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Preface

This preface introduces the Cortex-M1 r0p1 Technical Reference Manual (TRM). It 
contains the following sections:

• About this manual on page xvi

• Feedback on page xxi.
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Preface 
About this manual

This is the Technical Reference Manual (TRM) for the Cortex-M1 processor.

Product revision status

The rnpn identifier indicates the revision status of the product described in this manual, 
where: 

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Intended audience

This manual is written to help:

• system designers, system integrators, and verification engineers who want to 
implement the processor in a Field-Programmable Gate Array (FPGA)

• software developers who want to use the processor in a FPGA.

Using this manual

This manual is organized into the following chapters: 

Chapter 1 Introduction 

Read this chapter for an introduction to the components of the processor 
and the processor instruction set.

Chapter 2 Programmer’s Model 

Read this chapter for a description of the processor register set, modes of 
operation, and other information for programming the processor.

Chapter 3 Memory Map 

Read this chapter for a description of the processor memory map.

Chapter 4 Exceptions 

Read this chapter for a description of the processor exception model.

Chapter 5 Clocks and Resets 

Read this chapter for a description of the processor clocking and resets.

Chapter 6 System Control 

Read this chapter for a description of the registers and programmer’s 
model for system control.
xvi Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413C
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Chapter 7 Nested Vectored Interrupt Controller 

Read this chapter for a description of the processor interrupt processing 
and control.

Chapter 8 Debug 

Read this chapter for a description of the processor system debug 
components, and debugging and testing the processor.

Chapter 9 Debug Access Port 

Read this chapter for a description of the processor debug port and the 
Serial Wire JTAG Debug Port (SWJ-DP).

Chapter 10 External and Memory Interfaces 

Read this chapter for a description of the processor bus interfaces.

Appendix A Signal Descriptions 

Read this appendix for a summary of processor signals.

Glossary Read the Glossary for definitions of terms used in this manual.

Conventions

Conventions that this manual can use are described in:

• Typographical

• Timing diagrams on page xviii

• Signals on page xviii

• Numbering on page xix.

Typographical

The typographical conventions are:

italic  Highlights important notes, introduces special terminology, 
denotes internal cross-references, and citations.

bold  Highlights interface elements, such as menu names. Denotes 
signal names. Also used for terms in descriptive lists, where 
appropriate.

monospace Denotes text that you can enter at the keyboard, such as 
commands, file and program names, and source code.
ARM DDI0413C Copyright © 2006-2008 ARM Limited. All rights reserved. xvii
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monospace Denotes a permitted abbreviation for a command or option. You 
can enter the underlined text instead of the full command or option 
name.

monospace italic Denotes arguments to monospace text where the argument is to be 
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Enclose replaceable terms for assembler syntax where they appear 
in code or code fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

Timing diagrams

The figure named Key to timing diagram conventions explains the components used in 
timing diagrams. Variations, when they occur, have clear labels. You must not assume 
any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value 
within the shaded area at that time. The actual level is unimportant and does not affect 
normal operation.

Key to timing diagram conventions

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is 
active-HIGH or active-LOW. Asserted means:

• HIGH for active-HIGH signals
xviii Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413C
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• LOW for active-LOW signals.

Lower-case n Denotes an active-LOW signal.

Prefix H Denotes Advanced High-performance Bus (AHB) signals.

Prefix P Denotes Advanced Peripheral Bus (APB) signals.

Numbering

The numbering convention is:

<size in bits>'<base><number> 

This is a Verilog method of abbreviating constant numbers. For example:

• 'h7B4 is an unsized hexadecimal value.

• 'o7654 is an unsized octal value.

• 8'd9 is an eight-bit wide decimal value of 9.

• 8'h3F is an eight-bit wide hexadecimal value of 0x3F. This is 
equivalent to b00111111.

• 8'b1111 is an eight-bit wide binary value of b00001111.

Additional reading

This section lists publications by ARM and by third parties. 

See http://infocenter.arm.com/help/index.jsp for access to ARM documentation.

ARM publications

This manual contains information that is specific to the Cortex-M1 processor. See the 
following documents for other relevant information:

• ARMv6-M Architecture Reference Manual (ARM DDI 0419)

• ARMv6-M Instruction Set Quick Reference Guide (ARM QRC 0011)

• ARM AMBA® 3 AHB-Lite Protocol Specification (ARM IHI 0033)

• ARM CoreSight™ Components Technical Reference Manual (ARM DDI 0314)

• ARM Debug Interface v5, Architecture Specification (ARM IHI 0031)

• Application Binary Interface for the ARM Architecture (The Base Standard) 
(IHI0036)

• Cortex-M1 Configuration and Sign-off Guide (ARM DII 0166)

• Cortex-M1 Integration Manual (ARM DII 0167).
ARM DDI0413C Copyright © 2006-2008 ARM Limited. All rights reserved. xix
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Other publications

This section lists relevant documents published by third parties: 

• IEEE Standard, Test Access Port and Boundary-Scan Architecture specification 
1149.1-1990 (JTAG). 
xx Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413C



Preface 
Feedback

ARM welcomes feedback on the Cortex-M1 processor and its documentation.

Feedback on the processor

If you have any comments or suggestions about this product, contact your supplier 
giving: 

• the product name

• a concise explanation of your comments.

Feedback on this manual

If you have any comments on this manual, send an email to errata@arm.com giving:

• the title

• the number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
ARM DDI0413C Copyright © 2006-2008 ARM Limited. All rights reserved. xxi
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Chapter 1 
Introduction

This chapter introduces the processor and instruction set. It contains the following 
sections: 

• About the processor on page 1-2

• Components, hierarchy, and implementation on page 1-4

• Configurable options on page 1-10

• About the architecture on page 1-11

• Binary compatibility with Cortex-M3 processor on page 1-12

• Product revisions on page 1-13.
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Introduction 
1.1 About the processor

The processor is intended for deeply embedded applications that require a small 
processor integrated into an FPGA. 

The processor incorporates:

• Processor core. This is a low gate count core that features:

— ARM architecture v6-M. A Thumb® Instruction Set Architecture (ISA) that 
also includes the 32-bit Thumb-2 BL, MRS, MSR, ISB, DSB, and DMB instructions.

— Operating System (OS) extension option. If this option is implemented, 
functionality within the processor is enabled that is capable of running an 
operating system. This includes the SVC instruction, a banked stack pointer 
register, and an integrated system timer.

— System exception model.

— Handler and Thread modes.

— Stack pointers. One stack pointer is always present.

If the OS extension option is implemented, two stack pointers are present.

— Thumb state only.

— ARM architecture v6-M style BE-8/LE support. Data endianness is 
configurable. Instructions and system control registers are always 
little-endian. If your processor has debug, debug resources and debugger 
accesses are always little-endian.

— No hardware support for unaligned accesses.

• Nested Vectored Interrupt Controller (NVIC). The NVIC is closely integrated 
with the processor to achieve low latency interrupt processing. Features include:

— the number of external interrupts that you can configure, 1, 8, 16 or 32

— fixed number of bits of priority, 2 bits, providing four levels of priority

— processor state automatically saved on interrupt entry and restored on 
interrupt exit, with no instruction overhead.

• Memory and external AHB-Lite interfaces.

• Optional full debug or reduced debug solutions that feature:

— debug access to all memory and registers in the system, including the 
processor register bank when the core is halted

— Debug Access Port (DAP)

— BreakPoint Unit (BPU) for implementing breakpoints

— Data Watchpoint (DW) unit for implementing watchpoints
1-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413C
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• 32-bit hardware multiplier. You can choose either the standard multiplier or a 
smaller, lower performance multiplier implementation.
ARM DDI0413C Copyright © 2006-2008 ARM Limited. All rights reserved. 1-3
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1.2 Components, hierarchy, and implementation

This section describes the components, hierarchy, and implementation of the processor 
with and without debug. 

The main blocks of the processor with debug are:

• Core on page 1-5

• NVIC on page 1-6

• Bus master on page 1-6

• AHB-PPB on page 1-7

• Debug on page 1-7.

Figure 1-1 shows the structure of the processor with debug.

Figure 1-1 Processor with debug block diagram

The main blocks of the processor without debug are:

• Core on page 1-5

• Core memory interface on page 1-6

• NVIC on page 1-6
1-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413C
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• Bus master on page 1-6

• AHB-PPB on page 1-7.

Figure 1-2 shows the structure of the processor without debug.

Figure 1-2 Processor block diagram

1.2.1 Core

The core has the following main features:

• 3-stage pipeline

• multiply cycles:

— three cycles for normal multiplier

— 33 cycles for small multiplier.

• Thumb state

• Handler and Thread modes

• ISR entry and exit

— processor state saving and restoration, with no instruction fetch overhead

— tightly-coupled interface to interrupt controller enabling efficient 
processing of late-arriving interrupts.

• LE and BE-8 data endianness support.
ARM DDI0413C Copyright © 2006-2008 ARM Limited. All rights reserved. 1-5
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Registers

The processor contains:

• 13 general purpose 32-bit registers.

• Link Register (LR).

• Program Counter (PC).

• Program Status Register, xPSR.

• Two banked SP registers. Without the OS extension option there is only one SP 
register present.

1.2.2 Core memory interface

Core access to Tightly-Coupled Memories (TCMs) is made exclusively through a 
dedicated core memory interface. 

The core memory interface comprises:

• one core Instruction Tightly-Coupled Memory (ITCM) interface to access ITCM

• one core Data Tightly-Coupled Memory (DTCM) interface to access DTCM.

Because reads are speculatively fetched from TCMs, Device and Strongly-Ordered 
memory types are not supported, for example FIFOs in TCM space. You must ensure 
that any Flash memory in this space is tolerant of extra accesses at all times. The TCM 
interface does not support wait states.

1.2.3 NVIC

The NVIC is tightly coupled to the processor core. This facilitates low-latency 
exception processing. The main features include:

• a configurable number of external interrupts, 1, 8, 16, or 32

• a fixed number of bits of priority, 2 bits, providing four levels of configurable 
priority

• both level and pulse interrupt support

• processor state automatically saved on interrupt entry and restored on interrupt 
exit, with no instruction overhead.

See Chapter 7 Nested Vectored Interrupt Controller for more information.

1.2.4  Bus master

The Bus master provides a maximum of two interfaces. One master interface connects 
the internal Private Peripheral Bus (PPB) signals to the AHB PPB. The other master 
interface connects external bus signals to the AHB port. 
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1.2.5 AHB-PPB

The AHB Private Peripheral Bus (AHB-PPB) is used to access the:

• NVIC

• the debug components when present.

1.2.6 Debug

There are two configurations for debug:

• The full debug configuration has four breakpoint comparators and two watchpoint 
comparators. This is the default configuration.

• The reduced debug configuration has two breakpoint comparators and one 
watchpoint comparator.

The Debug components are:

AHB decoder Decodes the AHB address lines to create selects for the 
peripherals in the debug system.

AHB multiplexer Combines the debug slave responses for all debug blocks.

AHB matrix The AHB Matrix arbitrates between the processor and debug 
accesses to the internal PPB and the AHB-Lite external interface.

See Chapter 10 External and Memory Interfaces for more 
information.

DAP This contains:

AHB-AP The AHB-Access Port (AHB-AP) converts the output 
from the SWJ-DP to an AHB-lite master interface. The 
AHB-AP master is the highest priority master in the 
AHB matrix.

See Chapter 8 Debug for more information.

SWJ-DP The SWJ-DP provides a debug agent interface that 
enables access to all registers and memory in the 
system, including the processor registers. It is 
connected to the top level of the FPGA.

See Chapter 9 Debug Access Port for more 
information.
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Debug TCM interface 

The debug TCM interface comprises one debug interface to access 
both ITCM and DTCM. Only one TCM can be accessed at any 
one time.

If your FPGA supports dual ported memory, you can connect both 
the debug memory interface and core memory interfaces to TCM 
without any multiplexing. In this case, debug access and core 
access to TCM is simultaneous. No logic is in place to guarantee 
predictable results when there are simultaneous accesses on the 
core and debug interfaces to the same word of memory. If your 
FPGA memory cannot handle this case predictably, you must 
either add your own logic or ensure that debug accesses never 
conflict with core accesses. For example, a debugger can safely 
access TCMs when the processor is halted or the system reset 
signal, SYSRESETn, is asserted.

If your FPGA does not support dual ported memory, you must add 
arbitration logic to connect to both the debug memory interfaces 
and core memory interfaces.

See Chapter 8 Debug for more information.

BreakPoint Unit The BPU has:

• four instruction address comparators in the full debug 
configuration 

• two instruction address comparators in the reduced debug 
configuration.

You can individually configure the instruction address 
comparators to perform a hardware breakpoint. Each comparator 
can match the address of the instruction being fetched. If there is 
a match, the BPU ensures that the processor triggers a breakpoint 
if the instruction that caused the match is executed. Breakpoints 
are only supported in the code region of the memory map.

See Chapter 8 Debug for more information.

Data Watchpoint unit 

The DW unit has:

• two address comparators in the full debug configuration 

• one address comparator in the reduced debug configuration.

You can configure the comparators individually to match either an 
instruction address or a data address. Masking support for address 
matching is also supported.
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Watchpoints are semi-precise. This means the processor does not 
halt on the instruction that generates the match, it permits the next 
instruction to be executed before halting.

See Chapter 8 Debug for more information.

Debug control A debugger can access the debug control registers through the 
PPB to halt and step the processor. The debbugger can also access 
processor registers when the processor is halted.

See Chapter 8 Debug for more information.

ROM table The ROM table enables standard debug tools to recognize the 
processor and the debug peripherals available, and to find the 
addresses required to access those peripherals.

See Chapter 8 Debug for more information.
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1.3 Configurable options

The processor comes in one of two forms:

• processor with full debug or reduced debug

• processor without debug.

Table 1-1 shows the features that you can configure and the default for the processors.

Table 1-1 Configurable options

Feature Configurable option Default value

Interrupts External interrupts 1, 8, 16 or 32. 0 is not supported. 8

Data endianness Little-endian or BE-8 big-endian. Little-endian 

OS extension Present or absent. Present

Instruction TCM sizea 0KB (no Instruction TCM), 1KB, 2KB, and powers of 2 to 1MB. 32KB

Data TCM sizea 0KB (no Data TCM), 1KB, 2KB, and powers of 2 to 1MB. 32KB

Multiplier Normal or small multiplier. Normal multiplier

a. TCM size might be limited by the memory available on your FPGA. Contact your implementation team for more 
information.
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1.4 About the architecture

This processor is an implementation of the ARM architecture v6-M. For details on the 
instructions that you can use with this processor, see the ARMv6-M Architecture 
Reference Manual.

For complete descriptions of all instruction sets, see the ARMv6-M Instruction Set 
Quick Reference Guide.
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1.5 Binary compatibility with Cortex-M3 processor

The Cortex-M1 processor implements a forward binary compatible subset of the 
instruction set and features provided by the Cortex-M3 processor. Software, including 
system level code, can be easily moved from Cortex-M1 processors to Cortex-M3 
processors. This provides increased performance and a simple migration path from 
FPGA to ASIC without the requirement for recompilation.

To ensure a smooth transition, ARM recommends that code designed to operate on both 
processor architectures obey the following rules and configure the Configuration 
Control Register (CCR) appropriately:

• Use word transfers only to access all registers in the NVIC and System Control 
Space (SCS) 

• Treat all unused SCS registers and bit fields on the Cortex-M1processor as 
do-not-modify 

• As soon as possible after reset, manually configure the following fields in the 
CCR on the Cortex-M3 processor: 

— STKALIGN bit to one 

— UNALIGN_TRP bit to one 

— Leave all other bits in the CCR register as their original value.
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1.6 Product revisions

This section summarizes the differences in functionality between the releases of this 
processor:

r0p0-r0p1 There are no differences in functionality.
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Chapter 2 
Programmer’s Model

This chapter describes the processor programmer’s model. It contains the following 
sections:

• About the programmer’s model on page 2-2

• Registers on page 2-4

• Data types on page 2-10

• Memory formats on page 2-11

• Instruction set on page 2-13.
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2.1 About the programmer’s model

The processor implements a lightweight profile of Thumb-2, which is all instructions as 
defined in the ARMv6-M Architecture Reference Manual. The processor does not 
execute ARM instructions.

2.1.1 Privilege

The processor does not support differentiated User and Privileged modes. The processor 
is always in Privileged mode.

2.1.2 Operating modes

The processor supports two modes of operation:

Thread mode 

Is entered on Reset and can be re-entered as a result of an exception 
return.

Handler mode 

Is entered as a result of an exception.

2.1.3 Operating states

The processor can operate in one of two operating states:

Thumb state 

This is normal execution running the set of 16-bit and 32-bit halfword 
aligned Thumb and Thumb-2 instructions.

Debug state 

This is the state when in halting debug.

2.1.4 Main stack and process stack access

Out of reset, all code uses the main stack. An exception handler such as SVCall can 
change the stack used by Thread mode from the main stack to the process stack by 
changing the EXC_RETURN value it uses on exit. All exceptions continue to use the 
main stack. The stack pointer, R13, is a banked register that switches between the main 
stack and the process stack. Only one stack, the process stack or the main stack, is 
visible through R13 at any one time.
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It is also possible to switch from main stack to process stack while in Thread mode by 
writing to the Special-Purpose Control Register using the MSR instruction. See 
Special-Purpose Control Register on page 2-9 for more information.
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2.2 Registers

The processor has the following 32-bit registers:

• 13 general-purpose registers, R0-R12

• Stack Pointer (SP) (SP, R13) and banked register aliases, SP_process and 
SP_main

• Link Register (LR, R14)

• Program Counter (PC, R15)

• Program status registers, xPSR.

Figure 2-1 shows the processor register set.

Figure 2-1 Processor register set

2.2.1 General-purpose registers

The general-purpose registers R0-R12 have no special architecturally-defined uses. 

Low registers Registers R0-R7 are accessible by all instructions that specify a 
general-purpose register. 

High registers Registers R8-R12 are not accessible by all 16-bit instructions. 
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The R13, R14, and R15 registers have the following special functions:

Stack pointer Register R13 is used as the Stack Pointer (SP). Because the SP 
ignores writes to bits [1:0], it is autoaligned to a word, four-byte, 
boundary. 

Note
 SP[1:0] must be treated as SBZP.

Handler mode always uses SP_main, Thread mode can use either 
SP_main or SP_process.

Link register Register R14 is the subroutine Link Register (LR).

The LR receives the return address from PC when a Branch and 
Link (BL) instruction is executed.

Exception entry use the LR to provide exception return 
information.

At all other times, you can treat R14 as a general-purpose register. 

Program counter Register R15 is the Program Counter (PC).

Bit [0] is always 0, so instructions are always aligned to halfword 
boundaries.

2.2.2 Special-purpose program status registers (xPSR)

This section describes the break down of the processor status register at the system 
level:

• Application PSR

• Interrupt PSR on page 2-6

• Execution PSR on page 2-7.

They can be accessed as individual registers, a combination of any two from three, or a 
combination of all three using the MRS and MSR instructions.

Application PSR

The Application PSR (APSR) contains the condition code flags. Before entering an 
exception, the processor saves the condition code flags on the stack. You can access the 
APSR using the MSR and MRS instructions.

Figure 2-2 on page 2-6 shows the bit assignments of the APSR.
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Figure 2-2 Application Program Status Register bit assignments

Table 2-1 lists the bit assignments of the APSR.

Interrupt PSR

The Interrupt PSR (IPSR) contains the Interrupt Service Routine (ISR) number of the 
current exception activation.

Figure 2-2 shows the bit assignments of the IPSR.

Figure 2-3 Interrupt Program Status Register bit assignments

Table 2-1 Application Program Status Register bit functions

Field Name Definition

[31] N Negative or less than flag: 

1 = result negative

0 = result positive.

[30] Z Zero flag:

1 = result of 0

0 = nonzero result. 

[29] C Carry or borrow flag: 

1 = carry true or borrow false

0 = carry false or borrow true. 

[28] V Overflow flag: 

1 = overflow 

0 = no overflow. 

[27:0] - Reserveda

a. The bits are defined as UNK/SBZP.
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Table 2-2 lists the bit assignments of the IPSR. 

Execution PSR

The Execution PSR (EPSR) contains the Thumb state bit (T-bit).

Figure 2-4 shows the bit assignments of the EPSR.

Figure 2-4 Execution Program Status Register bit assignments

Note
 Unless the processor is in Debug state, the EPSR is not directly accessible and all fields 
read as zero using an MRS instruction. MSR instruction writes are ignored.

Table 2-2 Interrupt Program Status Register bit assignments

Field Name Definition

[31:6] - Reserved 

[5:0] Exception Number Number of executing exception: 

Thread mode = 0

NMI = 2

Hard Fault = 3

SuperVisor Call (SVCall) = 11

PendSV = 14

SysTck = 15

IRQ0 = 16

.

.

.

IRQ31 = 47
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Table 2-3 lists the bit assignments of the EPSR. 

Saved xPSR bits

On entering an exception, the processor saves the combined information from the three 
status registers on the stack.

Note
 Bit [9] of the stacked xPSR contains the alignment status of the active SP when the 
exception processing begins.

2.2.3 Special-Purpose Priority Mask Register

Use the Special-Purpose Priority Mask Register for priority boosting. 

Figure 2-5 shows the bit assignments of the Special-Purpose Priority Mask Register.

Figure 2-5 Special-purpose Priority Mask Register bit assignments

Table 2-3 EPSR bit assignments

Field Name Definition 

[31:25] - Reserved.

[24] T The T-bit is set according to the reset vector when the processor comes out of reset. The execution 
of an instruction with the EPSR T-bit clear causes a Hard Fault. This ensures that attempts to switch 
to ARM state fail in a predictable way.

[23:0] - Reserved.
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Table 2-4 lists the bit assignments of the Special-Purpose Priority Mask Register.

You can access the Special-Purpose Priority Mask Register using the MSR and MRS 
instructions. You can also use the CPS instruction to set or clear PRIMASK.

2.2.4 Special-Purpose Control Register

The Special-Purpose Control Register identifies the stack pointers used.

Figure 2-6 shows the bit assignments of the Special-purpose Control Register.

Figure 2-6 Special-Purpose Control Register bit assignments

Table 2-5 lists bit assignments of the Special-Purpose Control Register.

For writes from Handler mode occurring as part of an exception return, see the 
ARMv6-M Architecture Reference Manual.

Table 2-4 Special-Purpose Priority Mask Register bit assignments

Field Name Function

[31:1] - Reserved 

[0] PRIMASK When set, raises execution priority to 0 

Table 2-5 Special-Purpose Control Register bit assignments

Field Name Function

[31:2] - Reserved

[1] Active stack 
pointer

Defines the stack to use:

0 = SP_main is used for the current stack

1 = For Thread mode, SP_process is used for the current stacka.

a. Attempts to set this bit from Handler mode are ignored.

[0] - Reserved
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2.3 Data types

The processor supports the following data types:

• 32-bit words

• 16-bit halfwords

• 8-bit bytes.

Note
 Unless otherwise stated the core can access all regions of the memory map, including 
the code region, with all data types. To support this, the system, including memories, 
must support subword writes without corrupting neighboring bytes in that word.
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2.4 Memory formats

The processor views memory as a linear collection of bytes numbered in ascending 
order:

• The word at address A consists of the bytes at address A,A+1,A+2,A+3 

• The halfword at address A consists of the bytes at address A,A+1

• The halfword at address A+2 consists of the bytes at address A+2,A+3

• The word at address A therefore consists of the halfwords at address A,A+2.

Table 2-6 shows the required mapping for an AHB-Lite interface. Table 2-6 also shows 
how the slaves use the HSIZE and the HADDR signals to determine which byte lanes 
are active on the data buses HWDATA and HRDATA.

On the TCM interface, the byte write enables are to be used for writes to ensure the 
correct byte lanes on the write data bus are written. All TCM reads are performed as 
word accesses and the processor will select the appropriate byte lanes depending on the 
requested access size and the address alignment.

Note
 These properties are endian-independent.

Endianness affects the numeric significance given to the bytes within the word or 
halfword, by the master performing the access. For a little-endian access, the byte with 
the highest address within the word or halfword has the highest numerical significance. 
For a big-endian access, the byte with the lowest address has the highest numerical 
significance.

For more details on endianness, see the ARMv6-M Architecture Reference Manual.

Table 2-6 Required mapping for an AHB-Lite interface

HSIZE HADDR[1:0] DATA[31:24] DATA[23:16] DATA[15:8] DATA[7:0]

Word 0 x x x x

Halfword 0 - - x x

Halfword 2 x x - -

Byte 0 - - - x

Byte 1 - - x -

Byte 2 - x - -

Byte 3 x - - -
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Accesses to the PPB space are always in little-endian format. The processor correctly 
interprets PPB data even when configured for big-endian operation.
2-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413C



Programmer’s Model 
2.5 Instruction set

The processor supports all ARMv6-M Thumb and Thumb-2 instructions. For 
information on ARMv6-M Thumb instructions, see the ARMv6-M Architecture 
Reference Manual. The processor does not support ARM instructions.
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Chapter 3 
Memory Map

This chapter describes the processor fixed memory map. It contains the following 
section:

• About the memory map on page 3-2.
ARM DDI0413C Copyright © 2006-2008 ARM Limited. All rights reserved. 3-1



Memory Map 
3.1 About the memory map

Figure 3-1 shows the fixed memory map.

Figure 3-1 Processor memory map
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Table 3-1 shows the permissions of the processor memory regions.

See Chapter 10 External and Memory Interfaces for a description of the processor bus 
interfaces. See Chapter 8 Debug for information on ROM memory.

Table 3-1 Processor memory regions

Region Name
Device 
type XNa Interface accessed

0x00000000-  
0x000FFFFF

Code, ITCM Normal - Instruction fetches and data accesses are performed to ITCM. 
Data accesses include data literal accesses. The region shown 
here is for the maximum supported size of ITCM. If there is 
less ITCM, this region ends at a lower address and the next 
starts at the following address.

0x00100000- 
0x1FFFFFFF

Code, external Normal - Instruction fetches and data accesses are performed to the 
external system bus. Data accesses include data literal 
accesses.

0x20000000- 
0x200FFFFF

SRAM, DTCM Normal XN Instruction fetches are faulted. Data accesses are performed 
to DTCM. The region shown here is for the maximum 
supported size of DTCM. If there is less DTCM, this region 
ends at a lower address and the next starts at the following 
address.

0x20100000- 
0x3FFFFFFF

SRAM, external Normal - Instruction fetches are performed to the external system bus. 
Data accesses are performed to the external system bus.

0x40000000- 
0x5FFFFFFF

Peripheral Device XN Data accesses are performed to the external system bus. 
Instruction accesses are prevented and faulted.

0x60000000- 
0x9FFFFFFF

SRAM Normal - Instruction and Data accesses are performed to the external 
system bus.

0xA0000000- 
0xDFFFFFFF

External Device Device XN Data accesses are performed to the external system bus. 
Instruction accesses are prevented and faulted.

0xE0000000- 
0xE00FFFFF

Private Peripheral Bus SO XN Data accesses are performed over the PPB. Instruction 
accesses are prevented and faulted.

0xE0100000- 
0xFFFFFFFF

System - XN System segment. Instruction accesses are prevented and 
faulted. For data fetches, the region is reserved.

a. Execute Never. A region is marked as XN to prevent instructions being fetched from that region.
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Chapter 4 
Exceptions

This chapter describes the exception model of the processor. It contains the following 
sections:

• About the exception model on page 4-2

• Exception types on page 4-3

• Exception priority on page 4-5

• Stacks on page 4-7

• Pre-emption on page 4-8

• Exception exit on page 4-10

• Late-arrival on page 4-12

• Exception control transfer on page 4-13

• Activation levels on page 4-14

• Lock-up on page 4-16.
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4.1 About the exception model

The processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and 
handle all exceptions. All exceptions are handled in Handler mode. Processor state is 
automatically stored to the stack on an exception and automatically restored from the 
stack at the end of the exception handler. The following features enable efficient, low 
latency exception handling: 

• Automatic state saving and restoring. The processor pushes state registers on the 
stack when entering the exception and pops them when exiting the exception with 
no instruction overhead.

For information on what content is stacked, see Pre-emption on page 4-8.

• Automatic reading of the vector table entry that contains the exception handler 
address.

Note
 Vector table entries are ARM or Thumb interworking compatible values.

Bit[0] of the vector value is loaded into the EPSR T-bit on exception entry. 
Creating a table entry with bit [0] clear generates a Hard Fault on the first 
instruction of the handler corresponding to this vector.

• Closely-coupled interface between the processor and the NVIC to enable efficient 
processing of interrupts and processing of late-arriving interrupts with higher 
priority.

• Configurable number of interrupts, from 1, 8, 16, or 32.

• Two bits of configurable interrupt priority providing four levels.

• Separate stacks for Handler and Thread modes if the Operating System (OS) 
extension is implemented.

• Exception control transfer using the calling conventions of the C/C++ standard 
ARM Architecture Procedure Call Standard (AAPCS). For more information, see 
the Application Binary Interface for the ARM Architecture (The Base Standard).

• Priority masking to support critical regions.

