficult to stay invisible. Many victims still have a problem with the idea
that viruses are received from people they know. It’s difficult to prove that victims
are not victims if no one has a search warrant and the will to suspect them. Short of
a major shift in the general consciousness away from unthinking trust towards
moderate paranoia, we see little likelihood of this changing. Potential victims may
have learned not to trust love letters from unlikely sources, but they haven’t always
learned to extrapolate from the particular to the general. The Kournikova virus had
less impact than LoveLetter. However, we are not sure that this was because the
level of general awareness had risen in the interim, or even because anti-virus
programs are performing better than they used to. We suspect that better networking
between systems administrators and increased use of perimeter scanners and generic
attachment blocking in corporate institutions also play a large (perhaps larger) part.

Password Stealers
Social engineering in virology is not limited to the initial promotion of worms. In
fact, a whole subculture of password-stealing malware is disseminated by email.
Mail apparently sent from a systems administrator, yet asking for a password, should
triggera red light. We cannot think of one multi-user system worth having where the
systems administrator needs your password, and many sites and providers tell you
specifically that “You will never be asked for your password”.

On AOL, password stealers are a way of life; there are hundreds, maybe thousands
of them, although they have a pretty strong family resemblance. If your anti-virus
software alerts on an object that begins APS.something, you’re probably looking at
a password stealer. Some are fairly specific; one quoted by Gordon obviously targets
children, where the sender claims to be one of the child’s father’s colleagues:
“Daddy needs to know the password...”.

4 4 8 V i r u s e s R e v e a l e d

This Time It’s Personal
Increasingly, you’ll find social engineering via email tailored to you personally.
Some spammers send email that includes your name in strategic places (such as the
subject line) in the same way that mail-merging has allowed terrestrial junk mailers
to lend a spurious personalization to their messages. Harley notes:

I had a couple of instances where one genius mailed me with the subject line,
“Hey, Harley, wazzup?” Nice piece of targeting, apart from the fact that it
assumed:

� That I’m in the States

� That Harley is my first name

� That I’m about 14 years old

� That even a 14-year-old wouldn’t be suspicious of someone claiming
to be in my class but with an unfamiliar mail address

� That I’m the sort of k001 d00d who uses slang with digits substituted
for letters

� That I’m sad enough to take my credit card to porn web sites.
Or presumably my father’s credit card...

This pseudo-personalization is not restricted to spammers, however. We note
with disquiet that some virus/worm writers have proved quite inventive at creating
a generic message that looks more personal than it is. For instance, they might
foster the impression that the message is a continuation of correspondence that
has already been exchanged between the owner of the infected system and the
recipient of the infected mail. Using the same subject line as such correspondence
is a simple and effective means of achieving this impression, and has been used
successfully several times.

Trojan horses (programs that masquerade as one type of program while covertly doing
something you wouldn’t want them to do) can certainly be described as incorporating an
element of social engineering. “Click here and see somebody naked, or download a cool
screensaver, or run a cure for a mega-destructive virus or the Y2K bug”.

You can say the same of viruses, though the view that a virus is a special case of
Trojan has lost favour in recent years. However, it has become fashionable to refer
to email viruses (or worms—that’s a can of viruses we won’t reopen for this chapter),
such as ExploreZip, as using social engineering techniques to con the recipient into
executing them. The writers of such viruses—or worms—are becoming more

C h a p t e r 1 5 : V i r u s O r i g i n a n d D i s t r i b u t i o n 4 4 9

creative, using spamlike techniques to capture attention. ExploreZip, for instance,
mails itself out in reply to email from the next potential target. Suppose that you
mail me a message with the subject “Let me buy you lunch”. (Please do!) If I happen
to be infected with ExploreZip, you’ll get a message back from my account (though
it will be from the virus, not from me!) with the subject “re: Let me buy you lunch”.
The body of the message will say, “Hi [whatever your name is]! I received your
email. I shall send you a reply ASAP. Until then, take a look at the attached zipped
docs. Bye”. So you look at the attachment, see a file called zipped_files.exe, and
think, “OK, a self-extracting zip file”. It isn’t, though; it’s just a plain old worm file.
If you run it, your system becomes infected.

The social engineering element comes from the fact that the worm has been sent to
you by someone you know—unless you regularly offer lunch to complete strangers—
and is apparently a coherent response to mail you just sent to me. However, this
misses an important point: you’re far likelier to receive a virus from someone you
know than from a complete stranger—unless you’re in Human Resources and get
lots of resumes. (Careless job-hunters seem to have become one of the major
infection vectors in recent years.) Virus writers have been engaging in social
engineering all along, but it took the worm epidemic to make social engineering a
compulsory component of the infection process.

Why Do They Write This Stuff?
Most research into the motivation of computer vandals tends to focus on hackers and
crackers rather than virus writers. So, although this section is somewhat speculative,
we are including it because virus writers, hoax writers, and other mail abusers
probably share some motivation. Indeed, much of the literature in the security field
suggests a hierarchy in which the old-style hacker, the virtuoso tuner of systems, sits
atop the tree. A branch or two down sits the cracker or computer vandal, who
has successfully usurped the title of hacker in the media. Further down sits the
social engineer, whose virtuosity is psychological rather than technical. Much
further down comes the virus writer, whose skills are restricted to one specialized
field. Lower still sits the writer of simple Trojan horses. Below him is the hoaxer,
unable to construct a “real” threat. This model is seriously oversimplified, but offers
one convincing aspect in its emphasis on the aspirations of each group member to
be accepted as or at least mistaken for a member of the next higher group.

The following suggestions are drawn from observation and from personal
exchanges of views with virus writers as well as with anti-virus researchers, rather
than from any formal research. The first batch of observations is drawn from years

4 5 0 V i r u s e s R e v e a l e d

C h a p t e r 1 5 : V i r u s O r i g i n a n d D i s t r i b u t i o n 4 5 1

spent on the alt.comp.virus newsgroup, and is based on an entry in the FAQ for
that newsgroup. We must urge caution: you should not assume that people who
claim to be ace virus writers in a public forum are real virus writers at all, as
knowledgeable as they claim to be, or even “typical” of all or any particular group
of virus writers. These suggestions are built on impressions, not on research data,
indicating that virus writers:

� Don’t understand, or prefer not to think about, the consequences for other
people, or they simply don’t care.

� Draw a false distinction between creating/publishing viruses and actually
distributing them. Apparently, they consider it perfectly reasonable to make
a virus available to anyone who cares to distribute it.

� Consider it to be the responsibility of someone else to protect other systems
from their creations. They think it is the responsibility of the victim to defend
himself or herself from encroaching malware, not the responsibility of the
creators to keep their handiwork away from systems other than their own.

� Get a buzz, acknowledged or otherwise, from vandalism.

� Believe that they’re fighting authority.

� Like “matching wits” with anti-virus vendors.

� Feel (or claim to feel) that they are keeping the anti-virus vendors in a job.

� Believe they are performing a service to the community by drawing attention
to security weaknesses.

NOTE

This “ethical hacking” approach doesn’t seem very convincing to us, in general. We already know
that it is possible to write viruses in VBA or worms that can take advantage of the Windows
Scripting Hoax. Where an innovative technique is used, is there an advantage to the victim in
implementing it as a real virus and making it freely available or launching it directly into the wild?

Here are some suggestions about the motives of virus writers based on a wider
range of information exchanges, speculations, and discussions. Again, this information
is not based on research data.

� Aggression Sometimes this aggression arises out of resentment against being
characterized as “nerdish”. “I can’t kick butt on the football field, so I’ll trash
some lamer’s ‘puter”. Some virus writers seem to like the power to induce fear
and panic, hence the satanic nicks (nicknames) and the naming of unexceptional

4 5 2 V i r u s e s R e v e a l e d

viruses after terrifying filoviruses and other pathogens such as AIDS, cholera,
Marburg, and Ebola.

� Distant and anonymous damage Virus writers may like the thought of
being capable of violating distant systems, even though they can’t usually
observe the process and potential damage it may cause.

� Displacement Virus writers substitute a low-risk activity (where it is easy
to be anonymous) for a high-risk physical activity.

� Rebellion Getting up the noses of the suits and wrinklies may be a
significant plus.

� Deindividuation Their personal sense of identity is overwhelmed by the
sense of belonging to an “alternative group”. They thereby attenuate personal,
individual guilt. Deindividuation may give the virus writer a real or perceived
sense of anonymity, and diffuse his or her sense of responsibility.

� Disinhibition The lifestyle of virus writers reduces socializing factors. They
believe that their anonymity leads to reduced risk of detection. They also fail
to recognize that transgression of local legislation is not the only risk.

� Dehumanization They blame the victim. Melissa was the fault of “lazy
administrators” and users who didn’t check that Office’s “macro-protection”
wasn’t disabled, rather than the fault of the virus author. Virus victims are at fault
because they don’t know enough to protect their systems/data. Characteristic
terminology is suggestive: users, lamers, AV parasites, clueless newbies.

� Hostile attributional bias against the potential victim For instance, virus
authors express aggression against the victim because of perceived aggression
from other interested parties, especially those identified as being formally
anti-virus, such as vendors, researchers, and consultants. “My next virus has
a destructive payload because Nick FitzGerald called me an onanist”.

NOTE

Nick FitzGerald is moderator of the VIRUS-L mailing list and comp.virus newsgroup, a former
editor of Virus Bulletin, an independent consultant, and a researcher of considerable experience.
He also has a reputation for outspokenness. The “Nick FitzGerald was mean to me” example is
drawn from a real-life exchange on alt.comp.virus.

� Projection The virus writer attributes “unacceptable” traits to the victim
or to other parties. “It’s OK for me to trash other people’s systems because

C h a p t e r 1 5 : V i r u s O r i g i n a n d D i s t r i b u t i o n 4 5 3

Microsoft does it all the time”. “It isn’t my responsibility if people spread my
code maliciously”.

� Fascination with the mechanics of self-replicating and/or self-modifying code

� The “15 minutes of fame” syndrome Some virus writers get a kick out of
seeing their virus on the WildList, or listed in a vendor’s virus information
database.

� Ignorance Virus authors often fail to realize the potential seriousness
of disseminating viral material, even as source code. This myopia is
not restricted to virus writers: compare the wit and wisdom of Microsoft
(re: VBS/BubbleBoy). “This is not a malicious virus, but will send itself to
every address in every address book in Outlook”. Real viruses such as Melissa
and imaginary viruses such as Join the Crew have caused infinitely more
damage simply by replicating than most viruses that intentionally trash files
or data. After all, as the existence of hoaxes points out, a virus doesn’t even
have to exist to cause damage.

We have also suggested several times in this book that there is a convergence
between virus writers and other mail abusers. Here we speculate on some associated
phenomena.

Ascribing motivation for the distribution of hoaxes and chain letters has to be
based, again, more on speculation than on formal research. We know generally why
people pass them on, as discussed in the next chapter, but we don’t usually know the
originator of a full-blown hoax, and so are unable to examine his or her motivation.
Nevertheless, people always ask the question, and we’ll attempt a tentative answer.
Possible motives for starting a chain letter may include the following, but there are
many other possibilities, as well.

� To see how far a letter will go One group of cancer victim hoaxes claims
that the chain was started by a cancer victim wishing to “live forever” through
the chain letter. A wish to break some sort of record may be the starting point
of a hoax; indeed, at least one email chain letter includes a reference to The
Guinness Book of Records.

� To promote fraudulent or (less often) legitimate moneymaking
schemes For example, pyramid, Ponzi, and multilevel marketing schemes.

� To advertise and promote Sometimes this motivation gets confused with viral
marketing, whereby mail or news posts include an explicit advertisement also
called banner advertising in the industry. Often the advertiser is the provider of

the service by which the mail/post is sent. However, the chain letter itself
includes what might be regarded as an explicit or implicit advertising message.

� Harassment of an individual or group (cf. revenge spam) by attempting
to implicate them in the spreading of a chain letter For instance, several
chain letters claim (untruthfully) that the American Cancer Society (ACS)
will contribute a fixed sum to cancer research for each forwarded letter. Each
recipient of the hoax may also be instructed to mail a copy of each forwarded
message to the ACS.

� To counter other chain letters Several instances of hoax virus alerts may
have originated as an attempt to counter the spread of an existing chain letter
by claiming that mail with a given subject field (title) contains a virus and
shouldn’t be opened. Good Times, one of the best-known virus hoaxes, may
have started this way.

� To maximize hoax distribution A hoaxer may seize upon the chain letter
mechanism as a way of getting more mileage out of the hoax.

Motivations for hoax virus alerts likely have something in common with those that
drive the writers of real viruses, probably more so than those motivations associated
with other types of chain letters. Some of these motivations are listed here:

� Sheer malice and mischief

� Perhaps sometimes the same motivations that lead people to create real
viruses However, it’s easier to write a hoax, because no programming skill
and experience are required. Frequently, the only contribution of the creator is
to change the title (subject header) of a previous hoax, to merge two or more
hoaxes into the same chain letter, or to add circumstantial detail in the hope of
increasing the hoax’s credibility.

� Anonymity This is one of the attractions to a vandal of real virus writing.
However, it’s even easier for the writer of a virus hoax to remain anonymous/
pseudonymous, since there is no need to persuade someone to run viral code.
The hoaxer can just play on the recipient’s ignorance about real virus/anti-virus
technology. If traced, the initiator can simply claim to have been forwarding
someone else’s warning, out of goodwill and ignorance.

� Ignorance and misunderstanding A number of hoaxes are passed on out of
ignorance and misunderstanding, but some actually owe their creation to such
accidents. Many misleading stories originate from a misunderstanding of a
problem and mistaken attribution of its cause to some form of malicious code.

4 5 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 5 : V i r u s O r i g i n a n d D i s t r i b u t i o n 4 5 5

� Genuine efforts to address real problems or security breaches Some such
attempts acquire layers of embellishment (deliberate or otherwise) that make it
hard to pick out the underlying fragments of truth.

� Humour Some of the hoaxes listed on hoax information web sites are actually
spoofs, intended humourously rather than maliciously. Their descriptions are
so incredible that the authors probably never expected anyone to take them
seriously. Unfortunately, hoax writers seem to have had the last laugh. It appears
to be impossible to write a spoof so far-fetched that no one will believe it, and
ideas from hoax spoofs often turn up subsequently in malicious hoaxes.

Secondary Distribution
Why do people pass on real malware? The short answer is that they don’t know
it’s malware. “Classic” viruses are generally as inconspicuous as their biological
counterparts: you cannot usually tell that an object is infected without using (up-to-date)
anti-virus software or some other means of close inspection. Even then, you can’t
be sure that you don’t have something too novel or too stealthy to be detected yet.
Binding the malicious code to a legitimate object (a Word document, for instance)
gives the malicious code a free ride.

It’s probably reasonable to assume that most people wouldn’t pass on objects
they knew to be infected except to people they assumed were competent to deal
with them (such as anti-virus researchers, systems administrators, and so on).

Why do people pass on hoaxes and chain letters? Again, usually because they
don’t recognize hoaxes. They may also be fooled by unexpected content into failing
to notice that a chain letter has the primary characteristic of all chain letters: a
request to forward. Forwarding email is so easy that most people will do it even if
they are not certain of the facts.

Some of the reasons that people pass on virus hoaxes include the following:

� Altruism/social responsibility Like other forms of social engineering, virus
hoaxes are objectionable precisely because they exploit their victim’s desire to
be helpful and responsible. It’s easy to look back to a golden age when the
Internet was less noisy and founded on cooperation and mutual support. While
the Internet was once a more civil place, there have always been those who’ve
exploited not only the ignorance and gullibility of newbies but their eagerness
to learn and help others.

� Caution “It sounds a bit odd, but I’d better pass it on anyway”. Many, if not
most, computer users are aware that they can’t possibly know everything about

4 5 6 V i r u s e s R e v e a l e d

technology, and are deferential to people who they believe must know
something they don’t.

� Self-interest/reciprocity People pass on information in the hope of gaining
brownie points or competitive advantage, or to bolster their image. Vendors are
particularly prone to passing on virus alerts, genuine or otherwise, essentially as
a public relations exercise. This is certainly likely to rebound if the alert
is a hoax: why would you trust a vendor that doesn’t check its sources?
However, if a vendor passes on a warning that concerns a real threat but
isn’t particularly helpful, you will probably be equally concerned about the
vendor’s competence. Unfortunately, most customers are not knowledgeable
enough to evaluate such information, so useless or hoax alerts continue to
consume bandwidth.

� Modelling behaviour Several pages of prior recipients increase the
likelihood that the victim will pass the warning on. After all, 350 previous
suckers can’t be wrong. This is much less likely to happen in an environment
where the accepted protocol is to clear alerts with someone qualified and
authorized to pass them on.

Does Education Work?
There are two disparate schools of thought in corporate virus management as regards
education. One is that user education is a key component of anti-virus strategy. The
other is that education doesn’t work, so the security manager is advised to assume
that system users are incompetent and to tailor AV strategy accordingly.

In fact, both viewpoints contain an element of truth. In most organizations,
education in security issues doesn’t work—not because it’s impossible for education
ever to work, but because it isn’t implemented properly. An overwhelming temptation
is to treat training as an unpleasant but temporary malaise: grit your teeth, sign the
cheque, and move on. Unfortunately, real life isn’t like this. Education is an ongoing
process, not a one-off event. Individuals come and go, and their replacements have
to be trained. Strategy evolves as threats and countermeasures evolve, and policy
and training requirements change accordingly. A few years ago, anti-virus measures
were all about detecting known viruses. Now such measures are about transparency,
real-time scanning, and heuristic analysis; meanwhile, other types of threats have
become more prominent.

However, transparency doesn’t fix everything, except in the most Draconian
environments. Users are, perhaps, more sensible than we sometimes give them
credit for. The real enemy is misinformation, and there’s plenty of that on offer,

C h a p t e r 1 5 : V i r u s O r i g i n a n d D i s t r i b u t i o n 4 5 7

from crackers, hoaxers, virus writers/distributors, poorly informed colleagues,
managers, spouses, and even vendors and consultants. With so much low-grade
information around, no wonder users get confused. Isn’t there something to be said
for increasing the amount of quality information available and giving the users a fair
chance?

Perhaps the best approach to education is hybrid. Give (or at least offer) users
the best training your resources allow. However, don’t assume that all your users
are fully trained, or that your training is so comprehensive and yet memorable that,
once trained, your users will always act completely appropriately in all possible
circumstances, and will never need any further training.

Virus management isn’t rocket science. However, it is poorly understood, even by
security professionals who may have considerable expertise in other areas, such as
firewalls or cryptography. So what constitutes the best training?

It’s not usually helpful to try to turn everyday users into virus experts, or indeed
any kind of security experts. Most of them aren’t interested (indeed, why should they
be?) and don’t have technical backgrounds in the areas that the field demands.
Giving a clerk or a technophobic manager a detailed map of the physical and logical
characteristics of a PC hard disk is likely to instill deep panic rather than a keen
appreciation of the inner workings of boot-sector viruses. In any case, such a map
isn’t what they need. Broad guidelines as to what constitutes safe computing practice
are more useful.

It is usually far more appropriate to implement a “minimum that you need to
know” approach: how to avoid booting from a virus-infected diskette; how to ensure
that an anti-virus package is properly installed, configured, and updated; and what
to do if the existence of a virus-related problem is suspected. It is not a good idea to
swamp customers with technical detail. It’s helpful to make sure they know where
to get further help and information if and when they need it. If software can be
configured to remove viruses and update itself without the user’s intervention, the
user has less to remember and is less likely to make inappropriate modifications.

Of course, this minimalist approach doesn’t work at all levels:

� Few small organizations can afford the services of a full-time virus expert, but
there has to be someone, somewhere, who has sufficient expertise, authority,
and resources to make executive decisions on anti-virus strategy. This does not
necessarily have to be an individual within the organization. Like any other
anti-virus functions, these decisions could be outsourced.

� Help Desk staff are often the first point of contact for a user with a problem.
Staff need to know at least enough to give competent advice concerning the
problems they are able to diagnose. In the case of a problem flagged by

anti-virus software, initial identification is not an issue, though clarifying the
real nature of the problem in the face of a misleading error message may be a
major undertaking. Sometimes (and especially where it concerns a previously
unknown virus), ascertaining that a problem is virus-related may not be
trivial. Most importantly, first-line support staff need to know when to defer
to someone with more expertise.

� Top management are not only users (and not necessarily computer-proficient),
they also control the resources available for virus management, and therefore
need a realistic appreciation of the risk and cost implications, as well as the
same appreciation of good practice as everyone else.

Global Education
In the security community, it is an accepted axiom that security risks in general and
viruses in particular are a social issue, rather than a technical problem, even if we
tend to throw technical solutions at them. Perhaps corporate institutions in the third
millennium will be more likely to consider social factors such as policy and education
when attempting to reduce security risks. However, even if an organization takes
education seriously, training addresses only part of the problem.

For many years, we have been irritated by reports that have confidently stated
that 80 percent of security breaches are internal, and we note with amusement that
the same agencies now state with equal confidence that the proportion is 50/50.
Either way, addressing problems of individual and corporate responsibility within
business environments clearly is not enough, even in an age when the workforces of
most developed countries consist largely of people who are in some sense computer
professionals. In other words, increasingly fewer jobs will not require some use of
a computer at some point in the process. However, there is a huge gap between
being computer-proficient enough for specific tasks, such as basic data entry and
word processing, and being trained in general good practice that should be characteristic
of a well-founded training or induction course, but often isn’t. In fact, many
computer science courses are no better thought out, judging from the number of
requests we get from students who are required to work with and even write real
viruses as an academic assignment.

Such measures as education at the workplace in the practice of safe hex, ethical
guidelines, and codes of conduct, if implemented widely enough, may eventually
trickle down to the general population, but that doesn’t help us right now. Wannabe
virus writers are not always of working age, or even old enough to be in further

4 5 8 V i r u s e s R e v e a l e d

education. Even if they are exposed to suitable practical and ethical education,
immaturity sometimes militates against their deriving as much benefit as might be
hoped. The problem can be alleviated over time, but not necessarily resolved. The
US Department of Justice and the Information Technology Association of America
Foundation (ITAA) announced in September 2000 an interesting “CyberCitizen”
partnership, intended to teach basic rules of appropriate online behaviour to teachers,
parents, and children. You can find more details at http://www.usdoj.gov and
www.cybercitizenship.org.

Summary
Many people in the security business prefer to think in terms of technical solutions
to technical problems. Who cares why vandals vandalize, or why customers are so
resistant to good security practice? We hope that we’ve convinced you that some
understanding of psychosocial factors is necessary if we are to deal with problems
that we regard as being essentially social rather than technical, vital though an
understanding of the technical issues continues to be.

In Chapter 16, we will discuss the issues of hoaxes and other email abuses in
considerably more detail, before moving on to discuss the practicalities of education
and policy in Chapter 17.

C h a p t e r 1 5 : V i r u s O r i g i n a n d D i s t r i b u t i o n 4 5 9

This page intentionally left blank.

CHAPTER

16
Metaviruses, Hoaxes,
and Related Nuisances

461

IN THIS CHAPTER:

Chain Letters

Hoaxes

Urban Legends

Chain Letters and Hoaxes

Hoaxes and Virus Alerts

Misinformation under the Microscope

Spam, Spam, Spam (Part 2)

Spamology and Virology

Metaviruses and User Management

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The phenomenon of virus warning hoaxes was first discussed in the earliest
days of virus research. In February 1988, Jeffrey Mogul proposed the
“metavirus”, a fake virus warning that told people that their systems would

become so badly infected that they should essentially destroy all their data and
software, then start again from scratch. This concept has been variously called
metavirus, false alert, false alarm, or warning prank, but is now generally referred
to as a virus hoax.

The basic idea is that the originator describes a virus with horrible consequences,
and one that is incredibly infective. Incredible is the operative word: most hoaxes
describe viruses that not only don’t exist, but couldn’t exist. The message tries to
whip up terror to the extent that people will pass along the message without thinking
through the consequences. Of course, if people do forward warning messages to
everyone they know, mail queues get clogged and an enormous amount of time is
wasted as people try to run down details of the nonexistent virus.

These messages were extremely prevalent in the late 1990s, and were very
difficult to correct. The Good Times hoax, three years after it was known to be
false, was still being faxed between government offices and taken as a serious threat.
While we see the original Good Times virus comparatively rarely this side of the
millennium divide, the newbies (newcomers to the Internet) currently leaping into
cyberspace keep finding the virus’s derivatives and mailing hoax warnings to all
their new-found friends on the Net. Hoax alerts are usually transmitted as a special
case of chain letter, and other forms of nuisance are often considered in the context
of exponentially exploding email.

Chain letters, hoaxes, and spam tie up network resources that may scarcely be able at
the best of times to cope with the traffic they have to carry. Systems administrators, Help
Desk staff, anti-virus vendors and experts, support engineers, and security managers
have to deal not only with the manifestations of an overloaded system, but also with
the work load resulting from anxious customers needing support and information.
Everyday computer users must live with unnecessary and undeserved fear, anxiety,
anger, and the feelings of helplessness, foolishness, and inadequacy when they discover
that they’ve been victimized. In this chapter, we’ll concentrate mostly on virus and other
security alerts, and also consider phenomena such as spoofs and hype alerts. We will
also, somewhat briefly, consider the relationship between these nuisances, real worms,
and other forms of network abuse, especially spam (loosely definable as electronic junk
mail). First, we need to consider some basic definitions.

4 6 2 V i r u s e s R e v e a l e d

C h a p t e r 1 6 : M e t a v i r u s e s , H o a x e s , a n d R e l a t e d N u i s a n c e s 4 6 3

Chain Letters
A simple definition of the chain letter can be found in The Oxford Reference
Dictionary: “a letter of which the recipient is asked to make copies and send
these to others, who will do the same”. Webster’s offers a slightly more complex
definition: “a letter directing the recipient to send out multiple copies so that its
circulation increases in a geometric progression as long as the instructions are
carried out”. These definitions offer a starting point for considering the mechanism
that the chain letter author seeks to exploit. We tangentially consider motivational
aspects in Chapter 18.

Spam, Spam, Spam (Part 1)
Yes, the term “spam”, used in reference to masses of unwanted email or
newsgroup postings, does derive from SPAM the canned meat. There is an
opinion that says the term was used because spam pretends to be information in
the same way that SPAM pretends to be ... well, Hormel is a good sport about
the neologistic appropriation of its tradename, so we won’t belabour the point,
beyond noting that the same speculation also makes an analogy between
nonsense-content and fat-content.

The more commonly accepted derivation is that the term derives from a
Monty Python sketch involving a restaurant where the menu items contain
increasing amounts of SPAM, and the Viking clientele eventually drown out
all conversation by singing about “SPAM, SPAM, SPAM, SPAM, SPAM,
SPAM, SPAM, SPAM”. Hormel even notes this in a page at
http://www.spam.com/ci/ci_in.htm.

(And where did Monty Python get the idea for the sketch? Well, Hormel
also claims the honour of the world’s first commercial radio jingle. You can
hear it, as a UNIX .au format audio file, by going to their “SPAM in Time”
page for the 1930s at http://www.spam.com/it/it_30frame.htm. You’ll have to
enable JavaScript to click on the link for the jingle, but the danger is almost
worth it. Listen for yourself and see if you think there is a similarity between
the jingle and the Viking’s song.)

4 6 4 V i r u s e s R e v e a l e d

CIAC (Computer Incident Advisory Center), among others, describes the chain
letter as having a tripartite structure: hook, threat, and request (see the CIAC
web page at http://www.ciac.org/ciac). While it’s not always straightforward
to separate these elements, they do seem to be common to most chain letters,
electronic or otherwise.

The hook is there to catch your interest. Some of the ways in which it might
attempt to do this include:

� Appealing to greed (e.g., make money fast, win some reward).

� Exploiting fear of technology (e.g., virus hoaxes) and the consequences of its
perversion or breakdown.

� Invoking sympathy (e.g., cancer victim hoaxes). In fact, it’s striking how often
chain mail and cancer coincide.

The threat is there to persuade you to keep the chain going. Traditional chain
letters threaten bad luck, even death. Virus hoaxes threaten the destruction of
systems—physical damage, file-trashing, leakage of confidential data. One chain
letter threatens unlimited spam if you don’t forward it. Others are more subtle: if
you don’t pass it on, you will miss out on the opportunity to make money or to earn
the undying gratitude of your friends. Sometimes the threat is to others: if you don’t
forward the letter, a little boy’s dying wish won’t be honoured, or cancer will
continue to flourish. The threat may be implicit or explicit.

Sometimes it pays to look for form, not content. Most chain letters share some
common characteristics. The request expresses the core function of the chain letter,
which is to have you replicate the letter by forwarding it to your friends and acquaintances.
The term replicate is not used lightly. Chain letters, especially virus hoaxes, are
often considered to be “meme viruses”, or “viruses of the mind”. Instead of using the
infective code used by computer viruses, chain letters rely on suggesting to recipients
that they pass the message on to others.

Virus hoaxes ask you to “help” others by disseminating “information”. Cancer
victim hoaxes, for example, ask you to generate money for medical research by
forwarding identical messages. However, the common aim in each case is not to
inform, to improve society, or even to sell a product: it is (purely or primarily)
self-replicative.

Mailing list sales pyramid schemes, however, ask you to send money, add yourself
to the list, and “sell on” the list, or sell another token product. A “successful” scheme
might make large sums of money for the originator. It seems likely that the popularity
of this type of scam is related to the perceived possibilities for high response when
the scam is implemented as a chain letter.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 6 : M e t a v i r u s e s , H o a x e s , a n d R e l a t e d N u i s a n c e s 4 6 5

Hoaxes
The Oxford Reference Dictionary defines hoax as “to deceive, especially by way
of a joke…a humorous or mischievous deception”. Other definitions incorporate
the concepts of “mockery or mischief” and “deliberate trickery intended to gain
an advantage…fraud, fraudulence, dupery, put-on”.

There are certainly stories circulated for commercial advantage, the content of
which is barely distinguishable from that of chain letter hoaxes. For instance, some
Y2K and security consultants (including anti-virus vendors) occasionally have been
noted for their use of scare-mongering and black propaganda to advance their own
interests. The distinction between hype and hoax can be too fine to measure: some
vendor advisories inflate minor threats to such a degree that the only definable
difference between hype alerts and hoax alerts is the fact that the source (unlike the
content) is verifiable. Such misinformation makes its own dishonourable contribution
to the hoax problem, in that a few of the heuristics applicable to hoax detection
also apply to advertising material, making it harder for the nontechnical reader
to distinguish fact from fiction.

Urban Legends
Urban legends (ULs) are a little different from hoaxes, but sometimes listed in the
same web sites. The alt.folklore.urban FAQ defines an urban legend as follows:

� It appears mysteriously and spreads spontaneously in varying forms.

� It contains elements of humour or horror (the horror often “punishes” someone
who flouts society’s conventions).

� It makes good storytelling.

� It does not have to be false, although most are; accordingly, ULs often have a
basis in fact, but it’s their life after-the-fact (particularly in reference to the
second and third points) that gives them particular interest.

Clearly ULs resemble hoax chain letters in several respects, according to this
definition. Both hoaxes and urban legends often derive from unknown originators
and diverge into variant forms. Both have a hook (they make a good story). Both
may contain threats; in the case of the urban legend, the threat is often implicit in the
reinforcement of conventional behaviour. Both may have a basis in fact, an aspect that
is often overlooked in discussions of hoax alerts. The biggest difference is that the

urban legend doesn’t carry an overt replicative function: the further dissemination of
the story depends largely on its storytelling appeal rather than an explicit request.

Curiously, the urban legend also resembles the extreme hype alert. The projected
horror is promoted as punishment for those who don’t take due precautions and buy
into the vendor’s solution. It “makes good storytelling”.

As Indra Sinha remarked in The Cybergypsies: A True Tale of Lust, War, and
Betrayal on the Electronic Frontier (Viking, 1999), “The stories don’t have to be
plausible. These people will swallow any scare you throw at them. Wilder the better.
They want these fucking nightmares to be true”.

Chain Letters and Hoaxes
Not all chain letters are hoaxes, of course. Some are, in a sense, socially responsible,
such as the many that are associated with an appeal (genuine or otherwise) for aid to
charity. One well-known group of hoaxes claims that the reader will get money or
goods from such companies as Disney, Microsoft, and Nike, if the individual forwards
the mail. Another group of hoaxes claims that the reader will make money for cancer
research by forwarding the mail he or she just received. Clearly, the precise nature
of the hoax is generally secondary to the opportunities for mockery or simply
spreading chain email.

However, it is arguable that forwarding any chain letter, regardless of its content,
opens up enough opportunities for abuse to outweigh any possible advantages to this
method of distribution. The only profit we can see for the use of a chain letter for a
legitimate message is that the message might achieve a wider distribution than it would
by any other means, except maybe spamming, which involves the use of potentially
massive distribution lists. Even that benefit is questionable: what do you gain by creating
a completely undirected bulk of email, as opposed to a semi-directed mass?

Hoaxes and Virus Alerts
Not all hoaxes are virus alerts. In fact, the programs described in most “virus”
hoaxes would be better classified as Trojan horses, if they really existed at all, but
our reservation here is less technical. Some hoaxes are concerned with computer
security threats; some are concerned with other types of threats. For instance,
cellular telephone networks seem to be a popular target for hoaxers. David Harley
recalls one hoax that warned that new legislation would result in floods of London

4 6 6 V i r u s e s R e v e a l e d

taxis becoming illegal for the purpose of carrying fare-paying passengers. The hoax
message claimed that such cabs would be sold off to private individuals, who would
buy them with the intention of duping potential robbery, rape, and murder victims.
Apart from the fact that no such legislation existed, the idea of cities clogged with
fake taxis piloted by psychopaths argues a grimmer view of humanity than even a
Y2K consultant would feel able to get away with.

Obviously, not all virus alerts are hoaxes. However, anti-virus vendors and
security organizations do not normally distribute security alerts as chain letters.

Even if you’re on the mailing list of a reputable organization that sends out virus
and other security alerts, it’s not uncommon for spammers or hoaxers to subvert
such lists. If you receive forwarded mail that appears to derive from an advisory or
press release, there’s always the possibility that even if the source is genuine and
the original content accurate, the version passed on may have lost (or gained)
something in translation.

One difference between a hoax alert and a “sincere” alert is not the accuracy
of the content, but rather the distributive mechanism. Misleading alerts may arise
from trusted sources, either because of a genuine error or as a marketing ploy. Hype
alerts may diverge from the truth enough to be seriously misleading, such as the press
releases by certain vendors that misuse the term “In the Wild” or that describe
boot-sector viruses as “network viruses”. However, it should be emphasized that
while it is unusual for a security vendor to release information as a chain letter, this
convention could be subverted at any time. Experience indicates that vendors may
protest when other vendors go against accepted practice, but may eventually follow
suit when they seem to be at a serious competitive disadvantage by not doing so.
Furthermore, suppliers of third-party services (consultants, including those not
directly in the security business) frequently pass on information (or misinformation)
to clients and potential clients hoping to earn brownie points and competitive advantage.

NOTE

We are aware of an alert, the collaboration of a commercial security organization and a law
enforcement agency, that included an appeal to forward, like a chain letter. Indeed, the alert
incorporated so many of the stylistic features associated with chain letters and hoaxes that it
was widely assumed to be an April Fool’s joke. In fact, it dealt with a real if somewhat overstated
threat. We include some heuristics for hoax-spotting later in this chapter, but there is clearly a
danger in equating form with content. Just as a real threat can be presented in such a way that the
alert’s recipients mistake the message for a hoax, an advisory apparently sent from a reputable
organization could perfectly represent the style of that organization but still be a hoax or spoof.

C h a p t e r 1 6 : M e t a v i r u s e s , H o a x e s , a n d R e l a t e d N u i s a n c e s 4 6 7

Nor are hoax alerts met only as chain letters. Misinformation, black propaganda,
and hoax alerts may be spammed to newsgroups and mailing lists, or found on web
sites. Furthermore, hoax victims often redistribute hoaxes initially received as email
via other communication channels, such as newsgroups, static web sites, postal mail,
and fax machines.

Misinformation under the Microscope
We have already mentioned Good Times, and will consider it in more detail in
Part III. This section introduces one or two other examples of hoaxes and legends.

The terms virus and damage are so closely connected in the minds of most computer
users that virus is now being used to describe any situation in which a computer is
damaged, unavailable, or simply not doing what the user wants. The truth is that
relatively few viral programs perform any overt damage to a system—as we’ve
pointed out previously, a damaging payload increases the likelihood that the virus
will be spotted. Viruses that destroy their target files or disks are, by definition,
self-revealing and self-limiting.

All viral programs make some kind of change to the system, of course. Even
those not designed to cause damage may do so, simply because the author did not
anticipate a particular set of circumstances. Most “header” or “integrity” checks in
self-checking programs were intended only to trap bad copies or disk sectors, but
they will stop programs from operating if a viral infection occurs. In these days of
increasingly complex and multitasking operating systems, a resident virus is almost
certainly going to result in unforeseen interactions.

BIOS, CMOS, and Battery
We in the virus research community frequently get questions about the BIOS virus,
CMOS virus, or Battery virus. These three are all variations on a similar theme and
are regularly reported.

First of all, BIOS is ROM BIOS. The RO in ROM stands for read only. A virus,
therefore, cannot infect the BIOS—at least, not yet. Flash EEPROMs are now almost
universally used as “upgradeable” ROMs for the BIOS. These are vulnerable to virus
damage, as is indicated by the comparative success of CIH in the field, but vulnerability
is a different issue than infectability. A virus that flashed the BIOS with an infective
upgrade would probably be ridiculously host-specific. It is possible to get “bad” ROMs,
and it is even possible that a run of BIOS ROMs would be programmed so as to release
a virus. It hasn’t yet happened, though, and it is extremely unlikely since it would be

4 6 8 V i r u s e s R e v e a l e d

easy to trace. On the other hand, we have already seen the occasional BIOS trojanized
in the factory.

The CMOS can certainly be changed. Some viruses, for example, change the boot
settings to make it more difficult for the victim to boot clean from a floppy known to
be virus free. The CMOS table, however, is stored in a very small piece of memory. It is
highly unlikely that a virus could fit into the leftover space, even though the theoretical
limit of the “minimal” family is about 31 bytes. More importantly, in normal operation
the contents of the CMOS are never actually “run”, but are simply referenced as data
by the operating system, so any such virus would remain forever latent.

There have been “joke” reports of electrical “metavirals” (e.g., “They cluster
around the negative terminal, so if you cut off the negative post you should be safe ...”;
“They transmit over the ‘third prong’, but occasionally leak over onto the others”).
However, there are also a number of reports that changing the battery in a computer
damages the CMOS. People probably report such damage because no matter how
fast you change the battery, there is a loss of power during that time, and, therefore
all the data is lost. Some computers, but by no means all, have a backup system that
gives you about ten minutes in which to change the battery without loss of data.

The JPEG Hoax
The JPEG virus hoax is a straightforward prank, released on 1st April of both 1994
and 1995. The announcement was rather carefully crafted of technobabble that recalled,
for example, the data overrun bug in sendmail that was used by the Internet Worm.
The warning was said to be the result of research by Dr. Charles Forbin who is
the main character in the science-fiction book Colossus and the movie The Forbin
Project. (That story is along the usual line of computer-takes-over-the-world.)

NOTE

Many hoax viruses are described in terms of confusing technobabble, such as the Good Times
“nth-complexity infinite binary loop”, or with the use of inappropriate terminology such as “a
Trojan virus”. Unfortunately, most users of computers and the Internet do not have the technical
expertise to distinguish between geekspeak (writing in jargon, rather than English) and
technobabble (technical-sounding gibberish).

While the announcement of the JPEG virus was an obvious hoax for those who
understood the references, the concept of a virus hidden in a graphics file is a complex
one. In general, the data in a graphics file would never be executed as a program
and therefore would be of no use as a viral vector. During 1994, however, a .GIF
(Graphics Interchange Format) file caused much alarm when posted to a USENET

C h a p t e r 1 6 : M e t a v i r u s e s , H o a x e s , a n d R e l a t e d N u i s a n c e s 4 6 9

newsgroup. The file header contained a very odd section of data, with suspicious text
references. Those who examined it ultimately decided that the file was harmless, and
that the file was possibly a hoax aimed at a select and suspicious few on the ’Net.
You should not, however, interpret this example as meaning that JPEGs are always
safe. Apart from the well-known double extension trick (virusfile.jpg.exe, for instance)
to which we’ve alluded several times already, a file with a filename whose extension
really is .JPG, or an icon suggesting an association with a graphics program, is not
necessarily what it appears to be. A true JPEG is not an executable file, and cannot
be run; it can only be displayed by a suitable graphics application. Such an application
will not execute an .EXE masquerading as a .JPG, but a command shell may
interpret the file as an executable irrespective of its extension.

The Budget Virus
Few outside of Canada will have heard of the Budget Virus of 1995. When the
federal budget is introduced, the Canadian government sends copies to all major
financial institutions, along with explanatory and background material. In February
1995, the government was to distribute this material on diskette rather than in printed
form. The Finance Department apparently checked the master disk for viral infection
with two different scanners (which were never publicly identified). The Department
then sent the floppy to a duplication house, for a run of more than 5,000 copies. The
duplicators, seemingly after the copies had been made, themselves checked the disk
with ThunderByte Scan—and were warned of a “suspect virus” on the disk.

Neither the duplication house nor the Canadian agent for ThunderByte were
reticent in talking to the press. Senior management in accounting firms pontificated
on the disaster that could have overtaken the economic structure of the nation,
with this virus paralysing all of its financial institutions.

The specific damage that the virus could have done was left unstated. In fact, the
virus was only identified as being “unknown”, the clear implication being that it was
new and that only the advanced technology of one particular scanner was able to find
it. Further, the virus never has been identified. Given that any moderately competent
virus researcher can tell you a number of things about a virus within hours, and that
ThunderByte was known for its aggressive heuristic scanning techniques (not, in
itself a bad thing), it is hard to believe that there ever was any virus at all. The old
saw, “It ain’t that folks is so ignorant, it’s that they know so much that ain’t so”, is
true in the computer virus field as in no other. For a variety of reasons, hard facts
about computer viral programs are extremely difficult to come by, while rumours,
innuendo, and outright lies abound.

4 7 0 V i r u s e s R e v e a l e d

Rude Awakening
Could such a SNAFU arise again? Apparently so. As we were writing this chapter,
a trade periodical focussing on computing networks featured an item concerning a
spoofing attack on an IT company’s weekly newsletter to its customers, into which
the “rudest word in the English language” (that would probably be “consultant”)
had been inserted 47 times. The report mentions that the company was “...also concerned
that the newsletter contained a virus, but this fear turned out to be unfounded”. However,
further on, the CEO is quoted as saying that “...he was annoyed the server was crashed,
covering what the virus was or how it got in. It was probably a Trojan backdoor virus,
but we are not sure how it got in”.

In fact, the item in question took four columns to say “Our newsletter was defaced,
and we don’t know how, so it must have been a virus”. Of such stuff are the myths
of undetectable viruses wrought.

NOTE

The acronym SNAFU is normally rendered in polite society as Situation Normal: All Fouled Up.

Wheat and Chaff
You want to be informed of new viral programs. You also want to inform your
friends and community. But you do not want to spread false alerts, which make
people waste time and resources protecting against dangers that don’t exist. Yet,
false alerts can often, to the nonexpert, look like the real thing. How can you tell?

The quickest way to check a report is to know its source. However, as the saying
goes, if you can tell good advice from bad advice, you don’t need any. You won’t be
able to identify trustworthy people unless you also know how to spot a hoax. There
are some items you should always find in a real alert. Detail is one: what objects are
affected, how much the program files increase in size, what text or search strings are
in the infectious portion, and how much memory is taken by resident programs. All
valid alerts should state how an infected program or disk can be identified before it
is run, not just the effects of the virus on the computer. The report should also state
which scanners (and which specific versions) have been tested against the new virus
and what they report. (Most of the time, the better scanners will report something,
even with a new virus.) Finally, a valid alert will identify virus researchers and
antiviral developers who have received samples. Often alerts, while not actually
inaccurate, don’t provide all of this information; opinion may vary on whether
a useless alert is invalid.

C h a p t e r 1 6 : M e t a v i r u s e s , H o a x e s , a n d R e l a t e d N u i s a n c e s 4 7 1

One approach, of course, is to check reliable sources of information on current
hoaxes and chain letters (the dictionary or encyclopaedia approach). Useful
resources for “exact identification” of known hoaxes are considered in the
“resources” section of this book, Chapter 8.

Hoax Identification Heuristics
There are many heuristics (rules of thumb) that can be used with some success to
identify common types of hoaxes, even where the researcher is unfamiliar with the
specific hoax, and some of these heuristics are listed here. Bear in mind, though, that
a hoax could evade all these heuristics and still cause major damage. An alert might
also have one or more of these characteristics and yet be genuine.

In some instances, we include samples from a few of the more common hoaxes.

Warn Everyone!
The “Warn Everyone” type of hoax is the one that led Jeffrey Mogul to coin the term
metavirus. Hoaxers want to create a “virus of the mind” and have you, your friends,
and their friends act as the infective agents. You are to pass the message along to
everyone. As an act of charity, of course, you need to warn all your friends, relatives,
coworkers, distant acquaintances, e-pen-pals, and random additions to your address
book to make sure that they know about this horrid threat. Generally these hoaxes
pass through multiple generations, and you have to page down past dozens of screens
full of the email addresses of those who have received the warning. And passed it
on. And on. And on. And on ... Table 16-1 describes some examples of “Warn
Everyone” hoaxes.

Appeal to False Authority
Some hoaxes claim to quote highly convincing information sources such as real
anti-virus vendors and their representatives, the Computer Emergency Response
Team (CERT), and so on. These attributions are intended to add “credibility by
association”. In fact, organizations, publications, and individuals with lesser claims
to relevant expertise have certainly issued or forwarded such warnings, sometimes to
comic effect, all of which adds to the problem. Claiming to quote a known anti-virus
vendor is another common indicator. It is not unknown for anti-virus companies to
hype a virus in press releases or on their web sites, but they don’t broadcast alerts
to every mailing list on the Internet—at least, not yet.

Almost all warnings cite some kind of authority. Oddly, most cite an authority
that has nothing to do with viruses. AOL doesn’t know anything about viruses. IBM

4 7 2 V i r u s e s R e v e a l e d

releases its advisories through CERT. Microsoft may release an advisory from
time to time, but generally to a limited group, and well after the fact. (Microsoft
advisories are certainly worth tracking, but their primary importance lies in their
links to patches for repairing security loopholes in Microsoft products.) The FCC
(US Federal Communications Commission) has nothing to do with viruses, and
announced at the time of the Good Times scare that it would never release virus-related
information, but some prevalent hoaxes still claim to quote the commission. Recent
virus hoaxes refer to Symantec or McAfee, but real warnings from these companies
should come with references to details on the relevant web sites. Even then, you
might want to check the actual URL before even thinking about passing on such
a warning. Table 16-2 describes a few of these appeals to authority.

It Works on Everything
Some hoaxes do not specify the affected hardware, application, mail client, and
so on. Again, this lack of specificity is not conclusive by itself. Anti-virus vendor
advisories often assume that the entire computing world uses PCs, and frequently
that a particular version of Windows is universally employed. On the other hand,

C h a p t e r 1 6 : M e t a v i r u s e s , H o a x e s , a n d R e l a t e d N u i s a n c e s 4 7 3

Source Example
California, aka Wobbler “Please pass this message on to all your contacts and anyone

who uses your e-mail facility....Forward this letter to as many
people as you can”.

Bug’s Life “Please pass it on to anyone you know who has access to
the Internet...Please copy this information and e-mail it to
everyone in your address book. We need to do all we can to
block this virus...pass this information on to your friends,
acquaintances and work colleagues”.

Budweiser Frogs “Please distribute this message...Please share it with everyone
that might access the Internet. Once again, pass this along to
EVERYONE in your address book so that this may be
stopped”.

It takes guts to say Jesus “Pass this warning along to EVERYONE in your address book
and please share it with all your online friends ASAP so that
this threat may be stopped”.

“It takes guts to say Jesus”
variant

“Please practice cautionary measures and tell anyone that may
have access to your computer. Forward this warning to
everyone that might access the Internet”.

Table 16-1 Warn Everyone!

4 7 4 V i r u s e s R e v e a l e d

claims that a virus plays tricks with mail software or address books, without specifying
the type of mail client affected, are a good indicator that such information is unreliable,
hoax or not. Similarly, if a claim states that a virus will leak information such as
passwords or credit card details, but fails to specify which passwords are targeted or
where the virus looks for credit card details, these are all strong indications of an
intent to frighten rather than to inform.

It Works Immediately
Some claims warn of immediate and devastating damage when the “infected” email
is opened. Hoax viruses rarely seem content with popping a rude message up onto
the screen, preferring instead to render targeted systems unusable. In fact, if the
viruses described in many hoaxes really existed, they wouldn’t be viruses at all:
they’d be Trojan horses with no reliable means of replication, since they’d burn
themselves out on every system they landed on and trashed. Such a virus wouldn’t
discriminate between opening the email and opening an attachment. However, it
has never been entirely accurate to say that just reading mail is safe from any kind
of malware (malicious software); as we’ve described elsewhere, some current
viruses can take advantage of a loophole in unpatched versions of Outlook.

No Fix, No Fee
The claim states that no means of detection or recovery are known. This is a fairly
dependable heuristic. In general, it’s possible for an anti-virus vendor to supply

Source Example
California, aka Wobbler “IBM and AOL have announced that it is very powerful,

more so than Melissa [The same hoax contained an internal
contradiction]...information was announced yesterday morning
from Microsoft”.

Bug’s Life “This information came from Microsoft yesterday...AOL has
confirmed how dangerous it [the virus] is”.

Budweiser Frogs “This information was announced yesterday morning from
Microsoft”.

It takes guts to say Jesus “…was announced yesterday morning from IBM; AOL states
that this is...”.

Table 16-2 Appeal to False Authority

TE
AM
FL
Y

Team-Fly®

detection for a newly discovered threat within hours, or less. There are exceptions,
though. It took anti-virus vendors many months to properly implement detection and
disinfection of macro viruses, and for a while, the best help a vendor could offer was
guidance on disabling auto macros. It’s not impossible that a completely new threat
could arise that would require similarly extensive reengineering, but it happens
rather rarely.

Recovery is a more complex matter, and depends on the tools available to the
victim, the backup strategy that has been employed, and so forth. A virus warning
that doesn’t take these factors into account is automatically suspect. One that claims
that no disinfectant is available yet, and that the virus is impossible to remove, is an
instant candidate for the trashcan. Such a claim is flatly impossible. There is always
a way to get rid of any virus: after all, it is only software, and, in the famous USENET
phrase, “It’s all just ones and zeros”. Table 16-3 lists some typical claims.

Is It a Bird? Is It a Plane?
Claims that superhackers have somehow managed to write a program to do
something that was previously thought to be impossible invite deep suspicion.

Anti-virus experts spend much time out of the public eye exchanging ideas about
potential nightmare scenarios, and responsible individuals tend to keep such discussions
away from the marketing department and journalists. Nonetheless, if a scenario is
possible, someone has probably hypothesized it.

Furthermore, belief in the supernatural powers and intellects of hackerz and
crackerz, virus writerz, and other 3l33t kewl d00dz (elite cool dudes) is not common
among anti-virus experts, who will, if anything, go out of their way to belittle a vandal’s
abilities. Alerts that indicate such beliefs are more likely to originate from a member
of one of those groups, a journalist, or a security expert talking about a field outside
his or her own competence.

C h a p t e r 1 6 : M e t a v i r u s e s , H o a x e s , a n d R e l a t e d N u i s a n c e s 4 7 5

Source Example
California, aka
Wobbler

“...there is no remedy”.

Death Ray “‘So how do you protect yourself? I wish I knew,’ said Heriden.
‘You either stop using the Internet or you take your chances until we
can get a handle on this thing and get rid of it for good’”.

Budweiser Frogs “…a very dangerous virus and that there is NO remedy for it”.

Table 16-3 No Fix, No Fee

Warnings about Phrases in Subject Lines
For some reason, almost all successful hoaxes refer to email viruses. And all of them
warn you about reading messages with some specific phrase in the title. Now, of
course, many email viruses and worms, such as Melissa, can be and have been
identified by a specific phrase in the subject line. However, when virus hoaxes
such as Good Times began to appear, this was not the case.

NOTE

This classic hoax characteristic has created a user-support problem all of its own. At first, we could
simply point out that viruses are not normally associated with particular filenames, although a
Trojan horse or virus dropper might be. Then we had to admit that certain filenames (and even
Subject: fields) could be associated with particular malware, while continuing to make the point
that anyone can change a Subject: field or filename. Then, if the customer was curious and
persistent enough, we found ourselves having to explain that worms, viruses, and Trojans are
not exactly the same thing, but that particular examples are sometimes assigned to different
categories by different observers. Now we have to explain once more that even worms are not
always identifiable by a characteristic mail subject or filename. Perhaps this explains why
anti-virus researchers are such grumps.

Worm writers quickly figured out that the subject line was a giveaway, and thus
learned to program changing subject lines. However, most hoaxes still warn you about
the subject. Some hoaxes have suggested extreme polymorphism in the subject line,
but these do not seem to have caught on very well. Perhaps even the most credulous
victim needs to have something apparently useful to pass on by way of identification.
If a virus is ever created that works on any platform, cannot be identified by any
anti-virus software, and doesn’t have standard subject, source, or message content,
there will be no obvious way to identify it. What use, then, is the warning? Perhaps
even some of those who can’t distinguish a vaguely possible payload or infection
mechanism from sheer fantasy balk at passing on a warning that observes that a
threat exists without offering any way of dealing with that threat. Table 16-4
lists some characteristically subject-specific hoax warnings.

Utter Destruction
All hoaxes seem to threaten massive destruction, often including damage to hardware.
Some viruses can, and will, erase data on your computer, sometimes to the extent
of overwriting everything on the hard disk. But no known virus actually damages
hardware, and most researchers believe it would be pointless to try and create such
a beast, since any possible damage to hardware that can be accomplished with

4 7 6 V i r u s e s R e v e a l e d

software would be very hardware-specific. In any case, most email viruses have
been relatively tame in the damage department. Table 16-5 lists a few of these.

Don’t Contact the Experts
In an apparent attempt to stop you from contacting somebody who just might be
able to tell you that the claim is a load of rubbish, most hoaxes make the point that
not many people know about the alleged problem yet. Look at the message time-stamp.

C h a p t e r 1 6 : M e t a v i r u s e s , H o a x e s , a n d R e l a t e d N u i s a n c e s 4 7 7

Source Example
California, aka Wobbler “Very Urgent VIRUS(s) Warning with titles: ‘Win a Holiday’

OR ‘California’”.

PenPal Greetings “If anyone receives mail entitled: PENPAL GREETINGS!
please delete it WITHOUT reading it”.

