
February 2009 Rev 8 1/682

RM0008
Reference manual

Low-, medium- and high-density STM32F101xx, STM32F102xx
and STM32F103xx advanced ARM-based 32-bit MCUs

Introduction
This reference manual targets application developers. It provides complete information on
how to use the low-, medium- and high-density STM32F101xx, STM32F102xx and
STM32F103xx microcontroller memory and peripherals. The low-, medium- and high-
density STM32F101xx, STM32F102xx and STM32F103xx will be referred to as
STM32F10xxx throughout the document, unless otherwise specified.

The STM32F10xxx is a family of microcontrollers with different memory sizes, packages and
peripherals.

For ordering information, mechanical and electrical device characteristics please refer to the
low-, medium- and high-density STM32F101xx and STM32F103xx datasheets and to the
low- and medium-density STM32F102xx datasheets.

For information on programming, erasing and protection of the internal Flash memory
please refer to the STM32F10xxx Flash programming manual.

For information on the ARM Cortex™-M3 core, please refer to the Cortex™-M3 Technical
Reference Manual.

Related documents
Available from www.arm.com:

■ Cortex™-M3 Technical Reference Manual, available from:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf

Available from www.st.com:

■ STM32F101xx STM32F103xx datasheets

■ STM32F10xxx Flash programming manual

www.st.com

http://www.st.com

Contents RM0008

2/682

Contents

1 Documentation conventions . 32

1.1 List of abbreviations for registers . 32

1.2 Glossary . 32

1.3 Peripheral availability . 32

2 Memory and bus architecture . 33

2.1 System architecture . 33

2.2 Memory organization . 34

2.3 Memory map . 35

2.3.1 Embedded SRAM . 36

2.3.2 Bit banding . 36

2.3.3 Embedded Flash memory . 37

2.4 Boot configuration . 41

3 CRC calculation unit . 42

3.1 CRC introduction . 42

3.2 CRC main features . 42

3.3 CRC functional description . 43

3.4 CRC registers . 43

3.4.1 Data register (CRC_DR) . 43

3.4.2 Independent data register (CRC_IDR) . 44

3.4.3 Control register (CRC_CR) . 44

3.4.4 CRC register map . 44

4 Power control (PWR) . 45

4.1 Power supplies . 45

4.1.1 Independent A/D converter supply and reference voltage 46

4.1.2 Battery backup domain . 46

4.1.3 Voltage regulator . 47

4.2 Power supply supervisor . 47

4.2.1 Power on reset (POR)/power down reset (PDR) 47

4.2.2 Programmable voltage detector (PVD) . 48

4.3 Low-power modes . 49

RM0008 Contents

 3/682

4.3.1 Slowing down system clocks . 49

4.3.2 Peripheral clock gating . 50

4.3.3 Sleep mode . 50

4.3.4 Stop mode . 51

4.3.5 Standby mode . 52

4.3.6 Auto-wakeup (AWU) from low-power mode . 54

4.4 Power control registers . 54

4.4.1 Power control register (PWR_CR) . 54

4.4.2 Power control/status register (PWR_CSR) . 56

4.4.3 PWR register map . 57

5 Backup registers (BKP) . 58

5.1 BKP introduction . 58

5.2 BKP main features . 58

5.3 BKP functional description . 59

5.3.1 Tamper detection . 59

5.3.2 RTC calibration . 59

5.4 BKP registers . 60

5.4.1 Backup data register x (BKP_DRx) (x = 1 ..42) 60

5.4.2 RTC clock calibration register (BKP_RTCCR) . 60

5.4.3 Backup control register (BKP_CR) . 61

5.4.4 Backup control/status register (BKP_CSR) . 62

5.4.5 BKP register map . 63

6 Reset and clock control (RCC) . 66

6.1 Reset . 66

6.1.1 System reset . 66

6.1.2 Power reset . 67

6.1.3 Backup domain reset . 67

6.2 Clocks . 67

6.2.1 HSE clock . 69

6.2.2 HSI clock . 70

6.2.3 PLL . 70

6.2.4 LSE clock . 71

6.2.5 LSI clock . 71

6.2.6 System clock (SYSCLK) selection . 72

Contents RM0008

4/682

6.2.7 Clock security system (CSS) . 72

6.2.8 RTC clock . 72

6.2.9 Watchdog clock . 73

6.2.10 Clock-out capability . 73

6.3 RCC registers . 74

6.3.1 Clock control register (RCC_CR) . 74

6.3.2 Clock configuration register (RCC_CFGR) . 75

6.3.3 Clock interrupt register (RCC_CIR) . 78

6.3.4 APB2 peripheral reset register (RCC_APB2RSTR) 80

6.3.5 APB1 peripheral reset register (RCC_APB1RSTR) 82

6.3.6 AHB peripheral clock enable register (RCC_AHBENR) 84

6.3.7 APB2 peripheral clock enable register (RCC_APB2ENR) 86

6.3.8 APB1 peripheral clock enable register (RCC_APB1ENR) 88

6.3.9 Backup domain control register (RCC_BDCR) 90

6.3.10 Control/status register (RCC_CSR) . 92

6.3.11 RCC register map . 93

7 General-purpose and alternate-function I/Os (GPIOs and AFIOs) . . . 95

7.1 GPIO functional description . 95

7.1.1 General-purpose I/O (GPIO) . 97

7.1.2 Atomic bit set or reset . 97

7.1.3 External interrupt/wakeup lines . 98

7.1.4 Alternate functions (AF) . 98

7.1.5 Software remapping of I/O alternate functions 98

7.1.6 GPIO locking mechanism . 98

7.1.7 Input configuration . 99

7.1.8 Output configuration . 99

7.1.9 Alternate function configuration . 100

7.1.10 Analog input configuration . 101

7.2 GPIO registers . 102

7.2.1 Port configuration register low (GPIOx_CRL) (x=A..G) 102

7.2.2 Port configuration register high (GPIOx_CRH) (x=A..G) 103

7.2.3 Port input data register (GPIOx_IDR) (x=A..G) 103

7.2.4 Port output data register (GPIOx_ODR) (x=A..G) 104

7.2.5 Port bit set/reset register (GPIOx_BSRR) (x=A..G) 104

7.2.6 Port bit reset register (GPIOx_BRR) (x=A..G) 105

7.2.7 Port configuration lock register (GPIOx_LCKR) (x=A..G) 105

RM0008 Contents

 5/682

7.3 Alternate function I/O and debug configuration (AFIO) 107

7.3.1 Using OSC32_IN/OSC32_OUT pins as GPIO ports PC14/PC15 107

7.3.2 Using OSC_IN/OSC_OUT pins as GPIO ports PD0/PD1 107

7.3.3 CAN alternate function remapping . 107

7.3.4 JTAG/SWD alternate function remapping . 107

7.3.5 ADC alternate function remapping . 109

7.3.6 Timer alternate function remapping . 109

7.3.7 USART Alternate function remapping . 111

7.3.8 I2C 1 alternate function remapping . 112

7.3.9 SPI 1 alternate function remapping . 112

7.4 AFIO registers . 112

7.4.1 Event control register (AFIO_EVCR) . 112

7.4.2 AF remap and debug I/O configuration register (AFIO_MAPR) 113

7.4.3 External interrupt configuration register 1 (AFIO_EXTICR1) 116

7.4.4 External interrupt configuration register 2 (AFIO_EXTICR2) 116

7.4.5 External interrupt configuration register 3 (AFIO_EXTICR3) 117

7.4.6 External interrupt configuration register 4 (AFIO_EXTICR4) 117

7.5 GPIO and AFIO register maps . 117

8 Interrupts and events . 119

8.1 Nested vectored interrupt controller (NVIC) . 119

8.1.1 SysTick calibration value register . 119

8.1.2 Interrupt and exception vectors . 119

8.2 External interrupt/event controller (EXTI) . 122

8.2.1 Main features . 122

8.2.2 Block diagram . 122

8.2.3 Wakeup event management . 123

8.2.4 Functional description . 123

8.2.5 External interrupt/event line mapping . 124

8.3 EXTI registers . 126

8.3.1 Interrupt mask register (EXTI_IMR) . 126

8.3.2 Event mask register (EXTI_EMR) . 126

8.3.3 Rising trigger selection register (EXTI_RTSR) 127

8.3.4 Falling trigger selection register (EXTI_FTSR) 127

8.3.5 Software interrupt event register (EXTI_SWIER) 128

8.3.6 Pending register (EXTI_PR) . 128

Contents RM0008

6/682

8.3.7 EXTI register map . 129

9 DMA controller (DMA) . 130

9.1 DMA introduction . 130

9.2 DMA main features . 130

9.3 DMA functional description . 131

9.3.1 DMA transactions . 131

9.3.2 Arbiter . 132

9.3.3 DMA channels . 132

9.3.4 Programmable data width, data alignment and endians 133

9.3.5 Error management . 135

9.3.6 Interrupts . 135

9.3.7 DMA request mapping . 135

9.4 DMA registers . 139

9.4.1 DMA interrupt status register (DMA_ISR) . 139

9.4.2 DMA interrupt flag clear register (DMA_IFCR) 140

9.4.3 DMA channel x configuration register (DMA_CCRx) (x = 1 ..7) 141

9.4.4 DMA channel x number of data register (DMA_CNDTRx) (x = 1 ..7) . 142

9.4.5 DMA channel x peripheral address register (DMA_CPARx) (x = 1 ..7) 143

9.4.6 DMA channel x memory address register (DMA_CMARx) (x = 1 ..7) . 143

9.4.7 DMA register map . 143

10 Analog-to-digital converter (ADC) . 146

10.1 ADC introduction . 146

10.2 ADC main features . 146

10.3 ADC functional description . 147

10.3.1 ADC on-off control . 148

10.3.2 ADC clock . 148

10.3.3 Channel selection . 148

10.3.4 Single conversion mode . 149

10.3.5 Continuous conversion mode . 149

10.3.6 Timing diagram . 149

10.3.7 Analog watchdog . 150

10.3.8 Scan mode . 151

10.3.9 Injected channel management . 151

10.3.10 Discontinuous mode . 152

RM0008 Contents

 7/682

10.4 Calibration . 153

10.5 Data alignment . 153

10.6 Channel-by-channel programmable sample time 154

10.7 Conversion on external trigger . 154

10.8 DMA request . 156

10.9 Dual ADC mode . 157

10.9.1 Injected simultaneous mode . 159

10.9.2 Regular simultaneous mode . 159

10.9.3 Fast interleaved mode . 160

10.9.4 Slow interleaved mode . 160

10.9.5 Alternate trigger mode . 161

10.9.6 Independent mode . 162

10.9.7 Combined regular/injected simultaneous mode 162

10.9.8 Combined regular simultaneous + alternate trigger mode 162

10.9.9 Combined injected simultaneous + interleaved 163

10.10 Temperature sensor . 164

10.11 ADC interrupts . 165

10.12 ADC registers . 166

10.12.1 ADC status register (ADC_SR) . 166

10.12.2 ADC control register 1 (ADC_CR1) . 167

10.12.3 ADC control register 2 (ADC_CR2) . 169

10.12.4 ADC sample time register 1 (ADC_SMPR1) . 172

10.12.5 ADC sample time register 2 (ADC_SMPR2) . 173

10.12.6 ADC injected channel data offset register x (ADC_JOFRx)(x=1..4) . . 173

10.12.7 ADC watchdog high threshold register (ADC_HTR) 174

10.12.8 ADC watchdog low threshold register (ADC_LTR) 174

10.12.9 ADC regular sequence register 1 (ADC_SQR1) 174

10.12.10 ADC regular sequence register 2 (ADC_SQR2) 175

10.12.11 ADC regular sequence register 3 (ADC_SQR3) 176

10.12.12 ADC injected sequence register (ADC_JSQR) 176

10.12.13 ADC injected data register x (ADC_JDRx) (x= 1..4) 177

10.12.14 ADC regular data register (ADC_DR) . 177

10.12.15 ADC register map . 178

11 Digital-to-analog converter (DAC) . 180

11.1 DAC introduction . 180

Contents RM0008

8/682

11.2 DAC main features . 180

11.3 DAC functional description . 182

11.3.1 DAC channel enable . 182

11.3.2 DAC output buffer enable . 182

11.3.3 DAC data format . 182

11.3.4 DAC conversion . 183

11.3.5 DAC output voltage . 184

11.3.6 DAC trigger selection . 184

11.3.7 DMA request . 185

11.3.8 Noise generation . 185

11.3.9 Triangle-wave generation . 186

11.4 Dual DAC channel conversion . 187

11.4.1 Independent trigger without wave generation 187

11.4.2 Independent trigger with same LFSR generation 188

11.4.3 Independent trigger with different LFSR generation 188

11.4.4 Independent trigger with same triangle generation 188

11.4.5 Independent trigger with different triangle generation 189

11.4.6 Simultaneous software start . 189

11.4.7 Simultaneous trigger without wave generation 189

11.4.8 Simultaneous trigger with same LFSR generation 190

11.4.9 Simultaneous trigger with different LFSR generation 190

11.4.10 Simultaneous trigger with same triangle generation 190

11.4.11 Simultaneous trigger with different triangle generation 191

11.5 DAC registers . 191

11.5.1 DAC control register (DAC_CR) . 191

11.5.2 DAC software trigger register (DAC_SWTRIGR) 194

11.5.3 DAC channel1 12-bit right-aligned data holding register
(DAC_DHR12R1) . 195

11.5.4 DAC channel1 12-bit left aligned data holding register
(DAC_DHR12L1) . 195

11.5.5 DAC channel1 8-bit right aligned data holding register
(DAC_DHR8R1) . 195

11.5.6 DAC channel2 12-bit right aligned data holding register
(DAC_DHR12R2) . 196

11.5.7 DAC channel2 12-bit left aligned data holding register
(DAC_DHR12L2) . 196

11.5.8 DAC channel2 8-bit right-aligned data holding register
(DAC_DHR8R2) . 197

RM0008 Contents

 9/682

11.5.9 Dual DAC 12-bit right-aligned data holding register
(DAC_DHR12RD) . 197

11.5.10 DUAL DAC 12-bit left aligned data holding register
(DAC_DHR12LD) . 198

11.5.11 DUAL DAC 8-bit right aligned data holding register
(DAC_DHR8RD) . 198

11.5.12 DAC channel1 data output register (DAC_DOR1) 199

11.5.13 DAC channel2 data output register (DAC_DOR2) 199

11.5.14 DAC register map . 200

12 Advanced-control timers (TIM1&TIM8) . 201

12.1 TIM1&TIM8 introduction . 201

12.2 TIM1&TIM8 main features . 201

12.3 TIM1&TIM8 functional description . 204

12.3.1 Time-base unit . 204

12.3.2 Counter modes . 205

12.3.3 Repetition counter . 213

12.3.4 Clock selection . 215

12.3.5 Capture/compare channels . 217

12.3.6 Input capture mode . 219

12.3.7 PWM input mode . 220

12.3.8 Forced output mode . 221

12.3.9 Output compare mode . 222

12.3.10 PWM mode . 223

12.3.11 Complementary outputs and dead-time insertion 226

12.3.12 Using the break function . 227

12.3.13 Clearing the OCxREF signal on an external event 230

12.3.14 6-step PWM generation . 231

12.3.15 One-pulse mode . 232

12.3.16 Encoder interface mode . 233

12.3.17 Timer input XOR function . 236

12.3.18 Interfacing with Hall sensors . 236

12.3.19 TIMx and external trigger synchronization . 238

12.3.20 Timer synchronization . 241

12.3.21 Debug mode . 241

12.4 TIM1&TIM8 registers . 242

12.4.1 Control register 1 (TIMx_CR1) . 242

12.4.2 Control register 2 (TIMx_CR2) . 243

Contents RM0008

10/682

12.4.3 Slave mode control register (TIMx_SMCR) . 245

12.4.4 DMA/Interrupt enable register (TIMx_DIER) . 247

12.4.5 Status register (TIMx_SR) . 249

12.4.6 Event generation register (TIMx_EGR) . 250

12.4.7 Capture/compare mode register 1 (TIMx_CCMR1) 252

12.4.8 Capture/compare mode register 2 (TIMx_CCMR2) 255

12.4.9 Capture/compare enable register (TIMx_CCER) 256

12.4.10 Counter (TIMx_CNT) . 259

12.4.11 Prescaler (TIMx_PSC) . 259

12.4.12 Auto-reload register (TIMx_ARR) . 259

12.4.13 Repetition counter register (TIMx_RCR) . 260

12.4.14 Capture/compare register 1 (TIMx_CCR1) . 260

12.4.15 Capture/compare register 2 (TIMx_CCR2) . 261

12.4.16 Capture/compare register 3 (TIMx_CCR3) . 261

12.4.17 Capture/compare register 4 (TIMx_CCR4) . 262

12.4.18 Break and dead-time register (TIMx_BDTR) . 262

12.4.19 DMA control register (TIMx_DCR) . 264

12.4.20 DMA address for full transfer (TIMx_DMAR) . 266

12.4.21 TIM1&TIM8 register map . 266

13 General-purpose timer (TIMx) . 268

13.1 TIMx introduction . 268

13.2 TIMx main features . 269

13.3 TIMx functional description . 270

13.3.1 Time-base unit . 270

13.3.2 Counter modes . 272

13.3.3 Clock selection . 280

13.3.4 Capture/compare channels . 283

13.3.5 Input capture mode . 285

13.3.6 PWM input mode . 286

13.3.7 Forced output mode . 286

13.3.8 Output compare mode . 287

13.3.9 PWM mode . 288

13.3.10 One pulse mode . 291

13.3.11 Clearing the OCxREF signal on an external event 292

13.3.12 Encoder interface mode . 293

13.3.13 Timer input XOR function . 295

RM0008 Contents

 11/682

13.3.14 Timers and external trigger synchronization . 295

13.3.15 Timer synchronization . 298

13.3.16 Debug mode . 303

13.4 TIMx registers . 304

13.4.1 Control register 1 (TIMx_CR1) . 304

13.4.2 Control register 2 (TIMx_CR2) . 305

13.4.3 Slave mode control register (TIMx_SMCR) . 306

13.4.4 DMA/Interrupt enable register (TIMx_DIER) . 309

13.4.5 Status register (TIMx_SR) . 310

13.4.6 Event generation register (TIMx_EGR) . 311

13.4.7 Capture/compare mode register 1 (TIMx_CCMR1) 312

13.4.8 Capture/compare mode register 2 (TIMx_CCMR2) 316

13.4.9 Capture/compare enable register (TIMx_CCER) 317

13.4.10 Counter (TIMx_CNT) . 318

13.4.11 Prescaler (TIMx_PSC) . 318

13.4.12 Auto-reload register (TIMx_ARR) . 319

13.4.13 Capture/compare register 1 (TIMx_CCR1) . 319

13.4.14 Capture/compare register 2 (TIMx_CCR2) . 320

13.4.15 Capture/compare register 3 (TIMx_CCR3) . 320

13.4.16 Capture/compare register 4 (TIMx_CCR4) . 321

13.4.17 DMA control register (TIMx_DCR) . 321

13.4.18 DMA address for full transfer (TIMx_DMAR) . 322

13.4.19 TIMx register map . 322

14 Basic timer (TIM6&7) . 324

14.1 TIM6&7 introduction . 324

14.2 TIM6&TIM7 main features . 324

14.3 TIM6&TIM7 functional description . 325

14.3.1 Time-base unit . 325

14.3.2 Counting mode . 327

14.3.3 Clock source . 329

14.3.4 Debug mode . 330

14.4 TIM6&TIM7 registers . 330

14.4.1 Control register 1 (TIMx_CR1) . 330

14.4.2 Control register 2 (TIMx_CR2) . 332

14.4.3 DMA/Interrupt enable register (TIMx_DIER) . 332

14.4.4 Status register (TIMx_SR) . 333

Contents RM0008

12/682

14.4.5 Event generation register (TIMx_EGR) . 333

14.4.6 Counter (TIMx_CNT) . 334

14.4.7 Prescaler (TIMx_PSC) . 334

14.4.8 Auto-reload register (TIMx_ARR) . 334

14.4.9 TIM6&7 register map . 335

15 Real-time clock (RTC) . 336

15.1 RTC introduction . 336

15.2 RTC main features . 337

15.3 RTC functional description . 337

15.3.1 Overview . 337

15.3.2 Resetting RTC registers . 339

15.3.3 Reading RTC registers . 339

15.3.4 Configuring RTC registers . 339

15.3.5 RTC flag assertion . 340

15.4 RTC registers . 341

15.4.1 RTC control register high (RTC_CRH) . 341

15.4.2 RTC control register low (RTC_CRL) . 342

15.4.3 RTC prescaler load register (RTC_PRLH / RTC_PRLL) 343

15.4.4 RTC prescaler divider register (RTC_DIVH / RTC_DIVL) 344

15.4.5 RTC counter register (RTC_CNTH / RTC_CNTL) 345

15.4.6 RTC alarm register high (RTC_ALRH / RTC_ALRL) 346

15.4.7 RTC register map . 347

16 Independent watchdog (IWDG) . 348

16.1 IWDG introduction . 348

16.2 IWDG main features . 348

16.3 IWDG functional description . 348

16.3.1 Hardware watchdog . 349

16.3.2 Register access protection . 349

16.3.3 Debug mode . 349

16.4 IWDG registers . 350

16.4.1 Key register (IWDG_KR) . 350

16.4.2 Prescaler register (IWDG_PR) . 350

16.4.3 Reload register (IWDG_RLR) . 351

16.4.4 Status register (IWDG_SR) . 352

RM0008 Contents

 13/682

16.4.5 IWDG register map . 353

17 Window watchdog (WWDG) . 354

17.1 WWDG introduction . 354

17.2 WWDG main features . 354

17.3 WWDG functional description . 354

17.4 How to program the watchdog timeout . 356

17.5 Debug mode . 357

17.6 Debug registers . 357

17.6.1 Control register (WWDG_CR) . 357

17.6.2 Configuration register (WWDG_CFR) . 357

17.6.3 Status register (WWDG_SR) . 358

17.6.4 WWDG register map . 358

18 Flexible static memory controller (FSMC) . 359

18.1 FSMC main features . 359

18.2 Block diagram . 360

18.3 AHB interface . 361

18.3.1 Supported memories and transactions . 361

18.4 External device address mapping . 362

18.4.1 NOR/PSRAM address mapping . 362

18.4.2 NAND/PC Card address mapping . 363

18.5 NOR Flash/PSRAM controller . 364

18.5.1 External memory interface signals . 365

18.5.2 Supported memories and transactions . 367

18.5.3 General timing rules . 368

18.5.4 NOR Flash/PSRAM controller timing diagrams 368

18.5.5 Synchronous burst read . 381

18.5.6 NOR/PSRAM controller registers . 387

18.6 NAND Flash/PC Card controller . 392

18.6.1 External memory interface signals . 393

18.6.2 NAND Flash / PC Card supported memories and transactions 394

18.6.3 Timing diagrams for NAND, ATA and PC Card 395

18.6.4 NAND Flash operations . 396

18.6.5 NAND Flash pre-wait functionality . 397

18.6.6 Error correction code computation ECC (NAND Flash) 398

Contents RM0008

14/682

18.6.7 NAND Flash/PC Card controller registers . 398

19 SDIO interface (SDIO) . 405

19.1 SDIO main features . 405

19.2 SDIO bus topology . 406

19.3 SDIO functional description . 408

19.3.1 SDIO adapter . 409

19.3.2 SDIO AHB Interface . 419

19.4 Card functional description . 420

19.4.1 Card identification mode . 420

19.4.2 Card reset . 420

19.4.3 Operating voltage range validation . 420

19.4.4 Card identification process . 421

19.4.5 Block write . 422

19.4.6 Block read . 422

19.4.7 Stream access, stream write and stream read (MultiMediaCard only) 423

19.4.8 Erase: group erase and sector erase . 424

19.4.9 Wide bus selection or deselection . 424

19.4.10 Protection management . 425

19.4.11 Card status register . 428

19.4.12 SD status register . 431

19.4.13 SD I/O mode . 435

19.4.14 Commands and responses . 436

19.5 Response formats . 439

19.5.1 R1 (normal response command) . 439

19.5.2 R1b . 440

19.5.3 R2 (CID, CSD register) . 440

19.5.4 R3 (OCR register) . 440

19.5.5 R4 (Fast I/O) . 441

19.5.6 R4b . 441

19.5.7 R5 (interrupt request) . 442

19.5.8 R6 . 442

19.6 SDIO I/O card-specific operations . 443

19.6.1 SDIO I/O read wait operation by SDIO_D2 signalling 443

19.6.2 SDIO read wait operation by stopping SDIO_CK 443

19.6.3 SDIO suspend/resume operation . 444

RM0008 Contents

 15/682

19.6.4 SDIO interrupts . 444

19.7 CE-ATA specific operations . 444

19.7.1 Command completion signal disable . 444

19.7.2 Command completion signal enable . 444

19.7.3 CE-ATA interrupt . 445

19.7.4 Aborting CMD61 . 445

19.8 HW flow control . 445

19.9 SDIO registers . 445

19.9.1 SDIO power control register (SDIO_POWER) 445

19.9.2 SDI clock control register (SDIO_CLKCR) . 446

19.9.3 SDIO argument register (SDIO_ARG) . 447

19.9.4 SDIO command register (SDIO_CMD) . 447

19.9.5 SDIO command response register (SDIO_RESPCMD) 448

19.9.6 SDIO response 0..4 register (SDIO_RESPx) 449

19.9.7 SDIO data timer register (SDIO_DTIMER) . 449

19.9.8 SDIO data length register (SDIO_DLEN) . 450

19.9.9 SDIO data control register (SDIO_DCTRL) . 450

19.9.10 SDIO data counter register (SDIO_DCOUNT) 451

19.9.11 SDIO status register (SDIO_STA) . 452

19.9.12 SDIO interrupt clear register (SDIO_ICR) . 453

19.9.13 SDIO mask register (SDIO_MASK) . 455

19.9.14 SDIO FIFO counter register (SDIO_FIFOCNT) 457

19.9.15 SDIO data FIFO register (SDIO_FIFO) . 458

19.9.16 SDIO register map . 458

20 USB full speed device interface (USB) . 460

20.1 USB introduction . 460

20.2 USB main features . 460

20.3 USB functional description . 460

20.3.1 Description of USB blocks . 462

20.4 Programming considerations . 463

20.4.1 Generic USB device programming . 463

20.4.2 System and power-on reset . 464

20.4.3 Double-buffered endpoints . 470

20.4.4 Isochronous transfers . 472

20.4.5 Suspend/Resume events . 473

Contents RM0008

16/682

20.5 USB registers . 475

20.5.1 Common registers . 475

20.5.2 Endpoint-specific registers . 482

20.5.3 Buffer descriptor table . 485

20.5.4 USB register map . 489

21 Controller area network (bxCAN) . 491

21.1 bxCAN introduction . 491

21.2 bxCAN main features . 491

21.2.1 General description . 492

21.3 bxCAN operating modes . 494

21.3.1 Initialization mode . 494

21.3.2 Normal mode . 495

21.3.3 Sleep mode (low power) . 495

21.3.4 Test mode . 495

21.3.5 Silent mode . 496

21.3.6 Loop back mode . 496

21.3.7 Loop back combined with silent mode . 496

21.4 STM32F10xxx in Debug mode . 497

21.5 bxCAN functional description . 497

21.5.1 Transmission handling . 497

21.5.2 Time triggered communication mode . 499

21.5.3 Reception handling . 499

21.5.4 Identifier filtering . 501

21.5.5 Message storage . 505

21.5.6 Error management . 507

21.5.7 Bit timing . 507

21.6 bxCAN interrupts . 509

21.7 CAN registers . 511

21.7.1 Register access protection . 511

21.7.2 CAN control and status registers . 511

21.7.3 Mailbox registers . 521

21.7.4 CAN filter registers . 526

21.7.5 bxCAN register map . 529

22 Serial peripheral interface (SPI) . 533

RM0008 Contents

 17/682

22.1 SPI introduction . 533

22.2 SPI and I2S main features . 534

22.2.1 SPI features . 534

22.2.2 I2S features . 535

22.3 SPI functional description . 536

22.3.1 General description . 536

22.3.2 SPI slave mode . 540

22.3.3 SPI master mode . 540

22.3.4 Simplex communication . 541

22.3.5 Status flags . 542

22.3.6 CRC calculation . 542

22.3.7 SPI communication using DMA (direct memory addressing) 543

22.3.8 Error flags . 544

22.3.9 Disabling the SPI . 545

22.3.10 SPI interrupts . 545

22.4 I2S functional description . 545

22.4.1 General description . 545

22.4.2 Supported audio protocols . 547

22.4.3 Clock generator . 554

22.4.4 I2S master mode . 555

22.4.5 I2S slave mode . 556

22.4.6 Status flags . 558

22.4.7 Error flags . 558

22.4.8 I2S interrupts . 559

22.4.9 DMA features . 559

22.5 SPI and I2S registers . 559

22.5.1 SPI control register 1 (SPI_CR1) (not used in I2S mode) 559

22.5.2 SPI control register 2 (SPI_CR2) . 562

22.5.3 SPI status register (SPI_SR) . 563

22.5.4 SPI data register (SPI_DR) . 564

22.5.5 SPI CRC polynomial register (SPI_CRCPR) (not used in I2S
mode) . 565

22.5.6 SPI Rx CRC register (SPI_RXCRCR) (not used in I2S mode) 565

22.5.7 SPI Tx CRC register (SPI_TXCRCR) (not used in I2S mode) 566

22.5.8 SPI_I2S configuration register (SPI_I2SCFGR) 566

22.5.9 SPI_I2S prescaler register (SPI_I2SPR) . 568

22.5.10 SPI register map . 569

Contents RM0008

18/682

23 Inter-integrated circuit (I2C) interface . 570

23.1 I2C introduction . 570

23.2 I2C main features . 570

23.3 I2C functional description . 571

23.3.1 Mode selection . 571

23.3.2 I2C slave mode . 573

23.3.3 I2C master mode . 576

23.3.4 Error conditions . 579

23.3.5 SDA/SCL line control . 581

23.3.6 SMBus . 581

23.3.7 DMA requests . 583

23.3.8 Packet error checking . 585

23.4 I2C interrupts . 585

23.5 I2C debug mode . 586

23.6 I2C registers . 587

23.6.1 Control register 1 (I2C_CR1) . 587

23.6.2 Control register 2 (I2C_CR2) . 589

23.6.3 Own address register 1 (I2C_OAR1) . 590

23.6.4 Own address register 2 (I2C_OAR2) . 591

23.6.5 Data register (I2C_DR) . 591

23.6.6 Status register 1 (I2C_SR1) . 592

23.6.7 Status register 2 (I2C_SR2) . 595

23.6.8 Clock control register (I2C_CCR) . 596

23.6.9 TRISE register (I2C_TRISE) . 597

23.6.10 I2C register map . 598

24 Universal synchronous asynchronous receiver
transmitter (USART) . 599

24.1 USART introduction . 599

24.2 USART main features . 599

24.3 USART functional description . 600

24.3.1 USART character description . 603

24.3.2 Transmitter . 604

24.3.3 Receiver . 606

24.3.4 Fractional baud rate generation . 610

24.3.5 Multiprocessor communication . 612

RM0008 Contents

 19/682

24.3.6 Parity control . 613

24.3.7 LIN (local interconnection network) mode . 614

24.3.8 USART synchronous mode . 616

24.3.9 Single wire half duplex communication . 618

24.3.10 Smartcard . 619

24.3.11 IrDA SIR ENDEC block . 621

24.3.12 Continuous communication using DMA . 622

24.3.13 Hardware flow control . 624

24.4 USART interrupts . 626

24.5 USART mode configuration . 627

24.6 USART registers . 627

24.6.1 Status register (USART_SR) . 627

24.6.2 Data register (USART_DR) . 630

24.6.3 Baud rate register (USART_BRR) . 630

24.6.4 Control register 1 (USART_CR1) . 631

24.6.5 Control register 2 (USART_CR2) . 633

24.6.6 Control register 3 (USART_CR3) . 635

24.6.7 Guard time and prescaler register (USART_GTPR) 636

24.6.8 USART register map . 638

25 Device electronic signature . 639

25.1 Memory size registers . 639

25.1.1 Flash size register . 639

25.2 Unique device ID register (96 bits) . 640

26 Debug support (DBG) . 642

26.1 Overview . 642

26.2 Reference ARM documentation . 644

26.3 SWJ debug port (serial wire and JTAG) . 644

26.3.1 Mechanism to select the JTAG-DP or the SW-DP 644

26.4 Pinout and debug port pins . 645

26.4.1 SWJ debug port pins . 645

26.4.2 Flexible SWJ-DP pin assignment . 645

26.4.3 Internal pull-up and pull-down on JTAG pins . 646

26.4.4 Using serial wire and releasing the unused debug pins as GPIOs . . . 647

26.5 STM32F10xxx JTAG TAP connection . 647

Contents RM0008

20/682

26.6 ID codes and locking mechanism . 648

26.6.1 MCU device ID code . 648

26.6.2 Boundary scan TAP . 649

26.6.3 Cortex-M3 TAP . 649

26.6.4 Cortex-M3 JEDEC-106 ID code . 650

26.7 JTAG debug port . 650

26.8 SW debug port . 652

26.8.1 SW protocol introduction . 652

26.8.2 SW protocol sequence . 652

26.8.3 SW-DP state machine (Reset, idle states, ID code) 653

26.8.4 DP and AP read/write accesses . 653

26.8.5 SW-DP registers . 654

26.8.6 SW-AP registers . 654

26.9 AHB-AP (AHB Access Port) - valid for both JTAG-DP or SW-DP 655

26.10 Core debug . 655

26.11 Capability of the debugger host to connect under system reset 656

26.12 FPB (Flash patch breakpoint) . 657

26.13 DWT (data watchpoint trigger) . 657

26.14 ITM (instrumentation trace macrocell) . 657

26.14.1 General description . 657

26.14.2 Timestamp packets, synchronization and overflow packets 658

26.15 MCU debug component (MCUDBG) . 659

26.15.1 Debug support for low-power modes . 659

26.15.2 Debug support for timers, watchdog, bxCAN and I2C 660

26.15.3 Debug MCU configuration register . 660

26.16 TPIU (trace port interface unit) . 662

26.16.1 Introduction . 662

26.16.2 TRACE pin assignment . 663

26.16.3 TPUI formatter . 665

26.16.4 TPUI frame synchronization packets . 666

26.16.5 Emission of synchronization frame packet . 666

26.16.6 Synchronous mode . 666

26.16.7 Asynchronous mode . 667

26.16.8 TRACECLKIN connection inside STM32F10xxx 667

26.16.9 TPIU registers . 667

26.16.10 Example of configuration . 668

RM0008 Contents

 21/682

26.17 DBG register map . 669

27 Revision history . 670

List of tables RM0008

22/682

List of tables

Table 1. Register boundary addresses. 35
Table 2. Flash module organization (low-density devices) . 38
Table 3. Flash module organization (medium-density devices) . 38
Table 4. Flash module organization (high-density devices) . 39
Table 5. Boot modes. 41
Table 6. CRC calculation unit register map and reset values. 44
Table 7. Low-power mode summary . 49
Table 8. Sleep-now. 51
Table 9. Sleep-on-exit. 51
Table 10. Stop mode . 52
Table 11. Standby mode. 53
Table 12. PWR - register map and reset values. 57
Table 13. BKP register map and reset values . 63
Table 14. RCC - register map and reset values . 93
Table 15. Port bit configuration table . 97
Table 16. Output MODE bits. 97
Table 17. CAN1 alternate function remapping . 107
Table 18. Debug interface signals . 108
Table 19. Debug port mapping . 108
Table 20. ADC1 external trigger injected conversion alternate function remapping. 109
Table 21. ADC1 external trigger regular conversion alternate function remapping 109
Table 22. ADC2 external trigger injected conversion alternate function remapping. 109
Table 23. ADC2 external trigger regular conversion alternate function remapping 109
Table 24. Timer 5 alternate function remapping . 109
Table 25. Timer 4 alternate function remapping . 110
Table 26. Timer 3 alternate function remapping . 110
Table 27. Timer 2 alternate function remapping . 110
Table 28. Timer 1 alternate function remapping . 111
Table 29. USART3 remapping . 111
Table 30. USART2 remapping . 111
Table 31. USART1 remapping . 112
Table 32. I2C1 remapping . 112
Table 33. SPI1 remapping . 112
Table 34. GPIO register map and reset values . 118
Table 35. AFIO register map and reset values . 118
Table 36. Vector table for other STM32F10xxx devices. 119
Table 37. External interrupt/event controller register map and reset values. 129
Table 39. DMA interrupt requests . 135
Table 40. Summary of DMA1 requests for each channel . 137
Table 41. Summary of DMA2 requests for each channel . 138
Table 42. DMA - register map and reset values . 143
Table 43. ADC pins. 148
Table 44. Analog watchdog channel selection . 150
Table 45. External trigger for regular channels for ADC1 and ADC2 . 155
Table 46. External trigger for injected channels for ADC1 and ADC2 . 155
Table 47. External trigger for regular channels for ADC3. 156
Table 48. External trigger for injected channels for ADC3 . 156
Table 49. ADC interrupts . 165

RM0008 List of tables

 23/682

Table 50. ADC register map and reset values . 178
Table 51. DAC pins. 181
Table 52. External triggers . 184
Table 53. DAC register map . 200
Table 54. Counting direction versus encoder signals . 234
Table 55. TIMx Internal trigger connection . 247
Table 56. Output control bits for complementary OCx and OCxN channels with break feature 258
Table 57. TIM1&TIM8 Register map and reset values . 266
Table 58. Counting direction versus encoder signals . 294
Table 59. TIMx Internal trigger connection . 308
Table 60. Output control bit for standard OCx channels. 318
Table 61. TIMx register map and reset values . 322
Table 62. TIM6&7 - register map and reset values. 335
Table 63. RTC register map and reset values . 347
Table 64. Watchdog timeout period (with 40 kHz input clock) . 349
Table 65. IWDG register map and reset values . 353
Table 66. WWDG register map and reset values . 358
Table 67. NOR/PSRAM bank selection . 362
Table 68. External memory address. 363
Table 69. Memory mapping and timing registers . 363
Table 70. NAND bank selections . 364
Table 71. Programmable NOR/PSRAM access parameters . 365
Table 72. Nonmuxed I/O NOR Flash . 365
Table 73. Muxed I/O NOR Flash . 366
Table 74. PSRAM . 366
Table 75. NOR Flash/PSRAM supported memories and transactions . 367
Table 76. FSMC_BCRx bit fields . 369
Table 77. FSMC_TCRx bit fields . 370
Table 78. FSMC_BCRx bit fields . 371
Table 79. FSMC_TCRx bit fields . 372
Table 80. FSMC_BWTRx bit fields . 372
Table 81. FSMC_BCRx bit fields . 374
Table 82. FSMC_TCRx bit fields . 375
Table 83. FSMC_BWTRx bit fields . 375
Table 84. FSMC_BCRx bit fields . 377
Table 85. FSMC_TCRx bit fields . 377
Table 86. FSMC_BWTRx bit fields . 377
Table 87. FSMC_BCRx bit fields . 379
Table 88. FSMC_TCRx bit fields . 379
Table 89. FSMC_BWTRx bit fields . 379
Table 90. FSMC_BCRx bit fields . 381
Table 91. FSMC_TCRx bit fields . 381
Table 92. FSMC_BCRx bit fields . 383
Table 93. FSMC_TCRx bit fields . 384
Table 94. FSMC_BCRx bit fields . 386
Table 95. FSMC_TCRx bit fields . 386
Table 96. Programmable NAND/PC Card access parameters . 393
Table 97. 8-bit NAND Flash. 393
Table 98. 16-bit NAND Flash. 394
Table 99. 16-bit PC Card . 394
Table 100. Supported memories and transactions . 395
Table 101. ECC result relevant bits . 404

List of tables RM0008

24/682

Table 102. SDIO I/O definitions . 409
Table 103. Command format . 413
Table 104. Short response format . 414
Table 105. Long response format . 414
Table 106. Command path status flags . 414
Table 107. Data token format . 417
Table 108. Transmit FIFO status flags . 418
Table 109. Receive FIFO status flags . 419
Table 110. Card status . 429
Table 111. SD status . 431
Table 112. Speed class code field . 433
Table 113. Performance move field . 433
Table 114. AU_SIZE field . 433
Table 115. Maximum AU size. 434
Table 116. Erase size field . 434
Table 117. Erase timeout field . 434
Table 118. Erase offset field . 435
Table 119. Block-oriented write commands . 437
Table 120. Block-oriented write protection commands. 438
Table 121. Erase commands . 438
Table 122. I/O mode commands . 438
Table 123. Lock card . 439
Table 124. Application-specific commands . 439
Table 125. R1 response . 440
Table 126. R2 response . 440
Table 127. R3 response . 441
Table 128. R4 response . 441
Table 129. R4b response . 441
Table 130. R5 response . 442
Table 131. R6 response . 442
Table 132. Response type and SDIO_RESPx registers. 449
Table 133. SDIO register map . 458
Table 134. Double-buffering buffer flag definition. 471
Table 135. Bulk double-buffering memory buffers usage . 471
Table 136. Isochronous memory buffers usage . 473
Table 137. Resume event detection . 474
Table 138. Reception status encoding . 485
Table 139. Endpoint type encoding . 485
Table 140. Endpoint kind meaning . 485
Table 141. Transmission status encoding . 485
Table 142. Definition of allocated buffer memory . 488
Table 143. USB register map and reset values . 489
Table 144. Transmit mailbox mapping . 505
Table 145. Receive mailbox mapping. 505
Table 146. bxCAN register map and reset values . 530
Table 147. SPI interrupt requests . 545
Table 148. I2S interrupt requests . 559
Table 149. SPI register map and reset values . 569
Table 150. SMBus vs. I2C . 581
Table 151. I2C Interrupt requests . 585
Table 152. I2C register map and reset values . 598
Table 153. Noise detection from sampled data . 609

RM0008 List of tables

 25/682

Table 154. Error calculation for programmed baud rates . 611
Table 155. Frame formats . 613
Table 156. USART interrupt requests. 626
Table 157. USART modes configuration . 627
Table 158. USART register map and reset values . 638
Table 159. SWJ debug port pins . 645
Table 160. Flexible SWJ-DP pin assignment . 646
Table 161. JTAG debug port data registers . 650
Table 162. 32-bit debug port registers addressed through the shifted value A[3:2] 651
Table 163. Packet request (8-bits) . 652
Table 164. ACK response (3 bits). 653
Table 165. DATA transfer (33 bits) . 653
Table 166. SW-DP registers . 654
Table 167. Cortex-M3 AHB-AP registers . 655
Table 168. Core debug registers . 656
Table 169. Main ITM registers . 658
Table 170. Asynchronous TRACE pin assignment. 663
Table 171. Synchronous TRACE pin assignment . 663
Table 172. Flexible TRACE pin assignment . 664
Table 173. Important TPIU registers. 667
Table 174. DBG register map and reset values . 669
Table 175. Document revision history . 670

List of figures RM0008

26/682

List of figures

Figure 1. System architecture . 33
Figure 2. CRC calculation unit block diagram . 42
Figure 3. Power supply overview . 45
Figure 4. Power on reset/power down reset waveform . 48
Figure 5. PVD thresholds. 48
Figure 6. Reset circuit . 67
Figure 7. Clock tree . 68
Figure 8. HSE/ LSE clock sources. 69
Figure 9. Basic structure of a standard I/O port bit . 96
Figure 10. Basic structure of a five-volt tolerant I/O port bit . 96
Figure 11. Input floating/pull up/pull down configurations . 99
Figure 12. Output configuration . 100
Figure 13. Alternate function configuration . 101
Figure 14. High impedance-analog input configuration . 101
Figure 15. External interrupt/event controller block diagram . 123
Figure 16. External interrupt/event GPIO mapping . 125
Figure 17. DMA block diagram . 131
Figure 18. DMA1 request mapping . 136
Figure 19. DMA2 request mapping . 138
Figure 20. Single ADC block diagram . 147
Figure 21. Timing diagram . 150
Figure 22. Analog watchdog guarded area . 150
Figure 23. Injected conversion latency . 152
Figure 24. Calibration timing diagram . 153
Figure 25. Right alignment of data . 154
Figure 26. Left alignment of data . 154
Figure 27. Dual ADC block diagram . 158
Figure 28. Injected simultaneous mode on 4 channels . 159
Figure 29. Regular simultaneous mode on 16 channels . 160
Figure 30. Fast interleaved mode on 1 channel in continuous conversion mode 160
Figure 31. Slow interleaved mode on 1 channel . 161
Figure 32. Alternate trigger: injected channel group of each ADC. 161
Figure 33. Alternate trigger: 4 injected channels (each ADC) in discontinuous model 162
Figure 34. Alternate + Regular simultaneous. 163
Figure 35. Case of trigger occurring during injected conversion . 163
Figure 36. Interleaved single channel with injected sequence CH11, CH12 163
Figure 37. Temperature sensor and VREFINT channel block diagram . 164
Figure 38. DAC channel block diagram . 181
Figure 39. Data registers in single DAC channel mode . 183
Figure 40. Data registers in dual DAC channel mode . 183
Figure 41. Timing diagram for conversion with trigger disabled TEN = 0 . 184
Figure 42. DAC LFSR register calculation algorithm . 185
Figure 43. DAC conversion (SW trigger enabled) with LFSR wave generation. 186
Figure 44. DAC triangle wave generation . 186
Figure 45. DAC conversion (SW trigger enabled) with triangle wave generation 187
Figure 46. Advanced-control timer block diagram . 203
Figure 47. Counter timing diagram with prescaler division change from 1 to 2 205
Figure 48. Counter timing diagram with prescaler division change from 1 to 4 205

RM0008 List of figures

 27/682

Figure 49. Counter timing diagram, internal clock divided by 1 . 206
Figure 50. Counter timing diagram, internal clock divided by 2 . 206
Figure 51. Counter timing diagram, internal clock divided by 4 . 207
Figure 52. Counter timing diagram, internal clock divided by N. 207
Figure 53. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) 207
Figure 54. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) 208
Figure 55. Counter timing diagram, internal clock divided by 1 . 209
Figure 56. Counter timing diagram, internal clock divided by 2 . 209
Figure 57. Counter timing diagram, internal clock divided by 4 . 209
Figure 58. Counter timing diagram, internal clock divided by N. 210
Figure 59. Counter timing diagram, update event when repetition counter is not used. 210
Figure 60. Counter timing diagram, internal clock divided by 1, TIMx_ARR = 0x6 211
Figure 61. Counter timing diagram, internal clock divided by 2 . 211
Figure 62. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 212
Figure 63. Counter timing diagram, internal clock divided by N. 212
Figure 64. Counter timing diagram, update event with ARPE=1 (counter underflow) 212
Figure 65. Counter timing diagram, Update event with ARPE=1 (counter overflow) 213
Figure 66. Update rate examples depending on mode and TIMx_RCR register settings 214
Figure 67. Control circuit in normal mode, internal clock divided by 1 . 215
Figure 68. TI2 external clock connection example. 215
Figure 69. Control circuit in external clock mode 1 . 216
Figure 70. External trigger input block . 216
Figure 71. Control circuit in external clock mode 2 . 217
Figure 72. Capture/compare channel (example: channel 1 input stage) . 218
Figure 73. Capture/compare channel 1 main circuit . 218
Figure 74. Output stage of capture/compare channel (channel 1 to 3) . 219
Figure 75. Output stage of capture/compare channel (channel 4). 219
Figure 76. PWM input mode timing . 221
Figure 77. Output compare mode, toggle on OC1. 223
Figure 78. Edge-aligned PWM waveforms (ARR=8) . 224
Figure 79. Center-aligned PWM waveforms (ARR=8) . 225
Figure 80. Complementary output with dead-time insertion. 226
Figure 81. Dead-time waveforms with delay greater than the negative pulse. 226
Figure 82. Dead-time waveforms with delay greater than the positive pulse. 227
Figure 83. Output behavior in response to a break.. 229
Figure 84. Clearing TIMx OCxREF . 230
Figure 85. 6-step generation, COM example (OSSR=1) . 231
Figure 86. Example of one pulse mode. . 232
Figure 87. Example of counter operation in encoder interface mode. 235
Figure 88. Example of encoder interface mode with TI1FP1 polarity inverted. 235
Figure 89. Example of hall sensor interface. 237
Figure 90. Control circuit in reset mode . 238
Figure 91. Control circuit in gated mode . 239
Figure 92. Control circuit in trigger mode. 240
Figure 93. Control circuit in external clock mode 2 + trigger mode . 241
Figure 94. General-purpose timer block diagram . 270
Figure 95. Counter timing diagram with prescaler division change from 1 to 2 271
Figure 96. Counter timing diagram with prescaler division change from 1 to 4 272
Figure 97. Counter timing diagram, internal clock divided by 1 . 273
Figure 98. Counter timing diagram, internal clock divided by 2 . 273
Figure 99. Counter timing diagram, internal clock divided by 4 . 273
Figure 100. Counter timing diagram, internal clock divided by N. 274

List of figures RM0008

28/682

Figure 101. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not preloaded). 274
Figure 102. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded). 275
Figure 103. Counter timing diagram, internal clock divided by 1 . 276
Figure 104. Counter timing diagram, internal clock divided by 2 . 276
Figure 105. Counter timing diagram, internal clock divided by 4 . 276
Figure 106. Counter timing diagram, internal clock divided by N. 277
Figure 107. Counter timing diagram, Update event when repetition counter is not used 277
Figure 108. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6 278
Figure 109. Counter timing diagram, internal clock divided by 2 . 278
Figure 110. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 279
Figure 111. Counter timing diagram, internal clock divided by N. 279
Figure 112. Counter timing diagram, Update event with ARPE=1 (counter underflow). 279
Figure 113. Counter timing diagram, Update event with ARPE=1 (counter overflow) 280
Figure 114. Control circuit in normal mode, internal clock divided by 1 . 281
Figure 115. TI2 external clock connection example. 281
Figure 116. Control circuit in external clock mode 1 . 282
Figure 117. External trigger input block . 282
Figure 118. Control circuit in external clock mode 2 . 283
Figure 119. Capture/compare channel (example: channel 1 input stage) . 283
Figure 120. Capture/compare channel 1 main circuit . 284
Figure 121. Output stage of capture/compare channel (channel 1). 284
Figure 122. PWM input mode timing . 286
Figure 123. Output compare mode, toggle on OC1. 288
Figure 124. Edge-aligned PWM waveforms (ARR=8) . 289
Figure 125. Center-aligned PWM waveforms (ARR=8) . 290
Figure 126. Example of one pulse mode. . 291
Figure 127. Clearing TIMx OCxREF . 293
Figure 128. Example of counter operation in encoder interface mode. 294
Figure 129. Example of encoder interface mode with IC1FP1 polarity inverted. 295
Figure 130. Control circuit in reset mode . 296
Figure 131. Control circuit in gated mode . 297
Figure 132. Control circuit in trigger mode. 297
Figure 133. Control circuit in external clock mode 2 + trigger mode . 298
Figure 134. Master/Slave timer example . 299
Figure 135. Gating timer 2 with OC1REF of timer 1 . 300
Figure 136. Gating timer 2 with Enable of timer 1 . 301
Figure 137. Triggering timer 2 with Update of timer 1 . 301
Figure 138. Triggering timer 2 with Enable of timer 1 . 302
Figure 139. Triggering timer 1 and 2 with timer 1 TI1 input. . 303
Figure 140. Basic timer block diagram. 325
Figure 141. Counter timing diagram with prescaler division change from 1 to 2 326
Figure 142. Counter timing diagram with prescaler division change from 1 to 4 326
Figure 143. Counter timing diagram, internal clock divided by 1 . 327
Figure 144. Counter timing diagram, internal clock divided by 2 . 328
Figure 145. Counter timing diagram, internal clock divided by 4 . 328
Figure 146. Counter timing diagram, internal clock divided by N. 328
Figure 147. Counter timing diagram, update event when ARPE = 0 (TIMx_ARR not

preloaded). 329
Figure 148. Counter timing diagram, update event when ARPE=1 (TIMx_ARR

preloaded). 329
Figure 149. Control circuit in normal mode, internal clock divided by 1 . 330
Figure 150. RTC simplified block diagram . 338

RM0008 List of figures

 29/682

Figure 151. RTC second and alarm waveform example with PR=0003, ALARM=00004 340
Figure 152. RTC Overflow waveform example with PR=0003. 340
Figure 153. Independent watchdog block diagram . 349
Figure 154. Watchdog block diagram . 355
Figure 155. Window watchdog timing diagram . 356
Figure 156. FSMC block diagram . 360
Figure 157. FSMC memory banks . 362
Figure 158. Mode1 read accesses. 368
Figure 159. Mode1 write accesses . 369
Figure 160. ModeA read accesses . 370
Figure 161. ModeA write accesses . 371
Figure 162. Mode2/B read accesses . 373
Figure 163. Mode2 write accesses . 373
Figure 164. ModeB write accesses . 374
Figure 165. ModeC read accesses . 376
Figure 166. ModeC write accesses . 376
Figure 167. ModeD read accesses . 378
Figure 168. ModeD write accesses . 378
Figure 169. Muxed read accesses. 380
Figure 170. Muxed write accesses . 380
Figure 171. Synchronous multiplexed read mode - NOR, PSRAM (CRAM) . 383
Figure 172. Synchronous multiplexed write mode - PSRAM (CRAM) . 385
Figure 173. NAND/PC Card controller timing for common memory access . 396
Figure 174. Access to non ‘CE don’t care’ NAND-Flash . 397
Figure 175. SDIO “no response” and “no data” operations . 406
Figure 176. SDIO (multiple) block read operation . 406
Figure 177. SDIO (multiple) block write operation . 407
Figure 178. SDIO sequential read operation . 407
Figure 179. SDIO sequential write operation . 407
Figure 180. SDIO block diagram . 408
Figure 181. SDIO adapter . 409
Figure 182. Control unit . 410
Figure 183. SDIO adapter command path . 411
Figure 184. Command path state machine (CPSM) . 412
Figure 185. SDIO command transfer . 413
Figure 186. Data path . 415
Figure 187. Data path state machine (DPSM) . 416
Figure 188. USB peripheral block diagram . 461
Figure 189. Packet buffer areas with examples of buffer description table locations 466
Figure 190. CAN network topology . 492
Figure 191. CAN general block diagram . 493
Figure 192. bxCAN operating modes. 494
Figure 193. bxCAN in silent mode . 496
Figure 194. bxCAN in loop back mode . 496
Figure 195. bxCAN in combined mode . 497
Figure 196. Transmit mailbox states . 499
Figure 197. Receive FIFO states . 500
Figure 198. Filter bank scale configuration - register organization . 502
Figure 199. Example of filter numbering . 503
Figure 200. Filtering mechanism - example. 504
Figure 201. CAN error state diagram. 506
Figure 202. Bit timing . 508

List of figures RM0008

30/682

Figure 203. CAN frames . 509
Figure 204. Event flags and interrupt generation. 510
Figure 205. SPI block diagram. 536
Figure 206. Single master/ single slave application. 537
Figure 207. Hardware/software slave select management . 537
Figure 208. Data clock timing diagram . 539
Figure 209. I2S block diagram . 546
Figure 210. I2S Phillips protocol waveforms (16/32-bit full accuracy, CPOL = 0) 548
Figure 211. I2S Phillips standard waveforms (24-bit frame with CPOL = 0) . 548
Figure 212. Transmitting 0x8EAA33 . 548
Figure 213. Receiving 0x8EAA33 . 549
Figure 214. I2S Phillips standard (16-bit extended to 32-bit packet frame with CPOL = 0) 549
Figure 215. Example . 549
Figure 216. MSB Justified 16-bit or 32-bit full-accuracy length with CPOL = 0 550
Figure 217. MSB Justified 24-bit frame length with CPOL = 0. 550
Figure 218. MSB Justified 16-bit extended to 32-bit packet frame with CPOL = 0 550
Figure 219. LSB justified 16-bit or 32-bit full-accuracy with CPOL = 0 . 551
Figure 220. LSB Justified 24-bit frame length with CPOL = 0 . 551
Figure 221. Operations required to transmit 0x3478AE. 551
Figure 222. Operations required to receive 0x3478AE . 552
Figure 223. LSB Justified 16-bit extended to 32-bit packet frame with CPOL = 0 552
Figure 224. Example . 552
Figure 225. PCM standard waveforms (16-bit) . 553
Figure 226. PCM standard waveforms (16-bit extended to 32-bit packet frame). 553
Figure 227. Audio sampling frequency definition . 554
Figure 228. I2S clock generator architecture . 554
Figure 229. I2C bus protocol . 572
Figure 230. I2C block diagram. 573
Figure 231. Transfer sequence diagram for slave transmitter . 574
Figure 232. Transfer sequence diagram for slave receiver . 575
Figure 233. Transfer sequence diagram for master transmitter. 578
Figure 234. Transfer sequence diagram for master receiver . 579
Figure 235. I2C interrupt mapping diagram . 586
Figure 236. USART block diagram . 602
Figure 237. Word length programming . 603
Figure 238. Configurable stop bits . 605
Figure 239. Start bit detection . 607
Figure 240. Data sampling for noise detection . 609
Figure 241. Mute mode using Idle line detection . 612
Figure 242. Mute mode using Address mark detection . 613
Figure 243. Break detection in LIN mode (11-bit break length - LBDL bit is set) 615
Figure 244. Break detection in LIN mode vs. Framing error detection. 616
Figure 245. USART example of synchronous transmission. 617
Figure 246. USART data clock timing diagram (M=0) . 617
Figure 247. USART data clock timing diagram (M=1) . 618
Figure 248. RX data setup/hold time . 618
Figure 249. ISO 7816-3 asynchronous protocol . 619
Figure 250. Parity error detection using the 1.5 stop bits . 620
Figure 251. IrDA SIR ENDEC- block diagram . 622
Figure 252. IrDA data modulation (3/16) -Normal Mode . 622
Figure 253. Hardware flow control between 2 USART . 624
Figure 254. RTS flow control . 624

RM0008 List of figures

 31/682

Figure 255. CTS flow control . 625
Figure 256. USART interrupt mapping diagram . 626
Figure 257. Block diagram of STM32F10xxx-level and Cortex-M3-level debug support 643
Figure 258. SWJ debug port . 644
Figure 259. JTAG TAP connections . 648
Figure 260. TPIU block diagram . 663

Documentation conventions RM0008

32/682

1 Documentation conventions

1.1 List of abbreviations for registers
The following abbreviations are used in register descriptions:

1.2 Glossary
● Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx

microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

● Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

● High-density devices are STM32F101xx and STM32F103xx microcontrollers where
the Flash memory density ranges between 256 and 512 Kbytes.

1.3 Peripheral availability
For peripheral availability and number across all STM32F10xxx sales types, please refer to
the low-, medium- and high-density STM32F101xx and STM32F103xx datasheets, and to
the low- and medium-density STM32F102xx datasheets.

read/write (rw) Software can read and write to these bits.

read-only (r) Software can only read these bits.

write-only (w) Software can only write to this bit. Reading the bit returns the reset
value.

read/clear (rc_w1) Software can read as well as clear this bit by writing 1. Writing ‘0’ has
no effect on the bit value.

read/clear (rc_w0) Software can read as well as clear this bit by writing 0. Writing ‘1’ has
no effect on the bit value.

toggle (t) Software can only toggle this bit by writing ‘1’. Writing ‘0’ has no effect.

Reserved (Res.) Reserved bit, must be kept at reset value.

RM0008 Memory and bus architecture

 33/682

2 Memory and bus architecture

2.1 System architecture
The main system consists of:

● Four masters:

– Cortex™-M3 core DCode bus (D-bus) and System bus (S-bus)

– GP-DMA1 & 2 (general-purpose DMA)

● Four slaves:

– Internal SRAM

– Internal Flash memory

– FSMC

– AHB to APB bridges (AHB2APBx), which connect all the APB peripherals

These are interconnected using a multilayer AHB bus architecture as shown in Figure 1:

Figure 1. System architecture

ICode bus

This bus connects the Instruction bus of the Cortex™-M3 core to the Flash memory
instruction interface. Prefetching is performed on this bus.

FLITF

Ch.1

Ch.2

Ch.7

Cortex-M3

DMA1

ICode

DCode

System

AHB system bus

DMA Request

APB1

Flash

Bridge 2

Bridge 1

Ch.1

Ch.2

Ch.5

DMA2

SRAM

FSMC

SDIO

APB2

DMA request

ADC3

 GPIOC

USART1

TIM8

SPI1
TIM1

ADC2
ADC1

GPIOG
GPIOF
GPIOE
GPIOD

GPIOB
GPIOA

EXTI
AFIO

DAC SPI3/I2S

 TIM2

PWR
BKP
bxCAN
USB
I2C2
I2C1
UART5
UART4
USART3
USART2

SPI2/I2S
IWDG

WWDG
RTC
TIM7
TIM6
TIM5
TIM4
TIM3

ai14800c

B
us

 m
at

rixDMA

D
M

A Reset & clock
control (RCC)

Memory and bus architecture RM0008

34/682

DCode bus

This bus connects the DCode bus (literal load and debug access) of the Cortex™-M3 core
to the Flash memory Data interface.

System bus

This bus connects the system bus of the Cortex™-M3 core (peripherals bus) to a BusMatrix
which manages the arbitration between the core and the DMA.

DMA bus

This bus connects the AHB master interface of the DMA to the BusMatrix which manages
the access of CPU DCode and DMA to SRAM, Flash memory and peripherals.

BusMatrix

The BusMatrix manages the access arbitration between the core system bus and the DMA
master bus. The arbitration uses a Round Robin algorithm. The BusMatrix is composed of
four masters (CPU DCode, System bus, DMA1 bus and DMA2 bus) and four slaves (FLITF,
SRAM, FSMC and AHB2APB bridges).

AHB peripherals are connected on system bus through a BusMatrix to allow DMA access.

AHB/APB bridges (APB)

The two AHB/APB bridges provide full synchronous connections between the AHB and the
2 APB buses. APB1 is limited to 36 MHz, APB2 operates at full speed (up to 72 MHz
depending on the device).

Refer to Table 1 on page 35 for the address mapping of the peripherals connected to each
bridge.

After each device reset, all peripheral clocks are disabled (except for the SRAM and FLITF).
Before using a peripheral you have to enable its clock in the RCC_AHBENR,
RCC_APB2ENR or RCC_APB1ENR register.

Note: When a 16- or 8-bit access is performed on an APB register, the access is transformed into
a 32-bit access: the bridge duplicates the 16- or 8-bit data to feed the 32-bit vector.

2.2 Memory organization
Program memory, data memory, registers and I/O ports are organized within the same linear
4-Gbyte address space.

The bytes are coded in memory in Little Endian format. The lowest numbered byte in a word
is considered the word’s least significant byte and the highest numbered byte the most
significant.

For the detailed mapping of peripheral registers, please refer to the related chapters.

The addressable memory space is divided into 8 main blocks, each of 512 MB.

All the memory areas that are not allocated to on-chip memories and peripherals are
considered “Reserved”). Refer to the Memory map figure in the corresponding product
datasheet.

RM0008 Memory and bus architecture

 35/682

2.3 Memory map
See the datasheet corresponding to your device for a comprehensive diagram of the
memory map. Table 1 gives the boundary addresses of the peripherals available in all
STM32F10xxx devices.

Table 1. Register boundary addresses

Boundary address Peripheral Bus Register map

0x4002 3400 - 0x4002 3FFF Reserved

AHB

0x4002 3000 - 0x4002 33FF CRC Section 3.4.4 on page 44

0x4002 2000 - 0x4002 23FF Flash memory interface

0x4002 1400 - 0x4002 1FFF Reserved

0x4002 1000 - 0x4002 13FF Reset and clock control RCC Section 6.3.11 on page 93

0x4002 0800 - 0x4002 0FFF Reserved

0x4002 0400 - 0x4002 07FF DMA2 Section 9.4.7 on page 143

0x4002 0000 - 0x4002 03FF DMA1 Section 9.4.7 on page 143

0x4001 8400 - 0x4001 7FFF Reserved

0x4001 8000 - 0x4001 83FF SDIO Section 19.9.16 on page 458

0x4001 4000 - 0x4001 7FFF Reserved

APB2

0x4001 3C00 - 0x4001 3FFF ADC3 Section 10.12.15 on page 178

0x4001 3800 - 0x4001 3BFF USART1 Section 24.6.8 on page 638

0x4001 3400 - 0x4001 37FF TIM8 timer Section 12.4.21 on page 266

0x4001 3000 - 0x4001 33FF SPI1 Section 22.5 on page 559

0x4001 2C00 - 0x4001 2FFF TIM1 timer Section 12.4.21 on page 266

0x4001 2800 - 0x4001 2BFF ADC2 Section 10.12.15 on page 178

0x4001 2400 - 0x4001 27FF ADC1 Section 10.12.15 on page 178

0x4001 2000 - 0x4001 23FF GPIO Port G Section 7.5 on page 117

0x4001 1C00 - 0x4001 1FFF GPIO Port F Section 7.5 on page 117

0x4001 1800 - 0x4001 1BFF GPIO Port E Section 7.5 on page 117

0x4001 1400 - 0x4001 17FF GPIO Port D Section 7.5 on page 117

0x4001 1000 - 0x4001 13FF GPIO Port C Section 7.5 on page 117

0x4001 0C00 - 0x4001 0FFF GPIO Port B Section 7.5 on page 117

0x4001 0800 - 0x4001 0BFF GPIO Port A Section 7.5 on page 117

0x4001 0400 - 0x4001 07FF EXTI Section 8.3.7 on page 129

0x4001 0000 - 0x4001 03FF AFIO Section 7.5 on page 117

Memory and bus architecture RM0008

36/682

2.3.1 Embedded SRAM

The STM32F10xxx features 64 Kbytes of static SRAM. It can be accessed as bytes, half-
words (16 bits) or full words (32 bits). The SRAM start address is 0x2000 0000.

2.3.2 Bit banding

The Cortex™-M3 memory map includes two bit-band regions. These regions map each
word in an alias region of memory to a bit in a bit-band region of memory. Writing to a word

0x4000 7800 - 0x4000 FFFF Reserved

APB1

0x4000 7400 - 0x4000 77FF DAC Section 11.5.14 on page 200

0x4000 7000 - 0x4000 73FF Power control PWR Section 4.4.3 on page 57

0x4000 6C00 - 0x4000 6FFF Backup registers (BKP) Section 5.4.5 on page 63

0x4000 6800 - 0x4000 6BFF Reserved

0x4000 6400 - 0x4000 67FF bxCAN Section 21.7.5 on page 529

0x4000 6000 - 0x4000 63FF Shared USB/CAN SRAM 512 bytes

0x4000 5C00 - 0x4000 5FFF USB device FS registers Section 20.5.4 on page 489

0x4000 5800 - 0x4000 5BFF I2C2 Section 23.6.10 on page 598

0x4000 5400 - 0x4000 57FF I2C1 Section 23.6.10 on page 598

0x4000 5000 - 0x4000 53FF UART5 Section 24.6.8 on page 638

0x4000 4C00 - 0x4000 4FFF UART4 Section 24.6.8 on page 638

0x4000 4800 - 0x4000 4BFF USART3 Section 24.6.8 on page 638

0x4000 4400 - 0x4000 47FF USART2 Section 24.6.8 on page 638

0x4000 4000 - 0x4000 3FFF Reserved

0x4000 3C00 - 0x4000 3FFF SPI3/I2S Section 22.5 on page 559

0x4000 3800 - 0x4000 3BFF SPI2/I2S Section 22.5 on page 559

0x4000 3400 - 0x4000 37FF Reserved

0x4000 3000 - 0x4000 33FF Independent watchdog (IWDG) Section 16.4.5 on page 353

0x4000 2C00 - 0x4000 2FFF Window watchdog (WWDG) Section 17.6.4 on page 358

0x4000 2800 - 0x4000 2BFF RTC Section 15.4.7 on page 347

0x4000 1800 - 0x4000 27FF Reserved

0x4000 1400 - 0x4000 17FF TIM7 timer Section 14.4.9 on page 335

0x4000 1000 - 0x4000 13FF TIM6 timer Section 14.4.9 on page 335

0x4000 0C00 - 0x4000 0FFF TIM5 timer Section 13.4.19 on page 322

0x4000 0800 - 0x4000 0BFF TIM4 timer Section 13.4.19 on page 322

0x4000 0400 - 0x4000 07FF TIM3 timer Section 13.4.19 on page 322

0x4000 0000 - 0x4000 03FF TIM2 timer Section 13.4.19 on page 322

Table 1. Register boundary addresses (continued)

Boundary address Peripheral Bus Register map

RM0008 Memory and bus architecture

 37/682

in the alias region has the same effect as a read-modify-write operation on the targeted bit in
the bit-band region.

In the STM32F10xxx both peripheral registers and SRAM are mapped in a bit-band region.
This allows single bit-band write and read operations to be performed.

A mapping formula shows how to reference each word in the alias region to a corresponding
bit in the bit-band region. The mapping formula is:

bit_word_addr = bit_band_base + (byte_offset x 32) + (bit_number × 4)

where:

bit_word_addr is the address of the word in the alias memory region that maps to the
targeted bit.

bit_band_base is the starting address of the alias region

byte_offset is the number of the byte in the bit-band region that contains the targeted bit

bit_number is the bit position (0-7) of the targeted bit.

Example:

The following example shows how to map bit 2 of the byte located at SRAM address
0x20000300 in the alias region:

0x22006008 = 0x22000000 + (0x300*32) + (2*4).

Writing to address 0x22006008 has the same effect as a read-modify-write operation on bit
2 of the byte at SRAM address 0x20000300.

Reading address 0x22006008 returns the value (0x01 or 0x00) of bit 2 of the byte at SRAM
address 0x20000300 (0x01: bit set; 0x00: bit reset).

For more information on Bit-Banding, please refer to the Cortex™-M3 Technical Reference
Manual.

2.3.3 Embedded Flash memory

The high-performance Flash memory module has the following key features:

● Density of up to 512 Kbytes

● Memory organization: the Flash memory is organized as a main block and an
information block:

– Main memory block of size:

up to 4 Kb × 64 bits divided into 32 pages of 1 Kbyte each for low-density devices
(see Table 2)

up to 16 Kb × 64 bits divided into 128 pages of 1 Kbyte each for medium-density
devices (see Table 3)

up to 64 Kb × 64 bits divided into 256 pages of 2 Kbytes each (see Table 4) for
high-density devices

– Information block of size 258 × 64 bits. The information block is divided into 2
pages of 2 Kbytes and 16 bytes, respectively (see Table 3).

The Flash memory interface (FLITF) features:

● Read interface with prefetch buffer (2x64-bit words)

● Option byte Loader

● Flash Program / Erase operation

● Read / Write protection

Memory and bus architecture RM0008

38/682

Table 2. Flash module organization (low-density devices)

Block Name Base addresses Size (bytes)

Main memory

Page 0 0x0800 0000 - 0x0800 03FF 1 Kbyte

Page 1 0x0800 0400 - 0x0800 07FF 1 Kbyte

Page 2 0x0800 0800 - 0x0800 0BFF 1 Kbyte

Page 3 0x0800 0C00 - 0x0800 0FFF 1 Kbyte

Page 4 0x0800 1000 - 0x0800 13FF 1 Kbyte

.

.

.

.

.

.

.

.

.

Page 31 0x0800 7C00 - 0x0800 7FFF 1 Kbyte

Information block
System memory 0x1FFF F000 - 0x1FFF F7FF 2 Kbytes

Option Bytes 0x1FFF F800 - 0x1FFF F80F 16

Flash memory
interface
registers

FLASH_ACR 0x4002 2000 - 0x4002 2003 4

FLASH_KEYR 0x4002 2004 - 0x4002 2007 4

FLASH_OPTKEYR 0x4002 2008 - 0x4002 200B 4

FLASH_SR 0x4002 200C - 0x4002 200F 4

FLASH_CR 0x4002 2010 - 0x4002 2013 4

FLASH_AR 0x4002 2014 - 0x4002 2017 4

Reserved 0x4002 2018 - 0x4002 201B 4

FLASH_OBR 0x4002 201C - 0x4002 201F 4

FLASH_WRPR 0x4002 2020 - 0x4002 2023 4

Table 3. Flash module organization (medium-density devices)

Block Name Base addresses Size (bytes)

Main memory

Page 0 0x0800 0000 - 0x0800 03FF 1 Kbyte

Page 1 0x0800 0400 - 0x0800 07FF 1 Kbyte

Page 2 0x0800 0800 - 0x0800 0BFF 1 Kbyte

Page 3 0x0800 0C00 - 0x0800 0FFF 1 Kbyte

Page 4 0x0800 1000 - 0x0800 13FF 1 Kbyte

.

.

.

.

.

.

.

.

.

Page 127 0x0801 FC00 - 0x0801 FFFF 1 Kbyte

Information block
System memory 0x1FFF F000 - 0x1FFF F7FF 2 Kbytes

Option Bytes 0x1FFF F800 - 0x1FFF F80F 16

RM0008 Memory and bus architecture

 39/682

Note: For further information on the Flash memory interface registers, please refer to the
STM32F10xxx Flash programming manual.

Flash memory
interface
registers

FLASH_ACR 0x4002 2000 - 0x4002 2003 4

FLASH_KEYR 0x4002 2004 - 0x4002 2007 4

FLASH_OPTKEYR 0x4002 2008 - 0x4002 200B 4

FLASH_SR 0x4002 200C - 0x4002 200F 4

FLASH_CR 0x4002 2010 - 0x4002 2013 4

FLASH_AR 0x4002 2014 - 0x4002 2017 4

Reserved 0x4002 2018 - 0x4002 201B 4

FLASH_OBR 0x4002 201C - 0x4002 201F 4

FLASH_WRPR 0x4002 2020 - 0x4002 2023 4

Table 4. Flash module organization (high-density devices)

Block Name Base addresses Size (bytes)

Main memory

Page 0 0x0800 0000 - 0x0800 07FF 2 Kbytes

Page 1 0x0800 0800 - 0x0800 0FFF 2 Kbytes

Page 2 0x0800 1000 - 0x0800 17FF 2 Kbytes

Page 3 0x0800 1800 - 0x0800 1FFF 2 Kbytes

.

.

.

.

.

.

.

.

.

Page 255 0x0807 F800 - 0x0807 FFFF 2 Kbytes

Information block
System memory 0x1FFF F000 - 0x1FFF F7FF 2 Kbytes

Option Bytes 0x1FFF F800 - 0x1FFF F80F 16

Flash memory
interface
registers

FLASH_ACR 0x4002 2000 - 0x4002 2003 4

FLASH_KEYR 0x4002 2004 - 0x4002 2007 4

FLASH_OPTKEYR 0x4002 2008 - 0x4002 200B 4

FLASH_SR 0x4002 200C - 0x4002 200F 4

FLASH_CR 0x4002 2010 - 0x4002 2013 4

FLASH_AR 0x4002 2014 - 0x4002 2017 4

Reserved 0x4002 2018 - 0x4002 201B 4

FLASH_OBR 0x4002 201C - 0x4002 201F 4

FLASH_WRPR 0x4002 2020 - 0x4002 2023 4

Table 3. Flash module organization (medium-density devices)

Block Name Base addresses Size (bytes)

Memory and bus architecture RM0008

40/682

Reading Flash memory

Flash memory instructions and data access are performed through the AHB bus. The
prefetch block is used for instruction fetches through the ICode bus. Arbitration is performed
in the Flash memory interface, and priority is given to data access on the DCode bus.

Read accesses can be performed with the following configuration options:

● Latency: number of wait states for a read operation programmed on-the-fly

● Prefetch buffer (2 x 64-bit blocks): it is enabled after reset; a whole block can be
replaced with a single read from the Flash memory as the size of the block matches the
bandwidth of the Flash memory. Thanks to the prefetch buffer, faster CPU execution is
possible as the CPU fetches one word at a time with the next word readily available in
the prefetch buffer

● Half cycle: for power optimization

Note: 1 These options should be used in accordance with the Flash memory access time. The wait
states represent the ratio of the SYSCLK (system clock) period to the Flash memory access
time:

zero wait state, if 0 < SYSCLK ≤ 24 MHz
one wait state, if 24 MHz < SYSCLK ≤ 48 MHz
two wait states, if 48 MHz < SYSCLK ≤ 72 MHz

2 Half cycle configuration is not available in combination with a prescaler on the AHB. The
system clock (SYSCLK) should be equal to the HCLK clock. This feature can therefore be
used only with a low-frequency clock of 8 MHz or less. It can be generated from the HSI or
the HSE but not from the PLL.

3 The prefetch buffer must be kept on when using a prescaler different from 1 on the AHB
clock.

4 The prefetch buffer must be switched on/off only when SYSCLK is lower than 24 MHz. The
prefetch buffer is usually switched on/off during the initialization routine, while the
microcontroller is running on the internal 8 MHz RC (HSI) oscillator.

5 Using DMA: DMA accesses Flash memory on the DCode bus and has priority over ICode
instructions. The DMA provides one free cycle after each transfer. Some instructions can be
performed together with DMA transfer.

Programming and erasing Flash memory

The Flash memory can be programmed 16 bits (half words) at a time.

The Flash memory erase operation can be performed at page level or on the whole Flash
area (mass-erase). The mass-erase does not affect the information blocks.

To ensure that there is no over-programming, the Flash Programming and Erase Controller
blocks are clocked by a fixed clock.

The End of write operation (programming or erasing) can trigger an interrupt. This interrupt
can be used to exit from WFI mode, only if the FLITF clock is enabled. Otherwise, the
interrupt is served only after an exit from WFI.

Note: For further information on Flash memory operations and register configurations, please refer
to the STM32F10xxx Flash programming manual.

RM0008 Memory and bus architecture

 41/682

2.4 Boot configuration
In the STM32F10xxx, 3 different boot modes can be selected through BOOT[1:0] pins as
shown in Table 5.

The values on the BOOT pins are latched on the 4th rising edge of SYSCLK after a Reset. It
is up to the user to set the BOOT1 and BOOT0 pins after Reset to select the required boot
mode.

The BOOT pins are also re-sampled when exiting from Standby mode. Consequently they
must be kept in the required Boot mode configuration in Standby mode. After this startup
delay has elapsed, the CPU fetches the top-of-stack value from address 0x0000 0000, then
starts code execution from the boot memory starting from 0x0000 0004.

Due to its fixed memory map, the code area starts from address 0x0000 0000 (accessed
through the ICode/DCode buses) while the data area (SRAM) starts from address
0x2000 0000 (accessed through the system bus). The Cortex-M3 CPU always fetches the
reset vector on the ICode bus, which implies to have the boot space available only in the
code area (typically, Flash memory). STM32F10xxx microcontrollers implement a special
mechanism to be able to boot also from SRAM and not only from main Flash memory and
System memory.

Depending on the selected boot mode main Flash memory, System memory or SRAM is
accessible as follows:

● Boot from main Flash memory: the main Flash memory is aliased in the boot memory
space (0x0000 0000), but still accessible from its original memory space (0x800 0000).
In other words, the Flash memory contents can be accessed starting from address
0x0000 0000 or 0x800 0000.

● Boot from System memory: the System memory is aliased in the boot memory space
(0x0000 0000), but still accessible from its original memory space (0x1FFF F000).

● Boot from the embedded SRAM: SRAM is accessible only at address 0x2000 0000.

Note: When booting from SRAM, in the application initialization code, you have to relocate the
vector table in SRAM using the NVIC exception table and offset register.

Embedded boot loader

The embedded boot loader is used to reprogram the Flash memory using the USART1
serial interface. This program is located in the System memory and is programmed by ST
during production. For further details please refer to AN2606.

Table 5. Boot modes

Boot mode
selection pins Boot mode Aliasing

BOOT1 BOOT0

x 0 Main Flash memory Main Flash memory is selected as boot space

0 1 System memory System memory is selected as boot space

1 1 Embedded SRAM Embedded SRAM is selected as boot space

CRC calculation unit RM0008

42/682

3 CRC calculation unit

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F10xxx family, unless otherwise specified.

3.1 CRC introduction
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.

3.2 CRC main features
● Uses CRC-32 (Ethernet) polynomial: 0x4C11DB7

– X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 +X8 + X7 + X5 + X4 + X2+ X +1

● Single input/output 32-bit data register

● CRC computation done in 4 AHB clock cycles (HCLK)

● General-purpose 8-bit register (can be used for temporary storage)

The block diagram is shown in Figure 2.

Figure 2. CRC calculation unit block diagram

AHB bus

32-bit (read access)

Data register (output)

CRC computation (polynomial: 0x4C11DB7)

32-bit (write access)

Data register (input)

ai14968

RM0008 CRC calculation unit

 43/682

3.3 CRC functional description
The CRC calculation unit mainly consists of a single 32-bit data register, which:

● is used as an input register to enter new data in the CRC calculator (when writing into
the register)

● holds the result of the previous CRC calculation (when reading the register)

Each write operation into the data register creates a combination of the previous CRC value
and the new one (CRC computation is done on the whole 32-bit data word, and not byte per
byte).

The CPU is stalled during the computation, thus allowing back-to-back write accesses or
consecutive write and read accesses, without having to insert software wait cycles.

The CRC calculator can be reset to FFFF FFFFh with the RESET control bit in the CRC_CR
register. This operation does not affect the contents of the CRC_IDR register.

3.4 CRC registers
The CRC calculation unit contains two data registers and a control register.

3.4.1 Data register (CRC_DR)

Address offset: 0x00

Reset value: 0xFFFF FFFF

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DR [31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DR [15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 Data register bits
Used as an input register when writing new data into the CRC calculator.
Holds the previous CRC calculation result when it is read.

CRC calculation unit RM0008

44/682

3.4.2 Independent data register (CRC_IDR)

Address offset: 0x04

Reset value: 0x0000 0000

3.4.3 Control register (CRC_CR)

Address offset: 0x08

Reset value: 0x0000 0000

3.4.4 CRC register map

The following table provides the CRC register map and reset values.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
IDR[7:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved

Bits 7:0 General-purpose 8-bit data register bits
Can be used as a temporary storage location for one byte.
This register is not affected by CRC resets generated by the RESET bit in the CRC_CR
register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RESET

w

Bits 31:1 Reserved

Bit 0
RESET bit

Resets the CRC calculation unit and sets the data register to FFFF FFFFh.
This bit can only be set, it is automatically cleared by hardware.

Table 6. CRC calculation unit register map and reset values

Offset Register 31-24 23-16 15-8 7 6 5 4 3 2 1 0

0x00
CRC_DR
Reset value

Data register
0xFFFF FFFF

0x04
CRC_IDR
Reset value

Reserved
Independent data register

0x00

0x08
CRC_CR
Reset value

Reserved
Reserved

0
RESET

0

RM0008 Power control (PWR)

 45/682

4 Power control (PWR)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F10xxx family, unless otherwise specified.

4.1 Power supplies
The device requires a 2.0-to-3.6 V operating voltage supply (VDD). An embedded regulator
is used to supply the internal 1.8 V digital power.

The real-time clock (RTC) and backup registers can be powered from the VBAT voltage when
the main VDD supply is powered off.

Figure 3. Power supply overview

Note: 1 VDDA and VSSA must be connected to VDD and VSS, respectively.

A/D converter

VDDA

VDD

VSSA

VREF+

VBAT

VSS

I/O Ring

(VDD)

(from 2.4 V up to VDDA)

BKP registers

Temp. sensor
Reset block

Standby circuitry

PLL

(Wakeup logic,
IWDG)

RTC

Voltage Regulator

Core
Memories

digital
 peripherals

Low voltage detector

VREF-

VDDA domain

VDD domain 1.8 V domain

Backup domain

LSE crystal 32K osc

RCC BDCR register

(VSSA)

(VSS)

Power control (PWR) RM0008

46/682

4.1.1 Independent A/D converter supply and reference voltage

To improve conversion accuracy, the ADC has an independent power supply which can be
separately filtered and shielded from noise on the PCB.

● The ADC voltage supply input is available on a separate VDDA pin.

● An isolated supply ground connection is provided on pin VSSA.

When available (according to package), VREF- must be tied to VSSA.

On 100-pin and 144- pin packages

To ensure a better accuracy on low voltage inputs, the user can connect a separate external
reference voltage ADC input on VREF+ and VREF-. The voltage on VREF+ can range from
2.4 V to VDDA.

On 64-pin packages

The VREF+ and VREF- pins are not available, they are internally connected to the ADC
voltage supply (VDDA) and ground (VSSA).

4.1.2 Battery backup domain

To retain the content of the Backup registers and supply the RTC function when VDD is
turned off, VBAT pin can be connected to an optional standby voltage supplied by a battery or
by another source.

The VBAT pin powers the RTC unit, the LSE oscillator and the PC13 to PC15 IOs, allowing
the RTC to operate even when the main digital supply (VDD) is turned off. The switch to the
VBAT supply is controlled by the Power Down Reset embedded in the Reset block.

Warning: During tRSTTEMPO (temporization at VDD startup) or after a PDR
is detected, the power switch between VBAT and VDD remains
connected to VBAT.
During the startup phase, if VDD is established in less than
tRSTTEMPO (Refer to the datasheet for the value of tRSTTEMPO)
and VDD > VBAT + 0.6 V, a current may be injected into VBAT
through an internal diode connected between VDD and the
power switch (VBAT).
If the power supply/battery connected to the VBAT pin cannot
support this current injection, it is strongly recommended to
connect an external low-drop diode between this power
supply and the VBAT pin.

If no external battery is used in the application, it is recommended to connect VBAT
externally to VDD through a 100 nF external ceramic capacitor (for more details refer to
AN2586).

When the backup domain is supplied by VDD (analog switch connected to VDD), the
following functions are available:

● PC14 and PC15 can be used as either GPIO or LSE pins

● PC13 can be used as GPIO, TAMPER pin, RTC Calibration Clock, RTC Alarm or
second output (refer to Section 5: Backup registers (BKP) on page 58)

RM0008 Power control (PWR)

 47/682

Note: Due to the fact that the switch only sinks a limited amount of current (3 mA), the use of
GPIOs PC13 to PC15 is restricted: only one I/O at a time can be used as an output, the
speed has to be limited to 2 MHz with a maximum load of 30 pF and these IOs must not be
used as a current source (e.g. to drive an LED).

When the backup domain is supplied by VBAT (analog switch connected to VBAT because
VDD is not present), the following functions are available:

● PC14 and PC15 can be used as LSE pins only

● PC13 can be used as TAMPER pin, RTC Alarm or Second output (refer to section
Section 5.4.2: RTC clock calibration register (BKP_RTCCR) on page 60).

4.1.3 Voltage regulator

The voltage regulator is always enabled after Reset. It works in three different modes
depending on the application modes.

● In Run mode, the regulator supplies full power to the 1.8 V domain (core, memories
and digital peripherals).

● In Stop mode the regulator supplies low-power to the 1.8 V domain, preserving
contents of registers and SRAM

● In Standby Mode, the regulator is powered off. The contents of the registers and SRAM
are lost except for the Standby circuitry and the Backup Domain.

4.2 Power supply supervisor

4.2.1 Power on reset (POR)/power down reset (PDR)

The device has an integrated POR/PDR circuitry that allows proper operation starting
from/down to 2 V.

The device remains in Reset mode when VDD/VDDA is below a specified threshold,
VPOR/PDR, without the need for an external reset circuit. For more details concerning the
power on/power down reset threshold, refer to the electrical characteristics of the datasheet.

Power control (PWR) RM0008

48/682

Figure 4. Power on reset/power down reset waveform

4.2.2 Programmable voltage detector (PVD)

You can use the PVD to monitor the VDD/VDDA power supply by comparing it to a threshold
selected by the PLS[2:0] bits in the Power control register (PWR_CR).

The PVD is enabled by setting the PVDE bit.

A PVDO flag is available, in the Power control/status register (PWR_CSR), to indicate if
VDD/VDDA is higher or lower than the PVD threshold. This event is internally connected to
the EXTI line16 and can generate an interrupt if enabled through the EXTI registers. The
PVD output interrupt can be generated when VDD/VDDA drops below the PVD threshold
and/or when VDD/VDDA rises above the PVD threshold depending on EXTI line16
rising/falling edge configuration. As an example the service routine could perform
emergency shutdown tasks.

Figure 5. PVD thresholds

VDD/VDDA

Reset

40 mV
hysteresis

POR

PDR

Temporization
tRSTTEMPO

VDD/VDDA

PVD output

100 mV
hysteresisPVD threshold

RM0008 Power control (PWR)

 49/682

4.3 Low-power modes
By default, the microcontroller is in Run mode after a system or a power Reset. In Run mode
the CPU is clocked by HCLK and the program code is executed. Several low-power modes
are available to save power when the CPU does not need to be kept running, for example
when waiting for an external event. It is up to the user to select the mode that gives the best
compromise between low-power consumption, short startup time and available wakeup
sources.

The STM32F10xxx devices feature three low-power modes:

● Sleep mode (Cortex-M3 core stopped, peripherals kept running)

● Stop mode (all clocks are stopped)

● Standby mode (1.8V domain powered-off)

In addition, the power consumption in Run mode can be reduce by one of the following
means:

● Slowing down the system clocks

● Gating the clocks to the APB and AHB peripherals when they are unused.

4.3.1 Slowing down system clocks

In Run mode the speed of the system clocks (SYSCLK, HCLK, PCLK1, PCLK2) can be
reduced by programming the prescaler registers. These prescalers can also be used to slow
down peripherals before entering Sleep mode.

For more details refer to Section 6.3.2: Clock configuration register (RCC_CFGR).

Table 7. Low-power mode summary

Mode name Entry wakeup
Effect on 1.8V
domain clocks

Effect on
VDD

domain
clocks

Voltage
regulator

Sleep

(Sleep now or
Sleep-on -
exit)

WFI Any interrupt CPU CLK OFF

no effect on other
clocks or analog
clock sources

None ON
WFE Wakeup event

Stop

PDDS and LPDS
bits +
SLEEPDEEP bit
+ WFI or WFE

Any EXTI line
(configured in the
EXTI registers)

All 1.8V domain
clocks OFF

HSI and
HSE
oscillators
OFF

ON or in low-
power mode

(depends on
Power control
register
(PWR_CR))

Standby
PDDS bit +
SLEEPDEEP bit
+ WFI or WFE

WKUP pin rising
edge, RTC alarm,
external reset in
NRST pin,
IWDG reset

OFF

Power control (PWR) RM0008

50/682

4.3.2 Peripheral clock gating

In Run mode, the HCLK and PCLKx for individual peripherals and memories can be stopped
at any time to reduce power consumption.

To further reduce power consumption in Sleep mode the peripheral clocks can be disabled
prior to executing the WFI or WFE instructions.

Peripheral clock gating is controlled by the AHB peripheral clock enable register
(RCC_AHBENR), APB1 peripheral clock enable register (RCC_APB1ENR) and APB2
peripheral clock enable register (RCC_APB2ENR).

4.3.3 Sleep mode

Entering Sleep mode

The Sleep mode is entered by executing the WFI (Wait For Interrupt) or WFE (Wait for
Event) instructions. Two options are available to select the Sleep mode entry mechanism,
depending on the SLEEPONEXIT bit in the Cortex-M3 System Control register:

● Sleep-now: if the SLEEPONEXIT bit is cleared, the MCU enters Sleep mode as soon
as WFI or WFE instruction is executed.

● Sleep-on-exit: if the SLEEPONEXIT bit is set, the MCU enters Sleep mode as soon as
it exits the lowest priority ISR.

Refer to Table 8 and Table 9 for details on how to enter Sleep mode.

Exiting Sleep mode

If the WFI instruction is used to enter Sleep mode, any peripheral interrupt acknowledged by
the nested vectored interrupt controller (NVIC) can wake up the device from Sleep mode.

If the WFE instruction is used to enter Sleep mode, the MCU exits Sleep mode as soon as
an event occurs. The wakeup event can be generated either by:

● enabling an interrupt in the peripheral control register but not in the NVIC, and enabling
the SEVONPEND bit in the Cortex-M3 System Control register. When the MCU
resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC IRQ
channel pending bit (in the NVIC interrupt clear pending register) have to be cleared.

● or configuring an external or internal EXTI line in event mode. When the CPU resumes
from WFE, it is not necessary to clear the peripheral interrupt pending bit or the NVIC
IRQ channel pending bit as the pending bit corresponding to the event line is not set.

This mode offers the lowest wakeup time as no time is wasted in interrupt entry/exit.

Refer to Table 8 and Table 9 for more details on how to exit Sleep mode.

RM0008 Power control (PWR)

 51/682

4.3.4 Stop mode

The Stop mode is based on the Cortex-M3 deepsleep mode combined with peripheral clock
gating. The voltage regulator can be configured either in normal or low-power mode. In Stop
mode, all clocks in the 1.8 V domain are stopped, the PLL, the HSI and the HSE RC
oscillators are disabled. SRAM and register contents are preserved.

Entering Stop mode

Refer to Table 10 for details on how to enter the Stop mode.

To further reduce power consumption in Stop mode, the internal voltage regulator can be
put in low-power mode. This is configured by the LPDS bit of the Power control register
(PWR_CR).

If Flash memory programming is ongoing, the Stop mode entry is delayed until the memory
access is finished.

If an access to the APB domain is ongoing, The Stop mode entry is delayed until the APB
access is finished.

Table 8. Sleep-now

Sleep-now mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:
– SLEEPDEEP = 0 and

– SLEEPONEXIT = 0

Refer to the Cortex™-M3 System Control register.

Mode exit

If WFI was used for entry:

Interrupt: Refer to Table 36: Vector table for other STM32F10xxx devices
If WFE was used for entry

Wakeup event: Refer to Section 8.2.3: Wakeup event management

Wakeup latency None

Table 9. Sleep-on-exit

Sleep-on-exit Description

Mode entry

WFI (wait for interrupt) while:

– SLEEPDEEP = 0 and
– SLEEPONEXIT = 1

Refer to the Cortex™-M3 System Control register.

Mode exit Interrupt: refer to Table 36: Vector table for other STM32F10xxx devices.

Wakeup latency None

Power control (PWR) RM0008

52/682

In Stop mode, the following features can be selected by programming individual control bits:

● Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option. Once started it cannot be stopped except by a Reset. See
Section 16.3 in Section 16: Independent watchdog (IWDG).

● real-time clock (RTC): this is configured by the RTCEN bit in the Backup domain control
register (RCC_BDCR)

● Internal RC oscillator (LSI RC): this is configured by the LSION bit in the Control/status
register (RCC_CSR).

● External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the
Backup domain control register (RCC_BDCR).

The ADC or DAC can also consume power during the Stop mode, unless they are disabled
before entering it. To disable them, the ADON bit in the ADC_CR2 register and the ENx bit
in the DAC_CR register must both be written to 0.

Exiting Stop mode

Refer to Table 10 for more details on how to exit Stop mode.

When exiting Stop mode by issuing an interrupt or a wakeup event, the HSI RC oscillator is
selected as system clock.

When the voltage regulator operates in low-power mode, an additional startup delay is
incurred when waking up from Stop mode. By keeping the internal regulator ON during Stop
mode, the consumption is higher although the startup time is reduced.

4.3.5 Standby mode

The Standby mode allows to achieve the lowest power consumption. It is based on the
Cortex-M3 deepsleep mode, with the voltage regulator disabled. The 1.8 V domain is
consequently powered off. The PLL, the HSI oscillator and the HSE oscillator are also

Table 10. Stop mode

Stop mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– Set SLEEPDEEP bit in Cortex™-M3 System Control register

– Clear PDDS bit in Power Control register (PWR_CR)
– Select the voltage regulator mode by configuring LPDS bit in PWR_CR

Note: To enter Stop mode, all EXTI Line pending bits (in Pending register
(EXTI_PR)) and RTC Alarm flag must be reset. Otherwise, the Stop mode
entry procedure is ignored and program execution continues.

Mode exit

If WFI was used for entry:
Any EXTI Line configured in Interrupt mode (the corresponding EXTI
Interrupt vector must be enabled in the NVIC). Refer to Table 36: Vector
table for other STM32F10xxx devices on page 119.

If WFE was used for entry:
Any EXTI Line configured in event mode. Refer to Section 8.2.3: Wakeup
event management on page 123

Wakeup latency HSI RC wakeup time + regulator wakeup time from Low-power mode

RM0008 Power control (PWR)

 53/682

switched off. SRAM and register contents are lost except for registers in the Backup domain
and Standby circuitry (see Figure 3).

Entering Standby mode

Refer to Table 11 for more details on how to enter Standby mode.

In Standby mode, the following features can be selected by programming individual control
bits:

● Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option. Once started it cannot be stopped except by a reset. See
Section 16.3 in Section 16: Independent watchdog (IWDG).

● real-time clock (RTC): this is configured by the RTCEN bit in the Backup domain control
register (RCC_BDCR)

● Internal RC oscillator (LSI RC): this is configured by the LSION bit in the Control/status
register (RCC_CSR).

● External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the
Backup domain control register (RCC_BDCR)

Exiting Standby mode

The microcontroller exits Standby mode when an external Reset (NRST pin), IWDG Reset,
a rising edge on WKUP pin or an RTC alarm occurs. All registers are reset after wakeup
from Standby except for Power control/status register (PWR_CSR).

After waking up from Standby mode, program execution restarts in the same way as after a
Reset (boot pins sampling, vector reset is fetched, etc.). The SBF status flag in the Power
control/status register (PWR_CSR) indicates that the MCU was in Standby mode.

Refer to Table 11 for more details on how to exit Standby mode.

I/O states in Standby mode

In Standby mode, all I/O pins are high impedance except:

● Reset pad (still available)

● TAMPER pin if configured for tamper or calibration out

● WKUP pin, if enabled

Table 11. Standby mode

Standby mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– Set SLEEPDEEP in Cortex™-M3 System Control register

– Set PDDS bit in Power Control register (PWR_CR)
– Clear WUF bit in Power Control/Status register (PWR_CSR)

Mode exit
WKUP pin rising edge, RTC alarm, external Reset in NRST pin, IWDG
Reset.

Wakeup latency Regulator start up. Reset phase

Power control (PWR) RM0008

54/682

Debug mode

By default, the debug connection is lost if the application puts the MCU in Stop or Standby
mode while the debug features are used. This is due to the fact that the Cortex™-M3 core is
no longer clocked.

However, by setting some configuration bits in the DBGMCU_CR register, the software can
be debugged even when using the low-power modes extensively. For more details, refer to
Section 26.15.1: Debug support for low-power modes.

4.3.6 Auto-wakeup (AWU) from low-power mode

The RTC can be used to wakeup the MCU from low-power mode without depending on an
external interrupt (Auto-wakeup mode). The RTC provides a programmable time base for
waking up from Stop or Standby mode at regular intervals. For this purpose, two of the three
alternative RTC clock sources can be selected by programming the RTCSEL[1:0] bits in the
Backup domain control register (RCC_BDCR):

● Low-power 32.768 kHz external crystal oscillator (LSE OSC).
This clock source provides a precise time base with very low-power consumption (less
than 1µA added consumption in typical conditions)

● Low-power internal RC Oscillator (LSI RC)
This clock source has the advantage of saving the cost of the 32.768 kHz crystal. This
internal RC Oscillator is designed to add minimum power consumption.

To wakeup from Stop mode with an RTC alarm event, it is necessary to:

● Configure the EXTI Line 17 to be sensitive to rising edge

● Configure the RTC to generate the RTC alarm

To wakeup from Standby mode, there is no need to configure the EXTI Line 17.

4.4 Power control registers

4.4.1 Power control register (PWR_CR)

Address offset: 0x00

Reset value: 0x0000 0000 (reset by wakeup from Standby mode)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved DBP PLS[2:0] PVDE CSBF CWUF PDDS LPDS

Res rw rw rw rw rw rc_w1 rc_w1 rw rw

Bits 31:9 Reserved, always read as 0.

RM0008 Power control (PWR)

 55/682

Bit 8 DBP: Disable backup domain write protection.
In reset state, the RTC and backup registers are protected against parasitic write access. This
bit must be set to enable write access to these registers.

0: Access to RTC and Backup registers disabled
1: Access to RTC and Backup registers enabled

Bits 7:5 PLS[2:0]: PVD level selection.
These bits are written by software to select the voltage threshold detected by the Power
Voltage Detector

000: 2.2V
001: 2.3V
010: 2.4V
011: 2.5V
100: 2.6V
101: 2.7V
110: 2.8V
111: 2.9V

Note: Refer to the electrical characteristics of the datasheet for more details.

Bit 4 PVDE: Power voltage detector enable.
This bit is set and cleared by software.

0: PVD disabled
1: PVD enabled

Bit 3 CSBF: Clear standby flag.

This bit is always read as 0.

0: No effect
1: Clear the SBF Standby Flag (write).

Bit 2 CWUF: Clear wakeup flag.

This bit is always read as 0.
0: No effect
1: Clear the WUF Wakeup Flag after 2 System clock cycles. (write)

Bit 1 PDDS: Power down deepsleep.
This bit is set and cleared by software. It works together with the LPDS bit.

0: Enter Stop mode when the CPU enters Deepsleep. The regulator status depends on the
LPDS bit.
1: Enter Standby mode when the CPU enters Deepsleep.

Bit 0 LPDS: Low-power deepsleep.
This bit is set and cleared by software. It works together with the PDDS bit.

0: Voltage regulator on during Stop mode
1: Voltage regulator in low-power mode during Stop mode

Power control (PWR) RM0008

56/682

4.4.2 Power control/status register (PWR_CSR)

Address offset: 0x04

Reset value: 0x0000 0000 (not reset by wakeup from Standby mode)

Additional APB cycles are needed to read this register versus a standard APB read.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved EWUP Reserved PVDO SBF WUF

Res. rw Res. r r r

Bits 31:9 Reserved, always read as 0.

Bit 8 EWUP: Enable WKUP pin

This bit is set and cleared by software.

0: WKUP pin is used for general purpose I/O. An event on the WKUP pin does not wakeup
the device from Standby mode.
1: WKUP pin is used for wakeup from Standby mode and forced in input pull down
configuration (rising edge on WKUP pin wakes-up the system from Standby mode).

Note: This bit is reset by a system Reset.

Bits 7:3 Reserved, always read as 0.

Bit 2 PVDO: PVD output
This bit is set and cleared by hardware. It is valid only if PVD is enabled by the PVDE bit.

0: VDD/VDDA is higher than the PVD threshold selected with the PLS[2:0] bits.
1: VDD/VDDA is lower than the PVD threshold selected with the PLS[2:0] bits.

Note: The PVD is stopped by Standby mode. For this reason, this bit is equal to 0 after
Standby or reset until the PVDE bit is set.

Bit 1 SBF: Standby flag

This bit is set by hardware and cleared only by a POR/PDR (power on reset/power down reset)
or by setting the CSBF bit in the Power control register (PWR_CR)

0: Device has not been in Standby mode
1: Device has been in Standby mode

Bit 0 WUF: Wakeup flag

This bit is set by hardware and cleared only by a POR/PDR (power on reset/power down
reset) or by setting the CWUF bit in the Power control register (PWR_CR)
0: No wakeup event occurred
1: A wakeup event was received from the WKUP pin or from the RTC alarm

Note: An additional wakeup event is detected if the WKUP pin is enabled (by setting the
EWUP bit) when the WKUP pin level is already high.

RM0008 Power control (PWR)

 57/682

4.4.3 PWR register map

The following table summarizes the PWR registers.

Refer to Table 1 on page 35 for the register boundary addresses.

Table 12. PWR - register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x000
PWR_CR

Reserved D
B

P PLS[2:0]

P
V

D
E

C
S

B
F

C
W

U
F

P
D

D
S

LP
D

S

Reset value 0 0 0 0 0 0 0 0 0

0x004
PWR_CSR

Reserved

E
W

U
P

Reserved

P
V

D
O

S
B

F

W
U

F

Reset value 0 0 0 0

Backup registers (BKP) RM0008

58/682

5 Backup registers (BKP)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This Section applies to the whole STM32F10xxx family, unless otherwise specified.

5.1 BKP introduction
The backup registers are forty two 16-bit registers for storing 84 bytes of user application
data. They are implemented in the backup domain that remains powered on by VBAT when
the VDD power is switched off. They are not reset when the device wakes up from Standby
mode or by a system reset or power reset.

In addition, the BKP control registers are used to manage the Tamper detection feature and
RTC calibration.

After reset, access to the Backup registers and RTC is disabled and the Backup domain
(BKP) is protected against possible parasitic write access. To enable access to the Backup
registers and the RTC, proceed as follows:

● enable the power and backup interface clocks by setting the PWREN and BKPEN bits
in the RCC_APB1ENR register

● set the DBP bit the Power Control Register (PWR_CR) to enable access to the Backup
registers and RTC.

5.2 BKP main features
● 20-byte data registers (in medium-density and low-density devices) or 84-byte data

registers (in high-density devices)

● Status/control register for managing tamper detection with interrupt capability

● Calibration register for storing the RTC calibration value

● Possibility to output the RTC Calibration Clock, RTC Alarm pulse or Second pulse on
TAMPER pin PC13 (when this pin is not used for tamper detection)

RM0008 Backup registers (BKP)

 59/682

5.3 BKP functional description

5.3.1 Tamper detection

The TAMPER pin generates a Tamper detection event when the pin changes from 0 to 1 or
from 1 to 0 depending on the TPAL bit in the Backup control register (BKP_CR). A tamper
detection event resets all data backup registers.

However to avoid losing Tamper events, the signal used for edge detection is logically
ANDed with the Tamper enable in order to detect a Tamper event in case it occurs before
the TAMPER pin is enabled.

● When TPAL=0: If the TAMPER pin is already high before it is enabled (by setting TPE
bit), an extra Tamper event is detected as soon as the TAMPER pin is enabled (while
there was no rising edge on the TAMPER pin after TPE was set)

● When TPAL=1: If the TAMPER pin is already low before it is enabled (by setting the
TPE bit), an extra Tamper event is detected as soon as the TAMPER pin is enabled
(while there was no falling edge on the TAMPER pin after TPE was set)

By setting the TPIE bit in the BKP_CSR register, an interrupt is generated when a Tamper
detection event occurs.

After a Tamper event has been detected and cleared, the TAMPER pin should be disabled
and then re-enabled with TPE before writing to the backup data registers (BKP_DRx) again.
This prevents software from writing to the backup data registers (BKP_DRx), while the
TAMPER pin value still indicates a Tamper detection. This is equivalent to a level detection
on the TAMPER pin.

Note: Tamper detection is still active when VDD power is switched off. To avoid unwanted resetting
of the data backup registers, the TAMPER pin should be externally tied to the correct level.

5.3.2 RTC calibration

For measurement purposes, the RTC clock with a frequency divided by 64 can be output on
the TAMPER pin. This is enabled by setting the CCO bit in the RTC clock calibration register
(BKP_RTCCR).

The clock can be slowed down by up to 121 ppm by configuring CAL[6:0] bits.

For more details about RTC calibration and how to use it to improve timekeeping accuracy,
please refer to AN2604 "STM32F101xx and STM32F103xx RTC calibration”.

Backup registers (BKP) RM0008

60/682

5.4 BKP registers
Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

5.4.1 Backup data register x (BKP_DRx) (x = 1 ..42)

Address offset: 0x04 to 0x28, 0x40 to 0xBC

Reset value: 0x0000 0000

5.4.2 RTC clock calibration register (BKP_RTCCR)

Address offset: 0x2C

Reset value: 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 D[15:0] Backup data
These bits can be written with user data.

Note: The BKP_DRx registers are not reset by a System reset or Power reset or when the
device wakes up from Standby mode.
They are reset by a Backup Domain reset or by a TAMPER pin event (if the TAMPER
pin function is activated).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ASOS ASOE CCO CAL[6:0]

rw rw rw rw rw rw rw rw rw rw

Bits 15:10 Reserved, always read as 0.

Bit 9 ASOS: Alarm or second output selection
When the ASOE bit is set, the ASOS bit can be used to select whether the signal output on
the TAMPER pin is the RTC Second pulse signal or the Alarm pulse signal:
0: RTC Alarm pulse output selected
1: RTC Second pulse output selected

Note: This bit is reset only by a Backup domain reset.

RM0008 Backup registers (BKP)

 61/682

5.4.3 Backup control register (BKP_CR)

Address offset: 0x30

Reset value: 0x0000 0000

Note: Setting the TPAL and TPE bits at the same time is always safe, however resetting both at
the same time can generate a spurious Tamper event. For this reason it is recommended to
change the TPAL bit only when the TPE bit is reset.

Bit 8 ASOE: Alarm or second output enable
Setting this bit outputs either the RTC Alarm pulse signal or the Second pulse signal on the
TAMPER pin depending on the ASOS bit.
The output pulse duration is one RTC clock period. The TAMPER pin must not be enabled
while the ASOE bit is set.

Note: This bit is reset only by a Backup domain reset.

Bit 7 CCO: Calibration clock output

0: No effect
1: Setting this bit outputs the RTC clock with a frequency divided by 64 on the TAMPER pin.
The TAMPER pin must not be enabled while the CCO bit is set in order to avoid unwanted
Tamper detection.

Note: This bit is reset when the VDD supply is powered off.

Bit 6:0 CAL[6:0]: Calibration value
This value indicates the number of clock pulses that will be ignored every 2^20 clock pulses.
This allows the calibration of the RTC, slowing down the clock by steps of 1000000/2^20
PPM.
The clock of the RTC can be slowed down from 0 to 121PPM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TPAL TPE

rw rw

Bits 15:2 Reserved, always read as 0.

Bit 1 TPAL: TAMPER pin active level
0: A high level on the TAMPER pin resets all data backup registers (if TPE bit is set).
1: A low level on the TAMPER pin resets all data backup registers (if TPE bit is set).

Bit 0 TPE: TAMPER pin enable

0: The TAMPER pin is free for general purpose I/O
1: Tamper alternate I/O function is activated.

Backup registers (BKP) RM0008

62/682

5.4.4 Backup control/status register (BKP_CSR)

Address offset: 0x34

Reset value: 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TIF TEF

Reserved
TPIE CTI CTE

r r rw w w

Bits 15:10 Reserved, always read as 0.

Bit 9 TIF: Tamper interrupt flag

This bit is set by hardware when a Tamper event is detected and the TPIE bit is set. It is
cleared by writing 1 to the CTI bit (also clears the interrupt). It is also cleared if the TPIE bit
is reset.
0: No Tamper interrupt
1: A Tamper interrupt occurred

Note: This bit is reset only by a system reset and wakeup from Standby mode.

Bit 8 TEF: Tamper event flag

This bit is set by hardware when a Tamper event is detected. It is cleared by writing 1 to the
CTE bit.
0: No Tamper event
1: A Tamper event occurred

Note: A Tamper event resets all the BKP_DRx registers. They are held in reset as long as the
TEF bit is set. If a write to the BKP_DRx registers is performed while this bit is set, the
value will not be stored.

Bits 7:3 Reserved, always read as 0.

Bit 2 TPIE: TAMPER pin interrupt enable

0: Tamper interrupt disabled
1: Tamper interrupt enabled (the TPE bit must also be set in the BKP_CR register

Note 1: A Tamper interrupt does not wake up the core from low-power modes.

Note 2: This bit is reset only by a system reset and wakeup from Standby mode.

Bit 1 CTI: Clear tamper interrupt

This bit is write only, and is always read as 0.
0: No effect
1: Clear the Tamper interrupt and the TIF Tamper interrupt flag.

Bit 0 CTE: Clear tamper event

This bit is write only, and is always read as 0.
0: No effect
1: Reset the TEF Tamper event flag (and the Tamper detector)

RM0008 Backup registers (BKP)

 63/682

5.4.5 BKP register map

BKP registers are mapped as 16-bit addressable registers as described in the table below:

Table 13. BKP register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00 Reserved

0x04
BKP_DR1

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08
BKP_DR2

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
BKP_DR3

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
BKP_DR4

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
BKP_DR5

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
BKP_DR6

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
BKP_DR7

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
BKP_DR8

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x24
BKP_DR9

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
BKP_DR10

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2
BKP_RTCCR Reserved

A
S

O
S

A
S

O
E

C
C

O CAL[6:0]

Reset value 0 0 0 0 0 0 0 0 0 0

0x30
BKP_CR

Reserved T
PA

L

T
P

E

Reset value 0 0

0x34
BKP_CSR

Reserved T
IF

T
E

F

Reserved T
P

IE

C
T

I

C
T

E

Reset value 0 0 0 0 0

0x38 Reserved

0x3C Reserved

0x40
BKP_DR11

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Backup registers (BKP) RM0008

64/682

0x44
BKP_DR12

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48
BKP_DR13

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x4C
BKP_DR14

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x50
BKP_DR15

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x54
BKP_DR16

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x58
BKP_DR17

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x5C
BKP_DR18

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x60 BKP_DR19
Reserved

D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x64
BKP_DR20

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x68
BKP_DR21

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x6C
BKP_DR22

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x70
BKP_DR23

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x74
BKP_DR24

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x78
BKP_DR25

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x7C
BKP_DR26

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x80
BKP_DR27

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x84
BKP_DR28

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 13. BKP register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RM0008 Backup registers (BKP)

 65/682

Refer to Table 1 on page 35 for the register boundary addresses.

0x88 BKP_DR29
Reserved

D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x8C
BKP_DR30

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x90
BKP_DR31

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x94
BKP_DR32

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x98
BKP_DR33

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x9C
BKP_DR34

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0xA0
BKP_DR35

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0xA4
BKP_DR36

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0xA8
BKP_DR37

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0xAC
BKP_DR38

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0xB0 BKP_DR39
Reserved

D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0xB4
BKP_DR40

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0xB8 BKP_DR41
Reserved

D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0xBC
BKP_DR42

Reserved
D[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 13. BKP register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset and clock control (RCC) RM0008

66/682

6 Reset and clock control (RCC)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This Section applies to the whole STM32F10xxx family, unless otherwise specified.

6.1 Reset
There are three types of reset, defined as system Reset, power Reset and backup domain
Reset.

6.1.1 System reset

A system reset sets all registers to their reset values except the reset flags in the clock
controller CSR register and the registers in the Backup domain (see Figure 3).

A system reset is generated when one of the following events occurs:

1. A low level on the NRST pin (external reset)

2. Window watchdog end of count condition (WWDG reset)

3. Independent watchdog end of count condition (IWDG reset)

4. A software reset (SW reset) (see Section : Software reset)

5. Low-power management reset (see Section : Low-power management reset)

The reset source can be identified by checking the reset flags in the Control/Status register,
RCC_CSR (see Section 6.3.10: Control/status register (RCC_CSR)).

Software reset

The SYSRESETREQ bit in Cortex™-M3 Application Interrupt and Reset Control Register
must be set to force a software reset on the device. Refer to the Cortex™-M3 technical
reference manual for more details.

Low-power management reset

There are two ways to generate a low-power management reset:

1. Reset generated when entering Standby mode:

This type of reset is enabled by resetting nRST_STDBY bit in User Option Bytes. In this
case, whenever a Standby mode entry sequence is successfully executed, the device
is reset instead of entering Standby mode.

2. Reset when entering Stop mode:

This type of reset is enabled by resetting NRST_STOP bit in User Option Bytes. In this
case, whenever a Stop mode entry sequence is successfully executed, the device is
reset instead of entering Stop mode.

RM0008 Reset and clock control (RCC)

 67/682

For further information on the User Option Bytes, refer to the STM32F10xxx Flash
programming manual.

6.1.2 Power reset

A power reset is generated when one of the following events occurs:

1. Power-on/power-down reset (POR/PDR reset)

2. When exiting Standby mode

A power reset sets all registers to their reset values except the Backup domain (see
Figure 3)

These sources act on the NRST pin and it is always kept low during the delay phase. The
RESET service routine vector is fixed at address 0x0000_0004 in the memory map. For more
details, refer to Table 36: Vector table for other STM32F10xxx devices on page 119.

Figure 6. Reset circuit

The Backup domain has two specific resets that affect only the Backup domain (see
Figure 3).

6.1.3 Backup domain reset

A backup domain reset is generated when one of the following events occurs:

1. Software reset, triggered by setting the BDRST bit in the Backup domain control
register (RCC_BDCR).

2. VDD or VBAT power on, if both supplies have previously been powered off.

6.2 Clocks
Three different clock sources can be used to drive the system clock (SYSCLK):

● HSI oscillator clock

● HSE oscillator clock

● PLL clock

The devices have the following two secondary clock sources:

● 40 kHz low speed internal RC (LSI RC) which drives the independent watchdog and
optionally the RTC used for Auto-wakeup from Stop/Standby mode.

● 32.768 kHz low speed external crystal (LSE crystal) which optionally drives the real-
time clock (RTCCLK)

NRST

RPU

VDD/VDDA

WWDG Reset
IWDG ResetPulse

generator Power Reset

External
Reset

(min 20 µs)

System ResetFilter

Software Reset
Low-power management Reset

Reset and clock control (RCC) RM0008

68/682

Each clock source can be switched on or off independently when it is not used, to optimize
power consumption.

Figure 7. Clock tree

1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is
64 MHz.

Several prescalers allow the configuration of the AHB frequency, the high speed APB
(APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and
the APB2 domains is 72 MHz. The maximum allowed frequency of the APB1 domain is
36 MHz. The SDIO AHB interface is clocked with a fixed frequency equal to HCLK/2.

The RCC feeds the Cortex System Timer (SysTick) external clock with the AHB clock
divided by 8. The SysTick can work either with this clock or with the Cortex clock (AHB),

HSE OSC

4-16 MHz

OSC_IN

OSC_OUT

OSC32_IN

OSC32_OUT

LSE OSC
32.768 kHz

HSI RC
8 MHz

LSI RC
40 kHz

to Independent Watchdog (IWDG)

PLL
x2, x3, x4

PLLMUL

HSE = High Speed External clock signal

LSE = Low Speed External clock signal

LSI = Low Speed Internal clock signal

HSI = High Speed Internal clock signal

Legend:

MCO
Clock Output
Main

PLLXTPRE

/2

..., x16 AHB
Prescaler
/1, 2..512

/2 PLLCLK

HSI

HSE

APB1
Prescaler

/1, 2, 4, 8, 16

ADC
Prescaler
/2, 4, 6, 8

ADCCLK

PCLK1

HCLK

PLLCLK

to AHB bus, core,
memory and DMA

USBCLK
to USB interface

USB
Prescaler

/1, 1.5

to ADC1, 2 or 3
LSE

LSI

HSI

/128

/2

HSI

HSE
peripherals
to APB1

Peripheral Clock
Enable (20 bits)

Enable (6 bits)
Peripheral Clock

APB2
Prescaler

/1, 2, 4, 8, 16

PCLK2

TIM1 & 8 timers to TIM1 and TIM8

peripherals to APB2
Peripheral Clock

Enable (15 bits)

Enable (2 bit)
Peripheral Clock

48 MHz

72 MHz max

72 MHz

72 MHz max

36 MHz max

to RTC

PLLSRC SW

MCO

CSS

to Cortex System timer/8

Clock
Enable (4 bits)

SYSCLK

 max

RTCCLK

RTCSEL[1:0]

TIMxCLK

TIMXCLK

IWDGCLK

SYSCLK

FCLK Cortex
free running clock

/2

TIM2,3,4,5,6,7
to TIM2,3,4,5,6 and 7

To SDIO AHB interface
Peripheral clock
enable

HCLK/2

to FSMC
FSMCCLK

to SDIO
Peripheral clock
enable

Peripheral clock
enable

to I2S3

to I2S2
Peripheral clock
enable

Peripheral clock
enable

I2S3CLK

I2S2CLK

SDIOCLK

ai14752b

If (APB1 prescaler =1) x1
else x2

If (APB2 prescaler =1) x1
else x2

RM0008 Reset and clock control (RCC)

 69/682

configurable in the SysTick Control and Status Register. The ADCs are clocked by the clock
of the High Speed domain (APB2) divided by 2, 4, 6 or 8.

The timer clock frequencies are automatically fixed by hardware. There are two cases:

1. if the APB prescaler is 1, the timer clock frequencies are set to the same frequency as
that of the APB domain to which the timers are connected.

2. otherwise, they are set to twice (×2) the frequency of the APB domain to which the
timers are connected.

FCLK acts as Cortex™-M3 free running clock. For more details refer to the ARM Cortex™-
M3 Technical Reference Manual.

6.2.1 HSE clock

The high speed external clock signal (HSE) can be generated from two possible clock
sources:

● HSE external crystal/ceramic resonator

● HSE user external clock

The resonator and the load capacitors have to be placed as close as possible to the
oscillator pins in order to minimize output distortion and startup stabilization time. The
loading capacitance values must be adjusted according to the selected oscillator.

Figure 8. HSE/ LSE clock sources

Hardware configuration

E
xt

er
n

al
C

lo
ck

C
ry

st
al

/C
er

am
ic

R
es

o
n

at
o

rs

OSC_OUT

EXTERNAL
SOURCE

(HiZ)

OSC_IN OSC_OUT

LOAD
CAPACITORS

CL2CL1

Reset and clock control (RCC) RM0008

70/682

External source (HSE bypass)

In this mode, an external clock source must be provided. It can have a frequency of up to 25
MHz. You select this mode by setting the HSEBYP and HSEON bits in the Clock control
register (RCC_CR). The external clock signal (square, sinus or triangle) with ~50% duty
cycle has to drive the OSC_IN pin while the OSC_OUT pin should be left hi-Z. See Figure 8.

External crystal/ceramic resonator (HSE crystal)

The 4 to 16 MHz external oscillator has the advantage of producing a very accurate rate on
the main clock.

The associated hardware configuration is shown in Figure 8. Refer to the electrical
characteristics section of the datasheet for more details.

The HSERDY flag in the Clock control register (RCC_CR) indicates if the high-speed
external oscillator is stable or not. At startup, the clock is not released until this bit is set by
hardware. An interrupt can be generated if enabled in the Clock interrupt register
(RCC_CIR).

The HSE Crystal can be switched on and off using the HSEON bit in the Clock control
register (RCC_CR).

6.2.2 HSI clock

The HSI clock signal is generated from an internal 8 MHz RC Oscillator and can be used
directly as a system clock or divided by 2 to be used as PLL input.

The HSI RC oscillator has the advantage of providing a clock source at low cost (no external
components). It also has a faster startup time than the HSE crystal oscillator however, even
with calibration the frequency is less accurate than an external crystal oscillator or ceramic
resonator.

Calibration

RC oscillator frequencies can vary from one chip to another due to manufacturing process
variations, this is why each device is factory calibrated by ST for 1% accuracy at TA=25°C.

After reset, the factory calibration value is loaded in the HSICAL[7:0] bits in the Clock control
register (RCC_CR).

If the application is subject to voltage or temperature variations this may affect the RC
oscillator speed. You can trim the HSI frequency in the application using the HSITRIM[4:0]
bits in the Clock control register (RCC_CR).

The HSIRDY flag in the Clock control register (RCC_CR) indicates if the HSI RC is stable or
not. At startup, the HSI RC output clock is not released until this bit is set by hardware.

The HSI RC can be switched on and off using the HSION bit in the Clock control register
(RCC_CR).

The HSI signal can also be used as a backup source (Auxiliary clock) if the HSE crystal
oscillator fails. Refer to Section 6.2.7: Clock security system (CSS) on page 72.

6.2.3 PLL

The internal PLL can be used to multiply the HSI RC output or HSE crystal output clock
frequency. Refer to Figure 7 and Clock control register (RCC_CR).

RM0008 Reset and clock control (RCC)

 71/682

The PLL configuration (selection of HSI oscillator divided by 2 or HSE oscillator for PLL
input clock, and multiplication factor) must be done before enabling the PLL. Once the PLL
enabled, these parameters cannot be changed.

An interrupt can be generated when the PLL is ready if enabled in the Clock interrupt
register (RCC_CIR).

If the USB interface is used in the application, the PLL must be programmed to output 48 or
72 MHz. This is needed to provide a 48 MHz USBCLK.

6.2.4 LSE clock

The LSE crystal is a 32.768 kHz Low Speed External crystal or ceramic resonator. It has the
advantage providing a low-power but highly accurate clock source to the real-time clock
peripheral (RTC) for clock/calendar or other timing functions.

The LSE crystal is switched on and off using the LSEON bit in Backup domain control
register (RCC_BDCR).

The LSERDY flag in the Backup domain control register (RCC_BDCR) indicates if the LSE
crystal is stable or not. At startup, the LSE crystal output clock signal is not released until
this bit is set by hardware. An interrupt can be generated if enabled in the Clock interrupt
register (RCC_CIR).

External source (LSE bypass)

In this mode, an external clock source must be provided. It must have a frequency of
32.768 kHz. You select this mode by setting the LSEBYP and LSEON bits in the Backup
domain control register (RCC_BDCR). The external clock signal (square, sinus or triangle)
with ~50% duty cycle has to drive the OSC32_IN pin while the OSC32_OUT pin should be
left Hi-Z. See Figure 8.

6.2.5 LSI clock

The LSI RC acts as an low-power clock source that can be kept running in Stop and
Standby mode for the independent watchdog (IWDG) and Auto-wakeup unit (AWU). The
clock frequency is around 40 kHz (between 30 kHz and 60 kHz). For more details, refer to
the electrical characteristics section of the datasheets.

The LSI RC can be switched on and off using the LSION bit in the Control/status register
(RCC_CSR).

The LSIRDY flag in the Control/status register (RCC_CSR) indicates if the low-speed
internal oscillator is stable or not. At startup, the clock is not released until this bit is set by
hardware. An interrupt can be generated if enabled in the Clock interrupt register
(RCC_CIR).

Note: LSI calibration is only available on high-density devices.

LSI calibration

The frequency dispersion of the Low Speed Internal RC (LSI) oscillator can be calibrated to
have accurate RTC time base and/or IWDG timeout (when LSI is used as clock source for
these peripherals) with an acceptable accuracy.

This calibration is performed by measuring the LSI clock frequency with respect to TIM5
input clock (TIM5CLK). According to this measurement done at the precision of the HSE

Reset and clock control (RCC) RM0008

72/682

oscillator, the software can adjust the programmable 20-bit prescaler of the RTC to get an
accurate time base or can compute accurate IWDG timeout.

Use the following procedure to calibrate the LSI:

1. Enable TIM5 timer and configure channel4 in input capture mode

2. Set the TIM5CH4_IREMAP bit in the AFIO_MAPR register to connect the LSI clock
internally to TIM5 channel4 input capture for calibration purpose.

3. Measure the frequency of LSI clock using the TIM5 Capture/compare 4 event or
interrupt.

4. Use the measured LSI frequency to update the 20-bit prescaler of the RTC depending
on the desired time base and/or to compute the IWDG timeout.

6.2.6 System clock (SYSCLK) selection

After a system reset, the HSI oscillator is selected as system clock. When a clock source is
used directly or through the PLL as system clock, it is not possible to stop it.

A switch from one clock source to another occurs only if the target clock source is ready
(clock stable after startup delay or PLL locked). If a clock source which is not yet ready is
selected, the switch will occur when the clock source will be ready. Status bits in the Clock
control register (RCC_CR) indicate which clock(s) is (are) ready and which clock is currently
used as system clock.

6.2.7 Clock security system (CSS)

Clock Security System can be activated by software. In this case, the clock detector is
enabled after the HSE oscillator startup delay, and disabled when this oscillator is stopped.

If a failure is detected on the HSE oscillator clock, this oscillator is automatically disabled, a
clock failure event is sent to the break input of the TIM1 Advanced control timer and an
interrupt is generated to inform the software about the failure (Clock Security System
Interrupt CSSI), allowing the MCU to perform rescue operations. The CSSI is linked to the
Cortex™-M3 NMI (Non-Maskable Interrupt) exception vector.

Note: Once the CSS is enabled and if the HSE clock fails, the CSS interrupt occurs and an NMI is
automatically generated. The NMI will be executed indefinitely unless the CSS interrupt
pending bit is cleared. As a consequence, in the NMI ISR user must clear the CSS interrupt
by setting the CSSC bit in the Clock interrupt register (RCC_CIR).

If the HSE oscillator is used directly or indirectly as the system clock (indirectly means: it is
used as PLL input clock, and the PLL clock is used as system clock), a detected failure
causes a switch of the system clock to the HSI oscillator and the disabling of the external
HSE oscillator. If the HSE oscillator clock (divided or not) is the clock entry of the PLL used
as system clock when the failure occurs, the PLL is disabled too.

6.2.8 RTC clock

The RTCCLK clock source can be either the HSE/128, LSE or LSI clocks. This is selected
by programming the RTCSEL[1:0] bits in the Backup domain control register (RCC_BDCR).
This selection cannot be modified without resetting the Backup domain.

