


Bluetooth Security



For a listing of recent titles in the Artech House Computer Security Library,
turn to the back of this book.



Bluetooth Security

Christian Gehrmann
Joakim Persson

Ben Smeets

Artech House
Boston • London

www.artechhouse.com



Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
Gehrmann, Christian

Bluetooth security.—(Artech House computing library)
1. Bluetooth technology—Security measures 2. Computer security
I. Title II. Persson, Joakim III. Smeets, Ben
005.8

ISBN 1-58053-504-6

Cover design by Igor Valdman

© 2004 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book
may be reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system, without permission
in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of
a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

International Standard Book Number: 1-58053-504-6

10 9 8 7 6 5 4 3 2 1



Contents

Preface xi

Part I: Bluetooth Security Basics 1

1 Introduction 3

1.1 Bluetooth system basics 3

1.1.1 Background 3

1.1.2 Trade-offs 4

1.1.3 Bluetooth protocol stack 4

1.1.4 Physical layer 6

1.1.5 Baseband 7

1.1.6 Link manager protocol 13

1.1.7 Logical link control and adaptation protocol 15

1.1.8 Host control interface 15

1.1.9 Profiles 17

1.2 Bluetooth security basics 19

1.2.1 User scenarios 19

1.2.2 Notions and terminology 22

References 25

v



2 Overview of the Bluetooth Security Architecture 27

2.1 Key types 27

2.2 Pairing and user interaction 29

2.3 Authentication 30

2.4 Link privacy 31

2.4.1 Protect the link 32

2.4.2 Encryption algorithm 32

2.4.3 Mode of operation 34

2.4.4 Unicast and broadcast 36

2.5 Communication security policies 37

2.5.1 Security modes 38

2.5.2 Security policy management 42

References 42

3 Bluetooth Pairing and Key Management 43

3.1 Pairing in Bluetooth 43

3.2 HCI protocol 44

3.3 LM protocol 45

3.4 Baseband events 46

3.4.1 Initialization key generation 47

3.4.2 Unit key generation 47

3.4.3 Combination key generation 49

3.4.4 Authentication 50

3.4.5 Master key generation 52

3.5 User interaction 53

3.6 Cipher key generation 54

3.6.1 Encryption key K C 54

3.6.2 Constraint key ′K C 55

3.6.3 Payload key KP 57

3.7 Key databases 58

3.7.1 Unit keys generation requirements 58

3.7.2 Combination key generation requirements 58

vi Bluetooth Security



3.7.3 Key databases 60

3.7.4 Semipermanent keys for temporary use 63

References 63

4 Algorithms 65

4.1 Crypto algorithm selection 65

4.1.1 Block ciphers 65

4.1.2 Stream ciphers 66

4.2 SAFER+ 67

4.2.1 Authentication algorithm E
1

70

4.2.2 Unit key algorithm E
21

71

4.2.3 Initial key algorithm E
22

72

4.2.4 Encryption key algorithm E
3

73

4.3 Encryption engine 73

4.4 Ciphering algorithm E0 74

4.4.1 Initialization 77

4.5 Implementation aspects 79

References 80

5 Broadcast Encryption 81

5.1 Overview 81

5.2 Preparing for broadcast encryption 82

5.3 Switching to broadcast encryption 83

References 85

6 Security Policies and Access Control 87

6.1 Objectives 87

6.1.1 Trust relations 88

6.1.2 Security levels 88

6.1.3 Flexibility 89

6.1.4 Implementation considerations 89

6.2 Security manager architecture 90

6.2.1 Overview 90

Contents vii



6.2.2 Device trust level 91

6.2.3 Security level for services 92

6.2.4 Connection setup 92

6.2.5 Database contents and registration procedure 95

Reference 96

7 Attacks, Strengths, and Weaknesses 97

7.1 Eavesdropping 97

7.2 Impersonation 105

7.3 Pairing 107

7.4 Improper key storage 109

7.4.1 Disclosure of keys 110

7.4.2 Tampering with keys 111

7.4.3 Denial of service 111

7.5 Unit key 112

7.6 Location tracking 113

7.6.1 Bluetooth device address and location tracking 113

7.6.2 Five different types of location tracking attacks 115

7.7 Implementation flaws 116

References 117

Part II: Bluetooth Security Enhancements 121

8 Providing Anonymity 123

8.1 Overview of the anonymity mode 123

8.2 Address usage 124

8.2.1 The fixed device address, BD_ADDR_fixed 124

8.2.2 The active device address, BD_ADDR 125

8.2.3 Alias addresses, BD_ADDR_alias 128

8.3 Modes of operation 128

8.4 Inquiry and paging 129

8.4.1 Connectable mode 129

8.4.2 Private connectable mode 130

viii Bluetooth Security



8.4.3 General connectable mode 131

8.5 Alias authentication 131

8.6 Pairing 133

8.7 Anonymity mode LMP commands 133

8.7.1 Address update, LMP active address 134

8.7.2 Alias address exchange, LMP alias address 134

8.7.3 Fixed address exchange, LMP fixed address 135

8.8 Pairing example 136

References 138

9 Key Management Extensions 139

9.1 Improved pairing 140

9.1.1 Requirements on an improved pairing protocol 140

9.1.2 Improved pairing protocol 141

9.1.3 Implementation aspects and complexity 147

9.2 Higher layer key exchange 149

9.2.1 IEEE 802.1x port-based network access control 150

9.2.2 Higher layer key exchange with EAP TLS 152

9.3 Autonomous trust delegation 154

9.3.1 Security group extension method 154

9.3.2 Public key–based key management 160

9.3.3 Group extension method versus public key method 163

References 164

10 Security for Bluetooth Applications 167

10.1 Headset 168

10.1.1 Headset security model 168

10.1.2 Pass-key and key management 169

10.1.3 Example 171

10.2 Network access 173

10.2.1 Common access keys 174

10.2.2 Security architecture 175

10.2.3 Network service subscription 175

Contents ix



10.2.4 Initial connection 177

10.2.5 Subsequent access to NAcPs 179

10.3 SIM access 181

10.3.1 The SIM access profile 181

10.3.2 Securing SIM access 182

References 184

Glossary 187

List of Acronyms and Abbreviations 189

About the Authors 195

Index 197

x Bluetooth Security



Preface

The simple wireless connectivity Bluetooth technology offers is attractive.
Therefore, Bluetooth-equipped devices have found their way into quite different
environments and are used for a wide range of applications. However, the secu-
rity aspects must be carefully analyzed in order to decide whether Bluetooth
technology indeed provides the right solution for a particular task.

Several books about Bluetooth wireless technology have been written.
While these books are excellent at describing the general functionality of Blue-
tooth devices, they are not particularly detailed when it comes to the security-
related aspects of Bluetooth technology. This book is different in this respect,
since it is completely devoted to security matters.

The security features that are defined in the specification are thoroughly
discussed and described in the book. Moreover, several interesting facts with
respect to this are pinpointed. Specifically, both strong and weak points of Blue-
tooth security are identified. Additionally, we do not limit ourselves to what
directly has been written in the specification. We also want to give some insight
into how potential risks and security threats will affect deployment of Bluetooth
technology.

This book is divided into two parts. Chapters 1 through 7 (Part I) discuss
the security functionality defined on the basis of the Bluetooth version 1.2 speci-
fication. However, security is not a feature that comes alone in a system. Secu-
rity only has a meaning in a certain context. Therefore, the first chapter of this
book provides an overview of the Bluetooth system. The communication princi-
ples and the security-related functions in the system are covered. For the reader
not familiar with security concepts and terminology, the notions and terms used
in this book are explained. The security-related functions in the Bluetooth

xi



specification are spread over several parts in the system. This explains why it is
quite hard to grasp how the different security functions fit together from just
reading the specifications. Chapter 2 gives an overview of the whole Bluetooth
security architecture. This covers everything from the low-level functions like
encryption and authentication to security policies. One core functionality in all
security systems is key management. Secure generation, exchange, and distribu-
tion of keys is maybe the most challenging task when designing a communica-
tion security system. Chapter 3 describes Bluetooth key management. Bluetooth
offers link encryption and secure device identification, which is provided by
using two different core cryptographic algorithms in various ways. Chapter 4
gives a detailed description of the algorithms and the design principles behind
them. Point-to-point encryption is different from sending encryption from one
device to several receivers. The Bluetooth standard includes a broadcast encryp-
tion function. The broadcast function is described in detail in Chapter 5. Often
overlooked by communication system designers are security problems that are
not directly related to the communication between devices but are related to the
services offered by the devices. Even if strong encryption and identification are
provided on a communicating link, the services that utilize the link must use the
mechanism in a correct way. This is handled by introducing security policies,
which in turn are enforced by access control mechanisms. Chapter 6 describes
how this can be dealt with in a Bluetooth system. The last chapter of the first
part of this book describes attacks on Bluetooth security. Obviously, it is impos-
sible to correctly judge the appropriate usage of a security technology without a
good understanding of the potential weaknesses. We cover all the main reported
attacks on the system.

The last three chapters (Part II) of the book focus on possible enhance-
ments to the Bluetooth specification. One of the reported Bluetooth weaknesses
is the possibility of tracking the movement of a particular user, so-called location
tracking. Chapter 8 describes how location tracking can be avoided by introduc-
ing an anonymity mode. Another Bluetooth weakness stems from attacks on the
key exchange or pairing. Also, the Bluetooth pairing mechanism can be cumber-
some for the user and limit its applicability. In Chapter 9, several key manage-
ment improvements and extensions are suggested. The final chapter, Chapter
10, deals with a set of Bluetooth applications. We show how security can be pro-
vided for these applications using both the standard features and the introduced
extensions to these features.

xii Bluetooth Security



Part I:
Bluetooth Security Basics



.



1
Introduction

Bluetooth wireless technology is gradually becoming a popular way to replace
existing wireline connections with short-range wireless interconnectivity. It is
also an enabling technology for new types of applications. In this chapter we
give a short background and a condensed description of how the Bluetooth sys-
tem works. We will focus on details that directly or indirectly relate to security
issues and on the functionality that is important in order to understand the con-
cept of the technology. The reference documentation for Bluetooth wireless
technology is [1].

1.1 Bluetooth system basics

1.1.1 Background

Bluetooth wireless technology is a short-range radio technology that is designed
to fulfill the particular needs of wireless interconnections between different per-
sonal devices, which are very popular in today’s society. The development of
Bluetooth started in the mid-1990s, when a project within Ericsson Mobile
Communications required a way to connect a keyboard to a computer device
without a cable. The wireless link turned out to be useful for many other things,
and it was developed into a more generic tool for connecting devices. A synchro-
nous mode for voice traffic was added and support for up to seven slaves was
introduced. In order to gain momentum for the technology and to promote
acceptance, the Bluetooth Special Interest Group (SIG) was founded in 1998.
The group consists of many companies from various fields. By joining forces,
the SIG members have evolved the radio link to what is now known as Blue-
tooth wireless technology.

3



1.1.2 Trade-offs

Bluetooth wireless technology is targeting devices with particular needs and con-
straints. The main issues are, as with all battery-powered consumer electronics,
cost and power consumption. Consequently, certain design trade-offs have been
made between the cost and power consumption on one side and overall per-
formance on the other. For instance, some of the specified requirements for the
radio (particularly the sensitivity numbers) are chosen to be so relaxed that it is
possible to implement a rather cheap one-chip radio with very few external com-
ponents (such as filters). The price paid is in a shortening of the range, as it will
decrease with decreased sensitivity. On the other hand, some requirements are
quite stringent (e.g., adjacent channel rejection) in order to handle interference
at frequencies near the intended signal. This helps to keep up the aggregated
throughput when many links are running simultaneously. One major design
goal is to have the system quite robust in noisy environments. This is because
interference rather than range is expected to be the limiting factor of the per-
ceived performance.

In contrast to most other well-known radio standards used for data com-
munication [e.g., Institute of Electrical and Electronics Engineers (IEEE)
802.11b and HIPERLAN], the specification has been written from the begin-
ning with use cases for handheld personal devices in mind. In particular, there is
no need to have an infrastructure (i.e., base stations) in place. The flexible Blue-
tooth master-slave concept was introduced to fit well in a dynamically changing
constellation of devices that communicate with each other. Furthermore, due to
the wide range of requirements for the traffic types for different applications,
Bluetooth can handle various data transport channels: asynchronous, isochro-
nous, and synchronous. It is even possible for a device to mix asynchronous
(data) and synchronous (voice) traffic at the same time.

In a radio environment where communication links are set up on request
rather than by default (without the need for a centralized infrastructure, as in
cellular networks) and where any node is able to communicate with any other
node, networking is usually called ad hoc networking or ad hoc connectivity. As we
will discuss later in the book, ad hoc connections impose special requirements
for the security functionality for the system. Bluetooth wireless technology is
particularly well suited for ad hoc usage scenarios.

1.1.3 Bluetooth protocol stack

The Bluetooth system stack is layered according to Figure 1.1. At the bottom is
the physical layer, which is basically the modem part. This is where the radio sig-
nals are processed. The fundamental limits on sensitivity (range) and interfer-
ence rejection are set by the radio front end (noise figure) and filters
implemented in this layer.

4 Bluetooth Security



Above the physical layer is the baseband layer, which is divided into lower
and upper parts. In the following, we will not differentiate between these, but
simply refer to them as the baseband. It is at this layer that packets are

Introduction 5

Bluetooth host

BNEP PAN
Dial-up networking

Headset
RFCOMM

SDP
Printing

Synchronous
and isochronous
unframed traffic

Asynchronous
and isochronous
framed traffic

Data DataControl Control

L2CAP
layer

L2CAP
resource
manager

Channel
manager

Device
manager

Link
manager

Baseband resource
manager

Link controller

RF

Upper
baseband
layer

Lower
baseband
layer

Physical
layer

Bluetooth controller

HCI

L2CAP

LMP

Link controller

Radio

Figure 1.1 A schematic view of the Bluetooth protocol stack architecture. The outermost
frame illustrates a possible partition between the host and a module.



formatted: creation of headers, checksum calculations, retransmission proce-
dure, and, optionally, encryption and decryption are handled. The link control-
ler (LC) is the entity that implements the baseband protocol and procedures.

Bluetooth links are managed by the link manager (LM). The devices set up
links, negotiate features, and administer connections that are up and running
using the link manager protocol (LMP).

Large chunks of user data need to be reformatted into smaller units before
they can be transmitted over the Bluetooth link. It is the responsibility of the
logical link communication and adaptation protocol (L2CAP) to take care of this.
At this layer it is possible to ask for certain quality-of-service (QoS) values one
would like to reserve for the link.

In many cases, the Bluetooth functionality is to be integrated into a host
entity that has computational power but lacks the radio part. For this purpose,
Bluetooth modules handling only the lower layers exist. The entity handling the
functionality of these layers is sometimes referred to as the Bluetooth controller.
For instance, a laptop that is perfectly capable of handling higher protocol layers
can embed a module that handles radio, baseband, and L2CAP. In such a setup,
the higher layers that are implemented in the host entity will communicate with
the lower layers of the module through the host controller interface (HCI).

1.1.4 Physical layer

Bluetooth radio operates in the license-free and globally available industrial, sci-
entific, and medical (ISM) band at 2.4 GHz. Because the ISM band is free, Blue-
tooth has to share this frequency band with many other systems. Various
wireless communication systems operate in this band (besides Bluetooth, IEEE
802.11b, most notably). Other systems may be defined in the future. One other
common device emitting radio frequency power in this band is found in almost
all homes: the microwave oven. Even though the vast majority of the radiation is
absorbed by the food inside the oven, some of it leaks and will appear outside as
interference. Actually, the leakage may be as much as 1,000 times more power-
ful than the signal one tries to capture, so this interference cannot be neglected.
Fortunately, the interference is not there all the time (loosely speaking, the
radiation cycle follows the frequency of the power supply) and is not over the
entire frequency spectrum (approximately 15 to 20 MHz of the frequency band
is affected by the microwave oven).

All in all, it is very hard to predict what kind of interference to expect in
the ISM band. To combat this, Bluetooth deploys a frequency hopping (FH)
spread spectrum technology. There are 79 channels used, each with a bandwidth
of 1 MHz. During communication, the system makes 1,600 hops per second
evenly spread over these channels according to a pseudorandom pattern. The
idea is that if one transmits on a bad channel, the next hop, which is only 625 µs

6 Bluetooth Security



later, will hopefully be on a good channel. In general, faster hopping between
frequencies gives more spreading, which improves on protection from other
interference. However, the improved performance comes at the cost of increased
complexity. The hopping rate chosen for Bluetooth is considered to be a good
trade-off between performance and complexity.

The signal is transmitted using binary Gaussian frequency shift keying. The
raw bit rate is 1 Mbps, but due to various kinds of protocol overhead, the user
data rate cannot exceed 723 Kbps. Following regulatory bodies in different parts
of the world, the maximum transmit power is restricted to 100 mW (or, equiva-
lently, 20 dBm). It is expected that this will give a range of 100m at line of sight.
Another power class, where the output power is restricted to 1 mW (0 dBm), is
also defined. Radios of this power class are more common in handheld devices,
and they will have a range of approximately 10m at line of sight.

One should notice that the specification defines the sensitivity level for the
radio such that the raw bit error rate (BER) 10−3 is met, which translates into the
range numbers given above within the specified link budget. It is around this
raw BER that a voice link without error-correcting capabilities becomes noticea-
bly distorted. This is a major reason for the choice of the BER 10−3 as a bench-
mark number for the radio specification. However, for data traffic, Bluetooth
applies cyclic redundancy check (CRC) as well as optional error correction codes.
Thus, if the receiver detects a transmission error, it will request a retransmission.
The result is that when operating at BER 10−3 (and even worse, to some extent),
a data link will function quite well anyway. Depending on payload lengths and
packet types, the decrease in throughput may even be unnoticed by the user.
This is, of course, good for the users, but also for potential eavesdroppers, who
may be able to choose a position at a safe distance beyond the specified range for
their purposes.

1.1.5 Baseband

Addressing and setting up connections

Each Bluetooth radio comes with a unique, factory preset 48-bit address. This
address, known as the Bluetooth device address (BD_ADDR), constitutes the basis
for identification of devices when connections are established. Before any con-
nection can be set up, the BD_ADDR of the addressee must be known to the
side that initiates a connection. For first-time connections, this is accomplished
by having the initiating side collect the device addresses of all nearby units and
then individually address the one of interest. This step is known as the inquiry
procedure. Naturally, once this has been done, the information gathered can be
reused without the need for another inquiry at the next connection attempt to
one of the known devices.

Introduction 7



The first step in finding other devices is to send an inquiry message. This
message is repeatedly transmitted following a well-defined, rather short hop
sequence of length 32. Any device that wants to be visible to others (also known
as being discoverable) frequently scans the inquiry hop sequence for inquiry mes-
sages. This procedure is referred to as inquiry scan. A scanning device will
respond to inquiries with its BD_ADDR and the current value of its native
clock. The inquiry message is anonymous and there is no acknowledgment to
the response, so the scanning device has no idea who made the inquiry, nor if
the inquirer received the response correctly.

The inquirer gathers responses for a while and can, when so desired, reach
a particular device through a page message. This message is sent on another
length 32 hop sequence determined from the 24 least significant bits of the
BD_ADDR [these are denoted by lower address part (LAP)] of the target device.
A device listens for page messages when it is in the page scan state. The phase
(i.e., the particular position) of the FH sequence is determined from the device’s
native clock. The paging device has knowledge of this from the inquiry
response; thus it is possible for the paging device to hit the correct frequency of
the paged device fairly quickly. As already has been stated, the inquiry part can
be bypassed when two units have set up a connection before and want to con-
nect again. If a long time has passed since the previous connection, the clocks of
the devices may have drifted, causing the estimate of the other unit’s native
clock to be inaccurate. The only effect of this is that the connection set-up time
may increase because of the resulting misalignment of their respective phase in
the page hop sequence.

When a page response is received, a rough FH synchronization has been
established between the pager and the paged device. By definition, the pager is
the master and the paged device is the slave. The meaning of these terms will be
discussed in the next section. Before the channel can be set up, some more infor-
mation must be exchanged between the devices. The FH sequence, the timing,
and the channel access code (CAC) are all derived from the master device. In
order to fine tune the FH synchronization, the slave needs the BD_ADDR and
the native clock of the master. This information is conveyed in a special packet
sent from the master to the slave. With all information at hand at the slave side,
the master and slave can switch from the page hopping sequence (defined by the
slave) to the basic channel hopping sequence determined by the master’s
parameters. Details on this process can be found in [2].

Topology and medium access control

Networks are formed using a star topology in Bluetooth. Not more than eight
simultaneous devices can participate in one of these piconets. The central node of
the piconet is called a master and the other nodes are called slaves. Thus, a piconet
will have exactly one master and at least one but at most seven slaves. The

8 Bluetooth Security



simplest form of piconet is illustrated in Figure 1.2(a). Information exchange
within the piconet is done by sending packets back and forth between devices.
Full duplex is accomplished using a time division duplex mode; that is, the chan-
nel access is divided into time slots assigned to the communicating parties. Who
gets access to the channel is determined by the piconet master simply by address-
ing a slave, which will then have the right to send in the next time slot.

Being in connection state, the piconet devices follow a long deterministic
FH sequence determined from the master’s LAP and native clock. The length of
this sequence is 223, which roughly corresponds to a 23-hour cycle. Following
from the fact that a device can only be master of one piconet at a time, every
piconet will have different FH sequences. To stay tuned to its piconet, each slave
member must continuously adjust for clock drift to the master by monitoring
the traffic sent over the channel.

Only master-to-slave and slave-to-master communication is possible.
Consequently, slave-to-slave traffic must be relayed via the master. If one par-
ticular device is involved in all traffic, there is a risk that it becomes a bottleneck
for the data transfer. This property is suboptimal with respect to the aggregated
system throughput. However, an important concept in Bluetooth is that all
devices have the ability to take the role of either slave or master, so the slaves
may choose to create another piconet. Doing so is better for the aggregated
throughput, since quite many piconets can actually be operated in parallel
before mutual interference cancels the benefits inherent in the parallelism. This
principle is shown in Figure 1.2(b).

In principle, a Bluetooth device is allowed to participate in more than one
piconet simultaneously, as illustrated in Figure 1.2(c). This is accomplished
using time sharing between the different piconets. To accommodate for this, the
low-power modes hold, park, and sniff can be used. Without going into detail,

Introduction 9

M
M

M
M

M

S S

S

S

S

S

S

S

S

S
S M

(a) (b) (c)

Figure 1.2 Three different piconet constellations: (a) two devices, (b) master relaying ver-
sus two separate piconets, and (c) interpiconet scheduling using time sharing.



these modes make it possible for a device to temporarily leave a piconet to do
something else (e.g., to sleep to save power or join another piconet). Thus, by
having one device be a member of two piconets, it is possible to exchange infor-
mation between piconets by relaying traffic via the common node. There are, of
course, practical problems with this—such as timing issues and fulfilling quality
of service when a device is absent from the piconet—but the possibility is given
in the specification. One limitation is that a device can only be the master in at
most one of the piconets of which it is a member.

Traffic types

Bluetooth wireless technology is designed to handle quite different types of traf-
fic scenarios. Data may be sent without any QoS requirements (referred to as
best effort traffic); thus, no bandwidth needs to be reserved and there are no
requirements for latency or delay. Typically, file transfer and data synchroniza-
tion fall into this category. Sometimes this traffic is called asynchronous. For
real-time, two-way communication, the round-trip delay must be kept small, as
do variations in the interarrival time of data samples. If not, the quality will be
perceived as unacceptable. This type of traffic is referred to as synchronous. Typi-
cal examples are speech and video conversations. Streaming audio and video falls
somewhere in between these categories. Small time variations between data sam-
ples is still important, but latency and roundtrip delays are of less interest. Such
traffic is called isochronous. Bluetooth can handle all these traffic types—it is
even possible to mix asynchronous and synchronous traffic between the master
and a slave at the same time.

A synchronous link in Bluetooth is referred to as a synchronous connection-
oriented (SCO) link. It is a point-to-point link between the master and a slave
where traffic is sent on slots reserved at regular intervals. Another logical link that
carries traffic on reserved slots is called enhanced synchronous connection-oriented
(eSCO) link. Both these logical links provide constant rate data services by carry-
ing fixed-sized packets on reserved slots over the physical channel. The eSCO
link (introduced in Bluetooth version 1.2) is more flexible than the SCO link in
that it offers more freedom in choosing bit rates and it is more reliable, as a lim-
ited number of retransmissions can take place in between the reserved time slots.

The asynchronous connection-oriented (logical transport) (ACL) link is a
point-to-multipoint link between the master and all the slaves on the piconet.
No reserved slots are used. The master can address an arbitrary slave at any slot
not reserved for SCO/eSCO traffic, even one that has a SCO/eSCO logical link
running with the master.

Packet structure

A baseband packet consists of an access code, a packet header, and the payload.
The access code, which comes first in each packet, is used to trigger and

10 Bluetooth Security



synchronize the receiver. Each piconet uses a unique access code derived from
the BD_ADDR of the master. Thus, by inspecting the access code, a receiver can
determine if a packet is for another piconet. In that case, processing the rest of
the packet can be aborted, which will help it save some power. Moreover, as the
access code defines where a slot boundary is, it is used to time-synchronize the
slave to the master clock. This is necessary, as time drift is inevitable between
different devices due to differences in their respective crystal frequencies. Conse-
quently, each slave of a piconet must continuously adjust its clock offset relative
to the master clock; otherwise it will eventually lose connection with the master.

The packet header is used to address individual slaves of a piconet. For this
purpose, a 3-bit field denoted by logical transport address (LT_ADDR) is used.1

The master assigns nonzero addresses to slaves at connection setup, while the
all-zero address is reserved for broadcast messages. Apart from this, the packet
header conveys information regarding the type of data traffic, flow control, and
the retransmission scheme. To increase the robustness of the packet header, it is
encoded with a rate R = 1/3 repetition code (i.e., each bit is repeated three
times).

User data is carried by the payload. The length of this field can vary
depending on the type of traffic—from zero bytes (for acknowledgment of
received data when nothing needs to be sent in the reverse direction) up to 339
bytes (plus 4 bytes of payload header and CRC). The packet format is depicted
in Figure 1.3.

A baseband packet may occupy up to 1, 3, or 5 slots, depending on its
type. This allows for having asymmetric data rates in the forward and reverse

Introduction 11

Access code Header Payload

Preamble Sync word Trailer

LT_ADDR Type

ARQN

Flow SEQN

HEC

4 64 4

72 18 0 – 2,744

Figure 1.3 Packet format used in Bluetooth. The numbers refer to the number of bits before
channel encoding.

1. This field was previously denoted by AM_ADDR, but its name was changed in the Blue-
tooth version 1.2 specification.



directions without the overhead penalty that one-size packets would cause. Error
detection may be applied through a 16-bit CRC code. Furthermore, it is possi-
ble to apply an error correcting code to the payload—either a rate R = 1/3 repe-
tition code, or a (15,10) shortened Hamming code [3] (which has rate R =
2/3)—when link conditions are bad. In the Bluetooth specification, one uses the
notion forward error correction (FEC) for this.

Best effort traffic (i.e., ACL links) without an error correcting code are car-
ried over packets denoted by DH1, DH3, and DH5, where D indicates data, H
stands for high rate, and the number is the maximum number of slots occupied by
the packet. Similarly, there are DM1, DM3, and DM5 packets (where M stands
for medium rate) for packets utilizing the shortened Hamming code. Using these
packet types, it is possible to have user data rates ranging from 108.8 Kbps (sym-
metric, DM1) to 723.2 Kbps (forward) and 57.6 Kbps (reverse) for DH5 packets.
The achievable data rates using ACL packets are summarized in Table 1.1.

For synchronous traffic, there are the HV1, HV2, and HV3 [where H
stands for high-quality (referring to the relatively high bit rate available for
speech coding) and V stands for voice] packets of 10, 20, and 30 information
bytes, respectively. These one-slot packets have no CRC applied to the payload
and are typically used to carry voice traffic. The achievable rate for all HV pack-
ets is 64 Kbps. The HV1 packet is protected by the rate R = 1/3 repetition code,
the HV2 packet is protected by the rate R = 2/3 Hamming code, and the HV3
packet has no error correcting code applied. There is also a DV packet which
consists of two parts—one carrying 10 bytes of voice data (no CRC) and one

12 Bluetooth Security

Table 1.1
Summary of ACL Packets and Their Achievable Data Rates (in Kbps)

Asymmetric
Max. Rate

Type
Payload
(Information Bytes) FEC CRC

Symmetric
Max. Rate Forward Reverse

DM1 0–17 2/3 Yes 108.8 108.8 108.8

DH1 0–27 No Yes 172.8 172.8 172.8

DM3 0–121 2/3 Yes 258.1 387.2 54.4

DH3 0–183 No Yes 390.4 585.6 86.4

DM5 0–224 2/3 Yes 286.7 477.8 36.3

DH5 0–339 No Yes 433.9 723.2 57.6

AUX1 0–29 No No 185.6 185.6 185.6



carrying asynchronous user data (0 to 9 bytes) for which CRC is applied. The
voice part also offers 64 Kbps. In addition to these, the eSCO logical transport is
mapped on EV3, EV4, and EV5 packets. All these have a CRC, which implies
that retransmission is possible if no acknowledgment has been received within
the retransmission window. The EV4 also applies the error correcting code to
the payload. For these packets, the achievable rates are 96, 192, and 288 Kbps,
respectively. The rates that are supported for synchronous traffic are summa-
rized in Table 1.2.

1.1.6 Link manager protocol

It is the link manager that is responsible for the control of the Bluetooth link.
That includes all tasks related to the setup, detachment, or configuration of a
link. The LM is also responsible for exchanging security-related messages. The
LMs in different units exchange control messages using the LMP. A large set of
control messages or LMP protocol data units (PDU) have been defined. Many of
these are security related and some PDUs are used to carry the information
needed at pairing and authentication, and for enabling of encryption.

The LMP PDUs are transferred in the payload instead of ordinary data.
They are always sent as single-slot packets and they can be carried in two differ-
ent types of data packets. In order to distinguish LMP packets from other pack-
ets, a special type code is used in the packet header of all LMP messages. To
avoid overflow in the receiving packet buffer, flow control is normally applied
to the asynchronous data packet in Bluetooth. However, no flow control applies
to LMP PDUs. The LMP PDU payload format is shown in Figure 1.4. The

Introduction 13

Table 1.2
Summary of Synchronous Packets and Their Achievable Data Rates (in Kbps)

Type
Payload
(Information Bytes) FEC CRC

Symmetric
Max. Rate

HV1 10 1/3 No 64

HV2 20 2/3 No 64

HV3 30 No No 64

DV 10 + (0–9)* 2/3* Yes* 64 + 57.6*

EV3 1–30 No Yes 96

EV4 1–120 2/3 Yes 192

EV5 1–180 No Yes 288

*Marked items of the DV packet are only relevant to the data part of the payload.



PDU format can be considered as one byte header followed by the LM data.
The header has two fields. The first field is only 1 bit long and contains the
transaction identifier (ID). The second field is 7 bits long and contains the
operation code (OpCode). The operation code tells which type of LMP PDU
that is being sent. Each LMP message has its unique OpCode.

As we have described, the LMP is used to control and set up the link. A typi-
cal PDU flow example at connection creation is shown in Figure 1.5. The con-
nection establishment always starts with the master unit paging the slave unit.
After the basic baseband page and page response messages have been exchanged,
the setup of the link can start. Before the master sends a connection request, it
might request information from the slave regarding its clock, version of the link
manager protocol, LMP features, and the name of the slave units. A set of LMP
PDUs has been defined for this purpose. The connection setup procedure then
really starts with the master sending the LMP connection request mes-
sage. Next, the security-related message exchange takes place. Finally, the peers
complete the connection setup by exchanging LMP setup complete mes-
sages. Special security related PDUs have been defined in order to accomplish:

• Pairing;

• Authentication;

• Encryption;

• Changing the link key.

The details of principles and usage are described in Chapters 2 and 3. In
addition to the different LM functions we have mentioned previously, the LM is
also responsible for performing role change (master-slave switch), controlling
multislot packet size, and power control.

14 Bluetooth Security

LSB
0

MSB
16

Parameter N 1−

Parameter 2 Parameter 3

Parameter 1Transaction ID and OpCode

Parameter N

8

Figure 1.4 The LMP PDU format.



1.1.7 Logical link control and adaptation protocol

The L2CAP takes care of datagram segmentation and reassembly, multiplexing
of service streams, and quality-of-service issues. The L2CAP constitutes a filter
between the Bluetooth independent higher layers running on the host and the
lower layers belonging to the Bluetooth module. For instance, transmission con-
trol protocol/internet protocol (TCP/IP) traffic packets are too large to fit within a
baseband packet. Therefore, such packets will be cut into smaller chunks of data
before they are sent to the baseband for further processing. On the receiving
side, the process is reversed; baseband packets are reassembled into larger entities
before being released to higher layers.

1.1.8 Host control interface

The HCI is a common standardized interface between the upper and lower lay-
ers in the Bluetooth communication stack. As we described in Section 1.1.3, the
HCI provides the capability of separating the radio hardware-related functions
from higher layer protocols, which might run on a separate host processor. By
using the HCI, it is possible to use one Bluetooth module for several different

Introduction 15

Master Slave

Page procedure

LMP procedures for clock offset
request, LMP version, features,
name request, and detach

LMP host connection req

LMP accepted

LMP setup complete

LMP setup complete

LMP accepted

LMP start encryption req

LMP accepted

LMP encryption key size req

LMP accepted

Connection
request

Authentication
of the slave

Request for
an encrypted link

Encryption key
size negotiation

Start encryption

Link establishment
completed

LMP au rand

LMP sres

LMP encryption mode req

Figure 1.5 Connection establishment example, LMP PDU flow.



hosts and applications. Similar, upper-layer applications implemented in one
host can use any Bluetooth module supporting the HCI.

Figure 1.6 provides an overview of the lower Bluetooth layers and the HCI
interface. The HCI commands for the Bluetooth module are handled by the
HCI firmware that access the baseband and link manager.

Not all Bluetooth implementations run the lower and higher layer process-
ing on different processors. Integrated implementations are also possible. Con-
sequently, the HCI is an optional feature and only products that benefit from
the separation use it.

16 Bluetooth Security

Link controller

Link manager

HCI firmware

Physical bus driver

Bluetooth module

Physical bus (USB, PC card, etc.)

Physical bus driver

HCI driver

Higher layer drivers

Bluetooth host
HC

If
lo

w

Figure 1.6 Overview of the lower software layers and the position of the HCI stack.



The HCI commands are transported between the Bluetooth module and
host by some physical bus. This can, for example, be a universal serial bus (USB)
or PC card connection. Three physical transport media have been defined [4]:
USB, RS232, and universal asynchronous receiver/transmitter (UART). The
host exchanges data with the module by using command packets, and the module
gives responses to these requests or sends its own commands to the host, which
are called event packets. Data to be passed over a Bluetooth link is transported in
data packets.

To prevent buffer overflow in the host controller, flow control is used in
the direction from the host to the host controller. The host keeps track of the
size of the buffer all the time. At initialization, the host issues the Read

Buffer Size command. The host controller then continuously informs the
host of the number of completed transmitted packets through the Number of

Completed Packet event.
The command packets can be divided into six different subgroups:

1. Link control commands;

2. Link policy commands;

3. Host controller and baseband commands;

4. Read information commands;

5. Read status commands;

6. Test commands.

The link control commands are used to control the link layer connections
to other Bluetooth devices. Control of authentication and encryption as well as
keys and pass-key commands belong to this subgroup. The policy commands
are used to control how the link manager manages the piconet. The host con-
troller and baseband commands are used to read and write into several different
host controller registers. This includes reading and writing keys and pass-keys to
or from the host controller, as well as reading and writing the general link man-
ager authentication and encryption policy (see Section 2.5). The read informa-
tion commands are used to get information about the Bluetooth device and the
capabilities of the host controller. Information on connection states and signal
strength can be obtained through the read status commands. Finally, the test
commands are used to test various functionalities of the Bluetooth hardware.

1.1.9 Profiles

The Bluetooth standard is not limited to specific use cases or applications. How-
ever, in order to offer interoperability and to provide support for specific appli-
cations, the Bluetooth SIG has developed a set of so-called profiles. A profile

Introduction 17



defines an unambiguous description of the communication interface between
two units for one particular service. Both basic profiles that define fundamental
procedures for Bluetooth connections and profiles for distinct services have been
defined.

A new profile can be built on existing ones, allowing efficient reuse of
existing protocols and procedures. This gives raise to a hierarchical profiles
structure as outlined in Figure 1.7. The most fundamental definitions, recom-
mendations, and requirements related to modes of operation and connection
and channel setup are given in the generic access profile (GAP). All other existing
Bluetooth profiles make use of the GAP. The very original purpose of the Blue-
tooth standard was short-range cable replacement. Pure cable replacement
through RS232 emulation is offered by the serial port profile. Several other pro-
files, like the personal area network (PAN) and local positioning profile make use

18 Bluetooth Security

Hands-free profile

Headset profile

FAX profile

Dial-up networking
profile

Generic object exchange profile

Basic printing
profile

Basic imaging
profile

Synchronization
profile

Object push profile

File transfer
profile

Service discovery
application profile

Human interface
device profile

Common ISDN
access profile

Hardcopy cable
replacement profile

Advanced audio
distribution profile

Generic audio/video
distribution profile

PAN profile
Cordless telephony
profile

Intercom profile

Audio/video remove
control profile

Generic access profile

Serial port profile

Figure 1.7 Bluetooth profiles.



of the serial port profile. One level deeper in the profiles hierarchy is the general
object exchange profile. The purpose of this profile is to describe how the IrDA
object exchange (OBEX) layer is used within Bluetooth. OBEX can be used to
any higher layer object exchange, such as synchronization, file transfer, and push
services.

Different services have different security requirements. In Section 10 we
discuss the security requirements and solutions for a selection of Bluetooth pro-
files. Most profiles benefit from using the baseband security functions. It is
important, though, that the mechanisms are correctly understood and that
application providers are aware of the strength as well as limitations of the link
level security services. New profiles are constantly being developed, and some
existing profiles may become replaced as others covering the same or similar
functionality are added. Profiles are released independently of the core specifica-
tion release schedule. In Figure 1.7 we have included the profiles that were
adopted at the time of this writing (November 2003).

1.2 Bluetooth security basics

Security issues surfaced from the beginning in the design of the Bluetooth sys-
tem. It was decided that even for the simplest usage scenarios, the Bluetooth sys-
tem should provide security features. To find the correct level of security when a
new communication technology is defined is a nontrivial task, as it depends on
usage. Bluetooth is versatile, which further increases the difficulties in finding
the correct level one anticipates for the system. We start this section by discuss-
ing some typical user scenarios for Bluetooth applications.

1.2.1 User scenarios

In Section 1.1.9 we touched upon Bluetooth profiles. The overview of the pro-
files shows that the technology can be used in a large number of different appli-
cations. The overview also demonstrates that very different devices with very
different capabilities might utilize the local connectivity provided by Bluetooth.
However, most applications are characterized by two things: personal area usage
and ad hoc connectivity. The Bluetooth link level security mechanisms have been
designed with these two characteristics in mind, and below we describe what we
mean by personal area networks and ad hoc connectivity.

Personal area networks

The personal area network concept is a vision shared among a large number of
researchers and wireless technology drivers. A PAN consists of a limited number
of units that have the ability to form networks and exchange information. The

Introduction 19



units can be under one user’s control (i.e., personal computing units) or they
can be controlled by different users or organizations. Bluetooth is used as a local
connection interface between different personal units, such as mobile phones,
laptops, personal digital assistants (PDA), printers, keyboards, mouses, headsets,
and loudspeakers. Hence, Bluetooth is a true enabling technology for the PAN
vision. The devices are typically (but not at all limited to) consumer devices.
Different consumer devices have different manufacturers, and the personal
usage of a device will vary from person to person. Hence, in order to provide
interoperability between the different personal devices, the security must to
some extent be configured by the user. Bluetooth security solutions have been
designed with the principles in mind that any ordinary user should be able to
configure and manage the necessary security actions needed to protect the com-
munication links.

The information exchanged over Bluetooth might very well be sensitive
and vulnerable to eavesdropping. In addition, users of mobile phones or laptops
would like to be sure that no unauthorized (by the users) person is able to con-
nect to their personal devices. Another issue is location privacy. People would
like to use their Bluetooth devices anywhere they go without fearing that some-
body can track their movements. To ensure that, device anonymity is an impor-
tant user expectation.

To sum up, there are four fundamental security expectations for Bluetooth:

1. Easy-to-use and self-explanatory security configuration;

2. Confidentiality protection;

3. Authentication of connecting devices;

4. Anonymity.

Bluetooth provides link encryption and authentication. In this book we
will provide a possible solution for providing anonymity (see Chapter 8). If the
expectation for easy-to-use and self-explanatory security configuration has also
been fulfilled is hard to say—at least the system has been designed with this goal
in mind.

Ad hoc connectivity

As discussed previously, Bluetooth has been designed to support the wireless
PAN vision. Sometimes the relations between the devices are fixed, like the con-
nection between a desktop computer and the keyboard or the mouse. Another
example is the connection between a mobile phone and a headset. However,
sometimes one wishes to set up connections on the fly with another device that
just happens to be nearby. This is ad hoc connectivity. To illustrate an ad hoc
connectivity scenario, we give an example. Let us consider a business meeting

20 Bluetooth Security



where two persons, an employee and a visitor, meet in a room equipped with a
video projector, illustrated in Figure 1.8.

The two persons in the room are each carrying one laptop. The laptops
contain presentation information that the users would like to present to each
other using the video projector. Furthermore, after the presentation, the visitor
would like to send a presentation to the employee. We assume that the video
projector and the laptops support Bluetooth for local connectivity. Hence, we
have a PAN scenario with three different Bluetooth-enabled devices:

1. A video projector;

2. A visitor laptop;

3. An employee laptop.

The ad hoc nature of these connections stems from the fact that no prior
relation can be assumed between the visitor’s laptop and the projector or
between the visitor and employee laptop. Hence, in order to provide security
(authentication and encryption) on the communication links, the security rela-
tions must be set up on the fly and often by the users themselves. The original
Bluetooth pairing mechanism provides the possibility of setting up ad hoc secu-
rity relations. However, one would like to minimize the load on the user and

Introduction 21

Video projector Visitor

Employee

Figure 1.8 Bluetooth meeting room ad hoc connectivity scenario.



find alternative methods to manual procedures. In this book we revisit these
issues several times and discuss features needed to make ad hoc connectivity as
secure and, at the same time, as user friendly as possible. In the next chapter we
will give an overview of the Bluetooth security architecture. But first we review
some frequently used notions and terminology.

1.2.2 Notions and terminology

We already mentioned that security expectations for Bluetooth are related to the
following four aspects (1) easy-to-use and self-explanatory security configura-
tion, (2) confidentiality protection, (3) authentication of connecting devices,
and (4) anonymity. These aspects describe what we mean by security in this
book. When considering general information systems, security is understood to
encompass the following three aspects [5]: confidentiality, integrity, and avail-
ability. The mechanisms that address the confidentiality aspects should provide
the means to keep user information private. Integrity mechanisms address the
capability to protect the data against unauthorized alterations or removal.
Finally, availability deals with the aspect that the system should be available as
expected. Availability is therefore closely related to reliability and robustness.
Comparing this with what we said within the context of Bluetooth, we see that
the aspects of confidentiality and availability appear in the four security expecta-
tions, although it may be argued that anonymity is an aspect on its own. The
Bluetooth standard does not currently include any data integrity protection
mechanism. In the sections that follow, we discuss first the meaning of confi-
dentiality and integrity in more detail. We then continue to give a very compact
description of cryptographic mechanisms that are used to achieve security.

Confidentiality

Confidentiality of data can be achieved by transforming the original data, often
called the plaintext, into a new text, the ciphertext, that does not reveal the con-
tent of the plaintext. The transformation should be (conditionally) reversible,
allowing the recovery of the plaintext from the ciphertext. To avoid that the
transformation itself has to be kept secret to prevent a recovery of the plaintext,
the transformation is realized as a parameterized transformation, where only the
controlling parameter is kept secret. The controlling parameter is called the key
and the transformation is called encryption. A good encryption mechanism has
the property that unless the key value is known, it is practically infeasible to
recover the plaintext or the key value from the ciphertext. What actually “practi-
cally infeasible” means is not exactly defined. Moreover, what is infeasible today
may be feasible tomorrow. A good measure of the quality of an encryption
mechanism is that even if very many plaintext and corresponding ciphertext
messages are known, the amount of work to break a cipher (e.g., recover the key)

22 Bluetooth Security



is in the same order as the number of key combinations. In other words, break-
ing the cipher is equivalent to a complete search through the key space.

Integrity

The second aspect of security, that is, integrity, is about ensuring that data has
not been replaced or modified without authorization during transport or stor-
age. Integrity should not be confused with peer authentication or identification
(see the explanation below), which can be used to verify the communication
peer during connection setup. Peer authentication only guarantees that a con-
nection is established with the supposed peer, while message integrity is about
authenticity of the transmitted messages. Integrity protection of transmitted
data is not part of the Bluetooth standard.