Budweiser Frogs “Also do not open or even look at any mail that says
‘RETURNED OR UNABLE TO DELIVER’”.

It takes guts to say Jesus “If you receive an E-mail titled, ‘It Takes Guts to Say
“Jesus”.…’”

Table 16-4 Warnings about Phrases in Subject Lines

Source Example
Death Ray “But suffice it to say that the virus affects the computer’s

hardware, creating conditions that lead to dangerous short
circuits and power surges. The end result? Explosions—powerful
explosions. And millions of Internet users are at risk”.

California, aka Wobbler “It will eat all your information on the hard drive and also
destroys Netscape Navigator and Microsoft Internet
Explorer”.

Bug’s Life “Once opened, you will lose EVERYTHING on your PC.
Your hard disk will be completely destroyed”.

Budweiser Frogs “This virus will attach itself to your computer components and
render them useless”.

It takes guts to say Jesus “It will erase everything on your hard drive [...] Some very
sick individual has succeeded in using the reformat function
from Norton Utilities causing it to completely erase all
documents on the hard drive....It destroys Macintosh and
IBM compatible computers”.

Table 16-5 Utter Destruction

4 7 8 V i r u s e s R e v e a l e d

If it is more than an hour or so old, then we guarantee that the experts do know about
it. Those in the anti-virus industry, particularly, have mechanisms in place to deal
with the rapid spread of email viruses, and they don’t rely on “catch as catch can”
email forwarding. Increasingly, virus-literate systems administrators are using
formal or informal webs of communication to share information at a rate comparable
to communications within the industry.

NOTE

What’s the difference between a hoax telling you to ignore experts, and us telling you to ignore
instant experts? We’re trying to get you to study and think for yourself. A virus hoax is trying to
stop you from thinking until you click the Send button.

Table 16-6 lists some examples of such claims.

SHOUTING!! AND EXCLAMATION MARKS!!!!
In an attempt to get you to see how VITALLY IMPORTANT! their message is,
virus hoax writers often use a lot of words typed all in uppercase letters (known in

Source Example
A.I.D.S. Hoax “IT WILL ATTACH ITSELF INSIDE YOUR COMPUTER

AND EAT AWAY AT YOUR MEMORY THIS MEMORY
IS IRREPLACEABLE. THEN WHEN IT’S FINISHED
WITH MEMORY IT INFECTS YOUR MOUSE OR
POINTING DEVICE. THEN IT GOES TO YOUR KEY
BOARD AND THE LETTERS YOU TYPE WILLNOT
REGISTER ON SCREEN. BEFORE IT SELF
TERMINATES IT EATS 5MB OF HARD DRIVE SPACE
AND WILL DELETE ALL PROGRAMS ON IT AND IT
CAN SHUT DOWN ANY 8 BIT TO 16 BIT SOUND
CARDS RENDERING YOUR SPEAKERS USELESS.”’

The Bad Times spoof hoax
alert

“It will rewrite your hard drive. Not only that, but it will
scramble any disks that are even close to your computer. It
will recalibrate your refrigerator’s coolness setting so that all
your ice cream melts and milk curdles. It will demagnetize the
strips on all your credit cards, reprogram your ATM access
code, screw up the tracking on your VCR, and use subspace
field harmonics to scratch any CDs you try to play”.

Table 16-5 Utter Destruction (continued)

email circles as “shouting”), and tend to use a lot of exclamation marks. Real virus
warnings tend to be rather dull reading, and advisories are less likely to overstate the
urgency of a virus problem than hoax alerts. Consistently poor spelling, grammar,
syntax, and presentation are also suggestive of a hoax. Anti-virus companies often
exaggerate threats for competitive advantage, but they generally employ literate
professionals to write their press releases or advisories. Table 16-7 shows some
examples of REALLY IMPORTANT hoaxes.

Don’t Confuse Me with Facts
A major characteristic of virus hoax messages is their lack of technical detail. They
include, instead, lots of details about false authorities, the (literally) incredible damage
the virus can cause, “infinite binary loops” (technobabble: they don’t exist), and the
newness of the virus.

C h a p t e r 1 6 : M e t a v i r u s e s , H o a x e s , a n d R e l a t e d N u i s a n c e s 4 7 9

Source Example
California, aka Wobbler “Not many people seem to know about this yet so propagate it

as fast as possible....This is a new, very malicious virus and
again, not many people know about it”.

Bug’s Life “As far as we know, the virus was circulated yesterday
morning. It’s a new virus, and extremely dangerous”.

Budweiser Frogs “IT JUST WENT INTO circulation yesterday, as far as we
know....This is a new, very malicious virus and not many
people know about it”.

Win a Holiday “This is a new, very malicious virus and not many people
know about it”.

Table 16-6 Don’t Contact the Experts

Source Example
E-mail or Get a Virus “IM SORRY GUYS>>I REALLY DONT BELIEVE IT BUT

SENDING IT TO YALL JUST IN CASE!!!!!!!!!!!!”

California,” aka “Wobbler “Remember, DO NOT DOUBLE CLICK THE FILE!!!”

Win a Holiday “If you receive an email titled ‘WIN A HOLIDAY’ DO NOT
open it”.

Bug’s Life “DO NOT OPEN IT UNDER ANY CIRCUMSTANCES”

Table 16-7 SHOUTING!! AND EXCLAMATION MARKS!!!!

4 8 0 V i r u s e s R e v e a l e d

As well as providing much more hard data, real virus warnings worth receiving
will tell you:

� What the virus infects

� How it activates

� What actions to take to avoid activating it

� How to get rid of it

� Which antiviral programs will detect it

� Where on the Web to find more information or updates

� Which company or person is responsible for the report

These facts simply aren’t present in virus hoaxes. For instance, a hoax that reads
like a news item or press release may give no indication of its origin (or may give a
false origin, of course).

Hoax alerts tend to be concerned with self-replication, not with pointers to
additional help or information. They rarely include:

� Verifiable sources of further information. Fake URLs are common, as are
URLs pointing to inappropriate/suspicious sites. It’s easy to set up a web page
without having to supply any sort of verification/authentication (free of charge:
credit card details aren’t necessary), so a genuine web page can contain very
unreliable information. An alert that claims to originate with Symantec, but
includes a pointer to a site on geocities.com, suggests foul play. Such a link
doesn’t prove that an alert is phony, though: plenty of well-meaning amateurs
and guru wannabes offer security information, some of it genuinely useful.

� Full details of the source of the information or a contact within the originating
organization for further clarification. There is unlikely to be a digital signature
or any sort for authentication. However, the presence of a digital signature is
not, in itself, proof of a bona fide alert. Many people don’t bother or don’t
know how to check these.

General Chain Letter/Hoax Characteristics
Virus hoaxes are simply a special case of normal chain letters. Very few hoaxers,
irrespective of the nature of their hoax, can resist asking you to pass on their creation

C h a p t e r 1 6 : M e t a v i r u s e s , H o a x e s , a n d R e l a t e d N u i s a n c e s 4 8 1

and including a threat or inducement to reinforce the request: “Pass this on to everyone
you know, otherwise something undesirable and virus-related will happen”. However,
hoax alerts prey on the altruistic and nonaltruistic impulses of their victims, and an
explicit request to forward is not always necessary.

Some general characteristics of a hoax include the following:

� The mail is undated, or shows no realistic or verifiable date. “Yesterday” or
“just issued by…” isn’t good enough. However, a convincing date doesn’t
prove that the message is not a hoax.

� There is no “best by” or expiry date on warning. Nonetheless, the presence of
such a date doesn’t verify the alert, either.

� No identifiable organization (or individual within the organization) is quoted as
the source of the information. (If an individual is cited, it is still worth checking
whether he or she actually exists.)

Spam, Spam, Spam (Part 2)
What does spam have to do with hoaxes and viruses? At first sight, not very much.
The fact is, though, that spammers, purveyors of scams and snake oil, hoaxers, and
writers of real viruses are increasingly finding common ground, and the latter-day
fascination with “viral marketing” is suggestive.

Spam is a term applied to a number of abuses involving the indiscriminate use
of email or newsgroup postings to broadcast “information”. Some purists still apply
the term exclusively to newsgroup abuse, and classification of USENET spam
includes the following:

� EMP (excessive multiposting) Messages posted individually to each of
many groups (classic spam)

� ECP (excessive crossposting) One message crossposted to many groups
(velveeta) (one message with many groups in Newsgroups header)

� Commercial postings

4 8 2 V i r u s e s R e v e a l e d

However, most people today probably think primarily of spam email, which
includes the following classifications:

� UCE (unsolicited commercial email) Junk mail

� UBE (unsolicited bulk email) Sent in bulk to many addresses. Such mail
may include a commercial message, but by no means necessarily.

Motivations
Sometimes people say, “If it’s something you want to receive, the mail isn’t spam”.
A more appropriate definition might be that if the message contains information the
recipient has neither asked for nor has any interest in, the message can be considered
spam. Spammers intend to advertise a product or a web site (especially sites where each
hit earns money from a sponsor), but other motivations may also apply, including:

� Advertising
� Sex/porn sites

� Legitimate entertainment

� Consumer items

� Services

� Aggression Violation of remote systems/system users

� Revenge

� Flooding systems with unwanted mail (denial of service, mailbombing)

� Implication of a disliked person (especially an antispammer) in spamming
activities by using the mail server of the targeted person’s web site as a relay,
fraudulently inserting the person’s details into the mail headers, using the
person’s details in the body of the message, and so on. With the increasing
sophistication of worms such as Hybris, virus writers are using similar
camouflage techniques to eliminate true information about the sender. The
victim of revenge spam may subsequently become the victim of various
sanctions applied by groups and individuals who oppose spamming and
who believe the victim to be guilty of the practice.

� Sheer mischief Some junk mail is clearly not expected to achieve anything
other than to annoy or in some way distress the recipient.

� Hoaxing Some junk mail is clearly deceptive.

� Virus/Trojan distribution Virus/worm writers are increasingly making use
of spamming techniques to inject real viruses into the wild.

� Soapboxing Using spam as a means of disseminating a non-commercial
message, rather than commercial advertising. From time to time, a virus will
also carry a propaganda message.

� Scamming A scam is an attempt to con the victim out of money, services,
or information.

Scams always involve an element of deception and social engineering, and may
be distributed as a chain letter, among other means (including spam). Here are some
detection heuristics:

� Giveaway phrases such as “Make Money Surfing the Web”. (Anything that
offers you money is suspicious.) Material like this may be received as spam
or as a chain letter.

� The absence of any real product. The scam sells on the franchise, so that there
are no real customers either. Everyone is a brochure salesperson, for instance,
selling to other brochure salespeople.

� Claims that “This isn’t a pyramid scheme”, or “This is genuine MLM”,
or “This is not illegal”. Such claims are characteristic, and usually plainly
untrue. We see this Big Lie technique elsewhere, too: spammers frequently
claim “This is not spam!” A current favourite claim is “This is not a SPAM.
You are receiving this because you are on a list of email addresses that I have
purchased for marketing”, begging the question of how this particular spammer
defines “real” spam. Virus/worm writers employ similar measures to persuade
the victim to open a dubious attachment, flying in the face of accepted definitions
and common sense. We have seen instances where the writer has gone to
considerable lengths to persuade the prospective victim to read a Word
document with macros enabled.

� Testimonials from well-known people, major TV shows, and so on, intending
to prove that the alleged opportunity is genuine, except that the quotes can’t
be verified.

� Anonymous, forged, or otherwise untraceable senders.

� The overuse of CAPITALS, $$$$$, and !!!!!. Like spammers and hoaxers,
scammers often use shouting to try to reinforce their point.

C h a p t e r 1 6 : M e t a v i r u s e s , H o a x e s , a n d R e l a t e d N u i s a n c e s 4 8 3

� Limited subscriptions. It frequently amazes us that we are so well known that
benefactors from far-flung corners of the globe favour us with the opportunity
to join highly selective lists of investors. We seem to be particularly well known
in Nigeria, which appears to be awash with government officials wanting to pay
us millions for the use of our bank accounts. Curiously, they usually seem to
like using Hotmail accounts.

� Of course, the lack of any real, substantial information about what you have to
do to earn all that money.

Common Themes
For what it’s worth, while we were writing this chapter, we compared notes on what
type of spam we were seeing.

� Pyramid/MLM/work scams

� Chinese political messages (seemingly related to Falun Gong)

� “Find out anything about anyone” software or services

� Viagra (or herbal substitutes) sales

� Sex sites

� Begging letters

� Sales of spamming services

� Gambling-related advertisements (for lotteries, online casinos, and so on)

� Sales of web services

Spamology and Virology
Subject fields including characteristic phrases designed to suggest easy money,
pirated software, marketing opportunities, or sex-related content/information are
no longer restricted to spammers.

Some spammers long ago realized that many people discard mail with obvious
headers, and some have progressed beyond headers to subject content intended to
fool the recipient into thinking the mail contains a personal message. Others include
the recipient’s email address in the same way that mail-merged junk mail sometimes
includes a name and address in the body of a form letter. Virus writers have learned
from this: several recent viruses/worms use similar techniques to stop recipients

4 8 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 6 : M e t a v i r u s e s , H o a x e s , a n d R e l a t e d N u i s a n c e s 4 8 5

from discarding the mail unseen and persuade them to open attachments or click on
links to web sites. Examples of such Subject fields include “Urgent mail from X”
(where X is a previous victim) and “The information you wanted”.

If you get as far as reading the message, that’s usually enough to identify a sales
pitch. On occasion, though, it’s not a commercial product or a pet idea you’re being
sold, but a scam. Nevertheless, the problem from a content-filtering perspective is
automatic detection, rather than identification by reading.

From time to time, the attachment is malicious. Red Team demonstrates a
convergence of three types of abuse. It consisted of a nuisance chain letter that
spread information about a nonexistent virus. However, Red Team also included an
attachment that claimed to be a fix for the virus. The attachment was in fact intended
to install a real (not particularly interesting) virus. The author tried or threatened to
disseminate the virus by using spamming techniques to launch the chain letter. The
expressed intention was to increase the load on anti-virus support teams by blurring
distinctions and making it harder to define a virus hoax “generically”. In other words,
the author attempted to define the general characteristics of the hoax so that AV
support teams could detect a previously unseen hoax by matching it to those criteria.
Red Team was something of a damp squib, but more recent threats have also served
to blur the distinctions. It’s now widely known, for instance, that VBScript viruses
can, in certain environments, infect the target system as soon as the mail is
opened—it isn’t necessary to execute an attachment.

Thinking of each type of abuse totally in isolation from the others is not practical.
As you can see from the following rough detection heuristics, detecting spam has
some similarities with detecting email worms. Spam is generally easier to identify
just by scanning the content by eye, and often just from the Subject: line. However,
the heuristics that the recipient normally uses to identify junk mail on sight are not
always easy to transcribe algorithmically. This makes automatic detection of spam a
tougher nut to crack than some content-filtering vendors would like you to think.

Some detection heuristics for detecting spam include the following:

� An unreadable subject and/or sender. Strange characters here and in the body
of the mail imply an exotic language that your mail program can’t interpret
properly. Some spam from exotic locations has readable headers, but the
body is unreadable.

� Certain headers are characteristic. For example, friend@public.com in the
From: field is an old favourite, just as hahaha@sexynet.fun is characteristic of
some instances of the Hybris worm. Sender IDs composed of random strings

of characters such as 65eK8y872@edssng.edssing.com.sg also suggest spam,
as do obviously forged headers like your own account name being used in the
Sender: field.

� Mail from web-based free-email services such as iname.com, Hotmail, Yahoo!,
etc. may denote a “disposable account” used to send mass mail until the account
is closed as a result of complaints. Service providers who offer short-term
evaluation of their services may also be used for disposable accounts.

� Mail that isn’t addressed to your actual address suggests a mailing list. If
you’re unfamiliar with a list name or sender, that may suggest spam, or even a
subscription bomb. Sometimes a vandal will subscribe someone else to multiple
high-volume mailing lists, so that unwanted mail swamps the victim’s mailbox.
Again, viruses and worms commonly piggyback mailing lists and address
books to somewhat similar effect.

� Certain anomalies in the headers, such as impossible IP addresses and domain
names, or time zone mismatches, indicates forged messages. Anti-spamming
software sometimes uses such anomalies as a detection heuristic.

Metaviruses and User Management
If you’re concerned about defending a whole department or organization, it’s
probably a good idea to incorporate measures against hoaxes, spam, and chain letters
into an acceptable use policy for email and USENET.

First, you need to appoint a competent person to verify potential hoaxes by checking
PGP (Pretty Good Privacy) signatures, personally contacting trusted individuals, and
checking reliable sources and URLs. It makes sense for this person to have in-depth
knowledge of computer software and hardware and, even better, real virus and anti-
virus technology, so that he or she can evaluate a wide range of reported threats from
experience. Alternatively, you could outsource this function to your anti-virus vendor or
some other suitably qualified third party. At present, David Harley maintains an email
hoax verification service at www.security-sceptic.org.uk.

In addition, you should have policies in place that discourage people from passing
on virus alerts (even real ones), chain letters, and so on, and absolutely forbid them
to do so without having them verified. Be as general as possible in your definitions:
you don’t want people who would recognize a Good Times clone easily to fall
victim to a chain letter hoax, so discourage unverified mass mail-outs rather than
just discouraging the passing on of virus alerts.

4 8 6 V i r u s e s R e v e a l e d

Consider passing a standard response form to individuals who’ve passed on a
hoax, and asking them to pass the form on to anyone they’ve alerted. Reading the
headers of their mail and copying the response to everyone who seems to have
received it may have worked a few years ago when the phenomenon wasn’t so
widespread. But doing so now is probably not worth the bandwidth problems,
redundancy, and general annoyance it’s likely to create. We have included in
Chapter 11 a specimen response form for general use by the support desk.

These policies could be integrated with other, more general recommendations
for good practice:

� Considering the privacy of others

� Respecting intellectual property rights

� Discouraging transmission of unacceptable material (threats, pornography,
defamation, etc.)

� Discouraging the waste of network resources

� Discouraging unacceptable commercial usage

� Encouraging good disk and file hygiene and protection

What Should I Tell My Customers?
Primarily, you should tell your customers to follow policy. We include some
specimen policies later in this section that should be of help. You might want to
consider a simple guidelines document suggesting that they don’t forward any form
of email flooding, which just wastes bandwidth and annoys recipients who’ve heard
it all before. Examples of email flooding include the following:

� Chain letters

� Good luck letters

� “Words of wisdom”

� “Love chains”

� Stories about kids wanting to get in the record books

� Stories about Neimann Marcus cookies or other urban legends

� Messages that will somehow result in a donation to some charity if you forward
them (although nobody can trace whether you’ve forwarded a message)

C h a p t e r 1 6 : M e t a v i r u s e s , H o a x e s , a n d R e l a t e d N u i s a n c e s 4 8 7

NOTE

The last comment may seem to contradict what you have heard about web bugs. Web bugs are
links to web sites that can be embedded in HTML email. Fully web-enabled email clients will
contact the web site, and hostile sites can obtain information about the people who read “bugged”
email. However, this bugging applies only to people who are using such web-enabled email clients,
and generally there is no way to determine whether email has been forwarded or to whom.

Ask yourself, is this information useful to anyone? If, by passing it on, you’re
simply shouting “fire” without offering any indication as to where the fire is, or
where the fire extinguishers are, think again. At the very least, you should include
a source of reliable further information. If you don’t know whether your source is
reliable, think again. As an example, how useful would it be to anyone if you
forwarded a warning such as the following:

There’s a new strain of meningitis going around. There is no known cure,
and everyone who comes into contact with a carrier catches the strain and
dies. Please pass this warning to everyone you know.

Handling Spam, Chain Letters, and Hoax Alerts
What should you do if you get one of the following? Count your blessings. If we had
only ever received one hoax alert, chain letter, or spam mail (or even just one copy
of each example that comes our way), we’d be happy. You may or may not get as
much as we do, but the nature of the phenomenon means that getting a little spam is
as likely as being a bit pregnant. Here are some suggestions to pass on to your
customer base.

Spam
If you get copious spam, don’t take it personally. Most spammers don’t know anything
about you. In general, they’re rather sad and stupid, more than sinister. Your mail
address is harvested from a variety of sources (newsgroup postings, mailing lists,
web sites, and so on) and added to lists that are sold to others—just like terrestrial
junk mail. Spam that attempts to implicate you by name and/or mail address in its
dissemination is sometimes called revenge spam, and that form of spam usually
is personal: anti-spammers (those who try to isolate people and sites involved
in sending spam) are frequent targets for this sort of unpleasantness.

Be sceptical. If the message says you’re receiving the mail because you logged on
to the sender’s web site, or were subscribed to a mailing list, the sender is probably
lying. If it includes an apology in case you were mailed “in error”, that’s in the hope

4 8 8 V i r u s e s R e v e a l e d

of dissuading you from tracing the sender and lodging a complaint with his or her
provider. If the sender says that you can opt out of the mailing list by following
instructions, take it with a pinch of salt. You may well find that your reply bounces
because the sender has given you a forged address or one that goes to an innocent
third party. If instructions do work, or you’re able to submit a removal request to a web
site, you’re likely to find that far from receiving less spam, you’ll receive more—after
all, you’ve just proved that you have a working email address. Spamming isn’t like
conventional marketing through junk mail: it’s much cheaper (for the spammer,
anyway), so the spammer has no incentive to target victims accurately. In fact, the
recipient is not the only victim here; the other victim is the sad little person who
thinks he or she is maximizing his or her sales potential by using a purchased
mailing list.

NOTE

Does all this mean that you, as an administrator, have to put up with spammers? Of course not,
but we don’t recommend that you take any action that involves trying to attack people who seem
to be spamming your customers, unless you intend to spend substantial time on research. There
are people who spend most of their time dealing with this particular threat, keeping their filters
tuned and hounding the perpetrators. There’s a lot to learn if you want to hit the right targets,
and spammers have a vested interest in misdirecting your anger. If you are not absolutely sure
of the identity of the sender, limit your response to sending a copy of the message (with full
headers) to the abuse account at the various sites the message has passed through.

Chain Letters
Whatever the content, if a letter contains a request to forward it, don’t forward the
letter without verifying. Better still, don’t forward the message even if you have verified
it with the originator and checked the facts. If the message is important enough to send
on, it is important enough to write a new one to send to people that you know.

Hoaxes
Of course, if you know that an alert is a hoax, you won’t forward it. If you have any
doubt about an alert’s veracity, don’t forward the message unless you are sure of the
facts. Better still, don’t forward the message even if you have verified the alert except
under very exceptional circumstances. Is there an echo in here? Well, we did say
that a hoax is a special case of chain letter.

C h a p t e r 1 6 : M e t a v i r u s e s , H o a x e s , a n d R e l a t e d N u i s a n c e s 4 8 9

Summary
This has been a long chapter, considering how much of it focuses on viruses
that don’t actually exist. It has also dealt with a subject that the anti-virus vendor
community has tended to neglect, some seeming to feel that they did their bit
around 1997. Conference papers and articles were written, known hoaxes were
listed on vendor web sites, and enquirers were referred to Rob Rosenberger’s site
at www.kumite.com/myths, more recently www.vmyths.com, as the last word on
all things hoax-related. However, this is not enough. The encyclopaedias are not
all- inclusive, the simple heuristics of yesteryear don’t catch all the variations of
hoax, semi-hoax and hype alert, and no web site has a monopoly on Truth. While
Good Times derivatives continue to appear, more subtle blends of hoaxes and real
viruses make the job of evaluation more difficult, and the convergence of types of
mail abuse increases the complexity of the administrator’s job. So, too, does the
increased sophistication of tools, both at the perimeter and at the desktop, some
of them spanning more than one type of network threat. While this sophistication
increases the range of weapons in the administrator’s arsenal, it also increases his
or her learning curve. Next, we look at legal and quasi-legal issues, and consider
how we can manage real and imagined viruses through policy.

4 9 0 V i r u s e s R e v e a l e d

CHAPTER

17
Legal and Quasilegal

Imperatives

491

IN THIS CHAPTER:

Malware and the Law

Grounds for Criminal Proceedings

The Computer Misuse Act

Some Broad Concepts

Data Protection Legislation

Data Protection Principles

BS7799 and Virus Controls

ISO 9000

Security Architecture

Policy Outlines

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

4 9 2 V i r u s e s R e v e a l e d

Information protection is the protection of information assets, based on risk
analysis and reduction of threats to data integrity, data confidentiality, and
modification. We have already examined technological solutions to the virus

problem (or partial solutions, more accurately) in detail, especially in Part II. Such
solutions can display considerable sophistication and are, within limits, surprisingly
successful. Yet the virus problem continues to grow, largely because technological
solutions miss the social dimension.

As anti-virus professionals, systems administrators, security managers, and the
like, we are not in a position to change human nature. We can, however, effect a
significant degree of behaviour modification within the organizations for which we
are responsible. Indeed, the virus/worm problem could be reduced to near-trivial
proportions within corporate enterprises simply by enforcing appropriate caution
through education and policy. However, policy does not exist in a vacuum; it reflects
social mechanisms and constraints originating beyond the enterprise perimeter: social
convention, criminal law, civil law, contractual obligations, and compliance with
external codes, standards, and guidelines.

In this chapter, we concentrate largely on the expression of malware management
through internal policies, but we also consider some of the external elements that
inform them.

Malware and the Law
It isn’t possible in this chapter to deal even briefly with all the legislation that may
be relevant in one country, let alone all of them. In the United States, local statutes
may be much more rigorous than federal legislation, which is generally more
concerned with computers in which the government has an interest than it is with
those belonging to individuals.

Legislation is usually more concerned with the spread of viruses than with their
creation. In most countries, it is not an offence to write a virus. In a minority of
countries, this is not the case. Legislation in many countries can be used against
individuals implicated in the spread of viruses by infection of systems where the
owner or user of the system is unaware that malicious software is present. Exchange
of malware between individuals who are both aware of what it is they are transferring
is less likely to attract proceedings under criminal law. In countries where the
creation of a virus is an offence, distribution is almost invariably also an offence;
characteristically, even the sharing of virus code between anti-virus researchers is,
at least technically, also an offence in such states. Switzerland is a frequently
cited example.

C h a p t e r 1 7 : L e g a l a n d Q u a s i l e g a l I m p e r a t i v e s 4 9 3

Once a virus is released into the wild, it is likely to cross national boundaries,
making the writer and/or distributor potentially answerable for his or her actions
under a foreign legal system, in a country that he or she may never have visited.
You might think this particularly true of fast-burning email worms and viruses, and
potentially, it is. However, none of the infrequent recent cases where someone has
been identified has resulted to date in prosecution outside the individual’s own
country. In fact, the only instance we can bring to mind at present is the case of
Dr. Popp and the AIDS Trojan, which we considered in a case study in Part III. (An
Italian court tried and sentenced Popp in absentia.) However, the principle of trying
a foreign national in a country where an offence was committed is firmly established
in international law, and has been tested a number of times in areas of computer crime
unconnected with virus distribution, as well as cases other than computer crime.

Where criminal action against virus writing and distribution is local in a particular
case, the perpetrator may nevertheless be subject to civil action. In other words, even
where no offence is thought to have been committed, the individual may still be sued
for damage, if he or she is thought to be implicated in the distribution of a virus, for
instance. Clearly, such offences can include the unwitting distribution of infected
material such as macro-infected documents. A possible example would be proceedings
launched for recovery of the costs of damage to data, systems, or reputation due to
negligence and lack of “due diligence”. This scenario has resulted in an upsurge of
contracts that specify whether an individual or organization is responsible for
management of virus-related risks. It is also possible that an alleged perpetrator
could be acquitted of any criminal offence, but still face civil litigation.

Grounds for Criminal Proceedings
Some of the grounds on which virus writing or distribution may qualify for criminal
proceedings include:

� Unauthorized access You may be held to have obtained unauthorized access,
even to a computer you’ve never seen, if you are responsible for distribution
of a virus that infects that system. In some cases, users who may have been
unknowing virus victims have been subjected to legal proceedings because
of presumed involvement with the distribution. (This is quite different than
a virus victim facing civil proceedings because of presumed neglect in letting
the virus take hold on his or her system and thus spread to other victims.)

� Unauthorized modification Modified objects might include an infected file,
boot sector, or partition sector, as well as data.

� Loss of data This might include liability for accidental damage, as well as
intentional disk or file trashing. In real life, modification of data might well be
considered more serious than complete loss of data, especially where sound
backup and recovery practices are in place. However, outright trashing of
data is the consequence of viral action that people fear most, even though
intentionally destructive viruses are in the minority. It is likely that this
preoccupation would be reflected in judicial proceedings.

� Incitement This is the act of encouraging others to commit an illegal act.
Acts that might be considered incitement where virus writing or distribution is
considered illegal might include making virus-related material available, such
as actual viruses, virus code, information on writing viruses, and virus engines.

� Denial of service This is usually considered an attack in its own right or a
consequence of nonviral malware such as distributed denial of service (DDoS)
agents. However, it has been argued that all viruses also entail a degree of
denial of service. Some viruses might include a payload that results (intentionally
or otherwise) in reduced or denied service of some sort (including, of course,
access to data). Sometimes a virus or worm that doesn’t have such a payload
can nevertheless be the indirect cause of denial of service when anti-virus
software notices an infection. Denial of service may also result when a virus
conflicts with legitimate software when both are in memory at the same time.
Viruses are not normally associated with these phenomena. However, any
unauthorized virus steals memory, disk space, or clock cycles (processor time),
and sometimes all three.

� Endangerment of public safety A Canadian statute, for example, indicates
that anyone who willfully commits an act likely to constitute “mischief causing
actual danger to life or to constitute mischief in relation to property or data”, or
who fails to do something that it is his or her duty to do, resulting in danger or
mischief, is guilty of an offence.

� Application of any of the preceding with reference to computer systems or data
in which the relevant government has an interest.

Of course, these grounds cannot all apply at all times in all countries. Some
countries do not recognize the right of foreign states to influence or institute legal
proceedings locally, for instance. It is, however, possible to break the law of another
country, state, province, or other locality without ever leaving your own, and to face
subsequent extradition.

4 9 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 7 : L e g a l a n d Q u a s i l e g a l I m p e r a t i v e s 4 9 5

Some pro-virus residents of the United States (at least as represented in USENET)
seem to hold the unshakeable belief that US law is universal law, and have, in any
case, limited knowledge of their own legal systems (as do most people who aren’t in
the legal profession). None of the authors of this book are lawyers (in fact, we aren’t
even US residents), so we don’t offer the following observations from a position of
uncontestable authority. If we were qualified to do so, this chapter would not be the
place to tackle a subject of such complexity. However, the Internet crosses national
and legal boundaries. An action you take (legally) in your state that affects me may
be illegal where I live, in which case you may expose yourself to legal sanctions.

Local interpretation of the statutes may hold that it is legal to distribute viruses,
for example, on a VX web site, as long as the people who are downloading the virus
know what they are getting. Certainly virus writers and distributors tend to assume
that this is the case, and lean heavily on this defence, except where they intend to
slip a virus into circulation covertly. In most countries, exchanging viral material is
legal if the recipient knows what he or she is getting (more or less), and if there’s no
suggestion of incitement to commit a crime. Specifically, sending a clearly labelled
sample to a bona fide researcher or vendor is usually legal. Someone who
intentionally infects a file and makes it available for downloading without any sort
of warning is far likelier to face legal action. In the United Kingdom, for instance,
the Computer Misuse Act specifically criminalizes unauthorized access and
unauthorized modification. If a virus covertly accesses a major system, especially
if it damages or otherwise modifies the system or its contents, the chance of
prosecution rises dramatically, if the perpetrator can be traced. Note that any virus
modifies the host environment in some way, and usually does so without the
knowledge or permission of the owner of the computer.

The Computer Misuse Act
Section 1 of the UK’s Computer Misuse Act is aimed at outlawing unauthorized
access to programs or data if the offender knows at the time of access that he or she
doesn’t have the right to do so.

Section 2 expands this concept into the area of “ulterior intent”: that is, it identifies
instances where unauthorized access is gained with intent to commit or facilitate
further offences (blackmail or extortion, for instance).

Section 3 deals with the offence of intentionally causing “an unauthorized
modification of the contents of any computer”.

4 9 6 V i r u s e s R e v e a l e d

Many countries have equivalent legislation dealing with the key concepts of
unauthorized access and unauthorized modification. Legislation addressing criminal
damage, incitement, and interference with telecommunications equipment may also
be relevant. The Copyright, Designs & Patents Act deals with software piracy, and
is often cited in anti-virus and information protection documentation in the UK,
presumably because of the slightly dubious but time-honoured association of piracy
with virus infection.

In general, unwitting dissemination of a virus by someone whose system is
infected is not a crime, as there is no question of intent. The individual may, of course,
have to carry the “burden of proof” that he or she was unaware of spreading a virus,
and may be liable to civil proceedings for negligence.

Under certain circumstances, laws in other countries may be applicable in
cyberspace, where there are no formal territorial boundaries. For instance, the
Canadian Criminal Code stipulates that everyone, “while in a place outside Canada”,
who conspires to commit an offence in Canada “shall be deemed to have conspired
in Canada to do that thing”.

Some Broad Concepts
Writing a virus is not usually illegal, though it may contravene acceptable use
policies, conditions of employment, and so on. Legal sanctions are likely to be
directed towards those who may be guilty of more generalized misdemeanours,
such as criminal mischief, which might include:

� Damaging or destroying property

� Rendering property dangerous or impairing its ability to function

� Obstructing the lawful use of property

The concept of criminal mischief is unlikely to be invoked where an individual is
simply eliciting or exchanging information, as long as he or she has the right of access
to that information.

The concept of incitement arises where one person suggests to others that an
offence be committed. Legal proceedings may ensue even if the offence is not or
could not actually be committed, if the offence is committed in a different way
than that suggested, or if the individual who actually committed the offence is not
charged. Ignorance of the fact that a suggested act would be illegal is not necessarily
a defence, although intent to act criminally is certainly a significant factor.

No wonder legal advice is so expensive.

Data Protection Legislation
Data protection legislation such as the UK’s Data Protection Act does not necessarily
deal exclusively with electronic data (although protection of electronic data was
added with the 1998 revision). Clearly, your mileage may vary if you don’t happen
to be in the UK. However, the UK legislation is based on the same European Directive
to which other European Community members are obliged to conform, so there is
a distinct family resemblance between laws enacted in member states. Meanwhile,
most non-European states address similar problems, if not in exactly the same
way. We will therefore concentrate on the Data Protection Act in particular and
the European Directive in general as examples, rather than as being universally
applicable. Nevertheless, well-founded data protection legislation will tend to
address the same range of issues.

If data processing in general is to be defined as lawful, at least one of a number
of conditions must be met:

� The subject must have consented to the processing.

� Processing must be necessary in order to enter into or execute a contract
to which the party is subject.

� The data controller is under a legal obligation (other than contractual) entailing
a need for the processing.

� The processing is necessary to protect the vital interests of the data subject—
that is, necessary to save life.

� The processing is necessary for the administration of justice, for the exercise
of tasks necessary for administrative functions within the public sector or by
government, or for other functions necessary to the public interest.

� The processing is necessary for the data controller’s legitimate interests
without being detrimental to the legitimate interests of the data subject.

Lawful processing in terms of sensitive data is subject to additional conditions.
The Act defines sensitive data as that relating to the following:

� The subject’s racial or ethnic origin

� The subject’s political opinions

� The subject’s religious beliefs

� The subject’s trade union membership or non-membership

C h a p t e r 1 7 : L e g a l a n d Q u a s i l e g a l I m p e r a t i v e s 4 9 7

4 9 8 V i r u s e s R e v e a l e d

� The subject’s physical or mental health

� The subject’s sexual life

� The subject’s criminal record or being subject to criminal proceedings

One or more of the following conditions (which include some of the conditions
already defined) must be met if processing of sensitive data is to take place:

� The subject has given explicit and informed consent to processing.

� The controller is legally bound to undertake processing.

� Processing is in the vital interests of the subject or of another (in an
emergency situation).

� Processing is in pursuit of legitimate nonprofit activities.

� The data subject has deliberately made the data public.

� Processing is necessary in relation to legal rights. These might include
obtaining legal advice; establishing, exercising, or defending legal rights;
or conducting ongoing or prospective legal proceedings.

� Processing is necessary for the administration of justice, public sector interests,
or the public interest.

� Processing is necessary for medical purposes, including (but not confined to)
preventive medicine, medical diagnosis, medical research, provision of care
and treatment, or the management of healthcare services. The inclusion of
“medical research” is specific to the UK’s Data Protection legislation; it does
not appear in the European Directive.

� Processing is necessary to trace equality of opportunity between peoples of
different racial or ethnic backgrounds.

� Other conditions apply, specifically listed by the secretary of state. The
European Directive requires such conditions to be in the public interest and
suitably safeguarded, but the UK Act does not include this requirement.

Data Protection Principles
Data protection legislation in the European Union (like the UK’s Data Protection
Act) is based on the European Data Protection Directive 95/46/EC. Member states
may make additional conditions in the public interest, as long as they incorporate
suitable safeguards. In general, there is far more harmonization of data-protection
legislation between member states than is the case in other areas of security-related

C h a p t e r 1 7 : L e g a l a n d Q u a s i l e g a l I m p e r a t i v e s 4 9 9

legislation. Other countries have similar concerns and legislation, although the
expression of such legislation may be very different.

Data processing requires the consent of the data subject, except when:

� Processing is necessary to execute a contract to which the subject is party.
� Processing is necessary to fulfil a legal obligation.

� Processing is necessary in the vital interests of the data.

� Processing is necessary in the public interest or in the exercise of
official authority.

� Processing is necessary if the data controller is to pursue legitimate interests
(but only if those interests are compatible with the interests, rights, and
freedoms of the subject).

Categories of data are defined which correspond to the categories earlier defined
as sensitive and which can be processed only under strict conditions, including the
explicit consent of the data subject.

The data subject has the right to know the identity of the data controller, and the
purpose for which the data are collected (from the subject or from a third party). The
data subject also has the right of reasonable access to the data and the right to have
inaccurate data corrected or deleted. The subject has the right to object to and even
block the processing of data, the right to object to their use for direct marketing, and
the right not to be subject to a legally binding decision based solely on the automatic
processing of data.

Personal data must be protected against accidental or unlawful destruction or
loss, or unauthorized alteration, disclosure, or access. The level of security must
be appropriate to the risk, the nature of the data, and the cost and availability of
remedial technology.

The eight Principles that underpin the UK legislation are listed here, not because
they carry any universal force of law, but because they encapsulate most of the issues
that data protection legislation is intended to address. They do, however, reflect the
content of the European Directive, which has implications for American companies
with an interest in the transfer or processing of protected data by European partners
or subsidiaries. For more information, try:

http://www.privacy.org/ pi/intl_orgs/ec/eudp.html
http://www.privacy.org/pi/intl_orgs/ec/ final_EU_Data_Protection.html

� First Principle “Personal data shall be processed fairly & lawfully”. (This
principle can be roughly defined as satisfying Schedule 2 of the Act, and, in
the case of sensitive data, Schedule 3.)

5 0 0 V i r u s e s R e v e a l e d

� Second Principle “Personal data shall be obtained only for one or more
specified and lawful purposes, and shall not be further processed in any manner
incompatible with that purpose or those purposes”.

� Third Principle “[Data] shall be adequate, relevant, and not excessive in
relation to their purpose”.

� Fourth Principle “[Data] shall be accurate and, where necessary, kept
up to date”.

� Fifth Principle “[Data] shall not be kept for longer than is necessary...”

� Sixth Principle “[Data] shall be processed with the rights of the data subject
under this act”.

� Seventh Principle “Appropriate technical and organizational measures shall
be taken against unauthorized or unlawful processing of personal data and
against accidental loss or destruction of, or damage to, personal data”.

� Eighth Principle “[Protected data] shall not be transferred...outside the
European Economic Area unless an adequate level of protection [is] assured
by the target country or territory”.

What do these principles have to do with malicious software? While they do
not explicitly mention specific malware, the need to protect against malicious
programming is woven into the very fabric of the Act. The third and fourth principles
require by implication that the integrity of protected data should be preserved, and
all malicious software is, potentially, a threat to integrity. The seventh principle
is more specific, and could be held to cover not only threats to integrity,
confidentiality, and availability, but also the very presence of malicious software
on a system used for data processing within the terms of the Act. Unauthorized
processing is characteristic of malicious software, if not altogether a defining
characteristic, and often entails a risk to data (including personal data) on the
affected system. It is difficult to see how a data processing system unprotected
against malicious software could escape breaching this principle unless it could be
proved that the system had never held “personal” data and never would.

BS7799 and Virus Controls
The British Standard Code of Practice for Information Security Management (BS7799)
is commonly used as a basis for organizational security standards, and is now the
foundation for the international standard. It was originally the result of a collaboration

C h a p t e r 1 7 : L e g a l a n d Q u a s i l e g a l I m p e r a t i v e s 5 0 1

between the Department of Trade and Industry, the British Standards Institution,
and a number of large corporate bodies in the United Kingdom, put together in an
attempt to codify “best practice”. However, many security professionals regarded the
Code of Practice in general as an inadequate basis for a standard, and the section on
virus control was particularly weak, displaying little evidence of input from anyone
with significant expertise in virus management. The size of the sampled institutions
apparently does not guarantee their understanding of the security field in general, nor
virus management in particular. We have to wonder whether other documents based
on “best practice” within industry are similarly founded on the unverified assumption
that size is related to competence.

Protection from hostile software is a requirement for conformance with BS7799,
so as to maintain the integrity of data and programs. While the 1995 version mentioned
other forms of malware (malicious software), such as worms and Trojans, as requiring
special measures “as appropriate”, it singled out virus detection and prevention as a
“key control”, although the guidelines were somewhat vague. The standards emphasized
the following points:

� The need to educate users in virus control, and in particular the need for a
proactive virus strategy.

� The need to encourage general security awareness.

� The need to implement appropriate system access controls. The reader was
directed to the section later in the Code of Practice dealing with system access
control, but that section did not specifically cover virus management. This
omission may have been unfortunate, since there is indeed a place for access
control in virus management. For instance, access control can ensure that
network users have, by default, no write access to executable files on servers
or other workstations. Another example might be the use of access-control
software to ensure that a workstation cannot access media until the media are
scanned and authorized by a “sheepdip” or “gateway” machine using a
known-virus scanner.

The Code of Practice required the establishment of a formal policy insisting that
users comply with software licences, and that unauthorized software not be used.
This linking of software piracy with virus infection is common in security writing,
although some evidence suggests that the implication of software piracy in virus
dissemination is generally overestimated. The later section to which the Code refers
the reader is actually concerned with copyright issues. Certainly a security policy
should address these issues, but we remain sceptical as to how relevant they are to
a virus-management policy.

The use of reputable anti-virus software was required as follows:

� Known-virus detection must be performed with a regularly updated scanner. The
Code of Practice specifies that this scanning be required either as a “precautionary
measure” or routinely. Since experience indicates that users are not always very
good at remembering to take precautionary scans, most institutions might prefer
to emphasize the use of regular routine scans, using a scheduler or a call to an
on-demand scanner from AUTOEXEC.BAT, for instance. Such a pattern of
usage might reasonably be modified, however, where an on-access scanner is
permanently active in a multitasking environment, or where unobtrusive
background scanning can realistically be scheduled to run automatically.

� Change-detection or integrity-checking software is recommended “where
appropriate”. Over the years, the issue of scanners versus generic anti-virus
software, of which change-detection software is one type, has generated some
controversy. The press and other sources have often represented some products
as making known-virus scanners redundant. Unfortunately, the issue is rather
more complex than this. Under the present state of the technology, considering
generic anti-virus software (which may be defined roughly as software that
doesn’t recognize known viruses as such, but which detects and in some cases
repairs changes to executable code) as a replacement for known-virus scanning
remains unsafe, though such software increasingly is being regarded as a useful
supplement. However, the emphasis has shifted away from change detection on
the desktop (although it certainly continues to play its part on servers) towards
generic blocking of suspicious email and email attachments at the gateway.

� The Code suggests that the use of anti-virus software to repair damage to
infected files be undertaken only with caution. Repairing infected files or
boot sectors is probably safer with a utility that actually recognizes the virus
concerned than by other means, but it’s reasonable to recommend that caution
be exercised. In some circumstances, an infection cannot safely be removed, or
unusual factors may make repair particularly complicated. Even vendors that
make a big marketing point of their ability to repair infected files will usually
admit that, where possible, it is safer to replace an infected file. Fortunately,
serious disinfection difficulties arise much more rarely with macro viruses, and
some components of worm infestation can simply be removed, although repair
to the Windows Registry is usually required.

� The Code recommends that critical systems be regularly examined for
unauthorized changes to software, the presence of unexpected files, and the
quality and integrity of data.

5 0 2 V i r u s e s R e v e a l e d

� Checking of diskettes of dubious provenance is mandatory. This
recommendation seems a little quaint nowadays, given the decline in use
of diskettes (and indeed zipdisks and other high-capacity removable media).
We would still recommend, though, that this caution be extended to all
removable media, including those that arrive shrinkwrapped containing
new software, and that recycled media be subjected to particularly stringent
precautions before reuse.

� The Code specifies that procedures and responsibilities be defined
for reporting and recovery. Elsewhere the Code of Practice states general
guidelines for the establishment of such procedures, but the Code implies that
there should be a clear channel so that the best person or team to deal with an
incident hears about it at the earliest possible moment. The establishment of
virus-specific business continuity plans is required, with particular emphasis
on backup and recovery. Given the existence of viruses such as Dark Avenger,
Ripper, and some macro viruses that are intended to cause random damage
over a period of time, this issue deserves more virus-specific attention.
However, business continuity planning is another of the key controls
emphasized in the Code of Practice.

The standard suggests that these issues are particularly important as regards
network file servers. This is certainly so where a server is used as the primary
backup storage medium for workstations; however, a properly configured server
usually should not allow unprivileged users to modify shared applications.

The revised version of BS7799 places far less reliance on detailed specification
of controls, and instead advocates the use of third-party consultancies to certify
compliance with the standard. It consists primarily of a Code of Practice (Part 1)
and Specification (Part 2). The “Specification for information security management
systems” essentially defines an objective (to protect the integrity of software and
information), the required controls (detection and prevention controls), and the
need for implementation of “appropriate user awareness procedures”. (Simple
and straightforward: the difficulties of this virus-management business are really
overrated, don’t you think?)

The Code of Practice is only a little more detailed. The objective is, again, to
protect integrity, so the Code does not formally address the implications of malware
action that results in threats to availability, service provision, accountability, or
confidentiality. This may tell us something about mindset, and certainly gives ample
opportunity for an incompetent certification authority to miss some important points.
While we can hardly say that no virus has ever damaged data or software, such

C h a p t e r 1 7 : L e g a l a n d Q u a s i l e g a l I m p e r a t i v e s 5 0 3

5 0 4 V i r u s e s R e v e a l e d

damage constitutes a comparatively small percentage of the total cost of virus impact.
Curiously, the 1999 revision emphasizes protecting PCs, implying workstations,
rather than protecting servers.

The Code defines protection in terms of “security awareness, appropriate system
access, and change management controls”. Specific areas singled out include:

� Compliance with software licences and prohibition of unauthorized software.

� A formal policy addressing the risks associated with obtaining files and
software from external networks.

� The installation and maintenance of anti-virus software. (Detection and repair
are both mentioned.)

� Regular reviews of software and data content. (This appears to refer to the
presence of unauthorized files or modifications to authorized files.)

� Scanning of material from untrusted sources before use.

� Scanning of mail attachments and downloaded files before use.

� Management procedures and responsibilities, including systems management,
product training, incident reporting, and recovery.

� Business continuity issues (backup and recovery).

� Verification of information. Particular attention is paid to distinguishing between
hoaxes and real viruses. The revision suggests that staff be made aware of the
hoax problem and of what to do if one is received. (The problem of how to
recognize a hoax in the first place doesn’t seem to merit much attention.)

The 1999 revision is intended to supersede the 1995 original. However, we
have considered the original in some detail, as it tends to influence the thinking
of organizations implementing conformance, either directly or through the
recommendations of consultants.

In fact, institutions using BS7799 as a basis for their security architecture may
be obliged to trust the recommendations of third-party consultants, if they do not
have in-house expertise. This is a particular disadvantage where virus issues are
concerned, since many security consultants are not particularly well acquainted with
the low-level operations of microcomputers. When it comes to viruses, which are
mostly confined to PC-compatibles and (to a lesser extent) Macintoshes in the
business and academic worlds, consultants may lack the technical knowledge to
grasp some crucial elements of the virus problem. They may be reluctant to admit
to imperfect understanding of virus issues, and even be genuinely unaware of any
problem with their understanding.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 7 : L e g a l a n d Q u a s i l e g a l I m p e r a t i v e s 5 0 5

ISO 9000
ISO 9000, also known as BS5750, is not concerned directly with viruses, or with
security in general, but with quality management. However, quality assurance (QA)
in an IT context can be a useful adjunct to (but not a substitute for) sound security
management. The principles of quality management are much the same in anti-virus
security as they are in widget manufacture:

� People have defined roles so that they know the jobs for which they are
responsible. QA analysts love organization charts.

� Procedures are documented.

� Documentation is subject to a formal change-management procedure, which in
turn is documented. We are reminded of the old programmer’s dictionary joke:
“Loop: see Loop”.

� Sound procedures are supplemented by good record-keeping, to assist in
troubleshooting and to demonstrate whether procedures are followed.

� Regular checks and audits are carried out.

� Problems are identified and corrected.

� Good communication is maintained.

You may wonder whether it’s worth the price of this book to learn this, let
alone the cost of consultancy and certification. And yes, this is essentially formal
methodology applied to commonsense measures. Good management often is. Bad
management tends to substitute formality for common sense, but this book is not the
arena in which to ride that particular hobbyhorse.

Security Architecture
A security architecture based on policy presupposes an educational strategy: policies
that no one knows about are useful only for scapegoating purposes. Underpinning
the educational strategy, there should be a firm foundation of documentation.
There is a classic model for a security architecture that works as well for anti-virus
protection as for other areas of security, embracing policy, standards, and guidelines.

Security policy broadly defines:

� What is to be protected

� Why protection is necessary, and from what threats

� What the responsibilities of all concerned parties are

Standards are more detailed, but still independent of specific platforms and
applications. They define platform-independent codes of practice, and the way that
performance is measured.

Guidelines (or system policies) define how standards are implemented in specific
environments. The corporate anti-virus policy could be contained within an overall
security policy. This, in turn, could be quite specific about systems, and sample
policies along these lines have been published. However, a modular approach makes
maintenance easier, especially if the main source of policy information is Web-hosted.

A security policy should, in any case, make specific reference to anti-virus
practice and policy. It’s too easy to regard anti-virus security as an isolated desktop
issue, rather than as a systems issue ranging across the whole enterprise and
impinging upon other security issues. An anti-virus policy might consist of:

� A mission statement to define the objectives of the policy, and of the
organization’s anti-virus strategy. Essentially, the statement defines what
you’re protecting.

� An explanatory section in non-technical, non-legalistic terms, essentially to
define what it is you’re defending against. This section might include a historical
summary of the virus problem, but should certainly include some sort of
description of the problem. It is, of course, possible to address policy issues in
terms of “Do this, don’t do that, and the rest is up to you”. However, if users or
customers can see the logic behind the instructions they are given, they are
likelier to remember those instructions. It therefore makes sense to make sure
they have some idea of what viruses are, what they do, and what cost and
damage implications they entail. These costs and damages may include
corrupted data, leakage of information, and system damage, but may also
include psychological factors such as damage to morale, reputation, and
goodwill, as well as legal considerations such as breach of contract and
breach of data-protection legislation.

� Cross-reference to other security policies is essential. An anti-virus policy
should certainly refer to and be referenced by the overall corporate security
policy. Other policy issues that may overlap include:

� Use of the Internet and the World Wide Web, email, IRC and other
protocols and information channels

� Authorized and unsanctioned software

� Piracy and software licensing

� The use and reuse of electronic storage media

5 0 6 V i r u s e s R e v e a l e d

C h a p t e r 1 7 : L e g a l a n d Q u a s i l e g a l I m p e r a t i v e s 5 0 7

� Backup of servers and workstations

� Formulation of standard contracts with suppliers of software and hardware

Some organizations also have a separate information protection policy, dealing
with ownership of data and systems. This policy leads naturally into the definition of
responsibilities of individuals and groups, including top management, unit managers,
contractors, visiting firefighters, and just about anyone else who ever goes near a
computer.

The local anti-virus guru may be a security specialist, a systems administrator, an
engineer, or even a power user with special skills, training, and interests. To whom
is this guru responsible? What authority and resources does the guru have, and what
responsibilities does he or she own? (These may include software evaluation,
implementation, maintenance, testing, distribution, policy, and education.)

Systems management personnel have special privileges, and therefore should be
required to meet high standards of caution and ethical behaviour. Systems managers
often don’t see virus management as being any of their concern. However, viruses
should never be regarded as solely a desktop issue. A file server with no direct
anti-virus protection is potentially a major source of infection, irrespective of whether
it runs under a vulnerable operating system.

Unless top management accepts the ultimate responsibility for ensuring that
suitable software and expertise are available and adequately resourced,
implementation of anti-virus and other security measures is likely to be shelved
every time that something more urgent or glamourous needs attention. Everyone
likes a “quick win”; security, however, if it’s done properly, needs constant care
and feeding, and those who implement it get more complaints about its nuisance
value than compliments on how well-protected everyone feels.

In large organizations, implementation will be much harder without the cooperation
of middle management and department heads and their willingness to accept change
and monitoring.

IT staff in general have to conform to good practice as regards electronic hygiene.
Clue-challenged IT staff can be a significant source of infection. They may also, if
suitably trained, be in a position to spot a virus-related problem onsite before the
user has identified it or reported it to the Help Desk, and may thus play an important
role in the early containment of a virus outbreak.

Help Desk staff need to be able to spot a possible virus problem as early as
possible in the diagnostic process; otherwise, they may advise inappropriate action
instead of referring the problem to someone with more expertise.

What is expected of those to whom Help Desk staff are responsible? General
users and customers need to know what their own responsibilities are. (Remember

that security responsibilities run in several directions: up towards the top of the
management tree, down to every other member of the unit, across to other parts
of the organization, and outward to peer organizations.)

� On many sites, up-to-date anti-virus software is available, but distribution isn’t
automated, so the users need to know when and where updates and upgrades
are available. Remote users present particular difficulties regarding automated
distribution, although these difficulties are by no means insurmountable.

� They need to know what anti-virus software to use on home machines
and laptops.

� They may also need to know how to install and configure such software in
the absence of an automated system. In general, people who use laptops or
home machines for work purposes should be encouraged or even required to
maintain a standard of protection on those machines as good as, or even better
than, that maintained onsite.

� If it is decided to take a stern position against removing anti-virus software (to
improve system performance, for instance), general users and customers have a
particular need to know of this strict policy, since their systems are likely to be
less open to central control.

� They need to know whom to contact in an emergency.