RM0008 Reset and clock control (RCC)

 73/682

The LSE clock is in the Backup domain, whereas the HSE and LSI clocks are not.
Consequently:

● If LSE is selected as RTC clock:

– The RTC continues to work even if the VDD supply is switched off, provided the
VBAT supply is maintained.

● If LSI is selected as Auto-Wakeup unit (AWU) clock:

– The AWU state is not guaranteed if the VDD supply is powered off. Refer to
Section 6.2.5: LSI clock on page 71 for more details on LSI calibration.

● If the HSE clock divided by 128 is used as RTC clock:

– The RTC state is not guaranteed if the VDD supply is powered off or if the internal
voltage regulator is powered off (removing power from the 1.8 V domain).

6.2.9 Watchdog clock

If the Independent watchdog (IWDG) is started by either hardware option or software
access, the LSI oscillator is forced ON and cannot be disabled. After the LSI oscillator
temporization, the clock is provided to the IWDG.

6.2.10 Clock-out capability

The microcontroller clock output (MCO) capability allows the clock to be output onto the
external MCO pin. The configuration registers of the corresponding GPIO port must be
programmed in alternate function mode. One of 4 clock signals can be selected as the MCO
clock.

● SYSCLK

● HSI

● HSE

● PLL clock divided by 2

The selection is controlled by the MCO[2:0] bits of the Clock configuration register
(RCC_CFGR).

Reset and clock control (RCC) RM0008

74/682

6.3 RCC registers
Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

6.3.1 Clock control register (RCC_CR)

Address offset: 0x00

Reset value: 0x0000 XX83 where X is undefined.

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

PLL
RDY PLLON

Reserved

CSS
ON

HSE
BYP

HSE
RDY

HSE
ON

r rw rw rw r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HSICAL[7:0] HSITRIM[4:0]
Res.

HSI
RDY HSION

r r r r r r r r rw rw rw rw rw r rw

Bits 31:26 Reserved, always read as 0.

Bit 25 PLLRDY: PLL clock ready flag
Set by hardware to indicate that the PLL is locked.
0: PLL unlocked
1: PLL locked

Bit 24 PLLON: PLL enable
Set and cleared by software to enable PLL.
Cleared by hardware when entering Stop or Standby mode. This bit can not be reset if the
PLL clock is used as system clock or is selected to become the system clock.
0: PLL OFF
1: PLL ON

Bits 23:20 Reserved, always read as 0.

Bit 19 CSSON: Clock security system enable

Set and cleared by software to enable clock detector.
0: Clock detector OFF
1: Clock detector ON if external 4-25 MHz oscillator is ready.

Bit 18 HSEBYP: External high-speed clock bypass

Set and cleared by software in debug for bypassing the oscillator with an external clock. This
bit can be written only if the external 4-25 MHz oscillator is disabled.
0: external 4-25 MHz oscillator not bypassed
1: external 4-25 MHz oscillator bypassed with external clock

Bit 17 HSERDY: External high-speed clock ready flag
Set by hardware to indicate that the external 4-25 MHz oscillator is stable. This bit needs 6
cycles of external 4-25 MHz oscillator clock to fall down after HSEON reset.
0: external 4-25 MHz oscillator not ready
1: external 4-25 MHz oscillator ready

RM0008 Reset and clock control (RCC)

 75/682

6.3.2 Clock configuration register (RCC_CFGR)

Address offset: 0x04

Reset value: 0x0000 0000

Access: 0 ≤ wait state ≤ 2, word, half-word and byte access

1 or 2 wait states inserted only if the access occurs during clock source switch.

Bit 16 HSEON: External high-speed clock enable
Set and cleared by software.
Cleared by hardware to stop the external 1-25MHz oscillator when entering in Stop or
Standby mode. This bit cannot be reset if the external 4-25 MHz oscillator is used directly or
indirectly as the system clock or is selected to become the system clock.
0: HSE oscillator OFF
1: HSE oscillator ON

Bits 15:8 HSICAL[7:0]: Internal high-speed clock calibration

These bits are initialized automatically at startup.

Bits 7:3 HSITRIM[4:0]: Internal high-speed clock trimming

These bits provide an additional user-programmable trimming value that is added to the
HSICAL[7:0] bits. It can be programmed to adjust to variations in voltage and temperature
that influence the frequency of the internal HSI RC.
The default value is 16, which, when added to the HSICAL value, should trim the HSI to 8
MHz ± 1%. The trimming step (Fhsitrim) is around 40 kHz between two consecutive HSICAL
steps.

Bit 2 Reserved, always read as 0.

Bit 1 HSIRDY: Internal high-speed clock ready flag

Set by hardware to indicate that internal 8 MHz RC oscillator is stable. After the HSION bit is
cleared, HSIRDY goes low after 6 internal 8 MHz RC oscillator clock cycles.
0: internal 8 MHz RC oscillator not ready
1: internal 8 MHz RC oscillator ready

Bit 0 HSION: Internal high-speed clock enable
Set and cleared by software.
Set by hardware to force the internal 8 MHz RC oscillator ON when leaving Stop or Standby
mode or in case of failure of the external 4-25 MHz oscillator used directly or indirectly as
system clock. This bit cannot be reset if the internal 8 MHz RC is used directly or indirectly
as system clock or is selected to become the system clock.
0: internal 8 MHz RC oscillator OFF
1: internal 8 MHz RC oscillator ON

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
MCO[2:0]

Res.

USB
PRE

PLLMUL[3:0]
PLL

XTPRE
PLL
SRC

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADC PRE[1:0] PPRE2[2:0] PPRE1[2:0] HPRE[3:0] SWS[1:0] SW[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw r r rw rw

Bits 31:27 Reserved, always read as 0.

Reset and clock control (RCC) RM0008

76/682

Bits 26:24 MCO: Microcontroller clock output
Set and cleared by software.
0xx: No clock
100: System clock (SYSCLK) selected
101: HSI clock selected
110: HSE clock selected
111: PLL clock divided by 2 selected

Note: This clock output may have some truncated cycles at startup or during MCO clock
source switching.

When the System Clock is selected to output to the MCO pin, make sure that this clock
does not exceed 50 MHz (the maximum I/O speed).

Bit 22 USBPRE: USB prescaler
Set and cleared by software to generate 48 MHz USB clock. This bit must be valid before
enabling the USB clock in the RCC_APB1ENR register. This bit can’t be reset if the USB
clock is enabled.
0: PLL clock is divided by 1.5
1: PLL clock is not divided

Bits 21:18 PLLMUL: PLL multiplication factor
These bits are written by software to define the PLL multiplication factor. These bits can be
written only when PLL is disabled.
Caution: The PLL output frequency must not exceed 72 MHz.
0000: PLL input clock x 2
0001: PLL input clock x 3
0010: PLL input clock x 4
0011: PLL input clock x 5
0100: PLL input clock x 6
0101: PLL input clock x 7
0110: PLL input clock x 8
0111: PLL input clock x 9
1000: PLL input clock x 10
1001: PLL input clock x 11
1010: PLL input clock x 12
1011: PLL input clock x 13
1100: PLL input clock x 14
1101: PLL input clock x 15
1110: PLL input clock x 16
1111: PLL input clock x 16

Bit 17 PLLXTPRE: HSE divider for PLL entry

Set and cleared by software to divide HSE before PLL entry. This bit can be written only
when PLL is disabled.
0: HSE clock not divided
1: HSE clock divided by 2

Bit 16 PLLSRC: PLL entry clock source

Set and cleared by software to select PLL clock source. This bit can be written only when
PLL is disabled.
0: HSI oscillator clock / 2 selected as PLL input clock
1: HSE oscillator clock selected as PLL input clock

RM0008 Reset and clock control (RCC)

 77/682

Bits 14:14 ADCPRE: ADC prescaler
Set and cleared by software to select the frequency of the clock to the ADCs.
00: PLCK2 divided by 2
01: PLCK2 divided by 4
10: PLCK2 divided by 6
11: PLCK2 divided by 8

Bits 13:11 PPRE2: APB high-speed prescaler (APB2)
Set and cleared by software to control the division factor of the APB high-speed clock
(PCLK2).
0xx: HCLK not divided
100: HCLK divided by 2
101: HCLK divided by 4
110: HCLK divided by 8
111: HCLK divided by 16

Bits 10:8 PPRE1: APB low-speed prescaler (APB1)

Set and cleared by software to control the division factor of the APB low-speed clock
(PCLK1).
Warning: the software has to set correctly these bits to not exceed 36 MHz on this domain.
0xx: HCLK not divided
100: HCLK divided by 2
101: HCLK divided by 4
110: HCLK divided by 8
111: HCLK divided by 16

Bits 7:4 HPRE: AHB prescaler
Set and cleared by software to control the division factor of the AHB clock.
0xxx: SYSCLK not divided
1000: SYSCLK divided by 2
1001: SYSCLK divided by 4
1010: SYSCLK divided by 8
1011: SYSCLK divided by 16
1100: SYSCLK divided by 64
1101: SYSCLK divided by 128
1110: SYSCLK divided by 256
1111: SYSCLK divided by 512

Note: The prefetch buffer must be kept on when using a prescaler different from 1 on the
AHB clock. Refer to Reading Flash memory on page 40 section for more details.

Bits 3:2 SWS: System clock switch status
Set and cleared by hardware to indicate which clock source is used as system clock.
00: HSI oscillator used as system clock
01: HSE oscillator used as system clock
10: PLL used as system clock
11: not applicable

Reset and clock control (RCC) RM0008

78/682

6.3.3 Clock interrupt register (RCC_CIR)

Address offset: 0x08

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Bits 1:0 SW: System clock switch
Set and cleared by software to select SYSCLK source.
Set by hardware to force HSI selection when leaving Stop and Standby mode or in case of
failure of the HSE oscillator used directly or indirectly as system clock (if the Clock Security
System is enabled).
00: HSI selected as system clock
01: HSE selected as system clock
10: PLL selected as system clock
11: not allowed

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
CSSC

Reserved

PLL
RDYC

HSE
RDYC

HSI
RDYC

LSE
RDYC

LSI
RDYC

w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

PLL
RDYIE

HSE
RDYIE

HSI
RDYIE

LSE
RDYIE

LSI
RDYIE CSSF

Reserved

PLL
RDYF

HSE
RDYF

HSI
RDYF

LSE
RDYF

LSI
RDYF

rw rw rw rw rw r r r r r r

Bits 31:24 Reserved, always read as 0.

Bit 23 CSSC: Clock security system interrupt clear

This bit is set by software to clear the CSSF flag.
0: No effect
1: Clear CSSF flag

Bits 22:21 Reserved, always read as 0.

Bit 20 PLLRDYC: PLL ready interrupt clear

This bit is set by software to clear the PLLRDYF flag.
0: No effect
1: PLLRDYF cleared

Bit 19 HSERDYC: HSE ready interrupt clear

This bit is set by software to clear the HSERDYF flag.
0: No effect
1: HSERDYF cleared

Bit 18 HSIRDYC: HSI ready interrupt clear

This bit is set software to clear the HSIRDYF flag.
0: No effect
1: HSIRDYF cleared

Bit 17 LSERDYC: LSE ready interrupt clear

This bit is set by software to clear the LSERDYF flag.
0: No effect
1: LSERDYF cleared

RM0008 Reset and clock control (RCC)

 79/682

Bit 16 LSIRDYC: LSI ready interrupt clear
This bit is set by software to clear the LSIRDYF flag.
0: No effect
1: LSIRDYF cleared

Bits 15:13 Reserved, always read as 0.

Bit 12 PLLRDYIE: PLL ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by PLL lock.
0: PLL lock interrupt disabled
1: PLL lock interrupt enabled

Bit 11 HSERDYIE: HSE ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by the external 4-25 MHz
oscillator stabilization.
0: HSE ready interrupt disabled
1: HSE ready interrupt enabled

Bit 10 HSIRDYIE: HSI ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by the internal 8 MHz RC
oscillator stabilization.
0: HSI ready interrupt disabled
1: HSI ready interrupt enabled

Bit 9 LSERDYIE: LSE ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by the external 32 kHz
oscillator stabilization.
0: LSE ready interrupt disabled
1: LSE ready interrupt enabled

Bit 8 LSIRDYIE: LSI ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by internal RC 40 kHz
oscillator stabilization.
0: LSI ready interrupt disabled
1: LSI ready interrupt enabled

Bit 7 CSSF: Clock security system interrupt flag
Set by hardware when a failure is detected in the external 4-25 MHz oscillator.
Cleared by software setting the CSSC bit.
0: No clock security interrupt caused by HSE clock failure
1: Clock security interrupt caused by HSE clock failure

Bits 6:5 Reserved, always read as 0.

Bit 4 PLLRDYF: PLL ready interrupt flag

Set by hardware when the PLL locks and PLLRDYDIE is set.
Cleared by software setting the PLLRDYC bit.
0: No clock ready interrupt caused by PLL lock
1: Clock ready interrupt caused by PLL lock

Bit3 HSERDYF: HSE ready interrupt flag

Set by hardware when External Low Speed clock becomes stable and HSERDYDIE is set.
Cleared by software setting the HSERDYC bit.
0: No clock ready interrupt caused by the external 4-25 MHz oscillator
1: Clock ready interrupt caused by the external 4-25 MHz oscillator

Reset and clock control (RCC) RM0008

80/682

6.3.4 APB2 peripheral reset register (RCC_APB2RSTR)

Address offset: 0x0C

Reset value: 0x00000 0000

Access: no wait state, word, half-word and byte access

Bit 2 HSIRDYF: HSI ready interrupt flag
Set by hardware when the Internal High Speed clock becomes stable and HSIRDYDIE is
set.
Cleared by software setting the HSIRDYC bit.
0: No clock ready interrupt caused by the internal 8 MHz RC oscillator
1: Clock ready interrupt caused by the internal 8 MHz RC oscillator

Bit 1 LSERDYF: LSE ready interrupt flag

Set by hardware when the External Low Speed clock becomes stable and LSERDYDIE is
set.
Cleared by software setting the LSERDYC bit.
0: No clock ready interrupt caused by the external 32 kHz oscillator
1: Clock ready interrupt caused by the external 32 kHz oscillator

Bit 0 LSIRDYF: LSI ready interrupt flag

Set by hardware when the internal low speed clock becomes stable and LSIRDYDIE is set.
Cleared by software setting the LSIRDYC bit.
0: No clock ready interrupt caused by the internal RC 40 kHz oscillator
1: Clock ready interrupt caused by the internal RC 40 kHz oscillator

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADC3
RST

USART1
RST

TIM8
RST

SPI1
RST

TIM1
RST

ADC2
RST

ADC1
RST

IOPG
RST

IOPF
RST

IOPE
RST

IOPD
RST

IOPC
RST

IOPB
RST

IOPA
RST

Res.
AFIO
RST

rw rw rw rw rw rw rw rw rw rw rw rw rw rw Res. rw

Bits 31:16 Reserved, always read as 0.

Bit 15 ADC3RST: ADC3 interface reset

Set and cleared by software.
0: No effect
1: Reset ADC3 interface

Bit 14 USART1RST: USART1 reset

Set and cleared by software.
0: No effect
1: Reset USART1

Bit 13 TIM8RST: TIM8 timer reset

Set and cleared by software.
0: No effect
1: Reset TIM8 timer

RM0008 Reset and clock control (RCC)

 81/682

Bit 12 SPI1RST: SPI 1 reset
Set and cleared by software.
0: No effect
1: Reset SPI 1

Bit 11 TIM1RST: TIM1 timer reset
Set and cleared by software.
0: No effect
1: Reset TIM1 timer

Bit 10 ADC2RST: ADC 2 interface reset
Set and cleared by software.
0: No effect
1: Reset ADC 2 interface

Bit 9 ADC1RST: ADC 1 interface reset
Set and cleared by software.
0: No effect
1: Reset ADC 1 interface

Bit 8 IOPGRST: IO port G reset

Set and cleared by software.
0: No effect
1: Reset IO port G

Bit 7 IOPFRST: IO port F reset

Set and cleared by software.
0: No effect
1: Reset IO port F

Bit 6 IOPERST: IO port E reset

Set and cleared by software.
0: No effect
1: Reset IO port E

Bit 5 IOPDRST: IO port D reset

Set and cleared by software.
0: No effect
1: Reset I/O port D

Bit 4 IOPCRST: IO port C reset

Set and cleared by software.
0: No effect
1: Reset I/O port C

Bit 3 IOPBRST: IO port B reset

Set and cleared by software.
0: No effect
1: Reset I/O port B

Bit 2 IOPARST: I/O port A reset

Set and cleared by software.
0: No effect
1: Reset I/O port A

Bit 1 Reserved, always read as 0.

Reset and clock control (RCC) RM0008

82/682

6.3.5 APB1 peripheral reset register (RCC_APB1RSTR)

Address offset: 0x10

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Bit 0 AFIORST: Alternate function I/O reset
Set and cleared by software.
0: No effect
1: Reset Alternate Function

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

DAC
RST

PWR
RST

BKP
RST Res.

CAN
RST Res.

USB
RST

I2C2
RST

I2C1
RST

UART
5

RST

UART
4

RST

USART
3

RST

USART
2

RST Res.

rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPI3
RST

SPI2
RST Reserved

WWD
GRST Reserved

TIM7
RST

TIM6
RST

TIM5
RST

TIM4
RST

TIM3
RST

TIM2
RST

rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, always read as 0.

Bit 29 DACRST: DAC interface reset

Set and cleared by software.
0: No effect
1: Reset DAC interface

Bit 28 PWRRST: Power interface reset

Set and cleared by software.
0: No effect
1: Reset power interface

Bit 27 BKPRST: Backup interface reset

Set and cleared by software.
0: No effect
1: Reset backup interface

Bit 26 Reserved, always read as 0.

Bit 25 CANRST: CAN reset

Set and cleared by software.
0: No effect
1: Reset CAN

Bit 24 Reserved, always read as 0.

Bit 23 USBRST: USB reset
Set and cleared by software.
0: No effect
1: Reset USB

RM0008 Reset and clock control (RCC)

 83/682

Bit 22 I2C2RST: I2C 2 reset
Set and cleared by software.
0: No effect
1: Reset I2C 2

Bit 21 I2C1RST: I2C 1 reset
Set and cleared by software.
0: No effect
1: Reset I2C 1

Bit 20 UART5RST: USART 5 reset
Set and cleared by software.
0: No effect
1: Reset USART 5

Bit 19 UART4RST: USART 4 reset
Set and cleared by software.
0: No effect
1: Reset USART 4

Bit 18 USART3RST: USART 3 reset

Set and cleared by software.
0: No effect
1: Reset USART 3

Bit 17 USART2RST: USART 2 reset

Set and cleared by software.
0: No effect
1: Reset USART 2

Bits 16 Reserved, always read as 0.

Bit 15 SPI3RST: SPI 3 reset

Set and cleared by software.
0: No effect
1: Reset SPI 3

Bit 14 SPI2RST: SPI 2 reset

Set and cleared by software.
0: No effect
1: Reset SPI 2

Bits 13:12 Reserved, always read as 0.

Bit 11 WWDGRST: Window watchdog reset
Set and cleared by software.
0: No effect
1: Reset window watchdog

Bits 10:6 Reserved, always read as 0.

Bit 5 TIM7RST: Timer 7 reset

Set and cleared by software.
0: No effect
1: Reset timer 7

Reset and clock control (RCC) RM0008

84/682

6.3.6 AHB peripheral clock enable register (RCC_AHBENR)

Address offset: 0x14

Reset value: 0x0000 0014

Access: no wait state, word, half-word and byte access

Note: When the peripheral clock is not active, the peripheral register values may not be readable
by software and the returned value is always 0x0.

Bit 4 TIM6RST: Timer 6 reset
Set and cleared by software.
0: No effect
1: Reset timer 6

Bit 3 TIM5RST: Timer 5 reset
Set and cleared by software.
0: No effect
1: Reset timer 5

Bit 2 TIM4RST: Timer 4 reset
Set and cleared by software.
0: No effect
1: Reset timer 4

Bit 1 TIM3RST: Timer 3 reset
Set and cleared by software.
0: No effect
1: Reset timer 3

Bit 0 TIM2RST: Timer 2 reset

Set and cleared by software.
0: No effect
1: Reset timer 2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

SDIO
EN Res.

FSMC
EN Res.

CRCE
N Res.

FLITF
EN Res.

SRAM
EN

DMA2
EN

DMA1
EN

rw rw rw rw rw rw rw

Bits 31:11 Reserved, always read as 0.

Bit 10 SDIOEN: SDIO clock enable

Set and cleared by software.
0: SDIO clock disabled
1: SDIO clock enabled

Bits 9 Reserved, always read as 0.

RM0008 Reset and clock control (RCC)

 85/682

Bit 8 FSMCEN: FSMC clock enable
Set and cleared by software.
0: FSMC clock disabled
1: FSMC clock enabled

Bit 7 Reserved, always read as 0.

Bit 6 CRCEN: CRC clock enable
Set and cleared by software.
0: CRC clock disabled
1: CRC clock enabled

Bit 5 Reserved, always read as 0.

Bit 4 FLITFEN: FLITF clock enable

Set and cleared by software to disable/enable FLITF clock during sleep mode.
0: FLITF clock disabled during Sleep mode
1: FLITF clock enabled during Sleep mode

Bit 3 Reserved, always read as 0.

Bit 2 SRAMEN: SRAM interface clock enable
Set and cleared by software to disable/enable SRAM interface clock during Sleep mode.
0: SRAM interface clock disabled during Sleep mode.
1: SRAM interface clock enabled during Sleep mode

Bit 1 DMA2EN: DMA2 clock enable
Set and cleared by software.
0: DMA2 clock disabled
1: DMA2 clock enabled

Bit 0 DMA1EN: DMA1 clock enable
Set and cleared by software.
0: DMA1 clock disabled
1: DMA1 clock enabled

Reset and clock control (RCC) RM0008

86/682

6.3.7 APB2 peripheral clock enable register (RCC_APB2ENR)

Address: 0x18

Reset value: 0x0000 0000

Access: word, half-word and byte access

No wait states, except if the access occurs while an access to a peripheral in the APB2
domain is on going. In this case, wait states are inserted until the access to APB2 peripheral
is finished.

Note: When the peripheral clock is not active, the peripheral register values may not be readable
by software and the returned value is always 0x0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADC3
EN

USAR
T1EN

TIM8
EN

SPI1
EN

TIM1
EN

ADC2
EN

ADC1
EN

IOPG
EN

IOPF
EN

IOPE
EN

IOPD
EN

IOPC
EN

IOPB
EN

IOPA
EN Res.

AFIO
EN

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, always read as 0.

Bit 15 ADC3EN: ADC 3 interface clock enable

Set and cleared by software.
0: ADC 3 interface clock disabled
1: ADC 3 interface clock enabled

Bit 14 USART1EN: USART1 clock enable

Set and cleared by software.
0: USART1 clock disabled
1: USART1 clock enabled

Bit 13 TIM8EN: TIM8 Timer clock enable

Set and cleared by software.
0: TIM8 timer clock disabled
1: TIM8 timer clock enabled

Bit 12 SPI1EN: SPI 1 clock enable
Set and cleared by software.
0: SPI 1 clock disabled
1: SPI 1 clock enabled

Bit 11 TIM1EN: TIM1 Timer clock enable
Set and cleared by software.
0: TIM1 timer clock disabled
1: TIM1 timer clock enabled

Bit 10 ADC2EN: ADC 2 interface clock enable
Set and cleared by software.
0: ADC 2 interface clock disabled
1: ADC 2 interface clock enabled

RM0008 Reset and clock control (RCC)

 87/682

Bit 9 ADC1EN: ADC 1 interface clock enable
Set and cleared by software.
0: ADC 1 interface disabled
1: ADC 1 interface clock enabled

Bit 8 IOPGEN: I/O port G clock enable
Set and cleared by software.
0: I/O port G clock disabled
1: I/O port G clock enabled

Bit 7 IOPFEN: I/O port F clock enable
Set and cleared by software.
0: I/O port F clock disabled
1: I/O port F clock enabled

Bit 6 IOPEEN: I/O port E clock enable
Set and cleared by software.
0: I/O port E clock disabled
1: I/O port E clock enabled

Bit 5 IOPDEN: I/O port D clock enable

Set and cleared by software.
0: I/O port D clock disabled
1: I/O port D clock enabled

Bit 4 IOPCEN: I/O port C clock enable

Set and cleared by software.
0: I/O port C clock disabled
1:I/O port C clock enabled

Bit 3 IOPBEN: I/O port B clock enable

Set and cleared by software.
0: I/O port B clock disabled
1:I/O port B clock enabled

Bit 2 IOPAEN: I/O port A clock enable

Set and cleared by software.
0: I/O port A clock disabled
1:I/O port A clock enabled

Bit 1 Reserved, always read as 0.

Bit 0 AFIOEN: Alternate function I/O clock enable

Set and cleared by software.
0: Alternate Function I/O clock disabled
1:Alternate Function I/O clock enabled

Reset and clock control (RCC) RM0008

88/682

6.3.8 APB1 peripheral clock enable register (RCC_APB1ENR)

Address: 0x1C

Reset value: 0x0000 0000

Access: word, half-word and byte access

No wait state, except if the access occurs while an access to a peripheral on APB1 domain
is on going. In this case, wait states are inserted until this access to APB1 peripheral is
finished.

Note: When the peripheral clock is not active, the peripheral register values may not be readable
by software and the returned value is always 0x0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved DAC
EN

PWR
EN

BKP
EN Res. CAN

EN Res. USB
EN

I2C2
EN

I2C1
EN

UART5E
N

UART4
EN

USART
3EN

USART
2EN Res.

Res. rw rw rw Res. rw Res. rw rw rw rw rw rw rw Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPI3
EN

SPI2
EN Reserved WWD

GEN Reserved TIM7
EN

TIM6
EN

TIM5
EN

TIM4
EN

TIM3
EN

TIM2
EN

rw rw Res. rw Res. rw rw rw rw rw rw

Bits 31:30 Reserved, always read as 0.

Bit 29 DACEN: DAC interface clock enable

Set and cleared by software.
0: DAC interface clock disabled
1: DAC interface clock enable

Bit 28 PWREN: Power interface clock enable

Set and cleared by software.
0: Power interface clock disabled
1: Power interface clock enable

Bit 27 BKPEN: Backup interface clock enable

Set and cleared by software.
0: Backup interface clock disabled
1: Backup interface clock enabled

Bit 26 Reserved, always read as 0.

Bit 25 CANEN: CAN clock enable

Set and cleared by software.
0: CAN clock disabled
1: CAN clock enabled

Bit 24 Reserved, always read as 0.

Bit 23 USBEN: USB clock enable
Set and cleared by software.
0: USB clock disabled
1: USB clock enabled

RM0008 Reset and clock control (RCC)

 89/682

Bit 22 I2C2EN: I2C 2 clock enable
Set and cleared by software.
0: I2C 2 clock disabled
1: I2C 2 clock enabled

Bit 21 I2C1EN: I2C 1 clock enable
Set and cleared by software.
0: I2C 1 clock disabled
1: I2C 1 clock enabled

Bit 20 UART5EN: USART 5 clock enable
Set and cleared by software.
0: USART 5 clock disabled
1: USART 5 clock enabled

Bit 19 UART4EN: USART 4 clock enable
Set and cleared by software.
0: USART 4 clock disabled
1: USART 4 clock enabled

Bit 18 USART3EN: USART 3 clock enable

Set and cleared by software.
0: USART 3 clock disabled
1: USART 3 clock enabled

Bit 17 USART2EN: USART 2 clock enable

Set and cleared by software.
0: USART 2 clock disabled
1: USART 2 clock enabled

Bits 16 Reserved, always read as 0.

Bit 15 SPI3EN: SPI 3 clock enable

Set and cleared by software.
0: SPI 3 clock disabled
1: SPI 3 clock enabled

Bit 14 SPI2EN: SPI 2 clock enable

Set and cleared by software.
0: SPI 2 clock disabled
1: SPI 2 clock enabled

Bits 13:12 Reserved, always read as 0.

Bit 11 WWDGEN: Window watchdog clock enable
Set and cleared by software.
0: Window watchdog clock disabled
1: Window watchdog clock enabled

Bits 10:6 Reserved, always read as 0.

Bit 5 TIM7EN: Timer 7 clock enable

Set and cleared by software.
0: Timer 7 clock disabled
1: Timer 7 clock enabled

Reset and clock control (RCC) RM0008

90/682

6.3.9 Backup domain control register (RCC_BDCR)

Address offset: 0x20
Reset value: 0x0000 0000, reset by Backup domain Reset.
Access: 0 ≤ wait state ≤ 3, word, half-word and byte access
Wait states are inserted in case of successive accesses to this register.

Note: LSEON, LSEBYP, RTCSEL and RTCEN bits of the Backup domain control register
(RCC_BDCR) are in the Backup domain. As a result, after Reset, these bits are write-
protected and the DBP bit in the Power control register (PWR_CR) has to be set before
these can be modified. Refer to Section 5 on page 58 for further information. These bits are
only reset after a Backup domain Reset (see Section 6.1.3: Backup domain reset). Any
internal or external Reset will not have any effect on these bits.

Bit 4 TIM6EN: Timer 6 clock enable
Set and cleared by software.
0: Timer 6 clock disabled
1: Timer 6 clock enabled

Bit 3 TIM5EN: Timer 5 clock enable
Set and cleared by software.
0: Timer 5 clock disabled
1: Timer 5 clock enabled

Bit 2 TIM4EN: Timer 4 clock enable
Set and cleared by software.
0: Timer 4 clock disabled
1: Timer 4 clock enabled

Bit 1 TIM3EN: Timer 3 clock enable
Set and cleared by software.
0: Timer 3 clock disabled
1: Timer 3 clock enabled

Bit 0 TIM2EN: Timer 2 clock enable

Set and cleared by software.
0: Timer 2 clock disabled
1: Timer 2 clock enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
BDRST

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTC
EN Reserved

RTCSEL[1:0]
Reserved

LSE
BYP

LSE
RDY LSEON

rw rw rw rw r rw

Bits 31:17 Reserved, always read as 0.

Bit 16 BDRST: Backup domain software reset

Set and cleared by software.
0: Reset not activated
1: Resets the entire Backup domain

RM0008 Reset and clock control (RCC)

 91/682

Bit 15 RTCEN: RTC clock enable
Set and cleared by software.
0: RTC clock disabled
1: RTC clock enabled

Bits 14:10 Reserved, always read as 0.

Bits 9:8 RTCSEL[1:0]: RTC clock source selection

Set by software to select the clock source for the RTC. Once the RTC clock source has been
selected, it cannot be changed anymore unless the Backup domain is reset. The BDRST bit
can be used to reset them.
00: No clock
01: LSE oscillator clock used as RTC clock
10: LSI oscillator clock used as RTC clock
11: HSE oscillator clock divided by 128 used as RTC clock

Bits 7:3 Reserved, always read as 0.

Bit 2 LSEBYP: External low-speed oscillator bypass

Set and cleared by software to bypass oscillator in debug mode. This bit can be written only
when the external 32 kHz oscillator is disabled.
0: LSE oscillator not bypassed
1: LSE oscillator bypassed

Bit 1 LSERDY: External low-speed oscillator ready
Set and cleared by hardware to indicate when the external 32 kHz oscillator is stable. After
the LSEON bit is cleared, LSERDY goes low after 6 external low-speed oscillator clock
cycles.
0: External 32 kHz oscillator not ready
1: External 32 kHz oscillator ready

Bit 0 LSEON: External low-speed oscillator enable

Set and cleared by software.
0: External 32 kHz oscillator OFF
1: External 32 kHz oscillator ON

Reset and clock control (RCC) RM0008

92/682

6.3.10 Control/status register (RCC_CSR)

Address: 0x24

Reset value: 0x0C00 0000, reset by system Reset, except reset flags by power Reset only.

Access: 0 ≤ wait state ≤ 3, word, half-word and byte access

Wait states are inserted in case of successive accesses to this register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LPWR
RSTF

WWDG
RSTF

IWDG
RSTF

SFT
RSTF

POR
RSTF

PIN
RSTF Res.

RMVF
Reserved

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

LSI
RDY LSION

r rw

Bit 31 LPWRRSTF: Low-power reset flag

Set by hardware when a Low-power management reset occurs.
Cleared by writing to the RMVF bit.
0: No Low-power management reset occurred
1: Low-power management reset occurred
For further information on Low-power management reset, refer to Section : Low-power
management reset.

Bit 30 WWDGRSTF: Window watchdog reset flag
Set by hardware when a window watchdog reset occurs.
Cleared by writing to the RMVF bit.
0: No window watchdog reset occurred
1: Window watchdog reset occurred

Bit 29 IWDGRSTF: Independent watchdog reset flag

Set by hardware when an independent watchdog reset from VDD domain occurs.
Cleared by writing to the RMVF bit.
0: No watchdog reset occurred
1: Watchdog reset occurred

Bit 28 SFTRSTF: Software reset flag

Set by hardware when a software reset occurs.
Cleared by writing to the RMVF bit.
0: No software reset occurred
1: Software reset occurred

Bit 27 PORRSTF: POR/PDR reset flag
Set by hardware when a POR/PDR reset occurs.
Cleared by writing to the RMVF bit.
0: No POR/PDR reset occurred
1: POR/PDR reset occurred

Bit 26 PINRSTF: PIN reset flag
Set by hardware when a reset from the NRST pin occurs.
Cleared by writing to the RMVF bit.
0: No reset from NRST pin occurred
1: Reset from NRST pin occurred

RM0008 Reset and clock control (RCC)

 93/682

6.3.11 RCC register map

The following table gives the RCC register map and the reset values.

Bit 25 Reserved, always read as 0.

Bit 24 RMVF: Remove reset flag

Set by software to clear the reset flags.
0: No effect
1: Clear the reset flags

Bits 23:2 Reserved, always read as 0.

Bit 1 LSIRDY: Internal low-speed oscillator ready

Set and cleared by hardware to indicate when the internal RC 40 kHz oscillator is stable.
After the LSION bit is cleared, LSIRDY goes low after 3 internal RC 40 kHz oscillator clock
cycles.
0: Internal RC 40 kHz oscillator not ready
1: Internal RC 40 kHz oscillator ready

Bit 0 LSION: Internal low-speed oscillator enable

Set and cleared by software.
0: Internal RC 40 kHz oscillator OFF
1: Internal RC 40 kHz oscillator ON

Table 14. RCC - register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x000
RCC_CR

Reserved

P
LL

 R
D

Y

P
LL

 O
N

Reserved

C
S

S
O

N

H
S

E
B

Y
P

H
S

E
R

D
Y

H
S

E
O

N

HSICAL[7:0] HSITRIM[4:0]

R
es

er
ve

d

H
S

IR
D

Y

H
S

IO
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

0x004
RCC_CFGR

Reserved
MCO [2:0]

R
es

er
ve

d

U
S

B
P

R
E

PLLMUL[3:0]

P
LL

X
T

P
R

E

P
LL

S
R

C ADC
PRE
[1:0]

PPRE2
[2:0]

PPRE1
[2:0] HPRE[3:0] SWS

[1:0]
SW
[1:0]

Reset value 0

0x008
RCC_CIR

Reserved C
S

S
C

R
es

er
ve

d

P
LL

R
D

Y
C

H
S

E
R

D
Y

C

H
S

IR
D

Y
C

LS
E

R
D

Y
C

LS
IR

D
Y

C

R
es

er
ve

d

P
LL

R
D

Y
IE

H
S

E
R

D
Y

IE

H
S

IR
D

Y
IE

LS
E

R
D

Y
IE

LS
IR

D
Y

IE

C
S

S
F

R
es

er
ve

d

P
LL

R
D

Y
F

H
S

E
R

D
Y

F

H
S

IR
D

Y
F

LS
E

R
D

Y
F

LS
IR

D
Y

F
Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x00C
RCC_APB2RSTR

Reserved

A
D

C
3R

S
T

U
S

A
R

T
1R

S
T

T
IM

8R
S

T

S
P

I1
R

S
T

T
IM

1R
S

T

A
D

C
2R

S
T

A
D

C
1R

S
T

IO
P

G
R

S
T

IO
P

F
R

S
T

IO
P

E
R

S
T

IO
P

D
R

S
T

IO
P

C
R

S
T

IO
P

B
R

S
T

IO
PA

R
S

T

R
es

er
ve

d

A
F

IO
R

S
T

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x010
RCC_APB1RSTR Reser

ved

D
A

C
R

S
T

P
W

R
R

S
T

B
K

P
R

S
T

R
es

er
ve

d

C
A

N
R

S
T

R
es

er
ve

d

U
S

B
R

S
T

I2
C

2R
S

T

I2
C

1R
S

T

U
A

R
T

5R
S

T

U
A

R
T

4R
S

T

U
S

A
R

T
3R

S
T

U
S

A
R

T
2R

S
T

R
es

er
ve

d

S
P

I3
R

S
T

S
P

I2
R

S
T

R
es

er
ve

d

W
W

D
G

R
S

T

Reserved

T
M

7R
S

T

T
M

6R
S

T

T
M

5R
S

T

T
IM

4R
S

T

T
IM

3R
S

T

T
IM

2R
S

T

Reset value 0

0x014
RCC_AHBENR

Reserved

S
D

IO
E

N

R
es

er
ve

d

F
S

M
C

E
N

R
es

er
ve

d

C
R

C
E

N

R
es

er
ve

d

F
LI

T
F

E
N

R
es

er
ve

d

S
R

A
M

E
N

D
M

2A
E

N

D
M

1A
E

N

Reset value 0 0 0 1 1 0 0

Reset and clock control (RCC) RM0008

94/682

Refer to Table 1 on page 35 for the register boundary addresses.

0x018 RCC_APB2ENR
Reserved

A
D

C
3E

N

U
S

A
R

T
1E

N

T
IM

8E
N

S
P

I1
E

N

T
IM

1E
N

A
D

C
2E

N

A
D

C
1E

N

IO
P

G
E

N

IO
P

F
E

N

IO
P

E
E

N

IO
P

D
E

N

IO
P

C
E

N

IO
P

B
E

N

IO
PA

E
N

R
es

er
ve

d

A
F

IO
E

N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x01C
RCC_APB1ENR

R
es

er
ve

d

D
A

C
E

N

P
W

R
E

N

B
K

P
E

N

R
es

er
ve

d

C
A

N
E

N

R
es

er
ve

d

U
S

B
E

N

I2
C

2E
N

I2
C

1E
N

U
A

R
T

5E
N

U
A

R
T

4E
N

U
S

A
R

T
3E

N

U
S

A
R

T
2E

N

R
es

er
ve

d

S
P

I3
E

N

S
P

I2
E

N

R
es

er
ve

d

W
W

D
G

E
N

Reserved

T
IM

7E
N

T
IM

6E
N

T
IM

5E
N

T
IM

4E
N

T
IM

3E
N

T
IM

2E
N

Reset value 0

0x020
RCC_BDCR

Reserved

B
D

R
S

T

R
T

C
E

N

Reserved

RTC
SEL
[1:0] Reserved

LS
E

B
Y

P

LS
E

R
D

Y

LS
E

O
N

Reset value 0 0 0 0 0 0 0

0x024
RCC_CSR

LP
W

R
S

T
F

W
W

D
G

R
S

T
F

IW
D

G
R

S
T

F

S
F

T
R

S
T

F

P
O

R
R

S
T

F

P
IN

R
S

T
F

R
es

er
ve

d

R
M

V
F

Reserved

LS
IR

D
Y

LS
IO

N

Reset value 0 0 0 0 1 1 0 0 0

Table 14. RCC - register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RM0008 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

 95/682

7 General-purpose and alternate-function I/Os (GPIOs
and AFIOs)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This Section applies to the whole STM32F10xxx family, unless otherwise specified.

7.1 GPIO functional description
Each of the general-purpose I/O ports has two 32-bit configuration registers (GPIOx_CRL,
GPIOx_CRH), two 32-bit data registers (GPIOx_IDR, GPIOx_ODR), a 32-bit set/reset
register (GPIOx_BSRR), a 16-bit reset register (GPIOx_BRR) and a 32-bit locking register
(GPIOx_LCKR).

Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each
port bit of the General Purpose IO (GPIO) Ports, can be individually configured by software
in several modes:

● Input floating

● Input pull-up

● Input-pull-down

● Analog Input

● Output open-drain

● Output push-pull

● Alternate function push-pull

● Alternate function open-drain

Each I/O port bit is freely programmable, however the I/O port registers have to be accessed
as 32-bit words (half-word or byte accesses are not allowed). The purpose of the
GPIOx_BSRR and GPIOx_BRR registers is to allow atomic read/modify accesses to any of
the GPIO registers. This way, there is no risk that an IRQ occurs between the read and the
modify access.

Figure 9 shows the basic structure of an I/O Port bit.

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0008

96/682

Figure 9. Basic structure of a standard I/O port bit

Figure 10. Basic structure of a five-volt tolerant I/O port bit

1. VDD_FT is a potential specific to five-volt tolerant I/Os and different from VDD.

Alternate Function Output

Alternate Function Input

Push-pull,
open-drain or
disabled

In
pu

t d
at

a
re

gi
st

er

O
ut

pu
t d

at
a

re
gi

st
er

Read/write

From on-chip
peripheral

To on-chip
peripheral

Output
control

Analog Input

on/off

on/off

I/O pin

VDD

VDD

VSS

VSS

TTL Schmitt
 trigger

VSS

VDD

Protection
diode

Protection
diode

on/off

Input driver

Output driver

P-MOS

N-MOS

Read
B

it
se

t/r
es

et
 r

eg
is

te
rs

Write

ai14781

Alternate Function Output

Alternate Function Input

Push-pull,
open-drain or
disabled

In
pu

t d
at

a
re

gi
st

er

O
ut

pu
t d

at
a

re
gi

st
er

Read/write

From on-chip
peripheral

To on-chip
peripheral

Output
control

Analog Input

on/off

on/off

I/O pin

VDD

VDD

VSS

VSS

TTL Schmitt
 trigger

VSS

VDD_FT(1)

Protection
diode

on/off

Input driver

Output driver

P-MOS

N-MOS

Read

B
it

se
t/r

es
et

 r
eg

is
te

rs

Write

ai14782

RM0008 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

 97/682

7.1.1 General-purpose I/O (GPIO)

During and just after reset, the alternate functions are not active and the I/O ports are
configured in Input Floating mode (CNFx[1:0]=01b, MODEx[1:0]=00b).

The JTAG pins are in input PU/PD after reset:

PA15: JTDI in PU

PA14: JTCK in PD

PA13: JTMS in PU

PB4: JNTRST in PU

When configured as output, the value written to the Output Data register (GPIOx_ODR) is
output on the I/O pin. It is possible to use the output driver in Push-Pull mode or Open-Drain
mode (only the N-MOS is activated when outputting 0).

The Input Data register (GPIOx_IDR) captures the data present on the I/O pin at every
APB2 clock cycle.

All GPIO pins have a internal weak pull-up and weak pull-down which can be activated or
not when configured as input.

7.1.2 Atomic bit set or reset

There is no need for the software to disable interrupts when programming the GPIOx_ODR
at bit level: it is possible to modify only one or several bits in a single atomic APB2 write
access. This is achieved by programming to ‘1’ the Bit Set/Reset Register (GPIOx_BSRR,
or for reset only GPIOx_BRR) to select the bits you want to modify. The unselected bits will
not be modified.

Table 15. Port bit configuration table

Configuration mode CNF1 CNF0 MODE1 MODE0
PxODR
register

General purpose
output

Push-pull
0

0
01

10
11

see Table 16

0 or 1

Open-drain 1 0 or 1

Alternate Function
output

Push-pull
1

0 don’t care

Open-drain 1 don’t care

Input

Analog input
0

0

00

don’t care

Input floating 1 don’t care

Input pull-down
1 0

0

Input pull-up 1

Table 16. Output MODE bits

MODE[1:0] Meaning

00 Reserved

01 Max. output speed 10 MHz

10 Max. output speed 2 MHz

11 Max. output speed 50 MHz

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0008

98/682

7.1.3 External interrupt/wakeup lines

All ports have external interrupt capability. To use external interrupt lines, the port must be
configured in input mode. For more information on external interrupts, refer to:

● Section 8.2: External interrupt/event controller (EXTI) on page 122 and

● Section 8.2.3: Wakeup event management on page 123.

7.1.4 Alternate functions (AF)

It is necessary to program the Port Bit Configuration Register before using a default
alternate function.

● For alternate function inputs, the port must be configured in Input mode (floating, pull-
up or pull-down) and the input pin must be driven externally.

Note: It is also possible to emulate the AFI input pin by software by programming the GPIO
controller. In this case, the port should be configured in Alternate Function Output mode.
And obviously, the corresponding port should not be driven externally as it will be driven by
the software using the GPIO controller.

● For alternate function outputs, the port must be configured in Alternate Function Output
mode (Push-Pull or Open-Drain).

● For bidirectional Alternate Functions, the port bit must be configured in Alternate
Function Output mode (Push-Pull or Open-Drain). In this case the input driver is
configured in input floating mode

If you configure a port bit as Alternate Function Output, this disconnects the output register
and connects the pin to the output signal of an on-chip peripheral.

If software configures a GPIO pin as Alternate Function Output, but peripheral is not
activated, its output is not specified.

7.1.5 Software remapping of I/O alternate functions

To optimize the number of peripheral I/O functions for different device packages, it is
possible to remap some alternate functions to some other pins. This is achieved by
software, by programming the corresponding registers (refer to AFIO registers on page 112.
In that case, the alternate functions are no longer mapped to their original assignations.

7.1.6 GPIO locking mechanism

The locking mechanism allows the IO configuration to be frozen. When the LOCK sequence
has been applied on a port bit, it is no longer possible to modify the value of the port bit until
the next reset.

RM0008 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

 99/682

7.1.7 Input configuration

When the I/O Port is programmed as Input:

● The Output Buffer is disabled

● The Schmitt Trigger Input is activated

● The weak pull-up and pull-down resistors are activated or not depending on input
configuration (pull-up, pull-down or floating):

● The data present on the I/O pin is sampled into the Input Data Register every APB2
clock cycle

● A read access to the Input Data Register obtains the I/O State.

The Figure 11 on page 99 shows the Input Configuration of the I/O Port bit.

Figure 11. Input floating/pull up/pull down configurations

1. VDD_FT is a potential specific to five-volt tolerant I/Os and different from VDD.

7.1.8 Output configuration

When the I/O Port is programmed as Output:

● The Output Buffer is enabled:

– Open Drain Mode: A “0” in the Output register activates the N-MOS while a “1” in
the Output register leaves the port in Hi-Z. (the P-MOS is never activated)

– Push-Pull Mode: A “0” in the Output register activates the N-MOS while a “1” in the
Output register activates the P-MOS.

● The Schmitt Trigger Input is activated.

● The weak pull-up and pull-down resistors are disabled.

● The data present on the I/O pin is sampled into the Input Data Register every APB2
clock cycle

● A read access to the Input Data Register gets the I/O state in open drain mode

● A read access to the Output Data register gets the last written value in Push-Pull mode

The Figure 12 on page 100 shows the Output configuration of the I/O Port bit.

I/O pin

TTL Schmitt
 trigger

VSS

VDD or VDD_FT(1)

protection
diode

protection
diode

on

input driver

output driver

In
pu

t d
at

a
re

gi
st

er

O
ut

pu
t d

at
a

re
gi

st
er

Read/write

Read

B
it

se
t/r

es
et

 r
eg

is
te

rs

Write

on/off

on/off

VDD

VSS

ai14783

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0008

100/682

Figure 12. Output configuration

1. VDD_FT is a potential specific to five-volt tolerant I/Os and different from VDD.

7.1.9 Alternate function configuration

When the I/O Port is programmed as Alternate Function:

● The Output Buffer is turned on in Open Drain or Push-Pull configuration

● The Output Buffer is driven by the signal coming from the peripheral (alternate function
out)

● The Schmitt Trigger Input is activated

● The weak pull-up and pull-down resistors are disabled.

● The data present on the I/O pin is sampled into the Input Data Register every APB2
clock cycle

● A read access to the Input Data Register gets the I/O state in open drain mode

● A read access to the Output Data register gets the last written value in Push-Pull mode

The Figure 13 on page 101 shows the Alternate Function Configuration of the I/O Port bit.
Also, refer to Section 7.4: AFIO registers on page 112 for further information.

A set of Alternate Function I/O registers allow you to remap some alternate functions to
different pins. Refer to

Push-pull or
Open-drain

Output
control

I/O pin

VDD

VSS

TTL Schmitt
 trigger

VSS

VDD or VDD_FT(1)

Protection
diode

Protection
diode

on

Input driver

Output driver

P-MOS

N-MOS

In
pu

t d
at

a
re

gi
st

er

O
ut

pu
t d

at
a

re
gi

st
er

Read/write

Read

B
it

se
t/r

es
et

 r
eg

is
te

rs

Write

ai14784

RM0008 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

 101/682

Figure 13. Alternate function configuration

1. VDD_FT is a potential specific to five-volt tolerant I/Os and different from VDD.

7.1.10 Analog input configuration

When the I/O Port is programmed as Analog Input Configuration:

● The Output Buffer is disabled.

● The Schmitt Trigger Input is de-activated providing zero consumption for every analog
value of the I/O pin. The output of the Schmitt Trigger is forced to a constant value (0).

● The weak pull-up and pull-down resistors are disabled.

● Read access to the Input Data Register gets the value “0”.

The Figure 14 on page 101 shows the High impedance-Analog Input Configuration of the
I/O Port bit.

Figure 14. High impedance-analog input configuration

Alternate Function Output

Alternate Function Input

push-pull or
open-drain

From on-chip
peripheral

To on-chip
peripheral

Output
control

I/O pin

VDD

VSS

TTL Schmitt
 trigger

VSS

VDD or VDD_FT(1)

Protection
diode

Protection
diode

on

Input driver

Output driver

P-MOS

N-MOS

In
pu

t d
at

a
re

gi
st

er

O
ut

pu
t d

at
a

re
gi

st
er

Read/write

Read

B
it

se
t/r

es
et

 r
eg

is
te

rs

Write

ai14785

From on-chip
peripheral

To on-chip
peripheral

Analog Input

I/O pin

TTL Schmitt
 trigger

VSS

VDD or VDD_FT(1)

Protection
diode

Protection
diode

off

Input driver

0

In
pu

t d
at

a
re

gi
st

er

O
ut

pu
t d

at
a

re
gi

st
er

Read/write

Read

B
it

se
t/r

es
et

 r
eg

is
te

rs

Write

ai14786

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0008

102/682

7.2 GPIO registers
Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

7.2.1 Port configuration register low (GPIOx_CRL) (x=A..G)

Address offset: 0x00

Reset value: 0x4444 4444

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CNF7[1:0] MODE7[1:0] CNF6[1:0] MODE6[1:0] CNF5[1:0] MODE5[1:0] CNF4[1:0] MODE4[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNF3[1:0] MODE3[1:0] CNF2[1:0] MODE2[1:0] CNF1[1:0] MODE1[1:0] CNF0[1:0] MODE0[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30, 27:26,
23:22, 19:18, 15:14,

11:10, 7:6, 3:2

CNFy[1:0]: Port x configuration bits (y= 0 .. 7)

These bits are written by software to configure the corresponding I/O port.
Refer to Table 15: Port bit configuration table on page 97.
In input mode (MODE[1:0]=00):
00: Analog input mode
01: Floating input (reset state)
10: Input with pull-up / pull-down
11: Reserved
In output mode (MODE[1:0] > 00):
00: General purpose output push-pull
01: General purpose output Open-drain
10: Alternate function output Push-pull
11: Alternate function output Open-drain

Bits 29:28, 25:24,
21:20, 17:16, 13:12,

9:8, 5:4, 1:0

MODEy[1:0]: Port x mode bits (y= 0 .. 7)
These bits are written by software to configure the corresponding I/O port.
Refer to Table 15: Port bit configuration table on page 97.
00: Input mode (reset state)
01: Output mode, max speed 10 MHz.
10: Output mode, max speed 2 MHz.
11: Output mode, max speed 50 MHz.

RM0008 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

 103/682

7.2.2 Port configuration register high (GPIOx_CRH) (x=A..G)

Address offset: 0x04

Reset value: 0x4444 4444

7.2.3 Port input data register (GPIOx_IDR) (x=A..G)

Address offset: 0x08h

Reset value: 0x0000 XXXX

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CNF15[1:0] MODE15[1:0] CNF14[1:0] MODE14[1:0] CNF13[1:0] MODE13[1:0] CNF12[1:0] MODE12[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNF11[1:0] MODE11[1:0] CNF10[1:0] MODE10[1:0] CNF9[1:0] MODE9[1:0] CNF8[1:0] MODE8[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30, 27:26,
23:22, 19:18, 15:14,

11:10, 7:6, 3:2

CNFy[1:0]: Port x configuration bits (y= 8 .. 15)
These bits are written by software to configure the corresponding I/O port.
Refer to Table 15: Port bit configuration table on page 97.
In input mode (MODE[1:0]=00):
00: Analog input mode
01: Floating input (reset state)
10: Input with pull-up / pull-down
11: Reserved
In output mode (MODE[1:0] > 00):
00: General purpose output push-pull
01: General purpose output Open-drain
10: Alternate function output Push-pull
11: Alternate function output Open-drain

Bits 29:28, 25:24,
21:20, 17:16, 13:12,

9:8, 5:4, 1:0

MODEy[1:0]: Port x mode bits (y= 8 .. 15)

These bits are written by software to configure the corresponding I/O port.
Refer to Table 15: Port bit configuration table on page 97.
00: Input mode (reset state)
01: Output mode, max speed 10 MHz.
10: Output mode, max speed 2 MHz.
11: Output mode, max speed 50 MHz.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDR15 IDR14 IDR13 IDR12 IDR11 IDR10 IDR9 IDR8 IDR7 IDR6 IDR5 IDR4 IDR3 IDR2 IDR1 IDR0

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, always read as 0.

Bits 15:0 IDRy[15:0]: Port input data (y= 0 .. 15)

These bits are read only and can be accessed in Word mode only. They contain the input
value of the corresponding I/O port.

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0008

104/682

7.2.4 Port output data register (GPIOx_ODR) (x=A..G)

Address offset: 0x0C

Reset value: 0x0000 0000

7.2.5 Port bit set/reset register (GPIOx_BSRR) (x=A..G)

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ODR15 ODR14 ODR13 ODR12 ODR11 ODR10 ODR9 ODR8 ODR7 ODR6 ODR5 ODR4 ODR3 ODR2 ODR1 ODR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, always read as 0.

Bits 15:0 ODRy[15:0]: Port output data (y= 0 .. 15)

These bits can be read and written by software and can be accessed in Word mode only.

Note: For atomic bit set/reset, the ODR bits can be individually set and cleared by writing to
the GPIOx_BSRR register (x = A .. G).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BR15 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 BR3 BR2 BR1 BR0

w w w w w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BS15 BS14 BS13 BS12 BS11 BS10 BS9 BS8 BS7 BS6 BS5 BS4 BS3 BS2 BS1 BS0

w w w w w w w w w w w w w w w w

Bits 31:16 BRy: Port x Reset bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.
0: No action on the corresponding ODRx bit
1: Reset the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 BSy: Port x Set bit y (y= 0 .. 15)
These bits are write-only and can be accessed in Word mode only.
0: No action on the corresponding ODRx bit
1: Set the corresponding ODRx bit

RM0008 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

 105/682

7.2.6 Port bit reset register (GPIOx_BRR) (x=A..G)

Address offset: 0x14

Reset value: 0x0000 0000

7.2.7 Port configuration lock register (GPIOx_LCKR) (x=A..G)

This register is used to lock the configuration of the port bits when a correct write sequence
is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the
GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the
LOCK sequence has been applied on a port bit it is no longer possible to modify the value of
the port bit until the next reset.

Each lock bit freezes the corresponding 4 bits of the control register (CRL, CRH).

Address offset: 0x18

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BR15 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 BR3 BR2 BR1 BR0

w w w w w w w w w w w w w w w w

Bits 31:16 Reserved

Bits 15:0 BRy: Port x Reset bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.
0: No action on the corresponding ODRx bit
1: Reset the corresponding ODRx bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
LCKK

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LCK15 LCK14 LCK13 LCK12 LCK11 LCK10 LCK9 LCK8 LCK7 LCK6 LCK5 LCK4 LCK3 LCK2 LCK1 LCK0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0008

106/682

Bits 31:17 Reserved

Bit 16 LCKK[16]: Lock key

This bit can be read anytime. It can only be modified using the Lock Key Writing Sequence.
0: Port configuration lock key not active
1: Port configuration lock key active. GPIOx_LCKR register is locked until an MCU reset
occurs.

LOCK key writing sequence:
Write 1
Write 0
Write 1
Read 0
Read 1 (this read is optional but confirms that the lock is active)

Note: During the LOCK Key Writing sequence, the value of LCK[15:0] must not change.
Any error in the lock sequence will abort the lock.

Bits 15:0 LCKy: Port x Lock bit y (y= 0 .. 15)

These bits are read write but can only be written when the LCKK bit is 0.
0: Port configuration not locked
1: Port configuration locked.

RM0008 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

 107/682

7.3 Alternate function I/O and debug configuration (AFIO)
To optimize the number of peripherals available for the 64-pin or the 100-pin or the 144-pin
package, it is possible to remap some alternate functions to some other pins. This is
achieved by software, by programming the AF remap and debug I/O configuration register
(AFIO_MAPR) on page 113. In this case, the alternate functions are no longer mapped to
their original assignations.

7.3.1 Using OSC32_IN/OSC32_OUT pins as GPIO ports PC14/PC15

The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general-purpose I/O
PC14 and PC15, respectively, when the LSE oscillator is off. The LSE has priority over the
GP IOs function.

Note: 1 The PC14/PC15 GPIO functionality is lost when the 1.8 V domain is powered off (by
entering standby mode) or when the backup domain is supplied by VBAT (VDD no more
supplied). In this case the IOs are set in analog input mode.

2 Refer to the note on IO usage restrictions in Section 4.1.2 on page 46.

7.3.2 Using OSC_IN/OSC_OUT pins as GPIO ports PD0/PD1

The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose I/O PD0/PD1
by programming the PD01_REMAP bit in the AF remap and debug I/O configuration register
(AFIO_MAPR).

This remap is available only on 36-, 48- and 64-pin packages (PD0 and PD1 are available
on 100-pin and 144-pin packages, no need for remapping).

Note: The external interrupt/event function is not remapped. PD0 and PD1 cannot be used for
external interrupt/event generation on 36-, 48- and 64-pin packages.

7.3.3 CAN alternate function remapping

The CAN signals can be mapped on Port A, Port B or Port D as shown in Table 17. For port
D, remapping is not possible in devices delivered in 36-, 48- and 64-pin packages.

7.3.4 JTAG/SWD alternate function remapping

The debug interface signals are mapped on the GPIO ports as shown in Table 18.

Table 17. CAN1 alternate function remapping

Alternate function
CAN_REMAP[1:0] =

“00”
CAN_REMAP[1:0] =

“10” (1)

1. Remap not available on 36-pin package

CAN_REMAP[1:0] =
“11”(2)

2. This remapping is available only on 100-pin and 144-pin packages, when PD0 and PD1 are not remapped
on OSC-IN and OSC-OUT.

CAN_RX PA11 PB8 PD0

CAN_TX PA12 PB9 PD1

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0008

108/682

To optimize the number of free GPIOs during debugging, this mapping can be configured in
different ways by programming the SWJ_CFG[1:0] bits in the AF remap and debug I/O
configuration register (AFIO_MAPR). Refer to Table 19

Table 18. Debug interface signals

Alternate function GPIO port

JTMS / SWDIO PA13

JTCK / SWCLK PA14

JTDI PA15

JTDO / TRACESWO PB3

JNTRST PB4

TRACECK PE2

TRACED0 PE3

TRACED1 PE4

TRACED2 PE5

TRACED3 PE6

Table 19. Debug port mapping

SWJ _CFG
[2:0]

Available debug ports

SWJ I/O pin assigned

PA13 /
JTMS/
SWDIO

PA14 /
JTCK/S
WCLK

PA15 /
JTDI

PB3 /
JTDO/
TRACE
SWO

PB4/
JNTRST

000
Full SWJ (JTAG-DP + SW-DP)
(Reset state)

X X X X X

001
Full SWJ (JTAG-DP + SW-DP)
but without JNTRST

X X X x free

010
JTAG-DP Disabled and
SW-DP Enabled

X X free free(1)

1. Released only if not using asynchronous trace.

free

100
JTAG-DP Disabled and
SW-DP Disabled

free free free free free

Other Forbidden

RM0008 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

 109/682

7.3.5 ADC alternate function remapping

Refer to AF remap and debug I/O configuration register (AFIO_MAPR).

7.3.6 Timer alternate function remapping

Timer 4 channels 1 to 4 can be remapped from Port B to Port D. Other timer remapping
possibilities are listed in Table 26 to Table 28. Refer to AF remap and debug I/O
configuration register (AFIO_MAPR).

Table 20. ADC1 external trigger injected conversion alternate function remapping(1)

1. Remap available only for high-density devices.

Alternate function ADC1_ETRGINJ_REMAP = 0 ADC1_ETRGINJ_REMAP = 1

ADC1 external trigger injected
conversion

ADC1 external trigger injected
conversion is connected to
EXTI15

ADC1 external trigger injected
conversion is connected to
TIM8_CH4

Table 21. ADC1 external trigger regular conversion alternate function remapping(1)

1. Remap available only for high-density devices.

Alternate function ADC1_ETRGREG_REMAP = 0 ADC1_ETRGREG_REMAP = 1

ADC1 external trigger regular
conversion

ADC1 external trigger regular
conversion is connected to
EXTI11

ADC1 external trigger regular
conversion is connected to
TIM8_TRGO

Table 22. ADC2 external trigger injected conversion alternate function remapping(1)

1. Remap available only for high-density devices.

Alternate function ADC2_ETRGINJ_REMAP = 0 ADC2_ETRGINJ_REMAP = 1

ADC2 external trigger injected
conversion

ADC2 external trigger injected
conversion is connected to
EXTI 15

ADC2 external trigger injected
conversion is connected to
TIM8_CH4

Table 23. ADC2 external trigger regular conversion alternate function remapping(1)

1. Remap available only for high-density devices.

Alternate function ADC2_ETRGREG_REG = 0 ADC2_ETRGREG_REG = 1

ADC2 external trigger regular
conversion

ADC2 external trigger regular
conversion is connected to
EXTI11

ADC2 external trigger regular
conversion is connected to
TIM8_TRGO

Table 24. Timer 5 alternate function remapping(1)

1. Remap available only for high-density devices.

Alternate function TIM5CH4_IREMAP = 0 TIM5CH4_IREMAP = 1

TIM5_CH4
TIM5 Channel4 is
connected to PA3

LSI internal clock is connected to TIM5_CH4
input for calibration purpose.

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0008

110/682

Table 25. Timer 4 alternate function remapping

Alternate function TIM4_REMAP = 0 TIM4_REMAP = 1(1)

1. Remap available only for 100-pin and for 144-pin package.

TIM4_CH1 PB6 PD12

TIM4_CH2 PB7 PD13

TIM4_CH3 PB8 PD14

TIM4_CH4 PB9 PD15

Table 26. Timer 3 alternate function remapping

Alternate function
TIM3_REMAP[1:0] =

“00” (no remap)
TIM3_REMAP[1:0] =
“10” (partial remap)

TIM3_REMAP[1:0] =
“11” (full remap) (1)

1. Remap available only for 64-pin, 100-pin and 144-pin packages.

TIM3_CH1 PA6 PB4 PC6

TIM3_CH2 PA7 PB5 PC7

TIM3_CH3 PB0 PC8

TIM3_CH4 PB1 PC9

Table 27. Timer 2 alternate function remapping

Alternate function
TIM2_REMAP[1:

0] = “00” (no
remap)

TIM2_REMAP[1:
0] = “01” (partial

remap)

TIM2_REMAP[1:
0] = “10” (partial

remap) (1)

1. Remap not available on 36-pin package.

TIM2_REMAP[1:
0] = “11” (full

remap) (1)

TIM2_CH1_ETR(2)

2. TIM_CH1 and TIM_ETR share the same pin but cannot be used at the same time (which is why we have
this notation: TIM2_CH1_ETR).

PA0 PA15 PA0 PA15

TIM2_CH2 PA1 PB3 PA1 PB3

TIM2_CH3 PA2 PB10

TIM2_CH4 PA3 PB11

RM0008 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

 111/682

7.3.7 USART Alternate function remapping

Refer to AF remap and debug I/O configuration register (AFIO_MAPR).

Table 28. Timer 1 alternate function remapping

Alternate functions
mapping

TIM1_REMAP[1:0] =
“00” (no remap)

TIM1_REMAP[1:0] =
“01” (partial remap)

TIM1_REMAP[1:0] =
“11” (full remap) (1)

1. Remap available only for 100-pin and 144-pin packages.

TIM1_ETR PA12 PE7

TIM1_CH1 PA8 PE9

TIM1_CH2 PA9 PE11

TIM1_CH3 PA10 PE13

TIM1_CH4 PA11 PE14

TIM1_BKIN PB12 (2)

2. Remap not available on 36-pin package.

PA6 PE15

TIM1_CH1N PB13 (2) PA7 PE8

TIM1_CH2N PB14 (2) PB0 PE10

TIM1_CH3N PB15 (2) PB1 PE12

Table 29. USART3 remapping

Alternate function
USART3_REMAP[1:0]

= “00” (no remap)

USART3_REMAP[1:0]
= “01” (partial remap)

(1)

1. Remap available only for 64-pin, 100-pin and 144-pin packages

USART3_REMAP[1:0]
= “11” (full remap) (2)

2. Remap available only for 100-pin and 144-pin packages.

USART3_TX PB10 PC10 PD8

USART3_RX PB11 PC11 PD9

USART3_CK PB12 PC12 PD10

USART3_CTS PB13 PD11

USART3_RTS PB14 PD12

Table 30. USART2 remapping

Alternate functions USART2_REMAP = 0 USART2_REMAP = 1(1)

1. Remap available only for 100-pin and 144-pin packages.

USART2_CTS PA0 PD3

USART2_RTS PA1 PD4

USART2_TX PA2 PD5

USART2_RX PA3 PD6

USART2_CK PA4 PD7

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0008

112/682

7.3.8 I2C 1 alternate function remapping

Refer to AF remap and debug I/O configuration register (AFIO_MAPR)

7.3.9 SPI 1 alternate function remapping

Refer to AF remap and debug I/O configuration register (AFIO_MAPR)

7.4 AFIO registers
Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

Note: To read/write the AFIO_EVCR,AFIO_MAPR and AFIO_EXTICRX registers, the AFIO clock
should first be enabled. Refer to Section 6.3.7: APB2 peripheral clock enable register
(RCC_APB2ENR).

7.4.1 Event control register (AFIO_EVCR)

Address offset: 0x00

Reset value: 0x0000 0000

Table 31. USART1 remapping

Alternate function USART1_REMAP = 0 USART1_REMAP = 1

USART1_TX PA9 PB6

USART1_RX PA10 PB7

Table 32. I2C1 remapping

Alternate function I2C1_REMAP = 0 I2C1_REMAP = 1 (1)

1. Remap not available on 36-pin package.

I2C1_SCL PB6 PB8

I2C1_SDA PB7 PB9

Table 33. SPI1 remapping

Alternate function SPI1_REMAP = 0 SPI1_REMAP = 1

SPI1_NSS PA4 PA15

SPI1_SCK PA5 PB3

SPI1_MISO PA6 PB4

SPI1_MOSI PA7 PB5

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
EVOE PORT[2:0] PIN[3:0]

rw rw rw rw rw rw rw rw

RM0008 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

 113/682

7.4.2 AF remap and debug I/O configuration register (AFIO_MAPR)

Address offset: 0x04

Reset value: 0x0000 0000

Bits 31:8 Reserved

Bit 7 EVOE: Event output enable

Set and cleared by software. When set the EVENTOUT Cortex output is connected to the
I/O selected by the PORT[2:0] and PIN[3:0] bits.

Bits 6:4 PORT[2:0]: Port selection
Set and cleared by software. Select the port used to output the Cortex EVENTOUT signal.

Note: The EVENTOUT signal output capability is not extended to ports PF and PG.

000: PA selected
001: PB selected
010: PC selected
011: PD selected
100: PE selected

Bits 3:0 PIN[3:0]: Pin selection (x = A .. E)

Set and cleared by software. Select the pin used to output the Cortex EVENTOUT signal.
0000: Px0 selected
0001: Px1 selected
0010: Px2 selected
0011: Px3 selected
...
1111: Px15 selected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

SWJ_
CFG[2:0] Reserved

ADC2_
ETRGR
EG_RE

MAP

ADC2_
ETRGI
NJ_RE
MAP

ADC1_
ETRGR
EG_RE

MAP

ADC1_
ETRGI
NJ_RE
MAP

TIM5C
H4_IRE

MAP

w w w rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PD01_
REMA

P

CAN1_REMAP
[1:0]

TIM4_
REMA

P

TIM3_REMAP
[1:0]

TIM2_REMAP
[1:0]

TIM1_REMAP
[1:0]

USART3_
REMAP[1:0]

USART
2_

REMA
P

USART
1_

REMA
P

I2C1_
REMA

P

SPI1_
REMA

P

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:27 Reserved

Bits 26:24 SWJ_CFG[2:0] Serial wire JTAG configuration

These bits are write-only (when read, the value is undefined). They are used to configure
the SWJ and trace alternate function I/Os. The SWJ (Serial Wire JTAG) supports JTAG or
SWD access to the Cortex debug port. The default state after reset is SWJ ON without
trace. This allows JTAG or SW mode to be enabled by sending a specific sequence on the
JTMS / JTCK pin.
000: Full SWJ (JTAG-DP + SW-DP): Reset State
001: Full SWJ (JTAG-DP + SW-DP) but without JNTRST
010: JTAG-DP Disabled and SW-DP Enabled
100: JTAG-DP Disabled and SW-DP Disabled
Other combinations: no effect

Bits 23:21 Reserved

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0008

114/682

Bits 20 ADC2_ETRGREG_REMAP: ADC 2 external trigger regular conversion remapping
Set and cleared by software. This bit controls the trigger input connected to ADC2 external
trigger regular conversion. When this bit is reset, the ADC2 external trigger regular
conversion is connected to EXTI11. When this bit is set, the ADC2 external event regular
conversion is connected to TIM8_TRGO.

Bits 19 ADC2_ETRGINJ_REMAP: ADC 2 external trigger injected conversion remapping
Set and cleared by software. This bit controls the trigger input connected to ADC2 external
trigger injected conversion. When this bit is reset, the ADC2 external trigger injected
conversion is connected to EXTI15. When this bit is set, the ADC2 external event injected
conversion is connected to TIM8_Channel4.

Bits 18 ADC1_ETRGREG_REMAP: ADC 1 external trigger regular conversion remapping
Set and cleared by software. This bit controls the trigger input connected to ADC1
External trigger regular conversion. When reset the ADC1 External trigger regular
conversion is connected to EXTI11. When set the ADC1 External Event regular conversion
is connected to TIM8 TRGO.

Bits 17 ADC1_ETRGINJ_REMAP: ADC 1 External trigger injected conversion remapping

Set and cleared by software. This bit controls the trigger input connected to ADC1
External trigger injected conversion. When reset the ADC1 External trigger injected
conversion is connected to EXTI15. When set the ADC1 External Event injected conversion
is connected to TIM8 Channel4.

Bits 16 TIM5CH4_IREMAP: TIM5 channel4 internal remap

Set and cleared by software. This bit controls the TIM5_CH4 internal mapping. When reset
the timer TIM5_CH4 is connected to PA3. When set the LSI internal clock is connected to
TIM5_CH4 input for calibration purpose.

Bit 15 PD01_REMAP: Port D0/Port D1 mapping on OSC_IN/OSC_OUT

This bit is set and cleared by software. It controls the mapping of PD0 and PD1 GPIO
functionality. When the HSE oscillator is not used (application running on internal 8 MHz
RC) PD0 and PD1 can be mapped on OSC_IN and OSC_OUT. This is available only on 36-
, 48- and 64-pin packages (PD0 and PD1 are available on 100-pin and 144-pin packages,
no need for remapping).
0: No remapping of PD0 and PD1
1: PD0 remapped on OSC_IN, PD1 remapped on OSC_OUT,

Bits 14:13 CAN_REMAP[1:0]: CAN alternate function remapping

These bits are set and cleared by software. They control the mapping of Alternate Functions
CAN_RX and CAN_TX.
00: CAN_RX mapped to PA11, CAN_TX mapped to PA12
01: Not used
10: CAN_RX mapped to PB8, CAN_TX mapped to PB9 (not available on 36-pin package)
11: CAN_RX mapped to PD0, CAN_TX mapped to PD1

Bit 12 TIM4_REMAP: TIM4 remapping
This bit is set and cleared by software. It controls the mapping of TIM4 channels 1 to 4 onto
the GPIO ports.
0: No remap (TIM4_CH1/PB6, TIM4_CH2/PB7, TIM4_CH3/PB8, TIM4_CH4/PB9)
1: Full remap (TIM4_CH1/PD12, TIM4_CH2/PD13, TIM4_CH3/PD14, TIM4_CH4/PD15)

Note: TIM4_ETR on PE0 is not re-mapped.

RM0008 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

 115/682

Bits 11:10 TIM3_REMAP[1:0] TIM3 remapping
These bits are set and cleared by software. They control the mapping of TIM3 channels 1 to
4 on the GPIO ports.
00: No remap (CH1/PA6, CH2/PA7, CH3/PB0, CH4/PB1)
01: Not used
10: Partial remap (CH1/PB4, CH2/PB5, CH3/PB0, CH4/PB1)
11: Full remap (CH1/PC6, CH2/PC7, CH3/PC8, CH4/PC9)

Note: TIM3_ETR on PE0 is not re-mapped.

Bits 9:8 TIM2_REMAP[1:0] TIM2 remapping
These bits are set and cleared by software. They control the mapping of TIM2 channels 1 to
4 and external trigger (ETR) on the GPIO ports.
00: No remap (CH1/ETR/PA0, CH2/PA1, CH3/PA2, CH4/PA3)
01: Partial remap (CH1/ETR/PA15, CH2/PB3, CH3/PA2, CH4/PA3)
10: Partial remap (CH1/ETR/PA0, CH2/PA1, CH3/PB10, CH4/PB11)
11: Full remap (CH1/ETR/PA15, CH2/PB3, CH3/PB10, CH4/PB11)

Bits 7:6 TIM1_REMAP[1:0] TIM1 remapping

These bits are set and cleared by software. They control the mapping of TIM2 channels 1 to
4, 1N to 3N, external trigger (ETR) and Break input (BKIN) on the GPIO ports.
00: No remap (ETR/PA12, CH1/PA8, CH2/PA9, CH3/PA10, CH4/PA11, BKIN/PB12,
CH1N/PB13, CH2N/PB14, CH3N/PB15)
01: Partial remap (ETR/PA12, CH1/PA8, CH2/PA9, CH3/PA10, CH4/PA11, BKIN/PA6,
CH1N/PA7, CH2N/PB0, CH3N/PB1)
10: not used
11: Full remap (ETR/PE7, CH1/PE9, CH2/PE11, CH3/PE13, CH4/PE14, BKIN/PE15,
CH1N/PE8, CH2N/PE10, CH3N/PE12)

Bits 5:4 USART3_REMAP[1:0] USART3 remapping
These bits are set and cleared by software. They control the mapping of USART3 CTS,
RTS,CK,TX and RX alternate functions on the GPIO ports.
00: No remap (TX/PB10, RX/PB11, CK/PB12, CTS/PB13, RTS/PB14)
01: Partial remap (TX/PC10, RX/PC11, CK/PC12, CTS/PB13, RTS/PB14)
10: not used
11: Full remap (TX/PD8, RX/PD9, CK/PD10, CTS/PD11, RTS/PD12)

Bit 3 USART2_REMAP USART2 remapping

This bit is set and cleared by software. It controls the mapping of USART2 CTS, RTS,CK,TX
and RX alternate functions on the GPIO ports.
0: No remap (CTS/PA0, RTS/PA1, TX/PA2, RX/PA3, CK/PA4)
1: Remap (CTS/PD3, RTS/PD4, TX/PD5, RX/PD6, CK/PD7)

Bit 2 USART1_REMAP USART1 remapping

This bit is set and cleared by software. It controls the mapping of USART1 TX and RX
alternate functions on the GPIO ports.
0: No remap (TX/PA9, RX/PA10)
1: Remap (TX/PB6, RX/PB7)

Bit 1 I2C1_REMAP I2C1 remapping

This bit is set and cleared by software. It controls the mapping of I2C1 SCL and SDA
alternate functions on the GPIO ports.
0: No remap (SCL/PB6, SDA/PB7)
1: Remap (SCL/PB8, SDA/PB9)

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0008

116/682

7.4.3 External interrupt configuration register 1 (AFIO_EXTICR1)

Address offset: 0x08

Reset value: 0x0000

7.4.4 External interrupt configuration register 2 (AFIO_EXTICR2)

Address offset: 0x0C

Reset value: 0x0000

Bit 0 SPI1_REMAP SPI1 remapping
This bit is set and cleared by software. It controls the mapping of SPI1 NSS, SCK, MISO,
MOSI alternate functions on the GPIO ports.
0: No remap (NSS/PA4, SCK/PA5, MISO/PA6, MOSI/PA7)
1: Remap (NSS/PA15, SCK/PB3, MISO/PB4, MOSI/PB5)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI3[3:0] EXTI2[3:0] EXTI1[3:0] EXTI0[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x= 0 to 3)
These bits are written by software to select the source input for EXTIx external interrupt.
Refer to Section 8.2.5: External interrupt/event line mapping on page 124
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
0101: PF[x] pin
0110: PG[x] pin

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI7[3:0] EXTI6[3:0] EXTI5[3:0] EXTI4[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x= 4 to 7)

These bits are written by software to select the source input for EXTIx external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
0101: PF[x] pin
0110: PG[x] pin

RM0008 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

 117/682

7.4.5 External interrupt configuration register 3 (AFIO_EXTICR3)

Address offset: 0x10

Reset value: 0x0000

7.4.6 External interrupt configuration register 4 (AFIO_EXTICR4)

Address offset: 0x14

Reset value: 0x0000

7.5 GPIO and AFIO register maps
Refer to Table 1 on page 35 for the register boundary addresses. The following tables give
the GPIO and AFIO register map and the reset values.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI11[3:0] EXTI10[3:0] EXTI9[3:0] EXTI8[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x= 8 to 11)

These bits are written by software to select the source input for EXTIx external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
0101: PF[x] pin
0110: PG[x] pin

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI15[3:0] EXTI14[3:0] EXTI13[3:0] EXTI12[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x= 12 to 15)
These bits are written by software to select the source input for EXTIx external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
0101: PF[x] pin
0110: PG[x] pin

General-purpose and alternate-function I/Os (GPIOs and AFIOs) RM0008

118/682

Refer to Table 1 on page 35 for the register boundary addresses.

Table 34. GPIO register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
GPIOx_CRL

CNF
7

[1:0]

MODE
7

[1:0]

CNF
6

[1:0]

MODE
6

[1:0]

CNF
5

[1:0]

MODE
5

[1:0]

CNF
4

[1:0]

MODE
4

[1:0]

CNF
3

[1:0]

MODE
3

[1:0]

CNF
2

[1:0]

MODE
2

[1:0]

CNF
1

[1:0]

MODE
1

[1:0]

CNF
0

[1:0]

MODE
0

[1:0]

Reset value 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0x04
GPIOx_CRH

CNF
15

[1:0]

MODE
15

[1:0]

CNF
14

[1:0]

MODE
14

[1:0]

CNF
13

[1:0]

MODE
13

[1:0]

CNF
12

[1:0]

MODE
12

[1:0]

CNF
11

[1:0]

MODE
11

[1:0]

CNF
10

[1:0]

MODE
10

[1:0]

CNF
9

[1:0]

MODE
9

[1:0]

CNF
8

[1:0]

MODE
8

[1:0]

Reset value 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0x08
GPIOx_IDR

Reserved
IDR[15:0]l

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
GPIOx_ODR

Reserved
ODR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
GPIOx_BSRR BR[15:0] BSR[15:0]

Reset value 0

0x14
GPIOx_BRR

Reserved
BR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
GPIOx_LCKR

Reserved LC
K

K

LCK[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 35. AFIO register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
AFIO_EVCR

Reserved E
V

O
E

PORT[2:0] PIN[3:0]

Reset value 0 0 0 0 0 0 0

0x04
AFIO_MAPR

Reserved

S
W

J_
C

F
G

[2
]

S
W

J_
C

F
G

[1
]

S
W

J_
C

F
G

[0
]

Reserved

A
D

C
2_

E
T

R
G

R
E

G
_R

E
M

A
P

A
D

C
2_

E
T

R
G

IN
J_

R
E

M
A

P

A
D

C
1_

E
T

R
G

R
E

G
_R

E
M

A
P

A
D

C
1_

E
T

R
G

IN
J_

R
E

M
A

P

T
IM

5C
H

4_
IR

E
M

A
P

P
D

01
_R

E
M

A
P

C
A

N
1_

R
E

M
A

P
[1

]

C
A

N
1_

R
E

M
A

P
[0

]

T
IM

4_
R

E
M

PA
P

T
IM

3_
R

E
M

PA
P

[1
]

T
IM

3_
R

E
M

PA
P

[0
]

T
IM

2_
R

E
M

PA
P

[1
]

T
IM

2_
R

E
M

PA
P

[0
]

T
IM

1_
R

E
M

PA
P

[1
]

T
IM

1_
R

E
M

PA
P

[0
]

U
S

A
R

T
3_

R
E

M
A

P
[1

]

U
S

A
R

T
3_

R
E

M
A

P
[0

]

U
S

A
R

T
2_

R
E

M
A

P

U
S

A
R

T
1_

R
E

M
A

P

I2
C

1_
R

E
M

A
P

S
P

I1
_R

E
M

A
P

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08
AFIO_EXTICR1

Reserved
EXTI3[3:0] EXTI2[3:0] EXTI1[3:0] EXTI0[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
AFIO_EXTICR2

Reserved
EXTI7[3:0] EXTI6[3:0] EXTI5[3:0] EXTI4[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
AFIO_EXTICR3

Reserved
EXTI11[3:0] EXTI10[3:0] EXTI9[3:0] EXTI8[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
AFIO_EXTICR4

Reserved
EXTI15[3:0] EXTI14[3:0] EXTI13[3:0] EXTI12[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM0008 Interrupts and events

 119/682

8 Interrupts and events

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This Section applies to the whole STM32F10xxx family, unless otherwise specified.

8.1 Nested vectored interrupt controller (NVIC)

Features

● 60 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3)

● 16 programmable priority levels (4 bits of interrupt priority are used)

● Low-latency exception and interrupt handling

● Power management control

● Implementation of System Control Registers

The NVIC and the processor core interface are closely coupled, which enables low latency
interrupt processing and efficient processing of late arriving interrupts.

All interrupts including the core exceptions are managed by the NVIC. For more information
on exceptions and NVIC programming see Chap 5 Exceptions & Chap 8 Nested Vectored
Interrupt Controller of the ARM Cortex™-M3 Technical Reference Manual.

8.1.1 SysTick calibration value register

The SysTick calibration value is fixed to 9000, which gives a reference time base of 1 ms
with the SysTick clock set to 9 MHz (max HCLK/8).

8.1.2 Interrupt and exception vectors

Table 36 is the vector table for STM32F10xxx devices.

Table 36. Vector table for other STM32F10xxx devices

P
o

si
ti

o
n

P
ri

o
ri

ty Type of
priority

Acronym Description Address

- - - Reserved 0x0000_0000

-3 fixed Reset Reset 0x0000_0004

-2 fixed NMI
Non maskable interrupt. The RCC
Clock Security System (CSS) is
linked to the NMI vector.

0x0000_0008

-1 fixed HardFault All class of fault 0x0000_000C

Interrupts and events RM0008

120/682

0 settable MemManage Memory management 0x0000_0010

1 settable BusFault Pre-fetch fault, memory access fault 0x0000_0014

2 settable UsageFault Undefined instruction or illegal state 0x0000_0018

- - - Reserved
0x0000_001C -
0x0000_002B

3 settable SVCall
System service call via SWI
instruction

0x0000_002C

4 settable Debug Monitor Debug Monitor 0x0000_0030

- - - Reserved 0x0000_0034

5 settable PendSV Pendable request for system service 0x0000_0038

6 settable SysTick System tick timer 0x0000_003C

0 7 settable WWDG Window watchdog interrupt 0x0000_0040

1 8 settable PVD
PVD through EXTI Line detection
interrupt

0x0000_0044

2 9 settable TAMPER Tamper interrupt 0x0000_0048

3 10 settable RTC RTC global interrupt 0x0000_004C

4 11 settable FLASH Flash global interrupt 0x0000_0050

5 12 settable RCC RCC global interrupt 0x0000_0054

6 13 settable EXTI0 EXTI Line0 interrupt 0x0000_0058

7 14 settable EXTI1 EXTI Line1 interrupt 0x0000_005C

8 15 settable EXTI2 EXTI Line2 interrupt 0x0000_0060

9 16 settable EXTI3 EXTI Line3 interrupt 0x0000_0064

10 17 settable EXTI4 EXTI Line4 interrupt 0x0000_0068

11 18 settable DMA1_Channel1 DMA1 Channel1 global interrupt 0x0000_006C

12 19 settable DMA1_Channel2 DMA1 Channel2 global interrupt 0x0000_0070

13 20 settable DMA1_Channel3 DMA1 Channel3 global interrupt 0x0000_0074

14 21 settable DMA1_Channel4 DMA1 Channel4 global interrupt 0x0000_0078

15 22 settable DMA1_Channel5 DMA1 Channel5 global interrupt 0x0000_007C

16 23 settable DMA1_Channel6 DMA1 Channel6 global interrupt 0x0000_0080

17 24 settable DMA1_Channel7 DMA1 Channel7 global interrupt 0x0000_0084

18 25 settable ADC1_2 ADC1 and ADC2 global interrupt 0x0000_0088

19 26 settable
USB_HP_CAN_
TX

USB High Priority or CAN TX
interrupts

0x0000_008C

20 27 settable
USB_LP_CAN_
RX0

USB Low Priority or CAN RX0
interrupts

0x0000_0090

Table 36. Vector table for other STM32F10xxx devices (continued)

P
o

si
ti

o
n

P
ri

o
ri

ty Type of
priority

Acronym Description Address

RM0008 Interrupts and events

 121/682

21 28 settable CAN_RX1 CAN RX1 interrupt 0x0000_0094

22 29 settable CAN_SCE CAN SCE interrupt 0x0000_0098

23 30 settable EXTI9_5 EXTI Line[9:5] interrupts 0x0000_009C

24 31 settable TIM1_BRK TIM1 Break interrupt 0x0000_00A0

25 32 settable TIM1_UP TIM1 Update interrupt 0x0000_00A4

26 33 settable TIM1_TRG_COM
TIM1 Trigger and Commutation
interrupts

0x0000_00A8

27 34 settable TIM1_CC TIM1 Capture Compare interrupt 0x0000_00AC

28 35 settable TIM2 TIM2 global interrupt 0x0000_00B0

29 36 settable TIM3 TIM3 global interrupt 0x0000_00B4

30 37 settable TIM4 TIM4 global interrupt 0x0000_00B8

31 38 settable I2C1_EV I2C1 event interrupt 0x0000_00BC

32 39 settable I2C1_ER I2C1 error interrupt 0x0000_00C0

33 40 settable I2C2_EV I2C2 event interrupt 0x0000_00C4

34 41 settable I2C2_ER I2C2 error interrupt 0x0000_00C8

35 42 settable SPI1 SPI1 global interrupt 0x0000_00CC

36 43 settable SPI2 SPI2 global interrupt 0x0000_00D0

37 44 settable USART1 USART1 global interrupt 0x0000_00D4

38 45 settable USART2 USART2 global interrupt 0x0000_00D8

39 46 settable USART3 USART3 global interrupt 0x0000_00DC

40 47 settable EXTI15_10 EXTI Line[15:10] interrupts 0x0000_00E0

41 48 settable RTCAlarm
RTC alarm through EXTI line
interrupt

0x0000_00E4

42 49 settable USBWakeup
USB wakeup from suspend through
EXTI line interrupt

0x0000_00E8

43 50 settable TIM8_BRK TIM8 Break interrupt 0x0000_00EC

44 51 settable TIM8_UP TIM8 Update interrupt 0x0000_00F0

45 52 settable TIM8_TRG_COM
TIM8 Trigger and Commutation
interrupts

0x0000_00F4

46 53 settable TIM8_CC TIM8 Capture Compare interrupt 0x0000_00F8

47 54 settable ADC3 ADC3 global interrupt 0x0000_00FC

48 55 settable FSMC FSMC global interrupt 0x0000_0100

49 56 settable SDIO SDIO global interrupt 0x0000_0104

50 57 settable TIM5 TIM5 global interrupt 0x0000_0108

51 58 settable SPI3 SPI3 global interrupt 0x0000_010C

Table 36. Vector table for other STM32F10xxx devices (continued)

P
o

si
ti

o
n

P
ri

o
ri

ty Type of
priority

Acronym Description Address

Interrupts and events RM0008

122/682

8.2 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of up to 19 edge detectors for generating
event/interrupt requests. Each input line can be independently configured to select the type
(pulse or pending) and the corresponding trigger event (rising or falling or both). Each line
can also masked independently. A pending register maintains the status line of the interrupt
requests

8.2.1 Main features

The EXTI controller main features are the following:

● Independent trigger and mask on each interrupt/event line

● Dedicated status bit for each interrupt line

● Generation of up to 19 software event/interrupt requests

● Detection of external signal with pulse width lower than APB2 clock period. Refer to the
electrical characteristics section of the datasheet for details on this parameter.

8.2.2 Block diagram

The block diagram is shown in Figure 15.

52 59 settable UART4 UART4 global interrupt 0x0000_0110

53 60 settable UART5 UART5 global interrupt 0x0000_0114

54 61 settable TIM6 TIM6 global interrupt 0x0000_0118

55 62 settable TIM7 TIM7 global interrupt 0x0000_011C

56 63 settable DMA2_Channel1 DMA2 Channel1 global interrupt 0x0000_0120

57 64 settable DMA2_Channel2 DMA2 Channel2 global interrupt 0x0000_0124

58 65 settable DMA2_Channel3 DMA2 Channel3 global interrupt 0x0000_0128

59 66 settable DMA2_Channel4_5
DMA2 Channel4 and DMA2
Channel5 global interrupts

0x0000_012C

Table 36. Vector table for other STM32F10xxx devices (continued)

P
o

si
ti

o
n

P
ri

o
ri

ty Type of
priority

Acronym Description Address

RM0008 Interrupts and events

 123/682

Figure 15. External interrupt/event controller block diagram

8.2.3 Wakeup event management

The STM32F10xxx is able to handle external or internal events in order to wake up the core
(WFE). The wakeup event can be generated either by:

● enabling an interrupt in the peripheral control register but not in the NVIC, and enabling
the SEVONPEND bit in the Cortex-M3 System Control register. When the MCU
resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC IRQ
channel pending bit (in the NVIC interrupt clear pending register) have to be cleared.

● or configuring an external or internal EXTI line in event mode. When the CPU resumes
from WFE, it is not necessary to clear the peripheral interrupt pending bit or the NVIC
IRQ channel pending bit as the pending bit corresponding to the event line is not set.

To use an external line as a wakeup event, refer to Section 8.2.4: Functional description.

8.2.4 Functional description

To generate the interrupt, the interrupt line should be configured and enabled. This is done
by programming the two trigger registers with the desired edge detection and by enabling
the interrupt request by writing a ‘1’ to the corresponding bit in the interrupt mask register.
When the selected edge occurs on the external interrupt line, an interrupt request is
generated. The pending bit corresponding to the interrupt line is also set. This request is
reset by writing a ‘1’ in the pending register.

To generate the event, the event line should be configured and enabled. This is done by
programming the two trigger registers with the desired edge detection and by enabling the
event request by writing a ‘1’ to the corresponding bit in the event mask register. When the

trigger
selection

Peripheral interface

mask
register

Edge detect

AMBA APB bus

PCLK2

19

19 191919

circuit

Pending

register
interruptrequest

.

19

19

To NVIC Interrupt

Software

Controller

trigger
selection

Rising Falling

19

Event
mask

Pulse
generator

19

19

19 19
Input
Line

Interrupt

register register

register

19

19

event
register

ai15800

Interrupts and events RM0008

124/682

selected edge occurs on the event line, an event pulse is generated. The pending bit
corresponding to the event line is not set

An interrupt/event request can also be generated by software by writing a ‘1’ in the software
interrupt/event register.

Hardware interrupt selection

To configure the 19 lines as interrupt sources, use the following procedure:

● Configure the mask bits of the 19 Interrupt lines (EXTI_IMR)

● Configure the Trigger Selection bits of the Interrupt lines (EXTI_RTSR and
EXTI_FTSR)

● Configure the enable and mask bits that control the NVIC IRQ channel mapped to the
External Interrupt Controller (EXTI) so that an interrupt coming from one of the 19 lines
can be correctly acknowledged.

Hardware event selection

To configure the 19 lines as event sources, use the following procedure:

● Configure the mask bits of the 19 Event lines (EXTI_EMR)

● Configure the Trigger Selection bits of the Event lines (EXTI_RTSR and EXTI_FTSR)

Software interrupt/event selection

The 19 lines can be configured as software interrupt/event lines. The following is the
procedure to generate a software interrupt.

● Configure the mask bits of the 19 Interrupt/Event lines (EXTI_IMR, EXTI_EMR)

● Set the required bit of the software interrupt register (EXTI_SWIER)

8.2.5 External interrupt/event line mapping

The 112 GPIOs are connected to the 16 external interrupt/event lines in the following
manner:

RM0008 Interrupts and events

 125/682

Figure 16. External interrupt/event GPIO mapping

The three other EXTI lines are connected as follows:

● EXTI line 16 is connected to the PVD output

● EXTI line 17 is connected to the RTC Alarm event

● EXTI line 18 is connected to the USB Wakeup event

EXTI0

PA0

PB0

PC0

PD0

PE0

EXTI0[3:0] bits in AFIO_EXTICR1 register

PF0

PG0

EXTI1

PA1

PB1

PC1

PD1

PE1

EXTI1[3:0] bits in AFIO_EXTICR1 register

PF1

PG1

EXTI15

PA15

PB15

PC15

PD15

PE15

EXTI15[3:0] bits in AFIO_EXTICR4 register

PF15

PG15

Interrupts and events RM0008

126/682

8.3 EXTI registers
Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

8.3.1 Interrupt mask register (EXTI_IMR)

Address offset: 0x00
Reset value: 0x0000 0000

8.3.2 Event mask register (EXTI_EMR)

Address offset: 0x04
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
MR18 MR17 MR16

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MR15 MR14 MR13 MR12 MR11 MR10 MR9 MR8 MR7 MR6 MR5 MR4 MR3 MR2 MR1 MR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:19 Reserved, must be kept at reset value (0).

Bits 18:0 MRx: Interrupt Mask on line x

Note: 0: Interrupt request from Line x is masked
1: Interrupt request from Line x is not masked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
MR18 MR17 MR16

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MR15 MR14 MR13 MR12 MR11 MR10 MR9 MR8 MR7 MR6 MR5 MR4 MR3 MR2 MR1 MR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:19 Reserved, must be kept at reset value (0).

Bits 18:0 MRx: Event Mask on line x

Note: 0: Event request from Line x is masked
1: Event request from Line x is not masked

RM0008 Interrupts and events

 127/682

8.3.3 Rising trigger selection register (EXTI_RTSR)

Address offset: 0x08
Reset value: 0x0000 0000

Note: The external wakeup lines are edge triggered, no glitches must be generated on these lines.
If a rising edge on external interrupt line occurs during writing of EXTI_RTSR register, the
pending bit will not be set.

Rising and Falling edge triggers can be set for the same interrupt line. In this configuration,
both generate a trigger condition.

8.3.4 Falling trigger selection register (EXTI_FTSR)

Address offset: 0x0C
Reset value: 0x0000 0000

Note: The external wakeup lines are edge triggered, no glitches must be generated on these lines.
If a falling edge on external interrupt line occurs during writing of EXTI_FTSR register, the
pending bit will not be set.

Rising and Falling edge triggers can be set for the same interrupt line. In this configuration,
both generate a trigger condition.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
TR18 TR17 TR16

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:19 Reserved, must be kept at reset value (0).

Bits 18:0 TRx: Rising trigger event configuration bit of line x

Note: 0: Rising trigger disabled (for Event and Interrupt) for input line
1: Rising trigger enabled (for Event and Interrupt) for input line.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
TR18 TR17 TR16

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:19 Reserved, must be kept at reset value (0).

Bits 18:0 TRx: Falling trigger event configuration bit of line x
Note: 0: Falling trigger disabled (for Event and Interrupt) for input line

1: Falling trigger enabled (for Event and Interrupt) for input line.

Interrupts and events RM0008

128/682

8.3.5 Software interrupt event register (EXTI_SWIER)

Address offset: 0x10
Reset value: 0x0000 0000

8.3.6 Pending register (EXTI_PR)

Address offset: 0x14
Reset value: undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

SWIER
18

SWIER
17

SWIER
16

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWIER
15

SWIER
14

SWIER
13

SWIER
12

SWIER
11

SWIER
10

SWIER
9

SWIER
8

SWIER
7

SWIER
6

SWIER
5

SWIER
4

SWIER
3

SWIER
2

SWIER
1

SWIER
0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:19 Reserved, must be kept at reset value (0).

Bits 18:0 SWIERx: Software interrupt on line x
Writing a 1 to this bit when it is at 0 sets the corresponding pending bit in EXTI_PR. If the
interrupt is enabled on this line on the EXTI_IMR and EXTI_EMR, an interrupt request is
generated.

Note: This bit is cleared by clearing the corresponding bit of EXTI_PR (by writing a 1 into the
bit).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
PR18 PR17 PR16

rc_w1 rc_w1 rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PR15 PR14 PR13 PR12 PR11 PR10 PR9 PR8 PR7 PR6 PR5 PR4 PR3 PR2 PR1 PR0

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

Bits 31:19 Reserved, must be kept at reset value (0).

Bits 18:0 PRx: Pending bit

Note: 0: No trigger request occurred
1: selected trigger request occurred
This bit is set when the selected edge event arrives on the external interrupt line. This
bit is cleared by writing a 1 into the bit or by changing the sensitivity of the edge
detector.

RM0008 Interrupts and events

 129/682

8.3.7 EXTI register map

The following table gives the EXTI register map and the reset values.

Refer to Table 1 on page 35 for the register boundary addresses.

Table 37. External interrupt/event controller register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
EXTI_IMR

Reserved
MR[18:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
EXTI_EMR

Reserved
MR[18:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08
EXTI_RTSR

Reserved
TR[18:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
EXTI_FTSR

Reserved
TR[18:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
EXTI_SWIER

Reserved
SWIER[18:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
EXTI_PR

Reserved
PR[18:0]

Reset value x x x x x x x x x x x x x x x x x x x

DMA controller (DMA) RM0008

130/682

9 DMA controller (DMA)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F10xxx family, unless otherwise specified.

9.1 DMA introduction
Direct memory access (DMA) is used in order to provide high-speed data transfer between
peripherals and memory as well as memory to memory. Data can be quickly moved by DMA
without any CPU actions. This keeps CPU resources free for other operations.

The two DMA controllers have 12 channels in total (7 for DMA1 and 5 for DMA2), each
dedicated to managing memory access requests from one or more peripherals. It has an
arbiter for handling the priority between DMA requests.

9.2 DMA main features
● 12 independently configurable channels (requests): 7 for DMA1 and 5 for DMA2

● Each of the 12 channels is connected to dedicated hardware DMA requests, software
trigger is also supported on each channel. This configuration is done by software.

● Priorities between requests from channels of one DMA are software programmable (4
levels consisting of very high, high, medium, low) or hardware in case of equality
(request 1 has priority over request 2, etc.)

● Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.

● Support for circular buffer management

● 3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error)
logically ORed together in a single interrupt request for each channel

● Memory-to-memory transfer

● Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral
transfers

● Access to Flash, SRAM, peripheral SRAM, APB1, APB2 and AHB peripherals as
source and destination

● Programmable number of data to be transferred: up to 65536

The block diagram is shown in Figure 17.

RM0008 DMA controller (DMA)

 131/682

Figure 17. DMA block diagram

1. The DMA2 controller is available only in high-density devices.

2. ADC3, SPI/I2S3, UART4, SDIO, TIM5, TIM6, DAC, TIM7, TIM8 DMA requests are available only in high-
density devices.

9.3 DMA functional description
The DMA controller performs direct memory transfer by sharing the system bus with the
Cortex™-M3 core. The DMA request may stop the CPU access to the system bus for some
bus cycles, when the CPU and DMA are targeting the same destination (memory or
peripheral). The bus matrix implements round-robin scheduling, thus ensuring at least half
of the system bus bandwidth (both to memory and peripheral) for the CPU.

9.3.1 DMA transactions

After an event, the peripheral sends a request signal to the DMA Controller. The DMA
controller serves the request depending on the channel priorities. As soon as the DMA
Controller accesses the peripheral, an Acknowledge is sent to the peripheral by the DMA
Controller. The peripheral releases its request as soon as it gets the Acknowledge from the
DMA Controller. Once the request is deasserted by the peripheral, the DMA Controller
release the Acknowledge. If there are more requests, the peripheral can initiate the next
transaction.

FLITF

Ch.1

Ch.2

Ch.7

Arbiter

Cortex-M3

SRAM

AHB Slave

DMA1

ICode

DCode

System

DMA request

APB2

Flash

Bridge 2

Bridge 1

USART1
SPI1
ADC1
ADC3

USART2
USART3
UART4

I2C2
I2C1

TIM2
TIM3
TIM 4

Ch.1

Ch.2

Ch.5

Arbiter

AHB Slave

DMA2

FSMC

SDIO

APB1

DMA request

TIM1SPI/I2S3
SPI/I2S2

TIM8

TIM5
TIM6
TIM7

ai14801b

DMA request

B
us

 m
at

rixDMA

D
M

A

Reset & clock control
(RCC)

AHB System

DMA controller (DMA) RM0008

132/682

In summary, each DMA transfer consists of three operations:

● A load from the peripheral data register or a location in memory addressed through the
DMA_CMARx register

● A store of the data loaded to the peripheral data register or a location in memory
addressed through the DMA_CMARx register

● A post-decrement of the DMA_CNDTRx register, which contains the number of
transactions that have still to be performed.

9.3.2 Arbiter

The arbiter manages the channel requests based on their priority and launches the
peripheral/memory access sequences.

The priorities are managed in two stages:

● Software: each channel priority can be configured in the DMA_CCRx register. There
are four levels:

– Very high priority

– High priority

– Medium priority

– Low priority

● Hardware: if 2 requests have the same software priority level, the channel with the
lowest number will get priority versus the channel with the highest number. For
example, channel 2 gets priority over channel 4.

Note: In high-density devices, the DMA1 controller has priority over the DMA2 controller.

9.3.3 DMA channels

Each channel can handle DMA transfer between a peripheral register located at a fixed
address and a memory address. The amount of data to be transferred (up to 65535) is
programmable. The register which contains the amount of data items to be transferred is
decremented after each transaction.

Programmable data sizes

Transfer data sizes of the peripheral and memory are fully programmable through the PSIZE
and MSIZE bits in the DMA_CCRx register.

Pointer incrementation

Peripheral and memory pointers can optionally be automatically post-incremented after
each transaction depending on the PINC and MINC bits in the DMA_CCRx register. If
incremented mode is enabled, the address of the next transfer will be the address of the
previous one incremented by 1, 2 or 4 depending on the chosen data size. The first transfer
address will be the one programmed in the DMA_CPARx/DMA_CMARx registers.

If the channel is configured in non-circular mode, no DMA requests are served after the end
of the transfer (i.e. once the number of data to be transferred reaches zero).

RM0008 DMA controller (DMA)

 133/682

Channel configuration procedure

The following sequence should be followed to configure a DMA channelx (where x is the
channel number).

1. Set the peripheral register address in the DMA_CPARx register. The data will be
moved from/ to this address to/ from the memory after the peripheral event.

2. Set the memory address in the DMA_CMARx register. The data will be written to or
read from this memory after the peripheral event.

3. Configure the total number of data to be transferred in the DMA_CNDTRx register.
After each peripheral event, this value will be decremented.

4. Configure the channel priority using the PL[1:0] bits in the DMA_CCRx register

5. Configure data transfer direction, circular mode, peripheral & memory incremented
mode, peripheral & memory data size, and interrupt after half and/or full transfer in the
DMA_CCRx register

6. Activate the channel by setting the ENABLE bit in the DMA_CCRx register.

As soon as the channel is enabled, it can serve any DMA request from the peripheral
connected on the channel.

Once half of the bytes are transferred, the half-transfer flag (HTIF) is set and an interrupt is
generated if the Half-Transfer Interrupt Enable bit (HTIE) is set. At the end of the transfer,
the Transfer Complete Flag (TCIF) is set and an interrupt is generated if the Transfer
Complete Interrupt Enable bit (TCIE) is set.

Circular mode

Circular mode is available to handle circular buffers and continuous data flows (e.g. ADC
scan mode). This feature can be enabled using the CIRC bit in the DMA_CCRx register.
When circular mode is activated, the number of data to be transferred is automatically
reloaded with the initial value programmed during the channel configuration phase, and the
DMA requests continue to be served.

Memory-to-memory mode

The DMA channels can also work without being triggered by a request from a peripheral.
This mode is called Memory to Memory mode.

If the MEM2MEM bit in the DMA_CCRx register is set, then the channel initiates transfers as
soon as it is enabled by software by setting the Enable bit (EN) in the DMA_CCRx register.
The transfer stops once the DMA_CNDTRx register reaches zero. Memory to Memory
mode may not be used at the same time as Circular mode.

9.3.4 Programmable data width, data alignment and endians

When PSIZE and MSIZE are not equal, the DMA performs some data alignments as
described in Table 38: Programmable data width & endian behavior (when bits PINC =
MINC = 1).

DMA controller (DMA) RM0008

134/682

Addressing an AHB peripheral that does not support byte or halfword write
operations

When the DMA initiates an AHB byte or halfword write operation, the data are duplicated on
the unused lanes of the HWDATA[31:0] bus. So when the used AHB slave peripheral does
not support byte or halfword write operations (when HSIZE is not used by the peripheral)
and does not generate any error, the DMA writes the 32 HWDATA bits as shown in the two
examples below:

● To write the halfword “0xABCD”, the DMA sets the HWDATA bus to “0xABCDABCD”
with HSIZE = HalfWord

● To write the byte “0xAB”, the DMA sets the HWDATA bus to “0xABABABAB” with
HSIZE = Byte

Table 38. Programmable data width & endian behavior (when bits PINC = MINC = 1)

Source
port
width

Destination
port width

Number
of data
items to
transfer
(NDT)

Source content:
address / data Transfer operations

Destination
content:

address / data

8 8 4

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

1: READ B0[7:0] @0x0 then WRITE B0[7:0] @0x0
2: READ B1[7:0] @0x1 then WRITE B1[7:0] @0x1
3: READ B2[7:0] @0x2 then WRITE B2[7:0] @0x2
4: READ B3[7:0] @0x3 then WRITE B3[7:0] @0x3

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

8 16 4

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

1: READ B0[7:0] @0x0 then WRITE 00B0[15:0] @0x0
2: READ B1[7:0] @0x1 then WRITE 00B1[15:0] @0x2
3: READ B3[7:0] @0x2 then WRITE 00B2[15:0] @0x4
4: READ B4[7:0] @0x3 then WRITE 00B3[15:0] @0x6

@0x0 / 00B0
@0x2 / 00B1
@0x4 / 00B2
@0x6 / 00B3

8 32 4

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

1: READ B0[7:0] @0x0 then WRITE 000000B0[31:0] @0x0
2: READ B1[7:0] @0x1 then WRITE 000000B1[31:0] @0x4
3: READ B3[7:0] @0x2 then WRITE 000000B2[31:0] @0x8
4: READ B4[7:0] @0x3 then WRITE 000000B3[31:0] @0xC

@0x0 / 000000B0
@0x4 / 000000B1
@0x8 / 000000B2
@0xC / 000000B3

16 8 4

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

1: READ B1B0[15:0] @0x0 then WRITE B0[7:0] @0x0
2: READ B3B2[15:0] @0x2 then WRITE B2[7:0] @0x1
3: READ B5B4[15:0] @0x4 then WRITE B4[7:0] @0x2
4: READ B7B6[15:0] @0x6 then WRITE B6[7:0] @0x3

@0x0 / B0
@0x1 / B2
@0x2 / B4
@0x3 / B6

16 16 2

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

1: READ B1B0[15:0] @0x0 then WRITE B1B0[15:0] @0x0
2: READ B3B2[15:0] @0x2 then WRITE B3B2[15:0] @0x2
3: READ B5B4[15:0] @0x4 then WRITE B5B4[15:0] @0x4
4: READ B7B6[15:0] @0x6 then WRITE B7B6[15:0] @0x6

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

16 32 4

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

1: READ B1B0[15:0] @0x0 then WRITE 0000B1B0[31:0] @0x0
2: READ B3B2[15:0] @0x2 then WRITE 0000B3B2[31:0] @0x4
3: READ B5B4[15:0] @0x4 then WRITE 0000B5B4[31:0] @0x8
4: READ B7B6[15:0] @0x6 then WRITE 0000B7B6[31:0] @0xC

@0x0 / 0000B1B0
@0x4 / 0000B3B2
@0x8 / 0000B5B4
@0xC / 0000B7B6

32 8 4

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

1: READ B3B2B1B0[31:0] @0x0 then WRITE B0[7:0] @0x0
2: READ B7B6B5B4[31:0] @0x4 then WRITE B4[7:0] @0x1
3: READ BBBAB9B8[31:0] @0x8 then WRITE B8[7:0] @0x2
4: READ BFBEBDBC[31:0] @0xC then WRITE BC[7:0] @0x3

@0x0 / B0
@0x1 / B4
@0x2 / B8
@0x3 / BC

32 16 4

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

1: READ B3B2B1B0[31:0] @0x0 then WRITE B1B0[7:0] @0x0
2: READ B7B6B5B4[31:0] @0x4 then WRITE B5B4[7:0] @0x1
3: READ BBBAB9B8[31:0] @0x8 then WRITE B9B8[7:0] @0x2
4: READ BFBEBDBC[31:0] @0xC then WRITE BDBC[7:0] @0x3

@0x0 / B1B0
@0x2 / B5B4
@0x4 / B9B8
@0x6 / BDBC

32 32 4

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

1: READ B3B2B1B0[31:0] @0x0 then WRITE B3B2B1B0[31:0] @0x0
2: READ B7B6B5B4[31:0] @0x4 then WRITE B7B6B5B4[31:0] @0x4
3: READ BBBAB9B8[31:0] @0x8 then WRITE BBBAB9B8[31:0] @0x8
4: READ BFBEBDBC[31:0] @0xC then WRITE BFBEBDBC[31:0] @0xC

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

RM0008 DMA controller (DMA)

 135/682

Assuming that the AHB/APB bridge is an AHB 32-bit slave peripheral that does not take the
HSIZE data into account, it will transform any AHB byte or halfword operation into a 32-bit
APB operation in the following manner:

● an AHB byte write operation of the data “0xB0” to 0x0 (or to 0x1, 0x2 or 0x3) will be
converted to an APB word write operation of the data “0xB0B0B0B0” to 0x0

● an AHB halfword write operation of the data “0xB1B0” to 0x0 (or to 0x2) will be
converted to an APB word write operation of the data “0xB1B0B1B0” to 0x0

For instance, if you want to write the APB backup registers (16-bit registers aligned to a 32-
bit address boundary), you must configure the memory source size (MSIZE) to “16-bit” and
the peripheral destination size (PSIZE) to “32-bit”.

9.3.5 Error management

A DMA transfer error can be generated by reading from or writing to a reserved address
space. When a DMA transfer error occurs during a DMA read or a write access, the faulty
channel is automatically disabled through a hardware clear of its EN bit in the corresponding
Channel configuration register (DMA_CCRx). The channel's transfer error interrupt flag
(TEIF) in the DMA_IFR register is set and an interrupt is generated if the transfer error
interrupt enable bit (TEIE) in the DMA_CCRx register is set.

9.3.6 Interrupts

An interrupt can be produced on a Half-transfer, Transfer complete or Transfer error for each
DMA channel. Separate interrupt enable bits are available for flexibility.

Note: In high-density devices, DMA2 Channel4 and DMA2 Channel5 interrupts are mapped onto
the same interrupt vector. All other DMA1 and DMA2 Channel interrupts have their own
interrupt vector.

9.3.7 DMA request mapping

DMA1 controller

The 7 requests from the peripherals (TIMx[1,2,3,4], ADC1, SPI1, SPI/I2S2, I2Cx[1,2] and
USARTx[1,2,3]) are simply logically ORed before entering DMA1, this means that only one
request must be enabled at a time. Refer to Figure 18: DMA1 request mapping.

The peripheral DMA requests can be independently activated/de-activated by programming
the DMA control bit in the registers of the corresponding peripheral.

Table 39. DMA interrupt requests

Interrupt event Event flag Enable Control bit

Half-transfer HTIF HTIE

Transfer complete TCIF TCIE

Transfer error TEIF TEIE

DMA controller (DMA) RM0008

136/682

Figure 18. DMA1 request mapping

Table 40 lists the DMA requests for each channel.

Fixed hardware priority

Channel 3

internal

HW request 3

High priority

Low priority

Peripheral

Channel 2
HW request 2

Channel 1

SW trigger (MEM2MEM bit)

Channel 1 EN bit

HW request 1

Channel 4
HW request 4

DMA1

Channel 5
HW request 5

Channel 6
HW REQUEST 6

Channel 7
HW request 7

 request

ADC1

USART1_TX
TIM1_CH4

SPI1_TX

USART3_TX

USART1_RX
TIM1_UP

I2C1_TX

TIM3_CH1

I2C1_RX

TIM2_CH2

 SPI1_RX

TIM1_CH2

 TIM4_CH3
TIM2_CH1

 SPI/I2S2_TX

 I2C2_RX

USART2_RX

TIM3_TRIG

 TIM1_CH3

 USART2_TX

 TIM2_CH4
 TIM4_UP

SPI/I2S2_RX
I2C2_TX

TIM1_TRIG

 TIM4_CH2

TIM3_CH4
TIM3_UP

 USART3_RX

 TIM3_CH3

 TIM1_CH1
TIM2_UP

TIM2_CH3
TIM4_CH1

Channel 2 EN bit

Channel 3 EN bit

Channel 4 EN bit

Channel 5 EN bit

Channel 6 EN bit

Channel 7 EN bit

SW trigger (MEM2MEM bit)

SW trigger (MEM2MEM bit)

SW trigger (MEM2MEM bit)

SW trigger (MEM2MEM bit)

SW TRIGGER (MEM2MEM bit)

SW trigger (MEM2MEM bit)

 request signals

TIM1_COM

RM0008 DMA controller (DMA)

 137/682

DMA2 controller

The 5 requests from the peripherals (TIMx[5,6,7,8], ADC3, SPI/I2S3, UART4,
DAC_Channel[1,2]and SDIO) are simply logically ORed before entering to the DMA2, this
means that only one request must be enabled at a time. Refer to Figure 19: DMA2 request
mapping.

The peripheral DMA requests can be independently activated/de-activated by programming
the DMA control bit in the registers of the corresponding peripheral.

Note: The DMA2 controller and its relative requests are available only in high-density devices.

Table 40. Summary of DMA1 requests for each channel

Peripherals Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7

ADC1 ADC1

SPI/I2S SPI1_RX SPI1_TX SPI/I2S2_RX SPI/I2S2_TX

USART USART3_TX USART3_RX USART1_TX USART1_RX USART2_RX USART2_TX

I2C I2C2_TX I2C2_RX I2C1_TX I2C1_RX

TIM1 TIM1_CH1 TIM1_CH2
TIM1_CH4
TIM1_TRIG
TIM1_COM

TIM1_UP TIM1_CH3

TIM2 TIM2_CH3 TIM2_UP TIM2_CH1
TIM2_CH2
TIM2_CH4

TIM3 TIM3_CH3
TIM3_CH4
TIM3_UP

TIM3_CH1
TIM3_TRIG

TIM4 TIM4_CH1 TIM4_CH2 TIM4_CH3 TIM4_UP

DMA controller (DMA) RM0008

138/682

Figure 19. DMA2 request mapping

Table 41 lists the DMA2 requests for each channel.

Table 41. Summary of DMA2 requests for each channel

Peripherals Channel 1 Channel 2 Channel 3 Channel 4 Channel 5

ADC3 ADC3

SPI/I2S3 SPI/I2S3_RX SPI/I2S3_TX

UART4 UART4_RX UART4_TX

SDIO SDIO

TIM5
TIM5_CH4
TIM5_TRIG

TIM5_CH3
TIM5_UP

 TIM5_CH2 TIM5_CH1

TIM6/
DAC_Channel1

TIM6_UP/

DAC_Channel1

TIM7/
DAC_Channel2

TIM7_UP/

DAC_Channel2

TIM8
TIM8_CH3
TIM8_UP

TIM8_CH4
TIM8_TRIG
TIM8_COM

TIM8_CH1 TIM8_CH2

Fixed hardware priority

Channel 3

internal

HW request 3

HIGH PRIORITY

LOW PRIORITY

Peripheral request signals

Channel 2
HW request 2

Channel 1

SW trigger (MEM2MEM bit)

Channel 1 EN bit

HW request 1

Channel 4
HW request 4

DMA2

Channel 5
HW request 5

 requestTIM5_CH2
SDIO

TIM5_CH4

 TIM8_UP

TIM7_UP/DAC_Channel2

 TIM8_CH3

 TIM5_TRIG

Channel 2 EN bit

Channel 3 EN bit

Channel 4 EN bit

Channel 5 EN bit

SW trigger (MEM2MEM bit)

SW trigger (MEM2MEM bit)

SW trigger (MEM2MEM bit)

SW trigger (MEM2MEM bit)

SPI/I2S3_RX

TIM8_CH4

 TIM5_UP
 TIM5_CH3

 TIM8_TRIG
TIM8_COM

SPI/I2S3_TX

TIM8_CH1
 UART4_RX

TIM6_UP/DAC_Channel1

ADC3

 UART4_TX

 TIM8_CH2
TIM5_CH1

RM0008 DMA controller (DMA)

 139/682

9.4 DMA registers
Refer to Section 1.1 on page 32 for a list of abbreviations used in the register descriptions.

Note: In the following registers, all bits relative to channel6 and channel7 are not relevant for
DMA2 since it has only 5 channels.

9.4.1 DMA interrupt status register (DMA_ISR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
TEIF7 HTIF7 TCIF7 GIF7 TEIF6 HTIF6 TCIF6 GIF6 TEIF5 HTIF5 TCIF5 GIF5

r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TEIF4 HTIF4 TCIF4 GIF4 TEIF3 HTIF3 TCIF3 GIF3 TEIF2 HTIF2 TCIF2 GIF2 TEIF1 HTIF1 TCIF1 GIF1

r r r r r r r r r r r r r r r r

Bits 31:28 Reserved, always read as 0.

Bits 27, 23, 19, 15,
11, 7, 3

TEIFx: Channel x transfer error flag (x = 1 ..7)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No transfer error (TE) on channel x
1: A transfer error (TE) occurred on channel x

Bits 26, 22, 18, 14,
10, 6, 2

HTIFx: Channel x half transfer flag (x = 1 ..7)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No half transfer (HT) event on channel x
1: A half transfer (HT) event occurred on channel x

Bits 25, 21, 17, 13,
9, 5, 1

TCIFx: Channel x transfer complete flag (x = 1 ..7)
This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No transfer complete (TC) event on channel x
1: A transfer complete (TC) event occurred on channel x

Bits 24, 20, 16, 12,
8, 4, 0

GIFx: Channel x global interrupt flag (x = 1 ..7)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No TE, HT or TC event on channel x
1: A TE, HT or TC event occurred on channel x

DMA controller (DMA) RM0008

140/682

9.4.2 DMA interrupt flag clear register (DMA_IFCR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

CTEIF
7

CHTIF
7

CTCIF
7

CGIF
7

CTEIF
6

CHTIF
6

CTCIF
6

CGIF
6

CTEIF
5

CHTIF
5

CTCIF
5

CGIF
5

w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTEIF
4

CHTIF
4

CTCIF
4

CGIF
4

CTEIF
3

CHTIF
3

CTCIF
3

CGIF
3

CTEIF
2

CHTIF
2

CTCIF
2

CGIF
2

CTEIF
1

CHTIF
1

CTCIF
1

CGIF
1

w w w w w w w w w w w w w w w w

Bits 31:28 Reserved, always read as 0.

Bits 27, 23, 19, 15,
11, 7, 3

CTEIFx: Channel x transfer error clear (x = 1 ..7)

This bit is set and cleared by software.
0: No effect
1: Clears the corresponding TEIF flag in the DMA_ISR register

Bits 26, 22, 18, 14,
10, 6, 2

CHTIFx: Channel x half transfer clear (x = 1 ..7)

This bit is set and cleared by software.
0: No effect
1: Clears the corresponding HTIF flag in the DMA_ISR register

Bits 25, 21, 17, 13,
9, 5, 1

CTCIFx: Channel x transfer complete clear (x = 1 ..7)

This bit is set and cleared by software.
0: No effect
1: Clears the corresponding TCIF flag in the DMA_ISR register

Bits 24, 20, 16, 12,
8, 4, 0

CGIFx: Channel x global interrupt clear (x = 1 ..7)

This bit is set and cleared by software.
0: No effect
1: Clears the GIF, TEIF, HTIF and TCIF flags in the DMA_ISR register

RM0008 DMA controller (DMA)

 141/682

9.4.3 DMA channel x configuration register (DMA_CCRx) (x = 1 ..7)

Address offset: 0x08 + 20d × Channel number

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.

MEM2
MEM PL[1:0] MSIZE[1:0] PSIZE[1:0] MINC PINC CIRC DIR TEIE HTIE TCIE EN

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, always read as 0.

Bit 14 MEM2MEM: Memory to memory mode

This bit is set and cleared by software.
0: Memory to memory mode disabled
1: Memory to memory mode enabled

Bits 13:12 PL[1:0]: Channel priority level
These bits are set and cleared by software.
00: Low
01: Medium
10: High
11: Very high

Bits 11:10 MSIZE[1:0]: Memory size
These bits are set and cleared by software.
00: 8-bits
01: 16-bits
10: 32-bits
11: Reserved

Bits 9:8 PSIZE[1:0]: Peripheral size
These bits are set and cleared by software.
00: 8-bits
01: 16-bits
10: 32-bits
11: Reserved

Bit 7 MINC: Memory increment mode
This bit is set and cleared by software.
0: Memory increment mode disabled
1: Memory increment mode enabled

Bit 6 PINC: Peripheral increment mode
This bit is set and cleared by software.
0: Peripheral increment mode disabled
1: Peripheral increment mode enabled

Bit 5 CIRC: Circular mode
This bit is set and cleared by software.
0: Circular mode disabled
1: Circular mode enabled

DMA controller (DMA) RM0008

142/682

9.4.4 DMA channel x number of data register (DMA_CNDTRx) (x = 1 ..7)

Address offset: 0x0C + 20d × Channel number

Reset value: 0x0000 0000

Bit 4 DIR: Data transfer direction
This bit is set and cleared by software.
0: Read from peripheral
1: Read from memory

Bit 3 TEIE: Transfer error interrupt enable
This bit is set and cleared by software.
0: TE interrupt disabled
1: TE interrupt enabled

Bit 2 HTIE: Half transfer interrupt enable
This bit is set and cleared by software.
0: HT interrupt disabled
1: HT interrupt enabled

Bit 1 TCIE: Transfer complete interrupt enable
This bit is set and cleared by software.
0: TC interrupt disabled
1: TC interrupt enabled

Bit 0 EN: Channel enable

This bit is set and cleared by software.
0: Channel disabled
1: Channel enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NDT

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, always read as 0.

Bits 15:0 NDT[15:0]: Number of data to transfer

Number of data to be transferred (0 up to 65535). This register can only be written when the
channel is disabled. Once the channel is enabled, this register is read-only, indicating the
remaining bytes to be transmitted. This register decrements after each DMA transfer.

Once the transfer is completed, this register can either stay at zero or be reloaded
automatically by the value previously programmed if the channel is configured in auto-reload
mode.

If this register is zero, no transaction can be served whether the channel is enabled or not.

RM0008 DMA controller (DMA)

 143/682

9.4.5 DMA channel x peripheral address register (DMA_CPARx) (x = 1 ..7)

Address offset: 0x10 + dx20 × Channel number

Reset value: 0x0000 0000

9.4.6 DMA channel x memory address register (DMA_CMARx) (x = 1 ..7)

Address offset: 0x14 + dx20 × Channel number

Reset value: 0x0000 0000

9.4.7 DMA register map

The following table gives the DMA register map and the reset values.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PA

rw rw

Bits 31:0 PA[31:0]: Peripheral address

Base address of the peripheral data register from/to which the data will be read/written.

When PSIZE is 01 (16-bit), the PA[0] bit is ignored. Access is automatically aligned to a half-
word address.
When PSIZE is 10 (32-bit), PA[1:0] are ignored. Access is automatically aligned to a word
address.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MA

rw rw

Bits 31:0 MA[31:0]: Memory address

Base address of the memory area from/to which the data will be read/written.

When MSIZE is 01 (16-bit), the MA[0] bit is ignored. Access is automatically aligned to a
half-word address.
When MSIZE is 10 (32-bit), MA[1:0] are ignored. Access is automatically aligned to a word
address.

Table 42. DMA - register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x000
DMA_ISR

Reserved T
E

IF
7

H
T

IF
7

T
C

IF
7

G
IF

7

T
E

IF
6

H
T

IF
6

T
C

IF
6

G
IF

6

T
E

IF
5

H
T

IF
5

T
C

IF
5

G
IF

5

T
E

IF
4

H
T

IF
4

T
C

IF
4

G
IF

4

T
E

IF
3

H
T

IF
3

T
C

IF
3

G
IF

3

T
E

IF
2

H
T

IF
2

T
C

IF
2

G
IF

2

T
E

IF
1

H
T

IF
1

T
C

IF
1

G
IF

1

Reset value 0

0x004
DMA_IFCR

Reserved

C
T

E
IF

7

C
H

T
IF

7

C
T

C
IF

7

C
G

IF
7

C
T

E
IF

6

C
H

T
IF

6

C
T

C
IF

6

C
G

IF
6

C
T

E
IF

5

C
H

T
IF

5

C
T

C
IF

5

C
G

IF
5

C
T

E
IF

4

C
H

T
IF

4

C
T

C
IF

4

C
G

IF
4

C
T

E
IF

3

C
H

T
IF

3

C
T

C
IF

3

C
G

IF
3

C
T

E
IF

2

C
H

T
IF

2

C
T

C
IF

2

C
G

IF
2

C
T

E
IF

1

C
H

T
IF

1

C
T

C
IF

1

C
G

IF
1

Reset value 0

0x008
DMA_CCR1

Reserved

M
E

M
2M

E
M

PL
[1:0]

M
SIZE
[1:0]

PSIZ
E

[1:0] M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA controller (DMA) RM0008

144/682

0x00C
DMA_CNDTR1

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x010
DMA_CPAR1 PA[31:0]

Reset value 0

0x014
DMA_CMAR1 MA[31:0]

Reset value 0

0x018 Reserved

0x01C
DMA_CCR2

Reserved

M
E

M
2M

E
M

PL
[1:0]

M
SIZE
[1:0]

PSIZ
E

[1:0] M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x020
DMA_CNDTR2

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x024
DMA_CPAR2 PA[31:0]

Reset value 0

0x028
DMA_CMAR2 MA[31:0]

Reset value 0

0x02C Reserved

0x030
DMA_CCR3

Reserved
M

E
M

2M
E

M

PL
[1:0]

M
SIZE
[1:0]

PSIZ
E

[1:0] M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x034
DMA_CNDTR3

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x038
DMA_CPAR3 PA[31:0]

Reset value 0

0x03C
DMA_CMAR3 MA[31:0]

Reset value 0

0x040 Reserved

0x044
DMA_CCR4

Reserved

M
E

M
2M

E
M

PL
[1:0]

M
SIZE
[1:0]

PSIZ
E

[1:0] M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x048
DMA_CNDTR4

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04C
DMA_CPAR4 PA[31:0]

Reset value 0

0x050
DMA_CMAR4 MA[31:0]

Reset value 0

0x054 Reserved

0x058
DMA_CCR5

Reserved

M
E

M
2M

E
M

PL
[1:0]

M
SIZE
[1:0]

PSIZ
E

[1:0] M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x05C
DMA_CNDTR5

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x060
DMA_CPAR5 PA[31:0]

Reset value 0

0x064
DMA_CMAR5 MA[31:0]

Reset value 0

0x068 Reserved

Table 42. DMA - register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RM0008 DMA controller (DMA)

 145/682

Refer to Table 1 on page 35 for the register boundary addresses.