Note
 The number of interrupts are configured during implementation. Software can choose 
to enable a subset of the configured number of hardware interrupts.
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4.2 Exception types

Various types of exceptions exist in the processor. A fault is an exception that results 
from an error condition. Faults can be reported synchronously or asynchronously with 
respect to the instruction that caused them. In general, faults are reported 
synchronously. Faults caused by writes over the external AHB bus are asynchronous 
faults. A synchronous fault is always reported with the instruction that caused the fault. 
An asynchronous fault does not guarantee how it is reported with respect to the 
instruction that caused the fault.

For more information on exceptions, see the ARMv6-M Architecture Reference Manual.

Table 4-1 shows the exception type, position, and priority. Position refers to the word 
offset of the exception vectors from the start of the vector table, which is always at 
address 0x0. The lower numbers shown in the Priority column of the table are higher 
priority. How the types are activated, synchronously or asynchronously, is also shown. 
The exact meaning and use of priorities is explained in Exception priority on page 4-5.

Table 4-1 Exception types

Position Exception type Priority Description Activated

- - - Stack top is loaded from first entry of vector table 
on reset.

-

1 Reset –3 (highest) Invoked on power up and warm reset. On first 
instruction, drops to lowest priority, Thread mode.

Asynchronous

2 Non-maskable 
Interrupt

–2 This exception type cannot be: 

• masked or prevented from activation by 
any other exception

• pre-empted by any other exception other 
than Reset.

Asynchronous

3 Hard Fault –1 All classes of Fault. Synchronous or 
asynchronous

4-10 - - Reserved. -

11 SVC Configurable System service call using the SVC instruction. Synchronous

12-13 - - Reserved. -
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14 PendSV Configurable Pendable request for system service. This is only 
pended by software.

Asynchronous

15 SysTick Configurable System tick timer has fired. Asynchronous

16-47 External Interrupt Configurable Asserted from outside the processor or pended by 
software. 

Asynchronous

Table 4-1 Exception types (continued)

Position Exception type Priority Description Activated
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4.3 Exception priority

Table 4-2 shows how priority affects when and how the processor takes an exception. 
It lists the actions an exception can take based on priority. 

In the processor exception model, priority determines when and how the processor takes 
exceptions. You can assign priority levels to interrupts.

4.3.1 Priority levels

The NVIC supports software-assigned priority levels. You can assign a priority level 
from 0 to 3 to an interrupt by writing to the two-bit IP_N field in an Interrupt Priority 
Register, see Interrupt Priority Registers on page 7-7. Priority level 0 is the highest 
priority level and priority level 3 is the lowest. For example, if you assign priority level 
1 to IRQ[0] and priority level 0 to IRQ[31], then IRQ[31] has priority over IRQ[0].

Table 4-2 Exception scenarios

Scenario Description 

Pre-emption A pended exception can interrupt the current execution thread if the priority of the pended exception is 
higher than the current execution priority.

When one exception pre-empts another, the exceptions are nested.

On exception entry the processor automatically saves processor state, which is pushed on to the stack. 
The vector corresponding to the exception is fetched. Execution begins at the address pointed to by the 
vector table value. Execution of the first instruction of the exception starts when the processor state has 
been saved. The state saving is performed over the ITCM, DTCM, or external AHB-Lite interface 
depending on:

• the value of the stack pointer when the processor registered the exception

• the size of the TCMs implemented.

The vector fetch is performed over the external AHB-Lite interface or the ITCM memory interface 
depending on the configuration of ITCM size.

Return When a valid return instruction is executed, the processor pops the stack and returns to a stacked 
exception or Thread mode.

On completion of an exception handler the processor automatically restores the processor state by 
popping the stack to restore the state prior to the exception.

Late-arriving A mechanism used by the processor to speed up pre-emption. If a higher priority exception arrives during 
state saving for a previous pre-emption, the processor switches to handling the higher priority exception 
instead and initiates the vector fetch for that exception. The state saving is not affected by late arrival, 
because the state that is saved is the same for both exceptions and the state saving continues uninterrupted. 
Late arriving exceptions are recognized up to the point where the vector fetch has been initiated. If a high 
priority exception is recognized too late to be handled as a late arrival, it is pended and subsequently 
pre-empts the original exception handler.
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Note
 Software prioritization does not affect reset, Non-Maskable Interrupt (NMI), and Hard 
Fault. They always have higher priority than the external interrupts.

When multiple exceptions have the same priority number, the pending exception with 
the lowest exception number takes precedence. For example, if both IRQ[0] and 
IRQ[1] are priority level 1, then IRQ[0] has precedence over IRQ[1].

An exception is pre-empted if the handler receives an exception that has a higher 
priority. If the handler receives an interrupt of the same priority the exception is not 
pre-empted, irrespective of the interrupt number.

For more information on the IP_N fields, see Interrupt Priority Registers on page 7-7.
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4.4 Stacks

The processor supports two separate stacks:

Process stack 

You can configure Thread mode to use either SP_process or SP_main for 
its Stack Pointer (SP).

Note
 This is only available if the OS extension option is implemented. Contact 

your implementation team for information.

Main stack Handler mode uses the main stack. SP_main is the SP register for the 
main stack. Thread mode uses SP_main out of reset.

Only one Stack Pointer register, SP_process or SP_main, is visible at any time, using 
R13.

When a thread is pre-empted, its context is automatically saved onto the stack that was 
active at the time the exception was recognized.

If an exception pre-empts Thread mode, the context of the pre-empted thread can be 
stacked using SP_process or SP_main depending on the value of the CONTROL[1] bit.

If an exception pre-empts another exception handler running in Handler mode, the 
pre-empted context can only be stacked using SP_main because this is the only stack 
pointer that can be active in Handler mode.

On exception return, the EXC_RETURN value determines which stack is used for the 
unstacking of context. The EXC_RETURN value loaded into R14 during exception 
entry points to the same stack that was used to stack the context. If your exception 
handler code moves the stack, you must ensure that the EXC_RETURN value used for 
exception return is correctly updated.

All exception handlers must use SP_main for their local variables.

When the OS extension option is implemented:

• you can configure Thread mode to use the process stack

• exception handlers always use SP_main.

Note
 MSR and MRS instructions have visibility of both stack pointers.
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4.5 Pre-emption

This section describes the behavior of the processor when it takes an exception.

When the processor takes an exception, it automatically pushes the following eight 
registers to the stack:

• xPSR

• ReturnAddress( )

• Link Register (LR)

• R12

• R3

• R2

• R1

• R0.

For information on how ReturnAddress() relates to instruction address, see the 
ARMv6-M Architecture Reference Manual.

The SP is decremented by eight words on the completion of the stack push. Figure 4-1 
shows the contents of the stack after an exception pre-empts the current program flow. 

Figure 4-1 Stack contents after a pre-emption

Note
 • Figure 4-1 shows the order on the stack.

• Doubleword alignment of the stack pointer is enforced when stacking 
commences. Bit [2] of the stack pointer is saved as bit [9] of the stacked xPSR.

After returning from the exception, the processor automatically pops the eight registers 
from the stack. The exception return value, EXC_RETURN, is automatically loaded 
into the LR on exception entry to enable exception handlers to be written as normal 
C/C++ functions without the requirement for a veneer. See the ARMv6-M Architecture 
Reference Manual for more information.
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Table 4-3 describes the steps that the processor takes before it enters an exception. 

Table 4-3 Exception entry steps

Action Description 

Push eight registers Pushes xPSR, ReturnAddress(), LR, R12, R3,R2, R1, and R0 on selected stack.

Read vector table Reads vector from the appropriate vector table entry:

(0x0) + (exception_number *4). 

The vector table read is done after all eight registers are pushed on to the stack.

Read SP_main 
from vector table

On Reset only, SP_main is updated from the first entry in the vector table. Other exceptions do not 
modify SP_main in this manner.

Update LR The LR is set to the appropriate EXC_RETURN to enable correct return from the exception. 
EXC_RETURN is one of 16 values as defined in ARMv6-M Architecture Reference Manual.

Update PC Updates PC with the read data from the vector table. No other late-arriving exceptions can be 
processed until the first instruction of the exception starts to execute. 

Load pipeline Pipeline is filled with sequential instructions at the vector address.
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4.6 Exception exit

The exception return instruction of a handler loads the PC with the EXC_RETURN 
value that was present in LR on entry to an exception handler. This indicates to the 
processor that the exception is complete and the processor initiates the exception exit 
sequence. See Returning the processor from an exception for the instructions that you 
can use to return from an exception.

When returning from an exception, the processor is either:

• returning to the last stacked exception

• returning to Thread mode if there are no stacked exceptions.

Table 4-4 describes the postamble sequence. 

4.6.1 Returning the processor from an exception

Exception returns occur when one of the following instructions executed in Handler 
mode loads a value of 0xFXXXXXXX into the PC:

• POP that includes loading the PC

• BX with any register.

Table 4-4 Exception exit steps

Action Description 

Select SP Sets CONTROL[1] based on EXC_RETURN.

Pop eight registers Pops R0, R1, R2, R3, R12, LR, PC, and xPSR from stack selected by EXC_RETURN.

The value of xPSR[5:0] loaded off the stack determines the exception number that defines 
the priority of the thread to be returned to.

The value of EXC_RETURN determines which mode is returned to.
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When used in this way, the value written to the PC is intercepted and is referred to as 
the EXC_RETURN value. Table 4-5 lists the EXC_RETURN[3:0] values with a description 
of the exception return behavior.

If an EXC_RETURN value is loaded into the PC when in Thread mode, or from the 
vector table, or by any other instruction, the value is treated as an address, not as a 
special value. This address range is defined to have Execute Never (XN) permissions 
and results in a Hard Fault.

Note
 Exception handlers must preserve the value of EXC_RETURN[28:4] or write them as 
all ones (1s).

Table 4-5 Exception return behavior

EXC_RETURN[3:0] Description

0bXXX0 Reserved.

0b0001 Return to Handler mode.

Exception return gets state from the main stack.

Execution uses SP_Main after return.

0b0011 Reserved.

0b01X1 Reserved.

0b1001 Return to Thread mode.

Exception return gets state from the main stack.

Execution uses SP_Main after return.

0b1101 Return to Thread mode.

Exception return gets state from the process stack.

Execution uses SP_Process after return.

0b1X11 Reserved.
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4.7 Late-arrival

A late-arriving exception can be handled in preference to a previous exception if the 
vector fetch has not started and the late-arriving exception has:

• a higher priority than the previous exception

• the same priority but a lower exception number than the previous exception.

A late-arriving exception causes a change of vector address fetch and exception 
prefetch. State saving is not performed for the late-arriving exception because it has 
already been performed for the initial exception and so does not have to be repeated. In 
this case, execution commences at the vector of the late arriving exception while the 
previous exception remains pending.

If a high priority exception is recognized after the vector fetch of the original exception 
has started, the late-arriving exception cannot use the context already stacked for the 
original exception. In this case, the original exception handler is pre-empted and its 
context is saved onto the stack.
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4.8 Exception control transfer

Table 4-6 shows how the processor transfers control to an exception following the rules. 

Table 4-6 Transferring to exception processing

Processor activity at 
recognition of exception Transfer to exception processing

Instruction Instruction completes and exception is taken before the next instruction.

Exception entry This is classified as a late arriving exception. If the new exception is of higher priority or 
the same priority and lower exception number than the first exception, the core might 
service the late arriving exception first as a late arrival case. If not, the late arriving 
exception remains pending and normal pre-emption rules apply.

If the late arriving exception arrives early enough in the core stacking phase it is taken as 
a late arrival. In this case, the core fetches the vector for the late arriving exception instead 
of the vector for the first exception. Execution begins at the late arriving exception vector 
and the first exception remains pending.

If the late arriving exception arrives too late in the stacking phase it cannot be handled as 
a late arrival. Instead, the first exception vector is fetched, execution commences at the 
first exception vector address and the late arriving exception is pended and normal 
pre-emption rules apply.

Exception postamble Exception return sequence is completed and execution resumes at the target of the return. 
Normal pre-emption rules then apply.
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4.9 Activation levels

When no exceptions are active, the processor is in Thread mode. When an exception or 
fault handler is active, the processor enters Handler mode. Table 4-7 lists the stacks and 
associated active exception and activation levels. 

Table 4-8 lists the transition rules for all exception types and how they relate to the 
access rules and stack model.

Table 4-9 on page 4-15 lists exception subtype transitions.

Table 4-7 Stack activation levels

Active exception Activation level Stack

None Thread mode Main or process

Exception active Asynchronous pre-emption level Main

Fault handler active Asynchronous or Synchronous pre-emption level Main

Table 4-8 Exception transitions

Active exception Triggering event Transition type Stack 

Reset Reset signal Thread Main

ISR or NMIa Set-pending software instruction or hardware signal Asynchronous pre-emption Main

Hard Fault Any fault Synchronous or 
asynchronous pre-emption

Main

SVCb SVC instruction Synchronous pre-emption Main

a. Nonmaskable interrupt.
b. Supervisor Call.
4-14 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413C



Exceptions 
Table 4-9 Exception subtype transitions

Intended 
activation subtype Triggering event Activation Priority effect

Thread Reset signal Asynchronous Immediate, thread is lowest

Interrupt or NMI Hardware signal or 
set-pend

Asynchronous Pre-empt according to priority

SVC SVC instruction Synchronous If the priority programmed for the SVCall exception 
is higher than the currently executing priority, the 
SVCall exception is taken. If not, the SVC escalates 
to a HardFault.

PendSV Software pend request Asynchronous Pre-empt according to priority

SysTick Counter reaches zero 
or set-pend

Asynchronous Pre-empt according to priority

HardFault Any fault Synchronous or 
asynchronousa

Higher than all except NMIb

a. Activation depends on the cause of the fault.
b. If a Hard Fault occurs when the processor is executing an NMI or Hard Fault handler, the processor enters the architectural 

lock-up state. See Lock-up on page 4-16 for more information.
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4.10 Lock-up

The processor has a lock-up state that is entered when an unrecoverable condition 
occurs. The cause of unrecoverable conditions are asynchronous or synchronous faults, 
including an escalated SVC instruction. For more information on unrecoverable 
conditions, see the ARMv6-M Architecture Reference Manual.

The processor can enter the lock-up state at a priority of -1 or -2. An NMI can be taken 
and cause the processor to leave the lock-up state if it was at a priority of -1.

A debugger can also cause the processor to exit the lock-up state.

The LOCKUP pin from the processor indicates the that the processor is in the lock-up 
state.
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Clocks and Resets

This chapter describes the processor clocking and resets. It contains the following 
section:

• About clocks and resets on page 5-2.
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5.1 About clocks and resets

The processor has one functional clock input, HCLK, and one reset signal, 
SYSRESETn. 

If debug is implemented there is also a SWJ-DP clock, SWCLKTCK, a debug reset 
signal, DBGRESETn, and a JTAG reset signal, nTRST. SWCLKTCK and nTRST 
relate to the Debug Access Port (DAP) logic and the debug reset signal DBGRESETn 
relates to the debug logic clocked by HCLK. 

The SYSRESETn signal resets the entire processor system with the exception of 
debug. The DBGRESETn signal resets all the debug logic in the processor, when 
present.

The following are not reset:

• the TCMs, when present

• the register file.

SWCLKTCK is the clock for the debug interface domain of the SWJ-DP. In JTAG 
mode this is equivalent to TCK. In Serial Wire Mode this is the Serial Wire clock. It can 
be asynchronous to the system clock HCLK.

Figure 5-1 shows the reset signals for the processor.

Figure 5-1 Reset signals

Note
 Both DBGRESETn and SYSRESETn must be asserted at power on reset.
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Depending on your requirements, you might want to reset the system outside the 
processor independent of the state of SYSRESETREQ. If this is the case, ensure that:

• Any logic required for debug is not reset.

• SYSRESETREQ is not connected combinatorially to SYSRESETn. 
SYSRESETREQ must be registered to ensure that SYSRESETn is driven for 
the minimum reset time of your FPGA. SYSRESETREQ is cleared by 
SYSRESETn.

• DBGRESETn is driven at power on reset and not by SYSRESETREQ 
otherwise the debugger cannot maintain a connection when the processor is reset.

• If DBGRESETn is driven SYSRESETn must also be driven.

Note
 If you do not reset the system at the same time as the processor, you must also ensure 
accesses that might be in progress as reset occurs do not disrupt the system.

You must ensure resets are:

• held LOW for a minimum of two cycles

• deasserted synchronously to HCLK.

You can stop all of the processor clocks indefinitely without loss of state.

Note
 • When the External AHB system and the processor are held in reset by 

SYSRESETn, the debugger can only access the PPB space of the processor and 
the TCMs. The debugger cannot access external memory space.

• If the external system is reset by SYSRESETn and is reset during a DAP access, 
the results of the access cannot be guaranteed. For example, a read transaction 
might receive corrupt data and a faulting transaction might not be recognized by 
the DAP.
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Chapter 6 
System Control

This chapter describes the registers that program the processor. It contains the following 
sections:

• About system control on page 6-2

• System control register descriptions on page 6-3.
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6.1 About system control

Table 6-1 gives a summary of the system control registers.

Note
 • All system control registers are only accessible using word transfers. Any attempt 

to write a halfword or byte causes corruption of register bits. 

• If you do not have OS extension implemented the addresses 0xE000E010, 
0xE000E014, 0xE000E018, and 0xE000E01C are reserved.

Table 6-1 System control registers

Name of register Type Address Reset value Page

SysTick Control and Status Register R/W 0xE000E010 0x00000004 page 6-3

SysTick Reload Value Register R/W 0xE000E014 0x00000000 page 6-5

SysTick Current Value Register R/W clear 0xE000E018 0x00000000 page 6-5

SysTick Calibration Value Register RO 0xE000E01C 0x80000000 page 6-6

CPUID Base Register RO 0xE000ED00 0x410CC210 page 6-6

Interrupt Control State Register -a 0xE000ED04 0x00000000 page 6-7

Application Interrupt and Reset Control Register -b 0xE000ED0C 0xFA050000c

0xFA058000d

page 6-10

Configuration and Control Register R/W 0xE000ED14 0x00000208 page 6-11

System Handler Priority Register 2 R/W 0xE000ED1C 0x00000000 page 6-12

System Handler Priority Register 3 R/W 0xE000ED20 0x00000000 page 6-12

System Handler Control and State Register R/W 0xE000ED24 0x00000000 page 6-14

a. Access type depends on the individual bit. For more information see Table 6-7 on page 6-8
b. Access type depends on the individual bit. For more information see Table 6-8 on page 6-10
c. Reset value for little-endian.
d. Reset value for BE-8 big-endian.
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6.2 System control register descriptions

This section describes how to use the system control registers.

6.2.1 SysTick Control and Status Register

Use the SysTick Control and Status Register to enable the SysTick features.

The register address, access type, and reset value are:

Address 0xE000E010

Access Read/write

Reset value 0x00000004

Figure 6-1 shows the bit assignments of the SysTick Control and Status Register.

Figure 6-1 SysTick Control and Status Register bit assignments

Table 6-2 lists the bit assignments of the SysTick Control and Status register.

Table 6-2 SysTick Control and Status Register bit assignments

Bits Field Function

[31:17] - Reserved.

[16] COUNTFLAG Returns 1 if timer counted to 0 since last time this was read. Clears on read by application 
or debugger. 

[15:3] - Reserved.
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6.2.2 SysTick Reload Value Register 

Use the SysTick Reload Value Register to specify the start value to load into the SysTick 
Current Value Register when the counter reaches 0. It can be any value in range 
0x00000001-0x00FFFFFF. A start value of 0 is possible, but has no effect because the 
SysTick interrupt and COUNTFLAG are activated when counting from 1 to 0.

The RELOAD value can be calculated according to its use. For example:

• A multi-shot timer has a SysTick interrupt RELOAD of N-1 to generate a timer 
period of N processor clock cycles. For example, if the SysTick interrupt is 
required every 100 clock pulses, 99 must be written into RELOAD.

• A single shot timer has a SysTick interrupt RELOAD of N to deliver a single 
SysTick interrupt after a delay of N processor clock cycles. For example, if a 
SysTick interrupt is next required after 400 clock pulses, you must write 400 into 
RELOAD.

The register address, access type, and reset value are:

Address 0xE000E014

Access Read/write

Reset value 0x00000000

Figure 6-2 on page 6-5 shows the bit assignments of the SysTick Reload Value 
Register.

[2] CLKSOURCE Always reads as one:

1 = processor clock.

Indicates that SysTick uses the processor clock, HCLK.

[1] TICKINT 1 = counting down to zero pends the SysTick handler.

0 = counting down to zero does not pend the SysTick handler. Software can use 
COUNTFLAG to determine if the SysTick handler has ever counted to zero.

[0] ENABLE 1 = counter operates in a multi-shot way. That is, counter loads with the Reload value and 
then begins counting down. On reaching 0, it sets the COUNTFLAG to 1 and optionally 
pends the SysTick handler, based on TICKINT. It then loads the Reload value again and 
begins counting.

0 = counter disabled.

Table 6-2 SysTick Control and Status Register bit assignments (continued)

Bits Field Function
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Figure 6-2 SysTick Reload Value Register bit assignments

Table 6-3 lists the bit assignments of the SysTick Reload Value Register.

6.2.3 SysTick Current Value Register

Use the SysTick Current Value Register to find the current value in the register.

The register address, access type, and reset value are:

Address 0xE000E018

Access Read/write clear

Reset value 0x00000000

Figure 6-3 shows the bit assignments of the SysTick Current Value Register.

Figure 6-3 SysTick Current Value Register bit assignments

Table 6-4 lists the bit assignments of the SysTick Current Value Register.

Table 6-3 SysTick Reload Value Register bit assignments

Bits Field Function

[31:24] - Reserved

[23:0] RELOAD Value to load into the SysTick Current Value Register when the counter reaches 0

Table 6-4 SysTick Current Value Register bit assignments

Bits Field Function

[31:24] - Reserved.

[23:0] CURRENT Reads return the current value of the SysTick counter.

This register is write-clear. Writing to it with any value clears the register to 0. Clearing this 
register also clears the COUNTFLAG bit of the SysTick Control and Status Register.
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6.2.4 SysTick Calibration Value Register

Use the SysTick Calibration Value Register to enable software to scale to any required 
speed using divide and multiply.

The register address, access type, and reset value are:

Address 0xE000E01C

Access Read-only

Reset value 0x80000000

Figure 6-4 shows the bit assignments of the SysTick Calibration Value Register.

Figure 6-4 SysTick Calibration Value Register bit assignments

Table 6-5 lists the bit assignments of the SysTick Calibration Value Register.

6.2.5 CPU ID Base Register

Read the CPU ID Base Register to determine:

• the ID number of the processor core

• the version number of the processor core

• the implementation details of the processor core.

The register address, access type, and reset value are:

Address 0xE000ED00

Access Read-only

Table 6-5 SysTick Calibration Value Register bit assignments

Bits Field Function

[31] NOREF Reads as one. Indicates that no separate reference clock is provided.

[30] SKEW Reads as zero. Calibration value for the 10ms inexact timing is not known because TENMS is not 
known. This can affect its suitability as a software real time clock.

[29:24] - Reserved.

[23:0] TENMS Reads as zero. Indicates calibration value is not known.
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Reset value 0x410CC211

Figure 6-5 shows the bit assignments of the CPUID Base Register.

Figure 6-5 CPUID Base Register bit assignments

Table 6-6 lists the bit assignments of the CPUID Base Register. 

6.2.6 Interrupt Control State Register

Use the Interrupt Control State Register to:

• set a pending Non-Maskable Interrupt (NMI)

• set or clear a pending PendSV

• set or clear a pending SysTick

• check for pending exceptions

• check the vector number of the highest priority pended exception

• check the vector number of the active exception.

The register address, access type, and reset value are:

Address 0xE000ED04.

Table 6-6 CPUID Base Register bit assignments

Bits Field Function

[31:24] IMPLEMENTER Implementor code:

0x41 = ARM

[23:20] VARIANT Implementation defined variant number:

0x0 for r0p0 and r0p1

[19:16] Constant Reads as 0xC

[15:4] PARTNO Number of processor within family:

0xC21

[3:0] REVISION Implementation defined revision number: 

0x0 = r0p0

0x1 = r0p1
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Access Access type depends on the individual bit. For more information see 
Table 6-7.

Reset value 0x00000000.

Figure 6-6 shows the bit assignments of the Interrupt Control State Register.

Figure 6-6 Interrupt Control State Register bit assignments

Table 6-7 lists the bit assignments of the Interrupt Control State Register. 

Table 6-7 Interrupt Control State Register bit assignments

Bits Field Type Function

[31] NMIPENDSET R/W On writes:

1 = set pending NMI

0 = no effect.

NMIPENDSET pends and activates an NMI. Because NMI is the 
highest-priority interrupt, it takes effect as soon as it registers unless the 
processor is at a priority of -2.

On reads, this bit returns the pending state of NMI.

[30:29] - - Reserved.

[28] PENDSVSETa R/W On writes:

1 = set pending PendSV

0 = no effect.

On reads this bit returns the pending state of PendSV.
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[27] PENDSVCLRa WO On writes:

1 = clear pending PendSV

0 = no effect.

[26] PENDSTSETa R/W On writes:

1 = set pending SysTick

0 = no effect.

On reads this bit returns the pending state of SysTick.

[25] PENDSTCLRa WO On writes:

1 = clear pending SysTick

0 = no effect.

[24] - - Reserved.

[23] ISRPREEMPTb RO You must only use this at debug time. It indicates that a pending interrupt 
becomes active in the next running cycle. If C_MASKINTS is clear in the Debug 
Halting Control and Status Register, the interrupt is serviced:

1 = a pending exception is serviced on exit from the debug halt state

0 = a pending exception is not serviced.

[22] ISRPENDINGb RO External interrupt pending flag, where:

1 = interrupt pending

0 = interrupt not pending.

[21:18] - - Reserved.

[17:12] VECTPENDINGa RO Indicates the exception number for the highest priority pending exception: 

0 = no pending exceptions

Non zero = The pending state includes the effect of memory-mapped enable and 
mask registers. It does not include the PRIMASK special-purpose register 
qualifier.

[11:6] - - Reserved.

[5:0] VECTACTIVEc RO Active exception number field:

0 = Thread mode

Non zero = the exception numberc of the currently active exception.

Reset clears the VECTACTIVE field.

a. OS Extension only, otherwise Reserved.
b. Debug Extension only, otherwise it is Reserved.
c. This is the same value as IPSR bits [5:0].

Table 6-7 Interrupt Control State Register bit assignments (continued)

Bits Field Type Function
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6.2.7 Application Interrupt and Reset Control Register

Use the Application Interrupt and Reset Control Register to:

• determine data endianness

• clear all active state information from debug halt mode

• request a system reset.

The register address, access type, and reset value are:

Address 0xE000ED0C.

Access Access type depends on the individual bit. For more information see 
Table 6-8.

Reset value 0xFA050000 is the reset value for little-endian.

0xFA058000 is the reset value for BE-8 big-endian.

Figure 6-7 shows the bit assignments of the Application Interrupt and Reset Control 
Register.

Figure 6-7 Application Interrupt and Reset Control Register bit assignments

Table 6-8 lists the bit assignments of the Application Interrupt and Reset Control 
Register. 

Table 6-8 Application Interrupt and Reset Control Register bit assignments

Bits Field Type Function

[31:16] VECTKEY WO Register key. To write to other parts of this register, you must ensure 0x5FA is 
written into the VECTKEY field.

[15] ENDIANNESS RO Data endianness bit. The read value depends on the endian configuration 
implemented:

0 = little-endian

1 = BE-8 big-endian.

[14:3] - - Reserved.
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6.2.8 Configuration and Control Register

The Configuration and Control Register permanently enables stack alignment and 
causes unaligned accesses to result in a Hard Fault.

The register address, access type, and reset value are:

Address 0xE000ED14

Access Read-only

Reset value 0x00000208

Figure 6-8 shows the bit assignments of the Configuration and Control Register.

Figure 6-8 Configuration and Control Register bit assignments

[2] SYSRESETREQ WO Writing 1 to this bit causes the SYSRESETREQ signal to the outer system to 
be asserted to request a reset. The intention is to force a large system reset of 
all major components except for debug. The C_HALT bit in the DHCSR is 
cleared as a result of the system reset requested. The debugger does not lose 
contact with the device.

[1] VECTCLRACTIVE WO Clears all active state information for fixed and configurable exceptions.

This bit:

• is self-clearing

• can only be set by the DAP when the processor is halted.

When this bit is set:

• clears all active exception status of the processor

• forces a return to Thread mode

• forces an IPSR of 0.

A debugger must re-initialize the stack.

[0] - - Reserved.

Table 6-8 Application Interrupt and Reset Control Register bit assignments (continued)

Bits Field Type Function
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Table 6-9 lists the bit assignments of the Configuration and Control Register.

6.2.9 System handler priority registers

System handlers are a special class of exception handler that can have their priority set 
to any of the priority levels. 

There are two system handler priority registers for prioritizing the following system 
handlers:

• SVCall, see System Handler Priority Register 2

• SysTick, see System Handler Priority Register 3 on page 6-13

• PendSV, see System Handler Priority Register 3 on page 6-13.