Symmetric and asymmetric mechanisms

Cryptographic mechanisms are distinguished as being either symmetric key or
asymmetric key. Symmetric mechanisms are mechanisms for which the commu-
nicating parties share the same secret key. There is, so to speak, a symmetric
situation among the parties. If the mechanism concerns the encryption of files,
say, then the receiver is not only able to decrypt the files received from the trans-
mitter, but in fact the receiver is able to decrypt encrypted files that were gener-
ated by the receiver itself. Thus, a receiver cannot claim that the decrypted data
indeed was sent by the sender. Symmetric mechanisms (we sometimes also use
the word schemes) are also called secret-key mechanisms. An important property of
symmetric mechanisms is that the transportation of the key from the sending to
the receiving party needs to be realized in such a way that no information about
the key is leaked to outsiders. This need for key transfer constitutes the core
problem in key management. Encryption of large data blocks is often realized
through symmetric encryption mechanisms because they are faster than the
asymmetric mechanisms. Secret-key mechanisms have a long history, and many
variants are known and in use. The main two types of secret-key mechanisms are
block and stream ciphers.

Asymmetric mechanisms are mechanisms that realize an encryption and
decryption transformation pair for which the keys for the respective transforma-
tions are not the same. In fact, one demands that one of the keys cannot be
recovered from the other. Hence, the keys at the sending and receiving sides
have an asymmetry in their properties. Asymmetric mechanisms are also called
public-key mechanisms. This naming stems from the fact that for asymmetric
mechanism, one speaks about a private- and public-key pair. The private key is
kept secret from everyone else and the public key is made accessible to every-
body (i.e., it is made public). Asymmetric mechanisms solve some of the key dis-
tribution problems that arise in the activation of symmetric mechanisms. This
advantage of asymmetric mechanisms is, however, often spoiled by the need to

Introduction 23



have proofs of the binding between a public key and an entity who claims to be
the owner (of the private key). A widespread solution to this is the use of so-
called certificates. Such certificates bind a public key to an identity2 and are
issued by a common trusted agent.

Public-key schemes are asymmetric cryptographic mechanisms. The two
keys that relate to a pair of encryption and decryption transformations are called
the public key and private key, respectively. Together they form a public- and
private-key pair. In public-key schemes, the private key cannot be recovered by
practical means from the public key or any other publicly known information
for that matter.

The best known public-key schemes are the Rivest, Shamir, and Adleman
(RSA) and Diffie-Hellman schemes. Both date back to the beginning of public-
key cryptography in the 1970s. Diffie-Hellman is used for key establishment,
while RSA is for key transport, encryption, or digital signatures. For more infor-
mation and a historical overview, see [6].

Block and stream ciphers

Block ciphers are symmetric cryptographic mechanisms that transform a fixed
amount of plaintext data (a block) to a block of ciphertext data using a key, and
that have an inverse transformation using the same key (as used for the encryp-
tion transformation). See Figure 1.9(a). Block ciphers are very useful as building
blocks to obtain other cryptographic mechanisms, such as authentication
mechanisms. In Bluetooth, the SAFER+ block cipher is used in this manner, as
will be described in Section 4.2.

Stream ciphers are the other main type of symmetric cryptographic mecha-
nisms. Here a stream (sequence) of plaintext symbols is transformed symbol by
symbol in a sequence of ciphertext symbols by adding, symbol by symbol, a so-
called key stream to the sequence of plaintext symbols. See Figure 1.9(b). Stream
ciphers have a trivial inverse transformation. Just generate the same key stream
and subtract its symbols from the stream of cipher symbols. Bluetooth uses the
E0 stream cipher to encrypt the data sent via the radio links.

Authentication

Authentication is the procedure by which a unit (the verifier) can convince itself
about the (correct) identity of another unit (the claimant) it is communicating
with3. Note that in cryptography, one often refers to this as the identification,
and authentication is reserved for referring to (message or data) authenticity,

24 Bluetooth Security

2. This is the most common use of certificates. However, there are types of certificates other
than identity certificates, and certificates often carry other information as well, often telling
about limitations of the use of the key (pair).

3. In [5] this is called peer authentication.



that is, the problem of asserting that a received message is authentic (as sent by
the sender). Here we use the definition of authentication that is in use in many
(cellular) communication systems [e.g., Global Mobile System (GSM) and
wideband code division multiple access (WCDMA)], that is, it refers to the
process of verifying the consistency of the link keys in the involved Bluetooth
devices exchanged during the pairing procedure.

Authorization

Authorization is the process of giving someone permission to do or have access
to something. For Bluetooth this means to decide whether a remote device has
the right to access a service on the local host and what privileges to gain for it.
Usually this involves some form of user interaction. Alternatively, granting
access to services can be subject to device-specific settings. Sometimes authoriza-
tion refers both to administering system permission settings and the actual
checking of the permission values when a device is getting access.

References

[1] Bluetooth Special Interest Group, Specification of the Bluetooth System, Version 1.2, Core
System Package, November 2003.

[2] Bluetooth Special Interest Group, Specification of the Bluetooth System, Version 1.2, Core
System Package, Part B, Baseband Specification, Link Controller Operation, November 2003.

[3] Lin, S., and D. J. Costello Jr., Error Control Coding: Fundamentals and Applications, Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1983.

[4] Bluetooth Special Interest Group, Specification of the Bluetooth System, Version 1.2, Core
System Package, Part E, Host Controller Interface Functional Specification, November 2003.

Introduction 25

Plaintext block

Encrypt
Key steam
generator

Cipertext block

Key Key

Ciphertext symbol

Ciphertext symbol Plaintext symbol

Plaintext symbol

+

+

−

(a) (b)

Figure 1.9 (a) Block cipher, and (b) stream cipher.



[5] CCITT: International Telegraph and Telephone Consultative Committee, X.800: Data
Communication Networks: Open Systems Interconnection (OSI); Security, Structure and
Applications, International Telecommunication Union, Geneva, 1991.

[6] van Oorschot, P.C., A. J. Menezes, and S. A. Vanstone, Handbook of Applied Cryptogra-
phy, Boca Raton, FL: CRC Press, 1997.

26 Bluetooth Security



2
Overview of the Bluetooth Security
Architecture

The security demands in the various usage scenarios for Bluetooth differ sub-
stantially. For example, a remote-controlled toy and a remote-controlled indus-
trial robot constitute usage cases with essentially different demands on security.
The security architecture for Bluetooth is designed to provide built-in security
features even for the simplest cases and at the same time provide adequate sup-
port to provide security in demanding cases, such as those where Bluetooth
devices are used in a network environment.

This chapter gives an overview of the Bluetooth security architecture,
starting with a description of the different key types that are used, how the link
encryption is organized, and how all the basic features are controlled through
security modes to achieve different trust relations.

2.1 Key types

The security provided by the Bluetooth core is built upon the use of symmetric-
key cryptographic mechanisms for authentication, link encryption, and key gen-
eration. A number of different key types are used in connection with these
mechanisms. In Bluetooth, a link is a communication channel that is established
between two Bluetooth devices. To check that a link is established between the
correct devices, an authentication procedure between two devices has been
introduced. The authentication mechanism in this procedure uses the so-called
link key. As we will find out later, there are several different types of link keys.
Link keys are not only used for authentication. They are also used for derivation

27



of the key that controls the encryption of the data sent via a link. Through this
encryption, confidentiality of the transmitted data is realized. The correspond-
ing encryption mechanism uses the link encryption key. Loosely speaking, a link
key is used for the authentication between two devices and to derive the link
encryption key. A link key is created during the pairing of two devices. Section
2.2 contains more details on the pairing and use of pass-keys.

Before we discuss the pairing mechanism, it is useful to clarify the condi-
tions under which communication between two devices will occur. It is impor-
tant to distinguish two important states. Firstly, we have the state in which a
device wants to establish a connection with a device it has not been paired with.
Secondly, we have the state where a device wants to communicate with a device
it has paired with. Of course, a device may, as a result of a malfunction or a
forced reset, have lost the pairing information associated with a device. In such a
situation, the device should fall back to the unpaired state.

The pairing operation will result in a link key that two devices will use for
authentication and link encryption key generation directly after the pairing and
at later instances. The Bluetooth system recognizes two types of link keys:
semipermanent and temporary keys. Furthermore, two types of semipermanent
(link) keys are distinguished: unit keys and combination keys. A unit key is a link
key that one unit generates by itself and uses as a link key with any other (Blue-
tooth) device, and a combination key is a key that a device generates in coopera-
tion (combination) with another device. Therefore, any unit key that a specific
device has may be known to many other devices, whereas each combination key
is only known to itself and the device with which it was generated. Unit keys can
only be safely used when there is full trust among the devices that are paired
with the same unit key. This is because every paired device can impersonate any
other device holding the same unit key. Since Bluetooth version 1.2, the use of
unit keys is not recommended. But, for legacy reasons, unit keys have not been
completely removed from the specification. Besides the combination and unit
keys, two other key types are used: initialization keys and master keys. These are
temporary keys. The initialization key is a short-lived key that exists during the
pairing of two devices. The master key is a link key that the master generates
prior to the setup of an encrypted broadcast communication to several slave
devices. Besides the link keys, we have three ciphering keys: the encryption key
KC, the constrained encryption key ′K C , and the payload key KP. The encryption
key is the main key that controls the ciphering. Since this key may have a length
(in bits) that exceeds legislative constraints on the maximally allowed key length,
KC is not used directly but is replaced by the constrained encryption key ′K C ,
whose number of independent bits can be selected from 8, 16, . . . , 128 bits.
Currently there is little reason to accept key lengths less than 128 bits because
the export regulations have been relaxed since the original design of the Blue-
tooth system. It is directly derived from KC. Finally, the payload key is a

28 Bluetooth Security



ciphering key derived from the constrained encryption key ′K C . This key is the
initial state of the ciphering engine prior to generating the overlay sequence. A
summary of the different key types can be found in Table 2.1. More details on
the encryption keys is given in Section 2.4.1.

2.2 Pairing and user interaction

As indicated earlier, the pairing of two devices is the procedure by which
two devices establish a shared secret that they can use when they meet again. The
pairing requires user interaction, for example, the entering of a pass-key.1 See
Figure 2.1(a). The Bluetooth system allows the pass-key to be 128 bits long. Such
a large pass-key value would be rather user unfriendly for manual input. How-
ever, this feature allows the use of a higher level automated key agreement scheme
that can “feed” the agreed pass-key into the pairing procedure. See Figure 2.1(b).
The high-level key agreement scheme can be a network or transport layer security
(TLS) protocol. Examples of such protocols are the Internet Engineering Task
Force (IETF) protocols TLS [1] and Internet key exchange (IKE) [2].

There are two kinds of pass-keys in Bluetooth terminology: the variable
pass-key and the fixed pass-key. The first type represents a pass-key that can be
arbitrarily chosen at the pairing instance. This requires that some form of user
interaction takes place in order to feed the Bluetooth device with the appropri-
ate pass-key value. This interaction is most likely accomplished using a keyboard
or numerical keypad. An example of a typical device with a variable pass-key is
the mobile phone. In contrast, the fixed pass-key cannot be chosen arbitrarily
when it is needed. Instead, a predetermined value must be used. This type of
pass-key is used when there is no user interface to input a value to the Bluetooth

Overview of the Bluetooth Security Architecture 29

Table 2.1
Overview of Key Types

Purpose Semipermanent Temporary

Authentication
key generation

Unit key Combination key Initialization key Master key

Ciphering Encryption key
Constrained
encryption key

Payload key

1. In the Bluetooth specification, one sometimes uses the term personal identification number
(PIN).



device. Clearly, for a pairing to work, only one device can have a fixed pass-key
(unless, of course, both devices happen to have the same fixed pass-key). Exam-
ples of devices in need of fixed pass-keys are Bluetooth-enabled mice and head-
sets. These gadgets come with a factory preset pass-key when delivered to the
customer.

Note that a fixed pass-key need not be “fixed” in the sense that it can never
be changed. Preferably, the user is allowed to change the fixed pass- key in some
way. In some scenarios, a wired connection could be used, for example, by plug-
ging in an external keyboard and changing the pass-key. This is only feasible if it
is difficult for anyone but the rightful owner to have physical access to the Blue-
tooth device in question. More interesting is to allow the change over Bluetooth
using an already paired device (equipped with the necessary user interface) over
a secure connection. This implies that the user connects to the device with a fixed
pass-key, authenticates itself, and requests the link to be encrypted before a fresh
pass-key value can be sent to the remote device. The new value replaces the old
one and becomes the fixed pass-key to use in subsequent pairings. In Chapter 3
we will come back to the details of the pairing procedure.

2.3 Authentication

A Bluetooth device in a connectable state accepts connection requests from
other devices. This means that there is a risk that a connectable device is con-
nected to and attacked by a malicious device. Obvious, this can be avoided by
never entering a connectable state. On the other hand, that implies that no
Bluetooth connections at all can be established. Accordingly, there is a need to

30 Bluetooth Security

Pass-key Pass-key(a)

(b)

Device 1

Device 1

Device 2

Device 2

Key
agreement

Key
agreement

Pass-key Pass-key

Figure 2.1 (a) Pairing through manual user interaction, and (b) pairing through separate key
agreement protocol.



securely identify the other communication peer so that connections from
unknown devices can be refused. Device identification is provided through the
Bluetooth authentication mechanism. The authentication procedure is a so-
called challenge-response scheme, where the verifier device sends a random chal-
lenge to the claimant device and expects a valid response value in return. The
authentication procedure is only one way, and if mutual authentication is
needed the procedure must be repeated with the verifier and claimant roles
switched. In Section 3.4.4 the authentication procedure is described in more
detail.

2.4 Link privacy

Of all security aspects encountered in wireless scenarios, the easiest to under-
stand is the one relating to confidentiality. Eavesdropping on a radio transmis-
sion can be accomplished without revealing anything to the victim. Radio waves
are omnidirectional and travel through walls (at least to some extent). One can
easily imagine hiding a small radio receiver close enough to intercept the mes-
sages sent by a user, without revealing its presence to anyone not knowing where
to look for it. It may even be possible to do this without having physical access
to the premises where the Bluetooth devices are used. If the walls surrounding
the user area are not completely shielding the radio transmissions, eavesdrop-
ping can take place outside this room.

Initially, Bluetooth was envisioned as a simple cable replacement technol-
ogy. For some applications (such as device synchronization), replacing the wire
with a radio has implications for confidentiality. It was desirable that the user
should not experience any decrease in confidentiality when comparing the wire-
less with the wired solution. Thus, it was determined to look into what kind of
security means were needed in order to give a sufficient degree of protection to
Bluetooth communication.

In contrast to what sometimes has been claimed, the frequency hopping
scheme used in Bluetooth gives no real protection against eavesdropping.
Firstly, there is no secret involved in generating the sequence of visited chan-
nels—it is determined by the master’s LAP and native clock. Clearly, these two
variables are not secret. Adversaries may have full knowledge of them by follow-
ing the inquiry/page procedure traffic preceding the connection that they are
now eavesdropping on. Alternatively, adversaries can simply connect to the mas-
ter to automatically get all necessary information. Secondly, there are only 79
channels used. By running this many receivers in parallel (one for each channel)
and recording all traffic, an offline attack seems feasible simply by overlaying all
79 recordings.

Overview of the Bluetooth Security Architecture 31



2.4.1 Protect the link

It is important to understand that Bluetooth specifies security for the link
between radio units, not for the entire path from source to destination at the
application layer. All protocols and profiles that need end-to-end protection will
have to provide for this themselves. The implications are obvious in access point
scenarios, where the remote application may be running on a unit located thou-
sands of kilometers away, and traffic routing will involve many unknown links
apart from the short radio link between the local unit and the access point. Since
the user has no control over this, higher layer security is an understandable pre-
requisite to ensuring confidentiality all the way. However, even in the case when
the source and destination reside on PDAs close to each other and there is only
one direct Bluetooth link in between, one should remember that Bluetooth
security only addresses the radio link. Who is really in control on the other side?
Can malicious software access and control the Bluetooth radio?

2.4.2 Encryption algorithm

When it comes to the selection of which encryption algorithm to use, there are
some considerations that need to be taken into account:

• Algorithmic complexity;

• Implementation complexity;

• Strength of the cipher.

Algorithmic complexity relates to the number of computations needed for
encryption and decryption, while implementation complexity relates to the size
of the implementation on silicon. These two items boil down to power con-
sumption and cost—crucial properties for the battery-powered units Bluetooth
is designed for. A complex algorithm will almost certainly require a larger foot-
print on silicon than does a simple algorithm, leading to higher cost. For the
implementation, sometimes the speed obtained from dedicated hardware can be
traded for flexibility and smaller size using a programmable component such as a
digital signal processor (DSP) or a small central processing unit (CPU). For such
solutions, an increased algorithmic complexity will inevitably demand higher
clocking frequency, which also increases power consumption.

The last item on the list may be the most important. Should the ciphering
algorithm prove to be vulnerable to some “simple” attack, the whole foundation
of link privacy falls. Of course, the question of whether an attack is “simple” or
not remains to be discussed, but, in general, even the smallest suspicion regard-
ing strength is enough to cast doubts over the system’s overall security quality.
Do not confuse algorithmic complexity of encryption/decryption with the

32 Bluetooth Security



strength of the cipher. In fact, the goal is to keep the algorithmic complexity low
while having the computational complexity for all types of attacks as high as
possible.

Bluetooth deploys a stream cipher (see Section 1.2.2) with the desired
properties of a small and simple hardware solution while being difficult to break.
A key stream is added modulo 2 to the information sequence. Thus, the scheme
is symmetric, since the same key is used for encryption and decryption. This
means the same hardware can be used for encryption and decryption, something
that will actively keep down the size of the implementation. Moreover, stream
ciphers are built efficiently using linear feedback shift registers (LFSR), which
helps to reduce the die size even further.

The encryption/decryption consists of three identifiable parts: initialization
of a payload key, generating the key stream bits, and, finally, the actual process of
encrypting and decrypting the data. These functions are depicted in Figure 2.2.
The payload key is generated out of different input bits that are “randomized” by
running the sequence generating circuitry of the key stream generator for a while.
Then the payload key is used as the starting state for the key stream generator in
the encryption process. Since the sequence generating circuitry is used also for
generating the payload key, the implementation is mainly concentrated in this
part. The last part simply consists of XORing2 the key stream bits with the out-
going data stream (for encryption) or the demodulated received sequence (for
decryption). The details for all this can be found in Section 4.3.

The choice of a stream cipher was to a large extent based on implementa-
tion considerations. Clearly, a key stream generator needs to fulfill a whole range
of properties to make it useful for cryptographic purposes. For instance, the

Overview of the Bluetooth Security Architecture 33

2. Addition modulo 2.

Random number

Clock

Address

Constrained
encryption key

Payload
key
generator

Key stream
generator

Plaintext/Ciphertext

Ciphertext/Plaintext

⊕

Figure 2.2 Stream cipher usage in Bluetooth. Encryption and decryption use the same
circuitry.



sequence must have a large period and a high linear complexity, and satisfy stan-
dard statistical and cryptographic tests. A more thorough discussion about this
can be found in Section 4.1.2.

As can be seen in Figure 2.2, there are some parameters involved in creat-
ing the payload key, KP. The secret constrained encryption key, ′K C , is generated
by both units at the time a decision is made to switch encryption on. This key is
fixed for the duration of the session or until a decision is made to use a tempo-
rary key (which will require a change of the encryption key). Even though the
constrained encryption key always consists of 128 bits, its true entropy will vary
between 8 and 128 bits (in steps of 8 bits), depending on the outcome of the
link key negotiation that the involved units must perform before encryption can
be started. The address refers to the 48-bit Bluetooth unit address of the master,
while the clock is 26 bits from the master’s native clock. Finally, there is a 128-
bit random number that is changed every time the encryption key is changed.
This number is issued by the master before entering encryption mode and it is
sent in plaintext over the air. The purpose of it is to introduce more variance
into the generated payload key.

In Bluetooth, the key stream bits are generated by a method derived from
the summation stream cipher generator in Massey and Rueppel [3]. This
method is well investigated, and good estimates of its strength with respect to
currently known methods for cryptanalysis exist. The summation generator is
known to have some weaknesses that can be utilized in correlation attacks, but,
thanks to the high resynchronization frequency (see Section 2.4.3) of the gen-
erator, these attacks will not be practical threats to Bluetooth. In Section 7.1 this
will be discussed in greater detail.

2.4.3 Mode of operation

Not all bits of a Bluetooth packet are encrypted. The access code, consisting of
a preamble, sync word, and a trailer, must be readable to all units in order
for them to succeed in their receiver acquisition phase (i.e., in locking onto
the radio signal). Furthermore, all units of a piconet must be able to read the
packet header to see if the message is for them or not. Therefore, it is only the
payload that is encrypted. The ciphering takes place after the CRC is added but
before the optional error correcting code is applied. The principle is illustrated
in Figure 2.3.

In generating the payload key, bits 1 to 26 of the master clock are used.
This implies a change of the resulting key for every slot, since bit 1 toggles every
625 µs. However, the payload key is only generated at the start of a packet;
multislot packets will not require a change of the payload key when passing a
slot boundary within the packet. Consequently, for every Bluetooth baseband
payload, the key stream generator will be initialized with a different starting

34 Bluetooth Security



state. This frequent change of the starting state is a key factor in its resistance to
correlation attacks.

The initialization phase takes some time. In principle, the input parame-
ters are loaded into the shift registers of the key stream generator, which is then
run to produce 200 output bits. Of these, the last 128 are retained and subse-
quently reloaded into the shift registers. These operations put a limit to how fast
one can change from one payload key to another. Fortunately, Bluetooth speci-
fies a guard space between the end of a payload and the start of the next of at
least3 259 µs. The guard space is there in order to allow for the frequency syn-
thesizer of the radio to stabilize at the next channel used before the start of the

Overview of the Bluetooth Security Architecture 35

Error
correction
code

Add
CRC

Key
stream
generator

Key
stream
generator

Waveform
channel

Check
CRC

Decoding
Delivered
payload

Source
payload ⊕

⊕

Transmitter

Receiver

Figure 2.3 How to format encrypted packets.

3. The shortest guard space is for HV3 packets.



next packet. During this time (and, in principle, also during the 72 + 54 µs of
plaintext access code and packet header), the payload key initialization can be
run without interfering with the encryption or decryption process. The princi-
ple is shown in Figure 2.4.

2.4.4 Unicast and broadcast

Broadcast encryption poses a slight problem due to the point-to-point paradigm
used in Bluetooth. In principle, apart from itself, a slave device is only aware of
the piconet master. Thus the slave has no security bonding to other slave mem-
bers. Specifically, each link in the piconet uses different encryption keys, since
they are all based on their respective link keys. If the master would like to send
an encrypted message to all its slaves, it can do this using individually addressed
messages (also known as unicast messages) which will introduce unnecessary
overhead. A better alternative is for the master to change all link keys to a tem-
porary key, the master key. Based on this, all devices are able to generate a com-
mon encryption key that can be used in broadcast transmissions that address all
slaves simultaneously.

One drawback with this approach is that mixing secure unicast traffic and
secure broadcast traffic is not possible. The user must settle for one of these at a
time. The reason is in the packet structure and required initialization time for
the payload key. A broadcast message is identified from the all-zero LT_ADDR,
while unicast messages have nonzero LT_ADDR. This 3-bit address field is part
of the payload header. Not until this information has been received and inter-
preted can the receiver decide whether the payload key should be based on the
encryption key used for unicast or broadcast traffic. By then, there is far too little
time (less than 48 µs) to generate the payload key before the packet payload is
being received unless very fast hardware (i.e., involving high clock frequency) is
used. This, however, would put unrealistic requirements on the ciphering hard-
ware and increase cost as well as power consumption. It is, of course,

36 Bluetooth Security

. . .

Run stream cipher Initialize key stream generator

Slot
number k k + 1 k + 2 k + 3Guard

space

Figure 2.4 Operation of the encryption machinery.



inappropriate to use the broadcast encryption key for unicast traffic also, since
all devices within the piconet are able to decipher this. Broadcast encryption will
be discussed in Chapter 5.

2.5 Communication security policies

Security always comes at the prize of higher complexity. Hence, the security
mechanisms should only be used when they are really needed. When and how to
use the mechanisms is determined by the security policies of a device. The Blue-
tooth standard provides some basic principles for enforcing link-level security and
building more advanced security polices through the three defined security modes.

One obvious choice for protecting Bluetooth communication is using the
built-in link-level security mechanisms. Authentication and encryption is pro-
vided at baseband level. Using the built-in mechanisms has the advantage of
protecting all layers above the link level (including control messages). The link-
level security mechanisms can be switched on or off. The security policy deter-
mines if a device demands authentication and/or encryption. One very simple
approach is to demand maximum link-level security, that is, both authentica-
tion and encryption for all connections. This is an “always-on” link-level secu-
rity policy. Such a simple policy has several advantages. First, the complexity is
low. Furthermore, it gives a high level of security for all local connections and it
is easy to implement. Finally, it is easy for the user to handle and understand the
security policy. This kind of always-on policy and security enforcement is sup-
ported by Bluetooth security mode 3 (see Section 2.5.1). In order for this policy
to be user convenient, the necessary keys must be present. If one can assume or
actually demand that this is the case, the simple, always-on policy can be used
and the security mechanisms are very easy to handle. Obviously, this policy also
has some drawbacks:

• If the necessary link keys are not present, either a connection cannot be
established or the keys need to be generated and exchanged at connec-
tion creation.

• If the necessary link keys are not present and the key exchange cannot
be done automatically, the users must be involved and they must
understand what is happening.

The latter implication can be a serious drawback, when the actual service
does not demand any security. In this case, the user will be forced to handle a
security procedure for a service that may need to be fast and convenient. Some
device might only run services with high security requirements, and consequently

Overview of the Bluetooth Security Architecture 37



this will not cause any problem. On the other hand, devices used at public places
for information retrieval or exchange will certainly not have high security
requirements for all its connections, and people using such services will probably
not accept any tedious security procedures. Hence, a policy that demands link-
level security for some services and keeps some services totally “open” will be
needed. In practice, this implies that a device will need a shared secret with some
other device, and at the same time the device must be able to communicate with
other devices without sharing any secrets and using link-level security.

In summary, the simple, always-on security policy is not sufficient for all
Bluetooth usage scenarios. A better flexibility link-level security mechanism
enforcement is necessary. This can be achieved by service level–enabled security
(aligned with the access control mechanism). This is the motivation for the
introduction of security mode 2 (see Section 2.5.1), which allows service
level–enabled link layer security.

2.5.1 Security modes

The GAP [4] defines the generic procedure related to the discovery of Bluetooth
devices and the link management aspects of connecting to Bluetooth devices.
The GAP also defines the different basic security procedures of a Bluetooth
device. A connectable device can operate in three different security modes:

• Security mode 1: A Bluetooth unit in security mode 1 never initiates any
security procedures; that is, it never demands authentication or encryp-
tion of the Bluetooth link.

• Security mode 2: When a Bluetooth unit is operating in security mode 2,
it shall not initiate any security procedures, that is, demand authentica-
tion or encryption of the Bluetooth link, at link establishment. Instead,
security is enforced at channel (L2CAP) or connection (e.g., Service
Discovery Protocol (SDP), RFCOMM, TCS) establishment.

• Security mode 3: When a Bluetooth unit is in security mode 3, it shall
initiate security procedures before the link setup is completed. Two dif-
ferent security policies are possible: always demand authentication or
always demand both authentication and encryption.

In the following sections we discuss the different modes and how they are
used in Bluetooth applications.

Security mode 1

Security mode 1 is the “unsecured” mode in Bluetooth. A unit that offers its
service to all connecting devices operates in security mode 1. This implies that

38 Bluetooth Security



the unit does not demand authentication or encryption at connection establish-
ment. For example, an access point that offers information services to anybody
is a possible usage scenario for security mode 1.

Supporting authentication is mandatory and a unit in security mode 1
must respond to any authentication challenge. However, the unit will never
send an authentication challenge itself and mutual authentication is never per-
formed. A unit in security mode 1 that does not support encryption will refuse
any request for that. On the other hand, if encryption is supported, the unit
should accept a request for switching encryption on.

Security mode 2

Security mode 2 has been defined in order to provide better flexibility in the use
of Bluetooth link-level security. In security mode 2, no security procedures are
initiated until a channel or connection request has been received. This means
that it is up to the application or service to ask for security. Only when the appli-
cation or service requires it will the authentication and/or encryption mecha-
nisms be switched on. A sophisticated authentication and encryption policy
based on the baseband mechanisms can be implemented using this principle.
Security mechanisms enforcement and policy handling must be taken care of by
the unit. One possibility is to use a “security manager” to handle this. In Section
2.5.2, we further discuss the role and implementation of a security manager.

Security mode 2 comes at the price of higher implementation complexity
and the risk of faulty security policies that might compromise the security of the
unit.

Security mode 3

In security mode 3, on the other hand, security procedures (authentication
and/or encryption) are enforced at connection establishment. This is a simple,
always-on security policy. The implementation is easy and that reduces the risks
of any security implementation mistakes. The drawback is the lack of flexibility.
The unit will not be generally accessible. All connecting units need to be
authenticated.

Security modes and security mechanisms

The different security modes define how a unit will act at connection establish-
ment. Independent of the current security mode, a unit shall respond to security
requests in accordance with what is specified in the link manager protocol (see
Section 1.1.6). Hence, a security mode only defines the security behavior of the
unit, but the security level for a connection is determined by the security modes
of both units. Let one of two units be in security mode 3 and consequently
demand encryption. Then the connection will be encrypted if both units sup-
port encryption; otherwise the connection will be terminated.

Overview of the Bluetooth Security Architecture 39



Table 2.2 describes the different security mode options and the resulting
security mechanisms, while in Figure 2.5 the channel establishment procedure
for different security modes is illustrated. In the figure, the connection and serv-
ice establishment procedure for a Bluetooth device is shown as a flow diagram.
The process starts with the device that is in connectable mode. If the device is in
security mode 3, it will try to authenticate and optionally encrypt the link
directly after the link manager receives or makes a connection request. Specific
host settings for access can be applied. For instance, devices that are not previ-
ously paired may be rejected. A device that is in security mode 1 or 2, on the
other hand, will continue with the link setup procedure without any authentica-
tion or encryption request (see Chapter 6). Instead, the device in security mode
2 makes an access control check after a service connection has been requested.
Access is only granted for authorized devices. Authorization is either given
explicitly by the user or it can be given automatically (trusted and already paired
device). For security mode 2, optional encryption can be requested before the
connection to the service is finally established.

Service level access control can also be implemented by using security
mode 3. Then authentication always takes place before the service request.
Hence, security mode 2 gives better flexibility, since no security is enforced at

40 Bluetooth Security

Table 2.2
The Different Security Mode Options for Master Respective Slave and Resulting Security Mechanism(s)

Slave
Security
Mode Master Security Mode

1 2 3

1 No authentication,
no encryption.

If the master application
demands authentication (and
encryption), then the link will
be authenticated (and
encrypted).

The link will be authenticated.
If the master policy demands
it, the link will be encrypted.

2 If the slave application
demands it, the link will
be authenticated (and
encrypted).

If the master or slave
application demands it, the
link will be authenticated
(and encrypted).

The link will be authenticated.
If the master policy demands
it, or if the slave application
demands it, the link will be
encrypted.

3 The link will be
authenticated. If the
slave policy demands it,
the link will be
encrypted.

The link will be
authenticated. If the slave
policy demands it, or the
master application demands
it, the link will be encrypted.

The link will be authenticated.
If the slave or the master
policy demands it, the link will
be encrypted.



Overview of the Bluetooth Security Architecture 41

Device in
connectable mode

Service
request accepted

Paging and
link setup

Link manager
connection request

Connection request
accepted

Connection request
accepted

Device
rejected?

Authorized?

Check access
control list

Authentication
<Encryption>

Authentication
<Encryption>

Link setup
complete

Service
request

Security mode 3

Security mode 1 and 2

Security mode 2

Security mode 1 and 3

NoYes

Rejected Yes, if auth.

Yes, no
auth.

Figure 2.5 Channel establishment flow for different security modes.



channel or connection request. Thus it is possible to allow access to some serv-
ices without any authentication or encryption and a unit can be totally open to
some services while still restricting access to other services.

2.5.2 Security policy management

If security mode 2 is required together with a high security level, an advanced
security policy must be implemented. One possibility is to use a security man-
ager that handles the security policy and enforces the security mechanism. An
example of how a security manager can be implemented in Bluetooth is given in
[5]. According to these recommendations, the security manager is the responsi-
ble entity for security enforcement and it interacts with several different layers in
the stack (see Section 1.1.3). In this architecture, an application or set of appli-
cations (referred to as service) register their security demands with the security
manager. The security requirements of all supported applications make up the
security policy. The security manager handles the policy. Since link-level secu-
rity in Bluetooth is connected with the device address (through the link keys),
the security manager needs access to a database, which contains information on
different Bluetooth units, the corresponding link keys, and their level of trust. In
addition to this, the manager needs access to a service database, which contains
the specific security requirements of a particular service.

In Chapter 6 we describe how security policies can be managed in Blue-
tooth. We discuss different implementation alternatives and we also give a more
detailed description of the recommendations given in [5].

References

[1] Dierks, T., and C. Allen, The TLS Protocol, Version 1.0, RFC 2246, January 1999.

[2] Harkins, D., and D. Carrel, The Internet Key Exchange (IKE), RFC 2409, November 1998.

[3] Massey, J. L., and R. A. Rueppel, “Method of, and Apparatus for, Transforming a Digital
Sequence into an Encoded Form,” U.S. Patent No. 4,797,922, 1989.

[4] Bluetooth Special Interest Group, Specification of the Bluetooth System, Version 1.1, Profiles,
Part K:1 Generic Access Profile, February 2001.

[5] Müller, T., ed., “Bluetooth Security Architecture,” White Paper Revision 1.0, Bluetooth
Special Interest Group, July 1999.

42 Bluetooth Security



3
Bluetooth Pairing and Key Management

In this chapter we will have a closer look at pairing and key management in the
Bluetooth system. Key management involves the generation, distribution, stor-
age, and handling of the cryptographic keys. We recall from Table 2.1 that the
main key types in Bluetooth are the link and encryption keys. Of these, the link
key is the most important, since it is the basis for all future identifications
between the units, and it is also used in the creation of an encryption key for
each session requiring privacy. The link key is created during the pairing
operation.

In the following sections we discuss pairing and Bluetooth key generation,
storage, and updating of the link and encryption keys in more detail. We first
give an overview of the pairing process as performed by Bluetooth 1.2 devices.
We will show the involved steps and mechanisms in each of the Bluetooth stack
layers.

3.1 Pairing in Bluetooth

The Bluetooth pairing operation is crucial in the process of establishing a secure
connection (link) between two Bluetooth devices. To set up a Bluetooth con-
nection, the involved procedure starts with establishing an ACL connection.
When this task is completed, the Bluetooth devices can exchange messages on
the radio channel. Before any user data can be exchanged, the devices can
(optionally) require verification of their respective identities. In order to make
use of the authentication and encryption mechanisms that provide protection
against misuse and or wiretapping, the involved Bluetooth devices must estab-
lish some shared secret. It is during the pairing that this is accomplished.

43



The pairing procedure results in a bonding of two Bluetooth devices in the
sense that after the pairing the devices share information that only the paired
devices know. At this stage of connection setup, some user interaction is usually
required in the form of entering a pass-key (compare Figure 2.1).

For convenience, Bluetooth devices must have the ability to store a
number of (link key, device address) pairs in a database for later reference. Pref-
erably, this information is stored in nonvolatile memory. Then when the Blue-
tooth devices meet again, they already have a link key and can skip the steps
related to pairing. The exact number of such pairs is, of course, dependent on
what type of application(s) the Bluetooth-enabled device runs. For PCs, the
available memory resources should be more than enough to accommodate many
hundreds of such pairs, while a phone headset with a very specific usage area
need only save a few.

Even if pairing normally is only carried out for first-time connections, the
pairing process is also automatically invoked if authentication is requested when
one device for some reason (e.g., power failure or corruption of the link key
database) has lost the link key for the connection.

The pairing procedure consists of the following steps:

• Generating an initialization key;

• Generating a link key;

• Link key exchange;

• Authentication.

How the pairing process is realized is explained in the following subsec-
tions for the HCI protocol, the LMP, and the baseband level, respectively.

3.2 HCI protocol

Using the host controller and baseband commands, it is possible to set the policy
for authentication through the Authentication Enable command
parameter. When this parameter is enabled, the local device will always authen-
ticate the remote device at connection setup. Only if both units have this
parameter disabled no authentication will take place. The setting of the parame-
ter in the device depends on the current security mode. See Section 2.5.1.

Assuming the authentication is enabled in a device, the host controller
(HC) will ask the host for a link key to use for the BD_ADDR of the remote
device in the authentication protocol that is to be executed. This is, of course,
unless the HC already has access to this key by itself (e.g., from caching or direct
key storage access). If no such key can be found on the host, a negative response

44 Bluetooth Security



is sent back (HCI Link Key Request Negative Reply) over the
HCI to the host controller. This “failure” event will initiate the pairing
procedure.

The first thing needed in the pairing is a pass-key. The HC generates an
HCI PIN Code Request event. The reply either consists of a pass-key (plus
some additional information) or a negative response indicating that the host for
some reason cannot specify a pass-key to use for the connection. The latter will
ultimately cause the pairing request with the remote device to fail. When things
work as intended, the HC at the initiating side can send the pass-key to the base-
band for further processing. Next the LM will send a 128-bit random number
(IN_RAND) to the remote device, which will trigger an HCI PIN Code

Request event there as well.
From now on it is the LM that runs the pairing. The LMP ensures that a

shared secret, the link key, is generated at both the local and remote devices.
Depending on the device configuration, the link key can be a unit key or a com-
bination key. The former is completely determined by one of the devices and the
latter is constructed using contributions from both devices. Once the LMs have
finished negotiating the link key, both hosts will be notified through the HCI
Link Key Notification event.

3.3 LM protocol

The LM assists in the pairing procedure by communicating parameters and results
between the local and remote devices. The calculations are done in the baseband.
On the link manager level, the pairing procedure starts with the transmission of
the PDU LMP in rand (containing the 128-bit random number IN_RAND)
from one of the units to the other. This PDU will trigger the generation of the ini-
tialization key for use in the protocol for creating the actual link key.

If a unit key is to be used, the LMP unit key command is sent in one
direction only, with the secret unit key XORed with the initialization key as its
parameter. The receiver can easily calculate the key from this. See Section 3.4.2.
If a combination key is to be created, two contributions (one from each side) are
needed. This is accomplished through the LMP comb key PDU. The argu-
ment of this PDU is also a random number, but generating this and deriving the
link key from it is slightly more complicated. For details, see Section 3.4.3.

After these PDUs have been exchanged, both ends are able to compute the
link key. As a final check of success of this procedure and the established link
key, a mutual authentication event is performed. A 128-bit challenge is sent
through the LMP au rand, and the 32-bit response uses the LMP sres

PDU. If neither of these authentications fails, both the local and the remote
HCs notify their respective hosts.

Bluetooth Pairing and Key Management 45



It is important to stress the fact that the initialization key is used in only
one pairing instance; afterward it is discarded.

3.4 Baseband events

At the baseband level, the LM protocol key management commands are turned
into series of baseband events. The most important key management base-
band events are those that support the pairing of two devices, the establishment
of a link key, and the establishment of the ciphering offset and ciphering keys.
Figure 3.1 gives an overview of the events.

As previously described, the LM initiates a pairing operation between two
devices when the two devices meet the first time or a link key is missing due to
other reasons. We recall from Table 2.1 that the Bluetooth system recognizes
two types of link keys: semipermanent and temporary keys. There are two types
of semipermanent link keys: unit keys and combination keys. Besides the com-
bination key and the unit key, two other link key types are used: master and ini-
tialization keys.

A unit key is a link key that one device generates by itself and uses to pair
with any other device, and a combination key is a key that a device generates in
cooperation (combination) with another device. Therefore, the unit keys that a
specific device shares with other paired devices are identical, whereas the combi-
nation keys are different for each pair of devices. Unit keys can only be safely
used when there is full trust among the devices that are paired with a unit key,
since every paired device can impersonate any other device holding the same
unit key. For this reason, the use of unit keys has been deprecated in Bluetooth

46 Bluetooth Security

Pass-key

Encryption
(pre) keys

Initialization
key

KINIT Link key
generation

Combination
or unit key

Authentication Cipher offset

Payload key
generation

Constraint key
generation

Ciphering key
generation

Public
random
values

Key length
constraints

Clock

KC

K’C

KP

Pairing

Figure 3.1 Overview of key management baseband events.



version 1.2. A further discussion on the vulnerabilities of the unit key can be
found in Section 7.5.

A simple, yet important, step in the pairing procedure is the entering of
the pass-key. From a baseband perspective, this means that the baseband cannot
by itself complete the pairing but requires the input of the pass-key value. The
pass-key is a byte string of 0 to 16 octets that is passed to the baseband. We
come back to the details in Section 3.5, but for the moment one can imagine
that the pass-key is entered via a man machine interface (MMI) interaction or a
higher layer protocol.

3.4.1 Initialization key generation

Initialization keys are short lived, temporary keys that are used during the pair-
ing of two devices. The initialization key, denoted by KINIT, is the link key dur-
ing the initialization process when no combination or unit key is present. KINIT is
computed by the algorithm E22 from the claimant’s BD_ADDR, the entered
pass-key PKEY and its length LPKEY (in octets), and a 128-bit random value
IN_RAND. In fact, KINIT is computed from the three values PKEY ′, L′PKEY, and
IN_RAND, where1

( )[ ]PKEY

PKEY BD ADDR L

PKEY BD ADDR L
PKEY

′ =
∪ ≤
∪ −

_

_

when

w

10

0 15K hen

when

10 15

16

< ≤
=






L

PKEY L
PKEY

PKEY

(3.1)

( )′ = +L LPKEY PKEYmin 6 16, (3.2)

are derived from PKEY and BD_ADDR by the padding mechanism described
above when the length of PKEY is less than 16 octets. Now we are able to com-
pute KINIT by

( )K E PKEY IN RAND LINIT PKEY= ′ ′22 , _ , (3.3)

The details of E22 are given in Section 4.2.3.

3.4.2 Unit key generation

Although the use of unit keys is deprecated due to the risks explained in Section
7.5, we describe for completeness, the baseband events that produce a unit key.

Bluetooth Pairing and Key Management 47

1. x ∪ y denotes the concatenation of the two strings x and y.



The starting point is the case of two devices that have no possession of a link key
for their connection.

Suppose device A is the initiator and B is the responding device. If A does
not yet hold a unit key, it starts by generating one. If the unit key of device A is
used, the unit key is denoted by KA. If, on the other hand, the unit key of unit B
is used, the unit key is denoted by KB.

The unit key KA is computed by using the algorithm E21 from a locally
generated (secret) 128-bit random value LK_RANDA and the units’ BD_ADDR;
that is,

( )K E LK RAND BD ADDRA A A= 21 _ , _ (3.4)

The details of E21 are given in Section 4.2.2. Once the unit key is generated, it is
sent to device B. However KA is not sent by itself; instead, A sends

′ = ⊕K K KA A INIT (3.5)

Hence, the unit key is encrypted by using the initialization key. See Figure 3.2.
Since device B also knows the initialization key, the recovery of the key is simply
performed by the computation.

′ ⊕ = ⊕ ⊕ =K K K K K KA INIT A INIT INIT A

where the latter follows from the properties of the ⊕ (XOR) operation. Hence,
unit B now also knows KA.

If both device A and device B require the use of a unit key, there will be a
conflict. Hence, if the semipermanent link key between A and B is a unit key, it
must be the unit key of either unit A or unit B.

48 Bluetooth Security

Device A

KA

KINIT Device B

KA

KINIT

Figure 3.2 Process of transferring the unit key KA to device B using the initialization key
KINIT. The key KINIT is erased after the successful establishment of KAB = KA.



3.4.3 Combination key generation

The combination key is a link key that two pairing devices A and B generate
together. Like the unit key, the combination key is generated when the two
devices possess no common link key. The combination key is computed by
combining their respective secret keys, KA and KB. The two keys are generated
from locally generated (secret) 128-bit random values (LK_RANDA and
LK_RANDB, respectively) and the units’ BD_ADDR, using the algorithm E21.
To be more precise,

( )K E LK RAND BD ADDRA A A= 21 _ , _ (3.6)

( )K E LK RAND BD ADDRB B B= 21 _ , _ (3.7)

The combination key KAB is then calculated as

K K KAB A B= ⊕ (3.8)

The latter calculation is only possible to perform if the units know the
secret key of the other unit. This is realized by sending the secret random values
LK_RANDA and LK_RANDB to each other, protected by the current link key K.
The current link key might be a KINIT or an existing combination key for the
link. Thus, toward the final computation of KAB the units send

C LK RAND K A BA A= ⊕_ , sent by to (3.9)

C LK RAND K B AB B= ⊕_ , sent by to (3.10)

Now, say unit A receives CB and computes

( )C K LK RAND K K LK RANDB B B⊕ = ⊕ ⊕ =_ _

where the latter follows again from the properties of the ⊕ (XOR) operation.
Hence, unit A now knows LK_RANDB, and since it knows ′B s BD_ADDR
value, it can compute KB using (3.6). Unit B determines the combination key in
a similar fashion from the received value CA. Figure 3.3 illustrates the establish-
ment of the combination key.

When two devices have exchanged a link key, the pairing is finalized with
a (peer) authentication in which the devices prove to each other that they possess
the correct link key. If the authentication fails, the pairing is not successful and a
new pairing must be initiated.

Bluetooth Pairing and Key Management 49



3.4.4 Authentication

In the authentication process, a device will take either the role of claimant or
verifier. In case of a mutual authentication, the roles will be interchanged in the
process. Prior to the authentication, the host or user determines which device is
the claimant and which device is the verifier. Which role to take depends on the
security policy and security mode for each device. A more thorough discussion
on security policies and security modes can be found in Section 2.5 and in
Chapter 6.