0x06C
DMA_CCR6

Reserved

M
E

M
2M

E
M

PL
[1:0]

M
SIZE
[1:0]

PSIZ
E

[1:0] M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x070
DMA_CNDTR6

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x074
DMA_CPAR6 PA[31:0]

Reset value 0

0x078
DMA_CMAR6 MA[31:0]

Reset value 0

0x07C Reserved

0x080
DMA_CCR7

Reserved

M
E

M
2M

E
M

PL
[1:0]

M
SIZE
[1:0]

PSIZ
E

[1:0] M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x084
DMA_CNDTR7

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x088
DMA_CPAR7 PA[31:0]

Reset value 0

0x08C
DMA_CMAR7 MA[31:0]

Reset value 0

0x090 Reserved

Table 42. DMA - register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Analog-to-digital converter (ADC) RM0008

146/682

10 Analog-to-digital converter (ADC)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This Section applies to the whole STM32F10xxx family, unless otherwise specified.

10.1 ADC introduction
The 12-bit ADC is a successive approximation analog-to-digital converter. It has up to 18
multiplexed channels allowing it measure signals from 16 external and two internal sources.
A/D conversion of the various channels can be performed in single, continuous, scan or
discontinuous mode. The result of the ADC is stored in a left-aligned or right-aligned 16-bit
data register.

The analog watchdog feature allows the application to detect if the input voltage goes
outside the user-defined high or low thresholds.

10.2 ADC main features
● 12-bit resolution

● Interrupt generation at End of Conversion, End of Injected conversion and Analog
watchdog event

● Single and continuous conversion modes

● Scan mode for automatic conversion of channel 0 to channel ‘n’

● Self-calibration

● Data alignment with in-built data coherency

● Channel by channel programmable sampling time

● External trigger option for both regular and injected conversion

● Discontinuous mode

● Dual mode (on devices with 2 ADCs or more)

● ADC conversion time:

– STM32F103xx performance line devices: 1 µs at 56 MHz (1.17 µs at 72 MHz)

– STM32F101xx access line devices: 1 µs at 28 MHz (1.55 µs at 36 MHz)

– STM32F102xx USB access line devices: 1.2 µs at 48 MHz

● ADC supply requirement: 2.4 V to 3.6 V

● ADC input range: VREF- ≤ VIN ≤ VREF+

● DMA request generation during regular channel conversion

The block diagram of the ADC is shown in Figure 20.

Note: VREF-,if available (depending on package), must be tied to VSSA.

RM0008 Analog-to-digital converter (ADC)

 147/682

10.3 ADC functional description
Figure 20 shows a single ADC block diagrams and Table 43 gives the ADC pin description.

Figure 20. Single ADC block diagram

1. ADC3 has regular and injected conversion triggers different from those of ADC1 and ADC2.

2. TIM8_CH4 and TIM8_TRGO with their corresponding remap bits exist only in High-density products.

ADCx_IN0

ADCx_IN1

Analog to digital

converter
ADCx_IN15

Analog
MUX

ADCCLK

ADC Interrupt to NVIC

GPIO
Ports

Analog watchdog

A
dd

re
ss

/d
at

a
bu

s

Low Threshold (12 bits)

Compare Result

High Threshold (12 bits)

Flags enable bits

EOC

AWD
Analog watchdog event

VDDA
VSSA

VREF+

VREF-

Interrupt

TIM1_CH2
TIM1_CH3
TIM2_CH2

TIM3_CH4

From ADC prescaler

 (16 bits)

End of conversion

 channels
Injected

 channels

End of injected conversion
JEOC

EOCIE

AWDIE

JEOCIE

up to 4

up to 16

Regular data register

 (4 x 16 bits)
Injected data registers

Regular

Start trigger
(regular group)

EXTSEL[2:0] bits

EXTRIG

TIM1_CH1

TIM4_TRGO

EXTI_15

TIM1_CH4
TIM2_TRGO
TIM2_CH1

TIM3_TRGO

Start trigger
(injected group)

JEXTSEL[2:0] bits

TIM1_TRGO

TIM4_CH4

JEXTRIG

bit

bit

DMA request

Temp. sensor
VREFINT

TIM2_CH3
TIM1_CH3
TIM8_CH1

TIM8_CH4

TIM3_CH1

TIM5_TRGO

TIM1_CH4
TIM4_CH3
TIM8_CH2

TIM8_TRGO

JEXTSEL[2:0] bits

TIM1_TRGO

TIM5_CH1

Triggers for ADC3(1)

Start trigger
(injected group)

JEXTRIG
bit

Start trigger
(regular group)

EXTRIG
bit

EXTSEL[2:0] bits

TIM5_CH4

TIM5_CH3

EXTI_11

TIM8_TRGO(2)

ADCx_ETRGREG_REMAP bit

TIM8_CH4(2)

ADCx-ETRGINJ_REMAP bit

ai14802d

Analog-to-digital converter (ADC) RM0008

148/682

10.3.1 ADC on-off control

The ADC can be powered-on by setting the ADON bit in the ADC_CR2 register. When the
ADON bit is set for the first time, it wakes up the ADC from Power Down mode.

Conversion starts when ADON bit is set for a second time by software after ADC power-up
time (tSTAB).

You can stop conversion and put the ADC in power down mode by resetting the ADON bit. In
this mode the ADC consumes almost no power (only a few µA).

10.3.2 ADC clock

The ADCCLK clock provided by the Clock Controller is synchronous with the PCLK2 (APB2
clock). The RCC controller has a dedicated programmable prescaler for the ADC clock, refer
to Reset and clock control (RCC) on page 66 for more details.

10.3.3 Channel selection

There are 16 multiplexed channels. It is possible to organize the conversions in two groups:
regular and injected. A group consists of a sequence of conversions which can be done on
any channel and in any order. For instance, it is possible to do the conversion in the
following order: Ch3, Ch8, Ch2, Ch2, Ch0, Ch2, Ch2, Ch15.

● The regular group is composed of up to 16 conversions. The regular channels and
their order in the conversion sequence must be selected in the ADC_SQRx registers.
The total number of conversions in the regular group must be written in the L[3:0] bits in
the ADC_SQR1 register.

● The injected group is composed of up to 4 conversions. The injected channels and
their order in the conversion sequence must be selected in the ADC_JSQR register.
The total number of conversions in the injected group must be written in the L[1:0] bits
in the ADC_JSQR register.

If the ADC_SQRx or ADC_JSQR registers are modified during a conversion, the current
conversion is reset and a new start pulse is sent to the ADC to convert the new chosen
group.

Table 43. ADC pins

Name Signal type Remarks

VREF+
Input, analog reference
positive

The higher/positive reference voltage for the ADC,
2.4 V ≤ VREF+ ≤ VDDA

VDDA Input, analog supply
Analog power supply equal to VDD and
2.4 V ≤ VDDA ≤ VDD (3.6 V)

VREF-
Input, analog reference
negative

The lower/negative reference voltage for the ADC,
VREF- = VSSA

VSSA
Input, analog supply
ground

Ground for analog power supply equal to VSS

ADCx_IN[15:0] Analog input signals 16 analog input channels

RM0008 Analog-to-digital converter (ADC)

 149/682

Temperature sensor/VREFINT internal channels

The Temperature sensor is connected to channel ADCx_IN16 and the internal reference
voltage VREFINT is connected to ADCx_IN17. These two internal channels can be selected
and converted as injected or regular channels.

Note: The sensor and VREFINT are only available on the master ADC1 peripheral.

10.3.4 Single conversion mode

In Single conversion mode the ADC does one conversion. This mode is started either by
setting the ADON bit in the ADC_CR2 register (for a regular channel only) or by external
trigger (for a regular or injected channel), while the CONT bit is 0.

Once the conversion of the selected channel is complete:

● If a regular channel was converted:

– The converted data is stored in the 16-bit ADC_DR register

– The EOC (End Of Conversion) flag is set

– and an interrupt is generated if the EOCIE is set.

● If an injected channel was converted:

– The converted data is stored in the 16-bit ADC_DRJ1 register

– The JEOC (End Of Conversion Injected) flag is set

– and an interrupt is generated if the JEOCIE bit is set.

The ADC is then stopped.

10.3.5 Continuous conversion mode

In continuous conversion mode ADC starts another conversion as soon as it finishes one.
This mode is started either by external trigger or by setting the ADON bit in the ADC_CR2
register, while the CONT bit is 1.

After each conversion:

● If a regular channel was converted:

– The converted data is stored in the 16-bit ADC_DR register

– The EOC (End Of Conversion) flag is set

– An interrupt is generated if the EOCIE is set.

● If an injected channel was converted:

– The converted data is stored in the 16-bit ADC_DRJ1 register

– The JEOC (End Of Conversion Injected) flag is set

– An interrupt is generated if the JEOCIE bit is set.

10.3.6 Timing diagram

As shown in Figure 21, the ADC needs a stabilization time of tSTAB before it starts
converting accurately. After the start of ADC conversion and after 14 clock cycles, the EOC
flag is set and the 16-bit ADC Data register contains the result of the conversion.

Analog-to-digital converter (ADC) RM0008

150/682

Figure 21. Timing diagram

10.3.7 Analog watchdog

The AWD analog watchdog status bit is set if the analog voltage converted by the ADC is
below a low threshold or above a high threshold. These thresholds are programmed in the
12 least significant bits of the ADC_HTR and ADC_LTR 16-bit registers. An interrupt can be
enabled by using the AWDIE bit in the ADC_CR1 register.

The threshold value is independent of the alignment selected by the ALIGN bit in the
ADC_CR2 register. The comparison is done before the alignment (see Section 10.5).

The analog watchdog can be enabled on one or more channels by configuring the
ADC_CR1 register as shown in Table 44.

Figure 22. Analog watchdog guarded area

ADC_CLK

EOC

Next ADC ConversionADC Conversion

Conversion Time
tSTAB

ADC

Software resets EOC bit

SET ADON

ADC power on

(total conv time)

Start 1st conversion Start next conversion

Table 44. Analog watchdog channel selection

Channels to be guarded by analog
watchdog

ADC_CR1 register control bits (x = don’t care)

AWDSGL bit AWDEN bit JAWDEN bit

None x 0 0

All injected channels 0 0 1

All regular channels 0 1 0

All regular and injected channels 0 1 1

Single(1) injected channel

1. Selected by AWDCH[4:0] bits

1 0 1

Single(1) regular channel 1 1 0

Single (1) regular or injected channel 1 1 1

Analog voltage

High threshold

Low threshold

Guarded area

HTR

LTR

RM0008 Analog-to-digital converter (ADC)

 151/682

10.3.8 Scan mode

This mode is used to scan a group of analog channels.

Scan mode can be selected by setting the SCAN bit in the ADC_CR1 register. Once this bit
is set, ADC scans all the channels selected in the ADC_SQRx registers (for regular
channels) or in the ADC_JSQR (for injected channels). A single conversion is performed for
each channel of the group. After each end of conversion the next channel of the group is
converted automatically. If the CONT bit is set, conversion does not stop at the last selected
group channel but continues again from the first selected group channel.

If the DMA bit is set, the direct memory access controller is used to transfer the converted
data of regular group channels to SRAM after each EOC.

The injected channel converted data is always stored in the ADC_JDRx registers.

10.3.9 Injected channel management

Triggered injection

To use triggered injection, the JAUTO bit must be cleared and SCAN bit must be set in the
ADC_CR1 register.

1. Start conversion of a group of regular channels either by external trigger or by setting
the ADON bit in the ADC_CR2 register.

2. If an external injected trigger occurs during the regular group channel conversion, the
current conversion is reset and the injected channel sequence is converted in Scan
once mode.

3. Then, the regular group channel conversion is resumed from the last interrupted
regular conversion. If a regular event occurs during an injected conversion, it doesn’t
interrupt it but the regular sequence is executed at the end of the injected sequence.
Figure 23 shows the timing diagram.

Note: When using triggered injection, one must ensure that the interval between trigger events is
longer than the injection sequence. For instance, if the sequence length is 28 ADC clock
cycles (that is two conversions with a 1.5 clock-period sampling time), the minimum interval
between triggers must be 29 ADC clock cycles.

Auto-injection

If the JAUTO bit is set, then the injected group channels are automatically converted after
the regular group channels. This can be used to convert a sequence of up to 20 conversions
programmed in the ADC_SQRx and ADC_JSQR registers.

In this mode, external trigger on injected channels must be disabled.

If the CONT bit is also set in addition to the JAUTO bit, regular channels followed by injected
channels are continuously converted.

For ADC clock prescalers ranging from 4 to 8, a delay of 1 ADC clock period is automatically
inserted when switching from regular to injected sequence (respectively injected to regular).
When the ADC clock prescaler is set to 2, the delay is 2 ADC clock periods.

Note: It is not possible to use both auto-injected and discontinuous modes simultaneously.

Analog-to-digital converter (ADC) RM0008

152/682

Figure 23. Injected conversion latency

1. The maximum latency value can be found in the electrical characteristics of the STM32F101xx and
STM32F103xx datasheets.

10.3.10 Discontinuous mode

Regular group

This mode is enabled by setting the DISCEN bit in the ADC_CR1 register. It can be used to
convert a short sequence of n conversions (n <=8) which is a part of the sequence of
conversions selected in the ADC_SQRx registers. The value of n is specified by writing to
the DISCNUM[2:0] bits in the ADC_CR1 register.

When an external trigger occurs, it starts the next n conversions selected in the ADC_SQRx
registers until all the conversions in the sequence are done. The total sequence length is
defined by the L[3:0] bits in the ADC_SQR1 register.

Example:

n = 3, channels to be converted = 0, 1, 2, 3, 6, 7, 9, 10
1st trigger: sequence converted 0, 1, 2
2nd trigger: sequence converted 3, 6, 7
3rd trigger: sequence converted 9, 10 and an EOC event generated
4th trigger: sequence converted 0, 1, 2

Note: When a regular group is converted in discontinuous mode, no rollover will occur.

When all sub groups are converted, the next trigger starts conversion of the first sub-group.
In the example above, the 4th trigger reconverts the 1st sub-group channels 0, 1 and 2.

Injected group

This mode is enabled by setting the JDISCEN bit in the ADC_CR1 register. It can be used to
convert the sequence selected in the ADC_JSQR register, channel by channel, after an
external trigger event.

When an external trigger occurs, it starts the next channel conversions selected in the
ADC_JSQR registers until all the conversions in the sequence are done. The total sequence
length is defined by the JL[1:0] bits in the ADC_JSQR register.

ADC clock

Inj. event

Reset ADC

SOC

max latency(1)

RM0008 Analog-to-digital converter (ADC)

 153/682

Example:

n = 1, channels to be converted = 1, 2, 3
1st trigger: channel 1 converted
2nd trigger: channel 2 converted
3rd trigger: channel 3 converted and EOC and JEOC events generated
4th trigger: channel 1

Note: 1 When all injected channels are converted, the next trigger starts the conversion of the first
injected channel. In the example above, the 4th trigger reconverts the 1st injected channel
1.

2 It is not possible to use both auto-injected and discontinuous modes simultaneously.

3 The user must avoid setting discontinuous mode for both regular and injected groups
together. Discontinuous mode must be enabled only for one group conversion.

10.4 Calibration
The ADC has an built-in self calibration mode. Calibration significantly reduces accuracy
errors due to internal capacitor bank variations. During calibration, an error-correction code
(digital word) is calculated for each capacitor, and during all subsequent conversions, the
error contribution of each capacitor is removed using this code.

Calibration is started by setting the CAL bit in the ADC_CR2 register. Once calibration is
over, the CAL bit is reset by hardware and normal conversion can be performed. It is
recommended to calibrate the ADC once at power-on. The calibration codes are stored in
the ADC_DR as soon as the calibration phase ends.

Note: 1 It is recommended to perform a calibration after each power-up.

2 Before starting a calibration the ADC must have been in power-off state (ADON bit = ‘0’) for
at least two ADC clock cycles.

Figure 24. Calibration timing diagram

10.5 Data alignment
ALIGN bit in the ADC_CR2 register selects the alignment of data stored after conversion.
Data can be left or right aligned as shown in Figure 25. and Figure 26.

The injected group channels converted data value is decreased by the user-defined offset
written in the ADC_JOFRx registers so the result can be a negative value. The SEXT bit is
the extended sign value.

For regular group channels no offset is subtracted so only twelve bits are significant.

CLK

tCAL

Calibration ongoing
CAL

ADC
Conversion

Normal ADC Conversion

Calibration Reset by Hardware

Analog-to-digital converter (ADC) RM0008

154/682

Figure 25. Right alignment of data

Figure 26. Left alignment of data

10.6 Channel-by-channel programmable sample time
ADC samples the input voltage for a number of ADC_CLK cycles which can be modified us-
ing the SMP[2:0] bits in the ADC_SMPR1 and ADC_SMPR2 registers. Each channel can be
sampled with a different sample time.

The total conversion time is calculated as follows:

Tconv = Sampling time + 12.5 cycles

Example:

With an ADCCLK = 14 MHz and a sampling time of 1.5 cycles:

Tconv = 1.5 + 12.5 = 14 cycles = 1µs

10.7 Conversion on external trigger
Conversion can be triggered by an external event (e.g. timer capture, EXTI line). If the EXT-
TRIG control bit is set then external events are able to trigger a conversion. The EXT-
SEL[2:0] and JEXTSEL[2:0] control bits allow the application to select decide which out of 8
possible events can trigger conversion for the regular and injected groups.

Note: When an external trigger is selected for ADC regular or injected conversion, only the rising
edge of the signal can start the conversion.

D7D8 D9 D6 D5 D4 D3 D2 D1 D0 D10 D11 SEXT SEXT SEXT SEXT

D7D8 D9 D6 D5 D4 D3 D2 D1 D0 D10 D11

 Injected group

 Regular group

0 0 0 0

SEXT D0 D1D11 D10 D9 D8 D7 D6 D5 D2 D3 D4 0 0 0

D0 D1D11 D10 D9 D8 D7 D6 D5 D2 D3 D4 0 0 00

 Injected group

 Regular group

RM0008 Analog-to-digital converter (ADC)

 155/682

Table 45. External trigger for regular channels for ADC1 and ADC2

Source Type EXTSEL[2:0]

TIM1_CC1 event

Internal signal from on-chip
timers

000

TIM1_CC2 event 001

TIM1_CC3 event 010

TIM2_CC2 event 011

TIM3_TRGO event 100

TIM4_CC4 event 101

EXTI line11/TIM8_TRGO
event(1)(2)

1. The TIM8_TRGO event exists only in High-density devices.

2. The selection of the external trigger EXTI line11 or TIM8_TRGO event for regular channels is done through
configuration bits ADC1_ETRGREG_REMAP and ADC2_ETRGREG_REMAP for ADC1 and ADC2,
respectively.

External pin/Internal signal from
on-chip timers

110

SWSTART Software control bit 111

Table 46. External trigger for injected channels for ADC1 and ADC2

Source Connection type JEXTSEL[2:0]

TIM1_TRGO event

Internal signal from on-chip
timers

000

TIM1_CC4 event 001

TIM2_TRGO event 010

TIM2_CC1 event 011

TIM3_CC4 event 100

TIM4_TRGO event 101

EXTI line15/TIM8_CC4
event(1)(2)

1. The TIM8_CC4 event exists only in High-density devices.

2. The selection of the external trigger EXTI line15 or TIM8_CC4 event for injected channels is done through
configuration bits ADC1_ETRGINJ_REMAP and ADC2_ETRGINJ_REMAP for ADC1 and ADC2,
respectively.

External pin/Internal signal from
on-chip timers

110

JSWSTART Software control bit 111

Analog-to-digital converter (ADC) RM0008

156/682

The software source trigger events can be generated by setting a bit in a register
(SWSTART and JSWSTART in ADC_CR2).

A regular group conversion can be interrupted by an injected trigger.

10.8 DMA request
Since converted regular channels value are stored in a unique data register, it is necessary
to use DMA for conversion of more than one regular channel. This avoids the loss of data
already stored in the ADC_DR register.

Only the end of conversion of a regular channel generates a DMA request, which allows the
transfer of its converted data from the ADC_DR register to the destination location selected
by the user.

Note: Only ADC1 and ADC3 have this DMA capability. ADC2-converted data can be transferred in
dual ADC mode using DMA thanks to master ADC1.

Table 47. External trigger for regular channels for ADC3

Source Connection type EXTSEL[2:0]

TIM3_CC1 event

Internal signal from on-chip
timers

000

TIM2_CC3 event 001

TIM1_CC3 event 010

TIM8_CC1 event 011

TIM8_TRGO event 100

TIM5_CC1 event 101

TIM5_CC3 event 110

SWSTART Software control bit 111

Table 48. External trigger for injected channels for ADC3

Source Connection type JEXTSEL[2:0]

TIM1_TRGO event

Internal signal from on-chip
timers

000

TIM1_CC4 event 001

TIM4_CC3 event 010

TIM8_CC2 event 011

TIM8_CC4 event 100

TIM5_TRGO event 101

TIM5_CC4 event 110

JSWSTART Software control bit 111

RM0008 Analog-to-digital converter (ADC)

 157/682

10.9 Dual ADC mode
In devices with two ADCs or more, dual ADC mode can be used (see Figure 27).

In dual ADC mode the start of conversion is triggered alternately or simultaneously by the
ADC1 master to the ADC2 slave, depending on the mode selected by the DUALMOD[2:0]
bits in the ADC1_CR1 register.

Note: In dual mode, when configuring conversion to be triggered by an external event, the user
must set the trigger for the master only and set a software trigger for the slave to prevent
spurious triggers to start unwanted slave conversion. However, external triggers must be
enabled on both master and slave ADCs.

The following six possible modes are implemented:

– Injected simultaneous mode

– Regular simultaneous mode

– Fast interleaved mode

– Slow interleaved mode

– Alternate trigger mode

– Independent mode

It is also possible to use the previous modes combined in the following ways:

– Injected simultaneous mode + Regular simultaneous mode

– Regular simultaneous mode + Alternate trigger mode

– Injected simultaneous mode + Interleaved mode

Note: In dual ADC mode, to read the slave converted data on the master data register, the DMA
bit must be enabled even if it is not used to transfer converted regular channel data.

Analog-to-digital converter (ADC) RM0008

158/682

Figure 27. Dual ADC block diagram

ADCx_IN0

ADCx_IN1

ADCx_IN15

GPIO
Ports

A
dd

re
ss

/d
at

a
bu

s

EXTI_11

EXTI_15

Injected data registers

 (4 x 16 bits)

Regular
 channels

Injected
 channels

ADC2 (Slave)

 (12 bits)

Injected data registers
 (4 x 16 bits)

Regular
 channels

injected
 channels

ADC1 (Master)

Dual mode

internal triggers

Start trigger mux
 (regular group)

(injected group)
Start trigger mux

 control

Temp. sensor
VREFINT

Regular data register

Note: External triggers are present on ADC2 but are not shown for the purposes of this diagram

 (16 bits)

Regular data register

 (16 bits)*

* In some dual ADC modes, the ADC1 data register (ADC1_DR) contains both ADC1 and ADC2 regular converted
data over the entire 32 bits.

RM0008 Analog-to-digital converter (ADC)

 159/682

10.9.1 Injected simultaneous mode

This mode converts an injected channel group. The source of external trigger comes from
the injected group mux of ADC1 (selected by the JEXTSEL[2:0] bits in the ADC1_CR2
register). A simultaneous trigger is provided to ADC2.

Note: Do not convert the same channel on the two ADCs (no overlapping sampling times for the
two ADCs when converting the same channel).

At the end of conversion event on ADC1 or ADC2:

● The converted data is stored in the ADC_JDRx registers of each ADC interface.

● An JEOC interrupt is generated (if enabled on one of the two ADC interfaces) when the
ADC1/ADC2 injected channels are all converted.

Note: In simultaneous mode, one must convert sequences with the same length or ensure that the
interval between triggers is longer than the longest of the 2 sequences. Otherwise, the ADC
with the shortest sequence may restart while the ADC with the longest sequence is
completing the previous conversions.

Figure 28. Injected simultaneous mode on 4 channels

10.9.2 Regular simultaneous mode

This mode is performed on a regular channel group. The source of the external trigger
comes from the regular group mux of ADC1 (selected by the EXTSEL[2:0] bits in the
ADC1_CR2 register). A simultaneous trigger is provided to the ADC2.

Note: Do not convert the same channel on the two ADCs (no overlapping sampling times for the
two ADCs when converting the same channel).

At the end of conversion event on ADC1 or ADC2:

● A 32-bit DMA transfer request is generated (if DMA bit is set) which transfers to SRAM
the ADC1_DR 32-bit register containing the ADC2 converted data in the upper
halfword and the ADC1 converted data in the lower halfword.

● An EOC interrupt is generated (if enabled on one of the two ADC interfaces) when
ADC1/ADC2 regular channels are all converted.

Note: In regular simultaneous mode, one must convert sequences with the same length or ensure
that the interval between triggers is longer than the longest of the 2 sequences. Otherwise,
the ADC with the shortest sequence may restart while the ADC with the longest sequence is
completing the previous conversions.

CH0 CH1 CH2 CH3

CH3 CH2 CH1 CH0

ADC2
ADC1

Trigger End of injected conversion on ADC1 and ADC2

Conversion

Sampling

Analog-to-digital converter (ADC) RM0008

160/682

Figure 29. Regular simultaneous mode on 16 channels

10.9.3 Fast interleaved mode

This mode can be started only on a regular channel group (usually one channel). The
source of external trigger comes from the regular channel mux of ADC1. After an external
trigger occurs:

● ADC2 starts immediately and

● ADC1 starts after a delay of 7 ADC clock cycles.

If CONT bit is set on both ADC1 and ADC2 the selected regular channels of both ADCs are
continuously converted.

After an EOC interrupt is generated by ADC1 (if enabled through the EOCIE bit) a 32-bit
DMA transfer request is generated (if the DMA bit is set) which transfers to SRAM the
ADC1_DR 32-bit register containing the ADC2 converted data in the upper halfword and the
ADC1 converted data in the lower halfword.

Note: The maximum sampling time allowed is <7 ADCCLK cycles to avoid the overlap between
ADC1 and ADC2 sampling phases in the event that they convert the same channel.

Figure 30. Fast interleaved mode on 1 channel in continuous conversion mode

10.9.4 Slow interleaved mode

This mode can be started only on a regular channel group (only one channel). The source of
external trigger comes from regular channel mux of ADC1. After external trigger occurs:

● ADC2 starts immediately and

● ADC1 starts after a delay of 14 ADC clock cycles.

● ADC2 starts after a second delay of 14 ADC cycles, and so on.

Note: The maximum sampling time allowed is <14 ADCCLK cycles to avoid an overlap with the
next conversion.

CH0 CH1 CH2 CH3

CH15 CH14 CH13 CH12

ADC1
ADC2

Trigger End of conversion on ADC1 and ADC2

Conversion

Sampling

CH15

CH0

...

...

CH0

CH0

ADC2
ADC1

Trigger
End of conversion on ADC1

Conversion

Sampling

CH0

CH0

...
...

7 ADCCLK
cycles

End of conversion on ADC2

RM0008 Analog-to-digital converter (ADC)

 161/682

After an EOC interrupt is generated by ADC1 (if enabled through the EOCIE bit) a 32-bit
DMA transfer request is generated (if the DMA bit is set) which transfers to SRAM the
ADC1_DR 32-bit register containing the ADC2 converted data in the upper halfword and the
ADC1 converted data in the lower halfword.

A new ADC2 start is automatically generated after 28 ADC clock cycles

CONT bit can not be set in the mode since it continuously converts the selected regular
channel.

Note: The application must ensure that no external trigger for injected channel occurs when
interleaved mode is enabled.

Figure 31. Slow interleaved mode on 1 channel

10.9.5 Alternate trigger mode

This mode can be started only on an injected channel group. The source of external trigger
comes from the injected group mux of ADC1.

● When the 1st trigger occurs, all injected group channels in ADC1 are converted.

● When the 2nd trigger arrives, all injected group channels in ADC2 are converted

● and so on.

A JEOC interrupt, if enabled, is generated after all injected group channels of ADC1 are
converted.

A JEOC interrupt, if enabled, is generated after all injected group channels of ADC2 are
converted.

If another external trigger occurs after all injected group channels have been converted then
the alternate trigger process restarts by converting ADC1 injected group channels.

Figure 32. Alternate trigger: injected channel group of each ADC

CH0

ADC2
ADC1

Trigger End of conversion on ADC1

Conversion

Sampling

14 ADCCLK
cycles

28 ADCCLK
cycles

CH0

CH0

CH0

End of conversion on ADC2

ADC1

ADC2

1st trigger

Conversion

Sampling

2nd trigger

3rd trigger

4th trigger

(n)th trigger

(n+1)th trigger

EOC, JEOC
on ADC1

EOC, JEOC
on ADC1

. . .

EOC, JEOC
on ADC2

EOC, JEOC
on ADC2

Analog-to-digital converter (ADC) RM0008

162/682

If the injected discontinuous mode is enabled for both ADC1 and ADC2:

● When the 1st trigger occurs, the first injected channel in ADC1 is converted.

● When the 2nd trigger arrives, the first injected channel in ADC2 are converted

● and so on....

A JEOC interrupt, if enabled, is generated after all injected group channels of ADC1 are
converted.

A JEOC interrupt, if enabled, is generated after all injected group channels of ADC2 are
converted.

If another external trigger occurs after all injected group channels have been converted then
the alternate trigger process restarts.

Figure 33. Alternate trigger: 4 injected channels (each ADC) in discontinuous model

10.9.6 Independent mode

In this mode the dual ADC synchronization is bypassed and each ADC interfaces works
independently.

10.9.7 Combined regular/injected simultaneous mode

It is possible to interrupt simultaneous conversion of a regular group to start simultaneous
conversion of an injected group.

Note: In combined regular/injected simultaneous mode, one must convert sequences with the
same length or ensure that the interval between triggers is longer than the longest of the 2
sequences. Otherwise, the ADC with the shortest sequence may restart while the ADC with
the longest sequence is completing the previous conversions.

10.9.8 Combined regular simultaneous + alternate trigger mode

It is possible to interrupt regular group simultaneous conversion to start alternate trigger
conversion of an injected group. Figure 34 shows the behavior of an alternate trigger
interrupting a regular simultaneous conversion.

The injected alternate conversion is immediately started after the injected event arrives. If
regular conversion is already running, in order to ensure synchronization after the injected
conversion, the regular conversion of both (master/slave) ADCs is stopped and resumed
synchronously at the end of the injected conversion.

Note: In combined regular simultaneous + alternate trigger mode, one must convert sequences
with the same length or ensure that the interval between triggers is longer than the longest
of the 2 sequences. Otherwise, the ADC with the shortest sequence may restart while the
ADC with the longest sequence is completing the previous conversions.

ADC1

ADC2

1st trigger

Conversion

Sampling

2nd trigger

3rd trigger

4th trigger

5th trigger

6th trigger

7th trigger

8th trigger

JEOC on ADC2

JEOC on ADC1

RM0008 Analog-to-digital converter (ADC)

 163/682

Figure 34. Alternate + Regular simultaneous

If a trigger occurs during an injected conversion that has interrupted a regular conversion, it
will be ignored. Figure 35 shows the behavior in this case (2nd trig is ignored).

Figure 35. Case of trigger occurring during injected conversion

10.9.9 Combined injected simultaneous + interleaved

It is possible to interrupt an interleaved conversion with an injected event. In this case the
interleaved conversion is interrupted and the injected conversion starts, at the end of the
injected sequence the interleaved conversion is resumed. Figure 36 shows the behavior
using an example.

Note: When the ADC clock prescaler is set to 4, the interleaved mode does not recover with
evenly spaced sampling periods: the sampling interval is 8 ADC clock periods followed by 6
ADC clock periods, instead of 7 clock periods followed by 7 clock periods.

Figure 36. Interleaved single channel with injected sequence CH11, CH12

ADC1 reg CH0 CH1 CH2

CH0

CH2 CH3

CH0

ADC1 inj

ADC2 reg

ADC2 inj

1st trig

2nd trig

synchro not lost

CH3 CH5 CH6 CH6 CH7

CH3 CH4

CH7 CH8

ADC1 reg CH0 CH1 CH2

CH0

CH2 CH3

CH0

ADC1 inj

ADC2 reg

ADC2 inj

1st trig

4th trig

CH3 CH5 CH6 CH6 CH7

CH3 CH4

CH7 CH8

2nd trig

3rd trig

CH0

CH0

ADC2

ADC1

Trigger

Conversion

Sampling

CH0 CH0

CH0 CH0 CH0

CH11 CH12

CH12 CH11

CH0 CH0

CH0 CH0

Analog-to-digital converter (ADC) RM0008

164/682

10.10 Temperature sensor
The temperature sensor can be used to measure the ambient temperature (TA) of the
device.

The temperature sensor is internally connected to the ADCx_IN16 input channel which is
used to convert the sensor output voltage into a digital value. The recommended sampling
time for the temperature sensor is 17.1 µs.

The block diagram of the temperature sensor is shown in Figure 37.

When not in use, this sensor can be put in power down mode.

Note: The TSVREFE bit must be set to enable both internal channels: ADCx_IN16 (temperature
sensor) and ADCx_IN17 (VREFINT) conversion.

The temperature sensor output voltage changes linearly with temperature. The offset of this
line varies from chip to chip due to process variation (up to 45 °C from one chip to another).

The internal temperature sensor is more suited to applications that detect temperature
variations instead of absolute temperatures. If accurate temperature readings are needed,
an external temperature sensor part should be used.

Figure 37. Temperature sensor and VREFINT channel block diagram

SENSOR

TEMPERATURE VSENSE

TSVREFE control bit

ADC1

A
dd

re
ss

/d
at

a
bu

s

converted data

VREFINT

ADCx_IN16

ADCx_IN17
POWER
BLOCK

INTERNAL

RM0008 Analog-to-digital converter (ADC)

 165/682

Reading the temperature

To use the sensor:

1. Select the ADCx_IN16 input channel.

2. Select a sample time of 17.1 µs

3. Set the TSVREFE bit in the ADC control register 2 (ADC_CR2) to wake up the
temperature sensor from power down mode.

4. Start the ADC conversion by setting the ADON bit (or by external trigger).

5. Read the resulting VSENSE data in the ADC data register

6. Obtain the temperature using the following formula:

Temperature (in °C) = {(V25 - VSENSE) / Avg_Slope} + 25.

Where,

V25 = VSENSE value for 25° C and

Avg_Slope = Average Slope for curve between Temperature vs. VSENSE (given in
mV/° C or µV/ °C).

Refer to the Electrical characteristics section for the actual values of V25 and
Avg_Slope.

Note: The sensor has a startup time after waking from power down mode before it can output
VSENSE at the correct level. The ADC also has a startup time after power-on, so to minimize
the delay, the ADON and TSVREFE bits should be set at the same time.

10.11 ADC interrupts
An interrupt can be produced on end of conversion for regular and injected groups and
when the analog watchdog status bit is set. Separate interrupt enable bits are available for
flexibility.

Note: ADC1 and ADC2 interrupts are mapped onto the same interrupt vector. ADC3 interrupts are
mapped onto a separate interrupt vector.

Two other flags are present in the ADC_SR register, but there is no interrupt associated with
them:

● JSTRT (Start of conversion for injected group channels)

● STRT (Start of conversion for regular group channels)

Table 49. ADC interrupts

Interrupt event Event flag Enable Control bit

End of conversion regular group EOC EOCIE

End of conversion injected group JEOC JEOCIE

Analog watchdog status bit is set AWD AWDIE

Analog-to-digital converter (ADC) RM0008

166/682

10.12 ADC registers
Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

10.12.1 ADC status register (ADC_SR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved STRT JSTRT JEOC EOC AWD

Res. rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 31:5 Reserved, must be kept cleared.

Bit 4 STRT: Regular channel Start flag

This bit is set by hardware when regular channel conversion starts. It is cleared by software.
0: No regular channel conversion started
1: Regular channel conversion has started

Bit 3 JSTRT: Injected channel Start flag

This bit is set by hardware when injected channel group conversion starts. It is cleared by
software.
0: No injected group conversion started
1: Injected group conversion has started

Bit 2 JEOC: Injected channel end of conversion

This bit is set by hardware at the end of all injected group channel conversion. It is cleared by
software.
0: Conversion is not complete
1: Conversion complete

Bit 1 EOC: End of conversion
This bit is set by hardware at the end of a group channel conversion (regular or injected). It is
cleared by software or by reading the ADC_DR.
0: Conversion is not complete
1: Conversion complete

Bit 0 AWD: Analog watchdog flag

This bit is set by hardware when the converted voltage crosses the values programmed in
the ADC_LTR and ADC_HTR registers. It is cleared by software.
0: No Analog watchdog event occurred
1: Analog watchdog event occurred

RM0008 Analog-to-digital converter (ADC)

 167/682

10.12.2 ADC control register 1 (ADC_CR1)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved AWDE
N

JAWD
EN Reserved DUALMOD[3:0]

Res. rw rw Res. rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DISCNUM[2:0] JDISC
EN

DISC
EN

JAUT
O

AWD
SGL SCAN JEOC

IE AWDIE EOCIE AWDCH[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept cleared.

Bit 23 AWDEN: Analog watchdog enable on regular channels

This bit is set/reset by software.
0: Analog watchdog disabled on regular channels
1: Analog watchdog enabled on regular channels

Bit 22 JAWDEN: Analog watchdog enable on injected channels

This bit is set/reset by software.
0: Analog watchdog disabled on injected channels
1: Analog watchdog enabled on injected channels

Bits 21:20 Reserved, must be kept cleared.

Bits 19:16 DUALMOD[3:0]: Dual mode selection

These bits are written by software to select the operating mode.
0000: Independent mode.
0001: Combined regular simultaneous + injected simultaneous mode
0010: Combined regular simultaneous + alternate trigger mode
0011: Combined injected simultaneous + fast interleaved mode
0100: Combined injected simultaneous + slow Interleaved mode
0101: Injected simultaneous mode only
0110: Regular simultaneous mode only
0111: Fast interleaved mode only
1000: Slow interleaved mode only
1001: Alternate trigger mode only

Note: These bits are reserved in ADC2 and ADC3.
In dual mode, a change of channel configuration generates a restart that can produce a
loss of synchronization. It is recommended to disable dual mode before any
configuration change.

Bits 15:13 DISCNUM[2:0]: Discontinuous mode channel count

These bits are written by software to define the number of regular channels to be converted
in discontinuous mode, after receiving an external trigger.
000: 1 channel
001: 2 channels
.......
111: 8 channels

Analog-to-digital converter (ADC) RM0008

168/682

Bit 12 JDISCEN: Discontinuous mode on injected channels
This bit set and cleared by software to enable/disable discontinuous mode on injected group
channels
0: Discontinuous mode on injected channels disabled
1: Discontinuous mode on injected channels enabled

Bit 11 DISCEN: Discontinuous mode on regular channels

This bit set and cleared by software to enable/disable Discontinuous mode on regular
channels.
0: Discontinuous mode on regular channels disabled
1: Discontinuous mode on regular channels enabled

Bit 10 JAUTO: Automatic Injected Group conversion

This bit set and cleared by software to enable/disable automatic injected group conversion
after regular group conversion.
0: Automatic injected group conversion disabled
1: Automatic injected group conversion enabled

Bit 9 AWDSGL: Enable the watchdog on a single channel in scan mode

This bit set and cleared by software to enable/disable the analog watchdog on the channel
identified by the AWDCH[4:0] bits.
0: Analog watchdog enabled on all channels
1: Analog watchdog enabled on a single channel

Bit 8 SCAN: Scan mode

This bit is set and cleared by software to enable/disable Scan mode. In Scan mode, the
inputs selected through the ADC_SQRx or ADC_JSQRx registers are converted.
0: Scan mode disabled
1: Scan mode enabled

Note: An EOC or JEOC interrupt is generated only on the end of conversion of the last
channel if the corresponding EOCIE or JEOCIE bit is set

Bit 7 JEOCIE: Interrupt enable for injected channels
This bit is set and cleared by software to enable/disable the end of conversion interrupt for
injected channels.
0: JEOC interrupt disabled
1: JEOC interrupt enabled. An interrupt is generated when the JEOC bit is set.

Bit 6 AWDIE: Analog watchdog interrupt enable

This bit is set and cleared by software to enable/disable the analog watchdog interrupt. In
Scan mode if the watchdog thresholds are crossed, scan is aborted only if this bit is enabled.
0: Analog watchdog interrupt disabled
1: Analog watchdog interrupt enabled

Bit 5 EOCIE: Interrupt enable for EOC

This bit is set and cleared by software to enable/disable the End of Conversion interrupt.
0: EOC interrupt disabled
1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set.

RM0008 Analog-to-digital converter (ADC)

 169/682

10.12.3 ADC control register 2 (ADC_CR2)

Address offset: 0x08

Reset value: 0x0000 0000

Bits 4:0 AWDCH[4:0]: Analog watchdog channel select bits
These bits are set and cleared by software. They select the input channel to be guarded by
the Analog watchdog.
00000: ADC analog input Channel0
00001: ADC analog input Channel1
....
01111: ADC analog input Channel15
10000: ADC analog input Channel16
10001: ADC analog input Channel17
Other values reserved.

Note: ADC1 analog inputs Channel16 and Channel17 are internally connected to the
temperature sensor and to VREFINT, respectively.
ADC2 analog inputs Channel16 and Channel17 are internally connected to VSS.

ADC3 analog inputs Channel9, Channel14, Channel15, Channel16 and Channel17 are
connected to VSS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved TSVRE
FE

SWST
ART

JSWST
ART

EXTT
RIG EXTSEL[2:0] Res.

Res. rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JEXTT
RIG JEXTSEL[2:0] ALIGN Reserved DMA Reserved RST

CAL CAL CONT ADON

rw rw rw rw rw Res. rw Res. rw rw rw rw

Bits 31:24 Reserved, must be kept cleared.

Bit 23 TSVREFE: Temperature sensor and VREFINT enable

This bit is set and cleared by software to enable/disable the temperature sensor and VREFINT
channel. In devices with dual ADCs this bit is present only in ADC1.
0: Temperature sensor and VREFINT channel disabled
1: Temperature sensor and VREFINT channel enabled

Bit 22 SWSTART: Start conversion of regular channels
This bit is set by software to start conversion and cleared by hardware as soon as conversion
starts. It starts a conversion of a group of regular channels if SWSTART is selected as trigger
event by the EXTSEL[2:0] bits.
0: Reset state
1: Starts conversion of regular channels

Bit 21 JSWSTART: Start conversion of injected channels

This bit is set by software and cleared by software or by hardware as soon as the conversion
starts. It starts a conversion of a group of injected channels (if JSWSTART is selected as
trigger event by the JEXTSEL[2:0] bits.
0: Reset state
1: Starts conversion of injected channels

Analog-to-digital converter (ADC) RM0008

170/682

Bit 20 EXTTRIG: External trigger conversion mode for regular channels
This bit is set and cleared by software to enable/disable the external trigger used to start
conversion of a regular channel group.
0: Conversion on external event disabled
1: Conversion on external event enabled

Bits 19:17 EXTSEL[2:0]: External event select for regular group

These bits select the external event used to trigger the start of conversion of a regular group:
For ADC1 and ADC2, the assigned triggers are:
000: Timer 1 CC1 event
001: Timer 1 CC2 event
010: Timer 1 CC3 event
011: Timer 2 CC2 event
100: Timer 3 TRGO event
101: Timer 4 CC4 event
110: EXTI line11/TIM8_TRGO event (TIM8_TRGO is available only in high-density devices)
111: SWSTART

For ADC3, the assigned triggers are:
000: Timer 3 CC1 event
001: Timer 2 CC3 event
010: Timer 1 CC3 event
011: Timer 8 CC1 event
100: Timer 8 TRGO event
101: Timer 5 CC1 event
110: Timer 5 CC3 event
111: SWSTART

Bit 16 Reserved, must be kept cleared.

Bit 15 JEXTTRIG: External trigger conversion mode for injected channels
This bit is set and cleared by software to enable/disable the external trigger used to start
conversion of an injected channel group.
0: Conversion on external event disabled
1: Conversion on external event enabled

RM0008 Analog-to-digital converter (ADC)

 171/682

Bits 14:12 JEXTSEL[2:0]: External event select for injected group
These bits select the external event used to trigger the start of conversion of an injected
group:
For ADC1 and ADC2 the assigned triggers are:
000: Timer 1 TRGO event
001: Timer 1 CC4 event
010: Timer 2 TRGO event
011: Timer 2 CC1 event
100: Timer 3 CC4 event
101: Timer 4 TRGO event
110: EXTI line15/TIM8_CC4 event (TIM8_CC4 is available only in High-density devices)
111: JSWSTART

For ADC3 the assigned triggers are:
000: Timer 1 TRGO event
001: Timer 1 CC4 event
010: Timer 4 CC3 event
011: Timer 8 CC2 event
100: Timer 8 CC4 event
101: Timer 5 TRGO event
110: Timer 5 CC4 event
111: JSWSTART

Bit 11 ALIGN: Data alignment

This bit is set and cleared by software. Refer to Figure 25.and Figure 26.
0: Right Alignment
1: Left Alignment

Bits 10:9 Reserved, must be kept cleared.

Bit 8 DMA: Direct memory access mode
This bit is set and cleared by software. Refer to the DMA controller chapter for more details.
0: DMA mode disabled
1: DMA mode enabled

Note: Only ADC1 and ADC3 can generate a DMA request.

Bits 7:4 Reserved, must be kept cleared.

Bit 3 RSTCAL: Reset calibration
This bit is set by software and cleared by hardware. It is cleared after the calibration registers
are initialized.
0: Calibration register initialized.
1: Initialize calibration register.

Note: If RSTCAL is set when conversion is ongoing, additional cycles are required to clear the
calibration registers.

Bit 2 CAL: A/D Calibration

This bit is set by software to start the calibration. It is reset by hardware after calibration is
complete.
0: Calibration completed
1: Enable calibration

Analog-to-digital converter (ADC) RM0008

172/682

10.12.4 ADC sample time register 1 (ADC_SMPR1)

Address offset: 0x0C

Reset value: 0x0000 0000

Bit 1 CONT: Continuous conversion
This bit is set and cleared by software. If set conversion takes place continuously till this bit is
reset.
0: Single conversion mode
1: Continuous conversion mode

Bit 0 ADON: A/D converter ON / OFF

This bit is set and cleared by software. If this bit holds a value of zero and a 1 is written to it
then it wakes up the ADC from Power Down state.
Conversion starts when this bit holds a value of 1 and a 1 is written to it. The application
should allow a delay of tSTAB between power up and start of conversion. Refer to Figure 21.
0: Disable ADC conversion/calibration and go to power down mode.
1: Enable ADC and to start conversion

Note: If any other bit in this register apart from ADON is changed at the same time, then
conversion is not triggered. This is to prevent triggering an erroneous conversion.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved SMP17[2:0] SMP16[2:0] SMP15[2:1]

Res. rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMP
15_0 SMP14[2:0] SMP13[2:0] SMP12[2:0] SMP11[2:0] SMP10[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept cleared.

Bits 23:0 SMPx[2:0]: Channel x Sample time selection

These bits are written by software to select the sample time individually for each channel.
During sample cycles channel selection bits must remain unchanged.
000: 1.5 cycles
001: 7.5 cycles
010: 13.5 cycles
011: 28.5 cycles
100: 41.5 cycles
101: 55.5 cycles
110: 71.5 cycles
111: 239.5 cycles

Note: ADC1 analog inputs Channel16 and Channel17 are internally connected to the
temperature sensor and to VREFINT, respectively.

ADC2 analog input Channel16 and Channel17 are internally connected to VSS.
ADC3 analog inputs Channel14, Channel15, Channel16 and Channel17 are connected
to VSS.

RM0008 Analog-to-digital converter (ADC)

 173/682

10.12.5 ADC sample time register 2 (ADC_SMPR2)

Address offset: 0x10

Reset value: 0x0000 0000

10.12.6 ADC injected channel data offset register x (ADC_JOFRx)(x=1..4)

Address offset: 0x14-0x20

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved SMP9[2:0] SMP8[2:0] SMP7[2:0] SMP6[2:0] SMP5[2:1]

Res. rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMP
5_0 SMP4[2:0] SMP3[2:0] SMP2[2:0] SMP1[2:0] SMP0[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept cleared.

Bits 29:0 SMPx[2:0]: Channel x Sample time selection

These bits are written by software to select the sample time individually for each channel.
During sample cycles channel selection bits must remain unchanged.
000: 1.5 cycles
001: 7.5 cycles
010: 13.5 cycles
011: 28.5 cycles
100: 41.5 cycles
101: 55.5 cycles
110: 71.5 cycles
111: 239.5 cycles

Note: ADC3 analog input Channel9 is connected to VSS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved JOFFSETx[11:0]

Res. rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept cleared.

Bits 11:0 JOFFSETx[11:0]: Data offset for injected channel x

These bits are written by software to define the offset to be subtracted from the raw
converted data when converting injected channels. The conversion result can be read from
in the ADC_JDRx registers.

Analog-to-digital converter (ADC) RM0008

174/682

10.12.7 ADC watchdog high threshold register (ADC_HTR)

Address offset: 0x24

Reset value: 0x0000 0FFF

10.12.8 ADC watchdog low threshold register (ADC_LTR)

Address offset: 0x28

Reset value: 0x0000 0000

10.12.9 ADC regular sequence register 1 (ADC_SQR1)

Address offset: 0x2C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
HT[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept cleared.

Bits 11:0 HT[11:0]: Analog watchdog high threshold

These bits are written by software to define the high threshold for the analog watchdog.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved LT[11:0]

Res rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept cleared.

Bits 11:0 LT[11:0]: Analog watchdog low threshold

These bits are written by software to define the low threshold for the analog watchdog.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved L[3:0] SQ16[4:1]

Res. rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SQ16_0 SQ15[4:0] SQ14[4:0] SQ13[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0008 Analog-to-digital converter (ADC)

 175/682

10.12.10 ADC regular sequence register 2 (ADC_SQR2)

Address offset: 0x30

Reset value: 0x0000 0000

Bits 31:24 Reserved, must be kept cleared.

Bits 23:20 L[3:0]: Regular channel sequence length

These bits are written by software to define the total number of conversions in the regular
channel conversion sequence.
0000: 1 conversion
0001: 2 conversions
.....
1111: 16 conversions

Bits 19:15 SQ16[4:0]: 16th conversion in regular sequence
These bits are written by software with the channel number (0..17) assigned as the 16th in
the conversion sequence.

Bits 14:10 SQ15[4:0]: 15th conversion in regular sequence

Bits 9:5 SQ14[4:0]: 14th conversion in regular sequence

Bits 4:0 SQ13[4:0]: 13th conversion in regular sequence

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SQ12[4:0] SQ11[4:0] SQ10[4:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SQ10_
0 SQ9[4:0] SQ8[4:0] SQ7[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept cleared.

Bits 29:26 SQ12[4:0]: 12th conversion in regular sequence

These bits are written by software with the channel number (0..17) assigned as the 12th in the
sequence to be converted.

Bits 24:20 SQ11[4:0]: 11th conversion in regular sequence

Bits 19:15 SQ10[4:0]: 10th conversion in regular sequence

Bits 14:10 SQ9[4:0]: 9th conversion in regular sequence

Bits 9:5 SQ8[4:0]: 8th conversion in regular sequence

Bits 4:0 SQ7[4:0]: 7th conversion in regular sequence

Analog-to-digital converter (ADC) RM0008

176/682

10.12.11 ADC regular sequence register 3 (ADC_SQR3)

Address offset: 0x34

Reset value: 0x0000 0000

10.12.12 ADC injected sequence register (ADC_JSQR)

Address offset: 0x38

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SQ6[4:0] SQ5[4:0] SQ4[4:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SQ4_0 SQ3[4:0] SQ2[4:0] SQ1[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept cleared.

Bits 29:25 SQ6[4:0]: 6th conversion in regular sequence
These bits are written by software with the channel number (0..17) assigned as the 6th in the
sequence to be converted.

Bits 24:20 SQ5[4:0]: 5th conversion in regular sequence

Bits 19:15 SQ4[4:0]: 4th conversion in regular sequence

Bits 14:10 SQ3[4:0]: 3rd conversion in regular sequence

Bits 9:5 SQ2[4:0]: 2nd conversion in regular sequence

Bits 4:0 SQ1[4:0]: 1st conversion in regular sequence

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
JL[1:0] JSQ4[4:1]

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JSQ4_
0 JSQ3[4:0] JSQ2[4:0] JSQ1[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0008 Analog-to-digital converter (ADC)

 177/682

10.12.13 ADC injected data register x (ADC_JDRx) (x= 1..4)

Address offset: 0x3C - 0x48

Reset value: 0x0000 0000

10.12.14 ADC regular data register (ADC_DR)

Address offset: 0x4C

Reset value: 0x0000 0000

Bits 31:22 Reserved, must be kept cleared.

Bits 21:20 JL[1:0]: Injected sequence length

These bits are written by software to define the total number of conversions in the injected
channel conversion sequence.
00: 1 conversion
01: 2 conversions
10: 3 conversions
11: 4 conversions

Bits 19:15 JSQ4[4:0]: 4th conversion in injected sequence
These bits are written by software with the channel number (0..17) assigned as the 4th in
the sequence to be converted.

Note: Unlike a regular conversion sequence, if JL[1:0] length is less than four, the channels
are converted in a sequence starting from (4-JL). Example: ADC_JSQR[21:0] = 10
00011 00011 00111 00010 means that a scan conversion will convert the following
channel sequence: 7, 3, 3. (not 2, 7, 3)

Bits 14:10 JSQ3[4:0]: 3rd conversion in injected sequence

Bits 9:5 JSQ2[4:0]: 2nd conversion in injected sequence

Bits 4:0 JSQ1[4:0]: 1st conversion in injected sequence

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JDATA[15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, must be kept cleared.

Bits 15:0 JDATA[15:0]: Injected data
These bits are read only. They contain the conversion result from injected channel x. The
data is left or right-aligned as shown in Figure 25 and Figure 26.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADC2DATA[15:0]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA[15:0]

r r r r r r r r r r r r r r r r

Analog-to-digital converter (ADC) RM0008

178/682

10.12.15 ADC register map

The following table summarizes the ADC registers.

Bits 31:16 ADC2DATA[15:0]: ADC2 data

– In ADC1: In dual mode, these bits contain the regular data of ADC2. Refer to Section 10.9:
Dual ADC mode

– In ADC2 and ADC3: these bits are not used

Bits 15:0 DATA[15:0]: Regular data

These bits are read only. They contain the conversion result from the regular channels. The
data is left or right-aligned as shown in Figure 25 and Figure 26.

Table 50. ADC register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
ADC_SR

Reserved S
T

R
T

JS
T

R
T

JE
O

C

E
O

C

A
W

D

Reset value 0 0 0 0 0

0x04
ADC_CR1

Reserved

A
W

D
E

N

JA
W

D
E

N

R
es

er
ve

d DUALMOD
[3:0]

DISC
NUM [2:0]

JD
IS

C
E

N

D
IS

C
E

N

JA
U

TO

A
W

D
 S

G
L

S
C

A
N

JE
O

C
 IE

A
W

D
IE

E
O

C
IE

AWDCH[4:0]

Reset value 0

0x08
ADC_CR2

Reserved

T
S

V
R

E
F

E

S
W

S
TA

R
T

JS
W

S
TA

R
T

E
X

T
T

R
IG

EXTSEL
[2:0]

R
es

er
ve

d

JE
X

T
T

R
IG

JEXTSEL
[2:0]

A
LI

G
N

R
es

er
ve

d

D
M

A

Reserved

R
S

T
C

A
L

C
A

L

C
O

N
T

A
D

O
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
ADC_SMPR1 Sample time bits SMPx_x

Reset value 0

0x10
ADC_SMPR2 Sample time bits SMPx_x

Reset value 0

0x14
ADC_JOFR1

Reserved
JOFFSET1[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x18
ADC_JOFR2

Reserved
JOFFSET2[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
ADC_JOFR3

Reserved
JOFFSET3[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x20
ADC_JOFR4

Reserved
JOFFSET4[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x24
ADC_HTR

Reserved
HT[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x28
ADC_LTR

Reserved
LT[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
ADC_SQR1

Reserved
L[3:0] Regular channel sequence SQx_x bits

Reset value 0

RM0008 Analog-to-digital converter (ADC)

 179/682

Refer to Table 1 on page 35 for the register boundary addresses.

0x30
ADC_SQR2

R
es

er
ve

d

Regular channel sequence SQx_x bits

Reset value 0

0x34
ADC_SQR3

R
es

er
ve

d
Regular channel sequence SQx_x bits

Reset value 0

0x38
ADC_JSQR

Reserved
JL[1:0] Injected channel sequence JSQx_x bits

Reset value 0

0x3C
ADC_JDR1

Reserved
JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x40
ADC_JDR2

Reserved
JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44
ADC_JDR3

Reserved
JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48
ADC_JDR4

Reserved
JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x4C
ADC_DR ADC2DATA[15:0] Regular DATA[15:0]

Reset value 0

Table 50. ADC register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Digital-to-analog converter (DAC) RM0008

180/682

11 Digital-to-analog converter (DAC)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This section applies to high-density STM32F101xx and STM32F103xx devices only.

11.1 DAC introduction
The DAC module is a 12-bit, voltage output digital-to-analog converter. The DAC can be
configured in 8- or 12-bit mode and may be used in conjunction with the DMA controller. In
12-bit mode, the data could be left- or right-aligned. The DAC has two output channels, each
with its own converter. In dual DAC channel mode, conversions could be done
independently or simultaneously when both channels are grouped together for synchronous
update operation. An input reference pin VREF+ is available for better resolution.

11.2 DAC main features
● Two DAC converters: one output channel each

● 8-bit or 12-bit monotonic output

● Left or right data alignment in 12-bit mode

● Synchronized update capability

● Noise-wave generation

● Triangular-wave generation

● Dual DAC channel independent or simultaneous conversions

● DMA capability for each channel

● External triggers for conversion

● Input voltage reference VREF+

The block diagram of a DAC channel is shown in Figure 38 and the pin description is given
in Table 51.

RM0008 Digital-to-analog converter (DAC)

 181/682

Figure 38. DAC channel block diagram

Note: Once the DAC channelx is enabled, the corresponding GPIO pin (PA4 or PA5) is
automatically connected to the analog converter output (DAC_OUTx). In order to avoid
parasitic consumption, the PA4 or PA5 pin should first be configured to analog (AIN).

Table 51. DAC pins

Name Signal type Remarks

VREF+
Input, analog reference
positive

The higher/positive reference voltage for the DAC,
2.4 V ≤ VREF+ ≤ VDDA (3.3 V)

VDDA Input, analog supply Analog power supply

VSSA
Input, analog supply
ground

Ground for analog power supply

DAC_OUTx Analog output signal DAC channelx analog output

VDDA

VSSA

VREF+

DAC_OUTx

Control logicx

DHRx

12-bit

12-bit

LFSRx tr ianglex

DM A requestx

TSELx[2:0] bits

TIM4_TRGO
TIM5_TRGO
TIM6_TRGO
TIM7_TRGO

TIM2_TRGO

TIM8_TRGO
EXTI_9

DMAENx

TENx

MAMPx[3:0] bits

WAVENx[1:0] bits

SWTRIGx

DORx

Digital-to-analog
converterx

12-bit

DAC control register

ai14708b

T
rig

ge
r

se
le

ct
or

x

Digital-to-analog converter (DAC) RM0008

182/682

11.3 DAC functional description

11.3.1 DAC channel enable

Each DAC channel can be powered on by setting its corresponding ENx bit in the DAC_CR
register. The DAC channel is then enabled after a startup time tWAKEUP.

Note: The ENx bit enables the analog DAC Channelx macrocell only. The DAC Channelx digital
interface is enabled even if the ENx bit is reset.

11.3.2 DAC output buffer enable

The DAC integrates two output buffers that can be used to reduce the output impedance,
and to drive external loads directly without having to add an external operational amplifier.
Each DAC channel output buffer can be enabled and disabled using the corresponding
BOFFx bit in the DAC_CR register.

11.3.3 DAC data format

Depending on the selected configuration mode, the data has to be written in the specified
register as described below:

● Single DAC channelx, there are three possibilities:

– 8-bit right alignment: user has to load data into DAC_DHR8Rx [7:0] bits (stored
into DHRx[11:4] bits)

– 12-bit left alignment: user has to load data into DAC_DHR12Lx [15:4] bits (stored
into DHRx[11:0] bits)

– 12-bit right alignment: user has to load data into DAC_DHR12Rx [11:0] bits
(stored into DHRx[11:0] bits)

Depending on the loaded DAC_DHRyyyx register, the data written by the user will be shifted
and stored into the DHRx (Data Holding Registerx, that are internal non-memory-mapped
registers). The DHRx register will then be loaded into the DORx register either
automatically, by software trigger or by an external event trigger.

RM0008 Digital-to-analog converter (DAC)

 183/682

Figure 39. Data registers in single DAC channel mode

● Dual DAC channels, there are three possibilities:

– 8-bit right alignment: data for DAC channel1 to be loaded into DAC_DHR8RD [7:0]
bits (stored into DHR1[11:4] bits) and data for DAC channel2 to be loaded into
DAC_DHR8RD [15:8] bits (stored into DHR2[11:4] bits)

– 12-bit left alignment: data for DAC channel1 to be loaded into DAC_DHR12LD
[15:4] bits (stored into DHR1[11:0] bits) and data for DAC channel2 to be loaded
into DAC_DHR12LD [31:20] bits (stored into DHR2[11:0] bits)

– 12-bit right alignment: data for DAC channel1 to be loaded into DAC_DHR12RD
[11:0] bits (stored into DHR1[11:0] bits) and data for DAC channel2 to be loaded
into DAC_DHR12LD [27:16] bits (stored into DHR2[11:0] bits)

Depending on the loaded DAC_DHRyyyD register, the data written by the user will be
shifted and stored into the DHR1 and DHR2 (Data Holding Registers, that are internal non-
memory-mapped registers). The DHR1 and DHR2 registers will then be loaded into the
DOR1 and DOR2 registers, respectively, either automatically, by software trigger or by an
external event trigger.

Figure 40. Data registers in dual DAC channel mode

11.3.4 DAC conversion

The DAC_DORx cannot be written directly and any data transfer to the DAC channelx must
be performed by loading the DAC_DHRx register (write on DAC_DHR8Rx, DAC_DHR12Lx,
DAC_DHR12Rx, DAC_DHR8RD, DAC_DHR12LD or DAC_DHR12LD).

Data stored into the DAC_DHRx register are automatically transferred to the DAC_DORx
register after one APB1 clock cycle, if no hardware trigger is selected (TENx bit in DAC_CR
register is reset). However, when a hardware trigger is selected (TENx bit in DAC_CR
register is set) and a trigger occurs, the transfer is performed three APB1 clock cycles later.

When DAC_DORx is loaded with the DAC_DHRx contents, the analog output voltage
becomes available after a time of tSETTLING that depends on the power supply voltage and
the analog output load.

31 24 15 7 0

8-bit right aligned

12-bit left aligned

12-bit right aligned

ai14710

31 24 15 7 0

8-bit right aligned

12-bit left aligned

12-bit right aligned

ai14709

Digital-to-analog converter (DAC) RM0008

184/682

Figure 41. Timing diagram for conversion with trigger disabled TEN = 0

11.3.5 DAC output voltage

Digital inputs are converted to output voltages on a linear conversion between 0 and VREF+.

The analog output voltages on each DAC channel pin are determined by the following
equation:

11.3.6 DAC trigger selection

If the TENx control bit is set, conversion can then be triggered by an external event (timer
counter, external interrupt line). The TSELx[2:0] control bits determine which out of 8 possi-
ble events will trigger conversion as shown in Table 52.

Each time a DAC interface detects a rising edge on the selected timer TRGO output, or on
the selected external interrupt line 9, the last data stored into the DAC_DHRx register is
transferred into the DAC_DORx register. The DAC_DORx register is updated three APB1
cycles after the trigger occurs.

If the software trigger is selected, the conversion starts once the SWTRIG bit is set.
SWTRIG is reset by hardware once the DAC_DORx register has been loaded with the
DAC_DHRx register contents.

APB1_CLK

0x1AC

0x1AC

tSETTLING

DHR

DOR
Output voltage
available on DAC_OUT pin

ai14711b

DACoutput VREF
DOR
4095
--------------×=

Table 52. External triggers

Source Type TSEL[2:0]

Timer 6 TRGO event

Internal signal from on-chip
timers

000

Timer 8 TRGO event
001

Timer 7 TRGO event 010

Timer 5 TRGO event 011

Timer 2 TRGO event 100

Timer 4 TRGO event 101

EXTI line9 External pin 110

SWTRIG Software control bit 111

RM0008 Digital-to-analog converter (DAC)

 185/682

Note: 1 TSELx[2:0] bit cannot be changed when the ENx bit is set.

2 When software trigger is selected, it takes only one APB1 clock cycle for DAC_DHRx-to-
DAC_DORx register transfer.

11.3.7 DMA request

Each DAC channel has a DMA capability. Two DMA channels are used to service DAC
channel DMA requests.

A DAC DMA request is generated when an external trigger (but not a software trigger)
occurs while the DMAENx bit is set. The value of the DAC_DHRx register is then transferred
to the DAC_DORx register.
In dual mode, if both DMAENx bits are set, two DMA requests are generated. If only one
DMA request is needed, you should set only the corresponding DMAENx bit. In this way, the
application can manage both DAC channels in dual mode by using one DMA request and a
unique DMA channel.

The DAC DMA request is not queued so that if a second external trigger arrives before the
acknowledgement of the last request, then the new request will not be serviced and no error
is reported

11.3.8 Noise generation

In order to generate a variable-amplitude pseudonoise, a Linear Feedback Shift Register is
available. The DAC noise generation is selected by setting WAVEx[1:0] to “01”. The
preloaded value in the LFSR is 0xAAA. This register is updated, three APB1 clock cycles
after each trigger event, following a specific calculation algorithm.

Figure 42. DAC LFSR register calculation algorithm

The LFSR value, that may be masked partially or totally by means of the MAMPx[3:0] bits in
the DAC_CR register, is added up to the DAC_DHRx contents without overflow and this
value is then stored into the DAC_DORx register.

If LFSR is 0x0000, a ‘1’ is injected into it (antilock-up mechanism).

It is possible to reset LFSR wave generation by resetting the WAVEx[1:0] bits.

11 10 9 8 7 6 5 4 3 2 1 0

12

NOR

X12

X0XX4X6

XOR

ai14713b

Digital-to-analog converter (DAC) RM0008

186/682

Figure 43. DAC conversion (SW trigger enabled) with LFSR wave generation

Note: DAC trigger must be enabled for noise generation, by setting the TENx bit in the DAC_CR
register.

11.3.9 Triangle-wave generation

It is possible to add a small-amplitude triangular waveform on a DC or slowly varying signal.
DAC triangle-wave generation is selected by setting WAVEx[1:0] to “10”. The amplitude is
configured through the MAMPx[3:0] bits in the DAC_CR register. An internal triangle counter
is incremented three APB1 clock cycles after each trigger event. The value of this counter is
then added to the DAC_DHRx register without overflow and the sum is stored into the
DAC_DORx register. The triangle counter is incremented while it is less than the maximum
amplitude defined by the MAMPx[3:0] bits. Once the configured amplitude is reached, the
counter is decremented down to 0, then incremented again and so on.

It is possible to reset triangle wave generation by resetting WAVEx[1:0] bits.

Figure 44. DAC triangle wave generation

APB1_CLK

0x00

0xAAA

DHR

DOR

ai14714

0xD55

SWTRIG

RM0008 Digital-to-analog converter (DAC)

 187/682

Figure 45. DAC conversion (SW trigger enabled) with triangle wave generation

Note: 1 DAC trigger must be enabled for noise generation, by setting the TENx bit in the DAC_CR
register.

2 MAMPx[3:0] bits must be configured before enabling the DAC, otherwise they cannot be
changed.

11.4 Dual DAC channel conversion
To efficiently use the bus bandwidth in applications that require the two DAC channels at the
same time, three dual registers are implemented: DHR8RD, DHR12RD and DHR12LD. A
unique register access is then required to drive both DAC channels at the same time.

Eleven possible conversion modes are possible using the two DAC channels and these dual
registers. All the conversion modes can nevertheless be obtained using separate DHRx
registers if needed.

All modes are described in the paragraphs below.

11.4.1 Independent trigger without wave generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

● Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a DAC channel1 trigger arrives, the DHR1 register is transferred into DAC_DOR1
(three APB1 clock cycles later).

When a DAC channel2 trigger arrives, the DHR2 register is transferred into DAC_DOR2
(three APB1 clock cycles later).

APB1_CLK

0xABE

0xABE

DHR

DOR

ai14714

0xABF

SWTRIG

0xAC0

Digital-to-analog converter (DAC) RM0008

188/682

11.4.2 Independent trigger with same LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

● Configure the two DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask
value in the MAMPx[3:0] bits

● Load the dual DAC channel data into the desired DHR register (DHR12RD, DHR12LD
or DHR8RD)

When a DAC channel1 trigger arrives, the LFSR1 counter, with the same mask, is added to
the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles
later). Then the LFSR1 counter is updated.

When a DAC channel2 trigger arrives, the LFSR2 counter, with the same mask, is added to
the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles
later). Then the LFSR2 counter is updated.

11.4.3 Independent trigger with different LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

● Configure the two DAC channel WAVEx[1:0] bits as “01” and set different LFSR masks
values in the MAMP1[3:0] and MAMP2[3:0] bits

● Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a DAC channel1 trigger arrives, the LFSR1 counter, with the mask configured by
MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1
(three APB1 clock cycles later). Then the LFSR1 counter is updated.

When a DAC channel2 trigger arrives, the LFSR2 counter, with the mask configured by
MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2
(three APB1 clock cycles later). Then the LFSR2 counter is updated.

11.4.4 Independent trigger with same triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

● Configure the two DAC channel WAVEx[1:0] bits as “1x” and the same maximum
amplitude value in the MAMPx[3:0] bits

● Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with the same
triangle amplitude, is added to the DHR1 register and the sum is transferred into

RM0008 Digital-to-analog converter (DAC)

 189/682

DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle counter is then
updated.

When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with the same
triangle amplitude, is added to the DHR2 register and the sum is transferred into
DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle counter is then
updated.

11.4.5 Independent trigger with different triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

● Configure the two DAC channel WAVEx[1:0] bits as “1x” and set different maximum
amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits

● Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with a triangle
amplitude configured by MAMP1[3:0], is added to the DHR1 register and the sum is
transferred into DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle
counter is then updated.

When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with a triangle
amplitude configured by MAMP2[3:0], is added to the DHR2 register part and the sum is
transferred into DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle
counter is then updated.

11.4.6 Simultaneous software start

To configure the DAC in this conversion mode, the following sequence is required:

● Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

In this configuration, one APB1 clock cycle later, the DHR1 and DHR2 registers are
transferred into DAC_DOR1 and DAC_DOR2, respectively.

11.4.7 Simultaneous trigger without wave generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

● Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the DHR1 and DHR2 registers are transferred into DAC_DOR1 and
DAC_DOR2, respectively (after three APB1 clock cycles).

Digital-to-analog converter (DAC) RM0008

190/682

11.4.8 Simultaneous trigger with same LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

● Configure the two DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask
value in the MAMPx[3:0] bits

● Load the dual DAC channel data to the desired DHR register (DHR12RD, DHR12LD or
DHR8RD)

When a trigger arrives, the LFSR1 counter, with the same mask, is added to the DHR1
register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The
LFSR1 counter is then updated. At the same time, the LFSR2 counter, with the same mask,
is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock
cycles later). The LFSR2 counter is then updated.

11.4.9 Simultaneous trigger with different LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

● Configure the two DAC channel WAVEx[1:0] bits as “01” and set different LFSR masks
values using the MAMP1[3:0] and MAMP2[3:0] bits

● Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the LFSR1 counter, with the mask configured by MAMP1[3:0], is
added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock
cycles later). The LFSR1 counter is then updated.
At the same time, the LFSR2 counter, with the mask configured by MAMP2[3:0], is added to
the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles
later). The LFSR2 counter is then updated.

11.4.10 Simultaneous trigger with same triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

● Configure the two DAC channel WAVEx[1:0] bits as “1x” and the same maximum
amplitude value using the MAMPx[3:0] bits

● Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the DAC channel1 triangle counter, with the same triangle amplitude,
is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock
cycles later). The DAC channel1 triangle counter is then updated.
At the same time, the DAC channel2 triangle counter, with the same triangle amplitude, is

RM0008 Digital-to-analog converter (DAC)

 191/682

added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock
cycles later). The DAC channel2 triangle counter is then updated.

11.4.11 Simultaneous trigger with different triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

● Configure the two DAC channel WAVEx[1:0] bits as “1x” and set different maximum
amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits

● Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the DAC channel1 triangle counter, with a triangle amplitude
configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into
DAC_DOR1 (three APB1 clock cycles later). Then the DAC channel1 triangle counter is
updated.
At the same time, the DAC channel2 triangle counter, with a triangle amplitude configured
by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2
(three APB1 clock cycles later). Then the DAC channel2 triangle counter is updated.

11.5 DAC registers

11.5.1 DAC control register (DAC_CR)

Address offset: 0x00

Reset value: 0x0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

DMA
EN2 MAMP2[3:0] WAVE2[1:0] TSEL2[2:0] TEN2 BOFF2 EN2

rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

DMA
EN1 MAMP1[3:0] WAVE1[1:0] TSEL1[2:0] TEN1 BOFF1 EN1

rw rw rw rw rw rw rw rw rw rw rw rw rw

Digital-to-analog converter (DAC) RM0008

192/682

Bits 31:29 Reserved.

Bit 28 DMAEN2: DAC channel2 DMA enable

This bit is set and cleared by software.
0: DAC channel2 DMA mode disabled
1: DAC channel2 DMA mode enabled

Bit 27:24 MAMP2[3:0]: DAC channel2 mask/amplitude selector

These bits are written by software to select mask in wave generation mode or amplitude in
triangle generation mode.
0000: Unmask bit0 of LFSR/ Triangle Amplitude equal to 1
0001: Unmask bits[1:0] of LFSR/ Triangle Amplitude equal to 3
0010: Unmask bits[2:0] of LFSR/ Triangle Amplitude equal to 7
0011: Unmask bits[3:0] of LFSR/ Triangle Amplitude equal to 15
0100: Unmask bits[4:0] of LFSR/ Triangle Amplitude equal to 31
0101: Unmask bits[5:0] of LFSR/ Triangle Amplitude equal to 63
0110: Unmask bits[6:0] of LFSR/ Triangle Amplitude equal to 127
0111: Unmask bits[7:0] of LFSR/ Triangle Amplitude equal to 255
1000: Unmask bits[8:0] of LFSR/ Triangle Amplitude equal to 511
1001: Unmask bits[9:0] of LFSR/ Triangle Amplitude equal to 1023
1010: Unmask bits[10:0] of LFSR/ Triangle Amplitude equal to 2047
≥ 1011: Unmask bits[11:0] of LFSR/ Triangle Amplitude equal to 4095

Bit 23:22 WAVE2[1:0]: DAC channel2 noise/triangle wave generation enable

These bits are set/reset by software.
00: wave generation disabled
01: Noise wave generation enabled
1x: Triangle wave generation enabled

Note: only used if bit TEN2 = 1 (DAC channel2 trigger enabled)

Bits 21:19 TSEL2[2:0]: DAC channel2 trigger selection
These bits select the external event used to trigger DAC channel2
000: Timer 6 TRGO event
001: Timer 8 TRGO event
010: Timer 7 TRGO event
011: Timer 5 TRGO event
100: Timer 2 TRGO event
101: Timer 4 TRGO event
110: External line9
111: Software trigger

Note: only used if bit TEN2 = 1 (DAC channel2 trigger enabled)

Bit 18 TEN2: DAC channel2 trigger enable

This bit set and cleared by software to enable/disable DAC channel2 trigger
0: DAC channel2 trigger disabled and data written into DAC_DHRx register is transferred
one APB1 clock cycle later to the DAC_DOR2 register.
1: DAC channel2 trigger enabled and data transfer from DAC_DHRx register is transferred
three APB1 clock cycles later to the DAC_DOR2 register.

Note: When software trigger is selected, it takes only one APB1 clock cycle for DAC_DHRx to
DAC_DOR2 register transfer.

Bit 17 BOFF2: DAC channel2 output buffer disable

This bit set and cleared by software to enable/disable DAC channel2 output buffer.
0: DAC channel2 output buffer enabled
1: DAC channel2 output buffer disabled

RM0008 Digital-to-analog converter (DAC)

 193/682

Bit 16 EN2: DAC channel2 enable
This bit set and cleared by software to enable/disable DAC channel2.
0: DAC channel2 disabled
1: DAC channel2 enabled

Bits 15:13 Reserved.

Bit 12 DMAEN1: DAC channel1 DMA enable

This bit is set and cleared by software.
0: DAC channel1 DMA mode disabled
1: DAC channel1 DMA mode enabled

Bits 11:8 MAMP1[3:0]: DAC channel1 mask/amplitude selector

These bits are written by software to select mask in wave generation mode or amplitude in
triangle generation mode.
0000: Unmask bit0 of LFSR/ Triangle Amplitude equal to 1
0001: Unmask bits[1:0] of LFSR/ Triangle Amplitude equal to 3
0010: Unmask bits[2:0] of LFSR/ Triangle Amplitude equal to 7
0011: Unmask bits[3:0] of LFSR/ Triangle Amplitude equal to 15
0100: Unmask bits[4:0] of LFSR/ Triangle Amplitude equal to 31
0101: Unmask bits[5:0] of LFSR/ Triangle Amplitude equal to 63
0110: Unmask bits[6:0] of LFSR/ Triangle Amplitude equal to 127
0111: Unmask bits[7:0] of LFSR/ Triangle Amplitude equal to 255
1000: Unmask bits[8:0] of LFSR/ Triangle Amplitude equal to 511
1001: Unmask bits[9:0] of LFSR/ Triangle Amplitude equal to 1023
1010: Unmask bits[10:0] of LFSR/ Triangle Amplitude equal to 2047
≥ 1011: Unmask bits[11:0] of LFSR/ Triangle Amplitude equal to 4095

Bits 7:6 WAVE1[1:0]: DAC channel1 noise/triangle wave generation enable
These bits are set/reset by software.
00: wave generation disabled
01: Noise wave generation enabled
1x: Triangle wave generation enabled
Note: only used if bit TEN1 = 1 (DAC channel1 trigger enabled)

Bits 5:3 TSEL1[2:0]: DAC channel1 trigger selection
These bits select the external event used to trigger DAC channel1
000: Timer 6 TRGO event
001: Timer 8 TRGO event
010: Timer 7 TRGO event
011: Timer 5 TRGO event
100: Timer 2 TRGO event
101: Timer 4 TRGO event
110: External line9
111: Software trigger

Note: only used if bit TEN1 = 1 (DAC channel1 trigger enabled)

Digital-to-analog converter (DAC) RM0008

194/682

11.5.2 DAC software trigger register (DAC_SWTRIGR)

Address offset: 0x04

Reset value: 0x0000 0000

Bit 2 TEN1: DAC channel1 trigger enable
This bit set and cleared by software to enable/disable DAC channel1 trigger
0: DAC channel1 trigger disabled and data written into DAC_DHRx register is transferred
one APB1 clock cycle later to the DAC_DOR1 register.
1: DAC channel1 trigger enabled and data transfer from DAC_DHRx register is transferred
three APB1 clock cycles later to the DAC_DOR1 register.

Note: When software trigger is selected, it takes only one APB1 clock cycle for DAC_DHRx to
DAC_DOR1 register transfer.

Bit 1 BOFF1: DAC channel1 output buffer disable

This bit set and cleared by software to enable/disable DAC channel1 output buffer.
0: DAC channel1 output buffer enabled
1: DAC channel1 output buffer disabled

Bit 0 EN1: DAC channel1 enable

This bit set and cleared by software to enable/disable DAC channel1.
0: DAC channel1 disabled
1: DAC channel1 enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

SWTRI
G2

SWTRI
G1

w w

Bits 31:2 Reserved.

Bit 1 SWTRIG2: DAC channel2 software trigger

This bit is set and cleared by software to enable/disable the software trigger.
0: Software trigger disabled
1: Software trigger enabled

Note: This bit is reset by hardware (one APB1 clock cycle later) once the DAC_DHR2 register
value is loaded to the DAC_DOR2 register.

Bit 0 SWTRIG1: DAC channel1 software trigger

This bit is set and cleared by software to enable/disable the software trigger.
0: Software trigger disabled
1: Software trigger enabled

Note: This bit is reset by hardware (one APB1 clock cycle later) once the DAC_DHR1 register
value is loaded to the DAC_DOR1 register.

RM0008 Digital-to-analog converter (DAC)

 195/682

11.5.3 DAC channel1 12-bit right-aligned data holding register
(DAC_DHR12R1)

Address offset: 0x08

Reset value: 0x0000 0000

11.5.4 DAC channel1 12-bit left aligned data holding register
(DAC_DHR12L1)

Address offset: 0x0C

Reset value: 0x0000 0000

11.5.5 DAC channel1 8-bit right aligned data holding register
(DAC_DHR8R1)

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC1DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved.

Bit 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data
These bits are written by software which specify 12-bit data for DAC channel1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC1DHR[11:0]
Reserved

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved.

Bit 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data

These bits are written by software which specify 12-bit data for DAC channel1.

Bits 3:0 Reserved.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC1DHR[7:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved.

Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data

These bits are written by software which specify 8-bit data for DAC channel1.

Digital-to-analog converter (DAC) RM0008

196/682

11.5.6 DAC channel2 12-bit right aligned data holding register
(DAC_DHR12R2)

Address offset: 0x14

Reset value: 0x0000 0000

11.5.7 DAC channel2 12-bit left aligned data holding register
(DAC_DHR12L2)

Address offset: 0x18

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC2DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved.

Bits 11:0 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data
These bits are written by software which specify 12-bit data for DAC channel2.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC2DHR[11:0]
Reserved

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved.

Bits 15:4 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data

These bits are written by software which specify 12-bit data for DAC channel2.

Bits 3:0 Reserved.

RM0008 Digital-to-analog converter (DAC)

 197/682

11.5.8 DAC channel2 8-bit right-aligned data holding register
(DAC_DHR8R2)

Address offset: 0x1C

Reset value: 0x0000 0000

11.5.9 Dual DAC 12-bit right-aligned data holding register
(DAC_DHR12RD)

Address offset: 0x20

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC2DHR[7:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved.

Bits 7:0 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data
These bits are written by software which specify 8-bit data for DAC channel2.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
DACC2DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC1DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:28 Reserved.

Bits 27:16 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data

These bits are written by software which specify 12-bit data for DAC channel2.

Bits 15:12 Reserved.

Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data

These bits are written by software which specify 12-bit data for DAC channel1.

Digital-to-analog converter (DAC) RM0008

198/682

11.5.10 DUAL DAC 12-bit left aligned data holding register
(DAC_DHR12LD)

Address offset: 0x24

Reset value: 0x0000 0000

11.5.11 DUAL DAC 8-bit right aligned data holding register
(DAC_DHR8RD)

Address offset: 0x28

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DACC2DHR[11:0]
Reserved

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC1DHR[11:0]
Reserved

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:20 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data

These bits are written by software which specify 12-bit data for DAC channel2.

Bits 19:16 Reserved.

Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data

These bits are written by software which specify 12-bit data for DAC channel1.

Bits 3:0 Reserved.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC2DHR[7:0] DACC1DHR[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved.

Bits 15:8 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data

These bits are written by software which specify 8-bit data for DAC channel2.

Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data

These bits are written by software which specify 8-bit data for DAC channel1.

RM0008 Digital-to-analog converter (DAC)

 199/682

11.5.12 DAC channel1 data output register (DAC_DOR1)

Address offset: 0x2C

Reset value: 0x0000 0000

11.5.13 DAC channel2 data output register (DAC_DOR2)

Address offset: 0x30

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC1DOR[11:0]

r r r r r r r r r r r r

Bits 31:12 Reserved.

Bit 11:0 DACC1DOR[11:0]: DAC channel1 data output

These bits are read only, they contain data output for DAC channel1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC2DOR[11:0]

r r r r r r r r r r r r

Bits 31:12 Reserved.

Bit 11:0 DACC2DOR[11:0]: DAC channel2 data output

These bits are read only, they contain data output for DAC channel2.

Digital-to-analog converter (DAC) RM0008

200/682

11.5.14 DAC register map

The following table summarizes the DAC registers.

Note: Refer to Table 1 on page 35 for the register boundary addresses.

Table 53. DAC register map
Ad-

dress
offset

Name 31 0

0x00 DAC_CR Reserved
D

M
A

E
N

2
MAMP2[3:0]

WAV
E2[2:
0]

TSEL2[2:
0] T

E
N

2

B
O

F
F

2

E
N

2

Reserved

D
M

A
E

N
1

MAMP1[3:0]
WAV
E1[2:
0]

TSEL1[2:
0] T

E
N

1

B
O

F
F

1

E
N

1

0x04 DAC_SWTRI
GR Reserved

S
W

T
R

IG
2

S
W

T
R

IG
1

0x08 DAC_DHR12
R1 Reserved DACC1DHR[11:0]

0x0C DAC_DHR12
L1 Reserved DACC1DHR[11:0] Reserved

0x10 DAC_DHR8R
1 Reserved DACC1DHR[7:0]

0x14 DAC_DHR12
R2 Reserved DACC2DHR[11:0]

0x18 DAC_DHR12
L2 Reserved DACC2DHR[11:0] Reserved

0x1C DAC_DHR8R
2 Reserved DACC2DHR[7:0]

0x20 DAC_DHR12
RD Reserved DACC2DHR[11:0] Reserved DACC1DHR[11:0]

0x24 DAC_DHR12
LD DACC2DHR[11:0] Reserved DACC1DHR[11:0] Reserved

0x28 DAC_DHR8R
D Reserved DACC2DHR[7:0] DACC1DHR[7:0]

0x2C DAC_DOR1 Reserved DACC1DOR[11:0]

0x30 DAC_DOR2 Reserved DACC2DOR[11:0]

RM0008 Advanced-control timers (TIM1&TIM8)

 201/682

12 Advanced-control timers (TIM1&TIM8)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

Low- and medium-density STM32F103xx devices contain one advanced-control timer
(TIM1) whereas high-density STM32F103xx devices feature two advance-control timers
(TIM1 and TIM8).

12.1 TIM1&TIM8 introduction
The advanced-control timers (TIM1&TIM8) consist of a 16-bit auto-reload counter driven by
a programmable prescaler.

It may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare, PWM,
complementary PWM with dead-time insertion).

Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the RCC clock controller prescalers.

The advanced-control (TIM1&TIM8) and general-purpose (TIMx) timers are completely
independent, and do not share any resources. They can be synchronized together as
described in Section 12.3.20.

12.2 TIM1&TIM8 main features
TIM1&TIM8 timer features include:

● 16-bit up, down, up/down auto-reload counter.

● 16-bit programmable prescaler allowing dividing (also “on the fly”) the counter clock
frequency either by any factor between 1 and 65535.

● Up to 4 independent channels for:

– Input Capture

– Output Compare

– PWM generation (Edge and Center-aligned Mode)

– One-pulse mode output

● Complementary outputs with programmable dead-time

● Synchronization circuit to control the timer with external signals and to interconnect
several timers together.

● Repetition counter to update the timer registers only after a given number of cycles of
the counter.

● Break input to put the timer’s output signals in reset state or in a known state.

Advanced-control timers (TIM1&TIM8) RM0008

202/682

● Interrupt/DMA generation on the following events:

– Update: counter overflow/underflow, counter initialization (by software or
internal/external trigger)

– Trigger event (counter start, stop, initialization or count by internal/external trigger)

– Input capture

– Output compare

– Break input

● Supports incremental (quadrature) encoder and hall-sensor cicuitry for positioning
purposes

● Trigger intput for external clock or cycle-by-cycle current management

RM0008 Advanced-control timers (TIM1&TIM8)

 203/682

Figure 46. Advanced-control timer block diagram

Prescaler

AutoReload Register

COUNTER

Capture/Compare 1 Register

Capture/Compare 2 Register

U

U

U

CC1I

CC2I

ETR

Trigger
Controller

+/-

Stop, Clear or Up/Down

TI1FP1
TI2FP2

ITR0
ITR1
ITR2 TRGI

Controller

Encoder
Interface

Capture/Compare 3 Register
U

CC3I

output
control

DTG

DTG registers

TRGO

OC1REF

OC2REF

OC3REF

REP Register

URepetition
counter

UI

Reset, Enable, Up/Down, Count

Capture/Compare 4 Register

U
CC4I

OC4REF

CK_PSC

TI4 Prescaler

Prescaler

IC4PS

IC3PS

IC1

IC2
Prescaler

PrescalerInput Filter &
Edge detector

IC2PS

IC1PSTI1FP1

output
control

DTG

output
control

DTG

output
control

Reg

event

Notes:
Preload registers transferred
to active registers on U event
according to control bit

interrupt & DMA output

Input FilterPolarity Selection & Edge
Detector & Prescaler

ETRP

TGI

TRC

TRC

IC3

IC4

ITR

ETRF

TRC

TI1F_ED

Input Filter &
Edge detector

Input Filter &
Edge detector

Input Filter &
Edge detector

CC1I

CC2I

CC3I

CC4I

TI1FP2

TI2FP1
TI2FP2

TI3FP3

TRC

TRC

TI3FP4

TI4FP3
TI4FP4

BI

TI3

TI1

TI2

XOR

TIMx_CH1

TIMx_CH2

TIMx_CH3

TIMx_CH4

BRK
TIMx_BKIN

OC1

OC2

OC3

TIMx_CH1

TIMx_CH2

TIMx_CH3

TIMx_CH3N
OC3N

TIMx_CH2N
OC2N

TIMx_CH1N
OC1N

OC4

TIMx_CH4

TIMx_ETR

to other timers

Mode
Slave

PSC CNT

Internal Clock (CK_INT)

CK_CNT

ETRF

Clock failure event from clock controller

Polarity Selection

CSS (Clock Security system

CK_TIM18 from RCC

to DAC/ADC

ITR3

Advanced-control timers (TIM1&TIM8) RM0008

204/682

12.3 TIM1&TIM8 functional description

12.3.1 Time-base unit

The main block of the programmable advanced-control timer is a 16-bit counter with its
related auto-reload register. The counter can count up, down or both up and down. The
counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

● Counter Register (TIMx_CNT)

● Prescaler Register (TIMx_PSC)

● Auto-Reload Register (TIMx_ARR)

● Repetition Counter Register (TIMx_RCR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into the
shadow register permanently or at each update event (UEV), depending on the auto-reload
preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter
reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the
TIMx_CR1 register. It can also be generated by software. The generation of the update
event is described in detailed for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller
description to get more details on counter enabling).

Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1
register.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as this control register is buffered. The new prescaler ratio is
taken into account at the next update event.

Figure 48 and Figure 49 give some examples of the counter behavior when the prescaler
ratio is changed on the fly:

RM0008 Advanced-control timers (TIM1&TIM8)

 205/682

Figure 47. Counter timing diagram with prescaler division change from 1 to 2

Figure 48. Counter timing diagram with prescaler division change from 1 to 4

12.3.2 Counter modes

Upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

If the repetition counter is used, the update event (UEV) is generated after upcounting is
repeated for the number of times programmed in the repetition counter register
(TIMx_RCR). Else the update event is generated at each counter overflow.

Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event.

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the

CK_PSC

00

CEN

 Timer clock = CK_CNT

Counter register

Update event (UEV)

0

F9 FA FB FCF7

Prescaler control register 0 1

Write a new value in TIMx_PSC

01 02 03

Prescaler buffer 0 1

Prescaler counter 0 1 0 1 0 1 0 1

F8

CK_PSC

00

CEN

 Timer clock = CK_CNT

Counter register

Update event (UEV)

0

F9 FA FB FCF7

Prescaler control register 0 3

Write a new value in TIMx_PSC

Prescaler buffer 0 3

Prescaler counter 0 1 2 3 0 1 2 3

F8 01

Advanced-control timers (TIM1&TIM8) RM0008

206/682

preload registers. Then no update event occurs until the UDIS bit has been written to 0.
However, the counter restarts from 0, as well as the counter of the prescaler (but the
prescale rate does not change). In addition, if the URS bit (update request selection) in
TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without
setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating
both update and capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

● The repetition counter is reloaded with the content of TIMx_RCR register,

● The auto-reload shadow register is updated with the preload value (TIMx_ARR),

● The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

Figure 49. Counter timing diagram, internal clock divided by 1

Figure 50. Counter timing diagram, internal clock divided by 2

CK_PSC

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 0732 33 34 35 3631

CK_PSC

0035 0000 0001 0002 0003

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0034 0036

Counter overflow

Update event (UEV)

RM0008 Advanced-control timers (TIM1&TIM8)

 207/682

Figure 51. Counter timing diagram, internal clock divided by 4

Figure 52. Counter timing diagram, internal clock divided by N

Figure 53. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not
preloaded)

CK_PSC

0000 0001

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0035 0036

Counter overflow

Update event (UEV)

 Timer clock = CK_CNT

Counter register 001F 20

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

CK_PSC

CK_PSC

00

CEN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 0732 33 34 35 3631

Auto-reload register FF 36

Write a new value in TIMx_ARR

Advanced-control timers (TIM1&TIM8) RM0008

208/682

Figure 54. Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded)

Downcounting mode

In downcounting mode, the counter counts from the auto-reload value (content of the
TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a
counter underflow event.

If the repetition counter is used, the update event (UEV) is generated after downcounting is
repeated for the number of times programmed in the repetition counter register
(TIMx_RCR). Else the update event is generated at each counter underflow.

Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event.

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until UDIS bit has been written to 0.
However, the counter restarts from the current auto-reload value, whereas the counter of the
prescaler restarts from 0 (but the prescale rate doesn’t change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

● The repetition counter is reloaded with the content of TIMx_RCR register

● The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register)

● The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that the auto-reload is updated before the counter is
reloaded, so that the next period is the expected one

CK_PSC

00

CEN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 07F1 F2 F3 F4 F5F0

Auto-reload preload register F5 36

Auto-reload shadow register F5 36

Write a new value in TIMx_ARR

RM0008 Advanced-control timers (TIM1&TIM8)

 209/682

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

Figure 55. Counter timing diagram, internal clock divided by 1

Figure 56. Counter timing diagram, internal clock divided by 2

Figure 57. Counter timing diagram, internal clock divided by 4

CK_PSC

36

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter underflow (cnt_udf)

Update event (UEV)

35 34 33 32 31 30 2F04 03 02 01 0005

CK_PSC

0001 0036 0035 0034 0033

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0002 0000

Counter underflow

Update event (UEV)

CK_PSC

0036 0035

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0001 0000

Counter underflow

Update event (UEV)

Advanced-control timers (TIM1&TIM8) RM0008

210/682

Figure 58. Counter timing diagram, internal clock divided by N

Figure 59. Counter timing diagram, update event when repetition counter is not
used

Center-aligned mode (up/down counting)

In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register) – 1, generates a counter overflow event, then counts from the auto-
reload value down to 1 and generates a counter underflow event. Then it restarts counting
from 0.

In this mode, the DIR direction bit in the TIMx_CR1 register cannot be written. It is updated
by hardware and gives the current direction of the counter.

The update event can be generated at each counter overflow and at each counter underflow
or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event. In this case, the counter restarts counting from
0, as well as the counter of the prescaler.

The UEV update event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until UDIS bit has been written to 0.
However, the counter continues counting up and down, based on the current auto-reload
value.

 Timer clock = CK_CNT

Counter register 3620 1F

Update interrupt flag (UIF)

Counter underflow

Update event (UEV)

CK_PSC

00

CK_PSC

36

CEN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter underflow

Update event (UEV)

35 34 33 32 31 30 2F04 03 02 01 0005

Auto-reload register FF 36

Write a new value in TIMx_ARR

RM0008 Advanced-control timers (TIM1&TIM8)

 211/682

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an UEV update event but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

● The repetition counter is reloaded with the content of TIMx_RCR register

● The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register)

● The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that if the update source is a counter overflow, the auto-
reload is updated before the counter is reloaded, so that the next period is the expected
one (the counter is loaded with the new value).

The following figures show some examples of the counter behavior for different clock
frequencies.

Figure 60. Counter timing diagram, internal clock divided by 1, TIMx_ARR = 0x6

1. Here, center-aligned mode 1 is used (for more details refer to Section 12.4: TIM1&TIM8 registers on page 242).

Figure 61. Counter timing diagram, internal clock divided by 2

CK_PSC

02

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter underflow

Update event (UEV)

03 04 05 06 05 04 0303 02 01 00 0104

Counter overflow

CK_PSC

0002 0000 0001 0002 0003

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0003 0001

Counter underflow

Update event (UEV)

Advanced-control timers (TIM1&TIM8) RM0008

212/682

Figure 62. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36

Figure 63. Counter timing diagram, internal clock divided by N

Figure 64. Counter timing diagram, update event with ARPE=1 (counter underflow)

 CK_PSC

0036 0035

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0034 0035

Counter overflow

Update event (UEV)

Note: Here, center-aligned mode 2 or 3 is used with an UIF on overflow

 Timer clock = CK_CNT

Counter register 0020 1F

Update interrupt flag (UIF)

Counter underflow

Update event (UEV)

 CK_PSC

01

 CK_PSC

00

CEN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter underflow

Update event (UEV)

01 02 03 04 05 06 0705 04 03 02 0106

Auto-reload preload register FD 36

Write a new value in TIMx_ARR

Auto-reload active register FD 36

RM0008 Advanced-control timers (TIM1&TIM8)

 213/682

Figure 65. Counter timing diagram, Update event with ARPE=1 (counter overflow)

12.3.3 Repetition counter

Section 12.3.1: Time-base unit describes how the update event (UEV) is generated with
respect to the counter overflows/underflows. It is actually generated only when the repetition
counter has reached zero. This can be useful when generating PWM signals.

This means that data are transferred from the preload registers to the shadow registers
(TIMx_ARR auto-reload register, TIMx_PSC prescaler register, but also TIMx_CCRx
capture/compare registers in compare mode) every N counter overflows or underflows,
where N is the value in the TIMx_RCR repetition counter register.

The repetition counter is decremented:

● At each counter overflow in upcounting mode,

● At each counter underflow in downcounting mode,

● At each counter overflow and at each counter underflow in center-aligned mode.
Although this limits the maximum number of repetition to 128 PWM cycles, it makes it
possible to update the duty cycle twice per PWM period. When refreshing compare
registers only once per PWM period in center-aligned mode, maximum resolution is
2xTck, due to the symmetry of the pattern.

The repetition counter is an auto-reload type; the repetition rate is maintained as defined by
the TIMx_RCR register value (refer to Figure 66). When the update event is generated by
software (by setting the UG bit in TIMx_EGR register) or by hardware through the slave
mode controller, it occurs immediately whatever the value of the repetition counter is and the
repetition counter is reloaded with the content of the TIMx_RCR register.

 CK_PSC

36

CEN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

35 34 33 32 31 30 2FF8 F9 FA FB FCF7

Auto-reload preload register FD 36

Write a new value in TIMx_ARR

Auto-reload active register FD 36

Advanced-control timers (TIM1&TIM8) RM0008

214/682

Figure 66. Update rate examples depending on mode and TIMx_RCR register
settings

Center-aligned mode Edge-aligned mode

UEV

UEV

UEV

UEV

UEV Update Event: Preload registers transferred to active registers and update interrupt generated

Counter

TIMx_RCR = 0

TIMx_RCR = 1

TIMx_RCR = 2

TIMx_RCR = 3

Update Event if the repetition counter underflow occurs when the counter is equal to
 to the auto-reload value.

UEV

TIMx_RCR = 3
and

re-synchronization

(by SW) (by SW)

TIMx_CNT

(by SW)

Upcounting Downcounting

RM0008 Advanced-control timers (TIM1&TIM8)

 215/682

12.3.4 Clock selection

The counter clock can be provided by the following clock sources:

● Internal clock (CK_INT)

● External clock mode1: external input pin

● External clock mode2: external trigger input ETR

● Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for
example, you can configure Timer 1 to act as a prescaler for Timer 2. Refer to Section :
Using one timer as prescaler for another timer on page 302 for more details.

Internal clock source (CK_INT)

If the slave mode controller is disabled (SMS=000), then the CEN, DIR (in the TIMx_CR1
register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed
only by software (except UG which remains cleared automatically). As soon as the CEN bit
is written to 1, the prescaler is clocked by the internal clock CK_INT.

Figure 67 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

Figure 67. Control circuit in normal mode, internal clock divided by 1

External clock source mode 1

This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count
at each rising or falling edge on a selected input.

Figure 68. TI2 external clock connection example

Internal clock

00

 Counter clock = CK_CNT = CK_PSC

Counter register 01 02 03 04 05 06 0732 33 34 35 3631

CEN=CNT_EN

UG

CNT_INIT

CK_INT

encoder
mode

external clock
mode 1

external clock
mode 2

internal clock
mode

ETRF

TRGI

TI1F
TI2F or

or
or

(internal clock)

CK_PSC

ECE
TIMx_SMCR

SMS[2:0]

ITRx

TI1_ED

TI1FP1

TI2FP2

ETRF

TIMx_SMCR
TS[2:0]

TI2
0

1

TIMx_CCER

CC2P

Filter

ICF[3:0]

TIMx_CCMR1

Edge
Detector

TI2F_Rising

TI2F_Falling 110

0xx

100

101

111

Advanced-control timers (TIM1&TIM8) RM0008

216/682

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’ in
the TIMx_CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=0000).

3. Select rising edge polarity by writing CC2P=0 in the TIMx_CCER register.

4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR
register.

5. Select TI2 as the trigger input source by writing TS=110 in the TIMx_SMCR register.

6. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

Note: The capture prescaler is not used for triggering, so you don’t need to configure it.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.

Figure 69. Control circuit in external clock mode 1

External clock source mode 2

This mode is selected by writing ECE=1 in the TIMx_SMCR register.

The counter can count at each rising or falling edge on the external trigger input ETR.

The Figure 70 gives an overview of the external trigger input block.

Figure 70. External trigger input block

 Counter clock = CK_CNT = CK_PSC

Counter register 35 3634

TI2

CNT_EN

TIF

Write TIF=0

ETR
0

1

TIMx_SMCR

ETP

divider
/1, /2, /4, /8

ETPS[1:0]

ETRP filter

ETF[3:0]

downcounterfDTS

TIMx_SMCRTIMx_SMCR

ETR pin

CK_INT

encoder
mode

external clock
mode 1

external clock
mode 2

internal clock
mode

ETRF

TRGI

TI1F
TI2F or

or
or

(internal clock)

CK_PSC

ECE
TIMx_SMCR

SMS[2:0]

RM0008 Advanced-control timers (TIM1&TIM8)

 217/682

For example, to configure the upcounter to count each 2 rising edges on ETR, use the
following procedure:

1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register.

2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register

3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR
register

4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register.

5. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

The counter counts once each 2 ETR rising edges.

The delay between the rising edge on ETR and the actual clock of the counter is due to the
resynchronization circuit on the ETRP signal.

Figure 71. Control circuit in external clock mode 2

12.3.5 Capture/compare channels

Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and
an output stage (with comparator and output control).

Figure 72 to Figure 75 give an overview of one Capture/Compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be
used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).

 Counter clock = CK_CNT = CK_PSC

Counter register 35 3634

ETR

CNT_EN

fCK_INT

ETRP

ETRF

Advanced-control timers (TIM1&TIM8) RM0008

218/682

Figure 72. Capture/compare channel (example: channel 1 input stage)

The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

Figure 73. Capture/compare channel 1 main circuit

TI1 0

1

TIMx_CCER

CC1P

divider
/1, /2, /4, /8

ICPS[1:0]

TI1F_ED

filter

ICF[3:0]

downcounter

TIMx_CCMR1

Edge
Detector

TI1F_Rising

TI1F_Falling

to the slave mode controller

TI1FP1

11

01

TIMx_CCMR1

CC1S[1:0]

IC1TI2FP1

TRC

(from channel 2)

(from slave mode
controller)

10

fDTS

TIMx_CCER

CC1E

IC1PS

TI1F

0

1

TI2F_rising

TI2F_falling
(from channel 2)

CC1E

Capture/compare shadow register

comparator

Capture/compare preload register

Counter

IC1PS

CC1S[0]

CC1S[1]

capture

input
mode

S

R

read CCR1H

read CCR1L

read_in_progress

capture_transfer
CC1S[0]

CC1S[1]

S

R

write CCR1H

write CCR1L

write_in_progress

output
mode

UEV

OC1PE

(from time

compare_transfer

APB Bus

8 8

hi
gh lo
w

(if
 1

6-
bi

t)

MCU-peripheral interface

TIM1_CCMR1

OC1PE

base unit)

CNT>CCR1

CNT=CCR1

TIM1_EGR

CC1G

RM0008 Advanced-control timers (TIM1&TIM8)

 219/682

Figure 74. Output stage of capture/compare channel (channel 1 to 3)

Figure 75. Output stage of capture/compare channel (channel 4)

The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register.

In capture mode, captures are actually done in the shadow register, which is copied into the
preload register.

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

12.3.6 Input capture mode

In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the
value of the counter after a transition detected by the corresponding ICx signal. When a
capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or
a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was
already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be
cleared by software by writing it to ‘0’ or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when you write it to ‘0’.

Output mode
CNT>CCR1

CNT=CCR1 controller

TIM1_CCMR1

OC1M[2:0]

OC1REF

OC1CE

Dead-time
generator

OC1_DT

OC1N_DT

DTG[7:0]

TIM1_BDTR

‘0’

‘0’

CC1E

TIM1_CCER

CC1NE

0

1

CC1P

TIM1_CCER

0

1

CC1NP

TIM1_CCER

Output
enable
circuit

OC1

Output
enable
circuit

OC1N

CC1E TIM1_CCERCC1NE

OSSI TIM1_BDTRMOE OSSR

0x

10

11

11

10

x0

ETR

Output mode
CNT > CCR4

CNT = CCR4 controller

TIM1_CCMR2

OC2M[2:0]

OC4 REF

0

1

CC4P

TIM1_CCER

Output
enable
circuit

OC4

CC4E TIM1_CCER

OSSI TIM1_BDTRMOE

To the master mode
controller

TIM1_CR2OIS4

ETR

Advanced-control timers (TIM1&TIM8) RM0008

220/682

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:

● Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00,
the channel is configured in input and the TIMx_CCR1 register becomes read-only.

● Program the input filter duration you need with respect to the signal you connect to the
timer (when the input is one of the TIx (ICxF bits in the TIMx_CCMRx register). Let’s
imagine that, when toggling, the input signal is not stable during at must 5 internal clock
cycles. We must program a filter duration longer than these 5 clock cycles. We can
validate a transition on TI1 when 8 consecutive samples with the new level have been
detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in the
TIMx_CCMR1 register.

● Select the edge of the active transition on the TI1 channel by writing CC1P bit to 0 in
the TIMx_CCER register (rising edge in this case).

● Program the input prescaler. In our example, we wish the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to ‘00’ in the
TIMx_CCMR1 register).

● Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register.

● If needed, enable the related interrupt request by setting the CC1IE bit in the
TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the
TIMx_DIER register.

When an input capture occurs:

● The TIMx_CCR1 register gets the value of the counter on the active transition.

● CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.

● An interrupt is generated depending on the CC1IE bit.

● A DMA request is generated depending on the CC1DE bit.

In order to handle the overcapture, it is recommended to read the data before the
overcapture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: IC interrupt and/or DMA requests can be generated by software by setting the
corresponding CCxG bit in the TIMx_EGR register.

12.3.7 PWM input mode

This mode is a particular case of input capture mode. The procedure is the same except:

● Two ICx signals are mapped on the same TIx input.

● These 2 ICx signals are active on edges with opposite polarity.

● One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.

RM0008 Advanced-control timers (TIM1&TIM8)

 221/682

For example, you can measure the period (in TIMx_CCR1 register) and the duty cycle (in
TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending
on CK_INT frequency and prescaler value):

● Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1
register (TI1 selected).

● Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P bit to ‘0’ (active on rising edge).

● Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1
register (TI1 selected).

● Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
bit to ‘1’ (active on falling edge).

● Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register
(TI1FP1 selected).

● Configure the slave mode controller in reset mode: write the SMS bits to 100 in the
TIMx_SMCR register.

● Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register.

Figure 76. PWM input mode timing

1. The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the fact that only
TI1FP1 and TI2FP2 are connected to the slave mode controller.

12.3.8 Forced output mode

In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx/OCxN) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.

To force an output compare signal (OCXREF/OCx) to its active level, you just need to write
101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is forced
high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit.

For example: CCxP=0 (OCx active high) => OCx is forced to high level.

The OCxREF signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx
register.

TI1

TIMx_CNT 0000 0001 0002 0003 0004 00000004

TIMx_CCR1

TIMx_CCR2

0004

0002

IC1 capture

IC2 capture

reset counter

IC2 capture
pulse width

IC1 capture
period
measurementmeasurement

ai15413

Advanced-control timers (TIM1&TIM8) RM0008

222/682

Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still
performed and allows the flag to be set. Interrupt and DMA requests can be sent
accordingly. This is described in the output compare mode section below.

12.3.9 Output compare mode

This function is used to control an output waveform or indicating when a period of time has
elapsed.

When a match is found between the capture/compare register and the counter, the output
compare function:

● Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set
active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.

● Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).

● Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).

● Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the
TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request
selection).

The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.

In output compare mode, the update event UEV has no effect on OCxREF and OCx output.
The timing resolution is one count of the counter. Output compare mode can also be used to
output a single pulse (in One Pulse mode).

Procedure:

1. Select the counter clock (internal, external, prescaler).

2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.

3. Set the CCxIE bit if an interrupt request is to be generated.

4. Select the output mode. For example:

– Write OCxM = 011 to toggle OCx output pin when CNT matches CCRx

– Write OCxPE = 0 to disable preload register

– Write CCxP = 0 to select active high polarity

– Write CCxE = 1 to enable the output

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=’0’, else TIMx_CCRx
shadow register is updated only at the next update event UEV). An example is given in
Figure 77.

RM0008 Advanced-control timers (TIM1&TIM8)

 223/682

Figure 77. Output compare mode, toggle on OC1.

12.3.10 PWM mode

Pulse Width Modulation mode allows you to generate a signal with a frequency determined
by the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing ‘110’ (PWM mode 1) or ‘111’ (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. You must enable the corresponding preload register by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in
upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, you have to initialize all the registers by setting the UG
bit in the TIMx_EGR register.

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It
can be programmed as active high or active low. OCx output is enabled by a combination of
the CCxE, CCxNE, MOE, OSSI and OSSR bits (TIMx_CCER and TIMx_BDTR registers).
Refer to the TIMx_CCER register description for more details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CCRx ≤TIMx_CNT or TIMx_CNT ≤TIMx_CCRx (depending on the direction
of the counter).

The timer is able to generate PWM in edge-aligned mode or center-aligned mode
depending on the CMS bits in the TIMx_CR1 register.

oc1ref=OC1

TIM1_CNT B200 B2010039

TIM1_CCR1 003A

Write B201h in the CC1R register

Match detected on CCR1
Interrupt generated if enabled

003B

B201

003A

Advanced-control timers (TIM1&TIM8) RM0008

224/682

PWM edge-aligned mode

● Upcounting configuration

Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to the
Upcounting mode on page 205.

In the following example, we consider PWM mode 1. The reference PWM signal
OCxREF is high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the
compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR)
then OCxREF is held at ‘1’. If the compare value is 0 then OCxRef is held at ‘0’.
Figure 78 shows some edge-aligned PWM waveforms in an example where
TIMx_ARR=8.

Figure 78. Edge-aligned PWM waveforms (ARR=8)

● Downcounting configuration

Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to the
Downcounting mode on page 208

In PWM mode 1, the reference signal OCxRef is low as long as
TIMx_CNT > TIMx_CCRx else it becomes high. If the compare value in TIMx_CCRx is
greater than the auto-reload value in TIMx_ARR, then OCxREF is held at ‘1’. 0% PWM
is not possible in this mode.

PWM center-aligned mode

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from
‘00’ (all the remaining configurations having the same effect on the OCxRef/OCx signals).
The compare flag is set when the counter counts up, when it counts down or both when it
counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the
TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to
the Center-aligned mode (up/down counting) on page 210.

Figure 79 shows some center-aligned PWM waveforms in an example where:

● TIMx_ARR=8,

● PWM mode is the PWM mode 1,

● The flag is set when the counter counts down corresponding to the center-aligned
mode 1 selected for CMS=01 in TIMx_CR1 register.

Counter register

‘1’

0 1 2 3 4 5 6 7 8 0 1

‘0’

OCXREF

CCxIF

OCXREF

CCxIF

OCXREF

CCxIF

OCXREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0

RM0008 Advanced-control timers (TIM1&TIM8)

 225/682

Figure 79. Center-aligned PWM waveforms (ARR=8)

Hints on using center-aligned mode:

● When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter counts up or down depending on the value written in the DIR bit
in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the
same time by the software.

● Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:

– The direction is not updated if you write a value in the counter that is greater than
the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter was
counting up, it continues to count up.

– The direction is updated if you write 0 or write the TIMx_ARR value in the counter
but no Update Event UEV is generated.

● The safest way to use center-aligned mode is to generate an update by software
(setting the UG bit in the TIMx_EGR register) just before starting the counter and not to
write the counter while it is running.

CCxIF

0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1Counter register

CCRx = 4
OCxREF

CMS=01
CMS=10
CMS=11

CCxIF

CCRx = 7
OCxREF

CMS=10 or 11

CCxIF

CCRx = 8
OCxREF

CMS=01
CMS=10
CMS=11

'1'

CCxIF

CCRx > 8
OCxREF

CMS=01
CMS=10
CMS=11

'1'

CCxIF

CCRx = 0
OCxREF

CMS=01
CMS=10
CMS=11

'0'

ai14681

Advanced-control timers (TIM1&TIM8) RM0008

226/682

12.3.11 Complementary outputs and dead-time insertion

The advanced-control timers (TIM1&TIM8) can output two complementary signals and
manage the switching-off and the switching-on instants of the outputs.

This time is generally known as dead-time and you have to adjust it depending on the
devices you have connected to the outputs and their characteristics (intrinsic delays of level-
shifters, delays due to power switches...)

You can select the polarity of the outputs (main output OCx or complementary OCxN)
independently for each output. This is done by writing to the CCxP and CCxNP bits in the
TIMx_CCER register.

The complementary signals OCx and OCxN are activated by a combination of several
control bits: the CCxE and CCxNE bits in the TIMx_CCER register and the MOE, OISx,
OISxN, OSSI and OSSR bits in the TIMx_BDTR and TIMx_CR2 registers. Refer to Table 56:
Output control bits for complementary OCx and OCxN channels with break feature on
page 258 for more details. In particular, the dead-time is activated when switching to the
IDLE state (MOE falling down to 0).

Dead-time insertion is enabled by setting both CCxE and CCxNE bits, and the MOE bit if the
break circuit is present. There is one 10-bit dead-time generator for each channel. From a
reference waveform OCxREF, it generates 2 outputs OCx and OCxN. If OCx and OCxN are
active high:

● The OCx output signal is the same as the reference signal except for the rising edge,
which is delayed relative to the reference rising edge.

● The OCxN output signal is the opposite of the reference signal except for the rising
edge, which is delayed relative to the reference falling edge.

If the delay is greater than the width of the active output (OCx or OCxN) then the
corresponding pulse is not generated.

The following figures show the relationships between the output signals of the dead-time
generator and the reference signal OCxREF. (we suppose CCxP=0, CCxNP=0, MOE=1,
CCxE=1 and CCxNE=1 in these examples)

Figure 80. Complementary output with dead-time insertion.

Figure 81. Dead-time waveforms with delay greater than the negative pulse.

delay

delay

OCxREF

OCx

OCxN

delay

OCxREF

OCx

OCxN

RM0008 Advanced-control timers (TIM1&TIM8)

 227/682

Figure 82. Dead-time waveforms with delay greater than the positive pulse.

The dead-time delay is the same for each of the channels and is programmable with the
DTG bits in the TIMx_BDTR register. Refer to Section 12.4.18: Break and dead-time
register (TIMx_BDTR) on page 262 for delay calculation.

Re-directing OCxREF to OCx or OCxN

In output mode (forced, output compare or PWM), OCxREF can be re-directed to the OCx
output or to OCxN output by configuring the CCxE and CCxNE bits in the TIMx_CCER
register.

This allows you to send a specific waveform (such as PWM or static active level) on one
output while the complementary remains at its inactive level. Other alternative possibilities
are to have both outputs at inactive level or both outputs active and complementary with
dead-time.

Note: When only OCxN is enabled (CCxE=0, CCxNE=1), it is not complemented and becomes
active as soon as OCxREF is high. For example, if CCxNP=0 then OCxN=OCxRef. On the
other hand, when both OCx and OCxN are enabled (CCxE=CCxNE=1) OCx becomes
active when OCxREF is high whereas OCxN is complemented and becomes active when
OCxREF is low.

12.3.12 Using the break function

When using the break function, the output enable signals and inactive levels are modified
according to additional control bits (MOE, OSSI and OSSR bits in the TIMx_BDTR register,
OISx and OISxN bits in the TIMx_CR2 register). In any case, the OCx and OCxN outputs
cannot be set both to active level at a given time. Refer to Table 56: Output control bits for
complementary OCx and OCxN channels with break feature on page 258 for more details.

The break source can be either the break input pin or a clock failure event, generated by the
Clock Security System (CSS), from the Reset Clock Controller. For further information on
the Clock Security System, refer to Section 6.2.7: Clock security system (CSS) on page 72.

When exiting from reset, the break circuit is disabled and the MOE bit is low. You can enable
the break function by setting the BKE bit in the TIMx_BDTR register. The break input
polarity can be selected by configuring the BKP bit in the same register. BKE and BKP can
be modified at the same time.

Because MOE falling edge can be asynchronous, a resynchronization circuit has been
inserted between the actual signal (acting on the outputs) and the synchronous control bit
(accessed in the TIMx_BDTR register). It results in some delays between the asynchronous
and the synchronous signals. In particular, if you write MOE to 1 whereas it was low, you
must insert a delay (dummy instruction) before reading it correctly. This is because you write
the asynchronous signal and read the synchronous signal.

delay

OCxREF

OCx

OCxN

Advanced-control timers (TIM1&TIM8) RM0008

228/682

When a break occurs (selected level on the break input):

● The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle state
or in reset state (selected by the OSSI bit). This feature functions even if the MCU
oscillator is off.

● Each output channel is driven with the level programmed in the OISx bit in the
TIMx_CR2 register as soon as MOE=0. If OSSI=0 then the timer releases the enable
output else the enable output remains high.

● When complementary outputs are used:

– The outputs are first put in reset state inactive state (depending on the polarity).
This is done asynchronously so that it works even if no clock is provided to the
timer.

– If the timer clock is still present, then the dead-time generator is reactivated in
order to drive the outputs with the level programmed in the OISx and OISxN bits
after a dead-time. Even in this case, OCx and OCxN cannot be driven to their
active level together. Note that because of the resynchronization on MOE, the
dead-time duration is a bit longer than usual (around 2 ck_tim clock cycles).

– If OSSI=0 then the timer releases the enable outputs else the enable outputs
remain or become high as soon as one of the CCxE or CCxNE bits is high.

● The break status flag (BIF bit in the TIMx_SR register) is set. An interrupt can be
generated if the BIE bit in the TIMx_DIER register is set. A DMA request can be sent if
the BDE bit in the TIMx_DIER register is set.

● If the AOE bit in the TIMx_BDTR register is set, the MOE bit is automatically set again
at the next update event UEV. This can be used to perform a regulation, for instance.
Else, MOE remains low until you write it to ‘1’ again. In this case, it can be used for
security and you can connect the break input to an alarm from power drivers, thermal
sensors or any security components.

Note: The break inputs is acting on level. Thus, the MOE cannot be set while the break input is
active (neither automatically nor by software). In the meantime, the status flag BIF cannot be
cleared.

The break can be generated by the BRK input which has a programmable polarity and an
enable bit BKE in the TIMx_BDTR Register.

In addition to the break input and the output management, a write protection has been
implemented inside the break circuit to safeguard the application. It allows you to freeze the
configuration of several parameters (dead-time duration, OCx/OCxN polarities and state
when disabled, OCxM configurations, break enable and polarity). You can choose from 3
levels of protection selected by the LOCK bits in the TIMx_BDTR register. Refer to
Section 12.4.18: Break and dead-time register (TIMx_BDTR) on page 262. The LOCK bits
can be written only once after an MCU reset.

The Figure 83 shows an example of behavior of the outputs in response to a break.

RM0008 Advanced-control timers (TIM1&TIM8)

 229/682

Figure 83. Output behavior in response to a break.

delay

OCxREF

BREAK (MOE

OCx
(OCxN not implemented, CCxP=0, OISx=1)

OCx
(OCxN not implemented, CCxP=0, OISx=0)

OCx
(OCxN not implemented, CCxP=1, OISx=1)

OCx
(OCxN not implemented, CCxP=1, OISx=0)

OCx

OCxN
(CCxE=1, CCxP=0, OISx=0, CCxNE=1, CCxNP=0, OISxN=1)

delaydelay

delay

OCx

OCxN
(CCxE=1, CCxP=0, OISx=1, CCxNE=1, CCxNP=1, OISxN=1)

delaydelay

delay

OCx

OCxN
(CCxE=1, CCxP=0, OISx=0, CCxNE=0, CCxNP=0, OISxN=1)

)

delay

OCx

OCxN
(CCxE=1, CCxP=0, OISx=1, CCxNE=0, CCxNP=0, OISxN=0)

OCx

OCxN
(CCxE=1, CCxP=0, CCxNE=0, CCxNP=0, OISx=OISxN=0 or OISx=OISxN=1)

Advanced-control timers (TIM1&TIM8) RM0008

230/682

12.3.13 Clearing the OCxREF signal on an external event

The OCxREF signal for a given channel can be driven Low by applying a High level to the
ETRF input (OCxCE enable bit of the corresponding TIMx_CCMRx register set to ‘1’). The
OCxREF signal remains Low until the next update event, UEV, occurs.

This function can only be used in output compare and PWM modes, and does not work in
forced mode.

For example, the OCxREF signal) can be connected to the output of a comparator to be
used for current handling. In this case, the ETR must be configured as follow:

1. The External Trigger Prescaler should be kept off: bits ETPS[1:0] of the TIMx_SMCR
register set to ‘00’.

2. The external clock mode 2 must be disabled: bit ECE of the TIMx_SMCR register set to
‘0’.

3. The External Trigger Polarity (ETP) and the External Trigger Filter (ETF) can be
configured according to the user needs.

Figure 84 shows the behavior of the OCxREF signal when the ETRF Input becomes High,
for both values of the enable bit OCxCE. In this example, the timer TIMx is programmed in
PWM mode.

Figure 84. Clearing TIMx OCxREF

OCxREF

counter (CNT)

OCxREF

ETRF

(OCxCE=’0’)

(OCxCE=’1’)

OCREF_CLR
becomes high

OCREF_CLR
still high

(CCRx)

RM0008 Advanced-control timers (TIM1&TIM8)

 231/682

12.3.14 6-step PWM generation

When complementary outputs are used on a channel, preload bits are available on the
OCxM, CCxE and CCxNE bits. The preload bits are transferred to the shadow bits at the
COM commutation event. Thus you can program in advance the configuration for the next
step and change the configuration of all the channels at the same time. COM can be
generated by software by setting the COM bit in the TIMx_EGR register or by hardware (on
TRGI rising edge).

A flag is set when the COM event occurs (COMIF bit in the TIMx_SR register), which can
generate an interrupt (if the COMIE bit is set in the TIMx_DIER register) or a DMA request
(if the COMDE bit is set in the TIMx_DIER register).

The Figure 85 describes the behavior of the OCx and OCxN outputs when a COM event
occurs, in 3 different examples of programmed configurations.

Figure 85. 6-step generation, COM example (OSSR=1)

(CCRx)

OCx

OCxN

Write COM to 1

counter (CNT)

OCxREF

COM event

CCxE=1
CCxNE=0
OCxM=100

OCx

OCxN

CCxE=0
CCxNE=1
OCxM=101

OCx

OCxN

CCxE=1
CCxNE=0
OCxM=100

Example 1

Example 2

Example 3

write OCxM to 100CCxE=1
CCxNE=0
OCxM=100 (forced inactive)

CCxE=1
CCxNE=0
OCxM=100 (forced inactive)

Write CCxNE to 1
and OCxM to 101

write CCxNE to 0
and OCxM to 100

CCxE=1
CCxNE=0
OCxM=100 (forced inactive)

ai14910

Advanced-control timers (TIM1&TIM8) RM0008

232/682

12.3.15 One-pulse mode

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output compare mode or PWM mode. You select One-pulse mode
by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically
at the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be:

● In upcounting: CNT < CCRx ≤ ARR (in particular, 0 < CCRx)

● In downcounting: CNT > CCRx

Figure 86. Example of one pulse mode.

For example you may want to generate a positive pulse on OC1 with a length of tPULSE and
after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

Let’s use TI2FP2 as trigger 1:

● Map TI2FP2 to TI2 by writing CC2S=’01’ in the TIMx_CCMR1 register.

● TI2FP2 must detect a rising edge, write CC2P=’0’ in the TIMx_CCER register.

● Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’ in
the TIMx_SMCR register.

● TI2FP2 is used to start the counter by writing SMS to ‘110’ in the TIMx_SMCR register
(trigger mode).

TI2

OC1REF

C
ou

nt
er

t
0

TIM1_ARR

TIM1_CCR1

OC1

tDELAY
tPULSE

RM0008 Advanced-control timers (TIM1&TIM8)

 233/682

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).

● The tDELAY is defined by the value written in the TIMx_CCR1 register.

● The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR1).

● Let’s say you want to build a waveform with a transition from ‘0’ to ‘1’ when a compare
match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the auto-reload
value. To do this you enable PWM mode 2 by writing OC1M=111 in the TIMx_CCMR1
register. You can optionally enable the preload registers by writing OC1PE=’1’ in the
TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case you have to
write the compare value in the TIMx_CCR1 register, the auto-reload value in the
TIMx_ARR register, generate an update by setting the UG bit and wait for external
trigger event on TI2. CC1P is written to ‘0’ in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.

You only want 1 pulse, so you write ‘1’ in the OPM bit in the TIMx_CR1 register to stop the
counter at the next update event (when the counter rolls over from the auto-reload value
back to 0).

Particular case: OCx fast enable:

In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

If you want to output a waveform with the minimum delay, you can set the OCxFE bit in the
TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus,
without taking in account the comparison. Its new level is the same as if a compare match
had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.

12.3.16 Encoder interface mode

To select Encoder Interface mode write SMS=‘001’ in the TIMx_SMCR register if the
counter is counting on TI2 edges only, SMS=’010’ if it is counting on TI1 edges only and
SMS=’011’ if it is counting on both TI1 and TI2 edges.

Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER
register. When needed, you can program the input filter as well.

The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to
Table 54. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2
after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted,
TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in
TIMx_CR1 register written to ‘1’). The sequence of transitions of the two inputs is evaluated
and generates count pulses as well as the direction signal. Depending on the sequence the
counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware
accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever
the counter is counting on TI1 only, TI2 only or both TI1 and TI2.

Encoder interface mode acts simply as an external clock with direction selection. This
means that the counter just counts continuously between 0 and the auto-reload value in the
TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So you must
configure TIMx_ARR before starting. in the same way, the capture, compare, prescaler,

Advanced-control timers (TIM1&TIM8) RM0008

234/682

repetition counter, trigger output features continue to work as normal. Encoder mode and
External clock mode 2 are not compatible and must not be selected together.