� They need to know about particular issues such as machines that are used
by more than one person, loan pool machines, and “gateway” machines that
are used to check incoming or outgoing storage media. General users and
customers need some idea of legislative obligations, contractual obligations,
codes of connection, and national and international standards with which they
are required to conform.

� They will be required to conform to stated policies and conditions of
employment.

� They may be required to take advantage of educational opportunities where
they are offered.

� They will usually be required to use recommended software and update it as
updates become necessary and available.

Policy documents should cross-reference to standards and guidelines, if
applicable. Particularly vulnerable systems may require platform-specific measures.
Remember, though, that a policy is worthless unless:

5 0 8 V i r u s e s R e v e a l e d

� It is supported by management.

� It is flexibly and knowledgeably implemented.

� It is supported by realistic protocols.

� People know where to look for advice if they need it, and they don’t have to
be virus experts or lawyers to understand it.

� It is cross-referenced to other security policies, such as:

� The overall security policy

� An information protection policy, dealing with data and system ownership
issues, or, more brutally, the ownership of problems associated with data
and systems

� Restrictions on what software may be used, and from whence it may
be sourced

� An email usage policy

� An Internet and Web usage policy

� A media usage policy

� Standard contracts with suppliers

� Backup policy and issues (affecting both servers and workstations)

Guidelines entail specific implementation requirements. They attempt to answer
a number of questions.

Who Is Responsible for Security in a Given Context?
How and when can Help Desk staff be contacted? And what are their responsibilities?
This is standard policy fodder, but the answers are apt to be fuzzy or skipped
altogether in the context of malware management, which is still often seen as a
minor branch of systems security requiring no special attention.

What Systems Are Protected?
Workstations and LAN servers are obvious candidates for protection. Gateways for
email, HTTP, ftp, IRC, and other vectors for malicious software certainly should not
be neglected. Firewalls, viruswalls, and contentwalls may confer protection, but they
require protection too. Intranet, extranet, and Internet servers also require protection.

C h a p t e r 1 7 : L e g a l a n d Q u a s i l e g a l I m p e r a t i v e s 5 0 9

What Are the Details of Implementation and Configuration?
In the context of virus management, these details may include product-specific
recommendations, but will certainly address broad strategic issues such as the use
of on-access scanning, on-demand scanning, and scheduled on-demand scanning.

Detailed protocols will deal with incident management and virus cleanup and
recovery. They may also address other measures such as access control, hardware
and software configuration, and change control. Special considerations may be
addressed, such as shared access machines (machines that don’t have a single
“owner”), including machines (especially portable machines) from the loan pool
and sheepdip machines for the testing of incoming and outgoing media.

Everyone, especially the person primarily responsible for virus management,
needs to know where to go for further information. IT staff do not have diplomatic
immunity. They should, in fact, be exceptionally scrupulous. Systems administrators
do not emerge from the MCSE course fully expert in virus management. Virus
management isn’t rocket science, but it’s a skill that requires some work—mostly
research.

An engineer or user who thinks he or she must have a virus because a problem has
arisen is grasping at straws. Most reported virus incidents turn out to be something
else. Many anti-virus professionals spend more time dealing with hoaxes than with
real viruses. A real but known virus is still rarely more than a nuisance, if dealt with
properly. (Almost any of the fast-burner epidemics of recent years could have been
avoided for the most part by purely generic filtering.) Panicking users cause more
damage than most viruses.

One means of lessening the FUD (Fear, Uncertainty, Doubt) factor is to be
proactive. If people know that information is generally made available to system
and security administrators, and everyday users where appropriate, they will tend
to react more calmly and rationally. Sometimes, though, it’s difficult to decide when
information should be shared, and with whom.

It may be helpful to concentrate on broad issues (types of virus, types of anti-virus
technology, hoaxes) rather than individual threats, and to assume that most general
users and customers have only minimal understanding of virus and anti-virus
technology, and thus will not understand or retain detailed information very well.
Much information gathered from mailing lists, newsgroups, and web sites can be
seriously misleading, and not fit to present to an untrained audience without
modification. Most administrators don’t have time to translate jargon or black
propaganda into information that most technically ill-equipped users would find
particularly useful.

5 1 0 V i r u s e s R e v e a l e d

It may be useful to make a distinction between everyday users and IT personnel.
Some of the latter may have a little formal training in the use of a particular vendor’s
AV software and/or some one-to-one or one-to-not-very-many training from the
local guru. This is a mixed blessing: the larger the organization, the more necessary
it is to spread the load. However, a little knowledge is still a dangerous thing.

There’s an element of risk assessment here. How much do you share, and when?
There are three main reasons for passing on virus or malware information to
colleagues or users:

� Because there’s a real danger of its being seen on your site. Risk assessment of
this sort obviously demands serious expertise, or access to a vendor Help Desk
you can trust to give you dependable information.

� Because there’s a likelihood the customers will become aware of it, so you
need to forestall a deluge of reports and questions.

� To stop customers from taking inappropriate action, perhaps through panic.

This may mean being prepared to field or forestall quite a few threats that don’t exist
(such as “It takes guts to say ‘Jesus’!”) as well as those that do.

In real life, you may have to react to an enquiry rather than be proactive, simply
because of time pressures. If an enquiry arises, assume that there’s a likelihood that
someone else will come up with the same question, and alert other IT personnel
(especially the Help Desk). This particularly pays off with regard to hoax alerts
and chain letters, which seem to cluster as a result of their rapid spread through
an organization.

Policy Outlines
The following suggested policy outlines cannot be expected to work for everyone,
nor in all respects, but they highlight and to some extent address most of the core
issues. It is generally advisable to include a more-or-less standard clause in most or
all such policies, specifying that conformance to each policy entails respecting all
apposite legal and other obligations. These might include (but won’t necessarily be
restricted to) the following:

� Data protection legislation

� Copyright legislation

C h a p t e r 1 7 : L e g a l a n d Q u a s i l e g a l I m p e r a t i v e s 5 1 1

5 1 2 V i r u s e s R e v e a l e d

� Legislation concerned with unauthorized access or modification to systems
or data, such as the UK’s Computer Misuse Act

� Trade secrets legislation

� Antidiscrimination legislation

� Obscenity and pornography legislation

It might be appropriate to state explicitly that conformance is required to all
internal policies and other policies, standards, and agreements by which the
company is bound.

Acceptable Use of Facilities and Resources
Use of email, as well as access to the World Wide Web and other networks and
internetworks, using resources owned by the employer is intended for work purposes
only. Use for purposes not strictly work-related may be acceptable in moderation,
subject to management approval, depending on the organization, if such use doesn’t
interfere with work. Many organizations might consider it appropriate to proscribe
the use of company resources for administration of private business ventures.

All use of company resources is required to be in accordance with all binding
legal and other obligations, as specified at the beginning of the “Data Protection
Legislation” section.

Acceptable Use of Email
Who owns email? To some extent, the answer is a matter of local corporate culture
and applicable (local) case law. However, it’s important to make the position clear
to employees (including contractors and volunteer workers). On many sites, any
email is considered liable for inspection by duly authorized personnel, and some
governments have gone out of their way to push responsibility for email content
onto employers and Internet service providers (ISPs). Is personal email allowed?
Is that also open to inspection and monitoring? If not, how do authorized personnel
differentiate between private and corporate mail? Under what circumstances might
mail be examined? Much as we’d love to answer these questions for you, they must
be resolved within the organization.

However, email users must be aware that while they’re using a company account,
what they write may be seen to represent the views and policies of the company.
They are therefore required to conform to appropriate standards of accuracy, courtesy,

decency, and ethical behaviour, and to refrain from the dissemination of inappropriate
mail content.

Inappropriate behaviour may make not only the employee but also the company
open to accusations of libel/defamation, harassment/discrimination, copyright
infringement, or invasion of privacy. Employees are therefore required to act in
accordance with the company’s published policies as well as all applicable
legislation and other binding agreements.

The company is not able or obliged to maintain constant surveillance of
employees’ use of its facilities, especially where such use is not specifically
authorized. However, users of these facilities have no automatic right to privacy
in that mail may be monitored or checked from time to time to maintain network
support, enforce security, and so on, as well as to ensure that the mail meets
prescribed standards.

Email should not be used as if it were a secure communications channel for the
transmission of sensitive information or messages. Use of encryption, though, should
be in accordance with the company’s policy.

Is legitimate use of email defined anywhere? Are there guidelines as to what
uses (if any) of company mail resources for private purposes are legitimate? Are
particular activities explicitly proscribed? For instance, using company time and
resources to run a private business or subscribing to (or even running) particular
types of mailing list might be proscribed.

What about corporate identity? Any mail from a company account is, to some
extent, seen by the outside world as in some way representing that company. Are
there restrictions on the use of the company name in signatures? Should there be a
compulsory disclaimer? Are there restrictions on who can speak for the company in
particular contexts? Even if nothing is actually formally specified, you can bet that
someone is going to trip an alarm sooner or later. Codification may lessen the
chances of undue unpleasantness and, if incidents do occur, at least make managing
the situation more practical.

Acceptable standards of conversational intercourse should be maintained. It’s
easy to write and send email, and sometimes doing so is more convenient than using
the phone. Email is potentially less prone to “circular whisper” syndrome than the
telephone, and it doesn’t rely on the other person’s being immediately available.
People who are comfortable with email probably favour it over the telephone, but
think of it as more like making a phone call than writing a memo. However, this
isn’t the case. Email isn’t necessarily temporary or transient. Once mail is sent, there
are likely to be two copies immediately: one in the sender’s “sent” mailbox, and one
in the recipient’s inbox. Within 24 hours, both copies may have started to replicate
across backup media.

C h a p t e r 1 7 : L e g a l a n d Q u a s i l e g a l I m p e r a t i v e s 5 1 3

5 1 4 V i r u s e s R e v e a l e d

Here are some of the issues, not necessarily virus-related, that you might want to
address in an email policy:

� Flamebait Mailing lists, newsgroups, and so on have widely differing codes
of conduct. Contravening them may provoke responses, from a few sharp
words to mailbombing or worse. Offensive action of the latter variety is not
only unpleasant as an expression of direct anger, but may have indirect
consequences as a result of the inconvenience, or worse, to the organization. If
one of your users does cross someone’s anger threshold, response in kind may
result in escalation of unpleasantness, and that user may compromise his
organization as well as himself. An angry response on the part of a member of
your organization might also have unpleasant repercussions.

� Speaking about the company Corporations may not have formal guidelines
about what users can say to third parties, but such problems will arise in any
event, especially if the corporation doesn’t encourage its employees to treat
email in much the same way as other channels of communication, such as
“real” mail. Obviously, security professionals and other professional paranoids
learn to be ultra-careful about discussing their sites. And this is all before we
even start to consider leakage of real confidential data.

� Anonymization This is one way to avoid compromising the employer when
using a work account, as long as the anonymization isn’t circumvented.
However, it invites assumptions and curiosity.

� Libel Obviously, users aren’t likely to flout local libel legislation
deliberately. However, they may not realize the implications of an unguarded
statement in what they think of as a transient medium, and one in which both
they as individuals and the company they are seen to represent are at risk.

� Unauthorized quoting of private email Old hands usually consider such
quoting to be bad form, but many people don’t think twice about it. Some who
are aware of the ethical and legal implications may be perfectly prepared to
ignore them, of course.

� Quoting other sources of information This may include cutting and pasting,
or even scanning. Such quoting makes it very easy to be careless about taking
material from email, newsgroups, the Web, and so on, and running the risk
of infringing copyrights or intellectual property rights, with or without due
attribution.

You might also consider it appropriate to include restrictions on the use of
Web-hosted mail services such as Yahoo! and Hotmail. Messages sent through

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 7 : L e g a l a n d Q u a s i l e g a l I m p e r a t i v e s 5 1 5

these channels bypass mail-server-hosted safeguards, and may entail risks, viral
and nonviral, for companies that are not equipped to handle them technologically.

Anti-Chain Mail Policy
Chain email is a drain on network resources, system resources, and support staff.
Any mail that includes a request to forward the message widely and inappropriately
should be regarded with suspicion. On no account should staff originate chain mail,
however good the cause it promotes.

No email that warns of viruses, Trojan horses, or other security threats should be
forwarded without checking and authorization from IT or its authorized representatives,
however trustworthy you consider the source to be.

Some virus hoaxes may have been intended to discourage the forwarding of
previously existing chain letters. This is not an acceptable reason for passing on
a hoax or chain letter.

Passing on warnings about hoax warnings can be a difficult area. Some individuals
and groups have recommended passing information about hoaxes and chain letters
back to other recipients of a hoax or chain letter, and in some extreme instances, to
everyone in the recipient’s address book. The following are suggested guidelines for
handling hoaxes:

� Passing on an anti-hoax message to everyone you know with instructions to do
the same is simply a chain letter, and not acceptable.

� Passing back an anti-hoax message to other hoax recipients may be justifiable
if there are only a few of them and you’re reasonably sure they’ll benefit from
the information. Even then, you should pass it back only if you’re sure that the
information is accurate and you have the approval of the IT manager or
security manager.

� Not all hoaxes are security-related. Do not pass on, for instance, appeals to
forward mail to raise money or support for a worthy cause. Even if it isn’t a
hoax, it may not be considered an appropriate use of company resources.

Anti-Spam Policy
A good policy will state that employees should not use company resources for the
dissemination of spam, junk mail, and other forms of inappropriate mass email for
private or work-related purposes. Mailing lists specifically set up for dissemination
of particular types of work-related information might be excepted from this stricture,
as long as the type of information broadcast is appropriate. However, spamming a
mailing list is never considered appropriate.

Employees should be expected to react appropriately to spam by reporting
and forwarding it to IT, and by following ITs advice on what further action to
take, if any. Direct response to spam (including making angry replies or following
instructions to unsubscribe) can cause more damage than ignoring or simply deleting
the offending messages. (Damage in this context includes lack of cooperation on the
part of administrators who might otherwise be helpful; increased volume of spam;
the spammer having ascertained that he or she has a “live one”; and mail-bombing,
revenge spam, and such from a malevolent spammer.)

Spoofing, or forging mail headers in the headers of email or news postings, should
be forbidden—either as a means of disguising the source of mass email (there is no
legitimate business reason for doing this) or as a means of making it more difficult
for spammers to add your address to their lists of targets. The latter may be a legitimate
aim, but spoofing is likely to ease the spoofer’s burden of junk mail at the expense of
other legitimate users. If you need to take some action along these lines, discuss the
means of doing so with the appropriate IT staff or the Help Desk. Measures such
as sending virus-infected mail or Trojan horses to suspected spammers are totally
unacceptable, and a clear breach of organizational security policies.

Acceptable Use of the World Wide Web and USENET
Access to the World Wide Web, IRC, USENET, and other Internet information
resources is allowable as far as is necessary to achieve work-related goals. Access
to sites or newsgroups that aren’t directly work-related may be permitted, subject
to management approval, as long as this doesn’t interfere with work. Access to
resources that customarily carry pornographic material, pirated software, and other
illegitimate information and resources, such as malicious software (binaries or
source code), including viruses, Trojan horses, backdoor/Remote Access Tools
(RATs), password-cracking tools, and hacking tools, is unwise.

Anti-Virus Policy
It may seem strange that an explicit anti-virus policy should be a relatively small
item in a whole sheaf of policies, given that this is a book on malware management,
not security in general. However, it isn’t practical to look at malware management
as if it were totally isolated from the rest of the security management function. There
are points specific to an anti-virus policy, and points that belong in other policies
that have a bearing on virus management too. For instance, there are restrictions on
software download that are also relevant to acceptable use of the World Wide Web.
Some of the anti-virus-specific points are the following:

5 1 6 V i r u s e s R e v e a l e d

� All possibly virus-related problems should be reported to the call centre
(the service desk or Help Desk) and logged to the appropriately qualified
person or team.

� Help Desk and second-line support staff attempting to handle such incidents
should advise qualified personnel at the earliest possible point in the incident
management process, to determine whether expert intervention is necessary.

� Sharing of games, joke programs, screensavers, and other nonessential
executable files (programs) is not recommended. Any attachment is potentially
hostile, irrespective of what the source claims it to be or the trustworthiness
of the source. Viruses and worms are characteristically distributed furthest,
unwittingly, by innocent third parties, rather than directly by malware authors.
A joke program that generates an anti-virus alert may be as serious a nuisance
as most viruses.

� On no account should users disable or reduce the functionality of security
software without authorization from the security officer. Nor should a user install
software that increases the risk of infection from outside. This clause, in a
policy, could be used to deter the use of unauthorized products from warez
sites (as an anti-malware measure but also as an anti-piracy measure), the use
of communications software, such as instant messaging packages, that might
have security implications, and the download of “grey hat” software such as
RATs. Of course, such concerns could be addressed specifically here or in
other policies, such as the draft policy on Web use that precedes this section.

� Customers should be expected to use the corporate standard anti-virus package.
Systems running unsupported packages would be regarded as unprotected, as
this practice can have general support implications as well as the obvious
security implications.

� Unqualified staff (including IT personnel) should not pass on warnings of
viruses, Trojan horses, and other security breaches without authorization.
Rather, they should consult qualified IT staff who can distribute the information
if it is considered appropriate. You can’t expect to teach a non-technical user
everything that he or she needs to know to identify any hoax, known or
unknown, on sight. Rather than providing a complete analysis and history of
the hoax phenomenon, mention common names, core heuristics (if a message
asks you to forward it, it may well be a hoax), and basic concepts (keep your
anti-virus software up to date, and be careful with programs and documents
from unexpected sources).

C h a p t e r 1 7 : L e g a l a n d Q u a s i l e g a l I m p e r a t i v e s 5 1 7

Summary
There are three main approaches to virus management: technological, political, and
educational. The technological solution is to rely on carefully configured and maintained
anti-virus (or anti-malware) software. The political solution is to make sensible virus
management a matter of policy. To do so demonstrates the management and corporate
will to address the problem, and to conform to legal and quasilegal imperatives. It
allocates specific responsibilities and duties to management, administrators, and end
users. However, the political solution needs to be backed up by both the technological
and educational solutions. To do otherwise is the equivalent of removing fire alarms
and fire extinguishers and discontinuing fire drills because the building has been declared
a no-smoking area.

In Chapter 18, we discuss the issues of responsibility and education. Who is
responsible for fire drills, for putting up the non-smoking signs, and for dealing with
the problem of those who are unable to give up tobacco? How do we reduce the ability
of staff to use lack of guidance as an excuse for “incorrect” behaviour?

5 1 8 V i r u s e s R e v e a l e d

18
Responsibility,

Morality, and Ethics

519

IN THIS CHAPTER:

The Two-Minute Guide to Ethics

Demographics

Cultural and National Norms

Familiarity and Ethics

End Users and Responsibility

Is Anti-Virus a Profession?

Vendors and Ethics

Commercial Ethics

Do No Harm

Developing Codes of Conduct

EICAR

Do Codes of Conduct Make a Difference?

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

5 2 0 V i r u s e s R e v e a l e d

As security professionals, we are not required to conform to a global code
of ethics, and that lack of direction mirrors uncertainties throughout the
computer-using population as to how to apply ethical standards to computing.

To quote the Professional Code of Ethics for Psychologists of the German Association
of Professional Psychologists, “A code of ethics is always an expression of a profession’s
self-comprehension”. We are aware, of course, that a number of organizations inside
and outside the security domain do attempt to codify standards of professional conduct,
of which the codes of conduct of the Association for Computing Machinery (ACM)
and British Computing Society (BCS) are probably the most widely quoted, but these
cannot be described as universal. Nor, of course, are they specific to the anti-virus
field, if we can sidestep the question of whether virus management can be described
as a profession.

For decades, computer professionals have attempted to come to terms with the
fact that computerization has ethical implications. More recently, though, many
more people have become in some sense “computer professionals”, and computers
have become a recreational commonplace. Thus, as computers have ceased to
be restricted to use as a professional tool, ethical issues are no longer confined to
the workplace. However, attempts to “regulate” ethical development tends to be
restricted to professional or quasiprofessional contexts, including specialist AV
lists and organizations such as AVIEN, EICAR, the WildList Organization, and
the confidential mailing lists used to facilitate the exchange of information and
samples between research professionals.

The Two-Minute Guide to Ethics
Ethics has been defined elsewhere by Urs Gattiker as the “higher order” that belongs
to every culture or nationality, representing the goals and ideals of that culture while
depicting rules that guide personal behaviour in daily life. Morality provides “an
impartial constraint on the pursuit of individual interests”. A code of conduct might
be described as a series of prescriptive (normative) statements or guidelines about what
constitutes appropriate professional behaviour in a particular organizational context.

Morality is interpersonal and involves issues of harm, rights, or justice. Proponents
of cognitive development theory suggest that, by studying conventional or consensus-
based obligation, we might be better able to determine how morals affect people’s
behaviour. Whereas ethics focus on overall values and beliefs (such as those based
on religion and culture), morals provide the individual with the necessary constraints
to function in a society and with other Internet or computer users. Morals can be
grouped into three domains, discussed later in this chapter (also see Table 18-1).

C h a p t e r 1 8 : R e s p o n s i b i l i t y , M o r a l i t y , a n d E t h i c s 5 2 1

Moral Domain
Conventional
Knowledge Domain

Personal
Morality Domain

Means of Learning Direct observation of
harm or injustice
caused by a
transgression

Exposure to group
consensus

Exposure to others
(e.g., during
childhood) and past
behaviours’ outcomes

Material Conditions Objective obligations:
justice, harm, rights,
welfare, allocation of
resources

Actions that are right
or wrong by virtue of
social consensus:
social uniformities
and regularities, food,
clothes, forms of
address, gender roles

Psychological states,
personal tastes, and
preferences

Formal Conditions Rational, universal,
unalterable, objective,
self-constructed, more
serious

Arbitrary, relative,
alterable, consensus-
based, socialized, less
serious

Rational and
irrational, arbitrary,
relative, alterable,
self-constructed

Description Intrinsically harmful
acts perceived
directly, or inferred
from direct
perceptions

Acts that are not
harmful, have
interpersonal
consequences, and
are meaningful in a
specific social context

The domain is outside
the realm of societal
regulation and moral
concern

Infractions 1. Hitting another
individual

2. Pirating software

1. Sending junk mail
2. Loading a

computer virus
program onto
an electronic
newsletter/list
server

1. Committing
indecent acts

2. Using encryption
devices

Consequences 1. Social group
may castigate

2. Legal or
institutional
(e.g., a school may
suspend a student,
or an employer
might issue a
warning)

1. People may be
puzzled or upset
about behaviour

2. Individual may
be encouraged to
change or face
the consequences
(e.g., social
outcast)

1. Individual may
feel uneasy or good
about behaviour

2. Based on input
from reference
group(s) or close
friends/family,
person may feel
uneasy/good about
behaviour

Table 18-1 A Social and Interactional Approach to the Domain Theory of
Moral Development

5 2 2 V i r u s e s R e v e a l e d

The personal domain of morality is outside societal regulation and is based on
personal preferences and tastes. The use of encryption software for sending and
receiving email is sometimes said to fall into this domain, because private email is
sent using encryption software only if the person wants to keep information secure
while maintaining privacy for all parties involved. However, the personal morality
aspect of privacy doesn’t seem to prevent governments from attempting to subvert
the principle of personal privacy, at least in the context of electronic communications.
Indeed, for many years, discussions of privacy in computing have centred on the
question of to what extent the rights of the individual to personal privacy override
the perceived needs of law enforcement. If a man’s home is his castle, as the English
say, what about his mailbox?

It might be argued that virus writing comes into this domain when it does not
involve making viral programs and source code available to others. Indeed, many
anti-virus professionals over the years have adopted a position of “We don’t care
what you do on your own computer, as long as you keep your creations to yourself”.
As we saw in the last chapter, legislation tends to reflect this viewpoint. Comparatively
few countries have attempted to outlaw virus creation per se, focusing instead on
laws forbidding unauthorized access, unauthorized modification, and inciting or
enabling others to commit a criminal act.

The domain of conventional knowledge includes acts that have interpersonal
consequences and are meaningful in a specific social system but are not harmful. For
example, designing a virus and distributing it to friends as a prank may be perfectly
acceptable in one country, but may be objectionable, if not punishable by law, in
another nation. There is a distinction here between the acts of virus creation and that
of dissemination. Sharing information about virus creation may also come under this
heading. While few cultures would deliberately discourage anti-virus researchers,
vendors, and the like from sharing information (although this can be a side effect of
attempts at regulation), many cultures would likely consider virus writers exchanging
information (including source code and samples) to be crossing moral or legal
boundaries. Legally, the question of whether the exchange indicated malicious intent
may sometimes resolve the issue. Morally, the issues are more complex. Is a vendor
that takes samples from a VX site inciting the maintainers of such sites? If the use of
such samples by that vendor as a research tool is beneficial to the community as a whole
because it provides protection against the virus, does the end justify the means? Since,
as the bad guys never tire of pointing out, the vendors (indeed, all anti-virus
professionals, including ourselves) are making a living and sometimes a profit from
the existence of viruses, does this compromise vendors (or us) because virus writers
are “necessary” to their present livelihoods? We believe not, since the logical extension
of this argument is that medical staff should not be paid to treat disease, nor law
enforcement agents to fight crime.

C h a p t e r 1 8 : R e s p o n s i b i l i t y , M o r a l i t y , a n d E t h i c s 5 2 3

Harmful acts, such as violence and theft, pertain to the moral domain (see
Table 18-1). Intrinsic harm is perceived directly, or is inferred from direct
perceptions. Both children and adults reason that the act is universally wrong
because the harm is intrinsic to the act. Hence, the act is not tolerated.

Table 18-1 was adapted from Schweder et al. (1987, 24) and adopted by
Gattiker, Janz, Greshake, Kelb, Schwenteck, and Holsten (1996). It is generally
assumed that if the majority of a society considers something harmful, such
behaviour or action will be outlawed, thus resulting in legal sanctions if the person
committing the action is caught. In contrast, a substantial minority of people may
perceive something as being immoral, but such behaviour may be quite common
and in some cases accepted.

Demographics
As Table 18-1 suggests, people have different ways of interpreting situations, based
on their culture, values, and norms. Research indicates that demographic variables
have been used extensively to assess whether people differ based on such variables
as age and gender, and most social phenomena can be better understood by also
taking into consideration demographic factors. This section addresses these issues
in the context of computer viruses, morality, and ethics.

Age
Demographic variables already result in significant differences between groups, such
as younger people compared to their older peers, as far as computer viruses are
concerned. For instance, Gattiker and Kelley, in a 1995 study, reported that younger
individuals were far more open to sharing various programs and viruses with each
other. By comparison, older respondents were far less open to the idea of sharing,
and were likelier to view their actions in a moral context.

People seem to find it difficult in general to think of the exchange of copies of
copyrighted software as theft or piracy. The same is probably true of books, videos, and
music, but these usually present more of a challenge in terms of copying. Yet people are
far less likely to commit outright theft where copying is not an option (shoplifting, for
instance). This probably relates to the increased likelihood of discovery, of course: it is
easier to trace the theft of an original object than it is to detect the fact that a copy has
been made. However, it may also be that people have difficulty with the concept that the
theft of intellectual property is in principle no less stealing than the theft of a vehicle,
money, or items of clothing, especially when they can easily accomplish theft of
intellectual property by copying diskettes or burning a CD.

Why do older people find it easier to see the “wrongfulness” in these actions? Perhaps
because they were educated in a less morally ambivalent age? Perhaps because they
are likelier to be able to look back at a world where copying technology was more
expensive and less available? Is their abhorrence of viruses based on an extrapolation
of strict moral standards to new technological contexts, or is it an expression of their
fear of technologies that hardly existed in their school years, and with which they
are, in consequence, uncomfortable? Perhaps younger people are less concerned not
because they are less moral than their elders, but because they are less afraid of the
consequences of malicious software.

If abhorrence of malicious software is influenced by technophobia and fear of the
unknown, does this mean we don’t regard these issues as having a moral dimension?
Not at all. However, ethical behaviour is most amenable to analysis when it comes
from knowledge, rather than a semi-instinctive fear of the unknown.

Considering age differences and attitudes towards computer viruses results in
differences as outlined previously in this section. However, what may be important
in this context is that younger people’s influence on the Internet may be disproportionate
considering their population statistics. Just a few years ago, millions of students
joined the Internet population every semester by entering university and getting their
email account for study purposes. Today, ever more high schools offer their pupils
access to the Internet, and some data suggest that more than 60 percent of households
with school age children have Internet access compared to just about 30 percent for a
country’s population overall. Accordingly, younger people tend to make up a larger
percentage of Internet users than their percentage of the overall population. Hence,
younger people’s interpretation of issues and their subculture, including their ethics
and morals, are influencing Internet users or the Internet culture much more than
they might in other areas of life (for example, playing golf, snowboarding, or eating
at restaurants). This influence may be offset to some extent as the proportion of older
people joining the user population rises, but this rising proportion will not
necessarily exert an equal influence.

This line of reasoning is supported by the fact that younger people are more likely
to adopt technologies earlier. For instance, while about 60 percent of Denmark’s
population have cellular phones, this percentage rises above 80 for teenagers and
young adults. Earlier adoption of technology or more extensive use of the Internet
becomes of particular relevance if the ethics and morals of younger people differ from
their elders. Hence, user statistics and customer preferences with new technologies
often reflect the influence of early adopters. Gauging customer preferences primarily
by charting the younger generation’s tastes could shift the results due to positions of
subcultures that do not necessarily reflect the overall population’s values and norms.

5 2 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

The Napster phenomenon primarily attracted younger people. To limit the use of
bandwidth for person-to-person file sharing, some universities have even restricted
the proportion of their network and bandwidth resources that can be used for person-
to-person file sharing through Napster (for example, no more than 10 percent of the
system’s bandwidth capacity at any time), or blocked person-to-person file sharing
altogether. The entertainment industry is trying to limit this property right violation
or copyright infringement of sharing music files by developing a content scrambling
system (CSS). Unfortunately, digital files cannot be made impossible to copy, any
more than water can be made dry. Unless younger people accept property and copyrights
as being an issue within the moral domain, and one that should not be tolerated (see
Table 18-1), they will continue to infringe upon the rights of musicians and affect
their revenue stream adversely.

Napster is a phenomenon somewhat beyond the scope of this chapter, but the
attitudes held by the young regarding this issue can usefully be compared to their
perception of virus writing and virus distribution. If they are indifferent to the
subsequent consequences of spreading a virus or making it available for others to
distribute, other people may suffer negative consequences due to virus infection.
Younger people’s hypothetical lack of interest in the consequences of poor
information security may also be of importance for technologies that are still under
development. For instance, younger people are not only more likely to use cellular
or mobile phones than their elders, but, as importantly, are likely to use palm and
other wireless devices more than their older counterparts. Unfortunately, malicious
software has begun to affect palm top devices, and concerns about the possibility of
malware capable of affecting wireless devices still to be released (UMTS phones, for
example) have also aroused considerable attention and speculation.

Gender
A substantial body of research indicates that people assess ethical and moral matters
differently according to gender. However, how these issues may affect the virus domain
is less clear, with some notable exceptions. For instance, using a hypothetical scenario
describing a person posting a virus on a bulletin board, a study by Gattiker and Kelley
indicated that women were less permissive than men. The study also found that women
were more likely to be bothered by the virus scenario than men. Hence, women
appeared more cautious regarding the application of moral criteria in the context of
computer usage. It has also been observed that women are often less interested than
men are in computers and other machinery. Women regard computers primarily as
instruments for achieving other goals, even if those goals are recreational, such as
gameplay. Men, on the other hand, seem likelier to invest a higher proportion of their

C h a p t e r 1 8 : R e s p o n s i b i l i t y , M o r a l i t y , a n d E t h i c s 5 2 5

time maintaining and tweaking machinery, whether it’s fine-tuning a motorcycle or
automating the desktop. We will delicately sidestep the issues of whether these
gender differences are real or stereotypical, and whether they are, if real, innate or
conditioned. It seems possible in either case that this emphasis on the mechanical
aspects of hardware and software results in some displacement of computers and
computer usage away from the moral domain.

Some research indicates that women in general are far more concerned about
how their actions and behaviours affect others. Gattiker and Kelley also reported that
males were more likely to have the attitude that computer users are responsible for
protecting themselves, and that virus writers or even virus distributors should not be
ostracized or otherwise punished. Women felt that such behaviour was not acceptable
simply because it could result in harm to others.

These findings confirm gender differences as reported in other research addressing
ethical and moral issues. Simply, the research suggests that women tend to differ from
men in how they assess situations and feel about other people’s behaviour. Some people
may be little surprised that research also indicates that as far as computer viruses are
concerned, women are far more cautious than men. But as importantly, women worry
more about how their computer-related behaviour (for example, information security)
or carelessness with a computer virus may affect others. We do not know how closely
this research reflects universal gender differences. We do know that reports of female
involvement with virus writing, distribution, and other intrusive activities are notably
rare. Even the anecdotal accounts and out-and-out bragging in forums such as
alt.comp.virus rarely hint at virus-writing activity arising from the distaff side.

Cultural and National Norms
The preceding section suggests that age and gender are two demographic variables
that do affect ethical and moral viewpoints about computer viruses. Specifically,
men are less cautious with computer viruses than women, and younger people are
less likely to feel that it is in some sense wrong to write a computer virus, or to pass
on such code to others.

Cultural issues may also have a bearing on how we regard virus creation and
distribution. It is a matter for debate whether carelessness about basic computing hygiene
is also a matter for ethical concern, or simply a practical issue. In either case, this is an
area where social engineering in its more traditional, sociological sense (that is, as a
means of reinforcing socially desirable behaviour, rather than as a tool employed by
crackers and virus writers) may be of more practical use than ethical debate.

5 2 6 V i r u s e s R e v e a l e d

C h a p t e r 1 8 : R e s p o n s i b i l i t y , M o r a l i t y , a n d E t h i c s 5 2 7

National Issues
When discussing cultural issues, we must make a distinction between cross-national
differences or similarities (that is, country A as opposed to country B) and differences
among groups of people or subcultures within a nation. Unless the country represents
a closely knit society, wherein values and norms are shared and abided by the large
majority of the population, diversity will result in differences in values, norms, and
the way in which people see virus issues fit the domains of morality.

Various countries have undertaken efforts to reduce dysfunctional cultural differences
through legislation and law enforcement as a means of social control. But results have
been mixed. For instance, the impact of the United States’ “war on drugs” has not always
been beneficial. “Mandatory sentencing” laws are, it is sometimes argued, the main
reason for the country’s huge prison population. Moreover, it is reported that one in four
of the country’s 2 million prisoners are incarcerated for drug offences, and these
prisoners have only a limited chance of becoming productive members of society when
they are released. This book is not the forum for an extended debate on retribution versus
rehabilitation, and we will not explore the issue. Clearly, however, while a majority of
citizens may agree that drugs are harmful and thus part of the moral domain, a substantial
minority does not and, therefore, consumes drugs and/or sells them for profit.

People who distribute or write computer viruses pose a somewhat similar problem.
Some virus authors seem to gain satisfaction from being able to claim “credit” and
garner media attention for a computer virus disaster, even though they normally prefer
to do so anonymously. Although many people see computer viruses as harmful,
members of a subculture may see it as being an issue of the personal morality domain.
If this were to be the case, then the matter is a personal issue and depends upon one’s
preferences. Sarah Gordon’s interviews with computer students show responses
typical of many studies in this area. The base attitude appears to be, “If I find it
interesting, and I can do it, why do you say I shouldn’t?” And indeed, this is a fair
question, which we can answer convincingly only if we can demonstrate plausible
harmful consequences. The question of what constitutes harm (or damage) is
considered further in the section “Do No Harm” later in this chapter.

Some advocates promote virus writing on the grounds of freedom of speech.
Americans often cite First Amendment rights, referring to the First Amendment to
the U.S. Constitution, which some Americans seem to see as some universal law
rather than as a local political document, however desirable.

We have made frequent reference to Gordon’s writings in the context of VX
psychology and ethics. Unfortunately, we cannot do justice to such an extensive body
of work in this short chapter, and recommend that you check out her papers covering
these topics, many of which are available at her web site (www.badguys.org).

5 2 8 V i r u s e s R e v e a l e d

We should, however, take this opportunity to explore Gordon’s observations
regarding the ethical development of virus writers, which indicate that adolescent virus
writers tend to exhibit ethics normal for their age group. Normality, in this analysis, is
taken as conforming to Lawrence Kohlberg’s “Stages of Moral Development” model.
Kohlberg’s levels have been the most quantitative of the various tools for assessing
moral development and maturity, and are based on the rationales used to explain moral
choices. The six stages are divided into three groups: pre-conventional, generally
referring to the reasoning of children; conventional, used by most adult members of
society; and post-conventional. The two post-conventional stages are somewhat
controversial. Kohlberg and his adherents would state that post-conventional reasoning
is used by those who are morally superior and have progressed beyond the need for
rules, while others would point out that there is no distinction between a stage six who
chooses to live by higher values, and a psychopath who does not care about anyone
beyond himself. (Kohlberg himself has admitted that he could not point to a specific
person who operated at a stage six level.)

The specific stages are defined as follows:

Pre-Conventional Morality

1. Obey the rules to avoid punishment.

2. Obey the rules to get rewards or satisfy needs.

Conventional Morality

3. Judge actions on good intentions and concern for others. Conform
in response to peer pressure.

4. Behave morally, based on acceptance of authority. Conform to avoid
censure by legitimate authority.

Post-Conventional Morality

5. Become more flexible in judgment. We may question the moral bases of
the rules we live by, but conform for the good of the community.

6. Live by “normative ethics”. We choose (to some extent) the principles by
which we live, based on what we perceive to be universal principles. Clearly,
there is still room for considerable cultural bias here: we are not impervious to
the influence of the society in which we live. However, the “mature” personality
can admit the possibility that the principles of his or her own culture may not
be universally applicable.

C h a p t e r 1 8 : R e s p o n s i b i l i t y , M o r a l i t y , a n d E t h i c s 5 2 9

Although Kohlberg’s model of moral development has the most detailed construction,
its utility is questionable. His system is not so much one of values education as of values
measurement. There is great difficulty, however, in determining the “stage” of a given
individual. Most ethical discussions will be judged as having reasoning at all of stages
three, four, and five.

Acknowledging that young virus writers are not abnormal in terms of their ethical
development is not the same as saying that virus writing is in principle normal or
desirable. However, it certainly suggests that virus writing should not be regarded as
de facto evidence of a psychopathic personality. It also suggests the likelihood that
virus writers might “age out” of what society would regard as antisocial behaviour.
This does indeed happen, although Gordon has also noted that ambivalence in many
groups about how “wrong” virus writing is appears to “push up the age of aging
out, if the process occurred at all” (“Virus Writers: The End of the Innocence”
[www. research.ibm.com/antivirus/SciPapers/VB2000SG.htm]). Given that the
authorship of CIH and the Kournikova virus was seen in some quarters as indicating
suitability for jobs in the software industry (although not the anti-virus industry!), such
uninformed public perception certainly seems to be less than a deterrent for impressionable
youth. At the same time, there is little evidence that the heavy sentencing faced by the
author of Melissa has had a significant deterrent impact, either. Nonetheless, virus
writing does not yet appear to have become accepted as “cool” except by a (significant)
minority, and members of that minority do indeed age out.

In alt.comp.virus (where two of the authors of this book have spent far too much
of their extracurricular time in the past), we have seen evidence that virus writers
and other pro-VX individuals can engage in rational ethical debate with “the other
side”. Indeed, representatives from either side may, on occasion, accommodate opposing
viewpoints. We have indeed seen representatives of more than one generation of VX
move towards the centre. In some instances, a virus writer will publicly retire. Sometimes
this act of withdrawal is considered in terms of a shift of interests, change of lifestyle,
work or domestic reasons, and so on. In other cases, however, a virus writer has made
explicit a change in his or her ethical viewpoint, and may even apologize publicly.
Rarely, a former virus writer has retained a public profile of sorts. This public profile
may work to the advantage of the virus-hating community, in that a reformed virus writer
may be a more influential role model than an anti-virus personality (if that isn’t a
contradiction in terms) representing the forces of authoritarianism and conformity.

A country with substantial cultural diversity must, therefore, cope with different
social approaches to the computer virus challenge exhibited by various groups (such

5 3 0 V i r u s e s R e v e a l e d

as organizations, private users, hackers, computer geeks, and teenagers). Legislation
that is ignored by a small but substantial minority could result in the incarceration
of many people, while not really eliminating the root of the problem. To illustrate,
because people copy music onto tapes, many countries have tried to deal with this
issue by adjusting legislation so that any sales price for blank tapes includes a
copyright fee paid to the recording industry. Similar examples are copyright fees
included in charges incurred for photocopying materials. Hence, protecting every
group’s rights or balancing rights and responsibilities makes life easier for all, and
can reduce potential conflicts. However, given the invasive nature of malicious
software and the generally anonymous nature of the perpetrators, it is hard to see
how such a strategy could accommodate the “rights” of virus writers without
legitimizing actions that offer no significant advantage to the victim.

Some virus writers (especially those who have faced legal action) have argued that
virus writing is a legitimate activity because it draws attention to potential security
breaches and vulnerabilities in programs and operating systems, and educates victims.
Certainly, coding an exploit may be acceptable under some circumstances, and software
vendors cannot be trusted to repair shortcomings if reports of such exploits are not made
public. However, we fail to see how releasing yet another kit-generated VBScript or
macro virus variant can be justified by its benefit to the user community. Does this mean
that the use of a novel technique justifies the release of a virus? Perhaps, if we ever see
a technically sound, well-coded virus that does no deliberate damage and is tested to a
professional standard against the possibility of accidental damage, that does not conceal
its presence and intentions, and is thus in accordance with the spirit and the letter of most
of the relevant legislation, we might consider debating the matter. None of us is holding
his breath.

Motivational Factors
Why do virus writers create viruses? Damage is far from being the only factor:

� A somewhat academic interest in replicative software in its own right,
under controlled circumstances.

� An interest shared between members of virus writing groups.

� Peer acceptance and recognition.

� Recognition by anti-virus companies (such as being listed in encyclopaedias
and README files).

� A misplaced sense of humour or mischief, associated with a lack of
understanding of the consequences for the victims.

� WildList fever: the buzz from getting their creation out into the world and,
even better, recognized as a big issue by the media. However, it sometimes
seems that the media do not consider a virus newsworthy unless it is deliberately
or accidentally destructive, or even mistakenly thought to be. A destructive but
rare virus is apt to get more publicity than a widespread but innocuous specimen.

� A desire for revenge on a person or group, irrespective of how far beyond the
original target the ripples spread, or a quasi-arsonist desire to watch the servers
melt down.

Cross-National Differences
Cultural differences can result in diverging behaviours that may be perceived as being
within acceptable norms in one cultural setting but offensive in another. Some countries
(such as Switzerland and Italy) may have legal means of prosecuting anybody whose
code could damage data if the other party’s computer or information system gets
infected. But in some countries, playing with a computer virus or spreading malicious
code may be perfectly acceptable behaviour.

More commonly, crucial distinctions are drawn between creating code out of purely
personal interest, sharing code between VX enthusiasts, and releasing code into the
wild, so that the question of unauthorized access may arise. Different countries have
a different understanding of ethical and moral obligations about data security issues,
as longstanding differences between the United States and Europe on the export of
encryption might indicate. However, one could claim, without prejudice, that neither
the European Union nor the United States has a monopoly of truth on this issue; they
both simply offer legal or regulatory frameworks that reflect their own cultures.
Moreover, the professional codes discussed in this section indicate quite clearly that
even associations whose members are computer security experts impose different
ethical demands on their members. These are often rooted in diverging values and
norms inherent in their respective memberships.

The differences outlined may be major, and sometimes even result in international
wrangling and name-calling by politicians and diplomats; nevertheless, these differences
also apply to how a particular country deals with computer viruses and hacking. For
instance, Gattiker and Kelley’s 1995 study reported that US respondents were most
relaxed about posting a computer virus on a bulletin board, whereas respondents from
Germany, for example, felt that this practice was wrong. Similarly, Gattiker and Kelb,
in a 1998 study, reported that while German respondents felt that legal regulation
should protect their privacy, Canadians were less trusting and US respondents felt
that they had to fight for their privacy themselves.

C h a p t e r 1 8 : R e s p o n s i b i l i t y , M o r a l i t y , a n d E t h i c s 5 3 1

5 3 2 V i r u s e s R e v e a l e d

The preceding differences are echoed in divergent approaches to legislation and
computer viruses. Although some countries may see a computer virus in the knowledge
domain, others put it into the moral domain, and have therefore introduced
legislation accordingly. Even within the European Union, no comprehensive and
united legal framework exists that would make it easier for businesses and users alike
to address the computer virus issue in ways analogous to the very specific terms of the
EC directive on data protection. However, some predirective drafts now under
consideration indicate a willingness to deal with more general network security
issues on a community-wide basis.

Familiarity and Ethics
The preceding sections suggest that cultural differences (contrasts among groups
within a society such as younger people or the underground) as well as cross-
national ones (how we deal with unauthorized access and modifications to systems
and information) will remain with us for years to come. But besides these differences
or similarities that could influence our ethical and moral understanding of malware-
related matters, familiarity with computer virus incidents may also moderate people’s
willingness to abide by moral standards.

One of the difficulties with surveys is that people may answer a question but not
be familiar with the subject. Accordingly, asking people what they think about
computer viruses or whether they think viruses are harmful may result in respondents
adopting a moralizing or draconian stance. Accordingly, a person may say viruses
are harmful or virus writers should be punished. However, such statements say little
about the responsibilities of the victims, or how they could exacerbate the problem
themselves by being careless with file attachments or by deactivating the virus
scanners on their desktops.

The virus vignette used by Gattiker and Kelley provided subjects with the context
link, thereby attempting to address the familiarity issue. Most computer users have
either had a personal experience with a virus, have tried to protect their machines and
software from virus contamination, or have known end users who have experienced
the hassles and headaches of computer virus contamination (or of anti-virus
configuration and maintenance). Furthermore, familiarity and acquaintance of the
subject with the behavioural outcomes makes it possible to assess the effect on moral
decisions. Therefore, computer users are probably more conscious of the possibility
that a virus may do harm to others than they are of the implications of encryption,
simply because of their context-specific experiences. That is, far more people have
firsthand experience of virus-related problems, whether with anti-virus software or
with actual viral infection. At the time of writing, far fewer people use encryption

routinely, and may not be fully aware when it does affect them. For instance, a
surprising number of people are unaware that when they “password” a local file,
encryption of the file is usually an integral part of the process. “We don’t want
strong encryption, we just want to know that our files can’t be read without the
password”.

End Users and Responsibility
When we ask people about a specific situation, responses become more realistic and
reflective of what the individual might do personally. What is especially important is
how familiar a person is with a particular scenario. For instance, having previously
suffered from a computer virus makes people far more sensitive to anti-virus issues
(although not necessarily more knowledgeable—indeed, it’s likely that victims of a
virus attack will become both more exposed and more receptive to misinformation).
It has been suggested that a virus incident such as the Kournikova virus results in a
90-day post-traumatic recovery period during which most users are quite careful to
observe good hygienic practices. During this period, it is argued, they tend to follow
procedures, such as having all incoming email scanned by the anti-virus software
installed on their desktops. They might even regularly back up their data and update
their anti-virus software.

NOTE

We suspect that this view is based on a widespread misunderstanding of how modern anti-virus
software works, and the amount of routine manual maintenance it requires of end users. In fact,
organizations that depend on end users doing a manual on-demand scan of all incoming files and
media—running regular manual backup procedures and manually updating their anti-virus
software—are in need of a reality check. Not only is it naive to expect corporate staff to execute
routine security procedures, but it should be unnecessary. Modern security software is sophisticated
enough to automate such tasks, although we would stress the need to check that automatic
mechanisms are working as they should.

However, the argument runs, the time intervals between new fast-burner virus
incidents are becoming ever shorter. The question must be raised whether users
simply become desensitized and thus careless. Besides the ever-smaller time window
between incidents, security or anti-virus policies in firms may not be enforced with
sufficient rigour. Some research suggests that people start forgetting the norms and
rules to which they should adhere about 60–90 days after they have read or signed a
firm’s IT policy. Hence, it is suggested, IT security and anti-virus policies are important

C h a p t e r 1 8 : R e s p o n s i b i l i t y , M o r a l i t y , a n d E t h i c s 5 3 3

but effective only if people get reminded regularly and within 60-day time intervals
about their policy content and why and how the policies work. On the other hand,
experience in large institutions does not always suggest that viruses are always
spread through the same victims, hit time and time again by the latest variation on
the LoveLetter theme. Our observations in the field suggest clustering of incidents in
vulnerable units (human resources departments and public relations departments are a
particularly frequent entry point), but not necessarily involving the same individual.

Some individuals and some classes of end user (higher management and their
satellites, for instance) do seem particularly prone to involvement in virus incidents, but
we are not convinced that desensitization is the only factor, or even the most important
factor. Other factors that seem to play a part include gender (again), curiosity about
technical issues, and status. While it is embarrassing and even job-threatening to the
lower orders if a VIP is implicated in a virus incident, it is also more difficult culturally
for the IT staff responsible for anti-virus administration to regulate the security awareness
and practices of higher management. Contrary to the popular stereotype, the same
cultural difficulties involved with regulating higher management aren’t primarily a
problem with clerks and secretaries. Administrative staff are often as obsessive as any
systems administrator could wish about reporting suspicious attachments, anomalies with
security software, and high-volume messages about the latest microchip-devouring
impossible super-virus, especially if they know that a sound mechanism exists for
dealing effectively with such reports. In a moderately well-regulated environment,
problems are more likely to derive from the spread of malware from the mailboxes of
those who are too high powered to be subject to draconian restrictions. To make the
problem worse, lower ranks who are generally cautious with email attachments are less
likely to take normal precautions when the attachment comes from someone higher up
the tree of command.

However, if people play it safe when opening any kind of unannounced attachment
from a trusted source, such as a friend or business partner, such caution should reduce
their vulnerability to virus attacks drastically (although novel approaches to technology
or to social engineering are always likely to claim some victims). Familiarity with
computer viruses (for example, having suffered from a computer virus by having lost
time, face, and even data) seems likely to make a person more cautious and aware
about safety matters. However, it doesn’t necessarily make a user better informed.

Someone who has suffered from a computer virus in the past may subscribe to a
social consensus that frowns upon virus programming. Moreover, he or she may feel
that opening an attachment without adequate precautions is simply careless or even
negligent. Such an individual may also take the necessary steps in order to reduce
the likelihood of unintentionally passing on a computer virus. Someone who hasn’t
suffered negative virus experiences and/or does not understand the possible threat

5 3 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 8 : R e s p o n s i b i l i t y , M o r a l i t y , a n d E t h i c s 5 3 5

may simply find all this concern about viruses irrational and unnecessary. On the other
hand, awareness of negative consequences may be of little benefit if accompanied by
poor advice. Often, this awareness involves recommending draconian restrictions
that make normal work difficult and unpleasant, while failing to address defensive
gaps wide enough for the proverbial carriage and pair. In fact, the need to address
such issues has prompted us to suggest that organizations should consider making
it compulsory for IT users to adhere to a code of practice along the lines discussed
later in this chapter.

Is Anti-Virus a Profession?
We suppose that we should ask this question, though we cannot give an authoritative
answer. An anti-virus professional may be as skilled in his field as a doctor or lawyer,
but he or she is not compelled to achieve a minimum standard of competence, proven
by a universally recognized qualification. There are, of course, general security
qualifications that carry a great deal of weight, but they are not usually considered
a reliable guide to expertise in computer virology. And many quite competent
professionals don’t have them and have never needed them. On the other hand, we
are aware of security professionals whose capacity for giving bad advice about viruses
is quite independent of their possession or nonpossession of formal qualifications.

Anti-virus professionals, being (by implication) computing professionals, do have
the advantage of being more familiar with and less nervous about information
technology in general, and viruses in particular, so they do not have to be “ethical”
out of fear of the technological consequences. Like virus writers and distributors,
they may (and usually do) feel that end users should take some responsibility for
their own safety and practice basic anti-virus hygiene. They may even underestimate
the difficulties of comprehension that bedevil others who are less fascinated with
viral and antiviral technology. Unlike the virus exchange community, however, they
are unlikely to adopt the position that computer illiteracy, naivete, or downright
stupidity on the part of the end user justifies the actions of the black hat brigade.

We are not assuming here that all “legitimate” anti-virus researchers are plaster
saints. However, the closed-loop, nondisclosure model of security to which this field
generally adheres tends to hold anyone who behaves unacceptably subject to sanctions,
including expulsion from crucial sources of information. Such sources might include
the exchange of samples, without which it’s difficult to maintain a competitive position
in the commercial anti-virus market. Such sanctions sound like a further instance of
the use of fear as an ethical driver, but we believe that a distinction between researcher

ethics and vendor ethics is necessary here. In a short web site article, Gordon suggests
that a researcher in this field is likely to display a number of characteristics, including:

� Having technical proficiency

� Working with viruses only in a secured research environment intended
to minimize the risks of accidental release of viruses, and open to audit
by third parties

� Owning an ethical responsibility to practice only within his or her own
competence, and accountable to a generally accepted ethical code

Vendors and Ethics
Researchers are, of course, more often than not employed by vendors, but may
consider themselves bound by a more restrictive code than generally applies within
the organization that employs them. There are instances, for example, of anti-virus
software that doesn’t detect whole classes of malicious software because of the
difficulties of gaining entry to the inner circles where samples are exchanged. We
have in mind, for instance, certain Macintosh anti-virus products that don’t detect
macro viruses. An ethical issue probably arises here, however, only if the marketing
of such a product misleads the customer into thinking that he or she has full protection.
In fact, many would consider a product that provides substantially incomplete detection
of a class of malware (for example, some common Trojans but not others) as being
in greater danger of crossing boundaries of acceptability, although this would, again,
be at least in part a marketing issue.

There is a related problem outside the commercial anti-virus arena, but not quite
the same one. An honourable tradition endures of semi-altruistic programmers
making available anti-virus software of limited functionality, including one-shot
scanners that detect and (sometimes) disinfect one or two viruses and/or variants,
and some generic tools that block a limited range of malware classes.

NOTE

You may wonder at the term semi-altruistic. We intend no disrespect to those who have made such
tools available at no cost, but would only point out that not all rewards are financial.

We applaud the community-spirited endeavours of those who make such tools
available, but sometimes they may mislead the computer user into a false sense of
security. Real-life examples include:

5 3 6 V i r u s e s R e v e a l e d

C h a p t e r 1 8 : R e s p o n s i b i l i t y , M o r a l i t y , a n d E t h i c s 5 3 7

� A scanner that detected only a handful of obscure viruses that had never been
seen in the field

� A scanner that was claimed to detect a particular worm, but consistently failed
to detect one of the known variants

At the other extreme, we have encountered a scanner that consistently reported a
virus when it was unable to open a file. You might call this a false sense of insecurity.
The problem here is that it seems churlish to chide a volunteer for not meeting
professional standards. You get what you pay for, the argument runs, and half a loaf
is better than none. We have some sympathy with this viewpoint, but it takes us back
to the issue of user responsibility. If the weaknesses of a product are adequately
documented, then perhaps the programmer has done as much as necessary to meet
minimum ethical standards. This is not, however, always the case, even with
commercial software.