Suppose device A is the verifier and device B is the claimant. Then A chal-
lenges device B by sending the random 128-bit value AU_RAND and expects
from B the response

( )SRES E K AU RAND BD ADDR B= 1 , _ , _ (3.11)

where K is the exchanged link key and E1 is the Bluetooth authentication func-
tion. E1 is described in Section 4.2.1. The claimant B receives the challenge
AU_RAND and sends A the response SRES = E1(K, AU_RAND, BD_ADDRB ).
The verifier A receives SRES’ and compares its value with that of the expected
SRES. If the values are equal, A declares that it has successfully authenticated
device B. If the values differ, the authentication has failed. When A has success-
fully authenticated B, the LM may want to conduct a mutual authentication, in

50 Bluetooth Security

Device A Device B

Erase K Erase K

K K KAB A B= ⊕

K E LK_RAND BD_ADDRB B B= ( , )21 K E LK_RAND BD_ADDRA A A= ( , )21

K K KAB B A= ⊕

C K LK_RANDB B⊕    =

C LK_RAND KA A= ⊕

K E LK_RAND BD_ADDRA A A= ( , )21

LK_RANDA
BD_ADDRA

BD_ADDRB

LK_RANDB

K E LK_RAND BD_ADDRB B B= ( , )21

C K LK_RANDA A⊕    =

C LK_RAND KB B= ⊕CB

CA

Figure 3.3 Process of generating the combination key KAB between units A and B using the
current link key K. The current link key K is erased after the successful establish-
ment of KAB.



which case the above procedure is repeated with the roles of A and B inter-
changed. The random value used in the challenge of device A this time is a com-
pletely new random value.

It is important to note that it is not necessarily the master that starts as
verifier. It is the application via the LM that determines the order in which
authentication is performed and if one-way or mutual authentication is
required. Figure 3.4 shows a mutual authentication.

Besides the peer authentication, the Bluetooth authentication procedure
also results in the creation of the authenticated ciphering offset (ACO). The ACO
is used when computing the ciphering key. In the case of mutual authentication,
the ACO of the last authentication is retained. The ACO is produced by the
mechanism E1 at the same time SRES is computed. For details on the computa-
tion of SRES and ACO, see Section 4.2.1.

Finally, the Bluetooth authentication uses a simple method to reduce the
impact of repeated erroneous authentications. This could, for example, be a
component in a denial-of-service (DoS) attack. If authentication fails, a certain
amount of time must elapse before the verifier will initiate a new attempt to the
same claimant and before the claimant sends a response to an authentication
attempt by a unit using the same identity as the unit that notified an authentica-
tion failure. For each additional authentication failure, the waiting interval
should be exponentially increased until a certain maximum value is obtained.
The Bluetooth specification speaks about a doubling of the waiting interval
time. When no authentications take place, the waiting interval is exponentially
reduced until a certain lowest value is reached. Moreover, if a successful authen-
tication event takes place, the waiting interval may immediately be reset to the
minimum value, To obtain some protection against a DoS attack, a Bluetooth

Bluetooth Pairing and Key Management 51

Link key K

ACOACO

Device A Device B

as claimant:

as claimantas verifier

as verifier:
Challenge A

Challenge B

Response A

Response B

Link key K

Figure 3.4 The mutual authentication process between devices A and B and the generation
of the ACO.



device should keep a list containing, for each unit it has connected with, the cor-
responding waiting interval.

3.4.5 Master key generation

The master key is a temporary key that is used to protect data sent in broadcast
messages where a master is communicating the same data to several slaves. See
Chapter 5. The master key will replace the link key until the broadcast situation
is terminated. The key Kmaster is computed by using the algorithm E22 and from
two locally generated (secret) 128-bit random values LK_RAND1 and
LK_RAND2:

( )K E LK RAND LK RANDmaster = 22 1 2 16_ , _ , (3.12)

The value of Kmaster is sent to slave B. However, Kmaster is not sent by itself;
instead, A sends first a third (but now public) 128-bit random value RAND3
followed by

K K KAB ovl= ⊕master (3.13)

where Kovl is an overlay key computed as

( )K E K RANDovl = 22 3 16, , (3.14)

using the current link key K. Hence, the master key is encrypted by using the
overlay key. See Figure 3.5. Since the slave B also knows the link key K and
receives LK_RAND3, the recovery of the master key is simply performed by B
through the computation

( )K E K RAND K K

K K K

K

AB AB ovl

ovl ovl

⊕ = ⊕

= ⊕ ⊕

=

22 3 16, ,

master

master

The above procedure is carried out between the master and all the slaves
involved in the broadcast. For each slave, a mutual authentication with the mas-
ter will be performed using the master key as link key. The ACO values of these
authentications should not replace the existing ACO values of the links between
the master and slaves. These original ACO values are needed to recompute the
original ciphering keys when the master terminates the broadcast and wants to

52 Bluetooth Security



fall back to the previous link key. A replacement for the ACO is needed, which
will be detailed in Section 3.6.1.

3.5 User interaction

The procedure for generating the link key is likely to include some manual user
interaction in order to enter the pass-key. There are some issues involved that
need to be considered when implementing this. One of the devices may lack a
keyboard or keypad, so there is no practical means available for the user to enter
the pass-key. In that case, this device must decide which pass-key to use. It can
be a fixed pass-key (see Section 2.2), or, if it is possible for the device to
announce the pass-key over another interface (e.g., a display), it can be a ran-
domly chosen pass-key that changes for every pairing the Bluetooth device takes
part in.

Another issue is the mapping of keyboard strokes to the actual pass-key,
PKEY. Clearly, both ends must generate the same value. The internal key codes
may differ between devices of different types (such as a computer and a mobile
phone). Therefore, a standardized mapping is defined in the GAP [1]. The char-
acter representation of the pass-key at the user interface level is transformed
according to the standard character encoding scheme UTF-8, and all decimal
digits are within the Unicode range 0x00-0x7F. Another requirement is that
all devices capable of handling variable pass-keys (i.e., pass-keys entered at the
user interface level) must support pass-keys consisting of decimal digits. Being
capable of handling general characters is optional. In Table 3.1 we have listed an
example of the mapping from a user-entered string to an actual pass-key.

Yet one problem becomes apparent when considering an example of pair-
ing a Bluetooth-enabled keyboard with a desktop computer. Keyboards have
different sets of characters for different alphabets. Moreover, the mapping of
many common keys differs between languages (e.g., the U.S. QWERTY versus

Bluetooth Pairing and Key Management 53

Master A

Kmaster

K E K, RAND3,16OVL = 22 ( ) K E K, RAND3,16OVL = 22 ( )

Slave B

Kmaster

RAND3 RAND3

Figure 3.5 Process of transferring the master key Kmaster to slave device B using the overlay
key Kovl.



the French AZERTY keyboards). The keyboard itself usually lacks knowledge
of what is printed on the key tops. Normally, a scan code is sent to the host,
which interprets this code differently depending on the language setting. How-
ever, before the keyboard and the computer have been paired, the keyboard
must do the interpretation by itself and it has to make some assumptions about
the language in order to generate the correct PKEY. Then the best option for the
computer is to only use numerical values in its random pass-key string, as the
numerical keys tend to have the same scan codes for every language. The com-
puter displays the chosen pass-key string on screen, and then the user enters this
number on the keyboard in order to complete the pairing.

3.6 Cipher key generation

When encryption is desired, a ciphering key must be computed. In Bluetooth,
the link key is not directly used as the key for the encryption mechanisms.
Instead, the ciphering key is determined in several additional steps from the link
key and is logically linked to the last authentication that has occurred between
two devices through the ACO. In addition, the ciphering key is refreshed for
each package that is transmitted. Since we want to explain the ciphering process
in its entirety, we will in this section go stepwise through each detail of the
ciphering key generation until the final key is fed into the E0 stream cipher.

3.6.1 Encryption key KC

Before encryption can commence, the encryption key must be computed. The
encryption key KC can be seen as a high-level encryption key from which the
other ciphering keys are derived. The value of KC is computed by using the algo-
rithm E3 from the current link key K, a 96-bit ciphering offset (COF), and a
128-bit random number EN_RAND. The value of COF equals the value of the
authentication ciphering offset ACO, except when the current link key is a mas-
ter key. In the latter case, COF is derived from the BD_ADDR of the master as

54 Bluetooth Security

Table 3.1
An Example of Two UTF-8 Encoded Pass-Keys

User-Entered
String

Pass-Key
(Hexadecimal)

‘0123’ 0x30313233

’Ärlig’ 0xC384726C67



COF
when link is master key

ACO oth
=

BD ADDR BD ADDR_ || _ ,

erwise




(3.15)

Now KC is given by

( )K E K EN RANDC = 3 , _ , COF (3.16)

The ciphering activation always starts with a new computation of KC and
is a result of an explicit LM command. As a result, the encryption key is changed
every time the encryption is activated. The algorithm E3 is described in more
detail in Section 4.2.4.

3.6.2 Constraint key ′K C

Bluetooth has a key strength constraining mechanism that reduces the 128-bit KC

to a 128-bit key whose effective key length may be less than 128 bits. Here, effec-
tive key length refers to the number of unknown (bit) combinations in the key.
The constraining mechanism was introduced in Bluetooth as a result of export
restrictions on encryption hardware. The resulting key is here called the constraint
key and is denoted by ′K C . ′K C is determined for a given L by the computation

( ) ( ) ( )[ ]{ }′ =K x g x K x g xC
L

C
L( ) mod2 1 (3.17)

where KC = (KC, 0, …, KC, 127), KC,i ∈ {0,1} and ′K C = ( ′ ′K KC C, ,, ,0 127K ) and ′K C i,

∈ {0,1},

( )

( )

K x K x

K x K x

C C i
i

i

C C i
i

i

=

′ = ′

=

=

∑

∑

,

,

0

127

0

127

and ( ( ), ( ))g x g xL L
1 2 is a pair of polynomials over GF(2), that is, polynomials

with coefficients that are elements of the finite field (Galois field) with 2 ele-
ments. Since the polynomials KC(x) and ′K C (x) can also be viewed as polynomi-
als over GF(2), the computation in (3.17) is performed using the arithmetic of
polynomials over GF(2)2. The modulo computation by g1(x) reduces KC(x) to a
polynomial h(x) of a degree less than the degree of g1(x). Thus the effective

Bluetooth Pairing and Key Management 55

2. Mathematicians would say that arithmetic is carried out in GF(2)[x] the ring of polynomials
over GF(2).



number of unknown keys is reduced to at most 2 1degree[ ( )]g x . The multiplication
of h(x) by g2(x) results in a polynomial of a degree less than 128. Yet only
2 1degree[ ( )]g x products can occur. Thus, depending on the degree of g1(x), this
might be considerably less than 2128, the number of all possible polynomials of
degree less than 128. The polynomials g2(x) are chosen with an additional prop-
erty that guarantees that if two different values of KC result in two different

′K C (x), the number of coefficients in which they differ is at least some given
value. The latter value is denoted by Dmin. There are 16 pairs of polynomials
[ ( ), ( )]g x g xL L

1 2 . Table 3.2 lists the pairs and the DL
min of the resulting con-

strained key. The effective key length is ≤ 8L.
Although the computations in (3.17) seem to be complicated, they are in

fact very easily realized in a hardware circuit using a linear feedback/feedforward
shift register with controllable taps. This fact, combined with the slight advan-
tage of the guaranteed differences in the distinct ′K C s, motivated the use of this
way of constraining the encryption key.

The effective key length L (number of octets) is established via the encryp-
tion key size negotiation. As of Bluetooth version 1.2, there are two supported

56 Bluetooth Security

Table 3.2
Table of Pairs of Key Constraining Polynomials and D L

min Values (Or Upper Limits When Marked with an *)

L Deg gL
1 Deg gL

2 DL
min

1 8 00000000 00000000 00000000 0000011d 119 00e275a0 abd218d4 cf928b9b bf6cb08f 63

2 16 00000000 00000000 00000000 0001003f 112 0001e3f6 3d7659b3 7f18c258 cff6efef 48

3 24 00000000 00000000 00000000 010100db 104 000001be f66c6c3a b1030a5a 1919808b 44

4 32 00000000 00000000 00000001 000000af 96 00000001 6ab89969 de17467f d3736ad9 32

5 40 00000000 00000000 00000100 00000039 88 00000000 01630632 91da50ec 55715247 32*

6 48 00000000 00000000 00010000 00000291 77 00000000 00002c93 52aa6cc0 54468311 27*

7 56 00000000 00000000 01000000 00000095 71 00000000 000000b3 f7fffce2 79f3a073 24*

8 64 00000000 00000001 00000000 0000001b 63 00000000 00000000 a1ab815b c7ec8025 21*

9 72 00000000 00000100 00000000 00000609 49 00000000 00000000 0002c980 11d8b04d 15*

10 80 00000000 00010000 00000000 00000215 42 00000000 00000000 0000058e 24f9a4bb 14*

11 88 00000000 01000000 00000000 0000013b 35 00000000 00000000 0000000c a76024d7 11*

12 96 00000001 00000000 00000000 000000dd 28 00000000 00000000 00000000 1c9c26d9 9*

13 104 00000100 00000000 00000000 0000049d 21 00000000 00000000 00000000 0026d9e3 7*

14 112 00010000 00000000 00000000 0000014f 14 00000000 00000000 00000000 00004377 5*

15 120 01000000 00000000 00000000 000000e7 7 00000000 00000000 00000000 00000089 3

16 128 1 00000000 00000000 00000000 00000000 0 00000000 00000000 00000000 00000001 1

Note: Polynomials are given via their hexadecimal representation.



ways of doing this. The new and simple way is for the master to ask the slave
what key lengths are supported using a bit vector (see Section 5.2). This is par-
ticularly useful in the case of broadcast encryption key negotiation. Alterna-
tively, the master can proceed according to the procedure outlined below.

Each approved Bluetooth device must implement a maximal key size value
Lmax, 1 ≤ Lmax ≤ 16. In addition, each Bluetooth application should specify a
lower value of L denoted as Lmin. The effective key size L that the two devices A
and B will use is determined through a negotiation that tries to find the largest
key size that satisfies all the constraints on L between the master and slave
devices. The negotiation starts with the master suggesting a length Lsug to a slave
that equals the highest possible value for the master. If the constraints at the
slave allow this suggested value of L, the suggested value is accepted as the value
to be used. If the slave is not allowed to use the suggested value of L, the slave
will send its Lmax back to the master. Again, if the master allows this key length it
will be used; otherwise, the master proposes the closest acceptable length that is
smaller than this. The procedure is repeated with the master and slave alternat-
ing proposing the largest remaining key length. This hopefully leads finally to a
key length that both master and slave can accept. However, it could be that the
constraints are such that no key length exists that meets the size requirements of
the slave and the master.

3.6.3 Payload key KP

The payload key is the actual key that is used to (de)cipher the (incoming) out-
going packages. The value of KP is computed per packet using the constraint key

′K C , and by a short run for E0 loaded with ′K C , 26 bits of the current clock value,
BD_ADDR, and a 128-bit random EN_RAND, Figure 3.6 shows that KP is
computed by the algorithm E0 (see Section 4.4). In fact, KP is formed by the
state of the 4-bit register in the feedback path of E0 and the last 128 bits of the
key stream generated by E0 when initialized with its input data and clocking the

Bluetooth Pairing and Key Management 57

EN_RAND

BD_ADDR

Clock

K’C

E0 KP

Figure 3.6 Process of generating the payload key KP using the stream cipher algorithm E0.



cipher to produce 240 symbols. Altogether, KP is 132 bits in size. In Section
4.4.1 we return to the exact details.

3.7 Key databases

The Bluetooth combination key is used to protect the communication setup for
one particular combination of two Bluetooth units. The key is unique for each
combination of two Bluetooth units. Hence, there are as many combination
keys as there are paired Bluetooth devices. Furthermore, all semipermanent keys
(to which the combination key belongs) may be used for several repeated ses-
sions between two units. Consequently, it should be possible to store semiper-
manent link keys in nonvolatile memory and it should be possible to retrieve the
key upon request.

3.7.1 Unit keys generation requirements

The unit key is a 128-bit binary value that is generated as described in Section
3.4.2. It is of utmost importance that the random value used to generate the
unit key is provided with a reliable random number generator with good statisti-
cal properties (see the recommendations in [2]). Furthermore, the random value
used for the key generation should be discarded immediately after it has been
used for the key generation. Once created, the unit key needs to be stored in a
nonvolatile memory and should not be changed (see also Section 3.7.3).

3.7.2 Combination key generation requirements

The combination key, KAB, is also a 128-bit binary value that needs to be stored
in a nonvolatile memory (see Section 3.7.3). It may remain constant after it has
been created. However, it is good security practice to periodically change the
combination key.

The procedure for changing the key is exactly the same as in the initial
generation of KAB during the pairing procedure (see Section 3.4.3), where the
current value of KAB replaces KINIT in the generation procedure. There is a spe-
cific HCI command that the host can use to enforce the key update: HCI
Change Connection Link Key. Assume that the link manager of unit A
receives a key change request through the HCI. This will cause the link manager
to send an LMP comb key command to unit B. Unit B will respond with LMP
comb key, and the key will be updated or it will reject the request by sending
an LMP not accepted. After a successful generation of a new combination
key, a mutual authentication must be performed in order to confirm that the
same key has been created in both units. The host controllers of both units A

58 Bluetooth Security



and B will then generate an HCI Link Key Notification event and
the host controller of unit A will generate an HCI Change Connection

Link Key Complete event. The HCI Link Key Notification

event of unit A contains the device address of unit B (and vice versa) and the
new value of the link key. The host can choose to store the new key in its own
database, or it can be stored by the link controller (see Section 3.7.3 below). The
HCI Change Connection Link Key Complete event is only used
to indicate whether the change of the link key succeeded or not. A message
sequence example of combination key change is shown in Figure 3.7.

The combination key update policy of a unit should be part of the unit
security policy. This security policy might be different for different units. If KAB

is used very often, it needs to be updated regularly. Similarly, if there exists an
indication that KAB has been compromised, it should of course be changed.

Bluetooth Pairing and Key Management 59

Host A

HCI Link Key
Notification
event

HCI Change
Connection
Link Key
Complete event

HCI Link Key
Notification
event

LMP comb key

LMP comb key

HCI Command
Status event

HCI Change
Connection
Link key

HC/LM-A
Master

HC/LM-B
Slave Host B

Mutual authentication

Figure 3.7 Message sequence chart for a change of the combination key.



3.7.3 Key databases

Format and usage

To retrieve the correct link key upon request from the host or unit, the semiperma-
nent link keys must be stored in a database. Consider one Bluetooth unit, say A.
Below we discuss the database format and usage from the perspective of this unit.

The link key is identified by the device address of the other unit in the
link. In this case, A needs to store as many keys as the number of performed
pairings with distinguishing units. Consequently, the simplest form of database
is a list of key entries where each entry only has two values, the device address,
and the corresponding link key. This is shown in the database example in Table
3.3, where the device addresses and key values are written in hexadecimal nota-
tion. The device address is a 48-bit long (12 hexadecimal digits) value, while the
key is 128 bits long (32 hexadecimal digits).

If A is always using a unit key, there is no need for a link key database,
since the same key is used for all connections (independent of the device address
of the other units). We might have a situation where the unit would like to issue
unit keys for some connections while still using combination keys for other con-
nections. However, in practice, there would in most cases then be enough stor-
age capacity for always using a combination key and not using unit keys at all
(see also the general discussion regarding unit keys in Section 7.5).

If we use the simple database format of Table 3.3, no information is given of
the type of semipermanent key that is used (i.e., unit or combination key). How-
ever, a key in the table entry might be a unit key. Since a unit key is not as secure
as a combination key, we might want to enforce a more restricted security policy
(see Chapter 6 for more information on the usage of security policies in Blue-
tooth). Hence, it might be good to add one extra information field containing the
key type to each entry in the table. We show this in the database example in Table
3.4. In this example, all listed keys except the last one are combination keys.

In addition to this basic information, it is advisable to add some redun-
dancy to the database entries so that errors can be detected. The reasons for this

60 Bluetooth Security

Table 3.3
An Example of a Link Key Database

Device Address Key

10FA48C7DE52 1B4D5698AE374FDE8390912463DFE3AB

047F6BB427EA FE729425BC9A95D39132BDE275917823

A5EE29667190 091827AD41D4E48D29CBE82615D18490

� �

068935F6B3E2 126304467592CD71FF19B4428133AD8E



will be discussed in the next section. For instance, a simple 8-bit CRC code can
be added to each row of Table 3.4.

Corrupted database

The link key database might for some reason become corrupted. The probability
of having corrupted databases depends on the type of storage medium and the
storage protection mechanisms. If a device address field is damaged, it might
result in key lookup error. If the corrupted key entry is detected when the unit is
about to send an authentication (acting as verifier), the error can be handled
internally by the unit. In this case, it should be possible for the user (if desired)
to demand a new pairing and derive a new link key, and the unit will initiate a
new pairing by sending the LMP command LMP in rand.

If the corrupted key entry is detected after an authentication request by the
other unit, the unit should return LMP not accepted after it has received
the LMP au rand (see Section 3.3) with the reason “key missing,” as illus-
trated in Figure 3.8.

The behavior in this case is up to the unit requesting the authentication. It
might demand a new pairing by sending an LMP in rand, or it might refuse
the connection and detach the link. However, in order to handle corrupted
databases, there should always be the possibility for the user to make a new pair-
ing of the two devices. Hence, it must be possible for the user to find out the
reason for a failed link setup.

Bluetooth Pairing and Key Management 61

Table 3.4
Link Key Database Example with Key Type Information

Device Address Key Key Type

10FA48C7DE52 1B4D5698AE374FDE8390912463DFE3AB C

047F6BB427EA FE729425BC9A95D39132BDE275917823 C

A5EE29667190 091827AD41D4E48D29CBE82615D18490 C

� � �

068935F6B3E2 126304467592CD71FF19B4428133AD8E U

U = unit key; C = combination key.

Initiating
unit

Responding
unit

LMP au rand
LMP in rand

Reason code = 0x06

Figure 3.8 Authentication after key lookup failure by claimant unit. The claimant unit returns
“LMP not accepted” with reason code 0×6 (i.e., “key missing”).



Storage

There are several different options for where and how to store the link key data-
base. The Bluetooth controller might have the capability to cache a limited set
of recently used link keys. However, the most common situation is that the link
key database is handled by the host and that the necessary link keys are passed to
the Bluetooth controller (i.e., the Bluetooth module), for example, through the
defined HCI command HCI Write Stored Link Key. This command
can be used to transfer one or several link keys from the host to the Bluetooth
controller. The number of possible keys is determined by the link key storage
capacity of the Bluetooth controller.

It is also possible that the Bluetooth controller itself completely handles
the link key database. However, this is not an especially secure solution, since
there is no secure HCI mechanism (involving user authentication) defined for
“opening” the key database. This problem will be discussed in Section 7.4.1.

Hence, we will below assume that the key database is handled by the host.
If the host handles the security database, but the keys are passed to a link key
database in the controller, it is good security practice to delete the keys from the
controller database after they have been used. This can be done through the
HCI command HCI Delete Stored Link Key.

The Bluetooth specification does not contain any recommendations for
how a host should handle the key database. Here we discuss some issues and
possible solutions. In Section 7.4 we will come back to the risks that one may
face if storage is not handled correctly.

There are two important security issues regarding key storage: access con-
trol and secure storage. In order to prevent a hostile user or software in control
of the host to read and/or modify the link keys, the access to the keys should be
restricted. Furthermore, depending on the security requirements, it should not
be easy for a hostile user to physically read out the keys from the storage
medium. It must still be possible for authorized users to open the database.
Hence, there must be mechanisms in place for some type of user authentication.
Simple forms of user authentication are PIN- or password-based authentication
mechanisms. We discuss three different approaches to database storage that pro-
vide user authentication through a PIN or password.

A highly secure storage medium is an integrated circuit card (ICC). In
order to access information on an ICC, the user is often required to enter a PIN.
Hence, an ICC provides both a user authentication mechanism and secure stor-
age. Whenever, this security level is demanded and affordable, this would be the
preferred solution for storing the link key database.

If an ICC is not available, an alternative is to store the database encrypted on
a general storage medium available to the host (like a hard disk or flash memory).
If the database should be encrypted, there must be an encryption key available.
Obviously, if this key is stored in clear text, there is no need for encrypting the

62 Bluetooth Security



database, since it will be easy for anybody familiar with the system to decrypt the
keys. A possible solution to this is to derive the key from a password-based key deri-
vation function. A key derivation function produces a key from a password and
other parameters. This requires a user password input. Hence, indirectly, one will
get a form of user authentication. Only the legitimate user will (hopefully) be able
to derive the database encryption key. A widely used scheme for password-based
encryption is the RSA PKCS#5 “Password-Based Cryptography Standard” [3].
The standard suggests encryption based on the DES or RC2 block cipher algo-
rithms3, but other block ciphers like SAFER+ or the Advanced Encryption Stan-
dard (AES) are useful too.

Finally, a third (even less secure) storage alternative for the host is to have
no explicit protection of the key database at all. If there is a login procedure
required to activate the host, one might consider that this also gives enough pro-
tection for the Bluetooth link key database.

3.7.4 Semipermanent keys for temporary use

In some situations, one Bluetooth unit is temporarily connected to another unit.
Examples of such situations are public access points, public printers, or the
exchange of documents between two business people. Even if these connections
will only be used once, there is a need to protect the communication. Hence, the
units must derive the necessary link and encryption keys. The Bluetooth stan-
dard does not make any distinction between temporary connections and other
connections. Thus, it is up to the host implementation to take care of temporary
link keys in a proper way. There is no need to store these keys, since it is highly
probable that they are not going to be used anymore. Furthermore, depending
on the host (link key) security policy, there might be a security risk if the tempo-
rary link keys used will automatically provide the unit access at a later occasion.
It is good security practice for the user to be able to decide whether a link key
should be stored in the link key database or not (and in some circumstances also
for how long a time). Clearly, each implementation must provide some means
for the user to remove stored link keys.

References

[1] Bluetooth Special Interest Group, Specification of the Bluetooth System, Version 1.1, Profiles,
Part K:1 Generic Access Profile, February 2001.

Bluetooth Pairing and Key Management 63

3. DES and RC2 are two block ciphers; see [2] for more details.



[2] van Oorschot, P. C., A. J. Menezes, and S. A. Vanstone, Handbook of Applied Cryptogra-
phy, Boca Raton, FL: CRC Press, 1997.

[3] RSA Data Security Inc., Redwood City, CA, PKCS #5: Password-Based Cryptography
Standard, Version 2.0, March 1999.

64 Bluetooth Security



4
Algorithms

In this chapter, the internal workings of the Bluetooth cryptographic algorithms
will be described. These algorithms can be divided into two groups. On one
hand we have the four algorithms E1, E21, E22, and E3, which all use the same
underlying 128-bit block cipher SAFER+. On the other hand, we have the Blue-
tooth encryption mechanism E0, which uses a stream cipher with a 132-bit ini-
tial state. Because of SAFER+’s and E0’s central position, we will focus in this
chapter on describing these two algorithms. Some implementation aspects will
be discussed at the end of the chapter. We start by returning to the basic descrip-
tion of cryptographic algorithms from Chapter 1.

4.1 Crypto algorithm selection

4.1.1 Block ciphers

In Chapter 1, block ciphers and stream ciphers were introduced as reversible
transformations to encrypt plaintext information into cipher text. In Chapter 3,
we saw that the key management in the Bluetooth systems involves several key
derivation and generation methods. By simply looking at the way the key deri-
vation algorithms E1, E21, E22, and E3 are defined (as mappings from inputs to an
output), one can see that these are very similar to block ciphers. It is rather easy
to modify a block cipher for use in these four algorithms. This is typical and
block ciphers are therefore often found in key derivation mechanisms for other
systems. Since keys in the Bluetooth system are 128 bits long, it is natural to use
a block cipher that can transform 128-bit data with a 128-bit key, since keys can
then be directly used as data input as well. Besides this interface requirement,

65



one wants a block cipher with a high strength level and that is cryptographically
well understood. There are a number of block ciphers available that would fit
into these requirements. An additional requirement is that the use of the algo-
rithm was free, that is, not limited by patent rights or license fees. The designers
of the Bluetooth system chose SAFER+. The algorithm was at the time of selec-
tion for Bluetooth one of the contenders1 for the AES. It was taken out of the
competition mainly because of the results in performance measurements using
reference implementations and because the 256-bit key version had a weakness
that reduced the effective key size somewhat. Yet SAFER+ was available with
very thorough cryptanalysis using state-of-the-art block cipher analysis tech-
niques. The latter, in combination with the experience of its predecessor SAFER
[1], convinced the Bluetooth designers to put their trust in SAFER+. As of
today, no weaknesses in SAFER+ have been reported that constitute a threat to
its use in Bluetooth.

4.1.2 Stream ciphers

Stream ciphers are ideal in communication systems, since they very easily handle
plaintexts of various length. Block ciphers can be used as well but require pad-
ding schemes. Furthermore, traditionally, stream ciphers have been designed
with (low) implementation complexity in mind. There are mainly two
approaches toward designing a stream cipher: direct or indirect via a block
cipher. This split is not very well defined, and it may well happen that one can-
not tell which design type a specific construction belongs to.

In a block cipher–based design, the block cipher is complemented with
memory registers to keep a state and with a feedback mechanism to create an
altogether autonomous finite state machine. The overall key to the stream
cipher system is often used as the key to the block cipher but could also deter-
mine the initial state of the registers. To be attractive, this kind of design
requires the block cipher to be very implementation friendly in either software
or hardware or both. An example of such a design is the Universal Mobile Tele-
communications System (UMTS) encryption algorithm f8 [2], which uses the
KASUMI block cipher. In a direct design, one constructs the autonomous finite
state machine directly, potentially offering an easier way for keeping implemen-
tation complexity down. Compared to block ciphers, it is somewhat more diffi-
cult to meaningfully define the strength requirements of a stream cipher. For
our purposes it is sufficient to state that even if the attackers have access to a very
long key stream, they should not be able to recover the key that was used to gen-
erate that key stream. Let us now turn to the Bluetooth system.

66 Bluetooth Security

1. It was submitted by Cylink, Corp., Sunnyvale, CA, and designed by J. L. Massey and G. H.
Khachatrian.



The stream cipher E0 is based on a direct design and uses a Bluetooth pro-
prietary algorithm that has its roots in the so-called summation combiner stream
cipher. This was a stream cipher that was proposed by Massey and Rueppel
[3, 4] in the mid-1980s. Its strengths and weaknesses are well understood
through the works of [5–7]. From that time to the time of writing, the most
powerful attacks on this type of stream ciphers are the correlation attacks in
combination with exhaustive search over a limited key space (this is sometimes
also referred to as initial guessing). The original summation combiner design was
modified to reduce the correlations that are used in the attacks by adding addi-
tional logic. In Section 4.1.2, we will describe this and its consequences in more
detail. The works of Golic [7] and Hermelin and Nyberg [8] lead to the conclu-
sion that a summation combiner type of stream cipher with a total state space of
K bits (2K states) will provide only about K /2 bits in security when sufficient key
stream data is available. As we will see later, more recent cryptanalysis shows that
the E0 cipher is weaker than this. Therefore, the frequent rekeying in Bluetooth
and the rather short generated key streams are essential for keeping the threat of
(correlation) attacks at a safe distance.

4.2 SAFER+

The SAFER+ block cipher has its roots in the SAFER block cipher. The original
SAFER cipher has been analyzed (see [9]), and apart from a correction in the
original key scheduling, SAFER is still a safe algorithm, provided a sufficient
number of rounds is used. SAFER is, however, a cipher working on 64-bit data
blocks, which is too small for use in Bluetooth. SAFER+ uses a round construc-
tion similar to that of SAFER, consisting of pseudo-Hadamard transforms, sub-
stitution tables, and subkey insertion (see [1]). An important improvement in
SAFER+ is the introduction of the so-called “Armenian Shuffle” permutation,
which boosts the diffusion of single-bit modifications in the input data. In fact,
the diffusion in SAFER+ is already very good after one round. This is a highly
desirable property of any good block cipher. In [10], this property is proved
along with other state-of-the-art cryptanalysis. For a recent summary of cryp-
tanalytic results, see [11].

SAFER+ has two subsystems: the encryption subsystem and the key sched-
uling subsystem. It shares this setup with many other block cipher algorithms.
Let us first have a look at key scheduling. See Figure 4.1. The task of key sched-
uling is to provide key material, called a round key, for each of the encryption
rounds in the encryption subsystem. Each round key consists of two vectors of
16 octets. The key scheduling borrows ideas from the strengthened schedule of
SAFER. See [9]. The last round key, K17, is a single vector of 16 octets that are

Algorithms 67



“added” to the output of the last round. See Figure 4.2. Each of the 16-octet2

vectors Ki = (Ki[0]. Ki[1], . . ., Ki[15]), except K1, are offset by a bias Bi = (bi[0],
bi[1], . . ., bi[15]), i = 2, 3, . . ., 17 using modulo 256 addition. The bias vectors
are defined by

[ ] ( )b j ji

i j

= 











=
+ +

45 257 256
45 25717 1 mod

mod mod , for 0 1 15, , ,K (4.1)

68 Bluetooth Security

2. We will here and in the following regard octets as being integer numbers 0, 1, . . ., 255 or as
being eight-dimensional binary valued vectors, whichever is suitable in the context of usage.
The binary vector representation corresponds to the radix-2 representation of the integer
value of the octet; that is, the octet 131 is also written as 10000011.

K1 Select octets
0,1,2, ..., 15

Select octets
1,2,3, ..., 16

Select octets
2,3,4, ..., 16,0

Select octets
16,0,1,2, ..., 14

128-bit key grouped in 16 octets

Cyclically rotate each octet by 3 bits

Cyclically rotate each octet by 3 bits

Cyclically rotate each octet by 3 bits

Cyclically rotate each octet by 3 bits

0 1 15

0

0

0

0

1

1

1

1

15

15

15

15

16

16

16

16

Sum octets
bit by bit
mod 2

+16

+16

+16

K17

K3

K2

B17

B3

B2

Figure 4.1 SAFER key scheduling.



The round keys are fed into SAFER+’s round mechanism where they are
added into the round data. The addition is done by intertwined modulo 256
and XOR additions. See Figure 4.2. The SAFER+ uses two tables, referred to as
E and L, that implement the mappings:

{ } { }E L, : , , , , , ,0 1 255 0 1 255K K→ (4.2)

Algorithms 69

++++++++++ ++++++

++++++++++ ++++++

+

+

++++++++++ ++++++

++++++++++ ++++ ++

EEEEEEEE L LLLLLLL

PHT PHT PHT PHT PHT PHT PHT PHT

PHT PHT PHT PHT PHT PHT PHT PHT

PHT PHT PHT PHT PHT PHT PHT PHT

PHT PHT PHT PHT PHT PHT PHT PHT

Permutation 8 11 12 15 2 1 6 5 10 9 14 13 0 7 4 3

Permutation 8 11 12 15 2 1 6 5 10 9 14 13 0 7 4 3

Permutation 8 11 12 15 2 1 6 5 10 9 14 13 0 7 4 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Only after last round
[0, ..., 15]K17

[0, ..., 15]K2r

[0, ..., 15]K2 1r−

Only for ’ in round = 3A rr

A input [0, ..., 15]

Ro
un

d
=

1,
2,

...
,8

r

XOR octets bit wise

Add octets modulo 256 PHT( , ) (2 + mod 256, + mod 256)x y x y x y�

Figure 4.2 One round of SAFER+ with Bluetooth adoptions. The permutation maps output 0
to input 8, output 1 to input 11, and so on.



( )E x x: mod moda 45 257 256 (4.3)

( )L x y x E y: a such that = (4.4)

These two mappings introduce nonlinearity. Figure 4.2 also shows the
modification of SAFER+ used in the Bluetooth ′Ar algorithm. ′Ar is SAFER+
with the modification that the original input to the algorithm is also added to
the input of the third round. This makes ′Ar into a noninvertible mapping. This
modification was made in order to prevent the algorithm from being used for
encryption and avoid problems with export regulations.

4.2.1 Authentication algorithm E1

We recall from Chapter 3 that algorithm E1 is the Bluetooth authentication
algorithm. It is called a message authentication code (MAC) algorithm. The algo-
rithm E1 is built around SAFER+, which for convenience is denoted by Ar and
defined as

{ } { } { }Ar : , , ,0 1 0 1 0 1
128 128 128× → (4.5)

( ) ( )k x y k x, ,a = + = =SAFER key input (4.6)

Now we define E1 in a few steps. First let

{ } { } { } { } { }E 1

128 128 48 32 96
0 1 0 1 0 1 0 1 0 1: , , , , ,× × → × (4.7)

( ) ( )K RAND SRES, , ,address ACOa (4.8)

Here SRES and ACO are obtained from 16-octet vector hash (K, RAND,
address, 6) as the first 4 octets and last 12 octets, respectively. Here hash is the
function defined by

{ } { } { } { } { }( )hash
L

: , , , , ,0 1 0 1 0 1 6 12 0 1
128 128 8 8 16

× × × →×
(4.9)

( ) ( ) ( )[ ]( )K I I L A K E I L A K I Ir r, , ,
~

, , ,1 2 2 1 116 16a ′ + ⊕ (4.10)

where E(I2, L) is an expansion of the L octet vector I2 into a 16-octet (128 bits)
vector, defined by

70 Bluetooth Security



{ } { } { }( )E
L

: , , ,0 1 6 12 0 1
8 8 16× × → (4.11)

[ ]( ) [ ]( )X L L X i L i0 1 0 15, , , mod ; , ,K a K− = (4.12)

The function hash is also used by the algorithm E3, where L = 12 is used.
For E1, L is always 6 octets. The SAFER+ algorithm is used twice: once as
defined, that is, Ar, and a second time slightly modified by adding the input
octets into the input of the third round. The latter is referred to as algorithm ′Ar .
The observant reader has of course noticed that the key K to ′Ar is not the same
as the key K that is used for Ar. The key

~
K is derived from an offset of K. The

offset is defined as follows:

[ ] [ ]( ) [ ] [ ]( )
[ ] [ ]( ) [ ] [ ]

~
mod ,

~

~
mod ,

~
K K K K

K K K K

0 0 233 256 1 1 229

2 2 233 256 3 3

= + = ⊕
= + =( )

[ ] [ ]( ) [ ] [ ]( )
[ ] [ ]( )

⊕
= + = ⊕
= +

193

4 4 179 256 5 5 167

6 6 149 256

~
mod ,

~

~
mod ,

~
K K K K

K K K [ ] [ ]( )
[ ] [ ]( ) [ ] [ ]( )
[ ] [ ]( ) [ ]

7 7 131

0 0 233 1 1 229 256

2 2 223 3

= ⊕
= ⊕ = +
= ⊕ =

K

K K K K

K K K

~
,

~
mod

~
,

~ [ ]( )
[ ] [ ]( ) [ ] [ ]( )
[ ] [ ]( )

K

K K K K

K K

3 193 256

4 4 179 5 5 167 256

6 6 149

+
= ⊕ = +
= ⊕

mod
~

,
~

mod
~

, [ ] [ ]( )~
modK K7 7 131 256= +

(4.13)

Figure 4.3 summarizes the steps that form the algorithm E1. The figure
also shows how the output of the hash function is split into two parts. The first 4
octets form the response SRES and the remaining 12 octets form the authentica-
tion offset ACO.

4.2.2 Unit key algorithm E21

The algorithm E21 used for the unit key derivation is built around ′Ar . See Figure
4.4(a). Formally it is specified as

{ } { } { }E 21

128 48 128
0 1 0 1 0 1: , , ,× → (4.14)

( ) [ ] [ ]( )( )RAND A RAND RAND Q

Q

r

i

, .. ,address

where

a ′ ∪ ⊕

= ∪ =

0 14 15 6

0
15 [ ]address i mod6

(4.15)

Because ′Ar is used instead of the original SAFER+, algorithm E21 cannot
be used directly as an invertible encryption algorithm.

Algorithms 71



4.2.3 Initial key algorithm E22

The algorithm E22 used for the initial key derivation is also built around ′Ar but
differs slightly from E22. See Figure 4.4(b). Let N denote the pass-key length.
Formally, E22 is specified as

{ }( ) { } { } { }E
N

22

8 128 128
0 1 0 1 1 2 16 0 1: , , , , , ,

′
× × →K (4.16)

( ) ( )PKEY RAND N A X Yr′ ′ ′, , ,a (4.17)

[ ]X PKEY i Ni= ∪ ′=0
15 ' mod (4.18)

72 Bluetooth Security

K
L

K
~

ACO SRES
96 32

A’r

Ar

128

128

16 octets mod 256 addition

RAND Address

Offset

E(xpand)

16 octets XOR addition

Figure 4.3 The structure of E1.

(a) (b)

RAND

48

128

128 128 128

4

8x N’

Address

PKEY’

RAND

N’

E21 E22

Figure 4.4 Block diagrams of (a) E21, and (b) E22.



[ ] [ ]( )Y RAND RAND N= ∪ ⊕ ′0 14 15K (4.19)

where ′N = min(16, 6 + N ) is the length of PKEY ′ in octets and where

[ ]
( )[ ]PKEY

PKEY N

BD ADDR N
N

PKEY

'

, ,

_ , , min ,
, ,

=
−

∪ −
<

0 1

0 5 15
16

0

K

K

K[ ]N N− =






 1 16

(4.20)

4.2.4 Encryption key algorithm E3

Finally, the encryption key generation algorithm E3 is defined as

{ } { } { } { }E 3 0 1 0 1 0 1 0 1
128 128 96 128

: , , , ,× × → (4.21)

( ) ( )K RAND hash K RAND, , , , ,COF COFa 12 (4.22)

where hash is the function defined in (4.9). The reader should remember,
though, that this encryption key KC is not used directly. KC is used to derive the
constraint key that is input into the ciphering algorithm E0, which we describe
in the next section. One may notice that E21 and E22 are very similar. This is a
design choice to simplify the implementation. Figure 4.5 gives the block dia-
gram of E3.

4.3 Encryption engine

We already informally discussed the encryption engine E0 in Bluetooth at the
beginning of this chapter. Abstractly E0 is a so-called autonomous finite state
machine. Loaded with an initial state, it will on every clock cycle move to a new
state and produce one single output bit of the key stream. The ciphering key
that is loaded into the encryption engine is the constraint key ′K C . Apart from

Algorithms 73

128 128

96

128

K

RAND

COF

E3

KC

Figure 4.5 Block diagram of E3.



the constraint key, the initial state is determined by 26 bits of the current clock
value, BD_ADDR, and a 128-bit random EN_RAND. As explained in Section
3.6.3, one first determines a payload key by running E0 for 200 clock cycles.
One can regard this as a means of mixing the initial state data. Of the 200 gener-
ated output symbols (bits), the last 128 bits are retained and subsequently
loaded back into E0 as its initial state for the process of generating the key stream
symbols that are used for encryption (alternatively, for decryption) of the outgo-
ing (incoming) data.

For the sake of exposition, we first describe the construction of E0 and will
return to a description of the initialization steps after we have more knowledge
of the construction.

4.4 Ciphering algorithm E0

The core of E0 is built around four independent linear feedback registers and a
finite state machine as a combining circuitry. The latter is needed to introduce
sufficient nonlinearity to make it difficult to recompute the initial state from
observing key stream data. In Chapter 7 we will come back to the trade-offs that
are involved here when we discuss the strengths and weaknesses in the Bluetooth
security system. The four linear feedback registers LFSRi, i = 1, 2, 3, 4 are each
fully characterized by the following four feedback polynomials [12]:

( )LFSR 1 1
25 20 12 8 1: f t t t t t= + + + + (4.23)

( )LFSR 2 2
31 24 16 12 1: f t t t t t= + + + + (4.24)

( )LFSR 3 3
33 28 24 4 1: f t t t t t= + + + + (4.25)

( )LFSR 4 4
39 36 28 4 1: f t t t t t= + + + + (4.26)

Note that the sum of the degrees of these four polynomials is 128. The
output sequence X1 = (x10, x11, . . .) of register 1, say, when assuming that we
clock the register infinitely long, can be expressed by the formal power series:

( )X t x ti
i

i
1 1

0

=
=

∞

∑

From the theory of linear feedback registers we know that we can write

74 Bluetooth Security



( ) ( )
( )X t

g t

f t1
1

1

=

for some polynomial g1(t) (with binary coefficients) of degree less than the
degree of f1(t). See, for example, [12]. The polynomial division is carried out by
using ordinary polynomial arithmetic but using modulo 2 arithmetic in the
coefficients. It is the linear feedback circuit that implements this division opera-
tion using delay elements to hold the coefficients and XOR gates to do the mod-
ulo 2 operations. Each of the four polynomials is a so-called maximum length
polynomial, which means that the periods of the output sequences of LFSRs
have periods 2 1degreef i − , i = 1, 2, 3, 4 [12]. That is, we have

period X P1 1
252 1: = − (4.27)

period X P2 2
312 1: = − (4.28)

period X P3 3
332 1: = − (4.29)

period X P4 4
392 1: = − (4.30)

As we will see later, the polynomials are in fact maximum length windmill
polynomials (see Section 4.5). The windmill property can be exploited in a hard-
ware or software realization of the LFSR.