In this mode, the counter is modified automatically following the speed and the direction of
the incremental encoder and its content, therefore, always represents the encoder’s
position. The count direction correspond to the rotation direction of the connected sensor.
The table summarizes the possible combinations, assuming TI1 and TI2 don’t switch at the
same time.

An external incremental encoder can be connected directly to the MCU without external
interface logic. However, comparators are normally be used to convert the encoder’s
differential outputs to digital signals. This greatly increases noise immunity. The third
encoder output which indicate the mechanical zero position, may be connected to an
external interrupt input and trigger a counter reset.

The Figure 87 gives an example of counter operation, showing count signal generation and
direction control. It also shows how input jitter is compensated where both edges are
selected. This might occur if the sensor is positioned near to one of the switching points. For
this example we assume that the configuration is the following:

● CC1S=’01’ (TIMx_CCMR1 register, TI1FP1 mapped on TI1).

● CC2S=’01’ (TIMx_CCMR2 register, TI1FP2 mapped on TI2).

● CC1P=’0’ (TIMx_CCER register, TI1FP1 non-inverted, TI1FP1=TI1).

● CC2P=’0’ (TIMx_CCER register, TI1FP2 non-inverted, TI1FP2= TI2).

● SMS=’011’ (TIMx_SMCR register, both inputs are active on both rising and falling
edges).

● CEN=’1’ (TIMx_CR1 register, Counter enabled).

Table 54. Counting direction versus encoder signals

Active edge

Level on
opposite

signal (TI1FP1
for TI2, TI2FP2

for TI1)

TI1FP1 signal TI2FP2 signal

Rising Falling Rising Falling

Counting on
TI1 only

High Down Up No Count No Count

Low Up Down No Count No Count

Counting on
TI2 only

High No Count No Count Up Down

Low No Count No Count Down Up

Counting on
TI1 and TI2

High Down Up Up Down

Low Up Down Down Up

RM0008 Advanced-control timers (TIM1&TIM8)

 235/682

Figure 87. Example of counter operation in encoder interface mode.

Figure 88 gives an example of counter behavior when TI1FP1 polarity is inverted (same
configuration as above except CC1P=’1’).

Figure 88. Example of encoder interface mode with TI1FP1 polarity inverted.

The timer, when configured in Encoder Interface mode provides information on the sensor’s
current position. You can obtain dynamic information (speed, acceleration, deceleration) by
measuring the period between two encoder events using a second timer configured in
capture mode. The output of the encoder which indicates the mechanical zero can be used
for this purpose. Depending on the time between two events, the counter can also be read
at regular times. You can do this by latching the counter value into a third input capture
register if available (then the capture signal must be periodic and can be generated by
another timer). when available, it is also possible to read its value through a DMA request
generated by a real-time clock.

TI1

forward forwardbackwardjitter jitter

up down up

TI2

Counter

TI1

forward forwardbackwardjitter jitter

updown

TI2

Counter

down

Advanced-control timers (TIM1&TIM8) RM0008

236/682

12.3.17 Timer input XOR function

The TI1S bit in the TIMx_CR2 register, allows the input filter of channel 1 to be connected to
the output of a XOR gate, combining the three input pins TIMx_CH1, TIMx_CH2 and
TIMx_CH3.

The XOR output can be used with all the timer input functions such as trigger or input
capture. An example of this feature used to interface Hall sensors is given in Section 12.3.18
below.

12.3.18 Interfacing with Hall sensors

This is done using the advanced-control timers (TIM1 or TIM8) to generate PWM signals to
drive the motor and another timer TIMx (TIM2, TIM3, TIM4 or TIM5) referred to as
“interfacing timer” in Figure 89. The “interfacing timer” captures the 3 timer input pins (CC1,
CC2, CC3) connected through a XOR to the TI1 input channel (selected by setting the TI1S
bit in the TIMx_CR2 register).

The slave mode controller is configured in reset mode; the slave input is TI1F_ED. Thus,
each time one of the 3 inputs toggles, the counter restarts counting from 0. This creates a
time base triggered by any change on the Hall inputs.

On the “interfacing timer”, capture/compare channel 1 is configured in capture mode,
capture signal is TRC (See Figure 72: Capture/compare channel (example: channel 1 input
stage) on page 218). The captured value, which corresponds to the time elapsed between 2
changes on the inputs, gives information about motor speed.

The “interfacing timer” can be used in output mode to generate a pulse which changes the
configuration of the channels of the advanced-control timer (TIM1 or TIM8) (by triggering a
COM event). The TIM1 timer is used to generate PWM signals to drive the motor. To do this,
the interfacing timer channel must be programmed so that a positive pulse is generated after
a programmed delay (in output compare or PWM mode). This pulse is sent to the advanced-
control timer (TIM1 or TIM8) through the TRGO output.

Example: you want to change the PWM configuration of your advanced-control timer TIM1
after a programmed delay each time a change occurs on the Hall inputs connected to one of
the TIMx timers.

● Configure 3 timer inputs ORed to the TI1 input channel by writing the TI1S bit in the
TIMx_CR2 register to ‘1’,

● Program the time base: write the TIMx_ARR to the max value (the counter must be
cleared by the TI1 change. Set the prescaler to get a maximum counter period longer
than the time between 2 changes on the sensors,

● Program the channel 1 in capture mode (TRC selected): write the CC1S bits in the
TIMx_CCMR1 register to ‘01’. You can also program the digital filter if needed,

● Program the channel 2 in PWM 2 mode with the desired delay: write the OC2M bits to
‘111’ and the CC2S bits to ‘00’ in the TIMx_CCMR1 register,

● Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2
register to ‘101’,

In the advanced-control timer TIM1, the right ITR input must be selected as trigger input, the
timer is programmed to generate PWM signals, the capture/compare control signals are
preloaded (CCPC=1 in the TIMx_CR2 register) and the COM event is controlled by the
trigger input (CCUS=1 in the TIMx_CR2 register). The PWM control bits (CCxE, OCxM) are

RM0008 Advanced-control timers (TIM1&TIM8)

 237/682

written after a COM event for the next step (this can be done in an interrupt subroutine
generated by the rising edge of OC2REF).

The Figure 89 describes this example.

Figure 89. Example of hall sensor interface

counter (CNT)

TRGO=OC2REF

(CCR2)

OC1

OC1N

COM

Write CCxE, CCxNE

TIH1

TIH2

TIH3

CCR1

OC2

OC2N

OC3

OC3N

C7A3 C7A8 C794 C7A5 C7AB C796

and OCxM for next step

In
te

rfa
ci

ng
 T

im
er

ad
va

nc
ed

-c
on

tr
ol

 ti
m

er
s

(T
IM

1&
T

IM
8)

Advanced-control timers (TIM1&TIM8) RM0008

238/682

12.3.19 TIMx and external trigger synchronization

The TIMx timer can be synchronized with an external trigger in several modes: Reset mode,
Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

● Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits
select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write
CC1P=0 in TIMx_CCER register to validate the polarity (and detect rising edges only).

● Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

● Start the counter by writing CEN=1 in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA
request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register).

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 90. Control circuit in reset mode

00

 Counter clock = ck_cnt = ck_psc

Counter register 01 02 03 00 01 02 0332 33 34 35 36

UG

TI1

3130

TIF

RM0008 Advanced-control timers (TIM1&TIM8)

 239/682

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

● Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits
select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write
CC1P=1 in TIMx_CCER register to validate the polarity (and detect low level only).

● Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

● Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the
counter doesn’t start if CEN=0, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts
or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.

Figure 91. Control circuit in gated mode

 Counter clock = ck_cnt = ck_psc

Counter register 35 36 37 3832 33 34

TI1

3130

cnt_en

TIF

Write TIF=0

Advanced-control timers (TIM1&TIM8) RM0008

240/682

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

● Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC2F=0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC2S bits are
configured to select the input capture source only, CC2S=01 in TIMx_CCMR1 register.
Write CC2P=1 in TIMx_CCER register to validate the polarity (and detect low level
only).

● Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI2 as the input source by writing TS=110 in TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the
resynchronization circuit on TI2 input.

Figure 92. Control circuit in trigger mode

Slave mode: external clock mode 2 + trigger mode

The external clock mode 2 can be used in addition to another slave mode (except external
clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock
input, and another input can be selected as trigger input (in reset mode, gated mode or
trigger mode). It is recommended not to select ETR as TRGI through the TS bits of
TIMx_SMCR register.

In the following example, the upcounter is incremented at each rising edge of the ETR signal
as soon as a rising edge of TI1 occurs:

1. Configure the external trigger input circuit by programming the TIMx_SMCR register as
follows:

– ETF = 0000: no filter

– ETPS=00: prescaler disabled

– ETP=0: detection of rising edges on ETR and ECE=1 to enable the external clock
mode 2.

 Counter clock = ck_cnt = ck_psc

Counter register 35 36 37 3834

TI2

cnt_en

TIF

RM0008 Advanced-control timers (TIM1&TIM8)

 241/682

2. Configure the channel 1 as follows, to detect rising edges on TI:

– IC1F=0000: no filter.

– The capture prescaler is not used for triggering and does not need to be
configured.

– CC1S=01in TIMx_CCMR1 register to select only the input capture source

– CC1P=0 in TIMx_CCER register to validate the polarity (and detect rising edge
only).

3. Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on
ETR rising edges.

The delay between the rising edge of the ETR signal and the actual reset of the counter is
due to the resynchronization circuit on ETRP input.

Figure 93. Control circuit in external clock mode 2 + trigger mode

12.3.20 Timer synchronization

The TIM timers are linked together internally for timer synchronization or chaining. Refer to
Section 13.3.15: Timer synchronization on page 298 for details.

12.3.21 Debug mode

When the microcontroller enters debug mode (Cortex-M3 core halted), the TIMx counter
either continues to work normally or stops, depending on DBG_TIMx_STOP configuration
bit in DBG module. For more details, refer to Section 26.15.2: Debug support for timers,
watchdog, bxCAN and I2C.

 Counter clock = CK_CNT = CK_PSC

Counter register 35 3634

ETR

CEN/CNT_EN

TIF

TI1

Advanced-control timers (TIM1&TIM8) RM0008

242/682

12.4 TIM1&TIM8 registers
Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

12.4.1 Control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CKD[1:0] ARPE CMS[1:0] DIR OPM URS UDIS CEN

rw rw rw rw rw rw rw rw rw rw

Bits 15:10 Reserved, always read as 0

Bits 9:8 CKD[1:0]: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and the
dead-time and sampling clock (tDTS)used by the dead-time generators and the digital filters
(ETR, TIx),

00: tDTS=tCK_INT

01: tDTS=2*tCK_INT

10: tDTS=4*tCK_INT

11: Reserved, do not program this value.

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered.
1: TIMx_ARR register is buffered.

Bits 6:5 CMS[1:0]: Center-aligned mode selection

00: Edge-aligned mode. The counter counts up or down depending on the direction bit
(DIR).
01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting down.
10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting up.
11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
both when the counter is counting up or down.

Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as
the counter is enabled (CEN=1)

Bit 4 DIR: Direction

0: Counter used as upcounter.
1: Counter used as downcounter.

Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder
mode.

Bit 3 OPM: One pulse mode

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the bit CEN).

RM0008 Advanced-control timers (TIM1&TIM8)

 243/682

12.4.2 Control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.

0: Any of the following events generate an update interrupt or DMA request if enabled.
These events can be:
– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller

1: Only counter overflow/underflow generates an update interrupt or DMA request if
enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.

0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow

– Setting the UG bit
– Update generation through the slave mode controller

Buffered registers are then loaded with their preload values.

1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is
set or if a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

Note: External clock, gated mode and encoder mode can work only if the CEN bit has been
previously set by software. However trigger mode can set the CEN bit automatically by
hardware.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
OIS4 OIS3N OIS3 OIS2N OIS2 OIS1N OIS1 TI1S MMS[2:0] CCDS CCUS

Res.
CCPC

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, always read as 0

Bit 14 OIS4: Output Idle state 4 (OC4 output)

refer to OIS1 bit

Bit 13 OIS3N: Output Idle state 3 (OC3N output)

refer to OIS1N bit

Bit 12 OIS3: Output Idle state 3 (OC3 output)

refer to OIS1 bit

Bit 11 OIS2N: Output Idle state 2 (OC2N output)

refer to OIS1N bit

Bit 10 OIS2: Output Idle state 2 (OC2 output)

refer to OIS1 bit

Advanced-control timers (TIM1&TIM8) RM0008

244/682

Bit 9 OIS1N: Output Idle state 1 (OC1N output)

0: OC1N=0 after a dead-time when MOE=0
1: OC1N=1 after a dead-time when MOE=0

Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BKR register).

Bit 8 OIS1: Output Idle state 1 (OC1 output)

0: OC1=0 (after a dead-time if OC1N is implemented) when MOE=0
1: OC1=1 (after a dead-time if OC1N is implemented) when MOE=0

Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BKR register).

Bit 7 TI1S: TI1 selection

0: The TIMx_CH1 pin is connected to TI1 input.
1: The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination)

Bits 6:4 MMS[1:0]: Master mode selection

These bits allow to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter Enable signal CNT_EN is used as trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer is
enable. The Counter Enable signal is generated by a logic OR between CEN control bit and
the trigger input when configured in gated mode. When the Counter Enable signal is
controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is
selected (see the MSM bit description in TIMx_SMCR register).
010: Update - The update event is selected as trigger output (TRGO). For instance a master
timer can then be used as a prescaler for a slave timer.
011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to be
set (even if it was already high), as soon as a capture or a compare match occurred.
(TRGO).
100: Compare - OC1REF signal is used as trigger output (TRGO).
101: Compare - OC2REF signal is used as trigger output (TRGO).
110: Compare - OC3REF signal is used as trigger output (TRGO).
111: Compare - OC4REF signal is used as trigger output (TRGO).

Bit 3 CCDS: Capture/compare DMA selection

0: CCx DMA request sent when CCx event occurs
1: CCx DMA requests sent when update event occurs

Bit 2 CCUS: Capture/compare control update selection

0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COM bit only.
1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COM bit or when an rising edge occurs on TRGI.

Note: This bit acts only on channels that have a complementary output.

Bit 1 Reserved, always read as 0

Bit 0 CCPC: Capture/compare preloaded control

0: CCxE, CCxNE and OCxM bits are not preloaded
1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated
only when COM bit is set.

Note: This bit acts only on channels that have a complementary output.

RM0008 Advanced-control timers (TIM1&TIM8)

 245/682

12.4.3 Slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ETP ECE ETPS[1:0] ETF[3:0] MSM TS[2:0] Res. SMS[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw Res. rw rw rw

Bit 15 ETP: External trigger polarity

This bit selects whether ETR or ETR is used for trigger operations
0: ETR is non-inverted, active at high level or rising edge.
1: ETR is inverted, active at low level or falling edge.

Bit 14 ECE: External clock enable

This bit enables External clock mode 2.
0: External clock mode 2 disabled.
1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF
signal.

Note: 1: Setting the ECE bit has the same effect as selecting external clock mode 1 with
TRGI connected to ETRF (SMS=111 and TS=111).
2: It is possible to simultaneously use external clock mode 2 with the following slave
modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be
connected to ETRF in this case (TS bits must not be 111).
3: If external clock mode 1 and external clock mode 2 are enabled at the same time,
the external clock input is ETRF.

Bits 13:12 ETPS[1:0]: External trigger prescaler

External trigger signal ETRP frequency must be at most 1/4 of TIMxCLK frequency. A
prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external
clocks.

00: Prescaler OFF.
01: ETRP frequency divided by 2.
10: ETRP frequency divided by 4.
11: ETRP frequency divided by 8.

Advanced-control timers (TIM1&TIM8) RM0008

246/682

Bits 11:8 ETF[3:0]: External trigger filter

This bit-field then defines the frequency used to sample ETRP signal and the length of the
digital filter applied to ETRP. The digital filter is made of an event counter in which N events
are needed to validate a transition on the output:

0000: No filter, sampling is done at fDTS.
0001: fSAMPLING=fCK_INT, N=2.
0010: fSAMPLING=fCK_INT, N=4.
0011: fSAMPLING=fCK_INT, N=8.
0100: fSAMPLING=fDTS/2, N=6.
0101: fSAMPLING=fDTS/2, N=8.
0110: fSAMPLING=fDTS/4, N=6.
0111: fSAMPLING=fDTS/4, N=8.
1000: fSAMPLING=fDTS/8, N=6.
1001: fSAMPLING=fDTS/8, N=8.
1010: fSAMPLING=fDTS/16, N=5.
1011: fSAMPLING=fDTS/16, N=6.
1100: fSAMPLING=fDTS/16, N=8.
1101: fSAMPLING=fDTS/32, N=5.
1110: fSAMPLING=fDTS/32, N=6.
1111: fSAMPLING=fDTS/32, N=8.

Bit 7 MSM: Master/slave mode

0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect
synchronization between the current timer and its slaves (through TRGO). It is useful if we
want to synchronize several timers on a single external event.

Bits 6:4 TS[2:0]: Trigger selection

This bit-field selects the trigger input to be used to synchronize the counter.
000: Internal Trigger 0 (ITR0)
001: Internal Trigger 1 (ITR1)
010: Internal Trigger 2 (ITR2)
011: Internal Trigger 3 (ITR3)
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2 (TI2FP2)
111: External Trigger input (ETRF)

See Table 55: TIMx Internal trigger connection on page 247 for more details on ITRx meaning
for each Timer.

Note: These bits must be changed only when they are not used (e.g. when SMS=000) to
avoid wrong edge detections at the transition.

Bit 3 Reserved, always read as 0.

RM0008 Advanced-control timers (TIM1&TIM8)

 247/682

12.4.4 DMA/Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

Bits 2:0 SMS: Slave mode selection

When external signals are selected the active edge of the trigger signal (TRGI) is linked to
the polarity selected on the external input (see Input Control register and Control Register
description.
000: Slave mode disabled - if CEN = ‘1’ then the prescaler is clocked directly by the internal
clock.
001: Encoder mode 1 - Counter counts up/down on TI2FP2 edge depending on TI1FP1
level.
010: Encoder mode 2 - Counter counts up/down on TI1FP1 edge depending on TI2FP2
level.
011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges
depending on the level of the other input.
100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter
and generates an update of the registers.
101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of
the counter are controlled.
110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not
reset). Only the start of the counter is controlled.
111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

Note: The gated mode must not be used if TI1F_ED is selected as the trigger input
(TS=’100’). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the
gated mode checks the level of the trigger signal.

Table 55. TIMx Internal trigger connection

Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) ITR2 (TS = 010) ITR3 (TS = 011)

TIM1 TIM5 TIM2 TIM3 TIM4

TIM8 TIM1 TIM2 TIM4 TIM5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. TDE COMD
E

CC4D
E

CC3D
E

CC2D
E

CC1D
E UDE BIE TIE COMI

E CC4IE CC3IE CC2IE CC1IE UIE

Res. rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, always read as 0.

Bit 14 TDE: Trigger DMA request enable

0: Trigger DMA request disabled.
1: Trigger DMA request enabled.

Bit 13 COMDE: COM DMA request enable

0: COM DMA request disabled.
1: COM DMA request enabled.

Bit 12 CC4DE: Capture/Compare 4 DMA request enable

0: CC4 DMA request disabled.
1: CC4 DMA request enabled.

Advanced-control timers (TIM1&TIM8) RM0008

248/682

Bit 11 CC3DE: Capture/Compare 3 DMA request enable

0: CC3 DMA request disabled.
1: CC3 DMA request enabled.

Bit 10 CC2DE: Capture/Compare 2 DMA request enable

0: CC2 DMA request disabled.
1: CC2 DMA request enabled.

Bit 9 CC1DE: Capture/Compare 1 DMA request enable

0: CC1 DMA request disabled.
1: CC1 DMA request enabled.

Bit 8 UDE: Update DMA request enable

0: Update DMA request disabled.
1: Update DMA request enabled.

Bit 7 BIE: Break interrupt enable

0: Break interrupt disabled.
1: Break interrupt enabled.

Bit 6 TIE: Trigger interrupt enable

0: Trigger interrupt disabled.
1: Trigger interrupt enabled.

Bit 5 COMIE: COM interrupt enable

0: COM interrupt disabled.
1: COM interrupt enabled.

Bit 4 CC4IE: Capture/Compare 4 interrupt enable

0: CC4 interrupt disabled.
1: CC4 interrupt enabled.

Bit 3 CC3IE: Capture/Compare 3 interrupt enable

0: CC3 interrupt disabled.
1: CC3 interrupt enabled.

Bit 2 CC2IE: Capture/Compare 2 interrupt enable

0: CC2 interrupt disabled.
1: CC2 interrupt enabled.

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled.
1: CC1 interrupt enabled.

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled.
1: Update interrupt enabled.

RM0008 Advanced-control timers (TIM1&TIM8)

 249/682

12.4.5 Status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

CC4O
F

CC3O
F

CC2O
F

CC1O
F Res. BIF TIF COMIF CC4IF CC3IF CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 Res. rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bit 15:13 Reserved, always read as 0.

Bit 12 CC4OF: Capture/Compare 4 overcapture flag

refer to CC1OF description

Bit 11 CC3OF: Capture/Compare 3 overcapture flag

refer to CC1OF description

Bit 10 CC2OF: Capture/Compare 2 overcapture flag

refer to CC1OF description

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set

Bit 8 Reserved, always read as 0.

Bit 7 BIF: Break interrupt flag

This flag is set by hardware as soon as the break input goes active. It can be cleared by
software if the break input is not active.
0: No break event occurred.
1: An active level has been detected on the break input.

Bit 6 TIF: Trigger interrupt flag

This flag is set by hardware on trigger event (active edge detected on TRGI input when the
slave mode controller is enabled in all modes but gated mode, both edges in case gated
mode is selected). It is cleared by software.
0: No trigger event occurred.
1: Trigger interrupt pending.

Bit 5 COMIF: COM interrupt flag

This flag is set by hardware on COM event (when Capture/compare Control bits - CCxE,
CCxNE, OCxM - have been updated). It is cleared by software.
0: No COM event occurred.
1: COM interrupt pending.

Bit 4 CC4IF: Capture/Compare 4 interrupt flag

refer to CC1IF description

Bit 3 CC3IF: Capture/Compare 3 interrupt flag

refer to CC1IF description

Advanced-control timers (TIM1&TIM8) RM0008

250/682

12.4.6 Event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

Bit 2 CC2IF: Capture/Compare 2 interrupt flag

refer to CC1IF description

Bit 1 CC1IF: Capture/Compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value, with some
exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register
description). It is cleared by software.
0: No match.
1: The content of the counter TIMx_CNT has matched the content of the TIMx_CCR1
register.

If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred.
1: The counter value has been captured in TIMx_CCR1 register (An edge has been
detected on IC1 which matches the selected polarity).

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow or underflow regarding the repetition counter value (update if REP_CNT=0)
and if the UDIS=0 in the TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0
and UDIS=0 in the TIMx_CR1 register.

– When CNT is reinitialized by a trigger event (refer to Section 12.4.3: Slave mode control
register (TIMx_SMCR)), if URS=0 and UDIS=0 in the TIMx_CR1 register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved BG TG COMG CC4G CC3G CC2G CC1G UG

Res. w w w w w w w w

Bits 15:8 Reserved, always read as 0.

Bit 7 BG: Break generation

This bit is set by software in order to generate an event, it is automatically cleared by hardware.
0: No action.
1: A break event is generated. MOE bit is cleared and BIF flag is set. Related interrupt or DMA
transfer can occur if enabled.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by hardware.
0: No action.
1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if enabled.

RM0008 Advanced-control timers (TIM1&TIM8)

 251/682

Bit 5 COMG: Capture/Compare control update generation

This bit can be set by software, it is automatically cleared by hardware
0: No action
1: When CCPC bit is set, it allows to update CCxE, CCxNE and OCxM bits

Note: This bit acts only on channels having a complementary output.

Bit 4 CC4G: Capture/Compare 4 generation

refer to CC1G description

Bit 3 CC3G: Capture/Compare 3 generation

refer to CC1G description

Bit 2 CC2G: Capture/Compare 2 generation

refer to CC1G description

Bit 1 CC1G: Capture/Compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by hardware.
0: No action.
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the
corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the CC1IF flag
was already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action.
1: Reinitialize the counter and generates an update of the registers. Note that the prescaler counter
is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if the center-
aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload value (TIMx_ARR) if
DIR=1 (downcounting).

Advanced-control timers (TIM1&TIM8) RM0008

252/682

12.4.7 Capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So you must take care that the same bit
can have a different meaning for the input stage and for the output stage.

Output compare mode:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC2
CE OC2M[2:0] OC2

PE
OC2
FE CC2S[1:0]

OC1
CE OC1M[2:0] OC1

PE
OC1
FE CC1S[1:0]

IC2F[3:0] IC2PSC[1:0] IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 OC2CE: Output Compare 2 clear enable

Bits 14:12 OC2M[2:0]: Output Compare 2 mode

Bit 11 OC2PE: Output Compare 2 preload enable

Bit 10 OC2FE: Output Compare 2 fast enable

Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output.
01: CC2 channel is configured as input, IC2 is mapped on TI2.
10: CC2 channel is configured as input, IC2 is mapped on TI1.
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if
an internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in TIMx_CCER).

Bit 7 OC1CE: Output Compare 1 clear enable

OC1CE: Output Compare 1 Clear Enable
0: OC1Ref is not affected by the ETRF Input
1: OC1Ref is cleared as soon as a High level is detected on ETRF input

RM0008 Advanced-control timers (TIM1&TIM8)

 253/682

Bits 6:4 OC1M: Output Compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends on
CC1P and CC1NP bits.
000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.
001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter
TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1
else inactive. In downcounting, channel 1 is inactive (OC1REF=‘0’) as long as
TIMx_CNT>TIMx_CCR1 else active (OC1REF=’1’).
111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1
else active. In downcounting, channel 1 is active as long as TIMx_CNT>TIMx_CCR1 else
inactive.

Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed
(LOCK bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in
output).

2: In PWM mode 1 or 2, the OCREF level changes only when the result of the
comparison changes or when the output compare mode switches from “frozen” mode
to “PWM” mode.

Bit 3 OC1PE: Output Compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken in account immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded in the active register at each update event.

Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed
(LOCK bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in
output).
2: The PWM mode can be used without validating the preload register only in one
pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed.

Bit 2 OC1FE: Output Compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is
ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is
5 clock cycles.
1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is
set to the compare level independently from the result of the comparison. Delay to sample
the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if
the channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.
01: CC1 channel is configured as input, IC1 is mapped on TI1.
10: CC1 channel is configured as input, IC1 is mapped on TI2.
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER).

Advanced-control timers (TIM1&TIM8) RM0008

254/682

Input capture mode

Bits 15:12 IC2F: Input capture 2 filter

Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler

Bits 9:8 CC2S: Capture/Compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output.
01: CC2 channel is configured as input, IC2 is mapped on TI2.
10: CC2 channel is configured as input, IC2 is mapped on TI1.
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an
internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in TIMx_CCER).

Bits 7:4 IC1F[3:0]: Input capture 1 filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied
to TI1. The digital filter is made of an event counter in which N events are needed to validate a
transition on the output:

0000: No filter, sampling is done at fDTS.
0001: fSAMPLING=fCK_INT, N=2.
0010: fSAMPLING=fCK_INT, N=4.
0011: fSAMPLING=fCK_INT, N=8.
0100: fSAMPLING=fDTS/2, N=6.
0101: fSAMPLING=fDTS/2, N=8.
0110: fSAMPLING=fDTS/4, N=6.
0111: fSAMPLING=fDTS/4, N=8.
1000: fSAMPLING=fDTS/8, N=6.
1001: fSAMPLING=fDTS/8, N=8.
1010: fSAMPLING=fDTS/16, N=5.
1011: fSAMPLING=fDTS/16, N=6.
1100: fSAMPLING=fDTS/16, N=8.
1101: fSAMPLING=fDTS/32, N=5.
1110: fSAMPLING=fDTS/32, N=6.
1111: fSAMPLING=fDTS/32, N=8.

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).
The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input.
01: capture is done once every 2 events.
10: capture is done once every 4 events.
11: capture is done once every 8 events.

Bits 1:0 CC1S: Capture/Compare 1 Selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.
01: CC1 channel is configured as input, IC1 is mapped on TI1.
10: CC1 channel is configured as input, IC1 is mapped on TI2.
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an
internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER).

RM0008 Advanced-control timers (TIM1&TIM8)

 255/682

12.4.8 Capture/compare mode register 2 (TIMx_CCMR2)

Address offset: 0x1C

Reset value: 0x0000

Refer to the above CCMR1 register description.

Output Compare mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC4
CE OC4M[2:0] OC4

PE
OC4
FE CC4S[1:0]

OC3
CE. OC3M[2:0] OC3

PE
OC3
FE CC3S[1:0]

IC4F[3:0] IC4PSC[1:0] IC3F[3:0] IC3PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 OC4CE: Output compare 4 clear enable

Bits 14:12 OC4M: Output compare 4 mode

Bit 11 OC4PE: Output compare 4 preload enable

Bit 10 OC4FE: Output compare 4 fast enable

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output.
01: CC4 channel is configured as input, IC4 is mapped on TI4.
10: CC4 channel is configured as input, IC4 is mapped on TI3.
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = ‘0’ in TIMx_CCER).

Bit 7 OC3CE: Output compare 3 clear enable

Bits 6:4 OC3M: Output compare 3 mode

Bit 3 OC3PE: Output compare 3 preload enable

Bit 2 OC3FE: Output compare 3 fast enable

Bits 1:0 CC3S: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output.
01: CC3 channel is configured as input, IC3 is mapped on TI3.
10: CC3 channel is configured as input, IC3 is mapped on TI4.
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in TIMx_CCER).

Advanced-control timers (TIM1&TIM8) RM0008

256/682

Input capture mode

12.4.9 Capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

Bits 15:12 IC4F: Input capture 4 filter

Bits 11:10 IC4PSC: Input capture 4 prescaler

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output.
01: CC4 channel is configured as input, IC4 is mapped on TI4.
10: CC4 channel is configured as input, IC4 is mapped on TI3.
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only
if an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = ‘0’ in TIMx_CCER).

Bits 7:4 IC3F: Input capture 3 filter

Bits 3:2 IC3PSC: Input capture 3 prescaler

Bits 1:0 CC3S: Capture/compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output.
01: CC3 channel is configured as input, IC3 is mapped on TI3.
10: CC3 channel is configured as input, IC3 is mapped on TI4.
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only
if an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in TIMx_CCER).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CC4P CC4E CC3N
P

CC3N
E CC3P CC3E CC2N

P
CC2N

E CC2P CC2E CC1N
P

CC1N
E CC1P CC1E

Res. rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:14 Reserved, always read as 0.

Bit 13 CC4P: Capture/Compare 4 output polarity

refer to CC1P description

Bit 12 CC4E: Capture/Compare 4 output enable

refer to CC1E description

Bit 11 CC3NP: Capture/Compare 3 complementary output polarity

refer to CC1NP description

Bit 10 CC3NE: Capture/Compare 3 complementary output enable

refer to CC1NE description

Bit 9 CC3P: Capture/Compare 3 output polarity

refer to CC1P description

Bit 8 CC3E: Capture/Compare 3 output enable

refer to CC1E description

RM0008 Advanced-control timers (TIM1&TIM8)

 257/682

Bit 7 CC2NP: Capture/Compare 2 complementary output polarity

refer to CC1NP description

Bit 6 CC2NE: Capture/Compare 2 complementary output enable

refer to CC1NE description

Bit 5 CC2P: Capture/Compare 2 output polarity

refer to CC1P description

Bit 4 CC2E: Capture/Compare 2 output enable

refer to CC1E description

Bit 3 CC1NP: Capture/Compare 1 complementary output polarity

0: OC1N active high.
1: OC1N active low.

Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits
in TIMx_BDTR register) and CC1S=”00” (the channel is configured in output).

Bit 2 CC1NE: Capture/Compare 1 complementary output enable

0: Off - OC1N is not active. OC1N level is then function of MOE, OSSI, OSSR, OIS1, OIS1N
and CC1E bits.
1: On - OC1N signal is output on the corresponding output pin depending on MOE, OSSI,
OSSR, OIS1, OIS1N and CC1E bits.

Bit 1 CC1P: Capture/Compare 1 output polarity

CC1 channel configured as output:
0: OC1 active high.
1: OC1 active low.
CC1 channel configured as input:
This bit selects whether IC1 or IC1 is used for trigger or capture operations.
0: non-inverted: capture is done on a rising edge of IC1. When used as external trigger, IC1
is non-inverted.
1: inverted: capture is done on a falling edge of IC1. When used as external trigger, IC1 is
inverted.

Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits
in TIMx_BDTR register).

Bit 0 CC1E: Capture/Compare 1 output enable

CC1 channel configured as output:
0: Off - OC1 is not active. OC1 level is then function of MOE, OSSI, OSSR, OIS1, OIS1N
and CC1NE bits.
1: On - OC1 signal is output on the corresponding output pin depending on MOE, OSSI,
OSSR, OIS1, OIS1N and CC1NE bits.

CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled.
1: Capture enabled.

Advanced-control timers (TIM1&TIM8) RM0008

258/682

Note: The state of the external I/O pins connected to the complementary OCx and OCxN
channels depends on the OCx and OCxN channel state and the GPIO and AFIO registers.

Table 56. Output control bits for complementary OCx and OCxN channels with
break feature

Control bits Output states(1)

1. When both outputs of a channel are not used (CCxE = CCxNE = 0), the OISx, OISxN, CCxP and CCxNP
bits must be kept cleared.

MOE
bit

OSSI
bit

OSSR
bit

CCxE
bit

CCxNE
bit

OCx output state OCxN output state

1 X

0 0 0
Output Disabled (not
driven by the timer)

OCx=0, OCx_EN=0

Output Disabled (not driven by
the timer)

OCxN=0, OCxN_EN=0

0 0 1
Output Disabled (not
driven by the timer)

OCx=0, OCx_EN=0

OCxREF + Polarity
OCxN=OCxREF xor CCxNP,
OCxN_EN=1

0 1 0

OCxREF + Polarity

OCx=OCxREF xor CCxP,

OCx_EN=1

Output Disabled (not driven by
the timer)

OCxN=0, OCxN_EN=0

0 1 1
OCREF + Polarity + dead-
time

OCx_EN=1

Complementary to OCREF (not
OCREF) + Polarity + dead-time

OCxN_EN=1

1 0 0
Output Disabled (not
driven by the timer)

OCx=CCxP, OCx_EN=0

Output Disabled (not driven by
the timer)

OCxN=CCxNP, OCxN_EN=0

1 0 1
Off-State (output enabled
with inactive state)

OCx=CCxP, OCx_EN=1

OCxREF + Polarity

OCxN=OCxREF xor CCxNP,
OCxN_EN=1

1 1 0

OCxREF + Polarity

OCx=OCxREF xor CCxP,

OCx_EN=1

Off-State (output enabled with
inactive state)

OCxN=CCxNP, OCxN_EN=1

1 1 1
OCREF + Polarity + dead-
time

OCx_EN=1

Complementary to OCREF (not
OCREF) + Polarity + dead-time

OCxN_EN=1

0

0

X

0 0 Output Disabled (not driven by the timer)

Asynchronously: OCx=CCxP, OCx_EN=0, OCxN=CCxNP,
OCxN_EN=0

Then if the clock is present: OCx=OISx and OCxN=OISxN
after a dead-time, assuming that OISx and OISxN do not
correspond to OCX and OCxN both in active state.

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1 Off-State (output enabled with inactive state)

Asynchronously: OCx=CCxP, OCx_EN=1, OCxN=CCxNP,
OCxN_EN=1

Then if the clock is present: OCx=OISx and OCxN=OISxN
after a dead-time, assuming that OISx and OISxN do not
correspond to OCX and OCxN both in active state

1 1 0

1 1 1

RM0008 Advanced-control timers (TIM1&TIM8)

 259/682

12.4.10 Counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

12.4.11 Prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

12.4.12 Auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value
The counter clock frequency (CK_CNT) is equal to fCK_PSC / (PSC[15:0] + 1).

PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through trigger
controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Prescaler value
ARR is the value to be loaded in the actual auto-reload register.

Refer to the Section 12.3.1: Time-base unit on page 204 for more details about ARR update
and behavior.

The counter is blocked while the auto-reload value is null.

Advanced-control timers (TIM1&TIM8) RM0008

260/682

12.4.13 Repetition counter register (TIMx_RCR)

Address offset: 0x30

Reset value: 0x0000

12.4.14 Capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved REP[7:0]

Res. rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, always read as 0.

Bits 7:0 REP[7:0]: Repetition counter value
These bits allow the user to set-up the update rate of the compare registers (i.e. periodic
transfers from preload to active registers) when preload registers are enable, as well as the
update interrupt generation rate, if this interrupt is enable.

Each time the REP_CNT related downcounter reaches zero, an update event is generated and
it restarts counting from REP value. As REP_CNT is reloaded with REP value only at the
repetition update event U_RC, any write to the TIMx_RCR register is not taken in account until
the next repetition update event.
It means in PWM mode (REP+1) corresponds to:
- the number of PWM periods in edge-aligned mode
- the number of half PWM period in center-aligned mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value
If channel CC1 is configured as output:
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).

It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit
OC1PE). Else the preload value is copied in the active capture/compare 1 register when an
update event occurs.

The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC1 output.

If channel CC1 is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1).

RM0008 Advanced-control timers (TIM1&TIM8)

 261/682

12.4.15 Capture/compare register 2 (TIMx_CCR2)

Address offset: 0x38

Reset value: 0x0000

12.4.16 Capture/compare register 3 (TIMx_CCR3)

Address offset: 0x3C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR2[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR2[15:0]: Capture/Compare 2 value
If channel CC2 is configured as output:
CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit
OC2PE). Else the preload value is copied in the active capture/compare 2 register when an
update event occurs.

The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC2 output.
If channel CC2 is configured as input:
CCR2 is the counter value transferred by the last input capture 2 event (IC2).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR3[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR3[15:0]: Capture/Compare value
If channel CC3 is configured as output:
CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register (bit
OC3PE). Else the preload value is copied in the active capture/compare 3 register when an
update event occurs.

The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC3 output.

If channel CC3 is configured as input:
CCR3 is the counter value transferred by the last input capture 3 event (IC3).

Advanced-control timers (TIM1&TIM8) RM0008

262/682

12.4.17 Capture/compare register 4 (TIMx_CCR4)

Address offset: 0x40

Reset value: 0x0000

12.4.18 Break and dead-time register (TIMx_BDTR)

Address offset: 0x44

Reset value: 0x0000

Note: As the bits AOE, BKP, BKE, OSSI, OSSR and DTG[7:0] can be write-locked depending on
the LOCK configuration, it can be necessary to configure all of them during the first write
access to the TIMx_BDTR register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR4[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR4[15:0]: Capture/Compare value
If channel CC4 is configured as output:
CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR4 register (bit
OC4PE). Else the preload value is copied in the active capture/compare 4 register when an
update event occurs.

The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC4 output.
If channel CC4 is configured as input:
CCR4 is the counter value transferred by the last input capture 4 event (IC4).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOE AOE BKP BKE OSSR OSSI LOCK[1:0] DTG[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0008 Advanced-control timers (TIM1&TIM8)

 263/682

Bit 15 MOE: Main output enable

This bit is cleared asynchronously by hardware as soon as the break input is active. It is set
by software or automatically depending on the AOE bit. It is acting only on the channels
which are configured in output.
0: OC and OCN outputs are disabled or forced to idle state.
1: OC and OCN outputs are enabled if their respective enable bits are set (CCxE, CCxNE in
TIMx_CCER register).
See OC/OCN enable description for more details (Section 12.4.9: Capture/compare enable
register (TIMx_CCER) on page 256).

Bit 14 AOE: Automatic output enable

0: MOE can be set only by software
1: MOE can be set by software or automatically at the next update event (if the break input is
not be active)

Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).

Bit 13 BKP: Break polarity

0: Break input BRK is active low
1: Break input BRK is active high

Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).

Bit 12 BKE: Break enable

0: Break inputs (BRK and BRK_ACTH) disabled
1; Break inputs (BRK and BRK_ACTH) enabled

Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).

Bit 11 OSSR: Off-state selection for Run mode

This bit is used when MOE=1 on channels having a complementary output which are
configured as outputs. OSSR is not implemented if no complementary output is implemented
in the timer.
See OC/OCN enable description for more details (Section 12.4.9: Capture/compare enable
register (TIMx_CCER) on page 256).
0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0).
1: When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1
or CCxNE=1. Then, OC/OCN enable output signal=1

Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK
bits in TIMx_BDTR register).

Advanced-control timers (TIM1&TIM8) RM0008

264/682

12.4.19 DMA control register (TIMx_DCR)

Address offset: 0x48

Reset value: 0x0000

Bit 10 OSSI: Off-state selection for Idle mode

This bit is used when MOE=0 on channels configured as outputs.
See OC/OCN enable description for more details (Section 12.4.9: Capture/compare enable
register (TIMx_CCER) on page 256).
0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0).
1: When inactive, OC/OCN outputs are forced first with their idle level as soon as CCxE=1 or
CCxNE=1. OC/OCN enable output signal=1)

Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK
bits in TIMx_BDTR register).

Bits 9:8 LOCK[1:0]: Lock configuration

These bits offer a write protection against software errors.
00: LOCK OFF - No bit is write protected.
01: LOCK Level 1 = DTG bits in TIMx_BDTR register, OISx and OISxN bits in TIMx_CR2
register and BKE/BKP/AOE bits in TIMx_BDTR register can no longer be written.
10: LOCK Level 2 = LOCK Level 1 + CC Polarity bits (CCxP/CCxNP bits in TIMx_CCER
register, as long as the related channel is configured in output through the CCxS bits) as well
as OSSR and OSSI bits can no longer be written.
11: LOCK Level 3 = LOCK Level 2 + CC Control bits (OCxM and OCxPE bits in
TIMx_CCMRx registers, as long as the related channel is configured in output through the
CCxS bits) can no longer be written.

Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register
has been written, their content is frozen until the next reset.

Bits 7:0 DTG[7:0]: Dead-time generator setup

This bit-field defines the duration of the dead-time inserted between the complementary
outputs. DT correspond to this duration.
DTG[7:5]=0xx => DT=DTG[7:0]x tdtg with tdtg=tDTS.
DTG[7:5]=10x => DT=(64+DTG[5:0])xtdtg with Tdtg=2xtDTS.
DTG[7:5]=110 => DT=(32+DTG[4:0])xtdtg with Tdtg=8xtDTS.
DTG[7:5]=111 => DT=(32+DTG[4:0])xtdtg with Tdtg=16xtDTS.
Example if TDTS=125ns (8MHz), dead-time possible values are:
0 to 15875 ns by 125 ns steps,
16 us to 31750 ns by 250 ns steps,
32 us to 63us by 1 us steps,
64 us to 126 us by 2 us steps

Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BDTR register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved DBL[4:0] Reserved DBA[4:0]

Res. rw rw rw rw rw Res. rw rw rw rw rw

Bits 15:13 Reserved, always read as 0

RM0008 Advanced-control timers (TIM1&TIM8)

 265/682

Bits 12:8 DBL[4:0]: DMA burst length
This 5-bit vector defines the length of DMA transfers (the timer recognizes a burst transfer
when a read or a write access is done to the TIMx_DMAR address), i.e. the number of
transfers. Transfers can be in half-words or in bytes (see example below).
00000: 1 transfer,
00001: 2 transfers,
00010: 3 transfers,
...
10001: 18 transfers.
Example: Let us consider the following transfer: DBL = 7 bytes & DBA = TIM2_CR1.

– If DBL = 7 bytes and DBA = TIM2_CR1 represents the address of the byte to be transferred,
the address of the transfer should be given by the following equation:

(TIMx_CR1 address) + DBA + (DMA index), where DMA index = DBL

In this example, 7 bytes are added to (TIMx_CR1 address) + DBA, which gives us the address
from/to which the data will be copied. In this case, the transfer is done to 7 registres starting
from the following address: (TIMx_CR1 address) + DBA

According to the configuration of the DMA Data Size, several cases may occur:

– If you configure the DMA Data Size in half-words, 16-bit data will be transferred to each of
the 7 registers.

– If you configure the DMA Data Size in bytes, the data will aslo be transferred to 7 registers:
the first register will contain the first MSB byte, the second register, the first LSB byte and so
on. So with the transfer Timer, you also have to specify the size of data transferred by DMA.

Bits 7:5 Reserved, always read as 0

Bits 4:0 DBA[4:0]: DMA base address

This 5-bits vector defines the base-address for DMA transfers (when read/write access are
done through the TIMx_DMAR address). DBA is defined as an offset starting from the
address of the TIMx_CR1 register.
Example:
00000: TIMx_CR1,
00001: TIMx_CR2,
00010: TIMx_SMCR,
...

Advanced-control timers (TIM1&TIM8) RM0008

266/682

12.4.20 DMA address for full transfer (TIMx_DMAR)

Address offset: 0x4C

Reset value: 0x0000

12.4.21 TIM1&TIM8 register map

TIM1&TIM8 registers are mapped as 16-bit addressable registers as described in the table
below:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMAB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 DMAB[15:0]: DMA register for burst accesses
A read or write access to the DMAR register accesses the register located at the address:

“(TIMx_CR1 address) + DBA + (DMA index)” in which:

TIMx_CR1 address is the address of the control register 1,

DBA is the DMA base address configured in TIMx_DCR register,

DMA index is the offset automatically controlled by the DMA transfer, depending on the
length of the transfer DBL in the TIMx_DCR register.

Table 57. TIM1&TIM8 Register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

Reserved
CKD
[1:0]

A
R

P
E CMS

[1:0] D
IR

O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0 0 0 0 0

0x04
TIMx_CR2

Reserved O
IS

4

O
IS

3N

O
IS

3

O
IS

2N

O
IS

2

O
IS

1N

O
IS

1

T
I1

S MMS[2:0]

C
C

D
S

C
C

U
S

R
es

er
ve

d

C
C

P
C

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08
TIMx_SMCR

Reserved E
T

P

E
C

E ETPS
[1:0] ETF[3:0]

M
S

M TS[2:0]

R
es

er
ve

d

SMS[2:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
TIMx_DIER

Reserved T
D

E

C
O

M
D

E

C
C

4D
E

C
C

3D
E

C
C

2D
E

C
C

1D
E

U
D

E

B
IE

T
IE

C
O

M
IE

C
C

4I
E

C
C

3I
E

C
C

2I
E

C
C

1I
E

U
IE

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
TIMx_SR

Reserved

C
C

4O
F

C
C

3O
F

C
C

2O
F

C
C

1O
F

R
es

er
ve

d

B
IF

T
IF

C
O

M
IF

C
C

4I
F

C
C

3I
F

C
C

2I
F

C
C

1I
F

U
IF

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x14
TIMx_EGR

Reserved B
G

T
G

C
O

M

C
C

4G

C
C

3G

C
C

2G

C
C

1G

U
G

Reset value 0 0 0 0 0 0 0 0

0x18

TIMx_CCMR1
Output Compare

mode Reserved

O
C

2C
E

OC2M
[2:0]

O
C

2P
E

O
C

2F
E

CC2S
[1:0]

O
C

1C
E

OC1M
[2:0]

O
C

1P
E

O
C

1F
E

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIMx_CCMR1
Input Capture

mode Reserved
IC2F[3:0]

IC2
PSC
[1:0]

CC2S
[1:0] IC1F[3:0]

IC1
PSC
[1:0]

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM0008 Advanced-control timers (TIM1&TIM8)

 267/682

Refer to Table 1 on page 35 for the register boundary addresses.

0x1C

TIMx_CCMR2
Output Compare

mode Reserved

O
24

C
E OC4M

[2:0]

O
C

4P
E

O
C

4F
E

CC4S
[1:0]

O
C

3C
E

OC3M
[2:0]

O
C

3P
E

O
C

3F
E

CC3S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIMx_CCMR2
Input Capture

mode Reserved
IC4F[3:0]

IC4
PSC
[1:0]

CC4S
[1:0] IC3F[3:0]

IC3
PSC
[1:0]

CC3S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
TIMx_CCER

Reserved C
C

4P

C
C

4E

C
C

3N
P

C
C

3N
E

C
C

3P

C
C

3E

C
C

2N
P

C
C

2N
E

C
C

2P

C
C

2E

C
C

1N
P

C
C

1N
E

C
C

1P

C
C

1E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x24
TIMx_CNT

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

Reserved
PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR

Reserved
ARR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x30
TIMx_RCR

Reserved
REP[7:0]

Reset value 0 0 0 0 0 0 0 0

0x34
TIMx_CCR1

Reserved
CCR1[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x38
TIMx_CCR2

Reserved
CCR2[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C
TIMx_CCR3

Reserved
CCR3[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x40
TIMx_CCR4

Reserved
CCR4[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44
TIMx_BDTR

Reserved M
O

E

A
O

E

B
K

P

B
K

E

O
S

S
R

O
S

S
I LOCK

[1:0] DT[7:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48
TIMx_DCR

Reserved
DBL[4:0]

Reserved
DBA[4:0]

Reset value 0 0 0 0 0 0 0 0 0 0

0x4C
TIMx_DMAR

Reserved
DMAB[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 57. TIM1&TIM8 Register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

General-purpose timer (TIMx) RM0008

268/682

13 General-purpose timer (TIMx)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This Section applies to the whole STM32F10xxx family, unless otherwise specified.

13.1 TIMx introduction
The general-purpose timers consist of a 16-bit auto-reload counter driven by a
programmable prescaler.

They may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare and PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the RCC clock controller prescalers.

The timers are completely independent, and do not share any resources. They can be
synchronized together as described in Section 13.3.15.

RM0008 General-purpose timer (TIMx)

 269/682

13.2 TIMx main features
General purpose TIMx (TIM2, TIM3, TIM4 and TIM5) timer features include:

● 16-bit up, down, up/down auto-reload counter.

● 16-bit programmable prescaler allowing dividing (also “on the fly”) the counter clock
frequency either by any factor between 1 and 65535.

● Up to 4 independent channels for:

– Input capture

– Output compare

– PWM generation (Edge and Center-aligned mode)

– One-pulse mode output

● Synchronization circuit to control the timer with external signals and to interconnect
several timers between them.

● Interrupt/DMA generation on the following events:

– Update: counter overflow/underflow, counter initialization (by software or
internal/external trigger)

– Trigger event (counter start, stop, initialization or count by internal/external trigger)

– Input capture

– Output compare

● Supports incremental (quadrature) encoder and hall-sensor cicuitry for positioning
purposes

● Trigger intput for external clock or cycle-by-cycle current management

General-purpose timer (TIMx) RM0008

270/682

Figure 94. General-purpose timer block diagram

13.3 TIMx functional description

13.3.1 Time-base unit

The main block of the programmable timer is a 16-bit counter with its related auto-reload
register. The counter can count up, down or both up and down. The counter clock can be
divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

● Counter Register (TIMx_CNT)

● Prescaler Register (TIMx_PSC):

● Auto-Reload Register (TIMx_ARR)

AutoReload Register

Capture/Compare 1 Register

Capture/Compare 2 Register

U

U

U

CC1I

CC2I

Trigger
Controller

Stop, Clear or Up/Down

TI1FP1

TI2FP2

ITR0

ITR1

ITR2

ITR3
TRGI

Encoder
Interface

Capture/Compare 3 Register

U
CC3I

output
control

OC1

TRGO

OC1REF

OC2REF

OC3REF

U

UI

Reset, Enable, Up/Down, Count,

Capture/Compare 4 Register

U
CC4I

OC4REF
Prescaler

Prescaler

IC4PS

IC3PS

IC1

IC2
Prescaler

PrescalerInput Filter &
Edge Detector

IC2PS

IC1PSTI1FP1

output
control

OC2

output
control

OC3

output
control

OC4

Reg

event

Notes:

Preload registers transferred
to active registers on U event
according to control bit

interrupt & DMA output

TGI

TRC

TRC

IC3

IC4

ITR

TRC

TI1F_ED

Input Filter &
Edge Detector

Input Filter &
Edge Detector

Input Filter &
Edge Detector

CC1I

CC2I

CC3I

CC4I

TI1FP2

TI2FP1
TI2FP2

TI3FP3

TRC

TRC

TI3FP4

TI4FP3
TI4FP4

TI4

TI3

TI1

TI2

XOR

TIMx_CH1

TIMx_CH2

TIMx_CH3

TIMx_CH4

TIMx_CH1

TIMx_CH2

TIMx_CH3

TIMx_CH4

to other timers

TIMxCLK from RCC

Prescaler COUNTER+/-CK_PSC PSC CNTCK_CNT

Controller
Mode
Slave

Internal Clock (CK_INT)

ETR
Input FilterPolarity Selection & Edge

Detector & Prescaler

ETRP
ETRF

TIMx_ETR

ETRF

to DAC/ADC

RM0008 General-purpose timer (TIMx)

 271/682

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into the
shadow register permanently or at each update event (UEV), depending on the auto-reload
preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter
reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the
TIMx_CR1 register. It can also be generated by software. The generation of the update
event is described in detail for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller
description to get more details on counter enabling).

Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as this control register is buffered. The new prescaler ratio is
taken into account at the next update event.

Figure 95 and Figure 96 give some examples of the counter behavior when the prescaler
ratio is changed on the fly:

Figure 95. Counter timing diagram with prescaler division change from 1 to 2

 CK_PSC

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update event (UEV)

0

F9 FA FB FCF7

Prescaler control register 0 1

Write a new value in TIMx_PSC

01 02 03

Prescaler buffer 0 1

Prescaler counter 0 1 0 1 0 1 0 1

F8

General-purpose timer (TIMx) RM0008

272/682

Figure 96. Counter timing diagram with prescaler division change from 1 to 4

13.3.2 Counter modes

upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

An Update event can be generated at each counter overflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller).

The UEV event can be disabled by software by setting the UDIS bit in TIMx_CR1 register.
This is to avoid updating the shadow registers while writing new values in the preload
registers. Then no update event occurs until the UDIS bit has been written to 0. However,
the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate
does not change). In addition, if the URS bit (update request selection) in TIMx_CR1
register is set, setting the UG bit generates an update event UEV but without setting the UIF
flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and
capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

● The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register)

● The auto-reload shadow register is updated with the preload value (TIMx_ARR)

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

CK_PSC

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update event (UEV)

0

F9 FA FB FCF7

Prescaler control register 0 3

Write a new value in TIMx_PSC

Prescaler buffer 0 3

Prescaler counter 0 1 2 3 0 1 2 3

F8 01

RM0008 General-purpose timer (TIMx)

 273/682

Figure 97. Counter timing diagram, internal clock divided by 1

Figure 98. Counter timing diagram, internal clock divided by 2

Figure 99. Counter timing diagram, internal clock divided by 4

 CK_INT

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 0732 33 34 35 3631

 CK_INT

0035 0000 0001 0002 0003

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0034 0036

Counter overflow

Update event (UEV)

0000 0001

CNT_EN

 TImer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0035 0036

Counter overflow

Update event (UEV)

 CK_INT

General-purpose timer (TIMx) RM0008

274/682

Figure 100. Counter timing diagram, internal clock divided by N

Figure 101. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not
preloaded)

 Timer clock = CK_CNT

Counter register 001F 20

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

 CK_INT

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 0732 33 34 35 3631

Auto-reload register FF 36

Write a new value in TIMx_ARR

 CK_INT

RM0008 General-purpose timer (TIMx)

 275/682

Figure 102. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR
preloaded)

Downcounting mode

In downcounting mode, the counter counts from the auto-reload value (content of the
TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a
counter underflow event.

An Update event can be generate at each counter underflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller)

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until UDIS bit has been written to 0.
However, the counter restarts from the current auto-reload value, whereas the counter of the
prescaler restarts from 0 (but the prescale rate doesn’t change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

● The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

● The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that the auto-reload is updated before the counter is
reloaded, so that the next period is the expected one.

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 07F1 F2 F3 F4 F5F0

Auto-reload preload register F5 36

Auto-reload shadow register F5 36

Write a new value in TIMx_ARR

CK_PSC

General-purpose timer (TIMx) RM0008

276/682

Figure 103. Counter timing diagram, internal clock divided by 1

Figure 104. Counter timing diagram, internal clock divided by 2

Figure 105. Counter timing diagram, internal clock divided by 4

 CK_INT

36

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter underflow (cnt_udf)

Update event (UEV)

35 34 33 32 31 30 2F04 03 02 01 0005

 CK_INT

0001 0036 0035 0034 0033

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0002 0000

Counter underflow

Update event (UEV)

0036 0035

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0001 0000

Counter underflow

Update event (UEV)

 CK_INT

RM0008 General-purpose timer (TIMx)

 277/682

Figure 106. Counter timing diagram, internal clock divided by N

Figure 107. Counter timing diagram, Update event when repetition counter is not
used

Center-aligned mode (up/down counting)

In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register) – 1, generates a counter overflow event, then counts from the auto-
reload value down to 1 and generates a counter underflow event. Then it restarts counting
from 0.

In this mode, the direction bit (DIR from TIMx_CR1 register) cannot be written. It is updated
by hardware and gives the current direction of the counter.

The update event can be generated at each counter overflow and at each counter underflow
or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event. In this case, the counter restarts counting from
0, as well as the counter of the prescaler.

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to 0.
However, the counter continues counting up and down, based on the current auto-reload
value.

 Timer clock = CK_CNT

Counter register 3620 1F

Update interrupt flag (UIF)

Counter underflow

Update event (UEV)

 CK_INT

00

36

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter underflow

Update event (UEV)

35 34 33 32 31 30 2F04 03 02 01 0005

Auto-reload register FF 36

Write a new value in TIMx_ARR

 CK_INT

General-purpose timer (TIMx) RM0008

278/682

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupt when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

● The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

● The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that if the update source is a counter overflow, the auto-
reload is updated before the counter is reloaded, so that the next period is the expected
one (the counter is loaded with the new value).

The following figures show some examples of the counter behavior for different clock
frequencies.

Figure 108. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6

1. Here, center-aligned mode 1 is used (for more details refer to Section 13.4.1: Control register 1 (TIMx_CR1) on page 304).

Figure 109. Counter timing diagram, internal clock divided by 2

 CK_INT

02

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter underflow

Update event (UEV)

03 04 05 06 05 04 0303 02 01 00 0104

Counter overflow

0002 0000 0001 0002 0003

CNT_EN

 TImer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0003 0001

Counter underflow

Update event (UEV)

 CK_INT

RM0008 General-purpose timer (TIMx)

 279/682

Figure 110. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36

Figure 111. Counter timing diagram, internal clock divided by N

Figure 112. Counter timing diagram, Update event with ARPE=1 (counter underflow)

 CK_INT

0036 0035

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0034 0035

Counter overflow (cnt_ovf)

Update event (UEV)

Note: Here, center-aligned mode 2 or 3 is used with an UIF on overflow

 Timer clock = CK_CNT

Counter register 0020 1F

Update interrupt flag (UIF)

Counter underflow

Update event (UEV)

 CK_INT

01

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter underflow

Update event (UEV)

01 02 03 04 05 06 0705 04 03 02 0106

Auto-reload preload register FD 36

Write a new value in TIMx_ARR

Auto-reload active register FD 36

 CK_INT

General-purpose timer (TIMx) RM0008

280/682

Figure 113. Counter timing diagram, Update event with ARPE=1 (counter overflow)

13.3.3 Clock selection

The counter clock can be provided by the following clock sources:

● Internal clock (CK_INT)

● External clock mode1: external input pin (TIx)

● External clock mode2: external trigger input (ETR)

● Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for
example, you can configure Timer 1 to act as a prescaler for Timer 2. Refer to : Using
one timer as prescaler for the another on page 299 for more details.

Internal clock source (CK_INT)

If the slave mode controller is disabled (SMS=000 in the TIMx_SMCR register), then the
CEN, DIR (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual
control bits and can be changed only by software (except UG which remains cleared
automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal
clock CK_INT.

Figure 114 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

36

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

35 34 33 32 31 30 2FF8 F9 FA FB FCF7

Auto-reload preload register FD 36

Write a new value in TIMx_ARR

Auto-reload active register FD 36

CK_INT

RM0008 General-purpose timer (TIMx)

 281/682

Figure 114. Control circuit in normal mode, internal clock divided by 1

External clock source mode 1

This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count
at each rising or falling edge on a selected input.

Figure 115. TI2 external clock connection example

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S= ‘01’ in the
TIMx_CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=0000).

Note: The capture prescaler is not used for triggering, so you don’t need to configure it.

3. Select rising edge polarity by writing CC2P=0 in the TIMx_CCER register.

4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR
register.

5. Select TI2 as the input source by writing TS=110 in the TIMx_SMCR register.

6. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

CK_INT

00

 Counter clock = CK_CNT = CK_PSC

COUNTER REGISTER 01 02 03 04 05 06 0732 33 34 35 3631

CEN=CNT_EN

UG

CNT_INIT

CK_INT

encoder
mode

external clock
mode 1

external clock
mode 2

internal clock
mode

ETRF

TRGI

TI1F
TI2F or

or
or

(internal clock)

CK_PSC

ECE
TIMx_SMCR

SMS[2:0]

ITRx

TI1F_ED

TI1FP1

TI2FP2

ETRF

TIMx_SMCR
TS[2:0]

TI2
0

1

TIMx_CCER

CC2P

Filter

ICF[3:0]

TIMx_CCMR1

Edge
Detector

TI2F_Rising

TI2F_Falling 110

001

100

101

111

General-purpose timer (TIMx) RM0008

282/682

The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.

Figure 116. Control circuit in external clock mode 1

External clock source mode 2

This mode is selected by writing ECE=1 in the TIMx_SMCR register.

The counter can count at each rising or falling edge on the external trigger input ETR.

The Figure 117 gives an overview of the external trigger input block.

Figure 117. External trigger input block

For example, to configure the upcounter to count each 2 rising edges on ETR, use the
following procedure:

1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register.

2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register

3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR
register

4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register.

5. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

The counter counts once each 2 ETR rising edges.

The delay between the rising edge on ETR and the actual clock of the counter is due to the
resynchronization circuit on the ETRP signal.

 Counter clock = CK_CNT = CK_PSC

Counter register 35 3634

TI2

CNT_EN

TIF

Write TIF=0

ETR
0

1

TIMx_SMCR

ETP

divider
/1, /2, /4, /8

ETPS[1:0]

ETRP filter

ETF[3:0]

downcounter
CK_INT

TIMx_SMCRTIMx_SMCR

ETR pin

CK_INT

encoder
mode

external clock
mode 1

external clock
mode 2

internal clock
mode

ETRF

TRGI

TI1F
TI2F or

or
or

(internal clock)

CK_PSC

ECE
TIMx_SMCR

SMS[2:0]

RM0008 General-purpose timer (TIMx)

 283/682

Figure 118. Control circuit in external clock mode 2

13.3.4 Capture/compare channels

Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and
an output stage (with comparator and output control).

The following figure gives an overview of one Capture/Compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be
used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).

Figure 119. Capture/compare channel (example: channel 1 input stage)

The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

 Counter clock = CK_CNT = CK_PSC

Counter register 35 3634

ETR

CNT_EN

fMASTER

ETRP

ETRF

TI1 0

1

TIMx_CCER

CC1P

divider
/1, /2, /4, /8

ICPS[1:0]

TI1F_ED

filter

ICF[3:0]

downcounter

TIMx_CCMR1

Edge
Detector

TI1F_Rising

TI1F_Falling

to the slave mode controller

TI1FP1

11

01

TIMx_CCMR1

CC1S[1:0]

IC1TI2FP1

TRC

(from channel 2)

(from slave mode
controller)

10

fDTS

TIMx_CCER

CC1E

IC1PS

TI1F

0

1

TI2F_rising

TI2F_falling
(from channel 2)

General-purpose timer (TIMx) RM0008

284/682

Figure 120. Capture/compare channel 1 main circuit

Figure 121. Output stage of capture/compare channel (channel 1)

The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register.

In capture mode, captures are actually done in the shadow register, which is copied into the
preload register.

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

CC1E

Capture/Compare Shadow Register

comparator

Capture/Compare Preload Register

Counter

IC1PS

CC1S[0]

CC1S[1]

capture

input
mode

S

R

read CCR1H

read CCR1L

read_in_progress

capture_transfer
CC1S[0]

CC1S[1]

S

R

write CCR1H

write CCR1L

write_in_progress

output
mode

UEV

OC1PE

(from time

compare_transfer

APB Bus

8 8

hi
gh lo
w

(if
 1

6-
bi

t)

MCU-peripheral interface

TIMx_CCMR1

OC1PE

base unit)

CNT>CCR1

CNT=CCR1

TIMx_EGR

CC1G

Output Mode
CNT > CCR1

CNT = CCR1 Controller

TIMx_CCMR1

OC1M[2:0]

oc1ref

0

1

CC1P

TIMx_CCER

Output
Enable
Circuit

OC1

CC1E TIMx_CCER

To the master mode
controller

ETRF

RM0008 General-purpose timer (TIMx)

 285/682

13.3.5 Input capture mode

In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the
value of the counter after a transition detected by the corresponding ICx signal. When a
capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or
a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was
already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be
cleared by software by writing it to ‘0’ or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when you write it to ‘0’.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:

● Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00,
the channel is configured in input and the TIMx_CCR1 register becomes read-only.

● Program the input filter duration you need with respect to the signal you connect to the
timer (when the input is one of the TIx (ICxF bits in the TIMx_CCMRx register). Let’s
imagine that, when toggling, the input signal is not stable during at must 5 internal clock
cycles. We must program a filter duration longer than these 5 clock cycles. We can
validate a transition on TI1 when 8 consecutive samples with the new level have been
detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in the
TIMx_CCMR1 register.

● Select the edge of the active transition on the TI1 channel by writing CC1P bit to 0 in
the TIMx_CCER register (rising edge in this case).

● Program the input prescaler. In our example, we wish the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to 00 in the
TIMx_CCMR1 register).

● Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register.

● If needed, enable the related interrupt request by setting the CC1IE bit in the
TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the
TIMx_DIER register.

When an input capture occurs:

● The TIMx_CCR1 register gets the value of the counter on the active transition.

● CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.

● An interrupt is generated depending on the CC1IE bit.

● A DMA request is generated depending on the CC1DE bit.

In order to handle the overcapture, it is recommended to read the data before the
overcapture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: IC interrupt and/or DMA requests can be generated by software by setting the
corresponding CCxG bit in the TIMx_EGR register.

General-purpose timer (TIMx) RM0008

286/682

13.3.6 PWM input mode

This mode is a particular case of input capture mode. The procedure is the same except:

● Two ICx signals are mapped on the same TIx input.

● These 2 ICx signals are active on edges with opposite polarity.

● One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.

For example, you can measure the period (in TIMx_CCR1 register) and the duty cycle (in
TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending
on CK_INT frequency and prescaler value):

● Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1
register (TI1 selected).

● Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P bit to ‘0’ (active on rising edge).

● Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1
register (TI1 selected).

● Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
bit to ‘1’ (active on falling edge).

● Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register
(TI1FP1 selected).

● Configure the slave mode controller in reset mode: write the SMS bits to 100 in the
TIMx_SMCR register.

● Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register.

Figure 122. PWM input mode timing

1. The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the fact that only
TI1FP1 and TI2FP2 are connected to the slave mode controller.

13.3.7 Forced output mode

In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.

TI1

TIMx_CNT 0000 0001 0002 0003 0004 00000004

TIMx_CCR1

TIMx_CCR2

0004

0002

IC1 capture

IC2 capture

reset counter

IC2 capture
pulse width

IC1 capture
period
measurementmeasurement

ai15413

RM0008 General-purpose timer (TIMx)

 287/682

To force an output compare signal (ocxref/OCx) to its active level, you just need to write 101
in the OCxM bits in the corresponding TIMx_CCMRx register. Thus ocxref is forced high
(OCxREF is always active high) and OCx get opposite value to CCxP polarity bit.

e.g.: CCxP=0 (OCx active high) => OCx is forced to high level.

ocxref signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx
register.

Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still
performed and allows the flag to be set. Interrupt and DMA requests can be sent
accordingly. This is described in the Output Compare Mode section.

13.3.8 Output compare mode

This function is used to control an output waveform or indicating when a period of time has
elapsed.

When a match is found between the capture/compare register and the counter, the output
compare function:

● Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set
active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.

● Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).

● Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).

● Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the
TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request
selection).

The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.

In output compare mode, the update event UEV has no effect on ocxref and OCx output.
The timing resolution is one count of the counter. Output compare mode can also be used to
output a single pulse (in One Pulse Mode).

Procedure:

1. Select the counter clock (internal, external, prescaler).

2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.

3. Set the CCxIE and/or CCxDE bits if an interrupt and/or a DMA request is to be
generated.

4. Select the output mode. For example, you must write OCxM=’011’, OCxPE=’0’,
CCxP=’0’ and CCxE=’1’ to toggle OCx output pin when CNT matches CCRx, CCRx
preload is not used, OCx is enabled and active high.

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=’0’, else TIMx_CCRx
shadow register is updated only at the next update event UEV). An example is given in
Figure 123.

General-purpose timer (TIMx) RM0008

288/682

Figure 123. Output compare mode, toggle on OC1.

13.3.9 PWM mode

Pulse Width Modulation mode allows you to generate a signal with a frequency determined
by the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing ‘110’ (PWM mode 1) or ‘111’ (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. You must enable the corresponding preload register by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in
upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, you have to initialize all the registers by setting the UG
bit in the TIMx_EGR register.

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It
can be programmed as active high or active low. OCx output is enabled by the CCxE bit in
the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CCRx≤TIMx_CNT or TIMx_CNT≤TIMx_CCRx (depending on the direction of
the counter). However, to comply with the OCREF_CLR functionality (OCREF can be
cleared by an external event through the ETR signal until the next PWM period), the OCREF
signal is asserted only:

● When the result of the comparison changes, or

● When the output compare mode (OCxM bits in TIMx_CCMRx register) switches from
the “frozen” configuration (no comparison, OCxM=‘000’) to one of the PWM modes
(OCxM=‘110’ or ‘111’).

This allows to force the PWM by software while running.

The timer is able to generate PWM in edge-aligned mode or center-aligned mode
depending on the CMS bits in the TIMx_CR1 register.

OC1REF=OC1

TIMx_CNT B200 B2010039

TIMx_CCR1 003A

Write B201h in the CC1R register

Match detected on CCR1
Interrupt generated if enabled

003B

B201

003A

RM0008 General-purpose timer (TIMx)

 289/682

PWM edge-aligned mode

Upcounting configuration

Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to the Section :
upcounting mode on page 272.

In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is
high as long as TIMx_CNT <TIMx_CCRx else it becomes low. If the compare value in
TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at
‘1’. If the compare value is 0 then OCxREF is held at ‘0’. Figure 124 shows some edge-
aligned PWM waveforms in an example where TIMx_ARR=8.

Figure 124. Edge-aligned PWM waveforms (ARR=8)

Downcounting configuration

Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to Downcounting
mode on page 275

In PWM mode 1, the reference signal ocxref is low as long as TIMx_CNT>TIMx_CCRx else
it becomes high. If the compare value in TIMx_CCRx is greater than the auto-reload value in
TIMx_ARR, then ocxref is held at ‘1’. 0% PWM is not possible in this mode.

PWM center-aligned mode

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from
‘00’ (all the remaining configurations having the same effect on the ocxref/OCx signals). The
compare flag is set when the counter counts up, when it counts down or both when it counts
up and down depending on the CMS bits configuration. The direction bit (DIR) in the
TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to
the Center-aligned mode (up/down counting) on page 277.

Figure 125 shows some center-aligned PWM waveforms in an example where:

● TIMx_ARR=8,

● PWM mode is the PWM mode 1,

● The flag is set when the counter counts down corresponding to the center-aligned
mode 1 selected for CMS=01 in TIMx_CR1 register.

Counter register

‘1’

0 1 2 3 4 5 6 7 8 0 1

‘0’

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0

General-purpose timer (TIMx) RM0008

290/682

Figure 125. Center-aligned PWM waveforms (ARR=8)

Hints on using center-aligned mode:

● When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter counts up or down depending on the value written in the DIR bit
in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the
same time by the software.

● Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:

– The direction is not updated if you write a value in the counter that is greater than
the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter was
counting up, it continues to count up.

– The direction is updated if you write 0 or write the TIMx_ARR value in the counter
but no Update Event UEV is generated.

● The safest way to use center-aligned mode is to generate an update by software
(setting the UG bit in the TIMx_EGR register) just before starting the counter and not to
write the counter while it is running.

CCxIF

0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1Counter register

CCRx = 4
OCxREF

CMS=01
CMS=10
CMS=11

CCxIF

CCRx = 7
OCxREF

CMS=10 or 11

CCxIF

CCRx = 8
OCxREF

CMS=01
CMS=10
CMS=11

'1'

CCxIF

CCRx > 8
OCxREF

CMS=01
CMS=10
CMS=11

'1'

CCxIF

CCRx = 0
OCxREF

CMS=01
CMS=10
CMS=11

'0'

ai14681

RM0008 General-purpose timer (TIMx)

 291/682

13.3.10 One pulse mode

One Pulse Mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output compare mode or PWM mode. You select One Pulse Mode
by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically
at the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be:

In upcounting: CNT<CCRx≤ARR (in particular, 0<CCRx),

In downcounting: CNT>CCRx.

Figure 126. Example of one pulse mode.

For example you may want to generate a positive pulse on OC1 with a length of tPULSE and
after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

Let’s use TI2FP2 as trigger 1:

● Map TI2FP2 on TI2 by writing IC2S=’01’ in the TIMx_CCMR1 register.

● TI2FP2 must detect a rising edge, write CC2P=’0’ in the TIMx_CCER register.

● Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’ in
the TIMx_SMCR register.

● TI2FP2 is used to start the counter by writing SMS to ‘110’ in the TIMx_SMCR register
(trigger mode).

TI2

OC1REF

C
ou

nt
er

t
0

TIM1_ARR

TIM1_CCR1

OC1

tDELAY
tPULSE

General-purpose timer (TIMx) RM0008

292/682

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).

● The tDELAY is defined by the value written in the TIMx_CCR1 register.

● The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR1).

● Let’s say you want to build a waveform with a transition from ‘0’ to ‘1’ when a compare
match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the auto-reload
value. To do this you enable PWM mode 2 by writing OC1M=111 in the TIMx_CCMR1
register. You can optionally enable the preload registers by writing OC1PE=’1’ in the
TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case you have to
write the compare value in the TIMx_CCR1 register, the auto-reload value in the
TIMx_ARR register, generate an update by setting the UG bit and wait for external
trigger event on TI2. CC1P is written to ‘0’ in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.

You only want 1 pulse, so you write ‘1’ in the OPM bit in the TIMx_CR1 register to stop the
counter at the next update event (when the counter rolls over from the auto-reload value
back to 0).

Particular case: OCx fast enable:

In One Pulse Mode, the edge detection on TIx input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

If you want to output a waveform with the minimum delay, you can set the OCxFE bit in the
TIMx_CCMRx register. Then OCxRef (and OCx) is forced in response to the stimulus,
without taking in account the comparison. Its new level is the same as if a compare match
had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.

13.3.11 Clearing the OCxREF signal on an external event

The OCxREF signal for a given channel can be reset by applying a High level on the ETRF
input (OCxCE enable bit of the corresponding TIMx_CCMRx register set to ‘1’). The
OCxREF remains low until the next update event, UEV, occurs.

This function can be only used in output compare mode and PWM mode. It does not work in
forced mode.

For example, the OCxREF signal can be connected to the output of a comparator to be used
for current handling. In this case, the ETR must be configured as follow:

1. The external trigger prescaler should be kept off: bits ETPS[1:0] of the TIMx_SMCR
register set to ‘00’.

2. The external clock mode 2 must be disabled: bit ECE of the TIM1_SMCR register set to
‘0’.

3. The external trigger polarity (ETP) and the external trigger filter (ETF) can be
configured according to the user needs.

Figure 127 shows the behavior of the OCxREF signal when the ETRF Input becomes High,
for both values of the enable bit OCxCE. In this example, the timer TIMx is programmed in
PWM mode.

RM0008 General-purpose timer (TIMx)

 293/682

Figure 127. Clearing TIMx OCxREF

13.3.12 Encoder interface mode

To select Encoder Interface mode write SMS=‘001’ in the TIMx_SMCR register if the
counter is counting on TI2 edges only, SMS=’010’ if it is counting on TI1 edges only and
SMS=’011’ if it is counting on both TI1 and TI2 edges.

Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER
register. When needed, you can program the input filter as well.

The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to
Table 58. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2
after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted,
TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in
TIMx_CR1 register written to ‘1’). The sequence of transitions of the two inputs is evaluated
and generates count pulses as well as the direction signal. Depending on the sequence the
counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware
accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever
the counter is counting on TI1 only, TI2 only or both TI1 and TI2.

Encoder interface mode acts simply as an external clock with direction selection. This
means that the counter just counts continuously between 0 and the auto-reload value in the
TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So you must
configure TIMx_ARR before starting. In the same way, the capture, compare, prescaler,
trigger output features continue to work as normal.

In this mode, the counter is modified automatically following the speed and the direction of
the incremental encoder and its content, therefore, always represents the encoder’s
position. The count direction correspond to the rotation direction of the connected sensor.
The table summarizes the possible combinations, assuming TI1 and TI2 don’t switch at the
same time.

OCxREF

counter (CNT)

OCxREF

ETRF

(OCxCE=’0’)

(OCxCE=’1’)

OCREF_CLR
becomes high

OCREF_CLR
still high

(CCRx)

General-purpose timer (TIMx) RM0008

294/682

An external incremental encoder can be connected directly to the MCU without external
interface logic. However, comparators are normally be used to convert the encoder’s
differential outputs to digital signals. This greatly increases noise immunity. The third
encoder output which indicate the mechanical zero position, may be connected to an
external interrupt input and trigger a counter reset.

The Figure 128 gives an example of counter operation, showing count signal generation and
direction control. It also shows how input jitter is compensated where both edges are
selected. This might occur if the sensor is positioned near to one of the switching points. For
this example we assume that the configuration is the following:

● CC1S=’01’ (TIMx_CCMR1 register, IC1FP1 mapped on TI1).

● CC2S=’01’ (TIMx_CCMR2 register, IC2FP2 mapped on TI2).

● CC1P=’0’ (TIMx_CCER register, IC1FP1 non-inverted, IC1FP1=TI1).

● CC2P=’0’ (TIMx_CCER register, IC2FP2 non-inverted, IC2FP2=TI2).

● SMS=’011’ (TIMx_SMCR register, both inputs are active on both rising and falling
edges).

● CEN=’1’ (TIMx_CR1 register, Counter is enabled).

Figure 128. Example of counter operation in encoder interface mode.

Figure 129 gives an example of counter behavior when IC1FP1 polarity is inverted (same
configuration as above except CC1P=’1’).

Table 58. Counting direction versus encoder signals

Active edge
Level on opposite
signal (TI1FP1 for

TI2, TI2FP2 for TI1)

TI1FP1 signal TI2FP2 signal

Rising Falling Rising Falling

Counting on
TI1 only

High Down Up No Count No Count

Low Up Down No Count No Count

Counting on
TI2 only

High No Count No Count Up Down

Low No Count No Count Down Up

Counting on
TI1 and TI2

High Down Up Up Down

Low Up Down Down Up

TI1

forward forwardbackwardjitter jitter

up down up

TI2

Counter

RM0008 General-purpose timer (TIMx)

 295/682

Figure 129. Example of encoder interface mode with IC1FP1 polarity inverted.

The timer, when configured in Encoder Interface mode provides information on the sensor’s
current position. You can obtain dynamic information (speed, acceleration, deceleration) by
measuring the period between two encoder events using a second timer configured in
capture mode. The output of the encoder which indicates the mechanical zero can be used
for this purpose. Depending on the time between two events, the counter can also be read
at regular times. You can do this by latching the counter value into a third input capture
register if available (then the capture signal must be periodic and can be generated by
another timer). when available, it is also possible to read its value through a DMA request
generated by a Real-Time clock.

13.3.13 Timer input XOR function

The TI1S bit in the TIM1_CR2 register, allows the input filter of channel 1 to be connected to
the output of a XOR gate, combining the three input pins TIMx_CH1 to TIMx_CH3.

The XOR output can be used with all the timer input functions such as trigger or input
capture.

An example of this feature used to interface Hall sensors is given in Section 12.3.18 on page
236.

13.3.14 Timers and external trigger synchronization

The TIMx Timers can be synchronized with an external trigger in several modes: Reset
mode, Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

● Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits
select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write
CC1P=0 in TIMx_CCER register to validate the polarity (and detect rising edges only).

TI1

forward forwardbackwardjitter jitter

updown

TI2

Counter

down

General-purpose timer (TIMx) RM0008

296/682

● Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

● Start the counter by writing CEN=1 in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA
request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register).

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 130. Control circuit in reset mode

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

● Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits
select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write
CC1P=1 in TIMx_CCER register to validate the polarity (and detect low level only).

● Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

● Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the
counter doesn’t start if CEN=0, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts
or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.

00

 Counter clock = CK_CNT = CK_PSC

Counter register 01 02 03 00 01 02 0332 33 34 35 36

UG

TI1

3130

TIF

RM0008 General-purpose timer (TIMx)

 297/682

Figure 131. Control circuit in gated mode

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

● Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC2F=0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. CC2S bits are
selecting the input capture source only, CC2s=01 in TIMx_CCMR1 register. Write
CC2P=1 in TIMx_CCER register to validate the polarity (and detect low level only).

● Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI2 as the input source by writing TS=110 in TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the
resynchronization circuit on TI2 input.

Figure 132. Control circuit in trigger mode

Slave mode: External Clock mode 2 + trigger mode

The external clock mode 2 can be used in addition to another slave mode (except external
clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock
input, and another input can be selected as trigger input when operating in reset mode,
gated mode or trigger mode. It is recommended not to select ETR as TRGI through the TS
bits of TIMx_SMCR register.

 Counter clock = CK_CNT = CK_PSC

Counter register 35 36 37 3832 33 34

TI1

3130

CNT_EN

TIF

Write TIF=0

 Counter clock = CK_CNT = CK_PSC

Counter register 35 36 37 3834

TI2

CNT_EN

TIF

General-purpose timer (TIMx) RM0008

298/682

In the following example, the upcounter is incremented at each rising edge of the ETR signal
as soon as a rising edge of TI1 occurs:

1. Configure the external trigger input circuit by programming the TIMx_SMCR register as
follows:

– ETF = 0000: no filter

– ETPS=00: prescaler disabled

– ETP=0: detection of rising edges on ETR and ECE=1 to enable the external clock
mode 2.

2. Configure the channel 1 as follows, to detect rising edges on TI:

– IC1F=0000: no filter.

– The capture prescaler is not used for triggering and does not need to be
configured.

– CC1S=01in TIMx_CCMR1 register to select only the input capture source

– CC1P=0 in TIMx_CCER register to validate the polarity (and detect rising edge
only).

3. Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on
ETR rising edges.

The delay between the rising edge of the ETR signal and the actual reset of the counter is
due to the resynchronization circuit on ETRP input.

Figure 133. Control circuit in external clock mode 2 + trigger mode

13.3.15 Timer synchronization

The TIMx timers are linked together internally for timer synchronization or chaining. When
one Timer is configured in Master Mode, it can reset, start, stop or clock the counter of
another Timer configured in Slave Mode.

The following figure presents an overview of the trigger selection and the master mode
selection blocks.

 Counter clock = CK_CNT = CK_PSC

Counter register 35 3634

ETR

CEN/CNT_EN

TIF

TI1

RM0008 General-purpose timer (TIMx)

 299/682

Using one timer as prescaler for the another

Figure 134. Master/Slave timer example

For example, you can configure Timer 1 to act as a prescaler for Timer 2. Refer to
Figure 134. To do this:

● Configure Timer 1 in master mode so that it outputs a periodic trigger signal on each
update event UEV. If you write MMS=010 in the TIM1_CR2 register, a rising edge is
output on TRGO1 each time an update event is generated.

● To connect the TRGO1 output of Timer 1 to Timer 2, Timer 2 must be configured in
slave mode using ITR1 as internal trigger. You select this through the TS bits in the
TIM2_SMCR register (writing TS=000).

● Then you put the slave mode controller in external clock mode 1 (write SMS=111 in the
TIM2_SMCR register). This causes Timer 2 to be clocked by the rising edge of the
periodic Timer 1 trigger signal (which correspond to the timer 1 counter overflow).

● Finally both timers must be enabled by setting their respective CEN bits (TIMx_CR1
register).

Note: If OCx is selected on Timer 1 as trigger output (MMS=1xx), its rising edge is used to clock
the counter of timer 2.

Using one timer to enable another timer

In this example, we control the enable of Timer 2 with the output compare 1 of Timer 1.
Refer to Figure 134 for connections. Timer 2 counts on the divided internal clock only when
OC1REF of Timer 1 is high. Both counter clock frequencies are divided by 3 by the
prescaler compared to CK_INT (fCK_CNT = fCK_INT/3).

● Configure Timer 1 master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIM1_CR2 register).

● Configure the Timer 1 OC1REF waveform (TIM1_CCMR1 register).

● Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR
register).

● Configure Timer 2 in gated mode (SMS=101 in TIM2_SMCR register).

● Enable Timer 2 by writing ‘1’ in the CEN bit (TIM2_CR1 register).

● Start Timer 1 by writing ‘1’ in the CEN bit (TIM1_CR1 register).

Note: The counter 2 clock is not synchronized with counter 1, this mode only affects the Timer 2
counter enable signal.

TRGO1
UEV

ITR1

Prescaler Counter

SMSTSMMS

TIMER 1 TIMER 2

Master

mode

 control

Slave

mode

 control

 CK_PSC

Prescaler Counter

 Clock

Input

 selection
 trigger

General-purpose timer (TIMx) RM0008

300/682

Figure 135. Gating timer 2 with OC1REF of timer 1

In the example in Figure 135, the Timer 2 counter and prescaler are not initialized before
being started. So they start counting from their current value. It is possible to start from a
given value by resetting both timers before starting Timer 1. You can then write any value
you want in the timer counters. The timers can easily be reset by software using the UG bit
in the TIMx_EGR registers.

In the next example, we synchronize Timer 1 and Timer 2. Timer 1 is the master and starts
from 0. Timer 2 is the slave and starts from 0xE7. The prescaler ratio is the same for both
timers. Timer 2 stops when Timer 1 is disabled by writing ‘0’ to the CEN bit in the TIM1_CR1
register:

● Configure Timer 1 master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIM1_CR2 register).

● Configure the Timer 1 OC1REF waveform (TIM1_CCMR1 register).

● Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR
register).

● Configure Timer 2 in gated mode (SMS=101 in TIM2_SMCR register).

● Reset Timer 1 by writing ‘1’ in UG bit (TIM1_EGR register).

● Reset Timer 2 by writing ‘1’ in UG bit (TIM2_EGR register).

● Initialize Timer 2 to 0xE7 by writing ‘0xE7’ in the timer 2 counter (TIM2_CNTL).

● Enable Timer 2 by writing ‘1’ in the CEN bit (TIM2_CR1 register).

● Start Timer 1 by writing ‘1’ in the CEN bit (TIM1_CR1 register).

● Stop Timer 1 by writing ‘0’ in the CEN bit (TIM1_CR1 register).

TIMER 2-TIF

Write TIF=0

FC FD FE FF 00

3045 3047 3048

CK_INT

TIMER1-OC1REF

TIMER1-CNT

TIMER2-CNT

01

3046

RM0008 General-purpose timer (TIMx)

 301/682

Figure 136. Gating timer 2 with Enable of timer 1

Using one timer to start another timer

In this example, we set the enable of Timer 2 with the update event of Timer 1. Refer to
Figure 134 for connections. Timer 2 starts counting from its current value (which can be
non-zero) on the divided internal clock as soon as the update event is generated by Timer 1.
When Timer 2 receives the trigger signal its CEN bit is automatically set and the counter
counts until we write ‘0’ to the CEN bit in the TIM2_CR1 register. Both counter clock
frequencies are divided by 3 by the prescaler compared to CK_INT (fCK_CNT = fCK_INT/3).

● Configure Timer 1 master mode to send its Update Event (UEV) as trigger output
(MMS=010 in the TIM1_CR2 register).

● Configure the Timer 1 period (TIM1_ARR registers).

● Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR
register).

● Configure Timer 2 in trigger mode (SMS=110 in TIM2_SMCR register).

● Start Timer 1 by writing ‘1’ in the CEN bit (TIM1_CR1 register).

Figure 137. Triggering timer 2 with Update of timer 1

TIMER 2-TIF

Write TIF=0

75 00 01

CK_INT

TIMER1-CEN=CNT_EN

TIMER1-CNT

TIMER2-CNT

02

TIMER1-CNT_INIT

AB 00 E7 E8 E9

TIMER2-CNT_INIT

TIMER2
write CNT

TIMER 2-TIF

Write TIF=0

FD FE FF 00 01

45 47 48

CK_INT

TIMER1-UEV

TIMER1-CNT

TIMER2-CNT

02

46

TIMER2-CEN=CNT_EN

General-purpose timer (TIMx) RM0008

302/682

As in the previous example, you can initialize both counters before starting counting.
Figure 138 shows the behavior with the same configuration as in Figure 137 but in trigger
mode instead of gated mode (SMS=110 in the TIM2_SMCR register).

Figure 138. Triggering timer 2 with Enable of timer 1

Using one timer as prescaler for another timer

For example, you can configure Timer 1 to act as a prescaler for Timer 2. Refer to
Figure 134 for connections. To do this:

● Configure Timer 1 master mode to send its Update Event (UEV) as trigger output
(MMS=010 in the TIM1_CR2 register). then it outputs a periodic signal on each counter
overflow.

● Configure the Timer 1 period (TIM1_ARR registers).

● Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR
register).

● Configure Timer 2 in external clock mode 1 (SMS=111 in TIM2_SMCR register).

● Start Timer 2 by writing ‘1’ in the CEN bit (TIM2_CR1 register).

● Start Timer 1 by writing ‘1’ in the CEN bit (TIM1_CR1 register).

Starting 2 timers synchronously in response to an external trigger

In this example, we set the enable of timer 1 when its TI1 input rises, and the enable of
Timer 2 with the enable of Timer 1. Refer to Figure 134 for connections. To ensure the

TIMER 2-TIF

Write TIF=0

75 00 01

CK_INT

TIMER1-CEN=CNT_EN

TIMER1-CNT

TIMER2-CNT

02

TIMER1-CNT_INIT

CD 00 E7 E8 EA

TIMER2-CNT_INIT

TIMER2
write CNT

E9

RM0008 General-purpose timer (TIMx)

 303/682

counters are aligned, Timer 1 must be configured in Master/Slave mode (slave with respect
to TI1, master with respect to Timer 2):

● Configure Timer 1 master mode to send its Enable as trigger output (MMS=001 in the
TIM1_CR2 register).

● Configure Timer 1 slave mode to get the input trigger from TI1 (TS=100 in the
TIM1_SMCR register).

● Configure Timer 1 in trigger mode (SMS=110 in the TIM1_SMCR register).

● Configure the Timer 1 in Master/Slave mode by writing MSM=’1’ (TIM1_SMCR
register).

● Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR
register).

● Configure Timer 2 in trigger mode (SMS=110 in the TIM2_SMCR register).

When a rising edge occurs on TI1 (Timer 1), both counters starts counting synchronously on
the internal clock and both TIF flags are set.

Note: In this example both timers are initialized before starting (by setting their respective UG
bits). Both counters starts from 0, but you can easily insert an offset between them by
writing any of the counter registers (TIMx_CNT). You can see that the master/slave mode
insert a delay between CNT_EN and CK_PSC on timer 1.

Figure 139. Triggering timer 1 and 2 with timer 1 TI1 input.

13.3.16 Debug mode

When the microcontroller enters debug mode (Cortex-M3 core - halted), the TIMx counter
either continues to work normally or stops, depending on DBG_TIMx_STOP configuration
bit in DBG module. For more details, refer to Section 26.15.2: Debug support for timers,
watchdog, bxCAN and I2C.

00 01

CK_INT

TIMER1-CEN=CNT_EN

TIMER1-CNT

TIMER 1-TI1

TIMER 1-CK_PSC

02 03 04 05 06 07 08 09

TIMER1-TIF

00 01

TIMER2-CEN=CNT_EN

TIMER2-CNT

TIMER 2-CK_PSC

02 03 04 05 06 07 08 09

TIMER2-TIF

General-purpose timer (TIMx) RM0008

304/682

13.4 TIMx registers
Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

13.4.1 Control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CKD[1:0] ARPE CMS DIR OPM URS UDIS CEN

rw rw rw rw rw rw rw rw rw rw

Bits 15:10 Reserved, always read as 0

Bits 9:8 CKD: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and
sampling clock used by the digital filters (ETR, TIx),

00: tDTS = tCK_INT

01: tDTS = 2 × tCK_INT

10: tDTS = 4 × tCK_INT

11: Reserved

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered.
1: TIMx_ARR register is buffered.

Bits 6:5 CMS: Center-aligned mode selection
00: Edge-aligned mode. The counter counts up or down depending on the direction bit
(DIR).
01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting down.
10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting up.
11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
both when the counter is counting up or down.

Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as
the counter is enabled (CEN=1)

Bit 4 DIR: Direction

0: Counter used as upcounter.
1: Counter used as downcounter.

Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder
mode.

Bit 3 OPM: One pulse mode

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the bit CEN).

RM0008 General-purpose timer (TIMx)

 305/682

13.4.2 Control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.

0: Any of the following events generate an update interrupt or DMA request if enabled.
These events can be:
– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller

1: Only counter overflow/underflow generates an update interrupt or DMA request if enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.

0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow
– Setting the UG bit

– Update generation through the slave mode controller

Buffered registers are then loaded with their preload values.

1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is
set or if a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

Note: External clock, gated mode and encoder mode can work only if the CEN bit has been
previously set by software. However trigger mode can set the CEN bit automatically by
hardware.

CEN is cleared automatically in one pulse mode, when an update event occurs.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TI1S MMS[2:0] CCDS

Reserved
rw rw rw rw rw

Bits 15:8 Reserved, always read as 0.

Bit 7 TI1S: TI1 selection

0: The TIMx_CH1 pin is connected to TI1 input.
1: The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination)

See also Section 12.3.18: Interfacing with Hall sensors on page 236

General-purpose timer (TIMx) RM0008

306/682

13.4.3 Slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000

Bits 6:4 MMS: Master mode selection

These bits allow to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.

001: Enable - the Counter enable signal, CNT_EN, is used as trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer is
enabled. The Counter Enable signal is generated by a logic OR between CEN control bit and
the trigger input when configured in gated mode.

When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO,
except if the master/slave mode is selected (see the MSM bit description in TIMx_SMCR
register).

010: Update - The update event is selected as trigger output (TRGO). For instance a master
timer can then be used as a prescaler for a slave timer.
011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to be
set (even if it was already high), as soon as a capture or a compare match occurred.
(TRGO).
100: Compare - OC1REF signal is used as trigger output (TRGO).
101: Compare - OC2REF signal is used as trigger output (TRGO).
110: Compare - OC3REF signal is used as trigger output (TRGO).
111: Compare - OC4REF signal is used as trigger output (TRGO).

Bit 3 CCDS: Capture/Compare DMA selection

0: CCx DMA request sent when CCx event occurs
1: CCx DMA requests sent when update event occurs

Bits 2:0 Reserved, always read as 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ETP ECE ETPS[1:0] ETF[3:0] MSM TS[2:0]
Res.

SMS[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0008 General-purpose timer (TIMx)

 307/682

Bit 15 ETP: External trigger polarity

This bit selects whether ETR or ETR is used for trigger operations
0: ETR is non-inverted, active at high level or rising edge.
1: ETR is inverted, active at low level or falling edge.

Bit 14 ECE: External clock enable

This bit enables External clock mode 2.
0: External clock mode 2 disabled.
1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF
signal.

Note: 1: Setting the ECE bit has the same effect as selecting external clock mode 1 with
TRGI connected to ETRF (SMS=111 and TS=111).
2: It is possible to simultaneously use external clock mode 2 with the following slave
modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be
connected to ETRF in this case (TS bits must not be 111).
3: If external clock mode 1 and external clock mode 2 are enabled at the same time,
the external clock input is ETRF.

Bits 13:12 ETPS: External trigger prescaler

External trigger signal ETRP frequency must be at most 1/4 of CK_INT frequency. A
prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external
clocks.

00: Prescaler OFF.
01: ETRP frequency divided by 2.
10: ETRP frequency divided by 4.
11: ETRP frequency divided by 8.

Bits 11:8 ETF[3:0]: External trigger filter

This bit-field then defines the frequency used to sample ETRP signal and the length of the
digital filter applied to ETRP. The digital filter is made of an event counter in which N events
are needed to validate a transition on the output:

0000: No filter, sampling is done at fDTS.
0001: fSAMPLING=fCK_INT, N=2.
0010: fSAMPLING=fCK_INT, N=4.
0011: fSAMPLING=fCK_INT, N=8.
0100: fSAMPLING=fDTS/2, N=6.
0101: fSAMPLING=fDTS/2, N=8.
0110: fSAMPLING=fDTS/4, N=6.
0111: fSAMPLING=fDTS/4, N=8.
1000: fSAMPLING=fDTS/8, N=6.
1001: fSAMPLING=fDTS/8, N=8.
1010: fSAMPLING=fDTS/16, N=5.
1011: fSAMPLING=fDTS/16, N=6.
1100: fSAMPLING=fDTS/16, N=8.
1101: fSAMPLING=fDTS/32, N=5.
1110: fSAMPLING=fDTS/32, N=6.
1111: fSAMPLING=fDTS/32, N=8.

Bit 7 MSM: Master/Slave mode

0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect
synchronization between the current timer and its slaves (through TRGO). It is useful if we
want to synchronize several timers on a single external event.

General-purpose timer (TIMx) RM0008

308/682

Bits 6:4 TS: Trigger selection

This bit-field selects the trigger input to be used to synchronize the counter.
000: Internal Trigger 0 (ITR0). TIM1
001: Internal Trigger 1 (ITR1). TIM2
010: Internal Trigger 2 (ITR2). TIM3
011: Internal Trigger 3 (ITR3). TIM4
100: TI1 Edge Detector (TI1F_ED).
101: Filtered Timer Input 1 (TI1FP1).
110: Filtered Timer Input 2 (TI2FP2).
111: External Trigger input (ETRF).
See Table 59: TIMx Internal trigger connection on page 308 for more details on ITRx
meaning for each Timer.

Note: These bits must be changed only when they are not used (e.g. when SMS=000) to
avoid wrong edge detections at the transition.

Bit 3 Reserved, always read as 0.

Bits 2:0 SMS: Slave mode selection

When external signals are selected the active edge of the trigger signal (TRGI) is linked to
the polarity selected on the external input (see Input Control register and Control Register
description.
000: Slave mode disabled - if CEN = ‘1’ then the prescaler is clocked directly by the internal
clock.
001: Encoder mode 1 - Counter counts up/down on TI2FP2 edge depending on TI1FP1
level.
010: Encoder mode 2 - Counter counts up/down on TI1FP1 edge depending on TI2FP2
level.
011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges
depending on the level of the other input.
100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter
and generates an update of the registers.

101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of
the counter are controlled.
110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not
reset). Only the start of the counter is controlled.
111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

Note: The gated mode must not be used if TI1F_ED is selected as the trigger input
(TS=’100’). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the
gated mode checks the level of the trigger signal.

Table 59. TIMx Internal trigger connection

Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) ITR2 (TS = 010) ITR3 (TS = 011)

TIM2 TIM1 TIM8 TIM3 TIM4

TIM3 TIM1 TIM2 TIM5 TIM4

TIM4 TIM1 TIM2 TIM3 TIM8

TIM5 TIM2 TIM3 TIM4 TIM8

RM0008 General-purpose timer (TIMx)

 309/682

13.4.4 DMA/Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
TDE

Res

CC4
DE

CC3
DE

CC2
DE

CC1
DE UDE

Res.
TIE

Res
CC4IE CC3IE CC2IE CC1IE UIE

rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, always read as 0.

Bit 14 TDE: Trigger DMA request enable

0: Trigger DMA request disabled.
1: Trigger DMA request enabled.

Bit 13 Reserved, always read as 0

Bit 12 CC4DE: Capture/Compare 4 DMA request enable

0: CC4 DMA request disabled.
1: CC4 DMA request enabled.

Bit 11 CC3DE: Capture/Compare 3 DMA request enable

0: CC3 DMA request disabled.
1: CC3 DMA request enabled.

Bit 10 CC2DE: Capture/Compare 2 DMA request enable

0: CC2 DMA request disabled.
1: CC2 DMA request enabled.

Bit 9 CC1DE: Capture/Compare 1 DMA request enable

0: CC1 DMA request disabled.
1: CC1 DMA request enabled.

Bit 8 UDE: Update DMA request enable

0: Update DMA request disabled.
1: Update DMA request enabled.

Bit 7 Reserved, always read as 0.

Bit 6 TIE: Trigger interrupt enable

0: Trigger interrupt disabled.
1: Trigger interrupt enabled.

Bit 5 Reserved, always read as 0.

Bit 4 CC4IE: Capture/Compare 4 interrupt enable

0: CC4 interrupt disabled.
1: CC4 interrupt enabled.

Bit 3 CC3IE: Capture/Compare 3 interrupt enable

0: CC3 interrupt disabled.
1: CC3 interrupt enabled.

General-purpose timer (TIMx) RM0008

310/682

13.4.5 Status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

Bit 2 CC2IE: Capture/Compare 2 interrupt enable

0: CC2 interrupt disabled.
1: CC2 interrupt enabled.

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled.
1: CC1 interrupt enabled.

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled.
1: Update interrupt enabled.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

CC4
OF

CC3
OF

CC2
OF

CC1
OF Reserved

TIF
Res

CC4IF CC3IF CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bit 15:13 Reserved, always read as 0.

Bit 12 CC4OF: Capture/Compare 4 overcapture flag

refer to CC1OF description

Bit 11 CC3OF: Capture/Compare 3 overcapture flag

refer to CC1OF description

Bit 10 CC2OF: Capture/Compare 2 overcapture flag

refer to CC1OF description

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set

Bits 8:7 Reserved, always read as 0.

Bit 6 TIF: Trigger interrupt flag

This flag is set by hardware on trigger event (active edge detected on TRGI input when the
slave mode controller is enabled in all modes but gated mode, both edges in case gated
mode is selected). It is cleared by software.
0: No trigger event occurred.
1: Trigger interrupt pending.

Bit 5 Reserved, always read as 0

Bit 4 CC4IF: Capture/Compare 4 interrupt flag

refer to CC1IF description

Bit 3 CC3IF: Capture/Compare 3 interrupt flag

refer to CC1IF description

RM0008 General-purpose timer (TIMx)

 311/682

13.4.6 Event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

Bit 2 CC2IF: Capture/Compare 2 interrupt flag

refer to CC1IF description

Bit 1 CC1IF: Capture/compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value, with some
exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register
description). It is cleared by software.
0: No match.
1: The content of the counter TIMx_CNT has matched the content of the TIMx_CCR1
register.

If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred.
1: The counter value has been captured in TIMx_CCR1 register (An edge has been
detected on IC1 which matches the selected polarity).

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow or underflow regarding the repetition counter value (update if REP_CNT=0)
and if the UDIS=0 in the TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0
and UDIS=0 in the TIMx_CR1 register.

– When CNT is reinitialized by a trigger event (refer to the synchro control register
description), if URS=0 and UDIS=0 in the TIMx_CR1 register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TG

Res.
CC4G CC3G CC2G CC1G UG

w w w w w w

Bits 15:7 Reserved, always read as 0.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action.
1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if
enabled.

Bit 5 Reserved, always read as 0.

Bit 4 CC4G: Capture/compare 4 generation

refer to CC1G description

Bit 3 CC3G: Capture/compare 3 generation

refer to CC1G description

General-purpose timer (TIMx) RM0008

312/682

13.4.7 Capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So you must take care that the same bit
can have a different meaning for the input stage and for the output stage.

Output compare mode

Bit 2 CC2G: Capture/compare 2 generation

refer to CC1G description

Bit 1 CC1G: Capture/compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action.
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set,
the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the
CC1IF flag was already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action.
1: Re-initialize the counter and generates an update of the registers. Note that the prescaler
counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if
the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload
value (TIMx_ARR) if DIR=1 (downcounting).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC2
CE OC2M[2:0] OC2

PE
OC2
FE CC2S[1:0]

OC1
CE OC1M[2:0] OC1

PE
OC1
FE CC1S[1:0]

IC2F[3:0] IC2PSC[1:0] IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 OC2CE: Output compare 2 clear enable

Bits 14:12 OC2M[2:0]: Output compare 2 mode

Bit 11 OC2PE: Output compare 2 preload enable

Bit 10 OC2FE: Output compare 2 fast enable

RM0008 General-purpose timer (TIMx)

 313/682

Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output.
01: CC2 channel is configured as input, IC2 is mapped on TI2.
10: CC2 channel is configured as input, IC2 is mapped on TI1.
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only
if an internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = ’0’ in TIMx_CCER).

Bit 7 OC1CE: Output compare 1 clear enable
OC1CE: Output Compare 1 Clear Enable
0: OC1Ref is not affected by the ETRF input
1: OC1Ref is cleared as soon as a High level is detected on ETRF input

Bits 6:4 OC1M: Output compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends
on CC1P and CC1NP bits.
000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.
001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter
TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1
else inactive. In downcounting, channel 1 is inactive (OC1REF=‘0’) as long as
TIMx_CNT>TIMx_CCR1 else active (OC1REF=’1’).
111: PWM mode 2 - In upcounting, channel 1 is inactive as long as
TIMx_CNT<TIMx_CCR1 else active. In downcounting, channel 1 is active as long as
TIMx_CNT>TIMx_CCR1 else inactive.

Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed
(LOCK bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in
output).
2: In PWM mode 1 or 2, the OCREF level changes only when the result of the
comparison changes or when the output compare mode switches from “frozen” mode
to “PWM” mode.

Bit 3 OC1PE: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken in account immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded in the active register at each update event.

Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed
(LOCK bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in
output).

2: The PWM mode can be used without validating the preload register only in one
pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed.

General-purpose timer (TIMx) RM0008

314/682

Input capture mode

Bit 2 OC1FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is
ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is
5 clock cycles.
1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC
is set to the compare level independently from the result of the comparison. Delay to sample
the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if
the channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.
01: CC1 channel is configured as input, IC1 is mapped on TI1.
10: CC1 channel is configured as input, IC1 is mapped on TI2.
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only
if an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = ’0’ in TIMx_CCER).

Bits 15:12 IC2F: Input capture 2 filter

Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler

Bits 9:8 CC2S: Capture/compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output.
01: CC2 channel is configured as input, IC2 is mapped on TI2.
10: CC2 channel is configured as input, IC2 is mapped on TI1.
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = ’0’ in TIMx_CCER).

RM0008 General-purpose timer (TIMx)

 315/682

Bits 7:4 IC1F: Input capture 1 filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital
filter applied to TI1. The digital filter is made of an event counter in which N events are
needed to validate a transition on the output:

0000: No filter, sampling is done at fDTS.
0001: fSAMPLING=fCK_INT, N=2.
0010: fSAMPLING=fCK_INT, N=4.
0011: fSAMPLING=fCK_INT, N=8.
0100: fSAMPLING=fDTS/2, N=6.
0101: fSAMPLING=fDTS/2, N=8.
0110: fSAMPLING=fDTS/4, N=6.
0111: fSAMPLING=fDTS/4, N=8.
1000: fSAMPLING=fDTS/8, N=6.
1001: fSAMPLING=fDTS/8, N=8.
1010: fSAMPLING=fDTS/16, N=5.
1011: fSAMPLING=fDTS/16, N=6.
1100: fSAMPLING=fDTS/16, N=8.
1101: fSAMPLING=fDTS/32, N=5.
1110: fSAMPLING=fDTS/32, N=6.
1111: fSAMPLING=fDTS/32, N=8.

Note: In current silicon revision, fDTS is replaced in the formula by CK_INT when ICxF[3:0]=
1, 2 or 3.

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).
The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input.
01: capture is done once every 2 events.
10: capture is done once every 4 events.
11: capture is done once every 8 events.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.
01: CC1 channel is configured as input, IC1 is mapped on TI1.
10: CC1 channel is configured as input, IC1 is mapped on TI2.
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = ’0’ in TIMx_CCER).

General-purpose timer (TIMx) RM0008

316/682

13.4.8 Capture/compare mode register 2 (TIMx_CCMR2)

Address offset: 0x1C

Reset value: 0x0000

Refer to the above CCMR1 register description.

Output compare mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC4
CE OC4M[2:0] OC4

PE
OC4
FE CC4S[1:0]

OC3
CE. OC3M[2:0] OC3

PE
OC3
FE CC3S[1:0]

IC4F[3:0] IC4PSC[1:0] IC3F[3:0] IC3PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 OC4CE: Output compare 4 clear enable

Bits 14:12 OC4M: Output compare 4 mode

Bit 11 OC4PE: Output compare 4 preload enable

Bit 10 OC4FE: Output compare 4 fast enable

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output.
01: CC4 channel is configured as input, IC4 is mapped on TI4.
10: CC4 channel is configured as input, IC4 is mapped on TI3.
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = ’0’ in TIMx_CCER).

Bit 7 OC3CE: Output compare 3 clear enable

Bits 6:4 OC3M: Output compare 3 mode

Bit 3 OC3PE: Output compare 3 preload enable

Bit 2 OC3FE: Output compare 3 fast enable

Bits 1:0 CC3S: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output.
01: CC3 channel is configured as input, IC3 is mapped on TI3.
10: CC3 channel is configured as input, IC3 is mapped on TI4.
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = ’0’ in TIMx_CCER).

RM0008 General-purpose timer (TIMx)

 317/682

Input capture mode

13.4.9 Capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

Bits 15:12 IC4F: Input capture 4 filter

Bits 11:10 IC4PSC: Input capture 4 prescaler

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output.
01: CC4 channel is configured as input, IC4 is mapped on TI4.
10: CC4 channel is configured as input, IC4 is mapped on TI3.
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only
if an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = ’0’ in TIMx_CCER).

Bits 7:4 IC3F: Input capture 3 filter

Bits 3:2 IC3PSC: Input capture 3 prescaler

Bits 1:0 CC3S: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output.
01: CC3 channel is configured as input, IC3 is mapped on TI3.
10: CC3 channel is configured as input, IC3 is mapped on TI4.
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only
if an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = ’0’ in TIMx_CCER).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC4P CC4E

Reserved
CC3P CC3E

Reserved
CC2P CC2E

Reserved
CC1P CC1E

rw rw rw rw rw rw rw rw

Bits 15:14 Reserved, always read as 0.

Bit 13 CC4P: Capture/Compare 4 output polarity

refer to CC1P description

Bit 12 CC4E: Capture/Compare 4 output enable

refer to CC1E description

Bits 11:10 Reserved, always read as 0.

Bit 9 CC3P: Capture/Compare 3 output polarity

refer to CC1P description

Bit 8 CC3E: Capture/Compare 3 output enable

refer to CC1E description

Bits 7:6 Reserved, always read as 0.

Bit 5 CC2P: Capture/Compare 2 output polarity

refer to CC1P description

General-purpose timer (TIMx) RM0008

318/682

Note: The state of the external I/O pins connected to the standard OCx channels depends on the
OCx channel state and the GPIO and AFIO registers.

13.4.10 Counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

13.4.11 Prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

Bit 4 CC2E: Capture/Compare 2 output enable

refer to CC1E description

Bits 3:2 Reserved, always read as 0.

Bit 1 CC1P: Capture/Compare 1 output polarity

CC1 channel configured as output:
0: OC1 active high.
1: OC1 active low.
CC1 channel configured as input:
This bit selects whether IC1 or IC1 is used for trigger or capture operations.
0: non-inverted: capture is done on a rising edge of IC1. When used as external trigger, IC1
is non-inverted.
1: inverted: capture is done on a falling edge of IC1. When used as external trigger, IC1 is
inverted.

Bit 0 CC1E: Capture/Compare 1 output enable

CC1 channel configured as output:
0: Off - OC1 is not active.
1: On - OC1 signal is output on the corresponding output pin.

CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled.
1: Capture enabled.

Table 60. Output control bit for standard OCx channels

CCxE bit OCx output state

0 Output Disabled (OCx=0, OCx_EN=0)

1 OCx=OCxREF + Polarity, OCx_EN=1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0008 General-purpose timer (TIMx)

 319/682

13.4.12 Auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0x0000

13.4.13 Capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).

PSC contains the value to be loaded in the active prescaler register at each update event.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0

ARR[15:0]: Prescaler value
ARR is the value to be loaded in the actual auto-reload register.

Refer to the Section 13.3.1: Time-base unit on page 270 for more details about ARR update
and behavior.

The counter is blocked while the auto-reload value is null.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value)

If channel CC1 is configured as output:
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).

It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit
OC1PE). Else the preload value is copied in the active capture/compare 1 register when an
update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC1 output.

If channel CC1is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1).

General-purpose timer (TIMx) RM0008

320/682

13.4.14 Capture/compare register 2 (TIMx_CCR2)

Address offset: 0x38

Reset value: 0x0000

13.4.15 Capture/compare register 3 (TIMx_CCR3)

Address offset: 0x3C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR2[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR2[15:0]: Capture/Compare 2 value
If channel CC2 is configured as output:
CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit
OC2PE). Else the preload value is copied in the active capture/compare 2 register when an
update event occurs.

The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC2 output.

If channel CC2 is configured as input:
CCR2 is the counter value transferred by the last input capture 2 event (IC2).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR3[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR3[15:0]: Capture/Compare value

If channel CC3 is configured as output:
CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value).

It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register (bit
OC3PE). Else the preload value is copied in the active capture/compare 3 register when an
update event occurs.

The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC3 output.

If channel CC3is configured as input:
CCR3 is the counter value transferred by the last input capture 3 event (IC3).

RM0008 General-purpose timer (TIMx)

 321/682

13.4.16 Capture/compare register 4 (TIMx_CCR4)

Address offset: 0x40

Reset value: 0x0000

13.4.17 DMA control register (TIMx_DCR)

Address offset: 0x48

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR4[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR4[15:0]: Capture/Compare value
1/ if CC4 channel is configured as output (CC4S bits):
CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR4 register (bit
OC4PE). Else the preload value is copied in the active capture/compare 4 register when an
update event occurs.

The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC4 output.

2/ if CC4 channel is configured as input (CC4S bits in TIMx_CCMR4 register):
CCR4 is the counter value transferred by the last input capture 4 event (IC4).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DBL[4:0]

Reserved
DBA[4:0]

rw rw rw rw rw rw rw rw rw rw

Bits 15:13 Reserved, always read as 0

Bits 12:8 DBL[4:0]: DMA burst length

This 5-bits vector defines the length of DMA transfers (the timer recognizes a burst transfer
when a read or a write access is done to the TIMx_DMAR address), i.e. the number of bytes to
be transferred.
00000: 1 byte,
00001: 2 bytes,
00010: 3 bytes,
...
10001: 18 bytes.

Bits 7:5 Reserved, always read as 0

Bits 4:0 DBA[4:0]: DMA base address

This 5-bit vector defines the base-address for DMA transfers (when read/write access are
done through the TIMx_DMAR address). DBA is defined as an offset starting from the
address of the TIMx_CR1 register.
Example:
00000: TIMx_CR1,
00001: TIMx_CR2,
00010: TIMx_SMCR,
...

General-purpose timer (TIMx) RM0008

322/682

13.4.18 DMA address for full transfer (TIMx_DMAR)

Address offset: 0x4C

Reset value: 0x0000

13.4.19 TIMx register map

TIMx registers are mapped as 16-bit addressable registers as described in the table below:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMAB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 DMAB[15:0]: DMA register for burst accesses
A read or write access to the DMAR register accesses the register located at the address:

“(TIMx_CR1 address) + DBA + (DMA index)” in which:

TIMx_CR1 address is the address of the control register 1,

DBA is the DMA base address configured in the TIMx_DCR register,

DMA index is the offset automatically controlled by the DMA transfer, depending on the
length of the transfer DBL in the TIMx_DCR register.

Table 61. TIMx register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

Reserved
CKD
[1:0]

A
R

P
E CMS

[1:0] D
IR

O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0 0 0 0 0

0x04
TIMx_CR2

Reserved T
I1

S MMS[2:0]

C
C

D
S

Reserved

Reset value 0 0 0 0 0

0x08
TIMx_SMCR

Reserved E
T

P

E
C

E ETPS
[1:0] ETF[3:0]

M
S

M TS[2:0]

R
es

er
ve

d

SMS[2:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
TIMx_DIER

Reserved T
D

E

C
O

M
D

E

C
C

4D
E

C
C

3D
E

C
C

2D
E

C
C

1D
E

U
D

E

R
es

er
ve

d

T
IE

C
O

M
IE

C
C

4I
E

C
C

3I
E

C
C

2I
E

C
C

1I
E

U
IE

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
TIMx_SR

Reserved

C
C

4O
F

C
C

3O
F

C
C

2O
F

C
C

1O
F

R
es

er
ve

d

T
IF

C
O

M
IF

C
C

4I
F

C
C

3I
F

C
C

2I
F

C
C

1I
F

U
IF

Reset value 0 0 0 0 0 0 0 0 0 0 0

0x14
TIMx_EGR

Reserved T
G

R
es

er
ve

d

C
C

4G

C
C

3G

C
C

2G

C
C

1G

U
G

Reset value 0 0 0 0 0 0

0x18

TIMx_CCMR1
Output Compare

mode Reserved

O
C

2C
E

OC2M
[2:0]

O
C

2P
E

O
C

2F
E

CC2S
[1:0]

O
C

1C
E

OC1M
[2:0]

O
C

1P
E

O
C

1F
E

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIMx_CCMR1
Input Capture

mode Reserved
IC2F[3:0]

IC2
PSC
[1:0]

CC2S
[1:0] IC1F[3:0]

IC1
PSC
[1:0]

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM0008 General-purpose timer (TIMx)

 323/682

Refer to Table 1 on page 35 for the register boundary addresses.

0x1C

TIMx_CCMR2
Output Compare

mode Reserved

O
24

C
E OC4M

[2:0]

O
C

4P
E

O
C

4F
E

CC4S
[1:0]

O
C

3C
E

OC3M
[2:0]

O
C

3P
E

O
C

3F
E

CC3S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIMx_CCMR2
Input Capture

mode Reserved
IC4F[3:0]

IC4
PSC
[1:0]

CC4S
[1:0] IC3F[3:0]

IC3
PSC
[1:0]

CC3S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
TIMx_CCER

Reserved C
C

4P

C
C

4E

R
es

er
ve

d

C
C

3P

C
C

3E

R
es

er
ve

d

C
C

2P

C
C

2E

R
es

er
ve

d

C
C

1P

C
C

1E

Reset value 0 0 0 0 0 0 0 0

0x24
TIMx_CNT

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

Reserved
PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR

Reserved
ARR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x30 Reserved

0x34
TIMx_CCR1

Reserved
CCR1[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x38
TIMx_CCR2

Reserved
CCR2[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C
TIMx_CCR3

Reserved
CCR3[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x40
TIMx_CCR4

Reserved
CCR4[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44 Reserved

0x48
TIMx_DCR

Reserved
DBL[4:0]

Reserved
DBA[4:0]

Reset value 0 0 0 0 0 0 0 0 0 0

0x4C
TIMx_DMAR

Reserved
DMAB[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 61. TIMx register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Basic timer (TIM6&7) RM0008

324/682

14 Basic timer (TIM6&7)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This section applies to high-density STM32F101xx and STM32F103xx devices only.

14.1 TIM6&7 introduction
The basic timers TIM6 and TIM7 consist of a 16-bit auto-reload counter driven by a
programmable prescaler.

They may be used as generic timers for time-base generation but they are also specifically
used to drive the digital-to-analog converter (DAC). In fact, the timers are internally
connected to the DAC and are able to drive it through their trigger outputs.

The timers are completely independent, and do not share any resources.

14.2 TIM6&TIM7 main features
Basic timer (TIM6&7) features include:

● 16-bit auto-reload upcounter

● 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock
frequency by any factor between 1 and 65535

● Synchronization circuit to trigger the DAC

● Interrupt/DMA generation on the update event: counter overflow

RM0008 Basic timer (TIM6&7)

 325/682

Figure 140. Basic timer block diagram

14.3 TIM6&TIM7 functional description

14.3.1 Time-base unit

The main block of the programmable timer is a 16-bit upcounter with its related auto-reload
register. The counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

● Counter Register (TIMx_CNT)

● Prescaler Register (TIMx_PSC)

● Auto-Reload Register (TIMx_ARR)

The auto-reload register is preloaded. The preload register is accessed each time an
attempt is made to write or read the auto-reload register. The contents of the preload
register are transferred into the shadow register permanently or at each update event UEV,
depending on the auto-reload preload enable bit (ARPE) in the TIMx_CR1 register. The
update event is sent when the counter reaches the overflow value and if the UDIS bit equals
0 in the TIMx_CR1 register. It can also be generated by software. The generation of the
update event is described in detail for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in the TIMx_CR1 register is set.

Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

U

Trigger
controller

Stop, Clear or up

TRGO

U

UI

Reset, Enable, Count,

event

Preload registers transferred
to active registers on U event according to control bit

interrupt & DMA output

to DAC

COUNTER
CK_PSC CNTCK_CNT

Controller

Internal clock (CK_INT)
TIMxCLK from RCC

±
Prescaler

PSC

Auto-reload Register

Flag

ai14749b

Basic timer (TIM6&7) RM0008

326/682

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as the TIMx_PSC control register is buffered. The new
prescaler ratio is taken into account at the next update event.

Figure 141 and Figure 142 give some examples of the counter behavior when the prescaler
ratio is changed on the fly.

Figure 141. Counter timing diagram with prescaler division change from 1 to 2

Figure 142. Counter timing diagram with prescaler division change from 1 to 4

 CK_PSC

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update event (UEV)

0

F9 FA FB FCF7

Prescaler control register 0 1

Write a new value in TIMx_PSC

01 02 03

Prescaler buffer 0 1

Prescaler counter 0 1 0 1 0 1 0 1

F8

CK_PSC

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update event (UEV)

0

F9 FA FB FCF7

Prescaler control register 0 3

Write a new value in TIMx_PSC

Prescaler buffer 0 3

Prescaler counter 0 1 2 3 0 1 2 3

F8 01

RM0008 Basic timer (TIM6&7)

 327/682

14.3.2 Counting mode

The counter counts from 0 to the auto-reload value (contents of the TIMx_ARR register),
then restarts from 0 and generates a counter overflow event.

An update event can be generate at each counter overflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller).

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This avoids updating the shadow registers while writing new values into the preload
registers. In this way, no update event occurs until the UDIS bit has been written to 0,
however, the counter and the prescaler counter both restart from 0 (but the prescale rate
does not change). In addition, if the URS (update request selection) bit in the TIMx_CR1
register is set, setting the UG bit generates an update event UEV, but the UIF flag is not set
(so no interrupt or DMA request is sent).

When an update event occurs, all the registers are updated and the update flag (UIF bit in
the TIMx_SR register) is set (depending on the URS bit):

● The buffer of the prescaler is reloaded with the preload value (contents of the
TIMx_PSC register)

● The auto-reload shadow register is updated with the preload value (TIMx_ARR)

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR = 0x36.

Figure 143. Counter timing diagram, internal clock divided by 1

 CK_INT

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 0732 33 34 35 3631

Basic timer (TIM6&7) RM0008

328/682

Figure 144. Counter timing diagram, internal clock divided by 2

Figure 145. Counter timing diagram, internal clock divided by 4

Figure 146. Counter timing diagram, internal clock divided by N

 CK_INT

0035 0000 0001 0002 0003

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0034 0036

Counter overflow

Update event (UEV)

0000 0001

CNT_EN

 TImer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0035 0036

Counter overflow

Update event (UEV)

 CK_INT

 Timer clock = CK_CNT

Counter register 001F 20

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

 CK_INT

RM0008 Basic timer (TIM6&7)

 329/682

Figure 147. Counter timing diagram, update event when ARPE = 0 (TIMx_ARR not
preloaded)

Figure 148. Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded)

14.3.3 Clock source

The counter clock is provided by the Internal clock (CK_INT) source.

The CEN (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual
control bits and can be changed only by software (except for UG that remains cleared
automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal
clock CK_INT.

Figure 149 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 0732 33 34 35 3631

Auto-reload register FF 36

Write a new value in TIMx_ARR

 CK_INT

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 07F1 F2 F3 F4 F5F0

Auto-reload preload register F5 36

Auto-reload shadow register F5 36

Write a new value in TIMx_ARR

CK_PSC

Basic timer (TIM6&7) RM0008

330/682

Figure 149. Control circuit in normal mode, internal clock divided by 1

14.3.4 Debug mode

When the microcontroller enters the debug mode (Cortex-M3 core - halted), the TIMx
counter either continues to work normally or stops, depending on the DBG_TIMx_STOP
configuration bit in the DBG module. For more details, refer to Section 26.15.2: Debug
support for timers, watchdog, bxCAN and I2C.

14.4 TIM6&TIM7 registers
Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

14.4.1 Control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

CK_INT

00

 Counter clock = CK_CNT = CK_PSC

Counter register 01 02 03 04 05 06 0732 33 34 35 3631

CEN=CNT_EN

UG

CNT_INIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ARPE

Reserved
OPM URS UDIS CEN

rw rw rw rw rw

Bits 15:8 Reserved, always read as 0

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered.
1: TIMx_ARR register is buffered.

Bits 6:4 Reserved, always read as 0

Bit 3 OPM: One-pulse mode

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the CEN bit).

RM0008 Basic timer (TIM6&7)

 331/682

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.

0: Any of the following events generates an update interrupt or DMA request if enabled.
These events can be:
– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller

1: Only counter overflow/underflow generates an update interrupt or DMA request if
enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.

0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow

– Setting the UG bit
– Update generation through the slave mode controller

Buffered registers are then loaded with their preload values.

1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC). However the counter and the prescaler are reinitialized if the UG bit is set or if
a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

Note: Gated mode can work only if the CEN bit has been previously set by software. However
trigger mode can set the CEN bit automatically by hardware.

CEN is cleared automatically in one-pulse mode, when an update event occurs.

Basic timer (TIM6&7) RM0008

332/682

14.4.2 Control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

14.4.3 DMA/Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
MMS[2:0]

Reserved
rw rw rw

Bits 15:7 Reserved, always read as 0.

Bits 6:4 MMS: Master mode selection

These bits are used to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as a trigger output (TRGO). If
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.

001: Enable - the Counter enable signal, CNT_EN, is used as a trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer
is enabled. The Counter Enable signal is generated by a logic OR between CEN control bit
and the trigger input when configured in gated mode.

When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO,
except if the master/slave mode is selected (see the MSM bit description in the TIMx_SMCR
register).

010: Update - The update event is selected as a trigger output (TRGO). For instance a
master timer can then be used as a prescaler for a slave timer.

Bits 3:0 Reserved, always read as 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
UDE

Reserved
UIE

rw rw

Bit 15:9 Reserved, always read as 0.

Bit 8 UDE: Update DMA request enable

0: Update DMA request disabled.
1: Update DMA request enabled.

Bit 7:1 Reserved, always read as 0.

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled.
1: Update interrupt enabled.

RM0008 Basic timer (TIM6&7)

 333/682

14.4.4 Status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

14.4.5 Event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
UIF

rc_w0

Bits 15:1 Reserved, always read as 0.

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow or underflow regarding the repetition counter value and if UDIS = 0 in the
TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in the TIMx_EGR register, if
URS = 0 and UDIS = 0 in the TIMx_CR1 register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
UG

w

Bits 15:1 Reserved, always read as 0.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action.
1: Re-initializes the timer counter and generates an update of the registers. Note that the
prescaler counter is cleared too (but the prescaler ratio is not affected).

Basic timer (TIM6&7) RM0008

334/682

14.4.6 Counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

14.4.7 Prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

14.4.8 Auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value
The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).

PSC contains the value to be loaded into the active prescaler register at each update event.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Prescaler value
ARR is the value to be loaded into the actual auto-reload register.
Refer to Section 14.3.1: Time-base unit on page 325 for more details about ARR update and
behavior.
The counter is blocked while the auto-reload value is null.