PendSV and SVCall are permanently enabled. You can enable or disable SysTick by 
writing to the SysTick Control and Status Register.

System Handler Priority Register 2

The register address, access type, and reset value are:

Address 0xE000ED1C

Access Read/write

Reset value 0x00000000

Figure 6-9 on page 6-13 shows the bit assignments of the System Handler Priority 
Register 2.

Table 6-9 Configuration and Control Register bit assignments

Bits Field Function

[31:10] - Reserved.

[9] STKALIGN Always set to 1. On exception entry, all exceptions are entered with 8-byte stack alignment 
and the context to restore it is saved. The SP is restored on the associated exception return.

[8:4] - Reserved.

[3] UNALIGN_TRP Indicates that all unaligned accesses results in a Hard Fault. Trap for unaligned access is 
fixed at 1.

[2:0] - Reserved.
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Figure 6-9 System Handler Priority Register 2 bit assignments

Table 6-10 lists the bit assignments for the System Handler Priority Register 2. 

System Handler Priority Register 3

The register address, access type, and reset value are:

Address 0xE000ED20

Access Read/write

Reset value 0x00000000

Figure 6-10 shows the bit assignments of the System Handler Priority Register 3.

Figure 6-10 System Handler Priority Register 3 bit assignments

Table 6-10 System Handler Priority Register 2 bit assignments

Bits Field Function

[31:30] PRI_11 Priority of system handler 11, SVCall

[29:0] - Reserved
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Table 6-11 lists the bit assignments of the System Handler Priority Registers. 

6.2.10 System Handler Control and State Register

Use the System Handler Control and State Register to read or write the pending status 
of SVCall.

The register address, access type, and reset value are:

Address 0xE000ED24

Access Read/write

Reset value 0x00000000

Figure 6-11 shows the bit assignments of the System Handler and State Control 
Register.

Figure 6-11 System Handler Control and State Register bit assignments

Table 6-11 System Handler Priority Register 3 bit assignments

Bits Field Function

[31:30] PRI_15 Priority of system handler 15, SysTick

[29:24] - Reserved

[23:22] PRI_14 Priority of system handler 14, PendSV

[21:0] - Reserved
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Table 6-12 lists the bit assignments of the System Handler Control Register. 

Note
 This register is only accessible as part of debug and not through the processor memory 
map.

Table 6-12 System Handler Control and State Register bit assignments

Bits Field Function

[31:16] - Reserved.

[15] SVCALLPENDED Reads as 1 if SVCall is pended.

If written to:

1 = Set pending SVCall

0 = Clear pending SVCall

[14:0] - Reserved.
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Chapter 7 
Nested Vectored Interrupt Controller 

This chapter describes the Nested Vectored Interrupt Controller (NVIC). It contains the 
following sections:

• About the NVIC on page 7-2

• NVIC programmer’s model on page 7-3

• Level versus pulse interrupts on page 7-9

• Resampling level interrupts on page 7-10

• Interrupts as general purpose input on page 7-11.
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7.1 About the NVIC

The NVIC supports reprioritizable interrupts. The NVIC and the core of the processor 
are closely coupled, which enables low latency interrupt processing and efficient 
processing of late arriving interrupts.

All NVIC registers are only accessible using word transfers. Any attempt to write a 
halfword or byte individually causes corruption of the register bits.

NVIC registers are always little-endian. 

Processor accesses are correctly handled regardless of the endian configuration of the 
processor.

DAP accesses must be interpreted as little-endian.

Processor exception handling is described in Chapter 4 Exceptions.
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7.2 NVIC programmer’s model

This section describes the NVIC registers. It contains the following:

• NVIC register map

• NVIC register descriptions.

7.2.1 NVIC register map

Table 7-1 gives a summary of the NVIC registers.

7.2.2 NVIC register descriptions

The sections that follow describe how to use the NVIC registers.

Interrupt Set-Enable Register

Use the Interrupt Set-Enable Register to:

• enable interrupts

• determine which interrupts are currently enabled.

Table 7-1 NVIC registers

Name of register Type Address Reset value Page

Interrupt Set Enable Register R/W 0XE000E100 0x00000000 page 7-3

Interrupt Clear Enable Register R/W 0XE000E180 0x00000000 page 7-4

Interrupt Set Pending Register R/W 0XE000E200 0x00000000 page 7-5

Interrupt Clear Pending Register R/W 0XE000E280 0x00000000 page 7-6

Priority 0 Register R/W 0XE000E400 0x00000000 page 7-7

Priority 1 Register R/W 0XE000E404 0x00000000 page 7-7

Priority 2 Register R/W 0XE000E408 0x00000000 page 7-7

Priority 3 Register R/W 0XE000E40C 0x00000000 page 7-7

Priority 4 Register R/W 0XE000E410 0x00000000 page 7-7

Priority 5 Register R/W 0XE000E414 0x00000000 page 7-7

Priority 6 Register R/W 0XE000E418 0x00000000 page 7-7

Priority 7 Register R/W 0XE000E41C 0x00000000 page 7-7
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Each bit in the register corresponds to one of 32 interrupts. Setting a bit in the Interrupt 
Set-Enable Register enables the corresponding interrupt.

When the enable bit of a pending interrupt is set, the processor activates the interrupt 
based on its priority. When the enable bit is clear, asserting the interrupt signal pends 
the interrupt, but it is not possible to activate the interrupt, regardless of its priority. 
Therefore, a disabled interrupt can serve as a latched general-purpose bit. You can read 
it and clear it without invoking an interrupt.

Clear the enable state by writing a 1 to the corresponding bit in the Interrupt 
Clear-Enable Register (see Interrupt Clear-Enable Register). This also clears the 
corresponding bit in the Interrupt Set-Enable Register (see Interrupt Set-Enable 
Register on page 7-3).

The register address, access type, and reset value are:

Address 0xE000E100 

Access Read/write

Reset value 0x00000000

Table 7-2 lists the bit assignments of the Interrupt Set-Enable Register. 

Interrupt Clear-Enable Register

Use the Interrupt Clear-Enable Registers to:

• disable interrupts

• determine which interrupts are currently enabled.

Each bit in the register corresponds to one of the 32 interrupts. Setting an Interrupt 
Clear-Enable Register bit disables the corresponding interrupt.

Table 7-2 Interrupt Set-Enable Register bit assignments

Bits Field Function

[31:0] SETENA Interrupt set enable bits. For writes:

1 = enable interrupt 

0 = no effect.

For reads:

1 = interrupt enabled

0 = interrupt disabled

Writing 0 to a SETENA bit has no effect. Reading the bit returns its current enable state. Reset 
clears the SETENA fields.
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The register address, access type, and reset value are:

Address 0xE000E180

Access Read/write

Reset value 0x00000000

Note
 Writing a 1 to a Clear-Enable Register bit does not affect currently active interrupts. It 
only prevents new activations.

Table 7-3 lists the bit assignments of the Interrupt Clear-Enable Register. 

Interrupt Set-Pending Register

Use the Interrupt Set-Pending Register to:

• force interrupts into the pending state

• determine which interrupts are currently pending.

Each bit in the register corresponds to one of the 32 interrupts. Setting an Interrupt 
Set-Pending Register bit pends the corresponding interrupt. Writing a 0 to a pending bit 
has no effect on the pending state of the corresponding interrupt.

Clear an interrupt pending pit by writing a 1 to the corresponding bit in the Interrupt 
Clear-Pending Register (see Interrupt Clear-Pending Register on page 7-6).

Note
 Writing to the Interrupt Set-Pending Register has no effect on an interrupt that is already 
pending.

Table 7-3 Interrupt Clear-Enable Register bit assignments

Bits Field Function

[31:0] CLRENA Interrupt clear-enable bits.

For writes:

1 = disable interrupt

0 = no effect.

For reads:

1 = interrupt enabled

0 = interrupt disabled.

Writing 0 to a CLRENA bit has no effect. Reading the bit returns its current enable state. 

Reset clears the CLRENA field.
ARM DDI0413C Copyright © 2006-2008 ARM Limited. All rights reserved. 7-5



Nested Vectored Interrupt Controller 
The register address, access type, and reset value are:

Address 0xE000E200

Access Read/write

Reset value 0x00000000

Table 7-4 lists the bit assignments of the Interrupt Set-Pending Register. 

Interrupt Clear-Pending Register

Use the Interrupt Clear-Pending Register to:

• clear pending interrupts

• determine which interrupts are currently pending.

Each bit in the register corresponds to one of the 32 interrupts. Setting an Interrupt 
Clear-Pending Register bit clears the pending state of the corresponding interrupt.

Note
 Writing to the Interrupt Clear-Pending Register has no effect on an interrupt that is 
active unless it is also pending.

The register address, access type, and reset value are:

Address 0xE000E280

Access Read/write

Reset value 0x00000000

Table 7-4 Interrupt Set-Pending Register bit assignments

Bits Field Function

[31:0] SETPEND Interrupt set-pending bits. 

For writes:

1 = pend interrupt

0 = no effect.

For reads:

1 = interrupt is pending 

0 = interrupt is not pending.
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Table 7-5 lists the bit assignments of the Interrupt Clear-Pending Registers. 

Interrupt Priority Registers

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the 
available interrupts. 0 is the highest priority and 3 is the lowest.

The two bits of priority are stored in bits [7:6] of each byte.

The register address, access type, and reset value are:

Address 0xE000E400-0xE000E41C

Access Read/write

Reset value 0x00000000

Figure 7-1 on page 7-8 shows the bit assignments of Interrupt Priority Registers 0-7.

Table 7-5 Interrupt Clear-Pending Registers bit assignments

Bits Field Function

[31:0] CLRPEND Interrupt clear-pending bits.

For writes:

1 = clear interrupt pending bit

0 = no effect.

For reads:

1 = interrupt is pending 

0 = interrupt is not pending.
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Figure 7-1 Interrupt Priority Registers 0-7 bit assignments

Figure 7-1 shows fields for 32 interrupts using Interrupt Priority Registers 0-7. If your 
implementation uses fewer interrupts, all unused registers are Reserved.

Table 7-6 lists the bit assignments of the Interrupt Priority Registers. 

Table 7-6 Interrupt Priority Registers 0-31 bit assignments

Bits Field Function

[7:6] IP_n Priority of interrupt n
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7.3 Level versus pulse interrupts

The processor supports both level and pulse interrupts. A level interrupt is held asserted 
until it is cleared by the ISR accessing the device. A pulse interrupt is a variant of an 
edge model. The interrupt signal is sampled synchronously on the rising edge of the 
processor clock. The processor recognizes a pulse when the input is observed LOW and 
then HIGH on two consecutive rising edges of the processor clock.

For level interrupts, if the signal is not deasserted before the return from the interrupt 
routine, the interrupt repends and re-activates. This is particularly useful for FIFO and 
buffer-based devices because it ensures that they drain either by a single ISR or by 
repeated invocations, with no extra work. This means that the device holds the interrupt 
signal asserted until the device is empty.

A pulse interrupt must be asserted for at least one processor clock cycle to enable the 
NVIC to observe it.

A pulse interrupt can be reasserted during the ISR so that the interrupt can be pended 
and active at the same time. The application design must ensure that a second pulse does 
not arrive before the interrupt caused by the first pulse is activated. If the second pulse 
arrives before the interrupt is activated, the second pulse has no effect because it is 
already pended. When the ISR is activated, the pend bit is cleared. If the interrupt asserts 
again when the ISR is activated, the NVIC latches the pend bit again.

Pulse interrupts are mainly used for external signals and for rate or repeat signals.
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7.4 Resampling level interrupts

An ISR can detect that no more interrupts occur during interrupt processing to avoid the 
overhead of ISR exit and entry. This information is available in the set and clear pending 
registers, see Interrupt Interrupt Set-Pending Register on page 7-5 and Interrupt 
Interrupt Clear-Pending Register on page 7-6.

For Pulse interrupts, a bit that is set to 1 indicates that another interrupt has arrived since 
the ISR started.

If the level interrupt is guaranteed to have been cleared and then asserted, the status bit 
read from the Interrupt Pending Registers is set to 1, as for pulse interrupts.

For level interrupts, where the line might remain HIGH continuously from ISR entry, 
write 1 to the appropriate bit of the:

• Interrupt Set-Pending Register

• Interrupt Clear-Pending Register. 

The Interrupt Clear-Pending Register is not cleared if the interrupt line is HIGH, and 
can be read again to determine the status.
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7.5 Interrupts as general purpose input

You can use an unused interrupt line as a general purpose input. To use the interrupt line 
as a general purpose input ensure the interrupt is disabled. See Interrupt Clear-Enable 
Register on page 7-4.

You can use the Interrupt Clear-Pending Register on page 7-6 to check if the input is 
HIGH since it was last accessed. 

To check the current status, write 1 to the appropriate bit of Interrupt Clear-Pending 
Register. The value on the status bit is cleared if the interrupt line is LOW and the 
Interrupt Clear-Pending Register can be read again to determine the status.
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Chapter 8 
Debug

This chapter describes the debug system and how to use it. It contains the following 
sections:

• About debug on page 8-2

• Debug control on page 8-5

• ROM table on page 8-13

• BPU on page 8-16

• DW unit on page 8-19

• Debug TCM interface on page 8-24

• Examples of debug register halt, access, and step on page 8-25

• Data address watchpoint matching on page 8-28

• Semiprecise watchpoints on page 8-29.
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8.1 About debug

There are two configurations for debug:

• The full debug configuration has four breakpoint comparators and two watchpoint 
comparators. This is the default configuration.

• The reduced debug configuration has two breakpoint comparators and one 
watchpoint comparator.

Debug facilitates:

• core halt

• core stepping

• core register access while halted

• read/write to:

—  TCMs

— AHB address space

— internal Private Peripheral Bus (PPB)

• breakpoints

• watchpoints.

The main debug components are:

• debug control registers to access and control debugging of the core

• BreakPoint Unit (BPU) to implement breakpoints

• Data Watchpoint (DW) unit to implement watchpoints

• debug memory interfaces to access ITCM and DTCM

• ROM table.

All the debug components exist on the internal PPB, 0xE000ED30 - 0xE000EEFF. Access to 
the debug components is only possible when the debug extension is present. 

Even when debug is present, you can only access the debug components from the debug 
port. Accesses from software are reserved. 

Debug control and data access occurs through the Advanced High-performance 
Bus-Access Port (AHB-AP). This interface is driven by the Serial Wire JTAG Debug 
Port (SWJ-DP) component. See Chapter 9 Debug Access Port for information on the 
AHB-AP and SWJ-DP component. Access includes:

• The AHB-PPB. Through this bus, the debugger can access debug, including:

— debug control

— DW unit

— BPU unit
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— the ROM Table

— TCMs if configured.

• The AHB address space. The AHB slaves in the debug system always expect 
32-bit AHB transfers. If a byte or halfword access is created from the DAP, the 
transfer is extended to a 32-bit access and all 32 bits in the register are accessed.

The DAP must be interpret all accesses as little-endian.

Figure 1-1 on page 1-4 shows the structure of the debug system, indicating how the 
AHB-AP can access each of the system components and external buses. 

Table 8-1 shows a summary of the core debug registers.

Table 8-2 shows a summary of the Breakpoint registers. 

Table 8-1 Core debug registers summary

Name Reset value Type Address Description

DFSR 0x0 R/W 0xE000ED30 See Debug Fault Status Register on page 8-5

DHCSR 0x0 R/W 0xE000EDF0 See Debug Halting Control and Status Register on page 8-7

DCRSR 0x0 WO 0xE000EDF4 See Debug Core Register Selector Register on page 8-10

DCRDR 0x0 R/W 0xE000EDF8 See Debug Core Register Data Register on page 8-11

DEMCR 0x0 R/W 0xE000EDFC See Debug Exception and Monitor Control Register on page 8-11

Table 8-2 BPU register summary

Name Reset value Type Address Description

BPU_CTRL 0x0 R/W 0xE0002000 See Breakpoint Control Register on page 8-16

BPU_COMP0 0x0 R/W 0xE0002008 See Breakpoint Comparator Registers on page 8-17

BPU_COMP1 0x0 R/W 0xE000200C See Breakpoint Comparator Registers on page 8-17

BPU_COMP2 0x0 R/W 0xE0002010 See Breakpoint Comparator Registers on page 8-17

BPU_COMP3 0x0 R/W 0xE0002014 See Breakpoint Comparator Registers on page 8-17
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Table 8-3 shows a summary of the DW registers. 

Table 8-3 DW register summary

Name Reset value Type Address Description

DW_CTRL 0x0 R/W 0xE0001000 See DW Control Register on page 8-19

DW_COMP0 - R/W 0xE0001020 See DW Comparator Registers on page 8-20

DW_MASK0 - R/W 0xE0001024 See DW Mask Registers on page 8-21

DW_FUNCTION0 0x00 R/W 0xE0001028 See DW Function Registers on page 8-22

DW_COMP1 - R/W 0xE0001030 See DW Comparator Registers on page 8-20

DW_MASK1 - R/W 0xE0001034 See DW Mask Registers on page 8-21

DW_FUNCTION1 0x00 R/W 0xE0001038 See DW Function Registers on page 8-22
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8.2 Debug control

This section describes how to access and control core debug to test the core. It contains 
the following sections:

• Debug Fault Status Register

• Debug Halting Control and Status Register on page 8-7

• Debug Core Register Selector Register on page 8-10

• Debug Core Register Data Register on page 8-11

• Debug Exception and Monitor Control Register on page 8-11.

Note
 The processor cannot access the debug control register on the PPB. Accesses are 
Reserved if the processor attempts to access debug control. Debug control is accessed 
through the DAP.

8.2.1 Debug Fault Status Register

Use the Debug Fault Status Register (DSFR) to monitor:

• external debug requests

• vector catches

• data watchpoint match

• BKPT instruction execution and BPU comparator matches

• halt requests.

Multiple flags in the Debug Fault Status Register can be set when multiple debug 
conditions occur. The register is sticky read/write clear. This means that it can be read 
normally. Writing a 1 to a bit clears that bit.

C_DEBUGEN must be set before any bits in the DFSR are updated.

The register address, access type, and reset value are:

Address 0xE000ED30

Access Read/write-one-to-clear

Reset value 0x00000000

Figure 8-1 on page 8-6 shows the bit assignments of the Debug Fault Status Register.
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Figure 8-1 Debug Fault Status Register bit assignments

Table 8-4 lists the bit assignments of the Debug Fault Status Register. 

Table 8-4 Debug Fault Status Register bit assignments

Bits Field Function

[31:5] - Reserved.

[4] EXTERNAL External debug request flag:

1 = EDBGRQ has halted the core

0 = no EDBGRQ external debug request occurred.

The processor stops on next instruction boundary.

[3] VCATCH Vector catch flag:

1 = vector catch occurred

0 = no vector catch occurred.

When the VCATCH flag is set, a flag in the Debug Exception and Monitor Control Register is 
also set to indicate the type of vector catch.
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EXTERNAL, VCATCH, DWTRAP, BKPT, and HALTED are not set unless the event 
is caught. If C_DEBUGEN is enabled, these events halt the processor and cause it to 
enter Debug state.

8.2.2 Debug Halting Control and Status Register

The purpose of the Debug Halting Control and Status Register (DHCSR) is to:

• provide status information about the state of the processor

• enable core debug

• halt and step the processor.

The register address, access type, and reset value are:

Address 0xE000EDF0

Access Read/write

Reset value 0x20000000

Figure 8-2 on page 8-8 shows the bit assignments of the Debug Halting Control and 
Status Register.

[2] DWTRAP Data Watchpoint (DW) flag:

1 = DW match

0 = no DW match.

The processor stops at the current instruction or at the next instruction.

[1] BKPT BKPT flag:

1 = BKPT instruction or hardware breakpoint match

0 = no BKPT instruction or hardware breakpoint match.

The BKPT flag is set by the execution of the BKPT instruction or on an instruction whose address 
triggered the breakpoint comparator match. When the processor has halted, the return PC points 
to the address of the breakpointed instruction.

[0] HALTED Halt request flag:

1 = halt requested by DAP access to C_HALT or halted with C_STEP asserted

0 = no halt request.

Table 8-4 Debug Fault Status Register bit assignments  (continued)

Bits Field Function
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Figure 8-2 Debug Halting Control and Status Register bit assignments

Table 8-5 lists the bit assignments of the Debug ID Register.

Table 8-5 Debug Halting Control and Status Register

Bitsa Type Field Function

[31:16] WO DBGKEYb Debug Key. 0xA05F must be written whenever this register is written. Reads back as 
status bits [25:16]. If not written as Key, the write operation is ignored and no bits 
are written into the register.

[31:26] - - Reserved.

[25] RO S_RESET_ST Indicates that the core has been reset, or is now being reset, since the last time this 
bit was read. This a sticky bit that clears on read. So, reading twice and getting 1 
then 0 means it was reset in the past. Reading twice and getting 1 both times means 
that it is currently reset and held in reset.

[24] RO S_RETIRE_ST Indicates that an instruction has completed since last read. This is a sticky bit that 
clears on read. You can use this to determine if the core is stalled on a load/store or 
fetch.

[23:18] - - Reserved.

[17] RO S_HALT The core is halted in debug state when S_HALT is set.

[16] RO S_REGRDY Register Read/Write to the Debug Core Register Selector Register is available. Set 
when the core is halted and there is no core register access in progress.

[15:4] - - Reserved.

[3] R/W C_MASKINTS When this bit is set and debug is enabled, external interrupts, SysTick, and PendSV 
are masked. This bit does not affect NMI, Hard Fault or SVCall. When 
C_DEBUGEN = 0, this bit has no effect.
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S_RETIRE_ST, S_HALT, S_REGRDY, and C_HALT always clear on a system reset. 
S_RESET_ST is always set on a system reset.

To halt on a reset, the following bits must be enabled:

• bit [0], VC_CORERESET, of the Debug Exception and Monitor Control Register

• bit [0], C_DEBUGEN, of the Debug Halting Control and Status Register.

When C_DEBUGEN is cleared it is recommended that you clear C_MASKINTS, 
C_STEP, and C_HALT in the same access.

You can only clear C_HALT from the debugger.

The following events can set C_HALT:

• Debugger write

• Watchpoint hit

• BKPT instruction or breakpoint hit

• C_STEP set and the processor has stepped an instruction

• EDBGRQ set

• reset vector catch

• hard fault vector catch.

Note
 • Only word accesses to the DHCSR are permitted.

• Non-word accesses are treated as if they were word accesses. If a byte or halfword 
access is created from the DAP, the transfer is extended to a 32-bit access and all 
32 bits in the register are accessed.

[2] R/W C_STEP Steps the core in halted debug. When C_DEBUGEN = 0, this bit has no effect.

[1] R/W C_HALT Halts the core. This bit is set automatically when the core halts, for example, on a 
breakpoint. This bit clears on core reset. When C_DEBUGEN = 0, this bit has no 
effect. 

[0] R/W C_DEBUGEN Enables or disable debug:

1 = debug enabled

0 = debug disabled. 

a. Bits [3], [2], [0] are reset by DBGRESETn. Bits [25], [24], [17], [16], [1] are reset by SYSRESETn.
b. Writes to this register with the wrong value in DBGKEY are ignored.

Table 8-5 Debug Halting Control and Status Register (continued)

Bitsa Type Field Function
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8.2.3 Debug Core Register Selector Register

The purpose of the Debug Core Register Selector Register (DCRSR) is to select the 
processor register to transfer data to or from.

The register is 17 bits wide. The address and access type are:

Address 0xE000EDF4

Access Write-only

Figure 8-3 shows the bit assignments of the Debug Core Register Selector Register.

Figure 8-3 Debug Core Register Selector Register bit assignments

Table 8-6 lists the bit assignments of the Debug Core Selector Register.

Table 8-6 Debug Core Register Selector Register

Bits Type Field Function

[31:17] - - Reserved

[16] WO REGWnR Write = 1

Read = 0

[15:5] - - Reserved

[4:0] WO REGSEL 5b00000 = R0

5b00001 = R1

…

5b01100 = R12

0b01101 = the current SP

0b01110 = LR

5b01111 = DebugReturnAddress()a

5b10000 = xPSR flags, execution number, and state information

5b10001 = MSP (Main SP)

5b10010 = PSP (Process SP)

0b10100 = {{6{1'b0}}, CONTROL[1], {24{1'b0}}, PRIMASK[0]} 

All unused values are reserved.
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This write-only register generates a request to the core to transfer data to or from Debug 
Core Register Data Register and the selected register. Until this core transaction is 
complete, bit [16], S_REGRDY, of the DHCSR is 0. You must ensure that S_REGRDY 
is HIGH before writing to the DCRSR.

Note
 • Writes to this register when C_DEBUGEN=0 are ignored.

• Writes other than word accesses are not permitted. 

• Writes with REGSEL other than as indicated are not permitted. 

• Reads from this register are not permitted. 

• Writes to the IPSR are ignored.

• Bit[1] of the CONTROL register can only be set if the OS extension is present and 
the processor is in Thread mode.

8.2.4 Debug Core Register Data Register

The purpose of the Debug Core Register Data Register (DCRDR) is to hold data read 
from or written to core registers.

The register address, access type, and reset value are:

Address 0xE000EDF8

Access Read/write

Reset value 0x00000000

This is the data value written to the register selected by the Debug Register Selector 
Register.

8.2.5 Debug Exception and Monitor Control Register

The purpose of the Debug Exception and Monitor Control Register (DEMCR) is: 

• Global enable for the DW unit.

• Vector catching. That is, causes debug entry on execution of a specified vector.

The register address, access type, and reset value are:

Address 0xE000EDFC

Access Read/write

a. This is the address of the next instruction to be executed. Bit [0] of DebugReturnAddress() is Reserved. 
Bit [0] does not affect the EPSR T-bit, which is accessed independently through the xPSR register 
selection. Modifying the T-bit in the EPSR has no effect on bit [0] of the DebugReturnAddress() so that 
the T-bit and DebugReturnAddress() might be modified in either order when changing between Thumb 
and ARM state while halted.
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Reset value 0x00000000

Figure 8-4 shows the bit assignments of the Debug Exception and Monitor Control 
Register.

Figure 8-4 Debug Exception and Monitor Control Register bit assignments

Table 8-7 lists the bit assignments of the Debug Exception and Monitor Control 
Register.

VC_CORERESET and VC_HARDERR are ignored when C_DEBUGEN is LOW.

This register manages exception behavior under debug.

Debug entry caused by a vector catch is only guaranteed to occur before the execution 
of the first instruction of the trapped exception handler. However, another higher 
priority exception can be taken. For example, if the VC_HARDERR bit is set, the 
processor is able to:

1. Take a Hard Fault exception.

2. Take an NMI exception before the first instruction in the Hard Fault handler.

3. Enter debug state on the first instruction in the NMI handler.

Table 8-7 Debug Exception and Monitor Control Register

Bits Field Function

[31:25] - Reserved.

[24] DWTENA Global enable or disable for the DW unit:

1 = DW unit enabled. 

0 = DW unit disabled. Watchpoints cannot halt the core. The DW PCSR reads as 
OxFFFFFFFF.

[23:11] - Reserved.

[10] VC_HARDERR Debug trap on a Hard Fault.

[9:1] - Reserved.

[0] VC_CORERESET Reset Vector Catch. Halt running system if SYSRESETn is asserted.
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8.3 ROM table

Table 8-8 shows the memory-mapped registers in ROM memory and the general format 
of the component ID and peripheral ID registers. For more information on the ROM 
table, see the ARMv6-M Architecture Reference Manual.

Table 8-8 ROM memory

Address Value Name Bits Description

0xE00FF000 0xFFF0F003 SCS [31:0] Points to the System Control Space (SCS) at 0xE000E000. This 
includes core debug control registers.

0xE00FF004 0xFFF02003 DW [31:0] Points to the DW unit at 0xE0001000.

0xE00FF008 0xFFF03003 BPU [31:0] Points to the BPU at 0xE0002000.

0xE00FF00C 0x00000000 end [31:0] Marks of end of table. Because adding more debug components 
is not permitted, this value is fixed.

0xE00FFFCC 0x00000001 MEMTYPE [7:0] System memory map is always accessible from the DAP. 
Always set to 0x1.

0xE00FFFD0 0x00000004 Peripheral ID4 [31:8] Reserved.

[7:4] Indicates the size of the ROM table:

0x0 = 4KB ROM table.

[3:0] JEP106 continuation code:

0x4

0xE00FFFD4 0x00000000 Peripheral ID5 - Reserved.

0xE00FFFD8 0x00000000 Peripheral ID6 -

0xE00FFFDC 0x00000000 Peripheral ID7 -

0xE00FFFE0 0x00000070 Peripheral ID0 [31:8] Reserved.

[7:0] Contains bits [7:0] of the part number:

0x70.

0xE00FFFE4 0x000000B4 Peripheral ID1 [31:8] Reserved.

[7:4] Contains bits [3:0] of the JEP106 ID code:

0xB.

[3:0] Contains bits [11:8] of the part number

0x4.
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Note
 The complete:

• JEP106 continuation code is 0x4

• JEP106 ID code for ARM is 0x3B

0xE00FFFE8 0x0000000B Peripheral ID2 [31:8] Reserved.