The four sequences X1, . . ., X4 are fed symbol by symbol into a so-called
summation combiner which adds the four input symbols together as if they were
natural numbers, adds the result to a number ct, depending on the summation
combiner’s state, and obtains a sum st, t = 0, 1, . . . . Formally we have

{ }s x x x x ct t t t t t= + + + + ∈1 2 3 4 0 1 7, , ,K

because ct takes on only the values 0, 1, 2, 3. The output symbol zt is the binary
result obtained by setting

( )z s x x x x ct t t t t t t= = ⊕ ⊕ ⊕ ⊕mod mod2 21 2 3 4

The new value ct + 1 is obtained by rewriting3 first the result of the
computation

Algorithms 75

3. The Bluetooth core specification defines the computation of the new state in a different
manner using the finite field representation of the values of ct. The manner defined here is
equivalent to the one in the core specification but avoids the use of finite fields.



u
s

t
t

+ = 



1 2

as a binary vector ut+1 (of dimension 2) and then setting

c u ct
t

t
t t

c

c+
+

+
+=







= ⊕






⊕




1

0 1

1 1
1

1 0

0 1

1 1

1 0
c t −1 (4.31)

(computing modulo 2 in the coefficients), and, finally, defining the mapping:

↓ = +:c c ct t ot2 1 (4.32)

A close inspection shows that (4.31) defines a linear infinite impulse
response (IIR) filter that scrambles the state variables. We will later see that the
IIR filter lowers the correlation factor that is an important parameter in the so-
called correlation attack. In Figure 4.6 the core of E0 is shown schematically.

Missing in Figure 4.6 are the initialization parts which will be described in
the next sections. Before we discuss the initialization, we want to point out that
the sequence V = (v0, v1, . . .) with

v x x x xt t t t t= ⊕ ⊕ ⊕1 2 3 4

76 Bluetooth Security

LFSR1

LFSR2

LFSR3

LFSR4

ΣXit

Ct

X4t

X3t

X2t

X1t

St

Ut+1

ZL

2

222
Ct-1

11
10

Ct

2

Figure 4.6 The schematics of the E0 core engine.



has period P = (P1P2P3P4)/7 and not P1P2P3P4 due to the fact that the periods P3

and P4 have 7 as their greatest common divisor. Hence, if we assume that none
of the LFSRs is initialized with an all zero state, there are 7 cycles of length P ≈
2125.2 [13].

4.4.1 Initialization

The initialization of E0 prior to the payload key computation is rather involved.
The key stream generator needs to be loaded with the initial values for the four
LFSRs (altogether 128 bits) and the 4 bits that specify the values of c0 and c-1.
This 132-bit initial value is derived from four inputs: the constraint key ′K C , a
BD_ADDR value, and a clock CLK value by using the key stream generator
itself. The length of ′K C is 128 bits. With the generator, 200 stream cipher bits
are generated, of which the last 128 bits are fed back into the key stream genera-
tor as the initial values of the four LFSRs. The values of c0 and c-1 are kept. The
details of the initialization are as follows:

1. Shift in the three inputs ′K C , the BD_ADDR address, the clock CLK
bits, and the 6-bit (decimal) constant 113 (208 bits total).

a. Open all switches shown in Figure 4.7.

b. Arrange input bits as shown in Figure 4.7. ADR[i] denotes the
bytes of BD_ADDR, and similarly CLK[i] denotes the relevant bytes
of the clock.

c. Set the initial states of the LFSRs to zero (t = 0).

d. Start to shift in the input bits.

Algorithms 77

ADR[2]C[1] [12] [8] [4] [0]CLK’ K’ K’ K’C C C C 24

49 bits

ADR[3]ADR[0] [13]K’C K’ K’ K’C C C[9] [5] [1]CL[0] 001L

ADR[4]CL[2] [14] [10] [6] [2]CL25K’ K’ K’ K’C C C C

ADR[5]ADR[1] [15] [11] [7] [3]CL[0] 111UK’ K’ K’ K’C C C C

55 bits

49 bits

55 bits

CL[0] =CL , ..., CLL 3 0

CL[0] =CL , ..., CLU 7 4

Close after 25

Close after 31

Close after 39

Close after 33

8 12 20

24
24

24
28

28 36

32

244

4

X1t

X2t

X3t

X4t

12 16

32

Figure 4.7 First loading of the four LFSRs.



e. Close feedback switch of LFSR1 after 25 clock instants, that of
LFSR2 after 31 clock instants, that of LFSR3 after 33 clock instants,
and that of LFSR4 after 39 clock instants.

f. At t = 39, set bits c39 = 0 and c38 = 0.

g. Continue to shift in remaining inputs bits. Note: When finished,
LFSR1 has effectively clocked 30 times with feedback closed. LFSR2

24 times, LFSR3 22 times, and LFSR4 16 times.

2. Continue to clock until 200 symbols have been produced (to mix ini-
tial data).

3. Keep ct and ct−1 and load the last 128 generated bits into the four
LFSRs.

In Figure 4.7 all bits are shifted in starting always with the least significant
bit (LSB)4 first; for example, from the third byte of the address, ADR[2], first
ADR16 is entered, followed by ADR17, and so on. Finally, the last generated 128
bits denoted here conveniently by Z[0], . . ., Z[15] are fed back into the feed-
back registers as shown in Figure 4.8.

The incoming and outgoing payloads are treated separately and payload
keys are generated for each of them. Figure 2.4 shows the timing of the encryp-
tion and decryption processes.

78 Bluetooth Security

4. The LSB of X[i] corresponds to bit 8i of the sequence X, and the most significant bit (MSB)
of X[i] to 8i + 7.

Z[3]

X t

4

X t

X t

X t

1

2

3

Z[4] Z[8]

Z[5]

Z[13]

Z[9]

Z[14]

Z[10]

Z[11]

Z[0]

Z[12]7-1

Z[6]

Z[7] Z[15]7-1

Z [2]

Z [1]

Z[12]0

Z[15]0

24

24

32

32

Figure 4.8 Second loading of the LFSRs with the payload key.



4.5 Implementation aspects

When building a Bluetooth device, one has to decide how to implement the
algorithms. A hardware implementation is the best alternative when speed and
power consumption are important. Software implementations allow fast devel-
opment and are flexible. In this section we discuss the implementation of
SAFER+ and E0. Since the authentication process and KC derivation are not very
time critical in most Bluetooth usage scenarios, a natural choice for SAFER+ is
to implement it in software. Good software implementations can easily be found
on various Web sites [14].

The implementation choice for E0 is not that obvious. Since E0 is always
running when transmitting encrypted data, it is advantageous to implement E0

in hardware on devices that should have very low power consumption. Because
encryption takes place at the physical layer in the communication stack, a hard-
ware implementation fits well together with an implementation where other
low-layer functionality is realized in hardware. The design of E0 allows for a fur-
ther simplification that reduces the number of times one has to clock the four
LFSRs. The reader might have observed the special structure of the feedback
polynomials. These are so-called windmill polynomials, which have the prop-
erty that one can construct a linear sequential machine that, provided it is cor-
rectly initialized, for each clock cycle generates four consecutive symbols of the
sequence that the normal LFSR would generate (see also [15]).

The way a windmill construction works is best shown in Figure 4.9 using
the example windmill polynomial t4 + t3 + 1. Shown first is a classical LFSR con-
struction. The output at the third register element forms the maximum length,
period 15 sequence starting with the symbols 00010011 . . . . Next is shown a
windmill construction that generates the same sequence, but now three symbols
for each tick of the clock.

It is now easy to see that the number of required clock cycles in a windmill
realization of E0 is only a quarter of that of a direct LFSR implementation.

Algorithms 79

(a) (b)

0 00 00 01 1

Xt 000100110...= 0
1
1

X3t

…

0
0
1

X3 +1t

…

0
0
0

X3 +2t

…

Figure 4.9 A windmill construction using windmill polynomial t 4 + t 3 + 1.



Hence it is possible to clock a windmill variant of E0 only at one-fourth of the
clock frequency of a variant with direct LFSRs. The lower clock frequency
reduces power consumption in most very large scale intergration (VLSI) imple-
mentations. The windmill implementation is also feasible in software.

References

[1] van Oorschot, P. C., A. J. Menezes, and S. A. Vanstone, Handbook of Applied Cryptogra-
phy, Boca Raton, FL: CRC Press, 1997.

[2] SAGE, 3GPP TS 35.201, the 3GPP Confidentiality and Integrity Algorithms; Document 1:
f8 and f9 specifications, Version 5.0.0, 3rd Generation Partnership Programme, 2002.

[3] Massey, J. L., and R. A. Rueppel, “Method of, and Apparatus for, Transforming a Digital
Sequence into an Encoded Form,” U.S. Patent No. 4,797,922, 1989.

[4] Rueppel, R. A., “Correlation Immunity and the Summation Combiner,” Advances in
Cryptology, Crypto 85, LNCS, Berlin: Springer-Verlag, 1986, pp. 260–272.

[5] Meier, W., and O. Staffelbach, “Correlation Properties of Combiners with Memory in
Stream Ciphers,” J. Cryptology, Vol. 5, No. 1, 1992, pp. 67–86.

[6] Golic, J. Dj., “Computation of Low-Weight Parity-Check Polynomials,” Electronic Letters,
Vol. 32, No. 21, October 1996, pp. 1981–1982.

[7] Salmasizadeh, M., J. Dj. Golic, and E. Dawson, “Fast Correlation Attacks on the Summa-
tion Combiner,” J. Cryptology, Vol. 13, No. 2, 2000, pp. 245–262.

[8] Hermelin, M., and K. Nyberg, “Correlation Properties of the Bluetooth Summation
Combiner,” in J. Song, ed., Proc. ICISC’99, 1999 International Conf. Information Security
and Cryptography, No. 1787 in LNCS, Berlin: Springer-Verlag, December 2000,
pp. 17–29.

[9] Knudsen, L. R., “A Detailed Analysis of Safer k,” J. Cryptology, Vol. 13, No. 4, 2000,
pp. 417–436.

[10] Kuregian, M., G. H. Khachatrian, and J. L. Massey, “Differential Cryptanalysis of
Safer+,” Technical Report, Cylink Corporation, Sunnyvale, CA, 20 April, 1999.

[11] ENS Ed, “Nessie Security Report,” Technical Report Version 1.0, NESSIE Project,
IST-2000-12324, 2002.

[12] Lidl, R., and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and Its Applica-
tions, Reading, MA: Addison-Wesley, 1983.

[13] Gill, A., Linear Sequential Circuits: Analysis, Synthesis, and Applications, New York:
McGraw-Hill, 1966.

[14] Safer+ Development Kit, Available at http://us.cryptosoft.de/html/safer.htm, accessed
November 2003.

[15] Smeets, B., and W. G. Chambers, “On Windmill pn-Sequence Generators,” IEE Proc-E,
Vol. 136, 1989, pp. 401–404.

80 Bluetooth Security



5
Broadcast Encryption

Bluetooth has support for encrypted broadcast traffic. This is accomplished by
distributing a common secret key to all slaves of the piconet. All broadcast traffic
is then encrypted based on this common key. In version 1.1 [1] of the Bluetooth
specification, details on broadcast encryption are somewhat vague at the LMP
and HCI levels. In version 1.2 [2], efforts have been made to make the specified
behavior unambiguous. Another change is that broadcast encryption has
become an optional rather than mandatory feature. In this chapter we give an
overview of the broadcast encryption mechanisms and the procedures used to
enable encrypted broadcast traffic.

5.1 Overview

In order to support encrypted broadcast traffic, it is necessary for all slaves to
have access to the same encryption/decryption key. For this purpose, a special
link key has been defined to be used as a basis for the link encryption key. Since
the piconet master issues this key, it is denoted by master key, Kmaster. The master
key can only be used for one session; otherwise, devices that previously were
members of a piconet governed by the same master could potentially listen in to
the current conversation. Because of this, the master key is a temporary key.

One would think that once the master key has been distributed, a device
can freely switch to the correct decryption key (which is based on the semiper-
manent key for individual traffic and on the master key for broadcast traffic) as
needed. However, there is a practical problem with this approach. The receiver
cannot determine whether to use the key for the master-slave connection or the
key for the broadcast connection until the LT_ADDR is interpreted. If this

81



address is all zeros, the message is a broadcast; otherwise it is destined to an indi-
vidual device. Since the LT _ADDR is received rather close to the payload, there
is very little time for the decryption machinery to get properly initialized before
the deciphering starts. To avoid the uncertainty of which key to use, only one
key can be valid at a time. As a consequence of this, there are three supported
modes for traffic in Bluetooth:

1. No encryption—all traffic is in plain text.

2. Encryption on point-to-point links based on semipermanent link key1

—broadcast traffic is still unencrypted.

3. Encryption on point-to-point and point-to-multipoint links—indi-
vidual traffic and broadcast traffic are encrypted using the same
encryption key.

The last case above implies that the link privacy is effectively removed with
respect to all units sharing Kmaster but kept with respect to the rest of the world.

5.2 Preparing for broadcast encryption

In a broadcast scenario, since all slaves use the same encryption key, they must
all support the encryption key length that the master chooses. Some countries
have put export restrictions on hardware equipped with encryption circuitry.
For this reason, the effective key length of the encryption key can be restricted to
something less than 128 bits using the procedure described in Section 3.6.2.
The maximum length supported is determined by the manufacturer and cannot
be changed afterwards. In practice, this is accomplished by only implementing a
subset of the key constraining polynomials defined in Table 3.2.

In order to select the key length, the master must know what lengths are
supported for all individual members of the piconet. For devices compliant with
version 1.1, there is no standardized way of obtaining this information, and the
only available method is the key negotiation procedure that we described in
Section 3.6.2. The complexity of gathering individual capabilities and negotiat-
ing the key size is one of the reasons broadcast encryption capability is a feature
not always implemented in 1.1-compliant devices. Among the 1.1-compliant
units that have this feature, practical tests have shown that interoperability
between different manufacturers is not particularly good.

82 Bluetooth Security

1. The 1.2 specification indicates that if a master key has been distributed, individual traffic can
be encrypted based on that temporary key in this mode. As broadcast messages are unen-
crypted, the device is not forced to use Kmaster and the individual semipermanent keys give
higher security.



The interoperability has been considerably improved in the 1.2 version of
the specification [2] with the two new LMP commands:

• LMP encryption key size mask req

• LMP encryption key size mask res

The first command can be used by the master to request a bit mask that
describes the supported key length (in bytes) by the slave. The slave uses the sec-
ond command to return the supported key length (for the details; see Section
5.3). Furthermore, the LMP features mask, exchanged at link setup, defines what
features are available in a device. From version 1.2, the number of possible fea-
tures that can be defined have been increased significantly by the means of
extended features masks. This is just a new LM PDU for which the bit positions
in the payload refer to the extended features. Generally, for each optional LMP
feature, the features mask indicates whether it is supported or not. As broadcast
encryption is now defined to be an optional feature, it is supported only if the
corresponding bit in the extended features mask is set. Legacy devices do not
have the extended features mask, but it is possible for a new device to determine
this from the LMP version number.

5.3 Switching to broadcast encryption

Before encrypted broadcast is possible, the master must change the current link
key. To switch from the semipermanent to the temporary key, a few steps must
be carried out. First, the master generates the temporary link key, Kmaster. Obvi-
ously, this key cannot be sent in plaintext. One option would be to distribute it
over encrypted links. However, this imposes an unnecessary restriction, as it
mandates an initial switch to encrypted master-slave traffic, even in cases where
the application requesting broadcast traffic does not need it. Instead, the key is
sent XORed with an overlay that is a function of the current link key and a pub-
lic random number. The details of this scheme can be found in Section 3.4.5.

Whether or not broadcast encryption is supported can be determined via
the LMP features mask. Furthermore, as we discussed previously, one can
request the supported key lengths using the LMP encryption key size

mask req. In this PDU, there are 16 bits whose positions correspond to the
same length in bytes of the encryption key. For each supported length, the cor-
responding bit is set, and for each unsupported length, the bit is not set. Thus,
the least significant bit corresponds to an 8-bit key, while the most significant
bit corresponds to a 128-bit key. After acquiring this information from all slaves,

Broadcast Encryption 83



84 Bluetooth Security

Host A HC/LM-A
Master

Host BHC/LM-B
Slave

ACL connection established

Subscenario 1: Switch from master link key to semipermanent link key
HCI Master Link Key

HCI Master Link Key

HCI command status

HCI command status

LMP encryption key size req()

LMP encryption key size res

Subscenario 1.1: No common key size for slaves and not forced

Subscenario 1.2: Common key size available or forced

HCI master link key complete

LMP temp key(key)

LMP temp rand(rand nr)

If encryption is enabled restart it=>

If encryption is enabled restart it=>

LMP encryption mode req

LMP accepted(opCode)

LMP stop encryption req()

LMP accepted(opCode)

LMP encryption mode req

LMP accepted(opCode)

LMP encryption key size req

LMP accepted(opCode)

LMP start encryption req

LMP accepted(opCode)

HCI master link key
complete

HCI mater link key
complete

Subscenario 2: Switch from Master Link Key to Semipermanent Link Key

LMP use semi
permanent key()

LMP accepted(opCode)

LMP encryption mode req

LMP accepted(opCode)

LMP accepted(opCode)

LMP stop encryption req()

LMP encryption key size req

LMP encryption mode req

LMP accepted(opCode)

LMP accepted(opCode)

LMP start encryption req

LMP accepted(opCode)

(status-0x00,conHandle,
key flag)

HCI master link key
complete

(key flag)

(status, num cmd,
cmd opcode)

HCI master link
key complete

(key size)

(encr mode=0x01)

(status=0x00, conHandle,
key flag)

(status-0x00, conHandle,
key flag)

(rand nr)

(key size)

(status, num cmd,
cmd opcode)

(key flag)

(encr mode=0x00)

(encr mode=0x01)

(status=00,conHandle,
key flag)

(rand nr)

(encr mode=0x00)

(key size mask)

(status, conHandle,
key flag)

Figure 5.1 Message sequence chart for setting up broadcast encryption and for returning
to individual link encryption.



the master can decide which is the greatest common key length supported and
request this to be used.

The encryption mode parameter of the LMP encryption mode req

PDU determines whether to use encryption or not. If this mode is set to 0x1 or
0x2, encryption applies to individually addressed messages (point-to-point traf-
fic). Additionally, if a temporary link key is used, broadcast messages are also
encrypted; if a semipermanent link key is used, broadcast messages are not
encrypted. Note that setting the encryption mode to 0x2 is not recommended
from version 1.2. The mode is still part of the specification only to allow for
backward compatibility with 1.1-compliant devices.

Consequently, the encryption mode parameter written by the HCI

Write Encryption Mode command can only take the values 0x0 and
0x1.

Figure 5.1 depicts a message sequence chart describing different steps in
setting up broadcast encryption as well as returning from broadcast to individual
link encryption. For enabling of the master link key, the HCI Master Link

Key command with Key_Flag set to 0x01 is issued by the master host.
The same random number must be used in all the LMP start

encryption req commands; otherwise, different ciphering initialization
values will cause problems once encryption is switched on. It is up to the host to
decide whether to attempt broadcasting encrypted data when not all slaves are
set to receive encrypted broadcast data, but the recommendation is not to do so.

If, for some rare necessary reason, the mutual authentication following the
LMP temp rand and LMP temp key fails, the LM of the verifier should
issue the detach procedure for that link. This will allow the procedure to succeed
even though one of the devices may be erroneous.

References

[1] Bluetooth Special Interest Group, The Bluetooth Wireless Specification, Version 1.1, Febru-
ary 2001.

[2] Bluetooth Special Interest Group, Specification of the Bluetooth System, Version 1.2, Core
System Package, November 2003.

Broadcast Encryption 85



.



6
Security Policies and Access Control

The security functionality defined in the Bluetooth baseband provides the sys-
tem with the necessary building blocks for setting up a private radio link
between devices. While this is a necessary component, it certainly is not enough
to build a flexible security architecture upon. In one likely scenario of a
Bluetooth-equipped laptop, a single Bluetooth radio link is shared by many dif-
ferent applications running on the host. Each of these may have completely dif-
ferent security requirements. For instance, some services may require
authorization before a connection is allowed, while others are open to all incom-
ing requests. Furthermore, confidentiality may or may not be an issue for a spe-
cific application, which suggests that encryption should be negotiable on the
link. The Bluetooth SIG produced a white paper1 [1] that outlines a possible
architecture that addresses these issues. This white paper shows how to handle
the requirements induced by security mode 2 (for the details on security mode
2, see Section 2.5.1). This chapter discusses the ideas and concepts presented in
the white paper.

6.1 Objectives

A service may have particular requirements for authorization, authentication,
and confidentiality. For the definitions of these terms, see Section 1.2.2. While
these properties are not independent, it is desirable for the applications running

87

1. A white paper describes a preferred solution to a specific problem, but it is in no way man-
dated for compliance to the Bluetooth specification. Therefore, the security manager archi-
tecture described here may not be present in all existing Bluetooth products.



on the host to ask for specific settings regarding these properties on an individ-
ual basis. Clearly, the order in which services start cannot be known beforehand.
A connection may start without any security switched on; then, at some point in
time, a new service is initiated that asks for encryption. As this requires some
LMP signaling over the link, some stack support is needed in order to effectuate
the switch to encrypted mode. The goal of an access control mechanism is to
provide means for the applications to request the type of connection they want.
This is referred to as service level–enforced security. In particular, what is
described below pertains to devices operating in security mode 2 (see Section
2.5.1 for a general discussion on different security modes).

6.1.1 Trust relations

In this context, a trusted device refers to a device to which a security relation has
been established that is to last for more than the duration of the current session.
Typically, personal devices that one would like to be able to hook up to more
than once fall into this category, such as a headset and a mobile phone, a PDA
that synchronizes to the desktop computer, or a mobile phone that is used for
dial-up networking by a laptop computer. A trusted device is given uncondi-
tional access to all services running on the host after its identity has been con-
firmed through the authentication protocol.

For other user scenarios, the connection is of a more temporary nature. It
is of interest to encrypt the link to have privacy, but a permanent bonding
between the involved devices is not necessary, as this connection is not likely to
be restored at a later time. It could also be the case that a fixed security relation-
ship does exist, but the far-end device is not granted unrestricted access to serv-
ices running on the near-end device. Such devices are referred to as untrusted.

A possible refinement of the trusted and untrusted relationships is to have
these properties defined not per device but rather per service or group of
services.

6.1.2 Security levels

A service can freely set its requirements on authorization, authentication, and
encryption as long as the settings obey the basic rules of link level security. For
instance, one cannot request encryption without authentication. From the pos-
sible access requirements, services fall within three security levels:

1. Authorization and authentication;

2. Authentication only;

3. Services open to all devices.

88 Bluetooth Security



In case authorization is desired, the user must actively approve access to a
service unless the connecting client runs on a trusted device (which automati-
cally has access to all services running on a host). There are also authentication-
only services, for which no authorization is necessary. Finally, the open services
need neither authorization nor authentication. Obviously, the latter implies that
the link level cannot be encrypted, as the protocol requires at least one authenti-
cation before the encrypted mode is possible.

6.1.3 Flexibility

In order to be usable, the security architecture must provide for individual set-
tings of the access policies of different services. Opening up for one application
shall not automatically also open for others. For instance, a cellular phone may
have an open policy for accessing service discovery records and business card
exchange but a restrictive policy for headset access and dial-up networking. In
the same manner, for a service that has to deal with changing remote devices
(such as file transfer and business card exchange), access granted to that service
does not open for access to other services on the device, neither does it grant
automatic future access to the service on the device.

In order to increase usability, the amount of user intervention to access
a service should be kept at a minimum. Basically, it is needed when setting
up a trusted relationship with a device or when allowing a limited access to a
service.

6.1.4 Implementation considerations

In Bluetooth, protocol multiplexing can take place at and above the L2CAP
layer. The higher layer multiplexing protocols (i.e., above L2CAP) are in some
cases Bluetooth specific (e.g., RFCOMM) and in other cases nonunique for
Bluetooth (e.g., OBEX). Some protocols even have their own security features.
The security architecture must account for this in that different protocols may
enforce the security policies for different services. For instance, L2CAP enforces
security for cordless telephony, RFCOMM enforces security for dial-up net-
working, and OBEX enforces its security policy for file transfer and
synchronization.

Lower layers need not know about security settings and policies at higher
layers. Furthermore, security policies may differ for the client and server role of a
particular service. That implies that peers may enforce different security policies
for the same service due to their different roles. This also must be handled by the
security manager.

Security Policies and Access Control 89



6.2 Security manager architecture

This section will describe an architecture that fulfills the objectives set forth in
the previous sections.

6.2.1 Overview

A security manager architecture working along the lines discussed so far is
depicted in Figure 6.1. The main tasks it has to accomplish consist of:

• Store security-related information for services;

• Store security-related information for devices;

• Accept or reject access requests by protocols or applications;

• When required, enforce authentication/encryption before connecting
to the application;

90 Bluetooth Security

Service
database

Device
database

Se
cu

rit
y

m
an

ag
er

LM

User interface

HCI

L2CAP

Application

Application

Application

RFCOMM
(multiplexing layer)

General
management
entity

Query:
Register:

Figure 6.1 The proposed security manager architecture.



• Initiate the setup of trusted relationships on device level;

• Query the user or an application for pass-keys when needed.

The security manager architecture offloads from applications the burden
of implementing all these details themselves. A well-defined and consistent link
level security policy is automatically available for all applications utilizing Blue-
tooth connectivity. The protocol to interface with the security manager consists
of simple query/response and registration procedures. As the security policy is
encapsulated within the security manager, modifications to this can take place
without the need for updating the entities that interact with it. This structure
also means that legacy applications without inherent support for direct commu-
nication with the security manager can benefit from device access control via the
multiplexing layer (e.g., RFCOMM) and L2CAP. One can notice that security
policies apply to inbound as well as outbound traffic. It is quite natural that
incoming requests need adequate permissions before they are accepted. How-
ever, if a user has requested a specific application to run over an encrypted link,
the security manager should also make sure that the encryption is switched on
before such a connection request is sent to a remote device. The application run-
ning locally cannot know for sure if the remote device has applied the same secu-
rity requirements for this application. Consequently, the security manager will
enforce encryption just to be certain that a more relaxed setting at the remote
end will not override the local settings.

6.2.2 Device trust level

From the security manager’s point of view, each remote device connecting to it
falls within one of three defined device trust levels:

1. Trusted device: A previously authenticated device for which a link key
is stored and which is labeled trusted in the device database.

2. Untrusted device: A previously authenticated device for which a link
key is stored but which is labeled untrusted in the device database.

3. Unknown device: No security information is available for this device.
By definition this device is untrusted.

The security manager will maintain a device database (see Section 6.2.5) of
all known devices and act according to the policy for the trust level of the remote
device and the service it tries to connect to. A trusted relationship is usually
established during the pairing procedure. The user can be notified and given the
option to add the remote device to the list of trusted devices. It is also possible to
add untrusted devices later on when they are being granted access to a service

Security Policies and Access Control 91



requiring authorization running on the local host. Again, the user will be noti-
fied and asked if the remote device should change status from untrusted to
trusted. Whenever a remote device has an associated link key, authentication is
performed according to the procedure specified in the LMP and baseband speci-
fication. To be verified as trusted, the authentication must succeed and the
trusted flag must be set in the internal database. For unknown devices, a pairing
is necessary before authentication can take place.

6.2.3 Security level for services

Analogously to the case of a device database, the security manager has a service
database for settings related to specific services rather than devices. The security
level of a service is defined by three attributes:

1. Authorization required: Trusted devices are automatically granted
access, while untrusted devices need user-assisted authorization before
an access right is granted. Authorization requires authentication in
order to verify the claimed identity of the remote device.

2. Authentication required: The remote device must be authenticated
before access to the application is granted.

3. Encryption required: The link must be switched to encrypted mode
before access to the service or application is granted.

These attributes can be set independently for incoming and outgoing connec-
tions. By definition, each service must be handled by some application. It is the
responsibility of each application to register with the security manager and define its
security level. To be more precise, the application itself is not required to do
this—some other entity may do it on behalf of the application (such as the entity
responsible for setting the path in the Bluetooth protocol stack). Not only do appli-
cations need to register, but multiplexing protocols above L2CAP must also do this.

If no service database record exists for a particular incoming or outgoing
connection request, the following default settings apply:

• Incoming connection: Authorization (thus, implicitly also authentica-
tion) required.

• Outgoing connection: Authentication required.

6.2.4 Connection setup

In the following we will differentiate between channel establishment and connec-
tion establishment. The former is defined as creating an L2CAP channel, that is,

92 Bluetooth Security



the logical connection between two end points in peer devices at the L2CAP
level, characterized by their respective channel identifiers (CID). The L2CAP
channel is serving a single application or higher layer protocol. The connection
establishment is defined as a connection between two peer applications or
higher layer protocols mapped onto a channel. The decision on what security
measures to enforce is taken after determining the security level of the requested
service. This will minimize unnecessary user interaction, as authentications and
authorizations can be initiated on a strictly as-needed basis. It also implies that
authentication cannot take place when the ACL link is established, but rather
when the request to a service is submitted.

Generally, the flow for an (accepted) incoming L2CAP channel establish-
ment is as follows (depicted in Figure 6.2):

1. Connection makes request to L2CAP;

2. L2CAP requests access from the security manager;

3. The security manager looks up the security policy for the requested
service in the service database;

4. The security manager looks up the security policy for the connecting
device in the device database;

5. If necessary, the security manager enforces authentication and
encryption;

6. The security manager grants access to the service;

7. L2CAP continues to establish the connection.

Security Policies and Access Control 93

Service
database

Device
database

Se
cu

rit
y

m
an

ag
er

LM

HCI

L2CAP

Application

1

2

3

4

5

6

7

Figure 6.2 Access control procedure for L2CAP channel establishment.



For incoming connection requests, the access control may end up being
duplicated. First, the L2CAP layer will query the security manager. The query
contains a parameter identifying which protocol submitted the query and the
BD_ADDR of the remote device. Based on this information, the security man-
ager decides whether to grant or refuse the connection and if there is a need to
enforce authentication and encryption. Should this be the case, the security
manager will make sure this is carried out before it grants access to the submitted
request. The simplest way to achieve this for the security manager is by interfac-
ing to the lower Bluetooth layers through designated HCI link control com-
mands. Of course, this is only possible if the HCI is present in the device
implementation, but in any case some means of equivalent functionality must
be available. For some submitted requests, the user may be asked to authorize
the connection.

In addition to this, the multiplexing protocol above L2CAP (e.g.,
RFCOMM) may also do an access control query. The protocol handling entity
will query the security manager with all the available multiplexing information
(including protocol identification for the submitter and corresponding channel
identifications associated with that particular protocol) it received with the con-
nection request. As is the case for L2CAP queries, the security manager will
make a decision whether the request is granted or not based on the registered
security policy settings for the protocol and remote device in question, and
inform the protocol handling entity of the result.

Clearly, the duplicated security manager requests may lead to repeated
authentication events, causing unnecessary signaling over the air or repeated
authorization requests requiring user interaction. To avoid this, the security
manager should store a temporary value concerning the status of the request. If
an authentication with the remote device has been successful when triggered by
the L2CAP interaction, the result can simply be reused for the second query
originating at the multiplexing layer. The same holds for connection request
that have already been granted access through the authorization process.

Duplicate (or even triplicate) requests can result from outgoing connec-
tion requests as well. First, if built with the necessary means, the application
itself may submit a query to the security manager and ask it to enforce the secu-
rity policy associated with the corresponding service. Then the multiplexing
protocol will do the same, as will the L2CAP layer. Unnecessary actions in
response to these redundant requests are easily avoided if the security manager
tracks the status for the connection request and reuses the result. Naturally, for
outgoing connections authorization is less likely to take place, as one would
expect applications on the local host to be granted access to the Bluetooth radio
by default. However, enforcing authentication and encryption are valid require-
ments for many outgoing connection requests. Figure 6.3 illustrates how the

94 Bluetooth Security



redundant security manager queries are generated for incoming and outgoing
connections, respectively.

6.2.5 Database contents and registration procedure

There are two databases maintained by the security manager—the device data-
base and the service database. Each record of the device database contains infor-
mation regarding device identity, trust level, and link key shared with the
particular unit. It may also be useful to store other information, such as a
human-readable device name for simpler user interaction upon authorization
requests. To be useful over several sessions, the database should be stored in
nonvolatile memory.

The service database contains information regarding the security level (i.e.,
authorization, authentication, and encryption requirements) for incoming and
outgoing requests. Furthermore, a protocol/service multiplexor (PSM) value is
stored. The PSM value is used by the L2CAP layer during channel establish-
ment to route the connection request to the right upper layer (several higher
layer protocols can be multiplexed over L2CAP). Whenever L2CAP submits a

Security Policies and Access Control 95

L2CAP

Multiplexing protocol
(RFCOMM)

Nonmultiplexing protocol

Incoming
connection

Se
cu

rit
y

m
an

ag
er

Outgoing
connection

Figure 6.3 Duplicate security manager requests following incoming and outgoing connec-
tion requests.



request, the service manager will use the PSM value to identify which higher
layer protocol a connection request belongs to. With this information available,
the correct security policy settings can be applied to the connection request.
More information may also be stored, such as a human-readable service name.
The service database can store its information in nonvolatile memory, or it is
required that services register at every boot instance.

The service manager is responsible for maintaining the device database. It
must be updated every time that a bonding with a device takes place. For new
devices, a new record is generated. If existing link keys are changed, the device
database must be updated accordingly. Changing the trust level of a device
(untrusted to trusted or vice versa) must be reflected in the database. Should the
local device be set into security mode 3 (i.e., link level–enforced security), it is
possible to utilize the security manager for this also. Then, in order to avoid
untrusted devices getting unwanted access to local services, the security manager
should remove all existing link keys for untrusted devices.

Security information pertaining to services or applications need to be reg-
istered with the security manager for inclusion in the service database before a
service is accessed. This can be done by the applications themselves or by desig-
nated security delegates. Registration includes security levels for incoming and
outgoing requests, protocol identification, and the PSM used at the L2CAP
layer. Additionally, multiplexing protocols such as RFCOMM also need to reg-
ister with the security manager.

Reference

[1] Müller, T., ed., “Bluetooth Security Architecture,” White Paper Revision 1.0, Bluetooth
Special Interest Group, July 1999.

96 Bluetooth Security



7
Attacks, Strengths, and Weaknesses

Until now we have gone through many details of the mechanisms in Bluetooth
that aim to provide means for secure data transmission. It is now appropriate to
investigate what the overall result is. Assessing the security of a communication
system is a difficult task and encompasses many aspects. It would take us too far
to pursue a complete review of the security aspects of using Bluetooth. Instead,
we limit ourselves to a review of the strengths and weaknesses of the security
mechanisms defined in Bluetooth. In particular, we discuss how existing weak-
nesses can be exploited to attack communicating Bluetooth devices. The weak-
nesses can be used to mount various kinds of attacks. For example, attacks that
attempt to eavesdrop on the data that the Bluetooth devices send to each other
or to manipulate (modify) this data. Another attack that we discuss is more in
the realm of traffic analysis and reveals, among other things, the location of the
Bluetooth device (owner). For a broader overview of the security of Bluetooth
and the 802.11 wireless systems, we refer to [1].

7.1 Eavesdropping

When a Bluetooth connection is set up without activating the link encryption, it
is obvious that such a connection is easily eavesdropped on. Furthermore, it is
fairly easy for an attacker to substitute payload data with other payload data.
When activating link encryption between two units, the communicating units
cause the data sent via the link to not be accessible to outsiders. One may be
tempted to believe that when encryption is activated, the above mentioned sub-
stitution manipulation is also blocked. However, this is not true, as we will see
in the next section. There we show that by carefully manipulating the data and

97



the corresponding CRC data, it is possible to make the receiver accept manipu-
lated payload data. Thus, what remains to be investigated in more detail is the
question of how good the cipher itself is, and how easy it is to break the encryp-
tion method. This will be the subject of the remainder of this section.

It is common practice to assume that the attacker knows the bits of the
stream that the ciphering engine has produced. The question that one wants to
solve is whether it is possible to recover the ciphering key. It follows from the
construction of E0 that this requires two steps: first the attack must provide the
payload key; subsequently from one or possibly several recovered payload keys,
one has to determine the value of the constraint key ′K C . When ′K C is deter-
mined, the eavesdropper can eavesdrop on the communication between two
units. This will be the case until the units execute a new mutual authentication
or until the two units perform an explicit update of ′K C through the operations
described in Section 3.6.1. For simplicity we assume that the value of ′K C is con-
stant during the time the eavesdropper wants to attack. For the same reason we
assume the eavesdropper has access to the plaintext as long as the cryptanalysis is
performed that leads to the recovery of KP. The important parameter is how
long it takes for the eavesdropper to determine KP in this setup. This will give a
lower limit on the amount of time needed to find ′K C . The actual time needed
to determine ′K C will be larger, as one may have to work back from one or sev-
eral KP to recover ′K C .

Since the Bluetooth specification was released, researchers have presented
their analysis of and attacks on E0. Attacks on E0 are known that have work
(time) complexity that is essentially less than O(2128), which is less than the
exhaustive search through the key space. General ideas to find weaknesses in the
combining functions can be found in [2]. Here we report only on two, more
specialized, attacks. Each attack illustrates different approaches to promising
breaks of E0. In these works, the main idea is to use the correlation and/or the
algebraic structure that exists between the output bits and the input bits.

Correlation attacks were pioneered by Siegenthaler in the mid-1980s.
They were made effective on a large class of stream cipher generators by the
ideas of Meier and Staffelbach in a series of publications starting with [3], of
which [4] is particularly relevant to E0. The E0 construction tries to lower the
correlations this attack can utilize. In [5], Hermelin and Nyberg show that there
exists a useful correlation between the stream cipher outputs zt and the stream
bits vt = x1t ⊕ x2t ⊕ x3t ⊕ x4t. See Figure 4.6. The latter sequence is the sequence
that is generated by a fictive LFSR with feedback polynomial g(t) =
f1(t)f2(t)f3(t)f4(t), that is, the product of the four feedback polynomials of the four
LFSRs in E0. The polynomial g(t) is of degree 128. A successful correlation
attack provides the attacker with the initial state of this fictive LFSR. It is then a
simple matter to solve a small set of linear equations, in 128 unknown variables,
to compute the initial states of each of the four LFSRs in the original E0.

98 Bluetooth Security



Before we can proceed, we need the following definition and some extra
notations.

Definition 1. Let f, g be two Boolean functions in n variables. The correlation be-
tween f and g is the value

( ) ( ) ( ){ } ( ) ( ){ }
C f g

x B f x g x x B f x g xn n

n
,

# ; # ;
=

∈ = − ∈ ≠2 2

2
(7.1)

where B n
2 is the n-dimensional vector space over B2 = {0, 1}.

We are looking for correlations to linear functions. If x ∈ B n
2 is an

n-dimensional variable and w ∈ B n
2 an n-dimensional constant, then we can

define the linear function

( )L x w x
i

n

i iw =
=
⊕

1

(7.2)

and study the correlation value

( )C f L, w (7.3)

for different values of w. We are interested in finding the value(s) of w that
maximize |C(f, Lw)|. This is the basic idea. Applying this to Bluetooth is not
directly straightforward. Yet some correlation between input bits and output
bits must remain. Omitting the details, Hermelin and Nyberg derived that

( )C z z z v v vt t t t t t⊕ ⊕ ⊕ ⊕ = −− − − −1 3 1 3

1

16
,

The correlation value −1/16 is lower (in absolute value) than the corre-
sponding value for the original summation combiner by [6], due to the IIR fil-
tering induced by (4.31). However, the value could have been even reduced to C
= 1/64 when the linear mappings were changed in (4.31). The latter was
observed by Hermelin and Nyberg [5].

Instead of attacking the four LFSRs simultaneously, one can attack, say,
only three and assume the remaining one to have a known state. The attack then
proceeds by attacking the three LFSRs for each possible known (trial) state. This
is referred to as a guess-and-divide attack. The obtained correlation, together
with a guess-and-divide attack setup in which the attacker guesses the content of

Attacks, Strengths, and Weaknesses 99



one LFSR, gives an effective attack (in complexity). This attack, described in
detail in [7], can recover the initial state of E0 in

268 operations using 243 observed/known symbols

Because the required number of observed/known symbols is much larger
than the number of symbols in a payload frame, this attack does not lead to a
direct attack that reveals the link key. A more powerful attack in terms of the
required number of symbols was pioneered by Krause [8], which gives an attack
with

277 time effort using only 128 observed/known symbols

This attack is particular interesting1 because it can be used to find ′K C

from KP . The latter result also clearly shows that it is not appropriate to use the
modified summation combiner right away, and as we have seen, Bluetooth uses
an additional key loading step and restarts the encryption engine for each frame.
The recent, improved correlation attack by Golic et al. [9] achieves

270 time effort using less than 1 frame of observed/known symbols

Finally, we also mention the result by Ekdahl and Johansson [10, 11],
where a correlation type attack is given that achieves

263 time effort using 234 bits observed/known symbols

Hence, again a better (lower) complexity was obtained at the expense of
having to use a long (much longer) observed sequence. A very important ingre-
dient in the correlation attack is formed by the linear equations that are used to
find the initial state of the registers under attack. Recently, based on techniques
stemming from attacks on other encryption mechanisms, a new set of attacks
have been devised that use the fact that in certain (stream) ciphers one can
exploit that one can solve systems of nonlinear equations (with terms of not too
high a degree). For E0 we expect the relations between the input bits and output
bits to not have too high a degree. This follows partly from the fact that the
rather simple feedback scheme and the combining structure will only give rise to
a “moderate” explosion in high-order terms in the equations that describe the
output bits in terms of the initial state. The works by Armknecht [12, 13] and
recently by Courtois [14] show the power of this kind of approach. For example,

100 Bluetooth Security

1. Although the space complexity is O(277).



Armknecht discovered a system of nonlinear equations with a degree of at most
4. The system can be transformed through linearization into a system of linear
equations with about 224 unknowns.

We follow Armknecht [12, 14] to explain some of the steps of the attack.
We refer to [12, 14] for the details. The idea is to consider multivariate relations
between output and input bits, that is, relations of output and input bits using
nonlinear expressions. That we have a combiner with memory in the cipher
complicates matters, but provided the number of states induced by the memory
is small, the multivariate relations that can be found are useful. For Bluetooth,
we recall that the combiner has memory 4; that is, we have 216 states.
Armknecht and Krause have proven that for any combiner with k inputs and l
bits of memory, the required multivariate relations always exist and have a
degree of at most  k l( )/+ 1 2 . For E0, this number is thus  4 4 1 2 10( )/+ = .
Hence, Armknecht’s direct investigation leads to a substantially better set of
relations. We show how Armknecht cleverly obtained his set of nonlinear equa-
tions of degree 4.

Recall that at time t the output zt is produced and that two new memory
bits (Qt, Pt) = ct are computed. This is done by the following equations:

z x x x x Pt t t t t t= ⊕ ⊕ ⊕ ⊕1 2 3 4 (7.4)

( ) ( )P t t P P P Q Qt t t t t t+ − −= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕∏ ∏1 2 1 1 1 (7.5)

( ) ( ) ( ) ( )Q t t P P t Q t P Q Qt t t t t t t+ −= ⊕ ⊕ ⊕ ⊕∏ ∏ ∏ ∏1 4 3 1 2 1
(7.6)

where the ∏k(t) are functions in the variables {x1t, x2t, x3t, x4t} by taking the XOR
sum over all possible products of distinct terms of degree k. The ∏k(t) are thus
the XOR sum of monomials of degree k:

( )
( )
t x x x x

t x x x x x x x x x

t t t t

t t t t t t t t

= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕
∏ 1 2 3 41

1 2 1 3 1 4 2 3

( )
2 4 3 42

1 2 3 1 2 4 1 3 4 2

t t t t

t t t t t t t t t t

x x x

t x x x x x x x x x x x

⊕

= ⊕ ⊕ ⊕
∏

( )
3 43

1 2 3 44

t t

t t t t

x

t x x x x

∏
∏ =

Following Armknecht, we introduce now two sets of variables:

( ) ( ) ( )
( ) ( ) ( )

A t t t P P

B t t t P

t t

t

= ⊕ ⊕

= ⊕ ⊕
∏ ∏
∏ ∏

−4 3 1

2 1
1

Attacks, Strengths, and Weaknesses 101



which allow us to write a more compact expression for P and Q:

( )P B t P P Q Qt t t t t+ − −= ⊕ ⊕ ⊕ ⊕ ⊕1 1 11 (7.7)

( ) ( )Q A t B t Qt t+ = ⊕1 (7.8)

By multiplying (7.8) with B(t) and arranging terms and using the fact that
for Boolean variables x2 = x, we get

( ) ( )( )0 1= ⊕ ⊕ +B t A t Q Qt t (7.9)

Equation (7.7) is equivalent to

( )Q Q B t P P Pt t t t t⊕ = ⊕ ⊕ ⊕ ⊕− − +1 1 11 (7.10)

By inserting (7.10) into (7.9) with index t + 1 instead of t, we get

( ) ( ) ( )( )0 1 1 1 2= ⊕ + ⊕ ⊕ ⊕ ⊕ + +B t A t B t P P Pt t t

Using (7.4), we eliminate all memory bits in the equation and get the fol-
lowing equation,which holds for every time instant t,

( )
0 1 1 1 2

1 2 1 1 2

= ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕
− + +

+ + − +∏
z z z z

t z z z z z z z
t t t t

t t t t t t t( )
( )( )
( ) ( )
( )

⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕

⊕ −

+ −

− + +∏
∏ ∏

z z

t z z z z

t z t

t

t t

t t t t

t

1 1

2 1 1 2

3 4

1

1

1

1 ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

∏ ∏∏ ∏ ∏
∏ ∏ ∏

⊕ − ⊕ ⊕ −

⊕ + ⊕ + ⊕+ +

t t z t t

t z t t z z

t

t t t

1 1 1

1 1 1
11 1 2

1 1 1 1 1 ( ) ( )
( ) ( ) ( )( ) ( ) ( )
( )

⊕ +

⊕ + ⊕ + ⊕ ⊕ +

⊕ + ⊕ +

∏ ∏
∏ ∏ ∏∏ ∏
∏

+t t z

t t t z t t

t t

t

t

1

1 1 1 1

2

1 12

2 2 21 2

1
( ) ( )( ) ( ) ( )2 1 2

1 1 1 2∏ ∏ ∏ ∏⊕ ⊕ +t z t tt

By inspection we easily see that this equation has terms of degree of at
most 4 in the variables {x1t, x2t, x3t, x4t}. As the equation holds for any t, we get for
every t a new equation. By iterating this, we can build a system of nonlinear
equations with terms of degree of at most 4. Since the output bits {x1t, x2t, x3t, x4t}
stem from the four LFSRs and thus can be expressed as linear combinations of

102 Bluetooth Security



the initial state bits, we can rewrite the above equation in terms of the initial
state bits S0 = {s0, s1, . . ., s127} and get

( )R s s s z z z0 1 127 0 1 3 0, , , , , , ,K K =

where R is a multivariate relation of degree of at most 4. The just-mentioned
linearity allows us to write

( ) ( )
( )

S s s s S

S s s s s s s

1 0 1 127 0

2 1 2 128 0 1 12

= =

= =

� �

� � �

, , ,

, , , , , ,

K

K K( )( ) ( )

( ) ( )

7
2

0

1 1 126 0

=

= =− +

�

� �

S

S s s s St t t
t

M

K, , ,

(7.11)

where � is the linear mapping that maps the state St to the state St+1. Because of
this linearity, (7.11) will apply to all blocks of four consecutive output bits, that
is,

( )[ ] ( )[ ] ( )[ ]{ }R S S S z z tt t t
t t� � �0 0 0 1 0 127 3 0 0 1 2, , , , , , , , , ,K K K+ = =

Here, by definition, [�t(S0)]i = st +i for i = 0, 1, . . ., 127. Thus we can write
down relations between the 128 initial bit values and blocks of output symbols.