We have previously alluded to free “Michelangelo editions” of commercial software
that appeared to scan for all known viruses but detected only one. This may well
have been an honest error in presentation. However, one of us had a lively debate
with a vendor who had a “Lite” evaluation version of his or her product, which was
claimed to detect “all known viruses” generically. About a year after the appearance
of the first Word macro virus, the product was distributed in a magazine in the United
Kingdom. Since the distributed product was an obsolete version, it knew nothing about
Word documents and macro viruses. Generic detection based on change detection
doesn’t usually help much in this area: data files are usually dynamic, not static, and
are intended to be changed during their lifetimes. Clearly, changes in viral technology
had overtaken any claims to complete invincibility, yet the defensive arguments
employed by various representatives of the company concerned ranged from threats of
litigation, through “It’s just an evaluation copy: the full version detects macro viruses”,
to “We’re not responsible for the documentation that was distributed with the
software”. The problem with such an incident is not that “You get what you pay
for”. It’s a question of whether you get what you expect, and whether the vendor has
employed “due diligence” to make it clear that the free lunch is missing a couple of
courses: the full menu is available only to those who deploy a credit card.

It’s also possible for “ethical” concerns to mask (or at least become confused with)
other motivations, such as commercial advantage, or to preserve the mystique of the
Inner Circle. Most anti-virus vendors take a rather paranoid, and almost obsessive,
position with regard to the sharing and distribution of viral code. At least, researchers
usually do; sometimes the marketing department is less scrupulous. However, most
major companies have arrangements by which virus samples are shared, so that the
customer is not placed at undue risk if he or she chooses not to buy every anti-virus
program on the market.

Commercial Ethics
The preceding section may give the impression that we do not believe it possible
for an anti-virus vendor to conform to an ethical standard. This is far from true.
While any company (or individual) may sometimes fall short of ethical perfection, it
is normal for anti-virus companies to expect their staff to conform to codes of
behaviour. In some instances, aware perhaps that anti-virus companies are often suspected
of unethical activities such as soliciting or creating viruses, a company may make
public its code of ethics. A good example is Symantec’s, which you can read at
www.symantec.com/avcenter/reference/sarcethics.html.

Why are people so ready to believe the worst of vendors? Perhaps this cynicism
arises simply from the assumption of universal self-interest, but perhaps more complex
mechanisms are at work. We observe that computer professionals (including ourselves)
often find a particular fascination in viruses and other malware, and may solicit
examples of malicious code. The anti-virus establishment is often seen as frustratingly
uncooperative in its refusal to make such code available for testing, experimentation,
and education; indeed, this lack of cooperation runs counter to practice even within
other areas of information security.

While in our more cynical moments we are apt to suggest that the term
commercial ethics is probably an oxymoron, we acknowledge that Adam Smith’s
famous dismissal of benevolence as a significant factor in economic interaction
does not tell the whole story:

It is not from the benevolence of the butcher, the brewer, or the baker that
we expect our dinner, but from their regard to their own interest. We address
ourselves, not to their humanity but to their self-love, and never talk to them
of our own necessities but of their own advantage. (The Wealth of Nations,
Ch. 2, 1776.)

Even if vendors in general and security vendors in particular were always and
exclusively driven by commercial self-interest, this would neither prove nor disprove
the need for codes of conduct.

A code of business practice may be highly moral but platitudinous, and totally at
odds with practice within the organization that owns it. On the other hand, it may be
an honest recognition of duties and responsibilities, and an expression of intent to
meet those obligations. It may be a useful guide to making decisions in difficult
circumstances, or it may be a means of avoiding taking personal responsibility for a
difficult decision by falling back on a ruling that may never have been intended to
meet such a case. The anti-virus industry may be regarded as a special case, in that it

5 3 8 V i r u s e s R e v e a l e d

must demonstrate its intention to be “whiter than white” as a counterbalance to the
popular conception that the industry is reliant on poachers turned gamekeepers.

An article from 1980 by John Ladd (“The Quest for a Code of Professional
Ethics: an Intellectual and Moral Confusion”, AAAS Professional Ethics Project:
Professional Ethics Activities in the Scientific and Engineering Societies, eds. Chalk,
Frankel, and Chafer) discusses some of the difficulties presented by passing off a code
of conduct as a code of ethics. (We have tried to talk about codes of conduct rather
than codes of ethics.) Ethical principles are not very susceptible to conversion to a
series of flat statements of prescribed conduct: “ethics must, by its very nature, be
self-directed rather than other-directed”. A code of conduct can be evaluated in ethical
terms, but to describe it as a code of ethics to indicate that it isn’t a legal code is
somewhat misleading. Being a professional “does not automatically make a person
an expert in ethics”. (Actually, it doesn’t even make a person an expert in his or her
profession.) Ladd also draws attention to the “mischievous side-effects” that can
arise from adoption of a code of ethics:

� It encourages complacency. Having a code of ethics may be seen as an
acceptable substitute for ethical behaviour.

� Since a code of ethics prescribes a minimum standard, it may actually
excuse the signatory from having to exceed that minimum.

Do No Harm
We acknowledge the force of these arguments, yet we consider that there is some value
in guidelines, even guidelines as general as “Do no harm”, if they help the signatory
to develop a better understanding of what “harm” actually is. We encourage a shift
toward “Do as you would be done by”, away from “Do others before they do you”.
We have previously hinted at the suggestion that different cultures and subcultures
may have different views of the damage done by the dissemination of malicious
software. It is commonly suggested that viral “harm” is synonymous with damaging
payloads. This misses a number of points:

� Most viruses are not intentionally damaging in this sense. However, accidental
damage, social consequences, and other factors frequently ignored by
commentators may be every bit as damaging as a wanton destroyer of files.

� On occasion, anti-virus software does more damage when it deals with a threat
than is entailed by leaving the virus where it is but attempting to attenuate its

C h a p t e r 1 8 : R e s p o n s i b i l i t y , M o r a l i t y , a n d E t h i c s 5 3 9

impact. (In such cases, separating the vendor’s responsibility from that of the
virus author can be an interesting exercise.) Friendly fire can still be fatal.

� We find ourselves considering the virtual equivalent of a culture in which the
common cold is considered to be as “bad” as leprosy or Ebola, or where a
“benign” tumour is routinely treated with the same rigour as a malignant
growth, resulting in all the physical damage associated with chemotherapy
or radiation therapy.

The responsibility for the side effects associated with these measures lies ultimately
with the virus writer. But the question must be asked, do vendors bear some
responsibility for their reliance on the “easy” solution of known-virus detection
technology and their berating of customers for their ignorance of “safe hex” principles?

Developing Codes of Conduct
Developing codes of conduct is considered important in that they can provide
members of professional associations with the guidelines and moral constraint to
help them manoeuver through today’s minefields of regulations and expectations
that society and clients may have. However, there’s an argument for giving even
general computer users a minimum set of guidelines to work from, if only to help
them make the connection between expected standards of conduct in everyday
life and the application of those same standards to their computing activities.

A Minimum Code of Conduct
The following specimen code might be a suitable jumping off point for an organization
wishing to explore this approach. Many of the same issues are examined in more depth
when we move on to consider the specialist requirements of professional computing
organizations, especially those with a particular awareness of and interest in security.

All staff should be required to meet prescribed ethical standards, but particular
attention should be paid to staff (such as technical management and IT personnel)
with special skill sets and corresponding privileges. You might specify that they are
expected to:

� Promote public health and safety

� Advance public/customer knowledge

5 4 0 V i r u s e s R e v e a l e d

C h a p t e r 1 8 : R e s p o n s i b i l i t y , M o r a l i t y , a n d E t h i c s 5 4 1

� Respect the legitimate rights of others—property rights, copyrights, and
intellectual property rights

� Comply with and maintain knowledge of standards, policies, and legislation

� Conform to and maintain relevant professional standards

� Exert due care and diligence

� Avoid conflicts of interest

� Avoid representing customers financially where inappropriate

� Refuse inducements

� Maintain confidentiality

� Support fellow professionals

� Work within the limits of their own expertise or authority

� Upgrade skills where opportunities exist

� Accept professional responsibility

� Follow through what they begin, rather than offload awkward jobs onto others,
irrespective of whether the job is in their remit, authority, or competence

� Resist temptation to evade their own responsibilities by assigning blame to others

� Access systems, data, and resources only when authorized and when appropriate

EICAR
The European Institute of Anti-Virus Research (EICAR) has long required members to
acknowledge and conform to a brief statement of ethical intent. This takes the form of:

� A general statement of intent to take virus issues seriously and responsibly

� Avoidance of “trading on people’s fears”

� Renunciation of unrealistic claims for advertising purposes in relation to
security software

� An embargo on trading malicious code or information that could be useful to a
virus writer, except with legitimate researchers and other individuals fighting
the good fight

The organization has been developing a more comprehensive code for its
members since late 1999. This code is still under discussion, and it would not be

5 4 2 V i r u s e s R e v e a l e d

appropriate to distribute it in its present form (or at all, without formal permission).
However, one proposed draft is based on a more general document written by
David Harley and used in discussions with a number of organizations, and a version
of that document is included in this section. The draft attempts to distinguish clearly
between legal issues, public matters, employer and client concerns, and those of
the profession and keeping one’s professional competence and integrity intact and
abreast of new developments. The draft is based on two assumptions:

� Computing professionals are accountable for their ability or inability to meet
their social responsibilities, whether or not they are enshrined in law.

� Standards of conduct are not imposed by an organization on its members
arbitrarily, but as an expression of the group’s common will to view such
conduct as an integral part of its members’ professional activities.

Article 1: The Public Interest
This section addresses what the Association for Computing Machinery’s Code of
Ethics and Professional Conduct refers to as “general moral imperatives”, but we
have preferred, in accordance with the British Computing Society usage in its Code
of Conduct, to use the more specific term “the Public Interest”.

1.1 Members are required to promote public health, safety, and the welfare of
the environment.

1.2 Members are required to recognize the rights of individuals and groups to
information privacy and confidentiality. They are not to access or modify systems
or data without proper authorization.

1.3 Members are required to abstain from activities or publications that could
cause or foster panic (i.e. “trade on people’s fears”).

1.4 Members are required to refrain from discrimination according to sexual
preferences, gender, or religious beliefs.

1.5 Members have a duty to support efforts undertaken to advance information
security as well as enhance privacy.

Article 2: Legal Compliance
2.1 Members are required to respect legally binding constraints such as

copyrights, patents, and licence agreements.
2.2 Members are required to respect ethically binding constraints that may not

always be subject to legal provisions, such as trade secrets and other privileged
information.

2.3 Members are required to acknowledge and respect the intellectual property
rights of others.

2.4 Members are required to be conversant with the legal provisions applicable to
their professional activities, to conform to them, and to contribute to their continuing
revision and amendment with a view to enhancing their accordance with the
common good.

Article 3: Duty to Employers, Clients, and Colleagues
3.1 Members are required to be honest and trustworthy, in advertising and

marketing, and in dealing with customers and clients, with their employers, and with
their colleagues and peers, as much as in other aspects of their professional lives.

3.2 Members are required to conform to local policies and working practices.
3.3 Members must treat all parties, including colleagues, with respect, while

conducting their business or interaction in a just and fair manner while also
acknowledging the rights of others.

Article 4: Duty to the Profession
4.1 Members are required to refrain from unnecessary dissemination of malicious

code, in particular the exchange of virus source code other than with bona fide
anti-malware researchers.

4.2 Members are required to refrain from the dissemination of computer malware,
tools, or applications that encourage or enable the recipient to engage in immoral,
illegal, or illegitimate conduct. Distribution of such software to trustworthy individuals
and organizations in the pursuance of bona fide research objectives is excepted from
this requirement.

4.3 Members are required to be proactive in changing laws that are either incorrect
or simply unworkable regarding information security and privacy.

Article 5: Specialist Competence
5.1 Members are required to improve their own specialist competence constantly

so as to keep in step with scientific and technological development.
5.2 Members shall seek to conform to recognized good practice, including quality

standards that are in their judgment applicable.
5.3 Members shall only offer to do work or provide service that is within their

professional competence and shall accept professional responsibility for their work.

C h a p t e r 1 8 : R e s p o n s i b i l i t y , M o r a l i t y , a n d E t h i c s 5 4 3

Do Codes of Conduct Make a Difference?
While developing a code of conduct is important, experience in EICAR illustrates that
a code’s ratification and acceptance by members can be a time-consuming process,
due to the vastly different cultural backgrounds of members.

Most professionals are members in one or more professional organizations serving
their interests and concerns. Nearly all have either a specific code of conduct or a
consensual but unwritten set of rules. A specific code, for instance, is currently
under development and discussion at AVIEN (www.avien.org). This code covers a
somewhat similar range of concerns. In this case, the code of conduct is associated
with initiatives concerned with education and certification. However, organizations
with a grounding in anti-virus security—with its emphasis on trust (or mistrust),
confidentiality, and nondisclosure—often have quite a different point of view on matters
relating to virus exchange. For instance, security organizations, whose grounding is
in other areas of security, where full disclosure and cooperative development are more
valued, may exchange malicious code freely. This can lead to serious cognitive
dissonance for anti-virus specialists participating in other areas of security.

Two philosophically opposite camps tend to form around this issue. The first
states that security information should be restricted. This restriction will limit the
information available to those who would try to break security systems. The second
philosophy often refers to this first position as “security by obscurity”, and proposes
that restriction of information serves only to keep it out of the hands of those who
need it. The “crackers”, so this second theory goes, already have the information.

The experience of the Internet Worm must be said to favour the latter position
more than the former. The fixes, “workarounds”, and patches that enabled systems
to recover and prevent reinfection were developed by an informal “network” of
individual researchers who freely broadcast their results. (This “free broadcast” was
somewhat hampered by the fact that the primary means of communication was the
same system that was under attack. The important factor is that the information was
not being censored as it was discovered, nor was it being provided by a central
authority or clearinghouse.) More recently, however, confusion between routine
anti-virus activities and initiatives out of the AV mainstream to deal with other
malicious software (such as Linux worms, DDoS attacks, and various kinds of
Trojans) has led to practical and ethical problems. The practical problems include
duplication of effort in some areas (dealing with common Trojans, for example,
which are addressed both by anti-virus software and by Trojan-specific security
software) and a confusion of aims in others. The Code Red worm, for instance,
which was a burning issue as this chapter was being written, generated a great deal

5 4 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

of cooperative research outside the AV establishment, but it seemed to be widely
assumed that the AV vendors would deal with the actual eradication of the worm
itself. These vendors tended to see the worm as a general security threat rather than
as an anti-virus issue, and thus tended to concentrate on providing sources of information
rather than a technical fix. In consequence, the worm was rather widespread before
other parties began to address the problem. Issues of responsibility and ethics arise
when organizations on either side of the AV/security fault line take inappropriate
action because of technological and philosophical misunderstandings.

We are not necessarily against full disclosure under all circumstances, and we
agree that it’s possible that anti-virus vendors sometimes favour nondisclosure at
least in part because it offers them a means of maintaining competitive advantage
over newer entrants to the field. We believe, however, that the free exchange of virus
code—especially comparatively “easy” macro and script code, for instance—is more
advantageous to wannabe virus writers and script kiddies than it is to everyday users,
since it increases the likelihood of knock-off malware and malware variants.

People who need to implement effective anti-virus defences do not generally need
the source code, a disassembly, or a sample for do-it-yourself (DIY) analysis. An
explanation of what the virus does and the mechanisms that it exploits is usually
sufficient, and sometimes surplus to requirements. What people really need to know
is how to prevent or contain the virus, not explicit detail about how it works. Sometimes,
though, it is impractical to block entry or contain the spread of the virus, or to perform
an effective cleanup, without such detail. The industry’s traditional adherence to
the model of nondisclosure and nonsharing of samples and source can cause major
difficulty if a patch or update is not immediately available. The industry in general
tends to err on the side of caution, and this caution sometimes leaves the end user
with insufficient information to manage the problem until updates, interim detection
drivers, or single-shot detection/removal tools become available. This situation makes
more understandable the readiness of some security resources outside the industry to
make detailed information available. It also makes it easier to understand the increasing
demands from pressure groups, such as AVIEN, that the anti-virus industry move
away from its paternalistic “Gods and Ants” stance, and tell the systems administrator
what he or she needs to know—especially where nondisclosure leaves the industry’s
own customers more exposed than they should be.

Whether an anti-virus professional (within the industry or otherwise) releases code
to people outside the Inner Circle is a matter of individual responsibility. However,
the provision of sufficient information is most certainly the responsibility of the
industry as a whole, and a challenge it has not always met successfully. Nor is it
sufficient to say, “If people need this stuff, they can get it elsewhere”. That constitutes
an evasion of the responsibility to ensure that the available information is the best

C h a p t e r 1 8 : R e s p o n s i b i l i t y , M o r a l i t y , a n d E t h i c s 5 4 5

possible. Information and code made available through open-disclosure resources
are likely to be subject to ongoing peer review rather than initial screening.

Publication of virus code is often compared to publishing details of nonviral exploits,
which many people consider acceptable. We believe, however, that publication of any
code (or indeed exploit details) should be considered against criteria such as the
following:

� Will publication be limited to people who can be trusted not to make malicious
or inappropriate use of the code, or is access available to anyone who asks?

� Will publication help actual or potential victims?

� Does it enable victims to fix something themselves?

� Will it increase the risk of this specific attack being employed by
knowledgeable black hats?

� Will it increase the risk of copycat attacks?

� Will it increase the risk of variant attacks from other sources, requiring
different defensive measures in each instance?

� Will a vulnerability be eliminated as a result of publication that would not
otherwise be eliminated?

� Does the likely benefit to potential victims from publication outweigh the
likely benefit to vandals, script kiddies, and the like (not to mention those who
are inclined to experiment inappropriately)?

Whether or not to publish in the light of such criteria is always a personal decision,
perhaps influenced by membership in organizations that require commitment to a
specific code of conduct. We believe, however, that the criteria should be taken into
consideration.

Further complications arise in the areas of testing and product evaluation as
practiced by journalists, consultants, and such. We do not propose to revisit these
issues in depth (see Chapter 9), but would point out that there is a major ethical
problem when individuals carrying out these activities do so without a sufficient
understanding of the technology to implement competent methodologies.

Organizations that don’t offer security services or products, but are interested in
security only as a means of protecting their other interests, will often have yet other
viewpoints. We suggest that compiling codes of conduct such as the minimum code
described earlier in this chapter could be, if nothing else, a valuable exercise for
helping such organizations clarify their own standpoints.

5 4 6 V i r u s e s R e v e a l e d

The question with an unwritten code or constitution is whether people do have a
clear understanding of its existence, the ramifications for their conduct, and the
content of the code. Here research indicates that even if people know a code by heart,
following its guidelines is sometimes a big step that people often fail to take. Hence,
a code may actually exist in a vacuum or on its own because it is very much ignored
by members as they conduct their daily business. Gattiker, Greshake, Schwenteck,
Janz, Holger, and Kelb, in a 1997 study, compared adherence to codes of conduct in
the United States, Germany, and Canada, and concluded that “The code of conduct
does not appear to affect how people assess moral conduct in either scenario (i.e.,
conventional and moral domains) in any of the three countries”. This study may
support suggestions that ethical codes in the computing context are of more cosmetic
importance than real effectiveness.

Other research indicates that after about three months, people simply forget a code
of conduct’s content and may inadvertently breach it in some way, unless somehow
reminded. We are not altogether in agreement on this: it is not certain that being obliged
to acknowledge such a code by signing it at regular intervals (such as quarterly) or
by renewing an annual subscription is either effective or appreciated. Nevertheless,
you may wish to consider such a strategy.

Summary
In Economics 101, students are taught that market demand will always result in
somebody’s producing and selling the supply needed to satisfy the demand. Legal
efforts are unlikely to stop buyers from securing the product from producers, even
if illegally, as is the case with drugs. Moreover, moral constraints develop and may
differ across countries and cultural groups within a society.

Outlawing virus writing and exchange does not, of itself, make matters easier or
less dangerous for users concerned about their digital data. Codes of conduct can and
maybe should be developed, understood, and committed to by all employees and user
groups. While these codes may differ widely according to context, at least they can
provide guidance to users and impose constraints. However, the problem requires a
more educational solution. Rote learning of safe hex guidelines and codes of conduct
may be better than a free-for-all approach, but rote learning is not education: it’s a
strategy for taking responsibility away from the end user. As long as we maintain the
fiction that malware management can be totally transparent to the user, we are doomed
to generation after generation of VX wannabes repeating the same experiments and
mistakes, and writing the same old graffiti.

C h a p t e r 1 8 : R e s p o n s i b i l i t y , M o r a l i t y , a n d E t h i c s 5 4 7

Anti-virus security is not the solution. There is no absolute technological solution.
The advocates of personal firewalls, anti-Trojan software, IDS, Linux, integrity
management, code-signing, and other flavour-of-the-month panaceas are not entitled
to claim an exclusive licence to the truth, either. These are all different sizes and shapes
of Band-Aids. Salves and bandages are very useful in the event of a playground injury,
but they are not the answer to bullying.

Viruses are part of a social problem with a social solution—not necessarily a
realizable social solution, but we could do better at dealing with the problem than we do.
Education is not the answer, either, but it plays a major part in addressing the root of the
problem rather than the symptom. We are not only talking about simple computer
hygiene and the principles of safe hex, but acknowledging that computing has a moral
and ethical dimension. Truly safe computing is considerate computing. Spreading this
message among corporate users is a start, but it also needs to be considered in the
computer science class, in the home, even in the nurseries and junior schools. If more
educationalists catch that thought, they may eventually make more of a difference.

At this point, we’d like to quote Simon Widlake, for an extreme statement of a
view we often hear from the hugely experienced, one that goes some way towards
explaining why so many anti-virus professionals don’t routinely run anti-virus
software on their home machines. In a discussion on the alt.comp.virus newsgroup,
Simon said:

Block *ALL* unsolicited executable/interpretable files... End Of Story;
Game Over; *NO* AV required.

And, of course, he’s right, in a sense. There are no fires in an oxygen-free
environment. However, most of us (corporately speaking, at least) have to live
in an oxygen-rich habitat. Let’s look at an analogy:

Problem: Some parcels contain plastic explosive.

Solution: Suspend all mail services.

Result: No more parcel bombs, except where people use illegal mail
services, in which case they deserve what they get. No sniffer dogs or
emergency services required.

Now that’s a social solution. Unfortunately, it’s not a very good one, unless
you favour government by curfew, enforced by military patrols, in a world where
communication is discouraged.

5 4 8 V i r u s e s R e v e a l e d

Moving from parcel bombs to mail bombs, once it becomes more important to
avoid malware than to receive legitimate traffic, the bad guys have won and we might
as well go home. While we’re at it, we’d better close down the Web because some
sites are pornographic. There are lots of intermediate steps between “wide open” and
“bolted shut”. For most people, “bolted shut” means replacing service with security,
and that’s the tail wagging the dog. But we can deliver a fully effective service only if
we all understand the nature of the problem that prevents us, at present, from achieving
that level of service.

C h a p t e r 1 8 : R e s p o n s i b i l i t y , M o r a l i t y , a n d E t h i c s 5 4 9

This page intentionally left blank.

CHAPTER

19
Wrap Up

551

IN THIS CHAPTER:

Predictions

Closing Comments

Stop Press

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

5 5 2 V i r u s e s R e v e a l e d

Last chapters tend to be either prognostication or opinion. Foretelling the future
is a bit chancy. As Daniel Delbert McCracken has usefully put it, you shouldn’t
make predictions about computing that can be checked in your lifetime. At

the beginning of 1995, we would have been willing to say that data files presented no
viral danger. And then along came Microsoft Word macro viruses. In 1997 we would
have said that merely reading an email message could never infect you. And then along
came the latest version of Microsoft Outlook, which could fire up an attachment not
only when you read the message, but also if you previewed it. Statements about the
future of technology have a disturbing tendency to be confounded by new technologies.
So we will keep our predictions mercifully brief, and then move on to the editorial.

Finally, we will wrap up with some late-breaking stories that happened as we were
completing the book.

Predictions
Viruses are here. Virus numbers are growing. New viruses and variants will continue
to grow for the foreseeable future, and will become an increasing problem in all areas
of computing.

A number of security specialists have stated that viruses are a passing fad, and that
when desktop operating systems become as secure as mainframe systems, viruses
will disappear. It is certainly true that desktop operating systems have not, to date,
been in any way secure. It is also true that, as desktop operating systems have changed
over the years, certain types of viruses that were previously major threats have become
almost extinct.

However, take note of Gene Spafford’s point in the foreword: operating
system vendors have not been very diligent at “hardening” systems. A decade ago,
both Microsoft and IBM were offered a proven technology that would have almost
completely eliminated the threat of boot-sector viruses, without compromising any
system functions. They were offered this technology free of charge, but neither company
incorporated it into its products. More recently we have seen evidence of Microsoft’s
attitude towards making its products more secure: the corporation brought out a version
of Outlook that deleted any email that carried any attachment. This example of overkill
was an obvious attempt at proving to the market that shielded products have a drastic
cost inherent in their use. Therefore, we do not foresee commercial desktop products
becoming much safer in the near future.

Taking another look at the original point about desktop operating systems, it is
instructive to examine the recent spate of Linux viruses. A version of UNIX, Linux is
actually a very secure system. Yet, as the use of Linux grows, our assertion that more
use of a given platform means more viruses is proving prescient. Linux does not have

C h a p t e r 1 9 : W r a p U p 5 5 3

anything like the number of viruses that are extant in the DOS and Windows worlds,
and the types of virus that plague Linux tend to be different. However, viruses are a
problem in all environments. Remember that Fred Cohen did his initial experiments with
mainframes. A new operating system is not going to make the virus threat disappear,
although a properly designed system could definitely reduce the problem.

We are also seeing a very disturbing trend towards convergence in virus writing. Until
now, viruses have been a problem all on their own. The major issue in dealing with
viruses was the cost of detecting them and the time spent cleaning them. Occasionally
a virus with a destructive payload endangered data, but that was pretty much the most
we had to be concerned about.

Viruses are no longer an isolated threat. They are being used to launch attacks from
one operating system platform, aimed at another. Invasions of privacy, with attendant
social and legal problems, are being carried as payloads in recent viruses. Viral programs
are using a variety of technologies to update themselves on the fly, and make their
presence known once they have invaded a system. We have not yet seen specific viruses
successfully used to install Trojans, trap doors, RATs, and/or DDoS zombies on the
machines they infect, but there have already been attempts, and we predict the trials
will achieve that end shortly.

When malware starts to use the viruses’ power of self-reproduction effectively, we
had better be able to deal with the new virus threat.

Closing Comments
If you have actually read the book to this point, and not just skipped ahead to see how
it ends, you may be feeling a little nervous right now. Don’t despair—at least, not
entirely. The virus danger is real—but it isn’t absolute. Like most of life, it’s a bit of
a bad-news/good-news situation.

Bad News: Security Specialists Don’t Know Much—About Viruses
We have noted in Chapter 8 that most security experts are not really informed about
viruses. Our list of general security texts, in the same chapter, noted that many otherwise
excellent works fail when they attempt to address the virus topic. The CISSP CBK
(Common Body of Knowledge) course takes a full eight days to complete, and, at the
moment, contains roughly 2,000 slides of material. Only four of those slides deal with
viruses. Again, we do not fault people who are trying their best to stay on top of a variety
of important issues, of which viruses are only one, and the CBK course shows how
big a task this is. You have no way of knowing whether an “expert” is giving you valid
information about viruses unless you are educated about viruses yourself.

5 5 4 V i r u s e s R e v e a l e d

Yes, we are quite well aware that we have been sounding this same alert over and
over again throughout the book. However, in our experience, many of the problems
we encounter professionally have been caused by people taking bad advice, very often
from “experts”. You are just as smart as most of them, and, now that you’ve finished
this book, possibly even better informed. And in this case, a little knowledge can help
you quite a lot. Which brings us to...

Good News: A Little Education and Basic Policies Can Really Help
In our not-so-humble opinion, you’ve taken a good first step in buying this book.
(You... did buy it, didn’t you?) Finding out about the reality of viruses will prepare
you to begin addressing the problem.

You can take a bigger step by training your systems’ users. We’d love to have you
buy copies of this book for all of them, or recommend that they get copies themselves,
but, more realistically, we’d be almost as happy if you copied (small) relevant portions
of this book for your training materials and gave us credit for what you use. A half-day
session would probably do for a simple virus course, covering a few foundational
security policies.

What kind of policies? Well, we’ve gone over a number of them in Chapter 7, a
few more in Chapter 10, and another group in Chapter 17. But, as a quick recap, here
are a few that can really help in the current environment:

� Don’t double-click on attachments. Don’t open attachments until you’ve
checked them out. You can check them by using an up-to-date scanner, or by
contacting the person who sent you the attachment, to be sure of what it is.

� When sending attachments, be really specific. Don’t just reply with the same
subject line, or a vague “Here’s the stuff you wanted”. Use a subject line that
says, “Here is a WordPerfect document file containing the Anderson contract”.
In the body of the message, tell your correspondent “Frank, this is Mary. This
file is the third version of the contract with Anderson Corporation, as you requested
on Thursday. The file is called ‘Anderson Contract 3.wpd’ and is 34,958 bytes
long”. This gives the person on the other end some assurance that the message,
and file, really is from you, and isn’t just some ambiguous, “Hi, I’m fun! Open
me!” virus or Trojan come-on.

� Don’t blindly use Microsoft products as a company standard. We know this point
will be controversial, but consider it carefully. You can read MS Word documents
with StarOffice or other office suite packages, or even with WordViewer, which
is available from Microsoft. MS Internet Explorer is more dangerous than
Netscape. MS Outlook is more dangerous than Pegasus. MS Windows...well,
you get the picture. You do have options.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 9 : W r a p U p 5 5 5

� Disable Windows Script Host. Disable ActiveX. Disable VBScript. Disable
JavaScript. Disable cookies, although that’s more for privacy than for viruses.
Run with those dangerous technologies disabled by default. When you come across
a web site that requires them, ask yourself whether you really need what that site
has to offer. Don’t send HTML-formatted email. (It might be as well to eschew
Rich Text Format as well.) Be very wary of receiving HTML-formatted email,
and use a mailer that informs you when you do receive such email. If you receive
email that requires JavaScript, then you should very seriously question why
someone wants his or her email to run programs on your computer.

� Use more than one scanner. Have defence in depth. A content scanner on a
firewall is convenient, but probably will take shortcuts. An on-access scanner
is handy but must operate within the confines of the operating system. Do a
manual scan with a different product every once in a while, just to make sure.
Of course, defence in depth is more than using multiple scanners—it is having
protection at each layer of your network: at desktops, file servers, email servers,
gateways, and each point of entry into your network. It is also reasonable to have
more than one vendor’s product in this mix—such as one vendor on the desktop
and a different vendor on the email servers. This prevents having the “all your
eggs in one basket” philosophy that so many organizations fall victim to in an
attempt to minimize contracts and maintenance or training efforts.

� Don’t think you’re safe: everybody is at risk. The best current estimates are that
every large company gets hit at least once a month, and that each infestation affects
roughly 100 computers. Even virus experts get caught. You can too.

Bad News: Convergence Is Going to Get Worse
As noted earlier, the different forms of malicious software are starting to converge.
Trojans are beginning to install trap doors, RATs are initiating zombies, and viruses
are sending spam. As these forms combine, new and more powerful attacks will begin
to make computing more dangerous for everyone.

An additional hazard is associated with convergence. We have tried to be clear, in
this book, on the various forms of malware, and the dangers of each. When new forms
arise, the media aren’t likely to be as careful. You will hear about weird and wonderful
programs, described in ways that confuse what is really happening. Try to keep in mind
the specific types of bad software, and the real operations that might be present.

Good News: Just the Same, but More
Viruses don’t really present a new threat; it’s just the same old rancid wine in new
bottles, and more of them.

5 5 6 V i r u s e s R e v e a l e d

In reality, there truly is almost nothing new under the sun. There have always been
people trying to damage your data, or your computers, or your operations. Almost
as soon as there was software, there was also bad software. All that viruses do is to
permit multiple attacks, from multiple sources, faster than used to be the case.

An example of the quantitative, rather than qualitative, change in the problem is the
situation with regard to laws addressing computing. Lots of people have called for
legislation to make writing viruses a crime. It is extraordinarily difficult to draft such
edicts, and, in fact, we don’t believe that such specific decrees are absolutely necessary.
There are already ordinances prohibiting mischief and vandalism. Companies can
bring lawsuits against individuals or groups who have harmed them. So it would be
perfectly possible to bring a suit or charges against the author of a virus, assuming
you are game to track down the perpetrator. All that is needed is the care and will to
do it. If you can’t be bothered to collect and prepare the evidence for a prosecution,
then a new law declaring virus writing to be illegal will not help, and may add to the
thrill for virus writers and wannabes.

Existing laws are suitable for computer crimes, given some work and education.
For mischief, prove mischief. For theft, prove value and loss. Unless we learn how
to use Common Law against computer crime, we shouldn’t try to write new laws
against new crimes. Until then we are going to have more cases of new laws making
certain prime numbers illegal, or people facing 15-year prison terms for installing
screensavers.

NOTE

Don’t believe numbers can be illegal? Have a look at the following sites:
http://www.utm.edu/research/primes/curios/485...443.html,
http://www.utm.edu/research/primes/curios/207...957.html, or
http://www.utm.edu/research/primes/curios/945...469.html.
If the pages have changed, go to http://www.utm.edu/research/primes/curios/swish/
and search for the term illegal.

Bad News: Multiple Points of Attack Can Scale the Problem
Still, viruses present a greater risk than many other forms of malicious software. A virus
need only be created and released once. If it is successful, it spreads on its own, attacking
systems as it goes. Each system compromised becomes another source of infection.
If you aren’t part of the solution in the viral world, you are most definitely part of
the problem.

NOTE

Rob Slade wanted to call his first book The Binary Hydra. In Greek mythology, Hercules had to kill
a beast. Every time he cut its head off, it grew two more. The same thing can happen with viruses.
Once you have been infested, you must eradicate every trace of the virus, or it will simply start to
replicate all over again. This means eliminating every copy in every email message on every disk
in every machine.

We’ve seen the result in other fields. Denial of service (DoS) attacks have been
around for years. They were a nuisance, but major sites on the Internet had so much
capacity that the small DoS attacks were just shrugged off. Then came February
of 2000, and suddenly major corporate sites on the Internet were no longer available.
Distributed denial of service (DDoS) used the same kind of multiplication of power
that viruses make possible.

Good News: Existing Tools and Some Diligence Can Work
Fred Cohen has actually proved that a perfect defence against viruses is not possible.
And, as we have seen, the protection provided by operating systems and antiviral tools
is often very much less than perfect. Even so, the tools that do exist, and the policies
that we have suggested, can keep you very safe. With a proper set of guidelines and
some knowledge of the field, you can reduce your risk so thoroughly that, for all
intents and purposes, your protection is complete. Two of the authors of this book
have spent many years working with and testing viruses, and exploring data networks,
and have never yet become infected from a virus in the wild.

Reread this book. Check up on the other sources of information that we’ve pointed
out. Consider some good antiviral policies for your workplace. Get some antiviral tools
in place, at various points in your enterprise. Keep up with the field. Read news reports
and virus warnings with scepticism. Don’t panic.

And, hey: be careful out there.

Stop Press
It takes a long time to write a book, and changes can happen pretty fast in the technology
business. Therefore, we have intentionally kept this space blank until the book is almost
complete. What we want to cover in this section are new viruses and virus-related
events and technologies.

C h a p t e r 1 9 : W r a p U p 5 5 7

5 5 8 V i r u s e s R e v e a l e d

We don’t expect this material to be vital to your protection. In fact, we fully expect
that any late-breaking news will confirm that the recommendations made elsewhere
will keep you safe. With that in mind, we anticipate that each entry here will follow
a “what’s new” and “what’s not” structure, telling you about the new virus or technology
and then reminding you about established virus security principles that apply.

If you would like to look up details on the specific viruses covered here, go to the
virus encyclopaedia web sites listed in Chapter 8, and use the search functions available.

RTF Is Not a Panacea
What’s New
When Microsoft Word macro viruses appeared, many people recommended the use
of Rich Text Format (RTF) files. RTF has been around for a long time, and is a file
structure that can be used to exchange documents between different types of word
processing programs. Since RTF is a text-only format (it uses legible tags that people
can, with a little work, understand), it cannot contain executable code and, in particular,
cannot contain macros and macro viruses.

The WM/Cap Word macro virus (see Chapter 13) presented a bit of a problem.
When MS Word users tried to save files as RTF, Cap would intercept the function
and generate an infected Word document file, but with a filename that had an .RTF
extension. However, looking at the file with a simple text editor such as Notepad
would show the difference. True RTF was still safe.

However, that is no longer the case. Microsoft has extended its handling of RTF
with its own programs, particularly Word. A tag, created by Microsoft and not part
of the basic standard, now allows an .RTF file to link to another file, and this file can
be a Microsoft Word document or template. Therefore, when MS Word opens a file
that is written in Rich Text Format, it may also open an additional file. If Word’s
macro detection feature is active, it will check the original .RTF file for macros, but
will pronounce the file clean since it doesn’t have any macros. The feature will not
check the second file, however. Therefore, you now can become infected by opening
an .RTF file in Word.

You might note that another file must be involved, and may object that you
should become suspicious when asked to copy two files to your computer where
one should be enough. However, the link to the second file can take place over the
Internet, so the second file would be invisible to the user unless he or she examines
the tags in the .RTF file.

So far this function has not been used in a virus, but there is a Trojan horse
program called Goga that uses it to steal your account and password information.
More information can be found at
http://www.kaspersky.com/news.asp?tnews=0&nview=1&id=191&page=0.

C h a p t e r 1 9 : W r a p U p 5 5 9

Microsoft’s take on the issue can be found at
http://www.microsoft.com/technet/security/bulletin/MS01-028.asp, which contains
a reasonable outline of the situation, plus pointers to patches that can help.

What’s Not
Well, we told you not to trust Microsoft, now, didn’t we?
Leaving that aside, this is still a situation where you are most likely to encounter an

attack from an email attachment. Don’t trust unknown files. Don’t double-click on them.
In addition, you can configure your system so that .RTF files are not associated

with Microsoft Word. You can open them with WordViewer, WordPad, Notepad,
or a non-Microsoft word processor, and be safer.

Poly/Noped
What’s New
This VBScript worm displays a message about stopping child pornography. The code
does the usual Melissa and LoveLetter trick of sending itself to entries in the Microsoft
Outlook Address Book. After it does that, it scans for JPEG files on the hard disk,
looking for specific strings in the filename that the virus author obviously thought might
relate to pornography. The worm will collect these files and email them to addresses
thought to belong to law enforcement agencies.

What’s Not
So, are virus writers trying to prove that viruses really are useful? Well, they’ve
tried that before. One old program carried a payload that would encrypt your data
for you, while another tried to compress the data on your disks, in order to save space.
Unfortunately, both of those programs stole the utility code from legitimate programs,
and both had serious bugs.

Is the VX crowd showing us how to use viruses as spy tools? That’s been thought
of before, and thoroughly discussed more than a decade ago. The problems relating to
such viruses should be fairly obvious. Most countries have laws against illegal searches
and invasion of privacy. In addition, you are going to harvest a great many cute bathtub
pictures before you ever get to serious child pornography. Finally, what is to stop
someone writing a worm that places illegal material on your computer?

Mandragore
What’s New
Mandragore spreads itself as an executable file. Users must download the file and
run it in order to become infected. However, the virus uses the Gnutella file-sharing

5 6 0 V i r u s e s R e v e a l e d

system to advertise itself. A copy of the virus registers itself as an active node within
the Gnutella network, and intercepts requests for file searching. Mandragore will
return a positive result, and create a copy of itself named appropriately for the
request. The virus sends itself only in response to requests, so computers without
software such as Gnotella, BearShare, LimeWire, or ToadNode will not obtain copies,
unless Gnutella users send the files obtained to others. The virus carries no damaging
payload, and you can detect infections by looking for a file called GSPOT.EXE in
the Windows startup folder.

What’s Not
Didn’t we tell you not to put that file in your computer? You don’t know where it’s
been! Actually, this might be the closest thing we’ve ever seen to a virus that really
is associated with pirate software, if it were not for the fact that peer-to-peer file sharing
has many other legitimate uses. Other than responding to a request rather than promoting
a come-on, this virus is just another example of social engineering trying to get you
to run something on your computer.

SULFNBK Hoax
What’s New
The SULFNBK hoax warning caught a lot of people. This was because many users,
when they followed the instructions, actually did find a file named SULFNBK.EXE
on their computers, and believed that they had been infected. Thus, the hoax wasn’t
just a simple chain letter: each new generation was created by someone who was
really convinced that he or she had been hit by the virus.

That many people found the SULFNBK.EXE file was not surprising. It is part of
later versions of Windows, and appears on every version of Windows 98, among others.
The file is a utility that will restore long filenames if the file system has been damaged
somehow—by the use of a DOS disk utility program, for example.

What’s Not
Actually, we aren’t really sure that the SULFNBK warning started out as a hoax. The
Magistr virus infects Windows system files when it mails itself out, and SULFNBK
is one of the files that may be so infected. It’s quite possible that a user was infected
with Magistr, and, not knowing all the details, sent out a warning with one vital mistake.

We tried to make this point in Chapter 16 with regard to virus hoaxes. Verify the
validity of what you read, and what you send. Even if a message does not contain all
the characteristics of a classic hoax, you may very well be spreading misinformation,
and wasting bandwidth, mail queue space, and, most importantly, the time and attention
of many people.

C h a p t e r 1 9 : W r a p U p 5 6 1

Sadmind

What’s New
Sadmind is a fairly classic Internet worm. It propagates itself using a buffer overrun
exploit on Solaris (a version of UNIX) systems. While it searches for new Solaris
machines to infect, it also probes for Microsoft Internet Information Server (IIS) web
servers. It will attempt to deface the main page on the IIS server.

What’s Not
Buffer overruns aren’t new. Patch your software when one is discovered (and teach
the next generation of programmers not to be so sloppy).

Web page defacement attacks aren’t new. Secure your public data from tampering.
(No, this isn’t a book on Web security. If you are responsible for a server, go to
http://victoria.tc.ca/techrev/mnbkscnt.htm or http://sun.soci.niu.edu/~rslade/
mnbkscnt.htm and choose a book on Web security from those reviewed there.)

Cross-platform attacks aren’t new. As long as someone is only mounting an attack,
they can send probes from any computer to any other reachable system.

Cheese

What’s New
Cheese is a Linux worm that searches for computers that have been infected by a
previous Linux worm, based on a trap door that the prior worm left on the infected
machine. Cheese fixes the security loophole. The worm contains text that indicates
it was written with good intent, to try to help secure systems.

What’s Not
It’s been done before. The Ohio and Den Zuk viruses were supposed to eradicate copies
of the Brain virus, but Ohio and Den Zuk actually created more problems than Brain did.
Cohen has suggested that “good” viral programs could undertake network management,
and security patching is part of network management. However, “useful” viral programs
need to be a lot more sophisticated than Cheese is before they can be considered
genuinely safe to release.

Lindose/Winux

What’s New
There is a virus that can infect both Linux ELF files and Windows PE-EXE files.

What’s Not
Big deal. Jerusalem and sURIV3 could infect both .COM and .EXE files back in 1987.

MacSimpsons

What’s New
MacSimpsons is a virus written in AppleScript. It mails itself out to users listed in the
Outlook Express or Entourage mailer programs.

What’s Not
Script viruses exist. Don’t download and run files—even if you are using a Mac.

Outlook View Control

What’s New
The Outlook View Control is an ActiveX control, supplied by Microsoft and related
to the Digital Dashboard system, that allows users to display and view their Outlook
mail or calendar data through a web page. The control is supposed to allow only passive
viewing, but it contains a bug that permits manipulation of the data and even lets an
attacker run malicious code. This bug can be exploited from a malicious web page or
HTML format email, even if the user only previews the message. Outlook or Internet
Explorer users do not need to open or click on any attachments to invoke the control.

What’s Not
ActiveX is a dangerous technology. Disable it. Disable VBScript and JavaScript while
you’re at it.

Code Red/Bady

What’s New
Microsoft’s Internet Information Services (IIS) contains a buffer overrun vulnerability
in the index server. A worm called Code Red now exploits this vulnerability in order
to deface web pages on the server and search for other IIS servers to infect. Of course,
a number of worms use buffer overflow bugs. Code Red, due to the way in which it
tries to find other IIS servers to infect, may create bandwidth flooding and denial of
service situations for certain IP addresses. It would be difficult to say that this constitutes
a DoS attack, since the problem appears to be related to sloppy coding rather than a

5 6 2 V i r u s e s R e v e a l e d

C h a p t e r 1 9 : W r a p U p 5 6 3

deliberate assault. There also seems to be a deliberate DoS attack against
whitehouse.gov.

An estimated quarter of a million (250,000) servers were infected in the first
week, and possibly hours, after the release (or discovery, at least) of the worm. The
whitehouse.gov site did not have any problem defending against the DoS attack: since
the flood used a hard-coded IP address, that address was simply taken out of service.
Some security experts were, however, concerned that Code Red would launch
successive waves of attacks, between periods of dormancy. In addition, a number of
variants appeared soon after the initial wave.

You can find out more about Code Red from any of the virus encyclopaedias or at
http://www.eeye.com/html/Research/Advisories/AD20010618.html, or get details
and patches at http://www.microsoft.com/technet/security/bulletin/MS01-033.asp.

What’s Not
Buffer overruns aren’t new. Keep your systems patched. Defacing web pages isn’t
new. Keep your servers patched. Bugs in virus code aren’t new. And we warned you
about convergence—even if it is by accident.

Code Red was definitely a media virus. Some anti-virus vendors promoted it as a
means of increasing their own visibility. Some security organizations hyped it for the
same reason. However, for some reason it caught public imagination, and even the
US FBI held a press conference predicting dire catastrophes resulting from the worm.
Since the cure was known, and only a few percent of Internet users could possibly
have been affected in any case, it is difficult to see what all the fuss was about. Code
Red only served to take attention away from a much more serious problem: Sircam.

Sircam

What’s New
As the book goes to the final stages, the big virus news is W32/Sircam@mm. The
virus has been hugely successful. It is also huge. The size of the executable itself is
around 150,000 bytes. Sircam uses all kinds of virus techniques: like Melissa, it can
mail out your private files; like Love Bug, it uses the double filename extension to
fool people into opening it; like Stages, it uses variations in the message it sends.

When Sircam is active on your machine, it will search for .GIF, .JPG, .JPEG,
.MPEG, .MOV, .MPG, .PDF, .PNG, .PS, and .ZIP files that you have. It will choose
one, incorporate the file into the body of the virus, and create a message with itself
as a file attachment. Rob Slade received a message with a company’s personnel file
attached, as well as other files from around the world. Confidential files from the
government of the Ukraine ended up being sent to news services.

The filename of the attachment will use the original name of your file, with an
added .BAT, .COM, .EXE, .LNK, or .PIF extension, so that Windows will see it as
an executable file. For example, your file “Property Values.ps” will become “Property
Values.ps.com”. The subject of the message created will depend upon the filename,
so it will always be different.

Sircam uses information from the Microsoft Outlook mailer program to obtain
email addresses for generating mail, the network mail server to use if available, and
information to use in regard to the sender, but it contains code for creating and
transmitting the mail itself. It will also harvest email addresses from temporary cache
files, and contains addresses for SMTP servers to use if no information is found on
the infected machine.

The virus hides a copy of its code in the Recycled folder, and creates a Registry
key that directs all calls for .EXE programs to run the virus first. In addition, Sircam
will infect other machines across local networks, using Microsoft networking shares.

At the time of writing, the virus has not yet been fully analyzed. It may have payloads
causing file deletion and filling of disk space with text files.

What’s Not
All other considerations aside, somebody has to open the file for it to get a hold.
Don’t double-click on email attachments! At the time of writing, all the technologies
known to be used in Sircam were previously used in other viruses.

Summary
That’s all we wrote. Except for the appendixes.

Hopefully we’ve told you what viruses are, where some of them came from, how
they work, and how to protect against them. You’ve got some resources to draw upon,
and suggestions about policies for safer computing. Some material has touched upon
social and legal aspects of viral programs.

But the book has to end sometime. So, until the next edition, it’s over to you, now.

5 6 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

PART

V
Appendixes

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

APPENDIX

A
Frequently Asked

Questions on
VIRUS-L/comp.virus

567

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Ken van Wyk set up the VIRUS-L/comp.virus mailing list and newsgroup
following 1987’s LeHigh virus incident. Release 1 of the FAQ (Frequently
Asked Questions) document was reprinted in Pamela Kane’s PC Security

and Virus Protection Handbook (M&T Books, 1994). However, the much more
comprehensive Release 2.00 has never been reprinted, to the best of our knowledge,
and is reproduced here by kind permission of Nick FitzGerald, moderator of the
comp.virus newsgroup and FAQ maintainer. It was last updated on 9th October, 1995,
and so does not deal with all the issues that concern today’s malware manager.
However, it remains a very well-written and comprehensive primer with contributions
from highly reputable researchers, and answers questions that are still asked today.

The mailing list and newsgroup have not been publicly active for some years, so
we have removed administrative detail concerning the newsgroup mailing list, and
have added notes where necessary in the light of more recent developments. Author
notes retain the same format as within the main chapters of this book. Many of the
questions answered are also addressed in detail within this book. This appendix
doesn’t present such material unless it adds substantially to the information already
included or represents a valid alternative view.

The complete 1995 version of the FAQ is periodically posted to USENET.
A rough HTML version is available from www.faqs.org/faqs/computer-virus/faq/.

Primary Contributors
The following people, listed in alphabetical order, have provided significant content
and/or editorial input to this FAQ sheet:

Mark Aitchison, Vaughan Bell, Claude Bersano-Hayes, Matt Bishop,
Vesselin Bontchev, Bruce Burrell, David Chess, John-David Childs,
Olivier M. J. Crepin-Leblond, Nick FitzGerald, Richard Ford, Alan Glover,
Yaron Y. Goland, Sarah Gordon, Mikko Hypponen, John Kida, Kevin
Marcus, Anthony Naggs, Donald G. Peters, A. Padgett Peterson, Y. Radai,
Brian Seborg, Fridrik Skulason, Rob Slade, Gene Spafford, Otto Stolz, and
Ken van Wyk.

What are the known viruses?
The reader should be aware that there is no universally accepted naming convention
for viruses, nor is there any standard means of testing. As a consequence, nearly all
virus information is highly subjective and open to interpretation and dispute.

5 6 8 V i r u s e s R e v e a l e d

There are several major sources of information on specific viruses. Probably the
largest one is Patricia Hoffman’s hypertext VSUM. While VSUM is quite complete,
it covers only PC viruses and is regarded by many in the anti-virus field as inaccurate,
so we advise you not to rely solely on it. You can download VSUM from most major
archive sites.

NOTE

While the web site http://www.vsum.com/ still exists, neither the web resource nor the VSUM
database itself seems to have been updated for some years. None of us has ever rated its accuracy
highly. We do not know of a current source for the Computer Virus Catalog or for CARObase,
although the Virus Test Center in Hamburg is still operational. We have removed obsolete URLs
and contact information from this appendix.

A more precise source of information is the Computer Virus Catalog (CVC),
published by the Virus Test Center in Hamburg. It contains highly technical
descriptions of computer viruses for several platforms, including DOS, Mac,
Amiga, Atari ST, and UNIX. Unfortunately, the DOS section is quite incomplete.

Another small collection of good technical descriptions of PC viruses, called
CARObase, is also available from the University of Hamburg.

A fourth source of information is the monthly Virus Bulletin, published in
the UK. Among other things, it gives detailed technical information on viruses;
a one-year subscription, however, costs $395.

NOTE

Check the Virus Bulletin web site at http://www.virusbtn.com/.

The book Virus Encyclopaedia, which is part of the printed documentation of
Dr. Solomon’s AntiVirus ToolKit (a commercial DOS anti-virus program) is more
complete than the CVC list and just as accurate; however, it lists only DOS viruses.
This book may be available separately from the ToolKit.

NOTE
Dr. Solomon’s (the organization and the product) have been subsumed by Network Associates. The
Virus Encyclopaedia ran to two editions (the second coauthored by Dr. Alan Solomon and Dmitry
O. Gryaznov). It remains a good source of information on early PC viruses, but the older version is
more likely to be found separate from the product.

Where can I get more information on viruses and related topics?
Five very good books on computer viruses that cover most of the introductory and
technical questions you might have are described here.

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 5 6 9

Computers under Attack: Intruders, Worms and Viruses, edited by Peter J.
Denning (ACM Press/Addison-Wesley, 1990). This is a book of collected readings
that discuss computer viruses, computer worms, break-ins, social aspects, and many
other items related to computer security and malicious software. It is a very solid,
readable collection that doesn’t require a highly technical background. Price: $20.50.

Rogue Programs: Viruses, Worms and Trojan Horses, edited by Lance J.
Hoffman (Van Nostrand Reinhold, 1990). This is a book of collected readings
describing in detail how viruses work, where they come from, what they do, and
so on. It also has material on worms, Trojan horse programs, and other malicious
software programs. This book focuses more on mechanism and relatively less on
social aspects than does the Denning book; however, there is an excellent piece by
Anne Branscomb that covers legal aspects. Price: $32.95.

A Pathology of Computer Viruses, by David Ferbrache (Springer-Verlag, 1992).
This is an in-depth book on the history, operation, and effects of computer viruses.
It is one of the most complete books on the subject, with an extensive history section,
as well as sections on Macintosh viruses, network worms, and UNIX viruses. Price:
$49.00.

A Short Course on Computer Viruses, 2nd Edition, by Dr. Fred B. Cohen (Wiley,
1994). This book is by a well-known pioneer in virus research, who has also written
dozens of technical papers on the subject. Price: $35.00 ($45.00 with accompanying
diskette).

Robert Slade’s Guide to Computer Viruses, by Robert Slade (Springer-Verlag,
1994). This book is a comprehensive introduction to computer viruses, written in
a clear and easy style for non-experts. Price: $29.00.

A somewhat dated, but still useful, high-level description of viruses, suitable for
a complete novice with little computer background, is Computer Viruses: Dealing
with Electronic Vandalism and Programmed Threats, by Eugene H. Spafford,
Kathleen A. Heaphy, and David J. Ferbrache (ITAA [Arlington, VA], 1989). ITAA
(Information Technology Association of America) is a computer industry service
organization and not a publisher. While many people have indicated they find this
book a very understandable reference, it is now out of print; however, portions of it
have been reprinted in many other places, including Denning’s and Hoffman’s books
(described earlier in this section).