[7:4] Indicates the revision: 

0x0 = r0p0

0x1 = r0p1.

[3] Indicates JEDEC assigned ID fields:

0x1.

[2:0] Contains bits [6:4] of the JEP106 ID code:

0x3.

0xE00FFFEC 0x00000000 Peripheral ID3 [31:8] Reserved.

[7:4] Indicates minor revision field RevAnd.

[3:0] Indicates block unmodified:

0x0.

0xE00FFFF0 0x0000000D Component ID0 [31:8] Reserved.

[7:0] Preamblea.

0xE00FFFF4 0x00000010 Component ID1 [31:8] Reserved.

[7:4] Indicates component class:

0x1 = ROM table.

[3:0] Preamblea.

0xE00FFFF8 0x00000005 Component ID2 [31:8] Reserved.

[7:0] Preamblea.

0xE00FFFFC 0x000000B1 Component ID3 [31:8] Reserved.

[7:0] Preamblea.

a. Preamble enables a debugger to detect the presence of the ROM table.

Table 8-8 ROM memory (continued)

Address Value Name Bits Description
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• The Cortex-M1 processor part number is 0x470.
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8.4 BPU

The BPU implements:

• four instruction comparators in the full debug configuration

• two instruction comparators in the reduced debug configuration.

You can configure each instruction comparator to provide a hardware breakpoint.

The registers that provide BPU operations are:

• Breakpoint Control Register

• Breakpoint Comparator Registers on page 8-17.

A BP comparator register matching the address of the second half word of a 32-bit 
instruction generates the breakpoint.

8.4.1 Breakpoint Control Register

Use the Breakpoint Control Register to enable the Breakpoint block.

The register address, access type, and reset value are:

Address 0xE0002000

Access Read/write

Reset value Bit [0] (ENABLE) is reset to b0.

Figure 8-5 shows the bit assignments of the Breakpoint Control Register.

Figure 8-5 Breakpoint Control Register bit assignments
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Table 8-9 lists the bit assignments of the Breakpoint Control Register. 

8.4.2 Breakpoint Comparator Registers

Use the Breakpoint Comparator Registers to store the values to compare with the 
instruction address.

In the full debug configuration the register address, access type, and reset value are:

Address 0xE0002008, 0xE000200C, 0xE0002010, and 0xE0002014

Access Read/write

Reset value Bit [0] (ENABLE) is reset to b0.

In the reduced debug configuration the register address, access type, and reset value are:

Address 0xE0002008, 0xE000200C

Access Read/write

Reset value Bit [0] (ENABLE) is reset to b0.

Figure 8-6 on page 8-18 shows the bit assignments of the Breakpoint Comparator 
Registers.

Table 8-9 Breakpoint Control Register bit assignments

Bits Field Type Function

[31:8] - RO Reserved.

[7:4] NUM_CODE1 RO Number of comparators. This read-only field and contains either: 

b0100 = four instruction comparators in use

b0010 = two instruction comparators in use.

[3:2] - RO Reserved.

[1] KEY WO Key field. To write to the Breakpoint Control Register, you must write a 1 to this 
write-only bit. This bit is reads as zero.

[0] ENABLE R/W Breakpoint unit enable bit:

1 = Breakpoint unit enabled

0 = Breakpoint unit disabled.

DBGRESETn clears the ENABLE bit.
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Figure 8-6 Breakpoint Comparator Registers bit assignments

Table 8-10 lists the bit assignments of the Breakpoint Comparator Registers. 

Table 8-10 Breakpoint Comparator Registers bit assignments

Bits Field Function

[31:30] BP_MATCH This field selects what happens when the COMP address is matched.It is interpreted as:

b00 = no breakpoint matching

b01 = set breakpoint on lower halfword, upper is unaffected

b10 = set breakpoint on upper halfword, lower is unaffected

b11 = set breakpoint on both lower and upper halfwords.

[29] - Reserved.

[28:2] COMP Comparison address. Although it is architecturally Unpredictable whether breakpoint matches 
on the address of the second halfword of a 32-bit instruction to generate a debug event, in this 
processor it is predictable and a debug event is generated.

[1] - Reserved.

[0] ENABLE Compare enable for Breakpoint Comparator Register n:

1 = Breakpoint Comparator Register n compare enabled

0 = Breakpoint Comparator Register n compare disabled.

The ENABLE bit of BPU_CTRL must also be set to enable comparisons.

DBGRESETn clears the ENABLE bit.
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8.5 DW unit

The DW unit implements:

• two comparators in the full debug configuration

• one comparator in the reduced debug configuration.

Each set of comparators contains:

• a comparator register, see DW Comparator Registers on page 8-20

• a mask register, see DW Mask Registers on page 8-21

• a function register, see DW Function Registers on page 8-22

You can configure each set of a comparators as a:

• PC hardware watchpoint

• data address watchpoint.

You can also read sampled PC values from the DW unit.

Note
 The information in this section is for both the full and reduced debug configuration 
unless otherwise stated.

8.5.1 DW Control Register

Use the DW Control Register to check how many comparators are available.

The register address, access type, and reset value are:

Address 0xE0001000

Access Read-only

Reset value 0x20000000

Figure 8-7 shows the bit assignments of the DW Control Register.

Figure 8-7 DW Control Register bit assignments
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Table 8-11 lists the bit assignments of the DW Control Register. 

8.5.2 DW Program Counter Sample Register

Use the DW Program Counter Sample Register (DWPCSR) to enable coarse-grained 
software profiling using a debug agent, without changing the currently executing code.

If the core is not in debug state, the value returned is the instruction address of a recently 
executed instruction.

If the core is in debug state, the value returned is 0xFFFFFFFF.

Note
 When polling this register the timing of what is running on the core might differ when 
compared to not polling if the core makes accesses to the PPB. This is because the core 
and the DAP share access to the PPB, where the DAP has higher priority.

The register address, access type, and reset value are:

Address 0xE000101C

Access Read-only

Reset value 0x00000000

Table 8-12 lists the bit assignments of the DW PCSR.

8.5.3 DW Comparator Registers

Use the DW Comparator Registers to write the values that trigger watchpoint events.

Table 8-11 DW Control Register bit assignments

Bits Field Function

[31:28] NUMCOMP Number of comparators field. This read-only field contains:

• b0010 to indicate two comparators in the full debug configuration

• b0001 to indicate one comparator in the reduced debug configuration.

[27:0] - Reserved.

Table 8-12 Control Register bit assignments

Bits Field Function

[31:0] EIASAMPLE Execution instruction address sample, or 0xFFFFFFFF if the core is halted or DWTENA is LOW
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In the full debug configuration the register address, access type, and reset value are:

Address 0xE0001020, 0xE0001030

Access Read/write

Reset value 0x00000000

In the reduced debug configuration the register address, access type, and reset value are:

Address 0xE0001020

Access Read/write

Reset value 0x00000000

Table 8-13 describes the field of DW Comparator Registers. 

8.5.4 DW Mask Registers 

Use the DW Mask Registers to apply a mask to data addresses when matching against 
COMP.

In the full debug configuration the register address, access type, and reset value are:

Address 0xE0001024, 0xE0001034

Access Read/write

Reset value 0x00000000

In the reduced debug configuration the register address, access type, and reset value are:

Address 0xE0001024

Access Read/write

Reset value 0x00000000

Figure 8-8 shows the bit assignments of DW Mask Registers.

Figure 8-8 DW Mask Registers 0-1 format

Table 8-13 DW Comparator Registers bit assignments

Field Name Definition 

[31:0] COMP DW_COMP to compare against PC or the data address as given by DW_FUNCTION Register.

DW_COMP is always masked using the DW Mask Register value before a compare is done.
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Table 8-14 lists the bit assignments of DW Mask Registers 0-1. 

8.5.5 DW Function Registers

Use the DW Function Registers to control the operation of the comparator. Each 
comparator can match against either the PC or the data address and halt the core. This 
function is in conjunction with DW_COMP.

In the full debug configuration the register address, access type, and reset value are:

Address 0xE0001028, 0xE0001038

Access Read/write

Address 0x00000000

In the reduced debug configuration the register the register address, access type, and 
reset value are:

Address 0xE0001028

Access Read/write

Address 0x00000000

Figure 8-9 shows the bit assignments of DW Function Registers 0-1.

Figure 8-9 DW Function Registers bit assignments

Table 8-14 DW Mask Registers bit assignments

Bits Field Function

[31:5] - Reserved.

[4:0] MASK Mask on data address when matching against COMP. This is the size of the ignore mask.

So, ~0<<MASK forms the mask against the address to use. That is, DW matching is performed as:
(ADDR & (~0 << MASK)) == (COMP & (~0 << MASK))

For word accesses the two least significant bits are not compared.

For halfword accesses the least significant bit is not compared.

For PC matches the least significant bit is not compared.
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Table 8-15 lists the bit assignments of DW Function Registers 0-1. 

You can use the mask and compare address to specify a watchpoint. 

Table 8-16 describes the function settings of the DW Function Registers.

Table 8-15 DW Function Registers bit assignments

Bits Field Function

[31:25] - Reserved.

[24] MATCHED This bit is set when the comparator matches this bit is cleared on read. 

[23:4] - Reserved.

[3:0] FUNCTION See Table 8-16 for FUNCTION settings.

Table 8-16 Settings for DW Function Registers

Value Function

b0000 Disabled

b0001-b0011 Reserved

b0100 Watchpoint on PC match

b0101 Watchpoint on read address

b0110 Watchpoint on write address

b0111 Watchpoint on read or write address

b1000-b1111 Reserved
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8.6 Debug TCM interface

The Debug TCM interface comprises a DTCM and an ITCM interface. 

The static signals CFGITCMSZ[3:0] and CFGDTCMSZ[3:0] indicate the size of 
ITCM and DTCM:

• ITCM address range is from 0x00000000 to the size specified by 
CFGITCMSZ[3:0]

• DTCM address range is from 0x20000000 to the size specified by 
CFGDTCMSZ[3:0].

If an AHB access from the AHB-AP is:

• inside the configured TCM range the access is to the appropriate TCM

• outside the configured TCM range the access is to the external interface as 
appropriate.

Note
 Unless the core is halted or held in reset by SYSRESETn, any debug access to the TCM 
memory might conflict with core operation. 
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8.7 Examples of debug register halt, access, and step

This section provides example sequences that you can use to perform debug register 
access, halt, step, and exit. 

8.7.1 Debug halt example

This is an example of a debug halt. If you want to halt the processor, perform the 
following:

1. Write 0xA05F0003 to the Debug Halting Control and Status Register. This enables 
debug and halts the core.

2. Wait for the S_HALT bit of the DHCSR to be set. This indicates that the core is 
halted.

8.7.2 Debug read register access example

This is an example of a debug read register access. If you want to halt the processor and 
read a value from one of the core registers, perform the following:

1. Write 0xA05F0003 to the Debug Halting Control and Status Register. This enables 
debug and halts the core.

2. Wait for the S_HALT bit of the Debug Halting Control and Status Register to be 
set. This indicates that the core is halted.

3. Write the register number that you want to read into the Debug Core Register 
Selector Register and set bit [16] to 0 simultaneously.

4. Wait for the S_REGRDY bit in the DHCSR to set. This indicates the core has 
completed the read master.

5. Read the DCRDR. This returns the required core register.

8.7.3 Debug write register access example

This is an example of a debug register access. If you want to halt the processor and write 
a value into one of the registers, perform the following:

1. Write 0xA05F0003 to the Debug Halting Control and Status register. This enables 
debug and halts the core.

2. Wait for the S_HALT bit of the Debug Halting Control and Status Register to be 
set. This indicates that the core is halted.

3. Write the value that you want to be written to the DCRDR.
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4. Write the register number that you want to write to into the Debug Core Register 
Selector Register and set bit [16] to 0 simultaneously.

5. Wait for the S_REGRDY bit in the DCRSR to be set. This indicates the core has 
completed the write transfer.

8.7.4 Debug step example

This is an example of a debug step. If you want to step the processor, perform the 
following:

1. Write 0xA05F0003 to the Debug Halting Control and Status Register. This enables 
debug and halts the core.

2. Wait for S_HALT to be set one in the DHCSR to indicate that the core is halted.

3. Write 0xA05F0005 to the Debug Halting Control and Status Register. This clears 
C_HALT and sets C_STEP to one. 

4. The core exits debug state, executes one instruction and returns to halted debug 
state. 

5. The core remains halted in debug state.

If more single steps are required repeat steps 3-5. 

Note
 When entering debug halt step, you can set C_DEBUGEN, C_HALT and C_STEP in 
one write instruction. 

8.7.5 Breakpoint debug entry example

This is an example of a hardware PC breakpoint using the BPU. If you want to halt the 
processor with a breakpoint, perform the following:

1. Write 0xA05F0001 to the DHCSR to set C_DEBUGEN to enable debug.

2. Set the value in BU_COMP0 register to the address of the instruction that you 
want to set as a breakpoint to break the execution flow. 

3. Use BU_CTRL to enable the breakpoint. 

4. C_HALT is set by the hardware when the hardware breakpoint matches.

5. Read S_HALT to ensure the core is halted.
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8.7.6 Exiting core debug

You can exit Halting debug by clearing the C_DEBUGEN and C_HALT bits in the 
Debug Halting Control and Status Register.
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8.8 Data address watchpoint matching

You can use the COMP field of the DW Comparator Registers and the MASK field of 
the DW Mask Registers to match with the data address. For Example:

• A COMP address of 0x27 with a MASK value of 2 matches a:

— word access at 0x24

— halfword access at 0x24 or 0x26

— byte access at 0x24, 0x25, 0x26, or 0x27.

• A COMP address of 0x27 with a MASK value of 1 matches a:

— word access at 0x24

— halfword access at 0x26

— byte access at 0x26 or 0x27.

• A COMP address of 0x27 with a MASK value of 0 matches a:

— word access at 0x24

— halfword access at 0x26

— byte access at 0x27.

For information on the Comparator Registers and DW Mask Registers, see DW 
Comparator Registers on page 8-20 and DW Mask Registers on page 8-21.
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8.9 Semiprecise watchpoints

The processor watchpoints are described as semiprecise. When the processor triggers a 
watchpoint, it executes one more instruction after the one that triggered the watchpoint, 
before entering debug state. The number of extra instructions is constant, independent 
of bus or instruction cycle times. If another debug event causes the processor to enter 
debug state earlier, for example as a result of a breakpoint, the processor enters debug 
state with more than one flag set in the DFSR. See Debug Fault Status Register on 
page 8-5 for more information.

Note
 The instruction executed can include an exception return sequence or any number of 
exception entry sequences.
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Chapter 9 
Debug Access Port

This chapter describes the processor Debug Access Port (DAP). It contains:

• About the DAP on page 9-2

• Debug access on page 9-3

• SWJ-DP on page 9-5

• JTAG-DP on page 9-10

• SW-DP on page 9-25

• Common Debug Port features on page 9-47

• DAP programmer’s model on page 9-53

• AHB-AP on page 9-68.
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9.1 About the DAP

When implemented, debug also contains a Debug Access Port (DAP). It comprises:

• Serial Wire JTAG Debug Port (SWJ-DP) to interface to a debugger. 

The SWJ-DP is a debug port that combines the JTAG-DP and Serial Wire Debug 
Port (SW-DP). For more information, see SWJ-DP on page 9-5.

•  An Advanced High-performance Bus Access Port (AHB-AP) interface to enable 
the SWJ-DP to access the system over an AHB interface.

Figure 9-1 shows the DAP configuration within debug for SWJ-DP.

Figure 9-1 DAP configuration

Note
 If your implementation of the DAP does not include both JTAG-DP and SW-DP, you 
cannot switch between them.
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9.2 Debug access

The SWJ-DP and AHB-AP enables access to the debug system and core components of 
the processor over the AHB matrix. The access to the memory map from the DAP is the 
same as that made by data accesses from the core, although this is restricted to always 
be little-endian. The PPB, TCMs and external AHB interface are accessible.

9.2.1 Debug access during core reset

To enable access to the debug modules at all times, all debug logic is reset by the internal 
DBGRESETn signal rather than the SYSRESETn signal. The debug interface and 
access debug logic are accessible when SYSRESETn is asserted. 

When SYSRESETn is asserted:

• debug writes to non-debug components, including the core registers, have no 
effect

• debug reads from non-debug components, including the core registers, return 
unpredictable data.

• although accesses from the DAP to the system AHB bus through the AHB Matrix 
complete, it is system dependent:

— if accesses complete without error

— if writes have an effect

— what read data is returned.

If you access the system with the debugger when the core is held in reset, you must not 
use the SYSRESETn input signal for your system components. Ensure that accesses in 
progress do not cause failures when SYSRESETn is asserted.

If this is not a requirement, then you might choose to hold the external system reset with 
SYSRESETn. In this case, the FPGA must be designed to continuously assert 
HREADY so that debug accesses during reset complete.

9.2.2 Debug access while core running

Arbitration between the core and debug is so that DAP accesses always have priority. 
This means that polling for an event using the DAP is always possible, but might change 
the precise cycle timing of core accesses.
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9.2.3 Debug access to TCMs

Caution
 • Only use a debugger to write to TCMs when the core is halted.

• Although a debugger can perform debug accesses to TCM when the core is 
running, some FPGA RAM implementations might have unpredictable results 
when a read and write occur simultaneously to the same location. If this is the 
case, you must ensure logic is included to prevent accesses occurring 
simultaneously. 

The core of the processor has a single address for each TCM for both reads and writes 
to enable a non-debug processor to use single-ported RAMs. You can use dual-port 
RAMs for TCMs to enable programming before the core of the processor is removed 
from reset and to facilitate debug removal.

For information on TCM sizes, see Table 10-3 on page 10-7.
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9.3 SWJ-DP

SWJ-DP is a combined JTAG-DP and SW-DP that enables either a Serial Wire Debug 
(SWD) or JTAG probe to be connected to a target. FPGA pins are required for all 
outputs, with the exception of the SWDO, SWDOEN, and SWDITMS. To use package 
pins efficiently, serial wire shares, or overlays, the JTAG pins. It also uses an autodetect 
mechanism that switches between JTAG-DP and SW-DP, depending on which probe is 
connected. A special sequence on the SWDIOTMS pin is used to switch between 
JTAG-DP and SW-DP. The SWJ-DP behaves like a pure JTAG target if normal JTAG 
sequences are sent to it, see SWD and JTAG select mechanism on page 9-7.

Note
 For more information on the SW-JTAG, see JTAG-DP on page 9-10.

Figure 9-2 shows the external connections to the SWJ-DP.

Figure 9-2 SWJ-DP external connections

Note
 The SWJ-DP external connections TDO, TDI, nTRST, SWIDIOTMS, and 
SWCLKTCK are always present, even if SW-DP or JTAG-DP is not present.
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The SWJ-DP is described in more detail in:

• Structure

• Operation

• JTAG and SWD interface

• SWD and JTAG select mechanism on page 9-7.

9.3.1 Structure

The SWJ-DP is a wrapper around the JTAG-DP and SW-DP. Its function is to select 
JTAG or SWD as the connection mechanism and enable either JTAG-DP or SW-DP as 
the interface to the DAP. 

9.3.2 Operation

SWJ-DP enables an FPGA to be designed for use in systems that support either a JTAG 
interface or a SWD interface. There is a trade-off between the number of pins used and 
compatibility with existing hardware and test equipment.

When in SW mode there are two pins, clock and data. These two pins can only be used 
when there is no conflict with their use in JTAG mode. In addition, to support use of 
SWJ-DP in a scan chain with other JTAG devices, the default state after reset must be 
to use these pins for their JTAG function. If the direction of the alternative function is 
compatible with being driven by a JTAG debug device, the transition to a shift state can 
be used to transition from the alternative function to JTAG mode.

The SW function cannot be used while the FPGA is being used in JTAG debug mode.

The switching scheme is arranged so that, provided there is no conflict on the TDI and 
TDO pins, a JTAG debugger is able to connect by sending a specific sequence.

The connection sequence used for SWD is safe when applied to the JTAG interface, 
even if hot-plugged, enabling the debugger to continually retry its access sequence. A 
sequence with TMS=1 ensures that JTAG-DP, SW-DP, and the watcher circuit are in a 
known reset state. The pattern used to select SWD has no effect on JTAG targets.

SWJ-DP is compatible with a free-running SWCLKTCK, or a gated clock that is 
supplied by the external tools.

9.3.3 JTAG and SWD interface

An external JTAG interface has four mandatory pins, TCK, TMS, TDI, and TDO, and 
an optional reset, nTRST. 
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The external SWD interface requires two pins:

• a bidirectional SWDIO signal

• an input clock, SWCLK.

The block level interface has two pins for serial wire data plus an output enable, which 
must be used to drive a bidirectional pad for the external interface, and clock and reset 
signals.

To enable sharing of the connector for either JTAG or SWD, connections must be made 
external to the SWJ-DP block, as shown in Figure 9-2 on page 9-5. In particular, 
SWDIOTMS must be a bidirectional pin to support the bidirectional SWDIO pin in 
SWD mode or TMS in JTAG mode.

When SWD mode is being used, the TDO pin and TDI pins are available for use as 
alternative input functions.

Note
 If SWO functionality is required in JTAG mode, a dedicated pin is required for SWO.

9.3.4 SWD and JTAG select mechanism

SWJ-DP enables either a SWD or JTAG protocol to be used on the debug port. To do 
this, it implements a watcher circuit that detects a specific 16-bit select sequence on the 
SWDIOTMS pin:

• one 16-bit sequence is used to switch from JTAG to SWD operation

• a different 16-bit sequence is used to switch from SWD to JTAG.

The switcher defaults to JTAG operation on power-on reset and therefore the JTAG 
protocol can be used from reset without sending a select sequence.

Switching from one protocol to the other can only occur when the selected interface is 
in its reset state. JTAG must be in its Test-Logic-Reset (TLR) state and SWD must be in 
line-reset. 

SWJ-DP programmer's model

The SWJ-DP programmer’s model is described in:

• JTAG to SWD switching on page 9-8

• SWD to JTAG switching on page 9-8.
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JTAG to SWD switching

To switch SWJ-DP from JTAG to SWD operation:

• Send more than 50 SWCLKTCK cycles with SWDIOTMS=1. This ensures that 
both SWD and JTAG are in their reset states.

• Send the 16-bit JTAG-to-SWD select sequence on SWDIOTMS.

• Send more than 50 SWCLKTCK cycles with SWDIOTMS=1. This ensures that 
if SWJ-DP was already in SWD mode, before sending the select sequence, the 
SWD goes to line reset.

• Perform a READID to validate that SWJ-DP has switched to SWD operation.

The 16-bit JTAG-to-SWD select sequence is defined to be 0111100111100111, MSB 
first. This can be represented as 16'h79E7 transmitted MSB first or 16'hE79E when 
transmitted LSB first.

This sequence has been chosen to ensure that the SWJ-DP switches to using SWD 
whether it was previously expecting JTAG or SWD. As long as the more than 50 
SWDIOTMS=1 sequence is sent first, the JTAG-to-SWD select sequence is benign to 
SW-DP. It is also benign to SWD and JTAG protocols used in the SWJ-DP and any other 
TAP controllers that might be connected to SWDIOTMS.

SWD to JTAG switching

To switch SWJ-DP from SWD to JTAG operation:

• Send more than 50 SWCLKTCK cycles with SWDIOTMS=1. This ensures that 
both SWD and JTAG are in their reset states.

• Send the 16-bit SWD-to-JTAG select sequence on SWDIOTMS.

• Send at least 5 SWCLKTCK cycles with SWDIOTMS=1. This ensures that if 
SWJ-DP was already in JTAG mode before sending the select sequence, that 
JTAG goes into the TLR state.

• Set the JTAG-DP IR to READID and shift out the DR to read the ID. 

The 16-bit SWD-to-JTAG select sequence is defined to be 0011110011100111, MSB 
first. This can be represented as 16'h3CE7 transmitted MSB first or 16'hE73C when 
transmitted LSB first.
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This sequence has been chosen to ensure that the SWJ-DP switches to using JTAG 
whether it was previously expecting JTAG or SWD. If the SWDIOTMS=1 sequence is 
sent first, the SWD-to-JTAG select sequence is benign to SW-DP. It is also benign to 
SWD and JTAG protocols used in the SWJ-DP and any other TAP controllers that might 
be connected to SWDIOTMS.

Restriction on switching

It is recommended that when a system is powered up, a debug connection is made, and 
the mode is selected, either SWD or JTAG, the system remains in this mode throughout 
the debug session. Switching between modes must not be attempted while any 
component of the DAP is active.

Attempting to switch between modes while any component of the DAP is active can 
have unpredictable results. A power-on reset cycle might be required to reset the DAP 
before switching can be retried. If you do not require nTRST for the JTAG interface it 
must be tied unasserted to 1.
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9.4 JTAG-DP

JTAG-DP contains a debug port state machine (JTAG) that controls the JTAG-DP 
operation, including controlling the scan chain interface that provides the external 
physical interface to the JTAG-DP. It is based closely on the JTAG TAP State Machine, 
see IEEE Std 1149.1-2001.

This section describes the following:

• Scan chain interface

• IR scan chain and IR instructions on page 9-13

• DR scan chain and DR registers on page 9-15.

9.4.1 Scan chain interface

The JTAG-DP comprises:

• a DAP State Machine (JTAG)

• an Instruction Register (IR) and associated IR scan chain, used to control the 
behavior of the JTAG and the currently-selected data register

• a number of Data Registers (DRs) and associated DR scan chains, that interface 
to the registers in the JTAG-DP.

DAP State Machine (JTAG)

Figure 9-3 on page 9-11 shows the JTAG state machine.
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Figure 9-3 DAP State Machine (JTAG)

From IEEE Std. 1149.1-2001. Copyright 2001 IEEE. All rights reserved.

When using an ARM Debug Interface, for the debug process to work correctly, systems 
must not remove power from the JTAG-DP during a debug session. 
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Basic operation of the JTAG-DP

The TDI signal into the DAP is the start of the scan chain and the TDO signal out of 
the DAP is the end of the scan chain.

Referring to the DAP State Machine (JTAG) shown in Figure 9-3 on page 9-11:

• When the JTAG goes through the Capture-IR state, a value is transferred onto the 
Instruction Register (IR) scan chain. The IR scan chain is connected between TDI 
and TDO.

• While the JTAG is in the Shift-IR state, and for the transition from Capture-IR to 
Shift-IR, the IR scan chain advances one bit for each tick of TCK. This means 
that on the first tick, the LSB of the IR is output on TDO, bit [1] of the IR is 
transferred to bit [0], bit [2] is transferred to bit [1], for example. The MSB of the 
IR is replaced with the value on TDI.

• When the JTAG goes through the Update-IR state, the value scanned into the scan 
chain is transferred into the Instruction Register.

• When the JTAG goes through the Capture-DR state, a value is transferred from 
one of a number of Data Registers (DRs) onto one of a number of Data Register 
scan chains, connected between TDI and TDO.

This data is then shifted while the JTAG is in the Shift-DR state, in the same 
manner as the IR shift in the Shift-IR state.

• When the JTAG goes through the Update-DR state, the value scanned into the 
scan chain is transferred into the Data Register

• When the JTAG is in the Run-Test/Idle state, no special actions occur. Debuggers 
can use this as a true resting state.

The behavior of the IR and DR scan chains is described in more detail in IR scan chain 
and IR instructions on page 9-13 and DR scan chain and DR registers on page 9-15.

The nTRST signal only resets the JTAG state machine logic. nTRST asynchronously 
takes the JTAG state machine logic to the Debug-Logic-Reset state. As shown in 
Figure 9-3 on page 9-11, the Debug-Logic-Reset state can also always be entered 
synchronously from any state by a sequence of five TCK cycles with TMS high. 
However, depending on the initial state of the JTAG, this might take the state machine 
through one of the Update states, with the resulting side effects.

In the DAP, the debug port registers are only reset when DBGRESETn is asserted.
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9.4.2 IR scan chain and IR instructions

This section describes the JTAG-DP Instruction Register (IR), accessed through the IR 
scan chain.

JTAG Instruction Register (IR)

Purpose Holds the current DAP Controller instruction.

Length 4 bits.

Operating mode 

When in Shift-IR state, the shift section of the IR is selected as the serial 
path between TDI and TDO. At the Capture-IR state, the binary value 
b0001 is loaded into this shift section. This is shifted out, least significant 
bit first, during Shift-IR. As this happens, a new instruction is shifted in, 
least significant bit first. At the Update-IR state, the value in the shift 
section is loaded into the IR so it becomes the current instruction.

On debug logic reset, IDCODE becomes the current instruction, see 
JTAG Device ID Code Register (IDCODE) on page 9-16.

Order Figure 9-4 shows the bit order of the Instruction Register.

Figure 9-4 JTAG Instruction Register bit order

This register is mandatory in the IEEE 1149.1 standard.