RM0008 Basic timer (TIM6&7)

 335/682

14.4.9 TIM6&7 register map

TIMx registers are mapped as 16-bit addressable registers as described in the table below:

Refer to Table 1 on page 35 for the register boundary addresses.

Table 62. TIM6&7 - register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

Reserved A
R

P
E

R
es

er
ve

d

O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0

0x04
TIMx_CR2

Reserved
MMS[2:0]

R
es

er
ve

d

Reset value 0 0 0

0x08 Reserved

0x0C
TIMx_DIER

Reserved U
D

E

R
es

er
ve

d

U
IE

Reset value 0 0

0x10
TIMx_SR

Reserved U
IF

Reset value 0

0x14
TIMx_EGR

Reserved U
G

Reset value 0

0x18 Reserved

0x1C Reserved

0x20 Reserved

0x24
TIMx_CNT

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

Reserved
PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR

Reserved
ARR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Real-time clock (RTC) RM0008

336/682

15 Real-time clock (RTC)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F10xxx family, unless otherwise specified.

15.1 RTC introduction
The real-time clock is an independent timer. The RTC provides a set of continuously running
counters which can be used, with suitable software, to provide a clock-calendar function.
The counter values can be written to set the current time/date of the system.

The RTC core and clock configuration (RCC_BDCR register) are in the Backup domain,
which means that RTC setting and time are kept after reset or wakeup from Standby mode.

After reset, access to the Backup registers and RTC is disabled and the Backup domain
(BKP) is protected against possible parasitic write access. To enable access to the Backup
registers and the RTC, proceed as follows:

● enable the power and backup interface clocks by setting the PWREN and BKPEN bits
in the RCC_APB1ENR register

● set the DBP bit the Power Control Register (PWR_CR) to enable access to the Backup
registers and RTC.

RM0008 Real-time clock (RTC)

 337/682

15.2 RTC main features
● Programmable prescaler: division factor up to 220

● 32-bit programmable counter for long-term measurement

● Two separate clocks: PCLK1 for the APB1 interface and RTC clock (must be at least
four times slower than the PCLK1 clock)

● The RTC clock source could be any of the following three:

– HSE clock divided by 128

– LSE oscillator clock

– LSI oscillator clock (refer to Section 6.2.8: RTC clock for details)

● Two separate reset types:

– The APB1 interface is reset by system reset

– The RTC Core (Prescaler, Alarm, Counter and Divider) is reset only by a Backup
domain reset (see Section 6.1.3: Backup domain reset on page 67).

● Three dedicated maskable interrupt lines:

– Alarm interrupt, for generating a software programmable alarm interrupt.

– Seconds interrupt, for generating a periodic interrupt signal with a programmable
period length (up to 1 second).

– Overflow interrupt, to detect when the internal programmable counter rolls over to
zero.

15.3 RTC functional description

15.3.1 Overview

The RTC consists of two main units (see Figure 150 on page 338). The first one (APB1
Interface) is used to interface with the APB1 bus. This unit also contains a set of 16-bit
registers accessible from the APB1 bus in read or write mode (for more information refer to
Section 15.4: RTC registers on page 341). The APB1 interface is clocked by the APB1 bus
clock in order to interface with the APB1 bus.

The other unit (RTC Core) consists of a chain of programmable counters made of two main
blocks. The first block is the RTC prescaler block, which generates the RTC time base
TR_CLK that can be programmed to have a period of up to 1 second. It includes a 20-bit
programmable divider (RTC Prescaler). Every TR_CLK period, the RTC generates an
interrupt (Second Interrupt) if it is enabled in the RTC_CR register. The second block is a
32-bit programmable counter that can be initialized to the current system time. The system
time is incremented at the TR_CLK rate and compared with a programmable date (stored in
the RTC_ALR register) in order to generate an alarm interrupt, if enabled in the RTC_CR
control register.

Real-time clock (RTC) RM0008

338/682

Figure 150. RTC simplified block diagram

32-bit programmable

=

Reload

APB1 interface

APB1 bus

NVIC interrupt
controller

OWF
rising
edge

counter

OWIE

SECF

SECIE

ALRF

ALRIE

Standby mode
exit

powered in Standby

powered in Standby

not powered in Standby

not powered in Standby

powered in Standby

not powered in Standby

Backup domain

RTC_PRL

RTC_DIV RTC_CNT

ai14969

PCLK1

RTCCLK

RTC_CR

RTC_ALR

WKUP pin
WKP_STDBY

RTC_Alarm

RTC_Alarm

RTC_Overflow

RTC_Second

TR_CLK

RTC prescaler

RM0008 Real-time clock (RTC)

 339/682

15.3.2 Resetting RTC registers

All system registers are asynchronously reset by a System Reset or Power Reset, except for
RTC_PRL, RTC_ALR, RTC_CNT, and RTC_DIV.

The RTC_PRL, RTC_ALR, RTC_CNT, and RTC_DIV registers are reset only by a Backup
Domain reset. Refer to Section 6.1.3 on page 67.

15.3.3 Reading RTC registers

The RTC core is completely independent from the RTC APB1 interface.

Software accesses the RTC prescaler, counter and alarm values through the APB1 interface
but the associated readable registers are internally updated at each rising edge of the RTC
clock resynchronized by the RTC APB1 clock. This is also true for the RTC flags.

This means that the first read to the RTC APB1 registers may be corrupted (generally read
as 0) if the APB1 interface has previously been disabled and the read occurs immediately
after the APB1 interface is enabled but before the first internal update of the registers. This
can occur if:

● A system reset or power reset has occurred

● The MCU has just woken up from Standby mode (see Section 4.3: Low-power modes)

● The MCU has just woken up from Stop mode (see Section 4.3: Low-power modes)

In all the above cases, the RTC core has been kept running while the APB1 interface was
disabled (reset, not clocked or unpowered).

Consequently when reading the RTC registers, after having disabled the RTC APB1
interface, the software must first wait for the RSF bit (Register Synchronized Flag) in the
RTC_CRL register to be set by hardware.

Note that the RTC APB1 interface is not affected by WFI and WFE low-power modes.

15.3.4 Configuring RTC registers

To write in the RTC_PRL, RTC_CNT, RTC_ALR registers, the peripheral must enter
Configuration Mode. This is done by setting the CNF bit in the RTC_CRL register.

In addition, writing to any RTC register is only enabled if the previous write operation is
finished. To enable the software to detect this situation, the RTOFF status bit is provided in
the RTC_CR register to indicate that an update of the registers is in progress. A new value
can be written to the RTC registers only when the RTOFF status bit value is ’1’.

Configuration procedure:

1. Poll RTOFF, wait until its value goes to ‘1’

2. Set the CNF bit to enter configuration mode

3. Write to one or more RTC registers

4. Clear the CNF bit to exit configuration mode

5. Poll RTOFF, wait until its value goes to ‘1’ to check the end of the write operation.

The write operation only executes when the CNF bit is cleared; it takes at least three
RTCCLK cycles to complete.

Real-time clock (RTC) RM0008

340/682

15.3.5 RTC flag assertion

The RTC Second flag (SECF) is asserted on each RTC Core clock cycle before the update
of the RTC Counter.

The RTC Overflow flag (OWF) is asserted on the last RTC Core clock cycle before the
counter reaches 0x0000.

The RTC_Alarm and RTC Alarm flag (ALRF) (see Figure 151) are asserted on the last RTC
Core clock cycle before the counter reaches the RTC Alarm value stored in the Alarm
register increased by one (RTC_ALR + 1). The write operation in the RTC Alarm and RTC
Second flag must be synchronized by using one of the following sequences:

● Use the RTC Alarm interrupt and inside the RTC interrupt routine, the RTC Alarm
and/or RTC Counter registers are updated.

● Wait for SECF bit to be set in the RTC Control register. Update the RTC Alarm and/or
the RTC Counter register.

Figure 151. RTC second and alarm waveform example with PR=0003, ALARM=00004

Figure 152. RTC Overflow waveform example with PR=0003

RTC_CNT 0000 0001

RTC_PR 0002 0001 0000 0003 0002 0001 0000 0003

0002

RTC_ALARM

0002 0001 0000 0003

0003

0002 0001 0000 0003

0004

0002 0001 0000 0003

ALRF can be cleared by software

RTC_Second

RTCCLK

0005

0002 0001 0000 0003

(not powered
in Standby)

1 RTCCLK

RTC_CNT FFFFFFFB FFFFFFFC

RTC_PR 0002 0001 0000 0003 0002 0001 0000 0003

FFFFFFFD

RTC_Overflow

0002 0001 0000 0003

FFFFFFFE

0002 0001 0000 0003

FFFFFFFF

0002 0001 0000 0003

OWF can be cleared by software

RTC_Second

RTCCLK

0000

0002 0001 0000 0003

(not powered
in Standby)

1 RTCCLK

RM0008 Real-time clock (RTC)

 341/682

15.4 RTC registers
Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

15.4.1 RTC control register high (RTC_CRH)

Address offset: 0x00
Reset value: 0x0000

These bits are used to mask interrupt requests. Note that at reset all interrupts are disabled,
so it is possible to write to the RTC registers to ensure that no interrupt requests are pending
after initialization. It is not possible to write to the RTC_CRH register when the peripheral is
completing a previous write operation (flagged by RTOFF=0, see Section 15.3.4 on page
339).

The RTC functions are controlled by this control register. Some bits must be written using a
specific configuration procedure (see Configuration procedure:).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
OWIE ALRIE SECIE

rw rw rw

Bits 15:3 Reserved, forced by hardware to 0.

Bit 2 OWIE: Overflow interrupt enable
0: Overflow interrupt is masked.
1: Overflow interrupt is enabled.

Bit 1 ALRIE: Alarm interrupt enable

0: Alarm interrupt is masked.
1: Alarm interrupt is enabled.

Bit 0 SECIE: Second interrupt enable
0: Second interrupt is masked.
1: Second interrupt is enabled.

Real-time clock (RTC) RM0008

342/682

15.4.2 RTC control register low (RTC_CRL)

Address offset: 0x04
Reset value: 0x0020

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RTOFF CNF RSF OWF ALRF SECF

r rw rc_w0 rc_w0 rc_w0 rc_w0

Bits 15:6 Reserved, forced by hardware to 0.

Bit 5 RTOFF: RTC operation OFF

With this bit the RTC reports the status of the last write operation performed on its registers,
indicating if it has been completed or not. If its value is ‘0’ then it is not possible to write to
any of the RTC registers. This bit is read only.
0: Last write operation on RTC registers is still ongoing.
1: Last write operation on RTC registers terminated.

Bit 4 CNF: Configuration flag

This bit must be set by software to enter in configuration mode so as to allow new values to
be written in the RTC_CNT, RTC_ALR or RTC_PRL registers. The write operation is only
executed when the CNF bit is reset by software after has been set.
0: Exit configuration mode (start update of RTC registers).
1: Enter configuration mode.

Bit 3 RSF: Registers synchronized flag

This bit is set by hardware at each time the RTC_CNT and RTC_DIV registers are updated
and cleared by software. Before any read operation after an APB1 reset or an APB1 clock
stop, this bit must be cleared by software, and the user application must wait until it is set to
be sure that the RTC_CNT, RTC_ALR or RTC_PRL registers are synchronized.
0: Registers not yet synchronized.
1: Registers synchronized.

Bit 2 OWF: Overflow flag
This bit is set by hardware when the 32-bit programmable counter overflows. An interrupt is
generated if OWIE=1 in the RTC_CRH register. It can be cleared only by software. Writing
‘1’ has no effect.
0: Overflow not detected
1: 32-bit programmable counter overflow occurred.

Bit 1 ALRF: Alarm flag

This bit is set by hardware when the 32-bit programmable counter reaches the threshold set
in the RTC_ALR register. An interrupt is generated if ALRIE=1 in the RTC_CRH register. It
can be cleared only by software. Writing ‘1’ has no effect.
0: Alarm not detected
1: Alarm detected

Bit 0 SECF: Second flag

This bit is set by hardware when the 32-bit programmable prescaler overflows, thus
incrementing the RTC counter. Hence this flag provides a periodic signal with a period
corresponding to the resolution programmed for the RTC counter (usually one second). An
interrupt is generated if SECIE=1 in the RTC_CRH register. It can be cleared only by
software. Writing ‘1’ has no effect.
0: Second flag condition not met.
1: Second flag condition met.

RM0008 Real-time clock (RTC)

 343/682

The functions of the RTC are controlled by this control register. It is not possible to write to
the RTC_CR register while the peripheral is completing a previous write operation (flagged
by RTOFF=0, see Section 15.3.4 on page 339).

Note: 1 Any flag remains pending until the appropriate RTC_CR request bit is reset by software,
indicating that the interrupt request has been granted.

2 At reset the interrupts are disabled, no interrupt requests are pending and it is possible to
write to the RTC registers.

3 The OWF, ALRF, SECF and RSF bits are not updated when the APB1 clock is not running.

4 The OWF, ALRF, SECF and RSF bits can only be set by hardware and only cleared by
software.

5 If ALRF = 1 and ALRIE = 1, the RTC global interrupt is enabled. If EXTI Line 17 is also
enabled through the EXTI Controller, both the RTC global interrupt and the RTC Alarm
interrupt are enabled.

6 If ALRF = 1, the RTC Alarm interrupt is enabled if EXTI Line 17 is enabled through the EXTI
Controller in interrupt mode. When the EXTI Line 17 is enabled in event mode, a pulse is
generated on this line (no RTC Alarm interrupt generation).

15.4.3 RTC prescaler load register (RTC_PRLH / RTC_PRLL)

The Prescaler Load registers keep the period counting value of the RTC prescaler. They are
write-protected by the RTOFF bit in the RTC_CR register, and a write operation is allowed if
the RTOFF value is ‘1’.

RTC prescaler load register high (RTC_PRLH)

Address offset: 0x08
Write only (see Section 15.3.4 on page 339)
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
PRL[19:16]

w w w w

Bits 15:4 Reserved, forced by hardware to 0.

Bits 3:0 PRL[19:16]: RTC prescaler reload value high

These bits are used to define the counter clock frequency according to the following formula:
fTR_CLK = fRTCCLK/(PRL[19:0]+1)

Caution: The zero value is not recommended. RTC interrupts and flags cannot be asserted
correctly.

Real-time clock (RTC) RM0008

344/682

RTC prescaler load register low (RTC_PRLL)

Address offset: 0x0C
Write only (see Section 15.3.4 on page 339)
Reset value: 0x8000

Note: If the input clock frequency (fRTCCLK) is 32.768 kHz, write 7FFFh in this register to get a
signal period of 1 second.

15.4.4 RTC prescaler divider register (RTC_DIVH / RTC_DIVL)

During each period of TR_CLK, the counter inside the RTC prescaler is reloaded with the
value stored in the RTC_PRL register. To get an accurate time measurement it is possible to
read the current value of the prescaler counter, stored in the RTC_DIV register, without
stopping it. This register is read-only and it is reloaded by hardware after any change in the
RTC_PRL or RTC_CNT registers.

RTC prescaler divider register high (RTC_DIVH)

Address offset: 0x10
Reset value: 0x0000

RTC prescaler divider register low (RTC_DIVL)

Address offset: 0x14
Reset value: 0x8000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PRL[15:0]

w w w w w w w w w w w w w w w w

Bits 15:0 PRL[15:0]: RTC prescaler reload value low

These bits are used to define the counter clock frequency according to the following formula:

fTR_CLK = fRTCCLK/(PRL[19:0]+1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RTC_DIV[19:16]

r r r r

Bits 15:4 Reserved

Bits 3:0 RTC_DIV[19:16]: RTC clock divider high

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTC_DIV[15:0]

r r r r r r r r r r r r r r r r

Bits 15:0 RTC_DIV[15:0]: RTC clock divider low

RM0008 Real-time clock (RTC)

 345/682

15.4.5 RTC counter register (RTC_CNTH / RTC_CNTL)

The RTC core has one 32-bit programmable counter, accessed through two 16-bit registers;
the count rate is based on the TR_CLK time reference, generated by the prescaler.
RTC_CNT registers keep the counting value of this counter. They are write-protected by bit
RTOFF in the RTC_CR register, and a write operation is allowed if the RTOFF value is ‘1’. A
write operation on the upper (RTC_CNTH) or lower (RTC_CNTL) registers directly loads the
corresponding programmable counter and reloads the RTC Prescaler. When reading, the
current value in the counter (system date) is returned.

RTC counter register high (RTC_CNTH)

Address offset: 0x18
Reset value: 0x0000

RTC counter register low (RTC_CNTL)

Address offset: 0x1C
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTC_CNT[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 RTC_CNT[31:16]: RTC counter high

Reading the RTC_CNTH register, the current value of the high part of the RTC Counter
register is returned. To write to this register it is necessary to enter configuration mode (see
Section 15.3.4: Configuring RTC registers on page 339).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTC_CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 RTC_CNT[15:0]: RTC counter low

Reading the RTC_CNTL register, the current value of the lower part of the RTC Counter
register is returned. To write to this register it is necessary to enter configuration mode (see
Section 15.3.4: Configuring RTC registers on page 339).

Real-time clock (RTC) RM0008

346/682

15.4.6 RTC alarm register high (RTC_ALRH / RTC_ALRL)

When the programmable counter reaches the 32-bit value stored in the RTC_ALR register,
an alarm is triggered and the RTC_alarmIT interrupt request is generated. This register is
write-protected by the RTOFF bit in the RTC_CR register, and a write operation is allowed if
the RTOFF value is ‘1’.

RTC alarm register high (RTC_ALRH)

Address offset: 0x20
Write only (see Section 15.3.4 on page 339)
Reset value: 0xFFFF

RTC alarm register low (RTC_ALRL)

Address offset: 0x24
Write only (see Section 15.3.4 on page 339)
Reset value: 0xFFFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTC_ALR[31:16]

w w w w w w w w w w w w w w w w

Bits 15:0 RTC_ALR[31:16]: RTC alarm high

The high part of the alarm time is written by software in this register. To write to this register
it is necessary to enter configuration mode (see Section 15.3.4: Configuring RTC registers
on page 339).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTC_ALR[15:0]

w w w w w w w w w w w w w w w w

Bits 15:0 RTC_ALR[15:0]: RTC alarm low

The low part of the alarm time is written by software in this register. To write to this register it
is necessary to enter configuration mode (see Section 15.3.4: Configuring RTC registers on
page 339).

RM0008 Real-time clock (RTC)

 347/682

15.4.7 RTC register map

RTC registers are mapped as 16-bit addressable registers as described in the table below:

Refer to Table 1 on page 35 for the register boundary addresses.

Table 63. RTC register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x000
RTC_CRH

Reserved O
W

IE

A
LR

IE

S
E

C
IE

Reset value 0 0 0

0x004
RTC_CRL

Reserved

R
TO

F
F

C
N

F

R
S

F

O
W

F

A
LR

F

S
E

C
F

Reset value 1 0 0 0 0 0

0x008
RTC_PRLH

Reserved
PRL[19:16]

Reset value 0 0 0 0

0x00C
RTC_PRLL

Reserved
PRL[15:0]

Reset value 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x010
RTC_DIVH

Reserved
DIV[31:16]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x014
RTC_DIVL

Reserved
DIV[15:0]

Reset value 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x018 RTC_CNTH
Reserved

CNT[13:16]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x01C
RTC_CNTL

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x020
RTC_ALRH

Reserved
ALR[31:16]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0x024
RTC_ALRL

Reserved
ALR[15:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Independent watchdog (IWDG) RM0008

348/682

16 Independent watchdog (IWDG)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F10xxx family, unless otherwise specified.

16.1 IWDG introduction
The STM32F10xxx has two embedded watchdog peripherals which offer a combination of
high safety level, timing accuracy and flexibility of use. Both watchdog peripherals
(Independent and Window) serve to detect and resolve malfunctions due to software failure,
and to trigger system reset or an interrupt (window watchdog only) when the counter
reaches a given timeout value.

The independent watchdog (IWDG) is clocked by its own dedicated low-speed clock
(40 kHz) and thus stays active even if the main clock fails. The window watchdog (WWDG)
clock is prescaled from the APB1 clock and has a configurable time-window that can be
programmed to detect abnormally late or early application behavior.

The IWDG is best suited to applications which require the watchdog to run as a totally
independent process outside the main application, but have lower timing accuracy
constraints. The WWDG is best suited to applications which require the watchdog to react
within an accurate timing window. For further information on the window watchdog, refer to
Section 17 on page 354.

16.2 IWDG main features
● Free-running downcounter

● clocked from an independent RC oscillator (can operate in Standby and Stop modes)

● Reset (if watchdog activated) when the downcounter value of 0x000 is reached

16.3 IWDG functional description
Figure 153 shows the functional blocks of the independent watchdog module.

When the independent watchdog is started by writing the value 0xCCCC in the Key register
(IWDG_KR), the counter starts counting down from the reset value of 0xFFF. When it
reaches the end of count value (0x000) a reset signal is generated (IWDG reset).

Whenever the key value 0xAAAA is written in the IWDG_KR register, the IWDG_RLR value
is reloaded in the counter and the watchdog reset is prevented.

RM0008 Independent watchdog (IWDG)

 349/682

16.3.1 Hardware watchdog

If the “Hardware watchdog” feature is enabled through the device option bits, the watchdog
is automatically enabled at power-on, and will generate a reset unless the Key register is
written by the software before the counter reaches end of count.

16.3.2 Register access protection

Write access to the IWDG_PR and IWDG_RLR registers is protected. To modify them, you
must first write the code 0x5555 in the IWDG_KR register. A write access to this register
with a different value will break the sequence and register access will be protected again.
This implies that it is the case of the reload operation (writing 0xAAAA).
A status register is available to indicate that an update of the prescaler or the down-counter
reload value is on going.

16.3.3 Debug mode

When the microcontroller enters debug mode (Cortex-M3 core halted), the IWDG counter
either continues to work normally or stops, depending on DBG_IWDG_STOP configuration
bit in DBG module. For more details, refer to Section 26.15.2: Debug support for timers,
watchdog, bxCAN and I2C.

Figure 153. Independent watchdog block diagram

Note: The watchdog function is implemented in the VDD voltage domain that is still functional in
Stop and Standby modes.

IWDG RESET
prescaler

12-bit downcounter

IWDG_PR
Prescaler register

IWDG_RLR
Reload register

8-bitLSI

IWDG_KR
Key register

1.8 V voltage domain

VDD voltage domain

IWDG_SR
Status register

 12-bit reload value

(40 kHz)

Table 64. Watchdog timeout period (with 40 kHz input clock)(1)

1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can vary from
30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the
phasing of the APB interface clock versus the RC oscillator 40 kHz clock so that there is always a full RC
period of uncertainty.

Prescaler divider PR[2:0] bits
Min timeout (ms)
RL[11:0]= 0x000

Max timeout (ms)
RL[11:0]= 0xFFF

/4 0 0.1 409.6

/8 1 0.2 819.2

/16 2 0.4 1638.4

/32 3 0.8 3276.8

/64 4 1.6 6553.6

/128 5 3.2 13107.2

/256 6 (or 7) 6.4 26214.4

Independent watchdog (IWDG) RM0008

350/682

The LSI can be calibrated so as to compute the IWDG timeout with an acceptable accuracy.
For more details refer to LSI calibration on page 71.

16.4 IWDG registers
Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

16.4.1 Key register (IWDG_KR)

Address offset: 0x00

Reset value: 0x0000 0000 (reset by Standby mode)

16.4.2 Prescaler register (IWDG_PR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KEY[15:0]

w w w w w w w w w w w w w w w w

Bits 31:16 Reserved, read as 0.

Bits 15:0 KEY[15:0]: Key value (write only, read 0000h)

These bits must be written by software at regular intervals with the key value AAAAh,
otherwise the watchdog generates a reset when the counter reaches 0.
Writing the key value 5555h to enables access to the IWDG_PR and IWDG_RLR registers
(see Section 16.3.2)
Writing the key value CCCCh starts the watchdog (except if the hardware watchdog option is
selected)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
PR[2:0]

rw rw rw

RM0008 Independent watchdog (IWDG)

 351/682

16.4.3 Reload register (IWDG_RLR)

Address offset: 0x08

Reset value: 0x0000 0FFF (reset by Standby mode)

Bits 31:3 Reserved, read as 0.

Bits 2:0 PR[2:0]: Prescaler divider

These bits are write access protected seeSection 16.3.2. They are written by software to
select the prescaler divider feeding the counter clock. PVU bit of IWDG_SR must be reset in
order to be able to change the prescaler divider.
000: divider /4
001: divider /8
010: divider /16
011: divider /32
100: divider /64
101: divider /128
110: divider /256
111: divider /256

Note: Reading this register returns the prescaler value from the VDD voltage domain. This
value may not be up to date/valid if a write operation to this register is ongoing. For this
reason the value read from this register is valid only when the PVU bit in the IWDG_SR
register is reset.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RL[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, read as 0.

Bits11:0 RL[11:0]: Watchdog counter reload value
These bits are write access protected see Section 16.3.2. They are written by software to
define the value to be loaded in the watchdog counter each time the value AAAAh is written
in the IWDG_KR register. The watchdog counter counts down from this value. The timeout
period is a function of this value and the clock prescaler. Refer to Table 64.
The RVU bit in the IWDG_SR register must be reset in order to be able to change the reload
value.

Note: Reading this register returns the reload value from the VDD voltage domain. This value
may not be up to date/valid if a write operation to this register is ongoing on this
register. For this reason the value read from this register is valid only when the RVU bit
in the IWDG_SR register is reset.

Independent watchdog (IWDG) RM0008

352/682

16.4.4 Status register (IWDG_SR)

Address offset: 0x0C

Reset value: 0x0000 0000 (not reset by Standby mode)

Note: If several reload values or prescaler values are used by application, it is mandatory to wait
until RVU bit is reset before changing the reload value and to wait until PVU bit is reset
before changing the prescaler value. However, after updating the prescaler and/or the
reload value it is not necessary to wait until RVU or PVU is reset before continuing code
execution (even in case of low-power mode entry, the write operation is taken into account
and will complete)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RVU PVU

r r

Bits 31:2 Reserved

Bit 1 RVU: Watchdog counter reload value update

This bit is set by hardware to indicate that an update of the reload value is ongoing. It is reset
by hardware when the reload value update operation is completed in the VDD voltage domain
(takes up to 5 RC 40 kHz cycles).

Reload value can be updated only when RVU bit is reset.

Bit 0 PVU: Watchdog prescaler value update
This bit is set by hardware to indicate that an update of the prescaler value is ongoing. It is
reset by hardware when the prescaler update operation is completed in the VDD voltage
domain (takes up to 5 RC 40 kHz cycles).

Prescaler value can be updated only when PVU bit is reset.

RM0008 Independent watchdog (IWDG)

 353/682

16.4.5 IWDG register map

The following table gives the IWDG register map and reset values.

Refer to Table 1 on page 35 for the register boundary addresses.

Table 65. IWDG register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
IWDG_KR

Reserved
KEY[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
IWDG_PR

Reserved
PR[2:0]

Reset value 0 0 0

0x08
IWDG_RLR

Reserved
RL[11:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1

0x0C
IWDG_SR

Reserved R
V

U

P
V

U

Reset value 0 0

Window watchdog (WWDG) RM0008

354/682

17 Window watchdog (WWDG)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F10xxx family, unless otherwise specified.

17.1 WWDG introduction
The window watchdog is used to detect the occurrence of a software fault, usually
generated by external interference or by unforeseen logical conditions, which causes the
application program to abandon its normal sequence. The watchdog circuit generates an
MCU reset on expiry of a programmed time period, unless the program refreshes the
contents of the downcounter before the T6 bit becomes cleared. An MCU reset is also
generated if the 7-bit downcounter value (in the control register) is refreshed before the
downcounter has reached the window register value. This implies that the counter must be
refreshed in a limited window.

17.2 WWDG main features
● Programmable free-running downcounter

● Conditional reset

– Reset (if watchdog activated) when the downcounter value becomes less than 40h

– Reset (if watchdog activated) if the downcounter is reloaded outside the window
(see Figure 155)

● Early wakeup interrupt (EWI): triggered (if enabled and the watchdog activated) when
the downcounter is equal to 40h. Can be used to reload the counter and prevent
WWDG reset

17.3 WWDG functional description
If the watchdog is activated (the WDGA bit is set in the WWDG_CR register) and when the
7-bit downcounter (T[6:0] bits) rolls over from 0x40 to 0x3F (T6 becomes cleared), it initiates
a reset. If the software reloads the counter while the counter is greater than the value stored
in the window register, then a reset is generated.

RM0008 Window watchdog (WWDG)

 355/682

Figure 154. Watchdog block diagram

The application program must write in the WWDG_CR register at regular intervals during
normal operation to prevent an MCU reset. This operation must occur only when the counter
value is lower than the window register value. The value to be stored in the WWDG_CR
register must be between 0xFF and 0xC0:

● Enabling the watchdog:

The watchdog is always disabled after a reset. It is enabled by setting the WDGA bit in
the WWDG_CR register, then it cannot be disabled again except by a reset.

● Controlling the downcounter:

This downcounter is free-running: It counts down even if the watchdog is disabled.
When the watchdog is enabled, the T6 bit must be set to prevent generating an
immediate reset.
The T[5:0] bits contain the number of increments which represents the time delay
before the watchdog produces a reset. The timing varies between a minimum and a
maximum value due to the unknown status of the prescaler when writing to the
WWDG_CR register (see Figure 155).
The Configuration register (WWDG_CFR) contains the high limit of the window: To
prevent a reset, the downcounter must be reloaded when its value is lower than the
window register value and greater than 0x3F. Figure 155 describes the window
watchdog process.
Another way to reload the counter is to use the early wakeup interrupt (EWI). This
interrupt is enabled by setting the EWI bit in the WWDG_CFR register. When the
downcounter reaches the value 40h, this interrupt is generated and the corresponding
interrupt service routine (ISR) can be used to reload the counter to prevent WWDG
reset.
This interrupt is cleared by writing '0' to the EWIF bit in the WWDG_SR register.

Note: The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is
cleared).

RESET

WDGA

6-bit downcounter (CNT)

T6

Watchdog control register (WWDG_CR)

T1T2T3T4T5

- W6 W0

Watchdog configuration register (WWDG_CFR)

W1W2W3W4W5

comparator

T6:0 > W6:0 CMP

= 1 when

Write WWDG_CR

WDG prescaler
(WDGTB)

PCLK1

T0

(from RCC clock controller)

Window watchdog (WWDG) RM0008

356/682

17.4 How to program the watchdog timeout
Figure 155 shows the linear relationship between the 6-bit value to be loaded in the
watchdog counter (CNT) and the resulting timeout duration in milliseconds. This can be
used for a quick calculation without taking the timing variations into account. If more
precision is needed, use the formulae in Figure 155.

Warning: When writing to the WWDG_CR register, always write 1 in the
T6 bit to avoid generating an immediate reset.

Figure 155. Window watchdog timing diagram

T6 bit

Reset

W[6:0]

T[6:0] CNT downcounter

time
Refresh windowRefresh not allowed

3Fh

The formula to calculate the timeout value is given by:

where:

TWWDG: WWDG timeout

TPCLK1: APB1 clock period measured in ms
Min-max timeout value @36 MHz (PCLK1)

WDGTB Min timeout value Max timeout value

0 113 µs 7.28 ms

1 227 µs 14.56 ms

2 455 µs 29.12 ms

3 910 µs 58.25 ms

TWWDG TPCLK1 4096× 2
WDGTB× T 5:0[] 1+()×= ms();

RM0008 Window watchdog (WWDG)

 357/682

17.5 Debug mode
When the microcontroller enters debug mode (Cortex-M3 core halted), the WWDG counter
either continues to work normally or stops, depending on DBG_WWDG_STOP configuration
bit in DBG module. For more details, refer to Section 26.15.2: Debug support for timers,
watchdog, bxCAN and I2C.

17.6 Debug registers
Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

17.6.1 Control register (WWDG_CR)

Address offset: 0x00

Reset value: 0x7F

17.6.2 Configuration register (WWDG_CFR)

Address offset: 0x04

Reset value: 0x7F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
WDGA T6 T5 T4 T3 T2 T1 T0

rs rw rw rw rw rw rw rw

Bits 31:8 Reserved

Bit 7 WDGA: Activation bit

This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the
watchdog can generate a reset.
0: Watchdog disabled
1: Watchdog enabled

Bits 6:0 T[6:0]: 7-bit counter (MSB to LSB)

These bits contain the value of the watchdog counter. It is decremented every (4096 x
2WDGTB) PCLK1 cycles. A reset is produced when it rolls over from 40h to 3Fh (T6 becomes
cleared).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
EWI WDG

TB1
WDG
TB0 W6 W5 W4 W3 W2 W1 W0

rs rw rw rw rw rw rw rw rw rw

Window watchdog (WWDG) RM0008

358/682

17.6.3 Status register (WWDG_SR)

Address offset: 0x08
Reset value: 0x00

17.6.4 WWDG register map

The following table gives the WWDG register map and reset values.

Refer to Table 1 on page 35 for the register boundary addresses.

Bit 31:10 Reserved

Bit 9 EWI: Early wakeup interrupt

When set, an interrupt occurs whenever the counter reaches the value 40h. This interrupt is
only cleared by hardware after a reset.

Bits 8:7 WDGTB[1:0]: Timer base
The time base of the prescaler can be modified as follows:
00: CK Counter Clock (PCLK1 div 4096) div 1
01: CK Counter Clock (PCLK1 div 4096) div 2
10: CK Counter Clock (PCLK1 div 4096) div 4
11: CK Counter Clock (PCLK1 div 4096) div 8

Bits 6:0 W[6:0]: 7-bit window value
These bits contain the window value to be compared to the downcounter.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
EWIF

rc_w0

Bit 31:1Reserved

Bit 0 EWIF: Early wakeup interrupt flag
This bit is set by hardware when the counter has reached the value 40h. It must be cleared
by software by writing ‘0’. A write of ‘1’ has no effect. This bit is also set if the interrupt is not
enabled.

Table 66. WWDG register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
WWDG_CR

Reserved

W
D

G
A

T[6:0]

Reset value 0 1 1 1 1 1 1 1

0x04
WWDG_CFR

Reserved E
W

I

W
D

G
T

B
1

W
D

G
T

B
0

W[6:0]

Reset value 0 0 0 1 1 1 1 1 1 1

0x08
WWDG_SR

Reserved E
W

IF

Reset value 0

RM0008 Flexible static memory controller (FSMC)

 359/682

18 Flexible static memory controller (FSMC)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx and STM32F103xx microcontrollers where
the Flash memory density ranges between 32 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This section applies to high-density devices only.

18.1 FSMC main features
The FSMC block is able to interface with synchronous and asynchronous memories and 16-
bit PC memory cards. Its main purpose is to:

● translate the AHB transactions into the appropriate external device protocol

● meet the access timing requirements of the external devices

All external memories share the addresses, data and control signals with the controller.
Each external device is accessed by means of a unique chip select. The FSMC performs
only one access at a time to an external device.

The FSMC has the following main features:

● Interfaces with static memory-mapped devices including:

– static random access memory (SRAM)

– read-only memory (ROM)

– NOR Flash memory

– PSRAM (4 memory banks)

● Two banks of NAND Flash with ECC hardware that checks up to 8 Kbytes of data

● 16-bit PC Card compatible devices

● Supports burst mode access to synchronous devices (NOR Flash and PSRAM)

● 8- or 16-bit wide databus

● Independent chip select control for each memory bank

● Independent configuration for each memory bank

● Programmable timings to support a wide range of devices, in particular:

– programmable wait states (up to 15)

– programmable bus turnaround cycles (up to 15)

– programmable output enable and write enable delays (up to 15)

– independent read and write timings and protocol, so as to support the widest
variety of memories and timings

● Write enable and byte lane select outputs for use with PSRAM and SRAM devices

● Translation of 32-bit wide AHB transactions into consecutive 16-bit or 8-bit accesses to
external 16-bit or 8-bit devices

Flexible static memory controller (FSMC) RM0008

360/682

● Write FIFO, 16 words long, each word 32 bits wide. This makes it possible to write to
slow memories and free the AHB quickly for other transactions. If a new transaction is
started to the FSMC, first the FIFO is drained

The FSMC registers that define the external device type and associated characteristics are
usually set at boot time and do not change until the next reset or power-up. However, it is
possible to change the settings at any time.

18.2 Block diagram
The FSMC consists of four main blocks:

● The AHB interface (including the FSMC configuration registers)

● The NOR Flash/PSRAM controller

● The NAND Flash/PC Card controller

● The external device interface

The block diagram is shown in Figure 156.

Figure 156. FSMC block diagram

A
H

B
 b

us

FSMC interrupt to NVIC

NOR

HCLK

From clock
controller

controller
memory

NAND/PC Card

controller
memory

Configuration

Registers

signals
NAND

signals
Shared

signals
NOR/PSRAM

FSMC_NE[4:1]
FSMC_NL (or NADV)

FSMC_NWAIT

FSMC_A[25:0]
FSMC_D[15:0]
FSMC_NOE
FSMC_NWE

FSMC_NIORD

FSMC_NREG
FSMC_CD

signals
PC Card

ai14718c

FSMC_NBL[1:0]

FSMC_NCE[3:2]
FSMC_INT[3:2]

FSMC_INTR
FSMC_NCE4_1
FSMC_NCE4_2

FSMC_NIOWR
FSMC_NIOS16

FSMC_CLK

RM0008 Flexible static memory controller (FSMC)

 361/682

18.3 AHB interface
The AHB slave interface enables internal CPUs and other bus master peripherals to access
the external static memories.

AHB transactions are translated into the external device protocol. In particular, if the
selected external memory is 16 or 8 bits wide, 32-bit wide transactions on the AHB are split
into consecutive 16- or 8-bit accesses.

The AHB clock (HCLK) is the reference clock for the FSMC.

18.3.1 Supported memories and transactions

General transaction rules

The requested AHB transaction data size can be 8-, 16- or 32-bit wide whereas the
accessed external device has a fixed data width. This may lead to inconsistent transfers.

Therefore, some simple transaction rules must be followed:

● AHB transaction size and memory data size are equal
There is no issue in this case.

● AHB transaction size is greater than the memory size
In this case, the FSMC splits the AHB transaction into smaller consecutive memory
accesses in order to meet the external data width.

● AHB transaction size is smaller than the memory size
Asynchronous transfers may or not be consistent depending on the type of external
device.

– Asynchronous accesses to devices that have the byte select feature (SRAM,
ROM, PSRAM).
In this case, the FSMC allows read/write transactions and accesses the right data
through its byte lanes BL[1:0]

– Asynchronous accesses to devices that do not have the byte select feature (NOR
and NAND Flash 16-bit).
This situation occurs when a byte access is requested to a 16-bit wide Flash
memory. Clearly, the device cannot be accessed in byte mode (only 16-bit words
can be read from/written to the Flash memory) therefore:

a) Write transactions are not allowed

b) Read transactions are allowed (the controller reads the entire 16-bit memory word
and uses the needed byte only).

Configuration registers

The FSMC can be configured using a register set. See Section 18.5.6, for a detailed
description of the NOR Flash/PSRAM controller registers. See Section 18.6.7, for a detailed
description of the NAND Flash/PC Card registers.

Flexible static memory controller (FSMC) RM0008

362/682

18.4 External device address mapping
From the FSMC point of view, the external memory is divided into 4 fixed-size banks of 256
Mbytes each (Refer to Figure 157):

● Bank 1 used to address up to 4 NOR Flash or PSRAM memory devices. This bank is
split into 4 NOR/PSRAM regions with 4 dedicated Chip Select.

● Banks 2 and 3 used to address NAND Flash devices (1 device per bank)

● Bank 4 used to address a PC Card device

For each bank the type of memory to be used is user-defined in the Configuration register.

Figure 157. FSMC memory banks

18.4.1 NOR/PSRAM address mapping

HADDR[27:26] bits are used to select one of the four memory banks as shown in Table 67.

Bank 1

NAND Flash

NOR / PSRAM

Supported memory typeBanks

4 × 64 MB

6000 0000h

6FFF FFFFh

Address

7000 0000h

7FFF FFFFh

8000 0000h

8FFF FFFFh

9000 0000h

9FFF FFFFh

Bank 2

4 × 64 MB

Bank 3

4 × 64 MB

Bank 4

4 × 64 MB
PC Card

ai14719

Table 67. NOR/PSRAM bank selection

HADDR[27:26](1)

1. HADDR are internal AHB address lines that are translated to external memory.

Selected bank

00 Bank 1 NOR/PSRAM 1

01 Bank 1 NOR/PSRAM 2

10 Bank 1 NOR/PSRAM 3

11 Bank 1 NOR/PSRAM 4

RM0008 Flexible static memory controller (FSMC)

 363/682

HADDR[25:0] contain the external memory address. Since HADDR is a byte address
whereas the memory is addressed in words, the address actually issued to the memory
varies according to the memory data width, as shown in the following table.

Wrap support for NOR Flash/PSRAM

Each NOR Flash/PSRAM memory bank can be configured to support wrap accesses.

On the memory side, two cases must be considered depending on the access mode:
asynchronous or synchronous.

● Asynchronous mode: in this case, wrap accesses are fully supported as long as the
address is supplied for every single access.

● Synchronous mode: in this case, the FSMC issues the address only once, and then
the burst transfer is sequenced by the FSMC clock CLK.

Some NOR memories support linear burst with wrap-around accesses, in which a fixed
number of words is read from consecutive addresses modulo N (N is typically 8 or 16
and can be programmed through the NOR Flash configuration register). In this case, it
is possible to set the memory wrap mode identical to the AHB master wrap mode.

Otherwise, in the case when the memory wrap mode and the AHB master wrap mode
cannot be set identically, wrapping should be disabled (through the appropriate bit in the
FSMC configuration register) and the wrap transaction split into two consecutive linear
transactions.

18.4.2 NAND/PC Card address mapping

In this case, three banks are available, each of them divided into memory spaces as
indicated in Table 69.

Table 68. External memory address

Memory width(1)

1. In case of a 16-bit external memory width, the FSMC will internally use HADDR[25:1] to generate the
address for external memory FSMC_A[24:0].
Whatever the external memory width (16-bit or 8-bit), FSMC_A[0] should be connected to external memory
address A[0].

Data address issued to the memory Maximum memory capacity (bits)

8-bit HADDR[25:0] 64 Mbytes x 8 = 512 Mbit

16-bit HADDR[25:1] >> 1 64 Mbytes/2 x 16 = 512 Mbit

Table 69. Memory mapping and timing registers

Start address End address FSMC Bank Memory space Timing register

0x9C00 0000 0x9FFF FFFF

Bank 4 - PC card

I/O FSMC_PIO4 (0xB0)

0x9800 0000 0x9BFF FFFF Attribute FSMC_PATT4 (0xAC)

0x9000 0000 0x93FF FFFF Common FSMC_PMEM4 (0xA8)

0x8800 0000 0x8BFF FFFF
Bank 3 - NAND Flash

Attribute FSMC_PATT3 (0x8C)

0x8000 0000 0x83FF FFFF Common FSMC_PMEM3 (0x88)

0x7800 0000 0x7BFF FFFF
Bank 2- NAND Flash

Attribute FSMC_PATT2 (0x6C)

0x7000 0000 0x73FF FFFF Common FSMC_PMEM2 (0x68)

Flexible static memory controller (FSMC) RM0008

364/682

For NAND Flash memory, the common and attribute memory spaces are subdivided into
three sections (see in Table 70 below) located in the lower 256 Kbytes:

● Data section (first 64 Kbytes in the common/attribute memory space)

● Command section (second 64 Kbytes in the common / attribute memory space)

● Address section (next 128 Kbytes in the common / attribute memory space)

The application software uses the 3 sections to access the NAND Flash memory:

● To send a command to NAND Flash memory: the software must write the command
value to any memory location in the command section.

● To specify the NAND Flash address that must be read or written: the software must
write the address value to any memory location in the address section. Since an
address can be 4 or 5 bytes long (depending on the actual memory size), several
consecutive writes to the address section are needed to specify the full address.

● To read or write data: the software reads or writes the data value from or to any
memory location in the data section.

Since the NAND Flash memory automatically increments addresses, there is no need to
increment the address of the data section to access consecutive memory locations.

18.5 NOR Flash/PSRAM controller
The FSMC generates the appropriate signal timings to drive the following types of
memories:

● Asynchronous SRAM and ROM

– 8-bit

– 16-bit

– 32-bit

● PSRAM (Cellular RAM)

– Asynchronous mode

– Burst mode

● NOR Flash

– Asynchronous mode or burst mode

– Multiplexed or nonmultiplexed

The FSMC outputs a unique chip select signal NE[4:1] per bank. All the other signals
(addresses, data and control) are shared.

For synchronous accesses, the FSMC issues the clock (CLK) to the selected external
device. This clock is a submultiple of the HCLK clock. The size of each bank is fixed and
equal to 64 Mbytes.

Each bank is configured by means of dedicated registers (see Section 18.6.7).

Table 70. NAND bank selections

Section name HADDR[17:16] Address range

Address section 1X 0x020000-0x03FFFF

Command section 01 0x010000-0x01FFFF

Data section 00 0x000000-0x0FFFF

RM0008 Flexible static memory controller (FSMC)

 365/682

The programmable memory parameters include access timings (see Table 71) and support
for wrap and wait management (for PSRAM and NOR Flash accessed in burst mode).

18.5.1 External memory interface signals

Table 72, Table 73 and Table 74 list the signals that are typically used to interface NOR
Flash and PSRAM.

Note: Prefix “N”. specifies the associated signal as active low.

NOR Flash, nonmultiplexed I/Os

NOR Flash memories are addressed in 16-bit words. The maximum capacity is 512 Mbit (26
address lines).

Table 71. Programmable NOR/PSRAM access parameters

Parameter Function Access mode Unit Min. Max.

Address
setup

Duration of the address
setup phase

Asynchronous
AHB clock cycle
(HCLK)

1 16

Address hold
Duration of the address hold
phase

Asynchronous,
muxed I/Os

AHB clock cycle
(HCLK)

2 16

Data setup
Duration of the data setup
phase

Asynchronous
AHB clock cycle
(HCLK)

2 256

Bust turn
Duration of the bus
turnaround phase

Asynchronous and
synchronous read

AHB clock cycle
(HCLK)

1 16

Clock divide
ratio

Number of AHB clock cycles
(HCLK) to build one memory
clock cycle (CLK)

Synchronous
AHB clock cycle
(HCLK)

1 16

Data latency
Number of clock cycles to
issue to the memory before
the first data of the burst

Synchronous
Memory clock
cycle (CLK)

2 17

Table 72. Nonmuxed I/O NOR Flash

FSMC signal name I/O Function

CLK O Clock (for synchronous burst)

A[25:0] O Address bus

D[15:0] I/O Bidirectional data bus

NE[x] O Chip select, x = 1..4

NOE O Output enable

NWE O Write enable

NWAIT I NOR Flash wait input signal to the FSMC

Flexible static memory controller (FSMC) RM0008

366/682

NOR Flash, multiplexed I/Os

NOR-Flash memories are addressed in 16-bit words. The maximum capacity is 512 Mbit
(26 address lines).

PSRAM

PSRAM memories are addressed in 16-bit words. The maximum capacity is 512 Mbit (26
address lines).

Table 73. Muxed I/O NOR Flash

FSMC signal name I/O Function

CLK O Clock (for synchronous burst)

A[25:16] O Address bus

AD[15:0] I/O 16-bit multiplexed, bidirectional address/data bus

NE[x] O Chip select, x = 1..4

NOE O Output enable

NWE O Write enable

NL(=NADV) O
Latch enable (this signal is called address valid, NADV, by some NOR
Flash devices)

NWAIT I NOR Flash wait input signal to the FSMC

Table 74. PSRAM

FSMC signal name I/O Function

CLK O Clock (for synchronous burst)

A[25:0] O Address bus

D[15:0] I/O Data bidirectional bus

NE[x] O Chip select, x = 1..4 (called NCE by PSRAM (Cellular RAM i.e. CRAM))

NOE O Output enable

NWE O Write enable

NL(= NADV) O Address valid PSRAM input (memory signal name: NADV)

NWAIT I PSRAM wait input signal to the FSMC

NBL[1] O Upper byte enable (memory signal name: NUB)

NBL[0] O Lowed byte enable (memory signal name: NLB)

RM0008 Flexible static memory controller (FSMC)

 367/682

18.5.2 Supported memories and transactions

Table 75 below displays the supported devices, access modes and transactions.
Transactions not allowed (or not supported) by the FSMC appear in gray.

Table 75. NOR Flash/PSRAM supported memories and transactions

Device Mode R/W
AHB
data
size

Memory
data size

Allowed/
not

allowed
Comments

NOR Flash
(muxed I/Os
and nonmuxed
I/Os)

Asynchronous R 8 16 Y

Asynchronous W 8 16 N

Asynchronous R 16 16 Y

Asynchronous W 16 16 Y

Asynchronous R 32 16 Y
Split into 2 FSMC
accesses

Asynchronous W 32 16 Y
Split into 2 FSMC
accesses

Asynchronous
page

R - 16 N Mode is not supported

Synchronous R 8 16 N

Synchronous R 16 16 Y

Synchronous R 32 16 Y

PSRAM
(muxed I/Os
and nonmuxed
I/Os)

Asynchronous R 8 16 Y

Asynchronous W 8 16 Y Use of byte lanes NBL[1:0]

Asynchronous R 16 16 Y

Asynchronous W 16 16 Y

Asynchronous R 32 16 Y
Split into 2 FSMC
accesses

Asynchronous W 32 16 Y
Split into 2 FSMC
accesses

Asynchronous
page

R - 16 N Mode is not supported

Synchronous R 8 16 N

Synchronous R 16 16 Y

Synchronous R 32 16 Y

SRAM and
ROM

Asynchronous R
8 / 16 /

32
8 / 16 Y Use of byte lanes NBL[1:0]

Asynchronous W
8 / 16 /

32
8 / 16 Y Use of byte lanes NBL[1:0]

Flexible static memory controller (FSMC) RM0008

368/682

18.5.3 General timing rules

Signals synchronization

● All controller output signals change on the rising edge of the internal clock (HCLK)

● In synchronous write mode (PSRAM devices), the output data changes on the falling
edge of the memory clock (CLK)

18.5.4 NOR Flash/PSRAM controller timing diagrams

Asynchronous static memories (NOR Flash, SRAM)

● Signals are synchronized by the internal clock HCLK. This clock is not issued to the
memory

● The FSMC always samples the data before de-asserting the chip select signal NE. This
guarantees that the memory data-hold timing constraint is met (chip enable high to
data transition, usually 0 ns min.)

● When extended mode is set, it is possible to mix modes A, B, C and D in read and write
(it is for instance possible to read in mode A and write in mode B).

Mode 1 - SRAM/CRAM

Figure 158. Mode1 read accesses

A[25:0]

NOE

(ADDSET +1) (DATAST + 1)

Memory transaction

Data strobe

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NBL[1:0]

data driven
by memory

ai14720c

High

2 HCLK
cycles

Data sampled

RM0008 Flexible static memory controller (FSMC)

 369/682

Figure 159. Mode1 write accesses

The one HCLK cycle at the end of the write transaction helps guarantee the address and
data hold time after the NWE rising edge. Due to the presence of this one HCLK cycle, the
DATAST value must be greater than zero (DATAST > 0).

Table 76. FSMC_BCRx bit fields

Bit
number

Bit name Value to set

31-15 0x0000

14-10 0x0

9 WAITPOL Meaningful only if bit 15 is 1

8 BURSTEN 0x0

7 -

6 FACCEN -

5-4 MWID As needed

3-2 MTYP As needed, exclude 10 (NOR Flash)

1 MUXEN 0x0

0 MBKEN 0x1

A[25:0]

NOE

(ADDSET +1) (DATAST + 1)

Memory transaction

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NBL[1:0]

data driven by FSMC

ai14721c

1HCLK

Flexible static memory controller (FSMC) RM0008

370/682

Mode A - SRAM/PSRAM (CRAM) OE toggling

Figure 160. ModeA read accesses

Table 77. FSMC_TCRx bit fields

Bit
number

Bit name Value to set

31-16 0x0000

15-8 DATAST
Duration of the second access phase (DATAST+1 HCLK cycles) for
write accesses, DATAST+3 HCLK cycles for read accesses). This
value cannot be 0 (minimum is 1)

7-4 0x0

3-0 ADDSET Duration of the first access phase (ADDSET+1 HCLK cycles)

A[25:0]

NOE

(ADDSET +1) (DATAST + 1)

Memory transaction

Data strobe

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NBL[1:0]

data driven
by memory

ai14722c

High

2 HCLK
cycles

Data sampled

RM0008 Flexible static memory controller (FSMC)

 371/682

Figure 161. ModeA write accesses

The differences compared with mode1 are the toggling of NOE and the independent read
and write timings.

Table 78. FSMC_BCRx bit fields

Bit
number

Bit name Value to set

31-16 0x0000

15 0x0

14 EXTMOD 0x1

13-10 0x0

9 WAITPOL Meaningful only if bit 15 is 1

8 BURSTEN 0x0

7 -

6 FACCEN -

5-4 MWID As needed

3-2 MTYP As needed, exclude 10 (NOR Flash)

1 MUXEN 0x0

0 MBKEN 0x1

A[25:0]

NOE

(ADDSET +1) (DATAST + 1)

Memory transaction

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NBL[1:0]

data driven by FSMC

ai14721c

1HCLK

Flexible static memory controller (FSMC) RM0008

372/682

Table 79. FSMC_TCRx bit fields

Bit
number

Bit name Value to set

31-30 0x0

29-28 ACCMOD 0x0

27-16 0x000

15-8 DATAST
Duration of the second access phase (DATAST+3 HCLK cycles) in
read. This value cannot be 0 (minimum is 1)

7-4 0x0

3-0 ADDSET Duration of the first access phase (ADDSET+1 HCLK cycles) in read

Table 80. FSMC_BWTRx bit fields

Bit
number

Bit name Value to set

31-30 0x0

29-28 ACCMOD 0x0

27-16 0x000

15-8 DATAST
Duration of the second access phase (DATAST+1 HCLK cycles) in
write. This value cannot be 0 (minimum is 1)

7-4 0x0

3-0 ADDSET Duration of the first access phase (ADDSET+1 HCLK cycles) in write

RM0008 Flexible static memory controller (FSMC)

 373/682

Mode 2/B - NOR Flash

Figure 162. Mode2/B read accesses

Figure 163. Mode2 write accesses

A[25:0]

NOE

(ADDSET +1) (DATAST + 1)

Memory transaction

Data strobe

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NADV

data driven
by memory

ai14724c

High

2 HCLK
cycles

Data sampled

A[25:0]

NOE

(ADDSET +1) (DATAST + 1)

Memory transaction

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NADV

data driven by FSMC

ai14723b

1HCLK

Flexible static memory controller (FSMC) RM0008

374/682

Figure 164. ModeB write accesses

The differences with mode1 are the toggling of NADV and the independent read and write
timings when extended mode is set (Mode B).

Table 81. FSMC_BCRx bit fields

Bit
number

Bit name Value to set

31-15 0x0000

14 EXTMOD 0x1 for mode B, 0x0 for mode 2

13-10 0x0

9 WAITPOL Meaningful only if bit 15 is 1

8 BURSTEN 0x0

7 -

6 FACCEN 0x1

5-4 MWID As needed

3-2 MTYP 10 (NOR Flash)

1 MUXEN 0x0

0 MBKEN 0x1

A[25:0]

NOE

(ADDSET +1) (DATAST + 1)

Memory transaction

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NADV

data driven by FSMC

ai15110b

1HCLK

RM0008 Flexible static memory controller (FSMC)

 375/682

Note: The FSMC_BWTRx register is valid only if extended mode is set (mode B), otherwise all its
content is don’t care.

Table 82. FSMC_TCRx bit fields

Bit number Bit name Value to set

31-30 0x0

29-28 ACCMOD 0x1 if extended mode is set

27-16 0x000

15-8 DATAST
Duration of the access second phase (DATAST+3 HCLK cycles) in
read. This value can not be 0 (minimum is 1)

7-4 0x0

3-0 ADDSET Duration of the access first phase (ADDSET+1 HCLK cycles) in read

Table 83. FSMC_BWTRx bit fields

Bit
number

Bit name Value to set

31-30 0x0

29-28 ACCMOD 0x1 if extended mode is set

27-16 0x000

15-8 DATAST
Duration of the access second phase (DATAST+1 HCLK cycles) in
write. This value can not be 0 (minimum is 1)

7-4 0x0

3-0 ADDSET
Duration of the access first phase (ADDSET+1 HCLK cycles) in
write

Flexible static memory controller (FSMC) RM0008

376/682

Mode C - NOR Flash - OE toggling

Figure 165. ModeC read accesses

Figure 166. ModeC write accesses

The differences compared with mode1 are the toggling of NOE and NADV and the
independent read and write timings.

A[25:0]

NOE

(ADDSET +1) (DATAST + 1)

Memory transaction

Data strobe

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NADV

data driven
by memory

ai14725c

High

2 HCLK
cycles

Data sampled

A[25:0]

NOE

(ADDSET +1) (DATAST + 1)

Memory transaction

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NADV

data driven by FSMC

ai14723b

1HCLK

RM0008 Flexible static memory controller (FSMC)

 377/682

Table 84. FSMC_BCRx bit fields

Bit No. Bit name Value to set

31-15 0x0000

14 EXTMOD 0x1

13-10 0x0

9 WAITPOL Meaningful only if bit 15 is 1

8 BURSTEN 0x0

7 -

6 FACCEN 1

5-4 MWID As needed

3-2 MTYP 0x02 (NOR Flash)

1 MUXEN 0x0

0 MBKEN 0x1

Table 85. FSMC_TCRx bit fields

Bit No. Bit name Value to set

31-30 0x0

29-28 ACCMOD 0x2

27-16 0x000

15-8 DATAST
Duration of the second access phase (DATAST+3 HCLK cycles) in
read. This value cannot be 0 (minimum is 1)

7-4 0x0

3-0 ADDSET Duration of the first access phase (ADDSET+1 HCLK cycles) in read

Table 86. FSMC_BWTRx bit fields

Bit No. Bit name Value to set

31-30 0x0

29-28 ACCMOD 0x2

27-16 0x000

15-8 DATAST
Duration of the second access phase (DATAST+1 HCLK cycles) in
write. This value cannot be 0 (minimum is 1)

7-4 0x0

3-0 ADDSET
Duration of the first access phase (ADDSET+1 HCLK cycles) in
write

Flexible static memory controller (FSMC) RM0008

378/682

Mode D - asynchronous access with extended address

Figure 167. ModeD read accesses

Figure 168. ModeD write accesses

A[25:0]

NOE

(ADDSET +1) (DATAST + 1)

Memory transaction

Data strobe

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NADV

data driven
by memory

ai14726c

High

(ADDHLD + 1)
HCLK cycles

2 HCLK
cycles

Data sampled

A[25:0]

NOE

(ADDSET +1) (DATAST + 1)

Memory transaction

NEx

D[15:0]

HCLK cycles HCLK cycles

NWE

NADV

data driven by FSMC

ai14727c

1HCLK

(ADDHLD + 1)
HCLK cycles

RM0008 Flexible static memory controller (FSMC)

 379/682

The differences with mode1 are the toggling of NADV, NOE that goes on toggling after
NADV changes and the independent read and write timings.

Table 87. FSMC_BCRx bit fields

Bit No. Bit name Value to set

31-15 0x0000

14 EXTMOD 0x1

13-10 0x0

9 WAITPOL Meaningful only if bit 15 is 1

8 BURSTEN 0x0

7 -

6 FACCEN Set according to memory support

5-4 MWID As needed

3-2 MTYP As needed

1 MUXEN 0x0

0 MBKEN 0x1

Table 88. FSMC_TCRx bit fields

Bit No. Bit name Value to set

31-30 0x0

29-28 ACCMOD 0x2

27-16 0x000

15-8 DATAST
Duration of the second access phase (DATAST+3 HCLK cycles) in
read. This value cannot be 0 (minimum is 1)

7-4 ADDHLD
Duration of the middle phase of the read access (ADDHLD+1 HCLK
cycles)

3-0 ADDSET Duration of the first access phase (ADDSET+1 HCLK cycles) in read

Table 89. FSMC_BWTRx bit fields

Bit No. Bit name Value to set

31-30 0x0

29-28 ACCMOD 0x2

27-16 0x000

15-8 DATAST
Duration of the second access phase (DATAST+1 HCLK cycles) in
write. This value cannot be 0 (minimum is 1)

7-4 ADDHLD
Duration of the middle phase of the write access (ADDHLD+1 HCLK
cycles)

3-0 ADDSET Duration of the first access phase (ADDSET+1 HCLK cycles) in write

Flexible static memory controller (FSMC) RM0008

380/682

Mode muxed - asynchronous access muxed NOR Flash

Figure 169. Muxed read accesses

1. The bus turnaround delay (BUSTURN + 1) and the delay between side-by-side transactions overlap, so
BUSTURN ≤5 has not impact.

Figure 170. Muxed write accesses

The difference with mode D is the drive of the lower address byte(s) on the databus.

A[25:16]

NOE

(ADDSET +1) (DATAST + 1)

Memory transaction

Data strobe

NEx

AD[15:0]

HCLK cycles HCLK cycles

NWE

NADV

data driven
by memory

ai14728c

High

(ADDHLD + 1)
HCLK cycles

Lower address

(BUSTURN + 1)(1)

HCLK cycles

2 HCLK

cycles

Data sampled

1HCLK cycle

A[25:16]

NOE

(ADDSET +1) (DATAST + 2)

Memory transaction

NEx

AD[15:0]

HCLK cycles HCLK cycles

NWE

NADV

data driven by FSMC

ai14729c

1HCLK

ADDHLD
HCLK cycles

Lower address

RM0008 Flexible static memory controller (FSMC)

 381/682

18.5.5 Synchronous burst read

The memory clock, CLK, is a submultiple of HCLK according to the value of parameter
CLKDIV.

NOR Flash memories specify a minimum time from NADV assertion to CLK high. To meet
this constraint, the FSMC does not issue the clock to the memory during the first internal
clock cycle of the synchronous access (before NADV assertion). This guarantees that the
rising edge of the memory clock occurs in the middle of the NADV low pulse.

Table 90. FSMC_BCRx bit fields

Bit No. Bit name Value to set

31-15 0x0000

14 EXTMOD 0x0

13-10 0x0

9 WAITPOL Meaningful only if bit 15 is 1

8 BURSTEN 0x0

7 -

6 FACCEN 0x1

5-4 MWID As needed

3-2 MTYP 0x2 (NOR)

1 MUXEN 0x1

0 MBKEN 0x1

Table 91. FSMC_TCRx bit fields

Bit No. Bit name Value to set

31-30 0x0

29-20

19-16 BUSTURN Duration of the last phase of the access (BUSTURN+1 HCLK)

15-8 DATAST
Duration of the second access phase (DATAST+3 HCLK cycles for
read accesses and DATAST+1 HCLK cycles for write accesses).
This value cannot be 0 (minimum is 1)

7-4 ADDHLD
Duration of the middle phase of the access (ADDHLD+1 HCLK
cycles).

This value cannot be 0 (minimum is 1).

3-0 ADDSET Duration of the first access phase (ADDSET+1 HCLK cycles)

Flexible static memory controller (FSMC) RM0008

382/682

Data latency versus NOR Flash latency

The data latency is the number of cycles to wait before sampling the data. The DATLAT
value must be consistent with the latency value specified in the NOR Flash configuration
register. The FSMC does not include the clock cycle when NADV is low in the data latency
count.

Caution: Some NOR Flash memories include the NADV Low cycle in the data latency count, so the
exact relation between the NOR Flash latency and the FMSC DATLAT parameter can be
either of:

● NOR Flash latency = DATLAT + 2

● NOR Flash latency = DATLAT + 3

Some recent memories assert NWAIT during the latency phase. In such cases DATLAT can
be set to its minimum value. As a result, the FSMC samples the data and waits long enough
to evaluate if the data are valid. Thus the FSMC detects when the memory exits latency and
real data are taken.

Other memories do not assert NWAIT during latency. In this case the latency must be set
correctly for both the FSMC and the memory, otherwise invalid data are mistaken for good
data, or valid data are lost in the initial phase of the memory access.

Single-burst transfer

When the selected bank is configured in synchronous burst mode, if an AHB single-burst
transaction is requested, the FSMC performs a burst read of length 1 (if the AHB transfer is
16-bit), or length 2 (if the AHB transfer is 32-bit, thus split into two 16-bit accesses) and de-
assert the chip select signal when the last data is strobed.

Clearly, such a transfer is not the most efficient in terms of cycles (compared to an
asynchronous read). Nevertheless, a random asynchronous access would first require to re-
program the memory access mode, which would altogether last longer.

Wait management

For synchronous burst NOR Flash, NWAIT is evaluated after the programmed latency
period, (DATALAT+1) CLK clock cycles.

If NWAIT is sensed active (low level when WAITPOL = 0, high level when WAITPOL = 1),
wait states are inserted until NWAIT is sensed inactive (high level when WAITPOL = 0, low
level when WAITPOL = 1).

When NWAIT is inactive, the data is considered valid either immediately (bit WAITCFG = 1)
or on the next clock edge (bit WAITCFG = 0).

During wait-state insertion via the NWAIT signal, the controller continues to send clock
pulses to the memory, keeping the chip select and output enable signals valid, and does not
consider the data valid.

There are two timing configurations for the NOR Flash NWAIT signal in burst mode:

● Flash memory asserts the NWAIT signal one data cycle before the wait state (default
after reset)

● Flash memory asserts the NWAIT signal during the wait state

These two NOR Flash wait state configurations are supported by the FSMC, individually for
each chip select, thanks to the WAITCFG bit in the FSMC_BCRx registers (x = 0..3).

RM0008 Flexible static memory controller (FSMC)

 383/682

Figure 171. Synchronous multiplexed read mode - NOR, PSRAM (CRAM)

1. Byte lane outputs BL are not shown; for NOR access, they are held high, and, for PSRAM (CRAM) access, they are held
low.

Addr[15:0] data data data data

addr[25:16]

Memory transaction = burst of 4 half words

HCLK

CLK

A[25:16]

NEx

NOE

NWE
High

NADV

NWAIT
(WAITCFG = 0)

NWAIT
(WAITCFG = 1)

A/D[15:0]

1 clock
cycle

1 clock
cycle

DATALAT CLK cycles inserted wait state

Data strobes Data strobes
ai14730

Table 92. FSMC_BCRx bit fields

Bit No. Bit name Value to set

31-20 0x0000

19 CBURSTRW No effect on synchronous read

18-15 0x0

14 EXTMOD 0x0

13 WAITEN
When high, the first data after latency period is taken as always
valid, regardless of the wait from memory value

12 WREN no effect on synchronous read

Flexible static memory controller (FSMC) RM0008

384/682

11 WAITCFG to be set according to memory

10 WRAPMOD to be set according to memory

9 WAITPOL to be set according to memory

8 BURSTEN 0x1

7 FWPRLVL Set to protect memory from accidental write access

6 FACCEN Set according to memory support

5-4 MWID As needed

3-2 MTYP 0x1 or 0x2

1 MUXEN As needed

0 MBKEN 0x1

Table 93. FSMC_TCRx bit fields

Bit No. Bit name Value to set

27-24 DATLAT Data latency

23-20 CLKDIV
0x0 to get CLK = HCLK (not supported)
0x1 to get CLK = 2 × HCLK

19-16 BUSTURN no effect

15-8 DATAST no effect

7-4 ADDHLD no effect

3-0 ADDSET no effect

Table 92. FSMC_BCRx bit fields (continued)

Bit No. Bit name Value to set

RM0008 Flexible static memory controller (FSMC)

 385/682

Figure 172. Synchronous multiplexed write mode - PSRAM (CRAM)

1. Memory must issue NWAIT signal one cycle in advance, accordingly WAITCFG must be programmed to 0.

2. Byte Lane (NBL) outputs are not shown, they are held low while NEx is active.

Addr[15:0] data data data data

addr[25:16]

Memory transaction = burst of 4 half words

HCLK

CLK

A[25:16]

NEx

NOE

NWE

NADV

NWAIT
(WAITCFG = 0)

A/D[15:0]

1 CLK
cycle

1 CLK
cycle

DATALAT CLK cycles inserted wait state

ai14731c

Hi-Z

Flexible static memory controller (FSMC) RM0008

386/682

Table 94. FSMC_BCRx bit fields

Bit No. Bit name Value to set

31-20 0x0000

19 CBURSTRW 0x1

18-15 0x0

14 EXTMOD 0x0

13 WAITEN
When high, the first data after latency period is taken as always
valid, regardless of the wait from memory value

12 WREN no effect on synchronous read

11 WAITCFG 0x0

10 WRAPMOD to be set according to memory

9 WAITPOL to be set according to memory

8 BURSTEN no effect on synchronous write

7 FWPRLVL Set to protect memory from accidental writes

6 FACCEN Set according to memory support

5-4 MWID As needed

3-2 MTYP 0x1

1 MUXEN As needed

0 MBKEN 0x1

Table 95. FSMC_TCRx bit fields

Bit No. Bit name Value to set

31-30 - 0x0

27-24 DATLAT Data latency

23-20 CLKDIV
0 to get CLK = HCLK (not supported)

1 to get CLK = 2 × HCLK

19-16 BUSTURN No effect

15-8 DATAST No effect

7-4 ADDHLD No effect

3-0 ADDSET No effect

RM0008 Flexible static memory controller (FSMC)

 387/682

18.5.6 NOR/PSRAM controller registers

SRAM/NOR-Flash chip-select control registers 1..4 (FSMC_BCR1..4)

Address offset: 0xA000 0000 + 8 * (x – 1), x = 1...4

Reset value: 0x0000 30DX

This register contains the control information of each memory bank, used for SRAMs, ROMs
and asynchronous or burst NOR Flash memories.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
C

B
U

R
S

T
R

W
Reserved

E
X

T
M

O
D

W
A

IT
E

N

W
R

E
N

W
A

IT
C

F
G

W
R

A
P

M
O

D

W
A

IT
P

O
L

B
U

R
S

T
E

N

R
es

er
ve

d

FA
C

C
E

N

M
W

ID

M
T

Y
P

M
U

X
E

N

M
B

K
E

N

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 19 CBURSTRW: Write burst enable.

For Cellular RAM, the bit enables synchronous burst protocol during write operations. For Flash
memory access in burst mode, this bit enables/disables the wait state insertion via the NWAIT
signal. The enable bit for the synchronous burst protocol during read access is the BURSTEN bit in
the FSMC_BCRx register.
0: Write operations are always performed in asynchronous mode
1: Write operations are performed in synchronous mode.

Bit 15 Reserved.

Bit 14 EXTMOD: Extended mode enable.

This bit enables the FSMC to program inside the FSMC_BWTR register, so it allows different
timings for read and write.
0: values inside FSMC_BWTR register are not taken into account (default after reset)
1: values inside FSMC_BWTR register are taken into account

Bit 13 WAITEN: Wait enable bit.

For Flash memory access in burst mode, this bit enables/disables wait-state insertion via the
NWAIT signal:
0: NWAIT signal is disabled (its level not taken into account, no wait state inserted after the
programmed Flash latency period)
1: NWAIT signal is enabled (its level is taken into account after the programmed Flash latency
period to insert wait states if asserted) (default after reset)

Bit 12 WREN: Write enable bit.

This bit indicates whether write operations are enabled/disabled in the bank by the FSMC:
0: Write operations are disabled in the bank by the FSMC, an AHB error is reported,
1: Write operations are enabled for the bank by the FSMC (default after reset).

Bit 11 WAITCFG: Wait timing configuration.

For memory access in burst mode, the NWAIT signal indicates whether the data from the memory
are valid or if a wait state must be inserted. This configuration bit determines if NWAIT is asserted
by the memory one clock cycle before the wait state or during the wait state:
0: NWAIT signal is active one data cycle before wait state (default after reset),
1: NWAIT signal is active during wait state (not for Cellular RAM).

Flexible static memory controller (FSMC) RM0008

388/682

Bit 10 WRAPMOD: Wrapped burst mode support.
Defines whether the controller will or not split an AHB burst wrap access into two linear accesses.
Valid only when accessing memories in burst mode
0: Direct wrapped burst is not enabled (default after reset),
1: Direct wrapped burst is enabled.

Bit 9 WAITPOL: Wait signal polarity bit.

Defines the polarity of the wait signal from memory. Valid only when accessing the memory in burst
mode:
0: NWAIT active low (default after reset),
1: NWAIT active high.

Bit 8 BURSTEN: Burst enable bit.

Enables the burst access mode for the memory. Valid only with synchronous burst memories:
0: Burst access mode disabled (default after reset)
1: Burst access mode enable

Bit 7 Reserved.

Bit 6 FACCEN: Flash access enable

Enables NOR Flash memory access operations.
0: Corresponding NOR Flash memory access is disabled
1: Corresponding NOR Flash memory access is enabled (default after reset)

Bits 5:4 MWID: Memory databus width.

Defines the external memory device width, valid for all type of memories.
00: 8 bits,
01: 16 bits (default after reset),
10: reserved, do not use,
11: reserved, do not use.

Bits 3:2 MTYP: Memory type.

Defines the type of external memory attached to the corresponding memory bank:
00: SRAM, ROM (default after reset for Bank 2...4)
01: PSRAM (Cellular RAM: CRAM)
10: NOR Flash (default after reset for Bank 1)
11: reserved

Bit 1 MUXEN: Address/data multiplexing enable bit.

When this bit is set, the address and data values are multiplexed on the databus, valid only with
NOR and PSRAM memories:
0: Address/Data nonmultiplexed
1: Address/Data multiplexed on databus (default after reset)

Bit 0 MBKEN: Memory bank enable bit.

Enables the memory bank. After reset Bank1 is enabled, all others are disabled. Accessing a
disabled bank causes an ERROR on AHB bus.
0: Corresponding memory bank is disabled
1: Corresponding memory bank is enabled

RM0008 Flexible static memory controller (FSMC)

 389/682

SRAM/NOR-Flash chip-select timing registers 1..4 (FSMC_BTR1..4)

Address offset: 0xA000 0000 + 0x04 + 8 * (x – 1), x = 1..4

Reset value: 0x0FFF FFFF

This register contains the control information of each memory bank, used for SRAMs, ROMs
and NOR Flash memories. If the EXTMOD bit is set in the FSMC_BCRx register, then this
register is partitioned for write and read access, that is, 2 registers are available: one to
configure read accesses (this register) and one to configure write accesses (FSMC_BWTRx
registers).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

A
C

C
M

O
D

D
AT

LA
T

C
LK

D
IV

B
U

S
T

U
R

N

D
AT

A
S

T

A
D

D
H

LD

A
D

D
S

E
T

rw rw

Bits 29:28 ACCMOD: Access mode

Specifies the asynchronous access modes as shown in the timing diagrams. These bits are
taken into account only when the EXTMOD bit in the FSMC_BCRx register is 1.
00: access mode A
01: access mode B
10: access mode C
11: access mode D

Bits 27:24 DATLAT (see note below bit descriptions): Data latency (for synchronous burst NOR Flash)

For NOR Flash with synchronous burst mode enabled, defines the number of memory clock
cycles (+2) to issue to the memory before getting the first data:
This timing parameter is not expressed in HCLK periods, but in Flash clock (CLK) periods. In
asynchronous NOR Flash, SRAM or ROM accesses, this value is don’t care. In case of
CRAM, this field must be set to 0
0000: Data latency of 2 CLK clock cycles for first burst access
1111: Data latency of 17 CLK clock cycles for first burst access (default value after reset)

Bits 23:20 CLKDIV: Clock divide ratio (for CLK signal)

Defines the period of CLK clock output signal, expressed in number of HCLK cycles:
0000: Reserved
0001: CLK period = 2 × HCLK periods
0010: CLK period = 3 × HCLK periods
1111: CLK period = 16 × HCLK periods (default value after reset)
In asynchronous NOR Flash, SRAM or ROM accesses, this value is don’t care.

Bits 19:16 BUSTURN: Bus turnaround phase duration

These bits are written by software to introduce the bus turnaround delay after a read access
(only from multiplexed NOR Flash memory) to avoid bus contention if the controller needs to
drive addresses on the databus for the next side-by-side transaction. BUSTURN can be set
to the minimum if the memory system does not include multiplexed memories or if the
slowest memory does not take more than 6 HCLK clock cycles to put the databus in Hi-Z
state:
0000: bus turnaround duration = 1 × HCLK clock cycle
...
1111: bus turnaround duration = 16 × HCLK clock cycles (default value after reset)

Flexible static memory controller (FSMC) RM0008

390/682

Note: PSRAMs (CRAMs) have a variable latency due to internal refresh. Therefore these
memories issue the NWAIT signal during the whole latency phase to prolong the latency as
needed.
With PSRAMs (CRAMs) the filed DATLAT must be set to 0, so that the FSMC exits its
latency phase soon and starts sampling NWAIT from memory, then starts to read or write
when the memory is ready.
This method can be used also with the latest generation of synchronous Flash memories
that issue the NWAIT signal, unlike older Flash memories (check the datasheet of the
specific Flash memory being used).

Bits 15:8 DATAST: Data-phase duration
These bits are written by software to define the duration of the data phase (refer to
Figure 158 to Figure 170), used in SRAMs, ROMs and asynchronous multiplexed NOR Flash
accesses:
0000 0000: Reserved
0000 0001: DATAST phase duration = 2 × HCLK clock cycles
0000 0010: DATAST phase duration = 3 × HCLK clock cycles
...
1111 1111: DATAST phase duration = 256 × HCLK clock cycles (default value after reset)
For each memory type and access mode data-phase duration, please refer to the respective
figure (Figure 158 to Figure 170).
Example: Mode1, read access, DATAST=1: Data-phase duration= DATAST+3 =4 HCLK clock
cycles.

Bits 7:4 ADDHLD: Address-hold phase duration

These bits are written by software to define the duration of the address hold phase (refer to
Figure 167 to Figure 170), used in mode D and multiplexed accesses:
0000: Reserved
0001: ADDHLD phase duration = 2 × HCLK clock cycle
0010: ADDHLD phase duration = 3 × HCLK clock cycle
...
1111: ADDHLD phase duration = 16 × HCLK clock cycles (default value after reset)
For each access mode address-hold phase duration, please refer to the respective figure
(Figure 167 to Figure 170).
Example: ModeD, read access, ADDHLD=1: Address-hold phase duration = ADDHLD + 1 =2
HCLK clock cycles.

Note: In synchronous accesses, this value is not used, the address hold phase is always 1
memory clock period duration.

Bits 3:0 ADDSET: Address setup phase duration

These bits are written by software to define the duration of the address setup phase (refer to
Figure 158 to Figure 170), used in SRAMs, ROMs and asynchronous NOR Flash:
0000: ADDSET phase duration = 1 × HCLK clock cycle
...
1111: ADDSET phase duration = 16 × HCLK clock cycles (default value after reset)
For each access mode address setup phase duration, please refer to the respective figure
(refer to Figure 158 to Figure 170).
Example: Mode2, read access, ADDSET=1: Address setup phase duration = ADDSET + 1 =
2 HCLK clock cycles.

Note: In synchronous accesses, this value is not used, the address hold phase is always 1
memory clock period duration.

RM0008 Flexible static memory controller (FSMC)

 391/682

SRAM/NOR-Flash write timing registers 1..4 (FSMC_BWTR1..4)

Address offset: 0xA000 0000 + 0x104 + 8 * (x – 1), x = 1...4

Reset value: 0x0FFF FFFF

This register contains the control information of each memory bank, used for SRAMs, ROMs
and NOR Flash memories. When the EXTMOD bit is set in the FSMC_BCRx register, then
this register is active for write access.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.

ACCM
OD DATLAT CLKDIV

Reserved
DATAST ADDHLD ADDSET

rw rw

Bits 29:28 ACCMOD: Access mode.

Specifies the asynchronous access modes as shown in the next timing diagrams.These bits are
taken into account only when the EXTMOD bit in the FSMC_BCRx register is 1.
00: access mode A
01: access mode B
10: access mode C
11: access mode D

Bits 27:24 DATLAT: Data latency (for synchronous burst NOR Flash).

For NOR Flash with Synchronous burst mode enabled, defines the number of memory clock cycles
(+2) to issue to the memory before getting the first data:
0000: (0x0) Data latency of 2 CLK clock cycles for first burst access
...
1111: (0xF) Data latency of 17 CLK clock cycles for first burst access (default value after reset)

Note: This timing parameter is not expressed in HCLK periods, but in Flash clock (CLK) periods
Note: In asynchronous NOR Flash, SRAM or ROM accesses, this value is don’t care.

Note: In case of CRAM, this field must be set to 0

Bits 23:20 CLKDIV: Clock divide ratio (for CLK signal).

Defines the period of CLK clock output signal, expressed in number of HCLK cycles:
0000: Reserved
0001 CLK period = 2 × HCLK periods
0010 CLK period = 3 × HCLK periods
1111: CLK period = 16 × HCLK periods (default value after reset)
In asynchronous NOR Flash, SRAM or ROM accesses, this value is don’t care.

Bits 19:16 Reserved

Flexible static memory controller (FSMC) RM0008

392/682

18.6 NAND Flash/PC Card controller
The FSMC generates the appropriate signal timings to drive the following types of device:

● NAND Flash

– 8-bit

– 16-bit

● 16-bit PC Card compatible devices

The NAND/PC Card controller can control three external banks. Bank 2 and bank 3 support
NAND Flash devices. Bank 4 supports PC Card devices.

Each bank is configured by means of dedicated registers (Section 18.6.7). The
programmable memory parameters include access timings (shown in Table 96) and ECC
configuration.

Bits 15:8 DATAST: Data-phase duration.
These bits are written by software to define the duration of the data phase (refer to Figure 158 to
Figure 170), used in SRAMs, ROMs and asynchronous multiplexed NOR Flash accesses:
0000 0000: Reserved
0000 0001: DATAST phase duration = 2 × HCLK clock cycle
0000 0010: DATAST phase duration = 3 × HCLK clock cycle
...
0000 1111: DATAST phase duration = 16 × HCLK clock cycles (default value after reset)

Bits 7:4 ADDHLD: Address-hold phase duration.

These bits are written by software to define the duration of the address hold phase (refer to
Figure 167 to Figure 170), used in SRAMs, ROMs and asynchronous multiplexed NOR Flash
accesses:
0000: Reserved
0001: ADDHLD phase duration = 2 × HCLK clock cycle
0010: ADDHLD phase duration = 3 × HCLK clock cycle
...
1111: ADDHLD phase duration = 16 × HCLK clock cycles (default value after reset)

Note: In synchronous NOR Flash accesses, this value is not used, the address hold phase is always
1 Flash clock period duration.

Bits 3:0 ADDSET: Address setup phase duration.

These bits are written by software to define the duration of the address setup phase in HCLK
cycles (refer to Figure 167 to Figure 170), used in SRAMs, ROMs and asynchronous multiplexed
NOR Flash:
0000: ADDSET phase duration = 1 × HCLK clock cycle
...
1111: ADDSET phase duration = 16 × HCLK clock cycles (default value after reset)

Note: In synchronous NOR Flash accesses, this value is not used, the address hold phase is always
1 Flash clock period duration.

RM0008 Flexible static memory controller (FSMC)

 393/682

18.6.1 External memory interface signals

The following tables list the signals that are typically used to interface NAND Flash and PC
Card.

Caution: When using a PC Card or a CompactFlash in I/O mode, the NIOS16 input pin must remain
at ground level during the whole operation, otherwise the FSMC may not operate properly.
This means that the NIOS16 input pin must not be connected to the card, but directly to
ground (only 16-bit accesses are allowed).

Note: Prefix “N”. specifies the associated signal as active low.

8-bit NAND Flash

 t

There is no theoretical capacity limitation as the FSMC can manage as many address
cycles as needed.

Table 96. Programmable NAND/PC Card access parameters

Parameter Function Access mode Unit Min. Max.

Memory setup
time

Number of clock cycles (HCLK)
to set up the address before the
command assertion

Read/Write
AHB clock cycle
(HCLK)

1 256

Memory wait
Minimum duration (HCLK clock
cycles) of the command assertion

Read/Write
AHB clock cycle
(HCLK)

2 256

Memory hold

Number of clock cycles (HCLK)
to hold the address (and the data
in case of a write access) after
the command de-assertion

Read/Write
AHB clock cycle
(HCLK)

1 255

Memory
databus high-Z

Number of clock cycles (HCLK)
during which the databus is kept
in high-Z state after the start of a
write access

Write
AHB clock cycle
(HCLK)

0 255

Table 97. 8-bit NAND Flash

FSMC signal name I/O Function

A[17] O NAND Flash address latch enable (ALE) signal

A[16] O NAND Flash command latch enable (CLE) signal

D[7:0] I/O 8-bit multiplexed, bidirectional address/data bus

NCE[x] O Chip select, x = 2, 3

NOE(= NRE) O Output enable (memory signal name: read enable, NRE)

NWE O Write enable

NWAIT/INT[3:2] I NAND Flash ready/busy input signal to the FSMC

Flexible static memory controller (FSMC) RM0008

394/682

16-bit NAND Flash

There is no theoretical capacity limitation as the FSMC can manage as many address
cycles as needed.

18.6.2 NAND Flash / PC Card supported memories and transactions

Table 100 below shows the supported devices, access modes and transactions.
Transactions not allowed (or not supported) by the NAND Flash / PC Card controller appear
in gray.

Table 98. 16-bit NAND Flash

FSMC signal name I/O Function

A[17] O NAND Flash address latch enable (ALE) signal

A[16] O NAND Flash command latch enable (CLE) signal

D[15:0] I/O 16-bit multiplexed, bidirectional address/data bus

NCE[x] O Chip select, x = 2, 3

NOE(= NRE) O Output enable (memory signal name: read enable, NRE)

NWE O Write enable

NWAIT/INT[3:2] I NAND Flash ready/busy input signal to the FSMC

Table 99. 16-bit PC Card

FSMC signal name I/O Function

A[10:0] O Address bus

NIOS16 I Data transfer width in I/O space (16-bit transfer only)

NIORD O Output enable for I/O space

NIOWR O Write enable for I/O space

NREG O Register signal indicating if access is in Common or Attribute space

D[15:0] I/O Bidirectional databus

NCE4_1 O Chip select 1

NCE4_2 O Chip select 2 (indicates if access is 16-bit or 8-bit)

NOE O Output enable

NWE O Write enable

NWAIT I
PC Card wait input signal to the FSMC (memory signal name
IORDY)

INTR I
PC Card interrupt to the FSMC (only for PC Cards that can generate
an interrupt)

CD I PC Card presence detection

RM0008 Flexible static memory controller (FSMC)

 395/682

18.6.3 Timing diagrams for NAND, ATA and PC Card

Each PC Card/CompactFlash and NAND Flash memory bank is managed through a set of
registers:

● Control register: FSMC_PCRx

● Interrupt status register: FSMC_SRx

● ECC register: FSMC_ECCRx

● Timing register for Common memory space: FSMC_PMEMx

● Timing register for Attribute memory space: FSMC_PATTx

● Timing register for I/O space: FSMC_PIOx

Each timing configuration register contains three parameters used to define number of
HCLK cycles for the three phases of any PC Card/CompactFlash or NAND Flash access,
plus one parameter that defines the timing for starting driving the databus in the case of a
write. Figure 173 shows the timing parameter definitions for common memory accesses,
knowing that Attribute and I/O (only for PC Card) memory space access timings are similar.

Table 100. Supported memories and transactions

Device Mode R/W
AHB

data size
Memory
data size

Allowed/
not allowed

Comments

NAND 8-bit

Asynchronous R 8 8 Y

Asynchronous W 8 8 Y

Asynchronous R 16 8 Y Split into 2 FSMC accesses

Asynchronous W 16 8 Y Split into 2 FSMC accesses

Asynchronous R 32 8 Y Split into 4 FSMC accesses

Asynchronous W 32 8 Y Split into 4 FSMC accesses

NAND 16-bit

Asynchronous R 8 16 Y

Asynchronous W 8 16 N

Asynchronous R 16 16 Y

Asynchronous W 16 16 Y

Asynchronous R 32 16 Y Split into 2 FSMC accesses

Asynchronous W 32 16 Y Split into 2 FSMC accesses

Flexible static memory controller (FSMC) RM0008

396/682

Figure 173. NAND/PC Card controller timing for common memory access

1. NCEx goes low as soon as NAND access is requested and remains low until a different memory bank is accessed.

2. NOE remains high (inactive) during write access. NWE remains high (inactive) during read access.

18.6.4 NAND Flash operations

The command latch enable (CLE) and address latch enable (ALE) signals of the NAND
Flash device are driven by some address signals of the FSMC controller. This means that to
send a command or an address to the NAND Flash memory, the CPU has to perform a write
to a certain address in its memory space.

A typical page read operation from the NAND Flash device is as follows:

1. Program and enable the corresponding memory bank by configuring the FSMC_PCRx
and FSMC_PMEMx (and for some devices, FSMC_PATTx, see Section 18.6.5: NAND
Flash pre-wait functionality on page 397) registers according to the characteristics of
the NAND Flash (PWID bits for the databus width of the NAND Flash, PTYP = 1,
PWAITEN = 1, PBKEN = 1, see section Common memory space timing register 2..4
(FSMC_PMEM2..4) on page 401 for timing configuration).

2. The CPU performs a byte write in the common memory space, with data byte equal to
one Flash command byte (for example 0x00 for Samsung NAND Flash devices). The
CLE input of the NAND Flash is active during the write strobe (low pulse on NWE), thus
the written byte is interpreted as a command by the NAND Flash. Once the command
is latched by the NAND Flash device, it does not need to be written for the following
page read operations.

3. The CPU can send the start address (STARTAD) for a read operation by writing four
bytes (or three for smaller capacity devices), STARTAD[7:0], then STARTAD[16:9],
STARTAD[24:17] and finally STARTAD[25] for 64 Mb x 8 bit NAND Flash) in the
common memory or attribute space. The ALE input of the NAND Flash device is active
during the write strobe (low pulse on NWE), thus the written bytes are interpreted as

HCLK

A[25:0]

NCEx(1)

NREG,
NIOW,
NIOR

NWE,
NOE(2)

write_data

read_data

ai14732c

High

Valid

MEMxSET + 1 MEMxWAIT + 1 MEMxHOLD + 1

MEMxHIZ + 1

RM0008 Flexible static memory controller (FSMC)

 397/682

the start address for read operations. Using the attribute memory space makes it
possible to use a different timing configuration of the FSMC, which can be used to
implement the prewait functionality needed by some NAND Flash memories (see
details in Section 18.6.5: NAND Flash pre-wait functionality on page 397).

4. The controller waits for the NAND Flash to be ready (R/NB signal high) to become
active, before starting a new access (to same or another memory bank). While waiting,
the controller maintains the NCE signal active (low).

5. The CPU can then perform byte read operations in the common memory space to read
the NAND Flash page (data field + Spare field) byte by byte.

6. The next NAND Flash page can be read without any CPU command or address write
operation, in three different ways:

– by simply performing the operation described in step 5

– a new random address can be accessed by restarting the operation at step 3

– a new command can be sent to the NAND Flash device by restarting at step 2

18.6.5 NAND Flash pre-wait functionality

Some NAND Flash devices require that, after writing the last part of the address, the
controller wait for the R/NB signal to go low as shown in Figure 174.

Figure 174. Access to non ‘CE don’t care’ NAND-Flash

1. CPU wrote byte 0x00 at address 0x7001 0000.

2. CPU wrote byte A7~A0 at address 0x7002 0000.

3. CPU wrote byte A16~A9 at address 0x7002 0000.

4. CPU wrote byte A24~A17 at address 0x7002 0000.

5. CPU wrote byte A25 at address 0x7802 0000: FSMC performs a write access using FSMC_PATT2 timing
definition, where ATTHOLD ≥ 7 (providing that (7+1) × HCLK = 112 ns > tWB max). This guarantees that
NCE remains low until R/NB goes low and high again (only requested for NAND Flash memories where
NCE is not don’t care).

NCE

NOE

I/O[7:0]

R/NB

ai14733

High

tWB

CLE

ALE

0x00 A7-A0 A16-A9 A24-A17 A25

tR

NWE

(1) (2) (3) (4) (5)

NCE must stay low

Flexible static memory controller (FSMC) RM0008

398/682

When this functionality is needed, it can be guaranteed by programming the MEMHOLD
value to meet the tWB timing, however any CPU read or write access to the NAND Flash
then has the hold delay of (MEMHOLD + 1) HCLK cycles inserted from the rising edge of
the NWE signal to the next access.

To overcome this timing constraint, the attribute memory space can be used by
programming its timing register with an ATTHOLD value that meets the tWB timing, and
leaving the MEMHOLD value at its minimum. Then, the CPU must use the common memory
space for all NAND Flash read and write accesses, except when writing the last address
byte to the NAND Flash device, where the CPU must write to the attribute memory space.

18.6.6 Error correction code computation ECC (NAND Flash)

The FSMC PC-Card controller includes two error correction code computation hardware
blocks, one per memory bank. They are used to reduce the host CPU workload when
processing the error correction code by software in the system.

These two registers are identical and associated with bank 2 and bank 3, respectively. As a
consequence, no hardware ECC computation is available for memories connected to bank
4.

The error correction code (ECC) algorithm implemented in the FSMC can perform 1-bit error
correction and 2-bit error detection per 256, 512, 1 024, 2 048, 4 096 or 8 192 bytes read
from or written to NAND Flash.

The ECC modules monitor the NAND Flash databus and read/write signals (NCE and NWE)
each time the NAND Flash memory bank is active.

The functional operations are:

● When access to NAND Flash is made to bank 2 or bank 3, the data present on the
D[15:0] bus is latched and used for ECC computation.

● When access to NAND Flash occurs at any other address, the ECC logic is idle, and
does not perform any operation. Thus, write operations for defining commands or
addresses to NAND Flash are not taken into account for ECC computation.

Once the desired number of bytes has been read from/written to the NAND Flash by the
host CPU, the FSMC_ECCR2/3 registers must be read in order to retrieve the computed
value. Once read, they should be cleared by resetting the ECCEN bit to zero. To compute a
new data block, the ECCEN bit must be set to one in the FSMC_PCR2/3 registers.

18.6.7 NAND Flash/PC Card controller registers

PC Card/NAND Flash control registers 2..4 (FSMC_PCR2..4)

Address offset: 0xA0000000 + 0x40 + 0x20 * (x – 1), x = 2..4

Reset value: 0x0000 0018

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ECCPS TAR TCLR

Res. E
C

C
E

N

PWID

P
T

Y
P

P
B

K
E

N

P
W

A
IT

E
N

R
es

er
ve

d

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0008 Flexible static memory controller (FSMC)

 399/682

Bits 19:17 ECCPS: ECC page size.
Defines the page size for the extended ECC:
000: 256 bytes
001: 512 bytes
010: 1024 bytes
011: 2048 bytes
100: 4096 bytes
101: 8192 bytes

Bits 16:13 TAR: ALE to RE delay.
Sets time from ALE low to RE low in number of AHB clock cycles (HCLK).
Time is: t_ar = (TAR + SET + 4) × THCLK where THCLK is the HCLK clock period
0000: 1 HCLK cycle (default)
1111: 16 HCLK cycles

Note: SET is MEMSET or ATTSET according to the addressed space.

Bits 12:9 TCLR: CLE to RE delay.
Sets time from CLE low to RE low in number of AHB clock cycles (HCLK).
Time is t_clr = (TCLR + SET + 4) × THCLK where THCLK is the HCLK clock period
0000: 1 HCLK cycle (default)
1111: 16 HCLK cycles

Note: SET is MEMSET or ATTSET according to the addressed space.

Bits 8:7 Reserved.

Bits 6 ECCEN: ECC computation logic enable bit

0: ECC logic is disabled and reset (default after reset),
1: ECC logic is enabled.

Bits 5:4 PWID: Databus width.

Defines the external memory device width.
00: 8 bits (default after reset)
01: 16 bits (mandatory for PC Card)
10: reserved, do not use
11: reserved, do not use

Bit 3 PTYP: Memory type.

Defines the type of device attached to the corresponding memory bank:
0: PC Card, CompactFlash, CF+ or PCMCIA
1: NAND Flash (default after reset)

Bit 2 PBKEN: PC Card/NAND Flash memory bank enable bit.

Enables the memory bank. Accessing a disabled memory bank causes an ERROR on AHB
bus
0: Corresponding memory bank is disabled (default after reset),
1: Corresponding memory bank is enabled

Bit 1 PWAITEN: Wait feature enable bit.

Enables the Wait feature for the PC Card/NAND Flash memory bank:
0: disabled
1: enabled

Note: For a PC Card, when the wait feature is enabled, the MEMWAITx/ATTWAITx/IOWAITx
bits must be programmed to a value higher than tv(IORDY-NOE)/THCLK + 4, where
tv(IORDY-NOE) is the maximum time taken by NWAIT to go low once NOE is low.

Bit 0 Reserved.

Flexible static memory controller (FSMC) RM0008

400/682

FIFO status and interrupt register 2..4 (FSMC_SR2..4)

Address offset: 0xA000 0000 + 0x44 + 0x20 * (x-1), x = 2..4

Reset value: 0x0000 0040

This register contains information about FIFO status and interrupt. The FSMC has a FIFO
that is used when writing to memories to store up to16 words of data from the AHB.
This is used to quickly write to the AHB and free it for transactions to peripherals other than
the FSMC, while the FSMC is draining its FIFO into the memory. This register has one of its
bits that indicates the status of the FIFO, for ECC purposes.
The ECC is calculated while the data are written to the memory, so in order to read the
correct ECC the software must wait until the FIFO is empty.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R

es
er

ve
d

F
E

M
P

T

IF
E

N

IL
E

N

IR
E

N

IF
S

IL
S

IR
S

r rw rw rw rw rw rw

Bit 6 FEMPT: FIFO empty.

Read-only bit that provides the status of the FIFO
0: FIFO not empty
1: FIFO empty

Bit 5 IFEN: Interrupt falling edge detection enable bit

0: Interrupt falling edge detection request disabled.
1: Interrupt falling edge detection request enabled.

Bit 4 ILEN: Interrupt high-level detection enable bit

0: Interrupt high-level detection request disabled.
1: Interrupt high-level detection request enabled.

Bit 3 IREN: Interrupt rising edge detection enable bit

0: Interrupt rising edge detection request disabled.
1: Interrupt rising edge detection request enabled.

Bit 2 IFS: Interrupt falling edge status

The flag is set by hardware and reset by software.
0: No interrupt falling edge occurred.
1: Interrupt falling edge occurred.

Bit 1 ILS: Interrupt high-level status

The flag is set by hardware and reset by software.
0: No Interrupt high-level occurred.
1: Interrupt high-level occurred.

Bit 0 IRS: Interrupt rising edge status

The flag is set by hardware and reset by software.
0: No interrupt rising edge occurred.
1: Interrupt rising edge occurred.

RM0008 Flexible static memory controller (FSMC)

 401/682

Common memory space timing register 2..4 (FSMC_PMEM2..4)

Address offset: Address: 0xA000 0000 + 0x48 + 0x20 * (x – 1), x = 2..4

Reset value: 0xFCFC FCFC

Each FSMC_PMEMx (x = 2..4) read/write register contains the timing information for PC
Card or NAND Flash memory bank x, used for access to the common memory space of the
16-bit PC Card/CompactFlash, or to access the NAND Flash for command, address write
access and data read/write access.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEMHIZx MEMHOLDx MEMWAITx MEMSETx

rw rw

Bits 31:24 MEMHIZx: Common memory x databus HiZ time

Defines the number of HCLK (+1 only for NAND) clock cycles during which the databus is
kept in HiZ after the start of a PC Card/NAND Flash write access to common memory space
on socket x. Only valid for write transaction:
0000 0000: (0x00) 0 HCLK cycle (for PC Card) / 1 HCLK cycle (for NAND Flash)
1111 1111: (0xFF) 255 HCLK cycles (for PC Card) / 256 HCLK cycles (for NAND Flash) -
(default value after reset)

Bits 23:16 MEMHOLDx: Common memory x hold time

Defines the number of HCLK clock cycles to hold address (and data for write access) after
the command deassertion (NWE, NOE), for PC Card/NAND Flash read or write access to
common memory space on socket x:
0000 0000: reserved
0000 0001: 1 HCLK cycle
1111 1111: 255 HCLK cycles (default value after reset)

Bits 15:8 MEMWAITx: Common memory x wait time

Defines the minimum number of HCLK (+1) clock cycles to assert the command (NWE,
NOE), for PC Card/NAND Flash read or write access to common memory space on socket
x. The duration for command assertion is extended if the wait signal (NWAIT) is active (low)
at the end of the programmed value of HCLK:
0000 0000: reserved
0000 0001: 2HCLK cycles (+ wait cycle introduced by deasserting NWAIT)
1111 1111: 256 HCLK cycles (+ wait cycle introduced by the Card deasserting NWAIT)
(default value after reset)

Bits 7:0 MEMSETx: Common memory x setup time

Defines the number of HCLK (+1 for PC Card, +2 for NAND) clock cycles to set up the
address before the command assertion (NWE, NOE), for PC Card/NAND Flash read or write
access to common memory space on socket x:
0000 0000: 1 HCLK cycle (for PC Card) / HCLK cycles (for NAND Flash)
1111 1111: 256 HCLK cycles (for PC Card) / 257 HCLK cycles (for NAND Flash) - (default
value after reset)

Flexible static memory controller (FSMC) RM0008

402/682

Attribute memory space timing registers 2..4 (FSMC_PATT2..4)

Address offset: 0xA000 0000 + 0x4C + 0x20 * (x – 1), x = 2..4

Reset value: 0xFCFC FCFC

Each FSMC_PATTx (x = 2..4) read/write register contains the timing information for PC
Card/CompactFlash or NAND Flash memory bank x. It is used for 8-bit accesses to the
attribute memory space of the PC Card/CompactFlash (every AHB transaction is split up
into a sequence of 8-bit transactions), or to access the NAND Flash for the last address
write access if the timing must differ from that of previous accesses (for Ready/Busy
management, refer to Section 18.6.5: NAND Flash pre-wait functionality).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ATTHIZx ATTHOLDx ATTWAITx ATTSETx

rw rw

Bits 31:24 ATTHIZx: Attribute memory x databus HiZ time

Defines the number of HCLK clock cycles during which the databus is kept in HiZ after the
start of a PC CARD/NAND Flash write access to attribute memory space on socket x. Only
valid for write transaction:
0000 0000: 0 HCLK cycle
1111 1111: 255 HCLK cycles (default value after reset)

Bits 23:16 ATTHOLDx: Attribute memory x hold time

Defines the number of HCLK clock cycles to hold address (and data for write access) after
the command deassertion (NWE, NOE), for PC Card/NAND Flash read or write access to
attribute memory space on socket x
0000 0000: reserved
0000 0001: 1 HCLK cycle
1111 1111: 255 HCLK cycles (default value after reset)

Bits 15:8 ATTWAITx: Attribute memory x wait time
Defines the minimum number of HCLK (+1) clock cycles to assert the command (NWE,
NOE), for PC Card/NAND Flash read or write access to attribute memory space on socket x.
The duration for command assertion is extended if the wait signal (NWAIT) is active (low) at
the end of the programmed value of HCLK:
0000 0000: reserved
0000 0001: 2 HCLK cycles (+ wait cycle introduced by deassertion of NWAIT)
1111 1111: 256 HCLK cycles (+ wait cycle introduced by the card deasserting NWAIT)
(default value after reset)

Bits 7:0 ATTSETx: Attribute memory x setup time

Defines the number of HCLK (+1) clock cycles to set up address before the command
assertion (NWE, NOE), for PC CARD/NAND Flash read or write access to attribute memory
space on socket x:
0000 0000: 1 HCLK cycle
1111 1111: 256 HCLK cycles (default value after reset)

RM0008 Flexible static memory controller (FSMC)

 403/682

I/O space timing register 4 (FSMC_PIO4)

Address offset: 0xA000 0000 + 0xB0

Reset value: 0xFCFCFCFC

The FSMC_PIO4 read/write registers contain the timing information used to gain access to
the I/O space of the 16-bit PC Card/CompactFlash.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IOHIZx IOHOLDx IOWAITx IOSETx

rw rw

Bits 31:24 IOHIZx: I/O x databus HiZ time

Defines the number of HCLK clock cycles during which the databus is kept in HiZ after the
start of a PC Card write access to I/O space on socket x. Only valid for write transaction:
0000 0000: 0 HCLK cycle
1111 1111: 255 HCLK cycles (default value after reset)

Bits 23:16 IOHOLDx: I/O x hold time

Defines the number of HCLK clock cycles to hold address (and data for write access) after
the command deassertion (NWE, NOE), for PC Card read or write access to I/O space on
socket x:
0000 0000: reserved
0000 0001: 1 HCLK cycle
1111 1111: 255 HCLK cycles (default value after reset)

Bits 15:8 IOWAITx: I/O x wait time

Defines the minimum number of HCLK (+1) clock cycles to assert the command (SMNWE,
SMNOE), for PC Card read or write access to I/O space on socket x. The duration for
command assertion is extended if the wait signal (NWAIT) is active (low) at the end of the
programmed value of HCLK:
0000 0000: reserved, do not use this value
0000 0001: 2 HCLK cycles (+ wait cycle introduced by deassertion of NWAIT)
1111 1111: 256 HCLK cycles (+ wait cycle introduced by the Card deasserting NWAIT)
(default value after reset)

Bits 7:0 IOSETx: I/O x setup time
Defines the number of HCLK (+1) clock cycles to set up the address before the command
assertion (NWE, NOE), for PC Card read or write access to I/O space on socket x:
0000 0000: 1 HCLK cycle
1111 1111: 256 HCLK cycles (default value after reset)

Flexible static memory controller (FSMC) RM0008

404/682

ECC result registers 2/3 (FSMC_ECCR2/3)

Address offset: 0xA000 0000 + 0x54 + 0x20 * (x – 1), x = 2 or 3

Reset value: 0x0000 0000

These registers contain the current error correction code value computed by the ECC
computation modules of the FSMC controller (one module per NAND Flash memory bank).
When the CPU reads the data from a NAND Flash memory page at the correct address
(refer to Section 18.6.6: Error correction code computation ECC (NAND Flash)), the data
read from or written to the NAND Flash are processed automatically by ECC computation
module. At the end of X bytes read (according to the ECCPS field in the FSMC_PCRx
registers), the CPU must read the computed ECC value from the FSMC_ECCx registers,
and then verify whether these computed parity data are the same as the parity value
recorded in the spare area, to determine whether a page is valid, and, to correct it if
applicable. The FSMC_ECCRx registers should be cleared after being read by setting the
ECCEN bit to zero. For computing a new data block, the ECCEN bit must be set to one.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ECCx

r

Bits 31:0 ECCx: ECC result

This field provides the value computed by the ECC computation logic. Table 101 hereafter
describes the contents of these bit fields.

Table 101. ECC result relevant bits

ECCPS[2:0] Page size in bytes ECC bits

000 256 ECC[21:0]

001 512 ECC[23:0]

010 1024 ECC[25:0]

011 2048 ECC[27:0]

100 4096 ECC[29:0]

101 8192 ECC[31:0]

RM0008 SDIO interface (SDIO)

 405/682

19 SDIO interface (SDIO)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This section applies to high-density performance line devices only.

19.1 SDIO main features
The SD/SDIO MMC card host interface (SDIO) provides an interface between the AHB
peripheral bus and MultiMediaCards (MMCs), SD memory cards, SDIO cards and CE-ATA
devices.

The MultiMediaCard system specifications are available through the MultiMediaCard
Association website at www.mmca.org, published by the MMCA technical committee.

SD memory card and SD I/O card system specifications are available through the SD card
Association website at www.sdcard.org.

CE-ATA system specifications are available through the CE-ATA workgroup website at
www.ce-ata.org.

The SDIO features include the following:

● Full compliance with MultiMediaCard System Specification Version 4.2. Card support
for three different databus modes: 1-bit (default), 4-bit and 8-bit

● Full compatibility with previous versions of MultiMediaCards (forward compatibility)

● Full compliance with SD Memory Card Specifications Version 2.0

● Full compliance with SD I/O Card Specification Version 2.0: card support for two
different databus modes: 1-bit (default) and 4-bit

● Full support of the CE-ATA features (full compliance with CE-ATA digital protocol
Rev1.1)

● Data transfer up to 48 MHz for the 8 bit mode

● Data and command output enable signals to control external bidirectional drivers.

Note: 1 The SDIO does not have an SPI-compatible communication mode.

2 The SD memory card protocol is a superset of the MultiMediaCard protocol as defined in the
MultiMediaCard system specification V2.11. Several commands required for SD memory
devices are not supported by either SD I/O-only cards or the I/O portion of combo cards.
Some of these commands have no use in SD I/O devices, such as erase commands, and
thus are not supported in the SDIO. In addition, several commands are different between SD
memory cards and SD I/O cards and thus are not supported in the SDIO. For details refer to
SD I/O card Specification Version 1.0. CE-ATA is supported over the MMC electrical
interface using a protocol that utilizes the existing MMC access primitives. The interface
electrical and signaling definition is as defined in the MMC reference.

The MultiMediaCard/SD bus connects cards to the controller.

SDIO interface (SDIO) RM0008

406/682

The current version of the SDIO supports only one SD/SDIO/MMC4.2 card at any one time
and a stack of MMC4.1 or previous.

19.2 SDIO bus topology
Communication over the bus is based on command and data transfers.

The basic transaction on the MultiMediaCard/SD/SD I/O bus is the command/response
transaction. These types of bus transaction transfer their information directly within the
command or response structure. In addition, some operations have a data token.

Data transfers to/from SD/SDIO memory cards are done in data blocks. Data transfers
to/from MMC are done data blocks or streams. Data transfers to/from the CE-ATA Devices
are done in data blocks.

Figure 175. SDIO “no response” and “no data” operations

Figure 176. SDIO (multiple) block read operation

Operation (no response) Operation (no data)

SDIO_CMD

SDIO_D

From host to card(s) From host to card From card to host

ResponseCommand Command

ai14734

ai14735

Command Response

Data block crc Data block crc Data block crc

Block read operation

Multiple block read operation
Data stop operation

From host to card From card to host

data from card to host Stop command
stops data transfer

Command ResponseSDIO_CMD

SDIO_D

RM0008 SDIO interface (SDIO)

 407/682

Figure 177. SDIO (multiple) block write operation

Note: The SDIO will not send any data as long as the Busy signal is asserted (SDIO_D0 pulled
low).

Figure 178. SDIO sequential read operation

Figure 179. SDIO sequential write operation

ai14737

Block write operation Data stop operation

Multiple block write operation

From host to card From card to host

Data from host to card

Stop command
stops data transfer

Optional cards Busy.
Needed for CE-ATA

Command Response Command Response

Data block crcBusy Busy Data block crc Busy

SDIO_CMD

SDIO_D

ai14738

Data stop operation

From card to host Stop command
stops data transfer

Command Response Command Response

Data transfer operation

Data stream

From host to
card(s)

Data from card to host

SDIO_CMD

SDIO_D

ai14739

Data stop operation

From card to host Stop command
stops data transfer

Command Response Command Response

Data transfer operation

Data stream

From host to
card(s)

Data from host to card

SDIO_CMD

SDIO_D

SDIO interface (SDIO) RM0008

408/682

19.3 SDIO functional description
The SDIO consists of two parts:

● The SDIO adapter block provides all functions specific to the MMC/SD/SD I/O card
such as the clock generation unit, command and data transfer.

● The AHB interface accesses the SDIO adapter registers, and generates interrupt and
DMA request signals.

Figure 180. SDIO block diagram

By default SDIO_D0 is used for data transfer. After initialization, the host can change the
databus width.

If a MultiMediaCard is connected to the bus, SDIO_D0, SDIO_D[3:0] or SDIO_D[7:0] can be
used for data transfer. MMC V3.31 or previous, supports only 1 bit of data so only SDIO_D0
can be used.

If an SD or SD I/O card is connected to the bus, data transfer can be configured by the host
to use SDIO_D0 or SDIO_D[3:0]. All data lines are operating in push-pull mode.

SDIO_CMD has two operational modes:

● Open-drain for initialization (only for MMCV3.31 or previous)

● Push-pull for command transfer (SD/SD I/O card MMC4.2 use push-pull drivers also for
initialization)

SDIO_CK is the clock to the card: one bit is transferred on both command and data lines
with each clock cycle. The clock frequency can vary between 0 MHz and 20 MHz (for a
MultiMediaCard V3.31), between 0 and 48 MHz for a MultiMediaCard V4.0/4.2, or between
0 and 25 MHz (for an SD/SD I/O card).

The SDIO uses two clock signals:

● SDIO adapter clock (SDIOCLK = HCLK)

● AHB bus clock (HCLK/2)

The signals shown in Table 102 are used on the MultiMediaCard/SD/SD I/O card bus.

AHB bus

AHB

Interrupts and

HCLK/2

SDIO_CK

adapterinterface

DMA request

SDIOCLK

SDIO

SDIO

SDIO_D[7:0]

SDIO_CMD

ai14740

RM0008 SDIO interface (SDIO)

 409/682

19.3.1 SDIO adapter

Figure 181 shows a simplified block diagram of an SDIO adapter.

Figure 181. SDIO adapter

The SDIO adapter is a multimedia/secure digital memory card bus master that provides an
interface to a multimedia card stack or to a secure digital memory card. It consists of five
subunits:

● Adapter register block

● Control unit

● Command path

● Data path

● Data FIFO

Note: The adapter registers and FIFO use the AHB bus clock domain (HCLK/2). The control unit,
command path and data path use the SDIO adapter clock domain (SDIOCLK).

Adapter register block

The adapter register block contains all system registers. This block also generates the
signals that clear the static flags in the multimedia card. The clear signals are generated
when 1 is written into the corresponding bit location in the SDIO Clear register.

Table 102. SDIO I/O definitions

Pin Direction Description

SDIO_CK Output
MultiMediaCard/SD/SDIO card clock. This pin is the clock from
host to card.

SDIO_CMD Bidirectional
MultiMediaCard/SD/SDIO card command. This pin is the
bidirectional command/response signal.

SDIO_D[7:0] Bidirectional
MultiMediaCard/SD/SDIO card data. These pins are the
bidirectional databus.

To AHB
interface

ai14740

Control unit

Command
path

Data path

Adapter
registers

FIFO

SDIO_CK

SDIO_CMD

SDIO_D[7:0]

HCLK/2 SDIOCLK

C
ar

d
bu

s

SDIO adapter

SDIO interface (SDIO) RM0008

410/682

Control unit

The control unit contains the power management functions and the clock divider for the
memory card clock.

There are three power phases:

● power-off

● power-up

● power-on

Figure 182. Control unit

The control unit is illustrated in Figure 182. It consists of a power management subunit and
a clock management subunit.

The power management subunit disables the card bus output signals during the power-off
and power-up phases.

The clock management subunit generates and controls the SDIO_CK signal. The SDIO_CK
output can use either the clock divide or the clock bypass mode. The clock output is inactive:

● after reset

● during the power-off or power-up phases

● if the power saving mode is enabled and the card bus is in the Idle state (eight clock
periods after both the command and data path subunits enter the Idle phase)

ai14804

Power management

Clock
management

Adapter
registers

SDIO_CK

Control unit

To command and data path

RM0008 SDIO interface (SDIO)

 411/682

Command path

The command path unit sends commands to and receives responses from the cards.

Figure 183. SDIO adapter command path

● Command path state machine (CPSM)

– When the command register is written to and the enable bit is set, command
transfer starts. When the command has been sent, the command path state
machine (CPSM) sets the status flags and enters the Idle state if a response is not
required. If a response is required, it waits for the response (see Figure 184 on
page 412). When the response is received, the received CRC code and the
internally generated code are compared, and the appropriate status flags are set.

ai14805

CMD

Status
flag

Control
logic

Command
timer

CRC
Argument

Shift
registerCMD

Response
registers

To control unit

SDIO_CMDin

SDIO_CMDout

To AHB interface

Adapter registers

SDIO interface (SDIO) RM0008

412/682

Figure 184. Command path state machine (CPSM)

When the Wait state is entered, the command timer starts running. If the timeout is reached
before the CPSM moves to the Receive state, the timeout flag is set and the Idle state is
entered.

Note: The command timeout has a fixed value of 64 SDIO_CK clock periods.

If the interrupt bit is set in the command register, the timer is disabled and the CPSM waits
for an interrupt request from one of the cards. If a pending bit is set in the command register,
the CPSM enters the Pend state, and waits for a CmdPend signal from the data path
subunit. When CmdPend is detected, the CPSM moves to the Send state. This enables the
data counter to trigger the stop command transmission.

Note: The CPSM remains in the Idle state for at least eight SDIO_CK periods to meet the NCC and
NRC timing constraints. NCC is the minimum delay between two host commands, and NRC is
the minimum delay between the host command and the card response.

Idle

Pend

Send

Wait

Receive

Last Data

CPSM
disabled

Enabled and
command start

CPSM disabled or
no response

Wait for response

Response
started

Response received or
disabled or command
CRC failed

CPSM Disabled or
command timeout

CPSM Enabled and
pending command

ai14806b

Wait_CPL

Response Received in CE-ATA
mode and no interrupt and
wait for CE-ATA Command
Completion signal enabled

Response Received in CE-ATA mode and
no interrupt and wait for CE-ATA
Command Completion signal disabled

CE-ATA Command
Completion signal
received or
CPSM disabled or
Command CRC failed

On reset

RM0008 SDIO interface (SDIO)

 413/682

Figure 185. SDIO command transfer

● Command format

– Command: a command is a token that starts an operation. Command are sent
from the host either to a single card (addressed command) or to all connected
cards (broadcast command are available for MMC V3.31 or previous). Commands
are transferred serially on the CMD line. All commands have a fixed length of 48
bits. The general format for a command token for MultiMediaCards, SD-Memory
cards and SDIO-Cards is shown in Table 103. CE-ATA commands are an
extension of MMC commands V4.2, and so have the same format.

The command path operates in a half-duplex mode, so that commands and
responses can either be sent or received. If the CPSM is not in the Send state, the
SDIO_CMD output is in the Hi-Z state, as shown in Figure 185 on page 413. Data
on SDIO_CMD are synchronous with the rising edge of SDIO_CK. Table shows
the command format.

– Response: a response is a token that is sent from an addressed card (or
synchronously from all connected cards for MMC V3.31 or previous), to the host
as an answer to a previously received command. Responses are transferred
serially on the CMD line.

The SDIO supports two response types. Both use CRC error checking:

● 48 bit short response

● 136 bit long response

Note: If the response does not contain a CRC (CMD1 response), the device driver must ignore the
CRC failed status.

Table 103. Command format

Bit position Width Value Description

47 1 0 Start bit

46 1 1 Transmission bit

[45:40] 6 - Command index

[39:8] 32 - Argument

[7:1] 7 - CRC7

0 1 1 End bit

SDIO_CK

SDIO_CMD

Command Response Command

State Idle Send Wait Receive Idle Send

Hi-Z Controller drives Hi-Z Card drives Hi-Z Controller drives

ai14707

at least 8 SDIO_CK cycles

SDIO interface (SDIO) RM0008

414/682

The command register contains the command index (six bits sent to a card) and the
command type. These determine whether the command requires a response, and whether
the response is 48 or 136 bits long (see Section 19.9.4 on page 447). The command path
implements the status flags shown in Table 106:

The CRC generator calculates the CRC checksum for all bits before the CRC code. This
includes the start bit, transmitter bit, command index, and command argument (or card
status). The CRC checksum is calculated for the first 120 bits of CID or CSD for the long
response format. Note that the start bit, transmitter bit and the six reserved bits are not used
in the CRC calculation.

The CRC checksum is a 7-bit value:

 CRC[6:0] = Remainder [(M(x) * x7) / G(x)]

G(x) = x7 + x3 + 1

M(x) = (start bit) * x39 + ... + (last bit before CRC) * x0, or

M(x) = (start bit) * x119 + ... + (last bit before CRC) * x0

Table 104. Short response format

Bit position Width Value Description

47 1 0 Start bit

46 1 0 Transmission bit

[45:40] 6 - Command index

[39:8] 32 - Argument

[7:1] 7 - CRC7(or 1111111)

0 1 1 End bit

Table 105. Long response format

Bit position Width Value Description

135 1 0 Start bit

134 1 0 Transmission bit

[133:128] 6 111111 Reserved

[127:1] 127 - CID or CSD (including internal CRC7)

0 1 1 End bit

Table 106. Command path status flags

Flag Description

CMDREND Set if response CRC is OK.

CCRCFAIL Set if response CRC fails.

CMDSENT Set when command (that does not require response) is sent

CTIMEOUT Response timeout.

CMDACT Command transfer in progress.

RM0008 SDIO interface (SDIO)

 415/682

Data path

The data path subunit transfers data to and from cards. Figure 186 shows a block diagram
of the data path.

Figure 186. Data path

The card databus width can be programmed using the clock control register. If the 4-bit wide
bus mode is enabled, data is transferred at four bits per clock cycle over all four data signals
(SDIO_D[3:0]). If the 8-bit wide bus mode is enabled, data is transferred at eight bits per
clock cycle over all eight data signals (SDIO_D[7:0]). If the wide bus mode is not enabled,
only one bit per clock cycle is transferred over SDIO_D0.

Depending on the transfer direction (send or receive), the data path state machine (DPSM)
moves to the Wait_S or Wait_R state when it is enabled:

● Send: the DPSM moves to the Wait_S state. If there is data in the transmit FIFO, the
DPSM moves to the Send state, and the data path subunit starts sending data to a
card.

● Receive: the DPSM moves to the Wait_R state and waits for a start bit. When it
receives a start bit, the DPSM moves to the Receive state, and the data path subunit
starts receiving data from a card.

Data path state machine (DPSM)

The DPSM operates at SDIO_CK frequency. Data on the card bus signals is synchronous to
the rising edge of SDIO_CK. The DPSM has six states, as shown in Figure 187: Data path
state machine (DPSM).

ai14808

Transmit

Status
flag

Control
logic

Data
timer

CRC

Receive

Shift
register

To control unit

SDIO_Din[7:0]

SDIO_Dout[7:0]

Data FIFO

Data path

SDIO interface (SDIO) RM0008

416/682

Figure 187. Data path state machine (DPSM)

● Idle: the data path is inactive, and the SDIO_D[7:0] outputs are in Hi-Z. When the data
control register is written and the enable bit is set, the DPSM loads the data counter
with a new value and, depending on the data direction bit, moves to either the Wait_S
or the Wait_R state.

● Wait_R: if the data counter equals zero, the DPSM moves to the Idle state when the
receive FIFO is empty. If the data counter is not zero, the DPSM waits for a start bit on
SDIO_D. The DPSM moves to the Receive state if it receives a start bit before a
timeout, and loads the data block counter. If it reaches a timeout before it detects a
start bit, or a start bit error occurs, it moves to the Idle state and sets the timeout status
flag.

● Receive: serial data received from a card is packed in bytes and written to the data
FIFO. Depending on the transfer mode bit in the data control register, the data transfer
mode can be either block or stream:

– In block mode, when the data block counter reaches zero, the DPSM waits until it
receives the CRC code. If the received code matches the internally generated
CRC code, the DPSM moves to the Wait_R state. If not, the CRC fail status flag is
set and the DPSM moves to the Idle state.

– In stream mode, the DPSM receives data while the data counter is not zero. When
the counter is zero, the remaining data in the shift register is written to the data
FIFO, and the DPSM moves to the Wait_R state.

If a FIFO overrun error occurs, the DPSM sets the FIFO error flag and moves to the Idle
state:

● Wait_S: the DPSM moves to the Idle state if the data counter is zero. If not, it waits until
the data FIFO empty flag is deasserted, and moves to the Send state.

Idle

Busy

Send

Wait_R

Receive

End of packet

Disabled or CRC fail
or timeout

Not busy

Disabled or
end of data

Data ready

End of packet or
end of data or
FIFO overrun

Enable and not send

Disabled or
Rx FIFO empty or timeout or
start bit error

Disabled or FIFO underrun or
end of data or CRC fail

ai14809b

Wait_S

Start bit

On reset

Disabled or CRC fail

Enable and send

DPSM disabled

Read WaitDPSM enabled and
Read Wait Started
and SD I/O mode enabled

ReadWait Stop

Data received and
Read Wait Started and
SD I/O mode enabled

RM0008 SDIO interface (SDIO)

 417/682

Note: The DPSM remains in the Wait_S state for at least two clock periods to meet the NWR timing
requirements, where NWR is the number of clock cycles between the reception of the card
response and the start of the data transfer from the host.

● Send: the DPSM starts sending data to a card. Depending on the transfer mode bit in
the data control register, the data transfer mode can be either block or stream:

– In block mode, when the data block counter reaches zero, the DPSM sends an
internally generated CRC code and end bit, and moves to the Busy state.

– In stream mode, the DPSM sends data to a card while the enable bit is high and
the data counter is not zero. It then moves to the Idle state.

If a FIFO underrun error occurs, the DPSM sets the FIFO error flag and moves to the
Idle state.

● Busy: the DPSM waits for the CRC status flag:

– If it does not receive a positive CRC status, it moves to the Idle state and sets the
CRC fail status flag.

– If it receives a positive CRC status, it moves to the Wait_S state if SDIO_D0 is not
low (the card is not busy).

If a timeout occurs while the DPSM is in the Busy state, it sets the data timeout flag and
moves to the Idle state.

The data timer is enabled when the DPSM is in the Wait_R or Busy state, and
generates the data timeout error:

– When transmitting data, the timeout occurs if the DPSM stays in the Busy state for
longer than the programmed timeout period

– When receiving data, the timeout occurs if the end of the data is not true, and if the
DPSM stays in the Wait_R state for longer than the programmed timeout period.

● Data: data can be transferred from the card to the host or vice versa. Data is
transferred via the data lines. They are stored in a FIFO of 32 words, each word is 32
bits wide.

Data FIFO

The data FIFO (first-in-first-out) subunit is a data buffer with a transmit and receive unit.

The FIFO contains a 32-bit wide, 32-word deep data buffer, and transmit and receive logic.
Because the data FIFO operates in the AHB clock domain (HCLK/2), all signals from the
subunits in the SDIO clock domain (SDIOCLK) are resynchronized.

Table 107. Data token format

Description Start bit Data CRC16 End bit

Block Data 0 - yes 1

Stream Data 0 - no 1

SDIO interface (SDIO) RM0008

418/682

Depending on the TXACT and RXACT flags, the FIFO can be disabled, transmit enabled, or
receive enabled. TXACT and RXACT are driven by the data path subunit and are mutually
exclusive:

– The transmit FIFO refers to the transmit logic and data buffer when TXACT is
asserted

– The receive FIFO refers to the receive logic and data buffer when RXACT is
asserted

● Transmit FIFO:

Data can be written to the transmit FIFO through the AHB interface when the SDIO is
enabled for transmission.

The transmit FIFO is accessible via 32 sequential addresses. The transmit FIFO
contains a data output register that holds the data word pointed to by the read pointer.
When the data path subunit has loaded its shift register, it increments the read pointer
and drives new data out.

If the transmit FIFO is disabled, all status flags are deasserted. The data path subunit
asserts TXACT when it transmits data.

● Receive FIFO

When the data path subunit receives a word of data, it drives the data on the write
databus. The write pointer is incremented after the write operation completes. On the
read side, the contents of the FIFO word pointed to by the current value of the read
pointer is driven onto the read databus. If the receive FIFO is disabled, all status flags
are deasserted, and the read and write pointers are reset. The data path subunit
asserts RXACT when it receives data. Table 109 lists the receive FIFO status flags.
The receive FIFO is accessible via 32 sequential addresses.

Table 108. Transmit FIFO status flags

Flag Description

TXFIFOF Set to high when all 32 transmit FIFO words contain valid data.

TXFIFOE Set to high when the transmit FIFO does not contain valid data.

TXFIFOHE
Set to high when 8 or more transmit FIFO words are empty. This flag can be used
as a DMA request.

TXDAVL
Set to high when the transmit FIFO contains valid data. This flag is the inverse of
the TXFIFOE flag.

TXUNDERR
Set to high when an underrun error occurs. This flag is cleared by writing to the
SDIO Clear register.

RM0008 SDIO interface (SDIO)

 419/682

19.3.2 SDIO AHB Interface

The AHB interface generates the interrupt and DMA requests, and accesses the SDIO
adapter registers and the data FIFO. It consists of a data path, register decoder, and
interrupt/DMA logic.

SDIO Interrupts

The interrupt logic generates an interrupt request signal that is asserted when at least one
of the selected status flags is high. A mask register is provided to allow selection of the
conditions that will generate an interrupt. A status flag generates the interrupt request if a
corresponding mask flag is set.