Another effect of the fact that the output bits {x1t, x2t, x3t, x4t} can be
expressed as a linear combination of the initial state bits is that as we build the
system of relations, the number of distinct terms that will occur must have an
upper limit, as there will be only a finite number of different terms that can
occur. Indeed, Armknecht found that one has the upper bound T = 17,440,047
≈224.056.

The number T is important, as one has to clock at least that many times to
get enough equations to solve the system of nonlinear equations through so-
called linearization [15]. Strictly speaking, we do not know if we get enough
independent equations, but experimental evidence shows that we expect the
required number of times we have to clock to be in the neighborhood of T. The
complexity to solve such a system by the Strassen algorithm is 7 2 7T log . On a
64-bit machine, this can be reduced to 7

64
72T log . There exists faster algorithms

to solve nonlinear equations. In theory, one can solve a system in T ω, ω ≤ 2.376
steps [16]. The complexity estimate from the Strassen algorithm is currently
more realistic. Another algorithm that can be adopted for this is the XL algo-
rithm [15]. The XL algorithm may work with less than T relations to start with.

Attacks, Strengths, and Weaknesses 103



We now briefly describe how the attack may be carried out after we have
obtained the system of equations.

• We collect key stream bits and plug them into the equations.

• Say we have T key stream bits. There are about T monomials of degree
≤ 4 in the n = 128 variables. We consider each of these monomials as a
new variable Xi. Suppose we have enough key stream bits and then
obtain M ≥ T linear equations in T variables Xi that can be solved, say,
by the method in [16] in complexity T ω.

• Alternatively, especially when we have too few key stream bits, we may
apply the XL algorithm [15, 17].

The value of T is thus crucial, and an attacker wants it to be as small as
possible. However, for this we should have a lower degree in the monomials.
Currently, one does not know how to find such an equation. However, recently
Courtois [14] pushed the algebraic approach further by observing that one can
utilize the fact that we can multiply the multivariate polynomial by another
multivariate polynomial such that the product is of degree 3 in the initial state
bit variables.

The main work load of the attack in [14] is for Bluetooth

O
n n n

4 3 3












+


























ω

. The complexity of the attack by Courtois is thus O(249).

The attack requires 223.4 output bits. Note that 249 operations can be performed
in about 35 hours on a 4-GHz machine. One should, however, be aware that in
the complexity estimate there may be a large constant. In any case, the result by
Courtois shows that the core in E0 is not cryptographically strong.

Returning to E0, we see that to obtain an actual attack that recovers ′K C ,
we have two options: (1) make the algebraic attack work with only 2,744 output
bits2, or (2) find a way to utilize that there exists a relation between the consecu-
tive blocks of 2,744 output bits. The first option still exists, but it should require
that we find equations of type (7.11) with degree less than 4. Currently, this has
not been done. The second option is a result of the fact that the output blocks
are generated with the same constraint key ′K C , BD_ADDR, and RAND values,
but different clock timer value. See Section 3.6.3. This is not infeasible, because
the relation between the initial state values (where only the clock timer values
differ) satisfies a linear relation over the finite field GF(2). Hence, we could
rewrite our relations in terms of a specific initial state (say, with all clock bits

104 Bluetooth Security

2. 2,744 is the maximum number of known plaintext bits encrypted with the same KP.



equal to zero), the clock bits, and output bits.3 We are not aware of any attacks
that exploit this, nor do we have complexity estimates for such an attack.

We conclude that currently there is no attack known that breaks the com-
plete encryption procedure with reasonable effort. However, the security margin
is insufficient to feel comfortable about the years to come. Therefore, a stronger
encryption alternative in Bluetooth would be welcome as a backup solution in
case future attacks succeed to reduce the cryptanalytic workload to a practical
level. Such future attacks may well exploit the fact that the output bits can be
expressed approximately (probabilistically) with an algebraic relation in terms of
the initial state bits with a lower degree than the exact (deterministic) relation.
This is a continuation of the work of Armknecht and Courtois that we
discussed.

7.2 Impersonation

In the previous section, the main concern was the confidentiality of the data that
two units exchange. Another concern is that receivers want to be sure that they
indeed receive data from the original sending party identified through the Blue-
tooth authentication procedure. An attacker has mainly two options:

1. Impersonate the original sending (or receiving) unit;

2. Insert/replace data (payloads) that is sent.

The first option requires the attacker to provide the correct response on
the authentication challenge by the receiving unit. Currently, no attack on the
SAFER+-based E1 is known that achieves this within any realistic computational
effort. Hence, the only realistic way to send wrong data to the receiver is by
inserting/replacing data that is sent from the sending unit to the receiving unit.
When no encryption is activated, this can easily be achieved by correctly setting
the CRC check data in the payload after the data in the payload has been modi-
fied. This is indeed an easy task because the attacker knows the data bits that
have been set/modified by the attacker and knows how to perform the CRC
computation for the payload. When ciphering is activated, the same attack
applies because the ciphering consists of adding (modulo 2) the bits of the key
stream to the data. This is a linear operation, and since the CRC calculation is a
linear operation too, the attacker can compute how to modify the CRC to make
it agree with modifications in the encrypted data bits. Thus, the CRC mecha-
nism combined with activated encryption is capable of detecting a modification

Attacks, Strengths, and Weaknesses 105

3. We use the fact that we can write the affine equation St (C ) = �(S0) + H(C ) for fixed C,
where H is a linear transformation and C the vector of 26 clock bits.



of the data sent only under the assumption that the attacker either not changes
the CRC bits at all or only changes them more or less randomly. Figure 7.1
shows the principle of this attack.

Even when making random changes in the payload without correcting the
CRC, an attacker has a chance to get the modified payload through. Assuming
that we have random changes in the payload, the probability of success is 2−16,
which is not very small. However, this occurs for every payload packet, and the
receiver would in this case be able to notice a very poor throughput due to a
large portion of invalid incoming packets during the time the attack is
conducted.

106 Bluetooth Security

Transmitter

Position
j

u crc

⊕

⊕

⊕

zu zcrc

Encrypted data

1j crcpos(j)

z u 1u j⊕ ⊕ z crc crccrc pos(j)⊕ ⊕

zu zcrc

u 1⊕ j crc crc⊕ pos(j)

crc crc⊕ pos(j)

compare

Modification and
matching crc

Receiver

=>

Figure 7.1 Substitution attack on encrypted data where at data position j the bit value is
flipped.



Concluding, we see that the payload data in the Bluetooth 1.1 system is
easily tampered with. Yet, in a practical system were encryption is activated, it is
not at all easy to make something useful of this attack beyond the point of just
disrupting the communication.4 The attacker must somehow know the context
of the payload data to conduct changes that are meaningful or effective. This is
because some payload data is most likely intended for service operation in the
higher layers of the communication stack, and other data is actual end-
user/application data. Without knowing what data is sent, it is unlikely that the
attacker achieves a particular desired change in the end-user data. Here Blue-
tooth benefits from the fact that encryption is performed at a very low level in
the communication stack.

7.3 Pairing

The Bluetooth 1.1 specification is sensitive to passive and active attacks on the
pairing procedure. The attacks only work if the attacker is present at the pairing
occasion, which typically only occurs once between one pair of devices. Anyway,
if pairing is performed in public places during a connection to an access point,
point-of-sale machine, or printer, this can indeed be a dangerous threat. In this
section we describe how a passive or active attack against the pairing works. In
order to simplify the description, we only describe the combination key case.
However, the attack can easily be generalized to the unit key pairing case. On
the other hand, unit keys have other specific security issues. These issues will be
discussed in Section 7.5.

The Bluetooth combination key is calculated as shown in Figure 3.3. In
the figure, K denotes the current link key. In the pairing procedure, the current
link is the initialization key KINIT, which is derived as the output of the algorithm
E22. E22 takes as input the address of one of the Bluetooth units, BD_ADDR_A,
a random value, IN_RAND, and the secret pass-key, that is,

( )K E BD ADDR A IN RAND PKEYINIT = 22 _ _ , _ ,

The random value, IN_RAND, is sent in cleartext from unit B to unit A
over the Bluetooth radio channel.

As shown in Figure 3.3, the initialization key is then used to encrypt ran-
dom values, LK_RANDA, and LK_RANDB, which are used to derive the combi-
nation key KAB (a similar procedure is used to exchange a unit key, as was shown
in Chapter 3). A third part, or a “man in the middle,” who observes all the

Attacks, Strengths, and Weaknesses 107

4. If disrupting the communication is a goal of the attacker, there are simpler ways to set up an
attack.



communication between A and B during the pairing procedure obtains all
parameters exchanged over the air interface. The parameters needed for an attack
are the device address of A, BD_ADDR_A; the device address of B,
BD_ADDR_B; the random value, IN_RAND; and the encrypted random values,
KINIT ⊕ LK_RANDA and KINIT ⊕ LK_RANDA . Hence, as is shown in Figure 3.3,
the only unknown parameter used in the calculations of KAB, is the pass-key.
Given that attackers observe all these values, they might then try to guess which
pass-key value that was used during the pairing. Each pass-key value then corre-
sponds to a unique link key value. However, in order to check if the guess is cor-
rect, the attackers must have some additional information. This information is
obtained if they also observe the authentication message exchange that always fol-
lows the link key calculation exchanges. At the authenticating procedure, the
verifier sends a random value, AU_RAND, to the claimant unit. The claimant
then sends a response, SRES = E2(BD_ADDR_claimant, AU_RAND, KAB), where
E2 is the Bluetooth authentication algorithm. In summary, the attacker can
observe the following parameters during the pairing procedure:

A1 = IN_RAND

A2 = KINIT ⊕ LK_RAND_A

A3 = KINIT ⊕ LK_RAND_B

A4 = AU_RAND

A5 = SRES

Using these observations, the attacker can guess the pass-key value PKEY ′
and calculates the corresponding link key, ′K AB , as is shown in Figure 7.2. Given
the observed values A1, A2, . . ., A4 and a guess of the pass-key value, the corre-
sponding SRES ′ value can then be calculated. If the calculated value equals the
observed value SRES, the attackers can check whether they have made a correct
guess or not. If the size of the pass-key is smaller than the size of the SRES value,
they can be almost sure of whether or not the guess was correct. Furthermore, if
the size of the pass-key value is small, they can check all possible values and see
where they get a match between SRES ′ and SRES. If further confidence is
needed, the second authentication exchange can be used (mutual authentication
is always performed at the pairing). Hence, short pass-key values do not protect
the users from a passive eavesdropper or man in the middle present at the pair-
ing occasion.

The security problems with short pass-key values have been reported in
several papers and official reports. The Bluetooth specification also recommends
the use of longer pass-keys for sensitive applications [18]. Jakobsson and Wetzel
[19] indicated that it would be possible to obtain the link key at the initializa-
tion through passive eavesdropping or a man-in-the-middle attack. In a recent

108 Bluetooth Security



National Institute of Standards and Technology (NIST) report [1], the problem
with short pass-key values was listed as one of the main Bluetooth security vul-
nerabilities (together with unit key usage and privacy attacks). Vaino [20] also
briefly discusses the short pass-key problem. In a more recent paper by Kügler
[21], the passive eavesdropping attack on the pairing is described. To circum-
vent the attack, the author suggests the usage of long pass-keys. In Chapter 9 we
describe alternative pairing methods that are not vulnerable to the attack we
described in this section.

7.4 Improper key storage

In Section 3.7.3, different options for how to store the link key database are dis-
cussed. This section will discuss some possible consequences if the key database
is not stored in a proper way.

Attacks, Strengths, and Weaknesses 109

E21 E21

E1

E22

RAND_A’ = A K’2 INIT⊕
RAND_B’ = A K’3 INIT⊕

BD_ADDR_A RAND_A’ BD_ADDR_B RAND_B’

BD_ADDR_A A1 PKEY’

K’INIT

⊕

BD_ADDR_claimant

A4

SRES’

A5 = SRES’?

Figure 7.2 Pass-key test attack against the Bluetooth pairing.



7.4.1 Disclosure of keys

If a secret key is disclosed to an adversary, there is an obvious risk of an imper-
sonation attack—simply use the stolen key and the BD_ADDR of the device
from which the key was stolen. Therefore, the key database should not be read-
able to anyone in addition to the rightful owner. For small personal devices such
as headsets and phones, the risk of losing keys to nonauthorized persons is rather
small. To get such information out of these devices requires very good knowl-
edge not only of where to find the information, but in many cases also special
equipment to be able to read the device’s nonvolatile memory. If that equip-
ment is available, the adversary is most likely faced with the problem of finding
the keys within a memory dump, as thin devices often lack a proper file system.

For more advanced gadgets that use Bluetooth, the risk of key disclosure
increases. For instance, a network-connected desktop computer at the office may
be equipped with a Bluetooth USB plug to facilitate convenient calendar synchro-
nization to a mobile phone. If the key database is stored in plaintext on a file of
that computer, there are many ways of getting hold of that file. In the worst case,
it is possible to connect remotely (via the intranet) and simply read the content of
the file. Alternatively, someone may sit down in front of the computer while the
owner is having lunch and quickly copy the file to a diskette or mail it.

A variation on this theme involves a malicious USB plug or Personal Com-
puter Memory Card International Association (PCMCIA) card (also known as
PC-card). The rightful Bluetooth device attached to the computer may be
exchanged for a false one, whose only purpose is to “suck” out link keys from the
host. To accomplish this attack, a Link Key Request event is issued by the
false device. Normally, this event indicates to the host that the link manager
needs a link key for a particular device (the BD_ADDR is a parameter of this
event) in order to perform authentication. However, in this scenario the false
device simply does this to read the link key for a particular BD_ADDR. If there
is a match in the database, the key will be returned in the HCI Link Key

Request Reply command. In case there is no match in the database, the
HCI Link Key Request Negative Reply will be sent. Clearly, the
false Bluetooth device can repeat this for several addresses of interest. Upon
completion, the adversary removes the false device containing valid link
keys—its content may be used for impersonation attacks later on.

In case the link key database is stored in the module rather than on the
host, a similar attack may take place. The rightful USB plug or PCMCIA card is
removed from the owner’s computer and inserted into a corresponding slot of
the adversary’s computer. On this computer, a program runs that issues the HCI
Read Stored Link Key command to the attached Bluetooth device. This
HCI command is used to read out one or more keys stored on the Bluetooth
controller. The controller responds with a list of known link keys/address pairs

110 Bluetooth Security



in the Return Link Keys event. Once the list of keys has been read out, the
USB plug (or card) is returned to its proper owner, who may be completely
unaware that the device went missing for some time.

The two last examples illustrate the importance of protecting the interface
between the Bluetooth host (computer) and the Bluetooth controller (module)
whenever these are physically separated. Ideally, every removable Bluetooth device
should be paired with the host(s) it is allowed to run on. Conversely, the host
should only communicate with controllers to whom it has a trusted relationship.

Another advanced attack involves malicious software. A Trojan horse dis-
guised as something quite innocent can send the key database to some place where
the adversary can access it. If this malicious code is distributed through a virus or
worm, the attack can quickly spread to a large number of computers. In fact, the
adversary need not know a priori who has Bluetooth installed and is therefore a
promising victim; if the virus infects a good percentage of the desktop computers
at an enterprise site, chances are good that at least some candidates are found.

Once the link key of a computer and phone (and the BD_ADDR of the
computer) is known, the adversary can “silently” connect to the mobile phone,
impersonate the computer, and make use of any service the phone offers over
Bluetooth (e.g., voice and data calls).

7.4.2 Tampering with keys

A possible way to gain unauthorized access to a Bluetooth-equipped device is by
adding a link key to its key database without proper pairing. Then, when a con-
nection attempt is being made, the link manager of the device under attack will
assume that a valid bonding to the intruder exists, as there is a link key stored in
its database. In case the link key is marked as belonging to a trusted device (see
Section 6.1.1), the adversary will gain unconditional access to all Bluetooth serv-
ices running on the host of the attacked device. In principle, the same condi-
tions apply as were discussed in Section 7.4.1 for being able to deploy this
attack. Thin devices are not very susceptible, as the practicalities of tampering
with their key databases are quite complex. Regular computers are a more likely
target. Again, having the key database writable for anyone in addition to the
rightful owner is a bad thing. Encrypting the file will help, as it will be much
harder to plant known link keys there, even if the adversary is capable of writing
to or exchanging the key database file. One may also choose to integrity protect
the key database.

7.4.3 Denial of service

An attacker has different options when it comes to destroying the content of the
key database. If an attacker wipes out the file, removes one or more keys, or

Attacks, Strengths, and Weaknesses 111



corrupts the content to make it into unintelligible garbage, the damage will be
apparent when an authentication attempt is made. In Section 3.7.3, the way this
is detected is discussed, depending on the current role as verifier or claimant.
The specification does not mandate how to proceed when a corrupted database
is detected. Clearly, one option is to alert the user, who can then initiate a new
pairing to the devices that are affected.

A clever adversary who knows the format of the database may bypass
detection by manipulating the key and a corresponding CRC (if present) such
that this checks also for the corrupted key(s). This is analogous to what was dis-
cussed in Section 7.2. In this case, the error will not be detected until the
authentication fails (i.e., the response SRES of the claimant does not match what
the verifier calculated). At this point, the verifier aborts the link by sending the
LMP detach PDU with the authentication failure error code. Furthermore,
according to the specification, the LM of the verifier will not allow new authen-
tication attempts from the claimant until a certain waiting interval has expired.
For each failed authentication attempt, this waiting interval will grow exponen-
tially. The purpose of this is to prevent an intruder from trying many keys in a
short time. Unfortunately, in this case the effect is that a device that should have
been granted access is locked out—for each failed attempt the user will see a
longer waiting time without understanding what is going on. The only way to
break this circle is to erase the old set of keys by requiring a new pairing.

One way to avoid the latter form of attack is to add some form of integrity
protection to the key database. This comes in the form of extra parity bits that
are computed as a nonlinear function, that is, a message authentication code of the
stored information in the database and a secret key. An adversary has a very low
probability of succeeding in changing any part of the information such that it
will not be detected by the user, as long as the number of parity bits are large
enough and the secret key is not disclosed. Clearly, it is important to protect the
key sufficiently. In some systems, it may be feasible to hide the key in nonvola-
tile memory that is not accessible from any visible bus, such as on-chip ROM
that cannot be read from external pins on the chip set.

7.5 Unit key

The authentication and encryption mechanisms based on unit keys are the same
as those based on combination keys. However, a unit that uses a unit key is only
able to use one key for all its secure connections. Hence, it has to share this key
with all other units that it trusts. Consequently, a trusted device (a device that
possesses the unit key) that eavesdrops on the initial authentication messages
between two other units that utilize the unit key will be able to eavesdrop on any
traffic between these two units. A trusted unit that has modified its own device

112 Bluetooth Security



address is also able to impersonate the unit distributing the unit key. Thus,
when using a unit key, there is no protection against attacks from trusted
devices. The unit key usage weakness was observed by Jakobsson and Wetzel in
[19] and was also pointed out by NIST in a report on wireless security [22]. The
potential risks with units keys have also been recognized by the Bluetooth SIG.
Originally, the unit key was introduced in order to reduce memory require-
ments on very limited devices and remains part of the standard for backward
compatibility reasons. The Bluetooth combination keys would be much more
appropriate to use for almost any Bluetooth unit and the Bluetooth SIG does
not recommend the use of unit keys [23] anymore.

7.6 Location tracking

As we have discussed, security in computer networks includes different aspects
of message integrity, authentication, and confidentiality. In wireless networks,
where users move between different networks and media types, another issue
becomes important: location privacy. Since the Bluetooth technology is targeted
toward devices of personal type like mobile phones, PDAs, or laptops, this
becomes a real issue. The location privacy threat is actually independent of
whether Bluetooth is just used for local connectivity or as an access technology.
As long as the device is carried and used by one particular person, there is a risk
that the device is tracked using the transmitted radio signals from the
Bluetooth-enabled device. In order to be able to track user movements, there
must be some fixed device identity the attacker can utilize. Once the attacker has
succeeded in linking a human identity to the device identity, the threat becomes
a reality. Hence, all kinds of fixed identities are potential privacy threats. The
Bluetooth device address or any value derived from the device address is the
obvious location privacy attack target in Bluetooth. Moreover, even a user-
friendly name or any other application-specific identity might be a privacy prob-
lem. In this section we discuss the Bluetooth device address usage from a privacy
perspective and discuss different Bluetooth location tracking attacks.

To protect a device against location tracking, an anonymity mode is
needed. Devices operating in anonymous mode regularly update their device
address by randomly choosing a new one. The anonymity mode is described in
detail in Chapter 8.

7.6.1 Bluetooth device address and location tracking

The most serious location tracking threat utilizes the Bluetooth device address.
The address format is derived from the IEEE 802 standard. The Bluetooth

Attacks, Strengths, and Weaknesses 113



device address, BD_ADDR, has a length of 48 bits and consists of three differ-
ent parts:

1. Lower address part;

2. Upper address part (UAP);

3. Nonsignificant address part (NAP).

The format is illustrated in Figure 7.3. The LAP and UAP form the sig-
nificant part.

The entire Bluetooth address (LAP, UAP, and NAP parts) is sent in the
special frequency hop synchronization (FHS) packets transmitted at certain occa-
sions. This fact can be utilized in the different attacks described in Section 7.6.2.
However, this is not the only threat. Any deterministic value derived from the
entire or parts of a fixed device address might be used for the very same purpose.
This is the case for the Bluetooth access codes. These codes form the first part of
each packet transmitted in Bluetooth. There are three different distinct access
codes:

1. CAC, which is derived from the master’s LAP;

2. Device access code (DAC), which is derived form the specific device’s
(slave) LAP;

3. Inquiry access code (IAC), which can be of two different forms, but is
derived from special dedicated LAP values not related to any specific
BD_ADDR.

Hence, the CAC and DAC (but not the IAC) can potentially be used to
track the location of a specific user.

114 Bluetooth Security

LSB MSB

Company-assigned field Company identity field

LAP UAP NAP

24 bits 8 bits 16 bits

Figure 7.3 Bluetooth device address format.



7.6.2 Five different types of location tracking attacks

As we just discussed, directly or indirectly, the use of a fixed device address
allows the general location of Bluetooth devices to be clandestinely determined.
The device address, the CAC, or the DAC can be used to identify a particular
device. Also, the user-friendly name of a device can be used to track the location
of a device. In all, five different types of location tracking attacks have been
identified. We describe these in the following sections.

Inquiry attack

In this scenario the attacker has distributed one or more Bluetooth devices
throughout a region in which he desires to locate Bluetooth users. This can be
done relatively inexpensively due to the low cost of Bluetooth devices. In addi-
tion, this network of devices can be used for a legitimate purpose, such as public
information kiosks, and thus may already exist. Furthermore, assume that the
potential victim of such an attack has left his device in discoverable mode. In
this case, the attacking device can simply interrogate the area using frequent
inquiry messages for devices and maintain a log of all the device addresses that
are discovered. This data can be correlated with time to provide an accurate
record of victim movements and associations (e.g., two people who are fre-
quently in the same area are probably associated in some way).

Traffic monitoring attack

The next attack we describe succeeds even if the victim device is not in discover-
able mode. In this case, the attacker simply monitors the communication
between two trusted devices belonging to the victim. These devices will commu-
nicate using a specific CAC. This CAC is computed from the device address of
the master device in the piconet. Therefore, an attacker can determine the mas-
ter devices in the area by simply monitoring all network traffic nearby. Even if
the CAC is not unique, the attacker can be quite confident that a particular
CAC belongs to one unique device due to the small probability of two devices
that have the same CAC within a small area. Similarly, the DAC can be used to
detect a particular device. Furthermore, the whole device address is sent in the
FHS packets of the devices, allowing an attacker to uniquely determine the
identity of a device. An attack based on monitoring DAC or FHS packets are
not as powerful as an attack based on monitoring CAC, since the FHS packet or
packets containing DAC are only used at connection establishment (or at the
master-slave switch), that is, events that are relatively rare.

Paging attack

This attack allows the attacker to determine if a given device with a
known BD_ADDR or DAC is present within range. The attack requires that the

Attacks, Strengths, and Weaknesses 115



victim’s device is connectable. The attacking device pages the target device,
waits for the ID packet to be returned, and then does not respond. If an ID is
returned, then the attacker knows that the victim device is present. The target
device, waiting for the response, will just time out and the incident will not be
reported to the application layer.

Frequency hopping attack

The frequency hopping scheme in Bluetooth is determined by a repeating hop-
ping sequence. The hopping scheme is calculated from different input parame-
ters, such as an address and the master clock. In the connection state, the LAP
and the four least significant bits in the UAP of the master device are used. In
the page state, the LAP/UAP of the paged unit is used. Thus, it is (at least theo-
retically) possible to get information of the LAP and four bits in the UAP based
on the observed hopping scheme.

User-friendly name attack

The Bluetooth LMP command, LMP name req, can be used to request the
user-friendly name anytime after a successful baseband paging procedure. The
name request LMP command can be used to mount a location tracking attack.
Such an attack is based on simply requesting the device user-friendly name. The
attack will succeed if the victim device is connectable and has a unique user-
friendly name defined.

7.7 Implementation flaws

No matter how good the security functionality a technology specifies, a bad or
broken implementation can jeopardize all of it. Of course, Bluetooth is no
exception to this rule. The technology is relatively young and quite complex. In
general, it is very difficult to test a product in every conceivable setting it may
end up being used in. The manufacturers tend to focus their efforts on
interoperability issues, which is understandable, as behavioral compliance tests
are mandated in the product qualification process. Unfortunately, only the basic
security functionality can be verified in the qualification process, such as pairing,
authentication, and setting up an encrypted link. Many other aspects that are
not mandated in the specification are not tested but do have an impact on the
overall security. These aspects include (but are not limited to): security policy
enforcement, key database management, user interaction, and memory
read/write protection. Clearly, there is a risk that something that seemed to
work in the laboratory is released as a product with a security-related flaw in its
implementation.

116 Bluetooth Security



Recently there have been claims of Bluetooth vulnerabilities [24] that can
be attributed to broken implementations. The claims have to some extent been
confirmed by some mobile phone manufacturers. Three types of attacks with
the following properties are mentioned.

Snarf attack. The attacker is able to set up a connection to an (unpaired) vic-
tim’s device without alerting the victim or requiring the victim’s consent. After
doing this, the attacker is able to access restricted portions of the victim’s per-
sonal data, such as the phone book, address book, and calendar.

Backdoor attack. First, the attacker needs to establish a trust relation with the
victim’s Bluetooth device. Then, the attacker “erases” the entry of the estab-
lished link from the victim’s list of paired devices without erasing it from the vic-
tim’s link key database. After this is accomplished, the attacker is able to access
the services and data of the target device as before, but without the owner’s
knowledge or consent.

Bluejacking. This is a term used for sending unsolicited messages to other Blue-
tooth devices [25]. It can be accomplished by sending a business card or phone
book entry in which the name field has been filled in with a message rather than
a real name. Upon reception, the name field is usually displayed together with
an appended question of whether the message should be saved to the contact list
or not. Clearly, while this could be annoying, it is not a real threat to security. It
is simply another name for the object push of the OBEX protocol, which is im-
plemented in most Bluetooth-enabled phones, laptops, and PDAs.

While the authenticity of the snarf and backdoor attacks are not fully con-
firmed, they do show the importance of implementing and enforcing the security
policies correctly. For instance, manufacturers of Bluetooth products must ensure
that a remote device is not mistakenly granted access to all services on the local
device just because a particular service is opened for it. One way to handle this is
by implementing a security manager along the lines discussed in Chapter 6.

References

[1] NIST, “Wireless Network Security 801.11, Bluetooth and Hand Held Devices,” Techni-
cal Report Special Publications 800-48, U.S. Department of Commerce/NIST, National
Technical Information Service, Springfield, VA, April 2002.

[2] Anderson, R., “Searching for the Optimum Correlation Attack,” in B. Preneel, (ed.), Fast
Software Encryption FSE’94, No. 1008 in LNCS, 1995, pp. 137–143.

Attacks, Strengths, and Weaknesses 117



[3] Meier, W., and O. Staffelbach, “Fast Correlation Attacks on Certain Stream Ciphers,” J.
Cryptology, Vol. 1, 1989, pp. 159–176. (Appeared also in Proc. Eurocrypt 88, No. 330
LNCS, 1988).

[4] Meier, W., and O. Staffelbach, “Correlation Properties of Combiners with Memory in
Stream Ciphers,” J. Cryptology, Vol. 5, No. 1, 1992, pp. 67–86.

[5] Hermelin, M., and K. Nyberg, “Correlation Properties of the Bluetooth Summation
Combiner,” in J. Song, ed., Proc. ICISC’99, 1999 International Conf. Information Security
and Cryptography, No. 1787 in LNCS, Berlin: Springer-Verlag, December 2000,
pp. 17–29.

[6] Massey, J. L., and R. A. Rueppel, “Method of, and Apparatus for, Transforming a Digital
Sequence into an Encoded Form,” U.S. Patent No. 4,797,922, 1989.

[7] Fluhrer, S., and S. Lucks, “Analysis of the E0 Cryptosystem,” in A. M. Youssef S. Vaude-
nay, ed., Proc. Selected Areas in Cryptography 01, No. 2259 in LNCS, Berlin: Springer-
Verlag, 2001, pp. 38–48.

[8] Krause, M., “Bdd Based Cryptanalysis of Keystream Generators,” Proc. Eurocrypt 02, No.
2332 in LNCS, Berlin: Springer-Verlag, 2002, pp. 222–237.

[9] Bagini, V., J. Golic, and G. Morgari, “Linear Cryptanalysis of Bluetooth Stream Cipher,”
in L. R. Knudsen, (ed.), Proc. Eurocrypt 02, No. 2332 in LNCS, Berlin: Springer-Verlag,
2002, pp. 238–255.

[10] Ekdahl, P., and T. Johansson, “Some Results on Correlations in the Bluetooth Stream
Cipher,” Proc. 10th Joint Conf. Communication and Coding, Austria, 2000, p. 16.

[11] Ekdahl, P., “On LFSR Based Stream Ciphers,” Ph.D. thesis, Lund University, November
2003.

[12] Armknecht, F., A Linearization Attack on the Bluetooth Key Stream Generator, available
at http://eprint.iacr.org/2002/191, accessed November 2002.

[13] Armknecht, F., and M. Krause, “Algebraic Attacks on Combiners with Memory,” Proc.
Crypto 03, No. 2729 in LNCS, Berlin: Springer-Verlag, 2003, pp. 162–176.

[14] Courtois, N., “Fast Algebraic Attacks on Stream Ciphers with Linear Feedback,” Proc.
Crypto 03, No. 2729 in LNCS, Berlin: Springer-Verlag, 2003, pp. 176–194.

[15] Courtois, N., et al., “Efficient Algorithms for Solving Overdefined Systems of Multivariate
Polynomial Equations,” Proc. Eurocrypt 00, No. 1807 in LNCS, Berlin: Springer-Verlag,
2000, pp. 392–407.

[16] Coppersmith, D., and S. Winograd, “Matrix Multiplication via Arithmetic Progressions,”
J. Symbolic Computation, Vol. 9, 1990, pp. 251–280.

[17] Courtois, N., “Higher Order Correlation Attacks, XL Algorithm and Crypt Analysis of
Toyocrypt,” in P. J. Lee and C. H. Lim, (eds.), Proc. Information Security and Cryptology,
ICISC 2002, No. 2587 in LNCS, Berlin: Springer-Verlag, 2003, pp. 182–199.

[18] Bluetooth Special Interest Group, Specification of the Bluetooth System, Version 1.2, Core
System Package, November 2003.

118 Bluetooth Security



[19] Jakobsson, M., and S. Wetzel, “Security Weaknesses in Bluetooth,” in D. Naccache, ed.,
Proc. RSA Conf. 2001, No. 2020 in LNCS, Berlin: Springer-Verlag.

[20] Vainio, J., “Bluetooth Security,” available at http://www.niksula.cs.hut.fi/~jiitv/blue-
sec.html, accessed May 2000.

[21] Kügler, D., “Man in the Middle Attacks on Bluetooth, Revised Papers,” in R. N. Wright,
(ed.), Financial Cryptography, 7th International Con., FC 2003, No. 2742 in LNCS, Ber-
lin: Springer-Verlag, 2003, pp. 149–61.

[22] Karygiannis, T., and L. Owens, “Wireless Network Security, 802.11, Bluetooth and
Handheld Devices,” NIST Special Publication 800-48, November 2002.

[23] Gehrmann, C., ed., “Bluetooth Security White Paper,” White Paper Revision 1.0, Blue-
tooth SIG, April 2002.

[24] Laurie, A., and B. Laurie, “Serious Flaws in Bluetooth Security Lead to Disclosure of Per-
sonal Data,” available at http://www.bluestumbler.org/, accessed November 2003.

[25] bluejackQ with a Q, available at http://www.bluejackQ.com/whatis.htm, accessed
November 2003.

Attacks, Strengths, and Weaknesses 119



.



Part II:
Bluetooth Security Enhancements



.



8
Providing Anonymity

In Chapter 7 we described different types of location tracking attacks against
Bluetooth units. These threats show that some important security features are
lacking in the Bluetooth standard. This has motivated the development of a new
Bluetooth mode of operation that provides protection against the location pri-
vacy threat. We call the new mode a Bluetooth anonymity mode. This mode of
operation is currently not part of the Bluetooth standard. Special care has been
taken to make this mode of operation have good interoperability with devices
not supporting the anonymity mode. The anonymity might be included in a
future release of the Bluetooth specification.

As previously explained, location tracking can be based on the BD_ADDR,
channel access code, or the device access code. The best way to protect against
location tracking would be to regularly change the device address. This is also
the basic idea in the anonymity mode. However, normal Bluetooth functional-
ity must also be provided if the device address is changed. In this chapter we
describe how this can be dealt with.

8.1 Overview of the anonymity mode

The regular address changes necessary for anonymity result in new address man-
agement and new addresses being introduced. Three address types are suggested:
fixed address, active address, and alias address. The active address is randomly
selected, and anonymous devices base the Bluetooth access codes on this
address. Recall that the access code can be used to track the location of a device.
Rules for how and when the active address is updated are given. It is actually also
the case that the different address behavior for anonymous devices implies that

123



inquiry and paging must be handled a little bit differently than for nonanony-
mous devices. This is primarily handled by using three different connectable
modes: connectable mode, private connectable mode, and general connectable mode.
The secure identification in anonymity mode is built on the usage of the alias
addresses and the so-called alias authentication. Also, the pairing has to be
slightly changed in order to allow anonymous devices to securely page and iden-
tify each other. All these new features mean that some additional control signal-
ing is needed and that some new LMP commands need to be defined.

8.2 Address usage

In this section, the addresses and address usage for devices supporting the
anonymous mode are described. In contrast to ordinary Bluetooth, fixed
addresses cannot be used for all purposes. Therefore, new addresses are intro-
duced and the device address is used in a little bit different way than in the Blue-
tooth 1.2 specification. This also means that a slightly new and different
terminology is used. The anonymity mode makes use of three different kinds of
device addresses:

1. Fixed device address, BD_ADDR_fixed;

2. Active device address, BD_ADDR;

3. Alias addresses, BD_ADDR_alias.

In the following sections, the different addresses and how they are used in
the anonymity mode are discussed.

8.2.1 The fixed device address, BD_ADDR_fixed

Each Bluetooth transceiver is allocated a unique 48-bit Bluetooth device address
(BD_ADDR_fixed)1 from the manufacturer. The BD_ADDR_fixed consists of
three parts: LAP, UAP, and NAP. Figure 7.3 in Chapter 7 shows the address
field sizes and the format. The fixed address is derived from the IEEE 802 stan-
dard [1]. The LAP and UAP form the significant part of the BD_ADDR.

The fixed address is used to allow a device to directly page another device
that it has previously been paired with. Without a fixed address that can be used
for this purpose, the devices would always need to repeat the inquiry procedure.
Obviously, this would result in very slow connection setup. However, in order
not to jeopardize the anonymity, these addresses shall only be used between
trusted devices (see Section 8.6).

124 Bluetooth Security

1. This address corresponds to the ordinary Bluetooth device address.



8.2.2 The active device address, BD_ADDR

The BD_ADDR is the active device address, and anonymous devices regularly
update this address (more detail is given below). Devices not supporting the
anonymity mode or devices in nonanonymous mode only use one address,
BD_ADDR. Actually, for such devices the BD_ADDR always equals the
BD_ADDR_fixed (see previous section).

Anonymous devices use the active address as a replacement for an ordinary
fixed address for connection establishment and communication. Since the
address is changed all the time, it will not be possible to track a device based on
this address.

The BD_ADDR has exactly the same format as BD_ADDR_fixed and con-
sists of three parts: LAP, UAP, and NAP. The UAP and NAP parts are fixed and
shall be chosen to a nondevice-specific value. In particular, they can be chosen
to a value that does not overlap with any company assigned IEEE MAC address
space [1]. This is accomplished, for example, by using the locally assigned IEEE
MAC address space [1]. The LAP part of the BD_ADDR needs to be chosen
uniformly and at random. It can take any value except the 64 reserved LAP val-
ues for general and dedicated inquiry, that is, values from 0x9E8B00 to
0x9E8B33.

In order to combat the location tracking threat, anonymous devices regu-
larly update the active LAP. The rules for when the address shall be updated are
given below. A LAP value is generated by selecting uniformly at random any
value between 0x000000 and 0xFFFFFF. If the value falls within the
reserved LAP range, that is, values from 0x9E8B00 to 0x9E8B33, a new
random LAP value is generated. This procedure is repeated until a value outside
the range is obtained.

The LAP updating is determined by two time parameters. The parameters
are:

1. Update period, TADDR update;

2. Time period reserved for inquiry, TADDR inquiry period.

The update period tells how often the device shall attempt to update the
active address. The parameter TADDR inquiry period tells how long a time a device must
wait before it is allowed to update the active address after it has sent the current
address in an inquiry response message.

The basic principle is that a device shall update the address every TADDR

update seconds. However, if this updating occasion happens to be when the device
has just sent the current address in an inquiry response, any unit trying to con-
nect to the anonymous device would fail with the connection request. For this

Providing Anonymity 125



reason the updating waiting period defined by the second parameter TADDR inquiry

period has been introduced. In addition, there shall be no update if the device is
acting as a master device and has connections with devices not supporting the
anonymous node. Otherwise, the CAC will change and the legacy devices would
immediately lose the connection when the CAC is changed. These facts provide
the motivation for the updating rules used for updating the active address.

The detailed updating rules are shown in the flow diagram in Figure 8.1.
The updating flow is as follows:

1. A new LAP is always generated at power-up.

2. Two time variables are set, t1 = 0 and t2 = TADDR inquiry period + 1. t1 meas-
ures the general updating intervals and t2 measures the time from the
last use of the “old address” in an inquiry response. (At the start, t2 is
set to a value greater than the defined updating waiting period after
inquiry response, TADDR inquiry period.)

3. The BD_ADDR is updated and the first timer t1 is started.

4. A loop is created where the timer t1 is continuously checked. If the
timer exceeds the updating period, TADDR update, the looping process
stops. If an inquiry response message is returned during the execution
of the loop, the second timer t2 is set to zero and started.

5. If t2 is less than or equal to TADDR inquiry period, return to the loop in step 4.

6. If the device has no existing connections, a new LAP is generated, fol-
lowed by a jump to step 2.

7. A new loop is entered. The loop runs as long as the device has any con-
nection with a device not supporting the anonymity mode or any
parked device, or if the device is parked itself. If there are no connec-
tions when the loops ends, a new LAP is generated, followed by a jump
back to step 2.

8. A new LAP is generated. If the device is not a master in any piconet,
the new (not yet updated) BD_ADDR is sent to all connected devices
using the new LMP command, LMP active address (see
Section 8.7). Then jump to step 2.

9. The switch instant time, Ts is chosen. It should be chosen such that
the master will be able to inform all connected slaves of the new
BD_ADDR before the instant is reached. Next the master sends the
new BD_ADDR (not yet updated) and the switch instant Ts to all
slaves using the new LMP command LMP active address (see
Section 8.7). When the instant is reached, jump back to step 2.

126 Bluetooth Security



Providing Anonymity 127

Power up

Generate
new LAP

t 0
t T

1

2 ADDR inquiry period +1

=
=

Update BD_ADDR,
Start timer t1

t T ?1 ADDR updates> t T ?2 ADDR updates>

Inquiry response?

Yes Yes

Yes
Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

t 0
Start timer t

2

2

=

Connection with
unit not supporting the

anonymity mode?

Connection with
parked unit or
parked itself?

Any existing
connections?

Generate
new LAP

Generate
new LAP

Master unit
in any piconet?

Set address switch
instant time, Ts

Send new BD_ADDR
and T (only to slaves)s

Send new BD_ADDR
to connected units

Switch instant
reached?

Figure 8.1 The BD_ADDR updating rules.



8.2.3 Alias addresses, BD_ADDR_alias

Since it is not possible to identify other anonymous devices based on their
BD_ADDR when they are operating in the anonymous mode, anonymous
devices must make use of an alternative device identifier in the Bluetooth
authentication procedure. Also, the authentication procedure must be slightly
modified. The new procedure, alias authentication, will be described in more
detail in Section 8.5. The alias authentication is based on the usage of alias
addresses, BD_ADDR_alias. An alias address is used purely for authentication
purposes. For simplicity, the BD_ADDR_alias can be chosen to 48 bits like any
ordinary device address. All the bits should be chosen uniformly, independently,
and at random. Hence, the address field cannot be divided into any meaningful
subfields. The support and use of alias addresses and authentication are neces-
sary for making authentication in the anonymity mode work.

8.3 Modes of operation

In order to distinguish devices operating in the anonymous mode from devices
that are not anonymous, we define two different modes of operation:

1. Nonanonymous;

2. Anonymous.

A Bluetooth device can only operate in one of these modes at a time. Both
modes are in principle fully backward compatible with devices not supporting
these new modes. The latter, of course, with the exception that the new features
introduced in the anonymous mode cannot be utilized with standard devices.
One can say that for anonymous devices, Bluetooth devices not supporting the
anonymous mode will look like devices that always operate in nonanonymous
mode. Devices in anonymous mode shall regularly update the active device
address, BD_ADDR (see Section 8.2). In addition, devices supporting the
anonymous mode need to support alias authentication (see Section 8.5).

When a device is in nonanonymous mode, it uses the fixed device address
in all its communications. Devices that want to prevent the location tracking
attacks based on the BD_ADDR, CAC, DAC, or hopping sequence choose to
operate in the anonymous mode. Location tracking is in the anonymous mode
prevented by regularly updating the active device address, as it is the address that
is visible on the wireless link.

128 Bluetooth Security



8.4 Inquiry and paging

With respect to inquiry, there is no difference between anonymous and
nonanonymous devices. A device can be either in discoverable or nondiscover-
able mode. Devices in discoverable mode return their active device address (see
Section 8.2) in the inquiry response message. This implies that anonymous
devices return a random address, while nonanonymous devices return the fixed
device address.

With respect to paging, a Bluetooth device can be either in nonconnect-
able mode or in connectable mode. We have slightly changed the latter mode of
operation for anonymous units and split it into three new modes:

1. Connectable mode;

2. Private connectable mode;

3. General connectable mode.

We discuss the rationale behind these three modes in more detail below.
Devices in nonconnectable mode never perform any page scans. Hence, it is not
possible to initiate any connections with a nonconnectable device.