It is also worth consulting various publications such as Computers & Security and
SECURE Computing (both of which, while not limited to viruses, contain many
relevant papers).

What are computer viruses?
Fred Cohen “wrote the book” on computer viruses, through his Ph.D. research,
dissertation, and various related scholarly publications. He developed a theoretical

5 7 0 V i r u s e s R e v e a l e d

mathematical model of computer virus behaviour, and used this to test various
hypotheses about virus spread. Cohen’s formal definition (model) of a virus does
not easily translate into English, but his own, well-known, informal definition is
“a computer virus is a computer program that can infect other computer programs
by modifying them in such a way as to include a (possibly evolved) copy of itself”.
Note that a program does not have to cause outright damage (such as deleting or
corrupting files) in order to be classified as a “virus” under this definition.

The problem with Cohen’s popular definition is that it doesn’t capture many
of the subtleties of his mathematical model—as indeed, few informal definitions
do—and questions arise that can be answered only by checking his formal model.
Using his formal definitions, Cohen classifies some things as viruses that most
readers of VIRUS-L/comp.virus (and many experts) would not consider as viruses.
For example, given certain circumstances on an IBM PC running DOS, the
DISKCOPY program is classified as a virus by Cohen’s formalisms.

This has led to some tension between what Cohen considers a “virus” and what is
usually discussed on VIRUS-L. Several other definitions of virus have been proposed,
but it is probably fair to say that most of us are concerned about things that the following
definition identifies as viruses:

A computer virus is a self-replicating program containing code that
explicitly copies itself and that can “infect” other programs by
modifying them or their environment, such that a call to an infected
program implies a call to a possibly evolved copy of the virus.

Probably the major distinction between Cohen’s definition and “viruses” as
we tend to use the word is that we see them as deliberately designed to replicate
(although there is some debate over this too). Cohen’s definition does not require
deliberate replication (and this would be difficult to build into his formal model).

Note that many people use the term virus loosely to cover any sort of program
that tries to hide its possibly malicious function and/or tries to spread onto as many
computers as possible, though some of these programs may more correctly be called
“worms” or “Trojan horses”. Also be aware that what constitutes a “program” for
a virus to infect may include a lot more than is at first obvious—don’t assume too
much about what a virus can or can’t do!

These software “pranks” are very serious; they are spreading faster than they are
being stopped, and even the least harmful of viruses could be life-threatening. For
example, in the context of a hospital life-support system, a virus that “simply” stops a
computer and displays a message until a key is pressed could be fatal. Further, virus
writers cannot halt the spread of their creations, even if they wanted to. It requires
computer users making a concerted effort to be “virus-aware” rather than continuing
the ambivalence that has allowed computer viruses to become such a problem.

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 5 7 1

Computer viruses are actually a special case of something known as “malicious
logic” or “malware”, and other forms of malicious logic are also discussed in
VIRUS-L/comp.virus. It can be important to understand the distinctions between
viruses and these other forms of malware.

What is a worm?
A computer worm is a self-contained program (or set of programs) that is able to
spread functional copies of itself or its segments to other computer systems (usually
via network connections).

Note that unlike viruses, worms do not need to attach themselves to a host
program. There are two types of worms: host computer worms and network worms.

Host computer worms are entirely contained in the computers on which they run
and use network connections only to copy themselves to other computers. Host
computer worms where the original terminates itself after launching a copy on
another host (so there is only one copy of the worm running somewhere on the
network at any given moment) are sometimes called rabbits.

Network worms consist of multiple parts (called segments), each running on
different machines (possibly performing different actions) and using the network
for several communication purposes. Propagating a segment from one machine to
another is only one of those purposes. Network worms that have one main segment
that coordinates the work of the other segments are sometimes called octopuses.

The infamous Internet Worm (perhaps covered best in “The Internet Worm
Program: An Analysis”, Eugene H. Spafford, Purdue Technical Report CSD-TR-823)
was a host computer worm, while the Xerox PARC worms were network worms.
(A good starting point for these is “The Worm Programs—Early Experience with
a Distributed Computation”, Communications of the ACM, 25, No.3, March 1982,
pp. 172–80.)

What is a Trojan horse?
A Trojan horse is a program that does something undocumented that the programmer
intended, but that some users would not approve of if they knew about it. According
to some people, a virus is a particular case of a Trojan horse—namely, one that can
spread to other programs (i.e., it turns them into Trojans too). According to others,
a virus that does not do any deliberate damage (other than merely replicating) is not
a Trojan. Finally, despite the definitions, many people use the term Trojan to refer
only to nonreplicating malware, so that the set of Trojans and the set of viruses
are disjoint.

5 7 2 V i r u s e s R e v e a l e d

What are the indications of a virus infection?
Many people associate destruction—file corruption, reformatted disks, and the
like—with viruses. Machines infected with viruses that do this kind of damage often
display such damage too. This is unfortunate, as usually viruses can be detected or
prevented from infecting long before they can inflict any (serious) damage, although
many viruses have no “payload” at all. Note that viruses that simply reformat the
hard disk shortly after infecting a machine tend to wipe themselves out faster than
they spread, and don’t get far.

Thus, the more successful viruses typically try to spread as much as possible
before delivering their payload, if any. As these tend to be the viruses you are most
likely to encounter, you should be aware that there are usually symptoms of virus
infection before any (or much) damage is done.

Some virus authors have written various kinds of symptoms into their programs,
such as messages, music, and graphical displays. The main indications, however, are
changes in file sizes and contents, changes to interrupt vectors, or the reassignment
of other system resources. The unaccounted use of RAM and a reduction in the
amount reported to be in the machine are important indicators. Examination of
program code is valuable to the trained eye, but even a novice can often spot the
gross differences between a valid boot sector and some viral ones. These symptoms,
along with longer disk activity and strange behavior from the hardware, may instead
be caused by genuine software, by harmless “joke” programs, or by hardware faults.

The only foolproof way to determine that a virus is present is for an expert to
analyse the assembly code contained in all programs and system areas, but this is
usually impracticable. Virus scanners go some way towards performing this analysis
by looking in that code for known viruses; some even use heuristic means to spot
“virus like” code, but these are not always reliable. It is wise to arm yourself with
the latest anti-virus software and to pay close attention to your system. In particular,
look for any unexpected change in the memory map or configuration as soon as you
start the computer. For users of DOS 5.0+, the MEM program with the /C switch is
very handy for this. If you have DR DOS, use MEM with the /A switch; if you have
an earlier DOS version, use CHKDSK or the commonly available MAPMEM utility.
You don’t have to know what all the numbers mean, only that they have changed
unexpectedly. Mac users have “info” options, which give some indication of memory
use, but may need ResEdit to supply more detailed information.

If you run Windows on your PC and you suddenly start getting messages at
Windows start-up that 32-bit disk access cannot be used, this often indicates that
a boot-sector virus has infected your PC.

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 5 7 3

What steps should be taken in diagnosing and identifying viruses?
Most of the time, a virus scanner program will take care of diagnosing and
identifying viruses for you. To help identify problems early, run a virus scanner:

� On new programs and diskettes. (Write-protect diskettes before
scanning them.)

� When an integrity checker reports a mismatch.

� When a generic monitoring program sounds an alarm.

� When you receive an updated version of a scanner (or you have a
chance to run a different scanner than the one you have been using).

Because of the time required, it is not generally advisable to set a scanner to check
your entire hard disk on every boot.

If you run into an alarm and your scanner doesn’t identify anything or doesn’t
properly clean up for you, first verify that the version you are using is the most recent.
Then get in touch with a reputable anti-virus researcher, who may ask you to send in
a copy of the infected file.

What is the best way to remove a virus?
To keep downtime short and losses low, do the minimum that you must to restore
the system to a normal state, starting with booting the system from a clean diskette.
It is never necessary to low-level format a hard disk to recover from a virus infection!

If backups of infected or damaged files are available, and if appropriate care has been
taken to ensure that the backups do not include infected files, restoring from backup
is the safest solution, even though it can be a lot of work if many files are involved.

More commonly, a disinfecting program is used, though disinfection is somewhat
controversial and problematic. If the virus is a boot-sector infector, you can continue
using the computer with relative safety (if the hard disk’s partition table is left intact)
by booting from a clean system diskette. However, it is wise to go through all your
diskettes removing any infections, because sooner or later you will carelessly leave
an infected diskette in the machine when it reboots, or give an infected diskette to
someone who doesn’t have appropriate defences to avoid infection.

You can cure most PC boot-sector infections by using the following simple
process—pay particular care to make the checks in steps 2 and 3.

5 7 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

Note that removing an MBR virus in the way described here may not be desirable,
and may even cause valuable information to be lost. For instance, the One_Half virus
gradually encrypts the infected hard drive “inward” (starting from the end and moving
towards the beginning), encrypting two more tracks at each boot. The information about
the size of the encrypted area is only stored in the MBR. If the virus is removed using
the following method, this information will be irrecoverably lost and part of the disk
with unknown size will remain encrypted.

1. Boot the PC from a clean system floppy—this must be MS-DOS 5.0 or
version 6.0 or higher of PC-DOS or DR DOS. This diskette should carry
copies of the DOS utilities MEM, FDISK, CHKDSK, UNFORMAT, and SYS.

2. Check that your memory configuration is “normal” with MEM. Check that
your hard disk partitioning is normal, by running FDISK with the Display
partition information option selected. MS-DOS 5.0 (or later) users can use
UNFORMAT /L /PARTN.

3. Try doing a DIR of your hard disk(s) (C, D, and so on).

You should continue with step 4 only if all the tests in step 2 and this step pass.
Do not continue if you were unable to access all your hard disks correctly, as
you will quite possibly damage critical information, making permanent data
damage or loss more likely.

4. Replace the program (code) part of the MBR by using the MS-DOS or
PC-DOS FDISK /MBR command. If you use DR DOS 6.0 or later, select
the FDISK menu option Re-write Master Boot Record.

5. Replace the DOS boot sector using the command SYS C (or whatever is
correct for your first hard disk partition). For this step, the version of DOS on
your boot diskette must be exactly the same as is installed on your hard disk.
(This may mean you first must reboot with a clean boot diskette other than
that used in step 1.) If you are using a disk compression system, such as
DoubleSpace or DriveSpace, check the documentation on how to locate the
physical drive on which the compressed volume is installed, and apply the
SYS command to that drive instead. Usually this is drive H or I.

6. Reboot from your hard disk and check that all is well—if not (which is unlikely
if you made the recommended checks), seek expert help.

7. As you will get reinfected by forgetting an infected diskette in your A drive at
boot time, you have to clean all your floppies as well. This is harder, as there is

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 5 7 5

no simple way of doing it with standard DOS tools. You can copy the files
from each of your floppies, reformat them, and copy the files back, but this is
a very tedious process (and prone to destructive errors!). At this point, you
probably should consider obtaining some good anti-virus software.

FDISK /MBR will overwrite only the boot loader code in the MBR of the first
hard drive in a system. However, a few viruses will infect both drives in a two-drive
system. Although normal PC configurations never boot from the second hard drive,
should the second drive from such a machine ever be used as the first drive in a
system, it will still be infected and in need of disinfecting.

What are “false positives” and “false negatives”?
A false positive (or Type-I) error is one in which anti-virus software claims that a
virus has infected a given object when, in reality, the object is clean. This error is a
failure of detection. A false negative (or Type-II) error is one in which the software
fails to indicate that an infected object is infected. Clearly, false negatives are more
serious than false positives, although both are undesirable.

Following from some of Cohen’s work, it has been proven that every virus detector
must have an infinite number of false positives, false negatives, or both. In other
words, detection of viruses, either by appearance or behaviour, is undecidable.
The interpretation and practical significance of this finding depends upon the
interpretation of the terms used.

In the case of virus scanners, false positives are rare, but they can arise if the scan
string selected for a given virus was not well chosen and is also present in some
benign objects. In modern scanners, most false positives probably occur because
some virus encryption engines produce very “normal looking” code, and scanners
that only try to decide if a piece of code could have been generated by a known virus
encryption procedure will occasionally identify “innocent” code as “suspicious”.
False negatives are more common with virus scanners because scanners will miss
completely any new or heavily modified viruses.

One other serious problem could occur: a positive that is misdiagnosed. As an
example, imagine a scanner faced with the Empire virus in a boot record that reports
it as the Stoned virus. In this case, use of a Stoned-specific “cure” to recover from
an Empire infection could result in an unreadable disk or loss of extended partitions.
Similarly, sometimes “generic” disinfection can result in unusable files, unless a
check is made (e.g. by comparing checksums) to verify that the recovered file is
identical to the original file. The better generic disinfection products all store
information about the original files to allow verification of recovery processes.

5 7 6 V i r u s e s R e v e a l e d

A particular type of false positive, where (part of) an inactive virus is detected,
is known as a ghost positive. Ghost positives usually occur in one of four situations
(the first two of which are examples of anti-virus programs “upsetting” each other):

� Ghost positives can be caused when the disinfection routine of an anti-virus
program “unhooks” a virus from its target (be it a file or boot sector) but it
does so in such a way that part of the virus code is left intact (although that
code will never be executed). Another anti-virus program might see this code
and report it is an infection. In this case, the second anti-virus program is
seeing a “ghost”—part of a virus that was there.

� A scanner may “see” the unencoded scan strings of another scanner, left in
memory after the first program has run, or held in memory by a resident
scanner, and report these “ghosts” as active viruses.

� As explained elsewhere, a copy of an infected diskette boot sector, sitting in
the disk buffers, may be detected and reported as an active virus.

� Disinfection procedures can result in virus “remnants” being left in “slack
space” (disk space allocated to files but not actually occupied). As in the case
of copies of infected diskette boot sectors being held in disk buffers, these
remnants can be detected and incorrectly reported as being active. Ghost
positives of this nature should disappear after running disk defragmentation or
“optimization” programs with the option to “clean” slack space. Occasionally
running a defragmenter (like MS-DOS 6’s DEFRAG) after a full data backup
is a good idea anyway—especially before installing new software. Unfortunately,
DOS’s DEFRAG does not have a “clean slack space” option, although some
third-party defragmenters do. There are also utilities that clean unallocated and
slack space, and these should remove ghost positives caused by remnants.

Could an anti-virus program itself be infected?
Yes, so it is important to obtain this software from good sources, and to trust results
only after running scanners from a “clean” system. But there are situations where a
scanner appears to be infected when it isn’t.

Most anti-virus programs try very hard to identify viral infections only, but
sometimes they give false alarms. If two different anti-virus programs are both of
the “scanner” type, they will contain “scan strings” from which they identify viral
infections. If the strings are not “encoded”, then they may be identified as a virus by
another scanner type program. Also, if the scanner does not remove the strings from
memory after it has run, then another scanner may detect a virus string “in memory”.

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 5 7 7

This often causes the second scanner to report that your system is “infected”, but
only after you have run the first scanner (which may be a memory-resident one).
The major contributors to this FAQ are so tired of dealing with nonvirus reports of
this sort that they strongly recommend users to avoid anti-virus software that doesn’t
keep its scan strings encoded in memory.

Some change-detection anti-virus programs add a snippet of code or data to a
program in order to “protect” it. (This process is sometimes called inoculation, but
this term is also used for other anti-virus techniques.) These file changes will likely
be detected by other change-detection programs, and may therefore raise a warning
of a suspicious file change. (See a later question for a discussion of the inadvisability
of adding self-checking code to existing programs.)

It is good practice to use more than one anti-virus program; however, by their
nature, multiple anti-virus programs may confuse each other!

NOTE

Anti-virus programs worth the disk space that they take up use change-detection self-checking
techniques to see if they might have been infected with an unknown virus. Virus writers have been
known to use techniques that specifically address known self-checking mechanisms in anti-virus
software.

Where can I get a virus scanner for my UNIX system?
Basically, you shouldn’t bother scanning for UNIX viruses at this point in time.
Although it is possible to write UNIX-based viruses, we have yet to see any instance
of a nonexperimental virus in that environment. Someone with sufficient knowledge
and access to write an effective virus would be more likely to conduct other activities
than virus writing. Furthermore, the typical form of software sharing in the UNIX
environment does not easily support virus spread.

NOTE

The first sentence of this section was accurate enough in 1995, but as we were writing this book,
Linux viruses were an increasing problem.

This answer is not meant to imply that UNIX viruses are impossible, or that there
aren’t security problems in a typical UNIX environment—there are. In fact, Cohen’s
first experimental virus was implemented and tested on a UNIX system. True viruses
in the UNIX environment are, however, unlikely to spread well. For more information
on UNIX security, see the book Practical Unix Security by Simon Garfinkel and
Gene Spafford (O’Reilly and Associates, 1991). Price: $29.95 (it can be ordered via
email from nuts@ora.com).

5 7 8 V i r u s e s R e v e a l e d

NOTE

This excellent book went to a second edition some years ago: the title was changed to Practical
Unix and Internet Security (O’Reilly and Associates, 1996).

There are special cases in which scanning UNIX systems for non-UNIX viruses
does make sense. For example, a UNIX system acting as a file server (e.g., PC-NFS)
for PC systems is quite capable of containing PC-file-infecting viruses that are a
danger to PC clients. Note that, in this example, the UNIX system would be scanned
for PC viruses, not UNIX viruses. Also, any PC is vulnerable to PC MBR infectors,
so you should take special care to prevent booting a PC-hosted UNIX OS from a
floppy infected with an MBR virus.

In addition, a file integrity checker (to detect unauthorized changes in executable
files) on UNIX systems is a very good idea. (One free program that can do this test,
as well as other tests, is Tripwire, available by anonymous ftp from its home site
of coast.cs.purdue.edu in /pub/COAST/Tripwire and from several other anti-virus
sites.) Unauthorized file changes on UNIX systems are very common, although they
are not usually due to virus activity.

Why does my scanner report an infection only sometimes?
There are circumstances where part of a virus exists in RAM without being active. If
your scanner occasionally reports a virus in memory, it could be due to the operating
system buffering diskette reads or harmlessly keeping disk contents that include a
virus in memory, or because another scanner left scan strings (again harmlessly) in
memory. These are known as ghost positive alerts.

I think I have detected a new virus; what do I do?
Whenever you have doubt about a virus, you should obtain the latest versions of
several major virus scanners (not just one). Some scanning programs now use heuristic
methods (F-PROT and TBSCAN are examples), and activity monitoring programs
can report a program as being possibly infected when it is in fact perfectly safe (odd,
perhaps, but not infected). If no scanner finds a virus, but a heuristic program raises
some alarms (or there are other reasons to suspect a virus—for example, change in
size of files, or change in memory allocation), then it is possible that you have found
a new virus. However, the chances are probably greater that it is an “odd but OK”
disk or file.

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 5 7 9

CHKDSK reports 639KB (or less) total memory on
my DOS system; am I infected?
If CHKDSK displays 639KB (654,336 bytes) for the total memory instead of 640KB
(655,360 bytes)—so that you are missing only 1KB—it is possibly due to reasons
other than a virus, but there are a few common viruses that take only 1KB from total
memory (Monkey and AntiEXE). Non-virus reasons for a deficiency of 1KB include:

� A PS/2 computer. IBM PS/2 computers reserve 1KB of conventional RAM for
an Extended BIOS Data Area—that is, for additional data storage required by
the computer’s BIOS.

� A computer with a BIOS that is set to use the upper 1KB of memory for its
internal variables. (Most BIOS chips with this option can be instructed to use
lower memory instead.)

� Some SCSI controllers use additional memory.

� The DiskSecure anti-virus program uses some memory.

� Mouse buffers for older Compaqs use memory in a non-standard way.

If you are missing 2KB or more from the 640KB, 512KB, or whatever amount
of memory is conventional for your PC, the chances are greater that you have a
boot-record virus (e.g. Stoned, Form, or Michelangelo)—although, even in this
case there may be legitimate reasons for the missing memory such as:

� Many access control programs prevent booting from a floppy

� H/P Vectra computers

� Some special BIOS chips that use memory for a built-in calendar and/or
calculator

However, these are only rough guides. In order to be more certain whether the
missing memory is due to a virus, you should:

� Run several virus detectors.

� Look for a change in total memory every now and then.

� Compare the total memory size with that obtained when cold booting from a
“clean” system diskette. The latter should show the normal amount of total
memory for your configuration (although several BIOS chips now steal 1KB of
conventional memory when booting from a floppy but none when booting from
a hard drive).

5 8 0 V i r u s e s R e v e a l e d

NOTE

In all cases, you should run CHKDSK without software such as MS Windows or DesqView loaded,
since these operating environments seem to be able to open DOS boxes only on 1KB boundaries
(some seem to be even coarser). Thus, CHKDSK running from a DOS box may report
unrepresentative values.

Note also that some machines have only 512KB or 256KB instead of 640KB of
conventional memory.

I have an infinite loop of subdirectories on my
hard drive; am I infected?
Probably not. This happens now and then, when something sets the “cluster number”
field of a subdirectory to the same cluster as an upper-level (usually the root)
directory. On PCs, the /F parameter of CHKDSK should be able to fix this problem
(as should many other popular disk-repair programs), usually by removing the
offending directory. Don’t erase any of the replicated files in the “odd” directory,
since that will erase the copy in the root as well. (This is not really a copy at all, just
a second pointer to the same files.)

Can a PC not running DOS be infected with a common DOS virus?
Yes! There are three distinct possibilities here.

One is Novell’s NetWare (and possibly other network operating systems), which
boots from a DOS disk and loads a “standard” DOS executable that takes complete
control of the system from DOS. This executable—SERVER.EXE—could easily
be infected by a DOS file infector. For example, you may need to move a server’s
NetWare boot diskette from the server to a DOS PC to edit some of the configuration
and start-up files that have to be on that diskette. If the PC where the editing is done
is infected with a file-infecting virus, SERVER.EXE may well be infected when the
new start-up files are saved to the diskette. Such infections are virtually guaranteed
to render SERVER.EXE inoperative, and the server would fail at its next restart.
No viruses are known to target the NetWare kernel specifically.

Another possibility is the case of a 386 (or better) system running NetWare or a
self-loading OS, such as UNIX, NeXTStep486, Windows NT, or OS/2. Such a system
is still vulnerable to infection by MBR infectors (such as Stoned or Michelangelo),
as these are OS-independent. Note that an infection on such a system may result in
the disabling of non-DOS disk partitions (possibly beyond easy recovery) because
the tricks and system conventions that these viruses employ may not apply to
operating systems other than DOS. The issue here is that MBR infectors are not

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 5 8 1

really “DOS viruses” so much as “PC-BIOS viruses”—they can infect any machine
with a PC-compatible BIOS.

Third, any OS that offers a “DOS box” or “DOS emulator” to run DOS programs
can, potentially, run a virus-infected DOS program. Such activation of a virus should
allow the virus to spread to any “targets” available to it under that DOS emulator.
For example, a DOS program infected with a multipartite virus, when run under
OS/2, would probably be able to infect other DOS executables, but not the MBR/DBS,
as OS/2 only allows privileged programs to read these critical areas of the hard
drive. With the increasing sophistication and power of computing environments,
DOS emulators running on non-PC computers are increasingly available and able
to run DOS viruses.

My hard disk’s file system has been garbled; do I have a virus?
Many things apart from viruses cause corruption of file systems.

With DOS machines, possibly the most common source of problems is
Microsoft’s SmartDrive disk cache program that came with Microsoft Windows 3.1
and subsequent versions of MS-DOS. Most versions of this software not only cache
disk-reads but, by default, also cache disk-writes. This means that recently “written”
files (for example, a document that you recently saved in your word processor) may
not have all the information about the associated file system updates written to disk
by the time you exit the application, close Windows, and turn off your PC. Users
who simply save work and then turn their PCs off are even more likely to suffer
from the type of problems induced by disk caching.

Regardless of what caused your file system corruption, you should probably seek
expert help before trying to fix anything yourself. While there are many powerful
and interesting-sounding utilities of the “disk fix” kind available, all of these have
the stunning ability to render your file system all but unfixable (or at least fixable
to a much lesser degree) when presented with unusual situations that their authors
hadn’t considered when designing the programs. Unfortunately, as these programs
(by definition) do not recognize these situations, they confidently pronounce that
you have such-and-such a problem, then ask your permission to fix it. Even when
these utilities have “undo” options, they often cannot restore your file system to its
originally “broken” state in order to give human experts their best shot at fixing it.
Thus, detecting whether it is safe to let one of these programs loose on your disks
is something you should normally seek expert help in deciding.

Is it possible to protect a computer system with only software?
Not perfectly, although software defences can significantly reduce your risk of being
affected by viruses when you apply the software appropriately. All virus defence

5 8 2 V i r u s e s R e v e a l e d

systems are tools—each with its own capabilities and shortcomings. Learn how your
system works, and be sure to work within its limitations.

Using a layered approach, you can achieve a very high level of protection and
detection with software only:

� Using the ROM BIOS password to control access to the computer, and to
prevent the computer from booting from a floppy diskette. (Some may consider
this a hardware approach.)

� Boot-sector change detection software can readily detect the existence of
boot-sector infectors.

� Operating system programs should be checked via integrity management for
existing programs, and scanning for unknown programs. Authentication values
should be checked for any new or transmitted software.

� Software locks can prevent writing to a fixed or floppy disk.

As each layer is added, undetected invasion becomes more difficult. Nevertheless,
complete protection against any possible attack cannot be provided without
dedicating the computer to preexisting or unique tasks. International standardization
on the IBM PC architecture is both its greatest asset and its greatest vulnerability.

Is it possible to write-protect the hard disk with software only?
The answer is no. Several programs claim to do this, but all of them can be bypassed
with techniques already employed by some viruses. Therefore, you should never rely
on such programs alone, although they can be useful in combination with other
anti-virus measures.

What can be done with hardware protection?
Hardware protection can accomplish various things, including write-protection
for hard disk drives, memory protection, monitoring and trapping of unauthorized
system calls, and so on. Again, no single tool will be foolproof, and the stronger the
hardware-based protection is, the more likely it will interfere with the normal
operation of your computer.

While the popular idea of write-protection may stop viruses from spreading to the
disk that is protected, it doesn’t prevent a virus from running.

Also, some existing hardware protection schemes can be easily bypassed, fooled,
or disconnected, if the virus writer knows them well and designs a virus that is aware
of the particular defence.

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 5 8 3

The big problem with hardware protection is that there are few (if any) operations
that a general-purpose computer can perform that are used exclusively by viruses.
Therefore, making a hardware protection system for such a computer typically
involves deciding on some (small) set of operations that are “valid but not normally
performed except by viruses”, and designing the system to prevent these operations.
Unfortunately, this means either designing limitations into the level of protection
that the hardware system provides or adding limitations to the computer’s functionality
by installing the hardware protection system. Much can be achieved, however, by
making the hardware “smarter”. This solution is double-edged: while it provides
more security, it usually means adding a program in an EPROM to control the
protection. The fixed location allows a virus to find the program and to call it
directly after the point that allows access. It is still possible to implement this
solution correctly, though—if this program is not in the address space of the main
CPU, has its own CPU, and is connected directly to the hard disk and the keyboard.
An example is a PC-based product called ExVira, which seems fairly secure, but it is
an entire computer on a board and is quite expensive.

Does setting a file’s attributes to read-only protect it from viruses?
Generally, no. While the read-only attribute will protect your files from a few
viruses, most simply override the setting and infect normally. So, while setting
executable files to read-only is a good idea (providing protection against accidental
deletion), it certainly does not provide thorough protection against viruses!

In some environments, the read-only attribute does provide some additional
protection. For instance, under Novell NetWare, a user can be denied the right to
modify file attributes in certain directories on the server. This means that a virus that
infects such a user’s machine will be unable to infect files in those server directories
if the files have their read-only attribute set.

Do password/access control systems protect my files from viruses?
All password and other access control systems are designed to protect the user’s data
from other users and/or their programs. Remember, however, that when you execute
an infected program, the virus in it will gain your current rights and privileges.
Therefore, if the access control system provides you with the right to modify some
files, it will provide the same privilege to the virus, too. Note that the extension of
rights does not depend on the operating system used—DOS, UNIX, or whatever.
Therefore, an access control system will no better protect your files from viruses
than it protects your files from you.

5 8 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

DOS offers no memory protection, so a virus could disable the access control
system in memory, or even patch the operating system itself. More advanced
operating systems (such as UNIX, OS/2, and Windows NT) make it much harder
or impossible for a virus to disable such protection measures. Even so, viruses will
still be able to spread, for the reasons previously noted. In general, access control
systems (if implemented correctly) are only able to slow down virus spread, not to
eliminate viruses entirely.

Of course, it’s better to have access control than not to have it at all. Just be sure
not to develop a false sense of security or come to rely entirely on your access
control system to protect you.

Do the protection systems in DR DOS work against viruses?
Partially. Neither the password file/directory protection available from DR DOS
version 5 onwards nor the secure disk partitions from DR DOS 6 were intended to
combat viruses. If you have DR DOS, it is very wise to password-protect your files
(to stop accidental damage too), but don’t depend on this measure as your only
means of defence.

The use of the password command (e.g. PASSWORD/W:MINE *.EXE *.COM)
will stop more viruses than the plain DOS attribute facility, but that isn’t saying
much! The combination of the password system plus a disk-compression system
may be more secure, because to bypass the password system a virus must access
the disk directly. However, under SuperStor or Stacker, the physical disk will
be meaningless to a virus. Some viruses, rather than invisibly infecting files on
compressed disks, may very visibly corrupt such disks.

The main use of the “secure disk partitions” system, introduced in DR DOS 6, is
to stop people from fiddling with your hard disk while you are away from the PC.
The way this system is implemented, however, may also help against a few viruses
that look for DOS partitions on a disk.

Furthermore, DR DOS is not fully compatible with MS/PC-DOS, especially when
you get down to the low-level tricks that some viruses use. For instance, some internal
memory structures are “read-only” in the sense that they are constantly updated
(for MS/PC-DOS compatibility) but not really used by DR DOS. So, even if a
sophisticated virus modifies these structures, it will not have any effect, or at least
not that intended by the virus’s author.

In general, using a less compatible system diminishes the number of existing
viruses that can infect it. For instance, the introduction of hard disks made the Brain
virus almost disappear, the introduction of the 80286 and DOS 4.0+ made the Yale
and Ping Pong viruses next to extinct, and so on.

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 5 8 5

Does a write-protect tab on a floppy disk stop viruses?
In general, yes. The write-protection on IBM PC (and compatible) and Macintosh
floppy disk drives is implemented in hardware, not software, so viruses cannot infect
a diskette when the write-protection mechanism is functioning properly (although
many “friend of a friend” stories abound contesting this).

But remember:

� A computer may have a faulty write-protect system (this happens!). You
can test the system by trying to copy a file to a diskette that is apparently
write-protected.

� Someone may have removed the tab for a while, allowing a virus to infect
the disk.

� The files may have been infected before the disk was protected. Even some
diskettes “straight from the factory” have been known to become infected
during the production process.

Thus, you should scan even new write-protected disks for viruses. You should
also scan new preformatted diskettes, as there have been known cases of infected,
shrink-wrapped new diskettes.

Do local area networks (LANs) help to stop viruses,
or do they facilitate their spread?
Both. A set of computers connected in a well-managed LAN—with carefully
established security settings and minimal privileges for each user, and without a
transitive path of information flow between the users (that is, the objects writeable
by any of the users are not readable by any of the others)—is more virus-resistant
than the same set of computers if they are not interconnected. The reason is that
when all computers have read-only access to a common pool of executable
programs, there is usually less need for diskette swapping and software exchange
between them, and therefore fewer chances for a virus to spread.

However, if the LAN has lax security and is not well managed, it could help a
virus to spread like wildfire. It might even be impossible to remove the infection
without shutting down the entire LAN. Stories of LAN login programs, shared
copies of which are run on every workstation, becoming infected are, unfortunately,
not uncommon.

A network that supports login scripting is inherently more resistant to viruses than
one that does not if the login script is used to validate the client before allowing
access to the network.

5 8 6 V i r u s e s R e v e a l e d

What is the proper way to make backups?
A good backup regime is at the heart of any comprehensive virus defence scheme.
No matter what combination of software and hardware defences you install, nor
what “policy” you implement, there is always the possibility that some new virus
will be devised that can beat your defences or that someone will fail to follow
“proper protocol” with “foreign” media or file sources. In corporate settings,
you cannot overlook the possibility of the latter as a form of directed attack by
disgruntled employees.

Planning to minimize the impact of a virus infection on your computing is much
like planning to minimize the effect of an earthquake or fire. You cannot be sure
where, when, or even if you will ever be “hit”; the potential impact could fall
anywhere in a very wide range of possible damage; being “completely safe” can
involve enormous expense; and you cannot adequately test your preparations
without exposing yourself to serious risk of damage. Therefore, selecting the
defence scheme that suits you involves deciding on the level of loss you can
afford and probably settling on a system that, while not “perfectly watertight”,
is “good enough”.

Despite the importance of a good backup scheme, it is really beyond the
scope of this FAQ sheet to provide a definitive guide to planning your backup
procedure—that could easily take another document the size of this one! All this
said, however, we provide the following advice as, we hope, a good starting point.

Planning an effective backup scheme really starts with answering some important
questions. Consider:

� Who is dependent upon the files on this system? Is it a home computer mostly
used by the kids for games, a stand-alone workstation running a small business,
a networked workstation in a medium-sized company or the same in a large
corporate environment, or a server with many (hundreds of) users?

� How long can the most important user be without access to these files?
One hour (or two, four, eight) a day, a week? Remember to assume that
your problems will arise at the worst possible moment (like 24 hours before
a tax audit is due to start!).

� What proportion (and volume!) of files is “fixed” (in the sense that they seldom
change) versus those that change? Do all changes have to be backed up, or is a
“once-some-given-time-period” backup acceptable?

� What type of information is in the regularly changing files?

The answers to these (and other) questions help shape backup and recovery plans
and are fairly well understood issues among computer systems professionals. Highly
critical systems containing crucial data will be designed from the outset to have high

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 5 8 7

redundancy (disk mirroring, disk arrays, uninterruptable power supplies, maybe even
redundant servers), though such system options alone provide no real protection from
virus attacks. You may opt for a backup system that records every change to any
files on your system (server-only or clients and servers) or regular (often nightly)
backup of changed data files, and so on.

When it comes to planning backup regimes with an eye to the possibility of
recovering from a virus attack, you also have to consider that regularly backing up
executables (loosely, “programs”) can cause problems. If you back up executables
and are infected by a virus, unless you can be absolutely sure of the date of first
infection (despite sounding simple, this is not something that can commonly be
done), you may have quite a few problems finding the best backup set from which
to restore, as you will probably have several sets that include infected executables.

For home or small business use, it may be best to maintain two kinds of backups.
One would contain only your data files and the other your operating system and program
files. (Issues to consider are covered in the next two paragraphs.) You might facilitate
such a scheme by maintaining a strict separation of the two kinds of files, perhaps by
putting the operating system and programs on one drive or partition and your data files
on another. While this scheme is probably not practical for many existing machines,
enforcing adherence to the “rule” that data files should only be placed in appropriate
subdirectories (folders) within a prescribed data directory may not be a bad thing.

The best way to manage backup of data files depends on the answers to most
of the previously listed questions and precludes our giving definitive advice here.
While planning your backup regime, bear in mind that some viruses damage some
kinds of data files, while others make small, occasional, random modifications as
files are written to disk. While viruses with either of these “features” are quite rare,
both of these possibilities mean that vital data files should probably be backed up to
long-cycle media sets as well as to shorter-cycle sets. You should also take other
steps to ensure that you can re-create the sequence of changes. (For example, you
should retain all transaction records so they can be reentered.)

You should probably back up executables once after installing them, and only
after you are sure they are virusfree according to your current anti-virus screening
procedures. Never make a backup containing executables over media that hold any
of your current backups. More cautious administrators maintain several cycles of
executable backups. These precautions should ensure that you don’t face the problem
of infected executables outlined several paragraphs ago. Also, if a newly installed
program is infected with a virus that your current defences don’t detect, you can
easily restore your system and installed software to how it was before the infected
software was installed, after you become aware of the virus’s presence. You will
probably have to reinstall manually any programs that you installed subsequent to
installing the infected program.

5 8 8 V i r u s e s R e v e a l e d

Having referred to this second kind of backup as “executables only”, we should point
out that a complete system backup is also acceptable for this type of backup. However,
note that a sequence of full system backups with interim incremental backups (when
only those files that have changed since the last complete backup are saved) is not what
we are advocating. Such systems tend to be too “broad brush” to be truly useful for
recovering from an unknown, future virus attack. Unfortunately, this tends to be the
preferred or recommended backup scheme for small to medium-sized systems (including
most personal computers), and is typically what most popular backup software for
such systems is designed to do. This doesn’t mean that popular backup systems and
software aren’t useful, just that you have to exercise some care in using them (such
as excluding executable files from your incremental backups).

Having said all this, there are still a few other problems to consider, especially,
which files should you count as “data” files? This question can be problematic, as
most people immediately think of their word processor and spreadsheet files, and the
like, as data, and that’s about it. What about the files in which your programs store
their configuration information? In a sense, these are as much “your data” as they are
program files, because they reflect your preferred screen colors and layouts, default
fonts, personalized button bars, and so on. When you look at the time that people
spend finding the (often obscure) options settings in their programs and making them
work “just right”, and how upset they can become if they lose these settings, it
makes sense to treat such configuration files as you treat other “personal data files”
in your backup regimes. Similarly, people tend to treat system configuration files
(in DOS/Windows PCs, CONFIG.SYS, AUTOEXEC.BAT, WIN.INI, and
SYSTEM.INI at a minimum) as part of the system, often ignoring the (sometimes
considerable) fine-tuning that these configuration files go through between system
and executable backups.

One last point: we cannot stress enough that you must have, in a safe place, a full,
working copy of the software you need to restore your backups. You must be able to
guarantee that this software is not virus-infected should you ever have to use it, and
that it is fully usable should you be facing a machine that has had its entire hard
drive “wiped clean”.

Can boot-sector viruses infect nonbootable DOS floppy disks?
Any DOS diskette that has been properly formatted contains some executable code
in its boot sector. (There is some debate as to whether this code should be called a
program or not. The important thing here is that this code is executed at system
start-up if the diskette is in the system’s boot drive.) If a diskette is not “bootable”,
all that boot sector (normally) does is print a message (on a PC, typically something
like “Nonsystem disk or disk error; replace and strike any key when ready”).

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 5 8 9

However, the boot sector is still executable and therefore vulnerable to infection.
Should you accidentally boot your machine with a “nonbootable” diskette in the
boot drive, and see such a message, it means that any boot virus that may have been
on that diskette has been run, and has had the chance to infect your hard drive or
perform other mischief. So, when talking about viruses, the words “bootable” and
“nonbootable” are misleading. All formatted diskettes are capable of carrying
boot-sector viruses.

Most current computers will try to boot from their (first) floppy drive before
trying to load an operating system off their hard disks. Because of this and the fact
that every floppy disk is possibly infected with a boot-sector virus, it is a very good
idea to set your computer to try to boot from its hard disk. Many newer PCs offer the
option to select boot order in their system CMOS set-up routines. If your computer
has such an option, set it to try to boot from your hard disk first.

Can a virus hide in a PC’s CMOS memory?
No. The CMOS RAM in which PC system information is stored and backed up by
batteries is accessible through the I/O ports and not directly addressable. That is, in
order to read the contents of the CMOS, you have to use I/O instructions rather than
standard memory addressing techniques. Therefore, anything stored in CMOS is
not directly “in memory”. Nothing in a normal machine loads the data from CMOS
and executes it, so a virus that “hides” in CMOS RAM would still have to infect
an executable object of some kind in order to load and execute whatever had been
written to CMOS. A malicious virus can, of course, alter values in the CMOS as
part of its payload, but it can’t spread through, or hide itself in, the CMOS.

Further, most PCs have only 64 bytes of CMOS RAM, and the IBM AT
specification predetermines the use of the first 48 bytes of this memory. Several
BIOS chips also use many of the “extra” bytes of CMOS to hold their own
machine-specific settings. This means that anything that a virus stores in CMOS
can’t be very large. A virus could use some of the “surplus” CMOS RAM to hide
a small part of its body (such as its payload, counters, and so on). Any executable
code stored there, however, must first be extracted to ordinary memory in order to
be executed.

This issue should not be confused with whether a virus can modify the contents of
a PC’s CMOS RAM. Of course, viruses can modify these contents, as this memory
is not specially protected (on normal PCs), so any program that knows how to
change CMOS contents can do so. Some viruses do fiddle with the contents of
CMOS RAM (mostly with ill intent), and these have often been incorrectly reported
as “infecting CMOS” or “hiding in CMOS”. An example is the PC boot-sector virus
EXE_Bug, which changes CMOS settings to indicate that no floppy drives are present.

5 9 0 V i r u s e s R e v e a l e d

Can a PC virus hide in Extended or in Expanded RAM in a PC?
Yes. If one does though, it has to have a small part resident in conventional RAM;
it cannot reside entirely in Extended or in Expanded RAM. Currently there are no
known XMS viruses, and only a few EMS viruses (Emma is an example).

Can a virus hide in a PC’s Upper Memory or in High Memory Area?
Yes, it is possible to construct a virus that will locate itself in Upper Memory Blocks
(UMBs—640KB to 1,024KB) or in the High Memory Area (HMA—1,024KB to
1,088KB). Some viruses (e.g., EDV) do hide in UMBs, and at least one, Goldbug,
will use the HMA if it is available.

You might think that there is no point in scanning in these areas for any viruses
other than those that are specifically known to inhabit them. However, in some
cases, even ordinary viruses can be found in Upper Memory. Suppose that a
conventional memory-resident virus infects a TSR program that the user has loaded
high (for instance, from AUTOEXEC.BAT). Then the virus code will also reside in
Upper Memory. Therefore, an effective scanner must be able to scan this part of
memory for viruses too.

Can a virus infect data files?
Some viruses, such as Frodo and Cinderella, modify non-executable files.
However, in order to spread, the virus code must be executed. Therefore, “infected”
non-executable files cannot be sources of further infection. Such “infections” are
usually mistakes, due to bugs in the virus.

Even so, note that it is not always possible to make a sharp distinction between
executable and non-executable files. One person’s data can be another’s code, and
vice versa. Some files that are not directly executable contain code or data that can,
under some conditions, be executed or interpreted.

Some examples from the PC world are .OBJ files, libraries, device drivers, source
files for any compiler or interpreter (including DOS .BAT files and OS/2 .CMD files),
macro files for some packages like Microsoft Word and Lotus 1-2-3, and many others.
Currently there are viruses that infect boot sectors, master boot records, .COM files,
.EXE files, .BAT files, .OBJ files, device drivers, Microsoft Word document and
template files, and C source code files, although any of these objects theoretically can
be used as an infection carrier. PostScript files can also be used to carry a virus, although
no currently known virus does this.

Aside from viruses using the preceding vectors, however, there is an increasing
possibility that viruses may spread through the sharing of data files. More and more

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 5 9 1

we see the ease with which software producers enable their programs to embed
“objects” of many kinds into document files, and into fields in databases and
spreadsheets. Perhaps the best known of these systems are Object Linking and
Embedding (OLE) in MS Windows and the OpenDoc format. As these embedded
objects often have the ability to “display” themselves, many files traditionally
considered to be data-only are increasingly serving as containers carrying data
and executable code. We are not aware of any virus that specifically targets such
executable “objects”, but it is now a trivial task to embed an executable file into
some kind of document file so it will be run when the icon representing it is clicked
in the finished document. There is nothing to prevent infected executables from
being embedded in this way, and thus for viruses to be spread through the
distribution of “data files”.

Can viruses spread from one type of computer to another?
The simple answer is that no currently known viruses can do this. Although some
disk formats may be the same (e.g., Atari ST and DOS), the different machines
interpret the code differently. For example, the Stoned virus cannot infect an Atari
ST, as the ST cannot execute the virus code in the boot sector. The Stoned virus
contains instructions for the 80x86 family of CPUs that the 680x0 CPU family
(used in the Atari ST) can’t understand or execute.

NOTE

This section of the FAQ remains accurate as long as macro viruses, which are usually
application-specific rather than hardware-specific, are considered separately.

The more general answer is that such viruses are possible, but unlikely. Such
a virus would be quite a bit larger than current viruses and might well be easier to
find. Additionally, the low incidence of cross-platform sharing of software means
that any such virus would be unlikely to spread—it would be a poor environment
for virus growth.

Are mainframe computers susceptible to computer viruses?
Yes. Numerous experiments have shown that computer viruses spread very quickly
and effectively on mainframe systems. To our knowledge, however, no non-research
computer virus has been seen on mainframe systems. (Despite often being described
as such, the widely reported Internet Worm of November 1988 was not a computer
virus by most definitions, although it had some viruslike characteristics.)

5 9 2 V i r u s e s R e v e a l e d

Many people think that computer virus infections are impossible on mainframe
computers, because their operating systems provide means of protection (e.g.,
memory protection, access control, etc.) that cannot by bypassed by a program,
unlike the operating systems of most personal computers. Unfortunately, this belief
is false. As demonstrated by Cohen in 1984, access controls are unable to prevent
computer viruses—they can only slow down the speed at which viruses spread.
If there is a transitive path of information flow from one account to another on a
mainframe computer, then a virus can spread from one account to the other, without
having to bypass any protections.

Consider the following example. The attacker (A) has an account on a machine
and wants to attack it with a virus. To do this, A writes and releases a virus. Due to
the protection provided by the operating system, the virus can infect only the files
writeable by A. On a typical system, those would be only the files owned by A.

However, A is not alone on the system. A works with B on some joint projects.
At some time, B might want to check how far A has progressed in his or her part
of the project. This might involve running one of the programs that A has written—
programs that are now all infected with A’s virus.

On a system with protection based on discretionary access controls (e.g., UNIX,
VMS, and most other popular operating systems), the program that is being executed
usually runs with the privileges of the user who is executing it—not with those of the
program’s owner. (The few instances where this is not the case present a different
kind of security threat, unrelated to viruses.) That is, when B runs A’s infected
program, the virus in it will run with B’s privileges and will be able to infect all
programs writeable by B.

At some later time, A and B’s boss, C, might want to check whether they have
completed that joint project. Even if the boss has reasons to suspect A (as a
disgruntled employee, for example), C is likely to trust B and execute one of B’s
programs. This results in the virus running with C’s privileges (which are likely to
be significantly greater than those of A and B) and infecting all programs writeable
by C. Quite possibly, these programs will include many owned by other employees,
thus creating many more distribution chains that nobody suspects.

The virus may interfere somehow with C’s normal work, which causes C (who
is probably not very knowledgeable about such things as computer security and
viruses) to ask the system administrator, D, for help. If D executes one of C’s
infected programs (and D is much more likely to trust a respectable person like C,
who is quite probably D’s boss as well, than any of C’s employees), this will cause
the virus that A wrote a long time ago to run with system administrator privileges
and do whatever it wants with the system—infect other users’ files, attack other
systems, and so on.

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 5 9 3

A trivial improvement of the preceding scenario (in terms of speeding up the virus’s
spread) would be for the attacker to place the virus in some kind of Trojan horse—
for example, in an attractive game or utility—placed in a publicly accessible area.

Why, then, are there fewer viruses for mainframe computers than for personal
computers? The answer to this question is complex. First, writing a well-made
mainframe virus—one that does not cause problems and is likely to remain unnoticed—
is not a trivial task. It requires a lot of knowledge about the operating system. This
knowledge is not commonly available, and the typical youngster who is likely to hack
a quick-and-dirty PC virus is unlikely to possess such knowledge or be in a position
to learn it. People who possess this knowledge are likely to use it in more constructive,
satisfying, and profitable ways. Second, the culture of software exchange in the
mainframe world differs considerably from that of the PC world—we don’t see many
VMS users running around with a bootable tape of the latest game. Third, very often
it is easier to attack a mainframe computer by using some security hole or a Trojan
horse instead of by using a virus.

So, computer viruses for mainframe computers are definitely possible and several
already exist. Also, some IBM PC viruses can infect any IBM PC-compatible
machine, even if it runs a “real” OS such as UNIX.

Forms of malware other than computer viruses—notably Trojan horses—are far
quicker, more effective, and harder to detect than computer viruses. Nevertheless,
many more viruses than Trojan horses have been written to attack personal
computers. There are two reasons for this:

� Since a virus is self-propagating, the number of users to whom it can spread
(and cause damage) can be much greater than in the case of a Trojan.

� It’s almost impossible to trace the source of a virus since (generally) viruses
are not attached to any particular program.

For further information on malicious programs on multi-user systems, see Matt
Bishop’s paper, “An Overview of Malicious Logic in a Research Environment”,
available by anonymous ftp on Dartmouth.edu (IP = 129.170.16.4) as pub/security/
mallogic.ps.

Some people say that disinfecting is a bad idea. Is that true?
Disinfection is “safe” only if the disinfecting process completely restores the
noninfected state of the object. That is, not only must the virus be removed from
the object, but the original length must be restored exactly, as well as any system

5 9 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

attributes (such as time and date of last modification, fields in the header, etc.).
Sometimes it is necessary to be sure that the object is placed on the same sectors
of the disk that it occupied prior to infection. (This is particularly important for some
system areas and some files from programs that use certain kinds of self-checking
or copy protection.)

None of the currently available disinfecting programs do all of this. For instance,
because of the bugs that exist in many viruses, and because some infection processes
involve overwriting (part of) the objects of infection, some of the information about
the original object may be irrevocably destroyed. Sometimes it is not even possible
to detect that this information has been destroyed, nor to warn the user. Furthermore,
some viruses (such as Nomenklatura and Ripper) corrupt information very slightly
and randomly, so that it is not even possible to tell which objects have been corrupted.

Therefore, it is usually better to replace infected objects with clean backups,
provided you are certain that your backups are uninfected or from the original media.
You should try to disinfect files only if they contain some valuable data that cannot
be restored from backups or recompiled from their original source.

NOTE

If the FAQ had been updated more recently, it would probably have gone into more detail about
Registries and the like that are also affected by malware. Anti-malware products do not typically
address Registry modifications introduced as part of the malware’s installation process. Such
modifications may also apply to residual files and scripts that the malware may install as part of
the “infection” process and that may continue to perform actions regardless of whether the
“infected” files are still present on the system.

Can I avoid viruses by avoiding shareware,
free software, or games?
No. There are many documented instances in which even commercial shrink-wrapped
software was inadvertently distributed containing viruses. Avoiding shareware, freeware,
games, and the like only isolates you from a vast collection of software (some of it
very good, some of it very bad, most of it somewhere in between).

The important thing is not to avoid a certain type of software, but to be cautious of
any and all newly acquired software and diskettes. Merely scanning all new software
media for known viruses would be rather effective at preventing virus infections,
especially when combined with some other prevention/detection strategy, such as
integrity management of programs.

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 5 9 5

Can I contract a virus on my PC by performing a DIR of
an infected floppy disk?
Assuming the PC you are using is virus free before you perform the DIR command,
then the answer is no.

When you perform a DIR, the contents of the boot sector of the diskette are
loaded into a buffer for use in determining disk layout and so on, and certain
anti-virus products will scan these buffers. If a boot-sector virus has infected your
diskette, the virus code will be contained in the buffer, which may cause some
anti-virus packages to produce a message like “XYZ virus found in memory...”. In
fact, the virus is not a threat at this point since control of the CPU is never passed to
the virus code residing in the buffer. Even though the virus is really not a threat at
this point, you should not ignore this message. If you get a message like this, and
then reboot from a clean DOS diskette, scan your hard drive, and find no virus, then
you know that an infected boot sector loaded into a buffer has caused the false
positive. You should thus disinfect the diskette before using it. The use of DIR will
not infect a clean system, even if the diskette on which it is being performed does
contain a virus. Note, however, that running DIR on a diskette can result in the
infection of a clean diskette if the PC is already infected.

Despite our categorical “no” answer, there is a small risk that a virus infection
could be transferred from a floppy through a DIR listing. If you use an ANSI
console driver that allows key remapping, it is possible that a specially prepared
diskette could reprogram your keyboard so that pressing a particular key causes
an infected program on the diskette to run the next time the reprogrammed key is
pressed. The risk of such an attack is very low and can easily be negated by
following the general advice for preventing ANSI bombs.

Mac users with system software prior to version 7.0 should be aware of a greater
threat in their environment. Various system resources (which can contain executable
code) are loaded from the automatic access to a diskette that is part of the system
building its desktop view of the diskette’s contents. When such a resource is required,
the most recently loaded one will be used. Thus, if a diskette with a virus-infected
resource in the Desktop file is in your Mac’s drive, and an uninfected copy of that
resource has not subsequently loaded from elsewhere, the next time that resource is
required, the infected copy will be executed, along with the virus. The possibility of
this kind of attack was removed with the introduction of version 7.0 (and later) of
the system software, which handles such things quite differently. A common Mac
virus, WDEF, uses this infection path, as do a few others.

Early versions of AmigaDOS are susceptible to a threat similar to the Mac WDEF
virus—after the user inserts a diskette into the drive, the operating system runs the

5 9 6 V i r u s e s R e v e a l e d

Disk Validator from the diskette. At least one Amiga virus, Saddam, attaches itself
to Disk Validator to help spread itself. Version 2.0 of AmigaDOS eliminated the
threat of this type of attack by removing the need for the Disk Validator.

Is there any risk in copying data files from an
infected floppy disk to a clean PC’s hard disk?
Assuming that you did not boot or run any executable programs from the infected
disk, the answer generally is no. There are two caveats:

� You should be somewhat concerned about checking the integrity of these data
files as they may have been destroyed or altered by the virus.

� If any of the “data” files can be interpreted as executable by some other
program (such as a Lotus macro), then you should treat these files as
potentially malicious until the symptoms of the infection are known.

The copying process itself is safe (given the preceding scenario), although you
should be concerned with what types of files are being copied to avoid introducing
other problems.

Can a DOS virus survive and spread on an
OS/2 system using the HPFS file system?
Yes, both file-infecting and boot-sector viruses can infect HPFS partitions.
File-infecting viruses function normally and can activate and do their dirty deeds,
and boot-sector viruses can prevent OS/2 from booting if the primary bootable
partition is infected. Viruses that try to address disk sectors directly cannot function
under OS/2 because the operating system prevents this activity.

NOTE

HPFS (High Performance File System) was the OS/2 precursor to NTFS, and was also supported by
early versions of Windows NT.

Under OS/2 2.0+, could a virus-infected
DOS session infect another DOS session?
Each DOS program is run in a separate virtual DOS machine (OS/2 keeps each
program’s memory space separate from the others). However, any DOS program
has almost complete access to the files and disks, so infection can occur if the virus

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 5 9 7

infects files; any other DOS session that executes a program infected by a virus that
makes itself memory-resident would itself become infected.

Also, bear in mind that generally all DOS sessions share the same copy of the
command interpreter. Hence if it becomes infected, the virus will be active in all
DOS sessions.