IR instructions

The description of the JTAG Instruction Register shows how a 4-bit instruction is 
transferred into the IR. This instruction determines the physical Data Register that the 
JTAG Data Register maps onto, as described in DR scan chain and DR registers on 
page 9-15. The standard IR instructions are listed in Table 9-1 on page 9-14.
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Unused IR instruction values select the Bypass register, described in JTAG Bypass 
Register (BYPASS) on page 9-15.

Implementation-defined extensions to the IR instruction set

The eight IR instructions b0000 to b0111 are reserved and not implemented. These 
registers are used for boundary scan.

The DAP-DP is not intended for use as the JTAG TAP controlling boundary scan. 

Note
 • If the IR register is set to an IR instruction value that is not implemented, or 

reserved, then the Bypass Register is selected.

• The DAP-DP is not IEEE 1149.1 compliant. Table 9-2 on page 9-15 shows that 
IR instruction EXTEST, SAMPLE, and PRELOAD are not implemented. These 
instructions are used for boundary scan. BYPASS is decoded for these 
instructions.

Table 9-1 Standard IR instructions

IR instruction 
value

JTAG-DP 
register

DR scan 
width

See section

b0xxx - - Implementation-defined extensions to the IR instruction set

b1000 ABORT 35 JTAG-DP Abort Register (ABORT) on page 9-23

b1001 - - -

b1010 DPACC 35 JTAG DP/AP Access Registers (DPACC/APACC) on page 9-17

b1011 APACC 35

b110x - - -

b1110 IDCODE 32 JTAG Device ID Code Register (IDCODE) on page 9-16

b1111 BYPASS 1 JTAG Bypass Register (BYPASS) on page 9-15
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JTAG Bypass Register (BYPASS)

Purpose Bypasses the device, by providing a direct path between TDI and TDO.

Length 1 bit.

Operating mode 

When the BYPASS instruction is the current instruction in the IR:

• in the Shift-DR state, data is transferred from TDI to TDO with a 
delay of one TCK cycle

• in the Capture-DR state, a logic 0 is loaded into this register 

• nothing happens at the Update-DR state.

Order Figure 9-5 shows the operation of the Bypass Register.

Figure 9-5 JTAG Bypass Register operation

This register is mandatory in the IEEE 1149.1 standard.

9.4.3 DR scan chain and DR registers

There are five physical DR registers:

• the BYPASS and IDCODE Registers, as defined by the IEEE 1149.1 standard

• the DPACC and APACC Access Registers

• an ABORT Register, used to abort a transaction.

Table 9-2 IR instructions not implemented for IEEE 1149.1 compliance

IR instruction value Instruction Required by IEEE 1149.1

b0000 EXTEST Yes

b0001 SAMPLE Yes

b0010 PRELOAD Yes

b0011-b0111 Reserved -
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There is a scan chain associated with each of these registers. As described in IR scan 
chain and IR instructions on page 9-13, the value in the IR register determines which 
of these scan chains is connected to the TDI and TDO signals.

JTAG Device ID Code Register (IDCODE)

Purpose Device identification. The Device ID Code value enables a debugger to 
identify the debug port to which it is connected. Different debug ports 
have different Device ID Codes, so that a debugger can make this 
distinction. 

This is the JTAG-DP implementation of the Identification Code Register, 
see Identification Code Register, IDCODE on page 9-57.

Length 32 bits.

Operating mode 

When the IDCODE instruction is the current instruction in the IR, the 
shift section of the Device ID Code Register is selected as the serial path 
between TDI and TDO:

• in the Capture-DR state, the 32-bit device ID code is loaded into 
this shift section 

• in the Shift-DR state, this data is shifted out, least significant bit 
first

• the shifted-in data is ignored at the Update-DR state.

Order Figure 9-6 shows the bit order of the Device ID Code Register.

Figure 9-6 JTAG Device ID Code Register bit order

For this processor:

• Version, bit [31:28], is set to 3

• Part number, bit [27:12], is set to 0xBA00

• Manufacturer ID, bit [11:1], is set to 0x23B

• Reserved, bit [0], is set to 1.

See Table 9-15 on page 9-58 for more information.
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JTAG DP/AP Access Registers (DPACC/APACC)

The DPACC and APACC scan chains have the same format.

Purpose Initiate a debug port or access port access, to access a debug port or 
access port register. The DPACC and APACC are used for read and write 
accesses to registers:

• The DPACC is used to access the CTRL/STAT, SELECT and 
RDBUFF registers, see JTAG-DP register map on page 9-53.

• The APACC is used to access all of the access port registers, see 
AHB-AP register summary on page 9-69 for details of accessing 
AHB-AP registers.

Length 35 bits.

Operating mode 

When the DPACC or APACC instruction is the current instruction in the 
IR, the shift section of the DP Access Register or AP Access Register is 
selected as the serial path between TDI and TDO:

• In the Capture-DR state, the result of the previous transaction, if 
any, is returned, together with a 3-bit ACK response. Only two 
ACK responses are implemented. These are summarized in 
Table 9-3.

All other ACC encodings are Reserved.

• In the Shift-DR state, this data is shifted out, least significant bit 
first. As shown in Figure 9-7 on page 9-18, the first three bits of 
data shifted out are ACK[2:0] and, therefore, you can check the 
ACK response without shifting out all of the returned data, see 
WAIT response to a DPACC or APACC access on page 9-20.

As the returned data is shifted out to TDO, new data is shifted in 
from TDI. This is described in OK/FAULT response to a DPACC 
or APACC access on page 9-18.

Table 9-3 DPACC and APACC ACK responses

Response ACK[2:0] encoding See

OK/FAULT b010 OK/FAULT response to a DPACC or APACC access on page 9-18

WAIT b001 WAIT response to a DPACC or APACC access on page 9-20
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• Operation in the Update-DR depends on whether the ACK[2:0] 
response was OK/FAULT or WAIT. The two cases are described in:

— Update-DR operation following an OK/FAULT response

— Update-DR operation following a WAIT response on 
page 9-20.

Order Figure 9-7 shows the bit order of the DP and AP Access Registers.

Figure 9-7 Bit order of JTAG DP and AP Access Registers

OK/FAULT response to a DPACC or APACC access

If the response indicated by ACK[2:0] is OK/FAULT, the previous transaction has 
completed. The response code does not show whether the transaction completed 
successfully or was faulted. You must read the CTRL/STAT register to find whether the 
transaction was successful, see Control/Status Register, CTRL/STAT on page 9-59:

• If the previous transaction was a read that completed successfully, then the 
captured ReadResult[31:0] is the requested register value. This result is shifted 
out as Data[34:3].

• If the previous transaction was a write, or a read that did not complete 
successfully, the captured ReadResult[31:0] is Unpredictable. If Data[34:3] is 
shifted out it must be discarded.

Update-DR operation following an OK/FAULT response

The values shifted into the scan chain form a request to read or write a register:

• if the current IR instruction is DPACC, TDI and TDO connect to the DPACC scan 
chain and the request is to read or write a DP register

• if the current IR instruction is APACC, TDI and TDO connect to the APACC scan 
chain and the request is to read or write an AP register.
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In either case:

• If RnW is shifted in as 0, the request is to write the value in DATAIN[31:0] to the 
addressed register.

• If RnW is shifted in as 1, the request is to read the value of the addressed register. 
The value in DATAIN[31:0] is ignored. You must read the scan chain again to 
obtain the value read from the register.

The required register is addressed:

• In the case of a DPACC access, to read a debug port register, by the value shifted 
into A[3:2]. See JTAG-DP register map on page 9-53 for the addressing details.

• In the case of a APACC access, to read an access port register, by the combination 
of:

— the value shifted into A[3:2]

— the current value of the SELECT register in the DP, see AP Select Register, 
SELECT on page 9-63.

Register accesses can be pipelined, because a single DPACC or APACC scan can return 
the result of the previous read operation at the same time as requesting another register 
access. At the end of a sequence of pipelined register reads, you can read the DP 
RDBUFF Register to return the result of the final register read. Reading the DP 
RDBUFF Register is benign, that is, it has no effect on the operation of the JTAG, see 
Read Buffer, RDBUFF on page 9-64. The section Target response summary on 
page 9-21 gives more information about how one DPACC or APACC scan returns the 
result from the previous scan.

If the current IR instruction is APACC, causing an APACC access:

• If any sticky flag is set in the DP CTRL/STAT Register, the transaction is 
discarded. The next scan returns an OK/FAULT response immediately. For more 
information see Sticky flags and debug port error responses on page 9-47 and 
Control/Status Register, CTRL/STAT on page 9-59.

• If pushed compare or pushed verify operations are enabled then the scanned-in 
value of RnW must be 0, otherwise behavior is Unpredictable. On Update-DR, a 
read request is issued and the returned value compared against DATAIN[31:0]. 
The STICKYCMP flag in the DP CTRL/STAT register is updated based on this 
comparison. For more information see Pushed compare and pushed verify 
operations on page 9-50. Pushed operations are enabled using the TRNMODE 
field of the DP CTRL/STAT register, see Control/Status Register, CTRL/STAT 
on page 9-59 for more information.
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• The AP access does not complete until the access port signals it as completed. For 
example, if you access a Memory Access Port (AHB-AP), the access might cause 
an access to a memory system connected to the AHB-AP. In this case, the access 
does not complete until the memory system signals to the AHB-AP that the 
memory access has completed.

WAIT response to a DPACC or APACC access

A WAIT response indicates that the previous transaction has not completed. The host 
should retry the DPACC or APACC access.

Note
 The previous transaction might be either a debug port or an access port access. Accesses 
to the debug port are stalled, by returning WAIT, until any previous access port 
transaction has completed.

Normally, if software detects a WAIT response, it retries the same transfer. This enables 
the protocol to process data as quickly as possible. However, if the software has retried 
a transfer a number of times, permitting enough time for a slow interconnect and 
memory system to respond, it might write to the ABORT register, to cancel the 
operation. This signals to the active access port that it can terminate the transfer it is 
currently attempting and permits access to other parts of the debug system. An access 
port might not be able to terminate a transfer on its ASIC interface. However, on 
receiving an ABORT, the access port must free its JTAG interface.

Update-DR operation following a WAIT response

No request is generated at the Update-DR state and the shifted-in data is discarded. The 
captured value of ReadResult[31:0] is Unpredictable.

Note
 You can detect a WAIT response without shifting through the entire DP or AP Access 
Register, see the response details in Table 9-3 on page 9-17.

Sticky overrun behavior on DPACC and APACC accesses

At the Capture-DR state, if the previous transaction has not completed a WAIT response 
is generated. When this happens, if the Overrun Detect flag is set, the Sticky Overrun 
flag, STICKYORUN, is set. See Control/Status Register, CTRL/STAT on page 9-59 for 
more information about the Overrun Detect and Sticky Overrun flags.

While the previous transaction remains not completed, subsequent scans also receive a 
WAIT response.
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When the previous transaction has completed, any more APACC transactions are 
abandoned and scans respond immediately with an OK/FAULT response. However, 
debug port registers can be accessed. In particular the CTRL/STAT register can be 
accessed, to confirm that the Sticky Overrun flag is set and to clear the flag after 
gathering any required information about the overrun condition. See Overrun detection 
on page 9-48 for more information.

Minimum response times

As explained in OK/FAULT response to a DPACC or APACC access on page 9-18, a 
debug port or access port register access is initiated at the Update-DR state of one 
DPACC or APACC access, and the result of the access is returned at the Capture-DR 
state of the following DPACC or APACC access. However, the second access generates 
a WAIT response if the requested register access has not completed.

The JTAG clock, TCK, is asynchronous to the internal clock of the system being 
debugged. The time required for an access to complete includes clock cycles in both 
domains. However, the timing between the Update-DR state and the Capture-DR state 
only includes TCK cycles. In Figure 9-3 on page 9-11, there are two paths from the 
Update-DR state, where the register access is initiated, to the Capture-DR state, where 
the response is captured:

• a direct path through Select-DR-Scan

• a path through Run-Test/Idle and Select-DR-Scan.

If the second path is followed, the state machine can spend any number of TCK cycles 
spinning in the Run-Test/Idle state. This means it is possible to vary the number of TCK 
cycles between the Update-DR and Capture-DR states.

A JTAG implementation might impose an implementation-defined lower limit on the 
number of TCK cycles between the Update-DR and Capture-DR states. It always 
generates an immediate WAIT response if Capture-DR is entered before this limit has 
expired. Although any debugger must be able to recover successfully from any WAIT 
response, ARM recommends that debuggers must be able to adapt to any 
implementation-defined limit.

In addition, when accessing access port registers, or accessing a connected device 
through an access port, there might be other variable response delays in the system. A 
debugger that can adapt to these delays, avoiding wasted WAIT scans, operates more 
efficiently and provides higher maximum data throughput.

Target response summary

As described in OK/FAULT response to a DPACC or APACC access on page 9-18 and 
Minimum response times, a debug port or access port register access is initiated at the 
Update-DR state of one DPACC or APACC access and the result of the access is 
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returned at the Capture-DR state of the following DPACC or APACC access. Table 9-4 
summarizes the target responses, at the Capture-DR state, for every possible DPACC 
and APACC access in the previous scan.

Note
 The target responses shown in Table 9-4 are independent of the operation being 
performed in the current DPACC or APACC scan. In the table, Read result is the data 
shifted out as Data[34:3] and ACK is decoded from the data shifted out as Data[2:0].

Table 9-4 JTAG target response summary

Previous scan, at Update-DR statea Current scan, at Capture-DR state
Notes

R/W IR ADDR b Stickyc AP stated Read result ACK

X X bXX X Busy UNPe WAIT Can cause Sticky Overrun 
flag to be setf

R DPACC b01 X Not Busy CTRL/STAT OK/FAULT Returns CTRL/STAT value

b10 SELECT Returns SELECT value

b00 or 
b11

0x00000000 No readable DP registers at 
addresses b00 and b11

W DPACC b01 X Not Busy UNPe OK/FAULT Write to CTRL/STAT

b10 Write to SELECT

b00 or 
b11

Write ignored

R APACC bXX No Ready See Notes OK/FAULT See footnoteg

Error UNPe Sticky Error flag is set

W APACC bXX No Ready UNPe OK/FAULT See footnoteh

Error UNPe Sticky Error flag is set

X APACC bXX Yes X UNPe OK/FAULT Previous transaction was 
discarded

a. The Previous scan is the most recent scan for which the ACK response at the Capture-DR state was OK/FAULT. Updates 
made following a WAIT response are discarded.

b. A[3:2] in the DPACC or APACC access.
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Host response summary

The ACK column, for the Current scan, at Capture-DR state section of Table 9-4 on 
page 9-22, shows the responses the host might receive after initiating a DPACC or 
APACC access. 

JTAG-DP Abort Register (ABORT)

Purpose Access the DP Abort Register, to force a DAP abort.

This is the JTAG-DP implementation of the Abort Register, see Abort 
Register, ABORT on page 9-55.

Length 35 bits.

Operating mode 

When the ABORT instruction is the current instruction in the IR, the 
serial path between TDI and TDO is connected to a 35-bit scan chain that 
is used to access the Abort Register.

c. The Sticky column indicates whether any Sticky flag is set in the DP CTRL/STAT register, see Control/Status Register, 
CTRL/STAT on page 9-59.

d. The state of the AP when the current scan reaches the Capture-DR state, or the response from the AP at that time.
e. UNP = Unpredictable.
f. If the Overrun Detect flag is set then this access/response sequence causes the Sticky Overrun flag to be set. See Control/Status 

Register, CTRL/STAT on page 9-59.
g. If Pushed Verify or Pushed Compare is enabled, the behavior is Unpredictable. Otherwise, returns the value of the AP Register 

addressed on the previous scan.
h. If Pushed Verify or Pushed Compare is enabled, the previous transaction performed the required pushed operation, which 

might have set the Sticky Compare flag, see Pushed compare and pushed verify operations on page 9-50. Otherwise, the data 
captured at the previous scan has been written to the AP register requested.

Table 9-5 Summary of JTAG host responses

JTAG access type ACK from target Suggested host action in response to ACK

Read OK/FAULT Capture read data.

Write OK/FAULT No more action required.

Read or Write WAIT Repeat the same access until either an OK/FAULT ACK is received or the 
wait timeout is reached.

If necessary, use the DAP ABORT register to enable access to the AP.

Read or Write Invalid ACK Assume a target or line error has occurred and treat as a fatal error.
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The debugger must scan the value 0x0000008 into this scan chain. This 
value:

• writes the RnW bit as 0

• writes the A[3:2] field as b00

• writes 1 into bit 0, the DAPABORT bit, of the Abort Register.

Caution
 The effect of writing any other value into this scan chain is Unpredictable.

Order Figure 9-8 shows the bit order of the ABORT scan chain.

Figure 9-8 JTAG-DP ABORT scan chain bit order
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9.5 SW-DP

This section describes the Serial Wire Debug Port (SW-DP) interface. In particular, it 
describes the Serial Wire Debug (SWD) protocol and how this protocol provides access 
to the debug port registers. These registers are described in detail in DAP programmer’s 
model on page 9-53.

The SW-DP operates with a synchronous serial interface. This uses a single 
bidirectional data signal and a clock signal.

Each sequence of operations on the wire consists of two or three phases:

Packet request 

The external host debugger issues a request to the debug port. The debug 
port is the target of the request.

Acknowledge response 

The target sends an acknowledge response to the host.

Data transfer phase 

This phase is only present when either:

• a data read or data write request is followed by a valid (OK) 
acknowledge response

• the ORUNDETECT flag is set to 1 in the CTRL/STAT Register, 
see Control/Status Register, CTRL/STAT on page 9-59.

The data transfer is one of:

• target to host, following a read request (RDATA)

• host to target, following a write request (WDATA).

Note
 If the Overrun Detect bit in the CTRL/STAT Register is set to 1, then a 

data transfer phase is required on all responses, including WAIT and 
FAULT. For more information, see Sticky overrun behavior on 
page 9-37. 

For details of the CTRL/STAT Register see Control/Status Register, 
CTRL/STAT on page 9-59.

9.5.1 Clocking

The SW-DP clock, SWCLKTCK, can be asynchronous to the HCLK. SWCLKTCK 
can be stopped when the debug port is idle.
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The host must continue to clock the interface for a number of cycles after the data phase 
of any data transfer. This ensures that the transfer can be clocked through the SW-DP. 
This means that after the data phase of any transfer the host must do one of the 
following:

• immediately start a new SW-DP operation

• continue to clock the SW-DP serial interface until the host starts a new SW-DP 
operation

• after clocking out the data parity bit, continue to clock the SW-DP serial interface 
until it has clocked out at least 8 more clock rising edges, before stopping the 
clock.

9.5.2 Overview of debug interface

This section gives an overview of the physical interface used by the SW-DP.

Line interface

The SW-DP uses a serial wire for both host and target sourced signals. The host 
emulator drives the protocol timing. Only the host emulator generates packet headers.

The SW-DP operates in synchronous mode and requires a clock pin and a data pin.

Synchronous mode uses a clock reference signal that can be obtained from an on-chip 
source and exported, or provided by the host device. This clock is then used by the host 
as a reference for generation and sampling of data so that the target is not required to 
perform any oversampling.

Both the target and host are capable of driving the bus HIGH and LOW, or tristating it. 
The ports must be able to tolerate short periods of contention to allow for loss of 
synchronization.

Line pullup

Both the host and target are able to drive the line HIGH or LOW, so it is important to 
ensure that contention does not occur by providing undriven time slots as part of the 
handover. So that the line can be assumed to be in a known state when neither is driving 
the line, a 100kOhm pullup resistor is required at the target, but this can only be relied 
on to maintain the state of the wire. If the wire is driven LOW and released, the pullup 
resistor eventually brings the line to the HIGH state, but this takes many bit periods.

The pullup is intended to prevent false detection of signals when no host device is 
connected. It must be of a high value to reduce IDLE state current consumption from 
the target when the host actively pulls down the line.
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Note
 Whenever the line is driven LOW, this results in a small current drain from the target. If 
the interface is left connected for extended periods when the target has to use a low 
power mode, the line must be held HIGH, or reset, by the host until the interface must 
be activated.

Line turnaround

To avoid contention, a turnaround period is required when the device driving the wire 
changes.

Idle and reset

Between transfers, the host must either drive the line LOW to the IDLE state, or 
continue immediately with the start bit of a new transfer. The host is also free to leave 
the line HIGH, either driven or tristated, after a packet. This reduces the static current 
drain, but if this approach is used with a free running clock, a minimum of 50 clock 
cycles must be used, followed by a READ-ID as a new reconnection sequence.

There is no explicit reset signal for the protocol. A reset is detected by either host or 
target when the expected protocol is not observed. It is important that both ends of the 
link become reset before the protocol can be restarted with a reconnection sequence. 
Re-synchronization following the detection of protocol errors or after reset is achieved 
by providing 50 clock cycles with the line HIGH, or tristate, followed by a read ID 
request.

If the SW-DP detects that it has lost synchronization, for example no stop bit is seen 
when expected, it leaves the line undriven and waits for the host to either retry with a 
new header after a minimum of one cycle with the line LOW, or signals a reset by not 
driving the line itself. If the SW-DP detects two bad data sequences in a row, it locks out 
until a reset sequence of 50 clock cycles with DBGDI HIGH is seen.

If the host does not see an expected response from SW-DP, it must permit time for 
SW-DP to return a data payload. The host can then retry with a read to the SW-DP ID 
code register. If this is unsuccessful, the host must attempt a reset.

9.5.3 Overview of protocol operation

This section gives an overview of the bi-directional operation of the protocol. It shows 
each of the possible sequences of operations on the SW-DP interface data connection.
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The sequences of operations shown here are:

• Successful write operation (OK response) on page 9-30

• Successful read operation (OK response) on page 9-31

• WAIT response to Read or Write operation request on page 9-32

• FAULT response to Read or Write operation request on page 9-32

• Protocol error sequence on page 9-33.

The terms used in the illustrations are described in Key to illustrations of operations.

Note
 The diagrams in this section are included to show the operation of the SWD protocol. 
They are not timing diagrams for the protocol.

Key to illustrations of operations

The illustrations of the different possible operations use the following terms:

Start A single start bit, with value 1.

APnDP A single bit, indicating whether the DP or the AP Access Register is to be 
accessed. This bit is 0 for a DPACC access, or 1 for an APACC access.

RnW A single bit, indicating whether the access is a read or a write. This bit is 
0 for an write access, or 1 for a read access.

A[2:3] Two bits, giving the A[3:2] address field for the DP or AP Register 
Address:

• For an APACC access, the register being addressed depends on the 
A[3:2] value and the value held in the SELECT register. For details 
of the addressing see AHB-AP programmer’s model on page 9-69, 
if you want to access a AHB-AP register.

For details of the SELECT register see AP Select Register, 
SELECT on page 9-63.

• For a DPACC access, the A[3:2] value determines the address of 
the register in the SW-DP register map, see Table 9-12 on 
page 9-53.

Note
 The A[3:2] value is transmitted LSB-first on the wire. This is why it 

appears as A[2:3] on the diagrams.
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Parity A single parity bit for the preceding packet. See Parity in the SWD 
protocol on page 9-30.

Stop A single stop bit. In the synchronous SWD protocol this is always 0.

Park A single bit. The host must drive the line high before tristating the line. 
The target reads this bit as 1.

Trn Turnaround. This is a period when the line is not driven and the state of 
the line is Undefined. The length of the turnaround period is controlled 
by the TURNROUND field in the Wire Control Register, see Wire 
Control Register, WCR (SW-DP only) on page 9-65. The default setting 
is a turnaround period of one clock cycle.

Note
 All the examples given in this chapter show the default turnaround period 

of one cycle.

ACK A 3-bit target-to-host response.

Note
 The ACK value is transmitted LSB-first on the wire. This is why it 

appears as ACK[0:2] on the diagrams.

WDATA[0:31] 

32 bits of write data, from host to target.

Note
 The WDATA[0:31] value is transmitted LSB-first on the wire. This is 

why it appears as WDATA[0:31] on the diagrams.

RDATA[0:31] 

32 bits of read data, from target to host.

Note
 The RDATA[0:31] value is transmitted LSB-first on the wire. This is why 

it appears as RDATA[0:31] on the diagrams.
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Parity in the SWD protocol

In the SWD protocol, a simple parity check is applied to all packet request and data 
transfer phases. Even parity is used:

Packet requests 

The parity check is made over the APnDP, RnW and A[2:3] bits. If, of 
these four bits:

• the number of bits set to 1 is odd, then the parity bit is set to 1

• the number of bits set to 1 is even, then the parity bit is set to 0.

Data transfers (WDATA and RDATA) 

The parity check is made over the 32 data bits, WDATA[0:31] or 
RDATA[0:31]. If, of these 32 bits:

• the number of bits set to 1 is odd, then the parity bit is set to 1

• the number of bits set to 1 is even, then the parity bit is set to 0.

The packet request parity bit is shown in each of the diagrams in this section, from 
Figure 9-9 on page 9-31 to Figure 9-15 on page 9-38. It appears on the wire 
immediately after the A[2:3] bits.

The WDATA parity bit is shown in Figure 9-9 on page 9-31 and in Figure 9-15 on 
page 9-38. It appears on the wire immediately after the WDATA[31] bit.

The RDATA parity bit is shown in Figure 9-10 on page 9-32 and in Figure 9-14 on 
page 9-38. It appears on the wire immediately after the RDATA[31] bit.

Note
 The ACK[0:2] bits are never included in the parity calculation. Debuggers must 
remember this when parity checking the data from a read operation, when the debugger 
receives a continuous stream of 36 bits, as shown in Figure 9-10 on page 9-32:

• bits [2:0] are ACK[0:2]

• bits [34:3] are RDATA[0:31]

• bit [35] is the parity bit.

The parity check must be applied to bits [34:3] of this block of data and the result 
compared with bit [35], the parity bit.

Successful write operation (OK response)

A successful write operation consists of three phases:

• an 8-bit write packet request, from the host to the target
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• a 3-bit OK acknowledge response, from the target to the host

• a 33-bit data write phase, from the host to the target.

By default, there are single-cycle turnaround periods between each of these phases. See 
the description of Trn in Key to illustrations of operations on page 9-28 for more 
information.

Figure 9-9 shows a successful write operation.

Figure 9-9 SWD successful write operation

Note
 The OK response shown in Figure 9-9 only indicates that the debug port is ready to 
accept the write data. The debug port writes this data after the write phase has 
completed. The response to the debug port write itself is given on the next operation.

There is no turnaround phase after the data phase. The host is driving the line and can 
start the next operation immediately.

Successful read operation (OK response)

A successful read operation consists of three phases:

• an 8-bit read packet request, from the host to the target

• a 3-bit OK acknowledge response, from the target to the host

• a 33-bit data read phase, where data is transferred from the target to the host.

By default, there are single-cycle turnaround periods between the first and second of 
these phases and after the third phase. See the description of Trn in Key to illustrations 
of operations on page 9-28 for more information. However, there is no turnaround 
period between the second and third phases.

Figure 9-10 on page 9-32 shows a successful read operation.
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Figure 9-10 SWD successful read operation

WAIT response to Read or Write operation request

A WAIT response to a read or write packet request consists of two phases:

• an 8-bit read or write packet request, from the host to the target

• a 3-bit WAIT acknowledge response, from the target to the host.

By default, there are single-cycle turnaround periods between these two phases and 
after the second phase. See the description of Trn in Key to illustrations of operations 
on page 9-28 for more information.

Figure 9-11 shows a WAIT response to a read or write packet request.

Figure 9-11 SWD WAIT response to a packet request

Note
 If Overrun Detection is enabled then a data phase is required on a WAIT response. For 
more information see Sticky overrun behavior on page 9-37.

FAULT response to Read or Write operation request

A FAULT response to a read or write packet request consists of two phases:

• an 8-bit read or write packet request, from the host to the target

• a 3-bit FAULT acknowledge response, from the target to the host.
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By default, there are single-cycle turnaround periods between these two phases and 
after the second phase. See the description of Trn in Key to illustrations of operations 
on page 9-28 for more information.

Figure 9-12 shows a FAULT response to a read or write packet request.

Figure 9-12 SWD FAULT response to a packet request

Note
 If Overrun Detection is enabled then a data phase is required on a FAULT response. For 
more information see Sticky overrun behavior on page 9-37.

Protocol error sequence

A protocol error occurs when a host issues a packet request but the target fails to return 
any acknowledge response. This is shown in Figure 9-13.

Figure 9-13 SWD protocol error after a packet request

9.5.4 Protocol description

This section provides additional information on the DAP Serial Wire Debug operations 
that were introduced in Overview of protocol operation on page 9-27.
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Connection and line reset sequence

The serial interface to the SW-DP must use a connection sequence, to ensure that 
hot-plugging the serial connection does not result in unintentional transfers. The 
connection sequence ensures that the SW-DP is synchronized correctly to the header 
that is used to signal a connection. It consists of a sequence of 50 clock cycles with 
data = 1, that is, with the serial data signal asserted HIGH by the debugger.

This connection sequence is also used as a line reset sequence, see Protocol Error 
responses on page 5-13. The protocol requires that any run of 50 consecutive 1s on the 
data input is detected as a line reset, regardless of the state of the protocol.