The page procedure consists of a number of steps. The procedure starts
with the device trying to find the address of the device it wants to connect to. A
device in anonymous mode can be paged based on two possible addresses, the
active device address and the fixed device address. Since an anonymous device in
discoverable mode returns the active address in the inquiry response message,
the paging device can use the inquiry procedure to find the active address of dis-
coverable devices nearby. If the devices have performed a private pairing (see
Section 8.6), the paging device knows the fixed address of the other device. In
this case, paging using the fixed device address of the other device is possible.
The address of the paged device is used to determine the page hopping
sequence. A device can choose whether it shall be reachable on the active
address, the fixed address, or both the fixed and active addresses. This corre-
sponds to the different connectable modes that we have defined for the anonym-
ity mode.

8.4.1 Connectable mode

When a standard Bluetooth device is in connectable mode, it periodically enters
the page scan state. The device makes page scans using the ordinary fixed device
address. Anonymous devices operating in connectable mode use the same prin-
ciples but make page scans on the active device address, BD_ADDR. The device
can use different types of page scanning schemes. The connection setup time

Providing Anonymity 129



depends on the scanning interval and is a trade-off between power consump-
tion, available bandwidth, and setup delay. Scan interval, scan window, and
interlaced scan can be used to achieve the desired trade-off (see [2] for details).
Three different page scan modes are defined in the Bluetooth specification, and
they are called R0, R1, and R2, respectively. In R0, continuous scanning is used,
while R1 uses a scan interval of at the most 1.28 sec and R2 a maximum of 2.56
sec. A device in connectable mode can use any of the available scan modes.

The connectable mode was introduced to allow any device to connect to
an anonymous device. Typically, the active address is obtained through the
inquiry procedure. Once the active address is known and the anonymous device
is in connectable mode, it will be possible to connect to the device using a page
on the active address.

8.4.2 Private connectable mode

The private connectable mode needs to be introduced to allow a device to
directly page another device. By direct we mean that the device does not need to
first go through the inquiry procedure. The inquiry procedure can take a rather
long time. Furthermore, a device would like to connect to another device with-
out being forced to answer responses from unknown devices. Hence, when a
Bluetooth device is in private connectable mode, it makes page scans using the
Bluetooth fixed device address, BD_ADDR_fixed. Any of the three different
page scanning modes, R0, R1, or R2 (see Section 8.4.1), can be used.

The private connectable mode allows direct establishment of connections
between trusted devices. Ideally a device only shares the value of the fixed
address with trusted devices. This means that this connection mode should only
be used by a device when it expects connection requests from trusted devices.
Thus, even if the fixed address is not a secret parameter in a strict sense, a device
that cares about location privacy should be careful about spreading the fixed
address. If the fixed address is compromised, there is a small risk that the device
could be tracked using the paging attack described in Chapter 7. This threat can
be avoided by never entering the nonanonymous or private connectable mode.
On the other hand, that makes it impossible to set up direct connections
between trusted devices.

Hence, to reduce this threat, a device shall always expect an alias authenti-
cation request (see Section 8.5) from the master after a response to a paging on
the fixed address. If no alias is received or the setup fails before the connection
state has been reached, we recommend a connection failure counter to be incre-
mented. If the failure counter exceeds a threshold value, the host controller can
then send a warning to the host. It is then up to the host to take proper action
and perhaps warn the user that someone might try to track the movement using
the paging attack.

130 Bluetooth Security



8.4.3 General connectable mode

When a Bluetooth device is in general connectable mode, it makes page scans on
both the Bluetooth active device address, BD_ADDR, and the fixed device
address, BD_ADDR-fixed. This makes it possible for a device to accept Blue-
tooth connections from both trusted known devices and unknown devices
(through the inquiry procedure). A device in general connectable mode makes
two consecutive page scans at each scanning occasion. Only the scanning modes
R1 or R2 can be used in general connectable mode and not R0. The first scan is
based on the page hopping sequence derived from the BD_ADDR and the sec-
ond scan is based on the page hopping sequence derived from the BD_ADDR-
fixed. Since R0 is not supported, fast connection setup cannot be achieved by
using continuous scanning. When very fast connection setups are required, it is
possible to use two consecutive R1 page scans with interlaced scan and very
short page scan interval. The paging attack (see Section 7.6.2) applies also to the
general connectable mode. To reduce the risk for this attack, a device shall
always expect an alias authentication request (see Section 8.5) from the master
after making a response to a paging on the fixed address. If no alias is received or
the setup fails before the connection state has been reached, a connection failure
counter can be incremented (see Section 8.4.2).

8.5 Alias authentication

As we have discussed, anonymous devices regularly update the active device
address. Hence, the active address cannot be used to identify devices. This is not
strange, since the whole idea with the anonymity mode is that it should not be
possible to identify devices. However, this causes problems when trusted devices
would like to authenticate each other and set up secure connections without
repeated pairing. We introduce alias authentication to solve this problem. Alias
authentication is a method to disconnect the link key dependency on the (physi-
cal) device address and an alias address is used as a link key identifier. To be
more precise, alias authentication allows authentication based on an alias
address instead of the active or fixed device address. By exchanging alias
addresses after a link is established but before authentication takes place, the
involved devices are able to find the link key associated with the established link.
This possibility is useful not only for anonymous devices but for other purposes
as well. One example is when a device attaches to a network access point and the
device wishes to authenticate to the network rather than the access point (see
Section 10.2).

Alias addresses are used to identify a security association between a pair of
devices (or a network and a device). Denote two devices in a pair by A and B. In

Providing Anonymity 131



the symmetric case, two alias addresses are used. One address, BD_ADDR_
aliasA, is used by device B to identify device A, and the other address,
BD_ADDR_aliasB, is used by device A to identify device B. Alias authentication
can also be used in an asymmetric fashion. In that case, only one of the devices
in the pair uses an alias address to authenticate the other device. The other
device in the pair is identified (for mutual authentication) using the fixed
address. If both devices are operating in anonymous mode, symmetric alias
authentication will apply and the devices exchange two alias addresses, one for
each device.

For the anonymity mode, we propose a special pairing procedure. During
this pairing procedure, the devices exchange alias and fixed addresses (see
Section 8.6). A device supporting alias authentication needs to maintain an alias
database (part of the key and device database). The alias database maps alias
addresses to link keys. Device A stores BD_ADDR_aliasA together with the link
key, the alias address used to identify device B (BD_ADDR_aliasB), and the fixed
address of device B (BD_ADDR-fixedB) in its database. (The fixed address is sent
to the device over an encrypted link at the pairing occasion. See Section 8.6.)
Similarly, device B stores BD_ADDR_aliasB together with the link key, the alias
address used to identify device A (BD_ADDR_aliasA), and the fixed address of
device A (BD_ADDR-fixedA) in its database.

We propose to use the same format as the BD_ADDR for the alias
addresses. The 48 bits shall be chosen uniformly at random by devices A and B
(see also Section 8.2.3). The alias addresses should be updated at each new con-
nection between A and B. If this is not the case, there is a risk that the device is
instead tracked based on the alias address. It is most convenient if the new alias
is generated by the “owner” of the alias address; that is, device A updates
BD_ADDR_aliasA and device B updates BD_ADDR_aliasB. The updated
address is only allowed to be sent over an encrypted channel.

In the case of an application that uses the same alias for several different
devices (e.g., see Section 10.2), the updated address might be the same as the
previous. However, this principle shall only be used when alias addresses are not
used for anonymity purposes.

At the next connection setup, the BD_ADDR_aliasA and BD_ADDR_
aliasB need to be sent before authentication (but after a check that the corre-
sponding device supports alias authentication) is performed. If this is not done,
it is impossible for the devices to identify the right link key to use. Device A
should send its BD_ADDR_aliasA and device B should respond with
BD_ADDR_aliasB (see also the example in Section 8.8). The alias addresses are
then used by the devices to find the correct link key. The link key is then used to
perform mutual authentication and calculate the encryption key that is needed
for the connection to be encrypted.

132 Bluetooth Security



8.6 Pairing

For anonymous devices, we would like the user to decide (at the pairing)
whether to disclose the fixed hardware address or not. Higher location privacy is
achieved if the fixed address is only disclosed to trusted devices. By this we mean
devices that can be trusted for a long time. This is not true for all pairings, as
trust relations might as well be quite temporary. Thus, at the pairing, anony-
mous devices need to distinguish between devices to which the fixed address
should be given and other devices. This is done by setting the device to pairable
or private pairable mode. In the first pairing mode, the fixed address is not dis-
closed, while it is in the second. This is different from standard Bluetooth units
that only support two pairing modes: nonpairable and pairable.

When a device supporting the anonymity mode is in pairable mode, it
accepts a request for pairing through the LMP command LMP in rand from
a remote device. It also issues this command if authentication is requested
and no link key for the corresponding device is known. The device does not
exchange alias addresses or private addresses with the remote device. The device
shall reject all fixed address exchange requests, since it will not give out its own
fixed address.

When a device is in private pairable mode, it also accepts requests for pair-
ing and initiates a pairing if authentication is requested and the link key is miss-
ing. The device uses the new LMP commands (see Section 8.7) to exchange alias
and private addresses.

The behavior of a device supporting the new private pairing modes needs
to be carefully specified in order to provide good interoperability. We do not
give any details here, but in the next section we list a set of LMP commands that
can be used by the devices to exchange private addresses and alias addresses and
in Section 8.8 we give a private pairing example.

8.7 Anonymity mode LMP commands

A set of new LMP commands are needed in order to inform connected devices
of an update of the active address and to exchange alias and private addresses. In
all, we have identified the need for three different anonymity mode LMP
commands:

• LMP active address;

• LMP alias address;

• LMP fixed address.

Providing Anonymity 133



In the following sections we describe how these command work in more
detail.

8.7.1 Address update, LMP active address

Devices in anonymity mode maintain an active address that is changed fre-
quently (see Section 8.2). The active address is used by the master to determine
the hopping sequence and CAC used by the piconet. Hence, it is important for
the master to inform the slaves of the new address whenever it is updated. Fur-
thermore, a slave must also inform the master of updates to the active address. If
this is not done, the master cannot directly reconnect (through paging) to the
slave if the connection for some reason is broken or if a master-slave switch is
required. The LMP command LMP active address can be used to
inform other devices of active address updates as we now will describe.

When the master device decides to make a change to its active address, it
informs all its slaves of the change. (See Section 8.2, where the updating rules
are described in detail.) When a new LAP has been generated, the master should
select a time instant that is far enough in the future that all slaves will have
received the message and returned the LMP accepted. The master then
needs to send the LMP active address PDU containing the new active
address and the switching time to all slaves. When a slave receives the LMP
active address PDU from the master, it shall return LMP accepted

and start a timer to expire at the given time instant. The LMP PDU exchange
sequence for a successful address exchange sequence is shown in Figure 8.2.
When the switch instant is reached, the master shall change the active address,
causing the hopping sequence, encryption, and CAC to change to values derived
from the master’s new active address.

Similarly, when a slave device decides to change its active address, it shall
generate a new active address and send it to the master in the LMP active

address PDU, as shown in Figure 8.2. No timing information is needed in
this case, and the change in active address can take place immediately.

8.7.2 Alias address exchange, LMP alias address

As we described in Section 8.5, a device in anonymous mode needs to be
authenticated based on a previously agreed-upon alias rather than on the

134 Bluetooth Security

Initiating
unit

Responding
unit

BD_ADDR, switch_instant

LMP accepted

LMP active address

Figure 8.2 LMP sequence when informing a slave or master of a new active address.



BD_ADDR. The PDU LMP alias address can be used for this purpose.
The PDU contains the alias address.

When a connection is being set up, either device may attempt to carry out
the authentication using an alias. The initiating LM sends an LMP alias

address PDU, which indicates an attempt to do authentication based on an
alias. If the receiving LM knows of the specified alias, it replies with its own cor-
responding alias; otherwise it replies with LMP not accepted. The LMP
PDU exchange sequence for a successful alias address exchange sequence is
shown in Figure 8.3.

Once an alias has been established, subsequent authentications use the link
key associated with the alias. When the connection is completed and encryption
has been enabled, the master updates the alias address by generating a new alias
address and sending it to the slave in an LMP alias address, which indi-
cates a refresh of the BD_ADDR_alias. A special flag in the PDU is needed in
order for the slave to be able to distinguish the alias address update case from the
alias authentication case. The slave then replies with an update of its own corre-
sponding alias according to the LM PDU exchange sequence in Figure 8.3. It is
important that the alias address establishment or update messages are only sent
on encrypted links; otherwise the anonymity might be compromised.

8.7.3 Fixed address exchange, LMP fixed address

As we described in Section 8.6, if one device is in the private pairing mode, the
device sends its BD_ADDR-fixed. This is done in order to allow the other device
to directly page (i.e., without going through the inquiry procedure) the device
when a connection shall be established. The PDU LMP fixed address is
used for this purpose. When a device receives this PDU and it is prepared to
allow private pairing, it replies with its own fixed address as shown in the LM
exchange sequence in Figure 8.4 (successful exchange sequence).

Providing Anonymity 135

Initiating
unit A

Responding
unit B

BD_ADDR_fixedA

BD_ADDR_fixedB

LMP fixed address

LMP fixed address

Figure 8.4 LMP sequence for successful exchange of fixed addresses.

Initiating
unit A

Responding
unit B

BD_ADDR_aliasA

BD_ADDR_aliasB

LMP alias address

LMP alias address

Figure 8.3 LMP sequence for successful exchange of alias addresses.



The exchange of fixed addresses is only allowed to occur once encryption
has been enabled for the connection to ensure that the anonymity is not com-
promised. Still, there is an anonymity risk with allowing usage of fixed addresses
at all. However, this is the compromise that must be taken in order to have a rea-
sonable trade-off between anonymity and user convenience requirements.

8.8 Pairing example

Finally, we give an example of how the presented anonymity modes work when
two devices not previously known to each other connect and are paired with
each other. We assume that the users of the devices have put their devices in
private pairable mode and hence that the devices trust each other and will, in
addition to creating a shared link key, exchange alias and private addresses.
The main steps related to the connection and pairing procedure are illustrated
in Figure 8.5. Below, we explain the procedure step by step.

1. The host that is hosting device A, sets the device in anonymous mode
using a dedicated command.

2. Host A requires authentication and encryption for any devices that the
host connects to or is connected with.

3. Device A searches for a new device using the Bluetooth inquiry proce-
dure. A new Bluetooth device, here called device B, is discovered.
Device A receives the active BD_ADDR_B from device B.

4. Device A pages device B using BD_ADDR_B.

5. During the connection setup, device A requires authentication. Since
no link key is available, a manual pairing where the users enter a pass-
key must be performed.

6. Host A requests a pass-key from the user. The user enters the pass-key,
which is transferred to the link manager through the HCI.

7. The link manager of device A sends a random number to the link man-
ager of device B. The random number is used to calculate an initializa-
tion key.

8. The link manager of device B requests a pass-key from the user
through the HCI. The user enters the pass-key, which is returned to
the link manager.

9. The link manager of device B calculates the initialization key and
return an accept LM PDU to device A.

136 Bluetooth Security



10. Device A generates a random number that is used to calculate a combi-
nation key. The random number is sent encrypted with the initializa-
tion key to device B.

Providing Anonymity 137

Enable the
anonymous mode

1

2

3

4

5

7

9

8

10

Host A HC/LM-A
master

HC/LM-B
slave

Host B

Enable
authentication
and encryption

Inquiry

Unit pages on BD_ADDR_B and authentication is requiredA

No link key available
=> pass-key is required

Pass-key request
and returned LMP in rand

(rand_nr) Pass-key
requested
and returnedLMP accepted

(opcode)

LMP comb key
(rand nr)

LMP_comb_key
(rand_nr)

Authentication and switching on encryption

11

13 14 15

16

17
19

20

18

Request for
exchange of fixed
addresses

LMP fixed address
(BD_ADDR_FIXED_A)

LMP fixed address
(BD_ADDR_FIXED_B)

LMP_alias_address
(BD_ADDR_alias)

LMP_alias_address
(BD_ADDR_alias)

Allow private
pairing?

Request alias
address

Request for
exchange of alias
addresses

12

6

Figure 8.5 Message sequence for pairing with a trusted device.



11. Device B receives the random number, generates its own random
number, which is returned to device A encrypted with the initializa-
tion key. Both devices decrypt the received random values and calcu-
late the secret combination key.

12. A mutual authentication is performed and the devices switch to
encrypted mode.

13. Since device A is in private pairable mode, the host requests that a fixed
address shall be exchanged.

14. The link manager of device A sends the fixed address, BD_ADDR-
fixed_A, to device B.

15. The link manager of device B receives the fixed address from A. Next,
it asks the host if exchange of private information is allowed or not;
that is, the host will tell whether or not device A is a trusted device that
shall receive the fixed address. The host is in private pairable mode.
Hence, it accepts fixed addresses to be exchanged.

16. The link manager of device B sends the fixed address, BD_ADDR-
fixed_B, to device B.

17. Next, the host of device A requests alias addresses to be exchanged and
generates an alias that should be used when device B identifies device
A.

18. The link manager of device A sends the alias address,
BD_ADDR_alias_A, to device B.

19. Device B receives the alias address. The link manager sends the
received alias address to the host through the HCI and asks the host
for an alias to return. Either the host chooses to use the same alias
(symmetric alias) or a different alias (asymmetric alias) is used.

20. The link manager of device B returns the alias address for device B,
BD_ADDR_alias_B, to device A.

References

[1] IEEE, IEEE Standard for Local and Metropolitan Area Networks: Overview and Architecture,
IEEE Std. 802-2001, 2002.

[2] Bluetooth Special Interest Group, Specification of the Bluetooth System, Version 1.2, Core
System Package, November 2003.

138 Bluetooth Security



9
Key Management Extensions

The Bluetooth specification contains the basic tools needed for the creation of
security associations and management of security relations. The main key man-
agement features are the pairing procedure and update of link keys. The pairing
principle with manual assisted key agreement is most suitable for ad hoc crea-
tion of security associations. However, in Chapter 7 it was shown that the pair-
ing mechanism is sensitive to off-line and on-line attacks. Hence, there is also a
need for alternative, improved pairing solutions. In this chapter, a few of these
highly secure pairing procedures are discussed.

Even if the existing pairing principle is nice for ad hoc creation of secure
connections, it gives no flexibility in terms of key agreement. It might very well
be the case that the user would like to avoid the pairing procedure and instead
use preconfigured security associations based on secret or public keys. Then,
alternative, widely used standardized key exchange options working on higher
layers in the communication stack are the preferred solution. Once a key is
agreed upon, the user can choose to use the Bluetooth link layer authentication
and encryption or use encryption and/or authentication on higher layers as well.
We discuss different key exchange options for higher layers and how they can be
combined with the Bluetooth security mechanisms.

Another issue regarding key management in Bluetooth is that devices must
always be manually paired before they can communicate securely. In total, one
must do as many pairings as there are pairs of devices that are to communicate.
Clearly, it can be quite tedious work to perform all these pairings if several
devices are involved, which is likely to be the case, for instance, in a domestic
domain. This can be avoided by allowing autonomous trust delegation between
Bluetooth units. By autonomous trust delegation we mean that security

139



associations are allowed to automatically propagate among trusted devices with-
out any user involvement. Autonomous trust delegation can be achieved using
both symmetric and public key techniques, as we will show.

9.1 Improved pairing

The current pairing mechanism has been criticized in several research papers
during the last couple of years [1, 2]. Human users tend to use rather short
pass-keys (around four digits), and when short pass-keys are used, the pairing
mechanism is sensitive to passive eavesdropping or a man-in-the-middle attack.
This problem means that there is a need for an alternative solution. In this sec-
tion we discuss such solutions based on the Diffie-Hellman (DH) [3] key agree-
ment (or exchange). We will describe the details of the DH key exchange in
Section 9.1.2. In contrast to the Bluetooth 1.2 pairing mechanism, DH key
agreement has the nice property that it is not sensitive to off-line attacks.1 How-
ever, DH key exchange is sensitive to active man-in-the-middle attacks. Conse-
quently, there are a lot of requirements that need to be considered when
designing an alternative Bluetooth pairing mechanism. We start this section by
discussing requirements of a secure pairing scheme. Next, we present an
improved pairing protocol. Finally, the implementation aspects and complexity
of the suggested protocol are discussed.

9.1.1 Requirements on an improved pairing protocol

When short pass-keys are used, the current Bluetooth pairing mechanism is vul-
nerable to both on-line and off-line attacks, as was discussed in Chapter 7. This
causes problems for Bluetooth applications with high security requirements.
Since manually entering a long pass-key value is not considered to be an accept-
able solution, a requirement for an alternative pairing mechanism is that it gives
a high security level with as little user involvement as possible. Preferably, this
should be achieved with a pairing mechanism similar to the existing one, but
secure also for pass-keys of moderate length. The protocol must be secure
against the most powerful attack scenario, which implies protection against an
active man-in-the-middle attack. Hence, in the DH case there must be some
authentication of the key exchange messages.

When one of the devices involved in a pairing does not have any advanced
output or input interface (for example, a headset), the only option is to use a
fixed pass-key. Then, however, the off-line attack on the Bluetooth 1.2 pairing
mechanism is a real threat. This is particularly true when the device without

140 Bluetooth Security

1. This is true also for other public key techniques, such as RSA [4].



sufficient user interface is a stationary device (like an access point or the like),
which is an easy target for an attack. Consequently, another requirement for an
improved pairing scheme is that it shall also provide sufficient security when a
fixed pass-keys are used. It is good security practice to change a fixed pass-key
regularly. If the device with a fixed pass-key does not have any proper user inter-
face, this task can be accomplished using some form of a configuration manage-
ment application that communicates with the limited device over a secure
interface. One possibility for this is to interface using a secure Bluetooth
connection.

It must be possible to implement a solution with low cost. This means that
a third requirement of an improved pairing protocol is that it must not be too
complex. At the end of this section, we discuss implementation complexity
aspects of the suggested improved pairing protocols.

To summarize, the requirements of the pairing protocol are that it have
the ability to use short pass-keys and fixed pass-keys, and that it have acceptable
complexity demands on the implementation requirements.

9.1.2 Improved pairing protocol

The Bluetooth pairing procedure is actually a user-assisted method to create a
shared secret between two units. User assistance has the advantage that it is pos-
sible to have some level of confidence that the key is exchanged with the
expected device and not with a malicious one. What one tries to accomplish
with the user interaction is actually the authentication of a key exchange.
Henceforth, when alternative, improved pairing proposals are discussed, a user-
assisted method is referred to as manual authentication (MANA). Manual
authentication methods were mentioned by Satjano and Anderson in [5], but
they do not consider such methods to be especially user friendly. In particular,
they discussed the usage of DH-based key exchange and computed a hash value
of the results in both devices. The hash values can then be displayed to the users,
who then compare them. There also exist alternative solutions, such as that pro-
posed by Maher [6]. This approach uses short (around 4 to 6 hexadecimal dig-
its) check values and a special implementation of the DH key exchange
protocol, where the participants split their DH tokens in two, approximately
equally long halves, and fully transmit the first half before transmitting the sec-
ond half. However, users often tend to accept everything they see on a display,
so such methods do not give especially high security. Furthermore, not all Blue-
tooth devices do actually have a display. Hence, some other MANA solution is
desirable.

We will describe a MAC and a DH-based pairing protocol. This protocol
was first presented in the European Union (EU) project SHAMAN [7]. The
SHAMAN project did a quite extensive study of different security initialization

Key Management Extensions 141



procedures for short-range wireless communication, and the results directly
apply to Bluetooth. Alternative DH-based protocols like the SHAKE protocol,
which was first proposed at the Open Group conference in Amsterdam 2001
[8], also exist. However, we regard the SHAMAN proposal as the cur-
rently available technique that most completely covers the requirements listed in
Section 9.1.1.

MAC-based protocol

First, we recall the DH key exchange protocol [9]. The DH key agreement pro-
tocol allows two arbitrary entities to agree on a secret key using any available
communication channel. The advantage of the protocol is that no information
of the other party must be available before the protocol exchange takes place.
Several different variants of DH key agreement exist [9]. Here we describe the
original using a multiplicative group of integers denoted by Zp [10]. In the pro-
tocol description below, we use A and B, respectively, to denote the two entities
involved in the key agreement:

1. An appropriate prime number p and generator g of Zp (where 2 ≤ g ≤ p
− 2) are selected and published.

2. A chooses a random secret a, 1 ≤ a ≤ p −2, and sends ga mod p to B.

3. B chooses a random secret b, 1 ≤ b ≤ p − 2, and sends gb mod p to A.

4. A and B calculate the common shared secret, K = (gb)a mod p = (ga)b

mod p.

Now, we will describe how to use manual interaction to make sure that the
DH public values, ga mod p and gb mod p, come from a legitimate source. The
protocol is divided into two separate parts, stage I and stage II. The first stage
can be done in advance, while the second stage is executed when the actual key
exchange takes place. Manual interaction is only necessary during stage I. The
latter is an advantage of the suggested protocol. In principle, one of the units
creates a set of secret parameters at stage I to use in the key agreement protocol.
Some of these are needed by the other unit at stage II, so they must be trans-
ferred to it in some way. These parameters constitute a secret pass-key.

This is a one-way transaction, which does have some implications. First, it
means that it is possible to do the transaction off-line. For instance, the neces-
sary parameters could be sent by mail when one is registering for a particular
service for which Bluetooth access points are used. Naturally, there is nothing
that prevents the two steps from being performed in sequence directly after each
other, and this will probably be the typical usage. Secondly, the source must
have a way of presenting the parameters to the world, while the destination must
have a way of entering the parameters. These requirements are most likely

142 Bluetooth Security



translated into a display and keyboard, respectively. Thus, this method can be
utilized for pairing with Bluetooth equipment having a display, but without any
proper input device (e.g., access points, headsets).

The protocol is not completely symmetric and the units involved in the
pairing need to take either the role of device A or device B. The demand on the
user interface for the two roles is slightly different. Device A must at least have a
user interface to present a secret pass-key, and device B must at least have a user
interface to input the corresponding pass-key. Which role to take can be negoti-
ated during the pairing.

Next, the MAC-based pairing protocol will be described. For the moment,
we do not define the MAC function, but it is assumed that devices A and B
share one. A proposal and detailed analysis of the properties of the MAC func-
tion can be found in Section 9.1.2. Figure 9.1 illustrates the different protocol
steps that are outlined below. In this description, the received variables and val-
ues derived directly from these are marked with a prime (′) in order to distin-
guish them from values generated from locally stored variables.

Key Management Extensions 143

Device A

Device A

Device B

Device B

1) Generate:
2) (ID)

Calculate:
MAC ( )

a, g , l
d g

t
l,d

a

a=
=

∪
3) [Human channel] (ID)l, t,

Memory or network
server database

9) Calculate: ( )
Decrypt ’ =

( ( ))
Compare: ’ and

K’ g
l

D E l
l l

= b a

K K

’

2) (ID) 2) ,a l

Memory

4) (ID) 4) ,l t

5) Store: , (ID)l t,

5) Calculate:
MAC ( , ),

(ID)
Compare: and

6) Generate: ,
7) Calculate: ( )
8) Encrypt : ( )

t’
l d’ d’

g
t t’
b g
K g

l E l

=
=

=

a’

b

a’ b

∪

K

4) Store: , , (ID)a l

8) , ( )g E lb
K

3) ga

1) (ID)

Stage II

Stage I

Figure 9.1 The improved pairing protocol based on a MAC function. The parameter ID is
optional (marked with surrounding parentheses).



Stage I

1. Device A generates a and the corresponding DH key ga and a short
secret string in any suitable format, l.

2. Device A uses a MAC to calculate a message tag, t. The input to the
MAC is ga and possibly some other data (for example, an identifier,
ID). The key used to calculate the tag t is the secret string l.

3. Through direct human interaction, registration, or other means, the
secret value consisting of l and t together with an optional identifier,
ID, are given to device B.

4. Device A stores in internal memory or in a network database the values
a, l, and, if applicable, the ID.

5. Device B stores in internal memory or in a network database the val-
ues l, t, and, if applicable, the ID.

Stage II

1. Device B would like to make a secure connection to device A (or to
some access point acting on behalf of the network server that generated
the secret a). Device B initiates the key agreement with device A,
optionally by transmitting the ID.

2. Device A finds the secret key, a, and the corresponding secret MAC
key, l, to be used (using the received ID′, if available).

3. Device A calculates and sends ga to device B.

4. Device B finds the l and t (corresponding to the ID).

5. Device B calculates the MAC t ′ of the received g a ′ and possibly some
other data using the secret string l. If t = t ′, the public key g a ′ is
accepted.

6. Device B generates a second DH key b and the corresponding DH key gb.

7. Device B calculates the DH shared secret, K = (g a ′ )b.

8. Device B uses the key K to encrypt the string l using some arbitrary
secure encryption function and sends gb and the encrypted l to device A.

9. Device A receives g b ′ and the encrypted l string. Device A derives the
DH key ′K = ( g b ′ )

a and decrypts the l ′ using the key K ′. If l ′ matches
the stored string, l, then K ′ is accepted as a shared secret between A
and B.

Obviously, one can think of several different variants of this basic proto-
col. In the Bluetooth 1.2 specification, there is no built-in support for the

144 Bluetooth Security



MAC-based pairing protocol, but future versions may incorporate it. It is possi-
ble, though, to implement an improved pairing at higher layers and pass the
agreed-on link key to the Bluetooth through the HCI. We discuss different
implementation options in Section 9.1.3.

One advantage of the MAC-based pairing is that the authentication values
are not revealed in the authentication exchange, so it is possible to use them
more than once. This property is a significant improvement compared to the
Bluetooth 1.2 pairing method, where the fixed pass-key value is not secure. For
example, this can be utilized by a device that does not have any good input or
output interface (like an access point or a headset). Then a fixed pass-key value is
often the only option to use, and we would like to be able to use the same pass-
key for several consecutive pairings without compromising security. The main
drawback with the protocol is that it requires that public key operations be sup-
ported in both devices. Hence, it might not be suitable to use for all kinds of
Bluetooth devices.

MAC construction and security of the protocol

In order to achieve high security with the short MAC key, l, and tag value, t, the
MAC codes used in the enhanced protocol must be constructed in a certain way.
We consider the best choice to combine a secure one-way hash function like
SHA-1 [11] and an unconditionally secure message authentication code [12].
Such a code can be constructed in a practical way from codes with large mini-
mum distance, such as the Reed-Solomon codes (RS-codes) [13], as was shown
in [7] and which we briefly describe here.

In general, a MAC is a mapping from a message and key space to a tag
space. We use �, �, and �, respectively, to denote the message, key, and tag
space. Thus,

( )MAC: , ,� � �× → d l ta (9.1)

We recall that the input message, d, is ga and possibly some other data,
such as an identifier. The key, l, is the short random string to be given (possibly
through a display) to the user and should be entered into one device according
to the proposed pairing procedure.

RS-codes can be described using a polynomial representation. This repre-
sentation is most suitable for description and implementation of MACs based
on RS-codes, and we use it also for our description. The code is constructed
using an arbitrary finite field. A finite field is a finite set with two binary opera-
tors, + and ·, defined on the elements in the set. In addition, a certain set of axi-
oms must hold in order for the system (the set including the operators on the
elements) to be a finite field [14]. We use q to denote the size of the field (i.e.,

Key Management Extensions 145



the field contains q elements) and Fq to denote the corresponding field. One
example of a field of size p is the set of integers, {0, 1, . . ., p − 1}, where p is a
prime number and where we define addition, +, and multiplication, ·, opera-
tions as addition and multiplication modulo p.

Using the introduced terminology and notations, we are now able to
describe the MAC construction itself. We use h to denote an (arbitrary) one-way
hash function, such as SHA-1. First, the hash function is used to reduce the
original message, d, to a smaller message, m = h(d ), which is more suitable to
use as input to the RS-code-based MAC. Next, the hash is written as a q-ary
sequence of length n, that is, m = m0, m1, . . ., mn−1, mi ∈ Fq. Then the MAC for
the key l ∈ Fq and data d is given by

( )MAC l d m m l m l m ln
n, = + + + + −

−
0 1 2

2
1

1K (9.2)

The (l, t) key-tag pair of the MAC protocol can be seen as the equivalent
of the pass-key of ordinary Bluetooth pairing. The same user-operated pass-key
value can be used more than once, but must be kept secret as long as it is going
to be used for pairing. Any party in possession of a valid key l is able to imper-
sonate a device that uses a fixed pass-key. Hence, the fixed pass-key value should
be updated as often as possible to increase security. Since we use DH key agree-
ment as the basis for the key exchange protocol, a revealed pass-key will not
cause any danger to keys derived from previous pairings.

One DH public key can remain constant. This can be used in a network
access scenario to simplify key agreement with several different users. It is also
possible to allow both DH public values to remain constant, but then a fresh
random value should be included into the key derivation function. The DH
group parameters can be chosen in different ways. The straightforward choice is
to use a multiplicative group over the integers. But other choices such as DH
over an elliptic curve [14] is also possible.

The security of the protocol depends on the length of the pass-key, that is,
the MAC key and MAC tag values, the security of the DH protocol, the hash
function, and the MAC function. An analysis of the security is presented in [7].
A requirement is that the DH key agreement and the one-way hash function are
computationally secure. When this is true, the risk of off-line attacks on the
pairing is eliminated and the security of the scheme depends solely on the length
of the pass-key value. The most powerful attack that remains is an active man-
in-the-middle attack, where, given a DH public key, the attacker must find
another DH key with the same tag value, t, without knowledge of l and t.

Table 9.1 lists the probabilities for successful man-in-the-middle attack on
the improved pairing protocol. In the table it is assumed that RS-code-based
MAC construction is used. From Table 9.1, one can see that the probability

146 Bluetooth Security



rapidly decreases with increased pass-key size for the chosen MAC. For
small pass-key sizes like 2 bytes (5 decimal digits), the probability of a successful
man-in-the-middle attack is less than 1/16. For most applications, a pass-key
size of 4 bytes (10 decimal digits) provides a reasonable security level.

9.1.3 Implementation aspects and complexity

In order to support the improved pairing procedure, there must be a transport
protocol for transferring the key exchange messages. Currently, the Bluetooth
specification does not contain any built-in support for the DH key exchange.
Hence, no standard compliant implementation of a DH-based protocol can be
implemented at the LMP level. There are several different higher layer candi-
dates, though. When we look into the existing Bluetooth profiles, the most
attractive candidates are the OBEX [15] or the PAN profile [16]. When using
the PAN profile, several different possibilities exist. TCP is one rather natural
choice. Another nice possible option in the PAN case would be to have it
defined as the Internet Engineering Task Force (IETF) extensible authentication
protocol (EAP) [17] mechanism and use the IEEE 802.1x port-based network
access control framework [18]. We will discuss IEEE 802.1x in detail in Section
9.2, and we restrict the description here to the OBEX and TCP alternatives.
Figure 9.2 illustrates the placement of the improved pairing protocol for the
OBEX variant and Figure 9.3 shows the same thing for the PAN/TCP option.

From a protocol and usability point of view, there is no major difference
between the two options, and other variants are possible as well. Independent of
the chosen protocol solution, in order to be combined with the ordinary link
security mechanisms, the agreed-on link key must be stored in the key database
of the device. One can use the DH key as a long pass-key input to the “ordinary”

Key Management Extensions 147

Table 9.1
RS-Code MAC Construction Examples with Probability for Successful Man-in-the-Middle Attack

Size of
Message Hash

Pass-Key Size
(Decimal Digits)

Pass-Key
Size (Bytes)

Probability of
Successful Attack

128 5 2 < 2−4

128 8 3 < 2−8

128 10 4 < 2−13

256 10 4 < 2−12

128 12 5 < 2−17

256 12 5 < 2−16



148 Bluetooth Security

Improved pairing protocol Improved pairing protocol

Baseband Baseband

OBEX OBEX

RFCOMM RFCOMMSDP SDP

LMP LMPL2CAP L2CAP

Figure 9.2 The protocol stack and the placement of the improved pairing protocol using the
OBEX option.

Improved pairing protocol Improved pairing protocol

Baseband Baseband

TCP TCP

IP IP

BNEP BNEPSDP SDP

LMP LMPL2CAP L2CAP

Figure 9.3 The protocol stack and the placement of the improved pairing protocol using the
PAN/TCP option.



pairing, or use it directly as the link key. The latter approach is preferable, being
straightforward and less complex. There must then be a mapping between the
agreed-on key (derived from the DH key) and the device address (or in the case
of anonymity mode, the alias address of the other device). If the key database
resides on the host, in the nonanonymous case, the address can be obtained
using the HCI command HCI Read BD_ADDR. In the anonymous case, the
alias address is generated when the devices pair in private pairable mode (see
Chapter 8). Hence, in this case, alias addresses needs to be exchanged after the
improved pairing.

If the improved pairing is implemented on higher layers as in the two
options we have discussed, then it is not possible to use security mode 3. This is
because, in security mode 3, the pairing is initiated before a connection has been
set up, and the units are not able to exchange any information at a higher layer.
However, an improved pairing protocol implemented at a higher layer works
fine with security mode 2. In that case, both units must be configured not to ini-
tiate any security procedures until an OBEX or TCP channel (PAN case) has
been established. If security should be maintained, it is important that the
implementation only allows the pairing protocol to run over the OBEX or TCP
transport until the other device is authenticated.

Using the suggested improved pairing with a DH key agreement over a
large integer prime order group causes considerable increase in bandwidth com-
pared to the Bluetooth 1.2 pairing mechanism. If this is considered a problem,
other DH groups are available. The most suitable to use in that case would be
Elliptic-Curve Diffie-Hellman (ECDH) [14]. Using ECDH, the key exchange
can be implemented in software with quite a small footprint for the protocol.
For an elliptic curve over a field of around 2160 in size (i.e., with the underlying
field size of 160 bits), we have a public key size also of about 160 bits (20 bytes).
This implies that not more than 20 bytes of key information need to be sent (in
each direction) over the radio channel at the pairing. The choice of elliptic curve
parameters can be of any standard type like the one proposed by the IEEE 1363
group [19] or ANSI X9.63 [20].

9.2 Higher layer key exchange

So far we have only discussed a particular pass-key-based alternative to the Blue-
tooth 1.2 pairing mechanism. Pass-key-based solutions fit well into situations
where connections are created ad hoc and under control by people. However, in
several different situations, this is not the case. Sometimes, we would like to be
able to create Bluetooth link keys fully automatically without any user interac-
tion at all. In this section we discuss a couple of such approaches, showing how
the methods can be implemented in combination with the existing Bluetooth

Key Management Extensions 149



security mechanisms. Higher layer key exchange for Bluetooth was first pre-
sented by Blake-Wilson in [21].

As in Section 9.1, some methods for the establishment of a unique, strong
shared secret data item between two Bluetooth devices will be discussed. Clearly,
this data item can be directly used as a combination link key and, thus, can be
stored in the link key database of the host or module (the one applicable). Alter-
natively, it can be used as a high-entropy Bluetooth pass-key in the ordinary
Bluetooth 1.2 pairing procedure. However, if the higher layer key exchange is
used, there is no extra benefit of using the shared secret as a pass-key for conven-
tional pairing compared to using it as the link key.

The IEEE 801.1x [18] authentication and key exchange framework
defines several different authentication options for LAN and wireless local area
network (WLAN) systems. This framework utilizes EAP [17] for the transfer of
authentication information. The EAP has been standardized by the IETF as a
protocol to support multiple authentication mechanisms by encapsulating the
messages used by the different authentication methods. Since IEEE 801.1x is
defined over Ethernet frames, it can be used in Bluetooth directly on the Blue-
tooth Network Encapsulation Protocol (BNEP) [22], which is part of the PAN
profile [16]. This fact and the flexibility and wide support of the IEEE 801.1x
framework make it most useful also for Bluetooth applications. The higher layer
key exchange mechanisms to be described here are based on ideas and concepts
from the IEEE 802.1x. The authenticated key exchange methods supported are,
for example, Kerberos [23], TLS [24], and even a pass-key protocol. For exam-
ple, one can think of defining an EAP variant of the protocol we described in
Section 9.1. The list of supported IEEE 802.1x authentication methods is
expected to grow to accommodate future needs. Many of these authentication
schemes produce session key material that in our setting can be used as the
strong shared secret data item.

9.2.1 IEEE 802.1x port-based network access control

In this section we first give a brief introduction to the IEEE 802.1x authentica-
tion framework. Next, we address how these ideas can be used in Bluetooth, and
finally we focus on some exemplary higher layer key exchange mechanisms.

In IEEE 802.1x, the term port is used for a point of attachment to a LAN,
and the standard defines mechanisms for port-based network access. The term
refers to the fact that until a peer has been successfully authenticated and author-
ized, all services on the other peer except the authentication service itself are
locked—the port is closed. Once the peer is successfully authenticated, the LAN
port is opened and the peer is granted access to the authorized services. Three
different roles are defined in the standard:

150 Bluetooth Security



1. The Authenticator is the port that wants to authenticate the connecting
device before allowing access to services provided by that port.

2. The Supplicant is the connecting device that tries to access some service
provided by the port.

3. The Authentication server provides the actual authentication function,
that is, verifies the identity of the peer and performs the necessary
cryptographic operations needed to make the verification.

Typically, one does not need to separate the authenticator and authentica-
tor server roles—they may well be colocated on the same physical device. How-
ever, in a network access case, it makes sense to have the actual verification
performed on a dedicated network server that can serve several different access
points (the ports). The authenticator makes use of two ports: an uncontrolled
port for authentication messages and a controlled port for the subsequent connec-
tion. The controlled port does not let any traffic through until there is successful
authentication over the uncontrolled port.

In IEEE 802.1x, the actual authentication is based on EAP. EAP defines
several different mechanisms and IEEE 802.1x can be used with any of them.
The EAP packets are encapsulated in Ethernet frames as defined by the stan-
dard. The EAP messages are transferred between the supplicant and the authen-
tication server. If the authentication server is a special device separated from the
authenticator, the authenticator only acts as a pass-through for the EAP mes-
sages. Once the authentication has been finalized, the authenticator gets infor-
mation of the outcome through the EAP-success or EAP-failure messages.

When IEEE 802.1x is used in Bluetooth, the supplicant role can be taken
by the paging device, while the role of the authenticator can be taken by the
paged device (think of an access point scenario). The authentication server is
either located directly in the paged device or implemented as a backed server.
This will be application dependent and is no different from the LAN usage case.
The EAP packets are encapsulated in Ethernet frames using BNEP, defined in
the Bluetooth PAN profile. Figure 9.4 illustrates the encapsulation principles.
IEEE 802.1x uses the EAP encapsulation over LANs (EAPOL) frame format
when carrying EAP information over Ethernet. In addition to transferring pure
EAP messages, EAPOL also carries some signaling messages and is used to trans-
port keys.

Since the EAP messages only can be exchanged once a BNEP connection
has been established, it is not possible for Bluetooth to use IEEE 802.1x directly
together with security mode 3. This follows from the fact that security mode 3
requires the security procedures to be run before the link setup is completed.
Then the authentication (and encryption) protocol(s) must use the legacy meth-
ods provided by the specification. However, security mode 2 fits nicely together

Key Management Extensions 151



with the IEEE 802.1x framework. Once the authentication has been performed,
a link key based upon the authentication exchange will be looked up in the key
database of each device. When this is retrieved, conventional authentication
(which is a prerequisite to baseband encryption) and optionally encryption can
be performed.

9.2.2 Higher layer key exchange with EAP TLS

In the following we present an exemplary EAP mechanism, namely the TLS
[25] protocol, which has been defined as an EAP mechanism [24]. TLS, which
is similar to other EAP authentication methods, produces session key material
that in our setting can be used to establish the strong shared secret data item.
TLS is a well-known and widely used protocol, which provides communications
privacy, including authentication between two devices and exchange of crypto-
graphic keys. It is designed to prevent eavesdropping, tampering, and message
forgery. Thus, TLS can be used to implement higher layer key exchange in
Bluetooth.

TLS has several different options for authentication and algorithm choices.
Figure 9.5 shows one typical successful EAP-TLS message sequence, with suc-
cessful TLS server and client authentication (mutual authentication). One of the
Bluetooth units must take the IEEE 802.1x authenticator role and the other unit
the supplicant role. Even if this is “normally” done in order to authorize access to
a port, for most Bluetooth applications we would only use the EAP messages for
authentication and key exchange. The message exchange sequence starts with the
slave unit requesting authentication through the EAPOL-Start message. Next,
the authenticator requests an identity from the supplicant unit. Once this

152 Bluetooth Security

EAP

BNEP

Ethernet

EAPOL

Ethernet payload

Code Identifier Length Data

Ethernet type Protocol version Packet type Packet body length Packet body

Ethernet header Ethernet payload

L2CAP header BNEP header
1–1,500/1,504 bytes

1–1,500/1,504 bytes

4 bytes 1–16 bytes

16 bytes

1–1,497/
1,501 bytes

1–1,494/1,498 bytes

1–2 bytes

1–2 bytes

1 byte

1 byte

1 byte

1 byte

1–2 byte

Figure 9.4 Frame formats when using BENEP and IEEE 802.1x to perform EAP authentication
in Bluetooth.



identity is given, the TLS protocol exchange takes place. For details of the TLS
protocol, we refer to [25]. The successful TLS handshake is confirmed by the
authenticator through the EAP-success message. Following a successful key
exchange, the agreed-on TLS master secret should be used as the link key for the

Key Management Extensions 153

EAPOL-Start

EAP-Success

EAP-Response/EAP-Type=
EAP-TLS
(TLS change_cipher_spec,
TLS finished)

EAP-Request/Identity

EAP-Response/Identity
(MyID)

EAP-Request/EAP-Type=
EAP-TLS
(TLS Start)

EAP-Response/EAP-Type=
EAP-TLS
(TLS client_hello)

EAP-Request/EAP-Type=
EAP-TLS
(TLS server_hello,
TLS certificate,
[TLS server_key_exchange,]
[TLS certificate_request,],
TLS server_hello_done)

EAP-Response/EAP-Type=
EAP-TLS
(TLS certificate,
TLS client_key_exhange,
[TLS certificate_verify,]
TLS change_ciper_spec,
TLS finished)

BNEP connection established

Host A
authenticator

HC/LM-A
master

HC/LM-B
slave

Host B
supplicant

Baseband authentication and switching on encrypton

EAP-Response/EAP-Type=
EAP-TLS

Figure 9.5 EAP-TLS message sequence example.



connections and the units should perform an ordinary baseband authentication
using the master secret obtained from the successful EAP mutual authentication.
This is also illustrated in the message sequence diagram.