Can normal DOS viruses work under MS Windows?
Most of them cannot. A system that runs MS Windows exclusively is, in general,
more virus-resistant than a plain DOS system. The reason is that most resident
viruses are not compatible with the memory management in Windows. Furthermore,
most existing viruses will damage Windows applications if they try to infect them as
normal (i.e., DOS) .EXE files. The damaged applications will stop working and this
will alert the user that something is wrong.

Virus-resistant, however, is by no means virus-proof. For instance, most of the
well-behaved resident viruses that infect only .COM files (Cascade is an excellent
example) will work perfectly in a “DOS box”. All nonresident .COM infectors
will be able to run and infect too. Aside from being subject to DOS viruses, MS
Windows users can also contract several currently known Windows-specific viruses,
which are able to infect Windows applications properly (i.e., they are compatible
with the NewEXE file format).

Any low-level trapping of Interrupt 13, as by resident boot-sector and MBR
viruses, can also affect Windows operation, particularly if protected disk access
(32BitDiskAccess=ON in SYSTEM.INI) is used.

NOTE

While this answer is accurate as far as it goes, since this FAQ was revised, many Windows-native
file infectors have been written (Win32 infectors, PE infectors, and so on, as well as viruses that
can distinguish between types of .EXE files and infect accordingly and appropriately). Obviously,
these infectors will usually work under an appropriate version of Windows, and have been rather
more successful than might have been expected in the mid-1990s.

Can I get a virus from reading email?
In general terms, the answer is no. Email messages and postings on BBSs and
newsgroups are text data and will not be executed as programs. Computer viruses
are programs, and must be executed to do anything, so the simple act of reading
online messages doesn’t pose a threat that you will catch a computer virus.

There are a few provisos to be made. If your computer uses ANSI screen and
keyboard controls, you may be susceptible to an ANSI bomb. An ANSI bomb may,

5 9 8 V i r u s e s R e v e a l e d

merely by being placed in text read on the screen, temporarily redefine keys on the
keyboard to perform various functions. It is, however, very unlikely that you will
ever see an ANSI bomb in email, or that it could do significant damage while you
are reading mail.

Another possibility is that mail can be used to send programs. To do this, program
files have to be encoded into a special form so that the binary (eight-bit) program
files are not corrupted by transfer over the text-only (seven-bit) email transport
medium. Probably the most common of these encoding schemes is uuencoding,
although there are several others. If you receive an encoded program, you normally
have to use a decoding program or special option in your email program to extract
and decode it before it can be run. Once you have extracted the program, though,
you should then treat it as you would any other program whose source you do not
know, and test it before you run it.

A third possibility is with the newer, highly automated online systems. Some of
these attempt to make online access much easier for the user by automating such
features as file transfer and program updates. At least one commercial online service
is known to be capable of sending new programs to the user and to invoke those
programs while the user is still online. While there is no reason to assume that any
service that does this will infect you, any time things are going on that you are not
being told about, you are at greater risk.

NOTE

Yes, we know about the hole in some versions of Outlook exploited by some viruses and worms
(KAK, for instance). But at the time that this FAQ was written, that hole lay some distance in the
future, which makes the prescience (or pessimism) of this section all the more impressive.

Can a virus “hide” in a .GIF or JPEG file?
The simple answer is no. The complete answer is more complex.

.GIF and JPEG (.JPG) files contain compressed graphical information. Every now
and then, rumours arise that it is possible to infect those files with a virus in such a
way that it will spread when you display one of these images. This is technically
impossible—no part of the GIF or JPEG format contains code that is executed by the
viewer program.

It is possible to use the least significant bit of the colour information for each
pixel in .GIF files to store additional information without visibly altering the quality
of the picture contained in the file. This is called steganography and is sometimes
used to transmit secretly encrypted messages. Since a virus is nothing more than
information, it is possible to “encode” it into a .GIF file and transmit it this way.

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 5 9 9

However, the recipients must be aware that the .GIF file contains such hidden
information and take some deliberate steps to extract it—the transmission cannot
happen against the recipients’ will.

NOTE

Often what appears to be a JPEG or other graphics file may, in fact, be a program. A particularly
common example is the double extension trick used by many contemporary worms, whereby a file
called “badfile.jpg.vbs” or “badfile.jpg .scr” may look like a graphic, but is, in fact,
something quite different.

How often should we upgrade our anti-virus tools?
This is a difficult question to answer. Anti-virus software is a kind of insurance,
and these types of calculations are difficult.

There are two things to watch out for here: the general “style” of the software, and
the scan strings that scanners use to identify viruses. Scanners should be updated more
frequently than other software, and it is probably a good idea to update a scanner’s
set of scan strings at least once every two months. In the six months or so prior to
January 1995, most of the popular PC-based virus scanners typically added detection
of about 500–600 new viruses or variants—this averages out to between two and
three new viruses per day!

Some anti-virus software looks for changes to programs or specific types of viral
“activity”, and these programs generally claim to be good for “all current and future
viral programs”. However, even these programs cannot guarantee to protect against
all future viruses, as virus writers are continually developing new “attack” and
anti-anti-virus methods. Thus, even this type of anti-virus software needs to be
upgraded occasionally.

Of course, not every anti-virus product is effective against all viruses, even if
upgraded regularly. Thus, do not depend on the fact that you have upgraded your
product recently as a guarantee that your system is free of viruses!

Is it possible to use a computer virus for something useful?
This question reflects a very hotly debated topic that has flared up dramatically
several times in VIRUS-L/comp.virus. The answer to this question is not simple
and largely hinges on your definition or interpretation of the term computer virus.

By definition, viruses do not have to do something “bad” (although many people
argue that the uninvited “resource wasting” that is almost inherent in viral activity
is necessarily bad). From this point (and based on his somewhat esoteric definition

6 0 0 V i r u s e s R e v e a l e d

of the term computer virus), Cohen has argued that “good” or “useful” computer
viruses are a serious possibility. In fact, Cohen offered a reward of $1,000 for the
first clearly “useful” virus; despite several potential claimants, however, he hasn’t
paid up.

Although these discussions have not resulted in a widely agreed-upon position, many
contributors to this forum believe that there are serious problems with the idea of
implementing useful computing functionality through self-replicating programs.
Vesselin Bontchev’s paper originally delivered at the 1994 EICAR conference, titled
“Are ‘Good’ Computer Viruses Still a Bad Idea?”, is available by anonymous ftp from
ftp.informatik.uni-hamburg.de (IP = 134.100.4.42), as pub/virus/texts/viruses/
goodvir.zip. It contains many strong arguments against the idea of “good computer
viruses”, and some prescriptions of how good viruses would have to be implemented
and distributed to deserve the label “good”. To date, no strong arguments countering
the points in this paper or otherwise arguing in favour of the concept of good viruses
have been posted to the group.

Wouldn’t adding self-checking code to
your programs be a good idea?
Every few months, somebody suggests the idea of adding a small piece of code to
existing programs. This code would check for virus infections when the program is
executed by comparing a previously computed CRC or cryptographic checksum
(hash value) of the file in its known clean state with its current value. The idea is that
this code would detect any virus infection immediately, and thus would be effective
against unknown viruses.

This idea is simple and intuitively attractive—in fact, some anti-virus programs
have included options to implement just such a strategy. This approach, however,
has some serious flaws. It cannot prevent the program from infection in the first
place. Further, if a program that has been protected this way becomes infected later,
whenever it is run, the virus code will be activated first. The virus may then be able
to detect or even remove the self-checking code, or it might make it totally
ineffective by using stealth techniques, so the self-checking code “sees” only the
original, noninfected program.

Some programs—much anti-virus software, for example—contain an internal
self-check. Such internal code might also be unable to detect stealth viruses, but
unless the external self-check code uses stealth techniques too, the result will be a
conflict, where the internal check will notice the newly added code and decide that
it has been “infected”.

C h a p t e r A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 6 0 1

Moreover, this method is ineffective against “companion” viruses that don’t
modify the applications they infect.

It may not be possible to protect all programs this way. For example, under DOS
it is relatively easy to add code of this type to most .COM files (unless the original
program is slightly less than 64KB, and the resulting file would break that limit).
However, .EXE files are more of a problem—especially those containing internal
overlays, where one cannot append the code to the file, as the resulting file might
become too big to load. Windows applications are also a problem, as they have
two different entry points and you have to take special care to handle that situation
correctly.

On the other hand, adding internal self-checking to programs as part of their
development is a good idea. Although internal self-checking has the same limitations
regarding stealth viruses, it does not cause the conflicts previously described, and
can be put in any program at compile time. Such self-checking is also much more
difficult for viruses to bypass.

Is my disk infected with the Stoned virus?
Of course, the answer to this, and many similar questions, is to obtain a good virus
detector. There are many to choose from, including ones that will scan diskettes
automatically as you use them. As Stoned is a boot-sector infector, remember to
check all diskettes, even nonsystem or “data” diskettes.

It is possible, if you have an urgent need to check a system when you don’t have
any anti-virus tools, to run CHKDSK or MEM and note the values reported, boot
from a known clean system diskette, then compare the results returned by CHKDSK
or MEM. If the total amount of conventional memory reported is different between
the two boots, then you may have a viral problem. However, this information alone
cannot tell you whether the problem is Stoned. If you cannot see the PC’s hard disk
(usually the C drive), then it is even more likely that you have a virus problem,
though definitely not Stoned. If you have a “disk editor” type program, looking at
the boot sector of a suspect floppy or the MBR of the suspect hard drive may be
helpful. If you have Stoned, the first byte will indicate the characteristic far jump of
the virus (hex: EA) instead of the more common short jump (hex: EB) of the boot
loader. Even if that is the first byte, you could be looking at a perfectly good disk
that has been “inoculated” against the virus or has been infected with some other
virus that makes similar changes, or at a diskette that seems safe but contains a
totally different type of virus.

6 0 2 V i r u s e s R e v e a l e d

I was infected by both Stoned and Michelangelo.
Why has my computer become unbootable?
These two viruses store the original Master Boot Record at one and the same place
on the hard disk. They do not recognize each other, and therefore a computer can
become infected with both of them at the same time.

The first of these viruses that infects the computer will overwrite the Master Boot
Record with its body and store the original MBR at a certain place on the disk. So
far, this is normal for a boot-record virus. But if the other virus then also infects the
computer, it will replace the MBR (which now contains the virus that had come
first) with its own body, and store what it believes is the original MBR (but in fact
is the body of the first virus) at the same place on the hard disk, thus overwriting
the original MBR. When this happens, the contents of the original MBR are lost.
Therefore, the disk becomes nonbootable.

When a virus removal program inspects such a hard disk, it will see the second
virus in the MBR and will try to remove it by overwriting it with the contents of the
sector where this virus normally stores the original MBR. However, now this sector
contains the body of the first virus. Therefore, the virus removal program will install
the first virus in trying to remove the second. In all probability, the program will not
wipe out the sector where the (infected) MBR has been stored.

When the program is run again, it will find the first virus in the MBR. By trying
to remove it, the program will get the contents of the sector where this virus normally
stores the original MBR, and will move it over the current (infected) MBR.
Unfortunately, this sector still contains the body of the first virus. Therefore,
the body of this virus will be reinstalled over the MBR ad infinitum.

There is no easy solution to this problem, since the contents of the original MBR
are lost. The only solution for the anti-virus program is to detect that there is a
problem, and to overwrite the contents of the MBR with a valid MBR program,
which the anti-virus program has to provide itself. If your favorite anti-virus
program is not that smart, consider replacing it with a better one, or try using the
boot-sector disinfection procedure described elsewhere.

In general, infection of the same file or area by multiple viruses is possible, and
vital areas of the original may be lost. This can make it difficult or impossible for
virus disinfection tools to be effective, and replacement of the lost file/area will be
necessary.

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 6 0 3

I was infected with Flip, and now a large part of my hard disk
seems to have disappeared. What has happened?
Flip contains a logic error, probably because its author only had knowledge of hard
disk partitioning schemes under DOS 3.x (where partitions could not exceed 32MB).

Part of Flip’s infection routine decrements by six the “total number of sectors”
field in the BIOS Parameter Block (BPB), a table of critical disk geometry data, in
the DOS boot sector of the boot partition. For partitions of 32MB and under, this
field is meaningful, but in larger partitions, this field is set to zero and a field in the
“extended BPB” contains the “big number of sectors” for that partition instead. Not
knowing about larger partitions, Flip renders the large partitions it meets a shade
under 32MB. The fix for this is to use a disk sector editor to set the word at offset
13h of the affected DOS boot sector to “00 00”. (It should be set to “FA FF” if
the situation described in this paragraph applies.) If you don’t understand these
instructions, do not attempt to follow them; instead seek the help of a more
technically knowledgeable person.

What does the GenB and/or the GenP virus do?
There is no such thing as the GenB or GenP virus. They are both part of a heuristic
used by a very popular scanner to detect boot-sector viruses. The scanner notes
something in the boot sector (GenB) or in the MBR (GenP) that it strongly suspects
is a virus, but has no idea which particular virus it might be. If you want to know
which particular virus you have, you should run a scanner that has better recognition
and identification capabilities. One advantage of the GenB/GenP report is that you
can often use the disinfection utility from the same producer to remove the virus,
even if no other scanner can remove it. When told to remove the GenB/GenP
“virus”, the utility scans the disk for something that looks like a saved copy of the
original boot sector or MBR and will put it back in place, thus removing the virus.
Or, alternatively, if there is an apparently valid partition table in the virus MBR, the
utility may write a good generic MBR.

How do I “boot from a clean floppy”?
“Put it in the A drive and turn the power on”.

This facetious answer aside, the real question here is usually more one of “How
do I ensure that I have a clean boot floppy?”

6 0 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

As with so many issues concerning viruses, the important thing is to be prepared in
advance. A current, clean boot disk should be a standard part of every personal computer
system. This is because there are occasions, other than facing a real or suspected virus
infection, when being able to boot your computer to a “known good” state is useful
or desirable (for example, when you accidentally delete your disk-compression driver
from your hard disk). As with backups, a current, clean boot disk is one of the standard
parts of a personal computer system most commonly missing.

The important thing in preparing a clean boot diskette, especially if you have to use
it with a (suspected) virus infection, is that it must not run a single byte of code from
your hard disk. This means your boot floppy must contain all the basic operating system
files, device drivers, and configuration commands necessary to make your system
minimally usable. This diskette must be prepared on a system that is, itself, guaranteed
“clean”, and you should write-protect it immediately after it is completed. Aside from
holding a basic, minimal operating system, your emergency boot diskette should contain
the utilities necessary to install your OS to a hard disk and basic diagnostic or “fix it”
programs, and your favourite anti-virus tools. Depending upon disk space
considerations, you may need additional diskettes to hold all these utilities. For example,
if you use DOS, it is a good idea to copy the following utility programs to your
emergency boot disk (if your version of DOS includes them): FDISK, CHKDSK and/or
SCANDISK, FORMAT, SYS, MEM, UNFORMAT, UNDELETE, and MSD.

When rebooting your computer from a clean system disk, it is most important that
you perform a “cold start”. On a PC, this means pressing the reset button or turning
the power off and then on again, not pressing CTRL-ALT-DEL. Regardless of the
machine type, if you are unsure, turn the power off and then power on again. To
configure your machine correctly, it is even more important to try booting from the
floppy first. Most contemporary BIOS chips have an option to select the boot order
(A then C, or C then A)—this must be set to A then C for this procedure, though
normally we strongly recommend that you set this option to C then A.

As systems change from time to time, you may occasionally need to update this
most critical of diskettes so that it will still boot your system to a usable state. Since
you may have recently contracted a new virus that bypasses your current anti-virus
precautions, this update process can put you at risk of infecting your “clean”
emergency boot diskette. Because of this, it is prudent to have two such diskettes.
With system changes, you would update these in a “leap frog” manner. This means
your previous emergency boot diskette might still bring your machine up to a
minimally useful state (such that you may still be able to make repairs) should
a previously unknown virus infect your updated emergency boot diskette.

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 6 0 5

Unfortunately, this isn’t the whole story either! A PC virus known as EXE_Bug
can fake out the boot process by setting the PC’s CMOS to look as if there are no
floppy drives in the machine. Most BIOS systems don’t even try to boot from a
floppy in this case, and go straight to the hard disk, loading the virus from the MBR.
When EXE_Bug first loads into memory, it checks to see if there is a diskette in the
first floppy drive, and if there is, it loads the boot sector from the diskette and lets
the floppy boot as normal. Most people don’t notice the subtly different boot time
and drive access order involved in this, so they think they have booted clean, when
in fact the virus is active in memory! To circumvent this possibility, you have to
check the PC’s CMOS settings before letting the floppy boot proceed, make sure
that your PC “knows” it has a floppy drive, and, with some PCs, make sure that the
boot order option is set to A then C. This presents a chicken-and-egg situation on
some machines, as you may have to boot DOS on the machine to be able to run the
utility program that lets you change its CMOS settings.

Remember, if you changed your BIOS boot order option, set it back to C then
A after disinfecting your PC.

My PC diagnostic utility lists “Cascade” among the hardware
interrupts (IRQs). Does this mean I have the Cascade virus?
No! This is quite normal on AT-style (286 and better) PCs (and on a few 8086 [XT]
class machines). The original IBM PC design had one Programmable Interrupt
Controller (PIC) to handle hardware interrupts generated when devices such as disk
controllers, serial and parallel ports, LAN adaptors, and so on have to be serviced.
While developing the AT, IBM decided that the eight Interrupt ReQuest (IRQ) lines
that the original PIC supported were probably insufficient for likely future expansion
needs, so the AT developers added a second PIC. The two PICs had to cooperate so
that both didn’t interrupt the CPU concurrently. The developers achieved this by having
the second PIC use an IRQ to signal the first PIC when it has an IRQ to service. IRQs 2
and 9 were used for this signal and are commonly called the “cascade” IRQs, as they
allow the second PIC to cascade an IRQ down to the first PIC.

When I do a DIR | MORE, I see two files with random names
that are not there when I just use DIR. On my friend’s system,
they cannot be seen. Do I have a virus?
No. DOS’s default command-line interpreter (COMMAND.COM) creates two
temporary files with unique names for every pipe character (|) used on the command
line. Starting with DOS version 5.0, these files are created in the directory pointed to

6 0 6 V i r u s e s R e v e a l e d

by the TEMP environment variable, not in the current directory as they were in earlier
DOS versions. If your TEMP setting is invalid, or if you have an earlier version
of DOS, you will see these files in the current directory when you pipe the output
of a DIR command through MORE (or any other filter). If you don’t see these files
in the current directory’s listing, performing the command DIR | MORE on the
directory specified by the TEMP variable will reveal them.

Generally, using DIR /P instead of DIR | MORE is better, as the latter command
avoids the creation of the temporary files. If you use an alternative command-line
interpreter, none of the preceding concerns may apply.

A p p e n d i x A : F r e q u e n t l y A s k e d Q u e s t i o n s o n V I R U S - L / c o m p . v i r u s 6 0 7

This page intentionally left blank.

APPENDIX

B
Viruses and the

Macintosh

609

IN THIS CHAPTER:

How Many Viruses Affect the Macintosh?

Mac-Specific Viruses

PC Viruses on Emulated PCs

Esperanto.4733

PC Scripting Viruses

The EICAR Installation Test File

Information Resources

Mac Troubleshooting

Questions Received at Mac Virus

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The “Viruses and the Macintosh” FAQ was originally written by David
Harley around 1996, at a time when the Mac-using community had become
complacent about the rarity of Mac viruses. Most were reliant on a brace of

freeware anti-virus tools (Disinfectant and Gatekeeper, both of which detected only
Mac-specific threats). Few Mac sites had yet come to terms with the fact that Word
and Excel macro viruses were a problem on Macintoshes as well as on PCs (albeit
not the same problem). Drawing attention to this fact didn’t save Mac users from
being a major source of macro virus infection for a while, but provided a reference
point for victims of WM/Concept, WM/Npad, and WM/Cap, shocked to find
themselves in the firing line.

Comments, suggestions, and additional material were received from Ronnie
Sutherland, Henri Delger, Mike Groh, Eugene Spafford, Bruce Burrell, Michael
Wright, Peter Gersmann, David Miller, Ladd Van Tol, Eric Hildum, Jeremy Goldman,
Kevin White, Bill Jackson, Robert Slade, Robin Dover, John Norstad, and Susan
Lesch, who for some time was the principal maintainer of the FAQ, and gave it a
home at her hugely influential Mac Virus site. When Lesch was forced by pressure
of other commitments to give up maintaining Mac Virus and the FAQ, both moved
to Harley’s site at http://www.sherpasoft.org.uk (http://www.macvirus.com now
points to www.sherpasoft.org.uk, where Mac Virus II is hosted). The ICSA and
EICAR web sites have also hosted Mac Virus, but neither carries the Mac Virus II
or the latest versions of the FAQ.

This appendix is not the FAQ, but a digest of some of its more relevant and
up-to-date information.

How Many Viruses Affect the Macintosh?
There are, depending on how you measure, between 40 and 100 Mac-specific
viruses and related threats. Most of these are not regularly found in the field.
We have to say “in the field”, because there is at present no Mac equivalent
to the WildList that provides a way of tracking what viruses are in the wild.

However, there is a project under development by David Harley in association
with the WildList Organization to track Macintosh-specific viruses.

Mac-Specific Viruses
This section does not list all variants. However, it does include more detailed
information on one or two common Mac viruses that are not well documented
elsewhere. The main problem affecting Mac users nowadays is the spread of macro

6 1 0 V i r u s e s R e v e a l e d

viruses. Cataloguing all individual macro viruses individually is beyond the scope
of this appendix, so they are only considered as a general class.

Native Mac viruses are rather rarely seen nowadays, and most people don’t need
to know about them in detail—in fact, what they need most is to know that their
favoured anti-virus can deal with them.

Mac-Specific System and File Infectors
The following are some of the Mac-specific system and file infectors:

� AIDS, an nVIR B strain, infects application and system files, but inflicts
no intentional damage.

� Aladin is a close relative of Frankie.

� Anti (Anti-A/Anti-Ange, Anti-B, Anti Variant) can’t spread under system 7.x or
system 6 under MultiFinder. The infector can damage applications so that they
can’t be 100 percent repaired.

� The AutoStart worm is considered in some detail in Chapter 14 of this book;
see that section for more details.

� CDEF infects desktop files. It does not inflict any intentional damage, and
doesn’t spread under system 7.x.

� CLAP is an nVIR variant that spoofs Disinfectant to avoid detection
(Disinfectant 3.6 recognizes it).

� Code 1 is a file infector that renames the hard drive to “Trent Saburo”.
Accidental system crashes are possible.

� Code 252 infects application and system files. It triggers when run between 6th

June and 31st December. The macro virus runs a “gotcha” message (“You have
a virus. Ha Ha Ha Ha Ha Ha Ha Now erasing all disks...”), then self-deletes.
Despite the message, the virus does no intentional damage, though Norstad
points out that shutting down the Mac instead of clicking to continue could
cause damage. Code 252 can crash system 7 or damage files, but doesn’t
spread beyond the System file. It doesn’t spread under system 6 with
MultiFinder beyond System and MultiFinder. The virus can cause various
forms of accidental damage.

� Code 9811 hides applications, replacing them with garbage files with names
similar to FIDVCXWGJKJWLOI. According to Ken Dunham, who reported
this virus, “The most obvious symptom of the virus is a desktop that looks
like electronic worms and a message that reads ‘You have been hacked by
the Pretorians’”.

A p p e n d i x B : V i r u s e s a n d t h e M a c i n t o s h 6 1 1

� Code 32767 once a month tries to delete documents. This virus is not known
to be in circulation.

� Flag is unrelated to WDEF A and B, but was given the name WDEF-C in some
anti-virus software. The virus is not intentionally damaging but, when spreading,
it overwrites any existing WDEF resource of ID ‘0’, an action that might damage
some files. This virus is not known to be in circulation.

� Frankie affects only the Aladdin emulator on the Atari or Amiga. It doesn’t
infect or trigger on real Macs or the Spectre emulator. The virus infects
application files and the Finder. Frankie draws a bomb icon and displays
“Frankie says: No more piracy!”

� Fuck (an nVIR B strain) infects application and System files. It inflicts no
intentional damage.

� Init 17 infects the System file and applications. It displays the message “From
the depths of Cyberspace” the first time it triggers. It can cause accidental
damage, especially on pre PowerMac machines.

� Init 29 (Init 29 A, B) spreads rapidly, infecting system files, applications, and
document files (document files can’t infect other files, though). It may display
a message if a locked floppy is accessed on an infected system: “The disk
‘xxxxx’ needs minor repairs. Do you want to repair it?”. The virus inflicts no
intentional damage, but can cause several problems, including multiple
infections, memory errors, system crashes, printing problems, MultiFinder
problems, and start-up document incompatibilities.

� Init 1984 infects system extensions (INITs). The virus works under systems
6 and 7. It triggers on Friday the 13th and damages files by renaming them,
changing file TYPE and file CREATOR, changing the creation and
modification dates, and sometimes deleting the files.

� Init-9403 (SysX) infects applications and Finder under systems 6 and 7. The
virus attempts to overwrite the whole start-up volume and disk information on
all connected hard drives. This virus is found only on Macs running the Italian
version of MacOS.

� Init-M replicates under system 7 only. It infects INITs and application files.
The virus triggers on Friday the 13th. Its damage mechanisms are similar to
those of Init 1984. The virus may rename a file or folder to Virus MindCrime.
Rarely, Init-M may delete files.

� MacMag (Aldus, Brandow, Drew, Peace) was first distributed as a HyperCard
stack Trojan, but only infected System files. The virus triggered (by displaying
a peace message, then self-deleting) on 2nd March , 1988, and thus is very rarely
found today.

6 1 2 V i r u s e s R e v e a l e d

� MBDF (A,B) originated from the Tetracycle, Tetricycle, or “tetris-rotating”
Trojan. The A strain was also distributed in Obnoxious Tetris and Ten Tile
Puzzle. This Trojan infects applications and system files, including System
and Finder. MBDF can cause accidental damage to the System file and menu
problems. A minor variant of MBDF B appeared in summer 1997.

� MDEF (MDEF A/Garfield, MDEF B/Top Cat, C, D) infects the System file
and application files (D doesn’t infect System). It causes no intentional
damage, but can cause crashes and damaged files.

� MDEF-E and MDEF-F are both described as simple and benign. They infect
applications and system files with an MDEF resource ID ‘0’, but do not
otherwise cause file damage. These viruses are not known to be in circulation.

� nCAM is an nVIR variant.
� nVIR (nVIR A, B, C¯AIDS, Fuck, Hpat, Jude, MEV#, nFlu) infects the System

file and any opened applications. Extant versions don’t cause intentional
damage. The payload is either beeping or (in the case of nVIR A) speaking
the phrase “Don’t panic” if MacInTalk is installed.

� nVIR-f is an nVIR variant.
� prod is an nVIR variant.
� Scores (Eric, Vult, NASA, San Jose Flu) aims to attack two applications that

were never generally released. The virus can cause accidental damage, though,
including system crashes and problems printing or using MacDraw and Excel.
The virus infects applications, Finder, and DA Handler.

� SevenDust consists of a family of five viruses that spread through MDEF
resources and a System extension created by that resource. Some versions are
highly destructive. It is also known as MDEF 9806, although it isn’t related to
other viruses called MDEF.

� T4 (A, B, C, D) infects applications and Finder, and tries to modify the System
file to alter the start-up code. Under system 6 and 7.0, INITs and system
extensions don’t load. Under 7.0.1, T4 may render the Mac unbootable.
The virus masquerades as Disinfectant, to spoof behaviour blockers such as
Gatekeeper. Originally included in versions 2.0/2.1 of the public domain
game GoMoku, T4-D spreads from application to application on launch by
appending itself to the “CODE” resource. It deletes files other than the System
file from the System folder, as well as documents, and is termed dangerous.
The D strain is not known to be in circulation.

� WDEF (A,B) infects desktop files only. The virus doesn’t spread under Mac
system 7. It inflicts no intentional damage, but causes beeping, crashes, font
corruption, and other problems.

� zero is an nVIR variant.

A p p e n d i x B : V i r u s e s a n d t h e M a c i n t o s h 6 1 3

� Zuc (A, B, C) infects applications. When an infected application is run,
the cursor moves diagonally and uncontrollably across the screen when the
user holds down the mouse button. The virus does no other intentional damage.

HyperCard Infectors
HyperCard infectors are a somewhat esoteric breed, but continue to appear, and
most of the commercial scanners detect them:

� Antibody is a virus-hunting virus that propagates between stacks, checking for
and removing MerryXmas, then inserting an inoculation script.

� Blink was reported in August 1998. The infector is nondestructive but spreads;
infected stacks blink once per second starting in January 1999.

� Dukakis infects the Home stack, then other stacks used subsequently. It
displays the message “Dukakis for President”, then deletes itself, and thus is
not often seen.

� HC 9507 infects the Home stack, then other running stacks and randomly
chosen stacks on the start-up disk. On triggering, this infector displays visual
effects or hangs the system. It overwrites stack resources, so a repaired stack
may not run properly.

� HC 9603 infects the Home stack, then other running stacks. The virus has no
intended effects, but may damage the Home stack.

� HC “Two Tunes” (referred to by some sources as “Three Tunes”) infects stack
scripts. It has several visual/audio effects: it displays a “Hey, what are you doing?”
message, plays the tune Muss I denn, plays the tune Behind the Blue Mountains,
displays HyperCard toolbox and pattern menus, and displays “Don’t panic!” 15
minutes after activation. Even sources that describe this virus as “Three Tunes”
seem to describe the symptoms consistently with the description here. This
virus has no known connection with the PC file infector sometimes known as
“Three Tunes”.

� Independance [sic] Day was reported in July 1997. It attempts to be destructive,
but fortunately is not written well enough to be more than a nuisance. You can
find more information at http://www.hyperactivesw.com/Virus1.html#Iday.

� MerryXmas appends to a stack script. On execution, the virus attempts to infect
the Home stack, which then infects other stacks on access. There are several
strains, most of which cause system crashes and other anomalies. At least one
strain replaces the Home stack script and deletes stacks run subsequently.
Variants include Merry2Xmas, Lopez, and the rather destructive Crudshot.

6 1 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

� WormCode, a nondestructive HyperCard infector, was reported in
February 2000. You can find more information at
http://www.hyperactivesw.com/Virus1.html.

Mac Trojan Horses
Trojan horses are often unsubtle and immediate in their effects. While these effects
may be devastating, Trojans are usually very traceable to their point of entry. The
few Mac-specific Trojans are rarely seen, but of course the commercial scanners
generally detect them. We refer here to destructive Trojans, not worms and remote-
access tools, which are virtually unknown in the Macintosh arena, to date.

� ChinaTalk, was distributed as a system extension. It was supposed to be a
sound driver, but actually deleted folders.

� CPro is supposed to be an update to Compact Pro, but attempts to format
currently mounted disks.

� ExtensionConflict is supposed to identify extensions conflicts, but installs
one of the six SevenDust (also known as 666) viruses.

� FontFinder is supposed to lists fonts used in a document, but actually
deletes folders.

� MacMag is a HyperCard stack (from New Apple Products) that was the origin
of the MacMag virus. When run, MacMag infected the System file, which then
infected system files on floppies. The Trojan is set to trigger and self-destruct
on 2nd March , 1988, and so is rarely found.

� Mosaic is supposed to display graphics, but actually mangles directory structures.

� NVP modifies the System file so that users cannot type any vowels. The Trojan
was originally found masquerading as New Look, which redesigns the display.

� The PostScriptHack referred to by some sources was basically a PostScript job
that toggled the printer password to some random string a number of times.
Some Apple laser printers had a firmware counter that restricted the number
of times the password could be changed, so eventually the password would get
stuck at some random string that the user would not know.

� Steroid, a control panel, claimed to improve QuickDraw speed, but actually
mangled the directory structure.

� Tetracycle was implicated in the original spread of MBDF.

� Virus Info purported to contain virus information but actually trashed disks.
This Trojan is not to be confused with the Virus Reference HyperCard stack.

A p p e n d i x B : V i r u s e s a n d t h e M a c i n t o s h 6 1 5

� AppleScript Trojans have been discovered on a couple of occasions.
A demonstration destructive compiled AppleScript was posted to the
newsgroups alt.comp.virus, comp.sys.mac.misc, comp.sys.mac.system,
it.comp.macintosh, microsoft.public.word.mac, nl.comp.sys.mac, no.mac,
and symantec.support.mac.sam.general on 16th August, 1997, apparently
in response to a call for help originally posted to alt.comp.virus on 14th

August, 1997, and followed up on 15th August, 1997. On 3rd September, 1997,
MacInTouch published Xavier Bury’s finding of a second AppleScript Trojan
horse, which, like the call-for-help follow-up, mentioned Hotline servers.
The “MacSimpsons” AppleScript worm was reported in the summer of 2001
(see Chapter 19).

Macro Viruses, Trojans, and Variants
At the time of the longstanding second-to-last upgrade of Disinfectant (version 3.6 in
early 1995), there were no known macro viruses in the wild, apart from HyperCard
infectors. In any case, Disinfectant was always intended to deal with system viruses,
not Trojans or macro/script viruses. However, many users are unaware of these
distinctions and still assume that Disinfectant is a complete solution, even after its
effective demise. (In fact, people were still relying on Gatekeeper long after its
author disowned it.)

Unfortunately, the number of known macro viruses now runs into several
thousand, though the number in the wild is far fewer. Most macro viruses (if they
have a warhead at all) target Intel platforms and assume FAT-based directory
structures, so they usually have no discernible effect on Macs when they trigger.
Many of them do, however, infect effectively.

Viruses that manipulate text strings within a document may work just as well on a
Macintosh as on a PC. In any case, the main costs of virus control are not of recovering
from virus payloads, but of establishing detection and protection (or of not establishing
them). The costs of not establishing these measures can be considerable, irrespective
of damage caused on infected machines, especially in corporate environments.
Secondary distribution of infected documents may result in:

� Civil action For instance, inadvertent distribution of an infected document
to external organizations may be in breach of contractual obligations.

� Legal action In terms of breach of data-protection legislation such as the
UK Data Protection.

� Damage to reputation No organization wants to be seen as being riddled
with viruses.

6 1 6 V i r u s e s R e v e a l e d

Mac users with Word 6 or later versions of Word or Excel supporting Visual
Basic for Applications (Office 98 and Office 2001) are vulnerable to infection by
macro viruses that are specific to these applications. Indeed, these viruses can
potentially infect other files on any hardware platform supporting these versions
of these applications.

Office 98 applications are in principle vulnerable to most of the infective threats
to which Office 97 applications are vulnerable, though again, payloads are another
matter. In fact, an increasing number of VBA infectors seem not to work as expected
in Office 98 and 2001. Word 2001 uses a file format that is (accidentally) slightly
different from that used in Office 97, 98, and 2000. This has created some problems
for anti-virus software on Macs and on PCs, depending on which parts of the macro
the software actually scanned.

Early in 2001, a number of people on Mac-related lists were misled by a news
report at ZDNet suggesting that a new variant of Melissa had been found that
targeted Macs. This was a travesty. The virus concerned is a common variant of
Melissa. Since Melissa is a macro virus (or virus/worm hybrid, if you prefer), any
variant may be infective (to a degree) on a Mac, but the mass mailing component
works only in Windows. This variant is no more or less a danger to Mac users than
the others, in principle. It took a while to remind people that macro viruses have an
impact on Macs too, and even then most commentators outside the anti-virus industry
completely misunderstood the implications.

However, there was an issue. It turned out that an accidental (minor) change in the
Office 2001 document format meant that many scanners were unable to detect macro
viruses consistently in documents saved in 2001 format. This change affected PC
scanners as much as it did Mac products.

PC Viruses on Emulated PCs
Files infected with a PC-specific file virus (this excludes macro viruses, which are
not PC-specific) can execute only on a Macintosh running DOS or DOS/Windows
emulation, if then. They can, of course, spread across platforms simply by copying
infected files from one system to another.

DOS diskettes infected with a boot-sector virus can be read on a Mac with Apple
File Exchange, PC Exchange, DOS Mounter, etc., normally without risk to the Mac.
However, leaving such an infected disk in the drive while booting an emulator such
as SoftPC can lead to unpredictable results when the virus attempts to infect the
logical PC drive. (Informal testing with common boot-sector infectors has indicated
that they often work pretty much as they do on real PCs.)

A p p e n d i x B : V i r u s e s a n d t h e M a c i n t o s h 6 1 7

Esperanto.4733
Esperanto is a PC file infector that works with a number of PC executable file
formats. When it was first seen, Esperanto was reported to be a multiplatform virus
capable of executing under some circumstances on Macintoshes. Subsequent reports
indicate that this belief is the result of misinformation on the part of the virus’s
author. However, at least two reputable PC anti-virus vendors still list Esperanto as
capable of activating on a Macintosh. No Mac scanner is known to attempt to detect
it in Mac-specific mode, and it has rarely been reported in the field.

PC Scripting Viruses
MacOS doesn’t, of course, support the Windows Script Host, on which the current
crop of VBS viruses and Trojans rely, as a distribution mechanism. However, PC
emulation packages do support it. Not all Mac anti-virus software detects such viruses.
It is, of course, possible for Mac users to forward them. In particular, several instances
have occurred in which Mac users have forwarded the KAK worm, because it’s not an
attachment and isn’t obvious to Outlook users on either platform.

Welcome Datacomp
From time to time Mac users report that the message “Welcome Datacomp” appears
in their documents without having been typed. This message is the result of using
a trojanized third-party Mac-compatible keyboard with this “joke” hard-coded into
the keyboard ROM. It’s not a virus; it cannot infect anything. The only cure is to
replace the keyboard. (Be polite but firm with the dealer if the keyboard was sold to
you as a new one!)

The EICAR Installation Test File
The EICAR test file is not a virus (it doesn’t replicate). It’s a neat piece of PC
assembler code carefully constructed so that it can be typed in with a plain text
editor. If the program is actually executed on a real or emulated PC, it displays the
text “EICAR-STANDARD-ANTIVIRUS-TEST-FILE!” It doesn’t execute on a Mac
(unless you’re running it under some form of PC emulator), but commercial Mac
scanners now detect the EICAR code as a test virus, and will alert accordingly (as
will nearly all PC scanners, of course).

6 1 8 V i r u s e s R e v e a l e d

To make use of the EICAR test string, type or copy and paste the following text
into a test file.

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

An article by Paul Ducklin of Sophos explains the EICAR test file:
http://www.eicar.org/anti_virus_test_file.htm.

Information Resources
Information on Mac virus issues is, to say the least, somewhat sparse.

Mac-Related Newsgroups
Virus-related threads crop up from time to time on these groups:

comp.sys.mac.apps

comp.sys.mac.comm

comp.sys.mac.misc

comp.sys.mac.system

Mac-related topics are addressed occasionally on alt.comp.virus and other
virus-specific newsgroups.

Books
The diskette included with the second edition of Robert Slade’s Guide to Computer
Viruses (Springer Verlag, 1996) contained most of the Mac-related information
available at the University of Hamburg. The book also contains a reasonable quantity
of Mac-friendly information, but is now out of print. The diskette included a copy
of Disinfectant 3.6, which is now obsolete—3.7.1 was the final release.

Very few books primarily about computer viruses deal at any length with Mac
viruses. Some general books on the Mac touch on the subject, but few, if any, add
anything useful. Some of the Totally Witless User’s Guide to... books dealing with
security in general include information on PC and Mac viruses. Unfortunately, the
quality of virus-related information in such publications is generally low.

A p p e n d i x B : V i r u s e s a n d t h e M a c i n t o s h 6 1 9

Several people have been misled by some editions of David Pogue’s Dummies
books into thinking that Mac Virus is a source of anti-virus software. It was not,
and is not: however, the “Viruses and the Macintosh” FAQ includes URLs for
commercial software and for some shareware and freeware products. Listing in
the FAQ doesn’t constitute an endorsement of any sort, of course.

Pogue has also claimed several times that no virus causes damage on the
Mac except AutoStart. This is seriously misleading. While it’s unusual to find
Mac-specific viruses in the field currently apart from AutoStart and, occasionally,
SevenDust, others certainly exist and can cause damage. In fact, all viruses entail
a certain amount of damage, even those with no intentionally damaging payload.
And, of course, Mac users who use Microsoft Office applications continue to be
vulnerable to the macro viruses that prey on those applications.

Mac OS in a Nutshell, by Rita Lewis and Bill Fishman (O’Reilly and Associates,
2000), is a decent general resource that includes reasonably accurate virus information.

Bigelow’s Virus Troubleshooting Pocket Reference (McGraw-Hill Professional
Publishing, 2000), by Ken Dunham, includes some Mac-specific information.
Unfortunately, it’s not always an accurate resource.

Sad Macs, Bombs and Other Disasters by Ted Landau (Peachpit Press, 2000) isn’t
particularly good on viruses, but is an excellent resource for general troubleshooting.
You can find information at http://www.macfixit.com/sadmacs3promo.html.

Inside Macintosh (Addison-Wesley, 1994) is essential reading for Mac
programmers. It provides umpteen volumes of fairly low-level information. It’s
possible to download volumes in Acrobat, and in some cases other formats, from
http://devworld.apple.com/, where you can also order hardcopy and CD versions.

The Power Macintosh Emergency Handbook (Apple Computer) is well worth a
look, and you may be able to find it at ftp://ftp.info.apple.com/.

Web Sites
Many major vendors have a virus information database online on their web sites.
Symantec (http://www.symantec.com/, http://www.sarc.com/), Network Associates
(http://www.nai.com/), and Sophos (http://www.sophos.com/) include Macintosh
virus information.

Susan Lesch’s Mac Virus site closed down on 5th September, 1999, but the
site as it was at that time is archived at http://www.sherpasoft.org.uk and
http://www.icsa.net. The URL http://www.mac virus.com/ now points to the
Mac Virus II site at http://www.sherpasoft.org.uk, maintained by Harley.

6 2 0 V i r u s e s R e v e a l e d

The virus information database there is essentially the one reproduced here:
http://www.sherpasoft.org.uk/MacVirus/reference/viruses.html.

Some additional sites to check out include the following:

� MacFixIt “Troubleshooting for the Macintosh”: http://www.macfixit.com/

� The MacInTouch home page (info and services): http://www.macintouch.com/

� MacWEEK.com (which has run MacInTouch columns about the AutoStart
worms): http://macweek.zdnet.com/
As of 5th March, 2001, the zdnet site consolidated into MacCentral at
http://maccentral.macworld.com/

� Macworld magazine: http//www.macworld.com/
Strangely, this is different from the MacCentral site at macworld.com
mentioned in the MacWEEK.com description.

� TidBITS (which has done many good articles on Mac/macro virus issues):
http://www.tidbits.com/

Virus Bulletin
The expensive (but, for the professional, essential) periodical Virus Bulletin includes
Mac-specific information from time to time. However, if you have no interest in PC
issues, you probably won’t consider it worth the expense. You can contact Virus
Bulletin as follows:

Virus Bulletin, Ltd.
The Pentagon
Abingdon
OX14 3YP
England
+44 1235 555139
http://www.virusbtn.com/

The proceedings of the 1997 Virus Bulletin conference contained a paper
by Harley that, despite its obsolescence, is probably still the definitive paper on
Macintosh viruses, since no one else that we are aware of has addressed the same
area. Contact Virus Bulletin for further information on the annual conference and
on obtaining the proceedings. The paper can also be found (by permission of Virus
Bulletin) at Harley’s web site, http://www.sherpasoft.org.uk/MacSupporters/, and at
http://www.icsa.net/.

A p p e n d i x B : V i r u s e s a n d t h e M a c i n t o s h 6 2 1

Macro Virus Information Resources
The University of Hamburg Virus Test Center’s Macro Virus List was the definitive
listing of macro viruses. It included all known macro viruses—some found only
in zoo collections and research labs, some in the wild. The list doesn’t include
information on individual viruses apart from name and platform, and is irregularly
maintained. You can find the list at the following sites:

ftp://agn-www.informatik.uni-hamburg.de/pub/texts/macro/

http://agn-www.informatik.uni-hamburg.de/vtc/eng.htm

The usual anti-virus vendor web sites usually include macro information.
Richard Martin put together an FAQ on the subject of Word viruses. It’s well

out of date, though, and was always inaccurate in some respects. A copy of what we
believe to have been the last released version is available at SherpaSoft web site:

http://www.sherpasoft.org.uk/anti-virus/wordvirus.FAQ

Other Virus Resources
You can find excellent pages on HyperCard viruses at HyperActive Software’s web
site. The site provides information on HyperCard infectors, a link to Bill Swagerty’s
free Vaccine utility for detecting and cleaning them, a note on false positives reported
by commercial software, inoculation, and a free HyperCard virus detection service.

http://www.hyperactivesw.com/Virus1.html

Virus Test Center, Hamburg: AntiVirus Catalog/CARObase

ftp://ftp.informatik.uni-hamburg.de/pub/virus/texts/catalog/

ftp://ftp.informatik.uni-hamburg.de/pub/virus/texts/carobase/

ftp://ftp.informatik.uni-hamburg.de/pub/virus/texts/viruses/

These links may be out of date; if they don’t work, try the following:

ftp://agn-www.informatik.uni-hamburg.de/vtc/

INFO-MAC HyperArchive

http://hyperarchive.lcs.mit.edu/HyperArchive/Abstracts/vir/HyperArchive.html

6 2 2 V i r u s e s R e v e a l e d

Kevin Harris’s Virus Reference was last updated 31st August, 1995. This
HyperCard stack requires HyperCard 2.1 or later.

ftp://mirrors.aol.com/pub/info-mac/vir/virus-reference-216-hc.hqx

You might think Apple would have some useful information on its web sites.
Unfortunately, most of the virus-related material that we have found there has been
inaccurate and/or outdated.

http://www.apple.com/

Mac Troubleshooting
Here are a few steps that it might be appropriate to try if virus scanning with an
up-to-date anti-virus scanner finds nothing:

� Rebuilding the desktop is by no means a cure-all, but rarely does any harm. It
may be worth disabling extensions when you do this, especially if the operation
doesn’t seem to be completed successfully.

� To disable extensions, restart the machine with the SHIFT key held down until
you see an “Extensions Off” message. If you’re rebuilding the desktop, release
the SHIFT key and hold down the COMMAND key (the key with the Apple
outline icon) and OPTIONS (ALT) key until the program requests that you
confirm that you want to rebuild.

� Disabling extensions is also a good starting point for tracking down an
extensions conflict. If booting without extensions appears to bypass the
problem, try removing extensions with Extensions Manager (system 7.5).
Remove one extension at a time, and replace it before removing the next one
and booting with that one removed. Remember that if removing one stops the
problem, it’s still worth putting it back and trying all the others to see if you
can find the one creating the conflict.

� Extensions Manager also lets you disable system control panels. If you don’t
have Extensions Manager, try Now Utilities or Conflict Catcher.

� Parameter RAM (PRAM) contains system information, notably the settings for
a number of system control panels. “Zapping” PRAM returns possibly corrupt
PRAM data to default values. A problem with date and time is likely a symptom
of corrupted PRAM (but could be a symptom of a corrupted system file). With

A p p e n d i x B : V i r u s e s a n d t h e M a c i n t o s h 6 2 3

system 7, hold down COMMAND-OPTION-P-R at bootup until the Mac beeps and
restarts. You may have to restore changes to some Control Panels before your
system works properly. If the reset values aren’t retained, you may need to
replace the battery.

Questions Received at Mac Virus
Here’s a sample of some of the mail enquiries received since Mac Virus II opened.

I have heard rumours that an AS analogue of the I Love You worm could be
manufactured easily. Is this a real threat?

It’s possible. AppleScript Trojans are rare, but not unknown. There are very
few languages in which it’s impossible to write self-replicative code. Whether it’s
likely is a bigger question. AS has some of the “advantages” of Microsoft’s macro
languages, in that it’s easy and freely available. However, Mac OS isn’t blessed with
the same intrinsic security holes that Windows 9x and NT have. On the other hand,
the constant trickle of HyperCard infectors might tell us something. A number
of Mac users are known to have received VBS/Lovelet, succumbed to the social
engineering of the subject/message, and attempted to open it. They’ve been saved
from their own gullibility only by the fact that Mac OS doesn’t support the Windows
Script Host.

This might also be a good time to mention a phenomenon I sometimes call
Wormhausen-by-Proxy Syndrome. It goes something like this: PC-user A is infected
with a PC-specific worm, which mails itself out to (among other people) Mac-user B.
B tries to open the message, but can’t because Macs don’t normally run PC-specific
programs, so B asks PC-user C to open it. Now C is infected with the worm.

What could be done preventively?
Beware of geeks bearing gifts. Treat compiled scripts and other executables with

suspicion, whatever their source. Don’t assume that mail from a given account was
sent with the knowledge and intent of the person who uses that account. Bear in
mind that you are far likelier to receive an infected object from an innocent friend,
relative, or colleague than from a hacker with a cutlass between his teeth. Use
commercial anti-virus software (and keep it updated), but don’t assume it will
protect you from everything.

[Do you have] any suggestions on where to get free virus protection software? I’ve
got the WM.Cap.A virus. When I’m ready to buy virus protection software for my
Mac, which one do you recommend?

6 2 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

I know of no free Mac software that disinfects/protects against Word/Excel or
other Microsoft Office macro viruses, or Cap specifically. For that, you need either
a generic tool like Padgett Petersen’s MacroList, or commercial anti-virus software.

How can I obtain the latest list of all viruses to scan in my computer? And how can
I tell which ones I have already?

Do you mean an informational list of all viruses, or the latest virus definitions for
anti-virus software? I’m assuming you mean the latter, since a comprehensive list
of all known viruses wouldn’t be very helpful to you, even if there was such a thing.

You get definitions updates from the vendor who supplied your anti-virus software.
If you tell me which software that is, and which version, I can, hopefully, give you
specific information on that particular program.

Virex 6.x and Norton Anti-Virus can be configured to fetch the latest updates
from the vendor’s web site automatically. The program then updates its internal
database so that it can recognize the latest viruses.

Sophos for Mac and F-Secure for Mac are a little different, since the whole
program is updated monthly, rather than just the internal database. However, both
can be updated from the vendor’s web site.

As for checking the date of the last update, that depends on which program
you’re using.

Hello. I may have a virus. Just tonight most of the fonts on the web pages on my
iMac seem corrupted—lots of “dingbat” characters and squares instead of text.
For example, nothing on your web site was readable. I just clicked at random and
happened to hit your email link. Can you advise?

This doesn’t sound like any Mac virus I’m aware of, though it wouldn’t do any
harm to run an up-to-date scanner over the system. I don’t know which browser
you’re using, but the chances are that it has a font preferences option; in Navigator,
it’s probably under the Edit menu, in Preferences, depending on the version. It
sounds likely that the default fonts have changed, especially if the problem seems
to be restricted to your browser.

I just nailed a possible SevenDust with Agax (my Virex 6.1 missed it). However, I’m
no longer able to start up with extensions off; holding SHIFT down at start-up isn’t
working. Any suggestions or URLs you’d recommend?

This query was not mailed only to me, and several people responded. I don’t feel
it appropriate to quote their answers, but several points came up in the ensuing
discussion that are worth alluding to:

1. The problem turned out to be mechanical (faulty keyboard).

A p p e n d i x B : V i r u s e s a n d t h e M a c i n t o s h 6 2 5

2. This isn’t a characteristic effect of either SevenDust or the Agax anti-virus
program.

3. There probably wasn’t a SevenDust infection. The Agax message that this
enquirer saw was a little misleading, though not actually incorrect. Since the
program was unable to read the file in question because of file corruption, it
flagged it as possibly infected. John Dalgliesh, the author of Agax, who
contributed a lot more to this discussion than I did, has indicated that this
minor blemish was subsequently corrected.

I think of WM/Cap as a PC virus, in any case, so I can’t see how a Mac version
Word document can have it. I may be wrong about that; it may be that an original
document was written on a PC with the virus and that it is still infecting the
document but can’t infect other Word documents on my hard drive (of which there
are hundreds) because they were originated on Mac. Is that possible?

Like many macro viruses, WM/Cap thrives (depending on the variant) on Macs
that use Word 6.x. Few of such viruses can deliver their payload (if any) on the Mac,
but most of them can infect on a Mac. Cap has no payload, by the way.

Originating a document on a Mac doesn’t of itself offer any protection. If you’re
using a Mac version of Word earlier or later than 6.x, though, I wouldn’t expect Cap
to be able to infect. Due to bugs in the original code, it’s also possible for a Cap
variant to be noninfective.

I’m genuinely puzzled, particularly because here in Washington, DC, I’m sending
files between my Mac at home and my office where I work on a PC; however, my
office’s firewall never detects a problem.

Firewalls don’t necessarily pick up virus problems at all. That isn’t their primary
function, and many don’t include anti-virus capabilities at all. This isn’t necessarily
a bad thing, but that’s a long and different discussion.

I do not have an anti-virus program but will buy one. Can you tell me what the best
program for a Mac is?

Virex, Norton for Mac, or Sophos for Mac are all good products; you can
get evaluation copies of any or all three from their web sites (www.nai.com,
www.symantec.com, and www.sophos.com). There are free AutoStart AV programs,
but it may be safer to go with a commercial program. F-Secure (www.f-secure.com)
also has a commercial scanner, but it scans only for macro viruses and AutoStart.

6 2 6 V i r u s e s R e v e a l e d

(I’m being accused of sending out infected files.) HELP! Where can I find anti-virus
software for my Mac. Yours is the only site that I can find at the moment for Macs.
Any help will help.

You don’t say which virus you’re accused of spreading. If it’s a macro virus,
you need commercial anti-virus software; there’s no freeware scanner for Mac that
detects macro viruses. However, you can get evaluation copies of Virex, Norton
Anti-Virus, or Sophos from their respective web sites (www.nai.com,
www.symantec.com, and www.sophos.com).

Actually, there is no comprehensive freeware anti-virus software for the Mac; the
freeware that exists is either obsolete, restricted in the range of threats it detects, or
for time-limited evaluation only.

Hi. I would like to know whether the “I Love You” virus can affect a Mac. Thank
you for your quick response to us.

VBS/Lovelet is a Visual Basic Script. It relies on the presence of the Windows
Script Host, which is present only in (some versions and configurations of) Windows.
Obviously, Macs don’t usually have this, and therefore the script can’t be executed
(run). However, if the Mac is running a PC-emulation package such as SoftWindows
or Virtual PC with a vulnerable version or configuration of Windows installed, it is
possible for VBS scripts to be executed within that environment.

Much the same applies to other high-profile VBS viruses. However, you should
be cautious about passing on attachments received from others; Mac users have a
long history of passing on to others various viruses and worms that don’t actually
work on Macs. Some Mac anti-virus packages are unhelpful here, since they don’t
detect any PC-specific viruses.

Certain viruses (KAK, BubbleBoy) pose an additional problem in that they aren’t
contained in attachments, but are embedded in the body of the actual message. (This
is actually rather easy to do inconspicuously, now that so many mail programs read
HTML as well as plain text messages.)

A p p e n d i x B : V i r u s e s a n d t h e M a c i n t o s h 6 2 7

This page intentionally left blank.