After the host has transmitted a line request sequence to the SW-DP, it must read the 
IDCODE register. The SW-DP returns an OK response to this read. For more 
information see:

• Identification Code Register, IDCODE on page 9-57

• Successful read operation (OK response) on page 9-31.

The requirement that the host reads the IDCODE register to exit the training state gives 
confirmation that correct packet frame alignment has been achieved.

OK response

When it receives a packet request from the debug host, the SW-DP must respond 
immediately. It issues an OK response, indicated by an acknowledge phase of b001, if 
it is ready for the data phase of the transfer, if one is required.

Note
 • As shown in Overview of protocol operation on page 9-27, there is always a 

turnaround between the end of the packet request from the host and the start of 
the acknowledgement from the SW-DP target. The default turnaround is exactly 
one serial clock cycle, but see the description of Trn in Key to illustrations of 
operations on page 9-28 for more information.

There is a turnaround whenever there is a change in the direction of data transfer 
over the serial SWD connection. If an operation that is described as immediate 
involves a change in the data transfer direction then the operation must start 
immediately after the turnaround.

• All SWD transfers are made LSB-first. Therefore, the OK response of b001 
appears on the wire as 1, followed by 0, followed by 0, as shown in Figure 9-9 on 
page 9-31 and Figure 9-10 on page 9-32.
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If the host requested a write access it must start the write transfer immediately after 
receiving the acknowledgement from the target. This behavior is the same whether the 
write is to the debug port or to an access port. However, the SW-DP can buffer AP 
writes, as described in SW-DP write buffering on page 9-39.

If the host requested a read access to the debug port then the SW-DP sends the read data 
immediately after the acknowledgement. Because there is no change in the data transfer 
direction between the acknowledgement and the read data there is not any turnaround 
between these phases. This is shown in Figure 9-10 on page 9-32.

Read accesses to the access port are posted. This means that the result of the access is 
returned on the next transfer. If the next access you have to make is not another access 
port read then you must insert a read of the DP RDBUFF Register to obtain the posted 
result, see Read Buffer, RDBUFF on page 9-64.

When you must make a series of access port reads, you only have to insert one read of 
the RDBUFF Register:

• On the first access port read access, the read data returned is Undefined. You must 
discard this result.

• If you immediately make another access port read access this returns the result of 
the previous access port read.

• You can repeat this for any number of access port reads.

• Issuing the last access port read packet request returns the last-but-one access port 
read result.

• You must then read the DP RDBUFF Register to obtain the last access port read 
result.

Operation and use of the READOK flag

The SW-DP CTRL/STAT register includes a READOK flag, bit [6]. This register is 
described in Control/Status Register, CTRL/STAT on page 9-59.

The READOK flag is updated on every access port read access and on every RDBUFF 
read request. When the SW-DP initiates the access port access it clears the READOK 
flag to 0 and, when the SW-DP target gives an OK response to the read request, it sets 
the READOK flag to 1.
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This means that if a host receives a corrupted ACK response to an access port or 
RDBUFF read request it can check whether the read actually completed correctly. The 
host can read the DP CTRL/STAT Register to find the value of the READOK flag:

• If the flag is set to 1 then the read was performed correctly. The host can use a 
RESEND request to obtain the read result, see Read Resend Register, RESEND 
(SW-DP only) on page 9-67.

• If the flag is set to 0 then the read was not successful. The host must retry the 
original access port or RDBUFF read request.

WAIT response

A WAIT response is issued by the SW-DP if it is not able to immediately process the 
request from the debugger. However, a WAIT response must not be issued to the 
following requests. SW-DP must always be able to process these three requests 
immediately:

• a read of the IDCODE register, see Identification Code Register, IDCODE on 
page 9-57

• a read of the CTRL/STAT register, see Control/Status Register, CTRL/STAT on 
page 9-59

• a write to the ABORT register, see Abort Register, ABORT on page 9-55.

With any request other than those listed, the SW-DP issues a WAIT response, with no 
data phase, if it cannot process the request. This happens:

• if a previous access port or debug port access is outstanding

• if the new request is an access port read request and the result of the previous AP 
read is not yet available.

Note
 When overrun detection is enabled a WAIT response must include a data phase. See 
Sticky overrun behavior on page 9-37 for more information.

Normally, when a debugger receives a WAIT response it retries the same operation. This 
enables it to process data as quickly as possible. However, if several retries have been 
attempted, and time permitted for a slow interconnection and memory system to 
respond, if appropriate, the debugger might write to the ABORT register. This signals 
to the active access port that it must terminate the transfer that it is currently attempting. 
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An access port implementation might be unable to terminate a transfer on its ASIC 
interface. However, on receiving an ABORT request the access port must free up the 
SWD interface.

Writing to the ABORT register after receiving a WAIT response enables the debugger 
to access other parts of the debug system.

FAULT response

SW-DP does not issue a FAULT response to an access to the IDCODE, CTRL/STAT or 
ABORT registers. For any other access, the SW-DP issues a FAULT response if any 
sticky flag is set in the CTRL/STAT Register, see Control/Status Register, CTRL/STAT 
on page 9-59. See Sticky overrun behavior for more information about the sticky 
overrun flag.

Use of the FAULT response enables the protocol to remain synchronized. A debugger 
might stream a block of data and then check the CTRL/STAT register at the end of the 
block.

The sticky error flags are cleared by writing bits in the ABORT register, see Abort 
Register, ABORT on page 9-55.

Sticky overrun behavior

If SW-DP receives a transaction request when the previous transaction has not 
completed, it generates a WAIT response. If overrun detection is enabled in the 
CTRL/STAT Register, the STICKYORUN flag is set to 1 in that register. For more 
information see Control/Status Register, CTRL/STAT on page 9-59. Subsequent 
transactions generate FAULT responses, because a sticky flag is set.

When overrun detection is enabled, WAIT and FAULT responses require a data phase:

• If the transaction is a read, the data in the data phase is Unpredictable. The target 
does not drive the line and the host must not check the parity bit.

• If the transaction is a write, the data phase is ignored.

Figure 9-14 on page 9-38 shows the WAIT or FAULT response to a read operation when 
overrun detection is enabled. Figure 9-15 on page 9-38 shows the response to a write 
operation when overrun detection is enabled.
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Figure 9-14 SW WAIT or FAULT response to a read operation when overrun detection is enabled

Figure 9-15 SW WAIT or FAULT response to a write operation when overrun detection is enabled

Protocol Error responses

If the SW-DP detects a parity error in the packet request it does not reply to the request.

When the host receives no reply to its request, it must back off, in case the SW-DP has 
lost frame synchronization for some reason. After this, it can issue a new transfer 
request. In this situation it must read the IDCODE register, see Identification Code 
Register, IDCODE on page 9-57. This is mandated by this specification because a 
successful read of the IDCODE register confirms that the target is operational.

If there is no response at the second attempt, the debugger must force a line reset to 
ensure frame synchronization and valid operation. This is necessary because the 
SW-DP is in a state where it only responds to a line reset. After the line reset the 
debugger must read the IDCODE register before it attempts any other operations.

If the transfer that resulted in the original protocol error response was a write, you can 
assume that no write occurred. If the original transfer was a read, it is possible that the 
read was issued to an access port. Although this is unlikely, you must consider this 
possibility because reads are pipelined and the debug port might implement a write 
buffer.
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SW-DP write buffering

The SW-DP implements a write buffer that enables it to accept write operations even 
when other transactions are still outstanding. The debug port issues an OK response to 
a write request if it can accept the write into its write buffer. This means that an OK 
response to a write request, other than a write to the DP ABORT Register, indicates only 
that the write has been accepted by the debug port. It does not indicate that all previous 
transactions have completed.

If a write is accepted into the write buffer but later abandoned, the WDATAERR flag is 
set in the CTRL/STAT Register, see Control/Status Register, CTRL/STAT on 
page 9-59. A buffered write is abandoned if:

• A sticky flag is set by a previous transaction.

• A debug port read of the IDCODE or CTRL/STAT Register is made. Because the 
debug port is not permitted to stall reads of these registers, it must:

— perform the IDCODE or CTRL/STAT Register access immediately

— discard any buffered writes, because otherwise they would be performed 
out-of-order.

• A debug port write of the ABORT Register is made. This is because the debug 
port cannot stall an ABORT Register access.

This means that if you make a series of access port write transactions, it might not be 
possible to determine which transaction failed from examining the ACK responses. 
However, it might be possible to use other enquiries to find which write failed. For 
example, if you are using the auto-address increment (AddrInc) feature of a Memory 
Access Port (AHB-AP), then you can read the Transfer Address Register to find which 
was the final successful write transaction. See AHB-AP Transfer Address Register, 
TAR, 0x04 on page 9-71 and AHB-AP register summary on page 9-69 for more 
information. 

The write buffer must be emptied before the following operations can be performed:

• any access port read operation

• any debug port operation other than a read of the IDCODE or CTRL/STAT 
Register, or a write of the ABORT Register.

Attempting these operations causes WAIT responses from the debug port until the write 
buffer is empty.
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Note
 If Pushed Verify or Pushed Compare is enabled, access port write transactions are 
converted into AP reads. These are then treated in the same way as other access port 
read operations. See Pushed compare and pushed verify operations on page 9-50 for 
details of these operations.

If you have to perform a SW-DP read of the IDCODE or CTRL/STAT Register, or a 
SW-DP write to the ABORT Register immediately after a sequence of access port 
writes, you must first perform an access that the SW-DP is able to stall. In this way you 
can check that the write buffer is cleared before performing the SW-DP register access. 
If this is not done, WDATAERR might be set and the buffered writes lost.

Summary of target responses

Table 9-6 summarizes the target SW-DP response to all possible debugger debug port 
read operation requests.

Table 9-7 on page 9-41 summarizes the target SW-DP response to all possible debugger 
access port read operation requests.

Table 9-8 on page 9-42 summarizes the target SW-DP response to all possible debugger 
debug port write operation requests, assuming the WDATA parity check is good.

Table 9-9 on page 9-42 summarizes the target SW-DP response to all possible debugger 
access port write operation requests, assuming the WDATA parity check is good.

Fault conditions that are not shown in these two tables are described in Fault conditions 
not included in the target response tables on page 9-42

Table 9-6 Target response summary for DP read transaction requests

A[3:2]
Sticky 
flag set?

AP 
Ready?

SW-DP (target) response

ACK Action

b00 X X OK Respond with IDCODE value.

b01 X X OK Respond with CRTL/STAT or WCR valuea.

b10 No Yes OK RESEND. Respond by resending the last read value sent to the host. This 
value is the result of one of:

• the most recent AP read

• the most recent DP RDBUF read.
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b11 No Yes OK Respond with RDBUF value from previous access port read and set 
READOK flag in CTRL/STAT Register to 1.

b10 No No WAIT No data phase, unless overrun detection is enabledb.

b10 Yes X FAULT No data phase, unless overrun detection is enabledb.

b11 No No WAIT No data phase, unless overrun detection is enabledb. Set READOK flag 
in CTRL/STAT Register to 0.

b11 Yes X FAULT No data phase, unless overrun detection is enabledb. Set READOK flag 
in CTRL/STAT Register to 0.

a. The value returned depends on the value of the CTRLSEL bit in the SELECT Register. in the debug port. See AP Select 
Register, SELECT on page 9-63.

b. See Sticky overrun behavior on page 9-37 for details of data phase when overrun detection is enabled.

Table 9-7 Target response summary for AP read transaction requests

A[3:2]
Sticky 
flag set?

AP 
Ready?

SW-DP (target) response

ACK Action

bXX No Yes OK Normallya, return value from previous access port readb and set 
READOK flag in CTRL/STAT Register. Initiate AP read of addressed 
registerc.

bXX No No WAIT No data phase, unless overrun detection is enabledd. Set READOK flag 
in CTRL/STAT Register to 0.

bXX Yes X FAULT No data phase, unless overrun detection is enabledd. Set READOK flag 
in CTRL/STAT Register to 0.

a. If Pushed Verify or Pushed Compare is enabled, behavior is Unpredictable.
b. On the first of a sequence of AP reads, the value returned in the data phase is Unpredictable.
c. The AP register is addressed by the value of A[3:2] together with the value of the APBANKSEL field in the SELECT Register 

in the DP. See AP Select Register, SELECT on page 9-63.
d. See Sticky overrun behavior on page 9-37 for details of data phase when overrun detection is enabled.

Table 9-6 Target response summary for DP read transaction requests (continued)

A[3:2]
Sticky 
flag set?

AP 
Ready?

SW-DP (target) response

ACK Action
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Fault conditions not included in the target response tables

There are two fault conditions that are not included in possible operation requests listed 
in Table 9-6 on page 9-40 and Table 9-8:

Protocol fault 

If there is a protocol fault in the operation request then the target does not 
respond to the request at all. This means that when the host expects an 
ACK response, it finds that the line is not driven.

Table 9-8 Target response summary for DP write transaction requests

A [3:2]
Sticky 
flag set?

AP 
Ready?

SW-DP (target) response

ACK Action

b00 X X OK Write WDATA value to ABORT Register.

Not b00 No Yesa OK Write WDATA value to debug port register indicated by A[3:2].

Not b00 No No WAIT No data phase, unless overrun detection is enabledb.

Not b00 Yes X FAULT No data phase, unless overrun detection is enabledb.

a. Writes might be accepted when other transactions are still outstanding, These writes might be abandoned subsequently. See 
SW-DP write buffering on page 9-39 for more information.

b. See Sticky overrun behavior on page 9-37 for details of data phase when overrun detection is enabled.

Table 9-9 Target response summary for AP write transaction requests

A[3:2]
Sticky 
flag set?

AP 
Ready?

SW-DP (target) response

ACK Action

bXX No Yesa OK Normallyb, write WDATA value to the indicated access port registerc.

bXX No No WAIT No data phase, unless overrun detection is enabledd.

bXX Yes X FAULT No data phase, unless overrun detection is enabledd.

a. Writes might be accepted when other transactions are still outstanding, These writes might be abandoned subsequently. 
See SW-DP write buffering on page 9-39 for more information.

b. If Pushed Verify or Pushed Compare is enabled, the write is converted to a read of the addressed AP register and the value 
returned by this read is compared with the supplied WDATA value, see Pushed compare and pushed verify operations on 
page 9-50 for more information. For an outline of how AP registers are addressed see footnote c to this table.

c. The AP register is addressed by the value of A[3:2] together with the value of the APBANKSEL field in the SELECT 
Register in the DP See AP Select Register, SELECT on page 9-63.

d. See Sticky overrun behavior on page 9-37 for details of data phase when overrun detection is enabled.
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WDATA fails parity check (write operations only) 

The ACK response of the debug port is sent before the parity check is 
performed and can be found from Table 9-8 on page 9-42. When the 
parity check is performed and fails, the WDATAERR flag is set in the 
CTRL/STAT Register, see Control/Status Register, CTRL/STAT on 
page 9-59.

Summary of host responses

Every access by a debugger to a SW-DP starts with an operation request. Summary of 
target responses on page 9-40 lists all possible requests from a debugger and 
summarizes how the SW-DP responds to each request.

Whenever a debugger issues an operation request to a SW-DP, it expects to receive a 
3-bit acknowledgement, as listed in the ACK columns of Table 9-6 on page 9-40 to 
Table 9-9 on page 9-42. This section summarizes how the debugger must respond to this 
acknowledgement, for all possible cases. Table 9-10 shows the summary of host 
responses to the SW-DP acknowledge.

Table 9-10 Summary of host (debugger) responses to the SW-DP acknowledge

Operation 
requested

ACK 
received

Host response

Data phase Additional action

R OK Capture RDATA from target and 
check for valid parity and protocol.

Might have to re-issue original read request or use the 
RESEND register if a parity or protocol fault occurs 
and are unable to flag data as invalida.

W OK Send WDATA. Validity of this transfer is confirmed on next access.

X WAIT No data phase, unless overrun 
detection is enabledb.

Normally, repeat the original operation request. See 
WAIT response on page 9-36 for more information.

X FAULT No data phase, unless overrun 
detection is enabledb.

Can send new headers, but only an access to debug 
port register addresses b0X gives a valid response.
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9.5.5 Transfer timings

This section describes the interaction between the timing of transactions on the serial 
wire interface and the DAP internal bus transfers. It shows when the target responds 
with a WAIT acknowledgement.

Figure 9-16 shows the effect of signaling ACK = WAIT on the length of the packet.

Figure 9-16 SW-DP acknowledgement timing

An access port access results in the generation of a transfer on the DAP internal bus. 
These transfers have an address phase and a data phase. The data phase can be extended 
by the access if it requires extra time to process the transaction, for example, if it has to 
perform an AHB access to the system bus to read data.

X No ACK Back off to allow for possible data 
phase.

Can attempt IDCODE Register read. Otherwise reset 
connection and retrain. See Protocol Error responses 
on page 9-38.

R Invalid 
ACK

Back off to allow for possible data 
phase.

Can check CTRL/STAT Register to see if the response 
sent was OK.

W Invalid 
ACK

Back off to ensure that target does 
not capture next header as 
WDATA.

Repeat the write access. A FAULT response is possible 
if the first response was sent as OK but not recognized 
as valid by the debugger. The subsequent write is not 
affected by the first, misread, response.

a. The host debugger might be able to support corrupted reads, or it might have to retry the transfer.
b. If overrun detection is enabled, a data phase is required. On a read operation, the RDATA value is Unpredictable and the 

debugger must capture and discard this data. On a write operation the debugger must send a WDATA packet, that the target 
ignores.

Table 9-10 Summary of host (debugger) responses to the SW-DP acknowledge (continued)

Operation 
requested

ACK 
received

Host response

Data phase Additional action
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Table 9-11 shows the terms used in Figure 9-17 to Figure 9-19 on page 9-46.

Figure 9-17 shows a sequence of write transfers. It shows that a single new transfer, 
WD[1], can be accepted by the serial engine, while a previous write transfer, WD[0], is 
completing. Any subsequent transfer must be stalled until the first transfer completes.

Figure 9-17 SW-DP to DAP bus timing for writes

Table 9-11 Terms used in SW-DP timing

Term Description

W.APACC Write a DAP access port register.

R.APACC Read a DAP access port register.

xxPACC Read or write, to debug port or access port register.

WD[0] First write packet data.

WD[-1] Previous write packet data. A transaction that happened before the figures timeframe.

WD[1] Second write packet data.

RD[0] First read packet data.

RD[1] Second read packet data.
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Figure 9-18 shows a sequence of read transfers. It shows that the payload for an access 
port read transfer provides the data for the previous read request. A read transfer only 
stalls if the previous transfer has not completed. If the read stalls, the first read transfer 
returns undefined data. It is still necessary to return data to ensure that the protocol 
timing remains predictable.

Figure 9-18 SW-DP to DAP bus timing for reads

Figure 9-19 shows a sequence of transfers separated by IDLE periods. It shows that the 
wire is always handed back to the host after any transfer.

Figure 9-19 SW-DP idle timing

After the last bit in a packet, the line can be LOW, or idle, for any period longer than a 
single bit to enable the Start bit to be detected for back-to-back transactions.
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9.6 Common Debug Port features

This section describes features that are implemented by the SW-DP and JTAG-DP as 
part of the SWJ-DP. These common features affect the way that a debugger is able to 
perform transactions with the DAP. It contains the following:

• Sticky flags and debug port error responses.

9.6.1 Sticky flags and debug port error responses

In the SW-DP and JTAG-DP, sticky flags are used to indicate error conditions and to 
report the result of pushed compare and pushed verify operations. The different sticky 
flags are described in the following sections:

• Read and write errors on page 9-48

• Overrun detection on page 9-48

• Protocol errors, SW-DP only on page 9-49

• Pushed compare and pushed verify operations on page 9-50.

Note
 When set to 1, a sticky flag remains set until it is explicitly cleared to 0. Even if the 
condition that caused the flag to be set no longer applies, the flag remains set until the 
debugger clears it. The method for clearing sticky flags is different for the SW-DP and 
JTAG-DP. See Control/Status Register, CTRL/STAT on page 9-59 for information 
about how these flags are cleared.

Errors can be returned by the DAP itself, or might come from a debug resource, for 
example, from a memory access made by a MEM-AP to a debug register file of a 
processor that is powered down.

In the debug port, errors are flagged by sticky flags in the DP Control/Status Register 
(CTRL/STAT). When an error is flagged, the current transaction is completed. Any 
further APACC (AP Access) transactions are discarded until the sticky flag is cleared.

The debug port response to an error condition might be:

• To signal an error response immediately. This happens with the SW-DP.

• To immediately discard all transactions as complete. This happens with the 
JTAG-DP.

This means that a debugger must check the Control/Status Register after performing a 
series of APACC transactions, to check if an error occurred. If a sticky flag is set to 1, 
the debugger clears the flag to 0 and then, if necessary, initiates more APACC 
transactions to find the cause of the sticky flag condition. Because the flags are sticky, 
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the debugger only has to check the Control/Status Register periodically and does not 
have to check the flags after every transaction. This reduces the overhead of checking 
for errors.

9.6.2 Read and write errors

A read or write error might occur in the debug port, or come from the system being 
debugged as the result of an AHB-AP access in response to an access port request. In 
either case, when the error is detected the Sticky Error flag, STICKYERR, in the 
Control/Status Register is set to b1.

A read/write error is also generated if the debugger makes an access port transaction 
request while the debug power domain is powered down.

9.6.3 Overrun detection

Debug ports support an overrun detection mode. This mode enables an emulator on a 
high latency, high throughput connection to be sent blocks of commands. These must 
be sent with sufficient in-line delays to make overrun errors unlikely. However, if an 
overrun error occurs, the debug port detects and flags the overrun errors, by setting a 
flag in the Control/Status Register. In overrun detection mode, the debugger must check 
for overrun errors after each sequence of APACC transactions, by checking the Sticky 
Overrun flag in the Control/Status Register. It is not necessary for the emulator to react 
immediately to the overrun condition.

Overrun detection mode is enabled by setting the Overrun Detect bit, ORUNDETECT, 
in the DP Control/Status Register. When this bit is set, the only permitted response to 
any transaction is:

• OK/FAULT on the JTAG-DP

• OK on the SW-DP.

In overrun detection mode, any other response, at any point, is treated as an error and 
causes the Sticky Overrun flag, STICKYORUN, in the DP Control/Status Register to 
be set to b1. The Sticky Error flag, STICKYERR, is not set.

The debugger must clear STICKYORUN to 0 to enable transactions to resume.

See Control/Status Register, CTRL/STAT on page 9-59 for more information.

Note
 The method of clearing the STICKYORUN flag to 0 is different for a JTAG-DP and a 
SW-DP:

• On a SW-DP, this bit is cleared by writing b1 to the ORUNERRCLR bit of the 
abort register. See Abort Register, ABORT on page 9-55.
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• On a JTAG-DP, this bit can be read normally. Writing 1 to this bit clears the bit to 
0.

If a new transaction is attempted and results in an overrun error, before an earlier 
transaction has completed, the first transaction still completes normally. Other sticky 
flags might be set on completion of the first transaction.

If the overrun detection mode is disabled, by clearing the ORUNDETECT flag, while 
STICKYORUN is set, the subsequent value of STICKYORUN is Unpredictable. To 
leave overrun detection mode, a debugger must:

• check the value of the STICKYORUN bit in the Control/Status register

• clear the STICKYORUN bit, if it is set

• clear the ORUNDETECT bit, to stop overrun detection mode.

9.6.4 Protocol errors, SW-DP only

Note
 Although these errors can only be detected with the SW-DP, they are described in this 
chapter because they are part of the sticky flags error handling mechanism.

On the SWD interface, protocol errors can occur, for example because of wire-level 
errors. These errors might be detected by the parity checks on the data.

If the SW-DP detects a parity error in a message header, the debug port does not respond 
to the message. The debugger must be aware of this possibility. If it does not receive a 
response to a message, the debugger must back off. It must then request a read of the 
IDCODE register, to ensure the debug port is responsive, before retrying the original 
access. For details of the IDCODE register see Identification Code Register, IDCODE 
on page 9-57.

If the SW-DP detects a parity error in the data phase of a write transaction, it sets the 
Sticky Write Data Error flag, WDATAERR, in the Control/Status (CTRL/STAT) 
Register. Subsequent accesses from the debugger, other than IDCODE, CTRL/STAT 
or ABORT, result in a FAULT response. For details of the CTRL/STAT register see 
Control/Status Register, CTRL/STAT on page 9-59.

On receiving a FAULT response from the SW-DP a debugger must read the 
CTRL/STAT register and check the sticky flag values. The WDATAERR flag is cleared 
by writing b1 to the WDERRCLR field of the Abort Register, see Abort Register, 
ABORT on page 9-55.
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9.6.5 Pushed compare and pushed verify operations

The SW-DP and JTAG-DP debug ports support pushed operations, where the value 
written as an access port transaction is used at the debug port level to compare against 
a target read. Pushed operations are carried out as follows:

• The debugger writes a value as an access port transaction.

• The debug port performs a read from the access port.

• The debug port compares the two values and updates the Sticky Compare flag, 
STICKYCMP, in the DP Control/Status register, based on the result of the 
comparison:

— pushed compare sets STICKYCMP to b1 if the values match

— pushed verify sets STICKYCMP to b1 if the values do not match. 

Whenever the STICKYCMP bit is set, on detection of a valid comparison, any 
outstanding transaction repeats are cancelled.

For more information, see Control/Status Register, CTRL/STAT on page 9-59.

The debug port includes a byte lane mask, so that the compare can be restricted to 
particular bytes in the word. This mask is set using the MASKLANE bits in the 
Control/Status register. For more information about this masking, see MASKLANE and 
the bit masking of the pushed compare and pushed verify operations on page 9-61.

Figure 9-20 gives an overview of the pushed operations.

Figure 9-20 Pushed operations overview
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Pushed operations improve performance where writes might be faster than reads. They 
are used as part of in-line tests, for example Flash ROM programming and monitor 
communication. Pushed operations are enabled using the Transaction Mode bits, 
TRNMODE, in the DP Control/Status Register, see Control/Status Register, 
CTRL/STAT on page 9-59.

Considering pushed operations on a specific access port makes it easier to understand 
how these operations are implemented. On an AHB-AP, if you perform an access port 
write transaction to the Data Read/Write (DRW) Register, or to one of the Banked Data 
(BD0 to BD3) Registers, with either pushed compare or pushed verify active:

• The debug port holds the data value from the access port write transaction in the 
pushed compare logic, see Figure 9-20 on page 9-50.

• The access port reads from the address indicated by the AP Transfer Address 
Register (TAR), see AHB-AP Transfer Address Register, TAR, 0x04 on 
page 9-71.

• The value returned by this read is compared with the value held in the pushed 
compare logic and the STICKYCMP bit is set depending on the result. The 
comparison is masked as required by the MASKLANE bits. For more 
information see Control/Status Register, CTRL/STAT on page 9-59.

As described, whenever an access port write transaction is performed with pushed 
compare or pushed verify active, the actual access port access that results is a read 
operation, not a write.

Note
 Performing an access port read transaction with pushed compare or pushed verify active 
causes Unpredictable behavior.

On a SW-DP, performing an access port read transaction with pushed compare or 
pushed verify active returns a value. This means the wire-level protocol remains 
coherent. However, the value returned is Unpredictable and the read has Unpredictable 
side-effects. 

Example use of pushed verify operation on a AHB-AP

You can use pushed verify to verify the contents of system memory.

• Make sure that the AHB-AP Control/Status Word (CSW) is set up to increment 
the Transfer Address Register after each access. See Control/Status Register, 
CTRL/STAT on page 9-59.
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• Write to the Transfer Address Register to indicate the start address of the Debug 
Register region that is to be verified, see AHB-AP Transfer Address Register, 
TAR, 0x04 on page 9-71.

• Write a series of expected values as access port transactions. On each write 
transaction, the debug port issues an access port read access, compares the result 
against the value supplied in the access port write transaction, and sets the 
STICKYCMP bit in the CTRL/STAT Register if the values do not match. See 
Control/Status Register, CTRL/STAT on page 9-59.

The TAR is incremented on each transaction.

In this way, the series of values supplied is compared against the contents of the access 
port locations and STICKYCMP set if they do not match.

Example use of pushed find operation on a AHB-AP

You can use pushed find to search system memory for a particular word. If you use 
pushed find with byte lane masking you can search for one or more bytes.

• Make sure that the AHB-AP Control/Status Word (CSW) is set up to increment 
the TAR after each access. See Control/Status Register, CTRL/STAT on 
page 9-59.

• Write to the Transfer Address Register (TAR) to indicate the start address of the 
Debug Register region that is to be searched. See AHB-AP Transfer Address 
Register, TAR, 0x04 on page 9-71.

• Write the value to be searched for as an AP write transaction. The debug port 
repeatedly reads the location indicated by the TAR. On each debug port read:

— The value returned is compared with the value supplied in the access port 
write transaction. If they match, the STICKYCMP flag is set.

— The TAR is incremented.

This continues until STICKYCMP is set, or ABORT is used to terminate the 
search.

You could also use pushed find without address incrementing to poll a single location, 
for example to test for a flag being set on completion of an operation.
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9.7 DAP programmer’s model

This section describes:

• JTAG-DP registers. This contains a summary of the JTAG-DP registers.