Obviously, another option is to refrain from using the Bluetooth link level
security at all, and instead use another protocol such as IPsec [26, 27] to protect
the communication between the units once the units have exchanged the master
secret.

9.3 Autonomous trust delegation

Bluetooth pairing mechanisms might cause unnecessarily numerous pairings
when a user has several PAN devices. For example, when having a group of
devices we will have as many manual pairings as there are pairs of devices that
want to communicate. However, this can be avoided if we allow security associa-
tions to be propagated between devices through a security group extension
method. In this section we will describe and discuss two such methods. The first
method is based on the propagation of group keys. With the use of the suggested
method, the number of manual parings in a PAN of n devices is reduced from
n(n − 1)/2 to a number between n − 1 and n(n − 1)/2, depending on the order in
which the users perform the pairings. The second approach is to use public keys
and public key certificates in order to improve key management. The idea is to
let one dedicated, trusted Bluetooth unit certify public keys of all trusted units
in a certain group of units. The certified keys can then be used for key exchange
between all trusted units in the group. Security group extension methods can be
achieved though a combination of ordinary Bluetooth pairing in combination
with trust delegation. The pairing can be the ordinary pairing method or the
new, improved pairing mechanism that we described in Section 9.1.

The key management extension methods presented in this section are
briefly described in [28]. In particular, public key–based key management,
called the personal public key infrastructure (PKI), has been extensively treated in
the EU project SHAMAN [7, 29].

9.3.1 Security group extension method

By trust delegation we mean that trust relations are allowed to autonomously
propagate among Bluetooth devices through new pairings between the devices.
One could argue that this causes trust to be spread in an uncontrolled manner
among a huge set of devices. However, this can be avoided with correct handling
of the pairings on a user level. Here we describe the solution for trust delegation
based on symmetric keys. Another approach for automatic trust delegation is
public key–based key management, which we treat in Section 9.3.2.

154 Bluetooth Security



According to our proposed method, each device supporting the trust dele-
gation method has an internal trusted group key database. The database con-
tains a list with at least the following two entries for each record:

1. A group key index;

2. A secret key corresponding to the index.

Each device might be preconfigured by the manufacturer with at least one
key index chosen at random and a corresponding group key. Alternatively, it is
shipped with no group key at all. When the user would like to connect two
devices (that have not previously been in contact with each other), here called
the first and second devices, the following procedure applies:

1. The first device requests a pairing of the two devices. If the second
device refuses this request, the procedure is aborted. If the second
device accepts the request for pairing, the next step applies.

2. The devices decide whether a group key–based pairing or a conven-
tional pairing is going to take place. This can be accomplished by spe-
cifically asking the user to authorize (or reject) a group key–based
pairing, or proceed according to device-specific security settings
regarding this issue. If a conventional pairing is chosen, the next step is
6; otherwise the next step is 3.

3. The first device sends the list of key indexes from its group key data-
base to the second device. If the group key database is empty, this fact
shall be made known to the second unit.

4. The second device receives the list of indexes and checks the list against
the internal list of trusted group key indexes. If the device finds a
match between any of the received indexes and the internally stored
list of indexes, the device chooses an arbitrary index among the
matches and returns this index to the first device, and the procedure
continues with step 5. If no match is found, the second device returns
an indication to the first device that nothing matched and whether or
not its own list is empty, and then step 6 is performed.

5. The two devices perform an authenticated key exchange. The authen-
tication is based on the group key corresponding to the agreed-on
index. The authenticated key exchange can, for example, be the ordi-
nary Bluetooth pairing procedure with the group key used as pass-key.
The next step is 8.

6. The two devices perform a manual pairing. This can be an ordinary
pairing or an improved one, as we described in Section 9.1. A group

Key Management Extensions 155



key pairing shall only be performed if the user confirms that the
devices regard each other as “highly trusted.” If a group key–based
pairing is to be performed, the procedure continues with step 7. If a
conventional pairing is taking place, the procedure ends here.

7. If both devices’ lists are empty, the second device generates a group key
and a corresponding key index, both uniformly and randomly chosen.
The key and index can be of any size, but a 128-bit group key size and
a 48-bit key index, for example, are the most suitable for the Bluetooth
system. The procedure continues with the next step.

8. The two devices switch to an encrypted connection using the recently
agreed-on secret key.

9. The second device calculates what items the first device is missing from
the second device’s list of trusted group key indexes and corresponding
keys. These items are sent to the first device, which will add all previ-
ously unknown indexes and keys to its own trusted key database.

10. The first device calculates what items the second device is missing
from the first device’s list of trusted group key indexes and corre-
sponding keys. These items are sent to the second device, which will
add all previously unknown indexes and keys to its own trusted key
database. This ends the procedure.

This procedure is repeated at each pairing occasion. Whenever two devices
regard each other as “highly trusted,” they will exchange trusted group keys.
This allows trust relations to propagate among the devices. This in turn will
considerably reduce the number of manual pairings needed when several devices
are going to be paired with each other.

An example

Next we give an example of how the group extension method works when only
four devices are involved in the trust delegation. Let A, B, C, and D denote the
four different devices. In the example, we have assumed that the devices are not
preconfigured with any group key from the start. Below we describe the four dif-
ferent pairing steps. The steps are illustrated in Figures 9.6 and 9.7.

1. Two devices, A and B, are connected for the first time. No trusted
group keys are stored in any of the devices and they perform a manual
pairing based on a pass-key. Both users indicate that this is a pairing
with a highly trusted device, and after authentication and a switch to
encryption, device A generates a trusted group key with index 12 and
sends this index and key to B. Both devices store the trusted group key
K1 in their respective databases.

156 Bluetooth Security



2. Two devices, C and D, are connected for the first time. No trusted
group keys are stored in any of the devices and they perform a manual
pairing based on pass-keys entered into both devices. Both users indi-
cate that this is a pairing with a highly trusted device, and after authen-
tication and a switch to encryption, device C generates a trusted group
key with index 2 and sends this index and key to D. Both devices store
the trusted group key K2 in their respective databases.

3. Two devices, A and C, are connected for the first time. Device A sends
the index of its only trusted group key, number 1, to device C. C has
no key with index 1 and replies with a request for bonding. The
devices perform a manual pairing based on a pass-key. Both users indi-
cate that this is a bonding with a highly trusted device, and after
authentication and a switch to encryption, device A sends its list of
trusted group keys, that is, index 1 and key K1 to device C. C replies
with its list of trusted group keys, that is, index 2 and key K2. Device A

Key Management Extensions 157

Device
A

Device
C

Device
D

Device
B

Pass-key pairing

1, K1

Pass-key pairing

2, K2

2.

1.

Figure 9.6 Trusted group extension example, steps 1 and 2.

2. The index should be chosen from a large space to avoid collisions. In order to simplify the
description, we here just choose the indexes 1, 2, 3, and so on.



stores the new group key K2 in its database and device C stores the new
group key K1 in its database.

4. Two devices, A and D, are connected for the first time. Device A
sends the index of its trusted group keys, that is, 1 and 2, to device C.
C has a key index 2 in its trusted group key database and replies with
key index 2. The devices perform an authenticated key exchange
based on K2. After authentication and a switch to encryption, device
A sends the trusted group keys with index 1 and the key K1 to device
D. D does not have any additional trusted group keys and just
accepted the last index and key.

Implementation aspects

The trusted group extension approach can be used without the improved pair-
ing proposal in Section 9.1 (even if the security is not as high as with it).

158 Bluetooth Security

Device
A

Device
A

Device
D

Device
C

Pass-key pairing

1, K1

2, K2

Automatic pairing based on K2

1, K1

4.

3.

1

1, K1

1, K1

2, K2

2, K2

2, K2

Request pairing

2

1, 2

Figure 9.7 Trusted group extension example, steps 3 and 4.



Together with improved pairing, it gives higher security, and, if desired, it can
provide functionality similar to the public key–based key management methods
we will describe in Section 9.3.2. This is achieved if personal devices are always
first paired with one particular device. The trusted group extension can be
implemented independently of the security modes, and the only requirement is
that it is possible to distinguish between a pairing with a highly trusted device
and other situations. It must then be possible on the user interface level to make
the distinction between highly trusted devices and other devices.

The trusted group extension requires a slightly modified pairing protocol
to be used. As with the improved pairing proposal, we have several options on
where to implement the support for the new protocol. The ideal case would be
to introduce a set of new LMP commands for this purpose. However, this
requires changes to the Bluetooth specification or the use of proprietary Blue-
tooth modules with this functionality. If this is not a possible option, the proto-
col can be implemented according to the principles we discussed for the
improved pairing protocol in Section 9.1.3. That is, using OBEX or defining a
new IETF EAP for this purpose. The most attractive solution from a pure secu-
rity point of view is to offer the trusted group extension as part of the improved
pairing functionality.

Introducing several security groups

The trusted group extension method can be used to propagate trust relations
among units in an ad hoc fashion. So far, we have only considered trust propa-
gation for one uniform group. The trust relations can only be extended within
this single group. If only one group is allowed, there is a risk that this group is
extended rapidly without control. If this happens, the security of the system is
compromised. Hence, it must always be possible for the user to reset the trusted
group key database (and possibly the link key derived in this group) of the
device, and in that way damage can be avoided. Thus, for the group extension
method to be secure, the user must be very careful with extending the security
group. Furthermore, in some scenarios we would like to create, for example,
temporary groups or groups with different rights. Then, in order to maintain a
good security level, one must allow several different groups to be created. Each
group can be created with a special purpose and with certain security limita-
tions. For example, one can limit the lifetime of the group and/or the security
policy for the members of that group. This can be done in accordance with the
PAN security domain ideas introduced in [7].

Supporting several different security groups creates additional require-
ments. Group key indexes and the link keys obtained from pairings or key
exchange in a group must be stored together or must be marked. Furthermore, a
user-friendly name should be associated with the group. It is only when manual
pairing applies that the user must be involved in choosing the right group. On

Key Management Extensions 159



the protocol level there, it must be possible to deal with the different groups and
group extensions for the different groups. This means, for instance, that each
group must be authenticated separately, before the group keys should be spread.
We do not deal with the detailed requirements or solutions for supporting sev-
eral security groups here, but leave the details of such solutions to people inter-
ested in implementing such a feature.

9.3.2 Public key–based key management

The basic idea behind trust delegation was to allow units to communicate
securely without necessarily requiring manual pairing for each pair of commu-
nicating Bluetooth units. Similar features can be achieved with a public
key–based key management scheme for Bluetooth. The ideas for public
key–based key management that we describe here originate from work done by
the EU project SHAMAN [7, 29]. Work related to this concept has also been
published in [30].

In a conventional PKI, a certificate authority (CA) issues a public key cer-
tificate like those following the X.509 standard format [31]. The CA is responsi-
ble for checking that the public key in a certificate corresponds to a private key
that the holder (with the ID given in the certificate) of the certificate possesses.
This is necessary in order to maintain the security of a global or a very large PKI.
The drawbacks are that a central CA must issue all necessary certificates used by
the communication units and the users of the units must get in direct contact
with the CA if a high security level should be achieved. This might be a tedious
process that a user of a communication unit would like to avoid. Furthermore, it
is very costly to maintain a well-controlled, highly secure certification process
that can handle thousands of users. On the other hand, users that might want to
operate their own local environment, such as a Bluetooth network, have no
benefits inside their local network from having a centralized CA. In addition,
users might not want, for privacy reasons, to delegate the CA operation to a cen-
tralized entity outside their personal environment.

To avoid the drawbacks with the centralized CA that we mentioned above,
one can instead introduce the CA role in the local Bluetooth network. That
means that one of the Bluetooth units in the network takes the certification issu-
ing role. Such a unit is a personal certification device (PCD). A PCD is used to
certify all of one’s Bluetooth units and equip them with mutually trusted public
key certificates. This means that each device utilizing the PCD must have public
key capability and have its public key certified by the PCD before it can be used
for authentication or key management purposes. The PCD might be preconfig-
ured (by the manufacturer) with a private-public key pair. Alternatively, it must
be able to generate such a key pair. The personal PCD device is used to initialize
other personal communication devices. In order to illustrate the principle, we

160 Bluetooth Security



will give an example of how the certification and key management can work
when using a PCD:

A user buys a new Bluetooth-enabled mobile phone. The mobile phone has
the capability to act as a PCD in a Bluetooth network and the user decides
to use the phone as a certification device. Hence, the user activates the PCD
functionality in the mobile phone.

At a later point in time, the user decides to buy two more Bluetooth-
capable devices, say a laptop and a printer. We assume that the user wants
to make the new devices part of a set of trusted devices. This is done using
an initialization procedure.

The initialization means that the user needs to connect the new
devices, that is, the laptop and the printer, with the PCD. (We will discuss
in detail how such an initialization will work.)
During the initialization, the PCD issues public key certificates to the two
new devices and transfers a common trusted root key to them.

Once the laptop and the printer have the trusted root key and their cer-
tificates, they will be able to set up secure connections without user involve-
ment with all other devices belonging to the same PCD. Hence, it will be
possible for the laptop to connect to the printer, verify the identity of the
printer, automatically pair with the printer and exchange a common link
key, and then securely communicate with the printer.

From the description above, one can see that there are two main functions
needed in order to support a key management architecture based on public key
certificates from a PCD:

1. An initialization procedure;

2. Authentication and key exchange based on public key certificates.

Next we will discuss the details of these two functions.

Initialization procedure

The first thing to do when adding a new device to a personal network is to con-
nect the new device to the PCD. Next, the PCD will equip the connecting
device with a public key certificate and the public root key that can be used to
verify certificates issued by the PCD. One can think of several different ways to
do the initialization. Below we give a step-by-step description of one possible
procedure, where A denotes the connecting device.

1. In the request for a certificate, device A sends its identity together
with a public key to the PCD over Bluetooth. In order to proof the

Key Management Extensions 161



possession of the private key corresponding to the public key, device A
should sign the request for a certificate. This signed request might, for
example, be according to the PKCS #10 standard [32].

2. The PCD replies by sending its own public root key to device A.

3. Device A needs to authenticate the PCD public root key. Similarly, the
PCD needs to authenticate the public key of device A. This can be
done using a variant of the MAC-based manual authentication proce-
dure described in Section 9.1.2 by replacing the public DH values (if
non-DH public keys are used) with the public keys of device A and the
PCD, respectively.

4. The PCD issues a new certificate for device A. The certificate contains
(among other information) the identity and public key of device A. All
the information to be included in the certificate is digitally signed by
the PCD, with the private key corresponding to the public root key
sent in step 2. The signature is included in the new certificate.

5. The PCD sends the new certificate to device A.

6. The PCD stores the new certificate. Preferably, the certificate (as well
as the root key) is stored in a tamper-resistant memory or securely
stored by any other means.

7. Device A stores the new certificate together with the public root key
of the PCD in protected memory.

After the initialization has been completed, device A possesses a certificate
that it can present to all other devices that have been initialized with the same
PCD. The public key in that certificate can be used by the other device to
authenticate device A and exchange session keys, as will be described in the next
section. The main idea with the public key–based approach using a PCD is that
all devices initialized with the same PCD will be in the same security domain.
This means that all these devices share a common trusted root, the public root
key of the PCD. Hence, all devices will trust all other certificates in the same
domain. Normally, in a public key infrastructure with a centralized CA, it must
be possible to revoke certificates once a private key is compromised, a device is
stolen, or the like. This is in principle also true for the public key–based key
management scheme we discuss here. However, as long as the approach is used
for a small number of devices (e.g., personal, home, or small office usage), the
revocation is not a big problem. If one of the devices in the domain is compro-
mised or stolen, it will be possible for the user to reset the security setting in all
remaining devices and just repeat the security initialization with new keys and
certificates.

162 Bluetooth Security



Authentication and key exchange procedure

Possessing trusted certificates is not enough for a complete key management
architecture in Bluetooth. There must also be the means for the devices to
authenticate each other and exchange keys to be used for encryption. Blue-
tooth’s built-in authentication and encryption mechanisms do not use certifi-
cates. Thus, what is primarily needed is an authentication and key exchange
procedure based on certificates. The goal with such a procedure would be to
equip the devices with a common Bluetooth link key. For this to work, it is
required that the public keys in the certificates issued by the PCD can be used
for authenticated key exchange. The algorithms and certificate requirement will
depend on the protocol used for the authenticated key exchange. In Section 9.2,
we discussed different higher layer key exchange procedures. Some of these pro-
cedures are certificate based. Hence, they can be used to achieve the authenti-
cated key exchange we need. In particular, we described the TLS-based key
exchange in Section 9.2.2. Since TLS also provides integrity and confidentiality
protection through message authentication codes and encryption algorithms,
TLS is also a good alternative to the Bluetooth link level encryption for commu-
nication protection.

9.3.3 Group extension method versus public key method

The trust delegation based on the security group extension method in Section
9.3.1 only reduces the number of manual interactions needed for security asso-
ciation establishment; it does not make manual pairing superfluous. For a group
of devices, the number of pairings required depends on the order of the pairings.
One cannot require the user to make the pairings in a certain order. Hence, the
number of pairings needed for a group with n devices will be between n − 1 and
n(n − 1)/2. If users always pair their new devices with a certain initialization
device, the number of initializations will equal n − 1. This is the same situation
as when the public key–based key management described in Section 9.3.2 is
used. According to these principles, all security initialization is done with the
PCD. However, in that case the user has no other choice than to pair each
device with the PCD and only a small number of pairing orders are possible.
This particular pairing order corresponds to an optimal pairing order using the
security group extension method. While this speaks in favor of public key–based
key management, there are also drawbacks. The PCD must always be present
when a security initialization is performed. Furthermore, the PCD approach can
only be used when public keys are supported by the Bluetooth devices. In the
secure group extension method, no device has any particular role, and any
device can be used to delegate the trust relation to any other device. Moreover,
the trust delegation method can be accomplished with only minor extensions to

Key Management Extensions 163



the standard Bluetooth pairing, which is not the case for the PCD-based
approach.

References

[1] Kügler, D., “Man in the Middle Attacks on Bluetooth,” revised papers, in R. N. Wright,
ed., Financial Cryptography, 7th International Conf., FC 2003, Guadeloup, No. 2742 in
LNCS, Springer-Verlag, 2003, pp. 149–61.

[2] Jakobsson, M., and S. Wetzel, “Security Weaknesses in Bluetooth,” in D. Naccache, (ed.),
Proc. RSA Conf. 2001, No. 2020 in LNCS, San Francisco: Springer-Verlag, April 8–12,
2001.

[3] Diffie, W., and M. E. Hellman, “New Directions in Cryptography,” IEEE Trans. Infor-
mation Theory, Vol. 22, 1976, pp. 644–654.

[4] Shamir, A., R. L. Rivest, and L. Adleman, “A Method for Obtaining Digital Signatures
and Public Key Cryptosystems,” Comm. ACM, Vol. 21, 1978, pp. 294–299.

[5] Stajano, F., and R. Anderson, “The Resurrecting Duckling: Security Issues for ad-hoc
Wireless Networks,” Security Protocols, 7th International Workshop, No. 1796 in LNCS,
Cambridge: Springer-Verlag, April 1999.

[6] Maher, D., “Secure Communication Method and Apparatus,” U.S. Patent No.
5,450,492, 1995.

[7] Sovio, S., et al. “D13, Annex 2, Specification of a Security Architecture for Distributed
Terminals,” Report IST-2000-25250, IST project SHAMAN, 2002.

[8] Larsson, J.-O., “Higher Layer Key Exchange Techniques for Bluetooth Security,” Open
Group Conf., Amsterdam, October 24, 2001.

[9] van Oorschot, P. C., A. J. Menezes, and S. A. Vanstone, Handbook of Applied Cryptogra-
phy, Boca Raton, FL: CRC Press, 1997.

[10] Jain, S. K., P. B. Bhattacharya, and S. R. Nagpaul, Basic Abstract Algebra, Cambridge:
Cambridge University Press, 1986.

[11] NIST, FIPS 180-1, Secure Hash Standard, National Technical Information Service,
Springfield, VA, April 1995.

[12] Simmons, G. J., “A Survey of Information Authentication,” in G. J. Simmons, (ed.), Con-
temporary Cryptology, The Science of Information Integrity, New York: IEEE Press, 1992,
pp. 379–420.

[13] Reed, I. S., and G. Solomon, “Polynomial Codes over Certain Finite Fields,” J. Society for
Industrial and Applied Mathematics, Vol. 8, 1960, pp. 300–304.

[14] Menezes, A. J., Elliptic Curve Public Key Cryptosystems, Dordrecht: Kluwer, 1993.

[15] Bluetooth Special Interest Group, Specification of the Bluetooth System, Version 1.1, Profiles,
Part K:1O Object Exchange Profile, February 2001.

164 Bluetooth Security



[16] Bluetooth Special Interest Group, Specification of the Bluetooth System, Version 1.0, Per-
sonal Area Networking Profile, February 2003.

[17] Bunk, L., and J. Vollbrecht, PPP Extensible Authentication Protocol (EAP), RFC 2284,
March 1998.

[18] IEEE, IEEE Std., 802.1x-2001, Version 2001, Port-Based Network Access Control, June
2001.

[19] IEEE, Standard Specifications for Public Key Cryptography, IEEE Std. 1353-2000, 2000.

[20] ANSI, Public Key Cryptography for the Financial Services Industry: Key Agreement and Key
Transport Using Elliptic Curve Cryptography, ANSI X.9.63, 2001, 2001.

[21] Blake-Wilson, S., “Higher Layer Key Exchange in Bluetooth,” manuscript, private com-
munication, 2001.

[22] Bluetooth Special Interest Group, Specification of the Bluetooth System, Version 1.0, Blue-
tooth Network Encapsulation Protocol (BNEP) Specification, February 2003.

[23] Kohl, J., and C. Neuman, The Kerberos Network Authentication Service (V5), RFC 1510,
September 1993.

[24] Aboba, B., and D. Simon, PPP EAP TLS Authentication Protocol, RFC 2716, October
1999.

[25] Dierks, T., and C. Allen, The TLS Protocol, Version 1.0, RFC 2246, January 1999.

[26] Kent, S., and R. Atkinson, IP Encapsulating Security Payload (ESP), RFC 1827, November
1998.

[27] Kent, S., and R. Atkinson, IP Authentication Header, RFC 2402, November 1998.

[28] Gehrmann, C., and K. Nyberg, “Security in Personal Area Networks,” in Security for
Mobility, Herts: IEE, 2004.

[29] Mitchell, C., et al, “D13, Annex 3, wp3—Final Technical Report,” Report
IST-2000-25250, IST project SHAMAN, 2002.

[30] Mitchell, C., and R. Schaffelhofer, “The Personal PKI,” in Security for Mobility, Herts:
IEE, 2004.

[31] “Information Technology—Open System Interconnection—The Directory: Authentica-
tion Framework,” ISO/IEC 9594-8, 1995.

[32] RSA Data Security Inc., Redwood City, CA, PKCS #10: Certification Request Syntax Stan-
dard, v1.7, 2000.

Key Management Extensions 165



.



10
Security for Bluetooth Applications

So far we have described the basic Bluetooth security mechanisms and enhance-
ments/extensions to these basic mechanisms. Exactly how one should use (or
not use) Bluetooth security will depend on the application. Some applications
are more security sensitive than others and might need special care in their secu-
rity design. In this chapter we discuss how to use the different security mecha-
nisms described for three different Bluetooth applications:

1. Headset;

2. Network access;

3. SIM access.

These applications do not at all cover all possible applications or profiles
that are part of the Bluetooth specification. However, we think that the security
problems one faces when implementing security for these applications are quite
typical for most Bluetooth applications. When discussing how to provide secu-
rity for the chosen set of applications, we show how one would benefit from
using the enhancements described in Chapters 8 and 9, respectively. Hence,
some of the implementation suggestions given in this chapter are not possible to
realize using only the standard Bluetooth security mechanisms. The reason for
including some enhancements in the description is to illustrate how one would
benefit from the improvements.

The recommendations and analysis we provide for the headset and net-
work access applications are partly covered in the Bluetooth security white paper
[1] provided by the Bluetooth SIG. The network access security solution we
show here is partly described in [2].

167



10.1 Headset

The Bluetooth specification contains a headset profile [3]. This profile is used
for headset connections to, for example, mobile phones and laptops. Here we
describe security solutions and usage for the Bluetooth headset profile. Blue-
tooth baseband security has been designed for personal devices, such as a head-
set, and the link level authentication and confidentiality protection is well suited
for the protection of the headset application. The security association is used to
authenticate and encrypt all communication between two Bluetooth wireless
devices. In addition to this, a suitable implementation of Bluetooth Security and
Bluetooth pass-key usage can prevent illegal use of a stolen headset. We will give
a protocol implementation example with this property.

The standard Bluetooth pairing is rather weak, as we showed in Section
7.3. The improved pairing of Section 9.1 overcomes these weaknesses, and we
have here chosen to base our description on availability of the improved pairing.
However, the same security model and principles that we describe here can be
used with the standard pairing mechanism (see Chapter 3). This will result in a
less secure but otherwise similar implementation.

10.1.1 Headset security model

The dependencies between the different profiles are shown in Figure 1.7 in
Chapter 1. As illustrated in the figure, the headset profile depends both on the
serial profile and the GAP. The GAP defines the basic pairing and security
behavior for most profiles, as well as for the headset profile. A typical headset
configuration consists of two devices, a headset (HS) and an audio gateway
(AG), as shown in Figure 10.1. The AG is typically a cellular phone, laptop, PC,
or any type of audio-playing device, such as a radio and CD player. To protect
the wireless channel from eavesdropping, it is recommended that communica-
tion between the HS and AG is protected by the Bluetooth authentication and
encryption mechanisms. How and when to apply authentication and encryption
is determined by policy rules that can be controlled and enforced by a security
manager, as was discussed in Chapter 6.

In order to set up secure connections, the HS and AG need to store the
necessary Bluetooth pass-keys and link keys. Since the HS usually does not have
a user interface, it is appropriate to assume that an external device, such as the
AG, may control some of the basic settings of the HS. This includes things like
volume settings, handling the list of approved devices to be connected, and
changing pass-key value. The HS security policy prescribes authentication and
encryption settings, but also the access rules. It is the access policy that deter-
mines which audio connections are allowed and which devices are allowed to do
remote control (including control of the security policies themselves).

168 Bluetooth Security



The AG might be used for several other applications in addition to audio.
Different security policies may apply for the different applications and connec-
tions. Hence, it is most likely that the AG operates in security mode 2, since this
mode allows the most flexible security. Obviously, it is possible for both units to
operate in security mode 1 as well. However, this would allow an eavesdropper
to record the audio communication to the headset, which is not acceptable to
most users.

Since the HS is a limited device, the security policy configuration should
be kept as simple as possible. This means that security mode 3 is very suitable for
the HS. In principle, security mode 2 can also be used, even if that implies a
slightly higher implementation complexity. Authentication shall be required
each time at connection setup. This implies that in order to get access, an AG
device must have been previously paired with the HS, or a pairing must take
place. The pairing will only succeed if the AG knows the correct pass-key value
(we discuss pass-key handling for headsets in more detail later on). If the HS is
stolen, the thief will probably not know the pass-key and will not succeed to
connect to the HS with another AG. Consequently, some protection against
illegal use of a stolen HS is provided.

10.1.2 Pass-key and key management

Normally, an HS does not contain an especially advanced user interface.
Accordingly, it might be cumbersome, or even impossible, for the user to enter a
new Bluetooth pass-key value into the HS for each pairing. Hence, a fixed Blue-
tooth pass-key in the HS is reasonable. A fixed pass-key has security drawbacks,

Security for Bluetooth Applications 169

Audio gateway Headset

Security policy database

Link key
database

Pass-key
values

Security policy database

Access rules:
Allowed connections

Authentication and
encryption rules

Link key
database

Settings
(volume etc.)

Pass-key

Access rules:
Allowed audio
connections

Allowed control
connections

Authentication and
encryption rules

Figure 10.1 Headset security model.



since the probability that someone will find out the secret value is higher for a
pass-key that is never changed than for a frequently updated pass-key. Conse-
quently, higher security is obtained if the fixed pass-key is also changed regu-
larly. There is no simple answer to what “regularly” means, as it depends on such
things as how often the pass-key is actually used and if it has been disclosed to
someone else. In principle, the more frequent changes, the better. It should be
possible to control the settings of the HS from the AG. An external device like a
PDA, a laptop, or some other controlling unit might have a better user interface,
thus allowing the Bluetooth pass-key to be changed swiftly. Naturally, the HS
implementation must make sure that changing the Bluetooth pass-key is only
possible over an authenticated and encrypted Bluetooth link, or by using a wired
connection.

In Chapter 9 we described improved pairing using relatively short pass-
keys and MACs. In the improved pairing scheme, the probability of a successful
attack depends solely on the length of the pass-key value and the risk for off-line
attacks is eliminated. Furthermore, no additional information on the pass-key
value is disclosed, even if the same pass-key value is used for several pairings.
Hence, the solution gives good security also when fixed pass-keys are used. Con-
sequently, the improved pairing is suitable for the HS application case. This
means that the involved AG and HS both must support DH key agreement com-
putations as well as MAC-based pairing. However, in order to use the improved
pairing, either the HS and AG must support the improved pairing on the base-
band level or none of the devices can operate in security mode 3. This is because
a device in security mode 3 demands authentication during connection setup,
and thus it will not be possible to do the pairing on a higher layer. Hence, for
interoperability reasons, as long as the improved pairing is not a standard Blue-
tooth feature, it cannot be directly used.

Using the improved pairing approach provides better security than the
conventional Bluetooth pairing. In the improved pairing case, a new pass-key
can be generated by letting a controlling AG or HS randomly select a new MAC
key and compute the new corresponding MAC value. If the standard Bluetooth
pairing mechanism is used, randomly generated initial Bluetooth pass-keys that
are unique for each HS should be used. If the Bluetooth pass-key for a headset
can be changed, it might be necessary to allow someone with physical access to
the HS to reset the HS to its original (factory preset) pass-key. This makes it
possible for someone to continue to use a headset even if the user loses or forgets
the current Bluetooth passkey, but has kept a copy of the (factory preset) pass-
key. Note that a resettable pass-key will still give protection against theft, pro-
vided that HSs are not shipped with the same original (factory preset) pass-key.

Even better security is achieved if pairing of an AG with an HS only is
allowed when the user has explicitly set the HS into pairable mode. Pairing in a
public place, such as a point of sale, is discouraged when using the ordinary

170 Bluetooth Security



pairing procedure, as there is much greater risk that a subversive unit may inter-
cept the key exchange. The improved pairing procedure does not have this
weakness.

The HS should use combination keys for its connections. The HS should
store the combination keys in nonvolatile memory. Higher security is provided
if this memory is also tamper resistant. Clearly, the same is also true for the AG.

10.1.3 Example

Finally, we give a pairing and connection example for the headset application.
There are several ways of implementing HS security and control. Here, we
assume that we use the baseband security functions in combination with the
improved pairing procedure that we described in Chapter 9. The improved pair-
ing is currently not part of the Bluetooth standard. However, since better secu-
rity is provided with the improved pairing, we have nonetheless chosen in this
example to assume that this enhancement is available. We illustrate how to
secure a headset through a user scenario:

Assume a new HS is delivered to a customer. The customer would like to
use the HS together with a mobile phone acting as the AG. The HS is deliv-
ered with a preset pass-key known to the customer. This pass-key is a com-
bination of a MAC key and a MAC as described in Section 9.1. We assume
that HS security is implemented using security mode 2 with authentication
and encryption required for all connections.

In this scenario, the following steps describe user interactions, mobile
phone to HS interactions, and security calculations needed before the customer
is able to use the HS together with the mobile phone:

1. The customer sets the HS into discoverable and pairable mode by
pressing a button on the HS.

2. The HS indicates to the user that it is ready for pairing.

3. The customer prepares the mobile phone for discovery of a new Blue-
tooth HS device.

4. The phone performs a Bluetooth inquiry and gets a response from the
HS and a Bluetooth connection is established.

5. The HS demands authentication of the AG (phone).

6. Both the HS and the AG detect that they do not have any link key that
can be used for the connection and the improved pairing procedure is
started.

7. The HS has a stored DH public key value, ga, that it sends to the AG.

Security for Bluetooth Applications 171



8. The AG ask the user to enter the secret pass-key for the HS. It consists
of the MAC key, l, and the corresponding MAC value, t.

9. The AG checks that the received DH public value g a ′ matches t (the
MAC) for the given key l that the user entered.

10. The AG generates a second DH key b and the corresponding DH pub-
lic key gb and calculates the DH shared secret, K = (g a ′ )b.

11. The AG uses the key K to encrypt the string l using an agreed-on
secure encryption function b′ (which could be a simple one-time pad)
and sends gb and EK(l ) to the HS.

12. Device HS receives the g b ′ and EK(l )′ strings. The HS derives the DH
key K ′ = (g b ′ )a and decrypts the l ′ using the key K ′. If l ′ matches the
stored string, l, then K ′ is accepted as a combination key between the
HS and the AG.

13. The new link key between the HS and the telephone is stored in non-
volatile memory in both the AG and the HS unit.

14. The HS and AG perform mutual baseband authentication based on K
as the link key and switch to an encrypted connection.

15. The customer switches the HS out of the discoverable and pairable
mode so it will no longer accept any new inquiries or pairing requests.

At this point, the HS will only accept connections from a phone with
which it has been paired. From all other devices, it will request a pairing. The HS
will require authentication and encryption before any LMP channel setup can be
completed. If the HS is stolen, the illegitimate user can try to set up a connection
with it. This is prevented by mandating authentication. If the HS owner wants to
transfer the HS to another user to be used in connection with a different phone,
for example, if the owner is selling the HS, then the new user should change the
pass-key of the HS and not disclose the new key to the old owner. There is no
security risk for the HS by keeping the old DH public and private key values for
new key exchanges, since the public DH key gives no information on the private
key. Next, a pass-key update sample procedure is described:

1. The user opens a special external device control menu on a mobile
phone (AG) and asks it to connect to the HS.

2. Using a dedicated control protocol, the AG contacts the HS and estab-
lishes a control connection. Authentication is performed and encryp-
tion is switched on before the connection is established.

3. Using a dedicated menu on the AG, the user opts to change the fixed
pass-key of the HS. The phone asks the user to enter the old pass-key.

172 Bluetooth Security



4. The AG sends a request to the HS for changing the pass-key. Together
with the request, the AG also sends the old pass-key. A dedicated pro-
tocol between the AG and HS is used for this purpose.

5. The HS checks the received pass-key and compared it with the existing
pass-key. If they match, the HS generates a new MAC key, l. The key
and the DH public value of the HS is used to calculate the new corre-
sponding MAC, t. The string (l, t) will be the new pass-key of the HS.
The old pass-key is deleted.

6. The HS sends the new pass-key value to the AG.

7. The AG either just displays the new pass-key to the user or it securely
stores it in protected memory in the AG.

8. The AG might now request the HS to delete all old link keys.

From now on, when the user sets the HS into pairing mode, it will only
accept a pairing with the new pass-key. It is advisable to store the pass-key for
the exceptional case that a new pairing with the HS is required, for example, if
the link key gets destroyed due to a malfunction of the system. The user must
keep the new pass-key in a secure place.

10.2 Network access

Next we describe a security solution for network access. Network access to an IP
network in Bluetooth is provided through the PAN profile [4]. The PAN isbuilt
upon the BNEP [5] specification, which defines the encapsulation of Ethernet
packets allowing direct LAN access through a network access point (NAcP).

Here we discuss how to secure access based on the PAN profile for a sce-
nario where a user subscribes to and pays for network access services through a
network access service provider. Once the user has subscribed to the service, it
will be possible to connect a device to a LAN run by the service provider
through Bluetooth access points that have been set up by the access service pro-
vider. We describe a solution partly based on the improved pairing we intro-
duced in Chapter 9. This means that the involved terminals and access points
support DH key agreement computations as well as the MAC-based pairing.
The solution also utilizes the alias authentication mechanism that was described
in Chapter 8. Alias authentication and the DH-based pairing are particularly
suitable for the network access scenario, and its use here illustrates some of the
advantages with the enhancements we have introduced. It is hard to build a
good network access security solution using only the standard Bluetooth secu-
rity mechanisms, and some additional features are needed. An alternative to the

Security for Bluetooth Applications 173



solution we describe here is to use an IEEE 802.1X–based approach [6] (see
Section 9.2).

We are considering a situation where a Bluetooth data terminal (DT) can
move around and access several different NAcPs belonging to the same access
service provider. In order to be user friendly, manual configuration at each new
connection setup should be avoided. One possible security principle for the
architecture would be to use totally open (from a security point of view) access
points that can be accessed by anybody. But, more likely, the service provider
would like to restrict the access. Furthermore, Bluetooth users would like to be
sure that they connect to the correct access point and that the traffic sent over
the Bluetooth radio interface is not eavesdropped on.

10.2.1 Common access keys

We suggest using a security architecture built around a common access key (CAK)
concept that is new within Bluetooth but is used in other technologies. A CAK
is a link key that is not limited to one particular link, but rather is used for all
links that are established toward a particular network. Thus, a user will have one
CAK for all access points belonging to that particular network. Moreover, dif-
ferent users will have different CAKs to the same network and a user will need
different CAKs for different networks.

By using CAKs we can, with only minor changes, use the baseband secu-
rity mechanism also for the access point roaming scenario. If the network uses
alias authentication (see Section 8.5), it will be possible for the DT to find the
right CAK to use for the connection directly on the baseband level (note that
alias authentication can be used independently of the rest of the anonymity
mode features). In this case, all NAcPs will use the same alias address. This
allows fast connections without user interaction, as described in Section 10.2.5.
We assume that before a unit subscribes to a new service, a CAK for that par-
ticular service is generated. It is possible for the user to force a unit to only use
ordinary combination keys for some connections, while it still might allow
CAKs for other type of connections. For example, the key database in the DT
can look like Table 10.1.

This is similar to the database structure discussed in Section 3.7.
In the table, records for combination keys have the device address filled

with the corresponding Bluetooth unit address. The CAKs have the address field
filled with alias address of the network. In the example, the two first keys are
CAKs while the second two are ordinary combination keys.

If the device is accessing the network in anonymity mode, an additional
address field with its own alias address shall be added to the key database. (This
is not shown in Table 10.1.)

174 Bluetooth Security



10.2.2 Security architecture

We suggest an architecture where the baseband authentication and encryption
are used to protect the access link. The architecture can be implemented using
the improved pairing with DH key exchange for the initial access, and this
description will be based on the improved pairing. The Bluetooth baseband
authentication is used to make sure that only legitimate users are able to connect
to the LAN. We distinguish between three different situations (from the DT
point of view):

1. Network service subscription: The user needs to do some action in order
to subscribe to the network service and possibly also make an initial
payment.

2. Initial network connection: Initially, a DT tries to connect to a network
to which it has not been connected previously. Hence, a link key must
be exchanged.

3. Subsequent access to NAcPs: Here we utilize the CAK concept to allow
convenient access to different NAcPs. This means that subsequent
connections are handled automatically without any interaction with
higher layer security mechanisms.

10.2.3 Network service subscription

Next we describe how to create the necessary initial trust relation. Assume a user
would like to register a DT for getting LAN access through NAcPs installed by a
certain LAN access service provider or organization. This can be done, for exam-
ple, using one of the following two options:

Security for Bluetooth Applications 175

Table 10.1
Link Key Data Base Example with CAKs

Service Alias or Device Address Usage Key Key Type

Service
provider A

A32FF81ACC10 PAN 1B4D5698AE374FDE

B8390912463DFE3A

CAK

Service
provider B

478AEB2B895C PAN FE729425BC9A95D3

9132BDE275917823

CAK

Any A5EE29667190 Always 091827AD41D4E48D

29CBE82615D18490

C*

� � � � �

Any 068935F6B3E2 Always 126304467592CD71

FF19B4428133AD8E

C*

*Indicates a combination key.



1. The user registers the DT at the LAN access provider through some
regular (non-Bluetooth) procedure (e.g., phone, office, Web).

2. The user is getting LAN through the user’s own organization and the
DT needs some preconfiguration in order to be allowed to access the
network through NAcPs.

We assume that when a DT user subscribes to a LAN access service, that
user gets a unique ID that identifies the service provider. Along with the ID, the
user receives a secret pass-key. The pass-key is built of a combined secret key and
the corresponding MAC according to the improved pairing principles described
in Chapter 9. The secret key part of the pass-key needs to be generated inde-
pendently for each DT subscriber in the LAN by the LAN access service pro-
vider using a secure random generator. However, we assume that the network
uses the same DH keys for all different DT subscribers. In order to not compro-
mise security, the service provider must store private DH keys in a central data-
base. For convenience, the public DH key can also be stored in the same
repository.

The DT user (or someone acting on behalf of the DT user) needs to enter
the pass-key manually into the device, in its protected (through encryption or
tamper-resistant storage) DT service database. The DT network subscription
database entry consists of two values:

1. LAN access service ID;

2. Pass-key for the particular LAN access service.

At registration, the user also receives a unique DT ID from the LAN access
provider. This ID has nothing to do with the BD_ADDR of either the DT or
the access points. As part of the subscription, the LAN access provider needs to
store the pass-key and corresponding DT ID in a central secure database. Pref-
erably, this can be the same server that also stores the DH secret key for the net-
work. To summarize, the following parameters must be kept in a central secure
server by the service provider:

• Network DH secret and public keys;

• DT ID;

• The pass-keys corresponding to the different DT IDs.

All NAcPs in the access network need to have secure access and connection
to this database, as illustrated in Figure 10.2. The access and connection to the
database can be secured by any standard method, like TLS [7] or IPsec [8].

176 Bluetooth Security



10.2.4 Initial connection

Once the DT has got the service ID and pass-key configuration, it will be able to
connect to the network. This can be done in several different ways. We will give
a sample procedure. It is a rough description of the protocol and interactions
with the network, and the details are left out. Figure 10.3 illustrates the different
actions.

Below, the different steps are outlined:

1. The DT connects to the NAcP using the Bluetooth inquiry/paging
procedure.

2. The DT acts as a service discovery protocol (SDP) client and searches
for the LAN access service record on the NAcP. The DT receives the
service ID of the LAN service provider. The NAcP may perform a
similar service discovery sequence on the DT to obtain the DT ID.

3. The DT checks that it knows the service ID received over the SDP
protocol. Otherwise, the DT interrupts the connection procedure.

4. The DT asks the internal service database for the pass-key correspond-
ing to the service ID.

5. The corresponding pass-key in the internal database is returned to the
DT.

6. The NAcP uses a dedicated protocol to send the public key of the net-
work together with the alias address of the network to the DT. The
alias address is needed by the DT in order to look up the correct link
key for authentication of the access points at the Bluetooth link level.

7. The DT validates the DH value that it receives using the pass-key it
found in step 5 (see Section 8.5 for the details).

Security for Bluetooth Applications 177

NAcP

NAcP

NAcP

NAcP

Secured connection

LAN

DH secret parameter:
a

DH public parameters:
g, p, g mod pa

DT ID
A81. . .
B41. . .
.
.
.

Pass-key
13FA. . .
3EG4. . .
.
.
.

Network
access server

Figure 10.2 LAN with access points and central secure access server.



8. The DT sends its own public DH key together with an encrypted
pass-key and optionally an alias address (if the DT wants to be anony-
mous) to the NAcP.

9. The NAcP connects to the access server through a secure connection
and sends the parameters it received in step 8 together with the DT ID
to the access server.

10. The access server derives the DH shared secret, decrypts the pass-key,
and verifies it against the pass-key value corresponding to the received

178 Bluetooth Security

DT NAcP

NAcP1. Connection establishment

2. Service discovery sequence

4. Pass-key request
(service ID)

5. Pass-key

16. Encrypted link

15. Authentication

DT key database

13. Store link key and
DT device or alias address

10. Derive link_key/
validate pass-key

Access server

11. Link key

6. Server public key + network alias

DT service database

3. Service ID validation

7. DH key validation

14. Store link key
and network alias

12. Derive link key

9. DT parameters

8. DT public key + encrypted pass-key + [alias address]

Figure 10.3 Initial connection to the access network.



DT ID, which is stored in its database. The access server derives a
Bluetooth link key from the DH shared secret.

11. The access server returns the link key derived in step 10 to the NAcP.

12. The DT also calculates the DH shared secret and derives a link key
from it.

13. The access server stores the new link key together with the DT Blue-
tooth address (fixed or alias) in its database.

14. The DT stores the new link key as a CAK together with the network
alias address in the DT key database.

15. The DT and NAcP perform a mutual baseband authentication using
the newly derived link key.

16. Optionally the Bluetooth link is encrypted.

Through the procedure described above, both the network and the DT are
equipped with the necessary security parameters for making subsequent access
to the network quick and convenient.

10.2.5 Subsequent access to NAcPs

Finally, we describe how subsequent access can be made securely and efficiently
using the CAK and alias authentication. The procedure works fine for the DT
with both security mode 2 and security mode 3. For subsequent access, the
NAcPs could also use security mode 3. However, security mode 3 does not work
well with the initial access procedure, and security mode 2 is the preferred mode
of operation for the NAcPs. If the DT connects to the LAN for the fist time,
authentication and encryption are performed according to the description in
Section 10.2.4. For all other cases, the procedure is as described in Figure 10.4.