APPENDIX

C
Social Engineering

629

IN THIS CHAPTER:

IT Security

What the Intruder Wants to Know

People Hacking

Targeting the Help Desk

Attacks on the Help Desk

Do I Need to Disclose My Password?

Wouldn’t I Notice Unwarranted
Interest in Security Issues?

How Big Is the Risk?

What Are the Solutions?

Good Password Practice

Why Do Password Practices Matter?

Where Do I Get Further Information?

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This appendix is based on David Harley’s Social Engineering FAQ. This
FAQ is still in draft form and is not currently available on the World Wide
Web. It derives from a number of previous discussions in this area, including:

� A presentation delivered to the 1997 SANS conference in New Orleans

� A paper presented to EICAR at the 1998 conference in Munich

� An article on hoaxes printed in the EICAR journal in 1997

� An FAQ on email abuse

This appendix does not present the full FAQ; it does not, for instance, include all
of the material on good password practice, a topic which does not seem particularly
relevant to a book on viruses. It doesn’t include discussion of social engineering in
the context of malware, since such a discussion would cover much the same ground
as Chapter 15. The appendix will, however, give you some useful background for
the social engineering references in the main text.

Chapter 15 includes a number of definitions of social engineering that are also
cited in the full version of the FAQ. However, the working definition that this
appendix uses is as follows: psychological manipulation of an individual or set of
individuals to produce a desired effect on their behaviour.

IT Security
This appendix applies the classic tripod model of information security:

� Confidentiality/Privacy Information should be available only to those who
are entitled to it.

� Integrity Information should be protected against accidental or deliberate
but inappropriate modification.

� Availability Information should be available to those who are entitled
to it when they need it.

Social engineering is most often thought of as an attack on confidentiality
(password stealing). However, psychological manipulation can also be used as an

6 3 0 V i r u s e s R e v e a l e d

attack on integrity, either directly or indirectly. Indirect attacks include password
stealing as a means of gaining unauthorized access so as to effect unauthorized
modification. A direct attack would include persuading or conning a mark (a victim
or target) into introducing an inappropriate modification. It can also be used as an
attack on availability—for instance, dissuading the mark from using a legitimate
resource can be as effective a denial of service (DoS) attack as flooding the target
organization’s Internet gateway with “bad” packets.

What the Intruder Wants to Know
Who “owns” the target machines/systems?

� Is the organization academic, commercial, high-security commercial (banks,
for instance), or military? The type of organization will not only affect the
desirability of the information that the intruder can steal from it, but the sort of
psychological manipulation that is most likely to succeed in that environment.
Academic environments are likely to be receptive to laissez-faire information
sharing, whereas military environments tend to be rigidly hierarchical, so that
an authoritarian persona may be more appropriate.

� Different units/divisions may be receptive to quite different approaches
according to their differing mindsets:

� Human Resources, Finance, and similar departments will tend to be
secretive.

� Public Relations will want to give away as much (favourable) information
as possible.

� Research units will vary according to whether they’re academically
focused or more concerned with trade secrets and patents. (In real life,
academics may be very concerned with patents.)

� Are the administrators competent? Friendly or authoritarian? Do they have
exploitable personal weaknesses? Can they be bullied, seduced, or sidestepped?

� How about the user population? Are they computer-literate? Is there a high rate
of turnover? Is the culture of the organization security-literate? Are the users
deferential to authority figures (such as systems administrators)?

A p p e n d i x C : S o c i a l E n g i n e e r i n g 6 3 1

What sort of hardware, networks, and operating systems are in use? Are they
systems with known weaknesses? Intruders tend to hate VMS, like some flavours
of UNIX, and love NT, which may or may not reflect the actual comparative
vulnerability of each platform. Is it likely that the administrators keep up with all the
current security patches? Are there configuration quirks worth looking out for?

The social engineer may ask questions such as the following: How do I get access?
Is there dial-in access? If I have one voice, fax, or modem number, what do I access
if I dial some numbers close to it (xxx-xxx1, xxx-xxx2, etc.)? Will the switchboard
put me through to one of the following?

� Human Resources. “What jobs are available?” (Would applying for one get me
access to anything interesting?)

� Public Relations. “What can you tell me about the organization and your
current projects?” (Are you worth further snooping?)

� Security. “Are you interested in staff or products such as XYZ?” (“Ah, so
you’re already using ABC…”)

� Switchboard. “Who do I need to talk to about.....?” (Switchboard operators
rarely do significant security screening.)

� Sales/Marketing. “What current products are you selling?” (What do you have
that is worth stealing?)

� Help Desk. “Give me my password”.

People Hacking
People may be as good a resource as any database. Here are some ways of tapping
that resource.

Shouldersurfing
This usually means standing where you can watch someone type in sensitive data
such as passwords, usernames, PINs, phone card numbers, and so on. Even seeing
what kind of hand-held authentication device employees use may be of some use to
a black hat.

NOTE

Black hat is common security/hacker slang for a bad guy. The term stems from the Old West
stereotype that the good guys wear white Stetsons while the bandits wear black hats.

6 3 2 V i r u s e s R e v e a l e d

Eavesdropping/Surveillance
Hackers use a variety of methods to conduct surveillance:

� Using electronics: sniffers, vampire taps, directional microphones, phone taps,
and so on.

� “Being there”—around the corner, at the next table, or in the reception area—
at the right time.

� “Being invisible”—temps, cleaners, janitors, electricians, telco (telephone
company) engineers, contractors, messengers, couriers, and similar workers
tend to be overlooked by professionals. Moral: check out strangers (politely
and cautiously).

Inappropriate Access
Unauthorized access and social engineering go together like ham and eggs:

� Unsecured servers (those with physical access to the hardware, unsecured
system files, weak logins, and so on).

� Unsecured portable equipment.

� Unsecured visual access. (People who administer servers shouldn’t live in
glass houses, let alone throw stones.)

� Unsecured physical access—tailgating (following an authorized person
through a locked door or turnstile, for example), insecure reception areas,
shared keypad codes, and so on.

Being Sociable
Socializing creates opportunities to gather information:

� After-hours activities, such as chats down the pub, in newsgroups,
or in chatrooms

� In the course of business, including social chat during business calls

Phone Phonies
People are accustomed to some freedom in responding to callers claiming to be
conducting surveys, journalistic enquiries, or sales cold-calling, and may give away

A p p e n d i x C : S o c i a l E n g i n e e r i n g 6 3 3

valuable organizational information. There are also fraudulent phone-related activities
such as stealing service (conning a connection), slamming (changing providers without
the knowledge or consent of the consumer), credit card fraud, and so on.

Dumpster Diving
For every firm that shreds everything, there are a dozen that don’t. Skips (dumpsters),
waste baskets, recycling bins, and such are often rich sources of organizational
information, classified information, obsolete media, and even hardware.

Electronic Leftovers
Systems provide a lot of electronic “waste” that can yield valuable information:

� Disk, file, print, spool, and terminal buffers are often left untidied and unflushed.

� “Deleted” files are often still accessible to someone with even a bare minimum
of technical knowledge or basic recovery tools.

� Deleted material within files is often still available: Microsoft Word files can,
under some circumstances, not only contain long-discarded material (any
application that allows multiple levels of “Undo” when the user is editing data
may have this vulnerability), but may also contain material picked up randomly
from other locations on the system.

� If you have physical access to a PC, there’s a good chance you can retrieve
something interesting if, for instance, the owner hasn’t logged out of a network
connection.

Targeting the Help Desk
The Help Desk is often a highly rewarding target for social engineering, such as:

� Asking for, begging for, or demanding a password or other access

� Playing the new, forgetful, demanding, or wheedling customer

� Playing the victim of a demanding but forgetful manager (“If he doesn’t get
xxx, I’ll lose my job”.)

� Playing the authority figure

6 3 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

� Applying good cop/bad cop teamwork

� Posing as a Help Desk/support person needing information (such as a password)
in order to solve a system problem

Attacks on the Help Desk
Many Help Desk customers expect too much, too little, or sometimes both from
support staff. However, such expectations cut two ways. Consider the standard
support jokes and apocrypha about dumb users: photocopied diskettes; memoranda
stapled to floppies; CD trays used as cupholders; “I pressed F1 an hour ago and no
one’s been back to me yet”.

IT staff have low expectations with respect to the expertise of customers, who
may have a very narrow, focused view of the technology on which they rely; it
isn’t necessarily difficult to convince an IT staff member that you need help or
reminders regarding a very basic operation. It’s often quite easy to persuade
someone who can change your password to do so, if he or she has no particular
reason to doubt your credentials, and if the organization has no strict policy on
verifying password requests.

Do I Need to Disclose My Password?
If anyone asks you for your password as an aid to solving a system problem, verify
the request to the best of your ability. A systems administrator is usually a highly
privileged individual. He or she probably doesn’t have an easy way to ascertain your
current password, but probably doesn’t need it: a systems administrator can access
your account, email, and files using administrator/supervisor privileges. He or she
can even use a utility such as su to act as you on the system. In such instances, the
systems administrator can change your password temporarily, then let you change
it back or to something personally meaningful afterwards.

Wouldn’t I Notice Unwarranted
Interest in Security Issues?
Not necessarily. One recommended technique for intruders is to learn to back off
from exciting suspicion. Social engineers try not to pump you for information: they

A p p e n d i x C : S o c i a l E n g i n e e r i n g 6 3 5

piece together information from a variety of sources, or ask you for just enough to
get them a step nearer to free access.

How Big Is the Risk?
The degree of risk that your system faces depends on the source of the risk:

� From external hackers? It depends on how high-profile you are, and how well
protected.

� From internal sources? Most sources indicate that 60 to 90 percent of breaches
are internal, though most of those breaches will probably be accidental (user
error) or acts of God rather than malicious. Also, the claimed level of internal
breaches has shifted downward over the years, the study by CSI and the
FBI at http://www.gocsi.com being a case in point. Nevertheless, a significant
proportion of recorded incidents will be “planted” intruders, disgruntled or
socially engineered employees, or even employees future-proofing (with time
bombs or other logic bombs) in case they’re suddenly “severed”.

What Are the Solutions?
User education is the key solution. You can’t turn every customer into a computer-
literate user, let alone a security expert. But you can persuade customers to think
more in terms of security—after all, security affects them, their data, and their job
prospects. The better that you as a security person understand the issues, the better
able you are to determine a customer’s weak spots. The same principle applies to the
social engineer, too, however. Generally, educating customers in this area is very
similar to teaching people how to avoid con artists in nontechnical situations and
taking normal precautions to protect your house, money, or children—“Don’t get in
a car with strangers” is a good example of the type of lesson that you need to teach.
The trick is to get people to regard electronic interactions with the same caution as
they apply to their offline transactions:

� Think code of ethics. Computer ethics remains unexplored territory for most
people. Even (especially?) computer scientists tend to be lacking in ethical
training. Formulate a code and make clear the costs to any individual who
breaches it.

6 3 6 V i r u s e s R e v e a l e d

� Think policy. You can’t expect too much of general education, but if you tie it
to specific, easily available policies, you give your customers less to remember,
and fewer excuses for forgetting. Specify not only what’s forbidden, but some
of the reasons for the restrictions.

� Think procedures. Give your users guidelines on how to use anti-virus
software, select good passwords, practice access control, apply encryption
tools, and so on.

� Think diagnosis. Teach users how to spot anomalies. Make sure they know
what to report, and to whom. Logging and analysis are vital.

� Think draconian, where appropriate:

� Don’t talk to strangers.

� Don’t give away inappropriate information to nonstrangers.

� Query unaccompanied or unbadged visitors.

� Don’t share passwords, login details, PINs, or similar information.

Help Desk and other IT units have special privileges and vulnerabilities. Educate,
educate, educate. “People hackers” tend to work on their victims’ respect for authority,
desire to be helpful, and desire to be unhelpful, or even downright antisocial. One of
those options will cover most employees.

New employees are an easy mark, because they know enough to make them worth
employing, but don’t know most of the people with whom they’re going to work.
Moral: build your defences into induction procedures. On the other hand, posing as
a new employee gives the wannabe hacker credence and leverage as someone who
doesn’t know something; conversely, it would seem very suspicious if a seasoned
employee lacked basic knowledge of the company’s system and procedures.

Don’t have too much trust in trust (to paraphrase Ken Thompson). Known (or
perceived to be known) coworkers often aren’t questioned about their actions and
movements—especially IT staff. “I’m from IT. I need to check something on your
PC/account. Give me your password. Give me ten minutes unobserved. Give me a
file on a floppy. Let me install this utility. Let me use your phone. Let me read your
mail”. Non-IT staff, especially “invisible” people (described earlier in this appendix),
are also dangerous, though. Getting a job as a janitor is a well-known hacker resource.
As janitor, you get to:

� Take away trash (which you can then sift through)

� Go into offices when no one is there

A p p e n d i x C : S o c i a l E n g i n e e r i n g 6 3 7

� Fiddle with electronics

� “Clean” and even disassemble/reassemble phones, allowing for serious surveillance

� Shouldersurf

� Steal hardware, paperwork, media, personal possessions, and so on

Good Password Practice
The sad fact is that static passwords are a superficially cheap but brain-damaged
solution to a very difficult problem (access control). One-time passwords are much
more secure, but have other disadvantages—chiefly expense and inconvenience.
Biometric systems are still expensive to install and maintain.

Why Do Password Practices Matter?
Good password practices are critical for the following reasons:

� The most common form of attack on a corporate system is password guessing.

� On most systems, most untrusted services are protected primarily by passwords
rather than more glamorous methodologies such as smart cards, biometric
systems, hand-held authentication, and so on.

� Insecure passwording, whether engendered by bad systems practice or bad user
practice, may endanger data in breach-of-data-protection legislation, contractual
obligation, or corporate policy.

� CERT (Computer Emergency Response Team) states that “80% of all network
security problems [are] generated by [a] bad password”.

Passwords: Good Systems Enforcement Practice
Password enforcement is a trade-off between paranoia and practicality. The tighter
the restrictions, the more pressure on the user to evade restrictions as far as possible
so that he or she can get on with the job. Keep the following in mind as you set
your restrictions:

� Buffers that store login keystrokes are a security risk.

� Unlimited attempts to access a passworded system should not be allowed.
Limitations should also apply to dial-in access.

6 3 8 V i r u s e s R e v e a l e d

� Where a login attempt threshold has been set, breaches should be audited.
The user should be notified at the next successful login, and encouraged to
report anomalies.

� Each user should have only one account unless there’s a very good reason
for making an exception.

� First-time users should receive a unique password (not a default password,
least of all an easy guess such as password, abc123, or, worst of all, a null
password) and be forced to change it at the first login.

� When assigning passwords, using random patterns is preferable to using the
same word as the account name or using a password that derives from some
other easily guessed formula.

� Passwords shouldn’t be given or changed on the strength of an unverified
phone call. Ringing back to a trusted phone number or mailing to a trusted
individual is better than nothing, but certainly isn’t as secure as requiring a
user to report in person with verifiable identification.

� A classic password attack technique is to take advantage of an accessible
/etc/passwd and play with the password field to apply guessing techniques
offline. Shadow password files and dummy password files are recommended.

� Password aging is optimal, in principle. However, it pressures the user into
evasive strategies, such as:

� Recycling passwords on systems that allow it. (Sometimes this strategy is
just a matter of changing the password a given number of times until the
system accepts the one that has just timed out.)

� Using the same password on a number of systems and changing them all
at the same time. This strategy is subject to the same objection that is often
made to single sign-on: breaking one password gives an intruder
everything.

� Writing the password down and leaving it somewhere accessible and
therefore insecure (worst case: on a yellow stickie on the monitor).

Best Practice
Don’t share passwords unless there’s a formal protocol set up to allow it. More
than one person sharing an account is a major threat to security (except under very
controlled conditions); at the very least, it presents difficulties in tracking problems,
even where no malicious intent is suspected. Unless clearance in writing has been
obtained from an appropriate person (normally the system manager or equivalent for

A p p e n d i x C : S o c i a l E n g i n e e r i n g 6 3 9

the relevant system rather than the head of a client unit), such practice may be
regarded as a breach of discipline.

Other rules of thumb for good password practice include the following:

� Integrity of shared data can be compromised (through overwriting by incorrect
versions, inadequate file or record locking, or accidental deletion) unless
sharing is properly organized.

� The more people with access, the greater the risk of accidental or deliberate
extension of access to intruders.

� The more people with access, the easier cracking the password is likely to be.

� Any breach of security on one networked computer is likely to compromise
security on the whole of the network.

� Attacks on computer systems can come from inside as well as outside.

� If an attack is traced to a particular account, the holder of that account will be
a prime suspect.

Be aware of the social engineering approach to cracking passwords: the quickest
route to appropriating a password (especially a shared one) can be via a phone call
and a bluff. Don’t disclose passwords to anyone whose identity you can’t verify, or
whose right or need to know is in doubt.

Beware of any request for your password, especially one sent by mail or generated
by any program, from whatever apparent source. (The request could have been planted.)

Where Do I Get Further Information?
Here are some good sources for more detailed information on social engineering:

� The NCSA Guide to Enterprise Security: Protecting Information Assets,
by Michel Kabay (McGraw-Hill, 1999)

� Web search for one or several articles by Ira Winkler

� Halting the Hacker, by Donald L. Pipkin (Prentice Hall, 1996)

� Bandits on the Information Superhighway, by Daniel J. Barrett (O’Reilly and
Associates, 1996)

6 4 0 V i r u s e s R e v e a l e d

Glossary

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

6 4 2 V i r u s e s R e v e a l e d

ActiveX A Microsoft system that allows active programming content to be placed
in web pages and email messages. ActiveX is tied to a certificate system that may
alert users to the presence of active content, but has no other restrictions on the
scope of program activity.

activity blocker See behaviour blocker.

activity monitor A type of antiviral software that checks for signs of suspicious
activity, such as attempts to rewrite program files, format disks, modify the boot
sector or NORMAL.DOT, and so on. See also behaviour blocker. Sometimes called
behaviour monitor.

alias An alternative name for a virus. As there is no absolute naming convention
for viruses, some have a number of aliases, according to the vendor and product
used. Unfortunately, this can result in considerable confusion.

ANSI bomb Use of certain codes (escape sequences, usually embedded in text files
or email messages) that remap keys on the keyboard to commands such as DELETE
or FORMAT.

ANSI (the American National Standards Institute) is a short form that refers to the
ANSI screen formatting rules. Many early MS-DOS programs relied on these rules,
and required the use of the ANSI.SYS file, which also allowed keyboard remapping.
The use of ANSI.SYS is very rare today.

antiviral Generally, a shortened term for antiviral software or systems of all types.

Apology Apology or Apology.B is an alias for the MTX or Matrix Worm.

AppleScript A scripting language available on recent models of Macintosh (to
some extent, a replacement for HyperCard). Some AppleScript Trojans and an
AppleScript worm are known to exist at the time of this writing.

archive A file that contains a number of related files, usually in a compressed
format to reduce file size and transmission (upload or download) time on electronic
bulletin boards. Most software that is distributed as shareware is distributed as an
archive which contains all related programs, as well as documentation and possibly

data files. Archived files, because of the compression, appear to be encrypted, and
therefore infected files inside archives may not be detected by scanning software.
See also compressed executable, self-extracting archive.

authentication The use of some kind of system to ensure that a file or message
which purports to come from a given individual or company actually does. Many
authentication systems are now looking toward public key encryption, and the
calculation of a check based upon the contents of the file or message as well as
a password or key. See also change detection.

AV An abbreviation used to distinguish the antiviral research community (AV)
from those who call themselves “virus researchers” but who are primarily interested
in writing and exchanging viral programs (VX). Also an abbreviation for antiviral
software. See also VX.

AVIEN Anti-Virus Information Exchange Network: includes a number of mailing
lists by which systems administrators and others share information on new malware
and related security issues. (www.avien.org)

backdoor A function built in to a program or system to allow unusually high,
or even full, access to the system either without an account or from a normally
restricted account. This practice has legitimate uses in program development. The
backdoor is sometimes left in a fully developed system either by design or accident.
Sometimes called trapdoor. See RAT (remote access tools).

bacterium A specialized form of viral program that does not attach to a specific file.
The use of this term is fairly obscure and rarely seen.

bait An infection target of initially known characteristics. The term is usually used
in reference to a file. To trap file infectors that insist on larger files, a string of null
characters of arbitrary length is often used as padding. Floppy disks are used as bait
for boot-sector viral programs, but the term is not often used to refer to such disks.
Another name for bait files is goat or sacrificial goat files.

behaviour blocker Similar to an activity monitor, a behaviour blocker not only alerts
a user to unusual or dangerous computer operations, but actually restricts them.
Sometimes called operation restrictor, activity blocker, behaviour blocker. See also
activity monitor.

G l o s s a r y 6 4 3

behaviour monitor See activity monitor.

benign A somewhat careless adjective often used to describe a viral code that
appears not to be intentionally malicious in that it does not carry an obviously
damaging payload code section. Since viral programs may cause problems simply
by using system resources or modifying files, many experts are of the opinion that
a “good” virus is impossible.

BIOS Basic input/output system. The initial programming, stored in ROM
(read-only memory), that is used to boot the widely used IBM-compatible family
of computers that is based on Intel 80x86 family processors. Most of these computers
are used with the MS-DOS operating system, but the BIOS programming is sufficient
for some viral programs that can therefore infect machines that do not run MS-DOS.
Some computers now use EEPROM (electrically erasable programmable read-only
memory), and some viruses and Trojans now try to cause damage by erasing or
writing garbage to such “flash” BIOS. Otherwise, however, a virus cannot infect
or corrupt BIOS.

black hat A community or individual who either attempts to break into computer
systems without prior authorization or who explores security primarily from an
“attack” perspective. The term originates from old American Western genre movies,
where the “good guys” always wore white hats and the “bad guys” always wore
black. See also white hat.

boot sector The first sector on a hard disk. Most microcomputers allow “booting”
from a floppy disk, and therefore automatically look for the first sector on a floppy
disk and run any program found there. On an MS-DOS/BIOS computer with a hard
disk, the first physical sector on the hard disk is the master boot record (see MBR),
and the boot sector is the first sector on the “logical” disk partition.

boot-sector virus See BSV.

Brain Almost certainly the first virus written in the MS-DOS computing environment
that became widespread among normal computer users. Brain is an example of a
“strict” boot-sector infector, and the earliest known use of “stealth” virus programming.
The virus is sometimes referred to as Brain (C) or (C) Brain due to the presence of
the string “(C) 1986 Brain” in the body of the virus.

6 4 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

G l o s s a r y 6 4 5

BS5750 The British standard for quality management on which ISO 9000 is based.

BS7799 A British standard consisting of a code of practice for information security
management, and a specification for information security management systems.
BS7799 is the basis for ISO standard 17799.

BSI Boot-sector infector (see BSV). Also an acronym for the British Standards
Institute, the body from which BS7799 (ISO17799) and BS5750 (ISO 9000)
originated.

BSV A boot-sector virus, sometimes known as a boot-sector infector (BSI). A virus
that replaces the original boot sector on a floppy disk. A “strict” BSV infects only
the boot sector regardless of whether the target is a hard disk or a floppy diskette.
Sometimes a virus attacks the first physical sector of the disk, regardless of disk
type; in this case, it attacks the master boot record on hard disks and is known as
a BSV of MBR type.

CERT Computer Emergency Response Team. (www.cert.org)

change detection Antiviral software that looks for changes in the computer system.
A virus must change something, and it is assumed that program files, disk system
areas, and certain areas of memory should not change. This software is often referred
to as integrity-checking software, but it does not necessarily protect the integrity of
data, nor does it always assess the reasons for a possibly valid change. Change
detection using strong encryption is sometimes also known as authentication
software. See authentication.

checksum In its strictest form, a calculation based upon adding up all the bytes in
a file or message. This calculation is used in change-detection systems. The term is
sometimes carelessly used to refer to all forms of change detection or authentication
that rely on some form of calculation based upon file content, such as cyclic
redundancy checking. See also CRC.

CHRISTMA EXEC A specific example of a viral type of email message, the earliest
known script email virus. It was written using the REXX scripting language. This
message was released in December 1987. The user was asked to type “CHRISTMA”
in order to generate an electronic Christmas card, but was not told that the program

also made, and mailed, copies of itself during the display. (Within the virus research
community, the form CHRISTMA EXEC is used almost universally. The more correct
form is CHRISTMA exec, since REXX scripts were referred to as execs to distinguish
them from the earlier EXEC language in IBM mainframes.)

CIAC Computer Incident Advisory Capability. (www.ciac.org/ciac)

cluster virus See link virus.

CMOS Complementary metal oxide semiconductor. A technology that is used in a
form of memory that can be held in the computer, while the main power is off, with
low-power battery backup. CMOS memory is used in MS-DOS/BIOS computers to
hold small tables of information regarding the basic hardware of the system. Since
the memory is maintained while the power is off, there is a myth that viral programs
can hide in the CMOS. The assertion is false, since CMOS memory is too small, and
the contents are never executed as a program. Also, when the battery power fails, the
computer is temporarily unusable. This is often attributed, falsely, to viral activity.
CMOS is often confused with BIOS firmware.

code In computer terminology, either human (source) or machine (object) readable
programming or fragments thereof. Since viral programs, before they attach to a host
program, are not complete programs, they are often referred to as code to distinguish
them from programs, which are complete in themselves.

Code Red A worm that takes advantage of a vulnerability in unpatched Microsoft
IIS servers.

commercial software Programs that are sold either directly from the manufacturer
or through normal retail channels, as opposed to shareware. Users are often told to
“buy only commercial” as a defence against viral infections. In fact, there is very
little risk of obtaining viral infections from shareware, and there are many known
instances of viral programs infecting commercial software.

companion virus A type of viral program that does not actually attach to another
program, but which interposes itself into the chain of command, so that the virus
is executed before the infected program. Most often, the virus does this by using a
similar name and the rules of program precedence to associate itself with a regular
program. Also referred to as a spawning virus.

6 4 6 V i r u s e s R e v e a l e d

G l o s s a r y 6 4 7

compressed executable A program file that has been compressed to save disk
space, and which automatically returns to executable form when invoked. Because
compression appears to be a form of encryption, programs that are infected before
being compressed may hide the infection from scanning software. See also archive,
self-extracting archive.

compressed file See file compression.

computer viral program Rob Slade’s own invention. In an attempt to avoid the fights
over what constitutes a “true” virus, he uses the term viral to refer to self-reproducing
programs regardless of other distinctions. So far, he’s gotten away with it.

Concept (WM/Concept) Probably the first Microsoft Word macro virus, and certainly
the first macro virus (apart from Macintosh Hypercard infectors) to be successful in
the wild.

core wars A computer game in which two or more programs attempt to destroy
each other inside a simulated computer. Originally played with real programs in
the earliest timesharing computers and inspired by the operations of rogue programs.
Often discussed in connection with the “battle” between malicious software and
protective software developers. Core Wars is now a standardized game using a
simulated machine language called Redstone code (or redcode). Red Code and Core
Red are sometimes seen as synonyms for the Code Red worm, but this probably
derives from typographical errors. There is no relationship between Redstone code
and any form of the Code Red worm.

crab Originally a prank program on Macintosh and Atari computers that erased the
screen display by having graphical crabs eat it. An obscure usage refers to malicious
software that erases screen displays. (There are very few examples of such software.)

cracker Common synonym for hacker. The term is particularly associated with
password “cracking” (gaining unauthorized access). The cracker “cracks” copy-
protected programs, allowing easy installation of illegal copies. White hat hackers
hold crackers in disdain.

CRC Cyclic redundancy check. A version of change detection that calculates the
data in a file or message as a matrix. This calculation can detect multiple or subtle
changes that ordinary checksum calculations miss. CRC is also used extensively in
data communications for ensuring the integrity of file transfers. See also checksum.

DAME Dark Avenger’s Mutation Engine. See MtE.

Dark Avenger The pseudonym of a Bulgarian virus writer thought to be responsible for
the “Eddie” family of viral programs (among others) and the polymorphic code known
as the MtE. The pseudonym has probably been used by more than one individual.

date bomb See time bomb.

DDoS See distributed denial of service.

denial of service (DoS) A form of malicious attack, particularly suited to viral programs,
where no data is actually erased or corrupted but where system resources are occupied
to the extent that normal service is restricted. The CHRISTMA EXEC did not corrupt
data, but occupied mail links to the point where normal transfers could not take place.
The Internet Worm did not erase files, but multiple copies of the process eventually
meant that almost all processing was devoted to the Worm. Modern Internet DoS
attacks typically try to flood a machine with synchronization requests from nonexistent
addresses. DoS is not to be confused with DOS, which stands for disk operating system,
and particularly the MS-DOS operating system and its variants.

disinfection The action of removing a virus from an infected system or object, or
disabling the virus without fully removing it. Because of various actions a virus may
take, it is not always possible to completely restore a system to a state identical to
that present prior to infection. Also, because of disagreements, particularly between
vendors, as to what constitutes disinfection, deletion of the infected object is generally
considered to be the best form of disinfection.

disk compression Real-time compression and decompression of files on a disk in
order to increase disk space effectively. Disk compression programs typically
promise to “double” the size of the hard disk. Because disk compression works by
creating a “virtual disk” that is actually a large file, scanning a compressed disk
without the compression software running will typically hide viruses from a scanner.

distributed denial of service (DDoS) A form of network DoS (denial of service) attack
that uses backdoor agent, client, or zombie software on a number of machines. A master
computer will attempt to control a number of machines and coordinate an attack on a
target. The master computer never contacts the target directly, and the large number of
zombie machines multiplies the force of the attack. See zombie, denial of service (DoS).

DLL Dynamic link library. An executable file containing routines that can be accessed
by one or more Windows executables.

6 4 8 V i r u s e s R e v e a l e d

G l o s s a r y 6 4 9

DoS See denial of service.

DOS Disk operating system. Often used as shorthand for MS-DOS or PC-DOS,
but not strictly correctly.

dropper Usually a program that installs a virus but is not itself viral (that is,
itdoesn’t replicate).

EICAR European Institute for Computer Anti-virus Research. The EICAR
test file is a .COM file that can be used to test whether anti-virus software
is active.

encryption A change to a message or file such that the appearance of the data is
changed and cannot be recognized as the original without proper processing.
Encryption is also a side effect of the file compression process. Polymorphism is
a deliberate version of encryption used in viral programs to make it harder for virus
scanners to recognize their presence. However, encryption is most often used to
password-protect files, disks, mail messages, and so on. Also, the act of placing
a coffin in a mausoleum.

exploit In security terms, an attack that uses a specific instance of a vulnerability
or loophole. The Love Bug worm could be said to be an exploit of the fact that
Windows 32-bit (Win32) systems use only the final filename extension as an
indicator of file type, and the default installation of Windows Script Host with
Windows 98, Windows 2000, and Internet Explorer 5 and higher. Sometimes the
slang term “sploit” is used.

exposure In security terms, a synonym for exploit, and also the level of risk from
a specific threat or vulnerability. For example, users of Microsoft software and
Microsoft Windows operating systems have, generally, a higher exposure to virus
infection, due to the number of possible viruses for those platforms, and the built-in
functionality that virus writers can utilize.

false negative One of two types of “false” reports from antiviral software. When
such software reports no viral activity or presence when a virus is in fact present,
that report is a false negative. References to false negatives are usually made only
in technical reports. Most people simply refer to antiviral software “missing” a virus.
A false negative is more generally known in the security community as a false
acceptance or a Type II error.

6 5 0 V i r u s e s R e v e a l e d

false positive The second kind of false report that antiviral software can make.
If the software reports the activity or presence of a virus when there is, in fact,
no virus, that report is a false positive. The term has come to be very widely used
among those who know about viral and antiviral programs. Very few use the analogous
term, false alarm. A false positive is more generally known in the security community
as a false rejection or a Type I error. The acronym FP is also sometimes used.

FAQ An information document (from Frequently Asked Questions).

FAT (File Allocation Table) In the MS-DOS operating system, the area of system
information on the disk that refers to the physical areas of the disk which are taken
up by files or portions of files. Certain viral programs are said to “take over” a file
pointer without affecting directory information by manipulating FAT information.
This is not quite accurate, and most researchers tend to prefer the use of the term
system virus or infector.

FDISK /MBR An MS-DOS command (usually undocumented) that is sometimes
recommended as a means of disinfecting boot-sector viruses without anti-virus
software. However, in some circumstances, this command can result in the loss of
data and disk access.

file compression A form of encryption performed on files to minimize the space
they take on disk. File compression is generally done manually, on a file-by-file
basis, as opposed to the automated disk compression. As a form of encryption, file
compression may hide virus infections in compressed files. Superior antiviral
programs can now scan inside normally compressed files, sometimes even inside
nested compressed files (those that contain compressed files inside compressed
files). However, scanning inside compressed or archived files is not always reliable.

file infector A virus that attaches itself to, or associates itself with, a file, usually
a program file. File infectors most often append or prepend themselves to regular
program files, or overwrite program code. File infectors may also insert themselves
into free space within the program that exists in portable executable (PE) files, or
even in the middle of files, though this is not as common. The file infector class is
often also used to refer to programs that do not physically attach to files but associate
themselves with program filenames. The term is not usually applied to macro viruses,
even though these do, in a sense, infect files. See system infector, companion virus.

freeware Software to which the author or developer still retains copyright
(unlike public domain), but for which there is no charge (unlike shareware or
commercial software). There are sometimes restrictions on the use or distribution
of freeware. See commercial software, open source, pubic domain, shareware.

ftp File transfer protocol. The protocol used to copy files between computers on
the Internet. ftp (almost always written in lowercase) has nothing to do with viral
programs or data security at all; it has just come to be such a common term among
those who work on the Internet that we have used it in the book a number of times
without ever defining it. It is often used as a verb, as in “Where do I find the latest
copy of DISKSECURE?” “Oh, you can ftp it from urvax”. A computer set up to
provide files for all callers from anywhere on the Internet is known as an ftp site.
Anonymous ftp sites usually allow connection for download of software without
requiring an account on the system, but have to some extent been supplanted
by web sites.

generic antiviral software Activity-monitoring and change-detection antiviral
software. Such software is considered generic because it looks for suggestions of
viral activity rather than specific virus signatures. Heuristic scanners are often also
considered generic, because they can be viewed as a special case of activity monitors.
See activity monitor, change detection, heuristic.

generic disinfection The use of heuristic rather than virus-specific techniques for
disinfection.

generic scan string A virus scan string that matches more than one virus. The
usefulness of generic scan strings is sometimes questioned, but they can detect an
unknown virus very effectively. See signature.

germ A viral program that does not directly attach to programs. See bacterium.
The term is sometimes used to describe a generation-zero virus, one that has not yet
infected its first sample.

Ghost Positive Detection by a virus scanner of viral traces which are reported as a
full-blown viral infection, usually as a result of incomplete disinfection by another product.

goat See bait.

G l o s s a r y 6 5 1

grey hat An individual who is not quite a black hat (virus writer, cracker, vandal, or
such), but not altogether a white hat either. Some “ethical hackers” and people who
write both viruses and anti-virus software could be said to belong to this group.

hacker Originally, someone who had or was on the way to acquiring an unusual
degree of skill in various aspects of computer use. Now the term is used almost
exclusively to refer to computer vandals, people who break into systems, and so
on. Often the term is used in the phrase “hackers and virus writers”, not altogether
appropriately, as the two groups are not necessarily closely related, and virus-writers
are not particularly admired by old-time or criminal hackers. Old-time hackers prefer
to refer to computer vandals and criminals as crackers, but the equation of hacking
with criminal is now firmly embedded in the popular and media consciousness.

heterogeneous virus transmission The phenomenon where a virus finds its way into an
environment in which it cannot be executed (for example, a Windows virus on UNIX
server or a Macintosh virus on a PC), but can be passed on to another vulnerable system
passively instead of by self-replication. Peter Radatti probably coined the term.

heuristic In antiviral terms, the examination of program code for functions known
to be associated with viral activity. (While no single activity is proof positive that
a virus is present, the presence of a number of such activities is taken to suggest a
likely infection.) In most cases, a heuristic is similar to activity monitoring, but without
the actual execution of the program; in other cases, code is run under some type of
emulation. There is also, as of this writing, a single case of a heuristic disinfection
program that attempts to remove viral infections by examining unknown code.

hoax A message warning about a non-existent virus. A hoax generally asks the
reader to forward the message to everyone possible, thus becoming a virus, of a sort,
itself. See metavirus.

Hybris An infective program that most specialists would probably classify as a worm,
since it sends copies of itself as email attachments. Hybris will generally come in a
message with a coy indication that the attachment is pornography. The attachment is
often named with an .SCR extension. The extension is traditionally used to indicate
screensavers, but the file format is the same as for any normal executable Windows
program. The notable feature of Hybris is that, when active, it checks for replacement
and upgrade modules on the alt.comp.virus newsgroup. Other viruses, such as Love
Bug, have attempted to establish such a modular extension function, but Hybris has
extended the concept further and used an anonymous communications facility.

6 5 2 V i r u s e s R e v e a l e d

G l o s s a r y 6 5 3

IDS Intrusion Detection System. An automated process auditing activity and
alerting operators to patterns indicating unauthorized penetration or attack.

infection The transmission of a virus into a computer system, and execution of the
replicative code. An infection, on a given system, does not take place until a virus
has become active, reproduced, or made a change to the system. A user or system
may receive a virus as a file transfer, a virus-infected piece of software, or an email
attachment, and not necessarily become infected. So long as a user does not invoke
the virus, or a worm does not find a specific vulnerability to exploit, the infected
file may remain dormant on the system without infecting the system itself. However,
a system may also be considered infected if the virus has either placed itself in a
situation such that the operating system will activate it during a common occurrence
(such as booting the system) or if a user is likely to call an infected, and commonly
used, program.

integrity checker See change detection, authentication.

intended Code intended to be a virus, but incapable of replicating.

Internet Worm An infamous worm, also known as the UNIX Worm after the
operating system it used, or the Morris Worm after the author, or, very specifically,
the Internet/Morris/UNIX Worm. Launched in November 1988, it spread to some
3,000–4,000 machines connected to the Internet, wasting CPU cycles and clogging
mail spools. It affected mail traffic (in particular) throughout the Internet for a few
days and was probably the viral program most widely known to the general public
before Melissa and the Love Bug.

Jerusalem One of the earliest MS-DOS file infectors known to be in the wild.
Discovered and probably written in Israel, Jerusalem was originally known as the
Israeli virus, and has also been called PLO, Friday the 13th, and 1813. The infector
is widely used as a template for the development of variant viral strains.

joke In the anti-virus context, this refers to joke programs rather than to funny
stories. May include totally harmless programs, such as CokeGift, but some jokes may
have some adverse psychological effect, such as pretending to format the hard disk.

kit A program used to produce viral code from a menu or a list of characteristics.
Use of a virus kit involves no skill on the part of the user. Fortunately, most virus
kits produce easily identifiable code. Packages of antiviral utilities are sometimes
referred to as tool kits.

6 5 4 V i r u s e s R e v e a l e d

LAN Local area network.

latent virus Any virus in an environment in which it cannot execute and
self-replicate.

Lehigh One of the first MS-DOS viral programs. Lehigh only infected copies of
the COMMAND.COM program. The virus is thought to have been isolated to the
campus of Lehigh University, where it was discovered, but most researchers and VX
boards have copies. The limited use of bootable MS-DOS diskettes makes it unlikely
that the virus would successfully spread if re-released.

link virus A term that is not used very widely and is defined in a variety of ways.
Amiga and Atari users talk about a link virus as a file infector. Some others use
the term to refer to system or FAT viral programs. The term link may also refer
to the activity or process by which a virus that does not attach to a program file
becomes active when the program is called, sometimes by changing the pointer
from the file directory to a different disk cluster.

logic bomb A section of code, preprogrammed into a larger program, that waits
for some trigger event to perform some damaging function. Logic bombs do not
reproduce and so are not viral, but a virus may contain a logic bomb as a payload.
Logic bombs that trigger at preprogrammed times are sometimes known as time
bombs.

Love Bug A script email virus that used Outlook and Windows Script Host.
The virus spread itself as an email with an attachment called LOVE-LETTER-
FOR-YOU.TXT.vbs. The filename was an interesting piece of social engineering,
in that people were supposed to notice the .TXT extension and think the file was
only a text file, and obviously were not supposed to notice the .vbs extension, the
file’s actual extension, which identifies the file as a script.

MacMag An early Macintosh virus known also as Brandow, after the instigator
(the publisher of MacMag), and Peace, after the message payload. MacMag has
the dubious distinction of being the first virus known to have infected commercial
software.

macro virus A virus that attacks a macro, which is a small piece of programming
in a simple language, used to perform a simple, repetitive function. Microsoft’s
WordBasic and VBA macro languages can include macros in data files, and have

TE
AM
FL
Y

Team-Fly®

G l o s s a r y 6 5 5

more than enough functionality to write complete viruses. Existing macro viruses
are usually application-specific, rather than operating system (OS)-specific.

malicious virus A virus known to carry an intentionally damaging payload that will
erase or corrupt files or data. Many antiviral researchers feel that all viral programs
carry the potential for unintentional damage since all viral programs change the target
environment. See also benign.

malignant In medicine (especially oncology), the antonym of benign. The adjective
is rarely used in computer virology, except as an alternative to malicious, which is
usually used in a less specific sense.

malware Generally, all forms of malicious or damaging software, including viral
programs, Trojan horses, logic bombs, and the like. It is generally taken to include
so-called benign viruses that have no intentionally damaging payload.

Matrix See MTX.

MBR Master boot record. The “physical first” sector on the hard disk. The MBR
contains information about the hard disk structure and operating system to use on
BIOS/Intel computers. The MBR is a target for a certain class of boot-sector-
infecting viral programs. See BSV.

Melissa A Word macro virus that also used functions in the Outlook email program
in order to spread itself very successfully and quickly.

meme, memetic A unit of cultural transmission, or a unit of imitation. The term,
coined by Richard Dawkins, is abbreviated from mimeme, so as to sound more like
gene. As examples of memes, Dawkins cites tunes, ideas, catchphrases, and so on.
The science (or pseudoscience) of memetics has grown out of this coining. In
the context of security, it is usually applied in terms of virus and other hoaxes, chain
letters, and so on.

memory-resident See resident.

metavirus Usually, a virus hoax, but sometimes, more loosely, a chain letter.

6 5 6 V i r u s e s R e v e a l e d

Michelangelo A descendent of the Stoned boot-sector/MBR virus. Michelangelo
carries a damaging payload that triggers when the computer is booted on 6th March,
the birthdate of the Renaissance painter and sculptor. First discovered in early 1991,
the virus gained notoriety during the “Michelangelo scare” leading up to March 1992.
Although considered by many to have been media hype, the attention generated did
disclose many thousands of infections prior to 6th March that were disinfected and
therefore never triggered.

MtE The most widely used abbreviation for the “mutation engine” written by the
virus author known as Dark Avenger. Not a virus itself, this section of code can be
attached to any virus, giving the virus polymorphic features. The code is also known,
less widely, as DAME. See polymorphism.

MTX (Matrix, Apology) A bipolar worm/virus that reproduces both by sending itself
as an email message and by infecting program files. MTX will take control of
the Internet connection of an infected machine, and seeks to bar access to many
antiviral web sites.

multipartite Traditionally, a viral program that will infect both boot sectors/MBRs
and files. The term is now sometimes used to refer to a virus that will infect more
than one type of object, or that reproduces in multiple ways.

Navidad A mail-aware virus. The first version made restarting difficult because a
bug in the code caused a Registry entry to point to a non-existent file. A subsequent
version corrected this bug.

NLM NetWare-loadable module. A system of programs that is specific to LAN
servers using Novell network operating systems. A number of commercial antiviral
vendors make a NetWare-specific NLM scanner available for NetWare server and
workstation protection.

NOP A null directive in an assembler program that doesn’t actually do anything
specific when it is executed.

NOS Network operating system.

NSA National Security Agency. (www.nsa.org)

G l o s s a r y 6 5 7

nVIR An early Macintosh virus, the source code for which was inadvertently
published electronically. Shortly thereafter, two versions were found in the wild.

opcode In assembly language, the part of an instruction or directive that identifies
the specific operation to be performed.

open source A software development philosophy based on the premise that the
source code for software must be made available to the user, and that restrictions
cannot be made on the user’s modification of the code, so long as the user is also
bound by the same proviso. There are some disagreements about the precise use
of the term open source, but it is generally seen as being akin (but not equal) to both
public domain software and freeware. However, open source software is also seen as
a viable commercial model. See also commercial software, freeware, public domain,
shareware.

operation restrictor Synonym for behaviour blocker.

overwriting virus A file virus that overwrites part of a file with itself.

payload The code in a viral program that is not concerned with reproduction or
detection avoidance. The payload is often a message, but is sometimes code to
corrupt or erase data. Reference to damaging payload is not to code causing
physical destruction of the computer or parts thereof, but to corruption or erasure
of files or data.

PGP Pretty Good Privacy. An encryption and authentication public key system
held in high regard by the online community. It exists in both freeware and
commercial versions.

phreak An individual who is interested in breaking into or otherwise manipulating
the telephone system. These people are referred to (and refer to themselves) as
phone phreaks, using the punning variant spelling. This is generally shortened to
phreaks in common usage.

polymorphism Techniques that use some system of changing the “form” of the virus
on each infection to try to avoid detection by signature-scanning software. Less
sophisticated systems are sometimes referred to as self-encrypting. Strictly speaking,
encryption is not the only way in which to “morph”, and an encrypted virus is not
necessarily polymorphic.

Ponzi Scheme A fraudulent scheme somewhat akin to a pyramid scheme, apparently
named after its inventor.

prank Software that appears to cause problems or damage, but which, in fact, does
not. In a sense, this software is the inverse of the Trojan horse. Books are being
published that describe how to create pranks, and programs are now being sold that
perform these “stupid computer tricks”. A prank may cause heart problems, but no
erasure of data. (However, sometimes drawing a hard and fast line between pranks
and malware is difficult. Pranks generally cause some denial of service, but
hopefully only for a short time.)

Prepender A file infector that attaches to the beginning of the infected file.

public domain A legal term that carries the same meaning in regard to software
that it does in the field of literature. Software in the public domain may be used by
anyone, for any purpose, in any manner, without restriction. This term is often used
carelessly to refer to freeware, which requires no payment, but for which the author
still assumes copyright and control, and shareware, which does, in fact, require
payment for continued use. See also commerical software, freeware, open source,
shareware.

public key encryption An encryption and authentication system that allows at least
one “key” to be made publicly available. This system allows anyone to read the
material with the public key, but does not allow alteration of the message without
detection. The major advantage in the public key concept is in key management and
in the secure interaction between large numbers of users.

rabbit A program that generates multiple copies of itself without attaching to other
programs. Generally, this type of attack is a denial of service based upon excessive
use of disk or memory space or CPU cycles. Usage of the term is rare.

RAT (Remote Access Tools) Tools that allow access to, and control over, a desktop
computer (normally considered to be a single user machine) from a remote site.
More specifically, Remote Access Tools are designed to be installed on a machine,
and they allow a remote attacker control over the machine, and provide a backdoor
for other operations. Back Orifice is an example of a RAT. The acronym is sometimes
used as a short form of Remote Access Trojan, although the two usages are not
altogether synonymous. See also backdoor.

6 5 8 V i r u s e s R e v e a l e d

Registry See Windows Registry.

replicate In general, to copy or reproduce. In virus research, the term replicate, or
sometimes reproduce, is often used to distinguish the clandestine copying action
done by a virus from the normal and deliberate duplication performed by the user.
Some people seem to prefer the term self-replicate, which has the advantage of
clarifying the distinction between active viral replication and passive duplication
by user action, as opposed to the execution of viral code. The term does, however,
sidestep the issues of meme viruses and worms that rely on social engineering to
trick the victim into executing code.

resident A program that stays in the memory of the computer while other programs
are running, waiting for a specific trigger event. “Accessory” software is often of
this type, as is activity-monitoring and “resident” scanning software. Viral programs
often attempt to “go resident”, and so this is one of the functions that an activity
monitor may check. Also known as memory-resident and, in MS-DOS circles, TSR.
The Windows equivalent is a VxD or NT service. On a Macintosh, the equivalent
would be a control panel or system extension.

rogue A program that, because of a bug in programming, interferes with normal
system operation. The damage caused by a rogue is unintentional. The term is used
primarily in mainframe circles and is now relatively rarely used.

ROM Read-only memory. A static memory type used to hold programming,
regardless of power conditions. ROM is primarily used for the bootstrap
programming for microcomputers. Until recently, this memory has been
non-writeable in normal operation, and thus safe from viral attacks, but this has
changed with the use of “flash” EEPROMs.

rootkit A suite of trojanized system applications substituted for the untrojanized
originals to enable an intruder to gain access with administrator privileges.

RTF Rich Text Format. A file format wherein complex formatting information is
embedded as text tags readable by most word processors. Sometimes preferred for
document exchange because, unlike Word documents, RTF documents don’t support
VBA macros. However, there are circumstances in which an RTF document can be a
virus transmission vector.

G l o s s a r y 6 5 9

RTFM Read The Friendly Manual. A less polite adjective is sometimes used.

salami An apocryphal story of a program that takes advantage of very active
systems to make incremental changes. The usual tale is of a banking system that
syphons fractions of a penny at a time into the programmer’s account. In spite of
the lack of evidence for the existence of attacks of this type, increasing numbers
of security books make reference to salami slicing.

scanner 1) A program that reads the contents of a file looking for code known to
exist in specific viral programs. Also referred to as known virus scanning (KVS).
2) In network situations, a program that examines the configurations of computers
and network systems, looking for security vulnerabilities. Both defenders and
attackers can use this type of program. SATAN (Security Administrators Tool for
Analysing Networks) is an example of this type of scanner.

Scores A Macintosh virus that seems to have been written with intent to cause
problems for a specific company and software program. Because one of the most
widely published reports of infection was from an office at NASA, the virus has
also been referred to as NASA.

self-extracting archive An archive that is stored in program format (that is, as an
.EXE file) and which contains the code necessary to do the “de-archiving”. The
archive is popular with neophyte BBS and Internet users because it does not require
separate de-archiving programs, but it presents a number of potential security
vulnerabilities.

shareware Software that is distributed widely, usually on bulletin boards and
networks. Users are encouraged to “try before they buy”, but users who continue
to use the software are supposed to pay for the programs. The honour system
of distribution reduces overhead costs, and shareware is generally cheaper than
commercial software. See also commercial software, freeware, open source,
public domain.

shell scrap object A Microsoft file format that may include executable content
(and indeed practically anything). The shell scrap file extensions, .SHS and .SHB,
will not display in normal Windows file dialogue boxes unless a change is made to
the Registry.

6 6 0 V i r u s e s R e v e a l e d

G l o s s a r y 6 6 1

shrink wrap The plastic film used to protect the packaging of commercial software.
Shrinkwrapped software is often used as a synonym for commercial software. Many
people feel that shrink wrap is some kind of protection, guarantee, or warranty. It isn’t.

signature Sequence of bytes recognized by an anti-virus scanner or intrusion-
detection system as suggesting the presence of a known virus or other malicious
code. This sequence is an arbitrarily chosen value: there is no guarantee that two
products will use the same string. Use of the term signature implies a literal
(invariant) string, but many viruses cannot be detected using fixed strings, so
anti-virus scanners use a variety of techniques for detection, including wildcard
detection and algorithmic techniques. The more flexible term scanstring is,
therefore, usually preferred by anti-virus researchers.

social engineering A nontechnical means of breaking security, involving conning
people into telling you passwords, getting them to run programs they shouldn’t,
and so forth. Basically, social engineering is a fancy name for fraud.

spawning virus See companion virus.

sploit Slang usage for exploit.

Stages of Life A script email virus/worm notable for a variable message and for
the use of the .SHS file extension, making it harder to spot in Windows.

stealth Various technologies used by viral programs to avoid detection on disk.
At least one virus has been named Stealth by its author, but the term properly refers
to the technology, and not a particular virus.

Stoned An extremely “successful” MS-DOS virus, in terms of the number of copies
made and systems infected. A BSV of MBR type, it has, like most successful viral
programs, been used as a template for numerous other viral strains.

system infector A virus that redirects system pointers and information in order to
“infect” a file without actually changing the infected program file. This is a type
of stealth technology. In MS-DOS, system infectors are often referred to as FAT
viruses. See also link virus.

6 6 2 V i r u s e s R e v e a l e d

template A file used by Microsoft Word as a pattern for new documents. By default,
new documents are patterned on the global template NORMAL.DOT. Traditionally,
templates are named (on PCs) with a .DOT extension, while documents have a
.DOC extension, but either file can actually have any extension, or none. In older
Word versions, a Word document cannot contain a macro, but a template file can
contain data. Therefore, .DOC files infected with macro viruses are templates, not
documents. This does not apply in later versions, where documents can contain
macros without being templates. Users, of course, cannot easily tell the difference,
unless they’re specifically looking for indicators such as the appearance of the icon.
Even these indicators do not tell you for sure that a given file is not a template, or
does not contain macros.

threat In security terms, a possibility of an attack or loss of confidentiality or
availability due to an inherent aspect of the system. For example, viruses are an
ongoing threat for computer operations because they use only the normal functions
that other programs require.

time bomb A term sometimes used to refer to a logic bomb that triggers on a time
event. A logic bomb that triggers on a specific date is sometimes referred to as a
date bomb.

TOAST An acronym first used by Padgett Peterson to refer to antiviral software
that makes extravagant claims, or for which a company spends more on advertising
than it does on development. The origin was a product that advertised itself as, “The
Only Antivirus Software That Won’t Be Obsolete By The Time You Finish
Reading This Ad”.

TPE Trident Polymorphic Engine. Another example of the “mutation engine” type
of functionality but from a different source. See MtE.

trapdoor See backdoor.

trigger In regard to viruses and other malware, the event, or the code waiting for an
event, that stimulates the activity of the payload. In special cases, the term may also
refer to the event or code that causes reproduction or replication of the virus, if the
virus does not seek out suitable targets upon activation.

Trojan horse A program that either pretends to have, or is described as having, a
(beneficial) set of features, but which, either instead or in addition, contains a
damaging payload. Most frequently the usage is shortened to Trojan. There is little
agreement on whether the term Trojan horse should be capitalized, or how, but the
most common usage tends to be Trojan horse and trojan or Trojan. Trojan generally
refers to a name brand prophylactic.

TSR Terminate and Stay Resident. See resident.

tunnelling Techniques that involve tracing the system interrupts to the final
programming. Tunnelling is used by both viral and antiviral programs to detect
or disable opposing programs.

upconvert A virus written in WordBasic when it migrates (intentionally or otherwise)
to VBA. An upconverted viral macro may or may not be a viable virus after conversion.

VBA Visual Basic for Applications. The scripting and macro language in current
Microsoft Office products that allows macro viruses to operate. The first generation
of Word viruses, however, was written in the closely related WordBasic dialect.