• SW-DP registers on page 9-54. This contains a summary of the SW-DP registers.

• Debug access port register descriptions on page 9-55. This contains details of the 
DP registers and describes implementation differences between SW-DP and 
JTAG-DP registers.

9.7.1 JTAG-DP registers

The JTAG-DP register accessed depends on both:

• the Instruction Register (IR) value for the DAP access

• the address field of the DAP access.

For more information, see Accessing the JTAG-DP registers on page 9-54.

Table 9-12 shows the JTAG-DP register map.

Table 9-12 JTAG-DP register map

IR contents Description Address Access Reference Notes

IDCODE ID Code Register -a RO Identification Code Register, 
IDCODE on page 9-57

-

DPACC - 0x0 Reserved - Reserved.

Read-as-zero, 
writes ignored.

DPACC DP Control/Status 
Register

0x4 R/W Control/Status Register, 
CTRL/STAT on page 9-59

-

DPACC Select Register 0x8 R/W AP Select Register, SELECT on 
page 9-63

-

DPACC Read Buffer 0xC Reserved Read Buffer, RDBUFF on page 9-64 -

ABORT DAP Abort Register 0x0 WOb Abort Register, ABORT on 
page 9-55

-

ABORT - 0x4 - 0xC - - - b

a. There is no address associated with IDCODE accesses. See Accessing the JTAG-DP registers on page 9-54.
b. The value read on the ABORT scan chain is Unpredictable. The result of accessing the ABORT scan chain with the address 

field not set to 0x0 is Unpredictable
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Accessing the JTAG-DP registers

The JTAG-DP registers are only accessed when the Instruction Register (IR) for the 
DAP access contains the IDCODE, DPACC, or ABORT instruction. In detail, the 
register accesses for each instruction are:

IDCODE The IDCODE scan chain has no address field and accesses the IDCODE 
register.

DPACC The DPACC scan chain accesses registers at addresses 0x0 to 0xC.

ABORT For a write access with address 0x0, the ABORT scan chain accesses the 
ABORT register.

For a read access with address 0x0 and for any access with address 0x4 to 
0xC, the behavior of the ABORT scan chain is Unpredictable.

9.7.2 SW-DP registers

For most register addresses on the SW-DP, different registers are addressed on read and 
write accesses. In addition, the CTRLSEL bit in the Select Register changes which 
register is accessed at address 0b01.

Table 9-13 shows the SW-DP register map.

Table 9-13 SW-DP register map

Address CTRLSELa Description Accessb Reference

b00 X ID Code Register R Identification Code Register, IDCODE on page 9-57

Abort Register W Abort Register, ABORT on page 9-55

b01 b0 Control/Status 
Register

R/W Control/Status Register, CTRL/STAT on page 9-59

b1 Wire Control 
Register

R/W Wire Control Register, WCR (SW-DP only) on page 9-65

b10 X Read Resend 
Register

R Read Resend Register, RESEND (SW-DP only) on 
page 9-67

Select Register W AP Select Register, SELECT on page 9-63

b11 X Read Buffer R Read Buffer, RDBUFF on page 9-64

- W -

a. CTRLSEL bit in the SELECT register, see AP Select Register, SELECT on page 9-63.
b. Entries in the Access column refer to whether the SWD protocol makes a read or a write access to the given address.
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9.7.3 Debug access port register descriptions

This section gives a detailed description of each of the debug port registers. Each 
description states whether the register is implemented for the JTAG-DP and for the 
SW-DP and shows any differences in the implementation.

Abort Register, ABORT

The Abort Register is always present on all debug port implementations. Its main 
purpose is to force a DAP abort. On a SW-DP, it is also used to clear error and sticky 
flag conditions.

JTAG-DP It is at address 0x0 when the Instruction Register (IR) contains ABORT.

SW-DP It is at address 0x0 on write operations when the APnDP bit =1, see Key 
to illustrations of operations on page 9-28. Access to the Abort Register 
is not affected by the value of the CTRLSEL bit in the Select Register.

It is:

• A write-only register.

• Always accessible and returns an OK response if a valid transaction is received.

Abort Register accesses always complete on the first attempt.

Figure 9-21 shows the Abort Register bit assignments.

Figure 9-21 Abort Register bit assignments
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Table 9-14 shows the Abort Register bit assignments.

DP Aborts

Writing b1 to bit [0] of the Abort Register generates a debug port abort, causing the 
current AP transaction to abort. This also terminates the Transaction Counter, if it was 
active.

From a software perspective, this is a fatal operation. It discards any outstanding and 
pending transactions and leaves the access port in an unknown state. However, on a 
SW-DP, the sticky error bits are not cleared.

You use this function only in extreme cases, where debug host software has observed 
stalled target hardware for an extended period. Stalled target hardware is indicated by 
WAIT responses.

After a debug port abort is requested, new transactions can be accepted by the debug 
port. However, an access port access to the access port that was aborted can result in 
more WAIT responses. Other access ports can be accessed, however, the state of the 
system might make it impossible to continue with debug.

Caution
 On a JTAG-DP, for the Abort Register:

• bit [0], DAPABORT, is the only bit that is defined

• the effect of writing any value other than 0x00000001 is Unpredictable.

Table 9-14 Abort Register bit assignments

Bits Function Description

[31:5] - Reserved, SBZ.

[4]a ORUNERRCLRa Write b1 to this bit to clear the STICKYORUN overrun error flagb.

[3]a WDERRCLRa Write b1 to this bit to clear the WDATAERR write data error flagb.

[2]a STKERRCLRa Write b1 to this bit to clear the STICKYERR sticky error flagb.

[1]a STKCMPCLRa Write b1 to this bit to clear the STICKYCMP sticky compare flagb.

[0] DAPABORT Write b1 to this bit to generate a DAP abort. This aborts the current access port transaction.

This must only be done if the debugger has received WAIT responses over an extended 
period.

a. Implemented on SW-DP only. On a JTAG-DP this bit is Reserved, SBZ.
b. In the Control/Status register.
9-56 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413C



Debug Access Port 
Clearing error and sticky compare flags, SW-DP only

When a debugger, connected to a SW-DP, checks the Control/Status Register and finds 
that an error flag is set, or that the sticky compare flag is set, it must write to the Abort 
register to clear the error or sticky compare flag. Table 9-14 on page 9-56 lists the flags 
that might be set in the Control/Status Register and shows which bit of the Abort register 
is used to clear each of the flags. You can use a single write of the Abort Register to 
clear multiple flags, if this is necessary.

After clearing the flag, you might have to access the debug port and access port registers 
to find what caused the flag to be set. Typically:

• For the STICKYCMP or STICKYERR flag, you must find which location was 
accessed to cause the flag to be set.

• For the WDATAERR flag, after clearing the flag you must resend the data that 
was corrupted.

• For the STICKYORUN flag, you must find which debug port or access port 
transaction caused the overflow. You then have to repeat your transactions from 
that point.

Identification Code Register, IDCODE

The Identification Code Register is always present on all debug port implementations. 
It provides identification information about the ARM Debug Interface.

JTAG-DP It is accessed using its own scan chain.

SW-DP It is at address 0b00 on read operations when the APnDP bit =1. Access 
to the Identification Code Register is not affected by the value of the 
CTRLSEL bit in the Select Register.

It is:

• a read-only register

• always accessible.

Figure 9-22 on page 9-58 shows the Identification Code Register bit assignments.
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Figure 9-22 Identification Code Register bit assignments

Table 9-15 shows the Identification Code Register bit assignments.

JEDEC Manufacturer ID

This code is also described as the JEP-106 manufacturer identification code and can be 
subdivided into two fields, as shown in Table 9-16.

Table 9-15 Identification Code Register bit assignments

Bits Function Description

[31:28] Version Version code:

JTAG-DP 0x3

SW-DP 0x2

[27:12] PARTNO Part Number for the debug port. Current ARM-designed debug ports have the 
following PARTNO values:

JTAG-DP 0xBA00

SW-DP 0xBA10

[11:1] MANUFACTURER JEDEC Manufacturer ID, an 11-bit JEDEC code that identifies the manufacturer of the 
device. See JEDEC Manufacturer ID. The ARM default value for this field, shown in 
Figure 9-22, is 0x23B.

[0] - Always 0b1.

Table 9-16 JEDEC JEP-106 manufacturer ID code, with ARM Limited values

JEP-106 field Bitsa

a. Field width, in bits, and the corresponding bits in the Identification Code Register.

ARM Limited registered value

Continuation code 4 bits, [11:8] b0100, 0x4

Identity code 7 bits, [7:1] b0111011, 0x3B
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JDEC codes are assigned by the JEDEC Solid State Technology Association, see 
JEP106M, Standard Manufacture’s Identification Code.

Control/Status Register, CTRL/STAT

The Control/Status Register is always present on all debug port implementations. It 
provides control of the debug port and status information about the debug port.

JTAG-DP It is at address 0x4 when the Instruction Register (IR) contains DPACC.

SW-DP It is at address 0b01 on read and write operations when the APnDP bit =1 
and the CTRLSEL bit in the Select Register is set to b0. For information 
about the CTRLSEL bit see AP Select Register, SELECT on page 9-63.

It is a read-write register, in which some bits have different access rights. It is 
implementation-defined whether some fields in the register are supported. Table 9-17 
shows which fields are required in all implementations.

Figure 9-23 shows the Control/Status Register bit assignments.

Figure 9-23 Control/Status Register bit assignments

Table 9-17 shows the Control/Status Register bit assignments.

Table 9-17 Control/Status Register bit assignments

Bits Access Function Description

[31] RO CSYSPWRUPACK System power-up acknowledge.

[30] R/W CSYSPWRUPREQ System power-up request. After a reset this bit is LOW (0).

[29] RO CDBGPWRUPACK Debug power-up acknowledge.
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[28] R/W CDBGPWRUPREQ Debug power-up request. After a reset this bit is LOW (0).

[27] RO CDBGRSTACK Debug reset acknowledge.

[26] R/W CDBGRSTREQ Debug reset request. After a reset this bit is LOW (0).

[25:24] - - Reserved, RAZ/SBZP.

[21:12] R/W TRNCNT Transaction counter. After a reset the value of this field is Unpredictable.

[11:8] R/W MASKLANE Indicates the bytes to be masked in pushed compare and pushed verify 
operations. See MASKLANE and the bit masking of the pushed compare 
and pushed verify operations on page 9-61.

After a reset the value of this field is Unpredictable.

[7] ROa WDATAERRa This bit is set to 1 if a Write Data Error occurs. It is set if:

• there is a a parity or framing error on the data phase of a write

• a write that has been accepted by the debug port is then discarded 
without being submitted to the access port.

This bit can only be cleared by writing b1 to the WDERRCLR field of the 
Abort Register, see Abort Register, ABORT on page 9-55.

After a power-on reset this bit is LOW (0).

[6] ROa READOKa This bit is set to 1 if the response to a previous access port or RDBUFF was 
OK. It is cleared to 0 if the response was not OK. 

This flag always indicates the response to the last access port read access.

After a power-on reset this bit is LOW (0).

[5] ROb STICKYERR This bit is set to 1 when the processor receives a bus error on the system 
AHB-Lite bus.

When STICKYERR is set, no transaction is passed from the JTAG or SW 
interfaces to the debug AHB system bus. Any read that is performed when 
STICKYERR is set results in data that is Unpredictable.

To clear this bit:

On a JTAG-DP Write b1 to this bit of this register.

On a SW-DP Write b1 to the STKERRCLR field of the Abort 
Register, see Abort Register, ABORT on 
page 9-55.

After a power-on reset this bit is LOW (0).

Table 9-17 Control/Status Register bit assignments (continued)

Bits Access Function Description
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MASKLANE and the bit masking of the pushed compare and pushed verify 
operations

The MASKLANE field, bits [11:8] of the CTRL/STAT Register, is only relevant if the 
Transfer Mode is set to pushed verify or pushed compare operation, see Transfer mode 
(TRNMODE), bits [3:2] on page 9-62.

In the pushed operations, the word supplied in an access port write transaction is 
compared with the current value of the target access port address. The MASKLANE 
field lets you specify that the comparison is made using only certain bytes of the values. 
Each bit of the MASKLANE field corresponds to one byte of the access port values. 
Therefore, each bit is said to control one byte lane of the compare operation.

[4] ROb STICKYCMP This bit is set to 1 when a match occurs on a pushed compare or a pushed 
verify operation. To clear this bit:

On a JTAG-DP Write b1 to this bit of this register.

On a SW-DP Write b1 to the STKCMPCLR field of the Abort 
Register, see Abort Register, ABORT on 
page 9-55.

After a power-on reset this bit is LOW (0).

[3:2] R/W TRNMODE This field sets the transfer mode for access port operations, see Transfer 
mode (TRNMODE), bits [3:2] on page 9-62.

After a power-on reset the value of this field is Unpredictable.

[1] ROb STICKYORUN If overrun detection is enabled (see bit [0] of this register), this bit is set to 
1 when an overrun occurs. To clear this bit:

On a JTAG-DP 

Write b1 to this bit of this register.

On a SW-DP Write b1 to the ORUNERRCLR field of the Abort 
Register, see Abort Register, ABORT on page 9-55.

After a power-on reset this bit is LOW (0).

[0] R/W ORUNDETECT This bit is set to b1 to enable overrun detection.

After a reset this bit is Low (0).

a. Implemented on SW-DP only. On a JTAG-DP this bit is Reserved, RAZ/SBZP.
b. RO on SW-DP. On a JTAG-DP, this bit can be read normally. Writing b1 to this bit clears the bit to b0.

Table 9-17 Control/Status Register bit assignments (continued)

Bits Access Function Description
ARM DDI0413C Copyright © 2006-2008 ARM Limited. All rights reserved. 9-61



Debug Access Port 
Table 9-18 shows how the bits of MASKLANE control the comparison masking.

Transfer mode (TRNMODE), bits [3:2]

This field sets the transfer mode for access port operations. Table 9-19 lists the 
permitted values of this field and their meanings.

In normal operation, access port transactions are passed to the access port for 
processing.

In pushed verify and pushed compare operations, the debug port compares the value 
supplied in the access port transaction with the value held in the target access port 
address.

Table 9-18 Control of pushed operation comparisons by MASKLANE

MASKLANEa

a. Bits [11:8] of the CTRL/STAT Register.

Meaning Mask used for comparisonsb

b. Bytes of the mask shown as -- are determined by the other bits of MASKLANE.

b1XXX Include byte lane 3 in comparisons. 0xFF------

bX1XX Include byte lane 2 in comparisons. 0x--FF----

bXX1X Include byte lane 1 in comparisons. 0x----FF--

bXXX1 Include byte lane 0 in comparisons. 0x------FF

Table 9-19 Transfer Mode bit definitions

TRNMODEa

a. Bits [3:2] of the CTRL/STAT 
Register.

AP Transfer mode

b00 Normal operation

b01 Pushed verify operation

b10 Pushed compare operation

b11 Reserved
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AP Select Register, SELECT

The AP Select Register is always present on all debug port implementations. Its main 
purpose is to select the current Access Port (AP) and the active four-word register 
window in that access port. On a SW-DP, it also selects the Debug Port address bank.

JTAG-DP It is at address 0x8 when the Instruction Register (IR) contains DPACC 
and is a read/write register.

SW-DP It is at address 0b10 on write operations when the APnDP bit =1 and is a 
write-only register. Access to the AP Select Register is not affected by the 
value of the CTRLSEL bit.

Figure 9-24 shows the AP Select Register bit assignments.

Figure 9-24 AP Select Register bit assignments

Table 9-20 shows the AP Select Register bit assignments.

Table 9-20 AP Select Register bit assignments

Bits Function Description

[31:24] APSEL Selects current access port.

Note
 Because the processor has only one access port, APSEL must be 8'b00000000.

The reset value of this field is Unpredictable.a

[23:8] - Reserved. SBZ/RAZa.

[7:4] APBANKSEL Selects the active 4-word register window on the current access port.

The reset value of this field is Unpredictable.a

[3:1] - Reserved. SBZ/RAZa.

[0] CTRLSELb SW-DP Debug Port address bank select, see CTRLSEL, SW-DP only on page 9-64.

After a reset this field is b0. However the register is WO so you cannot read this value.
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If APSEL is set to a non-existent access port, all access port transactions return zero on 
reads and are ignored on writes.

CTRLSEL, SW-DP only

The CTRLSEL field, bit [0], controls which debug port register is selected at address 
b01 on a SW-DP. Table 9-21 shows the meaning of the different values of CTRLSEL.

Read Buffer, RDBUFF

The 32-bit Read Buffer is always present on all debug port implementations. However, 
there are significant differences in its implementation on JTAG and SW Debug Ports.

JTAG-DP It is at address 0xC when the Instruction Register (IR) contains DPACC 
and is a Read-as-zero, Writes ignored (Reserved) register.

SW-DP It is at address 0xC on read operations when the APnDP bit =1 and is a 
read-only register. Access to the Read Buffer is not affected by the value 
of the CTRLSEL bit in the SELECT Register.

Read Buffer implementation and use on a JTAG-DP

On a JTAG-DP, the Read Buffer always reads as zero. Writes to the Read Buffer address 
are ignored.

The Read Buffer is architecturally defined to provide a debug port read operation that 
does not have any side effects. This means that a debugger can insert a debug port read 
of the Read Buffer at the end of a sequence of operations, to return the final Read Result 
and ACK values.

a. On a SW-DP the register is write-only and therefore you cannot read the field value.
b. Implemented on SW-DP only. On a JTAG-DP this bit is Reserved, SBZ/RAZ.

Table 9-21 CTRLSEL field bit definitions

CTRLSELa

a. Bit [0] of the SELECT Register.

DP Register at address b01

0 CTRL/STAT, see Control/Status Register, CTRL/STAT on page 9-59

1 WCR, see Wire Control Register, WCR (SW-DP only) on page 9-65
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Read Buffer implementation and use on a SW-DP

On a SW-DP, performing a read of the Read Buffer captures data from the access port, 
presented as the result of a previous read, without initiating a new access port 
transaction. This means that reading the Read Buffer returns the result of the last access 
port read access, without generating a new AP access.

After you have read the Read Buffer, its contents are no longer valid. The result of a 
second read of the Read Buffer is Unpredictable.

If you require the value from an access port register read, that read must be followed by 
one of:

• A second access port register read. You can read the Control/Status Register 
(CSW) if you want to ensure that this second read has no side effects.

• A read of the DP Read Buffer.

This second access, to the access port or the debug port depending on which option you 
used, stalls until the result of the original access port read is available.

Wire Control Register, WCR (SW-DP only)

The Wire Control Register is always present on any SW-DP implementation. Its 
purpose is to select the operating mode of the physical serial port connection to the 
SW-DP.

It is a read/write register at address 0b01 on read and write operations when the 
CTRLSEL bit in the Select Register is set to b1. For information about the CTRLSEL 
bit see AP Select Register, SELECT on page 9-63.

Note
 When the CTRLSEL bit is set to b1, to enable access to the WCR, the DP Control/Status 
Register is not accessible.

Many features of the Wire Control Register are implementation-defined.

Figure 9-25 on page 9-66 shows the Wire Control Register bit assignments.
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Figure 9-25 Wire Control Register bit assignments

Table 9-22 shows the Wire Control Register bit assignments.

Turnaround tristate period, TURNROUND, bits [9:8]

This field defines the turnaround tristate period. This turnaround period allows for pad 
delays when using a high sample clock frequency. Table 9-23 lists the possible values 
of this field and their meanings.

Table 9-22 Wire Control Register bit assignments

Bits Function Description

[31:10] - Reserved. SBZ/RAZ.

[9:8] TURNROUND Turnaround tristate period, see Turnaround tristate period, TURNROUND, bits [9:8].

After a reset this field is b00.

[7:6] WIREMODE Identifies the operating mode for the wire connection to the debug port, see Wire operating 
mode, WIREMODE, bits [7:6] on page 9-67.

After a reset this field is b01.

[5:3] - Reserved. SBZ/RAZ.

[2:0] PRESCALER Reserved. SBZ/RAZ.

Table 9-23 Turnaround tristate period field bit definitions

TURNROUNDa Turnaround tri-state period

b00 1 sample period

b01 2 sample periods

b10 3 sample periods

b11 4 sample periods
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Wire operating mode, WIREMODE, bits [7:6]

This field identifies SW-DP as operating in Synchronous mode only.

This field is required. Table 9-24 lists the possible values of the field and their 
meanings.

Read Resend Register, RESEND (SW-DP only)

The Read Resend Register is always present on any SW-DP implementation. Its 
purpose is to enable the read data to be recovered from a corrupted debugger transfer, 
without repeating the original AP transfer.

It is a 32-bit read-only register at address 0b10 on read operations. Access to the Read 
Resend Register is not affected by the value of the CTRLSEL bit in the SELECT 
Register.

Performing a read to the RESEND register does not capture new data from the access 
port. It returns the value that was returned by the last AP read or DP RDBUFF read. 

Reading the RESEND register enables the read data to be recovered from a corrupted 
transfer without having to re-issue the original read request or generate a new DAP or 
system level access.

The RESEND register can be accessed multiple times. It always returns the same value 
until a new access is made to the DP RDBUFF register or to an access port register.

a. Bits [9:8] of the WCR Register.

Table 9-24 Wire operating mode bit definitions

WIREMODEa

a. Bits [7:6] of the WCR Register.

Wire operating mode

b00 Reserved

b01 Synchronous (no oversampling)

b1X Reserved
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9.8 AHB-AP

This section describes the AHB Access Port (AHB-AP), for access to a system AHB bus 
through an AHB-Lite master. It acts as a slave to the DAP internal bus, driven by only 
a single debug port, JTAG-DP, at any one time. Figure 9-26 shows the internal structure 
of the AHB-AP.

Figure 9-26 AHB access port internal structure.

The AHB-AP has two interfaces:

• An internal DAP bus interface that connects to the SWJ-DP

• An AHB master port for connection through the matrix to the external AHB-Lite 
interface and the PPB.

9.8.1 AHB-Lite master ports 

The AHB-Lite master port supports AHB in AMBA v2.0. The AHB-Lite master port 
does not support:

• BURST and SEQ

• Exclusive accesses

• Unaligned transfers.

Table 9-25 shows the other AHB-AP ports.

Table 9-25 Other AHB-AP ports

Name Type Description

DBGEN Inputa

a. Tied HIGH.

Enables AHB-AP transfers if HIGH

SPIDEN Inputb

b. Tied LOW.

Permits secure transfers to take place on the AHB-AP

nCDBGPWRDN Inputa Indicates that the debug infrastructure is powered down

nCSOCPWRDN Inputa Indicates that the system AHB interface is powered down 
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9.8.2 AHB-AP programmer’s model

This section describes the registers used to program the AHB-AP:

• AHB-AP register summary

• AHB access port register descriptions.

AHB-AP register summary

Table 9-26 shows the AHB access port registers.

AHB access port register descriptions

The section describes the AHB access port registers:

• AHB-AP Control/Status Word Register, CSW, 0x00 on page 9-70

• AHB-AP Transfer Address Register, TAR, 0x04 on page 9-71

• AHB-AP Data Read/Write Register, DRW, 0x0C on page 9-72

• AHB-AP Banked Data Registers, BD0-BD03, 0x10-Ox1C on page 9-72

• ROM Address Register, ROM, 0xF8 on page 9-73

• AHB-AP Identification Register, IDR, 0xFC on page 9-73.

Table 9-26 AHB access port registers

Offset Type Width Reset value Name

0x00 R/W 32 0x43800042 Control/Status Word, CSW

0x04 R/W 32 0x00000000 Transfer Address, TAR

0x08 - - - Reserved SBZ

0x0C R/W 32 - Data Read/Write, DRW

0x10 R/W 32 - Banked Data 0, BD0

0x14 R/W 32 - Banked Data 1, BD1

0x18 R/W 32 - Banked Data 2, BD2

0x1C R/W 32 - Banked Data 3, BD3

0x20-0xF7 - - - Reserved SBZ

0xF8 RO 32 0xE00FF000 Debug ROM table

0xFC RO 32 0x24770001 Identification Register, IDR 
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AHB-AP Control/Status Word Register, CSW, 0x00

This is the control word used to configure and control transfers through the AHB 
interface.

Figure 9-27 shows the Control/Status Word Register bit assignments.

Figure 9-27 AHB-AP Control/Status Word Register bit assignments

Table 9-27 lists the bit assignments.

Table 9-27 AHB-AP Control/Status Word Register bit assignments

Bits Type Name Function

[31] - - Reserved SBZ.

[30] - - Reserved SB0.

[29:28] - - Reserved SBZ.

[27:24] R/W Prot Specifies the protection signal encoding to be output on HPROT[3:0].
Reset value is noncacheable, non-bufferable, data access, privileged = b0011.

[23] RO SPIStatus Indicates the status of the SPIDEN port. Always reads as b1.

[22:12] - - Reserved SBZ.

[11:8] R/W Mode Specifies the mode of operation:

b0000 = Normal download/upload model

b0001-b1111 = Reserved SBZ.

Reset value = b0000.

[7] RO TrInProg Transfer in progress. This field indicates if a transfer is currently in progress on the 
AHB master port.

[6] RO DbgStatus Indicates the status of the DBGEN port. Always reads as b1 = AHB transfers permitted.
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AHB-AP Transfer Address Register, TAR, 0x04

Table 9-28 shows the AHB-AP Transfer Address Register bit assignments.

[5:4] R/W AddrInc Auto address increment and packing mode on Read or Write data access. Only 
increments if the current transaction completes without an Error Response. Does not 
increment if the transaction completes with an Error Response or the transaction is 
aborted.

Auto address incrementing and packed transfers are not performed on access to Banked 
Data registers 0x10-0x1C. The status of these bits is ignored in these cases.

Increments and wraps within a 1KB address boundary, for example, for word 
incrementing from 0x1400-0x17FC. If the start is at 0x14A0, then the counter increments 
to 0x17FC, wraps to 0x1400, then continues incrementing to 0x149C.

b00 = auto increment off

b01 = increment, single.

Single transfer from corresponding byte lane.

b10 = increment, packed

Word = same effect as single increment.

Byte/Halfword. Packs four 8-bit transfers or two 16-bit transfers into a 32-bit DAP 
transfer. Multiple transactions are carried out on the AHB interface.

b11 = Reserved SBZ, no transfer.

Size of address increment is defined by the Size field, bits [2:0].

Reset value = b00.

[3] - - Reserved SBZ, R/W = b0 

[2:0] R/W Size Size of the data access to perform:

b000 = 8 bits

b001 = 16 bits

b010 = 32 bits

b011-b111 = Reserved SBZ.

Reset value = b010.

Table 9-27 AHB-AP Control/Status Word Register bit assignments (continued)

Bits Type Name Function

Table 9-28 AHB-AP Transfer Address Register bit assignments

Bits Type Name Function

[31:0] R/W Address Address of the current transfer. Unaligned address values with respect to the Size field 
of the Control/Status Word Register are unsupported.

Reset value is 0x00000000.
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AHB-AP Data Read/Write Register, DRW, 0x0C

Table 9-29 shows the AHB-AP Data Read/Write Register bit assignments.

AHB-AP Banked Data Registers, BD0-BD03, 0x10-Ox1C

BD0-BD3 provide a mechanism for directly mapping through DAP accesses to AHB 
transfers without having to rewrite the Transfer Address Register (TAR) within a 
four-location boundary. BD0 reads/writes from TA. BD1 reads/writes from TA+4. 
Table 9-30 shows the AHB-AP Banked Data Register bit assignments.

Table 9-29 AHB-AP Data Read/Write Register bit assignments

Bits Type Name Function

[31:0] R/W Data Write mode:

Data value to write for the current transfer.

Read mode:

Data value read from the current transfer.

Table 9-30 Banked Data Register bit assignments

Bits Type Name Function

[31:0] R/W Data If DAPADDR[7:4] = 0x0001, so accessing AHB-AP registers in the range 0x10-0x1C, the 
derived HADDR[31:0] is:

• Write mode: 

Data value to write for the current transfer to external address TAR[31:4] + 
DAPADDR[3:2] + 2'b00.

• Read mode: 

Data value read from the current transfer from external address TAR[31:4] + 
DAPADDR[3:2] + 2'b00.

Auto address incrementing is not performed on DAP accesses to BD0-BD3.

Banked transfers are only supported for word transfers. Non-word banked transfers are 
reserved and Unpredictable. Transfer size is currently ignored for banked transfers.
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ROM Address Register, ROM, 0xF8

Table 9-31 shows the ROM Address Register bit assignments.

AHB-AP Identification Register, IDR, 0xFC

The register reset value is 0x247700001.

Figure 9-28 shows the AHB-AP Identification Register bit assignments.

Figure 9-28 AHB-AP Identification Register bit assignments

Table 9-32 shows the AHB-AP Identification Register bit assignments.

Table 9-31 ROM Address Register bit assignments

Bits Type Name Function

[31:0] RO Debug AHB ROM Address Base address of a ROM table. The ROM provides a look-up table for 
system components. Set to 0xE00FF000 in the AHB-AP in the initial 
release.