SDIO/DMA Interface: procedure for data transfers between the SDIO and
memory

In the example shown, the transfer is from the SDIO host controller to an MMC (512 bytes
using CMD24 (WRITE_BLOCK). The SDIO FIFO is filled by data stored in a memory using
the DMA controller.

1. Do the card identification process

2. Increase the SDIO_CK frequency

3. Select the card by sending CMD7

4. Configure the DMA2 as follows:

a) Enable DMA2 controller and clear any pending interrupts

b) Program DMA2_Channel4 source address register with memory location base
address and DMA2_Channel4 destination address register with SDIO_FIFO
register address

c) Program DMA2_Channel4 control register (memory increment, not peripheral
increment, peripheral and source width is word size)

d) Enable DMA2_Channel4

5. Send CMD24 (WRITE_BLOCK) as follows:

a) Program the SDIO data length register (SDIO data timer register should be
already programmed before the card identification process)

b) Program the SDIO argument register with the address location of the card where
data is to be transferred

Table 109. Receive FIFO status flags

Flag Description

RXFIFOF Set to high when all 32 receive FIFO words contain valid data

RXFIFOE Set to high when the receive FIFO does not contain valid data.

RXFIFOHF
 Set to high when 8 or more receive FIFO words contain valid data. This flag can be
used as a DMA request.

RXDAVL
Set to high when the receive FIFO is not empty. This flag is the inverse of the
RXFIFOE flag.

RXOVERR
Set to high when an overrun error occurs. This flag is cleared by writing to the SDIO
Clear register.

SDIO interface (SDIO) RM0008

420/682

c) Program the SDIO command register: CmdIndex with 24 (WRITE_BLOCK);
WaitResp with ‘1’ (SDIO card host waits for a response); CPSMEN with ‘1’ (SDIO
card host enabled to send a command). Other fields are at their reset value.

d) Wait for SDIO_STA[6] = CMDREND interrupt, then program the SDIO data control
register: DTEN with ‘1’ (SDIO card host enabled to send data); DTDIR with ‘0’
(from controller to card); DTMODE with ‘0’ (block data transfer); DMAEN with ‘1’
(DMA enabled); DBLOCKSIZE with 0x9 (512 bytes). Other fields are don’t care.

e) Wait for SDIO_STA[10] = DBCKEND

6. Check that no channels are still enabled by polling the DMA Enabled Channel Status
register.

19.4 Card functional description

19.4.1 Card identification mode

While in card identification mode the host resets all cards, validates the operation voltage
range, identifies cards and sets a relative card address (RCA) for each card on the bus. All
data communications in the card identification mode use the command line (CMD) only.

19.4.2 Card reset

The GO_IDLE_STATE command (CMD0) is the software reset command and it puts the
MultiMediaCard and SD memory in the Idle state. The IO_RW_DIRECT command (CMD52)
resets the SD I/O card. After power-up or CMD0, all cards output bus drivers are in the high-
impedance state and the cards are initialized with a default relative card address
(RCA=0x0001) and with a default driver stage register setting (lowest speed, highest driving
current capability).

19.4.3 Operating voltage range validation

All cards can communicate with the SDIO card host using any operating voltage within the
specification range. The supported minimum and maximum VDD values are defined in the
operation conditions register (OCR) on the card.

Cards that store the card identification number (CID) and card specific data (CSD) in the
payload memory are able to communicate this information only under data-transfer VDD
conditions. When the SDIO card host module and the card have incompatible VDD ranges,
the card is not able to complete the identification cycle and cannot send CSD data. For this
purpose, the special commands, SEND_OP_COND (CMD1), SD_APP_OP_COND (ACMD41
for SD Memory), and IO_SEND_OP_COND (CMD5 for SD I/O), are designed to provide a
mechanism to identify and reject cards that do not match the VDD range desired by the
SDIO card host. The SDIO card host sends the required VDD voltage window as the
operand of these commands. Cards that cannot perform data transfer in the specified range
disconnect from the bus and go to the inactive state.

By using these commands without including the voltage range as the operand, the SDIO
card host can query each card and determine the common voltage range before placing out-
of-range cards in the inactive state. This query is used when the SDIO card host is able to
select a common voltage range or when the user requires notification that cards are not
usable.

RM0008 SDIO interface (SDIO)

 421/682

19.4.4 Card identification process

The card identification process differs for MultiMediaCards and SD cards. For
MultiMediaCard cards, the identification process starts at clock rate Fod. The SDIO_CMD
line output drivers are open-drain and allow parallel card operation during this process. The
registration process is accomplished as follows:

1. The bus is activated.

2. The SDIO card host broadcasts SEND_OP_COND (CMD1) to receive operation
conditions.

3. The response is the wired AND operation of the operation condition registers from all
cards.

4. Incompatible cards are placed in the inactive state.

5. The SDIO card host broadcasts ALL_SEND_CID (CMD2) to all active cards.

6. The active cards simultaneously send their CID numbers serially. Cards with outgoing
CID bits that do not match the bits on the command line stop transmitting and must wait
for the next identification cycle. One card successfully transmits a full CID to the SDIO
card host and enters the Identification state.

7. The SDIO card host issues SET_RELATIVE_ADDR (CMD3) to that card. This new
address is called the relative card address (RCA); it is shorter than the CID and
addresses the card. The assigned card changes to the Standby state, it does not react
to further identification cycles, and its output switches from open-drain to push-pull.

8. The SDIO card host repeats steps 5 through 7 until it receives a timeout condition.

For the SD card, the identification process starts at clock rate Fod, and the SDIO_CMD line
output drives are push-pull drivers instead of open-drain. The registration process is
accomplished as follows:

1. The bus is activated.

2. The SDIO card host broadcasts SD_APP_OP_COND (ACMD41).

3. The cards respond with the contents of their operation condition registers.

4. The incompatible cards are placed in the inactive state.

5. The SDIO card host broadcasts ALL_SEND_CID (CMD2) to all active cards.

6. The cards send back their unique card identification numbers (CIDs) and enter the
Identification state.

7. The SDIO card host issues SET_RELATIVE_ADDR (CMD3) to an active card with an
address. This new address is called the relative card address (RCA); it is shorter than
the CID and addresses the card. The assigned card changes to the Standby state. The
SDIO card host can reissue this command to change the RCA. The RCA of the card is
the last assigned value.

8. The SDIO card host repeats steps 5 through 7 with all active cards.

For the SD I/O card, the registration process is accomplished as follows:

1. The bus is activated.

2. The SDIO card host sends IO_SEND_OP_COND (CMD5).

3. The cards respond with the contents of their operation condition registers.

4. The incompatible cards are set to the inactive state.

5. The SDIO card host issues SET_RELATIVE_ADDR (CMD3) to an active card with an
address. This new address is called the relative card address (RCA); it is shorter than
the CID and addresses the card. The assigned card changes to the Standby state. The

SDIO interface (SDIO) RM0008

422/682

SDIO card host can reissue this command to change the RCA. The RCA of the card is
the last assigned value.

19.4.5 Block write

During block write (CMD24 - 27) one or more blocks of data are transferred from the host to
the card with a CRC appended to the end of each block by the host. A card supporting block
write is always able to accept a block of data defined by WRITE_BL_LEN. If the CRC fails,
the card indicates the failure on the SDIO_D line and the transferred data are discarded and
not written, and all further transmitted blocks (in multiple block write mode) are ignored.

If the host uses partial blocks whose accumulated length is not block aligned and, block
misalignment is not allowed (CSD parameter WRITE_BLK_MISALIGN is not set), the card
will detect the block misalignment error before the beginning of the first misaligned block.
(ADDRESS_ERROR error bit is set in the status register). The write operation will also be
aborted if the host tries to write over a write-protected area. In this case, however, the card
will set the WP_VIOLATION bit.

Programming of the CID and CSD registers does not require a previous block length setting.
The transferred data is also CRC protected. If a part of the CSD or CID register is stored in
ROM, then this unchangeable part must match the corresponding part of the receive buffer.
If this match fails, then the card reports an error and does not change any register contents.
Some cards may require long and unpredictable times to write a block of data. After
receiving a block of data and completing the CRC check, the card begins writing and holds
the SDIO_D line low if its write buffer is full and unable to accept new data from a new
WRITE_BLOCK command. The host may poll the status of the card with a SEND_STATUS
command (CMD13) at any time, and the card will respond with its status. The
READY_FOR_DATA status bit indicates whether the card can accept new data or whether
the write process is still in progress. The host may deselect the card by issuing CMD7 (to
select a different card), which will place the card in the Disconnect state and release the
SDIO_D line(s) without interrupting the write operation. When reselecting the card, it will
reactivate busy indication by pulling SDIO_D to low if programming is still in progress and
the write buffer is unavailable.

19.4.6 Block read

In Block read mode the basic unit of data transfer is a block whose maximum size is defined
in the CSD (READ_BL_LEN). If READ_BL_PARTIAL is set, smaller blocks whose start and
end addresses are entirely contained within one physical block (as defined by
READ_BL_LEN) may also be transmitted. A CRC is appended to the end of each block,
ensuring data transfer integrity. CMD17 (READ_SINGLE_BLOCK) initiates a block read and
after completing the transfer, the card returns to the Transfer state.

CMD18 (READ_MULTIPLE_BLOCK) starts a transfer of several consecutive blocks.

The host can abort reading at any time, within a multiple block operation, regardless of its
type. Transaction abort is done by sending the stop transmission command.

If the card detects an error (for example, out of range, address misalignment or internal
error) during a multiple block read operation (both types) it stops the data transmission and
remains in the data state. The host must than abort the operation by sending the stop
transmission command. The read error is reported in the response to the stop transmission
command.

RM0008 SDIO interface (SDIO)

 423/682

If the host sends a stop transmission command after the card transmits the last block of a
multiple block operation with a predefined number of blocks, it is responded to as an illegal
command, since the card is no longer in the data state. If the host uses partial blocks whose
accumulated length is not block-aligned and block misalignment is not allowed, the card
detects a block misalignment error condition at the beginning of the first misaligned block
(ADDRESS_ERROR error bit is set in the status register).

19.4.7 Stream access, stream write and stream read (MultiMediaCard only)

In stream mode, data is transferred in bytes and no CRC is appended at the end of each
block.

Stream write (MultiMediaCard only)

WRITE_DAT_UNTIL_STOP (CMD20) starts the data transfer from the SDIO card host to the
card, beginning at the specified address and continuing until the SDIO card host issues a
stop command. When partial blocks are allowed (CSD parameter WRITE_BL_PARTIAL is
set), the data stream can start and stop at any address within the card address space,
otherwise it can only start and stop at block boundaries. Because the amount of data to be
transferred is not determined in advance, a CRC cannot be used. When the end of the
memory range is reached while sending data and no stop command is sent by the SD card
host, any additional transferred data are discarded.

The maximum clock frequency for a stream write operation is given by the following
equation fields of the card-specific data register:

● Maximumspeed = maximum write frequency

● TRANSPEED = maximum data transfer rate

● writebllen = maximum write data block length

● NSAC = data read access time 2 in CLK cycles

● TAAC = data read access time 1

● R2WFACTOR = write speed factor

If the host attempts to use a higher frequency, the card may not be able to process the data
and stop programming, set the OVERRUN error bit in the status register, and while ignoring
all further data transfer, wait (in the receive data state) for a stop command. The write
operation is also aborted if the host tries to write over a write-protected area. In this case,
however, the card sets the WP_VIOLATION bit.

Stream read (MultiMediaCard only)

READ_DAT_UNTIL_STOP (CMD11) controls a stream-oriented data transfer.

This command instructs the card to send its data, starting at a specified address, until the
SDIO card host sends STOP_TRANSMISSION (CMD12). The stop command has an
execution delay due to the serial command transmission and the data transfer stops after
the end bit of the stop command. When the end of the memory range is reached while
sending data and no stop command is sent by the SDIO card host, any subsequent data
sent are considered undefined.

Maximumspeed MIN TRANSPEED 8 2writebllen×() NSAC–()
TAAC R2WFACTOR×

---(,)=

SDIO interface (SDIO) RM0008

424/682

The maximum clock frequency for a stream read operation is given by the following equation
and uses fields of the card specific data register.

● Maximumspeed = maximum read frequency

● TRANSPEED = maximum data transfer rate

● readbllen = maximum read data block length

● writebllen = maximum write data block length

● NSAC = data read access time 2 in CLK cycles

● TAAC = data read access time 1

● R2WFACTOR = write speed factor

If the host attempts to use a higher frequency, the card is not able to sustain data transfer. If
this happens, the card sets the UNDERRUN error bit in the status register, aborts the
transmission and waits in the data state for a stop command.

19.4.8 Erase: group erase and sector erase

The erasable unit of the MultiMediaCard is the erase group. The erase group is measured in
write blocks, which are the basic writable units of the card. The size of the erase group is a
card-specific parameter and defined in the CSD.

The host can erase a contiguous range of Erase Groups. Starting the erase process is a
three-step sequence.

First the host defines the start address of the range using the ERASE_GROUP_START
(CMD35) command, next it defines the last address of the range using the
ERASE_GROUP_END (CMD36) command and, finally, it starts the erase process by issuing
the ERASE (CMD38) command. The address field in the erase commands is an Erase
Group address in byte units. The card ignores all LSBs below the Erase Group size,
effectively rounding the address down to the Erase Group boundary.

If an erase command is received out of sequence, the card sets the ERASE_SEQ_ERROR
bit in the status register and resets the whole sequence.

If an out-of-sequence (neither of the erase commands, except SEND_STATUS) command
received, the card sets the ERASE_RESET status bit in the status register, resets the erase
sequence and executes the last command.

If the erase range includes write protected blocks, they are left intact and only nonprotected
blocks are erased. The WP_ERASE_SKIP status bit in the status register is set.

The card indicates that an erase is in progress by holding SDIO_D low. The actual erase
time may be quite long, and the host may issue CMD7 to deselect the card.

19.4.9 Wide bus selection or deselection

Wide bus (4-bit bus width) operation mode is selected or deselected using
SET_BUS_WIDTH (ACMD6). The default bus width after power-up or GO_IDLE_STATE
(CMD0) is 1 bit. SET_BUS_WIDTH (ACMD6) is only valid in a transfer state, which means
that the bus width can be changed only after a card is selected by
SELECT/DESELECT_CARD (CMD7).

Maximumspeed MIN TRANSPEED 8 2readbllen×() NSAC–()
TAAC R2WFACTOR×

--(,)=

RM0008 SDIO interface (SDIO)

 425/682

19.4.10 Protection management

Three write protection methods for the cards are supported in the SDIO card host module:

1. internal card write protection (card responsibility)

2. mechanical write protection switch (SDIO card host module responsibility only)

3. password-protected card lock operation

Internal card write protection

Card data can be protected against write and erase. By setting the permanent or temporary
write-protect bits in the CSD, the entire card can be permanently write-protected by the
manufacturer or content provider. For cards that support write protection of groups of
sectors by setting the WP_GRP_ENABLE bit in the CSD, portions of the data can be
protected, and the write protection can be changed by the application. The write protection
is in units of WP_GRP_SIZE sectors as specified in the CSD. The SET_WRITE_PROT and
CLR_WRITE_PROT commands control the protection of the addressed group. The
SEND_WRITE_PROT command is similar to a single block read command. The card sends a
data block containing 32 write protection bits (representing 32 write protect groups starting
at the specified address) followed by 16 CRC bits. The address field in the write protect
commands is a group address in byte units.

The card ignores all LSBs below the group size.

Mechanical write protect switch

A mechanical sliding tab on the side of the card allows the user to set or clear the write
protection on a card. When the sliding tab is positioned with the window open, the card is
write-protected, and when the window is closed, the card contents can be changed. A
matched switch on the socket side indicates to the SDIO card host module that the card is
write-protected. The SDIO card host module is responsible for protecting the card. The
position of the write protect switch is unknown to the internal circuitry of the card.

Password protect

The password protection feature enables the SDIO card host module to lock and unlock a
card with a password. The password is stored in the 128-bit PWD register and its size is set
in the 8-bit PWD_LEN register. These registers are non-volatile so that a power cycle does
not erase them. Locked cards respond to and execute certain commands. This means that
the SDIO card host module is allowed to reset, initialize, select, and query for status,
however it is not allowed to access data on the card. When the password is set (as indicated
by a nonzero value of PWD_LEN), the card is locked automatically after power-up. As with
the CSD and CID register write commands, the lock/unlock commands are available in the
transfer state only. In this state, the command does not include an address argument and
the card must be selected before using it. The card lock/unlock commands have the
structure and bus transaction types of a regular single-block write command. The
transferred data block includes all of the required information for the command (the
password setting mode, the PWD itself, and card lock/unlock). The command data block
size is defined by the SDIO card host module before it sends the card lock/unlock command,
and has the structure shown in Table 123.

SDIO interface (SDIO) RM0008

426/682

The bit settings are as follows:

● ERASE: setting it forces an erase operation. All other bits must be zero, and only the
command byte is sent

● LOCK_UNLOCK: setting it locks the card. LOCK_UNLOCK can be set simultaneously
with SET_PWD, however not with CLR_PWD

● CLR_PWD: setting it clears the password data

● SET_PWD: setting it saves the password data to memory

● PWD_LEN: it defines the length of the password in bytes

● PWD: the password (new or currently used, depending on the command)

The following sections list the command sequences to set/reset a password, lock/unlock the
card, and force an erase.

Setting the password

1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected.

2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit card
lock/unlock mode, the 8-bit PWD_LEN, and the number of bytes of the new password.
When a password replacement is done, the block size must take into account that both
the old and the new passwords are sent with the command.

3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line
including the 16-bit CRC. The data block indicates the mode (SET_PWD = 1), the
length (PWD_LEN), and the password (PWD) itself. When a password replacement is
done, the length value (PWD_LEN) includes the length of both passwords, the old and
the new one, and the PWD field includes the old password (currently used) followed by
the new password.

4. When the password is matched, the new password and its size are saved into the PWD
and PWD_LEN fields, respectively. When the old password sent does not correspond
(in size and/or content) to the expected password, the LOCK_UNLOCK_FAILED error
bit is set in the card status register, and the password is not changed.

The password length field (PWD_LEN) indicates whether a password is currently set. When
this field is nonzero, there is a password set and the card locks itself after power-up. It is
possible to lock the card immediately in the current power session by setting the
LOCK_UNLOCK bit (while setting the password) or sending an additional command for card
locking.

Resetting the password

1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected.

2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit card
lock/unlock mode, the 8-bit PWD_LEN, and the number of bytes in the currently used
password.

3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line
including the 16-bit CRC. The data block indicates the mode (CLR_PWD = 1), the
length (PWD_LEN) and the password (PWD) itself. The LOCK_UNLOCK bit is ignored.

4. When the password is matched, the PWD field is cleared and PWD_LEN is set to 0.
When the password sent does not correspond (in size and/or content) to the expected
password, the LOCK_UNLOCK_FAILED error bit is set in the card status register, and
the password is not changed.

RM0008 SDIO interface (SDIO)

 427/682

Locking a card

1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected.

2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit card
lock/unlock mode (byte 0 in Table 123), the 8-bit PWD_LEN, and the number of bytes of
the current password.

3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line
including the 16-bit CRC. The data block indicates the mode (LOCK_UNLOCK = 1), the
length (PWD_LEN), and the password (PWD) itself.

4. When the password is matched, the card is locked and the CARD_IS_LOCKED status
bit is set in the card status register. When the password sent does not correspond (in
size and/or content) to the expected password, the LOCK_UNLOCK_FAILED error bit
is set in the card status register, and the lock fails.

It is possible to set the password and to lock the card in the same sequence. In this case,
the SDIO card host module performs all the required steps for setting the password (see
Setting the password on page 426), however it is necessary to set the LOCK_UNLOCK bit
in Step 3 when the new password command is sent.

When the password is previously set (PWD_LEN is not 0), the card is locked automatically
after power on reset. An attempt to lock a locked card or to lock a card that does not have a
password fails and the LOCK_UNLOCK_FAILED error bit is set in the card status register.

Unlocking the card

1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected.

2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit
cardlock/unlock mode (byte 0 in Table 123), the 8-bit PWD_LEN, and the number of
bytes of the current password.

3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line
including the 16-bit CRC. The data block indicates the mode (LOCK_UNLOCK = 0), the
length (PWD_LEN), and the password (PWD) itself.

4. When the password is matched, the card is unlocked and the CARD_IS_LOCKED
status bit is cleared in the card status register. When the password sent is not correct in
size and/or content and does not correspond to the expected password, the
LOCK_UNLOCK_FAILED error bit is set in the card status register, and the card
remains locked.

The unlocking function is only valid for the current power session. When the PWD field is not
clear, the card is locked automatically on the next power-up.

An attempt to unlock an unlocked card fails and the LOCK_UNLOCK_FAILED error bit is set
in the card status register.

Forcing erase

If the user has forgotten the password (PWD content), it is possible to access the card after
clearing all the data on the card. This forced erase operation erases all card data and all
password data.

1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected.

2. Set the block length (SET_BLOCKLEN, CMD16) to 1 byte. Only the 8-bit card
lock/unlock byte (byte 0 in Table 123) is sent.

SDIO interface (SDIO) RM0008

428/682

3. Send LOCK/UNLOCK (CMD42) with the appropriate data byte on the data line including
the 16-bit CRC. The data block indicates the mode (ERASE = 1). All other bits must be
zero.

4. When the ERASE bit is the only bit set in the data field, all card contents are erased,
including the PWD and PWD_LEN fields, and the card is no longer locked. When any
other bits are set, the LOCK_UNLOCK_FAILED error bit is set in the card status
register and the card retains all of its data, and remains locked.

An attempt to use a force erase on an unlocked card fails and the LOCK_UNLOCK_FAILED
error bit is set in the card status register.

19.4.11 Card status register

The response format R1 contains a 32-bit field named card status. This field is intended to
transmit the card status information (which may be stored in a local status register) to the
host. If not specified otherwise, the status entries are always related to the previously issued
command.

Table 110 defines the different entries of the status. The type and clear condition fields in the
table are abbreviated as follows:

Type:

● E: error bit

● S: status bit

● R: detected and set for the actual command response

● X: detected and set during command execution. The SDIO card host must poll the card
by issuing the status command to read these bits.

Clear condition:

● A: according to the card current state

● B: always related to the previous command. Reception of a valid command clears it
(with a delay of one command)

● C: clear by read

RM0008 SDIO interface (SDIO)

 429/682

Table 110. Card status

Bits Identifier Type Value Description
Clear

condition

31
ADDRESS_
OUT_OF_RANGE

E R X
’0’= no error
’1’= error

The command address argument was out
of the allowed range for this card.

A multiple block or stream read/write
operation is (although started in a valid
address) attempting to read or write
beyond the card capacity.

C

30 ADDRESS_MISALIGN
’0’= no error
’1’= error

The commands address argument (in
accordance with the currently set block
length) positions the first data block
misaligned to the card physical blocks.

A multiple block read/write operation
(although started with a valid
address/block-length combination) is
attempting to read or write a data block
which is not aligned with the physical
blocks of the card.

C

29 BLOCK_LEN_ERROR
’0’= no error

’1’= error

Either the argument of a
SET_BLOCKLEN command exceeds the
maximum value allowed for the card, or
the previously defined block length is
illegal for the current command (e.g. the
host issues a write command, the current
block length is smaller than the maximum
allowed value for the card and it is not
allowed to write partial blocks)

C

28 ERASE_SEQ_ERROR
’0’= no error
’1’= error

An error in the sequence of erase
commands occurred.

C

27 ERASE_PARAM E X
’0’= no error
’1’= error

An invalid selection of erase groups for
erase occurred.

C

26 WP_VIOLATION E X
’0’= no error
’1’= error

Attempt to program a write-protected
block. C

25 CARD_IS_LOCKED S R
‘0’ = card
unlocked
‘1’ = card locked

When set, signals that the card is locked
by the host

A

24
LOCK_UNLOCK_
FAILED

E X
’0’= no error
’1’= error

Set when a sequence or password error
has been detected in lock/unlock card
command

C

23 COM_CRC_ERROR E R
’0’= no error
’1’= error

The CRC check of the previous command
failed.

B

22 ILLEGAL_COMMAND E R
’0’= no error
’1’= error

Command not legal for the card state B

21 CARD_ECC_FAILED E X
’0’= success
’1’= failure

Card internal ECC was applied but failed
to correct the data.

C

20 CC_ERROR E R
’0’= no error
’1’= error

(Undefined by the standard) A card error
occurred, which is not related to the host
command.

C

SDIO interface (SDIO) RM0008

430/682

19 ERROR E X
’0’= no error
’1’= error

(Undefined by the standard) A generic
card error related to the (and detected
during) execution of the last host
command (e.g. read or write failures).

C

18 Reserved

17 Reserved

16 CID/CSD_OVERWRITE E X
’0’= no error ‘1’=
error

Can be either of the following errors:
– The CID register has already been

written and cannot be overwritten
– The read-only section of the CSD does

not match the card contents
– An attempt to reverse the copy (set as

original) or permanent WP
(unprotected) bits was made

C

15 WP_ERASE_SKIP E X
’0’= not protected
’1’= protected

Set when only partial address space was
erased due to existing write

C

14 CARD_ECC_DISABLED S X
’0’= enabled
’1’= disabled

The command has been executed without
using the internal ECC.

A

13 ERASE_RESET
’0’= cleared
’1’= set

An erase sequence was cleared before
executing because an out of erase
sequence command was received
(commands other than CMD35, CMD36,
CMD38 or CMD13)

C

12:9 CURRENT_STATE S R

0 = Idle
1 = Ready
2 = Ident
3 = Stby
4 = Tran
5 = Data
6 = Rcv
7 = Prg
8 = Dis
9 = Btst
10-15 = reserved

The state of the card when receiving the
command. If the command execution
causes a state change, it will be visible to
the host in the response on the next
command. The four bits are interpreted as
a binary number between 0 and 15.

B

8 READY_FOR_DATA S R
’0’= not ready ‘1’
= ready

Corresponds to buffer empty signalling on
the bus

7 SWITCH_ERROR E X
’0’= no error
’1’= switch error

If set, the card did not switch to the
expected mode as requested by the
SWITCH command

B

6 Reserved

5 APP_CMD S R
‘0’ = Disabled
‘1’ = Enabled

The card will expect ACMD, or an
indication that the command has been
interpreted as ACMD

C

4 Reserved for SD I/O Card

Table 110. Card status (continued)

Bits Identifier Type Value Description
Clear

condition

RM0008 SDIO interface (SDIO)

 431/682

19.4.12 SD status register

The SD status contains status bits that are related to the SD memory card proprietary
features and may be used for future application-specific usage. The size of the SD Status is
one data block of 512 bits. The contents of this register are transmitted to the SDIO card
host if ACMD13 is sent (CMD55 followed with CMD13). ACMD13 can be sent to a card in
transfer state only (card is selected).

Table 111 defines the different entries of the SD status register. The type and clear condition
fields in the table are abbreviated as follows:

Type:

● E: error bit

● S: status bit

● R: detected and set for the actual command response

● X: detected and set during command execution. The SDIO card Host must poll the card
by issuing the status command to read these bits

Clear condition:

● A: according to the card current state

● B: always related to the previous command. Reception of a valid command clears it
(with a delay of one command)

● C: clear by read

3 AKE_SEQ_ERROR E R
’0’= no error
’1’= error

Error in the sequence of the
authentication process

C

2 Reserved for application specific commands

1
Reserved for manufacturer test mode

0

Table 110. Card status (continued)

Bits Identifier Type Value Description
Clear

condition

Table 111. SD status

Bits Identifier Type Value Description
Clear

condition

511: 510 DAT_BUS_WIDTH S R

’00’= 1 (default)
‘01’= reserved
‘10’= 4 bit width
‘11’= reserved

Shows the currently defined
databus width that was
defined by
SET_BUS_WIDTH
command

A

509 SECURED_MODE S R
’0’= Not in the mode
’1’= In Secured Mode

Card is in Secured Mode of
operation (refer to the “SD
Security Specification”).

A

508: 496 Reserved

SDIO interface (SDIO) RM0008

432/682

SIZE_OF_PROTECTED_AREA

Setting this field differs between standard- and high-capacity cards. In the case of a
standard-capacity card, the capacity of protected area is calculated as follows:

Protected area = SIZE_OF_PROTECTED_AREA_* MULT * BLOCK_LEN.

SIZE_OF_PROTECTED_AREA is specified by the unit in MULT*BLOCK_LEN.

In the case of a high-capacity card, the capacity of protected area is specified in this field:

Protected area = SIZE_OF_PROTECTED_AREA

SIZE_OF_PROTECTED_AREA is specified by the unit in bytes.

SPEED_CLASS

This 8-bit field indicates the speed class and the value can be calculated by PW/2 (where
PW is the write performance).

495: 480 SD_CARD_TYPE S R

’00xxh’= SD Memory Cards as
defined in Physical Spec Ver1.01-
2.00 (’x’= don’t care). The
following cards are currently
defined:
’0000’= Regular SD RD/WR Card.
’0001’= SD ROM Card

In the future, the 8 LSBs will
be used to define different
variations of an SD memory
card (each bit will define
different SD types). The 8
MSBs will be used to define
SD Cards that do not comply
with current SD physical
layer specification.

A

479: 448
SIZE_OF_PROTE
CT ED_AREA

S R
Size of protected area (See
below)

(See below) A

447: 440 SPEED_CLASS S R
Speed Class of the card (See
below)

(See below) A

439: 432
PERFORMANCE_
MOVE

S R
Performance of move indicated by
1 [MB/s] step.
(See below)

(See below) A

431:428 AU_SIZE S R
Size of AU
(See below)

(See below) A

427:424 Reserved

423:408 ERASE_SIZE S R
Number of AUs to be erased at a
time

(See below) A

407:402 ERASE_TIMEOUT S R
Timeout value for erasing areas
specified by
UNIT_OF_ERASE_AU

(See below) A

401:400 ERASE_OFFSET S R
Fixed offset value added to erase
time.

(See below) A

399:312 Reserved

311:0 Reserved for Manufacturer

Table 111. SD status (continued)

Bits Identifier Type Value Description
Clear

condition

RM0008 SDIO interface (SDIO)

 433/682

PERFORMANCE_MOVE

This 8-bit field indicates Pm (performance move) and the value can be set by 1 [MB/sec]
steps. If the card does not move used RUs (recording units), Pm should be considered as
infinity. Setting the field to FFh means infinity.

AU_SIZE

This 4-bit field indicates the AU size and the value can be selected in the power of 2 base
from 16 KB.

Table 112. Speed class code field

SPEED_CLASS Value definition

00h Class 0

01h Class 2

02h Class 4

03h Class 6

04h – FFh Reserved

Table 113. Performance move field

PERFORMANCE_MOVE Value definition

00h Not defined

01h 1 [MB/sec]

02h 02h 2 [MB/sec]

--------- ---------

FEh 254 [MB/sec]

FFh Infinity

Table 114. AU_SIZE field

AU_SIZE Value definition

00h Not defined

01h 16 KB

02h 32 KB

03h 64 KB

04h 128 KB

05h 256 KB

06h 512 KB

07h 1 MB

08h 2 MB

09h 4 MB

Ah – Fh Reserved

SDIO interface (SDIO) RM0008

434/682

The maximum AU size, which depends on the card capacity, is defined in Table 115. The
card can be set to any AU size between RU size and maximum AU size.

ERASE_SIZE

This 16-bit field indicates NERASE. When NERASE numbers of AUs are erased, the timeout
value is specified by ERASE_TIMEOUT (Refer to ERASE_TIMEOUT). The host should
determine the proper number of AUs to be erased in one operation so that the host can
show the progress of the erase operation. If this field is set to 0, the erase timeout
calculation is not supported.

ERASE_TIMEOUT

This 6-bit field indicates TERASE and the value indicates the erase timeout from offset when
multiple AUs are being erased as specified by ERASE_SIZE. The range of
ERASE_TIMEOUT can be defined as up to 63 seconds and the card manufacturer can
choose any combination of ERASE_SIZE and ERASE_TIMEOUT depending on the
implementation. Determining ERASE_TIMEOUT determines the ERASE_SIZE.

Table 115. Maximum AU size

Capacity 16 MB-64 MB 128 MB-256 MB 512 MB 1 GB-32 GB

Maximum AU Size 512 KB 1 MB 2 MB 4 MB

Table 116. Erase size field

ERASE_SIZE Value definition

0000h Erase timeout calculation is not supported.

0001h 1 AU

0002h 2 AU

0003h 3 AU

--------- ---------

FFFFh 65535 AU

Table 117. Erase timeout field

ERASE_TIMEOUT Value definition

00 Erase timeout calculation is not supported.

01 1 [sec]

02 2 [sec]

03 3 [sec]

--------- ---------

63 63 [sec]

RM0008 SDIO interface (SDIO)

 435/682

ERASE_OFFSET

This 2-bit field indicates TOFFSET and one of four values can be selected. This field is
meaningless if the ERASE_SIZE and ERASE_TIMEOUT fields are set to 0.

19.4.13 SD I/O mode

SD I/O interrupts

To allow the SD I/O card to interrupt the MultiMediaCard/SD module, an interrupt function is
available on a pin on the SD interface. Pin 8, used as SDIO_D1 when operating in the 4-bit
SD mode, signals the cards interrupt to the MultiMediaCard/SD module. The use of the
interrupt is optional for each card or function within a card. The SD I/O interrupt is level-
sensitive, which means that the interrupt line must be held active (low) until it is either
recognized and acted upon by the MultiMediaCard/SD module or deasserted due to the end
of the interrupt period. After the MultiMediaCard/SD module has serviced the interrupt, the
interrupt status bit is cleared via an I/O write to the appropriate bit in the SD I/O card’s
internal registers. The interrupt output of all SD I/O cards is active low and the
MultiMediaCard/SD module provides pull-up resistors on all data lines (SDIO_D[3:0]). The
MultiMediaCard/SD module samples the level of pin 8 (SDIO_D/IRQ) into the interrupt
detector only during the interrupt period. At all other times, the MultiMediaCard/SD module
ignores this value.

The interrupt period is applicable for both memory and I/O operations. The definition of the
interrupt period for operations with single blocks is different from the definition for multiple-
block data transfers.

SD I/O suspend and resume

Within a multifunction SD I/O or a card with both I/O and memory functions, there are
multiple devices (I/O and memory) that share access to the MMC/SD bus. To share access
to the MMC/SD module among multiple devices, SD I/O and combo cards optionally
implement the concept of suspend/resume. When a card supports suspend/resume, the
MMC/SD module can temporarily halt a data transfer operation to one function or memory
(suspend) to free the bus for a higher-priority transfer to a different function or memory. After
this higher-priority transfer is complete, the original transfer is resumed (restarted) where it
left off. Support of suspend/resume is optional on a per-card basis. To perform the
suspend/resume operation on the MMC/SD bus, the MMC/SD module performs the
following steps:

1. Determines the function currently using the SDIO_D [3:0] line(s)

2. Requests the lower-priority or slower transaction to suspend

3. Waits for the transaction suspension to complete

4. Begins the higher-priority transaction

Table 118. Erase offset field

ERASE_OFFSET Value definition

0h 0 [sec]

1h 1 [sec]

2h 2 [sec]

3h 3 [sec]

SDIO interface (SDIO) RM0008

436/682

5. Waits for the completion of the higher priority transaction

6. Restores the suspended transaction

SD I/O ReadWait

The optional ReadWait (RW) operation is defined only for the SD 1-bit and 4-bit modes. The
ReadWait operation allows the MMC/SD module to signal a card that it is reading multiple
registers (IO_RW_EXTENDED, CMD53) to temporarily stall the data transfer while allowing
the MMC/SD module to send commands to any function within the SD I/O device. To
determine when a card supports the ReadWait protocol, the MMC/SD module must test
capability bits in the internal card registers. The timing for ReadWait is based on the
interrupt period.

19.4.14 Commands and responses

Application-specific and general commands

The SD card host module system is designed to provide a standard interface for a variety of
applications types. In this environment, there is a need for specific customer/application
features. To implement these features, two types of generic commands are defined in the
standard: application-specific commands (ACMD) and general commands (GEN_CMD).

When the card receives the APP_CMD (CMD55) command, the card expects the next
command to be an application-specific command. ACMDs have the same structure as
regular MultiMediaCard commands and can have the same CMD number. The card
recognizes it as ACMD because it appears after APP_CMD (CMD55). When the command
immediately following the APP_CMD (CMD55) is not a defined application-specific
command, the standard command is used. For example, when the card has a definition for
SD_STATUS (ACMD13), and receives CMD13 immediately following APP_CMD (CMD55),
this is interpreted as SD_STATUS (ACMD13). However, when the card receives CMD7
immediately following APP_CMD (CMD55) and the card does not have a definition for
ACMD7, this is interpreted as the standard (SELECT/DESELECT_CARD) CMD7.

To use one of the manufacturer-specific ACMDs the SD card Host must perform the
following steps:

1. Send APP_CMD (CMD55)
The card responds to the MultiMediaCard/SD module, indicating that the APP_CMD bit
is set and an ACMD is now expected.

2. Send the required ACMD
The card responds to the MultiMediaCard/SD module, indicating that the APP_CMD bit
is set and that the accepted command is interpreted as an ACMD. When a non-ACMD
is sent, it is handled by the card as a normal MultiMediaCard command and the
APP_CMD bit in the card status register stays clear.

When an invalid command is sent (neither ACMD nor CMD) it is handled as a standard
MultiMediaCard illegal command error.

The bus transaction for a GEN_CMD is the same as the single-block read or write
commands (WRITE_BLOCK, CMD24 or READ_SINGLE_BLOCK,CMD17). In this case, the
argument denotes the direction of the data transfer rather than the address, and the data
block has vendor-specific format and meaning.

The card must be selected (in transfer state) before sending GEN_CMD (CMD56). The data
block size is defined by SET_BLOCKLEN (CMD16). The response to GEN_CMD (CMD56)
is in R1b format.

RM0008 SDIO interface (SDIO)

 437/682

Command types

Both application-specific and general commands are divided into the four following types:

● broadcast command (BC): sent to all cards; no responses returned.

● broadcast command with response (BCR): sent to all cards; responses received
from all cards simultaneously.

● addressed (point-to-point) command (AC): sent to the card that is selected; does
not include a data transfer on the SDIO_D line(s).

● addressed (point-to-point) data transfer command (ADTC): sent to the card that is
selected; includes a data transfer on the SDIO_D line(s).

Command formats

See Table 103 on page 413 for command formats.

Commands for the MultiMediaCard/SD module

Table 119. Block-oriented write commands

CMD
index

Type Argument
Response

format
Abbreviation Description

CMD23 ac
[31:16] set to 0
[15:0] number
of blocks

R1 SET_BLOCK_COUNT

Defines the number of blocks which
are going to be transferred in the
multiple-block read or write command
that follows.

CMD24 adtc
[31:0] data
address

R1 WRITE_BLOCK
Writes a block of the size selected by
the SET_BLOCKLEN command.

CMD25 adtc
[31:0] data
address

R1 WRITE_MULTIPLE_BLOCK

Continuously writes blocks of data
until a STOP_TRANSMISSION
follows or the requested number of
blocks has been received.

CMD26 adtc [31:0] stuff bits R1 PROGRAM_CID

Programming of the card identification
register. This command must be
issued only once per card. The card
contains hardware to prevent this
operation after the first programming.
Normally this command is reserved
for manufacturer.

CMD27 adtc [31:0] stuff bits R1 PROGRAM_CSD
Programming of the programmable
bits of the CSD.

SDIO interface (SDIO) RM0008

438/682

Table 120. Block-oriented write protection commands

CMD
index

Type Argument
Response

format
Abbreviation Description

CMD28 ac
[31:0] data
address

R1b SET_WRITE_PROT

If the card has write protection features,
this command sets the write protection bit
of the addressed group. The properties of
write protection are coded in the card-
specific data (WP_GRP_SIZE).

CMD29 ac
[31:0] data
address

R1b CLR_WRITE_PROT
If the card provides write protection
features, this command clears the write
protection bit of the addressed group.

CMD30 adtc
[31:0] write
protect data
address

R1 SEND_WRITE_PROT

If the card provides write protection
features, this command asks the card to
send the status of the write protection
bits.

CMD31 Reserved

Table 121. Erase commands

CMD
index

Type Argument
Response

format
Abbreviation Description

CMD32

...

CMD34

Reserved. These command indexes cannot be used in order to maintain backward compatibility with older
versions of the MultiMediaCard.

CMD35 ac [31:0] data address R1 ERASE_GROUP_START
Sets the address of the first erase
group within a range to be selected
for erase.

CMD36 ac [31:0] data address R1 ERASE_GROUP_END
Sets the address of the last erase
group within a continuous range to be
selected for erase.

CMD37
Reserved. This command index cannot be used in order to maintain backward compatibility with older
versions of the MultiMediaCards

CMD38 ac [31:0] stuff bits R1 ERASE
Erases all previously selected write
blocks.

Table 122. I/O mode commands

CMD
index

Type Argument
Response

format
Abbreviation Description

CMD39 ac

[31:16] RCA
[15:15] register
write flag
[14:8] register
address
[7:0] register data

R4 FAST_IO

Used to write and read 8-bit (register) data
fields. The command addresses a card and a
register and provides the data for writing if
the write flag is set. The R4 response
contains data read from the addressed
register. This command accesses
application-dependent registers that are not
defined in the MultiMediaCard standard.

CMD40 bcr [31:0] stuff bits R5 GO_IRQ_STATE Places the system in the interrupt mode.

CMD41 Reserved

RM0008 SDIO interface (SDIO)

 439/682

19.5 Response formats
All responses are sent via the MCCMD command line SDIO_CMD. The response
transmission always starts with the left bit of the bit string corresponding to the response
code word. The code length depends on the response type.

A response always starts with a start bit (always 0), followed by the bit indicating the
direction of transmission (card = 0). A value denoted by x in the tables below indicates a
variable entry. All responses, except for the R3 response type, are protected by a CRC.
Every command code word is terminated by the end bit (always 1).

There are five types of responses. Their formats are defined as follows:

19.5.1 R1 (normal response command)

Code length = 48 bits. The 45:40 bits indicate the index of the command to be responded to,
this value being interpreted as a binary-coded number (between 0 and 63). The status of the
card is coded in 32 bits.

Table 123. Lock card

CMD
index

Type Argument
Response

format
Abbreviation Description

CMD42 adtc [31:0] stuff bits R1b LOCK_UNLOCK
Sets/resets the password or locks/unlocks
the card. The size of the data block is set
by the SET_BLOCK_LEN command.

CMD43
...
CMD54

Reserved

Table 124. Application-specific commands

CMD
index

Type Argument
Response

format
Abbreviation Description

CMD55 ac
[31:16] RCA
[15:0] stuff bits

R1 APP_CMD
Indicates to the card that the next command
bits is an application specific command rather
than a standard command

CMD56 adtc
[31:1] stuff bits

[0]: RD/WR

Used either to transfer a data block to the card
or to get a data block from the card for general
purpose/application-specific commands. The
size of the data block shall be set by the
SET_BLOCK_LEN command.

CMD57
...
CMD59

Reserved.

CMD60
...
CMD63

Reserved for manufacturer.

SDIO interface (SDIO) RM0008

440/682

19.5.2 R1b

It is identical to R1 with an optional busy signal transmitted on the data line. The card may
become busy after receiving these commands based on its state prior to the command
reception.

19.5.3 R2 (CID, CSD register)

Code length = 136 bits. The contents of the CID register are sent as a response to the
CMD2 and CMD10 commands. The contents of the CSD register are sent as a response to
CMD9. Only the bits [127...1] of the CID and CSD are transferred, the reserved bit [0] of
these registers is replaced by the end bit of the response. The card indicates that an erase
is in progress by holding MCDAT low. The actual erase time may be quite long, and the host
may issue CMD7 to deselect the card.

19.5.4 R3 (OCR register)

Code length: 48 bits. The contents of the OCR register are sent as a response to CMD1.
The level coding is as follows: restricted voltage windows = low, card busy = low.

Table 125. R1 response

Bit position Width (bits Value Description

47 1 0 Start bit

46 1 0 Transmission bit

[45:40] 6 X Command index

[39:8] 32 X Card status

[7:1] 7 X CRC7

0 1 1 End bit

Table 126. R2 response

Bit position Width (bits Value Description

135 1 0 Start bit

134 1 0 Transmission bit

[133:128] 6 ‘111111’ Command index

[127:1] 127 X Card status

0 1 1 End bit

RM0008 SDIO interface (SDIO)

 441/682

19.5.5 R4 (Fast I/O)

Code length: 48 bits. The argument field contains the RCA of the addressed card, the
register address to be read out or written to, and its content.

19.5.6 R4b

For SD I/O only: an SDIO card receiving the CMD5 will respond with a unique SDIO
response R4. The format is:

Table 127. R3 response

Bit position Width (bits Value Description

47 1 0 Start bit

46 1 0 Transmission bit

[45:40] 6 ‘111111’ Reserved

[39:8] 32 X OCR register

[7:1] 7 ‘1111111’ Reserved

0 1 1 End bit

Table 128. R4 response

Bit position Width (bits Value Description

47 1 0 Start bit

46 1 0 Transmission bit

[45:40] 6 ‘111111’ Reserved

[39:8] Argument field

[31:16] 16 X RCA

[15:8] 8 X register address

[7:0] 8 X read register contents

[7:1] 7 ‘1111111’ CRC7

0 1 1 End bit

Table 129. R4b response

Bit position Width (bits Value Description

47 1 0 Start bit

46 1 0 Transmission bit

[45:40] 6 x Reserved

[39:8] Argument field

39 16 X Card is ready

[38:36] 3 X Number of I/O functions

35 1 X Present memory

[34:32] 3 X Stuff bits

[31:8] 24 X I/O ORC

SDIO interface (SDIO) RM0008

442/682

Once an SD I/O card has received a CMD5, the I/O portion of that card is enabled to
respond normally to all further commands. This I/O enable of the function within the I/O card
will remain set until a reset, power cycle or CMD52 with write to I/O reset is received by the
card. Note that an SD memory-only card may respond to a CMD5. The proper response for
a memory-only card would be Present memory = 1 and Number of I/O functions = 0. A
memory-only card built to meet the SD Memory Card specification version 1.0 would detect
the CMD5 as an illegal command and not respond. The I/O aware host will send CMD5. If
the card responds with response R4, the host determines the card’s configuration based on
the data contained within the R4 response.

19.5.7 R5 (interrupt request)

Only for MultiMediaCard. Code length: 48 bits. If the response is generated by the host, the
RCA field in the argument will be 0x0.

19.5.8 R6

Only for SD I/O. The normal response to CMD3 by a memory device. It is shown in
Table 131.

[7:1] 7 X Reserved

0 1 1 End bit

Table 129. R4b response (continued)

Bit position Width (bits Value Description

Table 130. R5 response

Bit position Width (bits Value Description

47 1 0 Start bit

46 1 0 Transmission bit

[45:40] 6 ‘111111’ CMD40

[39:8] Argument field

[31:16] 16 X
RCA [31:16] of winning
card or of the host

[15:0] 16 X
Not defined. May be used
for IRQ data

[7:1] 7 X CRC7

0 1 1 End bit

Table 131. R6 response

Bit position Width (bits) Value Description

47 1 0 Start bit

46 1 0 Transmission bit

[45:40] 6 ‘101000’ CMD40

[39:8] Argument
field

[31:16] 16 X RCA [31:16] of winning card or of the host

[15:0] 16 X Not defined. May be used for IRQ data

RM0008 SDIO interface (SDIO)

 443/682

The card [23:8] status bits are changed when CMD3 is sent to an I/O-only card. In this case,
the 16 bits of response are the SD I/O-only values:

● Bit [15] COM_CRC_ERROR

● Bit [14] ILLEGAL_COMMAND

● Bit [13] ERROR

● Bits [12:0] Reserved

19.6 SDIO I/O card-specific operations
The following features are SD I/O-specific operations:

● SDIO read wait operation by SDIO_D2 signalling

● SDIO read wait operation by stopping the clock

● SDIO suspend/resume operation (write and read suspend)

● SDIO interrupts

The SDIO supports these operations only if the SDIO_DCTRL[11] bit is set, except for read
suspend that does not need specific hardware implementation.

19.6.1 SDIO I/O read wait operation by SDIO_D2 signalling

It is possible to start the readwait interval before the first block is received: when the data
path is enabled (SDIO_DCTRL[0] bit set), the SDIO-specific operation is enabled
(SDIO_DCTRL[11] bit set), read wait starts (SDI0_DCTRL[10] =0 and SDI_DCTRL[8] =1)
and data direction is from card to SDIO (SDIO_DCTRL[1] = 1), the DPSM directly moves
from Idle to Readwait. In Readwait the DPSM drives SDIO_D2 to 0 after 2 SDIO_CK clock
cycles. In this state, when you set the RWSTOP bit (SDIO_DCTRL[9]), the DPSM remains
in Wait for two more SDIO_CK clock cycles to drive SDIO_D2 to 1 for one clock cycle (in
accordance with SDIO specification). The DPSM then starts waiting again until it receives
data from the card. The DPSM will not start a readwait interval while receiving a block even
if read wait start is set: the readwait interval will start after the CRC is received. The
RWSTOP bit has to be cleared to start a new read wait operation. During the readwait
interval, the SDIO can detect SDIO interrupts on SDIO_D1.

19.6.2 SDIO read wait operation by stopping SDIO_CK

If the SDIO card does not support the previous read wait method, the SDIO can perform a
read wait by stopping SDIO_CK (SDIO_DCTRL is set just like in the method presented in
Section 19.6.1, but SDIO_DCTRL[10] =1): DSPM stops the clock two SDIO_CK cycles after
the end bit of the current received block and starts the clock again after the read wait start
bit is set.

As SDIO_CK is stopped, any command can be issued to the card. During a read/wait
interval, the SDIO can detect SDIO interrupts on SDIO_D1.

[7:1] 7 X CRC7

0 1 1 End bit

Table 131. R6 response (continued)

Bit position Width (bits) Value Description

SDIO interface (SDIO) RM0008

444/682

19.6.3 SDIO suspend/resume operation

While sending data to the card, the SDIO can suspend the write operation. the
SDIO_CMD[11] bit is set and indicates to the CPSM that the current command is a suspend
command. The CPSM analyzes the response and when the ACK is received from the card
(suspend accepted), it acknowledges the DPSM that goes Idle after receiving the CRC
token of the current block.

The hardware does not save the number of the remaining block to be sent to complete the
suspended operation (resume).

The write operation can be suspended by software, just by disabling the DPSM
(SDIO_DCTRL[0] =0) when the ACK of the suspend command is received from the card.
The DPSM enters then the Idle state.

To suspend a read: the DPSM waits in the Wait_r state as the function to be suspended
sends a complete packet just before stopping the data transaction. The application
continues reading RxFIFO until the FIF0 is empty, and the DPSM goes Idle automatically.

19.6.4 SDIO interrupts

SDIO interrupts are detected on the SDIO_D1 line once the SDIO_DCTRL[11] bit is set.

19.7 CE-ATA specific operations
The following features are CE-ATA specific operations:

● sending the command completion signal disable to the CE-ATA device

● receiving the command completion signal from the CE-ATA device

● signaling the completion of the CE-ATA command to the CPU, using the status bit
and/or interrupt.

The SDIO supports these operations only for the CE-ATA CMD61 command, that is, if
SDIO_CMD[14] is set.

19.7.1 Command completion signal disable

Command completion signal disable is sent 8 bit cycles after the reception of a short
response if the ‘enable CMD completion’ bit, SDIO_CMD[12], is not set and the ‘not interrupt
Enable’ bit, SDIO_CMD[13], is set.

The CPSM enters the Pend state, loading the command shift register with the disable
sequence “00001” and, the command counter with 43. Eight cycles after, a trigger moves
the CPSM to the Send state. When the command counter reaches 48, the CPSM becomes
Idle as no response is awaited.

19.7.2 Command completion signal enable

If the ‘enable CMD completion’ bit SDIO_CMD[12] is set and the ‘not interrupt Enable’ bit
SDIO_CMD[13] is set, the CPSM waits for the command completion signal in the Waitcpl
state.

When ‘0’ is received on the CMD line, the CPSM enters the Idle state. No new command
can be sent for 7 bit cycles. Then, for the last 5 cycles (out of the 7) the CMD line is driven to
‘1’ in push-pull mode.

RM0008 SDIO interface (SDIO)

 445/682

19.7.3 CE-ATA interrupt

The command completion is signaled to the CPU by the status bit SDIO_STA[23]. This static
bit can be cleared with the clear bit SDIO_ICR[23].

The SDIO_STA[23] status bit can generate an interrupt on each interrupt line, depending on
the mask bit SDIO_MASKx[23].

19.7.4 Aborting CMD61

If the command completion disable signal has not been sent and CMD61 needs to be
aborted, the command state machine must be disabled. It then becomes Idle, and the
CMD12 command can be sent. No command completion disable signal is sent during the
operation.

19.8 HW flow control
The HW flow control functionality is used to avoid FIFO underrun (TX mode) and overrun
(RX mode) errors.

The behavior is to stop SDIO_CK and freeze SDIO state machines. The data transfer is
stalled while the FIFO is unable to transmit or receive data. Only state machines clocked by
SDIOCLK are frozen, the AHB interface is still alive. The FIFO can thus be filled or emptied
even if flow control is activated.

To enable HW flow control, the SDIO_CLKCR[14] register bit must be set to 1. After reset
Flow Control is disabled.

19.9 SDIO registers
The device communicates to the system via 32-bit-wide control registers accessible via
AHB.

19.9.1 SDIO power control register (SDIO_POWER)

Address offset: 0x00

Reset value: 0x0000 0000

Note: After a data write, data cannot be written to this register for seven HCLK clock periods.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

PWRC
TRL

rw rw

Bits 31:2 Reserved, always read as 0.

[1:0] PWRCTRL: Power supply control bits.
These bits are used to define the current functional state of the card clock:
00: Power-off: the clock to card is stopped.
01: Reserved
10: Reserved power-up
11: Power-on: the card is clocked.

SDIO interface (SDIO) RM0008

446/682

19.9.2 SDI clock control register (SDIO_CLKCR)

Address offset: 0x04

Reset value: 0x0000 0000

The SDIO_CLKCR register controls the SDIO_CK output clock.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

H
W

F
C

_E
N

N
E

G
E

D
G

E

WID
BUS

B
Y

PA
S

S

P
W

R
S

A
V

C
LK

E
N

CLKDIV

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, always read as 0.

Bit 14 HWFC_EN: HW Flow Control enable

0b: HW Flow Control is disabled
1b: HW Flow Control is enabled
When HW Flow Control is enabled, the meaning of the TXFIFOE and RXFIFOF interrupt
signals, please see SDIO Status register definition in Section 19.9.11.

Bit 13 NEGEDGE:SDIO_CK dephasing selection bit

0b: SDIO_CK generated on the rising edge of the master clock SDIOCLK
1b: SDIO_CK generated on the falling edge of the master clock SDIOCLK

Bits 12:11 WIDBUS: Wide bus mode enable bit

00: Default bus mode: SDIO_D0 used
01: 4-wide bus mode: SDIO_D[3:0] used
10: 8-wide bus mode: SDIO_D[7:0] used

Bit 10 BYPASS: Clock divider bypass enable bit

0: Disable bypass: SDIOCLK is divided according to the CLKDIV value before driving the
SDIO_CK output signal.
1: Enable bypass: SDIOCLK directly drives the SDIO_CK output signal.

Bit 9 PWRSAV: Power saving configuration bit

For power saving, the SDIO_CK clock output can be disabled when the bus is idle by setting
PWRSAV:
0: SDIO_CK clock is always enabled
1: SDIO_CK is only enabled when the bus is active

Bit 8 CLKEN: Clock enable bit
0: SDIO_CK is disabled
1: SDIO_CK is enabled

Bits 7:0 CLKDIV: Clock divide factor
This field defines the divide factor between the input clock (SDIOCLK) and the output clock
(SDIO_CK): SDIO_CK frequency = SDIOCLK / [CLKDIV + 2].

RM0008 SDIO interface (SDIO)

 447/682

Note: 1 While the SD/SDIO card or MultiMediaCard is in identification mode, the SDIO_CK
frequency must be less than 400 kHz.

2 The clock frequency can be changed to the maximum card bus frequency when relative
card addresses are assigned to all cards.

3 After a data write, data cannot be written to this register for seven HCLK clock periods.
SDIO_CK can also be stopped during the read wait interval for SD I/O cards: in this case the
SDIO_CLKCR register does not control SDIO_CK.

19.9.3 SDIO argument register (SDIO_ARG)

Address offset: 0x08

Reset value: 0x0000 0000

The SDIO_ARG register contains a 32-bit command argument, which is sent to a card as
part of a command message.

19.9.4 SDIO command register (SDIO_CMD)

Address offset: 0x0C

Reset value: 0x0000 0000

The SDIO_CMD register contains the command index and command type bits. The
command index is sent to a card as part of a command message. The command type bits
control the command path state machine (CPSM).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMDARG

rw rw

Bits 31:0 CMDARG: Command argument
Command argument sent to a card as part of a command message. If a command contains
an argument, it must be loaded into this register before writing a command to the command
register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

C
E

-A
TA

C
M

D

nI
E

N

E
N

C
M

D
co

m
pl

S
D

IO
S

us
pe

nd

C
P

S
M

E
N

W
A

IT
P

E
N

D

W
A

IT
IN

T

W
A

IT
R

E
S

P

C
M

D
IN

D
E

X

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, always read as 0.

Bit 14 ATACMD: CE-ATA command

If ATACMD is set, the CPSM transfers CMD61.

Bit 13 nIEN: not Interrupt Enable

if this bit is 0, interrupts in the CE-ATA device are enabled.

Bit 12 ENCMDcompl: Enable CMD completion

If this bit is set, the command completion signal is enabled.

SDIO interface (SDIO) RM0008

448/682

Note: 1 After a data write, data cannot be written to this register for seven HCLK clock periods.

2 MultiMediaCards can send two kinds of response: short responses, 48 bits long, or long
responses,136 bits long. SD card and SD I/O card can send only short responses, the
argument can vary according to the type of response: the software will distinguish the type
of response according to the sent command. CE-ATA devices send only short responses.

19.9.5 SDIO command response register (SDIO_RESPCMD)

Address offset: 0x10

Reset value: 0x0000 0000

The SDIO_RESPCMD register contains the command index field of the last command
response received. If the command response transmission does not contain the command
index field (long or OCR response), the RESPCMD field is unknown, although it must
contain 111111b (the value of the reserved field from the response).

Bit 11 SDIOSuspend: SD I/O suspend command
If this bit is set, the command to be sent is a suspend command (to be used only with SDIO
card).

Bit 10 CPSMEN: Command path state machine (CPSM) Enable bit

If this bit is set, the CPSM is enabled.

Bit 9 WAITPEND: CPSM Waits for ends of data transfer (CmdPend internal signal).

If this bit is set, the CPSM waits for the end of data transfer before it starts sending a
command.

Bit 8 WAITINT: CPSM waits for interrupt request

If this bit is set, the CPSM disables command timeout and waits for an interrupt request.

Bits 7:6 WAITRESP: Wait for response bits

They are used to configure whether the CPSM is to wait for a response, and if yes, which
kind of response.
00: No response, expect CMDSENT flag
01: Short response, expect CMDREND or CCRCFAIL flag
10: No response, expect CMDSENT flag
11: Long response, expect CMDREND or CCRCFAIL flag

Bit 5:0 CMDINDEX: Command index

The command index is sent to the card as part of a command message.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RESPCMD

r r r r r r

Bits 31:6 Reserved, always read as 0.

Bits 5:0 RESPCMD: Response command index

Read-only bit field. Contains the command index of the last command response received.

RM0008 SDIO interface (SDIO)

 449/682

19.9.6 SDIO response 0..4 register (SDIO_RESPx)

Address offset: (0x14 + (4*x)); x = 0..4

Reset value: 0x0000 0000

The SDIO_RESP0/1/2/3/4 registers contain the status of a card, which is part of the receive
response.

The Card Status size is 32 or 127 bits, depending on the response type.

The most significant bit of the card status is received first. The SDIO_RESP3 register LSB is
always 0b.

19.9.7 SDIO data timer register (SDIO_DTIMER)

Address offset: 0x24

Reset value: 0x0000 0000

The SDIO_DTIMER register contains the data timeout period, in card bus clock periods.

A counter loads the value from the SDIO_DTIMER register, and starts decrementing when
the data path state machine (DPSM) enters the Wait_R or Busy state. If the timer reaches 0
while the DPSM is in either of these states, the timeout status flag is set.

Note: A data transfer must be written to the data timer register and the data length register before
being written to the data control register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CARDSTATUSx

r r

Bits 31:0 CARDSTATUSx: see Table 132.

Table 132. Response type and SDIO_RESPx registers

Register Short response Long response

SDIO_RESP1 Card Status[31:0] Card Status [127:96]

SDIO_RESP2 Unused Card Status [95:64]

SDIO_RESP3 Unused Card Status [63:32]

SDIO_RESP4 Unused Card Status [31:1]0b

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATATIME

rw rw

Bits 31:0 DATATIME: Data timeout period

Data timeout period expressed in card bus clock periods.

SDIO interface (SDIO) RM0008

450/682

19.9.8 SDIO data length register (SDIO_DLEN)

Address offset: 0x28

Reset value: 0x0000 0000

The SDIO_DLEN register contains the number of data bytes to be transferred. The value is
loaded into the data counter when data transfer starts.

Note: For a block data transfer, the value in the data length register must be a multiple of the block
size (see SDIO_DCTRL). A data transfer must be written to the data timer register and the
data length register before being written to the data control register.

19.9.9 SDIO data control register (SDIO_DCTRL)

Address offset: 0x2C

Reset value: 0x0000 0000

The SDIO_DCTRL register control the data path state machine (DPSM).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DATALENGTH

rw rw

Bits 31:25 Reserved, always read as 0.

Bits 24:0 DATALENGTH: Data length value

Number of data bytes to be transferred.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

S
D

IO
E

N

R
W

M
O

D

R
W

S
TO

P

R
W

S
TA

R
T

DBLOCKSIZE

D
M

A
E

N

D
T

M
O

D
E

D
T

D
IR

D
T

E
N

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, always read as 0.

Bit 11 SDIOEN: SD I/O enable functions

If this bit is set, the DPSM performs an SD I/O-card-specific operation.

Bit 10 RWMOD: Read wait mode

0: Read Wait control stopping SDIO_CK
1: Read Wait control using SDIO_D2

Bit 9 RWSTOP: Read wait stop
0: Read wait in progress if RWSTART bit is set
1: Enable for read wait stop if RWSTART bit is set

Bit 8 RWSTART: Read wait start

If this bit is set, read wait operation starts.

RM0008 SDIO interface (SDIO)

 451/682

Note: After a data write, data cannot be written to this register for seven HCLK clock periods.

19.9.10 SDIO data counter register (SDIO_DCOUNT)

Address offset: 0x30

Reset value: 0x0000 0000

The SDIO_DCOUNT register loads the value from the data length register (see
SDIO_DLEN) when the DPSM moves from the Idle state to the Wait_R or Wait_S state. As
data is transferred, the counter decrements the value until it reaches 0. The DPSM then
moves to the Idle state and the data status end flag, DATAEND, is set.

Bits 7:4 DBLOCKSIZE: Data block size
Define the data block length when the block data transfer mode is selected:

0000: (0 decimal) lock length = 20 = 1 byte
0001: (1 decimal) lock length = 21 = 2 bytes
0010: (2 decimal) lock length = 22 = 4 bytes
0011: (3 decimal) lock length = 23 = 8 bytes
0100: (4 decimal) lock length = 24 = 16 bytes
0101: (5 decimal) lock length = 25 = 32 bytes
0110: (6 decimal) lock length = 26 = 64 bytes
0111: (7 decimal) lock length = 27 = 128 bytes
1000: (8 decimal) lock length = 28 = 256 bytes
1001: (9 decimal) lock length = 29 = 512 bytes
1010: (10 decimal) lock length = 210 = 1024 bytes
1011: (11 decimal) lock length = 211 = 2048 bytes
1100: (12 decimal) lock length = 212 = 4096 bytes
1101: (13 decimal) lock length = 213 = 8192 bytes
1110: (14 decimal) lock length = 214 = 16384 bytes
1111: (15 decimal) reserved

Bit 3 DMAEN: DMA enable bit

0: DMA disabled.
1: DMA enabled.

Bit 2 DTMODE: Data transfer mode selection

0: Block data transfer.
1: Stream data transfer.

Bit 1 DTDIR: Data transfer direction selection
0: From controller to card.
1: From card to controller.

[0] DTEN: Data transfer enabled bit

Data transfer starts if 1b is written to the DTEN bit. Depending on the direction bit, DTDIR,
the DPSM moves to the Wait_S, Wait_R state or Readwait if RW Start is set immediately at
the beginning of the transfer. It is not necessary to clear the enable bit after the end of a data
transfer but the SDIO_DCTRL must be updated to enable a new data transfer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DATACOUNT

r r

SDIO interface (SDIO) RM0008

452/682

Note: This register should be read only when the data transfer is complete.

19.9.11 SDIO status register (SDIO_STA)

Address offset: 0x34

Reset value: 0x0000 0000

The SDIO_STA register is a read-only register. It contains two types of flag:

● Static flags (bits [23:22,10:0]): these bits remain asserted until they are cleared by
writing to the SDIO Interrupt Clear register (see SDIO_ICR)

● Dynamic flags (bits [21:11]): these bits change state depending on the state of the
underlying logic (for example, FIFO full and empty flags are asserted and deasserted
as data while written to the FIFO)

Bits 31:25 Reserved, always read as 0.

Bits 24:0 DATACOUNT: Data count value

When this bit is read, the number of remaining data bytes to be transferred is returned. Write
has no effect.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

C
E

AT
A

E
N

D

S
D

IO
IT

R
X

D
A

V
L

T
X

D
A

V
L

R
X

F
IF

O
E

T
X

F
IF

O
E

R
X

F
IF

O
F

T
X

F
IF

O
F

R
X

F
IF

O
H

F

T
X

F
IF

O
H

E

R
X

A
C

T

T
X

A
C

T

C
M

D
A

C
T

D
B

C
K

E
N

D

S
T

B
IT

E
R

R

D
AT

A
E

N
D

C
M

D
S

E
N

T

C
M

D
R

E
N

D

R
X

O
V

E
R

R

T
X

U
N

D
E

R
R

D
T

IM
E

O
U

T

C
T

IM
E

O
U

T

D
C

R
C

FA
IL

C
C

R
C

FA
IL

Res. r

Bits 31:24 Reserved, always read as 0.

Bit 23 CEATAEND: CE-ATA command completion signal received for CMD61

Bit 22 SDIOIT: SDIO interrupt received

Bit 21 RXDAVL: Data available in receive FIFO

Bit 20 TXDAVL: Data available in transmit FIFO

Bit 19 RXFIFOE: Receive FIFO empty

Bit 18 TXFIFOE: Transmit FIFO empty

When HW Flow Control is enabled, TXFIFOE signals becomes activated when the FIFO
contains 2 words.

Bit 17 RXFIFOF: Receive FIFO full

When HW Flow Control is enabled, RXFIFOF signals becomes activated 2 words before the
FIFO is full.

Bit 16 TXFIFOF: Transmit FIFO full

Bit 15 RXFIFOHF: Receive FIFO half full: there are at least 8 words in the FIFO

Bit 14 TXFIFOHE: Transmit FIFO half empty: at least 8 words can be written into the FIFO

Bit 13 RXACT: Data receive in progress

Bit 12 TXACT: Data transmit in progress

Bit 11 CMDACT: Command transfer in progress

Bit 10 DBCKEND: Data block sent/received (CRC check passed)

RM0008 SDIO interface (SDIO)

 453/682

19.9.12 SDIO interrupt clear register (SDIO_ICR)

Address offset: 0x38

Reset value: 0x0000 0000

The SDIO_ICR register is a write-only register. Writing a bit with 1b clears the
corresponding bit in the SDIO_STA Status register.

Bit 9 STBITERR: Start bit not detected on all data signals in wide bus mode

Bit 8 DATAEND: Data end (data counter, SDIDCOUNT, is zero)

Bit 7 CMDSENT: Command sent (no response required)

Bit 6 CMDREND: Command response received (CRC check passed)

Bit 5 RXOVERR: Received FIFO overrun error

Bit 4 TXUNDERR: Transmit FIFO underrun error

Bit 3 DTIMEOUT: Data timeout

Bit 2 CTIMEOUT: Command response timeout

The Command TimeOut period has a fixed value of 64 SDIO_CK clock periods.

Bit 1 DCRCFAIL: Data block sent/received (CRC check failed)

Bit 0 CCRCFAIL: Command response received (CRC check failed)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

C
E

AT
A

E
N

D
C

S
D

IO
IT

C

Reserved

D
B

C
K

E
N

D
C

S
T

B
IT

E
R

R
C

D
AT

A
E

N
D

C

C
M

D
S

E
N

T
C

C
M

D
R

E
N

D
C

R
X

O
V

E
R

R
C

T
X

U
N

D
E

R
R

C

D
T

IM
E

O
U

T
C

C
T

IM
E

O
U

T
C

D
C

R
C

FA
IL

C

C
C

R
C

FA
IL

C

rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, always read as 0.

Bit 23 CEATAENDC: CEATAEND flag clear bit

Set by software to clear the CEATAEND flag.
0: CEATAEND not cleared
1: CEATAEND cleared

Bit 22 SDIOITC: SDIOIT flag clear bit

Set by software to clear the SDIOIT flag.
0: SDIOIT not cleared
1: SDIOIT cleared

Bits 21:11 Reserved, always read as 0.

Bit 10 DBCKENDC: DBCKEND flag clear bit

Set by software to clear the DBCKEND flag.
0: DBCKEND not cleared
1: DBCKEND cleared

Bit 9 STBITERRC: STBITERR flag clear bit

Set by software to clear the STBITERR flag.
0: STBITERR not cleared
1: STBITERR cleared

SDIO interface (SDIO) RM0008

454/682

Bit 8 DATAENDC: DATAEND flag clear bit
Set by software to clear the DATAEND flag.
0: DATAEND not cleared
1: DATAEND cleared

Bit 7 CMDSENTC: CMDSENT flag clear bit
Set by software to clear the CMDSENT flag.
0: CMDSENT not cleared
1: CMDSENT cleared

Bit 6 CMDRENDC: CMDREND flag clear bit
Set by software to clear the CMDREND flag.
0: CMDREND not cleared
1: CMDREND cleared

Bit 5 RXOVERRC: RXOVERR flag clear bit
Set by software to clear the RXOVERR flag.
0: RXOVERR not cleared
1: RXOVERR cleared

Bit 4 TXUNDERRC: TXUNDERR flag clear bit

Set by software to clear TXUNDERR flag.
0: TXUNDERR not cleared
1: TXUNDERR cleared

Bit 3 DTIMEOUTC: DTIMEOUT flag clear bit

Set by software to clear the DTIMEOUT flag.
0: DTIMEOUT not cleared
1: DTIMEOUT cleared

Bit 2 CTIMEOUTC: CTIMEOUT flag clear bit

Set by software to clear the CTIMEOUT flag.
0: CTIMEOUT not cleared
1: CTIMEOUT cleared

Bit 1 DCRCFAILC: DCRCFAIL flag clear bit

Set by software to clear the DCRCFAIL flag.
0: DCRCFAIL not cleared
1: DCRCFAIL cleared

Bit 0 CCRCFAILC: CCRCFAIL flag clear bit

Set by software to clear the CCRCFAIL flag.
0: CCRCFAIL not cleared
1: CCRCFAIL cleared

RM0008 SDIO interface (SDIO)

 455/682

19.9.13 SDIO mask register (SDIO_MASK)

Address offset: 0x3C

Reset value: 0x0000 0000

The interrupt mask register determines which status flags generate an interrupt request by
setting the corresponding bit to 1b.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

C
E

AT
A

E
N

D
IE

S
D

IO
IT

IE

R
X

D
A

V
LI

E

T
X

D
A

V
LI

E

R
X

F
IF

O
E

IE

T
X

F
IF

O
E

IE

R
X

F
IF

O
F

IE

T
X

F
IF

O
F

IE

R
X

F
IF

O
H

F
IE

T
X

F
IF

O
H

E
IE

R
X

A
C

T
IE

T
X

A
C

T
IE

C
M

D
A

C
T

IE

D
B

C
K

E
N

D
IE

S
T

B
IT

E
R

R
IE

D
AT

A
E

N
D

IE

C
M

D
S

E
N

T
IE

C
M

D
R

E
N

D
IE

R
X

O
V

E
R

R
IE

T
X

U
N

D
E

R
R

IE

D
T

IM
E

O
U

T
IE

C
T

IM
E

O
U

T
IE

D
C

R
C

FA
IL

IE

C
C

R
C

FA
IL

IE

rw rw

Bits 31:24 Reserved, always read as 0.

Bit 23 CEATAENDIE: CE-ATA command completion signal received interrupt enable

Set and cleared by software to enable/disable the interrupt generated when receiving the
CE-ATA command completion signal.
0: CE-ATA command completion signal received interrupt disabled
1: CE-ATA command completion signal received interrupt enabled

Bit 22 SDIOITIE: SDIO mode interrupt received interrupt enable

Set and cleared by software to enable/disable the interrupt generated when receiving the
SDIO mode interrupt.
0: SDIO Mode Interrupt Received interrupt disabled
1: SDIO Mode Interrupt Received interrupt enabled

Bit 21 RXDAVLIE: Data available in Rx FIFO interrupt enable
Set and cleared by software to enable/disable the interrupt generated by the presence of
data available in Rx FIFO.
0: Data available in Rx FIFO interrupt disabled
1: Data available in Rx FIFO interrupt enabled

Bit 20 TXDAVLIE: Data available in Tx FIFO interrupt enable

Set and cleared by software to enable/disable the interrupt generated by the presence of
data available in Tx FIFO.
0: Data available in Tx FIFO interrupt disabled
1: Data available in Tx FIFO interrupt enabled

Bit 19 RXFIFOEIE: Rx FIFO empty interrupt enable

Set and cleared by software to enable/disable interrupt caused by Rx FIFO empty.
0: Rx FIFO empty interrupt disabled
1: Rx FIFO empty interrupt enabled

Bit 18 TXFIFOEIE: Tx FIFO empty interrupt enable

Set and cleared by software to enable/disable interrupt caused by Tx FIFO empty.
0: Tx FIFO empty interrupt disabled
1: Tx FIFO empty interrupt enabled

Bit 17 RXFIFOFIE: Rx FIFO full interrupt enable

Set and cleared by software to enable/disable interrupt caused by Rx FIFO full.
0: Rx FIFO full interrupt disabled
1: Rx FIFO full interrupt enabled

SDIO interface (SDIO) RM0008

456/682

Bit 16 TXFIFOFIE: Tx FIFO full interrupt enable
Set and cleared by software to enable/disable interrupt caused by Tx FIFO full.
0: Tx FIFO full interrupt disabled
1: Tx FIFO full interrupt enabled

Bit 15 RXFIFOHFIE: Rx FIFO half full interrupt enable
Set and cleared by software to enable/disable interrupt caused by Rx FIFO half full.
0: Rx FIFO half full interrupt disabled
1: Rx FIFO half full interrupt enabled

Bit 14 TXFIFOHEIE: Tx FIFO half empty interrupt enable
Set and cleared by software to enable/disable interrupt caused by Tx FIFO half empty.
0: Tx FIFO half empty interrupt disabled
1: Tx FIFO half empty interrupt enabled

Bit 13 RXACTIE: Data receive acting interrupt enable
Set and cleared by software to enable/disable interrupt caused by data being received (data
receive acting).
0: Data receive acting interrupt disabled
1: Data receive acting interrupt enabled

Bit 12 TXACTIE: Data transmit acting interrupt enable

Set and cleared by software to enable/disable interrupt caused by data being transferred
(data transmit acting).
0: Data transmit acting interrupt disabled
1: Data transmit acting interrupt enabled

Bit 11 CMDACTIE: Command acting interrupt enable
Set and cleared by software to enable/disable interrupt caused by a command being
transferred (command acting).
0: Command acting interrupt disabled
1: Command acting interrupt enabled

Bit 10 DBCKENDIE: Data block end interrupt enable

Set and cleared by software to enable/disable interrupt caused by data block end.
0: Data block end interrupt disabled
1: Data block end interrupt enabled

Bit 9 STBITERRIE: Start bit error interrupt enable

Set and cleared by software to enable/disable interrupt caused by start bit error.
0: Start bit error interrupt disabled
1: Start bit error interrupt enabled

Bit 8 DATAENDIE: Data end interrupt enable

Set and cleared by software to enable/disable interrupt caused by data end.
0: Data end interrupt disabled
1: Data end interrupt enabled

Bit 7 CMDSENTIE: Command sent interrupt enable

Set and cleared by software to enable/disable interrupt caused by sending command.
0: Command sent interrupt disabled
1: Command sent interrupt enabled

RM0008 SDIO interface (SDIO)

 457/682

19.9.14 SDIO FIFO counter register (SDIO_FIFOCNT)

Address offset: 0x48

Reset value: 0x0000 0000

The SDIO_FIFOCNT register contains the remaining number of words to be written to or
read from the FIFO. The FIFO counter loads the value from the data length register (see
SDIO_DLEN) when the data transfer enable bit, DTEN, is set in the data control register
(SDIO_DCTRL register) and the DPSM is at the Idle state. If the data length is not word-
aligned (multiple of 4), the remaining 1 to 3 bytes are regarded as a word.

Bit 6 CMDRENDIE: Command response received interrupt enable
Set and cleared by software to enable/disable interrupt caused by receiving command
response.
0: Command response received interrupt disabled
1: command Response Received interrupt enabled

Bit 5 RXOVERRIE: Rx FIFO overrun error interrupt enable

Set and cleared by software to enable/disable interrupt caused by Rx FIFO overrun error.
0: Rx FIFO overrun error interrupt disabled
1: Rx FIFO overrun error interrupt enabled

Bit 4 TXUNDERRIE: Tx FIFO underrun error interrupt enable

Set and cleared by software to enable/disable interrupt caused by Tx FIFO underrun error.
0: Tx FIFO underrun error interrupt disabled
1: Tx FIFO underrun error interrupt enabled

Bit 3 DTIMEOUTIE: Data timeout interrupt enable

Set and cleared by software to enable/disable interrupt caused by data timeout.
0: Data timeout interrupt disabled
1: Data timeout interrupt enabled

Bit 2 CTIMEOUTIE: Command timeout interrupt enable

Set and cleared by software to enable/disable interrupt caused by command timeout.
0: Command timeout interrupt disabled
1: Command timeout interrupt enabled

Bit 1 DCRCFAILIE: Data CRC fail interrupt enable

Set and cleared by software to enable/disable interrupt caused by data CRC failure.
0: Data CRC fail interrupt disabled
1: Data CRC fail interrupt enabled

Bit 0 CCRCFAILIE: Command CRC fail interrupt enable

Set and cleared by software to enable/disable interrupt caused by command CRC failure.
0: Command CRC fail interrupt disabled
1: Command CRC fail interrupt enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
FIFOCOUNT

r r

Bits 31:24 Reserved, always read as 0.

Bits 23:0 FIFOCOUNT: Remaining number of words to be written to or read from the FIFO.

SDIO interface (SDIO) RM0008

458/682

19.9.15 SDIO data FIFO register (SDIO_FIFO)

Address offset: 0x80

Reset value: 0x0000 0000

The receive and transmit FIFOs can be read or written as 32-bit wide registers. The FIFOs
contain 32 entries on 32 sequential addresses. This allows the CPU to use its load and store
multiple operands to read from/write to the FIFO.

19.9.16 SDIO register map

The following table summarizes the SDIO registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIF0Data

rw rw

bits 31:0 FIFOData: Receive and transmit FIFO data
The FIFO data occupies 32 entries of 32-bit words, from address:
SDIO base + 0x080 to SDIO base + 0xFC.

Table 133. SDIO register map
Offset Register 31 30 29 28 27 26 25 24 23 22 21 23 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00 SDIO_POWER

R
es

er
ve

d

P
W

R
C

T
R

L

0x04 SDIO_CLKCR

R
es

er
ve

d

H
W

F
C

_E
N

N
E

G
E

D
G

E

W
ID

B
U

S

B
Y

PA
S

S

P
W

R
S

A
V

C
LK

E
N

C
LK

D
IV

0x08 SDIO_ARG CMDARG

0x0C SDIO_CMD

R
es

er
ve

d

C
E

-A
TA

C
M

D

nI
E

N

E
N

C
M

D
co

m
pl

S
D

IO
S

us
pe

nd

C
P

S
M

E
N

W
A

IT
P

E
N

D

W
A

IT
IN

T

W
A

IT
R

E
S

P

C
M

D
IN

D
E

X

0x10 SDIO_RESPCM
D Reserved RESPCMD

0x14 SDIO_RESP1 CARDSTATUS1

0x18 SDIO_RESP2 CARDSTATUS2

0x1C SDIO_RESP3 CARDSTATUS3

0x20 SDIO_RESP4 CARDSTATUS4

0x24 SDIO_DTIMER DATATIME

0x28 SDIO_DLEN Reserved DATALENGTH

0x2C SDIO_DCTRL

R
es

er
ve

d

S
D

IO
E

N

R
W

M
O

D

R
W

S
TO

P

R
W

S
TA

R
T

D
B

LO
C

K
S

IZ
E

D
M

A
E

N

D
T

M
O

D
E

D
T

D
IR

D
T

E
N

0x30 SDIO_DCOUNT Reserved DATACOUNT

0x34 SDIO_STA

R
es

er
ve

d

C
E

AT
A

E
N

D

S
D

IO
IT

R
X

D
A

V
L

T
X

D
A

V
L

R
X

F
IF

O
E

T
X

F
IF

O
E

R
X

F
IF

O
F

T
X

F
IF

O
F

R
X

F
IF

O
H

F

T
X

F
IF

O
H

E

R
X

A
C

T

T
X

A
C

T

C
M

D
A

C
T

D
B

C
K

E
N

D

S
T

B
IT

E
R

R

D
AT

A
E

N
D

C
M

D
S

E
N

T

C
M

D
R

E
N

D

R
X

O
V

E
R

R

T
X

U
N

D
E

R
R

D
T

IM
E

O
U

T

C
T

IM
E

O
U

T

D
C

R
C

FA
IL

C
C

R
C

FA
IL

RM0008 SDIO interface (SDIO)

 459/682

Note: Refer to Table 1 on page 35 for the register boundary addresses.

0x38 SDIO_ICR

R
es

er
ve

d

C
E

AT
A

E
N

D
C

S
D

IO
IT

C

R
es

er
ve

d

D
B

C
K

E
N

D
C

S
T

B
IT

E
R

R
C

D
AT

A
E

N
D

C

C
M

D
S

E
N

T
C

C
M

D
R

E
N

D
C

R
X

O
V

E
R

R
C

T
X

U
N

D
E

R
R

C

D
T

IM
E

O
U

T
C

C
T

IM
E

O
U

T
C

D
C

R
C

FA
IL

C

C
C

R
C

FA
IL

C

0x3C SDIO_MASK
R

es
er

ve
d

C
E

AT
A

E
N

D
IE

S
D

IO
IT

IE

R
X

D
A

V
LI

E

T
X

D
A

V
LI

E

R
X

F
IF

O
E

IE

T
X

F
IF

O
E

IE

R
X

F
IF

O
F

IE

T
X

F
IF

O
F

IE

R
X

F
IF

O
H

F
IE

T
X

F
IF

O
H

E
IE

R
X

A
C

T
IE

T
X

A
C

T
IE

C
M

D
A

C
T

IE

D
B

C
K

E
N

D
IE

S
T

B
IT

E
R

R
IE

D
AT

A
E

N
D

IE

C
M

D
S

E
N

T
IE

C
M

D
R

E
N

D
IE

R
X

O
V

E
R

R
IE

T
X

U
N

D
E

R
R

IE

D
T

IM
E

O
U

T
IE

C
T

IM
E

O
U

T
IE

D
C

R
C

FA
IL

IE

C
C

R
C

FA
IL

IE

0x48 SDIO_FIFOCNT Reserved FIFOCOUNT

0x80 SDIO_FIFO FIF0Data

Table 133. SDIO register map (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 23 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

USB full speed device interface (USB) RM0008

460/682

20 USB full speed device interface (USB)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This section applies to the STM32F103xx performance line and STM32F102xx USB access
line families only.

20.1 USB introduction
The USB peripheral implements an interface between a full-speed USB 2.0 bus and the
APB1 bus.

USB suspend/resume are supported which allows to stop the device clocks for low-power
consumption.

20.2 USB main features
● USB specification version 2.0 full-speed compliant

● Configurable number of endpoints from 1 to 8

● Cyclic redundancy check (CRC) generation/checking, Non-return-to-zero Inverted
(NRZI) encoding/decoding and bit-stuffing

● Isochronous transfers support

● Double-buffered bulk/isochronous endpoint support

● USB Suspend/Resume operations

● Frame locked clock pulse generation

Note: The USB and CAN share a dedicated 512-byte SRAM memory for data transmission and
reception, and so they cannot be used concurrently (the shared SRAM is accessed through
CAN and USB exclusively). The USB and CAN can be used in the same application but not
at the same time.

20.3 USB functional description
Figure 188 shows the block diagram of the USB peripheral.

RM0008 USB full speed device interface (USB)

 461/682

Figure 188. USB peripheral block diagram

The USB peripheral provides an USB compliant connection between the host PC and the
function implemented by the microcontroller. Data transfer between the host PC and the
system memory occurs through a dedicated packet buffer memory accessed directly by the
USB peripheral. The size of this dedicated buffer memory must be according to the number
of endpoints used and the maximum packet size. This dedicated memory is sized to 512
bytes and up to 16 mono-directional or 8 bidirectional endpoints can be used.The USB
peripheral interfaces with the USB host, detecting token packets, handling data
transmission/reception, and processing handshake packets as required by the USB
standard. Transaction formatting is performed by the hardware, including CRC generation
and checking.

Each endpoint is associated with a buffer description block indicating where the endpoint
related memory area is located, how large it is or how many bytes must be transmitted.
When a token for a valid function/endpoint pair is recognized by the USB peripheral, the
related data transfer (if required and if the endpoint is configured) takes place. The data
buffered by the USB peripheral is loaded in an internal 16 bit register and memory access to
the dedicated buffer is performed. When all the data has been transferred, if needed, the

Arbiter

Packet
buffer
memory

Register
mapper

Interrupt
mapper

APB1 wrapper

Suspend

timer

Packet

buffer

interface

USB

RX-TX Clock

recovery

Control
Endpoint

selectionS.I.E.

Control
registers & logic

Interrupt
registers & logic

Analog

Endpoint

registers

D+ D-

transceiver

Endpoint

registers

PCLK1 APB1 bus IRQs to NVIC

USB clock (48 MHz)

PCLK1

APB1 interface

USB full speed device interface (USB) RM0008

462/682

proper handshake packet over the USB is generated or expected according to the direction
of the transfer.

At the end of the transaction, an endpoint-specific interrupt is generated, reading status
registers and/or using different interrupt response routines. The microcontroller can
determine:

● Which endpoint has to be served

● Which type of transaction took place, if errors occurred (bit stuffing, format, CRC,
protocol, missing ACK, over/underrun, etc.)

Special support is offered to Isochronous transfers and high throughput bulk transfers,
implementing a double buffer usage, which allows to always have an available buffer for the
USB peripheral while the microcontroller uses the other one.

The unit can be placed in low-power mode (SUSPEND mode), by writing in the control
register, whenever required. At this time, all static power dissipation is avoided, and the USB
clock can be slowed down or stopped. The detection of activity at the USB inputs, while in
low-power mode, wakes the device up asynchronously. A special interrupt source can be
connected directly to a wakeup line to allow the system to immediately restart the normal
clock generation and/or support direct clock start/stop.

20.3.1 Description of USB blocks

The USB peripheral implements all the features related to USB interfacing, which include
the following blocks:

● Serial Interface Engine (SIE): The functions of this block include: synchronization
pattern recognition, bit-stuffing, CRC generation and checking, PID
verification/generation, and handshake evaluation. It must interface with the USB
transceivers and uses the virtual buffers provided by the packet buffer interface for local
data storage,. This unit also generates signals according to USB peripheral events,
such as Start of Frame (SOF), USB_Reset, Data errors etc. and to Endpoint related
events like end of transmission or correct reception of a packet; these signals are then
used to generate interrupts.

● Timer: This block generates a start-of-frame locked clock pulse and detects a global
suspend (from the host) when no traffic has been received for 3 ms.

● Packet Buffer Interface: This block manages the local memory implementing a set of
buffers in a flexible way, both for transmission and reception. It can choose the proper
buffer according to requests coming from the SIE and locate them in the memory
addresses pointed by the Endpoint registers. It increments the address after each
exchanged word until the end of packet, keeping track of the number of exchanged
bytes and preventing the buffer to overrun the maximum capacity.

● Endpoint-Related Registers: Each endpoint has an associated register containing the
endpoint type and its current status. For mono-directional/single-buffer endpoints, a
single register can be used to implement two distinct endpoints. The number of
registers is 8, allowing up to 16 mono-directional/single-buffer or up to 7 double-buffer
endpoints* in any combination. For example the USB peripheral can be programmed to
have 4 double buffer endpoints and 8 single-buffer/mono-directional endpoints.

RM0008 USB full speed device interface (USB)

 463/682

● Control Registers: These are the registers containing information about the status of
the whole USB peripheral and used to force some USB events, such as resume and
power-down.

● Interrupt Registers: These contain the Interrupt masks and a record of the events. They
can be used to inquire an interrupt reason, the interrupt status or to clear the status of a
pending interrupt.

Note: * Endpoint 0 is always used for control transfer in single-buffer mode.

The USB peripheral is connected to the APB1 bus through an APB1 interface, containing
the following blocks:

● Packet Memory: This is the local memory that physically contains the Packet Buffers. It
can be used by the Packet Buffer interface, which creates the data structure and can be
accessed directly by the application software. The size of the Packet Memory is 512
bytes, structured as 256 words by 16 bits.

● Arbiter: This block accepts memory requests coming from the APB1 bus and from the
USB interface. It resolves the conflicts by giving priority to APB1 accesses, while
always reserving half of the memory bandwidth to complete all USB transfers. This
time-duplex scheme implements a virtual dual-port SRAM that allows memory access,
while an USB transaction is happening. Multiword APB1 transfers of any length are
also allowed by this scheme.

● Register Mapper: This block collects the various byte-wide and bit-wide registers of the
USB peripheral in a structured 16-bit wide word set addressed by the APB1.

● APB1 Wrapper: This provides an interface to the APB1 for the memory and register. It
also maps the whole USB peripheral in the APB1 address space.

● Interrupt Mapper: This block is used to select how the possible USB events can
generate interrupts and map them to three different lines of the NVIC:

– USB low-priority interrupt (Channel 20): Triggered by all USB events (Correct
transfer, USB reset, etc.). The firmware has to check the interrupt source before
serving the interrupt.

– USB high-priority interrupt (Channel 19): Triggered only by a correct transfer event
for isochronous and double-buffer bulk transfer to reach the highest possible
transfer rate.

– USB wakeup interrupt (Channel 42): Triggered by the wakeup event from the USB
Suspend mode.

20.4 Programming considerations
In the following sections, the expected interactions between the USB peripheral and the
application program are described, in order to ease application software development.

20.4.1 Generic USB device programming

This part describes the main tasks required of the application software in order to obtain
USB compliant behavior. The actions related to the most general USB events are taken into
account and paragraphs are dedicated to the special cases of double-buffered endpoints
and Isochronous transfers. Apart from system reset, action is always initiated by the USB
peripheral, driven by one of the USB events described below.

USB full speed device interface (USB) RM0008

464/682

20.4.2 System and power-on reset

Upon system and power-on reset, the first operation the application software should perform
is to provide all required clock signals to the USB peripheral and subsequently de-assert its
reset signal so to be able to access its registers. The whole initialization sequence is
hereafter described.

As a first step application software needs to activate register macrocell clock and de-assert
macrocell specific reset signal using related control bits provided by device clock
management logic.

After that, the analog part of the device related to the USB transceiver must be switched on
using the PDWN bit in CNTR register, which requires a special handling. This bit is intended
to switch on the internal voltage references that supply the port transceiver. This circuit has
a defined startup time (tSTARTUP specified in the datasheet) during which the behavior of the
USB transceiver is not defined. It is thus necessary to wait this time, after setting the PDWN
bit in the CNTR register, before removing the reset condition on the USB part (by clearing
the FRES bit in the CNTR register). Clearing the ISTR register then removes any spurious
pending interrupt before any other macrocell operation is enabled.

At system reset, the microcontroller must initialize all required registers and the packet
buffer description table, to make the USB peripheral able to properly generate interrupts and
data transfers. All registers not specific to any endpoint must be initialized according to the
needs of application software (choice of enabled interrupts, chosen address of packet
buffers, etc.). Then the process continues as for the USB reset case (see further
paragraph).

USB reset (RESET interrupt)

When this event occurs, the USB peripheral is put in the same conditions it is left by the
system reset after the initialization described in the previous paragraph: communication is
disabled in all endpoint registers (the USB peripheral will not respond to any packet). As a
response to the USB reset event, the USB function must be enabled, having as USB
address 0, implementing only the default control endpoint (endpoint address is 0 too). This
is accomplished by setting the Enable Function (EF) bit of the USB_DADDR register and
initializing the EP0R register and its related packet buffers accordingly. During USB
enumeration process, the host assigns a unique address to this device, which must be
written in the ADD[6:0] bits of the USB_DADDR register, and configures any other
necessary endpoint.
When a RESET interrupt is received, the application software is responsible to enable again
the default endpoint of USB function 0 within 10mS from the end of reset sequence which
triggered the interrupt.

Structure and usage of packet buffers

Each bidirectional endpoint may receive or transmit data from/to the host. The received data
is stored in a dedicated memory buffer reserved for that endpoint, while another memory
buffer contains the data to be transmitted by the endpoint. Access to this memory is
performed by the packet buffer interface block, which delivers a memory access request and
waits for its acknowledgement. Since the packet buffer memory has to be accessed by the
microcontroller also, an arbitration logic takes care of the access conflicts, using half APB1
cycle for microcontroller access and the remaining half for the USB peripheral access. In
this way, both the agents can operate as if the packet memory is a dual-port SRAM, without
being aware of any conflict even when the microcontroller is performing back-to-back
accesses. The USB peripheral logic uses a dedicated clock. The frequency of this dedicated

RM0008 USB full speed device interface (USB)

 465/682

clock is fixed by the requirements of the USB standard at 48 MHz, and this can be different
from the clock used for the interface to the APB1 bus. Different clock configurations are
possible where the APB1 clock frequency can be higher or lower than the USB peripheral
one.

Note: Due to USB data rate and packet memory interface requirements, the APB1 clock frequency
must be greater than 8 MHz to avoid data overrun/underrun problems.

Each endpoint is associated with two packet buffers (usually one for transmission and the
other one for reception). Buffers can be placed anywhere inside the packet memory
because their location and size is specified in a buffer description table, which is also
located in the packet memory at the address indicated by the USB_BTABLE register. Each
table entry is associated to an endpoint register and it is composed of four 16-bit words so
that table start address must always be aligned to an 8-byte boundary (the lowest three bits
of USB_BTABLE register are always “000”). Buffer descriptor table entries are described in
the Section 20.5.3: Buffer descriptor table. If an endpoint is unidirectional and it is neither an
Isochronous nor a double-buffered bulk, only one packet buffer is required (the one related
to the supported transfer direction). Other table locations related to unsupported transfer
directions or unused endpoints, are available to the user. isochronous and double-buffered
bulk endpoints have special handling of packet buffers (Refer to Section 20.4.4: Isochronous
transfers and Section 20.4.3: Double-buffered endpoints respectively). The relationship
between buffer description table entries and packet buffer areas is depicted in Figure 189.

USB full speed device interface (USB) RM0008

466/682

Figure 189. Packet buffer areas with examples of buffer description table locations

Each packet buffer is used either during reception or transmission starting from the bottom.
The USB peripheral will never change the contents of memory locations adjacent to the
allocated memory buffers; if a packet bigger than the allocated buffer length is received
(buffer overrun condition) the data will be copied to the memory only up to the last available
location.

Endpoint initialization

The first step to initialize an endpoint is to write appropriate values to the
ADDRn_TX/ADDRn_RX registers so that the USB peripheral finds the data to be
transmitted already available and the data to be received can be buffered. The EP_TYPE
bits in the USB_EPnR register must be set according to the endpoint type, eventually using
the EP_KIND bit to enable any special required feature. On the transmit side, the endpoint
must be enabled using the STAT_TX bits in the USB_EPnR register and COUNTn_TX must
be initialized. For reception, STAT_RX bits must be set to enable reception and
COUNTn_RX must be written with the allocated buffer size using the BL_SIZE and

Buffer for
double-buffered
IN Endpoint 3

ADDR0_TX

COUNT0_TX

0000_0000 (00)

ADDR0_RX

COUNT0_RX

ADDR1_TX

COUNT1_TX

ADDR1_RX

COUNT1_RX

ADDR2_RX_0

COUNT2_RX_0

ADDR2_RX_1

COUNT2_RX_1

ADDR3_TX_0

COUNT3_TX_0

0000_0010 (02)

0000_0100 (04)

0000_0110 (06)

0000_1000 (08)

0000_1010 (0A)

0000_1100 (0C)

0000_1110 (0E)

0001_0000 (10)

0001_0010 (12)

0001_0100 (14)

0001_0110 (16)

0001_1000 (18)

0001_1010 (1A)

Buffer description table locations

Transmission
buffer for

Endpoint 0

Reception buffer
for

Endpoint 0

Transmission
buffer for

single-buffered
Endpoint 1

Packet buffers

ADDR3_TX_1

COUNT3_TX_1

0001_1100 (1C)

0001_1110 (1E)

Buffer for
double-buffered
OUT Endpoint 2

RM0008 USB full speed device interface (USB)

 467/682

NUM_BLOCK fields. Unidirectional endpoints, except Isochronous and double-buffered bulk
endpoints, need to initialize only bits and registers related to the supported direction. Once
the transmission and/or reception are enabled, register USB_EPnR and locations
ADDRn_TX/ADDRn_RX, COUNTn_TX/COUNTn_RX (respectively), should not be modified
by the application software, as the hardware can change their value on the fly. When the
data transfer operation is completed, notified by a CTR interrupt event, they can be
accessed again to re-enable a new operation.

IN packets (data transmission)

When receiving an IN token packet, if the received address matches a configured and valid
endpoint one, the USB peripheral accesses the contents of ADDRn_TX and COUNTn_TX
locations inside buffer descriptor table entry related to the addressed endpoint. The content
of these locations is stored in its internal 16 bit registers ADDR and COUNT (not accessible
by software). The packet memory is accessed again to read the first word to be transmitted
(Refer to Structure and usage of packet buffers on page 464) and starts sending a DATA0 or
DATA1 PID according to USB_EPnR bit DTOG_TX. When the PID is completed, the first
byte from the word, read from buffer memory, is loaded into the output shift register to be
transmitted on the USB bus. After the last data byte is transmitted, the computed CRC is
sent. If the addressed endpoint is not valid, a NAK or STALL handshake packet is sent
instead of the data packet, according to STAT_TX bits in the USB_EPnR register.

The ADDR internal register is used as a pointer to the current buffer memory location while
COUNT is used to count the number of remaining bytes to be transmitted. Each word read
from the packet buffer memory is transmitted over the USB bus starting from the least
significant byte. Transmission buffer memory is read starting from the address pointed by
ADDRn_TX for COUNTn_TX/2 words. If a transmitted packet is composed of an odd
number of bytes, only the lower half of the last word accessed will be used.

On receiving the ACK receipt by the host, the USB_EPnR register is updated in the following
way: DTOG_TX bit is toggled, the endpoint is made invalid by setting STAT_TX=10 (NAK)
and bit CTR_TX is set. The application software must first identify the endpoint, which is
requesting microcontroller attention by examining the EP_ID and DIR bits in the USB_ISTR
register. Servicing of the CTR_TX event starts clearing the interrupt bit; the application
software then prepares another buffer full of data to be sent, updates the COUNTn_TX table
location with the number of byte to be transmitted during the next transfer, and finally sets
STAT_TX to ‘11’ (VALID) to re-enable transmissions. While the STAT_TX bits are equal to
‘10’ (NAK), any IN request addressed to that endpoint is NAKed, indicating a flow control
condition: the USB host will retry the transaction until it succeeds. It is mandatory to execute
the sequence of operations in the above mentioned order to avoid losing the notification of a
second IN transaction addressed to the same endpoint immediately following the one which
triggered the CTR interrupt.

OUT and SETUP packets (data reception)

These two tokens are handled by the USB peripheral more or less in the same way; the
differences in the handling of SETUP packets are detailed in the following paragraph about
control transfers. When receiving an OUT/SETUP PID, if the address matches a valid
endpoint, the USB peripheral accesses the contents of the ADDRn_RX and COUNTn_RX
locations inside the buffer descriptor table entry related to the addressed endpoint. The
content of the ADDRn_RX is stored directly in its internal register ADDR. While COUNT is
now reset and the values of BL_SIZE and NUM_BLOCK bit fields, which are read within
COUNTn_RX content are used to initialize BUF_COUNT, an internal 16 bit counter, which is
used to check the buffer overrun condition (all these internal registers are not accessible by

USB full speed device interface (USB) RM0008

468/682

software). Data bytes subsequently received by the USB peripheral are packed in words
(the first byte received is stored as least significant byte) and then transferred to the packet
buffer starting from the address contained in the internal ADDR register while BUF_COUNT
is decremented and COUNT is incremented at each byte transfer. When the end of DATA
packet is detected, the correctness of the received CRC is tested and only if no errors
occurred during the reception, an ACK handshake packet is sent back to the transmitting
host. In case of wrong CRC or other kinds of errors (bit-stuff violations, frame errors, etc.),
data bytes are still copied in the packet memory buffer, at least until the error detection point,
but ACK packet is not sent and the ERR bit in USB_ISTR register is set. However, there is
usually no software action required in this case: the USB peripheral recovers from reception
errors and remains ready for the next transaction to come. If the addressed endpoint is not
valid, a NAK or STALL handshake packet is sent instead of the ACK, according to bits
STAT_RX in the USB_EPnR register and no data is written in the reception memory buffers.

Reception memory buffer locations are written starting from the address contained in the
ADDRn_RX for a number of bytes corresponding to the received data packet length, CRC
included (i.e. data payload length + 2), or up to the last allocated memory location, as
defined by BL_SIZE and NUM_BLOCK, whichever comes first. In this way, the USB
peripheral never writes beyond the end of the allocated reception memory buffer area. If the
length of the data packet payload (actual number of bytes used by the application) is greater
than the allocated buffer, the USB peripheral detects a buffer overrun condition. in this case,
a STALL handshake is sent instead of the usual ACK to notify the problem to the host, no
interrupt is generated and the transaction is considered failed.

When the transaction is completed correctly, by sending the ACK handshake packet, the
internal COUNT register is copied back in the COUNTn_RX location inside the buffer
description table entry, leaving unaffected BL_SIZE and NUM_BLOCK fields, which
normally do not require to be re-written, and the USB_EPnR register is updated in the
following way: DTOG_RX bit is toggled, the endpoint is made invalid by setting STAT_RX =
‘10’ (NAK) and bit CTR_RX is set. If the transaction has failed due to errors or buffer overrun
condition, none of the previously listed actions take place. The application software must
first identify the endpoint, which is requesting microcontroller attention by examining the
EP_ID and DIR bits in the USB_ISTR register. The CTR_RX event is serviced by first
determining the transaction type (SETUP bit in the USB_EPnR register); the application
software must clear the interrupt flag bit and get the number of received bytes reading the
COUNTn_RX location inside the buffer description table entry related to the endpoint being
processed. After the received data is processed, the application software should set the
STAT_RX bits to ‘11’ (Valid) in the USB_EPnR, enabling further transactions. While the
STAT_RX bits are equal to ‘10’ (NAK), any OUT request addressed to that endpoint is
NAKed, indicating a flow control condition: the USB host will retry the transaction until it
succeeds. It is mandatory to execute the sequence of operations in the above mentioned
order to avoid losing the notification of a second OUT transaction addressed to the same
endpoint following immediately the one which triggered the CTR interrupt.

Control transfers

Control transfers are made of a SETUP transaction, followed by zero or more data stages,
all of the same direction, followed by a status stage (a zero-byte transfer in the opposite
direction). SETUP transactions are handled by control endpoints only and are very similar to
OUT ones (data reception) except that the values of DTOG_TX and DTOG_RX bits of the
addressed endpoint registers are set to 1 and 0 respectively, to initialize the control transfer,
and both STAT_TX and STAT_RX are set to ‘10’ (NAK) to let software decide if subsequent
transactions must be IN or OUT depending on the SETUP contents. A control endpoint must
check SETUP bit in the USB_EPnR register at each CTR_RX event to distinguish normal

RM0008 USB full speed device interface (USB)

 469/682

OUT transactions from SETUP ones. A USB device can determine the number and direction
of data stages by interpreting the data transferred in the SETUP stage, and is required to
STALL the transaction in the case of errors. To do so, at all data stages before the last, the
unused direction should be set to STALL, so that, if the host reverses the transfer direction
too soon, it gets a STALL as a status stage. While enabling the last data stage, the opposite
direction should be set to NAK, so that, if the host reverses the transfer direction (to perform
the status stage) immediately, it is kept waiting for the completion of the control operation. If
the control operation completes successfully, the software will change NAK to VALID,
otherwise to STALL. At the same time, if the status stage will be an OUT, the STATUS_OUT
(EP_KIND in the USB_EPnR register) bit should be set, so that an error is generated if a
status transaction is performed with not-zero data. When the status transaction is serviced,
the application clears the STATUS_OUT bit and sets STAT_RX to VALID (to accept a new
command) and STAT_TX to NAK (to delay a possible status stage immediately following the
next setup).

Since the USB specification states that a SETUP packet cannot be answered with a
handshake different from ACK, eventually aborting a previously issued command to start the
new one, the USB logic doesn’t allow a control endpoint to answer with a NAK or STALL
packet to a SETUP token received from the host.

When the STAT_RX bits are set to ‘01’ (STALL) or ‘10’ (NAK) and a SETUP token is
received, the USB accepts the data, performing the required data transfers and sends back
an ACK handshake. If that endpoint has a previously issued CTR_RX request not yet
acknowledged by the application (i.e. CTR_RX bit is still set from a previously completed
reception), the USB discards the SETUP transaction and does not answer with any
handshake packet regardless of its state, simulating a reception error and forcing the host to
send the SETUP token again. This is done to avoid losing the notification of a SETUP
transaction addressed to the same endpoint immediately following the transaction, which
triggered the CTR_RX interrupt.

USB full speed device interface (USB) RM0008

470/682

20.4.3 Double-buffered endpoints

All different endpoint types defined by the USB standard represent different traffic models,
and describe the typical requirements of different kind of data transfer operations. When
large portions of data are to be transferred between the host PC and the USB function, the
bulk endpoint type is the most suited model. This is because the host schedules bulk
transactions so as to fill all the available bandwidth in the frame, maximizing the actual
transfer rate as long as the USB function is ready to handle a bulk transaction addressed to
it. If the USB function is still busy with the previous transaction when the next one arrives, it
will answer with a NAK handshake and the host PC will issue the same transaction again
until the USB function is ready to handle it, reducing the actual transfer rate due to the
bandwidth occupied by re-transmissions. For this reason, a dedicated feature called
‘double-buffering’ can be used with bulk endpoints.

When ‘double-buffering’ is activated, data toggle sequencing is used to select, which buffer
is to be used by the USB peripheral to perform the required data transfers, using both
‘transmission’ and ‘reception’ packet memory areas to manage buffer swapping on each
successful transaction in order to always have a complete buffer to be used by the
application, while the USB peripheral fills the other one. For example, during an OUT
transaction directed to a ‘reception’ double-buffered bulk endpoint, while one buffer is being
filled with new data coming from the USB host, the other one is available for the
microcontroller software usage (the same would happen with a ‘transmission’ double-
buffered bulk endpoint and an IN transaction).

Since the swapped buffer management requires the usage of all 4 buffer description table
locations hosting the address pointer and the length of the allocated memory buffers, the
USB_EPnR registers used to implement double-buffered bulk endpoints are forced to be
used as unidirectional ones. Therefore, only one STAT bit pair must be set at a value
different from ‘00’ (Disabled): STAT_RX if the double-buffered bulk endpoint is enabled for
reception, STAT_TX if the double-buffered bulk endpoint is enabled for transmission. In case
it is required to have double-buffered bulk endpoints enabled both for reception and
transmission, two USB_EPnR registers must be used.

To exploit the double-buffering feature and reach the highest possible transfer rate, the
endpoint flow control structure, described in previous chapters, has to be modified, in order
to switch the endpoint status to NAK only when a buffer conflict occurs between the USB
peripheral and application software, instead of doing it at the end of each successful
transaction. The memory buffer which is currently being used by the USB peripheral is
defined by the DTOG bit related to the endpoint direction: DTOG_RX (bit 14 of USB_EPnR
register) for ‘reception’ double-buffered bulk endpoints or DTOG_TX (bit 6 of USB_EPnR
register) for ‘transmission’ double-buffered bulk endpoints. To implement the new flow
control scheme, the USB peripheral should know which packet buffer is currently in use by
the application software, so to be aware of any conflict. Since in the USB_EPnR register,
there are two DTOG bits but only one is used by USB peripheral for data and buffer
sequencing (due to the unidirectional constraint required by double-buffering feature) the
other one can be used by the application software to show which buffer it is currently using.
This new buffer flag is called SW_BUF. In the following table the correspondence between
USB_EPnR register bits and DTOG/SW_BUF definition is explained, for the cases of
‘transmission’ and ‘reception’ double-buffered bulk endpoints.

RM0008 USB full speed device interface (USB)

 471/682

The memory buffer which is currently being used by the USB peripheral is defined by DTOG
buffer flag, while the buffer currently in use by application software is identified by SW_BUF
buffer flag. The relationship between the buffer flag value and the used packet buffer is the
same in both cases, and it is listed in the following table.

Double-buffering feature for a bulk endpoint is activated by:

● Writing EP_TYPE bit field at ‘00’ in its USB_EPnR register, to define the endpoint as a
bulk, and

● Setting EP_KIND bit at ‘1’ (DBL_BUF), in the same register.

The application software is responsible for DTOG and SW_BUF bits initialization according
to the first buffer to be used; this has to be done considering the special toggle-only property
that these two bits have. The end of the first transaction occurring after having set
DBL_BUF, triggers the special flow control of double-buffered bulk endpoints, which is used
for all other transactions addressed to this endpoint until DBL_BUF remain set. At the end of
each transaction the CTR_RX or CTR_TX bit of the addressed endpoint USB_EPnR
register is set, depending on the enabled direction. At the same time, the affected DTOG bit
in the USB_EPnR register is hardware toggled making the USB peripheral buffer swapping
completely software independent. Unlike common transactions, and the first one after
DBL_BUF setting, STAT bit pair is not affected by the transaction termination and its value
remains ‘11’ (Valid). However, as the token packet of a new transaction is received, the

Table 134. Double-buffering buffer flag definition

Buffer flag ‘Transmission’ endpoint ‘Reception’ endpoint

DTOG DTOG_TX (USB_EPnRbit 6) DTOG_RX (USB_EPnRbit 14)

SW_BUF USB_EPnR bit 14 USB_EPnR bit 6

Table 135. Bulk double-buffering memory buffers usage

Endpoint
Type

DTOG SW_BUF
Packet buffer used by USB

Peripheral
Packet buffer used by
Application Software

IN

0 1
ADDRn_TX_0 / COUNTn_TX_0
Buffer description table locations.

ADDRn_TX_1 / COUNTn_TX_1
Buffer description table locations.

1 0
ADDRn_TX_1 / COUNTn_TX_1

Buffer description table locations

ADDRn_TX_0 / COUNTn_TX_0

Buffer description table locations.

0 0 None (1)

1. Endpoint in NAK Status.

ADDRn_TX_0 / COUNTn_TX_0

Buffer description table locations.

1 1 None (1) ADDRn_TX_0 / COUNTn_TX_0

Buffer description table locations.

OUT

0 1
ADDRn_RX_0 / COUNTn_RX_0

Buffer description table locations.

ADDRn_RX_1 / COUNTn_RX_1

Buffer description table locations.

1 0
ADDRn_RX_1 / COUNTn_RX_1

Buffer description table locations.

ADDRn_RX_0 / COUNTn_RX_0

Buffer description table locations.

0 0 None (1) ADDRn_RX_0 / COUNTn_RX_0

Buffer description table locations.

1 1 None (1) ADDRn_RX_1 / COUNTn_RX_1

Buffer description table locations.

USB full speed device interface (USB) RM0008

472/682

actual endpoint status will be masked as ‘10’ (NAK) when a buffer conflict between the USB
peripheral and the application software is detected (this condition is identified by DTOG and
SW_BUF having the same value, see Table 135 on page 471). The application software
responds to the CTR event notification by clearing the interrupt flag and starting any
required handling of the completed transaction. When the application packet buffer usage is
over, the software toggles the SW_BUF bit, writing ‘1’ to it, to notify the USB peripheral
about the availability of that buffer. In this way, the number of NAKed transactions is limited
only by the application elaboration time of a transaction data: if the elaboration time is
shorter than the time required to complete a transaction on the USB bus, no re-
transmissions due to flow control will take place and the actual transfer rate will be limited
only by the host PC.

The application software can always override the special flow control implemented for
double-buffered bulk endpoints, writing an explicit status different from ‘11’ (Valid) into the
STAT bit pair of the related USB_EPnR register. In this case, the USB peripheral will always
use the programmed endpoint status, regardless of the buffer usage condition.

20.4.4 Isochronous transfers

The USB standard supports full speed peripherals requiring a fixed and accurate data
production/consume frequency, defining this kind of traffic as ‘Isochronous’. Typical
examples of this data are: audio samples, compressed video streams, and in general any
sort of sampled data having strict requirements for the accuracy of delivered frequency.
When an endpoint is defined to be ‘isochronous’ during the enumeration phase, the host
allocates in the frame the required bandwidth and delivers exactly one IN or OUT packet
each frame, depending on endpoint direction. To limit the bandwidth requirements, no re-
transmission of failed transactions is possible for Isochronous traffic; this leads to the fact
that an isochronous transaction does not have a handshake phase and no ACK packet is
expected or sent after the data packet. For the same reason, Isochronous transfers do not
support data toggle sequencing and always use DATA0 PID to start any data packet.

The Isochronous behavior for an endpoint is selected by setting the EP_TYPE bits at ‘10’ in
its USB_EPnR register; since there is no handshake phase the only legal values for the
STAT_RX/STAT_TX bit pairs are ‘00’ (Disabled) and ‘11’ (Valid), any other value will produce
results not compliant to USB standard. Isochronous endpoints implement double-buffering
to ease application software development, using both ‘transmission’ and ‘reception’ packet
memory areas to manage buffer swapping on each successful transaction in order to have
always a complete buffer to be used by the application, while the USB peripheral fills the
other.

The memory buffer which is currently used by the USB peripheral is defined by the DTOG
bit related to the endpoint direction (DTOG_RX for ‘reception’ isochronous endpoints,
DTOG_TX for ‘transmission’ isochronous endpoints, both in the related USB_EPnR
register) according to Table 136.

RM0008 USB full speed device interface (USB)

 473/682

As it happens with double-buffered bulk endpoints, the USB_EPnR registers used to
implement Isochronous endpoints are forced to be used as unidirectional ones. In case it is
required to have Isochronous endpoints enabled both for reception and transmission, two
USB_EPnR registers must be used.

The application software is responsible for the DTOG bit initialization according to the first
buffer to be used; this has to be done considering the special toggle-only property that these
two bits have. At the end of each transaction, the CTR_RX or CTR_TX bit of the addressed
endpoint USB_EPnR register is set, depending on the enabled direction. At the same time,
the affected DTOG bit in the USB_EPnR register is hardware toggled making buffer
swapping completely software independent. STAT bit pair is not affected by transaction
completion; since no flow control is possible for Isochronous transfers due to the lack of
handshake phase, the endpoint remains always ‘11’ (Valid). CRC errors or buffer-overrun
conditions occurring during Isochronous OUT transfers are anyway considered as correct
transactions and they always trigger an CTR_RX event. However, CRC errors will anyway
set the ERR bit in the USB_ISTR register to notify the software of the possible data
corruption.

20.4.5 Suspend/Resume events

The USB standard defines a special peripheral state, called SUSPEND, in which the
average current drawn from the USB bus must not be greater than 500 μA. This requirement
is of fundamental importance for bus-powered devices, while self-powered devices are not
required to comply to this strict power consumption constraint. In suspend mode, the host
PC sends the notification to not send any traffic on the USB bus for more than 3mS: since a
SOF packet must be sent every mS during normal operations, the USB peripheral detects
the lack of 3 consecutive SOF packets as a suspend request from the host PC and set the
SUSP bit to ‘1’ in USB_ISTR register, causing an interrupt if enabled. Once the device is
suspended, its normal operation can be restored by a so called RESUME sequence, which
can be started from the host PC or directly from the peripheral itself, but it is always
terminated by the host PC. The suspended USB peripheral must be anyway able to detect a
RESET sequence, reacting to this event as a normal USB reset event.

The actual procedure used to suspend the USB peripheral is device dependent since
according to the device composition, different actions may be required to reduce the total
consumption.

Table 136. Isochronous memory buffers usage

Endpoint
Type

DTOG bit
value

Packet buffer used by the
USB peripheral

Packet buffer used by the
application software

IN

0
ADDRn_TX_0 / COUNTn_TX_0
buffer description table
locations.

ADDRn_TX_1 / COUNTn_TX_1
buffer description table
locations.

1
ADDRn_TX_1 / COUNTn_TX_1
buffer description table
locations.

ADDRn_TX_0 / COUNTn_TX_0
buffer description table
locations.

OUT

0
ADDRn_RX_0 / COUNTn_RX_0
buffer description table
locations.

ADDRn_RX_1 / COUNTn_RX_1
buffer description table
locations.

1
ADDRn_RX_1 / COUNTn_RX_1
buffer description table
locations.

ADDRn_RX_0 / COUNTn_RX_0
buffer description table
locations.

USB full speed device interface (USB) RM0008

474/682

A brief description of a typical suspend procedure is provided below, focused on the USB-
related aspects of the application software routine responding to the SUSP notification of
the USB peripheral:

1. Set the FSUSP bit in the USB_CNTR register to 1. This action activates the suspend
mode within the USB peripheral. As soon as the suspend mode is activated, the check
on SOF reception is disabled to avoid any further SUSP interrupts being issued while
the USB is suspended.

2. Remove or reduce any static power consumption in blocks different from the USB
peripheral.

3. Set LP_MODE bit in USB_CNTR register to 1 to remove static power consumption in
the analog USB transceivers but keeping them able to detect resume activity.

4. Optionally turn off external oscillator and device PLL to stop any activity inside the
device.

When an USB event occurs while the device is in SUSPEND mode, the RESUME procedure
must be invoked to restore nominal clocks and regain normal USB behavior. Particular care
must be taken to insure that this process does not take more than 10mS when the wakening
event is an USB reset sequence (See “Universal Serial Bus Specification” for more details).
The start of a resume or reset sequence, while the USB peripheral is suspended, clears the
LP_MODE bit in USB_CNTR register asynchronously. Even if this event can trigger an
WKUP interrupt if enabled, the use of an interrupt response routine must be carefully
evaluated because of the long latency due to system clock restart; to have the shorter
latency before re-activating the nominal clock it is suggested to put the resume procedure
just after the end of the suspend one, so its code is immediately executed as soon as the
system clock restarts. To prevent ESD discharges or any other kind of noise from waking-up
the system (the exit from suspend mode is an asynchronous event), a suitable analog filter
on data line status is activated during suspend; the filter width is about 70ns.

The following is a list of actions a resume procedure should address:

1. Optionally turn on external oscillator and/or device PLL.

2. Clear FSUSP bit of USB_CNTR register.

3. If the resume triggering event has to be identified, bits RXDP and RXDM in the
USB_FNR register can be used according to Table 137, which also lists the intended
software action in all the cases. If required, the end of resume or reset sequence can
be detected monitoring the status of the above mentioned bits by checking when they
reach the “10” configuration, which represent the Idle bus state; moreover at the end of
a reset sequence the RESET bit in USB_ISTR register is set to 1, issuing an interrupt if
enabled, which should be handled as usual.

A device may require to exit from suspend mode as an answer to particular events not
directly related to the USB protocol (e.g. a mouse movement wakes up the whole system).

Table 137. Resume event detection

[RXDP,RXDM] Status Wakeup event Required resume software action

“00” Root reset None

“10”
None
(noise on bus)

Go back in Suspend mode

“01” Root resume None

“11”
Not Allowed
(noise on bus)

Go back in Suspend mode

RM0008 USB full speed device interface (USB)

 475/682

In this case, the resume sequence can be started by setting the RESUME bit in the
USB_CNTR register to ‘1’ and resetting it to 0 after an interval between 1mS and 15mS (this
interval can be timed using ESOF interrupts, occurring with a 1mS period when the system
clock is running at nominal frequency). Once the RESUME bit is clear, the resume
sequence will be completed by the host PC and its end can be monitored again using the
RXDP and RXDM bits in the USB_FNR register.

Note: The RESUME bit must be anyway used only after the USB peripheral has been put in
suspend mode, setting the FSUSP bit in USB_CNTR register to 1.

20.5 USB registers
The USB peripheral registers can be divided into the following groups:

● Common Registers: Interrupt and Control registers

● Endpoint Registers: Endpoint configuration and status

● Buffer Descriptor Table: Location of packet memory used to locate data buffers

All register addresses are expressed as offsets with respect to the USB peripheral registers
base address 0x4000 5C00, except the buffer descriptor table locations, which starts at the
address specified by the USB_BTABLE register. Due to the common limitation of APB1
bridges on word addressability, all register addresses are aligned to 32-bit word boundaries
although they are 16-bit wide. The same address alignment is used to access packet buffer
memory locations, which are located starting from 0x4000 6000.

Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

20.5.1 Common registers

These registers affect the general behavior of the USB peripheral defining operating mode,
interrupt handling, device address and giving access to the current frame number updated
by the host PC.

USB control register (USB_CNTR)

Address offset: 0x40

Reset value: 0x0003

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTRM PMAO
VRM ERRM WKUP

M
SUSP

M
RESE

TM SOFM ESOF
M Reserved RESU

ME
FSUS

P
LP_M
ODE PDWN FRES

rw rw rw rw rw rw rw rw Res. rw rw rw rw rw

USB full speed device interface (USB) RM0008

476/682

Bit 15 CTRM: Correct transfer interrupt mask

0: Correct Transfer (CTR) Interrupt disabled.
1: CTR Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bit 14 PMAOVRM: Packet memory area over / underrun interrupt mask
0: PMAOVR Interrupt disabled.
1: PMAOVR Interrupt enabled, an interrupt request is generated when the corresponding bit
in the USB_ISTR register is set.

Bit 13 ERRM: Error interrupt mask

0: ERR Interrupt disabled.
1: ERR Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bit 12 WKUPM: Wakeup interrupt mask

0: WKUP Interrupt disabled.
1: WKUP Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bit 11 SUSPM: Suspend mode interrupt mask

0: Suspend Mode Request (SUSP) Interrupt disabled.
1: SUSP Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bit 10 RESETM: USB reset interrupt mask
0: RESET Interrupt disabled.
1: RESET Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bit 9 SOFM: Start of frame interrupt mask

0: SOF Interrupt disabled.
1: SOF Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bit 8 ESOFM: Expected start of frame interrupt mask

0: Expected Start of Frame (ESOF) Interrupt disabled.
1: ESOF Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bits 7:5 Reserved.

Bit 4 RESUME: Resume request

The microcontroller can set this bit to send a Resume signal to the host. It must be
activated, according to USB specifications, for no less than 1mS and no more than 15mS
after which the Host PC is ready to drive the resume sequence up to its end.

Bit 3 FSUSP: Force suspend
Software must set this bit when the SUSP interrupt is received, which is issued when no
traffic is received by the USB peripheral for 3 mS.
0: No effect.
1: Enter suspend mode. Clocks and static power dissipation in the analog transceiver are
left unaffected. If suspend power consumption is a requirement (bus-powered device), the
application software should set the LP_MODE bit after FSUSP as explained below.

RM0008 USB full speed device interface (USB)

 477/682

USB interrupt status register (USB_ISTR)

Address offset: 0x44

Reset value: 0x0000 0000

This register contains the status of all the interrupt sources allowing application software to
determine, which events caused an interrupt request.

The upper part of this register contains single bits, each of them representing a specific
event. These bits are set by the hardware when the related event occurs; if the
corresponding bit in the USB_CNTR register is set, a generic interrupt request is generated.
The interrupt routine, examining each bit, will perform all necessary actions, and finally it will
clear the serviced bits. If any of them is not cleared, the interrupt is considered to be still
pending, and the interrupt line will be kept high again. If several bits are set simultaneously,
only a single interrupt will be generated.

Endpoint transaction completion can be handled in a different way to reduce interrupt
response latency. The CTR bit is set by the hardware as soon as an endpoint successfully
completes a transaction, generating a generic interrupt request if the corresponding bit in
USB_CNTR is set. An endpoint dedicated interrupt condition is activated independently
from the CTRM bit in the USB_CNTR register. Both interrupt conditions remain active until
software clears the pending bit in the corresponding USB_EPnR register (the CTR bit is
actually a read only bit). For endpoint-related interrupts, the software can use the Direction
of Transaction (DIR) and EP_ID read-only bits to identify, which endpoint made the last
interrupt request and called the corresponding interrupt service routine.

Bit 2 LP_MODE: Low-power mode
This mode is used when the suspend-mode power constraints require that all static power
dissipation is avoided, except the one required to supply the external pull-up resistor. This
condition should be entered when the application is ready to stop all system clocks, or
reduce their frequency in order to meet the power consumption requirements of the USB
suspend condition. The USB activity during the suspend mode (WKUP event)
asynchronously resets this bit (it can also be reset by software).
0: No Low-power mode.
1: Enter Low-power mode.

Bit 1 PDWN: Power down

This bit is used to completely switch off all USB-related analog parts if it is required to
completely disable the USB peripheral for any reason. When this bit is set, the USB
peripheral is disconnected from the transceivers and it cannot be used.
0: Exit Power Down.
1: Enter Power down mode.

Bit 0 FRES: Force USB Reset

0: Clear USB reset.
1: Force a reset of the USB peripheral, exactly like a RESET signalling on the USB. The
USB peripheral is held in RESET state until software clears this bit. A “USB-RESET”
interrupt is generated, if enabled.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTR PMA
OVR ERR WKUP SUSP RESET SOF ESOF Reserved DIR EP_ID[3:0]

r rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 Res. r r r r r

USB full speed device interface (USB) RM0008

478/682

The user can choose the relative priority of simultaneously pending USB_ISTR events by
specifying the order in which software checks USB_ISTR bits in an interrupt service routine.
Only the bits related to events, which are serviced, are cleared. At the end of the service
routine, another interrupt will be requested, to service the remaining conditions.

To avoid spurious clearing of some bits, it is recommended to clear them with a load
instruction where all bits which must not be altered are written with 1, and all bits to be
cleared are written with ‘0’ (these bits can only be cleared by software). Read-modify-write
cycles should be avoided because between the read and the write operations another bit
could be set by the hardware and the next write will clear it before the microprocessor has
the time to serve the event.

The following describes each bit in detail:

Bit 15 CTR: Correct transfer
This bit is set by the hardware to indicate that an endpoint has successfully completed a
transaction; using DIR and EP_ID bits software can determine which endpoint requested the
interrupt. This bit is read-only.

Bit 14 PMAOVR: Packet memory area over / underrun

This bit is set if the microcontroller has not been able to respond in time to an USB memory
request. The USB peripheral handles this event in the following way: During reception an
ACK handshake packet is not sent, during transmission a bit-stuff error is forced on the
transmitted stream; in both cases the host will retry the transaction. The PMAOVR interrupt
should never occur during normal operations. Since the failed transaction is retried by the
host, the application software has the chance to speed-up device operations during this
interrupt handling, to be ready for the next transaction retry; however this does not happen
during Isochronous transfers (no isochronous transaction is anyway retried) leading to a loss
of data in this case. This bit is read/write but only ‘0’ can be written and writing ‘1’ has no
effect.