Below, the different steps of the secure connection establishment are
outlined:

1. The DT connects to the NAcP using the Bluetooth inquiry/paging
procedure.

2. The NAcP sends its alias address to the DT through a dedicated LM
command (see Section 8.5 in Chapter 8 for the details).

3. The DT optionally (if it is anonymous) also sends its alias address to
the NAcP.

4. The DT uses the alias address to find the right CAK in its key
database.

5. The DT finds the link key (CAK) to use for the connection.

Security for Bluetooth Applications 179



6. The NAcP connects to the access server through a secure connection
and requests the link key for the received device or alias address.

7. The access server finds the requested link key and returns the link to
the NAcP.

8. The DT and NAcP perform a mutual baseband authentication using
the found link key.

9. Optionally, the Bluetooth link is encrypted.

The procedure described above completes the secure connection establish-
ment between the DT and the NAcP. If the DT runs in anonymous mode, it
may also choose to update its alias address after authentication and encryption
are enabled. Then the NAcP must send the updated alias address to the access
server. The NAcP, on the other hand, does not have any anonymity require-
ment and can always keep the same alias.

The procedure in Figure 10.4 can be repeated whenever the DT moves
and would like to connect to a new NAcP. In this way, secure roaming between
access points is achieved.

180 Bluetooth Security

DT NAcP

NAcP1. Connection establishment

2. Alias address

3. Alias address

9. Encrypted link

8. Authentication

Access server

DT key database

4. Link key request
(alias address)

6. Link key request
(device or alias address)

5. Link key

7. Link key

Figure 10.4 Subsequent access to the network.



10.3 SIM access

In this section we will discuss security issues and solutions for remote access to a
subscription identity module (SIM) [9] over a Bluetooth connection. The SIM
access application is provided by a Bluetooth profile. A SIM card is an integrated
circuit card used in the GSM mobile telephony system. It is used to hold sub-
scriber information. This information in turn is used to securely connect a
mobile phone to a cellular GSM network and it makes it possible for the mobile
network operator to securely identify subscribers attaching to the network. Con-
sequently, it also allows the operator to bill the use of mobile network services.
The SIM interface is specified in [9] and the card interface follows the ISO/IEC
7816-3 standard [10]. A SIM can be used for a large variety of services offered
by GSM service providers.

We start this section by giving a short overview of the SIM access profile.
Next, security-related problems and solutions for SIM access are discussed.

10.3.1 The SIM access profile

The Bluetooth SIM access profile defines procedures and protocols for access to
a remote SIM over a Bluetooth serial port (RFCOMM) connection. The proto-
col stack is illustrated in Figure 10.5.

The SIM access messages consists of a header and a payload. The header
describes the type and the number of parameters transferred in the message.
Messages have been defined for control of the SIM card remotely and to transfer
SIM card messages. Two different roles are defined in the profile:

Security for Bluetooth Applications 181

SIM access application

SIM access profile

RFCOMM SDP

LMP L2CAP

Baseband

SIM access application

SIM access profile

RFCOMM SDP

LMP L2CAP

Baseband

Figure 10.5 The SIM access profile communication stack.



1. SIM access client;

2. SIM access server.

The SIM access client uses the SIM access profile to connect to another
device, the SIM access server, over Bluetooth. The server is the device with the
SIM card reader and SIM card attached. A typical usage scenario is illustrated in
Figure 10.6. In this scenario, a laptop is connected to a wireless network
(WLAN or cellular network). A SIM is needed for subscriber authentication in
the wireless network. The laptop does not have a smart card reader and will need
to use the phone with a SIM for network access. The SIM card that is needed for
the access resides in the phone, and the laptop uses the SIM access profile to
access it.

10.3.2 Securing SIM access

The SIM is used for security critical services. The card holds secret keys and sub-
scriber information that must be well protected. The smart card technology pro-
vides tamper resistance protection. However, the interface to the card is not
protected in any other way than that the card is “opened” with a secret PIN.
Once the card is opened, it will perform most tasks that are requested (some
tasks may require a second PIN to be entered). The SIM access profile allows the
card “interface” to be extended over the Bluetooth link. Consequently, it is very
important that the wireless link is well protected. We will describe the security
mechanism mandated by the profile [11] and also discuss additional security
measures that SIM access profile implementers should take.

SIM access mandates the following:

182 Bluetooth Security

SIM

Wireless
network

SIM access
server with
SIM card

Bluetooth link

SIM access client
with network access

WLAN or
cellular link

Figure 10.6 SIM access profile usage scenario.



• Security mode 2 or 3 shall be used.

• The client and server must be paired before they set up a SIM access
connection.

• A pass-key with length of at least 16 decimal digits shall be used at the
pairing. Furthermore, fixed pass-keys are not allowed.

• The server shall always authenticate the client.

• The Bluetooth link between the client and server shall always be
encrypted and the key length shall be at least 64 bits.

These requirements ensure a good basic security level for the SIM access
connection, since it is not so easy to do a brute force attack on a 16-digit pass-
key. Furthermore, the Bluetooth authentication and encryption algorithms are
sufficiently strong (see Chapter 7). However, a 64-bit encryption key is a little
bit too short, and whenever possible a 128-bit key is recommended instead.
Entering a 16-digit pass-key can be cumbersome for the user. Actually, users
tend to choose low entropy pass-key values when such a long string as 16 digits
is required. A better approach than having the user choose the pass-key is to let
the server generate the pass-key value and display it to the user. The user then
enters the same value into the client device. The pass-key needs to be generated
by choosing the pass-key bits uniformly and at random. The improved pairing
that we described in Chapter 9 does not have the problem with entering a long
pass-key and suits well also for the SIM access profile.

The security required by the SIM access profile gives the necessary basic
protection for the message exchange between the client and server. However,
there are additional security measures that need to be taken in order to avoid
introducing security holes in the SIM access implementation. One of the prob-
lems is that in an implementation that just follows the specification, all messages
from the client to the server will be accepted and forwarded to the SIM. This is a
potential security risk for the sensitive functions in the subscription module. All
functions will be available for the remote device, that is, the SIM access client.
This device might have been compromised in some way or it might have been
infected by a virus or other harmful software. Hence, there must be a way for the
server to restrict the access to the subscription module.

This can be achieved if, at the security pairing, the server selects the set of
services in the SIM that the client should be allowed to access. The set of services
can be a default set, or the server may ask the owner of the server device to
decide which services the client should be allowed to access. This should be a
subset that limits the damage in case of a compromised client. Then the record
of allowed services should be stored in a special and protected access control
database. When the client has been authenticated against the server, a filtering

Security for Bluetooth Applications 183



process or a security filter will check all messages from the client to the subscrip-
tion module, as is illustrated in Figure 10.7. The filter makes sure that only mes-
sages allowed according to the access database are forwarded to the subscription
module.

Another security problem with the SIM access profile is that the PIN
needed to open the SIM is sent from the client to the server. This means that if
the client device is untrusted or infected by malicious software, the PIN for the
card can be intercepted by a third party. To avoid this, the access filter in Figure
10.7 shall not accept PIN commands from the client, but demand the SIM to be
opened from the server device. Then the user must enter the SIM PIN into the
trusted server device before the SIM access profile connection is set up. Clearly,
this implies that a proper input interface must be present at the SIM access
server.

References

[1] Bluetooth Special Interest Group, Bluetooth Security White Paper, Version 1.0, 19 April
2002.

[2] Gehrmann, C., and K. Nyberg, “Enhancements to Bluetooth Baseband Security,” Proc.
Nordsec 2001, Copenhagen, November 2001, pp. 39–53.

[3] Bluetooth Special Interest Group, Specification of the Bluetooth System, Version 1.1, Profiles,
Part K:6 Headset Profile, February 2001.

[4] Bluetooth Special Interest Group, Specification of the Bluetooth System, Version 1.0, Per-
sonal Area Networking Profile, February 2003.

[5] Bluetooth Special Interest Group, Specification of the Bluetooth System, Version 1.0, Blue-
tooth Network Encapsulation Protocol (BNEP) Specification, February 2003.

184 Bluetooth Security

Server
Security filter

Client

Access control
database

Check if
access is
granted?

M

SIM

If OK, forward
M to SIM

M

Response

Figure 10.7 Access control to a SIM.



[6] IEEE, IEEE Std., 802.1x-2001, Version 2001, Port-Based Network Access Control, June
2001.

[7] Dierks, T., and C. Allen, The TLS Protocol, Version 1.0, RFC 2246, January 1999.

[8] Kent, S., and R. Atkinson, IP Encapsulating Security Payload (ESP), RFC 1827, November
1998.

[9] 3rd Generation Partnership Programme, 3GPP TS 11.11, Specification of the Subscriber
Identity Module Mobile Equipment (SIM-ME) Interface, Version 8.10.0, September 2003.

[10] International Organization for Standardization, ISO/IEC 7816-3 Information Technol-
ogy—Identification Cards Integrated Circuit(s) Cards with Contacts—Part 3: Electronic Sig-
nals and Transmission Protocols, 2nd ed., 1997.

[11] Bluetooth Special Interest Group, Specification of the Bluetooth System, Version 0.95, SIM
Access Profile Specification, June 2002.

Security for Bluetooth Applications 185



.



Glossary

Throughout the book, several terms have been used. Some are commonly used
within the field of security research, while other terms are specifically related to
Bluetooth. Below we give short definitions for all of these.

Active wiretapper A wiretapper that is capable of injecting and modifying
messages at will.

Ciphertext Data protected through the use of encipherment. The semantic
context of the resulting data is not available.

Claimant The entity that claims to be a specific peer entity, that is, claiming a
specific identity.

Connectable A Bluetooth device that regularly performs a page scan, and
therefore can be reached by other devices knowing its device address.

Denial-of-service (DoS) attack The prevention of authorized access to
resources or the delaying of time-critical operations. The resulting system degra-
dation can, for example, be the result of the system being fully occupied by han-
dling bogus connection requests.

Discoverable A Bluetooth device that regularly performs inquiry scanning and
therefore can be detected by other devices.

Eavesdropper See passive wiretapper.

187



Fixed pass-key A pass-key that cannot be arbitrarily chosen at the pairing
instance.

Impersonation attack An attack whereby the attacker sends data and claims
that the data originates from another entity.

Key management The generation, storage, distribution, deletion, archiving,
and application of keys in accordance with a security policy.

Known plaintext attack Attack on a ciphering system using knowledge of
ciphertext data and the matching cleartext.

Pairable A Bluetooth device for which the security policy is to accept pairing
attempts.

Passive wiretapper A person that wiretaps a link by making a copy of the data
that is sent via the link. The state of the system is not changed.

Peer-entity authentication The corroboration that a peer entity in an associa-
tion is the one claimed.

Plaintext Intelligible data for which the semantic context of the resulting data
is available.

Security policy The set of criteria for the provision of security services.

Trusted device A remote device with which a long-lasting security relation has
been established. A trusted device is given unconditional access to all services
running on the local device after it has been successfully authenticated.

Untrusted device A remote device with which a temporary or a long-lasting
security relation has been established. An untrusted device does not get uncon-
ditional access to services running on the local device; authentication as well as
authorization is required.

Variable pass-key A pass-key that can be arbitrarily chosen at the pairing
instance.

Verifier The entity that challenges another entity for its claimed identity.

188 Bluetooth Security



List of Acronyms and Abbreviations

Here we list the acronyms and abbreviations used in the book. In cases for which
it is not obvious what the meaning of the listed item is, a short explanation has
also been provided.

ACL Asynchronous connection-oriented (logical transport).

ACO Authenticated ciphering offset. A parameter binding devices to a par-
ticular authentication event.

AES Advanced Encryption Standard

AG Audio gateway. A mobile phone or other outloud-playing device (con-
nected to a headset).

BB Baseband. This is the lowest layer of the Bluetooth specification.

BD_ADDR Bluetooth device address

BER Bit error rate. Average probability that a received bit is erroneous.

BNEP Bluetooth network encapsulation protocol. Emulation of Ethernet
over Bluetooth links.

CA Certificate authority. Trusted issuer of certificates.

189



CAC Channel access code. A code derived from the master device address in a
Bluetooth connection

CAK Common access key. A common key that can be used when connecting
to different access points belonging to a particular network provider.

CID Channel identifier. End points at an L2CAP channel.

COF Ciphering offset. Additional secret input to ciphering key generation
procedure.

CPU Central processing unit

CRC Cyclic redundancy check. A checksum added to the payload by the
sender that the receiver can use to detect transmission errors.

DAC Device access code

DH Diffie-Hellman. The name of the first public key exchange scheme.

DoS Denial of service

DSP Digital signal processor

DT Data terminal

EAP Extensible authentication protocol. An authentication protocol stan-
dardized by the IETF organization.

EAPOL EAP encapsulation over LANs

ECDH Elliptic-curve Diffie-Hellman

eSCO Enhanced synchronous connection-oriented. A logical channel for
transport of prioritized synchronous user data.

FEC Forward error correction. Another notion for an error correcting code.

FH Frequency hopping

FHS Frequency hop synchronization

190 Bluetooth Security



GAP Generic access profile. A Bluetooth profile that determines common
connection handling functions for all other Bluetooth profiles.

GSM Global Mobile System

HC Host controller

HCI Host controller interface

HS Headset

IAC Inquiry access code

ICC Integrated circuit card

ID Identifier

IEEE Institute of Electrical and Electronics Engineers. A nonprofit technical
professional association for engineers in this area.

IETF Internet Engineering Task Force

IIR Infinite impulse response

IKE Internet key exchange. An IETF protocol used to authenticate IP connec-
tions and to exchange IPSEC keys.

IP Internet protocol.

IPSEC IP security protocol. An IETF security protocol used to protect IP
packets.

ISM Industrial, scientific, and medical. A part of the radio spectrum reserved
for these kinds of applications.

L2CAP Logical link communication and adaptation protocol.

LAN Local area network

LAP Lower address part. Bits 0 to 23 of the unique 48-bit IEEE device
address.

List of Acronyms and Abbreviations 191



LC Link controller. Entity that implements the baseband protocol and
procedures.

LFSR Linear feedback shift register

LM Link manager. Entity that sets up and maintains the Bluetooth link.

LMP Link manager protocol

LSB Least significant bit

LT_ADDR Logical transport address. A logical 3-bit address assigned to each
slave in a piconet.

MAC Message authentication code

MANA Manual authentication

MSB Most significant bit

NAcP Network access point

NAP Nonsignificant address part. Bits 32 to 47 of the unique 48-bit IEEE
device address.

OBEX Object exchange

OpCode Operation code_A code used to identify different types of PDUs.

PAN Personal area network

PCD Personal certification device

PDA Personal digital assistant

PDU Protocol data unit

PIN Personal identification number

PKI Public key infrastructure

192 Bluetooth Security



PSM Protocol/service multiplexor. An identifier used by L2CAP during chan-
nel establishment to route the connection request to the right upper layer proto-
col. Several protocols can be multiplexed over L2CAP.

QoS Quality of service. Defines the specific requirements on the link (e.g.,
with respect to bit rate, delay, latency) needed by certain applications.

RFCOMM A serial cable emulation protocol based on ETSI TS 07.10

RS-code Reed-Solomon code.

RSA Rivest, Shamir, and Adleman. The name of a public-key cryptosystem
for both encryption and authentication.

SCO Synchronous connection-oriented. A logical channel for transport of
synchronous user data.

SDP Service discovery protocol. A protocol for locating services provided by
or available through a Bluetooth device.

SIG Special Interest Group. The organization owning the Bluetooth trade-
mark, also responsible for the evolution of Bluetooth wireless technology.

SIM Subscription identity module. An ICC used in the GSM mobile teleph-
ony system. The module stores subscription and user data.

TCP Transmission control protocol. An IETF protocol for reliable IP
communication.

TLS Transport layer security. An IETF security protocol used to authenticate
peers, exchange keys, and protect TCP traffic.

UAP Upper address part. Bits 24 to 31 of the unique 48-bit IEEE device
address.

UART Universal asynchronous receiver/transmitter. An integrated circuit
used for serial communication with the transmitter and receiver clocked
separately.

USB Universal serial bus

WLAN Wireless local area network

List of Acronyms and Abbreviations 193



.



About the Authors

Christian Gehrmann received his M.Sc. in electrical engineering and his Ph.D. in
information theory from Lund University, Sweden, in 1991 and 1997, respec-
tively. He joined Ericsson in Stockholm in 1997. At Ericsson he has primarily
been working with wireless network and terminal security research and standardi-
zation. Since 2002, he has held a senior specialist position in security architectures
and protocols at Ericsson Mobile Platforms AB in Lund. He has published several
research papers in the wireless personal area network security area and is a key
contributor to the Bluetooth security improvements work. He was the chairman
of the Bluetooth SIG Security Expert Group in 2001 and 2002.

Joakim Persson received his M.Sc. in computer engineering and his Ph.D. in
information theory from Lund University, Sweden, in 1990 and 1996, respec-
tively. He joined the research department at Ericsson Mobile Platforms AB in
1996, and since 1999 he has been a technical manager for the new technology
section within this department. He has been working with Bluetooth since 1997
and is one of the key contributors to the baseband specification. As a member of
the Radio Working Group of Bluetooth SIG, he has also been working with the
evolution of the technology.

Ben Smeets is an Ericsson expert in security systems and data compression at
Ericsson Mobile Platforms AB. He is a full professor of digital switching theory at
Lund University and holds a Ph.D. and Docent degree, in digital techniques
from Lund University and an M.Sc. in electrical engineering from Eindhoven
University of Technology. At Ericsson Mobile Platforms he is guiding studies
and implementation of security applications and basic security features in mobile
devices. He also functions as an internal consultant on security aspects in digital

195



systems design. In the academic sphere he is pursuing research in cryptology, par-
ticularly stream cipher analysis, and in information theory.

196 Bluetooth Security



Index

Access control
IEEE 802.1x port-based, 150–52
L2CAP, 93
SIM, 184

Active address, 123, 125–27
defined, 125
use of, 125
See also Addresses

Addresses
active, 123, 125–27
alias, 123, 128
fixed, 123, 124
update, 134
usage, 124–28

Ad hoc connectivity, 4, 20–22
defined, 20
scenario, 21

Advanced Encryption Standard (AES), 63
Algorithms, 65–80

E0, 74–79
E1, 70–71
E3, 73
E21, 71–72
E22, 72–73
encryption, 32–34
f8, 66
selection, 65

Alias address, 123
authentication, 128

defined, 128
exchange, 134–35
format, 132
use of, 131
See also Addresses

Alias authentication, 131–32
in asymmetric fashion, 132
defined, 124, 131
using, 131–32

Anonymity
address changes for, 123
inquiry and, 129
providing, 123–38

Anonymity mode
address update command, 134
alias address exchange command, 134–35
defined, 123
fixed address exchange command, 135–36
identification, 128
LMP commands, 133–36
overview, 123–24

Application security, 167–84
headset, 168–73
network access, 173–80
SIM access, 181–84

Asymmetric mechanisms, 23
Asynchronous connection-oriented (ACL)

links, 10
packets, 12

197



Asynchronous traffic, 10
Attacks

backdoor, 117
bluejacking, 117
correlation, 98
denial of service, 111–12
eavesdropping, 97–105
frequency hopping, 116
guess-and-divide, 99
impersonation, 105–7
inquiry, 115
location tracking, 115–16
man-in-the-middle, 108
paging, 115–16, 131
pairing, 107–9
pass-key test, 109
snarf, 117
substitution, 106
traffic monitoring, 115
user-friendly name, 116

Audio gateway (AG), 168
Authenticated ciphering offset (ACO), 51
Authentication, 24–25, 30–31

alias, 124, 128, 131–32
based on unit keys, 112
defined, 25
device identification through, 31
E1 algorithm, 70–71
IEEE 801.1x, 150
manual, 141
mutual, 51, 154
procedure, 31
requirement, 92

Authorization, 25
defined, 25
requirement, 92

Autonomous trust delegation, 139–40,
154–64

example, 156–58
implementation aspects, 158–59
security group extension method, 154–60
security groups, 159–60

Backdoor attack, 117
Baseband, 5–6, 7–13

in Bluetooth controller, 5
connection setup, 7–8
defined, 5
events, 46–53
key management events overview, 46

packet structure, 10–13
topology and medium access control,

8–10
traffic types, 10
See also Bluetooth protocol stack

BD_ADDR_alias, 128
BD_ADDR_fixed, 124
Best effort traffic, 10
Bit error rate (BER), 7
Block ciphers, 65–66

defined, 24
illustrated, 25
KASUMI, 66
modification, 65
SAFER+, 24, 63, 66, 67–73
See also Stream ciphers

Bluejacking, 117
Bluetooth

anonymity mode, 123–38
background, 3
controller, 6
data terminal (DT), 174
defined, 3
packet format, 11
pairing, 43–44
popularity, 3
profiles, 17–19
security architecture, 27–42
security basics, 19–25
Special Interest Group (SIG), 3, 87, 167
trade-offs, 4
vulnerabilities, 117

Bluetooth device address (BD_ADDR), 7–8
access codes, 114
BD_ADDR_alias, 128
BD_ADDR_fixed, 124
format, 114
location tracking and, 113–14
parts, 114
updating, 125–26
updating rules, 127

Bluetooth devices
anonymous, 125
in anonymous mode, 128
building, 79
database, 91, 95
location tracking protection, 113
operation environments, xi
piconet participation, 9

198 Bluetooth Security



trusted, 88, 91
unknown, 91
untrusted, 88, 91

Bluetooth Network Encapsulation Protocol
(BNEP), 150

Bluetooth protocol stack, 4–17
baseband layer, 5–6, 7–13
host controller interface (HCI), 6, 15–17
illustrated, 5
L2CAP, 6, 15
link manager protocol (LMP), 6, 13–15
physical layer, 4, 6–7

Broadcast encryption, 81–85
key length selection, 82
key validity, 82
master key, 81
message sequence chart, 84
overview, 81–82
preparing for, 82–83
support determination, 83
switching to, 83–85
temporary key, 81

Certificate authority (CA), 160
Channel access code (CAC), 8, 114, 126
Channel establishment, 92–93

defined, 92–93
L2CAP, 93–94

Channel identifiers (CIDs), 93
Ciphering

activation, 55
E0 algorithm, 74–78
offset (COF), 54

Cipher keys
constraint, 55–57
encryption, 54–55
generation, 54–58
payload, 57–58

Ciphertext, 22
Combination keys, 28, 45

calculation, 107
change, message sequence chart, 59
defined, 49
generation, 49–50
generation process illustration, 50
generation requirements, 58–59
headsets use of, 171
update policy, 59
See also Keys

Common access keys (CAKs), 174–75

defined, 174
link key database example with, 175
using, 174

Confidentiality, 22–23
Configuration management, 141
Connectable mode, 124, 129–30

defined, 129–30
introduction, 130

Connections
direct establishment of, 130
establishment, 92–93
first-time, 44
incoming, 92
initial, 177–79
outgoing, 92
secure, 30
setup, 7–8, 92–95

Constraint keys, 28
defined, 55
generation, 55–57
polynomials, 56

Controlled ports, 151
Correlation attacks, 98
Cyclic redundancy check (CRC), 7, 12, 13

with activated encryption, 105–6
bits, changing, 106
calculation, 105

Denial-of-service (DoS) attacks, 51, 111–12
Device access code (DAC), 114
Device trust level, 91–92
Diffie-Hellman

Elliptic-Curve, 149
key agreement, 140, 142, 146
key agreement computations, 170
key exchange, 140, 142
public values, 142, 146
scheme, 24

Digital signal processors (DSPs), 32

E0 algorithm, 74–78
as autonomous finite state machine, 73
core, 74
core engine schematics, 76
implementation choice, 79
initialization, 77–78
windmill variant of, 80

E1 algorithm, 70–71
E3 algorithm, 73
E21 algorithm, 71–72

Index 199



E22 algorithm, 72–73
EAP-TLS, 152–54

defined, 152
message sequence, 152
message sequence example, 153

Eavesdropping, 97–105, 108
Elliptic-Curve Diffie-Hellman (ECDH), 149
Encryption

algorithms, 32–34
based on unit keys, 112
broadcast, 81–85
defined, 22
engine, 73–74, 100
machinery operation, 36
mode parameter, 85
requirement, 92

Encryption keys, 28
constrained, 28
generation, 54–55
link, 28

Enhanced synchronous connection-oriented
(eSCO) links, 10

Extensible authentication protocol (EAP),
147

encapsulation over LANs (EAPOL), 151
messages, 151
mutual authentication, 154
See also EAP-TLS

F8 algorithm, 66
Features mask, 83
Fixed address, 123

defined, 124
exchange, 135–36
uses, 124
See also Addresses

Forward error correction (FEC), 12
Frequency hopping (FH), 6

attack, 116
synchronization (FHS), 114

Gaussian frequency shift keying, 7
General connectable mode, 124, 131
Generic access profile (GAP), 18, 38
Guess-and-divide attack, 99

Headsets, 168–73
combination keys, 171
example, 171–73
as limited devices, 169

pairing, 169
pass-key and key management, 169–71
profile, 168
security model, 168–69
security model illustration, 169
See also Application security

Higher layer key exchange, 149–54
with EAP TLS, 152–54
IEEE 802.1x, 150–52

Host controller (HC), 44–45
Host controller interface (HCI), 6, 15–17

capability, 15
commands, 16, 17
defined, 6
protocol, 44–45
stack position, 16
See also Bluetooth protocol stack

IEEE 801.1x, 150
IEEE 802.1x, 150–52

frame formats using, 152
port, 150

Impersonation, 105–7
Improved pairing, 140–49

complexity, 147–49
illustrated, 143
implementation, 147–49
MAC-based protocol, 142–45
MAC construction, 145–47
protocol, 141–47
protocol stack, 148
requirements on, 140–41
security, 145–47
stage I, 144
stage II, 144

Incoming connections, 92
Industrial, scientific, and medical (ISM)

band, 6
Infinite impulse response (IIR) filters, 76
Initial connections (access network), 177–79

illustrated, 178
steps, 177–79

Initial guessing, 67
Initialization keys, 28

E22 algorithm, 72–73
generation, 47

Inquiry
access code (IAC), 114
anonymity and, 129
attack, 115

200 Bluetooth Security



Integrated circuit cards (ICCs), 62
Integrity, 23
Internet key exchange (IKE), 29

KASUMI, 66
Key databases, 60–63

corrupted, 61
example, 60
format and usage, 60–61
storage, 62–63

Key management
extensions, 139–64
headsets, 169–71
issues, 139–40
with PCDs, 161
public key-based, 160–63

Keys, 27–29
bit streams, 34
cipher, 54–58
combination, 28, 45, 49–50, 58–59
constraint, 28, 55–57
derivation functions, 63
disclosure of, 110–11
encryption, 28, 54–55
higher layer exchange, 149–54
improper storage, 109–12
initialization, 28, 47
link, 27–28
lookup failure, 61
master, 28, 36, 52–53
pass, 29
payload, 28, 58–59
round, 67, 69
secret, 110
semipermanent, 28, 63
tampering with, 111
temporary, 28
unit, 28, 45, 47–48, 58

Least significant bit (LSB), 78
Linear feedback shift registers (LFSRs), 33

first loading, 77
output sequences, 75
second loading, 78

Link keys, 27–28
database example, 61
defined, 27
types of, 27–28
See also Keys

Link level-enforced security, 96

Link management (LM), 45–46
Link manager protocol (LMP), 13–15

alias address exchange sequence, 135
anonymity mode commands, 133–36
defined, 6
features mask, 83
fixed address exchange sequence, 135
new active address sequence, 134
PDU flow, 15
PDU format, 14
PDUs, 13
version number, 83
See also Bluetooth protocol stack

Link managers, 138
Links

privacy, 31–37
protecting, 32

Location privacy, 113
Location tracking, 113–16

attack types, 115–16
Bluetooth device address and, 113–14
defined, 113
frequency hopping attack, 116
inquiry attack, 115
paging attack, 115–16
traffic monitoring attack, 115
user-friendly name attack, 116

Logical link communication and adaptation
protocol (L2CAP), 15

access control, 93
defined, 6
as filter, 15
incoming channel establishment, 93–94
interaction, 94
queries, 94

Lower address part (LAP), 114
choice, 125
new, generation, 126
updating, 125

MAC-based pairing protocol, 142–45, 170
Man-in-the-middle attack, 108
Man Machine Interface (MMI) interaction,

47
Manual authentication (MANA), 141
Master, 8
Master keys, 28

broadcast encryption, 81
generation, 52–53
as temporary key, 52

Index 201



Master keys (continued)
transfer process, 53

Master-to-slave communication, 9
Message authenticating code, 112

Network access, 173–80
common access keys (CAKs), 174–75
initial connection, 177–79
security architecture, 175
service subscription, 175–77
subsequent, with NAcPs, 179–80

Network access points (NAcPs), 173
in access network, 176
LAN access through, 175
subsequent access to, 179–80

Nonpairable mode, 133
Nonsignificant address part (NAP), 114, 125

Object exchange (OBEX) layer, 19
object push, 117
security policy enforcement, 89

Organization, this book, xi–xii
Outgoing connections, 92

Packet header, 11
Packets

ACL, 12
command, 17
encrypted, formatting, 35
FHS, 114
structure, 10–13
synchronous, 13

Paging
attack, 115–16, 131
connectable mode, 129
nonconnectable mode, 129

Pairable mode, 133
Pairing, 29–30, 43–44

anonymity and, 133
attacks, 107–9
example, 136–38
for first-time connections, 44
improved, 140–49
manual, 154
message sequence for, 137
procedure, 44
steps, 44

Pass-keys, 29
short values, 108
test attack, 109

UTF-8 encoded, 54
Password-based key derivation functions, 63
Payload keys, 28

defined, 57
generation, 57–58

Personal area networks (PANs), 18, 19–20
manual pairings in, 154
scenario, 21
units, 19

Personal certification devices (PCDs),
160–63

authentication and key exchange
procedure, 163

defined, 160
devices utilizing, 160
group extension method vs., 163–64
initialization procedure, 161–62
key management with, 161
public key certificates from, 161

Personal Computer Memory Card
International Association
(PCMCIA), 110

Physical layer, 6–7
in Bluetooth controller, 5
defined, 4
See also Bluetooth protocol stack

Piconets, 8
constellations, 9
exchanging information between, 10

Plaintext, 22
Point-to-point paradigm, 36
Port-based network access, 150
Ports

controlled, 151
defined, 150
uncontrolled, 151

Private connectable mode, 124, 130
defined, 130
direct establishment, 130

Private pairable mode, 133, 149
Profiles

building on existing, 18
defined, 17–18
general object exchange, 19
illustrated, 18
local positioning, 18
serial port, 19

Protocol/service multiplexor (PSM), 95, 96
Public key infrastructure (PKI), 154, 160

202 Bluetooth Security



Public keys
certificates, 161
key management, 160–63
mechanisms, 23–24

Quality-of-service (QoS), 6

Reed-Solomon codes (RS-codes), 145
MAC construction examples, 147
in polynomial representation, 145

Rivest, Shamir, and Adleman (RSA), 24
Round keys, 67, 69

SAFER+, 24, 63, 66, 67–73
authentication algorithm E1, 70–71
cryptanalysis, 66
defined, 67
encryption key algorithm E3, 73
initial key algorithm E22, 72–73
key scheduling, 68
one round of, 69
round construction, 67
round keys, 67, 69
subsystems, 67
tables, 69
unit key algorithm E21, 71–72
See also Block ciphers

Secret keys, disclosure, 110
Secure connections, 30
Security

architecture, 27–42
authentication, 24–25, 30–31
authorization, 25
basics, 19–25
block/stream ciphers, 24
for Bluetooth applications, 167–84
communication policies, 37–42
confidentiality, 22–23
expectations, 20
flexibility, 89
implementation flaws, 116–17
improved pairing, 145–47
integrity, 23
level for services, 92
levels, 88–89
link level-enforced, 96
notions and terminology, 22–25
service level-enforced, 88
symmetric/asymmetric mechanisms,

23–24

transport layer (TLS), 29
user scenarios, 19–22

Security groups
extension method, 154–60
introducing, 159–60
public key method vs., 163–64
trusted extension example, 157, 158

Security manager architecture, 90–96
connection setup, 92–95
database, 91, 95–96
device trust level, 91–92
illustrated, 90
offloading, 91
overview, 90–91
registration procedure, 95–96
security level for services, 92
tasks, 90–91

Security modes, 38–42
channel establishment modes for, 41
defined, 38
options, 40
security mechanisms and, 39–42
security mode 1, 38–39
security mode 2, 38, 39
security mode 3, 38, 39
types of, 38

Security policies, 37–42
always-on, 38
enforcement, 89
management, 42
modes, 38–42

Semipermanent keys, 28
for temporary use, 63
types of, 28
See also Combination keys; Keys; Unit

keys
Services

database, 95
level-enforced security, 88
network subscription, 175–77
requirements, 87–88
security level for, 92

SHA-1, 145, 146
SHAKE protocol, 142
SHAMAN project, 141–42
Shared secrets, 43
Slaves, 8
Slave-to-master communication, 9
Snarf attack, 117

Index 203



Strassen algorithm, 103
Stream ciphers

choice of, 33
in communications systems, 66
defined, 24
illustrated, 25
usage, 33
See also Block ciphers

Subscription identity module (SIM) access,
181–84

application, 181
client, 182
control, 184
mandate, 182–83
profile, 181–82
profile communication stack, 181
profile connection, 184
profile usage scenario, 182
securing, 182–83

Subsequent access, 179–80
illustrated, 180
steps, 179–80
See also Network access

Substitution attack, 106
Summation combiner, 75
Symmetric mechanisms, 23
Synchronous connection-oriented (SCO)

links, 10

Temporary keys, 28, 81
Trade-offs, 4
Traffic

asynchronous, 10
best effort, 10
encrypted broadcast, 81
synchronous, 10
types, 10

Traffic monitoring attack, 115

Transmission control protocol/Internet
protocol (TCP/IP), 15

Transport layer security (TLS), 29
Trojan horses, 111
Trust delegation

autonomous, 139–40, 154–64
defined, 154

Trusted group extension, 157–59
Trust relations, 88

Uncontrolled ports, 151
Unicast messages, 36
Unit keys, 28, 45

authentication/encryption based on, 112
computation, 48
E21 algorithm, 71–72
generation, 47–48
generation requirements, 58
weaknesses, 112–13

Universal Mobile Telecommunications
System (UMTS), 66

Updating
flow, 126–27
LAP, 125
rules, 127

Upper address part (UAP), 114, 125
USB plug, 110
User-friendly name attack, 116
User interaction, 53–54
User scenarios, 19–22

ad hoc connectivity, 20–22
PANs, 19–20

Very large scale integration (VLSI), 80

Windmill polynomials
defined, 75
windmill construction with, 79

204 Bluetooth Security



Recent Titles in the Artech House
Computer Security Series

Rolf Oppliger, Series Editor

Bluetooth Security, Christian Gehrmann, Joakim Persson, and
Ben Smeets

Computer Forensics and Privacy, Michael A. Caloyannides

Computer and Intrusion Forensics, George Mohay, et al.

Defense and Detection Strategies against Internet Worms,
Jose Nazario

Demystifying the IPsec Puzzle, Sheila Frankel

Developing Secure Distributed Systems with CORBA, Ulrich Lang and
Rudolf Schreiner

Electric Payment Systems for E-Commerce, Second Edition,
Donel O’Mahony, Michael Peirce, and Hitesh Tewari

Implementing Electronic Card Payment Systems, Cristian Radu

Implementing Security for ATM Networks, Thomas Tarman and
Edward Witzke

Information Hiding Techniques for Steganography and Digital
Watermarking, Stefan Katzenbeisser and Fabien A. P. Petitcolas,
editors

Internet and Intranet Security, Second Edition, Rolf Oppliger

Java Card for E-Payment Applications, Vesna Hassler, Martin
Manninger, Mikail Gordeev, and Christoph Müller

Multicast and Group Security, Thomas Hardjono and
Lakshminath R. Dondeti

Non-repudiation in Electronic Commerce, Jianying Zhou

Role-Based Access Controls, David F. Ferraiolo, D. Richard Kuhn, and
Ramaswamy Chandramouli

Secure Messaging with PGP and S/MIME, Rolf Oppliger

Security Fundamentals for E-Commerce, Vesna Hassler

Security Technologies for the World Wide Web, Second Edition,
Rolf Oppliger



Techniques and Applications of Digital Watermarking and Content
Protection, Michael Arnold, Martin Schmucker, and
Stephen D. Wolthusen

For further information on these and other Artech House titles,

including previously considered out-of-print books now available through our

In-Print-Forever® (IPF®) program, contact:

Artech House Artech House

685 Canton Street 46 Gillingham Street

Norwood, MA 02062 London SW1V 1AH UK

Phone: 781-769-9750 Phone: +44 (0)20 7596-8750

Fax: 781-769-6334 Fax: +44 (0)20 7630-0166

e-mail: artech@artechhouse.com e-mail: artech-uk@artechhouse.com

Find us on the World Wide Web at:
www.artechhouse.com



Recent Titles in the Artech House
Computing Library

Action Focused Assessment for Software Process Improvement,
Tim Kasse

Advanced ANSI SQL Data Modeling and Structure Processing,
Michael M. David

Advanced Database Technology and Design, Mario Piattini
and Oscar Díaz, editors

Agent-Based Software Development, Michael Luck, Ronald Ashri,
and Mark d’Inverno

Building Reliable Component-Based Software Systems,
Ivica Crnkovic and Magnus Larsson, editors

Business Process Implementation for IT Professionals and Managers,
Robert B. Walford

Data Modeling and Design for Today’s Architectures,
Angelo Bobak

Developing Secure Distributed Systems with CORBA, Ulrich Lang and
Rudolf Schreiner

Discovering Real Business Requirements for Software Project Success,
Robin F. Goldsmith

Future Codes: Essays in Advanced Computer Technology and
the Law, Curtis E. A. Karnow

Global Distributed Applications with Windows® DNA,
Enrique Madrona

A Guide to Software Configuration Management, Alexis Leon

Guide to Standards and Specifications for Designing Web Software,
Stan Magee and Leonard L. Tripp

Implementing and Integrating Product Data Management and
Software Configuration, Ivica Crnkovic, Ulf Asklund, and Annita
Persson Dahlqvist

Internet Commerce Development, Craig Standing

Knowledge Management Strategy and Technology,
Richard F. Bellaver and John M. Lusa, editors



Managing Computer Networks: A Case-Based Reasoning Approach,
Lundy Lewis

Metadata Management for Information Control and Business
Success, Guy Tozer

Multimedia Database Management Systems, Guojun Lu

Practical Guide to Software Quality Management, Second Edition,
John W. Horch

Practical Insight into CMMI , Tim Kasse

Practical Process Simulation Using Object-Oriented Techniques and
C++, José Garrido

A Practitioner’s Guide to Software Test Design, Lee Copeland

Risk-Based E-Business Testing, Paul Gerrard and Neil Thompson

Secure Messaging with PGP and S/MIME, Rolf Oppliger

Software Fault Tolerance Techniques and Implementation,
Laura L. Pullum

Software Verification and Validation for Practitioners and Managers,
Second Edition, Steven R. Rakitin

Strategic Software Production with Domain-Oriented Reuse, Paolo
Predonzani, Giancarlo Succi, and Tullio Vernazza

Successful Evolution of Software Systems, Hongji Yang and
Martin Ward

Systematic Process Improvement Using ISO 9001:2000 and CMMI®,
Boris Mutafelija and Harvey Stromberg

Systematic Software Testing, Rick D. Craig and Stefan P. Jaskiel

Systems Modeling for Business Process Improvement,
David Bustard, Peter Kawalek, and Mark Norris, editors

Testing and Quality Assurance for Component-Based Software, Jerry
Zeyu Gao, H. -S. Jacob Tsao, and Ye Wu

User-Centered Information Design for Improved Software Usability,
Pradeep Henry

Workflow Modeling: Tools for Process Improvement and Application
Development, Alec Sharp and Patrick McDermott



For further information on these and other Artech House titles,

including previously considered out-of-print books now available through our

In-Print-Forever® (IPF®) program, contact:

Artech House Artech House

685 Canton Street 46 Gillingham Street

Norwood, MA 02062 London SW1V 1AH UK

Phone: 781-769-9750 Phone: +44 (0)20 7596-8750

Fax: 781-769-6334 Fax: +44 (0)20 7630-0166

e-mail: artech@artechhouse.com e-mail: artech-uk@artechhouse.com

Find us on the World Wide Web at:
www.artechhouse.com


	Bluetooth Security
	Title Page
	Contents
	Preface
	Part I: Bluetooth Security Basics
	1 Introduction
	1.1 Bluetooth system basics
	1.1.1 Background
	1.1.2 Trade-offs
	1.1.3 Bluetooth protocol stack
	1.1.4 Physical layer
	1.1.5 Baseband
	1.1.6 Link manager protocol
	1.1.7 Logical link control and adaptation protocol
	1.1.8 Host control interface
	1.1.9 Profiles

	1.2 Bluetooth security basics
	1.2.1 User scenarios
	1.2.2 Notions and terminology

	References

	2 Overview of the Bluetooth Security Architecture
	2.1 Key types
	2.2 Pairing and user interaction
	2.3 Authentication
	2.4 Link privacy
	2.4.1 Protect the link
	2.4.2 Encryption algorithm
	2.4.3 Mode of operation
	2.4.4 Unicast and broadcast

	2.5 Communication security policies
	2.5.1 Security modes
	2.5.2 Security policy management

	References

	3 Bluetooth Pairing and Key Management
	3.1 Pairing in Bluetooth
	3.2 HCI protocol
	3.3 LM protocol
	3.4 Baseband events
	3.4.1 Initialization key generation
	3.4.2 Unit key generation
	3.4.3 Combination key generation
	3.4.4 Authentication
	3.4.5 Master key generation

	3.5 User interaction
	3.6 Cipher key generation
	3.6.1 Encryption key K C
	3.6.2 Constraint key ′ K C
	3.6.3 Payload key KP

	3.7 Key databases
	3.7.1 Unit keys generation requirements
	3.7.2 Combination key generation requirements
	3.7.3 Key databases
	3.7.4 Semipermanent keys for temporary use

	References

	4 Algorithms
	4.1 Crypto algorithm selection
	4.1.1 Block ciphers
	4.1.2 Stream ciphers

	4.2 SAFER+
	4.2.1 Authentication algorithm E1
	4.2.2 Unit key algorithm E21
	4.2.3 Initial key algorithm E22
	4.2.4 Encryption key algorithm E3

	4.3 Encryption engine
	4.4 Ciphering algorithm E0
	4.4.1 Initialization

	4.5 Implementation aspects
	References

	5 Broadcast Encryption
	5.1 Overview
	5.2 Preparing for broadcast encryption
	5.3 Switching to broadcast encryption
	References

	6 Security Policies and Access Control
	6.1 Objectives
	6.1.1 Trust relations
	6.1.2 Security levels
	6.1.3 Flexibility
	6.1.4 Implementation considerations

	6.2 Security manager architecture
	6.2.1 Overview
	6.2.2 Device trust level
	6.2.3 Security level for services
	6.2.4 Connection setup
	6.2.5 Database contents and registration procedure

	Reference

	7 Attacks, Strengths, and Weaknesses
	7.1 Eavesdropping
	7.2 Impersonation
	7.3 Pairing
	7.4 Improper key storage
	7.4.1 Disclosure of keys
	7.4.2 Tampering with keys
	7.4.3 Denial of service

	7.5 Unit key
	7.6 Location tracking
	7.6.1 Bluetooth device address and location tracking
	7.6.2 Five different types of location tracking attacks

	7.7 Implementation flaws
	References


	Part II: Bluetooth Security Enhancements
	8 Providing Anonymity
	8.1 Overview of the anonymity mode
	8.2 Address usage
	8.2.1 The fixed device address, BD_ADDR_fixed
	8.2.2 The active device address, BD_ADDR
	8.2.3 Alias addresses, BD_ADDR_alias

	8.3 Modes of operation
	8.4 Inquiry and paging
	8.4.1 Connectable mode
	8.4.2 Private connectable mode
	8.4.3 General connectable mode

	8.5 Alias authentication
	8.6 Pairing
	8.7 Anonymity mode LMP commands
	8.7.1 Address update, LMP active address
	8.7.2 Alias address exchange, LMP alias address
	8.7.3 Fixed address exchange, LMP fixed address

	8.8 Pairing example
	References

	9 Key Management Extensions
	9.1 Improved pairing
	9.1.1 Requirements on an improved pairing protocol
	9.1.2 Improved pairing protocol
	9.1.3 Implementation aspects and complexity

	9.2 Higher layer key exchange
	9.2.1 IEEE 802.1x port-based network access control
	9.2.2 Higher layer key exchange with EAP TLS

	9.3 Autonomous trust delegation
	9.3.1 Security group extension method
	9.3.2 Public key–based key management
	9.3.3 Group extension method versus public key method

	References

	10 Security for Bluetooth Applications
	10.1 Headset
	10.1.1 Headset security model
	10.1.2 Pass-key and key management
	10.1.3 Example

	10.2 Network access
	10.2.1 Common access keys
	10.2.2 Security architecture
	10.2.3 Network service subscription
	10.2.4 Initial connection
	10.2.5 Subsequent access to NAcPs

	10.3 SIM access
	10.3.1 The SIM access profile
	10.3.2 Securing SIM access

	References


	Glossary
	List of Acronyms and Abbreviations
	About the Authors
	Index