Table 9-32 AHB-AP Identification Register bit assignments

Bits Type Name

[31:28] RO Revision. Reset value is 0x2 for AHB-AP.

[27:24] RO JEDEC banka. Reset value is 0x4.

a. Using JEDEC bank 0x0 with a JEDEC code of 0x00 is reserved for 
use by ARM.

[23:17] RO JEDEC code. Reset value is 0x3B.

[16] RO ARM AP. Reset value is b1.

[15:8] - Reserved SBZ.

[7:0] RO Identity value. Reset value is 0x01 for AHB-AP.
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9.8.3 AHB-AP clocks and resets

The AHB-AP has two clock domains that are connected together. HCLK drives both of 
them:

DAPCLK Drives the DAP bus interface and access control for register read and 
writes. DAPCLK must be driven by a constant clock. When started, it 
must not be stopped or altered while the DAP is in use.

HCLK AHB clock domain driving AHB interface.

DBGRESETn 

Initializes the state of all registers in the AHB-AP.

9.8.4 Supported AHB protocol features

The AHB-Lite master port supports AHB in AMBA v2.0. 

HPROT encodings

HPROT[3:0] is provided as an external port and is programmed from the Prot field in 
the CSW register with the following conditions:

• HPROT[3:0] programming is supported.

• Exclusive access is not supported, so HRESP[2] is not supported.

See AHB-AP Control/Status Word Register, CSW, 0x00 on page 9-70 for values of the 
Prot field.

HRESP

HRESP[0] is the only RESPONSE signal required by the AHB-AP: 

• AHB-Lite devices do not support SPLIT and RETRY and so HRESP[1] is not 
required.

• HRESP[2] is not supported in the AHB-AP.
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AHB-AP transfer types and bursts

The AHB-AP cannot initiate a new AHB transfer every clock cycle (unpacked) because 
of the additional cycles required to serial scan in the new address or data value through 
a debug port. The AHB-AP supports two HTRANS transfer types, IDLE and 
NONSEQ.

• When a transfer is in progress, it is of type NONSEQ.

• When no transfer is in progress and the AHB-AP is still granted the bus then the 
transfer is of type IDLE.

The only unpacked HBURST encoding supported is SINGLE. Packed 8-bit transfers or 
16-bit transfers are treated as individual NONSEQ, SINGLE transfers at the AHB-Lite 
interface. This ensures that there are no issues with boundary wrapping, to avoid 
additional AHB-AP complexity.

9.8.5 Packed transfers

The DAP internal interface is a 32-bit data bus. 8-bit or 16-bit transfers can be formed 
on AHB according to the Size field in the Control/Status Word Register at 0x00. The 
AddrInc field in the Control/Status Word Register enables optimized use of the DAP 
internal bus to reduce the number of accesses from the tools to the DAP. It indicates if 
the entire data word is to be used to pack more than one transfer. Address incrementing 
is automatically enabled if packet transfers are initiated so that multiple transfers are 
carried out at the sequential addresses. The size of the address increment is based on the 
size of the transfer. 

See AHB-AP Control/Status Word Register, CSW, 0x00 on page 9-70 for values of the 
AddrInc field and AHB-AP Data Read/Write Register, DRW, 0x0C on page 9-72 for 
Data Read/Write Register bit values.

Examples of the transactions are:

• For an unpacked 16-bit write to an address base of 0x2 (CSW[2:0]=b001, 
CSW[5:4]=b01), HWDATA[31:16] is written from bits [31:16] in the Data 
Read/Write Register.

• For an unpacked 8-bit read to an address base of 0x1, (CSW[2:0]=b000, 
CSW[5:4]=b01), HRDATA[31:16] and HRDATA[7:0] are zeroed and 
HRDATA[15:8] contains read data.

• For a packed byte write at a base address 0x2, (CSW[2:0]=b000, CSW[5:4]=b10), 
four write transfers are initiated, the order of data being sent is:

— HWDATA[23:16], from DRW[23:16], to HADDR[31:0]=0x2 

— HWDATA[31:24], from DRW[31:24], to HADDR[31:0]=0x3
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— HWDATA[7:0], from DRW[7:0], to HADDR[31:0]=0x4

— HWDATA[15:8], from DRW[15:8], to HADDR[31:0]=0x5 

• For a packed halfword reading at a base address of 0x2, (CSW[2:0]=b001, 
CSW[5:4]=b10), two read transfers are initiated:

— HRDATA[31:16] is stored into DRW[31:16] from HADDR[31:0]=0x2

— HRDATA[15:0] is stored into DRW[15:0] from HADDR[31:0]=0x4

If the current transfer is aborted or the current transfer receives an ERROR response, the 
AHB-AP does not complete the following packed transfers.
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Chapter 10 
External and Memory Interfaces

This chapter describes the processor external and memory interfaces. It contains the 
following sections:

• About bus interfaces on page 10-2

• External interface on page 10-3

• Write buffer on page 10-4

• Memory attributes on page 10-5

• Memory interfaces on page 10-6.
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10.1 About bus interfaces

The processor contains two bus interfaces:

• external interface

• memory interfaces.

Note
 The processor contains an internal PPB for accesses to the Nested Vectored Interrupt 
Controller (NVIC), Data Watchpoint (DW) unit, and BreakPoint Unit (BPU).
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10.2 External interface

This is an AHB-Lite bus interface. See External AHB-Lite interface on page A-5 for 
descriptions of the AHB-lite bus signals.

Processor accesses and debug accesses to external AHB peripherals are implemented 
over this bus. Because processor AHB access to zero wait state slaves typically take two 
cycles longer than TCM accesses, instructions and data must be contained in TCM 
where possible. If on-chip FPGA memory is used for the processor, highest 
performance is possible if this is TCM memory, rather than SRAM mapped onto the 
AHB interface. 

Processor accesses and debug accesses share the external interface. Debug accesses take 
priority over processor accesses.

Timing of processor accesses might be changed by the presence of debug accesses. 
Giving highest priority to debug means that debug cannot be locked-out by a 
continuously executing stream of core instructions. Because debug accesses tend to be 
infrequent, debug accesses do not have a major impact on processor accesses.

Any vendor specific components can populate this bus.

If an external AHB peripheral incorrectly deadlocks the AHB bus, the debugger might 
not be able to halt or access the core registers. Contact your implementation team for 
FPGA probing tools to debug the system external to the core.

Unaligned accesses to this bus are not supported.
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10.3 Write buffer

To prevent bus wait cycles from stalling the processor during data stores, stores to the 
external interfaces go through a one-entry write buffer. If the write buffer is full, 
subsequent accesses to the bus stall until the write buffer has drained.

DMB and DSB instructions wait for the write buffer to drain before completing.
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10.4 Memory attributes

Table 10-1 shows encoding for HPROT[3:0].

Table 10-1 HPROT[3:0] encoding

HPROT[3] HPROT[2] HPROT[1] HPROT[0] Description

0 0 0 0 Invalid

0 0 0 1 Invalid

0 0 1 0 Instruction fetch

0 0 1 1 Data fetch

0 1 X X Invalid

1 X X X Invalid
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10.5 Memory interfaces

The processor has two memory interfaces:

• ITCM

• DTCM.

See Memory interfaces on page A-6 for descriptions of the ITCM and DTCM interface 
signals.

The processor does not support wait states for the memory interfaces.

Note
 This section describes the ITCM interface. This description also applies to the DTCM 
interface. 

Table 10-2 shows the ITCMBYTEWR value for different sizes of write accesses. 

Figure 10-1 shows the write signal timings for the ITCM interface.

Figure 10-1 ITCM write signal timings

Table 10-2 Byte-write size

ITCMBYTEWR value Size of write

 4'b1111 Word

 4'b0011 or 4'b1100 Halfword

 4'b0001, 4'b0010, 4'b0100 or 4'b1000 Byte
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For writes, the write address, write data, and control signals are driven on the same 
cycle. The write enable signals ensure individual bytes within a word are written 
without corrupting the other bytes in the same word. For example, if 
ITCMBYTEWR[1] is asserted, bits ITCMBYTEWR[15:8] are written in to byte 1 of 
the word at address ITCMADRR.

Figure 10-1 on page 10-6 shows the read signal timings for the ITCM interface.

Figure 10-2 ITCM read signal timings

Table 10-3 shows the TCM sizes that are defined through input pins. These sizes are 
factored into both the core and debug address decoders. 

Table 10-3 Instruction and Data TCM sizes

CFGITCMSZE or 
CFGDTCMSZE

TCM size

4'h0 0KB

4'h1 1KB

4'h2 2KB

4'h3 4KB

4'h4 8KB

4'h5 16KB

4'h6 32KB

4'h7 64KB

4'h8 128KB
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If you use other values than those that Table 10-3 on page 10-7 shows, the effects are 
Unpredictable.

4'h9 256KB

4'hA 512KB

4'hB 1MB

Table 10-3 Instruction and Data TCM sizes (continued)

CFGITCMSZE or 
CFGDTCMSZE

TCM size
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Appendix A 
Signal Descriptions

This appendix lists the processor interfaces and the interface signals. Full description of 
an interface or signal is given where the interfaces or signals differ from those described 
in the appropriate interface specification. It contains the following sections:

• Clocks and Resets on page A-2 

• Miscellaneous on page A-3

• Interrupt interface on page A-4

• External AHB-Lite interface on page A-5

• Memory interfaces on page A-6

• SWJ-DP Interface on page A-8.
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A.1 Clocks and Resets

Table A-1 lists the clock and reset signals. 

Table A-1 Reset signals

Name Direction Description

HCLK Input Main processor clock.

DBGRESETna Input Reset for debug logic.

SYSRESETn Input System reset. Resets processor and non-debug portion of NVIC. Debug components are 
not reset by SYSRESETn.

a. Only present if the processor is configured with debug.
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A.2 Miscellaneous

Table A-2 lists the miscellaneous signals. 

Table A-2 Miscellaneous signals

Name Direction Description

LOCKUP Output Indicates that the core is locked up.

HALTED Output Indicates halting debug mode. HALTED remains asserted while the core is in debug.

SYSRESETREQ Output Requests that the system reset controller resets the core. It is cleared on reset. Do not 
connect this line directly to the reset input, use a flop to hold the reset LOW for a cycle.

EDBGRQ Input External debug request.
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A.3 Interrupt interface

Table A-3 lists the signals of the external interrupt interface. 

Table A-3 Interrupt interface

Name Direction Description

IRQ[31:0] Input External interrupt signals

NMI Input Non-maskable interrupt
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A.4 External AHB-Lite interface

Table A-4 lists the signals of the external AHB-Lite interface.

Table A-4 External AHB-Lite interface

Name Direction Description

HADDR[31:0] Output For more information, see the AMBA 3 AHB-Lite Protocol Specification

HBURST[2:0] Output

HPROT[3:0] Output

HRDATA[31:0] Input

HREADY Input

HRESP Input

HSIZE[2:0] Output

HTRANS[1:0] Output

HWDATA[31:0] Output

HWRITE Output
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A.5 Memory interfaces

Table A-5 lists the signals of the ITCM interface. 

Table A-6 lists the signals of the DTCM interface. 

Table A-5 ITCM interface

Name Direction Description

ITCMEN Output Enable to memory. Either ITCMRD or ITCMWR is also set.

ITCMRD Output Read Enable to memory, set only if ITCMEN is set.

ITCMWR Output Write Enable, set if and only if ITCMBYTEWR is non zero, and only if 
ITCMEN is set.

ITCMBYTEWR[3:0] Output Write Enables for each byte, if any of these are set, ITCMWR is also set.

ITCMADDR[19:2] Output Address to read from or write to.

ITCMWDATA[31:0] Output Data to be written to ITCM. Only bytes that ITCMBYTEWR is set for are valid.

ITCMRDATA[31:0] Input Data read from the ITCMADDR. All reads are 32 bit.

CFGITCMSZ[3:0] Input Size encoded onto 4 bits. Tie off at synthesis time to optimize logic for speed, or 
wire to a static value at run time to permit more flexibility.

Table A-6 DTCM interface

Name Direction Description

DTCMEN Output Enable to memory. Either DTCMRD or DTCMWR is also set.

DTCMRD Output Read Enable to memory, set only if DTCMEN is set.

DTCMWR Output Write Enable, set if and only if DTCMBYTEWR is non zero, and only if 
DTCMEN is set.

DTCMBYTEWR[3:0] Output Write Enables for each byte. If any of these are set, DTCMWR is also set.

DTCMADDR[19:2] Output Address to read from or write to.

DTCMWDATA[31:0] Output Data to be written to DTCM. Only bytes that DTCMBYTEWR is set for are 
valid.

DTCMRDATA[31:0] Input Data read from the DTCMADDR. All reads are 32-bit.

CFGDTCMSZ[3:0] Input Size encoded onto 4 bits. Tie off at synthesis time to optimize logic for speed, or 
wire to a static value at run time to permit more flexibility.
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Table A-7 lists the signals of the Debug ITCM interface. 

Table A-8 lists the signals of the Debug DTCM interface. 

Table A-7 Debug ITCM interface

Name Direction Description

DBGITCMEN Output Enable to memory. Either DBGITCMRD or DBGITCMWR is also set.

DBGITCMRD Output Read Enable to memory, set only if DBGITCMEN is set.

DBGITCMWR Output Write Enable, set if and only if DBGITCMBYTEWR is non zero, and only 
if DBGITCMEN is set.

DBGITCMBYTEWR[3:0] Output Write Enables for each byte, if any of these are set, DBGITCMWR is also 
set.

DBGITCMADDR[19:2] Output Address to read from or write to.

DBGITCMWDATA[31:0] Output Data to be written to ITCM. Only bytes that DBGITCMBYTEWR is set 
for are valid.

DBGITCMRDATA[31:0] Input Data read from the DBGITCMADDR. All reads are 32 bit.

Table A-8 Debug DTCM interface

Name Direction Description

DBGDTCMEN Output Enable to memory. Either DBGDTCMRD or DBGDTCMWR is also set.

DBGDTCMRD Output Read Enable to memory, set only if DBGDTCMEN is set.

DBGDTCMWR Output Write Enable, set if and only if DBGDTCMBYTEWR is non zero, and 
only if DBGDTCMEN is set.

DBGDTCMBYTEWR[3:0] Output Write Enables for each byte. If any of these are set, DBGDTCMWR is 
also set.

DBGDTCMADDR[19:2] Output Address to read from or write to.

DBGDTCMWDATA[31:0] Output Data to be written to DTCM. Only bytes that DBGDTCMBYTEWR is set 
for are valid.

DBGDTCMRDATA[31:0] Input Data read from the DBGDTCMADDR. All reads are 32-bit.
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A.6 SWJ-DP Interface

Table A-6 lists the signals of the SWJ-DP Interface.

Table A-9 SWJ-DP Interface

Name Direction Description

SWDO Output Serial wire data out

SWDOEN Output Serial wire output enable

TDO Output Test data out

nTDOEN Output Test data out enable is unused unless you are using a SWO blocka

JTAGNSW Output JTAGNSW identifies whether the SWJ block is in SW or JTAG modea:

1 = JTAG mode

0 = SW mode

JTAGTOP Output JTAG status outputa

nTRST Input JTAG TAP reset

SWCLKTCK Input Serial wire or JTAG clock

SWDITMS Input Serial wire debug data in or JTAG test mode select

TDI Input JTAG TAP Data In or alternative input function

a.  See the ARM CoreSight Components Technical Reference Manual for more information.
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Glossary

This glossary describes some of the terms used in technical documents from ARM 
Limited.

Abort A mechanism that indicates to a core that the attempted memory access is invalid or not 
allowed or that the data returned by the memory access is invalid. An abort can be 
caused by the external or internal memory system as a result of attempting to access 
invalid or protected instruction or data memory.

See also Data Abort, External Abort and Prefetch Abort.

Addressing modes Various mechanisms, shared by many different instructions, for generating values used 
by the instructions.

Advanced High-performance Bus (AHB)
A bus protocol with a fixed pipeline between address/control and data phases. It only 
supports a subset of the functionality provided by the AMBA AXI protocol. The full 
AMBA AHB protocol specification includes a number of features that are not 
commonly required for master and slave IP developments and ARM Limited 
recommends only a subset of the protocol is usually used. This subset is defined as the 
AMBA AHB-Lite protocol.

See also Advanced Microcontroller Bus Architecture and AHB-Lite.
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Advanced Microcontroller Bus Architecture (AMBA)
A family of protocol specifications that describe a strategy for the interconnect. AMBA 
is the ARM open standard for on-chip buses. It is an on-chip bus specification that 
details a strategy for the interconnection and management of functional blocks that 
make up a System-on-Chip (SoC). It aids in the development of embedded processors 
with one or more CPUs or signal processors and multiple peripherals. AMBA 
complements a reusable design methodology by defining a common backbone for SoC 
modules.

Advanced Peripheral Bus (APB)
A simpler bus protocol than AXI and AHB. It is designed for use with ancillary or 
general-purpose peripherals such as timers, interrupt controllers, UARTs, and I/O ports. 
Connection to the main system bus is through a system-to-peripheral bus bridge that 
helps to reduce system power consumption.

AHB See Advanced High-performance Bus.

AHB Access Port (AHB-AP)
An optional component of the DAP that provides an AHB interface to a SoC.

AHB-AP See AHB Access Port.

AHB-Lite A subset of the full AMBA AHB protocol specification. It provides all of the basic 
functions required by the majority of AMBA AHB slave and master designs, 
particularly when used with a multi-layer AMBA interconnect. In most cases, the extra 
facilities provided by a full AMBA AHB interface are implemented more efficiently by 
using an AMBA AXI protocol interface.

Aligned A data item stored at an address that is divisible by the number of bytes that defines the 
data size is said to be aligned. Aligned words and halfwords have addresses that are 
divisible by four and two respectively. The terms word-aligned and halfword-aligned 
therefore stipulate addresses that are divisible by four and two respectively.

AMBA See Advanced Microcontroller Bus Architecture.

APB See Advanced Peripheral Bus.

Architecture The organization of hardware and/or software that characterizes a processor and its 
attached components, and enables devices with similar characteristics to be grouped 
together when describing their behavior, for example, Harvard architecture, instruction 
set architecture, ARMv6-M architecture.

ARM instruction An instruction of the ARM Instruction Set Architecture (ISA). These cannot be 
executed by the processor.

ARM state The processor state in which the processor executes the instructions of the ARM ISA. 
The processor only operates in Thumb state, never in ARM state.
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Base register A register specified by a load or store instruction that is used to hold the base value for 
the instruction’s address calculation. Depending on the instruction and its addressing 
mode, an offset can be added to or subtracted from the base register value to form the 
address that is sent to memory.

Base register write-back
Updating the contents of the base register used in an instruction target address 
calculation so that the modified address is changed to the next higher or lower 
sequential address in memory. This means that it is not necessary to fetch the target 
address for successive instruction transfers and enables faster burst accesses to 
sequential memory. 

Beat Alternative word for an individual data transfer within a burst. For example, an INCR4 
burst comprises four beats.

BE-8 Big-endian view of memory in a byte-invariant system.

See also LE, Byte-invariant and Word-invariant.

Big-endian Byte ordering scheme in which bytes of decreasing significance in a data word are 
stored at increasing addresses in memory.

See also Little-endian and Endianness.

Big-endian memory Memory in which:

• a byte or halfword at a word-aligned address is the most significant byte or 
halfword within the word at that address

• a byte at a halfword-aligned address is the most significant byte within the 
halfword at that address.

See also Little-endian memory.

Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which 
program execution is to be halted. Breakpoints are inserted by the programmer to enable 
inspection of register contents, memory locations, variable values at fixed points in the 
program execution to test that the program is operating correctly. Breakpoints can be 
removed after the program is successfully tested. 

See also Watchpoint.
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Burst A group of transfers to consecutive addresses. Because the addresses are consecutive, 
there is no requirement to supply an address for any of the transfers after the first one. 
This increases the speed at which the group of transfers can occur. Bursts over AMBA 
are controlled using signals to indicate the length of the burst and how the addresses are 
incremented.

See also Beat.

Byte An 8-bit data item.

Byte-invariant In a byte-invariant system, the address of each byte of memory remains unchanged 
when switching between little-endian and big-endian operation. When a data item 
larger than a byte is loaded from or stored to memory, the bytes making up that data item 
are arranged into the correct order depending on the endianness of the memory access. 
The ARM architecture supports byte-invariant systems in ARMv6 and later versions.

See also Word-invariant.

Cold reset Also known as power-on reset.

See also Warm reset.

Context The environment that each process operates in for a multitasking operating system.

Core A core is that part of a processor that contains the ALU, the datapath, the 
general-purpose registers, the Program Counter, and the instruction decode and control 
circuitry.

Core reset See Warm reset.

Data Abort An indication from a memory system to the core of an attempt to access an illegal data 
memory location. An exception must be taken if the processor attempts to use the data 
that caused the abort. 

See also Abort.

Debug Access Port (DAP)
A TAP block that acts as an AMBA, AHB or AHB-Lite, master for access to a system 
bus. The DAP is the term used to encompass a set of modular blocks that support system 
wide debug. The DAP is a modular component, intended to be extendable to support 
optional access to multiple systems such as memory mapped AHB and APB through a 
single debug interface.

Debugger A debugging system that includes a program, used to detect, locate, and correct software 
faults, together with custom hardware that supports software debugging.
Glossary-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413C



Glossary 
Endianness Byte ordering. The scheme that determines the order that successive bytes of a data 
word are stored in memory. An aspect of the system’s memory mapping.

See also Little-endian and Big-endian

Exception An error or event which can cause the processor to suspend the currently executing 
instruction stream and execute a specific exception handler or interrupt service routine. 
The exception could be an external interrupt or NMI, or it could be a fault or error event 
that is considered serious enough to require that program execution is interrupted. 
Examples include attempting to perform an invalid memory access, external interrupts, 
and undefined instructions. When an exception occurs, normal program flow is 
interrupted and execution is resumed at the corresponding exception vector. This 
contains the first instruction of the interrupt service routine to deal with the exception.

Exception handler
See Interrupt service routine.

Exception vector See Interrupt vector.

Halfword A 16-bit data item.

Halt mode One of two mutually exclusive debug modes. In halt mode all processor execution halts 
when a breakpoint or watchpoint is encountered. All processor state, coprocessor state, 
memory and input/output locations can be examined and altered by the JTAG interface. 

See also Monitor debug-mode.

Host A computer that provides data and other services to another computer. Especially, a 
computer providing debugging services to a target being debugged.

Implementation-defined
The behavior is not architecturally defined, but is defined and documented by individual 
implementations.

Internal PPB See Private Peripheral Bus.

Interrupt service 
routine

A program that control of the processor is passed to when an interrupt occurs. 

Interrupt vector One of a number of fixed addresses in low memory that contains the first instruction of 
the corresponding interrupt service routine.

Joint Test Action Group (JTAG)
The name of the organization that developed standard IEEE 1149.1. This standard 
defines a boundary-scan architecture used for in-circuit testing of integrated circuit 
devices. It is commonly known by the initials JTAG.

JTAG See Joint Test Action Group.
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JTAG Debug Port (JTAG-DP)
An optional external interface for the DAP that provides a standard JTAG interface for 
debug access.

JTAG-DP See JTAG Debug Port.

LE Little endian view of memory in both byte-invariant and word-invariant systems. See 
also Byte-invariant, Word-invariant.

Little-endian Byte ordering scheme in which bytes of increasing significance in a data word are stored 
at increasing addresses in memory.

See also Big-endian and Endianness.

Little-endian memory
Memory in which:

• a byte or halfword at a word-aligned address is the least significant byte or 
halfword within the word at that address

• a byte at a halfword-aligned address is the least significant byte within the 
halfword at that address.

See also Big-endian memory.

Load/store architecture
A processor architecture where data-processing operations only operate on register 
contents, not directly on memory contents.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system 
comprises several macrocells (such as a processor, an ETM, and a memory block) plus 
application-specific logic.

Monitor debug-mode
One of two mutually exclusive debug modes. In Monitor debug-mode the processor 
enables a software abort handler provided by the debug monitor or operating system 
debug task. When a breakpoint or watchpoint is encountered, this enables vital system 
interrupts to continue to be serviced while normal program execution is suspended. 

See also Halt mode.

Multi-layer An interconnect scheme similar to a cross-bar switch. Each master on the interconnect 
has a direct link to each slave, The link is not shared with other masters. This enables 
each master to process transfers in parallel with other masters. Contention only occurs 
in a multi-layer interconnect at a payload destination, typically the slave.

Power-on reset See Cold reset.

PPB See Private Peripheral Bus.
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Prefetching In pipelined processors, the process of fetching instructions from memory to fill up the 
pipeline before the preceding instructions have finished executing. Prefetching an 
instruction does not mean that the instruction has to be executed.

Prefetch Abort An indication from a memory system to the core that an instruction has been fetched 
from an illegal memory location. An exception must be taken if the processor attempts 
to execute the instruction. A Prefetch Abort can be caused by the external or internal 
memory system as a result of attempting to access invalid instruction memory. 

See also Data Abort, Abort.

Private Peripheral Bus
Memory space at 0xE0000000 to 0xE00FFFFF.

Processor A processor is the circuitry in a computer system required to process data using the 
computer instructions. It is an abbreviation of microprocessor. A clock source, power 
supplies, and main memory are also required to create a minimum complete working 
computer system. 

RealView ICE A system for debugging embedded processor cores using a JTAG interface.

Reserved A field in a control register or instruction format is reserved if the field is to be defined 
by the implementation, or produces Unpredictable results if the contents of the field are 
not zero. These fields are reserved for use in future extensions of the architecture or are 
implementation-specific. All reserved bits not used by the implementation must be 
written as 0 and read as 0.

SBO See Should Be One.

SBZ See Should Be Zero.

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan 
technology using a standard JTAG TAP interface. Each device contains at least one TAP 
controller containing shift registers that form the chain connected between TDI and 
TDO, through which test data is shifted. Processors can contain several shift registers 
to enable you to access selected parts of the device.

Should Be One (SBO)
Should be written as 1 (or all 1s for bit fields) by software. Writing a 0 produces 
Unpredictable results.

Should Be Zero (SBZ)
Should be written as 0 (or all 0s for bit fields) by software. Writing a 1 produces 
Unpredictable results.

Serial-Wire JTAG 
Debug Port

A standard debug port that combines JTAG-DP and SW-DP.

SWJ-DP See Serial-Wire JTAG Debug Port.
ARM DDI0413C Copyright © 2006-2008 ARM Limited. All rights reserved. Glossary-7



Glossary 
System memory 
map

Address space at 0x00000000 to 0xFFFFFFFF.

TAP See  Test access port.

Test Access Port (TAP)
The collection of four mandatory and one optional terminals that form the input/output 
and control interface to a JTAG boundary-scan architecture. The mandatory terminals 
are TDI, TDO, TMS, and TCK. The optional terminal is nTRST. This signal is 
mandatory in ARM cores because it is used to reset the debug logic.

Thread Control Block (TCB)
A data structure used by an operating system kernel to maintain information specific to 
a single thread of execution.

Thumb instruction A halfword that specifies an operation for an ARM processor in Thumb state to 
perform. Thumb instructions must be halfword-aligned.

Thumb state A processor that is executing Thumb (16-bit) halfword aligned instructions is operating 
in Thumb state.

Unaligned A data item stored at an address that is not divisible by the number of bytes that defines 
the data size is said to be unaligned. For example, a word stored at an address that is not 
divisible by four.

Unpredictable For reads, the data returned when reading from this location is unpredictable. It can have 
any value. For writes, writing to this location causes unpredictable behavior, or an 
unpredictable change in device configuration. Unpredictable instructions must not halt 
or hang the processor, or any part of the system.

Warm reset Also known as a core reset. Initializes the majority of the processor excluding the debug 
controller and debug logic. This type of reset is useful if you are using the debugging 
features of a processor.

Watchpoint A watchpoint is a mechanism provided by debuggers to halt program execution when 
the data contained by a particular memory address is changed. Watchpoints are inserted 
by the programmer to enable inspection of register contents, memory locations, and 
variable values when memory is written to test that the program is operating correctly. 
Watchpoints are removed after the program is successfully tested. See also Breakpoint.

Word A 32-bit data item.

Word-invariant In a word-invariant system, the address of each byte of memory changes when 
switching between little-endian and big-endian operation, in such a way that the byte 
with address A in one endianness has address A EOR 3 in the other endianness. As a 
result, each aligned word of memory always consists of the same four bytes of memory 
in the same order, regardless of endianness. The change of endianness occurs because 
of the change to the byte addresses, not because the bytes are rearranged.The ARM 
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architecture supports word-invariant systems in ARMv3 and later versions. When 
word-invariant support is selected, the behavior of load or store instructions that are 
given unaligned addresses is instruction-specific, and is in general not the expected 
behavior for an unaligned access. It is recommended that word-invariant systems use 
the endianness that produces the desired byte addresses at all times, apart possibly from 
very early in their reset handlers before they have set up the endianness, and that this 
early part of the reset handler must use only aligned word memory accesses. 

See also Byte-invariant.

Write buffer A pipeline stage for buffering write data to prevent bus stalls from stalling the processor. 
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