Bit 13 ERR: Error
This flag is set whenever one of the errors listed below has occurred:
NANS: No ANSwer. The timeout for a host response has expired.
CRC: Cyclic Redundancy Check error. One of the received CRCs, either in the token or in
the data, was wrong.
BST: Bit Stuffing error. A bit stuffing error was detected anywhere in the PID, data, and/or
CRC.
FVIO: Framing format Violation. A non-standard frame was received (EOP not in the right
place, wrong token sequence, etc.).
The USB software can usually ignore errors, since the USB peripheral and the PC host
manage retransmission in case of errors in a fully transparent way. This interrupt can be
useful during the software development phase, or to monitor the quality of transmission over
the USB bus, to flag possible problems to the user (e.g. loose connector, too noisy
environment, broken conductor in the USB cable and so on). This bit is read/write but only ‘0’
can be written and writing ‘1’ has no effect.

Bit 12 WKUP: Wakeup

This bit is set to 1 by the hardware when, during suspend mode, activity is detected that
wakes up the USB peripheral. This event asynchronously clears the LP_MODE bit in the
CTLR register and activates the USB_WAKEUP line, which can be used to notify the rest of
the device (e.g. wakeup unit) about the start of the resume process. This bit is read/write but
only ‘0’ can be written and writing ‘1’ has no effect.

RM0008 USB full speed device interface (USB)

 479/682

Bit 11 SUSP: Suspend mode request
This bit is set by the hardware when no traffic has been received for 3mS, indicating a
suspend mode request from the USB bus. The suspend condition check is enabled
immediately after any USB reset and it is disabled by the hardware when the suspend mode
is active (FSUSP=1) until the end of resume sequence. This bit is read/write but only ‘0’ can
be written and writing ‘1’ has no effect.

Bit 10 RESET: USB reset request

Set when the USB peripheral detects an active USB RESET signal at its inputs. The USB
peripheral, in response to a RESET, just resets its internal protocol state machine,
generating an interrupt if RESETM enable bit in the USB_CNTR register is set. Reception
and transmission are disabled until the RESET bit is cleared. All configuration registers do
not reset: the microcontroller must explicitly clear these registers (this is to ensure that the
RESET interrupt can be safely delivered, and any transaction immediately followed by a
RESET can be completed). The function address and endpoint registers are reset by an
USB reset event.
This bit is read/write but only ‘0’ can be written and writing ‘1’ has no effect.

Bit 9 SOF: Start of frame

This bit signals the beginning of a new USB frame and it is set when a SOF packet arrives
through the USB bus. The interrupt service routine may monitor the SOF events to have a
1mS synchronization event to the USB host and to safely read the USB_FNR register which
is updated at the SOF packet reception (this could be useful for isochronous applications).
This bit is read/write but only ‘0’ can be written and writing ‘1’ has no effect.

Bit 8 ESOF: Expected start of frame

This bit is set by the hardware when an SOF packet is expected but not received. The host
sends an SOF packet each mS, but if the hub does not receive it properly, the Suspend
Timer issues this interrupt. If three consecutive ESOF interrupts are generated (i.e. three
SOF packets are lost) without any traffic occurring in between, a SUSP interrupt is
generated. This bit is set even when the missing SOF packets occur while the Suspend
Timer is not yet locked. This bit is read/write but only ‘0’ can be written and writing ‘1’ has no
effect.

Bits 7:5 Reserved.

Bit 4 DIR: Direction of transaction
This bit is written by the hardware according to the direction of the successful transaction,
which generated the interrupt request.
If DIR bit=0, CTR_TX bit is set in the USB_EPnR register related to the interrupting endpoint.
The interrupting transaction is of IN type (data transmitted by the USB peripheral to the host
PC).
If DIR bit=1, CTR_RX bit or both CTR_TX/CTR_RX are set in the USB_EPnR register
related to the interrupting endpoint. The interrupting transaction is of OUT type (data
received by the USB peripheral from the host PC) or two pending transactions are waiting to
be processed.
This information can be used by the application software to access the USB_EPnR bits
related to the triggering transaction since it represents the direction having the interrupt
pending. This bit is read-only.

USB full speed device interface (USB) RM0008

480/682

USB frame number register (USB_FNR)

Address offset: 0x48

Reset value: 0x0XXX where X is undefined

Bits 3:0 EP_ID[3:0]: Endpoint Identifier
These bits are written by the hardware according to the endpoint number, which generated
the interrupt request. If several endpoint transactions are pending, the hardware writes the
endpoint identifier related to the endpoint having the highest priority defined in the following
way: Two endpoint sets are defined, in order of priority: Isochronous and double-buffered
bulk endpoints are considered first and then the other endpoints are examined. If more than
one endpoint from the same set is requesting an interrupt, the EP_ID bits in USB_ISTR
register are assigned according to the lowest requesting endpoint register, EP0R having the
highest priority followed by EP1R and so on. The application software can assign a register
to each endpoint according to this priority scheme, so as to order the concurring endpoint
requests in a suitable way. These bits are read only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RXDP RXDM LCK LSOF[1:0] FN[10:0]

r r r r r r r r r r r r r r r r

Bit 15 RXDP: Receive data + line status

This bit can be used to observe the status of received data plus upstream port data line. It
can be used during end-of-suspend routines to help determining the wakeup event.

Bit 14 RXDM: Receive data - line status
This bit can be used to observe the status of received data minus upstream port data line. It
can be used during end-of-suspend routines to help determining the wakeup event.

Bit 13 LCK: Locked

This bit is set by the hardware when at least two consecutive SOF packets have been
received after the end of an USB reset condition or after the end of an USB resume
sequence. Once locked, the frame timer remains in this state until an USB reset or USB
suspend event occurs.

Bits 12:11 LSOF[1:0]: Lost SOF

These bits are written by the hardware when an ESOF interrupt is generated, counting the
number of consecutive SOF packets lost. At the reception of an SOF packet, these bits are
cleared.

Bits 10:0 FN[10:0]: Frame number
This bit field contains the 11-bits frame number contained in the last received SOF packet.
The frame number is incremented for every frame sent by the host and it is useful for
Isochronous transfers. This bit field is updated on the generation of an SOF interrupt.

RM0008 USB full speed device interface (USB)

 481/682

USB device address (USB_DADDR)

Address offset: 0x4C

Reset value: 0x0000

Buffer table address (USB_BTABLE)

Address offset: 0x50

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved EF ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 ADD0

Res. rw rw rw rw rw rw rw rw

Bits 15:8 Reserved

Bit 7 EF: Enable function

This bit is set by the software to enable the USB device. The address of this device is
contained in the following ADD[6:0] bits. If this bit is at ‘0’ no transactions are handled,
irrespective of the settings of USB_EPnR registers.

Bits 6:0 ADD[6:0]: Device address

These bits contain the USB function address assigned by the host PC during the
enumeration process. Both this field and the Endpoint Address (EA) field in the associated
USB_EPnR register must match with the information contained in a USB token in order to
handle a transaction to the required endpoint.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BTABLE[15:3] Reserved

rw rw rw rw rw rw rw rw rw rw rw rw rw Res.

Bits 15:3 BTABLE[15:3]: Buffer table
These bits contain the start address of the buffer allocation table inside the dedicated packet
memory. This table describes each endpoint buffer location and size and it must be aligned
to an 8 byte boundary (the 3 least significant bits are always ‘0’). At the beginning of every
transaction addressed to this device, the USP peripheral reads the element of this table
related to the addressed endpoint, to get its buffer start location and the buffer size (Refer to
Structure and usage of packet buffers on page 464).

Bits 2:0 Reserved, forced by hardware to 0.

USB full speed device interface (USB) RM0008

482/682

20.5.2 Endpoint-specific registers

The number of these registers varies according to the number of endpoints that the USB
peripheral is designed to handle. The USB peripheral supports up to 8 bidirectional
endpoints. Each USB device must support a control endpoint whose address (EA bits) must
be set to 0. The USB peripheral behaves in an undefined way if multiple endpoints are
enabled having the same endpoint number value. For each endpoint, an USB_EPnR
register is available to store the endpoint specific information.

USB endpoint n register (USB_EPnR), n=[0..7]

Address offset: 0x00 to 0x1C

Reset value: 0x0000

They are also reset when an USB reset is received from the USB bus or forced through bit
FRES in the CTLR register, except the CTR_RX and CTR_TX bits, which are kept
unchanged to avoid missing a correct packet notification immediately followed by an USB
reset event. Each endpoint has its USB_EPnR register where n is the endpoint identifier.

Read-modify-write cycles on these registers should be avoided because between the read
and the write operations some bits could be set by the hardware and the next write would
modify them before the CPU has the time to detect the change. For this purpose, all bits
affected by this problem have an ‘invariant’ value that must be used whenever their
modification is not required. It is recommended to modify these registers with a load
instruction where all the bits, which can be modified only by the hardware, are written with
their ‘invariant’ value.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTR_
RX

DTOG
_RX STAT_RX[1:0] SETUP

EP
TYPE[1:0]

EP_
KIND

CTR_
TX

DTOG_
TX STAT_TX[1:0] EA[3:0]

rc_w0 t t t r rw rw rw rc_w0 t t t rw rw rw rw

Bit 15 CTR_RX: Correct Transfer for reception
This bit is set by the hardware when an OUT/SETUP transaction is successfully completed
on this endpoint; the software can only clear this bit. If the CTRM bit in USB_CNTR register
is set accordingly, a generic interrupt condition is generated together with the endpoint
related interrupt condition, which is always activated. The type of occurred transaction, OUT
or SETUP, can be determined from the SETUP bit described below.
A transaction ended with a NAK or STALL handshake does not set this bit, since no data is
actually transferred, as in the case of protocol errors or data toggle mismatches.
This bit is read/write but only ‘0’ can be written, writing 1 has no effect.

RM0008 USB full speed device interface (USB)

 483/682

Bit 14 DTOG_RX: Data Toggle, for reception transfers
If the endpoint is not Isochronous, this bit contains the expected value of the data toggle bit
(0=DATA0, 1=DATA1) for the next data packet to be received. Hardware toggles this bit,
when the ACK handshake is sent to the USB host, following a data packet reception having
a matching data PID value; if the endpoint is defined as a control one, hardware clears this
bit at the reception of a SETUP PID addressed to this endpoint.
If the endpoint is using the double-buffering feature this bit is used to support packet buffer
swapping too (Refer to Section 20.4.3: Double-buffered endpoints).
If the endpoint is Isochronous, this bit is used only to support packet buffer swapping since
no data toggling is used for this sort of endpoints and only DATA0 packet are transmitted
(Refer to Section 20.4.4: Isochronous transfers). Hardware toggles this bit just after the end
of data packet reception, since no handshake is used for isochronous transfers.
This bit can also be toggled by the software to initialize its value (mandatory when the
endpoint is not a control one) or to force specific data toggle/packet buffer usage. When the
application software writes ‘0’, the value of DTOG_RX remains unchanged, while writing ‘1’
makes the bit value toggle. This bit is read/write but it can be only toggled by writing 1.

Bits 13:12 STAT_RX [1:0]: Status bits, for reception transfers

These bits contain information about the endpoint status, which are listed in Table 138:
Reception status encoding on page 485.These bits can be toggled by software to initialize
their value. When the application software writes ‘0’, the value remains unchanged, while
writing ‘1’ makes the bit value toggle. Hardware sets the STAT_RX bits to NAK when a
correct transfer has occurred (CTR_RX=1) corresponding to a OUT or SETUP (control only)
transaction addressed to this endpoint, so the software has the time to elaborate the
received data before it acknowledge a new transaction
Double-buffered bulk endpoints implement a special transaction flow control, which control
the status based upon buffer availability condition (Refer to Section 20.4.3: Double-buffered
endpoints).
If the endpoint is defined as Isochronous, its status can be only “VALID” or “DISABLED”, so
that the hardware cannot change the status of the endpoint after a successful transaction. If
the software sets the STAT_RX bits to ‘STALL’ or ‘NAK’ for an Isochronous endpoint, the
USB peripheral behavior is not defined. These bits are read/write but they can be only
toggled by writing ‘1’.

Bit 11 SETUP: Setup transaction completed

This bit is read-only and it is set by the hardware when the last completed transaction is a
SETUP. This bit changes its value only for control endpoints. It must be examined, in the
case of a successful receive transaction (CTR_RX event), to determine the type of
transaction occurred. To protect the interrupt service routine from the changes in SETUP
bits due to next incoming tokens, this bit is kept frozen while CTR_RX bit is at 1; its state
changes when CTR_RX is at 0. This bit is read-only.

Bits 10:9 EP_TYPE[1:0]: Endpoint type

These bits configure the behavior of this endpoint as described in Table 139: Endpoint type
encoding on page 485. Endpoint 0 must always be a control endpoint and each USB
function must have at least one control endpoint which has address 0, but there may be
other control endpoints if required. Only control endpoints handle SETUP transactions,
which are ignored by endpoints of other kinds. SETUP transactions cannot be answered
with NAK or STALL. If a control endpoint is defined as NAK, the USB peripheral will not
answer, simulating a receive error, in the receive direction when a SETUP transaction is
received. If the control endpoint is defined as STALL in the receive direction, then the
SETUP packet will be accepted anyway, transferring data and issuing the CTR interrupt.
The reception of OUT transactions is handled in the normal way, even if the endpoint is a
control one.
Bulk and interrupt endpoints have very similar behavior and they differ only in the special
feature available using the EP_KIND configuration bit.
The usage of Isochronous endpoints is explained in Section 20.4.4: Isochronous transfers

USB full speed device interface (USB) RM0008

484/682

Bit 8 EP_KIND: Endpoint kind
The meaning of this bit depends on the endpoint type configured by the EP_TYPE bits.
Table 140 summarizes the different meanings.
DBL_BUF: This bit is set by the software to enable the double-buffering feature for this bulk
endpoint. The usage of double-buffered bulk endpoints is explained in Section 20.4.3:
Double-buffered endpoints.
STATUS_OUT: This bit is set by the software to indicate that a status out transaction is
expected: in this case all OUT transactions containing more than zero data bytes are
answered ‘STALL’ instead of ‘ACK’. This bit may be used to improve the robustness of the
application to protocol errors during control transfers and its usage is intended for control
endpoints only. When STATUS_OUT is reset, OUT transactions can have any number of
bytes, as required.

Bit 7 CTR_TX: Correct Transfer for transmission
This bit is set by the hardware when an IN transaction is successfully completed on this
endpoint; the software can only clear this bit. If the CTRM bit in the USB_CNTR register is
set accordingly, a generic interrupt condition is generated together with the endpoint related
interrupt condition, which is always activated.
A transaction ended with a NAK or STALL handshake does not set this bit, since no data is
actually transferred, as in the case of protocol errors or data toggle mismatches.
This bit is read/write but only ‘0’ can be written.

Bit 6 DTOG_TX: Data Toggle, for transmission transfers

If the endpoint is non-isochronous, this bit contains the required value of the data toggle bit
(0=DATA0, 1=DATA1) for the next data packet to be transmitted. Hardware toggles this bit
when the ACK handshake is received from the USB host, following a data packet
transmission. If the endpoint is defined as a control one, hardware sets this bit to 1 at the
reception of a SETUP PID addressed to this endpoint.
If the endpoint is using the double buffer feature, this bit is used to support packet buffer
swapping too (Refer to Section 20.4.3: Double-buffered endpoints)
If the endpoint is Isochronous, this bit is used to support packet buffer swapping since no
data toggling is used for this sort of endpoints and only DATA0 packet are transmitted (Refer
to Section 20.4.4: Isochronous transfers). Hardware toggles this bit just after the end of data
packet transmission, since no handshake is used for Isochronous transfers.
This bit can also be toggled by the software to initialize its value (mandatory when the
endpoint is not a control one) or to force a specific data toggle/packet buffer usage. When
the application software writes ‘0’, the value of DTOG_TX remains unchanged, while writing
‘1’ makes the bit value toggle. This bit is read/write but it can only be toggled by writing 1.

Bits 5:4 STAT_TX [1:0]: Status bits, for transmission transfers

These bits contain the information about the endpoint status, listed in Table 141. These bits
can be toggled by the software to initialize their value. When the application software writes
‘0’, the value remains unchanged, while writing ‘1’ makes the bit value toggle. Hardware
sets the STAT_TX bits to NAK, when a correct transfer has occurred (CTR_TX=1)
corresponding to a IN or SETUP (control only) transaction addressed to this endpoint. It
then waits for the software to prepare the next set of data to be transmitted.
Double-buffered bulk endpoints implement a special transaction flow control, which controls
the status based on buffer availability condition (Refer to Section 20.4.3: Double-buffered
endpoints).
If the endpoint is defined as Isochronous, its status can only be “VALID” or “DISABLED”.
Therefore, the hardware cannot change the status of the endpoint after a successful
transaction. If the software sets the STAT_TX bits to ‘STALL’ or ‘NAK’ for an Isochronous
endpoint, the USB peripheral behavior is not defined. These bits are read/write but they can
be only toggled by writing ‘1’.

RM0008 USB full speed device interface (USB)

 485/682

20.5.3 Buffer descriptor table

Although the buffer descriptor table is located inside the packet buffer memory, its entries
can be considered as additional registers used to configure the location and size of the
packet buffers used to exchange data between the USB macro cell and the STM32F10xxx.
Due to the common APB bridge limitation on word addressability, all packet memory
locations are accessed by the APB using 32-bit aligned addresses, instead of the actual
memory location addresses utilized by the USB peripheral for the USB_BTABLE register

Bits 3:0 EA[3:0]: Endpoint address
Software must write in this field the 4-bit address used to identify the transactions directed
to this endpoint. A value must be written before enabling the corresponding endpoint.

Table 138. Reception status encoding

STAT_RX[1:0] Meaning

00 DISABLED: all reception requests addressed to this endpoint are ignored.

01
STALL: the endpoint is stalled and all reception requests result in a STALL
handshake.

10 NAK: the endpoint is naked and all reception requests result in a NAK handshake.

11 VALID: this endpoint is enabled for reception.

Table 139. Endpoint type encoding

EP_TYPE[1:0] Meaning

00 BULK

01 CONTROL

10 ISO

11 INTERRUPT

Table 140. Endpoint kind meaning

EP_TYPE[1:0] EP_KIND Meaning

00 BULK DBL_BUF

01 CONTROL STATUS_OUT

10 ISO Not used

11 INTERRUPT Not used

Table 141. Transmission status encoding

STAT_TX[1:0] Meaning

00 DISABLED: all transmission requests addressed to this endpoint are ignored.

01
STALL: the endpoint is stalled and all transmission requests result in a STALL
handshake.

10
NAK: the endpoint is naked and all transmission requests result in a NAK
handshake.

11 VALID: this endpoint is enabled for transmission.

USB full speed device interface (USB) RM0008

486/682

and buffer description table locations.
In the following pages two location addresses are reported: the one to be used by
application software while accessing the packet memory, and the local one relative to USB
Peripheral access. To obtain the correct STM32F10xxx memory address value to be used in
the application software while accessing the packet memory, the actual memory location
address must be multiplied by two. The first packet memory location is located at
0x4000 6000. The buffer descriptor table entry associated with the USB_EPnR registers is
described below.

A thorough explanation of packet buffers and the buffer descriptor table usage can be found
in Structure and usage of packet buffers on page 464.

Transmission buffer address n (USB_ADDRn_TX)

Address offset: [USB_BTABLE] + n*16

USB local address: [USB_BTABLE] + n*8

Transmission byte count n (USB_COUNTn_TX)

Address offset: [USB_BTABLE] + n*16 + 4

USB local Address: [USB_BTABLE] + n*8 + 2

Note: Double-buffered and Isochronous IN Endpoints have two USB_COUNTn_TX
registers: named USB_COUNTn_TX_1 and USB_COUNTn_TX_0 with the
following content.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDRn_TX[15:1] -

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw -

Bits 15:1 ADDRn_TX[15:1]: Transmission buffer address

These bits point to the starting address of the packet buffer containing data to be transmitted
by the endpoint associated with the USB_EPnR register at the next IN token addressed to it.

Bit 0 Must always be written as ‘0’ since packet memory is word-wide and all packet buffers must be
word-aligned.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- COUNTn_TX[9:0]

rw rw rw rw rw rw rw rw rw rw

Bits 15:10 These bits are not used since packet size is limited by USB specifications to 1023 bytes. Their
value is not considered by the USB peripheral.

Bits 9:0 COUNTn_TX[9:0]: Transmission byte count

These bits contain the number of bytes to be transmitted by the endpoint associated with the
USB_EPnR register at the next IN token addressed to it.

RM0008 USB full speed device interface (USB)

 487/682

Reception buffer address n (USB_ADDRn_RX)

Address offset: [USB_BTABLE] + n*16 + 8

USB local Address: [USB_BTABLE] + n*8 + 4

Reception byte count n (USB_COUNTn_RX)

Address offset: [USB_BTABLE] + n*16 + 12

USB local Address: [USB_BTABLE] + n*8 + 6

This table location is used to store two different values, both required during packet
reception. The most significant bits contains the definition of allocated buffer size, to allow
buffer overflow detection, while the least significant part of this location is written back by the
USB peripheral at the end of reception to give the actual number of received bytes. Due to
the restrictions on the number of available bits, buffer size is represented using the number
of allocated memory blocks, where block size can be selected to choose the trade-off
between fine-granularity/small-buffer and coarse-granularity/large-buffer. The size of
allocated buffer is a part of the endpoint descriptor and it is normally defined during the
enumeration process according to its maxPacketSize parameter value (See “Universal
Serial Bus Specification”).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- COUNTn_TX_1[9:0]

- - - - - - rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- COUNTn_TX_0[9:0]

- - - - - - rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDRn_RX[15:1] -

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw -

Bits 15:1 ADDRn_RX[15:1]: Reception buffer address
These bits point to the starting address of the packet buffer, which will contain the data
received by the endpoint associated with the USB_EPnR register at the next OUT/SETUP
token addressed to it.

Bit 0 This bit must always be written as ‘0’ since packet memory is word-wide and all packet buffers
must be word-aligned.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BLSIZE NUM_BLOCK[4:0] COUNTn_RX[9:0]

rw rw rw rw rw rw r r r r r r r r r r

USB full speed device interface (USB) RM0008

488/682

Note: Double-buffered and Isochronous IN Endpoints have two USB_COUNTn_TX
registers: named USB_COUNTn_TX_1 and USB_COUNTn_TX_0 with the
following content.

Bit 15 BL_SIZE: BLock size

This bit selects the size of memory block used to define the allocated buffer area.
– If BL_SIZE=0, the memory block is 2 byte large, which is the minimum block allowed in a

word-wide memory. With this block size the allocated buffer size ranges from 2 to 62 bytes.
– If BL_SIZE=1, the memory block is 32 byte large, which allows to reach the maximum

packet length defined by USB specifications. With this block size the allocated buffer size
ranges from 32 to 1024 bytes, which is the longest packet size allowed by USB standard
specifications.

Bits 14:10 NUM_BLOCK[4:0]: Number of blocks
These bits define the number of memory blocks allocated to this packet buffer. The actual
amount of allocated memory depends on the BL_SIZE value as illustrated in Table 142.

Bits 9:0 COUNTn_RX[9:0]: Reception byte count

These bits contain the number of bytes received by the endpoint associated with the
USB_EPnR register during the last OUT/SETUP transaction addressed to it.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BLSIZE
_1 NUM_BLOCK_1[4:0] COUNTn_RX_1[9:0]

rw rw rw rw rw rw r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BLSIZE
_0 NUM_BLOCK_0[4:0] COUNTn_RX_0[9:0]

rw rw rw rw rw rw r r r r r r r r r r

Table 142. Definition of allocated buffer memory

Value of
NUM_BLOCK[4:0]

Memory allocated
when BL_SIZE=0

Memory allocated
when BL_SIZE=1

0 (‘00000’) Not allowed 32 bytes

1 (‘00001’) 2 bytes 64 bytes

2 (‘00010’) 4 bytes 96 bytes

3 (‘00011’) 6 bytes 128 bytes

...

15 (‘01111’) 30 bytes 512 bytes

16 (‘10000’) 32 bytes N/A

17 (‘10001’) 34 bytes N/A

18 (‘10010’) 36 bytes N/A

...

30 (‘11110’) 60 bytes N/A

31 (‘11111’) 62 bytes N/A

RM0008 USB full speed device interface (USB)

 489/682

20.5.4 USB register map

The table below provides the USB register map and reset values.

Table 143. USB register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
USB_EP0R

Reserved

C
T

R
_R

X

D
TO

G
_R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
TO

G
_T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
USB_EP1R

Reserved

C
T

R
_R

X

D
TO

G
_R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
TO

G
_T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08
USB_EP2R

Reserved

C
T

R
_R

X

D
TO

G
_R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
TO

G
_T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
USB_EP3R

Reserved

C
T

R
_R

X

D
TO

G
_R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
TO

G
_T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
USB_EP4R

Reserved

C
T

R
_R

X

D
TO

G
_R

X
STAT_

RX
[1:0] S

E
T

U
P EP

TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
TO

G
_T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
USB_EP5R

Reserved

C
T

R
_R

X

D
TO

G
_R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
TO

G
_T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
USB_EP6R

Reserved

C
T

R
_R

X

D
TO

G
_R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
TO

G
_T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
USB_EP7R

Reserved

C
T

R
_R

X

D
TO

G
_R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
TO

G
_T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x20-
0x3F Reserved

0x40
 USB_CNTR

Reserved

C
T

R
M

P
M

A
O

V
R

M

E
R

R
M

W
K

U
P

M

S
U

S
P

M

R
E

S
E

T
M

S
O

F
M

E
S

O
F

M

Reserved

R
E

S
U

M
E

F
S

U
S

P

LP
M

O
D

E

P
D

W
N

F
R

E
S

Reset value 0 0 0 0 0 0 0 0 0 0 0 1 1

0x44
 USB_ISTR

Reserved C
T

R

P
M

A
O

V
R

E
R

R

W
K

U
P

S
U

S
P

R
E

S
E

T

S
O

F

E
S

O
F

Reserved D
IR EP_ID[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48
 USB_FNR

Reserved R
X

D
P

R
X

D
M

LC
K LSOF

[1:0] FN[10:0]

Reset value 0 0 0 0 0 x x x x x x x x x x x

0x4C
 USB_DADDR

Reserved Reserved
EF ADD[6:0]

Reset value 0 0 0 0 0 0 0 0

USB full speed device interface (USB) RM0008

490/682

Note: Refer to Table 1 on page 35 for the register boundary addresses.

0x50
 USB_BTABLE

Reserved
BTABLE[15:3]

Reserved

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 143. USB register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RM0008 Controller area network (bxCAN)

 491/682

21 Controller area network (bxCAN)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This section applies to the STM32F103xx performance line only.

21.1 bxCAN introduction
The Basic Extended CAN peripheral, named bxCAN, interfaces the CAN network. It
supports the CAN protocols version 2.0A and B. It has been designed to manage a high
number of incoming messages efficiently with a minimum CPU load. It also meets the
priority requirements for transmit messages.

For safety-critical applications, the CAN controller provides all hardware functions for
supporting the CAN Time Triggered Communication option.

21.2 bxCAN main features
● Supports CAN protocol version 2.0 A, B Active

● Bit rates up to 1 Mbit/s

● Supports the Time Triggered Communication option

Transmission

● Three transmit mailboxes

● Configurable transmit priority

● Time Stamp on SOF transmission

Reception

● Two receive FIFOs with three stages

● 14 scalable filter banks

● Identifier list feature

● Configurable FIFO overrun

● Time Stamp on SOF reception

Time-triggered communication option

● Disable automatic retransmission mode

● 16-bit free running timer

● Time Stamp sent in last two data bytes

Management

● Maskable interrupts

● Software-efficient mailbox mapping at a unique address space

Controller area network (bxCAN) RM0008

492/682

Note: In Medium-density and High-density devices the USB and CAN share a dedicated 512-byte
SRAM memory for data transmission and reception, and so they cannot be used
concurrently (the shared SRAM is accessed through CAN and USB exclusively). The USB
and CAN can be used in the same application but not at the same time.

21.2.1 General description

In today’s CAN applications, the number of nodes in a network is increasing and often
several networks are linked together via gateways. Typically the number of messages in the
system (and thus to be handled by each node) has significantly increased. In addition to the
application messages, Network Management and Diagnostic messages have been
introduced.

● An enhanced filtering mechanism is required to handle each type of message.

Furthermore, application tasks require more CPU time, therefore real-time constraints
caused by message reception have to be reduced.

● A receive FIFO scheme allows the CPU to be dedicated to application tasks for a long
time period without losing messages.

The standard HLP (Higher Layer Protocol) based on standard CAN drivers requires an
efficient interface to the CAN controller.

Figure 190. CAN network topology

CAN 2.0B active core

The bxCAN module handles the transmission and the reception of CAN messages fully
autonomously. Standard identifiers (11-bit) and extended identifiers (29-bit) are fully
supported by hardware.

Control, status and configuration registers

The application uses these registers to:

● Configure CAN parameters, e.g. baud rate

● Request transmissions

● Handle receptions

● Manage interrupts

● Get diagnostic information

C
A

N
 n

od
e

1

C
A

N
 n

od
e

2

C
A

N
 n

od
e

n

CANCAN
High Low

CANCAN
Rx Tx

CAN
Transceiver

CAN
Controller

MCU

CAN Bus

Application

RM0008 Controller area network (bxCAN)

 493/682

Tx mailboxes

Three transmit mailboxes are provided to the software for setting up messages. The
transmission Scheduler decides which mailbox has to be transmitted first.

Acceptance filters

The bxCAN provides 14 scalable/configurable identifier filter banks for selecting the
incoming messages the software needs and discarding the others.

Receive FIFO

Two receive FIFOs are used by hardware to store the incoming messages. Three complete
messages can be stored in each FIFO. The FIFOs are managed completely by hardware.

Figure 191. CAN general block diagram

Mailbox 2

Mailbox 1

12..

CAN 2.0B Active Core

Mailbox 0

Transmission

Acceptance Filters

Tx Mailboxes
Master Control

Scheduler

Master Status

Transmit Control

Transmit Status

Transmit Priority

Receive FIFO

Error Status

Error Int. Enable

Tx Error Counter

Rx Error Counter

Diagnostic

Bit Timing

Filter Mode

Filter Config.

Interrupt Enable

Mailbox 0
1

2

Receive FIFO 1

..321
Filter 0

Mailbox 0
1

2

Receive FIFO 0

C
on

tr
ol

/S
ta

tu
s/

C
on

fig
ur

at
io

n

13

Controller area network (bxCAN) RM0008

494/682

Figure 192. bxCAN operating modes

Note: 1 ACK = The wait state during which hardware confirms a request by setting the INAK or
SLAK bits in the CAN_MSR register

2 SYNC = The state during which bxCAN waits until the CAN bus is idle, meaning 11
consecutive recessive bits have been monitored on CANRX

21.3 bxCAN operating modes
bxCAN has three main operating modes: initialization, normal and Sleep. After a
hardware reset, bxCAN is in Sleep mode to reduce power consumption and an internal pull-
up is active on CANTX. The software requests bxCAN to enter initialization or Sleep mode
by setting the INRQ or SLEEP bits in the CAN_MCR register. Once the mode has been
entered, bxCAN confirms it by setting the INAK or SLAK bits in the CAN_MSR register and
the internal pull-up is disabled. When neither INAK nor SLAK are set, bxCAN is in normal
mode. Before entering normal mode bxCAN always has to synchronize on the CAN bus.
To synchronize, bxCAN waits until the CAN bus is idle, this means 11 consecutive recessive
bits have been monitored on CANRX.

21.3.1 Initialization mode

The software initialization can be done while the hardware is in Initialization mode. To enter
this mode the software sets the INRQ bit in the CAN_MCR register and waits until the
hardware has confirmed the request by setting the INAK bit in the CAN_MSR register.

To leave Initialization mode, the software clears the INQR bit. bxCAN has left Initialization
mode once the INAK bit has been cleared by hardware.

While in Initialization Mode, all message transfers to and from the CAN bus are stopped and
the status of the CAN bus output CANTX is recessive (high).

Entering Initialization Mode does not change any of the configuration registers.

To initialize the CAN Controller, software has to set up the Bit Timing (CAN_BTR) and CAN
options (CAN_MCR) registers.

Sleep

InitializationNormal

Reset

SLAK= 1
INAK = 0

SLAK= 0
INAK = 1

SLAK= 0
INAK = 0

SLEEP . INRQ . ACK

SLEEP . INRQ . ACK

INRQ . ACK

INRQ . SYNC . SLEEP

SLEEP . A
CK

SLE
EP . S

YNC . I
NRQ

RM0008 Controller area network (bxCAN)

 495/682

To initialize the registers associated with the CAN filter banks (mode, scale, FIFO
assignment, activation and filter values), software has to set the FINIT bit (CAN_FMR). Filter
initialization also can be done outside the initialization mode.

Note: When FINIT=1, CAN reception is deactivated.

The filter values also can be modified by deactivating the associated filter activation bits (in
the CAN_FA1R register).

If a filter bank is not used, it is recommended to leave it non active (leave the corresponding
FACT bit cleared).

21.3.2 Normal mode

Once the initialization has been done, the software must request the hardware to enter
Normal mode, to synchronize on the CAN bus and start reception and transmission.
Entering Normal mode is done by clearing the INRQ bit in the CAN_MCR register and
waiting until the hardware has confirmed the request by clearing the INAK bit in the
CAN_MSR register. Afterwards, the bxCAN synchronizes with the data transfer on the CAN
bus by waiting for the occurrence of a sequence of 11 consecutive recessive bits (≡ Bus
Idle) before it can take part in bus activities and start message transfer.

The initialization of the filter values is independent from Initialization Mode but must be done
while the filter is not active (corresponding FACTx bit cleared). The filter scale and mode
configuration must be configured before entering Normal Mode.

21.3.3 Sleep mode (low power)

To reduce power consumption, bxCAN has a low-power mode called Sleep mode. This
mode is entered on software request by setting the SLEEP bit in the CAN_MCR register. In
this mode, the bxCAN clock is stopped, however software can still access the bxCAN
mailboxes.

If software requests entry to initialization mode by setting the INRQ bit while bxCAN is in
Sleep mode, it must also clear the SLEEP bit.

bxCAN can be woken up (exit Sleep mode) either by software clearing the SLEEP bit or on
detection of CAN bus activity.

On CAN bus activity detection, hardware automatically performs the wakeup sequence by
clearing the SLEEP bit if the AWUM bit in the CAN_MCR register is set. If the AWUM bit is
cleared, software has to clear the SLEEP bit when a wakeup interrupt occurs, in order to exit
from Sleep mode.

Note: If the wakeup interrupt is enabled (WKUIE bit set in CAN_IER register) a wakeup interrupt
will be generated on detection of CAN bus activity, even if the bxCAN automatically performs
the wakeup sequence.

After the SLEEP bit has been cleared, Sleep mode is exited once bxCAN has synchronized
with the CAN bus, refer to Figure 192: bxCAN operating modes. The Sleep mode is exited
once the SLAK bit has been cleared by hardware.

21.3.4 Test mode

Test mode can be selected by the SILM and LBKM bits in the CAN_BTR register. These bits
must be configured while bxCAN is in Initialization mode. Once test mode has been
selected, the INRQ bit in the CAN_MCR register must be reset to enter Normal mode.

Controller area network (bxCAN) RM0008

496/682

21.3.5 Silent mode

The bxCAN can be put in Silent mode by setting the SILM bit in the CAN_BTR register.

In Silent mode, the bxCAN is able to receive valid data frames and valid remote frames, but
it sends only recessive bits on the CAN bus and it cannot start a transmission. If the bxCAN
has to send a dominant bit (ACK bit, overload flag, active error flag), the bit is rerouted
internally so that the CAN Core monitors this dominant bit, although the CAN bus may
remain in recessive state. Silent mode can be used to analyze the traffic on a CAN bus
without affecting it by the transmission of dominant bits (Acknowledge Bits, Error Frames).

Figure 193. bxCAN in silent mode

21.3.6 Loop back mode

The bxCAN can be set in Loop Back Mode by setting the LBKM bit in the CAN_BTR
register. In Loop Back Mode, the bxCAN treats its own transmitted messages as received
messages and stores them (if they pass acceptance filtering) in a Receive mailbox.

Figure 194. bxCAN in loop back mode

This mode is provided for self-test functions. To be independent of external events, the CAN
Core ignores acknowledge errors (no dominant bit sampled in the acknowledge slot of a
data / remote frame) in Loop Back Mode. In this mode, the bxCAN performs an internal
feedback from its Tx output to its Rx input. The actual value of the CANRX input pin is
disregarded by the bxCAN. The transmitted messages can be monitored on the CANTX pin.

21.3.7 Loop back combined with silent mode

It is also possible to combine Loop Back mode and Silent mode by setting the LBKM and
SILM bits in the CAN_BTR register. This mode can be used for a “Hot Selftest”, meaning the
bxCAN can be tested like in Loop Back mode but without affecting a running CAN system

bxCAN

CANTX CANRX

Tx Rx

=1

bxCAN

CANTX CANRX

Tx Rx

RM0008 Controller area network (bxCAN)

 497/682

connected to the CANTX and CANRX pins. In this mode, the CANRX pin is disconnected
from the bxCAN and the CANTX pin is held recessive.

Figure 195. bxCAN in combined mode

21.4 STM32F10xxx in Debug mode
When the microcontroller enters the debug mode (Cortex-M3 core halted), the bxCAN
continues to work normally or stops, depending on:

● the DBG_CAN1_STOP bit for CAN1 or the DBG_CAN2_STOP bit for CAN2 in the DBG
module. For more details, refer to Section 26.15.2: Debug support for timers, watchdog,
bxCAN and I2C.

● the DBF bit in CAN_MCR. For more details, refer to Section 21.7.2: CAN control and
status registers.

21.5 bxCAN functional description

21.5.1 Transmission handling

In order to transmit a message, the application must select one empty transmit mailbox, set
up the identifier, the data length code (DLC) and the data before requesting the transmission
by setting the corresponding TXRQ bit in the CAN_TIxR register. Once the mailbox has left
empty state, the software no longer has write access to the mailbox registers. Immediately
after the TXRQ bit has been set, the mailbox enters pending state and waits to become the
highest priority mailbox, see Transmit Priority. As soon as the mailbox has the highest
priority it will be scheduled for transmission. The transmission of the message of the
scheduled mailbox will start (enter transmit state) when the CAN bus becomes idle. Once
the mailbox has been successfully transmitted, it will become empty again. The hardware
indicates a successful transmission by setting the RQCP and TXOK bits in the CAN_TSR
register.

If the transmission fails, the cause is indicated by the ALST bit in the CAN_TSR register in
case of an Arbitration Lost, and/or the TERR bit, in case of transmission error detection.

Transmit priority

By identifier:

When more than one transmit mailbox is pending, the transmission order is given by the
identifier of the message stored in the mailbox. The message with the lowest identifier value

bxCAN

CANTX CANRX

Tx Rx

=1

Controller area network (bxCAN) RM0008

498/682

has the highest priority according to the arbitration of the CAN protocol. If the identifier
values are equal, the lower mailbox number will be scheduled first.

By transmit request order:

The transmit mailboxes can be configured as a transmit FIFO by setting the TXFP bit in the
CAN_MCR register. In this mode the priority order is given by the transmit request order.

This mode is very useful for segmented transmission.

Abort

A transmission request can be aborted by the user setting the ABRQ bit in the CAN_TSR
register. In pending or scheduled state, the mailbox is aborted immediately. An abort
request while the mailbox is in transmit state can have two results. If the mailbox is
transmitted successfully the mailbox becomes empty with the TXOK bit set in the
CAN_TSR register. If the transmission fails, the mailbox becomes scheduled, the
transmission is aborted and becomes empty with TXOK cleared. In all cases the mailbox
will become empty again at least at the end of the current transmission.

Non-automatic retransmission mode

This mode has been implemented in order to fulfil the requirement of the Time Triggered
Communication option of the CAN standard. To configure the hardware in this mode the
NART bit in the CAN_MCR register must be set.

In this mode, each transmission is started only once. If the first attempt fails, due to an
arbitration loss or an error, the hardware will not automatically restart the message
transmission.

At the end of the first transmission attempt, the hardware considers the request as
completed and sets the RQCP bit in the CAN_TSR register. The result of the transmission is
indicated in the CAN_TSR register by the TXOK, ALST and TERR bits.

RM0008 Controller area network (bxCAN)

 499/682

Figure 196. Transmit mailbox states

21.5.2 Time triggered communication mode

In this mode, the internal counter of the CAN hardware is activated and used to generate the
Time Stamp value stored in the CAN_RDTxR/CAN_TDTxR registers, respectively (for Rx
and Tx mailboxes). The internal counter is incremented each CAN bit time (refer to
Section 21.5.7: Bit timing). The internal counter is captured on the sample point of the Start
Of Frame bit in both reception and transmission.

21.5.3 Reception handling

For the reception of CAN messages, three mailboxes organized as a FIFO are provided. In
order to save CPU load, simplify the software and guarantee data consistency, the FIFO is
managed completely by hardware. The application accesses the messages stored in the
FIFO through the FIFO output mailbox.

Valid message

A received message is considered as valid when it has been received correctly according to
the CAN protocol (no error until the last but one bit of the EOF field) and It passed through
the identifier filtering successfully, see Section 21.5.4: Identifier filtering.

EMPTY

TXRQ=1

RQCP=X
TXOK=X

PENDING
RQCP=0
TXOK=0

SCHEDULED
RQCP=0
TXOK=0

Mailbox has

TRANSMIT
RQCP=0
TXOK=0

CAN Bus = IDLE

Transmit failed * NART

Transmit succeeded

Mailbox does not

EMPTY
RQCP=1
TXOK=0

highest priority

have highest priority

EMPTY
RQCP=1
TXOK=1

ABRQ=1

ABRQ=1

Transmit failed * NART

TME = 1

TME = 0

TME = 0

TME = 0

TME = 1

TME = 1

Controller area network (bxCAN) RM0008

500/682

Figure 197. Receive FIFO states

FIFO management

Starting from the empty state, the first valid message received is stored in the FIFO which
becomes pending_1. The hardware signals the event setting the FMP[1:0] bits in the
CAN_RFR register to the value 01b. The message is available in the FIFO output mailbox.
The software reads out the mailbox content and releases it by setting the RFOM bit in the
CAN_RFR register. The FIFO becomes empty again. If a new valid message has been
received in the meantime, the FIFO stays in pending_1 state and the new message is
available in the output mailbox.

If the application does not release the mailbox, the next valid message will be stored in the
FIFO which enters pending_2 state (FMP[1:0] = 10b). The storage process is repeated for
the next valid message putting the FIFO into pending_3 state (FMP[1:0] = 11b). At this
point, the software must release the output mailbox by setting the RFOM bit, so that a
mailbox is free to store the next valid message. Otherwise the next valid message received
will cause a loss of message.

Refer also to Section 21.5.5: Message storage

Overrun

Once the FIFO is in pending_3 state (i.e. the three mailboxes are full) the next valid
message reception will lead to an overrun and a message will be lost. The hardware

EMPTY
Valid MessageFMP=0x00

FOVR=0

PENDING_1
FMP=0x01
FOVR=0

Received

PENDING_2
FMP=0x10
FOVR=0

PENDING_3
FMP=0x11
FOVR=0

Valid Message
Received

Release
OVERRUN
FMP=0x11
FOVR=1Mailbox

Release
Mailbox

Valid Message
Received

Valid Message
Received

Release
Mailbox

Release
Mailbox

Valid Message
Received

RFOM=1

RFOM=1

RFOM=1

RM0008 Controller area network (bxCAN)

 501/682

signals the overrun condition by setting the FOVR bit in the CAN_RFR register. Which
message is lost depends on the configuration of the FIFO:

● If the FIFO lock function is disabled (RFLM bit in the CAN_MCR register cleared) the
last message stored in the FIFO will be overwritten by the new incoming message. In
this case the latest messages will be always available to the application.

● If the FIFO lock function is enabled (RFLM bit in the CAN_MCR register set) the most
recent message will be discarded and the software will have the three oldest messages
in the FIFO available.

Reception related interrupts

Once a message has been stored in the FIFO, the FMP[1:0] bits are updated and an
interrupt request is generated if the FMPIE bit in the CAN_IER register is set.

When the FIFO becomes full (i.e. a third message is stored) the FULL bit in the CAN_RFR
register is set and an interrupt is generated if the FFIE bit in the CAN_IER register is set.

On overrun condition, the FOVR bit is set and an interrupt is generated if the FOVIE bit in
the CAN_IER register is set.

21.5.4 Identifier filtering

In the CAN protocol the identifier of a message is not associated with the address of a node
but related to the content of the message. Consequently a transmitter broadcasts its
message to all receivers. On message reception a receiver node decides - depending on
the identifier value - whether the software needs the message or not. If the message is
needed, it is copied into the SRAM. If not, the message must be discarded without
intervention by the software.

To fulfil this requirement, the bxCAN Controller provides 14 configurable and scalable filter
banks (13-0) to the application. in order to receive only the messages the software
needs.This hardware filtering saves CPU resources which would be otherwise needed to
perform filtering by software. Each filter bank x consists of two 32-bit registers, CAN_FxR0
and CAN_FxR1.

Scalable width

To optimize and adapt the filters to the application needs, each filter bank can be scaled
independently. Depending on the filter scale a filter bank provides:

● One 32-bit filter for the STDID[10:0], EXTID[17:0], IDE and RTR bits.

● Two 16-bit filters for the STDID[10:0], RTR, IDE and EXTID[17:15] bits.

Refer to Figure 198.

Furthermore, the filters can be configured in mask mode or in identifier list mode.

Mask mode

In mask mode the identifier registers are associated with mask registers specifying which
bits of the identifier are handled as “must match” or as “don’t care”.

Identifier list mode

In identifier list mode, the mask registers are used as identifier registers. Thus instead of
defining an identifier and a mask, two identifiers are specified, doubling the number of single

Controller area network (bxCAN) RM0008

502/682

identifiers. All bits of the incoming identifier must match the bits specified in the filter
registers.

Filter bank scale and mode configuration

The filter banks are configured by means of the corresponding CAN_FMR register. To
configure a filter bank it must be deactivated by clearing the FACT bit in the CAN_FAR
register. The filter scale is configured by means of the corresponding FSCx bit in the
CAN_FS1R register, refer to Figure 198. The identifier list or identifier mask mode for the
corresponding Mask/Identifier registers is configured by means of the FBMx bits in the
CAN_FMR register.

To filter a group of identifiers, configure the Mask/Identifier registers in mask mode.

To select single identifiers, configure the Mask/Identifier registers in identifier list mode.

Filters not used by the application should be left deactivated.

Each filter within a filter bank is numbered (called the Filter Number) from 0 to a maximum
dependent on the mode and the scale of each of the filter banks.

Concerning the filter configuration, refer to Figure 198.

Figure 198. Filter bank scale configuration - register organization

One 32-Bit Filter - Identifier Mask

Two 16-Bit Filters - Identifier Mask

CAN_FxR1[31:24]
CAN_FxR2[31:24]

CAN_FxR1[15:8]
CAN_FxR1[31:24]

CAN_FxR1[7:0]
CAN_FxR1[23:16]

x = filter bank number

F
S

C
x

=
1

F
S

C
x

=
0

1 These bits are located in the CAN_FS1R register

F
ilt

er
 B

an
k

S
ca

le

ID
Mask

ID
Mask

STID[10:3] STID[2:0] EXID[12:5]Mapping

STID[10:3]

ID
Mask

Mapping

RTR

Two 32-Bit Filters - Identifier List

ID
ID

STID[10:3] STID[2:0] EXID[12:5]Mapping

Four 16-Bit Filters - Identifier List

ID
ID

STID[10:3]

ID
ID

Mapping

n
n+1

n+2
n+3

n+1

F
ilt

er
 B

an
k

M
o

d
e2

n

n

n+1

EXID[4:0] IDEEXID[17:13]

EXID[17:13]

STID[2:0] RTR IDE EXID[17:15]

F
B

M
x

=
0

F
B

M
x

=
1

Filter

2 These bits are located in the CAN_FM1R register

n

Num.

F
B

M
x

=
0

F
B

M
x

=
1

C
o

n
fi

g
. B

it
s1

 STID[2:0] RTR IDE EXID[17:15]

0

RTREXID[4:0] IDE 0

CAN_FxR1[23:16] CAN_FxR1[15:8] CAN_FxR1[7:0]
CAN_FxR2[7:0]CAN_FxR2[15:8]CAN_FxR2[23:16]

CAN_FxR1[31:24]
CAN_FxR2[31:24]

CAN_FxR1[23:16] CAN_FxR1[15:8] CAN_FxR1[7:0]
CAN_FxR2[7:0]CAN_FxR2[15:8]CAN_FxR2[23:16]

CAN_FxR2[15:8]
CAN_FxR2[31:24]

CAN_FxR2[7:0]
CAN_FxR2[23:16]

CAN_FxR1[15:8]
CAN_FxR1[31:24]

CAN_FxR1[7:0]
CAN_FxR1[23:16]

CAN_FxR2[15:8]
CAN_FxR2[31:24]

CAN_FxR2[7:0]
CAN_FxR2[23:16]

ID=Identifier

RM0008 Controller area network (bxCAN)

 503/682

Filter match index

Once a message has been received in the FIFO it is available to the application. Typically,
application data is copied into SRAM locations. To copy the data to the right location the
application has to identify the data by means of the identifier. To avoid this, and to ease the
access to the SRAM locations, the CAN controller provides a Filter Match Index.

This index is stored in the mailbox together with the message according to the filter priority
rules. Thus each received message has its associated filter match index.

The Filter Match index can be used in two ways:

● Compare the Filter Match index with a list of expected values.

● Use the Filter Match Index as an index on an array to access the data destination
location.

For non-masked filters, the software no longer has to compare the identifier.

If the filter is masked the software reduces the comparison to the masked bits only.

The index value of the filter number does not take into account the activation state of the
filter banks. In addition, two independent numbering schemes are used, one for each FIFO.
Refer to Figure 199 for an example.

Figure 199. Example of filter numbering

9

8

ID List (32-bit)

ID Mask (32-bit)

ID List (16-bit)

ID List (32-bit)
Deactivated

ID Mask (16-bit)

ID List (32-bit)

Filter

0

1

3

5

6

9

ID Mask (32-bit)13

FIFO0 Filter

0

1

2

3
4
5
6

7

10

11

12

13

ID Mask (16-bit)

ID List (32-bit)

ID Mask (16-bit)

ID List (16-bit)
Deactivated

ID Mask (16-bit)

ID List (32-bit)

Filter

2

4

7

8

10

11

ID Mask (32-bit)12

FIFO1 Filter

0

1

2

4

5

6

7

8

11

12

13

14

3

Deactivated

9
10

Num. Num.BankBank

ID=Identifier

Controller area network (bxCAN) RM0008

504/682

Filter priority rules

Depending on the filter combination it may occur that an identifier passes successfully
through several filters. In this case the filter match value stored in the receive mailbox is
chosen according to the following priority rules:

● A 32-bit filter takes priority over a 16-bit filter.

● For filters of equal scale, priority is given to the Identifier List mode over the Identifier
Mask mode

● For filters of equal scale and mode, priority is given by the filter number (the lower the
number, the higher the priority).

Figure 200. Filtering mechanism - example

The example above shows the filtering principle of the bxCAN. On reception of a message,
the identifier is compared first with the filters configured in identifier list mode. If there is a
match, the message is stored in the associated FIFO and the index of the matching filter is
stored in the Filter Match Index. As shown in the example, the identifier matches with
Identifier #2 thus the message content and FMI 2 is stored in the FIFO.

If there is no match, the incoming identifier is then compared with the filters configured in
mask mode.

If the identifier does not match any of the identifiers configured in the filters, the message is
discarded by hardware without disturbing the software.

Id
en

tif
ie

r
Li

st

Message Discarded

Id
en

tif
ie

r
&

 M
as

k

Identifier 0
Identifier 1
Identifier 4

Identifier 5

Identifier
2Mask

Identifier
3Mask

Identifier

Message Received

Ctrl Data

Identifier #4 Match
Message
Stored

Receive FIFO

No Match
Found

Filter number stored in the
Filter Match Index field
within the CAN_RDTxR
register

FMI

Filter bank

0

2

3

1

4

Example of 3 filter banks in 32-bit Unidentified List mode and

Num

the remaining in 32-bit Identifier Mask mode

RM0008 Controller area network (bxCAN)

 505/682

21.5.5 Message storage

The interface between the software and the hardware for the CAN messages is
implemented by means of mailboxes. A mailbox contains all information related to a
message; identifier, data, control, status and time stamp information.

Transmit mailbox

The software sets up the message to be transmitted in an empty transmit mailbox. The
status of the transmission is indicated by hardware in the CAN_TSR register.

Receive mailbox

When a message has been received, it is available to the software in the FIFO output
mailbox. Once the software has handled the message (e.g. read it) the software must
release the FIFO output mailbox by means of the RFOM bit in the CAN_RFR register to
make the next incoming message available. The filter match index is stored in the MFMI field
of the CAN_RDTxR register. The 16-bit time stamp value is stored in the TIME[15:0] field of
CAN_RDTxR.

Table 144. Transmit mailbox mapping

Offset to transmit mailbox base
address

Register name

0 CAN_TIxR

4 CAN_TDTxR

8 CAN_TDLxR

12 CAN_TDHxR

Table 145. Receive mailbox mapping

Offset to receive mailbox base
address (bytes)

Register name

0 CAN_RIxR

4 CAN_RDTxR

8 CAN_RDLxR

12 CAN_RDHxR

Controller area network (bxCAN) RM0008

506/682

Figure 201. CAN error state diagram

ERROR PASSIVE

When TEC or REC > 127

When TEC and REC < 128,

ERROR ACTIVE

BUS OFF

 When TEC > 255When 128 * 11 recessive bits occur:

RM0008 Controller area network (bxCAN)

 507/682

21.5.6 Error management

The error management as described in the CAN protocol is handled entirely by hardware
using a Transmit Error Counter (TEC value, in CAN_ESR register) and a Receive Error
Counter (REC value, in the CAN_ESR register), which get incremented or decremented
according to the error condition. For detailed information about TEC and REC management,
please refer to the CAN standard.

Both of them may be read by software to determine the stability of the network.
Furthermore, the CAN hardware provides detailed information on the current error status in
CAN_ESR register. By means of the CAN_IER register (ERRIE bit, etc.), the software can
configure the interrupt generation on error detection in a very flexible way.

Bus-Off recovery

The Bus-Off state is reached when TEC is greater than 255, this state is indicated by BOFF
bit in CAN_ESR register. In Bus-Off state, the bxCAN is no longer able to transmit and
receive messages.

Depending on the ABOM bit in the CAN_MCR register bxCAN will recover from Bus-Off
(become error active again) either automatically or on software request. But in both cases
the bxCAN has to wait at least for the recovery sequence specified in the CAN standard
(128 occurrences of 11 consecutive recessive bits monitored on CANRX).

If ABOM is set, the bxCAN will start the recovering sequence automatically after it has
entered Bus-Off state.

If ABOM is cleared, the software must initiate the recovering sequence by requesting
bxCAN to enter and to leave initialization mode.

Note: In initialization mode, bxCAN does not monitor the CANRX signal, therefore it cannot
complete the recovery sequence. To recover, bxCAN must be in normal mode.

21.5.7 Bit timing

The bit timing logic monitors the serial bus-line and performs sampling and adjustment of
the sample point by synchronizing on the start-bit edge and resynchronizing on the following
edges.

Its operation may be explained simply by splitting nominal bit time into three segments as
follows:

● Synchronization segment (SYNC_SEG): a bit change is expected to occur within this
time segment. It has a fixed length of one time quantum (1 x tCAN).

● Bit segment 1 (BS1): defines the location of the sample point. It includes the
PROP_SEG and PHASE_SEG1 of the CAN standard. Its duration is programmable
between 1 and 16 time quanta but may be automatically lengthened to compensate for
positive phase drifts due to differences in the frequency of the various nodes of the
network.

● Bit segment 2 (BS2): defines the location of the transmit point. It represents the
PHASE_SEG2 of the CAN standard. Its duration is programmable between 1 and 8
time quanta but may also be automatically shortened to compensate for negative
phase drifts.

The resynchronization Jump Width (SJW) defines an upper bound to the amount of
lengthening or shortening of the bit segments. It is programmable between 1 and 4 time
quanta.

Controller area network (bxCAN) RM0008

508/682

A valid edge is defined as the first transition in a bit time from dominant to recessive bus
level provided the controller itself does not send a recessive bit.

If a valid edge is detected in BS1 instead of SYNC_SEG, BS1 is extended by up to SJW so
that the sample point is delayed.

Conversely, if a valid edge is detected in BS2 instead of SYNC_SEG, BS2 is shortened by
up to SJW so that the transmit point is moved earlier.

As a safeguard against programming errors, the configuration of the Bit Timing Register
(CAN_BTR) is only possible while the device is in Standby mode.

Note: For a detailed description of the CAN bit timing and resynchronization mechanism, please
refer to the ISO 11898 standard.

Figure 202. Bit timing

SYNC_SEG BIT SEGMENT 1 (BS1) BIT SEGMENT 2 (BS2)

NOMINAL BIT TIME

1 x tq tBS1 tBS2

SAMPLE POINT TRANSMIT POINT

NominalBitTime 1 tq× tBS1 tBS2+ +=

with:

tBS1 = tq x (TS1[3:0] + 1),

tBS2 = tq x (TS2[2:0] + 1),

tq = (BRP[9:0] + 1) x tPCLK

tPCLK = time period of the APB clock,

BRP[9:0], TS1[3:0] and TS2[2:0] are defined in the CAN_BTR Register.

BaudRate 1
NominalBitTime
--=

where tq refers to the Time quantum

RM0008 Controller area network (bxCAN)

 509/682

Figure 203. CAN frames

21.6 bxCAN interrupts
Four interrupt vectors are dedicated to bxCAN. Each interrupt source can be independently
enabled or disabled by means of the CAN Interrupt Enable Register (CAN_IER).

Data Frame or
Remote Frame

Data Field

8 * N

Ctrl Field

6

Arbitration Field

32

CRC Field

16

Ack Field

7

S
O

F

ID DLC CRC

Data Frame (Standard identifier)

44 + 8 * N

Arbitration Field

32

R
T

R
ID

E r0

S
O

F

ID DLC

Remote Frame
44

CRC Field

16 7

CRC

Ctrl Field

6

Overload

Overload Frame

 Error

6

Error Delimiter

8

Error Frame

Flag Echo

 6

Bus Idle

Inter-Frame Space
Suspend

8

Intermission
3 Transmission

A
C

K

A
C

K

2

2

Inter-Frame Space
or Overload FrameInter-Frame Space

Inter-Frame Space
or Overload FrameInter-Frame Space

Inter-Frame Space
or Overload Frame Notes:

 0 <= N <= 8
 SOF = Start Of Frame

 ID = Identifier

 RTR = Remote Transmission Request

 IDE = Identifier Extension Bit

 r0 = Reserved Bit

 DLC = Data Length Code

 CRC = Cyclic Redundancy Code

 Error flag: 6 dominant bits if node is error

active else 6 recessive bits.

 Suspend transmission: applies to error

passive nodes only.

 EOF = End of Frame

 ACK = Acknowledge bit

 Ctrl = Control

Data Frame or
Remote FrameAny Frame

Inter-Frame Space
or Error Frame

End Of Frame or
Error Delimiter or

Overload Delimiter

Ack Field

EOF

R
T

R
ID

E r0

EOF

Data Field

8 * N

Ctrl Field

632

CRC Field

16

Ack Field

7

S
O

F

ID DLC CRC

Data Frame (Extended Identifier)
64 + 8 * N

A
C

K

2

Inter-Frame Space
or Overload FrameInter-Frame Space

S
R

R
ID

E

EOF

R
T

R r1 r0

32

6

Overload

8 6

Overload
Flag Echo Delimiter

Flag

ai15154

Arbitration Field Arbitration Field

Controller area network (bxCAN) RM0008

510/682

Figure 204. Event flags and interrupt generation

● The transmit interrupt can be generated by the following events:

– Transmit mailbox 0 becomes empty, RQCP0 bit in the CAN_TSR register set.

– Transmit mailbox 1 becomes empty, RQCP1 bit in the CAN_TSR register set.

– Transmit mailbox 2 becomes empty, RQCP2 bit in the CAN_TSR register set.

● The FIFO 0 interrupt can be generated by the following events:

– Reception of a new message, FMP0 bits in the CAN_RF0R register are not ‘00’.

– FIFO0 full condition, FULL0 bit in the CAN_RF0R register set.

– FIFO0 overrun condition, FOVR0 bit in the CAN_RF0R register set.

● The FIFO 1 interrupt can be generated by the following events:

– Reception of a new message, FMP1 bits in the CAN_RF1R register are not ‘00’.

– FIFO1 full condition, FULL1 bit in the CAN_RF1R register set.

– FIFO1 overrun condition, FOVR1 bit in the CAN_RF1R register set.

RQCP0
RQCP1

FMP1

CAN_TSR +
TMEIE

CAN_IER
TRANSMIT

&FMPIE1

FULL1 &FFIE1

FOVR1 &FOVIE1

&

+
CAN_RF1R

FIFO 1

EWGF
EWGIE

EPVF
EPVIE

BOFF
BOFIE

1≤LEC≤6
LECIE

&

&

&

&

CAN_ESR
+ &

ERRIE

INTERRUPT

INTERRUPT

FMP0 &FMPIE0

FULL0 &FFIE0

FOVR0 &FOVIE0

+CAN_RF0R

FIFO 0

INTERRUPT

RQCP2

WKUI &WKUIE

CAN_MSR

+
INTERRUPT

ERROR

STATUS CHANGE
ERRI

SLAKI

SLKIE &

CAN_MSR

RM0008 Controller area network (bxCAN)

 511/682

● The error and status change interrupt can be generated by the following events:

– Error condition, for more details on error conditions please refer to the CAN Error
Status register (CAN_ESR).

– Wakeup condition, SOF monitored on the CAN Rx signal.

– Entry into Sleep mode.

21.7 CAN registers

21.7.1 Register access protection

Erroneous access to certain configuration registers can cause the hardware to temporarily
disturb the whole CAN network. Therefore the CAN_BTR register can be modified by
software only while the CAN hardware is in initialization mode.

Although the transmission of incorrect data will not cause problems at the CAN network
level, it can severely disturb the application. A transmit mailbox can be only modified by
software while it is in empty state, refer to Figure 196: Transmit mailbox states.

The filter values can be modified either deactivating the associated filter banks or by setting
the FINIT bit. Moreover, the modification of the filter configuration (scale, mode and FIFO
assignment) in CAN_FMxR, CAN_FSxR and CAN_FFAR registers can only be done when
the filter initialization mode is set (FINIT=1) in the CAN_FMR register.

21.7.2 CAN control and status registers

Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

CAN master control register (CAN_MCR)

Address offset: 0x00
Reset value: 0x0001 0002

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
DBF

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RE
SET Reserved

TTCM ABOM AWUM NART RFLM TXFP SLEEP INRQ

rs rw rw rw rw rw rw rw rw

Bits 31:17 Reserved, forced by hardware to 0.

Bit 16 DBF: Debug freeze

0: CAN working during debug
1: CAN reception/transmission frozen during debug. Reception FIFOs can still be
accessed/controlled normally.

Bit 15 RESET: bxCAN software master reset

0: Normal operation.
1: Force a master reset of the bxCAN -> Sleep mode activated after reset (FMP bits and
CAN_MCR register are initialized to the reset values). This bit is automatically reset to 0.

Controller area network (bxCAN) RM0008

512/682

Bits 14:8 Reserved, forced by hardware to 0.

Bit 7 TTCM: Time triggered communication mode

0: Time Triggered Communication mode disabled.
1: Time Triggered Communication mode enabled

Note: For more information on Time Triggered Communication mode, please refer to
Section 21.5.2: Time triggered communication mode.

Bit 6 ABOM: Automatic bus-off management

This bit controls the behavior of the CAN hardware on leaving the Bus-Off state.
0: The Bus-Off state is left on software request, once 128 occurrences of 11 recessive bits
have been monitored and the software has first set and cleared the INRQ bit of the
CAN_MCR register.
1: The Bus-Off state is left automatically by hardware once 128 occurrences of 11 recessive
bits have been monitored.
For detailed information on the Bus-Off state please refer to Section 21.5.6: Error
management.

Bit 5 AWUM: Automatic wakeup mode

This bit controls the behavior of the CAN hardware on message reception during Sleep
mode.
0: The Sleep mode is left on software request by clearing the SLEEP bit of the CAN_MCR
register.
1: The Sleep mode is left automatically by hardware on CAN message detection.
The SLEEP bit of the CAN_MCR register and the SLAK bit of the CAN_MSR register are
cleared by hardware.

Bit 4 NART: No automatic retransmission
0: The CAN hardware will automatically retransmit the message until it has been
successfully transmitted according to the CAN standard.
1: A message will be transmitted only once, independently of the transmission result
(successful, error or arbitration lost).

Bit 3 RFLM: Receive FIFO locked mode
0: Receive FIFO not locked on overrun. Once a receive FIFO is full the next incoming
message will overwrite the previous one.
1: Receive FIFO locked against overrun. Once a receive FIFO is full the next incoming
message will be discarded.

Bit 2 TXFP: Transmit FIFO priority
This bit controls the transmission order when several mailboxes are pending at the same
time.
0: Priority driven by the identifier of the message
1: Priority driven by the request order (chronologically)

Bit 1 SLEEP: Sleep mode request

This bit is set by software to request the CAN hardware to enter the Sleep mode. Sleep
mode will be entered as soon as the current CAN activity (transmission or reception of a
CAN frame) has been completed.
This bit is cleared by software to exit Sleep mode.
This bit is cleared by hardware when the AWUM bit is set and a SOF bit is detected on the
CAN Rx signal.
This bit is set after reset - CAN starts in Sleep mode.

RM0008 Controller area network (bxCAN)

 513/682

CAN master status register (CAN_MSR)

Address offset: 0x04
Reset value: 0x0000 0C02

Bit 0 INRQ: Initialization request
The software clears this bit to switch the hardware into normal mode. Once 11 consecutive
recessive bits have been monitored on the Rx signal the CAN hardware is synchronized and
ready for transmission and reception. Hardware signals this event by clearing the INAK bit in
the CAN_MSR register.
Software sets this bit to request the CAN hardware to enter initialization mode. Once
software has set the INRQ bit, the CAN hardware waits until the current CAN activity
(transmission or reception) is completed before entering the initialization mode. Hardware
signals this event by setting the INAK bit in the CAN_MSR register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
.

RX SAMP RXM TXM
Reserved

SLAKI WKUI ERRI SLAK INAK

r r r r rc_w1 rc_w1 rc_w1 r r

Bits 31:12 Reserved, forced by hardware to 0.

Bit 11 RX: CAN Rx signal

Monitors the actual value of the CAN_RX Pin.

Bit 10 SAMP: Last sample point

The value of RX on the last sample point (current received bit value).

Bit 9 RXM: Receive mode

The CAN hardware is currently receiver.

Bit 8 TXM: Transmit mode

The CAN hardware is currently transmitter.

Bits 7:5 Reserved, forced by hardware to 0.

Bit 4 SLAKI: Sleep acknowledge interrupt

When SLKIE=1, this bit is set by hardware to signal that the bxCAN has entered Sleep
Mode. When set, this bit generates a status change interrupt if the SLKIE bit in the
CAN_IER register is set.
This bit is cleared by software or by hardware, when SLAK is cleared.

Note: When SLKIE=0, no polling on SLAKI is possible. In this case the SLAK bit can be
polled.

Bit 3 WKUI: Wakeup interrupt

This bit is set by hardware to signal that a SOF bit has been detected while the CAN
hardware was in Sleep mode. Setting this bit generates a status change interrupt if the
WKUIE bit in the CAN_IER register is set.
This bit is cleared by software.

Controller area network (bxCAN) RM0008

514/682

CAN transmit status register (CAN_TSR)

Address offset: 0x08
Reset value: 0x1C00 0000

Bit 2 ERRI: Error interrupt
This bit is set by hardware when a bit of the CAN_ESR has been set on error detection and
the corresponding interrupt in the CAN_IER is enabled. Setting this bit generates a status
change interrupt if the ERRIE bit in the CAN_IER register is set.
This bit is cleared by software.

Bit 1 SLAK: Sleep acknowledge
This bit is set by hardware and indicates to the software that the CAN hardware is now in
Sleep mode. This bit acknowledges the Sleep mode request from the software (set SLEEP
bit in CAN_MCR register).
This bit is cleared by hardware when the CAN hardware has left Sleep mode (to be
synchronized on the CAN bus). To be synchronized the hardware has to monitor a
sequence of 11 consecutive recessive bits on the CAN RX signal.

Note: The process of leaving Sleep mode is triggered when the SLEEP bit in the CAN_MCR
register is cleared. Please refer to the AWUM bit of the CAN_MCR register description
for detailed information for clearing SLEEP bit

Bit 0 INAK: Initialization acknowledge
This bit is set by hardware and indicates to the software that the CAN hardware is now in
initialization mode. This bit acknowledges the initialization request from the software (set
INRQ bit in CAN_MCR register).
This bit is cleared by hardware when the CAN hardware has left the initialization mode (to
be synchronized on the CAN bus). To be synchronized the hardware has to monitor a
sequence of 11 consecutive recessive bits on the CAN RX signal.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LOW2 LOW1 LOW0 TME2 TME1 TME0 CODE[1:0] ABRQ
2 Reserved

TERR
2 ALST2 TXOK

2
RQCP

2

r r r r r r r r rs rc_w1 rc_w1 rc_w1 rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ABRQ
1 Reserved

Res.

TERR
1 ALST1 TXOK

1
RQCP

1
ABRQ

0 Reserved

TERR
0 ALST0 TXOK

0
RQCP

0

rs rc_w1 rc_w1 rc_w1 rc_w1 rs rc_w1 rc_w1 rc_w1 rc_w1

Bit 31 LOW2: Lowest priority flag for mailbox 2
This bit is set by hardware when more than one mailbox are pending for transmission and
mailbox 2 has the lowest priority.

Bit 30 LOW1: Lowest priority flag for mailbox 1

This bit is set by hardware when more than one mailbox are pending for transmission and
mailbox 1 has the lowest priority.

Bit 29 LOW0: Lowest priority flag for mailbox 0

This bit is set by hardware when more than one mailbox are pending for transmission and
mailbox 0 has the lowest priority.

Note: The LOW[2:0] bits are set to zero when only one mailbox is pending.

Bit 28 TME2: Transmit mailbox 2 empty

This bit is set by hardware when no transmit request is pending for mailbox 2.

RM0008 Controller area network (bxCAN)

 515/682

Bit 27 TME1: Transmit mailbox 1 empty
This bit is set by hardware when no transmit request is pending for mailbox 1.

Bit 26 TME0: Transmit mailbox 0 empty
This bit is set by hardware when no transmit request is pending for mailbox 0.

Bits 25:24 CODE[1:0]: Mailbox code
In case at least one transmit mailbox is free, the code value is equal to the number of the
next transmit mailbox free.
In case all transmit mailboxes are pending, the code value is equal to the number of the
transmit mailbox with the lowest priority.

Bit 23 ABRQ2: Abort request for mailbox 2
Set by software to abort the transmission request for the corresponding mailbox.
Cleared by hardware when the mailbox becomes empty.
Setting this bit has no effect when the mailbox is not pending for transmission.

Bits 22:20 Reserved, forced by hardware to 0.

Bit 19 TERR2: Transmission error of mailbox 2

This bit is set when the previous TX failed due to an error.

Bit 18 ALST2: Arbitration lost for mailbox 2
This bit is set when the previous TX failed due to an arbitration lost.

Bit 17 TXOK2: Transmission OK of mailbox 2
The hardware updates this bit after each transmission attempt.
0: The previous transmission failed
1: The previous transmission was successful
This bit is set by hardware when the transmission request on mailbox 2 has been completed
successfully. Please refer to Figure 196.

Bit 16 RQCP2: Request completed mailbox2
Set by hardware when the last request (transmit or abort) has been performed.
Cleared by software writing a “1” or by hardware on transmission request (TXRQ2 set in
CAN_TMID2R register).
Clearing this bit clears all the status bits (TXOK2, ALST2 and TERR2) for Mailbox 2.

Bit 15 ABRQ1: Abort request for mailbox 1
Set by software to abort the transmission request for the corresponding mailbox.
Cleared by hardware when the mailbox becomes empty.
Setting this bit has no effect when the mailbox is not pending for transmission.

Bits 14:12 Reserved, forced by hardware to 0.

Bit 11 TERR1: Transmission error of mailbox1
This bit is set when the previous TX failed due to an error.

Bit 10 ALST1: Arbitration lost for mailbox1
This bit is set when the previous TX failed due to an arbitration lost.

Bit 9 TXOK1: Transmission OK of mailbox1
The hardware updates this bit after each transmission attempt.
0: The previous transmission failed
1: The previous transmission was successful
This bit is set by hardware when the transmission request on mailbox 1 has been completed
successfully. Please refer to Figure 196

Controller area network (bxCAN) RM0008

516/682

CAN receive FIFO 0 register (CAN_RF0R)

Address offset: 0x0C
Reset value: 0x00

Bit 8 RQCP1: Request completed mailbox1
Set by hardware when the last request (transmit or abort) has been performed.
Cleared by software writing a “1” or by hardware on transmission request (TXRQ1 set in
CAN_TI1R register).
Clearing this bit clears all the status bits (TXOK1, ALST1 and TERR1) for Mailbox 1.

Bit 7 ABRQ0: Abort request for mailbox0

Set by software to abort the transmission request for the corresponding mailbox.
Cleared by hardware when the mailbox becomes empty.
Setting this bit has no effect when the mailbox is not pending for transmission.

Bits 6:4 Reserved, forced by hardware to 0.

Bit 3 TERR0: Transmission error of mailbox0

This bit is set when the previous TX failed due to an error.

Bit 2 ALST0: Arbitration lost for mailbox0

This bit is set when the previous TX failed due to an arbitration lost.

Bit 1 TXOK0: Transmission OK of mailbox0

The hardware updates this bit after each transmission attempt.
0: The previous transmission failed
1: The previous transmission was successful
This bit is set by hardware when the transmission request on mailbox 1 has been completed
successfully. Please refer to Figure 196

Bit 0 RQCP0: Request completed mailbox0

Set by hardware when the last request (transmit or abort) has been performed.
Cleared by software writing a “1” or by hardware on transmission request (TXRQ0 set in
CAN_TI0R register).
Clearing this bit clears all the status bits (TXOK0, ALST0 and TERR0) for Mailbox 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

RFOM
0

FOVR
0 FULL0

Res.
FMP0[1:0]

rs rc_w1 rc_w1 r r

Bit 31:6 Reserved, forced by hardware to 0.

Bit 5 RFOM0: Release FIFO 0 output mailbox

Set by software to release the output mailbox of the FIFO. The output mailbox can only be
released when at least one message is pending in the FIFO. Setting this bit when the FIFO
is empty has no effect. If at least two messages are pending in the FIFO, the software has to
release the output mailbox to access the next message.
Cleared by hardware when the output mailbox has been released.

Bit 4 FOVR0: FIFO 0 overrun
This bit is set by hardware when a new message has been received and passed the filter
while the FIFO was full.
This bit is cleared by software.

RM0008 Controller area network (bxCAN)

 517/682

CAN receive FIFO 1 register (CAN_RF1R)

Address offset: 0x10
Reset value: 0x00

Bit 3 FULL0: FIFO 0 full
Set by hardware when three messages are stored in the FIFO.
This bit is cleared by software.

Bit 2 Reserved, forced by hardware to 0.

Bits 1:0 FMP0[1:0]: FIFO 0 message pending

These bits indicate how many messages are pending in the receive FIFO.
FMP is increased each time the hardware stores a new message in to the FIFO. FMP is
decreased each time the software releases the output mailbox by setting the RFOM0 bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

RFOM
1

FOVR
1 FULL1

Res.
FMP1[1:0]

rs rc_w1 rc_w1 r r

Bits 31:6 Reserved, forced by hardware to 0.

Bit 5 RFOM1: Release FIFO 1 output mailbox

Set by software to release the output mailbox of the FIFO. The output mailbox can only be
released when at least one message is pending in the FIFO. Setting this bit when the FIFO
is empty has no effect. If at least two messages are pending in the FIFO, the software has to
release the output mailbox to access the next message.
Cleared by hardware when the output mailbox has been released.

Bit 4 FOVR1: FIFO 1 overrun
This bit is set by hardware when a new message has been received and passed the filter
while the FIFO was full.
This bit is cleared by software.

Bit 3 FULL1: FIFO 1 full

Set by hardware when three messages are stored in the FIFO.
This bit is cleared by software.

Bit 2 Reserved, forced by hardware to 0.

Bits 1:0 FMP1[1:0]: FIFO 1 message pending

These bits indicate how many messages are pending in the receive FIFO1.
FMP1 is increased each time the hardware stores a new message in to the FIFO1. FMP is
decreased each time the software releases the output mailbox by setting the RFOM1 bit.

Controller area network (bxCAN) RM0008

518/682

CAN interrupt enable register (CAN_IER)

Address offset: 0x14
Reset value: 0x00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SLKIE WKUIE

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ERRIE
Reserved

LEC
IE

BOF
IE

EPV
IE

EWG
IE Res.

FOV
IE1

FF
IE1

FMP
IE1

FOV
IE0

FF
IE0

FMP
IE0

TME
IE

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:18 Reserved, forced by hardware to 0.

Bit 17 SLKIE: Sleep interrupt enable
0: No interrupt when SLAKI bit is set.
1: Interrupt generated when SLAKI bit is set.

Bit 16 WKUIE: Wakeup interrupt enable

0: No interrupt when WKUI is set.
1: Interrupt generated when WKUI bit is set.

Bit 15 ERRIE: Error interrupt enable
0: No interrupt will be generated when an error condition is pending in the CAN_ESR.
1: An interrupt will be generation when an error condition is pending in the CAN_ESR.

Bits 14:12 Reserved, forced by hardware to 0.

Bit 11 LECIE: Last error code interrupt enable

0: ERRI bit will not be set when the error code in LEC[2:0] is set by hardware on error
detection.
1: ERRI bit will be set when the error code in LEC[2:0] is set by hardware on error detection.

Bit 10 BOFIE: Bus-off interrupt enable

0: ERRI bit will not be set when BOFF is set.
1: ERRI bit will be set when BOFF is set.

Bit 9 EPVIE: Error passive interrupt enable

0: ERRI bit will not be set when EPVF is set.
1: ERRI bit will be set when EPVF is set.

Bit 8 EWGIE: Error warning interrupt enable
0: ERRI bit will not be set when EWGF is set.
1: ERRI bit will be set when EWGF is set.

Bit 7 Reserved, forced by hardware to 0.

Bit 6 FOVIE1: FIFO overrun interrupt enable

0: No interrupt when FOVR is set.
1: Interrupt generation when FOVR is set.

Bit 5 FFIE1: FIFO full interrupt enable
0: No interrupt when FULL bit is set.
1: Interrupt generated when FULL bit is set.

Bit 4 FMPIE1: FIFO message pending interrupt enable

0: No interrupt generated when state of FMP[1:0] bits are not 00b.
1: Interrupt generated when state of FMP[1:0] bits are not 00b.

RM0008 Controller area network (bxCAN)

 519/682

CAN error status register (CAN_ESR)

Address offset: 0x18
Reset value: 0x00

Bit 3 FOVIE0: FIFO overrun interrupt enable
0: No interrupt when FOVR bit is set.
1: Interrupt generated when FOVR bit is set.

Bit 2 FFIE0: FIFO full interrupt enable

0: No interrupt when FULL bit is set.
1: Interrupt generated when FULL bit is set.

Bit 1 FMPIE0: FIFO message pending interrupt enable

0: No interrupt generated when state of FMP[1:0] bits are not 00b.
1: Interrupt generated when state of FMP[1:0] bits are not 00b.

Bit 0 TMEIE: Transmit mailbox empty interrupt enable
0: No interrupt when RQCPx bit is set.
1: Interrupt generated when RQCPx bit is set.

Note: Refer to Section 21.6: bxCAN interrupts.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

REC[7:0] TEC[7:0]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
LEC[2:0]

Res.
BOFF EPVF EWGF

rw rw rw r r r

Bits 31:24 REC[7:0]: Receive error counter

The implementing part of the fault confinement mechanism of the CAN protocol. In case of
an error during reception, this counter is incremented by 1 or by 8 depending on the error
condition as defined by the CAN standard. After every successful reception the counter is
decremented by 1 or reset to 120 if its value was higher than 128. When the counter value
exceeds 127, the CAN controller enters the error passive state.

Bits 23:16 TEC[7:0]: Least significant byte of the 9-bit transmit error counter
The implementing part of the fault confinement mechanism of the CAN protocol.

Bits 15:7 Reserved, forced by hardware to 0.

Bits 6:4 LEC[2:0]: Last error code

This field is set by hardware and holds a code which indicates the error condition of the last
error detected on the CAN bus. If a message has been transferred (reception or
transmission) without error, this field will be cleared to ‘0’.
Code 7 is unused and may be written by the hardware to check for an update
000: No Error
001: Stuff Error
010: Form Error
011: Acknowledgment Error
100: Bit recessive Error
101: Bit dominant Error
110: CRC Error
111: Set by software

Bit 3 Reserved, forced by hardware to 0.

Controller area network (bxCAN) RM0008

520/682

CAN bit timing register (CAN_BTR)

Address offset: 0x1C
Reset value: 0x0123 0000

Note: This register can only be accessed by the software when the CAN hardware is in
initialization mode.

Bit 2 BOFF: Bus-off flag
This bit is set by hardware when it enters the bus-off state. The bus-off state is entered on
TEC overflow, greater than 255, refer to Section 21.5.6 on page 507.

Bit 1 EPVF: Error passive flag

This bit is set by hardware when the Error Passive limit has been reached (Receive Error
Counter or Transmit Error Counter>127).

Bit 0 EWGF: Error warning flag

This bit is set by hardware when the warning limit has been reached
(Receive Error Counter or Transmit Error Counter≥96).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SILM LBKM
Reserved

SJW[1:0] Res. TS2[2:0] TS1[3:0]

rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
BRP[9:0]

rw rw rw rw rw rw rw rw rw rw

Bit 31 SILM: Silent mode (debug)

0: Normal operation
1: Silent Mode

Bit 30 LBKM: Loop back mode (debug)

0: Loop Back Mode disabled
1: Loop Back Mode enabled

Bits 29:26 Reserved, forced by hardware to 0.

Bits 25:24 SJW[1:0]: Resynchronization jump width

These bits define the maximum number of time quanta the CAN hardware is allowed to
lengthen or shorten a bit to perform the resynchronization.
tRJW = tCAN x (SJW[1:0] + 1)

Bit 23 Reserved, forced by hardware to 0.

Bits 22:20 TS2[2:0]: Time segment 2
These bits define the number of time quanta in Time Segment 2.
tBS2 = tCAN x (TS2[2:0] + 1)

Bits 19:16 TS1[3:0]: Time segment 1

These bits define the number of time quanta in Time Segment 1
tBS1 = tCAN x (TS1[3:0] + 1)
For more information on bit timing, please refer to Section 21.5.7: Bit timing on page 507.

Bits 15:10 Reserved, forced by hardware to 0.

Bits 9:0 BRP[9:0]: Baud rate prescaler
These bits define the length of a time quanta.
tq = (BRP[9:0]+1) x tPCLK

RM0008 Controller area network (bxCAN)

 521/682

21.7.3 Mailbox registers

This chapter describes the registers of the transmit and receive mailboxes. Refer to
Section 21.5.5: Message storage on page 505 for detailed register mapping.

Transmit and receive mailboxes have the same registers except:

● The FMI field in the CAN_RDTxR register.

● A receive mailbox is always write protected.

● A transmit mailbox is write-enabled only while empty, corresponding TME bit in the
CAN_TSR register set.

There are 3 TX Mailboxes and 2 RX Mailboxes. Each RX Mailbox allows access to a 3 level
depth FIFO, the access being offered only to the oldest received message in the FIFO.

Each mailbox consist of 4 registers.

TX mailbox identifier register (CAN_TIxR) (x=0..2)

Address offsets: 0x180, 0x190, 0x1A0
Reset value: undefined (except bit 0, TXRQ = 0)

Note: 1 All TX registers are write protected when the mailbox is pending transmission (TMEx reset).

2 This register also implements the TX request control (bit 0) - reset value 0.

CAN_RI0R

CAN_RDT0R

CAN_RL0R

CAN_RH0R

CAN_TI0R

CAN_TDT0R

CAN_TDL0R

CAN_TDH0R

FIFO0 Three Tx Mailboxes

CAN_RI1R

CAN_RDT1R

CAN_RL1R

CAN_RH1R

FIFO1

CAN_TI1R

CAN_TDT1R

CAN_TDL1R

CAN_TDH1R

CAN_TI2R

CAN_TDT2R

CAN_TDL2R

CAN_TDH2R

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

STID[10:0]/EXID[28:18] EXID[17:13]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXID[12:0] IDE RTR TXRQ

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:21 STID[10:0]/EXID[28:18]: Standard identifier or extended identifier

The standard identifier or the MSBs of the extended identifier (depending on the IDE bit
value).

Bit 20:3 EXID[17:0]: Extended identifier
The LSBs of the extended identifier.

Bit 2 IDE: Identifier extension
This bit defines the identifier type of message in the mailbox.
0: Standard identifier.
1: Extended identifier.

Controller area network (bxCAN) RM0008

522/682

Mailbox data length control and time stamp register (CAN_TDTxR) (x=0..2)

All bits of this register are write protected when the mailbox is not in empty state.

Address offsets: 0x184, 0x194, 0x1A4
Reset value: undefined

Bit 1 RTR: Remote transmission request
0: Data frame
1: Remote frame

Bit 0 TXRQ: Transmit mailbox request

Set by software to request the transmission for the corresponding mailbox.
Cleared by hardware when the mailbox becomes empty.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TIME[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TGT

Reserved
DLC[3:0]

rw rw rw rw rw

Bits 31:16 TIME[15:0]: Message time stamp
This field contains the 16-bit timer value captured at the SOF transmission.

Bits 15:9 Reserved

Bit 8 TGT: Transmit global time

This bit is active only when the hardware is in the Time Trigger Communication mode, TTCM
bit of the CAN_MCR register is set.
0: Time stamp TIME[15:0] is not sent.
1: Time stamp TIME[15:0] value is sent in the last two data bytes of the 8-byte message:
TIME[7:0] in data byte 6 and TIME[15:8] in data byte 7, replacing the data written in
CAN_TDHxR[31:16] register (DATA6[7:0] and DATA7[7:0]). DLC must be programmed as 8
in order these two bytes to be sent over the CAN bus.

Bits 7:4 Reserved

Bits 3:0 DLC[3:0]: Data length code
This field defines the number of data bytes a data frame contains or a remote frame request.
A message can contain from 0 to 8 data bytes, depending on the value in the DLC field.

RM0008 Controller area network (bxCAN)

 523/682

Mailbox data low register (CAN_TDLxR) (x=0..2)

All bits of this register are write protected when the mailbox is not in empty state.

Address offsets: 0x188, 0x198, 0x1A8
Reset value: undefined

Mailbox data high register (CAN_TDHxR) (x=0..2)

All bits of this register are write protected when the mailbox is not in empty state.

Address offsets: 0x18C, 0x19C, 0x1AC
Reset value: undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DATA3[7:0] DATA2[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA1[7:0] DATA0[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 DATA3[7:0]: Data byte 3

Data byte 3 of the message.

Bits 23:16 DATA2[7:0]: Data byte 2
Data byte 2 of the message.

Bits 15:8 DATA1[7:0]: Data byte 1

Data byte 1 of the message.

Bits 7:0 DATA0[7:0]: Data byte 0
Data byte 0 of the message.
A message can contain from 0 to 8 data bytes and starts with byte 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DATA7[7:0] DATA6[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA5[7:0] DATA4[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 DATA7[7:0]: Data byte 7

Data byte 7 of the message.

Note: If TGT of this message and TTCM are active, DATA7 and DATA6 will be replaced by the
TIME stamp value.

Bits 23:16 DATA6[7:0]: Data byte 6
Data byte 6 of the message.

Bits 15:8 DATA5[7:0]: Data byte 5

Data byte 5 of the message.

Bits 7:0 DATA4[7:0]: Data byte 4
Data byte 4 of the message.

Controller area network (bxCAN) RM0008

524/682

Rx FIFO mailbox identifier register (CAN_RIxR) (x=0..1)

Address offsets: 0x1B0, 0x1C0
Reset value: undefined

Note: All RX registers are write protected.

Receive FIFO mailbox data length control and time stamp register
(CAN_RDTxR) (x=0..1)

Address offsets: 0x1B4, 0x1C4
Reset value: undefined

Note: All RX registers are write protected.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

STID[10:0]/EXID[28:18] EXID[17:13]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXID[12:0] IDE RTR
Res.

r r r r r r r r r r r r r r r

Bits 31:21 STID[10:0]/EXID[28:18]: Standard identifier or extended identifier

The standard identifier or the MSBs of the extended identifier (depending on the IDE bit
value).

Bits 20:3 EXID[17:0]: Extended identifier
The LSBs of the extended identifier.

Bit 2 IDE: Identifier extension
This bit defines the identifier type of message in the mailbox.
0: Standard identifier.
1: Extended identifier.

Bit 1 RTR: Remote transmission request

0: Data frame
1: Remote frame

Bit 0 Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TIME[15:0]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FMI[7:0]
Reserved

DLC[3:0]

r r r r r r r r r r r r

RM0008 Controller area network (bxCAN)

 525/682

Receive FIFO mailbox data low register (CAN_RDLxR) (x=0..1)

All bits of this register are write protected when the mailbox is not in empty state.

Address offsets: 0x1B8, 0x1C8
Reset value: undefined

Note: All RX registers are write protected.

Bits 31:16 TIME[15:0]: Message time stamp

This field contains the 16-bit timer value captured at the SOF detection.

Bits 15:8 FMI[7:0]: Filter match index

This register contains the index of the filter the message stored in the mailbox passed
through. For more details on identifier filtering please refer to Section 21.5.4: Identifier
filtering on page 501 - Filter Match Index paragraph.

Bits 7:4 Reserved, forced by hardware to 0.

Bits 3:0 DLC[3:0]: Data length code

This field defines the number of data bytes a data frame contains (0 to 8). It is 0 in the case
of a remote frame request.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DATA3[7:0] DATA2[7:0]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA1[7:0] DATA0[7:0]

r r r r r r r r r r r r r r r r

Bits 31:24 DATA3[7:0]: Data Byte 3

Data byte 3 of the message.

Bits 23:16 DATA2[7:0]: Data Byte 2

Data byte 2 of the message.

Bits 15:8 DATA1[7:0]: Data Byte 1

Data byte 1 of the message.

Bits 7:0 DATA0[7:0]: Data Byte 0

Data byte 0 of the message.
A message can contain from 0 to 8 data bytes and starts with byte 0.

Controller area network (bxCAN) RM0008

526/682

Receive FIFO mailbox data high register (CAN_RDHxR) (x=0..1)

Address offsets: 0x1BC, 0x1CC
Reset value: undefined

Note: All RX registers are write protected.

21.7.4 CAN filter registers

CAN filter master register (CAN_FMR)

Address offset: 0x200
Reset value: 0x2A1C 0E01

Note: All bits of this register are set and cleared by software.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DATA7[7:0] DATA6[7:0]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA5[7:0] DATA4[7:0]

r r r r r r r r r r r r r r r r

Bits 31:24 DATA7[7:0]: Data Byte 7

Data byte 3 of the message.

Bits 23:16 DATA6[7:0]: Data Byte 6

Data byte 2 of the message.

Bits 15:8 DATA5[7:0]: Data Byte 5

Data byte 1 of the message.

Bits 7:0 DATA4[7:0]: Data Byte 4

Data byte 0 of the message.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
FINIT

rw

Reserved
CAN2SB[5:0]

Reserved
FINIT

rw rw rw rw rw rw rw

Bits 31:1 Reserved, forced to reset value

Bit 0 FINIT: Filter init mode

Initialization mode for filter banks
0: Active filters mode.
1: Initialization mode for the filters.

RM0008 Controller area network (bxCAN)

 527/682

CAN filter mode register (CAN_FM1R)

Address offset: 0x204
Reset value: 0x00

Note: This register can be written only when the filter initialization mode is set (FINIT=1) in the
CAN_FMR register.

Note: Please refer to Figure 198: Filter bank scale configuration - register organization on
page 502

CAN filter scale register (CAN_FS1R)

Address offset: 0x20C
Reset value: 0x00

Note: This register can be written only when the filter initialization mode is set (FINIT=1) in the
CAN_FMR register.

Note: Please refer to Figure 198: Filter bank scale configuration - register organization on
page 502

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
FBM13 FBM12 FBM11 FBM10 FBM9 FBM8 FBM7 FBM6 FBM5 FBM4 FBM3 FBM2 FBM1 FBM0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:14 Reserved. Forced to 0 by hardware.

Bits 13:0 FBMx: Filter mode
Note: Mode of the registers of Filter x.

0: Two 32-bit registers of filter bank x are in Identifier Mask mode.
1: Two 32-bit registers of filter bank x are in Identifier List mode.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
FSC13 FSC12 FSC11 FSC10 FSC9 FSC8 FSC7 FSC6 FSC5 FSC4 FSC3 FSC2 FSC1 FSC0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:14 Reserved, forced by hardware to 0.

Bits 13:0 FSCx: Filter scale configuration

These bits define the scale configuration of Filters 13-0.
0: Dual 16-bit scale configuration

Note: 1: Single 32-bit scale configuration

Controller area network (bxCAN) RM0008

528/682

CAN filter FIFO assignment register (CAN_FFA1R)

Address offset: 0x214
Reset value: 0x00

Note: This register can be written only when the filter initialization mode is set (FINIT=1) in the
CAN_FMR register.

CAN filter activation register (CAN_FA1R)

Address offset: 0x21C
Reset value: 0x00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
FFA13 FFA12 FFA11 FFA10 FFA9 FFA8 FFA7 FFA6 FFA5 FFA4 FFA3 FFA2 FFA1 FFA0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:14 Reserved, forced by hardware to 0.

Bits 13:0 FFAx: Filter FIFO assignment for filter x
Note: The message passing through this filter will be stored in the specified FIFO.

0: Filter assigned to FIFO 0
1: Filter assigned to FIFO 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

FACT1
3

FACT1
2

FACT1
1

FACT1
0 FACT9 FACT8 FACT7 FACT6 FACT5 FACT4 FACT3 FACT2 FACT1 FACT0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:14 Reserved, forced by hardware to 0.

Bits 13:0 FACTx: Filter active

Note: The software sets this bit to activate Filter x. To modify the Filter x registers
(CAN_FxR[0:7]), the FACTx bit must be cleared or the FINIT bit of the CAN_FMR
register must be set.
0: Filter x is not active
1: Filter x is active

RM0008 Controller area network (bxCAN)

 529/682

Filter bank i register x (CAN_FiRx) (i=0..13, x=1..2)

Address offsets: 0x240..0x2AC
Reset value: undefined

Note: There are 14 filter banks, i=0..13. Each filter bank i is composed of two 32-bit registers,
CAN_FiR[2:1].

This register can only be modified when the FACTx bit of the CAN_FAxR register is cleared
or when the FINIT bit of the CAN_FMR register is set.

In all configurations:

Note: Depending on the scale and mode configuration of the filter the function of each register can
differ. For the filter mapping, functions description and mask registers association, refer to
Section 21.5.4: Identifier filtering on page 501.

A Mask/Identifier register in mask mode has the same bit mapping as in identifier list
mode.

For the register mapping/addresses of the filter banks please refer to the Table 146 on
page 530.

21.7.5 bxCAN register map

Refer to Table 1 on page 35 for the register boundary addresses.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FB31 FB30 FB29 FB28 FB27 FB26 FB25 FB24 FB23 FB22 FB21 FB20 FB19 FB18 FB17 FB16

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FB15 FB14 FB13 FB12 FB11 FB10 FB9 FB8 FB7 FB6 FB5 FB4 FB3 FB2 FB1 FB0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 FB[31:0]: Filter bits
Identifier
Each bit of the register specifies the level of the corresponding bit of the expected identifier.
0: Dominant bit is expected
1: Recessive bit is expected
Mask
Each bit of the register specifies whether the bit of the associated identifier register must
match with the corresponding bit of the expected identifier or not.
0: Don’t care, the bit is not used for the comparison
1: Must match, the bit of the incoming identifier must have the same level has specified in
the corresponding identifier register of the filter.

Controller area network (bxCAN) RM0008

530/682

Table 146. bxCAN register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x000
CAN_MCR

Reserved D
B

F

R
E

S
E

T

Reserved T
T

C
M

A
B

O
M

A
W

U
M

N
A

R
T

R
F

LM

T
X

F
P

S
LE

E
P

IN
R

Q

Reset value 0 0 0 0 0 0 0 0 1 0

0x004
CAN_MSR

Reserved R
X

S
A

M
P

R
X

M

T
X

M

Reserved

S
LA

K
I

W
K

U
I

E
R

R
I

S
LA

K

IN
A

K

Reset value 1 1 0 0 0 0 0 1 0

0x008
CAN_TSR LOW[2:0] TME[2:0]

C
O

D
E

[1
:0

]

A
B

R
Q

2

Reserved

T
E

R
R

2

A
LS

T
2

T
X

O
K

2

R
Q

C
P

2

A
B

R
Q

1

Reserved

T
E

R
R

1

A
LS

T
1

T
X

O
K

1

R
Q

C
P

1

A
B

R
Q

0

Reserved

T
E

R
R

0

A
LS

T
0

T
X

O
K

0

R
Q

C
P

0

Reset value 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x00C
CAN_RF0R

Reserved

R
F

O
M

0

F
O

V
R

0

F
U

LL
0

R
es

er
ve

d

F
M

P
0[

1:
0]

Reset value 0 0 0 0 0

0x010
CAN_RF1R

Reserved

R
F

O
M

1

F
O

V
R

1

F
U

LL
1

R
es

er
ve

d

F
M

P
1[

1:
0]

Reset value 0 0 0 0 0

0x014
CAN_IER

Reserved

S
LK

IE

W
K

U
IE

E
R

R
IE

Reserved

LE
C

IE

B
O

F
IE

E
P

V
IE

E
W

G
IE

R
es

er
ve

d

F
O

V
IE

1

F
F

IE
1

F
M

P
IE

1

F
O

V
IE

0

F
F

IE
0

F
M

P
IE

0

T
M

E
IE

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x018
CAN_ESR REC[7:0] TEC[7:0]

Reserved

LE
C

[2
:0

]

R
es

er
ve

d

B
O

F
F

E
P

V
F

E
W

G
F

Reset value 0

0x01C
CAN_BTR

S
IL

M

LB
K

M

Reserved

S
JW

[1
:0

]

R
es

er
ve

d

TS2[2:0] TS1[3:0]
Reserved

BRP[9:0]

Reset value 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0x020-
0x17F Reserved

0x180
CAN_TI0R STID[10:0]/EXID[28:18] EXID[17:0]

ID
E

R
T

R

T
X

R
Q

Reset value x 0

0x184
CAN_TDT0R TIME[15:0]

Reserved T
G

T

Reserved
DLC[3:0]

Reset value x

0x188
CAN_TDL0R DATA3[7:0] DATA2[7:0] DATA1[7:0] DATA0[7:0]

Reset value x

0x18C
CAN_TDH0R DATA7[7:0] DATA6[7:0] DATA5[7:0] DATA4[7:0]

Reset value x

0x190
CAN_TI1R STID[10:0]/EXID[28:18] EXID[17:0]

ID
E

R
T

R

T
X

R
Q

Reset value x 0

0x194
CAN_TDT1R TIME[15:0]

Reserved T
G

T

Reserved
DLC[3:0]

Reset value x

RM0008 Controller area network (bxCAN)

 531/682

0x198
CAN_TDL1R DATA3[7:0] DATA2[7:0] DATA1[7:0] DATA0[7:0]

Reset value x

0x19C
CAN_TDH1R DATA7[7:0] DATA6[7:0] DATA5[7:0] DATA4[7:0]

Reset value x

0x1A0
CAN_TI2R STID[10:0]/EXID[28:18] EXID[17:0]

ID
E

R
T

R

T
X

R
Q

Reset value x 0

0x1A4
CAN_TDT2R TIME[15:0]

Reserved T
G

T

Reserved
DLC[3:0]

Reset value x

0x1A8
CAN_TDL2R DATA3[7:0] DATA2[7:0] DATA1[7:0] DATA0[7:0]

Reset value x

0x1AC
CAN_TDH2R DATA7[7:0] DATA6[7:0] DATA5[7:0] DATA4[7:0]

Reset value x

0x1B0
CAN_RI0R STID[10:0]/EXID[28:18] EXID[17:0]

ID
E

R
T

R

R
es

er
ve

d

Reset value x

0x1B4
CAN_RDT0R TIME[15:0] FMI[7:0]

Reserved
DLC[3:0]

Reset value x

0x1B8
CAN_RDL0R DATA3[7:0] DATA2[7:0] DATA1[7:0] DATA0[7:0]

Reset value x

0x1BC
CAN_RDH0R DATA7[7:0] DATA6[7:0] DATA5[7:0] DATA4[7:0]

Reset value x

0x1C0
CAN_RI1R STID[10:0]/EXID[28:18] EXID[17:0]

ID
E

R
T

R

R
es

er
ve

d
Reset value x

0x1C4
CAN_RDT1R TIME[15:0] FMI[7:0]

Reserved
DLC[3:0]

Reset value x

0x1C8
CAN_RDL1R DATA3[7:0] DATA2[7:0] DATA1[7:0] DATA0[7:0]

Reset value x

0x1CC
CAN_RDH1R DATA7[7:0] DATA6[7:0] DATA5[7:0] DATA4[7:0]

Reset value x

0x1D0-
0x1FF Reserved

0x200
CAN_FMR

Reserved F
IN

IT

Reset value 1

0x204
CAN_FM1R

Reserved
FBM[13:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 146. bxCAN register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Controller area network (bxCAN) RM0008

532/682

0x208 Reserved

0x20C
CAN_FS1R

Reserved
FSC[13:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x210 Reserved

0x214
CAN_FFA1R

Reserved
FFA[13:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x218 Reserved

0x21C
CAN_FA1R

Reserved
FACT[13:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x220 Reserved

0x224-
0x23F Reserved

0x240
CAN_F0R1 FB[31:0]

Reset value x

0x244
CAN_F0R2 FB[31:0]

Reset value x

0x248
CAN_F1R1 FB[31:0]

Reset value x

0x24C
CAN_F1R2 FB[31:0]

Reset value x
.
.
.
.

.

.

.

.

.

.

.

.

0x2A8
CAN_F13R1 FB[31:0]

Reset value x

0x2AC
CAN_F13R2 FB[31:0]

Reset value x

Table 146. bxCAN register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RM0008 Serial peripheral interface (SPI)

 533/682

22 Serial peripheral interface (SPI)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F10xxx family, unless otherwise specified.

22.1 SPI introduction
In high-density devices, the SPI interface gives the flexibility to get either the SPI protocol or
the I2S audio protocol. By default, it is the SPI function that is selected. It is possible to
switch the interface from SPI to I2S by software.
In low- and medium-density devices, the I2S protocol is not available.

The serial peripheral interface (SPI) allows half/ full-duplex, synchronous, serial
communication with external devices. The interface can be configured as the master and in
this case it provides the communication clock (SCK) to the external slave device. The
interface is also capable of operating in multimaster configuration.

It may be used for a variety of purposes, including Simplex synchronous transfers on two
lines with a possible bidirectional data line or reliable communication using CRC checking.

I2S is also a synchronous, serial communication interface with a 3-pin protocol. It can
address four different audio standards including the I2S Phillips standard, the MSB- and
LSB-justified standards and the PCM standard. It can operate in slave or master mode with
half-duplex communication. Master clock may be provided by the interface to an external
slave component when the I2S is configured as the communication master.

Warning: Since some SPI3/I2S3 pins are shared with JTAG pins
(SPI3_NSS/I2S3_WS with JTDI and SPI3_SCK/I2S3_CK with
JTDO), they are not controlled by the I/O controller and are
reserved for JTAG usage (after each Reset).
For this purpose prior to configure the SPI3/I2S3 pins, the
user has to disable the JTAG and use the SWD interface
(when debugging the application), or disable both JTAG/SWD
interfaces (for standalone application). For more information
on the configuration of JTAG/SWD interface pins, please refer
to Section 7.3.4: JTAG/SWD alternate function remapping.

Serial peripheral interface (SPI) RM0008

534/682

22.2 SPI and I2S main features

22.2.1 SPI features

● Full-duplex synchronous transfers on three lines

● Simplex synchronous transfers on two lines with or without a bidirectional data line

● 8- or 16-bit transfer frame format selection

● Master or slave operation

● Multimaster mode capability

● 8 master mode baud rate prescalers (fPCLK/2 max.)

● Slave mode frequency (fPCLK/2 max)

● Faster communication for both master and slave: maximum SPI speed up to 18 MHz

● NSS management by hardware or software for both master and slave: dynamic change
of master/slave operations

● Programmable clock polarity and phase

● Programmable data order with MSB-first or LSB-first shifting

● Dedicated transmission and reception flags with interrupt capability

● SPI bus busy status flag

● Hardware CRC feature for reliable communication:

– CRC value can be transmitted as last byte in Tx mode

– Automatic CRC error checking for last received byte

● Master mode fault, overrun and CRC error flags with interrupt capability

● 1-byte transmission and reception buffer with DMA capability: Tx and Rx requests

RM0008 Serial peripheral interface (SPI)

 535/682

22.2.2 I2S features

● Simplex communication (only transmitter or receiver)

● Master or slave operations

● 8-bit programmable linear prescaler to reach accurate audio sample frequencies (from
8 kHz to 48 kHz)

● Data format may be 16-bit, 24-bit or 32-bit

● Packet frame is fixed to 16-bit (16-bit data frame) or 32-bit (16-bit, 24-bit, 32-bit data
frame) by audio channel

● Programmable clock polarity (steady state)

● Underrun flag in slave transmission mode and Overrun flag in reception mode (master
and slave)

● 16-bit register for transmission and reception with one data register for both channel
sides

● Supported I2S protocols:

– I2S Phillips standard

– MSB-Justified standard (Left-Justified)

– LSB-Justified standard (Right-Justified)

– PCM standard (with short and long frame synchronization on 16-bit channel frame
or 16-bit data frame extended to 32-bit channel frame)

● Data direction is always MSB first

● DMA capability for transmission and reception (16-bit wide)

● Master clock may be output to drive an external audio component. Ratio is fixed at
256 × FS (where FS is the audio sampling frequency)

Serial peripheral interface (SPI) RM0008

536/682

22.3 SPI functional description

22.3.1 General description

The block diagram of the SPI is shown in Figure 205.

Figure 205. SPI block diagram

Usually, the SPI is connected to external devices through 4 pins:

● MISO: Master In / Slave Out data. This pin can be used to transmit data in slave mode
and receive data in master mode.

● MOSI: Master Out / Slave In data. This pin can be used to transmit data in master
mode and receive data in slave mode.

● SCK: Serial Clock output for SPI masters and input for SPI slaves.

● NSS: Slave select. This is an optional pin to select master/ slave mode. This pin acts as
a ‘chip select’ to let the SPI master communicate with slaves individually and to avoid
contention on the data lines. Slave NSS inputs can be driven by standard I/O ports on
the master Device. The NSS pin may also be used as an output if enabled (SSOE bit)
and driven low if the SPI is in master configuration. In this manner, all NSS pins from
devices connected to the Master NSS pin see a low level and become slaves when
they are configured in NSS hardware mode.

A basic example of interconnections between a single master and a single slave is
illustrated in Figure 206.

MOSI

MISO

Baud rate generator
SCK

Master control logic

Communication
control

SPE BR2 BR1 BR0 MSTR CPOL CPHA

BR[2:0]

RXNE

LSB

BIDI
MODE

BIDI
OE SSM SSI

BSY OVR
MOD RXNETXE

ERRTXE

0 0

DFF

0 SSOE

CRC
EN

0

RX
ONLY

CRC
Next

CRC
ERR

0

1

NSS

IE

F

FIRST

SPI_CR1

SPI_CR2

SPI_SR

TXDM
AEN

RXDM
AENIEIE

Address and data bus

Read

Rx buffer

Shift register

LSB first

Tx buffer

Write

ai14744

RM0008 Serial peripheral interface (SPI)

 537/682

Figure 206. Single master/ single slave application

1. Here, the NSS pin is configured as an input.

The MOSI pins are connected together and the MISO pins are connected together. In this
way data is transferred serially between master and slave (most significant bit first).

The communication is always initiated by the master. When the master device transmits
data to a slave device via the MOSI pin, the slave device responds via the MISO pin. This
implies full-duplex communication with both data out and data in synchronized with the
same clock signal (which is provided by the master device via the SCK pin).

Slave select (NSS) pin management

There are two NSS modes:

● Software NSS mode: this mode is enabled by setting the SSM bit in the SPI_CR1
register (see Figure 207). In this mode, the external NSS pin is free for other
application uses and the internal NSS signal level is driven by writing to the SSI bit in
the SPI_CR1 register.

● Hardware NSS mode: there are two cases:

– NSS output is enabled: when the STM32F10xxx is operating as a Master and the
NSS output is enabled through the SSOE bit in the SPI_CR2 register, the NSS pin
is driven low and all the NSS pins of devices connected to the Master NSS pin see
a low level and become slaves when they are configured in NSS hardware mode.
In this case, the cell cannot work in a multimaster environment.

– NSS output is disabled: the multimaster capability is allowed.

Figure 207. Hardware/software slave select management

8-bit shift register

SPI clock
generator

8-bit shift register
MISO

MOSI MOSI

MISO

SCK SCK

SlaveMaster

NSS(1) NSS(1)
VDD

MSBit LSBit MSBit LSBit

Not used if NSS is managed
 by software

ai14745

1

0

NSS Internal

SSM bit

SSI bit

 NSS external pin

ai14746

Serial peripheral interface (SPI) RM0008

538/682

Clock phase and clock polarity

Four possible timing relationships may be chosen by software, using the CPOL and CPHA
bits in the SPI_CR1 register. The CPOL (clock polarity) bit controls the steady state value of
the clock when no data is being transferred. This bit affects both master and slave modes. If
CPOL is reset, the SCK pin has a low-level idle state. If CPOL is set, the SCK pin has a
high-level idle state.

If the CPHA (clock phase) bit is set, the second edge on the SCK pin (falling edge if the
CPOL bit is reset, rising edge if the CPOL bit is set) is the MSBit capture strobe. Data are
latched on the occurrence of the second clock transition. If the CPHA bit is reset, the first
edge on the SCK pin (falling edge if CPOL bit is set, rising edge if CPOL bit is reset) is the
MSBit capture strobe. Data are latched on the occurrence of the first clock transition.

The combination of the CPOL (clock polarity) and CPHA (clock phase) bits selects the data
capture clock edge.

Figure 208, shows an SPI transfer with the four combinations of the CPHA and CPOL bits.
The diagram may be interpreted as a master or slave timing diagram where the SCK pin, the
MISO pin, the MOSI pin are directly connected between the master and the slave device.

Note: 1 Prior to changing the CPOL/CPHA bits the SPI must be disabled by resetting the SPE bit.

2 Master and slave must be programmed with the same timing mode.

3 The idle state of SCK must correspond to the polarity selected in the SPI_CR1 register (by
pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0).

4 The Data Frame Format (8- or 16-bit) is selected through the DFF bit in SPI_CR1 register,
and determines the data length during transmission/reception.

RM0008 Serial peripheral interface (SPI)

 539/682

Figure 208. Data clock timing diagram

1. These timings are shown with the LSBFIRST bit reset in the SPI_CR1 register.

Data frame format

Data can be shifted out either MSB-first or LSB-first depending on the value of the
LSBFIRST bit in the SPI_CR1 Register.

Each data frame is 8 or 16 bits long depending on the size of the data programmed using
the DFF bit in the SPI_CR1 register. The selected data frame format is applicable for
transmission and/or reception.

CPOL = 1

CPOL = 0

MSBit LSBit

MSBit LSBit

MISO
(from master)

MOSI
(from slave)

NSS

(to slave)

Capture strobe

CPHA =1

CPOL = 1

CPOL = 0

MSBit LSBit

MSBit LSBit

MISO
(from master)

MOSI

NSS
(to slave)

Capture strobe

CPHA =0

Note: These timings are shown with the LSBFIRST bit reset in the SPI_CR1 register.

(from slave)

8 or 16 bits depending on Data Frame Format (see SPI_CR1)

8 or 16 bits depending on Data Frame Format (see SPI_CR1)

Serial peripheral interface (SPI) RM0008

540/682

22.3.2 SPI slave mode

In slave configuration, the serial clock is received on the SCK pin from the master device.
The value set in the BR[2:0] bits in the SPI_CR1 register, does not affect the data transfer
rate.

Procedure

1. Set the DFF bit to define 8- or 16-bit data frame format

2. Select the CPOL and CPHA bits to define one of the four relationships between the
data transfer and the serial clock (see Figure 208). For correct data transfer, the CPOL
and CPHA bits must be configured in the same way in the slave device and the master
device.

3. The frame format (MSB-first or LSB-first depending on the value of the LSBFIRST bit in
the SPI_CR1 register) must be the same as the master device.

4. In Hardware mode (refer to Slave select (NSS) pin management on page 537), the
NSS pin must be connected to a low level signal during the complete byte transmit
sequence. In Software mode, set the SSM bit and clear the SSI bit in the SPI_CR1
register.

5. Clear the MSTR bit and set the SPE bit (both in the SPI_CR1 register) to assign the
pins to alternate functions.

In this configuration the MOSI pin is a data input and the MISO pin is a data output.

Transmit sequence

The data byte is parallel-loaded into the Tx buffer during a write cycle.

The transmit sequence begins when the slave device receives the clock signal and the most
significant bit of the data on its MOSI pin. The remaining bits (the 7 bits in 8-bit data frame
format, and the 15 bits in 16-bit data frame format) are loaded into the shift-register. The
TXE flag in the SPI_SR register is set on the transfer of data from the Tx Buffer to the shift
register and an interrupt is generated if the TXEIE bit in the SPI_CR2 register is set.

Receive sequence

For the receiver, when data transfer is complete:

● The Data in shift register is transferred to Rx Buffer and the RXNE flag (SPI_SR
register) is set

● An Interrupt is generated if the RXNEIE bit is set in the SPI_CR2 register.

After the last sampling clock edge the RXNE bit is set, a copy of the data byte received in
the shift register is moved to the Rx buffer. When the SPI_DR register is read, the SPI
peripheral returns this buffered value.

Clearing of the RXNE bit is performed by reading the SPI_DR register.

22.3.3 SPI master mode

In the master configuration, the serial clock is generated on the SCK pin.

RM0008 Serial peripheral interface (SPI)

 541/682

Procedure

1. Select the BR[2:0] bits to define the serial clock baud rate (see SPI_CR1 register).

2. Select the CPOL and CPHA bits to define one of the four relationships between the
data transfer and the serial clock (see Figure 208).

3. Set the DFF bit to define 8- or 16-bit data frame format

4. Configure the LSBFIRST bit in the SPI_CR1 register to define the frame format

5. If the NSS pin is required in input mode, in hardware mode, connect the NSS pin to a
high-level signal during the complete byte transmit sequence. In software mode, set the
SSM and SSI bits in the SPI_CR1 register.
If the NSS pin is required in output mode, the SSOE bit only should be set.

6. The MSTR and SPE bits must be set (they remain set only if the NSS pin is connected
to a high-level signal).

In this configuration the MOSI pin is a data output and the MISO pin is a data input.

Transmit sequence

The transmit sequence begins when a byte is written in the Tx Buffer.

The data byte is parallel-loaded into the shift register (from the internal bus) during the first
bit transmission and then shifted out serially to the MOSI pin MSB first or LSB first
depending on the LSBFIRST bit in the SPI_CR1 register. The TXE flag is set on the transfer
of data from the Tx Buffer to the shift register and an interrupt is generated if the TXEIE bit in
the SPI_CR2 register is set.

Receive sequence

For the receiver, when data transfer is complete:

● The data in the shift register is transferred to the RX Buffer and the RXNE flag is set

● An interrupt is generated if the RXNEIE bit is set in the SPI_CR2 register

At the last sampling clock edge the RXNE bit is set, a copy of the data byte received in the
shift register is moved to the Rx buffer. When the SPI_DR register is read, the SPI
peripheral returns this buffered value.

Clearing the RXNE bit is performed by reading the SPI_DR register.

A continuous transmit stream can be maintained if the next data to be transmitted is put in
the Tx buffer once the transmission is started. Note that TXE flag should be ‘1’ before any
attempt to write the Tx buffer is made.

22.3.4 Simplex communication

The SPI is capable of operating in simplex mode in 2 configurations.

● 1 clock and 1 bidirectional data wire

● 1 clock and 1 data wire (receive-only in full-duplex mode)

1 clock and 1 bidirectional data wire

This mode is enabled by setting the BIDIMODE bit in the SPI_CR1 register. In this mode
SCK is used for the clock and MOSI in master or MISO in slave mode is used for data
communication. The transfer direction (Input/Output) is selected by the BIDIOE bit in the
SPI_CR2 register. When this bit is 1, the data line is output otherwise it is input.

Serial peripheral interface (SPI) RM0008

542/682

1 clock and 1 data wire (receive-only in full-duplex mode)

In order to free an I/O pin so it can be used for other purposes, it is possible to disable the
SPI output function by setting the RXONLY bit in the SPI_CR1 register. In this case, SPI will
function in Receive-only mode. When the RXONLY bit is reset, the SPI will function in full
duplex mode.

To start the communication in receive-only mode, it is necessary to enable the SPI. In the
master mode, the communication starts immediately and will stop when the SPE bit is reset
and the current reception terminates. In slave mode, the SPI will continue to receive as long
as the NSS is pulled down (or the SSI bit is reset) and the SCK is running.

Note: The SPI can be used in Tx-only mode when the RXONLY bit in the SPI_CR1 register is
reset, the RX pin (MISO in master or MOSI in slave) can be used as GPIO. In this case,
when the data register is read, it does not contain the received value.

22.3.5 Status flags

Three status flags are provided for the application to completely monitor the state of the SPI
bus.

BUSY flag

This flag indicates the state of the SPI communication layer. When it is set, it indicates that
the SPI is busy communicating and/or there is a valid data byte in the Tx buffer waiting to be
transmitted. The purpose of this flag is to indicate if there is any communication ongoing on
the SPI bus or not. This flag is set as soon as:

1. Data is written in the SPI_DR register in master mode

2. The SCK clock is present in slave mode

The BUSY flag is reset each time a byte is transmitted/received. This flag is set and cleared
by hardware. It can be monitored to avoid write collision errors. Writing to this flag has no
effect. The BUSY flag is meaningful only when the SPE bit is set.

Note: In master receiver mode (1-line bidirectional), the BUSY flag must NOT be checked.

Tx buffer empty flag (TXE)

When it is set, this flag indicates that the Tx buffer is empty and the next data to be
transmitted can be loaded into the buffer. The TXE flag is reset when the Tx buffer already
contains data to be transmitted. This flag is reset when the SPI is disabled (SPE bit is reset).

Rx buffer not empty (RXNE)

When set, this flag indicates that there are valid received data in the Rx Buffer. It is reset
when SPI Data register is read.

22.3.6 CRC calculation

A CRC calculator has been implemented for communication reliability. Separate CRC
calculators are implemented for transmitted data and received data. The CRC is calculated
using a programmable polynomial serially on each bit. It is calculated on the sampling clock
edge defined by the CPHA and CPOL bits in the SPI_CR1 register.

RM0008 Serial peripheral interface (SPI)

 543/682

Note: This SPI offers two kinds of CRC calculation standard which depend directly on the data
frame format selected for the transmission and/or reception: 8-bit data (CR8) and 16-bit data
(CRC16-CCITT).

CRC calculation is enabled by setting the CRCEN bit in the SPI_CR1 register. This action
resets the CRC registers (SPI_RXCRCR and SPI_TXCRCR). When the CRCNEXT bit in
SPI_CR1 is set, the SPI_TXCRCR value is transmitted at the end of the current byte
transmission.

The CRCERR flag in the SPI_SR register is set if the value received in the shift register
during the SPI_TXCRCR value transmission does not match the SPI_RXCRCR value.

If data are present in the TX buffer, the CRC value is transmitted only after the transmission
of the data byte. During CRC transmission, the CRC calculator is switched off and the
register value remains unchanged.

Note: Please refer to the product specifications for availability of this feature.

SPI communication using CRC is possible through the following procedure:

● Program the CPOL, CPHA, LSBFirst, BR, SSM, SSI and MSTR values

● Program the polynomial in the SPI_CRCPR register

● Enable the CRC calculation by setting the CRCEN bit in the SPI_CR1 register. This
also clears the SPI_RXCRCR and SPI_TXCRCR registers

● Enable the SPI by setting the SPE bit in the SPI_CR1 register

● Start the communication and sustain the communication until all but one byte or half-
word have been transmitted or received.

● On writing the last byte or half-word to the TX buffer, set the CRCNext bit in the
SPI_CR1 register to indicate that after transmission of the last byte, the CRC should be
transmitted. CRC calculation is frozen during the CRC transmission.

● After transmitting the last byte or half word, the SPI transmits the CRC. The CRCNEXT
bit is reset. The CRC is also received and compared against the SPI_RXCRCR value.
If the value does not match, the CRCERR flag in SPI_SR is set and an interrupt can be
generated when the ERRIE bit in the SPI_CR2 register is set.

Note: When the SPI is in slave mode, be careful to enable CRC calculation only when the clock is
stable. If not, a wrong CRC calculation may be done.

With high bit rate frequencies, be carefull when transmitting the CRC. As the number of
used CPU cycles has to be as low as possible in the CRC transfer phase, it is forbidden to
call software functions in the CRC transmission sequence to avoid errors in the last data
and CRC reception.

For high bit rate frequencies, it is advised to use the DMA mode to avoid the degradation of
the SPI speed performance due to CPU accesses impacting the SPI bandwidth.

When the STM32F10xxx is configured as slave and the NSS hardware mode is used, the
NSS pin needs to be kept low between the data phase and the CRC phase.

22.3.7 SPI communication using DMA (direct memory addressing)

To operate at its maximum speed, the SPI needs to be fed with the data for transmission and
the data received on the Rx buffer should be read to avoid overrun. To facilitate the transfers,
the SPI is implemented with a DMA facility with a simple request/acknowledge protocol.
DMA access is requested when the enable bit in the SPI_CR2 register is enabled. There are
separate requests for the Tx buffer and the Rx buffer.

Serial peripheral interface (SPI) RM0008

544/682

DMA capability with CRC

When SPI communication is enabled with the CRC communication and the DMA mode, the
transmission and reception of the CRC bytes at the end of communication are done
automatically.

At the end of data and CRC transfers, the CRCERR flag in SPI_SR is set if corruption
occurs during the transfer.

22.3.8 Error flags

Master mode fault (MODF)

Master mode fault occurs when the master device has its NSS pin pulled low (in hardware
mode) or SSI bit low (in software mode), this automatically sets the MODF bit. Master mode
fault affects the SPI peripheral in the following ways:

● The MODF bit is set and an SPI interrupt is generated if the ERRIE bit is set.

● The SPE bit is reset. This blocks all output from the device and disables the SPI
interface.

● The MSTR bit is reset, thus forcing the device into slave mode.

Use the following software sequence to clear the MODF bit:

1. Make a read or write access to the SPI_SR register while the MODF bit is set.

2. Then write to the SPI_CR1 register.

To avoid any multiple slave conflicts in a system comprising several MCUs, the NSS pin
must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits can
be restored to their original state during or after this clearing sequence.

As a security, hardware does not allow the setting of the SPE and MSTR bits while the
MODF bit is set.

In a slave device the MODF bit cannot be set. However, in a multimaster configuration, the
device can be in slave mode with this MODF bit set. In this case, the MODF bit indicates that
there might have been a multimaster conflict for system control. An interrupt routine can be
used to recover cleanly from this state by performing a reset or returning to a default state.

Overrun condition

An overrun condition occurs when the master device has sent data bytes and the slave
device has not cleared the RXNE bit resulting from the previous data byte transmitted.
When an overrun condition occurs:

● OVR bit is set and an interrupt is generated if the ERRIE bit is set.

In this case, the receiver buffer contents will not be updated with the newly received data
from the master device. A read to the SPI_DR register returns this byte. All other
subsequently transmitted bytes are lost.

Clearing the OVR bit is done by a read of the SPI_DR register followed by a read access to
the SPI_SR register.

CRC error

This flag is used to verify the validity of the value received when the CRCEN bit in the
SPI_CR1 register is set. The CRCERR flag in the SPI_SR register is set if the value

RM0008 Serial peripheral interface (SPI)

 545/682

received in the shift register (after transmission of the transmitter SPI_TXCRCR value) does
not match the receiver SPI_RXCRCR value.

22.3.9 Disabling the SPI

When transfer is terminated, the application can stop the communication by disabling the
SPI peripheral. This is done by resetting the SPE bit. Disabling the SPI peripheral while the
last data transfer is still ongoing does not affect the data reliability if the device is not in
Master transmit mode.

Note: In Master transmit mode (full-duplex or simplex transmit only), the application must make
sure that no data transfer is ongoing by checking the BSY flag in the SPI_SR register before
disabling the SPI master.

22.3.10 SPI interrupts

22.4 I2S functional description
The I2S audio protocol is not available in low- and medium-density devices. This section
concerns only high-density devices.

22.4.1 General description

The block diagram of the I2S is shown in Figure 209.

Table 147. SPI interrupt requests

Interrupt event Event flag Enable Control bit

Transmit buffer empty flag TXE TXEIE

Receive buffer not empty flag RXNE RXNEIE

Master Mode fault event MODF

ERRIEOverrun error OVR

CRC error flag CRCERR

Serial peripheral interface (SPI) RM0008

546/682

Figure 209. I2S block diagram

The SPI could function as an audio I2S interface when the I2S capability is enabled (by
setting the I2SMOD bit in the SPI_I2SCFGR register). This interface uses almost the same
pins, flags and interrupts as the SPI.

The I2S shares three common pins with the SPI:

● SD: Serial Data (mapped on the MOSI pin) to transmit or receive the two time-
multiplexed data channels (in simplex mode only).

● WS: Word Select (mapped on the NSS pin) is the data control signal output in master
mode and input in slave mode.

● CK: Serial Clock (mapped on the SCK pin) is the serial clock output in master mode
and serial clock input in slave mode.

Tx buffer

Shift register

16-bit

Communication

Rx buffer

16-bit

MOSI/ SD

Master control logic

MISO

SPI
baud rate generator

CK

I2SMOD

LSB first

LSB
First SPE BR2 BR1 BR0 MSTR CPOL CPHA

Bidi
mode

Bidi
OE

CRC
EN

CRC
Next DFF Rx

only
SSM SSI

Address and data bus

control

NSS/WS

BSY OVR MODF CRC
ERR

CH
SIDE

TxE RxNE

I2S clock generator

MCK

I2S_CK

I2S
MOD

I2SE

CHDATLEN
LEN

CKPOLI2SCFG I2SSTD

MCKOE ODD I2SDIV[7:0]

[1:0] [1:0] [1:0]

UDR

I2SxCLK

ai14748

RM0008 Serial peripheral interface (SPI)

 547/682

An additional pin could be used when a master clock output is needed for some external
audio devices:

● MCK: Master Clock (mapped separately) is used, when the I2S is configured in master
mode (and when the MCKOE bit in the SPI_I2SPR register is set), to output this
additional clock generated at a preconfigured frequency rate equal to 256 × FS, where
FS is the audio sampling frequency.

The I2S uses its own clock generator to produce the communication clock when it is set in
master mode. This clock generator is also the source of the master clock output. Two
additional registers are available in I2S mode. One is linked to the clock generator
configuration SPI_I2SPR and the other one is a generic I2S configuration register
SPI_I2SCFGR (audio standard, slave/master mode, data format, packet frame, clock
polarity, etc.).

The SPI_CR1 register and all CRC registers are not used in the I2S mode. Likewise, the
SSOE bit in the SPI_CR2 register and the MODF and CRCERR bits in the SPI_SR are not
used.