VBScript Visual Basic Script. A scripting language similar to Visual Basic for
Applications, used by a number of virus/worm authors.

viral Having the features of a virus, particularly self-reproduction. See replicate.

virus A final definition has not yet been agreed upon by all researchers. A common
definition is, “a program that modifies other programs to contain a possibly altered
version of itself”. This definition is generally attributed to Fred Cohen, although
Cohen’s actual definition is in mathematical form. Another possible definition is,
“an entity that uses the resources of the host (system or computer) to reproduce itself
and spread, without informed operator action”.

vulnerability In security terms, the possibility of an exploit or exposure to a threat,
specific to a given platform. For example, while many word processing programs
contain the ability to create macro programming, Microsoft Word has a specific
vulnerability to viruses because of the inclusion of macro programming in the same
file that contains the data.

G l o s s a r y 6 6 3

6 6 4 V i r u s e s R e v e a l e d

VX An abbreviated reference to the virus exchange community; those people who
consider it proper and right to write, share, and release viral programs, including
those with damaging payloads. The term was probably coined as vx by Sarah
Gordon, who has done extensive studies of the virus-exchange and security-breaking
communities and who has an aversion to using the SHIFT key. Capitalization is not
consistent, and vX may also be acceptable.

warhead A synonym for payload.

white hat An individual who attempts to explore security solely from the perspective of
defence. The security community—in an attempt to avoid debates about “good” hackers
versus “bad” hackers versus “crackers” versus phone phreaks versus virus writers versus
VXers—has taken to using this term. The term originates from old American Western
genre movies, where the “good guys” always wore white hats. See also black hat.

wild, in the A jargon reference to those viral programs that have been released into,
and have successfully spread in, the general computer user community and environment.
It is used to distinguish those viral programs that are written and tested in a controlled
research environment, without escaping, from those that are uncontrolled “in the wild”.

Wild, In the (ItW) A specific reference to those viruses formally mentioned in the
WildList. The capitalization is in distinction to viruses found in the wild but not
mentioned in the WildList.

WildList A list of viruses and some worms reported as being currently in the wild,
aggregated by the WildList Organization on the basis of suitably qualified expert
reporters. The WildList proper consists of viruses that have been reported by at least
two qualified reporters. The supplemental list consists of viruses that have been
reported by one qualified reporter. The WildList is, at present, almost entirely
PC-centric. Similar lists for Trojans and for Macintosh malware are under development.

Windows Registry A database holding system start-up, configuration, security, and
file-association information in Microsoft Windows 9x, Me, NT, and 2000 systems.
This is the central repository of all such information, replacing the old CONFIG.SYS,
AUTOEXEC.BAT, and .INI files (although those files do still exist, and are
sometimes used). The Registry is an enormous object, often holding megabytes
of data, and difficult to search. It is now being used to start viruses at boot time,
without placing the viruses in identifiable start-up directories. Viruses affecting the
Registry can be seen as system infectors, although changing the Registry is much
easier than the programming that the old MS-DOS system infectors had to use.

TE
AM
FL
Y

Team-Fly®

Windows Script Host (WSH) A utility that runs scripting languages such as Visual
Basic Script (VBScript) on certain Windows systems in a way somewhat similar
to DOS batch files, but with more versatility. The Love Bug virus (a.k.a. LoveLetter)
was a Windows script virus using VBScript; it relied on the presence of WSH,
which may be installed on all versions of Windows since Windows 95. Many
organizations disable WSH to reduce the impact from VBScript malware.

worm A self-reproducing program that is often distinguished from a virus in that
it copies itself without being attached to a program file, or by spreading actively
over computer networks, particularly via email. Many researchers regard worms
as a special case or subset of viruses.

Worm “The” worm, the Internet/Morris/UNIX Worm of November 1988.
See Internet Worm.

zombie A specialized type of backdoor or remote-access program designed as the
agent component of a DDoS (distributed denial of service) network. Once a zombie
is installed on a computer, it identifies itself to a master computer, and then waits for
instructions from the master computer. After receiving instructions from the master
computer, a number of zombie machines will send attack packets to a target
computer. See also backdoor, DDoS, RAT.

zoo Jargon term for a set of viral programs of known characteristics used to
test antiviral software. Zoo viruses are often regarded as antonymous to “in the
wild” viruses.

G l o s s a r y 6 6 5

This page intentionally left blank.

Index
A
Absolute transparency, 188
Access control and anti-virus, 145–146
Access control systems, password, 584–585
Access, inappropriate, 633
ACM (Association for Computing Machinery), 520
ACS (American Cancer Society), 454
Activity and operation, virus, 81–102

ban bombs, 100–102
damage, 96–100
extent, 93–94
generality, 93–94
payload versus reproduction, 94–95
persistence, 93–94
replication, 90–93
tripartite structure, 87–90
writing viruses, 83–86

Activity monitors, 151
Administration costs, cost of ownership versus,

186–190
Adore, 431–432
Advice

genuine, 194–196
useful, 194–196

Age, 523–525
AIDS, 30–32
AIDS Trojan, 355–356
Alarm, false, 156
Alarms, false, 77–78
Alerts

be aware of, 467
false, 218–220
ghost positive, 579
Good Times most famous of all false, 374
hoaxes and virus, 466–468
motivations for hoax virus, 454–455

Alphabetical characters, substitution of numerals
for, 385

Altair virus, 35–36
Altruistic; See semi-altruistic

Amiga obscene, 37
Anna Kournikova, 428–429
Anti-chain mail policy, 515
Anti-macro techniques, 397–399
Anti-malware professionals, 190
Anti-malware technology, administering, 186
Anti-malware technology overview, 139–170

great expectations, 140–142
viruses and related threats, 143–170

Anti-spam policy, 515–516
Anti-virus

and access control, 145–146
administrator’s sphere of responsibility, 180
goals, 141–142
is it a profession?, 535–536
policy, 506–507, 516–517
vendors, 220–221

Anti-virus guru, local, 507
Anti-virus programs

infections of, 578
what they detect, 57–78

Anti-virus software
instant guide to, 15–16
technological aspects of, 143
use of reputable, 502–503

Anti-virus software, function of, 151–162
generic solutions, 153–158
virus-specific scanning, 158–162

Anti-virus tools, upgrading, 600
APIs (application programming interfaces), 92
Appenders, 114–115
Apple II viruses, early, 22
Application functionality versus security, 53–54
Architecture, security architecture, 505–511
Articles and papers, 206–214
Assemblers, defined, 83
Atom, 390
Attack, multiple points of, 556–557
AUP (Acceptable Usage Policy), 311
Authentication defined, 155
AutoStart worm, 404–405

667

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

AVIEN (Anti-Virus Information Exchange
Network), 142, 428

Avoidance strategy, 360
Avoiding

free software, 595
games, 595
shareware, 595
viruses, 595

B
Backdoor Trojans, 71
Backdoors, and password stealers, 70–71
Backing up

data, 292, 360
software changes, 293

Backups, making, 587–589
Bacterium, 59
BadTrans, 434–435
Bady, Code Red/, 562–563
Baseline definitions, 3–4, 5–16

computer virus fact and fantasy, 4–5
damage, 7–8
damage versus infection, 8–9
diet of worms, 12
instant guide to anti-virus software, 15–16
polymorphism, 10
stealth mechanisms, 9–10
Trojan horses, 12–13
UNIX textbook, 10–12
virus structure, 7
viruses and virus mechanisms, 6
in wild, 13–15

BAT/W95/911/Chode/Firkin worm, 418–419
Batteries, 468–469
BBSs (bulletin board systems), 34, 67
BCPs (business continuity plans), 181
BCS (British Computing Society), 520
BIOS (basic input/output system), 468–469
Black Baron, 373–374
BO2K (Back Orifice 2000), 41
Board of Directors, getting message over to, 178
Bombs, ban, 100–102
Books, 196–206
Boot-sector viruses, 589–590

form, 364–365
Boot sectors, 125

overwriting, 359
Boot sequence, typical PC, 111
Boot zone, 109–111
Bootable; See Unbootable
Booting from clean floppies, 604–606

Brain virus, 25
writers of, 337–338

Brainwashing, 336–339
banks of Ohio, 338–339
writers of Brain virus, 337–338

BS5750, 505
BS7799 and virus controls, 500–504
BSIs (boot-sector infectors), 25, 105–109, 120,

132, 404
BubbleBoy, 420–421
Budget virus, 470

C
Cabling is not always bidirectional, 367
Call 911, 418–419
Cap virus, 391–392
CARO (Computer Antivirus Research

Organization), 396
Cascade virus, 606
Case studies: first wave, 335–370

AIDS Trojan, 355–356
brainwashing, 336–339
CHRISTMA EXEC, 347
everybody must get stoned, 356–364
form boot-sector virus, 364–365
Internet worm, 347–352
Iraqi printer virus, 366–369
Jerusalem virus, 353–355
Lehigh virus, 346–347
MacMag virus, 339–343
modem virus hoaxes, 365–366
Morris worm, 347–352
Scores virus, 343–345
WANK worm, 352

Case studies: second wave, 371–402
anti-macro techniques, 397–399
Black Baron, 373–374
Chernobyl (CIH.Spacefiller) virus, 400–401
Colors virus, 387–388
DMV (Document Macro Virus), 388–389
empire strikes back-slowly, 383–384
Esperanto virus, 401–402
Excel viruses, 392–393
FormatC, 389
Good Times just around corner, 374–377
Green Stripe, 389–390
Hare, 399–400
macro virus nomenclature, 396–397
proof of concept, 377–383
thank you for sharing, 395
variations on a theme, 393–394
Wazzu, 389–390

6 6 8 V i r u s e s R e v e a l e d

Wiederoffnen, 389
WM/Atom, 390
WM/Cap, 391–392
WM/Nuclear, 384–387
Word 97, 395

Case studies: turning worm (third wave), 403–435
AutoStart worm, 404–405
BadTrans, 434–435
BubbleBoy and KAKworm, 420–421
Call 911, 418–419
I wrote letter to my love-VBS/LoveLetter,

414–416
keeping to script, 412–413
Lindose (Winux), 432
Linux worms, 430–432
MTX (Matrix, Apology), 421–424
Naked Wife, 425
PrettyPark, 411–412
VBS/Freelinks, 413
VBS/NewLove-A, 417–418
VBS/Stages, 419–420
VBS/Staple.a@mm, 429–430
VBS/VBSWG.J@mm (Anna Kournikova),

428–429
W32/Happy99 (Ska), value-added virus,

410–411
W32/Magistr@mm, 432–433
W32/Navidad, 425–427
W95.Hybris, 427–428
W97M/Melissa (Mailissa), 406–410

CBK (Common Body of Knowledge), 553
CERT (Computer Emergency Response Team), 472
Chaff, wheat and, 471–472
Chain letters, 463–464

handling, 488–489
and hoaxes, 466
hoaxes and, 40
motives for starting, 453–454

Change-detection software, 151, 157
Checkers, integrity, 155
Checking, integrity, 259–261
Checklist, virus incident, 298–299
Cheese, 561
Chernobyl virus, 400–401
CHKDSK, 580–581
CHRISTMA EXEC, 347
Christmas Tree Worm, 347
CIAC (Computer Incident Advisory Center), 464
CIH (Spacefiller, Chernobyl), 40
CIH.Spacefiller virus, 400–401
CISSP (Certified Information Systems Security

Professional), 195

Closing comments, 553–557
bad news: convergence is going to get

worse, 555
bad news: multiple points of attack can scale

problem, 556–557
bad news: security specialists dont’ know

much-about viruses, 553–554
good news: a little education and basic policies

can really help, 554–555
good news: existing tools and some diligence

can work, 557
good news: just the same, but more, 555–556

CMOS (Complementary Metal Oxide
Semiconductor), 146, 468–469

CMOS memories, viruses hiding in PCs, 590
Cocktail cases, 359
Code of Practice, 501, 503–504
Code Red/Bady, 562–563
Codes

self-checking, 601–602
source, 121

Codes of conduct
developing, 540–541
do they make a difference?, 544–547
minimum, 540–541

Colors virus, 387–388
Comments, closing, 553–557
Commercial ethics, 538–539
Companion (spawning) viruses, 118–119
Compatibility issues, 255–256
Compressed disks, 252
Compressed executables, 252
Computer ethics, introduction to, 318
Computer Misuse Act, UK’s, 495–496
Computer retailers, 156
Computer system, protecting with software, 582–583
Computer viruses

defined, 570–572
fact and fantasy, 4–5
mainframe computers and susceptible to,

592–594
using for something useful, 600–601

Computers, 287–288
become unbootable, 603
and epidemiology, 36–37
mainframe, 592–594
viruses spreading to other, 592
what they do, 52–53

Computing environment, viral infections on, 96–97
Computing, safer, 320

See also Safe hex guidelines

I n d e x 6 6 9

Concealment mechanisms, 123–134
malware, 132–134
polymorphism, 129–131
social engineering, 132–134
stealth technology, 126–129

Concept, 377–383
viruses, 38–39

Conduct
Codes of, 544–547
developing Codes of, 540–541
minimum Codes of, 540–541

Configurability, 262–263
Contributors, primary, 568–607
Conventional morality, 528
Convergence is going to get worse, 555
Cookie programs, 71–72
Copying data files, 597
Core Wars, 19–20
Corruptions, 63–64
Costs

cost of ownership versus administration,
186–190

management, 306–309
of ownership versus administration costs,

186–190
product evaluation and testing, 239–244

CRC (cyclic redundancy check), 126, 155, 259–260
Criminal proceedings, grounds for, 493–495
Cross-national differences, 531–532
CSS (content scrambling system), 525
Cultural norms, 526–532
CVC (Computer Virus Catalog), 569

D
Daemons defined, 348
Damage, 7–8, 96–100

direct damage from Trojan payloads, 97–98
direct damage from virus payloads, 97–98
hardware, 99–100
impact of viral infection on computing

environment, 96–97
primary, 96
psychological, 98
secondary, 98–99
social, 98

Damage versus infection, 8–9
DAME (Dark Angel’s Multiple Encryption), 36
DAME (Dark Avenger’s Mutating Engine), 131
Dark Avenger, 30–32, 35
Data

back up, 292

backing up, 360
versus programs, 378–379

Data diddling defined, 182
Data files

copying, 597
virus infecting, 591–592

Data processing, 499
Data Protection Act, UK’s, 497, 498
Data protection legislation, 497–498
Data protection principles, 498–500
Datacomp, Welcome, 618
DBR (DOS Boot Record), 364
DDoS (Distributed Denial of Service), 42, 43–44, 557
DDoS (distributed denial of service) agents, 75–77
DEC (Digital Equipment Corporation), 28
Definitions, baseline, 3–4, 5–16
Demographics, 523–526

age, 523–525
gender, 525–526

Departments, heads of, 316
Desktop, beyond, 162–169
Detecting new viruses, 579
Detection

adding for every virus, 57
distinction between disinfection and, 16
intrusion, 168–169
one hundred percent effective, 155
versus usability, 270

Detection software, generic, 144
Development, 183–184
Diagnosing viruses, 574
Diagnostic utility, PC, 606
DIR-II virus, 117
DIR | MORE, 606–607
DIR, performing of infected floppy disks, 596–597
DIR, using, 606–607
Disinfecting, 594–595
Disinfection, 152, 359

and repair, 253–255
Disinfection and detection, distinction between, 16
Disk file system, hard, 582
Disk to clean PC’s hard disk, infected floppy, 597
Disks

compressed, 252
infected floppy disk cleaning PC’s hard, 597
infecting nonbootable DOS floppy, 589–590
performing DIR of infected floppy, 596–597

Disks, cleaning of viruses on all, 294
Distribution

secondary, 455–456
virus origin and, 439–459

6 7 0 V i r u s e s R e v e a l e d

DMV (Document Macro Virus), 388–389
Document library, 178
Documentation, 267–269
DOS command FDISK, 109
DoS (Denial of Service), 43–44, 75, 557, 631
DOS (Disk Operating System), 44

protection systems in DR, 585
three main types of executable programs, 113

DOS floppy disks, infecting nonbootable, 589–590
DOS session, DOS session infecting another,

597–598
DOS system, infection and 639KB memory on one’s,

580–581
DOS virus surviving and spreading on

OS/2 system, 597
DOS viruses

common, 581–582
working under MS Windows, 598

DR DOS, protection systems in, 585
Draconians, 291–292
Droppers, 64–65
DRPs (disaster recovery plans), 181
DSL (Digital Subscriber Line), 327
Dual-infection viral programs, 120
Dumpster diving, 634

E
Ease of use, 261–262
EAVEP (EICAR Anti-Virus Enhancement

Program), 142
Eavesdropping/surveillance, 633
Education

and basic policies, 554–555
does it work?, 456–458
global, 458–459
and training, 315–319
training and information provision, 178

EICAR (European Institute of Anti-Virus Research),
142, 541–543

installation test file, 618–619
string, 277–280

EICAR (European Institute of Anti-Virus Research)
code, 541–543

Article 1: public interest, 542
Article 2: legal compliance, 542–543
Article 3: duty to employers, clients, and

colleagues, 543
Article 4: duty to the profession, 543
Article 5: specialist competence, 543

Electronic leftovers, 634
Elk Cloner, 23

Email
getting viruses from reading, 598–599
policy, 514

Encryption, 252–253
Encyclopaedias, 218
End users and responsibility, 533–535
Engines, polymorphic, 130, 131
Epidemiology, and computers, 36–37
EPO (Entry Point Obscuring), 422
Esperanto virus, 401–402
Esperanto.4733, 618
Ethical hacking, 451
Ethics

commercial, 538–539
and familiarity, 532–533
introduction to computer, 318
two-minute guide to, 520–523
and vendors, 536–537

Ethics, responsibility and morality, 519
Codes of conduct, do they make a difference?,

544–547
cultural and national norms, 526–532
demographics, 523–526
developing codes of conduct, 540–541
do no harm, 539–540
EICAR (European Institute of Anti-Virus

Research), 541–543
Is anti-virus a profession?, 535–536

Evaluation and reviews, 220
Evaluation, product, 237–281
Excel viruses, 392–393
Executables, compressed, 252
Expanded RAM, viruses hiding in, 591
Extended RAM, viruses hiding in, 591
Extensions, file-type, 84
Extent defined, 93–94

F
False alarms, 77–78, 156
False alerts

Good Times most famous of all, 374
virus hoaxes and, 218–220

False negatives, 576–577
False positives, 576–577
FAQs (Frequently Asked Questions), 38
FAQs (Frequently Asked Questions) on

VIRUS-L/comp.virus, 567–607
FAT (File Allocation Table), 117, 339
FCC (Federal Communications Commission), 473
FDISK, DOS command, 109
FDISK/MUMBLE, contraindication of, 362–363

I n d e x 6 7 1

Feliz Navidad, 47
File infectors, 112–119

appenders, 114–115
companion (spawning) viruses, 118–119
Mac-specific system and, 611–614
misdirection, 117
overwriting viruses, 115–117
prependers, 114–115

File system garbled, 582
File system, HPFS, 597
Files

checking, 189
copying data, 597
EICAR installation test, 618–619
protecting from viruses, 584–585
virus infecting data, 591–592
viruses hiding in JPEG, 599–600
zipped, 251

File’s attributes, setting to read-only, 584
Filles, viruses hiding in .GIF, 599–600
Firewall scanning, 167–168
Firmware settings, 146
Flight simulator, 68–69
Flip viruses infection, 604
Floppies, booting from clean, 604–606
Floppy disk to clean PC’s hard disk, infected, 597
Floppy disks

infecting nonbootable DOS, 589–590
performing DIR of infected, 596–597
write-protect tab on, 586

Forbidden, what is, 315–316
FormatC, 389
Free scanners, 216–217
Free software, avoiding, 595
Freelinks, VBS, 413
FUD (Fear, Uncertainty, Doubt), 510
Functions, support, 264–267

G
Games, avoiding, 595
Gateway scanning, 166–167
GenB virus, 604
Gender, 525–526
Generality defined, 93–94
Generators, 65–66
Generic solutions, 153–158
GenP virus, 604
Germs, 64
Ghost positive alerts, 579
.GIF files, viruses hiding in, 599–600
Global education, 458–459
Goals, anti-virus, 141–142

Good Times, 374–377
most famous of all false alerts, 374

GPFs (General Protection Faults), 97
Grammar and spelling, errors, 37
Green Stripe, 389–390
Guru, local anti-virus, 507

H
Hacking, ethical, 451
Hacking, people, 632–634

being sociable, 633
dumpster diving, 634
eavesdropping, 633
electronic leftovers, 634
inappropriate access, 633
phone phonies, 633–634
shouldersurfing, 632
surveillance, 633

Happy99, 410–411
Hard disk

disappearance of, 604
file system, 582
infected floppy disk cleaning PC’s, 597
write-protecting with software, 583

Hard drives, 581
Hardware

damage, 99–100
protection, 583–584
solutions, 147

Hardware-specific viruses, 104–109
boot-sector infectors, 105–109

Hare, 399–400
Harm, do no, 293
Help Desk

advice to users, 297–298
attacks on, 635
investigations, 295–296
staff, 507
staff responsibilities, 507–508
support, 311–313
targeting, 634–635

Heuristic analysis, 159
Heuristics, hoax identification, 472–481
Hex guidelines, safe; See Safe hex guidelines
HFS (Hierarchical File System), 405
High Memory area viruses hiding in PC’s, 591
Historical overview, 17–49

Internet age, 30–48
real viruses: early days, 22–30, 22–30
and so it goes..., 48–49
virus prehistory: Jurassic Park to Xerox

PARC, 18–21

6 7 2 V i r u s e s R e v e a l e d

HLLs (high-level languages), 83, 86
Hoax alerts, handling, 488–489
Hoax identification heuristics, 472–481
Hoax management, 329–331
Hoax virus alerts, motivations for, 454–455
Hoax viruses described in terms of

technobabble, 469
Hoaxes, 465

and chain letters, 40, 466
JPEG, 469–470
modem virus, 365–366
passing on virus, 455–456
and related nuisances, 461–490
SULFNBK, 560
virus, 37, 218–220
and virus alerts, 466–468

Hostile software, protection from, 501
HPFS file system, 597
HTML (Hypertext Markup Language), 406
HTTP (HyperText Transfer Protocol), 165
Hybrid viruses, 92–93
HyperCard infectors, 614–615

I
Identification, virus, 299, 574
IDS (intrusion detection systems), 169
IIS (Internet Information Server), 561, 562
Incident management, 184–186, 283–285

best form of defense is preparation, 286–294
reported virus incidents, 295–300

Incidents, dealing with virus, 297–299
Incidents, reported virus, 295–300

dealing with virus incidents, 297–299
general protective policies, 299
Help Desk investigations, 295–296
virus identification, 299

Inexpertise, technical, 317
Infecting nonbootable DOS floppy disks, 589–590
Infecting; See Disinfecting
Infection

versus damage, 8–9
of DOS, 581–582
flip viruses, 604
Michelangelo virus, 603
on one’s DOS system, 580–581
Stoned virus, 602, 603
and subdirectories, 581

Infections
indications of virus, 573
Ohio, 338
scanners reporting, 579

Infectors
boot-sector, 105–109
file, 112–119
HyperCard, 614–615
Mac-specific system and file, 611–614
PE (Portable Executable), 400

Information gathering, 174–177, 193–234
articles and papers, 206–214
books, 196–206
genuine advice, 194–196
online resources, 214–234
useful advice, 194–196

Information gathering, online resources, anti-virus
vendors, 220–221

Information provision, education, training and, 178
Information resources, Macintosh, 619–623
Information security, classic tripod model of, 445
Injustice, 429
Insurance

and security, 304
and viruses, 304–305

Integrity
checkers, 155
checking, 259–261

Intendeds, 62–63
Internet age, 30–48

AIDS, 30–32
Dark Avenger, 30–32
here comes one’s 19th server meltdown,

41–43
hoaxes and chain letters, 40
it’s no joke, 40–41
Macs, macros, universe, and everything, 39
Microsoft Office macro viruses, 38–39
polymorphism rules, 36–37
polymorphs and multipartites, 32–33
Renaissance virus, Tequila Sunrise, 33–34
revenge of turtle, 34–36
smoke me a kipper, 37–38
worms, 30–32
year of VBScript virus/worm, 43–48

Internet servers, 165–166
Internet worms, 347–352
Interpreted viruses, 121–123
Intranet servers, 165
Intruders, what they want to know, 631–632
Intrusion detection systems, 168–169
Iraqi printer virus, 366–369
IRC (Internet Relay Chat), 42, 48, 411
IRQ (Interrupt ReQuest), 606

I n d e x 6 7 3

(ISC)2 (International Information Systems Security
Certification Consortium, Inc.), 195

ISO 9000, 505
ISPs (Internet service providers), 512
Israeli virus, 353
IT security, 630–631

and other units, 314–315
IT support staff, miscellaneous, 314
ITAA (Information Technology Association of

America) Foundation, 459
ITAA (Information Technology Association of

America), 570

J
Jerusalem virus, 353–355
Job, nuke one’s, 385
Joke/prank programs, 40–41
Jokes, 71–74
JPEG files, viruses hiding in, 599–600
JPEG hoax, 469–470
JPL (Jet Propulsion Laboratory), 365
Jurassic Park to Xerox PARC, 18–21
Justice, 429

K
KAKworm, 44, 420–421
Knowledge, domain of conventional, 522
Known-virus scanners, 77
Known viruses, 568–569
KVS (Known Virus Scanning), 15, 143

L
LAN servers, 162–165
Languages, macro, 133
LANs (local area network), 163
LANs (local area networks), 21, 128, 162

and stopping viruses, 586
Law, and malware, 492–493
Legal and quasilegal imperatives, 491–518
Legislation

data protection, 497–498
eight principles that underpin UK, 499–500

Lehigh viruses, 26, 93, 346–347
Letters

chain, 463–464, 488–489
hoaxes and chain, 40
motives for starting chain, 453–454

Level, to next, 381
LIFE_STAGES, 45
Lindose/Winux, 432, 561–562

Linux/Adore (Linux/Red), 431–432
Linux/Lion, 431
Linux viruses, 578
Linux worms, 430–432
Lion, Linux/, 431
Lists

mailing, 215–216
VIRUS-L mailing, 452

Love Bug, 133, 396, 414, 416
LoveLetter, VBS, 414–416

M
Mac and viruses, 609–627
Mac books, 620
Mac-related newsgroups, 619
Mac-specific viruses, 610–617
Mac Trojan Horses, 615–616
Mac troubleshooting, 623–624
Mac Virus, questions received at, 624–627
MacMag virus, 339–343
Macro languages, 133
Macro techniques

anti-, 397–399
See also Anti-macro techniques

Macro virus information resources, 622
Macro virus nomenclature, 396–397
Macro viruses, 121–122

detecting, 386
Macro viruses, Microsoft Office, 38–39

FAQs (Frequently Asked Questions), 38
figures, 38
proof of concept, 38–39

Macro viruses, Trojans, and variants, 616–617
Macs

macros, universe, and everything, 39
we love, 415

MacSimpsons, 562
Magistr@mm, W32/, 432–433
Mail management, 349
Mail policy, anti-chain, 515
Mailing lists

and newsgroups, 215–216
VIRUS-L, 452

Mainframe computers and susceptible to computer
viruses, 592–594

Maintenance, preventive, 290–293
back up data, 292
back up software changes, 293

Malware, 132–134
and law, 492–493
nonreplicative, 189

6 7 4 V i r u s e s R e v e a l e d

TE
AM
FL
Y

Team-Fly®

Malware defined, 51–79
in-the-wild versus absolute big numbers, 54–57
virus functionality, 53–54
what anti-virus programs actually detect, 57–78
what computers do, 52–53

Malware management, 171–191
defining, 172–186
proactive, 319–320

Malware management, defining
proactive management, 173–184
reactive management, 184–186

Malware technology; See Anti-malware technology
Management

costs, 306–309
defining malware, 172–186
incident, 184–186, 283–285
mail, 349
malware, 171–191
metaviruses and user, 486–489
proactive, 173–184
proactive malware, 319–320
reactive, 184–186
risk, 283–285, 285–286
taking malware-related threats seriously, 316
user, 301–331
virus, 142

Managers, managing, 303–305
policies count, 303–304
security and insurance, 304
viruses and insurance, 304–305

Mandragore, 559–560
MBR (Master Boot Record), 364, 603

don’t monkey with, 362–364
MBR viruses, removing, 575
Mechanisms, virus, 103–135
Melissa, 406–410
Memories, viruses hiding in PCs CMOS, 590
Memory and DOS system, 580–581
Memory area, viruses hiding in PC’s High, 591
Memory on one’s DOS system, infection and

639KB, 580–581
Memory-resident viruses, 91–92
Metaviruses and user management, 486–489

handling spam, chain letters, and hoax alerts,
488–489

What should I tell my customers?, 487–488
Metaviruses, hoaxes, and related nuisances, 461–490

chain letters, 463–464
chain letters and hoaxes, 466
hoaxes, 465
hoaxes and virus alerts, 466–468

metaviruses and user management, 486–489
misinformation under microscope, 468–481
spam, spam, spam, 481–484
spamology and virology, 484–486
ULs (Urban Legends), 465–466

Michelangelo, monkey, and Stoned variants,
357–361

Michelangelo roulette defined, 360
Michelangelo virus, 34–35, 603
Microsoft

holds source code for operating system, 149
security weaknesses, 150

Microsoft Office macro viruses, 38–39
Microsoft Windows, 148–149
Misdirection, 117
Misuse Act, Computer, 495–496
Modem virus hoaxes, 365–366
Monkey, 362
Monkey, and Stoned variants, Michelangelo,

357–361
Morality

conventional, 528
personal domain of, 522
post-conventional, 528
pre-conventional, 528

Morality and ethics, responsibility, 519
Codes of conduct, do they make a difference?,

544–547
cultural and national norms, 526–532
demographics, 523–526
developing codes of conduct, 540–541
do no harm, 539–540
EICAR (European Institute of Anti-Virus

Research), 541–543
Is anti-virus a profession?, 535–536

Morris worm, 347–352
Motivational factors, 530–531
MS Windows, DOS viruses working under, 598
MSAV (Microsoft Anti-Virus), 36
MSD (Microsoft Diagnostics), 295
MtE (Mutating Engine), 130, 131
MTX (Matrix, Apology), 421–424

W95, 46
Multipartite viruses, 119–120
Multipartites, and polymorphs, 32–33

N
Naked Wife, 425
National issues, 527–530
National norms, 526–532

I n d e x 6 7 5

Navidad, 46–47
W32/, 425–427

NDA (Non-Disclosure Agreement), 383
NED (Nuke Encryption Device), 36
Negatives, false, 576–577
Network administration, systems and, 179–183
New viruses; See Viruses, new
NewLove-A, VBS/, 417–418
Newsgroups

Mac-related, 619
and mailing lists, 215–216

Next level, to, 381
911 worm, 418–419
NLM (NetWare Loadable Module), 163
Non-resident viruses, 91
Nonreplicative malware, 189
NOP (no-operation), 274
NOP (null operation), 130
Noped, Poly/, 559
Norms, cultural and national, 526–532

cross-national differences, 531–532
motivational factors, 530–531
national issues, 527–530

NSA (National Security Agency), 284, 351
Nuclear virus, 384–387
Nuke one’s job, 385
Numbers

illegality of, 556
in-the-wild versus absolute big, 54–57

Numerals, substitution of, 385

O
OCR (Optical Character Recognition), 302
Octopii, and virii, 60
OEM (original equipment manufacturing), 379
Offices, 288–290
Ohio, 339
Ohio infection, 338
OLE (Object Linking and Embedding), 592
On-access scanning, 160–162, 258–259
On-demand scanning, 159–160, 256–258
Online resources, 214–234

encyclopaedias, 218
evaluation and reviews, 220
free scanners, 216–217
general advice, 223
general resources, 221–222
general security references, 227–234
mailing lists and newsgroups, 215–216
online scanners, 217

specific viruses and vulnerabilities, 223–227
various articles, 222–223
virus hoaxes and false alerts, 218–220

Online resources, general security references,
227–234

encryption, 228
miscellaneous, 230–233
NT security, 234
port scanners, 229–230
security agencies, 228–229
spam, unsolicited commercial Email, etc,

227–228
Web information grabbers, 229–230

Online scanners, 217
Operating system, Microsoft holds source code

for, 149
Origin and distribution, virus, 439–459
OS/2 2.0+, 597–598
OS/2 system, DOS virus surviving and

spreading on, 597
Outlines, policy, 511–517
Outlook View Control, 562
Outsourced services, 269
Outsourcing, 169–170
Overkill, 294
Overwriting viruses, 115–117

P
Papers, articles and, 206–214
PARC, Jurassic Park to Xerox, 18–21
Password/access control systems, 584–585
Password practices, 638–640
Password stealers, 448
Password stealers and backdoors, 70–71
Passwords

best practices, 639–640
disclosing one’s, 635
good systems enforcement practice, 638–639

Payloads
activation of, 90
direct damage from Trojans, 97–98
direct damage from virus, 97–98
versus reproductions, 94–95
usage of, 89

PC boot sequence, typical, 111
PC diagnostic utility, 606
PC scripting viruses, 618
PC viruses on emulated PCs, 617
PCs CMOS memories, viruses hiding in, 590
PC’s hard disk, infected floppy disk cleaning, 597

6 7 6 V i r u s e s R e v e a l e d

PC’s High Memory area, viruses hiding in, 591
PC’s Upper Memory, viruses hiding in, 591
PDAs (Personal Digital Assistants), 43
PE-EXE (Portable Executables), 114
PE (Portable Executable) infector, 400
People hacking, 632–634
Performance, product evaluation and testing,

245–251
Peripherals, use of as viral vectors, 125
Persistence defined, 93–94
Personnel, systems management, 507
PGP (Pretty Good Privacy), 486
Phone phonies, 633–634
PIN (personal identity number), 71
PKI (Public Key Infrastructure), 253
Platform identifiers, common, 396
Platform, range of term, 93
Platforms and viruses, 32
Policies

anti-chain mail, 515
anti-spam, 515–516
anti-virus, 506–507, 516–517
education and basic, 554–555
Email, 514
general protective, 299
standards, guidelines and, 177–178
worthiness of, 508–509

Policy issues, 309–311
Policy outlines, 511–517

anti-chain mail policy, 515
anti-spam policy, 515–516
anti-virus policy, 516–517
use of Email, 512–515
use of facilities and resources, 512
use of World Wide Web and USENET, 516

Poly/Noped, 559
Polymorphic engines, 130, 131
Polymorphism, 10, 129–131

rules, 36–37
threat of, 131
and worms, 131

Polymorphs and multipartites, 32–33
Positive reinforcement, 319
Positives, false, 576–577
Post-conventional morality, 528
Practice, Code of, 501, 503–504
Pranks

spreading Trojans, 74
spreading viruses, 74

Pre-conventional morality, 528
Pre-emptive measures, 143, 144–151

Predictions, 552–553
Prehistory, virus, 18–21

Core Wars, 19–20
wormholes, 19
Xerox worm (Shoch/Hupp segmented

worm), 20–21
Preparation, best form of defense is, 286–294

computers, 287–288
do no harm, 293
offices, 288–290
preventive maintenance, 290–293

Prependers, 114–115
Press, stop, 557–564
PrettyPark, 411–412
Preventive maintenance, 290–293

back up data, 292
back up software changes, 293

Primary contributors, 568–607
Primary damage, 96
Printer status report bits, 367
Printer virus, Iraqi, 366–369
Privileges, restriction of, 180
Proactive malware management, 319–320
Proactive management, 173–184
Problem, who owns, 312
Product evaluation and testing, 237–281

core issues, 238–269
further information, 280–281
test match, 269–280

Product evaluation and testing, core issues
compatibility issues, 255–256
configurability, 262–263
cost, 239–244
disinfection and repair, 253–255
documentation, 267–269
ease of use, 261–262
functional range, 256–261
it’s not my fault, 251–253
outsourced services, 269
performance, 245–251
support functions, 264–267
testability, 264

Product evaluation and testing, test match, 269–280
detection versus usability, 270
EICAR string, 277–280
it’s all happening in zoo, 273–277
miscellaneous ranks, 270–271
upconversion, 271–273

Production, payload versus, 94–95
Prolin/Shockwave/creative, 47
Proof of concept viruses, 38–39

I n d e x 6 7 7

Protection
data, 497–498, 498–500
hardware, 583–584
systems in DR DOS, 585

Protective policies, general, 299
Psychological damage, 98

Q
QA (quality assurance), 505
Quasilegal imperatives, legal and, 491–518

BS7799 and virus controls, 500–504
data protection legislation, 497–498
data protection principles, 498–500
grounds for criminal proceedings, 493–495
ISO 9000, 505
malware and law, 492–493
policy outlines, 511–517
security architecture, 505–511
some broad concepts, 496
UK’s Computer Misuse Act, 495–496

R
RAM, viruses hiding in Expanded, 591
Ramen, 430–431
RAS (Remote Access Service), 41
RATs (Remote-Access Tools), 71, 74–75, 516
Reactive management, 184–186
Read-only, setting file’s attributes to, 584
Real viruses: early days, 22–30
Reinforcement, positive, 319
Remote-control software, 74
Removing

MBR viruses, 575
viruses, 574–576

Renaissance virus, 33–34
Replication, 90–93

hybrid viruses, 92–93
memory-resident viruses, 91–92
non-resident viruses, 91

Responsibility
anti-virus administrator’s sphere of, 180
and end users, 533–535

Responsibility, morality and ethics, 519
Codes of conduct, do they make a difference?,

544–547
cultural and national norms, 526–532
demographics, 523–526
developing codes of conduct, 540–541
do no harm, 539–540

EICAR (European Institute of Anti-Virus
Research), 541–543

Is anti-virus a profession?, 535–536
Retailers, computer, 156
Reviews, evaluation and, 220
REVS (Rapid Exchange of Virus Samples), 43
Risk analysis, 174–177
Risk/impact analysis, 305–306
Risk management, 283–285, 285–286

best form of defense is preparation, 286–294
reported virus incidents, 295–300

Rootkits, 77
RTF is not panacea, 558–559
RTF (Rich Text Format), 323, 558

S
Sadmind, 561
Safe hex guidelines, 320–329

anti-virus vendor lists, 327
back up, back up, back up, 328–329
be cautious with office documents, 322
checking all alerts and warnings, 320
continue to use anti-virus software, 323
disable floppy booting, 324
disable Windows scripting host, 326
don’t install unauthorized programs, 322
don’t rely on anti-virus software, 327–328
don’t trust attachments, 320–321
introduce generic mail screening, 326
keep one’s anti-virus software updated, 323
Microsoft security resources, 326–327
office avoidance, 325
reconsidering news software, 325–326
reconsidering one’s Email, 325–326
scan everything, 327
show all file extensions in Windows

Explorer, 326
super-users aren’t super-human, 324
take care in newsgroups and on Web, 321–322
up to date doesn’t mean invulnerable, 324
use and ask for safer file formats, 323
write-protect diskettes, 324

Safer computing, 320
Safety, configuring for, 300
Scanners, 151

free, 216–217
known-virus, 77
online, 217
reporting infections, 579
virus, 296, 578–579

6 7 8 V i r u s e s R e v e a l e d

Scanning
firewall, 167–168
gateway, 166–167
on-access, 160–162, 258–259
on-demand, 159–160, 256–258

Scanning, virus-specific, 158–162
on-access scanning, 160–162
on-demand scanning, 159–160

Scores virus, 343–345
Script viruses, 412–413
Scripting viruses, 122–123
Scripting viruses, PC, 618
Secondary damage, 98–99
Secondary distribution, 455–456
Sectors

boot, 125
overwriting boot, 359

Secure software, 148–151
Security

application functionality versus, 53–54
breaches of, 316
classic tripod model of information, 445
and insurance, 304
IT, 630–631

Security architecture, 505–511
implementation and configuration, 510–511
responsibility for security in given context, 509
systems that are protected, 509

Security issues, unwarranted interest in, 635–636
Security specialists, 553–554
Self-checking code, 601–602
Semi-altruistic, 536
Semi-Trojan defined, 319
Sendmail program, 350
Server meltdown, here comes one’s 19th, 41–43
Servers

Internet, 165–166
intranet, 165
LAN, 162–165

Services, outsourced, 269
Setting file’s attributes to read-only, 584
ShareFun, 395
Shareware, avoiding, 595
Shoch/Hupp segmented worm, 20–21
Shockwave virus, 47
Shouldersurfing, 632
SIGs (special interest groups), 267
Simulator, flight, 68–69
Sircam, 563–564
639 KB total memory on one’s DOS system, 580–581
SLAs (Service Level Agreements), 265

SMEG (Simulated Metamorphic Encryption
Engine), 373

SNAFU, 471
Sociable, being, 633
Social damage, 98
Social engineering, 45, 132–134, 442–444, 629–640

attacks on Help Desk, 635
disclosing one’s passwords, 635
getting further information, 640
good password practice, 638
How big is risk?, 636
IT security, 630–631
password practices, 638–640
people hacking, 632–634
targeting Help Desk, 634–635
unwarranted interest in security issues, 635–636
What are solutions?, 636–638
what intruders want to know, 631–632

Social engineering definitions, 444–450
password stealers, 448
this time it’s personal, 449–450

Software
avoiding free, 595
change-detection, 151, 157
function of anti-virus, 151–162
generic detection, 144
instant guide to anti-virus, 15–16
protecting computer system with, 582–583
protection from hostile, 501
remote-control, 74
secure, 148–151
technological aspects of anti-virus, 143
use of reputable anti-virus, 502–503
virus-specific, 143
Windows and using other, 150
write-protecting hard disk with, 583

Software changes, back up, 293
Solitaire, forget, 68–69
Source codes, 121
Spam, handling, 488–489
Spam, spam, spam, 463, 481–484

common themes, 484
motivations, 482–484

Spamology and virology, 484–486
Spawning viruses, 118–119
Specialists, security, 553–554
Spelling and grammar, errors in, 37
Spelling, idiosyncratic approach to, 385
Spreadsheet viruses, experimental, 133
Stages of Life, 45, 419, 420
Stages, VBS/, 419–420

I n d e x 6 7 9

Standards, policies, and guidelines, 177–178
Stealers, password, 448
Stealth mechanisms, 9–10, 127
Stealth technology, 124, 126–129

tunnelling, 128–129
Steganography defined, 599
STO (Security Through Obscurity), 129
Stoned variant, Michelangelo, monkey, and, 357–361
Stoned virus, 356
Stoned virus infection, 602, 603
Stop press, 557–564

Cheese, 561
Code Red/Bady, 562–563
Lindose/Winux, 561–562
MacSimpsons, 562
Mandragore, 559–560
Outlook View Control, 562
Poly/Noped, 559
RTF is not panacea, 558–559
Sadmind, 561
Sircam, 563–564
SULFNBK hoax, 560

Strategic subfunction, 174–178
Subdirectories

and infection, 581
infinite loops of, 581

Subfunction, strategic, 174–178
SULFNBK hoax, 560
Support functions, 264–267
Support staff, miscellaneous IT, 314
Surveillance, 633
System users, knowledge by, 309–310
Systems and network administration, 179–183
Systems management personnel, 507

T
TCO (Total Cost of Ownership), 244
TCP/IP (Transmission Control Protocol/Internet

Protocol), 165
Technical inexpertise, 317
Technologies, stealth, 124
Tequila viruses, 33–34, 356
Test file, EICAR installation, 618–619
Test match, 269–280
Test viruses, 65
Testability, 264
Testing, product, 237–281
Threats

covering potential future, 318
viruses and related, 143–170

Tools
miscellaneous, 261
upgrading anti-virus, 600

Tools, existing, 557
TPE (Trident Polymorphic Engine), 36, 131
Training and education, 315–319
Training and information provision, education, 178
Transparency, absolute, 188
Transparency defined, 127
Tripartite structure, 87–90

infection mechanism, 87–88
payload, 88–90
trigger, 88

Trojan, AIDS, 355–356
Trojan horses, 12–13, 66

defined, 572
Mac, 615–616
original, 132

Trojan payloads, direct damage from, 97–98
Trojaned, 66
Trojanized, 66
Trojans, 57, 66–70

backdoor, 71
defined, 67
macro viruses and, 616–617
pranks spreading, 74

Troubleshooting, Mac, 623–624
TSR (Terminate and Stay Resident) programs,

161, 339
Tunnelling, 128–129

U
UK legislation, eight principles that underpin, 499–500
UK’s Data Protection Act, 497, 498
ULs (Urban Legends), 465–466
Unbootable, computers become, 603
UNIX systems, virus scanners for, 578–579
UNIX textbook, 10–12
Upconversion, 271–273
Update viruses, 47–48
Upgrading anti-virus tools, 600
Upper Memory, viruses hiding in PC’s, 591
URLs (Uniform Resource Locators), 214
Usability, versus detection, 270
Use, ease of, 261–262
USENET, use of, 516
User management, 301–331

education, 315–319
Help Desk support, 311–313
hoax management, 329–331

6 8 0 V i r u s e s R e v e a l e d

IT security and other units, 314–315
management costs, 306–309
managing managers, 303–305
and metaviruses, 486–489
miscellaneous IT support staff, 314
policy issues, 309–311
positive reinforcement, 319
proactive malware management, 319–320
risk/impact analysis, 305–306
safe hex guidelines, 320–329
training, 315–319

Users
end, 533–535
Help Desk to advice to, 297–298
knowledge by system, 309–310

Utility, PC diagnostic, 606

V
Value-added virus, 410–411
VBA (Visual Basic for Applications), 39, 121, 176,

245, 379
VBS/First, 412–413
VBS/Freelinks, 413
VBS/LoveLetter, 414–416
VBS/NewLove-A, 417–418
VBS/Stages, 419–420
VBS/Staple.a@mm, 429–430
VBS/VBSWG.J@mm (Anna Kournikova), 428–429
.VBS (Visual Basic Script) file, 84
VBScript virus/worm

DDoS and DDon’ts, 43–44
how was it for you?, 44
KAKworm, 44
Navidad, 46–47
Prolin/Shockwave/creative, 47
social engineering, 45
Stages of Life, 45
test match, 45–46
update viruses, 47–48
W95/MTX (Matrix, Apology), 46

VBScript virus/worm, year of, 43–48
VCL (Virus Creation Laboratory), 34, 66
Vendors, 220–221, 536–537
Vienna virus, 26
Viral infection, impact on computing environment,

96–97
Viral programs

dual-infection, 120
self-encrypting, 130

VIRDEM, 26
Virii and octopii, 60
Virology, and spamology, 484–486

Virus activity and operation, 81–102
Virus alerts

and hoaxes, 466–468
motivations for hoax, 454–455

Virus Bulletin, 621–622
Virus-busters, 289
Virus controls, BS7799 and, 500–504
Virus functionality, 53–54
Virus hoaxes, 37

modem, 365–366
passing on, 455–456

Virus hoaxes and false alerts, 218–220
Virus identification, 299
Virus incident checklist, 298–299
Virus incidents, dealing with, 297–299
Virus incidents, reported, 295–300

dealing with virus incidents, 297–299
general protective policies, 299
Help Desk investigations, 295–296
virus identification, 299

Virus infecting data files, 591–592
Virus infection

Michelangelo, 603
Stoned, 602, 603

Virus infections, indications of, 573
Virus information resources, macro, 622
VIRUS-L/comp.virus, FAQs (Frequently Asked

Questions) on, 567–607
primary contributors, 568–607

VIRUS-L mailing list, 452
Virus, Linux, 578
Virus mechanisms, 103–135

boot zone, 109–111
concealment mechanisms, 123–134
file infectors, 112–119
hardware-specific viruses, 104–109
interpreted viruses, 121–123
multipartite viruses, 119–120
viruses and, 6

Virus origin and distribution, 439–459
Virus payloads, direct damage from, 97–98
Virus prehistory: Jurassic Park to Xerox PARC, 18–21
Virus, questions received at Mac, 624–627
Virus resources and Macintosh, 622–623
Virus resources, miscellaneous, 622–623
Virus scanners, 296

for UNIX systems, 578–579
Virus; See Anti-virus
Virus software; See Anti-virus software
Virus-specific scanning, 158–162
Virus-specific software, 143
Virus structure, 7

I n d e x 6 8 1

Virus/worm, VBScript, 43–48
Virus writers, 441–442

motives of, 451–453
Viruses, 58–61

activations of, 90
Altair, 35–36
avoiding, 595
boot-sector, 589–590
Brain, 25
Budget, 470
Cap, 391–392
Cascade, 606
changing shapes of, 130
Chernobyl, 400–401
CIH.Spacefiller, 400–401
cleaning on all disks, 294
Colors, 387–388
common DOS, 581–582
companion, 118–119
computer, 570–572
concept, 38–39
detecting macro, 386
detecting new, 579
diagnosing, 574
DIR-II, 117
early Apple II, 22
eradicating traces of, 557
Esperanto, 401–402
Excel, 392–393
experimental spreadsheet, 133
form boot-sector, 364–365
GenB, 604
GenP, 604
getting from reading Email, 598–599
hardware-specific, 104–109
hybrid, 92–93
identifying, 574
infect, 446
Iraqi printer, 366–369
Israeli, 353
Jerusalem, 353–355
just the same, but more, 555–556
known, 568–569
LANs (local area networks) and stopping, 586
Lehigh, 93, 346–347
Mac-specific, 610–617
MacMag, 339–343
macro, 121–122, 396–397
mainframe computers and susceptible to

computer, 592–594
memory-resident, 91–92
Michelangelo, 34–35, 603

Microsoft Office macro, 38–39
multipartite, 119–120
Nuclear, 384–387
overwriting, 115–117
PC scripting, 618
pranks spreading, 74
proof of concept, 38–39
protecting files from, 584–585
reasons for writing, 450–455
removing, 574–576
removing MBR, 575
Renaissance, 33–34
Scores, 343–345
script, 412–413
scripting, 122–123
See also Metaviruses
spawning, 118–119
spreading to other computers, 592
Stoned, 356
substitution of, 338
technical definition of, 54
test, 65
update, 47–48
value-added, 410–411
writers of Brain, 337–338
writing, 83–86
zoo, 56

Viruses affecting Macintosh, 610
Viruses and insurance, 304–305
Viruses and Macintosh, 609–627

books, 619–620
HyperCard infectors, 614–615
information resources, 619–623
Mac-related newsgroups, 619
Mac-specific system and file infectors,

611–614
Mac Trojan Horses, 615–616
Mac troubleshooting, 622–623
macro virus information resources, 622
macro viruses, Trojans, and variants, 616–617
miscellaneous virus resources, 622–623
questions received at Mac Virus, 624–627
Virus Bulletin, 621–622
Web sites, 620–621

Viruses and related threats, pre-emptive measures,
144–151

Viruses and related topics, information on, 569–570
Viruses and virus mechanisms, 6
Viruses and Warez, 341
Viruses hiding in

Expanded RAM, 591
Extended RAM, 591

6 8 2 V i r u s e s R e v e a l e d

.GIF files, 599–600
JPEG files, 599–600
PCs CMOS memories, 590
PC’s High Memory area, 591
PC’s Upper Memory, 591

Viruses infection, flip, 604
Viruses, interpreted, 121–123

macro viruses, 121–122
scripting viruses, 122–123

Viruses, new
Cheese, 561
Code Red/Bady, 562–563
Lindose/Winux, 561–562
MacSimpsons, 562
Mandragore, 559–560
Outlook View Control, 562
Poly/Noped, 559
RTF is not panacea, 558–559
Sadmind, 561
Sircam, 563–564
SULFNBK hoax, 560

Viruses, real: early days, 22–30
Brain, 25
early Apple II viruses, 22
Elk Cloner, 23
Fred Cohen, computer viruses, 23–24
goodnight Vienna, hello Lehigh, 26–27
worm turns, 27–30

VX (Virus eXchange), 33
VxDs (virtual device drivers), 92

W
W32/Happy99 (Ska), value-added virus, 410–411
W32/Magistr@mm, 432–433
W32/Navidad, 425–427
W95/MTX (Matrix, Apology), 46
W95.Hybris, 427–428
W97M/Melissa (Mailissa), 406–410
WAN protection, 165
WANK worm, 352
WANK (Worms Against Nuclear Killers), 352
WANs (wide area networks), 165
WAP (Wireless Application Protocol), 43
Warez and viruses, 341
Warhead, usage of, 89
Wazzu, 389–390
Web sites, Macintosh, 620–621
Welcome Datacomp, 618
Wheat and chaff, 471–472
Wiederoffnen, 389
Wild, in the, 13–15

WildList Organization, 14, 56
Windows

DOS viruses working under MS, 598
Microsoft, 148–149
and using other software, 150

Windows NT terminology, 368
Winux, Lindose/, 432, 561–562
.WLL (Word Link Libraries), 384
WM/Atom, 390
WM/Cap, 391–392
WM/Concept, 377–383
WM/Nuclear, 384–387
WM/ShareFun, 395
Word 97, 395
Word Link Libraries (.WLL), 384
World Wide Web, use of, 516
Worm turns, 27–30
Worm/virus/hybrids, 57
Wormholes, 19
Worms, 30–32, 59, 61–62

Christmas Tree, 347
defined, 572
diet of, 12
infest, 446
Internet, 347–352
Morris, 347–352
and polymorphism, 131
See also Case studies: turning worm (third wave)
Shoch/Hupp segmented, 20–21
VBScript virus, 43–48
WANK, 352

Wrap up, 551–564
Write-protect tab on floppy disks, 586
Write-protecting hard disk with software, 583
Writers

motives of virus, 451–453
virus, 82, 441–442

Writing viruses, 83–86
reasons for, 450–455

WSH (Windows Script Host), 122, 300, 414

X
Xerox PARC, Jurassic Park to, 18–21
Xerox worm (Shoch/Hupp segmented worm), 20–21

Z
Zipped files, 251
Zoo

defined, 273
viruses, 56

I n d e x 6 8 3

Blind Folio 684

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA
McGraw-Hill Book Company Australia Pty. Ltd.
TEL +61-2-9417-9899
FAX +61-2-9417-5687
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA
McGraw-Hill Ryerson Ltd.
TEL +905-430-5000
FAX +905-430-5020
http://www.mcgrawhill.ca

GREECE, MIDDLE EAST,
NORTHERN AFRICA
McGraw-Hill Hellas
TEL +30-1-656-0990-3-4
FAX +30-1-654-5525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores S.A. de C.V.
TEL +525-117-1583
FAX +525-117-1589
http://www.mcgraw-hill.com.mx
fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-863-1580
FAX +65-862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA
McGraw-Hill South Africa
TEL +27-11-622-7512
FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

UNITED KINGDOM & EUROPE
(Excluding Southern Europe)
McGraw-Hill Education Europe
TEL +44-1-628-502500
FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
computing_neurope@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
Osborne/McGraw-Hill
TEL +1-510-549-6600
FAX +1-510-883-7600
http://www.osborne.com
omg_international@mcgraw-hill.com

TE
AM
FL
Y

Team-Fly®

	sample.pdf
	sterling.com
	Welcome to Sterling Software