The I2S uses the same SPI register for data transfer (SPI_DR) in 16-bit wide mode.

22.4.2 Supported audio protocols

The three-line bus has to handle only audio data generally time-multiplexed on two
channels: the right channel and the left channel. However there is only one 16-bit register for
the transmission or the reception. So, it is up to the software to write into the data register
the adequate value corresponding to the considered channel side, or to read the data from
the data register and to identify the corresponding channel by checking the CHSIDE bit in
the SPI_SR register. Channel Left is always sent first followed by the channel right (CHSIDE
has no meaning for the PCM protocol).

Four data and packet frames are available. Data may be sent with a format of:

● 16-bit data packed in 16-bit frame

● 16-bit data packed in 32-bit frame

● 24-bit data packed in 32-bit frame

● 32-bit data packed in 32-bit frame

When using 16-bit data extended on 32-bit packet, the first 16 bits (MSB) are the significant
bits, the 16-bit LSB is forced to 0 without any need for software action or DMA request (only
one read/write operation).

The 24-bit and 32-bit data frames need two CPU read or write operations to/from the
SPI_DR or two DMA operations if the DMA is preferred for the application. For 24-bit data
frame specifically, the 8 non-significant bits are extended to 32 bits with 0-bits (by hardware).

For all data formats and communication standards, the most significant bit is always sent
first (MSB first).

The I2S interface supports four audio standards, configurable using the I2SSTD[1:0] and
PCMSYNC bits in the SPI_I2SCFGR register.

I2S Phillips standard

For this standard, the WS signal is used to indicate which channel is being transmitted. It is
activated one CK clock cycle before the first bit (MSB) is available.

Serial peripheral interface (SPI) RM0008

548/682

Figure 210. I2S Phillips protocol waveforms (16/32-bit full accuracy, CPOL = 0)

Data are latched on the falling edge of CK (for the transmitter) and are read on the rising
edge (for the receiver). The WS signal is also latched on the falling edge of CK.

Figure 211. I2S Phillips standard waveforms (24-bit frame with CPOL = 0)

This mode needs two write or read operations to/from the SPI_DR.

● In transmission mode:

if 0x8EAA33 has to be sent (24-bit):

Figure 212. Transmitting 0x8EAA33

MSB LSB MSB

CK

WS

SD

Channel left
Channel right

May be 16-bit, 32-bit

Transmission Reception

CK

WS

SD

Channel left 32-bit
Channel right

MSB LSB

8-bit remaining

0 forced

24-bit data

Transmission Reception

0x8EAA 0x33XX

Only the 8 MSBs are sent to complete the 24 bits

First write to Data register Second write to Data register

8 LSB bits have no meaning and could be
anything

RM0008 Serial peripheral interface (SPI)

 549/682

● In reception mode:

if data 0x8EAA33 is received:

Figure 213. Receiving 0x8EAA33

Figure 214. I2S Phillips standard (16-bit extended to 32-bit packet frame with
CPOL = 0)

When 16-bit data frame extended to 32-bit channel frame is selected during the I2S
configuration phase, only one access to SPI_DR is required. The 16 remaining bits are
forced by hardware to 0x0000 to extend the data to 32-bit format.

If the data to transmit or the received data are 0x76A3 (0x76A30000 extended to 32-bit), the
operation shown in Figure 215 is required.

Figure 215. Example

For transmission, each time an MSB is written to SPI_DR, the TXE flag is set and its
interrupt, if allowed, is generated to load SPI_DR with the new value to send. This takes
place even if 0x0000 have not yet been sent because it is done by hardware.

For reception, the RXNE flag is set and its interrupt, if allowed, is generated when the first
16 MSB half-word is received.

In this way, more time is provided between two write or read operations, which prevents
underrun or overrun conditions (depending on the direction of the data transfer).

0x8EAA 0x3300

Only the 8MSB are right

First read from Data register Second read from Data register

The 8 LSB will always be 00

CK

WS

SD

Channel left 32-bit
Channel right

MSB LSB

16-bit remaining16-bit data

0 forced

Transmission Reception

0X76A3

Only one access to SPI_DR

Serial peripheral interface (SPI) RM0008

550/682

MSB justified standard

For this standard, the WS signal is generated at the same time as the first data bit, which is
the MSBit.

Figure 216. MSB Justified 16-bit or 32-bit full-accuracy length with CPOL = 0

Data are latched on the falling edge of CK (for transmitter) and are read on the rising edge
(for the receiver).

Figure 217. MSB Justified 24-bit frame length with CPOL = 0

Figure 218. MSB Justified 16-bit extended to 32-bit packet frame with CPOL = 0

MSB LSB MSB

CK

WS

SD

Channel left
Channel right

May be 16-bit, 32-bit

Transmission Reception

CK

WS

SD

Channel left 32-bit
Channel right

MSB LSB

8-bit remaining

0 forced

24-bit data

Transmission Reception

CK

WS

SD

Channel left 32-bit
Channel right

MSB LSB

16-bit remaining

0 forced

16-bit data

Transmission Reception

RM0008 Serial peripheral interface (SPI)

 551/682

LSB justified standard

This standard is similar to the MSB justified standard (no difference for the 16-bit and 32-bit
full-accuracy frame formats).

Figure 219. LSB justified 16-bit or 32-bit full-accuracy with CPOL = 0

Figure 220. LSB Justified 24-bit frame length with CPOL = 0

● In transmission mode:

If data 0x3478AE have to be transmitted, two write operations to the SPI_DR register
are required from software or by DMA. The operations are shown below.

Figure 221. Operations required to transmit 0x3478AE

● In reception mode:

If data 0x3478AE are received, two successive read operations from SPI_DR are
required on each RXNE event.

MSB LSB MSB

CK

WS

SD

Channel left
Channel right

May be 16-bit, 32-bit

Transmission Reception

CK

WS

SD

Channel left 32-bit
Channel right

MSB LSB

24-bit remaining

0 forced

8-bit data

Transmission Reception

0xXX34 0x78AE

First write to Data register Second write to Data register

Only the 8 LSB bits of the half-word
are significant. Whatever the 8 MSBs
a field of 0x00 is forced instead

conditioned by TXE = ‘1’ conditioned by TXE = ‘1’

Serial peripheral interface (SPI) RM0008

552/682

Figure 222. Operations required to receive 0x3478AE

Figure 223. LSB Justified 16-bit extended to 32-bit packet frame with CPOL = 0

When 16-bit data frame extended to 32-bit channel frame is selected during the I2S
configuration phase, Only one access to SPI_DR is required. The 16 remaining bits are
forced by hardware to 0x0000 to extend the data to 32-bit format. In this case it corresponds
to the half-word MSB.

If the data to transmit or the received data are 0x76A3 (0x0000 76A3 extended to 32-bit),
the operation shown in Figure 224 is required.

Figure 224. Example

In transmission mode, when TXE is asserted, the application has to write the data to be
transmitted (in this case 0x76A3). The 0x000 field is transmitted first (extension on 32-bit).
TXE is asserted again as soon as the effective data (0x76A3) is sent on SD.

In reception mode, RXNE is asserted as soon as the significant half-word is received (and
not the 0x0000 field).

In this way, more time is provided between two write or read operations to prevent underrun
or overrun conditions.

0x0034 0x78AE

First read from Data register Second read from Data register

Only the 8 LSB bits of the half-word
are significant. Whatever the 8 MSBs,
a field of 0x00 is forced instead

conditioned by RXNE = ‘1’ conditioned by RXNE = ‘1’

CK

WS

SD

Channel left 32-bit
Channel right

MSB LSB

16-bit remaining

0 forced

16-bit data

Transmission Reception

0X76A3

Only one access to SPI_DR

RM0008 Serial peripheral interface (SPI)

 553/682

PCM standard

For the PCM standard, there is no need to use channel-side information. The two PCM
modes (short and long frame) are available and configurable using the PCMSYNC bit in
SPI_I2SCFGR.

Figure 225. PCM standard waveforms (16-bit)

For long frame synchronization, the WS signal assertion time is fixed 13 bits in master
mode.

For short frame synchronization, the WS synchronization signal is only one cycle long.

Figure 226. PCM standard waveforms (16-bit extended to 32-bit packet frame)

Note: For both modes (master and slave) and for both synchronizations (short and long), the
number of bits between two consecutive pieces of data (and so two synchronization signals)
needs to be specified (DATLEN and CHLEN bits in the SPI_I2SCFGR register) even in slave
mode.

MSB LSB MSB

CK

WS

SD

16-bit

WS
up to 13-bit

short
frame

long
frame

MSB

CK

WS

SD

16-bit

WS
up to 13-bit

short
frame

long
frame

LSB

Serial peripheral interface (SPI) RM0008

554/682

22.4.3 Clock generator

The I2S bitrate determines the dataflow on the I2S data line and the I2S clock signal
frequency.

I2S bitrate = number of bits per channel × number of channels × sampling audio frequency

For a 16-bit audio, left and right channel, the I2S bitrate is calculated as follows:

I2S bitrate = 16 × 2 × FS

It will be: I2S bitrate = 32 x 2 x FS if the packet length is 32-bit wide.

Figure 227. Audio sampling frequency definition

When the master mode is configured, a specific action needs to be taken to properly
program the linear divider in order to communicate with the desired audio frequency.

Figure 228. I2S clock generator architecture

1. Where x could be 2 or 3.

Figure 227 presents the communication clock architecture. The I2SxCLK source is the
System Clock (provided by the HSI, the HSE or the PLL and sourcing the AHB clock).

The audio sampling frequency may be 48 kHz, 44.1 kHz, 22.05 kHz, 16 kHz or 8 kHz. In
order to reach the desired frequency, the linear divider needs to be programmed according
to the formulas below:

When the master clock is generated (MCKOE in the SPI_I2SPR register is set):

FS = I2SxCLK / [(16*2)*((2*I2SDIV)+ODD)*8)] when the channel frame is 16-bit wide

FS = I2SxCLK / [(32*2)*((2*I2SDIV)+ODD)*4)] when the channel frame is 32-bit wide

16-bit or 32-bit Left channel 16-bit or 32-bit Right channel

sampling point
sampling point

32-bits or 64-bits

FS

FS: Audio sampling frequency

8-bit
Divider +

Linear
CK

ODD I2SDIV[7:0]

I2SxCLK

CHLENI2SMOD

reshaping stage
Divider by 4 Div2

1

0

MCKOE

MCKOE

MCK

0

1

RM0008 Serial peripheral interface (SPI)

 555/682

When the master clock is disabled (MCKOE bit cleared):

FS = I2SxCLK / [(16*2)*((2*I2SDIV)+ODD))] when the channel frame is 16-bit wide

FS = I2SxCLK / [(32*2)*((2*I2SDIV)+ODD))] when the channel frame is 32-bit wide

22.4.4 I2S master mode

The I2S can be configured in master mode. This means that the serial clock is generated on
the CK pin as well as the Word Select signal WS. Master clock (MCK) may be output or not,
thanks to the MCKOE bit in the SPI_I2SPR register.

Procedure

1. Select the I2SDIV[7:0] bits in the SPI_I2SPR register to define the serial clock baud
rate to reach the proper audio sample frequency. The ODD bit in the SPI_I2SPR
register also has to be defined.

2. Select the CKPOL bit to define the steady level for the communication clock. Set the
MCKOE bit in the SPI_I2SPR register if the master clock MCK needs to be provided to
the external DAC/ADC audio component (the I2SDIV and ODD values should be
computed depending on the state of the MCK output, for more details refer to
Section 22.4.3: Clock generator).

3. Set the I2SMOD bit in SPI_I2SCFGR to activate the I2S functionalities and choose the
I2S standard through the I2SSTD[1:0] and PCMSYNC bits, the data length through the
DATLEN[1:0] bits and the number of bits per channel by configuring the CHLEN bit.
Select also the I2S master mode and direction (Transmitter or Receiver) through the
I2SCFG[1:0] bits in the SPI_I2SCFGR register.

4. If needed, select all the potential interruption sources and the DMA capabilities by
writing the SPI_CR2 register.

5. The I2SE bit in SPI_I2SCFGR register must be set.

WS and CK are configured in output mode. MCK is also an output, if the MCKOE bit in
SPI_I2SPR is set.

Transmission sequence

The transmission sequence begins when a half-word is written into the Tx buffer.

Assumedly, the first data written into the Tx buffer correspond to the channel Left data.
When data are transferred from the Tx buffer to the shift register, TXE is set and data
corresponding to the channel Right have to be written into the Tx buffer. The CHSIDE flag
indicates which channel is to be transmitted. It has a meaning when the TXE flag is set
because the CHSIDE flag is updated when TXE goes high.

A full frame has to be considered as a Left channel data transmission followed by a Right
channel data transmission. It is not possible to have a partial frame where only the left
channel is sent.

The data half-word is parallel loaded into the 16-bit shift register during the first bit
transmission, and then shifted out, serially, to the MOSI/SD pin, MSB first. The TXE flag is
set after each transfer from the Tx buffer to the shift register and an interrupt is generated if
the TXEIE bit in the SPI_CR2 register is set.

For more details about the write operations depending on the I2S standard mode selected,
refer to Section 22.4.2: Supported audio protocols).

Serial peripheral interface (SPI) RM0008

556/682

To ensure a continuous audio data transmission, it is mandatory to write the SPI_DR with
the next data to transmit before the end of the current transmission.

To switch off the I2S, by clearing I2SE, it is mandatory to wait for TXE = 0 and BSY = 0.

Reception sequence

The operating mode is the same as for the transmission mode except for the point 3, where
the configuration should set the master reception mode through the I2SCFG[1:0] bits.

Whatever the data or channel length, the audio data are received by 16-bit packets. This
means that each time the Rx buffer is full, the RXNE flag is set and an interrupt is generated
if the RXNEIE bit is set in SPI_CR2 register. Depending on the data and channel length
configuration, the audio value received for a right or left channel may result from one or two
receptions into the Rx buffer.

Clearing the RXNE bit is performed by reading the SPI_DR register.

CHSIDE is updated after each reception. It is sensitive to the WS signal generated by the
I2S cell.

For more details about the read operations depending on the I2S standard mode selected,
refer to Section 22.4.2: Supported audio protocols.

If data are received while the precedent received data have not been read yet, an overrun is
generated and the OVR flag is set. If the ERRIE bit is set in the SPI_CR2 register, an
interrupt is generated to indicate the error.

To switch off the I2S in reception mode, I2SE has to be cleared during and before the end of
the last data reception. Even if I2SE is switched off while the last data are being transferred,
the clock and the transfer are maintained until the end of the current data transmission.

22.4.5 I2S slave mode

For the slave configuration, the I2S can be configured in transmission or reception mode.
The operating mode is following mainly the same rules as described for the I2S master
configuration. In slave mode, there is no clock to be generated by the I2S interface. The
clock and WS signals are input from the external master connected to the I2S interface.
There is then no need, for the user, to configure the clock.

The configuration steps to follow are listed below:

1. Set the I2SMOD bit in the SPI_I2SCFGR register to reach the I2S functionalities and
choose the I2S standard through the I2SSTD[1:0] bits, the data length through the
DATLEN[1:0] bits and the number of bits per channel for the frame configuring the
CHLEN bit. Select also the mode (transmission or reception) for the slave through the
I2SCFG[1:0] bits in SPI_I2SCFGR register.

2. If needed, select all the potential interrupt sources and the DMA capabilities by writing
the SPI_CR2 register.

3. The I2SE bit in SPI_I2SCFGR register must be set.

Transmission sequence

The transmission sequence begins when a half-word (corresponding to channel Left data) is
written to the Tx buffer. When data are transferred from the Tx buffer to the shift register, the
TXE flag is set and data corresponding to the channel Right have to be written into the Tx
buffer. The CHSIDE flag indicates which channel is to be transmitted. Compared to the

RM0008 Serial peripheral interface (SPI)

 557/682

master transmission mode, in slave mode, CHSIDE is sensitive to the WS signal coming
from the external master. This means that the slave needs to be ready to transmit the first
data before the clock is generated by the master. WS assertion corresponds to channel Left
transmitted first.

Note: The I2SE has to be written at least two PCLK cycles before the first clock of the master
comes on the CK line.

The data half-word is parallel-loaded into the 16-bit shift register (from the internal bus)
during the first bit transmission, and then shifted out serially to the MOSI/SD pin MSB first.
The TXE flag is set after each transfer from the Tx buffer to the shift register and an interrupt
is generated if the TXEIE bit in the SPI_CR2 register is set.

Note that the TXE flag should be checked to be at 1 before attempting to write the Tx buffer.

For more details about the write operations depending on the I2S standard mode selected,
refer to Section 22.4.2: Supported audio protocols.

To secure a continuous audio data transmission, it is mandatory to write the SPI_DR
register with the next data to transmit before the end of the current transmission. An
underrun flag is set and an interrupt may be generated if the data are not written into the
SPI_DR register before the first clock edge of the next data communication. This indicates
to the software that the transferred data are wrong. If the ERRIE bit is set into the SPI_CR2
register, an interrupt is generated when the UDR flag in the SPI_SR register goes high. In
this case, it is mandatory to switch off the I2S and to restart a data transfer starting from the
channel left.

Reception sequence

The operating mode is the same as for the transmission mode except for the point 1. where
the configuration should set the master reception mode using the I2SCFG[1:0] bits in the
SPI_I2SCFGR register.

Whatever the data length or the channel length, the audio data are received by 16-bit
packets. This means that each time the RX buffer is full, the RXNE flag in the SPI_SR
register is set and an interrupt is generated if the RXNEIE bit is set in the SPI_CR2 register.
Depending on the data length and channel length configuration, the audio value received for
a right or left channel may result from one or two receptions into the RX buffer.

The CHSIDE flag is updated each time data are received to be read from SPI_DR. It is
sensitive to the external WS line managed by the external master component.

Clearing the RXNE bit is performed by reading the SPI_DR register.

For more details about the read operations depending the I2S standard mode selected, refer
to Section 22.4.2: Supported audio protocols.

If data are received while the precedent received data have not yet been read, an overrun is
generated and the OVR flag is set. If the bit ERRIE is set in the SPI_CR2 register, an
interrupt is generated to indicate the error.

To switch off the I2S in reception mode, I2SE has to be cleared during and before the end of
the last data reception. Even if I2SE is switched off while the last data is being transferred,
the clock and the transfer go on until the end of the last data transmission.

Note: The external master components should have the capability to send/receive data on 16-bit
or 32-bit packet via an audio channel.

Serial peripheral interface (SPI) RM0008

558/682

22.4.6 Status flags

Three status flags are provided for the application to fully monitor the state of the I2S bus.

Busy flag (BSY)

This flag indicates the state of the I2S communication layer. It is set to indicate that the I2S is
busy communicating and/or that there is a valid data half-word in the Tx buffer awaiting
transmission. The purpose of this flag is to indicate if there is any communication ongoing
on the I2S bus or not. This flag becomes set as soon as:

1. Data are written into the SPI_DR register in master mode

2. The CK clock is present in slave mode

The Busy flag is reset as soon as a half-word is transmitted/received. It is set and cleared by
hardware. This flag can be monitored to avoid write collision errors. Writing to it has no
effect. It is meaningful only when the I2SE bit in the SPI_I2SCFGR register is set.

Tx buffer empty flag (TXE)

When set, this flag indicates that the Tx buffer is empty and the next data to be transmitted
can then be loaded into it. The TXE flag is reset when the Tx buffer already contains data to
be transmitted. It is also reset when the I2S is disabled (I2SE bit is reset).

RX buffer not empty (RXNE)

When set, this flag indicates that there are valid received data in the RX Buffer. It is reset
when SPI_DR register is read.

Channel Side flag (CHSIDE)

In transmission mode, this flag is refreshed when TXE goes high. It indicates the channel
side to which the data to transfer on SD has to belong. In case of an underrun error event in
slave transmission mode, this flag is not reliable and I2S needs to be switched off and
switched on before resuming the communication.

In reception mode, this flag is refreshed when data are received into SPI_DR. It indicates
from which channel side data have been received. Note that in case of error (like OVR) this
flag becomes meaningless and the I2S should be reset by disabling and then enabling it
(with configuration if it needs changing).

This flag has no meaning in the PCM standard (for both Short and Long frame modes).

When the OVR or UDR flag in the SPI_SR is set and the ERRIE bit in SPI_CR2 is also set,
an interrupt is generated. This interrupt can be cleared by reading the SPI_SR status
register (once the interrupt source has been cleared).

22.4.7 Error flags

There are two error flags for the I2S cell.

Underrun flag (UDR)

In slave transmission mode this flag is set when the first clock for data transmission appears
while the software has not yet loaded any value into SPI_DR. It is available when the
I2SMOD bit in SPI_I2SCFGR is set. An interrupt may be generated if the ERRIE bit in
SPI_CR2 is set.
The UDR bit is cleared by a read operation on the SPI_SR register.

RM0008 Serial peripheral interface (SPI)

 559/682

Overrun flag (OVR)

This flag is set when data are received and the previous data have not yet been read from
SPI_DR. As a result, the incoming data are lost. An interrupt may be generated if the ERRIE
bit is set in SPI_CR2.

In this case, the receive buffer contents are not updated with the newly received data from
the transmitter device. A read operation to the SPI_DR register returns the previous
correctly received data. All other subsequently transmitted half-words are lost.

Clearing the OVR bit is done by a read operation on the SPI_DR register followed by a read
access to the SPI_SR register.

22.4.8 I2S interrupts

Table 148 provides the list of I2S interrupts.

22.4.9 DMA features

DMA is working in exactly the same way as for the SPI mode. There is no difference on the
I2S. Only the CRC feature is not available in I2S mode since there is no data transfer
protection system.

22.5 SPI and I2S registers
Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

22.5.1 SPI control register 1 (SPI_CR1) (not used in I2S mode)

Address offset: 0x00

Reset value: 0x0000)

Table 148. I2S interrupt requests

Interrupt event Event flag Enable Control bit

Transmit buffer empty flag TXE TXEIE

Receive buffer not empty flag RXNE RXNEIE

Overrun error OVR
ERRIE

Underrun error UDR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BIDI
MODE

BIDI
OE

CRC
EN

CRC
NEXT DFF RX

ONLY SSM SSI LSB
FIRST SPE BR [2:0] MSTR CPOL CPHA

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Serial peripheral interface (SPI) RM0008

560/682

Bit 15 BIDIMODE: Bidirectional data mode enable
0: 2-line unidirectional data mode selected
1: 1-line bidirectional data mode selected

Note: Not used in I2S mode

Bit 14 BIDIOE: Output enable in bidirectional mode

This bit combined with the BIDImode bit selects the direction of transfer in bidirectional mode
0: Output disabled (receive-only mode)
1: Output enabled (transmit-only mode)

Note: In master mode, the MOSI pin is used and in slave mode, the MISO pin is used.
Not used in I2S mode

Bit 13 CRCEN: Hardware CRC calculation enable
0: CRC calculation disabled
1: CRC calculation Enabled

Note: This bit should be written only when SPI is disabled (SPE = ‘0’) for correct operation

Not used in I2S mode

Bit 12 CRCNEXT: Transmit CRC next

0: Next transmit value is from Tx buffer
1: Next transmit value is from Tx CRC register

Note: This bit has to be written as soon as the last data is written into the SPI_DR register.
Not used in I2S mode

Bit 11 DFF: Data frame format
0: 8-bit data frame format is selected for transmission/reception
1: 16-bit data frame format is selected for transmission/reception

Note: This bit should be written only when SPI is disabled (SPE = ‘0’) for correct operation

Not used in I2S mode

Bit 10 RXONLY: Receive only

This bit combined with the BIDImode bit selects the direction of transfer in 2-line unidirectional
mode. This bit is also useful in a multislave system in which this particular slave is not accessed,
the output from the accessed slave is not corrupted.
0: Full duplex (Transmit and receive)
1: Output disabled (Receive-only mode)

Note: Not used in I2S mode

Bit 9 SSM: Software slave management

When the SSM bit is set, the NSS pin input is replaced with the value from the SSI bit.
0: Software slave management disabled
1: Software slave management enabled

Note: Not used in I2S mode

Bit 8 SSI: Internal slave select

This bit has an effect only when the SSM bit is set. The value of this bit is forced onto the NSS pin
and the I/O value of the NSS pin is ignored.

Note: Not used in I2S mode

Bit 7 LSBFIRST: Frame format

0: MSB transmitted first
1: LSB transmitted first

Note: Notes: This bit should not be changed when communication is ongoing.

Not used in I2S mode

RM0008 Serial peripheral interface (SPI)

 561/682

Bit 6 SPE: SPI enable
0: Peripheral disabled
1: Peripheral enabled

Note: Not used in I2S mode

Bits 5:3 BR[2:0]: Baud rate control

000: fPCLK/2
001: fPCLK/4
010: fPCLK/8
011: fPCLK/16
100: fPCLK/32
101: fPCLK/64
110: fPCLK/128
111: fPCLK/256

Note: These bits should not be changed when communication is ongoing.
Not used in I2S mode

Bit 2 MSTR: Master selection

0: Slave configuration
1: Master configuration

Note: This bit should not be changed when communication is ongoing.

Not used in I2S mode

Bit1 CPOL: Clock polarity

0: CK to 0 when idle
1: CK to 1 when idle

Note: This bit should not be changed when communication is ongoing.
Not used in I2S mode

Bit 0 CPHA: Clock phase
0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge

Note: This bit should not be changed when communication is ongoing.

Not used in I2S mode

Serial peripheral interface (SPI) RM0008

562/682

22.5.2 SPI control register 2 (SPI_CR2)

Address offset: 0x04

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved TXEIE RXNE
IE ERRIE reserved SSOE TXDMA

EN
RXDMA

EN

Res. rw rw rw Res. rw rw rw

Bits 15:8 Reserved. Forced to 0 by hardware.

Bit 7 TXEIE: Tx buffer empty interrupt enable

0: TXE interrupt masked
1: TXE interrupt not masked. Used to generate an interrupt request when the TXE flag is set.

Note: To function correctly, the TXEIE and TXDMAEN bits should not be set at the same time.

Bit 6 RXNEIE: RX buffer not empty interrupt enable

0: RXNE interrupt masked
1: RXNE interrupt not masked. Used to generate an interrupt request when the RXNE flag is set.

Note: To function correctly, the RXNEIE and RXDMAEN bits should not be set at the same time.

Bit 5 ERRIE: Error interrupt enable

This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR,
MODF in SPI mode and UDR, OVR in I2S mode).
0: Error interrupt is masked
1: Error interrupt is enabled.

Bits 4:3 Reserved. Forced to 0 by hardware.

Bit 2 SSOE: SS output enable
0: SS output is disabled in master mode and the cell can work in multimaster configuration
1: SS output is enabled in master mode and when the cell is enabled. The cell cannot work in a
multimaster environment.

Note: Not used in I2S mode

Bit 1 TXDMAEN: Tx buffer DMA enable
When this bit is set, the DMA request is made whenever the TXE flag is set.
0: Tx buffer DMA disabled
1: Tx buffer DMA enabled

Bit 0 RXDMAEN: Rx buffer DMA enable
When this bit is set, the DMA request is made whenever the RXNE flag is set.
0: Rx buffer DMA disabled
1: Rx buffer DMA enabled

RM0008 Serial peripheral interface (SPI)

 563/682

22.5.3 SPI status register (SPI_SR)

Address offset: 08h

Reset value: 0x0002

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved BSY OVR MODF CRC
ERR UDR CHSID

E TXE RXNE

Res. r r r rc_w0 r r r r

Bits 15:8 Reserved. Forced to 0 by hardware.

Bit 7 BSY: Busy flag

0: SPI (or I2S) not busy
1: SPI (or I2S) is busy in communication or Tx buffer is not empty
This flag is set and cleared by hardware.

Note: In master receiver-only mode (1-line bidirectional), it is forbidden to check the BSY flag.

Bit 6 OVR: Overrun flag

0: No overrun occurred
1: Overrun occurred
This flag is set by hardware and reset by a software sequence. Refer to Section 22.4.7 on page 558
for the software sequence.

Bit 5 MODF: Mode fault

0: No mode fault occurred
1: Mode fault occurred
This flag is set by hardware and reset by a software sequence. Refer to Section 22.3.8 on page 544
for the software sequence.

Note: Not used in I2S mode

Bit 4 CRCERR: CRC error flag

0: CRC value received matches the SPI_RXCRCR value
1: CRC value received does not match the SPI_RXCRCR value
This flag is set by hardware and cleared by software writing 0.

Note: Not used in I2S mode

Bit 3 UDR: Underrun flag

0: No underrun occurred
1: Underrun occurred

This flag is set by hardware and reset by a software sequence. Refer to Section 22.4.7 on page 558
for the software sequence.

Note: Not used in SPI mode

Serial peripheral interface (SPI) RM0008

564/682

22.5.4 SPI data register (SPI_DR)

Address offset: 0x0C

Reset value: 0x0000

Bit 2 CHSIDE: Channel side
0: Channel Left has to be transmitted or has been received

1: Channel Right has to be transmitted or has been received

Note: Not used for the SPI mode
No meaning in PCM mode

Bit 1 TXE: Transmit buffer empty
0: Tx buffer not empty
1: Tx buffer empty

Bit 0 RXNE: Receive buffer not empty
0: Rx buffer empty
1: Rx buffer not empty

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 DR[15:0]: Data register

Data received or to be transmitted.

The data register is split into 2 buffers - one for writing (Transmit Buffer) and another one for reading
(Receive buffer). A write to the data register will write into the Tx buffer and a read from the data
register will return the value held in the Rx buffer.

Notes for the SPI mode:
Depending on the data frame format selection bit (DFF in SPI_CR1 register), the data sent or
received is either 8-bit or 16-bit. This selection has to be made before enabling the SPI to
ensure correct operation.

For an 8-bit data frame, the buffers are 8-bit and only the LSB of the register (SPI_DR[7:0]) is
used for transmission/reception. When in reception mode, the MSB of the register
(SPI_DR[15:8]) is forced to 0.

For a 16-bit data frame, the buffers are 16-bit and the entire register, SPI_DR[15:0] is used for
transmission/reception.

RM0008 Serial peripheral interface (SPI)

 565/682

22.5.5 SPI CRC polynomial register (SPI_CRCPR) (not used in I2S
mode)

Address offset: 0x10

Reset value: 0x0007

22.5.6 SPI Rx CRC register (SPI_RXCRCR) (not used in I2S mode)

Address offset: 0x14

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRCPOLY[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CRCPOLY[15:0]: CRC polynomial register

This register contains the polynomial for the CRC calculation.
The CRC polynomial (0007h) is the reset value of this register. Another polynomial can be
configured as required.

Note: Not used for the I2S mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RxCRC[15:0]

r r r r r r r r r r r r r r r r

Bits 15:0 RXCRC[15:0]: Rx CRC register

When CRC calculation is enabled, the RxCRC[15:0] bits contain the computed CRC value of the
subsequently received bytes. This register is reset when the CRCEN bit in SPI_CR1 register is
written to 1. The CRC is calculated serially using the polynomial programmed in the SPI_CRCPR
register.
Only the 8 LSB bits are considered when the data frame format is set to be 8-bit data (DFF bit of
SPI_CR1 is cleared). CRC calculation is done based on CRC8.
The entire 16-bits of this register are considered when a 16-bit data frame format is selected (DFF
bit of the SPI_CR1 register is set). CRC calculation is done based on CRC16 - CCITT standard.

Note: A read to this register when the BSY Flag is set could return an incorrect value.
Not used for the I2S mode.

Serial peripheral interface (SPI) RM0008

566/682

22.5.7 SPI Tx CRC register (SPI_TXCRCR) (not used in I2S mode)

Address offset: 0x18

Reset value: 0x0000

22.5.8 SPI_I2S configuration register (SPI_I2SCFGR)

Address offset: 1Ch

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TxCRC[15:0]

r r r r r r r r r r r r r r r r

Bits 15:0 TxCRC[15:0]: Tx CRC register

When CRC calculation is enabled, the TxCRC[7:0] bits contain the computed CRC value of the
subsequently transmitted bytes. This register is reset when the CRCEN bit of SPI_CR1 is written to
1. The CRC is calculated serially using the polynomial programmed in the SPI_CRCPR register.
Only the 8 LSB bits are considered when the data frame format is set to be 8-bit data (DFF bit of
SPI_CR1 is cleared). CRC calculation is done based on CRC8.
The entire 16-bits of this register are considered when a 16-bit data frame format is selected (DFF
bit of the SPI_CR1 register is set). CRC calculation is done based on CRC16 - CCITT standard.

Note: A read to this register when the BSY flag is set could return an incorrect value.
Not used for the I2S mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved I2SMO
D I2SE I2SCFG PCMS

YNC
reserv

ed I2SSTD CKPO
L DATLEN CHLE

N

rw rw rw rw rw rw rw

Bits 15:12 Reserved: Forced to 0 by hardware

Bit 11 I2SMOD: I2S mode selection

0: SPI mode is selected
1: I2S mode is selected

Note: This bit should be configured when the SPI or I2S is disabled

Bit 10 I2SE: I2S Enable
0: I2S peripheral is disabled
1: I2S peripheral is enabled

Note: Not used in SPI mode

Bit 9:8 I2SCFG: I2S configuration mode

00: Slave - transmit
01: Slave - receive
10: Master - transmit
11: Master - receive

Note: This bit should be configured when the I2S is disabled.
Not used for the SPI mode

RM0008 Serial peripheral interface (SPI)

 567/682

Bit 7 PCMSYNC: PCM frame synchronization
0: Short frame synchronization
1: Long frame synchronization

Note: This bit has a meaning only if I2SSTD = 11 (PCM standard is used)

Not used for the SPI mode

Bit 6 Reserved: forced at 0 by hardware

Bit 5:4 I2SSTD: I2S standard selection

00: I2S Phillips standard.
01: MSB justified standard (left justified)
10: LSB justified standard (right justified)
11: PCM standard

For more details on I2S standards, refer to Section 22.4.2 on page 547
Note: For correct operation, these bits should be configured when the I2S is disabled.

Not used in SPI mode

Bit 3 CKPOL: Steady state clock polarity

0: I2S clock steady state is low level
1: I2S clock steady state is high level

Note: For correct operation, this bit should be configured when the I2S is disabled.

Not used in SPI mode

Bit 2:1 DATLEN: Data length to be transferred

00: 16-bit data length
01: 24-bit data length
10: 32-bit data length
11: Not allowed

Note: For correct operation, these bits should be configured when the I2S is disabled.

Not used in SPI mode

Bit 0 CHLEN: Channel length (number of bits per audio channel)

0: 16-bit wide
1: 32-bit wide
The bit write operation has a meaning only if DATLEN = 00 otherwise the channel length is fixed to
32-bit by hardware whatever the value filled in.

Note: For correct operation, this bit should be configured when the I2S is disabled.

Not used in SPI mode

Serial peripheral interface (SPI) RM0008

568/682

22.5.9 SPI_I2S prescaler register (SPI_I2SPR)

Address offset: 20h

Reset value: 0000 0010 (0002h)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved MCKOE ODD I2SDIV

Res. rw rw rw

Bits 15:10 Reserved: Forced to 0 by hardware

Bit 9 MCKOE: Master clock output enable

0: Master clock output is disabled
1: Master clock output is enabled

Note: This bit should be configured when the I2S is disabled. It is used only when the I2S is in master
mode.

Not used in SPI mode.

Bit 8 ODD: Odd factor for the prescaler

0: real divider value is = I2SDIV *2
1: real divider value is = (I2SDIV * 2)+1

Refer to Section 22.4.3 on page 554
Note: This bit should be configured when the I2S is disabled. It is used only when the I2S is in master

mode.
Not used in SPI mode

Bit 7:0 I2SDIV: I2S Linear prescaler
I2SDIV [7:0] = 0 or I2SDIV [7:0] = 1 are forbidden values.
Refer to Section 22.4.3 on page 554

Note: These bits should be configured when the I2S is disabled. It is used only when the I2S is in
master mode.

Not used in SPI mode.

RM0008 Serial peripheral interface (SPI)

 569/682

22.5.10 SPI register map

The table provides shows the SPI register map and reset values.

Note: Refer to Table 1 on page 35 for the register boundary addresses.

Table 149. SPI register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
SPI_CR1

Reserved

B
ID

IM
O

D
E

B
ID

IO
E

C
R

C
E

N

C
R

C
N

E
X

T

D
F

F

R
X

O
N

LY

S
S

M

S
S

I

LS
B

F
IR

S
T

S
P

E BR [2:0]

M
S

T
R

C
P

O
L

C
P

H
A

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
SPI_CR2

Reserved

T
X

E
IE

R
X

N
E

IE

E
R

R
IE

R
es

er
ve

d

S
S

O
E

T
X

D
M

A
E

N

R
X

D
M

A
E

N

Reset Value 0 0 0 0 0 0

0x08
SPI_SR

Reserved B
S

Y

O
V

R

M
O

D
F

C
R

C
E

R
R

U
D

R

C
H

S
ID

E

T
X

E

R
X

N
E

Reset Value 0 0 0 0 0 0 1 0

0x0C
SPI_DR

Reserved
DR[15:0]

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
SPI_CRCPR

Reserved
CRCPOLY[15:0]

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0x14
SPI_RXCRCR

Reserved
RxCRC[15:0]

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
SPI_TXCRCR

Reserved
TxCRC[15:0]

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
SPI_I2SCFGR

Reserved
I2

S
M

O
D

I2
S

E

I2
S

C
F

G

P
C

M
S

Y
N

C

R
es

er
ve

d

I2
S

S
T

D

C
K

P
O

L

D
AT

LE
N

C
H

LE
N

Reset Value 0 0 0 0 0 0 0 0 0 0 0

0x20
SPI_I2SPR

Reserved

M
C

K
O

E

O
D

D I2SDIV

Reset Value 0 0 0 0 0 0 0 0 1 0

Inter-integrated circuit (I2C) interface RM0008

570/682

23 Inter-integrated circuit (I2C) interface

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F10xxx family, unless otherwise specified.

23.1 I2C introduction
I2C (inter-integrated circuit) bus Interface serves as an interface between the microcontroller
and the serial I2C bus. It provides multimaster capability, and controls all I2C bus-specific
sequencing, protocol, arbitration and timing. It supports standard and fast speed modes. It is
also SMBus 2.0 compatible.

It may be used for a variety of purposes, including CRC generation and verification, SMBus
(system management bus) and PMBus (power management bus).

Depending on specific device implementation DMA capability can be available for reduced
CPU overload.

23.2 I2C main features
● Parallel-bus/I2C protocol converter

● Multimaster capability: the same interface can act as Master or Slave

● I2C Master features:

– Clock generation

– Start and Stop generation

● I2C Slave features:

– Programmable I2C Address detection

– Dual Addressing Capability to acknowledge 2 slave addresses

– Stop bit detection

● Generation and detection of 7-bit/10-bit addressing and General Call

● Supports different communication speeds:

– Standard Speed (up to 100 kHz),

– Fast Speed (up to 400 kHz)

● Status flags:

– Transmitter/Receiver mode flag

– End-of-Byte transmission flag

– I2C busy flag

● Error flags:

– Arbitration lost condition for master mode

RM0008 Inter-integrated circuit (I2C) interface

 571/682

– Acknowledgement failure after address/ data transmission

– Detection of misplaced start or stop condition

– Overrun/Underrun if clock stretching is disabled

● 2 Interrupt vectors:

– 1 Interrupt for successful address/ data communication

– 1 Interrupt for error condition

● Optional Clock Stretching

● 1-byte buffer with DMA capability

● Configurable PEC (Packet Error Checking) Generation or Verification:

– PEC value can be transmitted as last byte in Tx mode

– PEC error checking for last received byte

● SMBus 2.0 Compatibility:

– 25 ms clock low timeout delay

– 10 ms master cumulative clock low extend time

– 25 ms slave cumulative clock low extend time

– Hardware PEC generation/verification with ACK control

– Address Resolution Protocol (ARP) supported

● PMBus Compatibility

Note: Some of the above features may not be available in certain products. The user should refer
to the product data sheet, to identify the specific features supported by the I2C interface
implementation.

23.3 I2C functional description
In addition to receiving and transmitting data, this interface converts it from serial to parallel
format and vice versa. The interrupts are enabled or disabled by software. The interface is
connected to the I2C bus by a data pin (SDA) and by a clock pin (SCL). It can be connected
with a standard (up to 100 kHz) or fast (up to 400 kHz) I2C bus.

23.3.1 Mode selection

The interface can operate in one of the four following modes:

● Slave transmitter

● Slave receiver

● Master transmitter

● Master receiver

By default, it operates in slave mode. The interface automatically switches from slave to
master, after it generates a START condition and from master to slave, if an arbitration loss
or a Stop generation occurs, allowing multimaster capability.

Communication flow

In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a start condition and ends with a stop condition. Both
start and stop conditions are generated in master mode by software.

Inter-integrated circuit (I2C) interface RM0008

572/682

In Slave mode, the interface is capable of recognizing its own addresses (7 or 10-bit), and
the General Call address. The General Call address detection may be enabled or disabled
by software.

Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the
start condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is
always transmitted in Master mode.

A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must
send an acknowledge bit to the transmitter. Refer to the following figure.

Figure 229. I2C bus protocol

Acknowledge may be enabled or disabled by software. The I2C interface addresses (dual
addressing 7-bit/ 10-bit and/or general call address) can be selected by software.

The block diagram of the I2C interface is shown in Figure 230.

SCL

SDA

1 2 8 9

MSB ACK

Stop Start
conditioncondition

RM0008 Inter-integrated circuit (I2C) interface

 573/682

Figure 230. I2C block diagram

23.3.2 I2C slave mode

By default the I2C interface operates in Slave mode. To switch from default Slave mode to
Master mode a Start condition generation is needed.

The peripheral input clock must be programmed in the I2C_CR2 register in order to
generate correct timings. The peripheral input clock frequency must be at least:

● 2 MHz in Standard mode

● 4 MHz in Fast mode

As soon as a start condition is detected, the address is received from the SDA line and sent
to the shift register. Then it is compared with the address of the interface (OAR1) and with
OAR2 (if ENDUAL=1) or the General Call address (if ENGC = 1).

Note: In 10-bit addressing mode, the comparison includes the header sequence (11110xx0),
where xx denotes the two most significant bits of the address.

Header or address not matched: the interface ignores it and waits for another Start
condition.

DATA SHIFT REGISTER

COMPARATOR

OWN ADDRESS REGISTER

CLOCK CONTROL

STATUS REGISTERS

CONTROL REGISTERS

CONTROL

CLOCK
CONTROL

DATA
CONTROL

SCL

LOGIC

DUAL ADDRESS REGISTER

DATA REGISTER

PEC REGISTER

INTERRUPTS

PEC CALCULATION

SMBALERT

SDA

REGISTER (CCR)

(SR1&SR2)

(CR1&CR2)

Note: SMBALERT is an optional signal in SMBus mode. This signal is not applicable if

DMA REQUESTS & ACK

SMBus is disabled.

Inter-integrated circuit (I2C) interface RM0008

574/682

Header matched (10-bit mode only): the interface generates an acknowledge pulse if the
ACK bit is set and waits for the 8-bit slave address.

Address matched: the interface generates in sequence:

● An acknowledge pulse if the ACK bit is set

● The ADDR bit is set by hardware and an interrupt is generated if the ITEVFEN bit is
set.

● If ENDUAL=1, the software has to read the DUALF bit to check which slave address
has been acknowledged.

In 10-bit mode, after receiving the address sequence the slave is always in Receiver mode.
It will enter Transmitter mode on receiving a repeated Start condition followed by the header
sequence with matching address bits and the least significant bit set (11110xx1).

The TRA bit indicates whether the slave is in Receiver or Transmitter mode.

Slave transmitter

Following the address reception and after clearing ADDR, the slave sends bytes from the
DR register to the SDA line via the internal shift register.

The slave stretches SCL low until ADDR is cleared and DR filled with the data to be sent
(see Figure 231 Transfer sequencing EV1 EV3).

When the acknowledge pulse is received:

● The TxE bit is set by hardware with an interrupt if the ITEVFEN and the ITBUFEN bits
are set.

If TxE is set and some data were not written in the I2C_DR register before the end of the
next data transmission, the BTF bit is set and the interface waits until BTF is cleared by a
read to I2C_SR1 followed by a write to the I2C_DR register, stretching SCL low.

Figure 231. Transfer sequence diagram for slave transmitter

RM0008 Inter-integrated circuit (I2C) interface

 575/682

Slave receiver

Following the address reception and after clearing ADDR, the slave receives bytes from the
SDA line into the DR register via the internal shift register. After each byte the interface
generates in sequence:

● An acknowledge pulse if the ACK bit is set

● The RxNE bit is set by hardware and an interrupt is generated if the ITEVFEN and
ITBUFEN bit is set.

If RxNE is set and the data in the DR register is not read before the end of the next data
reception, the BTF bit is set and the interface waits until BTF is cleared by a read from
I2C_SR1 followed by a read from the I2C_DR register, stretching SCL low (see Figure 232
Transfer sequencing).

Figure 232. Transfer sequence diagram for slave receiver

Closing slave communication

After the last data byte is transferred a Stop Condition is generated by the master. The
interface detects this condition and sets,

● The STOPF bit and generates an interrupt if the ITEVFEN bit is set.

Then the interface waits for a read of the SR1 register followed by a write to the CR1 register
(see Figure 232 Transfer sequencing EV4).

Inter-integrated circuit (I2C) interface RM0008

576/682

23.3.3 I2C master mode

In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a Start condition and ends with a Stop condition.
Master mode is selected as soon as the Start condition is generated on the bus with a
START bit.

The following is the required sequence in master mode.

● Program the peripheral input clock in I2C_CR2 Register in order to generate correct
timings

● Configure the clock control registers

● Configure the rise time register

● Program the I2C_CR1 register to enable the peripheral

● Set the START bit in the I2C_CR1 register to generate a Start condition

The peripheral input clock frequency must be at least:

● 2 MHz in Standard mode

● 4 MHz in Fast mode

Start condition

Setting the START bit causes the interface to generate a Start condition and to switch to
Master mode (M/SL bit set) when the BUSY bit is cleared.

Note: In master mode, setting the START bit causes the interface to generate a ReStart condition
at the end of the current byte transfer.

Once the Start condition is sent:

● The SB bit is set by hardware and an interrupt is generated if the ITEVFEN bit is set.

Then the master waits for a read of the SR1 register followed by a write in the DR register
with the Slave address (see Figure 233 & Figure 234 Transfer sequencing EV5).

RM0008 Inter-integrated circuit (I2C) interface

 577/682

Slave address transmission

Then the slave address is sent to the SDA line via the internal shift register.

● In 10-bit addressing mode, sending the header sequence causes the following event:

– The ADD10 bit is set by hardware and an interrupt is generated if the ITEVFEN bit
is set.

Then the master waits for a read of the SR1 register followed by a write in the DR
register with the second address byte (see Figure 233 & Figure 234 Transfer
sequencing).

– The ADDR bit is set by hardware and an interrupt is generated if the ITEVFEN bit
is set.

Then the master waits for a read of the SR1 register followed by a read of the SR2
register (see Figure 233 & Figure 234 Transfer sequencing).

● In 7-bit addressing mode, one address byte is sent.

As soon as the address byte is sent,

– The ADDR bit is set by hardware and an interrupt is generated if the ITEVFEN bit
is set.

Then the master waits for a read of the SR1 register followed by a read of the SR2
register (see Figure 233 & Figure 234 Transfer sequencing).

The master can decide to enter Transmitter or Receiver mode depending on the LSB of the
slave address sent.

● In 7-bit addressing mode,

– To enter Transmitter mode, a master sends the slave address with LSB reset.

– To enter Receiver mode, a master sends the slave address with LSB set.

● In 10-bit addressing mode,

– To enter Transmitter mode, a master sends the header (11110xx0) and then the
slave address with LSB reset, (where xx denotes the two most significant bits of
the address).

– To enter Receiver mode, a master sends the header (11110xx0) and then the
slave address with LSB reset. Then it should send a repeated Start condition
followed by the header (11110xx1), (where xx denotes the two most significant bits
of the address).

The TRA bit indicates whether the master is in Receiver or Transmitter mode.

Master transmitter

Following the address transmission and after clearing ADDR, the master sends bytes from
the DR register to the SDA line via the internal shift register.

The master waits until the first data byte is written into I2C_DR (see Figure 233 Transfer
sequencing EV8_1).

When the acknowledge pulse is received:

● The TxE bit is set by hardware and an interrupt is generated if the ITEVFEN and
ITBUFEN bits are set.

If TxE is set and a data byte was not written in the DR register before the end of the last data
transmission, BTF is set and the interface waits until BTF is cleared by a read from I2C_SR1
followed by a write to I2C_DR, stretching SCL low.

Inter-integrated circuit (I2C) interface RM0008

578/682

Closing the communication

After writing the last byte to the DR register, the STOP bit is set by software to generate a
Stop condition (see Figure 233 Transfer sequencing EV8_2). The interface goes
automatically back to slave mode (M/SL bit cleared).

Note: Stop condition should be programmed during EV8_2 event, when either TxE or BTF is set.

Figure 233. Transfer sequence diagram for master transmitter

Master receiver

Following the address transmission and after clearing ADDR, the I2C interface enters
Master Receiver mode. In this mode the interface receives bytes from the SDA line into the
DR register via the internal shift register. After each byte the interface generates in
sequence:

● An acknowledge pulse if the ACK bit is set

● The RxNE bit is set and an interrupt is generated if the ITEVFEN and ITBUFEN bits are
set (see Figure 234 Transfer sequencing EV7).

If the RxNE bit is set and the data in the DR register is not read before the end of the last
data reception, the BTF bit is set by hardware and the interface waits until BTF is cleared by
a read in the SR1 register followed by a read in the DR register, stretching SCL low.

RM0008 Inter-integrated circuit (I2C) interface

 579/682

Closing the communication

The master sends a NACK for the last byte received from the slave. After receiving this
NACK, the slave releases the control of the SCL and SDA lines. Then the master can send
a Stop/Re-Start condition.

● In order to generate the non-acknowledge pulse after the last received data byte, the
ACK bit must be cleared just after reading the second last data byte (after second last
RxNE event).

● In order to generate the Stop/Re-Start condition, software must set the STOP/START
bit just after reading the second last data byte (after the second last RxNE event).

● In case a single byte is to be received, the Acknowledge disable and the Stop condition
generation are made just after EV6 (in EV6_1, just after ADDR is cleared).

After the Stop condition generation, the interface goes automatically back to slave mode
(M/SL bit cleared).

Figure 234. Transfer sequence diagram for master receiver

1. If a single byte is received, it is NA.

2. The EV5, EV6 and EV9 events stretch SCL low until the end of the corresponding software sequence.

3. The EV7 software sequence must complete before the end of the current byte transfer.

4. The EV6_1 or EV7_1 software sequence must complete before the ACK pulse of the current byte transfer.

23.3.4 Error conditions

The following are the error conditions which may cause communication to fail.

Inter-integrated circuit (I2C) interface RM0008

580/682

Bus error (BERR)

This error occurs when the I2C interface detects a Stop or a Start condition during a byte
transfer. In this case,

● The BERR bit is set and an interrupt is generated if the ITERREN bit is set

● In case of Slave: data is discarded and the lines are released by hardware:

– in case of misplaced start, the slave considers it is a restart and waits for address,
or stop condition.

– in case of misplaced stop, the slave reacts like for a stop condition and the lines
are released by hardware.

Acknowledge failure (AF)

This error occurs when the interface detects a non-acknowledge bit. In this case,

● The AF bit is set and an interrupt is generated if the ITERREN bit is set

● A transmitter which receives a NACK must reset the communication:

– If Slave: lines are released by hardware

– If Master: a Stop condition must be generated by software

Arbitration lost (ARLO)

This error occurs when the I2C interface detects an arbitration lost condition. In this case,

● The ARLO bit is set by hardware (and an interrupt is generated if the ITERREN bit is
set)

● The I2C Interface goes automatically back to slave mode (the M/SL bit is cleared)

● Lines are released by hardware

Overrun/underrun error (OVR)

An overrun error can occur in slave mode when clock stretching is disabled and the I2C
interface is receiving data. The interface has received a byte (RxNE=1) and the data in DR
has not been read, before the next byte is received by the interface. In this case,

● The last received byte is lost.

● In case of Overrun error, software should clear the RxNE bit and the transmitter should
re-transmit the last received byte.

Underrun error can occur in slave mode when clock stretching is disabled and the I2C
interface is transmitting data. The interface has not updated the DR with the next byte
(TxE=1), before the clock comes for the next byte. In this case,

● The same byte in the DR register will be sent again

● The user should make sure that data received on the receiver side during an underrun
error are discarded and that the next bytes are written within the clock low time
specified in the I2C bus standard.

For the first byte to be transmitted, the DR must be written after ADDR is cleared and before
the first SCL rising edge. If not possible, the receiver must discard the first data.

RM0008 Inter-integrated circuit (I2C) interface

 581/682

23.3.5 SDA/SCL line control

● If clock stretching is enabled:

– Transmitter mode: If TxE=1 and BTF=1: the interface holds the clock line low
before transmission to wait for the microcontroller to read SR1 and then write the
byte in the Data Register (both buffer and shift register are empty).

– Receiver mode: If RxNE=1 and BTF=1: the interface holds the clock line low after
reception to wait for the microcontroller to read SR1 and then read the byte in the
Data Register (both buffer and shift register are full).

● If clock stretching is disabled in Slave mode:

– Overrun Error in case of RxNE=1 and no read of DR has been done before the
next byte is received. The last received byte is lost.

– Underrun Error in case TxE=1 and no write into DR has been done before the next
byte must be transmitted. The same byte will be sent again.

– Write Collision not managed.

23.3.6 SMBus

Introduction

The System Management Bus (SMBus) is a two-wire interface through which various
devices can communicate with each other and with the rest of the system. It is based on I2C
principles of operation. SMBus provides a control bus for system and power management
related tasks. A system may use SMBus to pass messages to and from devices instead of
toggling individual control lines.

The System Management Bus Specification refers to three types of devices. A slave is a
device that is receiving or responding to a command. A master is a device that issues
commands, generates the clocks, and terminates the transfer. A host is a specialized master
that provides the main interface to the system's CPU. A host must be a master-slave and
must support the SMBus host notify protocol. Only one host is allowed in a system.

Similarities between SMBus and I2C

● 2 wire bus protocol (1 Clk, 1 Data) + SMBus Alert line optional

● Master-slave communication, Master provides clock

● Multi master capability

● SMBus data format similar to I2C 7-bit addressing format (Figure 229).

Differences between SMBus and I2C

The following table describes the differences between SMBus and I2C.

Table 150. SMBus vs. I2C

SMBus I2C

Max. speed 100 kHz Max. speed 400 kHz

Min. clock speed 10 kHz No minimum clock speed

35 ms clock low timeout No timeout

Logic levels are fixed Logic levels are VDD dependent

Inter-integrated circuit (I2C) interface RM0008

582/682

SMBus application usage

With System Management Bus, a device can provide manufacturer information, tell the
system what its model/part number is, save its state for a suspend event, report different
types of errors, accept control parameters, and return its status. SMBus provides a control
bus for system and power management related tasks.

Device identification

Any device that exists on the System Management Bus as a slave has a unique address
called the Slave Address. For the list of reserved slave addresses, refer to the SMBus
specification ver. 2.0 (http://smbus.org/specs/).

Bus protocols

The SMBus specification supports up to 9 bus protocols. For more details of these protocols
and SMBus address types, refer to SMBus specification ver. 2.0 (http://smbus.org/specs/).
These protocols should be implemented by the user software.

Address resolution protocol (ARP)

SMBus slave address conflicts can be resolved by dynamically assigning a new unique
address to each slave device. The Address Resolution Protocol (ARP) has the following
attributes:

● Address assignment uses the standard SMBus physical layer arbitration mechanism

● Assigned addresses remain constant while device power is applied; address retention
through device power loss is also allowed

● No additional SMBus packet overhead is incurred after address assignment. (i.e.
subsequent accesses to assigned slave addresses have the same overhead as
accesses to fixed address devices.)

● Any SMBus master can enumerate the bus

Unique device identifier (UDID)

In order to provide a mechanism to isolate each device for the purpose of address
assignment, each device must implement a unique device identifier (UDID).

For the details on 128 bit UDID and more information on ARP, refer to SMBus specification
ver. 2.0 (http://smbus.org/specs/).

SMBus alert mode

SMBus Alert is an optional signal with an interrupt line for devices that want to trade their
ability to master for a pin. SMBALERT is a wired-AND signal just as the SCL and SDA
signals are. SMBALERT is used in conjunction with the SMBus General Call Address.
Messages invoked with the SMBus are 2 bytes long.

Different address types (reserved, dynamic etc.)
7-bit, 10-bit and general call slave address
types

Different bus protocols (quick command, process
call etc.)

No bus protocols

Table 150. SMBus vs. I2C (continued)

SMBus I2C

RM0008 Inter-integrated circuit (I2C) interface

 583/682

A slave-only device can signal the host through SMBALERT that it wants to talk by setting
ALERT bit in I2C_CR1 register. The host processes the interrupt and simultaneously
accesses all SMBALERT devices through the Alert Response Address (known as ARA
having a value 0001 100X). Only the device(s) which pulled SMBALERT low will
acknowledge the Alert Response Address. This status is identified using SMBALERT Status
flag in I2C_SR1 register. The host performs a modified Receive Byte operation. The 7 bit
device address provided by the slave transmit device is placed in the 7 most significant bits
of the byte. The eighth bit can be a zero or one.

If more than one device pulls SMBALERT low, the highest priority (lowest address) device
will win communication rights via standard arbitration during the slave address transfer. After
acknowledging the slave address the device must disengage its SMBALERT pull-down. If
the host still sees SMBALERT low when the message transfer is complete, it knows to read
the ARA again.
A host which does not implement the SMBALERT signal may periodically access the ARA.

For more details on SMBus Alert mode, refer to SMBus specification ver. 2.0
(http://smbus.org/specs/).

Timeout error

There are differences in the timing specifications between I2C and SMBus.
SMBus defines a clock low timeout, TIMEOUT of 35 ms. Also SMBus specifies TLOW:
SEXT as the cumulative clock low extend time for a slave device. SMBus specifies TLOW:
MEXT as the cumulative clock low extend time for a master device. For more details on
these timeouts, refer to SMBus specification ver. 2.0 (http://smbus.org/specs/).

The status flag Timeout or Tlow Error in I2C_SR1 shows the status of this feature.

How to use the interface in SMBus mode

To switch from I2C mode to SMBus mode, the following sequence should be performed.

● Set the SMBus bit in the I2C_CR1 register

● Configure the SMBTYPE and ENARP bits in the I2C_CR1 register as required for the
application

If you want to configure the device as a master, follow the Start condition generation
procedure in Section 23.3.3: I2C master mode. Otherwise, follow the sequence in
Section 23.3.2: I2C slave mode.

The application has to control the various SMBus protocols by software.

● SMB Device Default Address acknowledged if ENARP=1 and SMBTYPE=0

● SMB Host Header acknowledged if ENARP=1 and SMBTYPE=1

● SMB Alert Response Address acknowledged if SMBALERT=1

23.3.7 DMA requests

DMA requests (when enabled) are generated only for data transfer. DMA requests are
generated by Data Register becoming empty in transmission and Data Register becoming
full in reception. The DMA request must be served before the end of the current byte
transfer. When the number of data transfers which has been programmed for the

Inter-integrated circuit (I2C) interface RM0008

584/682

corresponding DMA channel is reached, the DMA controller sends an End of Transfer EOT
signal to the I2C interface and generates a Transfer Complete interrupt if enabled:

● Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA
requests then wait for a BTF event before programming the Stop condition.

● Master receiver: when the number of bytes to be received is equal to or greater than
two, the DMA controller sends a hardware signal, EOT_1, corresponding to the last but
one data byte (number_of_bytes – 1). If, in the I2C_CR2 register, the LAST bit is set,
I2C automatically sends a NACK after the next byte following EOT_1. The user can
generate a Stop condition in the DMA Transfer Complete interrupt routine if enabled.

Transmission using DMA

DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2
register. Data will be loaded from a Memory area configured using the DMA peripheral (refer
to the DMA specification) to the I2C_DR register whenever the TxE bit is set. To map a DMA
channel for I2C transmission, perform the following sequence. Here x is the channel number.

1. Set the I2C_DR register address in the DMA_CPARx register. The data will
be moved to this address from the memory after each TxE event.

2. Set the memory address in the DMA_CMARx register. The data will be
loaded into I2C_DR from this memory after each TxE event.

3. Configure the total number of bytes to be transferred in the DMA_CNDTRx
register. After each TxE event, this value will be decremented.

4. Configure the channel priority using the PL[0:1] bits in the DMA_CCRx
register

5. Set the DIR bit and, in the DMA_CCRx register, configure interrupts after half
transfer or full transfer depending on application requirements.

6. Activate the channel by setting the EN bit in the DMA_CCRx register.

When the number of data transfers which has been programmed in the DMA Controller
registers is reached, the DMA controller sends an End of Transfer EOT/ EOT_1 signal to the
I2C interface and the DMA generates an interrupt, if enabled, on the DMA channel interrupt
vector.

Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for transmission.

Reception using DMA

DMA mode can be enabled for reception by setting the DMAEN bit in the I2C_CR2 register.
Data will be loaded from the I2C_DR register to a Memory area configured using the DMA
peripheral (refer to the DMA specification) whenever a data byte is received. To map a DMA
channel for I2C reception, perform the following sequence. Here x is the channel number.

1. Set the I2C_DR register address in DMA_CPARx register. The data will be moved from
this address to the memory after each RxNE event.

2. Set the memory address in the DMA_CMARx register. The data will be loaded from the
I2C_DR register to this memory area after each RxNE event.

3. Configure the total number of bytes to be transferred in the DMA_CNDTRx register.
After each RxNE event, this value will be decremented.

4. Configure the channel priority using the PL[0:1] bits in the DMA_CCRx register

5. Reset the DIR bit and configure interrupts in the DMA_CCRx register after half transfer
or full transfer depending on application requirements.

6. Activate the channel by setting the EN bit in the DMA_CCRx register.

RM0008 Inter-integrated circuit (I2C) interface

 585/682

When the number of data transfers which has been programmed in the DMA Controller
registers is reached, the DMA controller sends an End of Transfer EOT/ EOT_1 signal to the
I2C interface and DMA generates an interrupt, if enabled, on the DMA channel interrupt
vector.

Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for reception.

23.3.8 Packet error checking

A PEC calculator has been implemented to improve the reliability of communication. The
PEC is calculated by using the C(x) = x8 + x2 + x + 1 CRC-8 polynomial serially on each bit.

● PEC calculation is enabled by setting the ENPEC bit in the I2C_CR1 register. PEC is a
CRC-8 calculated on all message bytes including addresses and R/W bits.

– In transmission: set the PEC transfer bit in the I2C_CR1 register after the TxE
event corresponding to the last byte. The PEC will be transferred after the last
transmitted byte.

– In reception: set the PEC bit in the I2C_CR1 register after the RxNE event
corresponding to the last byte so that the receiver sends a NACK if the next
received byte is not equal to the internally calculated PEC. In case of Master-
Receiver, a NACK must follow the PEC whatever the check result. PEC must be
set before the ACK pulse of the current byte reception.

● A PECERR error flag/interrupt is also available in the I2C_SR1 register.

● If DMA and PEC calculation are both enabled:-

– In transmission: when the I2C interface receives an EOT signal from the DMA
controller, it automatically sends a PEC after the last byte.

– In reception: when the I2C interface receives an EOT_1 signal from the DMA
controller, it will automatically consider the next byte as a PEC and will check it. A
DMA request is generated after PEC reception.

● To allow intermediate PEC transfers, a control bit is available in the I2C_CR2 register
(LAST bit) to determine if it is really the last DMA transfer or not. If it is the last DMA
request for a master receiver, a NACK is automatically sent after the last received byte.

● PEC calculation is corrupted by an arbitration loss.

23.4 I2C interrupts
The table below gives the list of I2C interrupt requests.

Table 151. I2C Interrupt requests

Interrupt event Event flag Enable Control bit

Start bit sent (Master) SB

ITEVFEN

Address sent (Master) or Address matched (Slave) ADDR

10-bit header sent (Master) ADD10

Stop received (Slave) STOPF

Data byte transfer finished BTF

Receive buffer not empty RxNE
ITEVFEN and ITBUFEN

Transmit buffer empty TxE

Inter-integrated circuit (I2C) interface RM0008

586/682

Note: 1 SB, ADDR, ADD10, STOPF, BTF, RxNE and TxE are logically ORed on the same interrupt
channel.

2 BERR, ARLO, AF, OVR, PECERR, TIMEOUT and SMBALERT are logically ORed on the
same interrupt channel.

Figure 235. I2C interrupt mapping diagram

23.5 I2C debug mode
When the microcontroller enters the debug mode (Cortex-M3 core halted), the SMBUS
timeout either continues to work normally or stops, depending on the

Bus error BERR

ITERREN

Arbitration loss (Master) ARLO

Acknowledge failure AF

Overrun/Underrun OVR

PEC error PECERR

Timeout/Tlow error TIMEOUT

SMBus Alert SMBALERT

Table 151. I2C Interrupt requests (continued)

Interrupt event Event flag Enable Control bit

ADDR

SB

ADD10

RxNE

TxE

BTF

it_event

ARLO

BERR

AF

OVR

PECERR

TIMEOUT

SMBAlert

ITERREN

it_error

ITEVFEN

ITBUFEN

STOPF

RM0008 Inter-integrated circuit (I2C) interface

 587/682

DBG_I2Cx_SMBUS_TIMEOUT configuration bits in the DBG module. For more details,
refer to Section 26.15.2: Debug support for timers, watchdog, bxCAN and I2C on page 660.

23.6 I2C registers
Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

23.6.1 Control register 1 (I2C_CR1)

Address offset: 0x00
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SW
RST Res.

ALERT PEC POS ACK STOP START NO
STRETCH ENGC EN

PEC
EN

ARP
SMB
TYPE Res.

SM
BUS PE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 SWRST: Software reset

When set, the I2C is under reset state. Before resetting this bit, make sure the I2C lines are
released and the bus is free.
0: I2C Peripheral not under reset
1: I2C Peripheral under reset state

Note: This bit can be used in case the BUSY bit is set to ‘1’ when no stop condition has been
detected on the bus.

Bit 14 Reserved, forced by hardware to 0.

Bit 13 ALERT: SMBus alert
This bit is set and cleared by software, and cleared by hardware when PE=0.
0: Releases SMBAlert pin high. Alert Response Address Header followed by NACK.
1: Drives SMBAlert pin low. Alert Response Address Header followed by ACK.

Bit 12 PEC: Packet error checking

This bit is set and cleared by software, and cleared by hardware when PEC is transferred or
by a START or Stop condition or when PE=0.
0: No PEC transfer
1: PEC transfer (in Tx or Rx mode)

Note: PEC calculation is corrupted by an arbitration loss.

Bit 11 POS: Acknowledge/PEC Position (for data reception)

This bit is set and cleared by software and cleared by hardware when PE=0.

0: ACK bit controls the (N)ACK of the current byte being received in the shift register. The
PEC bit indicates that current byte in shift register is a PEC.
1: ACK bit controls the (N)ACK of the next byte which will be received in the shift register.
The PEC bit indicates that the next byte in the shift register is a PEC

Note: The POS bit must be used only in 2-byte reception configuration and must be
configured before data reception starts.
To NACK the 2nd byte, the ACK bit must be cleared after ADDR is cleared.
To check the 2nd byte as PEC, the PEC bit must be set during the ADDR stretch event
after configuring the POS bit.

Inter-integrated circuit (I2C) interface RM0008

588/682

Bit 10 ACK: Acknowledge enable

This bit is set and cleared by software and cleared by hardware when PE=0.
0: No acknowledge returned
1: Acknowledge returned after a byte is received (matched address or data)

Bit 9 STOP: Stop generation

The bit is set and cleared by software, cleared by hardware when a Stop condition is
detected, set by hardware when a timeout error is detected.
In Master Mode:
0: No Stop generation.
1: Stop generation after the current byte transfer or after the current Start condition is sent.
In Slave mode:
0: No Stop generation.
1: Release the SCL and SDA lines after the current byte transfer.

Note: When the STOP, START or PEC bit is set, the software must not perform any write
access to I2C_CR1 before this bit is cleared by hardware. Otherwise there is a risk of
setting a second STOP, START or PEC request.

Bit 8 START: Start generation

This bit is set and cleared by software and cleared by hardware when start is sent or PE=0.
In Master Mode:
0: No Start generation
1: Repeated start generation
In Slave mode:
0: No Start generation
1: Start generation when the bus is free

Bit 7 NOSTRETCH: Clock stretching disable (Slave mode)

This bit is used to disable clock stretching in slave mode when ADDR or BTF flag is set, until
it is reset by software.
0: Clock stretching enabled
1: Clock stretching disabled

Bit 6 ENGC: General call enable
0: General call disabled. Address 00h is NACKed.
1: General call enabled. Address 00h is ACKed.

Bit 5 ENPEC: PEC enable

0: PEC calculation disabled
1: PEC calculation enabled

Bit 4 ENARP: ARP enable

0: ARP disable
1: ARP enable
SMBus Device default address recognized if SMBTYPE=0
SMBus Host address recognized if SMBTYPE=1

Bit 3 SMBTYPE: SMBus type

0: SMBus Device
1: SMBus Host

Bit 2 Reserved, forced by hardware to 0.

Bit 1 SMBUS: SMBus mode

0: I2C mode
1: SMBus mode

RM0008 Inter-integrated circuit (I2C) interface

 589/682

23.6.2 Control register 2 (I2C_CR2)

Address offset: 0x04
Reset value: 0x0000

Bit 0 PE: Peripheral enable
0: Peripheral disable
1: Peripheral enable: the corresponding I/Os are selected as alternate functions depending
on SMBus bit.

Note: If this bit is reset while a communication is on going, the peripheral is disabled at the
end of the current communication, when back to IDLE state.
All bit resets due to PE=0 occur at the end of the communication.

In master mode, this bit must not be reset before the end of the communication.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
LAST DMA

EN
ITBUF

EN
ITEVT

EN
ITERR

EN Reserved
FREQ[5:0]

rw rw rw rw rw rw rw rw rw rw rw

Bits 15:13 Reserved, forced by hardware to 0.

Bit 12 LAST: DMA last transfer

0: Next DMA EOT is not the last transfer
1: Next DMA EOT is the last transfer

Note: This bit is used in master receiver mode to permit the generation of a NACK on the last
received data.

Bit 11 DMAEN: DMA requests enable

0: DMA requests disabled
1: DMA request enabled when TxE=1 or RxNE =1

Bit 10 ITBUFEN: Buffer interrupt enable

0: TxE = 1 or RxNE = 1 does not generate any interrupt.
1:TxE = 1 or RxNE = 1 generates Event Interrupt (whatever the state of DMAEN)

Bit 9 ITEVTEN: Event interrupt enable

0: Event interrupt disabled
1: Event interrupt enabled

This interrupt is generated when:
– SB = 1 (Master)

– ADDR = 1 (Master/Slave)

– ADD10= 1 (Master)
– STOPF = 1 (Slave)

– BTF = 1 with no TxE or RxNE event

– TxE event to 1 if ITBUFEN = 1
– RxNE event to 1if ITBUFEN = 1

Inter-integrated circuit (I2C) interface RM0008

590/682

23.6.3 Own address register 1 (I2C_OAR1)

Reset Address offset: 0x08
Value: 0x0000

Bit 8 ITERREN: Error interrupt enable

0: Error interrupt disabled
1: Error interrupt enabled

This interrupt is generated when:
– BERR = 1

– ARLO = 1

– AF = 1
– OVR = 1

– PECERR = 1

– TIMEOUT = 1
– SMBAlert = 1

Bits 7:6 Reserved, forced by hardware to 0.

Bits 5:0 FREQ[5:0]: Peripheral clock frequency

Input clock frequency must be programmed to generate correct timings
The allowed range is between 2 MHz and 36 MHz
000000: Not allowed
000001: Not allowed
000010: 2 MHz
...
100100: 36 MHz
Higher than 100100: Not allowed

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD
MODE Res. Reserved

ADD[9:8] ADD[7:1] ADD0

rw rw rw rw rw rw rw rw rw rw rw

Bit 15 ADDMODE Addressing mode (slave mode)
0: 7-bit slave address (10-bit address not acknowledged)
1: 10-bit slave address (7-bit address not acknowledged)

Bit 14 Must be configured and kept at 1.

Bits 13:10 Reserved, forced by hardware to 0.

Bits 9:8 ADD[9:8]: Interface address

7-bit addressing mode: don’t care
10-bit addressing mode: bits9:8 of address

Bits 7:1 ADD[7:1]: Interface address

bits 7:1 of address

Bit 0 ADD0: Interface address

7-bit addressing mode: don’t care
10-bit addressing mode: bit 0 of address

RM0008 Inter-integrated circuit (I2C) interface

 591/682

23.6.4 Own address register 2 (I2C_OAR2)

Address offset: 0x0C
Reset value: 0x0000

23.6.5 Data register (I2C_DR)

Address offset: 0x10
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ADD2[7:1] ENDUAL

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, forced by hardware to 0.

Bits 7:1 ADD2[7:1]: Interface address

bits 7:1 of address in dual addressing mode

Bit 0 ENDUAL: Dual addressing mode enable

0: Only OAR1 is recognized in 7-bit addressing mode
1: Both OAR1 and OAR2 are recognized in 7-bit addressing mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DR[7:0]

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, forced by hardware to 0.

Bits 7:0 DR[7:0] 8-bit data register

Byte received or to be transmitted to the bus.
– Transmitter mode: Byte transmission starts automatically when a byte is written in the DR

register. A continuous transmit stream can be maintained if the next data to be
transmitted is put in DR once the transmission is started (TxE=1)

– Receiver mode: Received byte is copied into DR (RxNE=1). A continuous transmit stream
can be maintained if DR is read before the next data byte is received (RxNE=1).

Note: In slave mode, the address is not copied into DR.
Note: Write collision is not managed (DR can be written if TxE=0).

Note: If an ARLO event occurs on ACK pulse, the received byte is not copied into DR and so
cannot be read.

Inter-integrated circuit (I2C) interface RM0008

592/682

23.6.6 Status register 1 (I2C_SR1)

Address offset: 0x14
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMB
ALERT

TIME
OUT Res.

PEC
ERR OVR AF ARLO BERR TxE RxNE

Res.

STOP
F ADD10 BTF ADDR SB

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 r r r r r r r

Bit 15 SMBALERT: SMBus alert

In SMBus host mode:
0: no SMBAlert
1: SMBAlert event occurred on pin
In SMBus slave mode:
0: no SMBAlert response address header
1: SMBAlert response address header to SMBAlert LOW received

– Cleared by software writing 0, or by hardware when PE=0.

Bit 14 TIMEOUT: Timeout or Tlow error
0: No timeout error
1: SCL remained LOW for 25 ms (Timeout)
or
Master cumulative clock low extend time more than 10 ms (Tlow:mext)
or
Slave cumulative clock low extend time more than 25 ms (Tlow:sext)

– When set in slave mode: slave resets the communication and lines are released by
hardware

– When set in master mode: Stop condition sent by hardware

– Cleared by software writing 0, or by hardware when PE=0.

Bit 13 Reserved, forced by hardware to 0.

Bit 12 PECERR: PEC Error in reception

0: no PEC error: receiver returns ACK after PEC reception (if ACK=1)

1: PEC error: receiver returns NACK after PEC reception (whatever ACK)

– Cleared by software writing 0, or by hardware when PE=0.

Bit 11 OVR: Overrun/Underrun

0: No overrun/underrun
1: Overrun or underrun

– Set by hardware in slave mode when NOSTRETCH=1 and:
– In reception when a new byte is received (including ACK pulse) and the DR register has

not been read yet. New received byte is lost.
– In transmission when a new byte should be sent and the DR register has not been written

yet. The same byte is sent twice.
– Cleared by software writing 0, or by hardware when PE=0.

Note: If the DR write occurs very close to SCL rising edge, the sent data is unspecified and a
hold timing error occurs

RM0008 Inter-integrated circuit (I2C) interface

 593/682

Bit 10 AF: Acknowledge failure

0: No acknowledge failure
1: Acknowledge failure

– Set by hardware when no acknowledge is returned.

– Cleared by software writing 0, or by hardware when PE=0.

Bit 9 ARLO: Arbitration lost (master mode)

0: No Arbitration Lost detected
1: Arbitration Lost detected

Set by hardware when the interface loses the arbitration of the bus to another master

– Cleared by software writing 0, or by hardware when PE=0.

After an ARLO event the interface switches back automatically to Slave mode (M/SL=0).

Note: In SMBUS, the arbitration on the data in slave mode occurs only during the data
phase, or the acknowledge transmission (not on the address acknowledge).

Bit 8 BERR: Bus error

0: No misplaced Start or Stop condition
1: Misplaced Start or Stop condition

– Set by hardware when the interface detects a misplaced Start or Stop condition

– Cleared by software writing 0, or by hardware when PE=0.

Bit 7 TxE: Data register empty (transmitters)

0: Data register not empty
1: Data register empty
– Set when DR is empty in transmission. TxE is not set during address phase.

– Cleared by software writing to the DR register or by hardware after a start or a stop
condition or when PE=0.

TxE is not set if either a NACK is received, or if next byte to be transmitted is PEC (PEC=1)

Note: TxE is not cleared by writing the first data being transmitted, or by writing data when
BTF is set, as in both cases the data register is still empty.

Bit 6 RxNE: Data register not empty (receivers)

0: Data register empty
1: Data register not empty

– Set when data register is not empty in receiver mode. RxNE is not set during address
phase.

– Cleared by software reading or writing the DR register or by hardware when PE=0.
RxNE is not set in case of ARLO event.

Note: RxNE is not cleared by reading data when BTF is set, as the data register is still full.

Bit 5 Reserved, forced by hardware to 0.

Bit 4 STOPF: Stop detection (slave mode)

0: No Stop condition detected
1: Stop condition detected

– Set by hardware when a Stop condition is detected on the bus by the slave after an
acknowledge (if ACK=1).

– Cleared by software reading the SR1 register followed by a write in the CR1 register, or
by hardware when PE=0

Note: The STOPF bit is not set after a NACK reception

Inter-integrated circuit (I2C) interface RM0008

594/682

Bit 3 ADD10: 10-bit header sent (Master mode)

0: No ADD10 event occurred.
1: Master has sent first address byte (header).

– Set by hardware when the master has sent the first byte in 10-bit address mode.

– Cleared by software reading the SR1 register followed by a write in the DR register of the
second address byte, or by hardware when PE=0.

Note: ADD10 bit is not set after a NACK reception

Bit 2 BTF: Byte transfer finished

0: Data byte transfer not done
1: Data byte transfer succeeded
– Set by hardware when NOSTRETCH=0 and:

– In reception when a new byte is received (including ACK pulse) and DR has not been
read yet (RxNE=1).

– In transmission when a new byte should be sent and DR has not been written yet
(TxE=1).

– Cleared by software reading SR1 followed by either a read or write in the DR register or
by hardware after a start or a stop condition in transmission or when PE=0.

Note: The BTF bit is not set after a NACK reception

The BTF bit is not set if next byte to be transmitted is the PEC (TRA=1 in I2C_SR2
register and PEC=1 in I2C_CR1 register)

Bit 1 ADDR: Address sent (master mode)/matched (slave mode)

This bit is cleared by software reading SR1 register followed reading SR2, or by hardware
when PE=0.

Address matched (Slave)

0: Address mismatched or not received.
1: Received address matched.

– Set by hardware as soon as the received slave address matched with the OAR registers
content or a general call or a SMBus Device Default Address or SMBus Host or SMBus
Alert is recognized. (when enabled depending on configuration).

Address sent (Master)

0: No end of address transmission
1: End of address transmission
– For 10-bit addressing, the bit is set after the ACK of the 2nd byte.

– For 7-bit addressing, the bit is set after the ACK of the byte.

Note: ADDR is not set after a NACK reception

Bit 0 SB: Start bit (Master mode)

0: No Start condition
1: Start condition generated.
– Set when a Start condition generated.

– Cleared by software by reading the SR1 register followed by writing the DR register, or by
hardware when PE=0

RM0008 Inter-integrated circuit (I2C) interface

 595/682

23.6.7 Status register 2 (I2C_SR2)

Address offset: 0x18
Reset value:0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEC[7:0] DUALF SMB
HOST

SMB
DEF
AULT

GEN
CALL Res. TRA BUSY MSL

r r r r r r r r r r r r r r r

Bits 15:8 PEC[7:0] Packet error checking register

This register contains the internal PEC when ENPEC=1.

Bit 7 DUALF: Dual flag (Slave mode)

0: Received address matched with OAR1
1: Received address matched with OAR2
– Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 6 SMBHOST: SMBus host header (Slave mode)

0: No SMBus Host address
1: SMBus Host address received when SMBTYPE=1 and ENARP=1.
– Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 5 SMBDEFAULT: SMBus device default address (Slave mode)

0: No SMBus Device Default address
1: SMBus Device Default address received when ENARP=1

– Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 4 GENCALL: General call address (Slave mode)

0: No General Call
1: General Call Address received when ENGC=1

– Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 3 Reserved, forced by hardware to 0.

Inter-integrated circuit (I2C) interface RM0008

596/682

23.6.8 Clock control register (I2C_CCR)

Address offset: 0x1C
Reset value: 0x0000

Note: 1 FPCLK1 is the multiple of 10 MHz required to generate the Fast clock at 400 kHz.

2 The CCR register must be configured only when the I2C is disabled (PE = 0).

Bit 2 TRA: Transmitter/receiver

0: Data bytes received
1: Data bytes transmitted

This bit is set depending on the R/W bit of the address byte, at the end of total address
phase.

It is also cleared by hardware after detection of Stop condition (STOPF=1), repeated Start
condition, loss of bus arbitration (ARLO=1), or when PE=0.

Bit 1 BUSY: Bus busy

0: No communication on the bus
1: Communication ongoing on the bus
– Set by hardware on detection of SDA or SCL low

– cleared by hardware on detection of a Stop condition.

It indicates a communication in progress on the bus. This information is still updated when
the interface is disabled (PE=0).

Bit 0 MSL: Master/slave

0: Slave Mode
1: Master Mode

– Set by hardware as soon as the interface is in Master mode (SB=1).
– Cleared by hardware after detecting a Stop condition on the bus or a loss of arbitration

(ARLO=1), or by hardware when PE=0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F/S DUTY
Reserved

CCR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 F/S: I2C master mode selection

0: Standard Mode I2C
1: Fast Mode I2C

Bit 14 DUTY: Fast mode duty cycle

0: Fast Mode tlow/thigh = 2
1: Fast Mode tlow/thigh = 16/9 (see CCR)

Bits 13:12 Reserved, forced by hardware to 0.

RM0008 Inter-integrated circuit (I2C) interface

 597/682

23.6.9 TRISE register (I2C_TRISE)

Address offset: 0x20
Reset value: 0x0002

Bits 11:0 CCR[11:0]: Clock control register in Fast/Standard mode (Master mode)

Controls the SCL clock in master mode.

Standard mode or SMBus:

Thigh = CCR * TPCLK1

Tow = CCR * TPCLK1

Fast mode:

If DUTY = 0:

Thigh = CCR * TPCLK1

Tow = 2 * CCR * TPCLK1

If DUTY = 1: (to reach 400 kHz)

Thigh = 9 * CCR * TPCLK1

Tow = 16 * CCR * TPCLK1

For instance: in standard mode, to generate a 100 kHz SCL frequency:

If FREQR = 08, TPCLK1 = 125 ns so CCR must be programmed with 0x28
(0x28 <=> 40d x 125 ns = 5000 ns.)

Note: 1. The minimum allowed value is 0x04, except in FAST DUTY mode where the
minimum allowed value is 0x01
2. thigh includes the SCLH rising edge
3. tlow includes the SCLH falling edge
4. These timings are without filters.
5. The CCR register must be configured only when the I2C is disabled (PE = 0).
6. fCK = a multiple of 10 MHz is required to generate the fast clock at 400 kHz.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved TRISE[5:0]

Res. rw rw rw rw rw rw

Bits 15:6 Reserved, forced by hardware to 0.

Bits 5:0 TRISE[5:0]: Maximum rise time in Fast/Standard mode (Master mode)

These bits must be programmed with the maximum SCL rise time given in the I2C bus
specification, incremented by 1.

For instance: in standard mode, the maximum allowed SCL rise time is 1000 ns.

If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to 0x08 and TPCLK1 = 125 ns
therefore the TRISE[5:0] bits must be programmed with 09h.

(1000 ns / 125 ns = 8 + 1)

The filter value can also be added to TRISE[5:0].

If the result is not an integer, TRISE[5:0] must be programmed with the integer part, in order
to respect the tHIGH parameter.

Note: TRISE[5:0] must be configured only when the I2C is disabled (PE = 0).

Inter-integrated circuit (I2C) interface RM0008

598/682

23.6.10 I2C register map

The table below provides the I2C register map and reset values.

Refer to Table 1 on page 35 for the register boundary addresses.

Table 152. I2C register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
I2C_CR1

Reserved

S
W

R
S

T

R
es

er
ve

d

A
LE

R
T

P
E

C

P
O

S

A
C

K

S
TO

P

S
TA

R
T

N
O

S
T

R
E

T
C

H

E
N

G
C

E
N

P
E

C

E
N

A
R

P

S
M

B
T

Y
P

E

R
es

er
ve

d

S
M

B
U

S

P
E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
I2C_CR2

Reserved LA
S

T

D
M

A
E

N

IT
B

U
F

E
N

IT
E

V
T

E
N

IT
E

R
R

E
N

R
es

er
ve

d

FREQ[5:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0

0x08
I2C_OAR1

Reserved

A
D

D
M

O
D

E

R
es

er
ve

d

Reserved
ADD[9:8] ADD[7:1]

A
D

D
0

Reset value 0 1 0 0 0 0 0 0 0 0 0 0

0x0C
I2C_OAR2

Reserved
ADD2[7:1]

E
N

D
U

A
L

Reset value 0 0 0 0 0 0 0 0

0x10
I2C_DR

Reserved
DR[7:0]

Reset value 0 0 0 0 0 0 0 0

0x14
I2C_SR1

Reserved

S
M

B
A

LE
R

T

T
IM

E
O

U
T

R
es

er
ve

d

P
E

C
E

R
R

O
V

R

A
F

A
R

LO

B
E

R
R

T
xE

R
xN

E

R
es

er
ve

d

S
TO

P
F

A
D

D
10

B
T

F

A
D

D
R

S
B

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
I2C_SR2

Reserved
PEC[7:0]

D
U

A
LF

S
M

B
H

O
S

T

S
M

B
D

E
FA

U
LT

G
E

N
C

A
LL

R
es

er
ve

d

T
R

A

B
U

S
Y

M
S

L

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
I2C_CCR

Reserved F
/S

D
U

T
Y

R
es

er
ve

d

CCR[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
I2C_TRISE

Reserved
TRISE[5:0]

Reset value 0 0 0 0 1 0

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 599/682

24 Universal synchronous asynchronous receiver
transmitter (USART)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This Section applies to the whole STM32F10xxx family, unless otherwise specified.

24.1 USART introduction
The universal synchronous asynchronous receiver transmitter (USART) offers a flexible
means of full-duplex data exchange with external equipment requiring an industry standard
NRZ asynchronous serial data format. The USART offers a very wide range of baud rates
using a fractional baud rate generator.

It supports synchronous one-way communication and half-duplex single wire
communication. It also supports the LIN (local interconnection network), Smartcard Protocol
and IrDA (infrared data association) SIR ENDEC specifications, and modem operations
(CTS/RTS). It allows multiprocessor communication.

High speed data communication is possible by using the DMA for multibuffer configuration.

24.2 USART main features
● Full duplex, asynchronous communications

● NRZ standard format (Mark/Space)

● Fractional baud rate generator systems

– A common programmable transmit and receive baud rates up to 4.5 MBits/s

● Programmable data word length (8 or 9 bits)

● Configurable stop bits - support for 1 or 2 stop bits

● LIN Master Synchronous Break send capability and LIN slave break detection
capability

– 13-bit break generation and 10/11 bit break detection when USART is hardware
configured for LIN

● Transmitter clock output for synchronous transmission

● IrDA SIR Encoder Decoder

– Support for 3/16 bit duration for normal mode

● Smartcard Emulation Capability

– The Smartcard interface supports the asynchronous protocol Smartcards as
defined in ISO 7816-3 standards

– 0.5, 1.5 Stop Bits for Smartcard operation

● Single wire Half Duplex Communication

Universal synchronous asynchronous receiver transmitter (USART) RM0008

600/682

● Configurable multibuffer communication using DMA (direct memory access)

– Buffering of received/transmitted bytes in reserved SRAM using centralized DMA

● Separate enable bits for Transmitter and Receiver

● Transfer detection flags:

– Receive buffer full

– Transmit buffer empty

– End of Transmission flags

● Parity control:

– Transmits parity bit

– Checks parity of received data byte

● Four error detection flags:

– Overrun error

– Noise error

– Frame error

– Parity error

● Ten interrupt sources with flags:

– CTS changes

– LIN break detection

– Transmit data register empty

– Transmission complete

– Receive data register full

– Idle line received

– Overrun error

– Framing error

– Noise error

– Parity error

● Multiprocessor communication - enter into mute mode if address match does not occur

● Wake up from mute mode (by idle line detection or address mark detection)

● Two receiver wakeup modes: Address bit (MSB, 9th bit), Idle line

24.3 USART functional description
The interface is externally connected to another device by three pins (see Figure 236). Any
USART bidirectional communication requires a minimum of two pins: Receive Data In (RX)
and Transmit Data Out (TX):

RX: Receive Data Input is the serial data input. Oversampling techniques are used for data
recovery by discriminating between valid incoming data and noise.

TX: Transmit Data Output. When the transmitter is disabled, the output pin returns to its I/O
port configuration. When the transmitter is enabled and nothing is to be transmitted, the TX
pin is at high level. In single-wire and smartcard modes, this I/O is used to transmit and
receive the data (at USART level, data are then received on SW_RX).

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 601/682

Through these pins, serial data is transmitted and received in normal USART mode as
frames comprising:

● An Idle Line prior to transmission or reception

● A start bit

● A data word (8 or 9 bits) least significant bit first

● 0.5,1, 1.5, 2 Stop bits indicating that the frame is complete

● This interface uses a fractional baud rate generator - with a 12-bit mantissa and 4-bit
fraction

● A status register (USART_SR)

● Data Register (USART_DR)

● A baud rate register (USART_BRR) - 12-bit mantissa and 4-bit fraction.

● A Guardtime Register (USART_GTPR) in case of Smartcard mode.

Refer to Section 24.6: USART registers on page 627 for the definitions of each bit.

The following pin is required to interface in synchronous mode:

● SCLK: Transmitter clock output. This pin outputs the transmitter data clock for
synchronous transmission corresponding to SPI master mode (no clock pulses on start
bit and stop bit, and a software option to send a clock pulse on the last data bit). In
parallel data can be received synchronously on RX. This can be used to control
peripherals that have shift registers (e.g. LCD drivers). The clock phase and polarity
are software programmable. In smartcard mode, SCLK can provide the clock to the
smartcard.

The following pins are required to interface in IrDA mode:

● IrDA_RDI: Receive Data Input is the data input in IrDA mode.

● IrDA_TDO: Transmit Data Output in IrDA mode.

the following pins are required in Hardware flow control mode:

● nCTS: Clear To Send blocks the data transmission at the end of the current transfer
when high

● nRTS: Request to send indicates that the USART is ready to receive a data (when
low).

Universal synchronous asynchronous receiver transmitter (USART) RM0008

602/682

Figure 236. USART block diagram

WAKE
UP

UNIT

RECEIVER
CONTROL

SR

TRANSMIT

CONTROL

TXE TC RXNE IDLE ORE NE FE

USART

CONTROL

INTERRUPT

CR1

M WAKE

Receive Data Register (RDR)

Receive Shift Register

Read

Transmit Data Register (TDR)

Transmit Shift Register

Write

SW_RX

TX

(DATA REGISTER) DR

TRANSMITTER
 CLOCK

RECEIVER

CLOCK

RECEIVER RATE

TRANSMITTER RATE

fPCLKx(x=1,2)

 CONTROL

CONTROL

/16

CONVENTIONAL BAUD RATE GENERATOR

SBKRWURETEIDLERXNETCIETXEIE

CR1

UE PCE PS PEIE

PE

PWDATA

IRLPSCEN IRENDMARDMAT

USART Address

CR2

CR3

IrDA
SIR
ENDEC
BLOCK

LINE CKEN CPOL CPHA LBCL

SCLK CONTROL SCLK

CR2

GT

STOP[1:0]NACK

DIV_Mantissa

15 0

RE

USART_BRR

/USARTDIV

TE

HD

(CPU or DMA)(CPU or DMA)

PRDATA

Hardware
flow
controller

CTS LBD

RX

IRDA_OUT

IRDA_IN

nRTS

nCTS

GTPR
PSC

IE IE

DIV_Fraction

4

USARTDIV = DIV_Mantissa + (DIV_Fraction / 16)

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 603/682

24.3.1 USART character description

Word length may be selected as being either 8 or 9 bits by programming the M bit in the
USART_CR1 register (see Figure 237).

The TX pin is in low state during the start bit. It is in high state during the stop bit.

An Idle character is interpreted as an entire frame of “1”s followed by the start bit of the next
frame which contains data (The number of “1” ‘s will include the number of stop bits).

A Break character is interpreted on receiving “0”s for a frame period. At the end of the
break frame the transmitter inserts either 1 or 2 stop bits (logic “1” bit) to acknowledge the
start bit.

Transmission and reception are driven by a common baud rate generator, the clock for each
is generated when the enable bit is set respectively for the transmitter and receiver.

The details of each block is given below.

Figure 237. Word length programming

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8
Start
bit Stop

bit

Next
Start
bit

Idle frame

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Stop
Bit

Next
Start
Bit

Idle frame
Start
bit

9-bit word length (M bit is set), 1 stop bit

8-bit word length (M bit is reset), 1 stop bit

Possible
parity

bit

Possible
Parity

Bit

Break frame Start
bit

Extra
‚Äô

Data frame

Break frame Start
bit

Extra
‚Äô

Data frame

Next data frame

Next data frame

Start
bit

** LBCL bit controls last data clock pulse

Clock

Clock

** LBCL bit controls last data clock pulse

**

**

Universal synchronous asynchronous receiver transmitter (USART) RM0008

604/682

24.3.2 Transmitter

The transmitter can send data words of either 8 or 9 bits depending on the M bit status.
When the transmit enable bit (TE) is set, the data in the transmit shift register is output on
the TX pin and the corresponding clock pulses are output on the SCLK pin.

Character transmission

During an USART transmission, data shifts out least significant bit first on the TX pin. In this
mode, the USART_DR register consists of a buffer (TDR) between the internal bus and the
transmit shift register (see Figure 236).

Every character is preceded by a start bit which is a logic level low for one bit period. The
character is terminated by a configurable number of stop bits.

The following stop bits are supported by USART.

Note: 1 The TE bit should not be reset during transmission of data. Resetting the TE bit during the
transmission will corrupt the data on the TX pin as the baud rate counters will get frozen.
The current data being transmitted will be lost.

2 An idle frame will be sent after the TE bit is enabled.

Configurable stop bits

The number of stop bits to be transmitted with every character can be programmed in
Control register 2, bits 13,12.

1. 1 stop bit: This is the default value of number of stop bits.

2. 2 Stop bits: This will be supported by normal USART, single-wire and modem modes.

3. 0.5 stop bit: To be used when receiving data in Smartcard mode.

4. 1.5 stop bits: To be used when transmitting data in Smartcard mode.

An idle frame transmission will include the stop bits.

A break transmission will be 10 low bits followed by the configured number of stop bits
(when m = 0) and 11 low bits followed by the configured number of stop bits (when m = 1). It
is not possible to transmit long breaks (break of length greater than 10/11 low bits).

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 605/682

Figure 238. Configurable stop bits

Procedure:

1. Enable the USART by writing the UE bit in USART_CR1 register to 1.

2. Program the M bit in USART_CR1 to define the word length.

3. Program the number of stop bits in USART_CR2.

4. Select DMA enable (DMAT) in USART_CR3 if Multi buffer Communication is to take
place. Configure the DMA register as explained in multibuffer communication.

5. Set the TE bit in USART_CR1 to send an idle frame as first transmission.

6. Select the desired baud rate using the USART_BRR register.

7. Write the data to send in the USART_DR register (this clears the TXE bit). Repeat this
for each data to be transmitted in case of single buffer.

Single byte communication

Clearing the TXE bit is always performed by a write to the data register.

The TXE bit is set by hardware and it indicates:

● The data has been moved from TDR to the shift register and the data transmission has
started.

● The TDR register is empty.

● The next data can be written in the USART_DR register without overwriting the
previous data.

This flag generates an interrupt if the TXEIE bit is set.

When a transmission is taking place, a write instruction to the USART_DR register stores
the data in the TDR register and which is copied in the shift register at the end of the current
transmission.

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Stop
Bit

Next
Start
Bit

8-bit Word length (M bit is reset)
Possible

Parity
Bit

Data Frame
Next Data Frame

** LBCL bit controls last data clock pulse

CLOCK
**

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

2 Stop
Bits

Next
Start
Bit

Possible
Parity

Bit
Data Frame

Next Data Frame

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Next
Start
Bit

Possible
Parity

Bit
Data Frame

Next Data Frame

1/2 stop bit

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Next
Start
Bit

Possible
Parity

Bit
Data Frame

Next Data Frame

1 1/2 stop bits

a) 1 Stop Bit

b) 1 1/2 stop Bits

c) 2 Stop Bits

d) 1/2 Stop Bit

Universal synchronous asynchronous receiver transmitter (USART) RM0008

606/682

When no transmission is taking place, a write instruction to the USART_DR register places
the data directly in the shift register, the data transmission starts, and the TXE bit is
immediately set.

When a frame transmission is complete (after the stop bit) the TC bit is set and an interrupt
is generated if the TCIE is set in the USART_CR1 register.

Clearing the TC bit is performed by the following software sequence:

1. A read to the USART_SR register

2. A write to the USART_DR register

Note: The TC bit can also be cleared by writing a ‘0’ to it. This clearing sequence is recommended
only for Multibuffer communication.

Break characters

Setting the SBK bit transmits a break character. The break frame length depends on the M
bit (see Figure 237).

If the SBK bit is set to ‘1’ a break character is sent on the TX line after completing the current
character transmission. This bit is reset by hardware when the break character is completed
(during the stop bit of the break character). The USART inserts a logic 1 bit at the end of the
last break frame to guarantee the recognition of the start bit of the next frame.

Note: If the software resets the SBK bit before the commencement of break transmission, the
break character will not be transmitted. For two consecutive breaks, the SBK bit should be
set after the stop bit of the previous break.

Idle characters

Setting the TE bit drives the USART to send an idle frame before the first data frame.

24.3.3 Receiver

The USART can receive data words of either 8 or 9 bits depending on the M bit in the
USART_CR1 register.

Start bit detection

In the USART, the start bit is detected when a specific sequence of samples is recognized.
This sequence is: 1 1 1 0 X 0 X 0X 0X 0 X 0X 0.

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 607/682

Figure 239. Start bit detection

Note: If the sequence is not complete, the start bit detection aborts and the receiver returns to idle
state (no flag is set) waiting for a falling edge.

If only 2 out of the 3 bits are at 0 (sampling on the 3rd, 5th and 7th bits or sampling on the 8th,
9th and 10th bits), the start bit is validated but the NE noise flag bit is set.

The start bit is confirmed if the last 3 samples are at 0 (sampling on the 8th, 9th, and 10th
bits.

Character reception

During an USART reception, data shifts in least significant bit first through the RX pin. In this
mode, the USART_DR register consists of a buffer (RDR) between the internal bus and the
received shift register.

Procedure:

1. Enable the USART by writing the UE bit in USART_CR1 register to 1.

2. Program the M bit in USART_CR1 to define the word length.

3. Program the number of stop bits in USART_CR2.

4. Select DMA enable (DMAR) in USART_CR3 if multibuffer communication is to take
place. Configure the DMA register as explained in multibuffer communication. STEP 3

5. Select the desired baud rate using the baud rate register USART_BRR

6. Set the RE bit USART_CR1. This enables the receiver which begins searching for a
start bit.

RX line

sampled values

Idle Start bitRX state

Real
sample
clock

Ideal
sample
clock

01 0 X 0 X 0 0 0 0 X X X X X X
Conditions
to validate
the start bit

At least 2 bits
out of 3 at 0

At least 2 bits
out of 3 at 0

Falling edge
detection

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X X X X X X X X 9 10 11 12 13 14 15 16

6/16

7/16

One-bit time

7/16

X

ai15471

Universal synchronous asynchronous receiver transmitter (USART) RM0008

608/682

When a character is received

● The RXNE bit is set. It indicates that the content of the shift register is transferred to the
RDR. In other words, data has been received and can be read (as well as its
associated error flags).

● An interrupt is generated if the RXNEIE bit is set.

● The error flags can be set if a frame error, noise or an overrun error has been detected
during reception.

● In multibuffer, RXNE is set after every byte received and is cleared by the DMA read to
the Data Register.

● In single buffer mode, clearing the RXNE bit is performed by a software read to the
USART_DR register. The RXNE flag can also be cleared by writing a zero to it. The
RXNE bit must be cleared before the end of the reception of the next character to avoid
an overrun error.

Note: The RE bit should not be reset while receiving data. If the RE bit is disabled during
reception, the reception of the current byte will be aborted.

Break character

When a break character is received, the USART handles it as a framing error.

Idle character

When an idle frame is detected, there is the same procedure as a data received character
plus an interrupt if the IDLEIE bit is set.

Overrun error

An overrun error occurs when a character is received when RXNE has not been reset. Data
can not be transferred from the shift register to the RDR register until the RXNE bit is
cleared.

The RXNE flag is set after every byte received. An overrun error occurs if RXNE flag is set
when the next data is received or the previous DMA request has not been serviced. When
an overrun error occurs:

● The ORE bit is set.

● The RDR content will not be lost. The previous data is available when a read to
USART_DR is performed.

● The shift register will be overwritten. After that point, any data received during overrun
is lost.

● An interrupt is generated if either the RXNEIE bit is set or both the EIE and DMAR bits
are set.

● The ORE bit is reset by a read to the USART_SR register followed by a USART_DR
register read operation.

Note: The ORE bit, when set, indicates that at least 1 data has been lost. There are two
possibilities:

● if RXNE=1, then the last valid data is stored in the receive register RDR and can be
read,

● if RXNE=0, then it means that the last valid data has already been read and thus there
is nothing to be read in the RDR. This case can occur when the last valid data is read in
the RDR at the same time as the new (and lost) data is received. It may also occur

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 609/682

when the new data is received during the reading sequence (between the USART_SR
register read access and the USART_DR read access).

Noise error

Over-sampling techniques are used (except in synchronous mode) for data recovery by
discriminating between valid incoming data and noise.

Figure 240. Data sampling for noise detection

When noise is detected in a frame:

● The NE is set at the rising edge of the RXNE bit.

● The invalid data is transferred from the Shift register to the USART_DR register.

● No interrupt is generated in case of single byte communication. However this bit rises
at the same time as the RXNE bit which itself generates an interrupt. In case of
multibuffer communication an interrupt will be issued if the EIE bit is set in the
USART_CR3 register.

The NE bit is reset by a USART_SR register read operation followed by a USART_DR
register read operation.

Framing error

A framing error is detected when:

The stop bit is not recognized on reception at the expected time, following either a de-
synchronization or excessive noise.

Table 153. Noise detection from sampled data

Sampled value NE status Received bit value Data validity

000 0 0 Valid

001 1 0 Not Valid

010 1 0 Not Valid

011 1 1 Not Valid

100 1 0 Not Valid

101 1 1 Not Valid

110 1 1 Not Valid

111 0 1 Valid

RX LINE

Sample
 clock 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sampled values

One bit time

6/16

7/16 7/16

Universal synchronous asynchronous receiver transmitter (USART) RM0008

610/682

When the framing error is detected:

● The FE bit is set by hardware

● The invalid data is transferred from the Shift register to the USART_DR register.

● No interrupt is generated in case of single byte communication. However this bit rises
at the same time as the RXNE bit which itself generates an interrupt. In case of
multibuffer communication an interrupt will be issued if the EIE bit is set in the
USART_CR3 register.

The FE bit is reset by a USART_SR register read operation followed by a USART_DR
register read operation.

Configurable stop bits during reception

The number of stop bits to be received can be configured through the control bits of Control
Register 2 - it can be either 1 or 2 in normal mode and 0.5 or 1.5 in Smartcard mode.

1. 0.5 stop Bit (reception in Smartcard mode): No sampling is done for 0.5 stop bit. As
a consequence, no framing error and no break frame can be detected when 0.5 stop bit
is selected.

2. 1 stop Bit: Sampling for 1 stop Bit is done on the 8th, 9th and 10th samples.

3. 1.5 stop Bits (transmission in Smartcard mode): When transmitting in smartcard
mode, the device must check that the data is correctly sent. Thus the receiver block
must be enabled (RE =1 in the USART_CR1 register) and the stop bit is checked to test
if the smartcard has detected a parity error. In the event of a parity error, the smartcard
forces the data signal low during the sampling - NACK signal-, which is flagged as a
framing error. Then, the FE flag is set with the RXNE at the end of the 1.5 stop bit.
Sampling for 1.5 stop bits is done on the 16th, 17th and 18th samples (1 baud clock
period after the beginning of the stop bit). The 1.5 stop bit can be decomposed into 2
parts: one 0.5 baud clock period during which nothing happens, followed by 1 normal
stop bit period during which sampling occurs halfway through. Refer to Section 24.3.10:
Smartcard on page 619 for more details.

4. 2 stop Bits: Sampling for 2 stop bits is done on the 8th, 9th and 10th samples of the
first stop bit. If a framing error is detected during the first stop bit the framing error flag
will be set. The second stop bit is not checked for framing error. The RXNE flag will be
set at the end of the first stop bit.

24.3.4 Fractional baud rate generation

The baud rate for the receiver and transmitter (Rx and Tx) are both set to the same value as
programmed in the Mantissa and Fraction values of USARTDIV.

USARTDIV is an unsigned fixed point number that is coded on the USART_BRR register.

How to derive USARTDIV from USART_BRR register values

Example 1:

If DIV_Mantissa = 27d and DIV_Fraction= 12d (USART_BRR=1BCh), then

Mantissa (USARTDIV) = 27d

Tx/ Rx baud =

legend: fPCLKx(x=1,2) - Input clock to the peripheral (PCLK1 for USART2, 3, 4, 5 or PCLK2 for USART

fCK

(16*USARTDIV)

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 611/682

Fraction (USARTDIV) = 12/16 = 0.75d

Therefore USARTDIV = 27.75d

Example 2:

To program USARTDIV = 25.62d,

This leads to:

DIV_Fraction = 16*0.62d = 9.92d, nearest real number 10d = 0xA

DIV_Mantissa = mantissa (25.620d) = 25d = 0x19

Then, USART_BRR = 0x19A

Example 3:

To program USARTDIV = 50.99d

This leads to:

DIV_Fraction = 16*0.99d = 15.84d => nearest real number, 16d = 0x10

DIV_Mantissa = mantissa (50.990d) = 50d = 0x32

Note: The Baud Counters will be updated with the new value of the Baud Registers after a write to
USART_BRR. Hence the Baud Rate Register value should not be changed during a
transaction.

Note: 1 The lower the CPU clock the lower will be the accuracy for a particular Baud rate. The upper
limit of the achievable baud rate can be fixed with this data.

2 Only USART1 is clocked with PCLK2 (72 MHz Max). Other USARTs are clocked with
PCLK1 (36 MHz Max).

Table 154. Error calculation for programmed baud rates

Baud rate fPCLK = 36 MHz fPCLK = 72 MHz

S.No
in
Kbps

Actual

Value
programmed
in the Baud
Rate register

% Error
=(Calculated -
Desired)B.Rate
/Desired B.Rate

Actual

Value
programmed in
the Baud Rate
register

% Error

1. 2.4 2.400 937.5 0% 2.4 1875 0%

2. 9.6 9.600 234.375 0% 9.6 468.75 0%

3. 19.2 19.2 117.1875 0% 19.2 234.375 0%

4. 57.6 57.6 39.0625 0% 57.6 78.125 0.%

5. 115.2 115.384 19.5 0.15% 115.2 39.0625 0%

6. 230.4 230.769 9.75 0.16% 230.769 19.5 0.16%

7. 460.8 461.538 4.875 0.16% 461.538 9.75 0.16%

8. 921.6 923.076 2.4375 0.16% 923.076 4.875 0.16%

9. 2250 2250 1 0% 2250 2 0%

10. 4500 NA NA NA 4500 1 0%

Universal synchronous asynchronous receiver transmitter (USART) RM0008

612/682

24.3.5 Multiprocessor communication

There is a possibility of performing multiprocessor communication with the USART (several
USARTs connected in a network). For instance one of the USARTs can be the master, its
TX output is connected to the RX input of the other USART. The others are slaves, their
respective TX outputs are logically ANDed together and connected to the RX input of the
master.

In multiprocessor configurations it is often desirable that only the intended message
recipient should actively receive the full message contents, thus reducing redundant USART
service overhead for all non addressed receivers.

The non addressed devices may be placed in mute mode by means of the muting function.
In mute mode:

● None of the reception status bits can be set.

● All the receive interrupts are inhibited.

● The RWU bit in USART_CR1 register is set to 1. RWU can be controlled automatically
by hardware or written by the software under certain conditions.

The USART can enter or exit from mute mode using one of two methods, depending on the
WAKE bit in the USART_CR1 register:

● Idle Line detection if the WAKE bit is reset,

● Address Mark detection if the WAKE bit is set.

Idle line detection (WAKE=0)

The USART enters mute mode when the RWU bit is written to 1.

It wakes up when an Idle frame is detected. Then the RWU bit is cleared by hardware but
the IDLE bit is not set in the USART_SR register. RWU can also be written to 0 by software.

An example of mute mode behavior using idle line detection is given in Figure 241.

Figure 241. Mute mode using Idle line detection

Address mark detection (WAKE=1)

In this mode, bytes are recognized as addresses if their MSB is a ‘1’ else they are
considered as data. In an address byte, the address of the targeted receiver is put on the 4
LSB. This 4-bit word is compared by the receiver with its own address which is programmed
in the ADD bits in the USART_CR2 register.

RWU written to 1

Data 1 IDLERX Data 2 Data 3 Data 4 Data 6Data 5

RWU Mute Mode Normal Mode

Idle frame detected

RXNE RXNE

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 613/682

The USART enters mute mode when an address character is received which does not
match its programmed address. The RXNE flag is not set for this address byte and no
interrupt nor DMA request is issued as the USART would have entered mute mode.

It exits from mute mode when an address character is received which matches the
programmed address. Then the RWU bit is cleared and subsequent bytes are received
normally. The RXNE bit is set for the address character since the RWU bit has been cleared.

The RWU bit can be written to as 0 or 1 when the receiver buffer contains no data (RXNE=0
in the USART_SR register). Otherwise the write attempt is ignored.

An example of mute mode behavior using address mark detection is given in Figure 242.

Figure 242. Mute mode using Address mark detection

24.3.6 Parity control

Parity control (generation of parity bit in transmission and parity checking in reception) can
be enabled by setting the PCE bit in the USART_CR1 register. Depending on the frame
length defined by the M bit, the possible USART frame formats are as listed in Table 155.

Table 155. Frame formats

Legends: SB: Start Bit, STB: Stop Bit, PB: Parity Bit

Note: In case of wake up by an address mark, the MSB bit of the data is taken into account and
not the parity bit

Even parity: the parity bit is calculated to obtain an even number of “1s” inside the frame
made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

Ex: data=00110101; 4 bits set => parity bit will be 0 if even parity is selected (PS bit in
USART_CR1 = 0).

Odd parity: the parity bit is calculated to obtain an odd number of “1s” inside the frame
made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

RWU written to 1

IDLERX Addr=0

RWU Mute Mode Normal Mode

Matching address

RXNE RXNE

(RXNE was cleared)

Data 2 Data 3 Data 4 Data 5Data 1 IDLE Addr=1 Addr=2

Mute Mode

In this example, the current address of the receiver is 1
(programmed in the USART_CR2 register)

Non-matching address Non-matching address

M bit PCE bit USART frame

0 0 | SB | 8 bit data | STB |

0 1 | SB | 7-bit data | PB | STB |

1 0 | SB | 9-bit data | STB |

1 1 | SB | 8-bit data PB | STB |

Universal synchronous asynchronous receiver transmitter (USART) RM0008

614/682

Ex: data=00110101; 4 bits set => parity bit will be 1 if odd parity is selected (PS bit in
USART_CR1 = 1).

Transmission mode: If the PCE bit is set in USART_CR1, then the MSB bit of the data
written in the data register is transmitted but is changed by the parity bit (even number of
“1s” if even parity is selected (PS=0) or an odd number of “1s” if odd parity is selected
(PS=1)). If the parity check fails, the PE flag is set in the USART_SR register and an
interrupt is generated if PEIE is set in the USART_CR1 register.

24.3.7 LIN (local interconnection network) mode

The LIN mode is selected by setting the LINEN bit in the USART_CR2 register. In LIN mode,
the following bits must be kept cleared:

● CLKEN in the USART_CR2 register,

● STOP[1:0], SCEN, HDSEL and IREN in the USART_CR3 register.

LIN transmission

The same procedure explained in Section 24.3.2 has to be applied for LIN Master
transmission than for normal USART transmission with the following differences:

● Clear the M bit to configure 8-bit word length.

● Set the LINEN bit to enter LIN mode. In this case, setting the SBK bit sends 13 ‘0’ bits
as a break character. Then a bit of value ‘1’ is sent to allow the next start detection.

LIN reception

When the LIN mode is enabled, the break detection circuit is activated. The detection is
totally independent from the normal USART receiver. A break can be detected whenever it
occurs, during idle state or during a frame.

When the receiver is enabled (RE=1 in USART_CR1), the circuit looks at the RX input for a
start signal. The method for detecting start bits is the same when searching break
characters or data. After a start bit has been detected, the circuit samples the next bits
exactly like for the data (on the 8th, 9th and 10th samples). If 10 (when the LBDL = 0 in
USART_CR2) or 11 (when LBDL=1 in USART_CR2) consecutive bits are detected as ‘0’,
and are followed by a delimiter character, the LBD flag is set in USART_SR. If the LBDIE
bit=1, an interrupt is generated. Before validating the break, the delimiter is checked for as it
signifies that the RX line has returned to a high level.

If a ‘1’ is sampled before the 10 or 11 have occurred, the break detection circuit cancels the
current detection and searches for a start bit again.

If the LIN mode is disabled (LINEN=0), the receiver continues working as normal USART,
without taking into account the break detection.

If the LIN mode is enabled (LINEN=1), as soon as a framing error occurs (i.e. stop bit
detected at ‘0’, which will be the case for any break frame), the receiver stops until the break
detection circuit receives either a ‘1’, if the break word was not complete, or a delimiter
character if a break has been detected.

The behavior of the break detector state machine and the break flag is shown on the
Figure 243: Break detection in LIN mode (11-bit break length - LBDL bit is set) on page 615.

Examples of break frames are given on Figure 244: Break detection in LIN mode vs.
Framing error detection on page 616.

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 615/682

Figure 243. Break detection in LIN mode (11-bit break length - LBDL bit is set)

Case 1: break signal not long enough => break discarded, LBD is not set

‚ÄúShort‚Äù Break FRX line

Break State machine

Capture Strobe

0

Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8 Bit9Idle Idle

Read Samples

Bit0

0 0 0 0 0 0 0 0 0 1

Bit10

‚ÄúShort‚Äù Break FRX line

Break State machine

Capture Strobe

0

Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8 Bit9Idle Idle

Read Samples

Bit0

0 0 0 0 0 0 0 0 0 0

B10

Case 2: break signal just long enough => break detected, LBD is set

LBD

‚ÄúShort‚Äù Break FRX line

Break State machine

Capture Strobe

0

Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8 Bit9Idle Idle

Read Samples

Bit0

0 0 0 0 0 0 0 0 0 0

Bit10

Case 3: break signal long enough => break detected, LBD is set

wait delimiter

LBD

delimiter is immediate

Universal synchronous asynchronous receiver transmitter (USART) RM0008

616/682

Figure 244. Break detection in LIN mode vs. Framing error detection

24.3.8 USART synchronous mode

The synchronous mode is selected by writing the CLKEN bit in the USART_CR2 register to
1. In synchronous mode, the following bits must be kept cleared:

● LINEN bit in the USART_CR2 register,

● SCEN, HDSEL and IREN bits in the USART_CR3 register.

The USART allows the user to control a bidirectional synchronous serial communications in
master mode. The SCLK pin is the output of the USART transmitter clock. No clock pulses
are sent to the SCLK pin during start bit and stop bit. Depending on the state of the LBCL bit
in the USART_CR2 register clock pulses will or will not be generated during the last valid
data bit (address mark). The CPOL bit in the USART_CR2 register allows the user to select
the clock polarity, and the CPHA bit in the USART_CR2 register allows the user to select the
phase of the external clock (see Figure 245, Figure 246 & Figure 247).

During idle, preamble and send break, the external SCLK clock is not activated.

In synchronous mode the USART transmitter works exactly like in asynchronous mode. But
as SCLK is synchronized with TX (according to CPOL and CPHA), the data on TX is
synchronous.

In this mode the USART receiver works in a different manner compared to the
asynchronous mode. If RE=1, the data is sampled on SCLK (rising or falling edge,
depending on CPOL and CPHA), without any oversampling. A setup and a hold time must
be respected (which depends on the baud rate: 1/16 bit time).

Note: 1 The SCLK pin works in conjunction with the TX pin. Thus, the clock is provided only if the
transmitter is enabled (TE=1) and a data is being transmitted (the data register USART_DR

Case 1: break occurring after an Idle

IDLE data2 (0x55)data 1 data 3 (header)

In these examples, we suppose that LBDL=1 (11-bit break length), M=0 (8-bit data)

RX line

RXNE / FE

LBD

1 data time 1 data time

Case 1: break occurring while a data is being received

data 2 data2 (0x55)data 1 data 3 (header)RX line

RXNE / FE

LBD

1 data time 1 data time

BREAK

BREAK

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 617/682

has been written). This means that it is not possible to receive a synchronous data without
transmitting data.

2 The LBCL, CPOL and CPHA bits have to be selected when both the transmitter and the
receiver are disabled (TE=RE=0) to ensure that the clock pulses function correctly. These
bits should not be changed while the transmitter or the receiver is enabled.

3 It is advised that TE and RE are set in the same instruction in order to minimize the setup
and the hold time of the receiver.

4 The USART supports master mode only: it cannot receive or send data related to an input
clock (SCLK is always an output).

Figure 245. USART example of synchronous transmission

Figure 246. USART data clock timing diagram (M=0)

RX
TX

SCLK

USART

Data out
Data in

Synchronous device

Clock

(e.g. slave SPI)

M=0 (8 data bits)

Clock (CPOL=0, CPHA=1)

Clock (CPOL=1, CPHA=0)

Clock (CPOL=1, CPHA=1)

Start LSB MSB Stop

* LBCL bit controls last data clock pulse

Start
Idle or preceding
transmission

Data on TX

Stop

Clock (CPOL=0, CPHA=0)

0 1 2 3 4 5 6 7

*

*

*

*

Idle or next
transmission

*
Capture Strobe

LSB MSB

Data on RX 0 1 2 3 4 5 6 7

(from master)

(from slave)

Universal synchronous asynchronous receiver transmitter (USART) RM0008

618/682

Figure 247. USART data clock timing diagram (M=1)

Figure 248. RX data setup/hold time

Note: The function of SCLK is different in Smartcard mode. Refer to the Smartcard mode chapter
for more details.

24.3.9 Single wire half duplex communication

The single-wire half-duplex mode is selected by setting the HDSEL bit in the USART_CR3
register. In this mode, the following bits must be kept cleared:

● LINEN and CLKEN bits in the USART_CR2 register,

● SCEN and IREN bits in the USART_CR3 register.

The USART can be configured to follow a single wire half duplex protocol. The selection
between half and full duplex communication is done with a control bit ‘HALF DUPLEX SEL’
(HDSEL in USART_CR3).

As soon as HDSEL is written to 1:

● RX is no longer used,

● TX is always released when no data is transmitted. Thus, it acts as a standard I/O in
idle or in reception. It means that the I/O must be configured so that TX is configured as
floating input (or output high open-drain) when not driven by the USART.

Apart from this, the communications are similar to what is done in normal USART mode.
The conflicts on the line must be managed by the software (by the use of a centralized

Idle or nextM=1 (9 data bits)

Clock (CPOL=0, CPHA=1)

Clock (CPOL=1, CPHA=0)

Clock (CPOL=1, CPHA=1)

Start LSB MSB Stop

* LBCL bit controls last data clock pulse

Start
Idle or preceding
transmission

Data on TX

Stop

Clock (CPOL=0, CPHA=0)

0 1 2 3 4 5 6 7

*

*

*

*

8

transmission

Capture Strobe

LSB MSB

Data on RX 0 1 2 3 4 5 6 7
(from slave)

(from master)

*

8

valid DATA bit

tSETUP tHOLD

SCLK (capture strobe on SCLK
rising edge in this example)

Data on RX
(from slave)

tSETUP = tHOLD 1/16 bit time

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 619/682

arbiter, for instance). In particular, the transmission is never blocked by hardware and
continue to occur as soon as a data is written in the data register while the TE bit is set.

24.3.10 Smartcard

The Smartcard mode is selected by setting the SCEN bit in the USART_CR3 register. In
smartcard mode, the following bits must be kept cleared:

● LINEN bit in the USART_CR2 register,

● HDSEL and IREN bits in the USART_CR3 register.

Moreover, the CLKEN bit may be set in order to provide a clock to the smartcard.

The Smartcard interface is designed to support asynchronous protocol Smartcards as
defined in the ISO7816-3 standard. USART should be configured as:

● 8 bits plus parity: where M=1 and PCE=1 in the USART_CR1 register and either:

– 0.5 stop bits when receiving: where STOP=’01’ in the USART_CR2 register

– 1.5 stop bits when transmitting: where STOP=’11’ in the USART_CR2 register.

Figure 249 shows examples of what can be seen on the data line with and without parity
error.

Figure 249. ISO 7816-3 asynchronous protocol

When connected to a smartcard, the TX output of the USART drives a bidirectional line that
the smartcard also drives into. To do so, SW_RX must be connected on the same I/O than
TX at product level. The Transmitter output enable TX_EN is asserted during the
transmission of the start bit and the data byte, and is deasserted during the stop bit (weak
pull up), so that the receive can drive the line in case of a parity error. If TX_EN is not used,
TX is driven at high level during the stop bit: Thus the receiver can drive the line as long as
TX is configured in open-drain.

Smartcard is a single wire half duplex communication protocol.

● Transmission of data from the transmit shift register is guaranteed to be delayed by a
minimum of 1/2 baud clock. In normal operation a full transmit shift register will start
shifting on the next baud clock edge. In Smartcard mode this transmission is further
delayed by a guaranteed 1/2 baud clock.

● If a parity error is detected during reception of a frame programmed with a 1/2 stop bit
period, the transmit line is pulled low for a baud clock period after the completion of the
receive frame, i.e. at the end of the 1/2 stop bit period. This is to indicate to the
Smartcard that the data transmitted to USART has not been correctly received. This

S 0 1 2 3 54 6 7 P

Start
bit

Guard time

S 0 1 2 3 54 6 7 P

Start
bit

Line pulled low
by receiver during stop in
case of parity error

Guard time

Without Parity error

With Parity error

Universal synchronous asynchronous receiver transmitter (USART) RM0008

620/682

NACK signal (pulling transmit line low for 1 baud clock) will cause a framing error on the
transmitter side (configured with 1.5 stop bits). The application can handle re-sending
of data according to the protocol. A parity error is ‘NACK’ed by the receiver if the NACK
control bit is set, otherwise a NACK is not transmitted.

● The assertion of the TC flag can be delayed by programming the Guard Time register.
In normal operation, TC is asserted when the transmit shift register is empty and no
further transmit requests are outstanding. In Smartcard mode an empty transmit shift
register triggers the guard time counter to count up to the programmed value in the
Guard Time register. TC is forced low during this time. When the guard time counter
reaches the programmed value TC is asserted high.

● The de-assertion of TC flag is unaffected by Smartcard mode.

● If a framing error is detected on the transmitter end (due to a NACK from the receiver),
the NACK will not be detected as a start bit by the receive block of the transmitter.
According to the ISO protocol, the duration of the received NACK can be 1 or 2 baud
clock periods.

● On the receiver side, if a parity error is detected and a NACK is transmitted the receiver
will not detect the NACK as a start bit.

Note: 1 A break character is not significant in Smartcard mode. A 0x00 data with a framing error will
be treated as data and not as a break.

2 No IDLE frame is transmitted when toggling the TE bit. The IDLE frame (as defined for the
other configurations) is not defined by the ISO protocol.

Figure 250 details how the NACK signal is sampled by the USART. In this example the
USART is transmitting a data and is configured with 1.5 stop bits. The receiver part of the
USART is enabled in order to check the integrity of the data and the NACK signal.

Figure 250. Parity error detection using the 1.5 stop bits

The USART can provide a clock to the smartcard through the SCLK output. In smartcard
mode, SCLK is not associated to the communication but is simply derived from the internal
peripheral input clock through a 5-bit prescaler. The division ratio is configured in the
prescaler register USART_GTPR. SCLK frequency can be programmed from fCK/2 to
fCK/62, where fCK is the peripheral input clock.

1 bit time 1.5 bit time

0.5 bit time 1 bit time

sampling at
8th, 9th, 10th

sampling at
8th, 9th, 10th

sampling at
8th, 9th, 10th

sampling at
16th, 17th, 18th

Bit 7 Parity Bit 1.5 Stop Bit

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 621/682

24.3.11 IrDA SIR ENDEC block

The IrDA mode is selected by setting the IREN bit in the USART_CR3 register. In IrDA
mode, the following bits must be kept cleared:

● LINEN, STOP and CLKEN bits in the USART_CR2 register,

● SCEN and HDSEL bits in the USART_CR3 register.

The IrDA SIR physical layer specifies use of a Return to Zero, Inverted (RZI) modulation
scheme that represents logic 0 as an infrared light pulse (see Figure 251).

The SIR Transmit encoder modulates the Non Return to Zero (NRZ) transmit bit stream
output from USART. The output pulse stream is transmitted to an external output driver and
infrared LED. USART supports only bit rates up to 115.2Kbps for the SIR ENDEC. In normal
mode the transmitted pulse width is specified as 3/16 of a bit period.

The SIR receive decoder demodulates the return-to-zero bit stream from the infrared
detector and outputs the received NRZ serial bit stream to USART. The decoder input is
normally HIGH (marking state) in the idle state. The transmit encoder output has the
opposite polarity to the decoder input. A start bit is detected when the decoder input is low.

● IrDA is a half duplex communication protocol. If the Transmitter is busy (i.e. the USART
is sending data to the IrDA encoder), any data on the IrDA receive line will be ignored
by the IrDA decoder and if the Receiver is busy (USART is receiving decoded data from
the USART), data on the TX from the USART to IrDA will not be encoded by IrDA.
While receiving data, transmission should be avoided as the data to be transmitted
could be corrupted.

● A ‘0’ is transmitted as a high pulse and a ‘1’ is transmitted as a ‘0’. The width of the
pulse is specified as 3/16th of the selected bit period in normal mode (see Figure 252).

● The SIR decoder converts the IrDA compliant receive signal into a bit stream for
USART.

● The SIR receive logic interprets a high state as a logic one and low pulses as logic
zeros.

● The transmit encoder output has the opposite polarity to the decoder input. The SIR
output is in low state when idle.

● The IrDA specification requires the acceptance of pulses greater than 1.41 us. The
acceptable pulse width is programmable. Glitch detection logic on the receiver end
filters out pulses of width less than 2 PSC periods (PSC is the prescaler value
programmed in the IrDA low-power Baud Register, USART_GTPR). Pulses of width
less than 1 PSC period are always rejected, but those of width greater than one and
less than two periods may be accepted or rejected, those greater than 2 periods will be
accepted as a pulse. The IrDA encoder/decoder doesn’t work when PSC=0.

● The receiver can communicate with a low-power transmitter.

● In IrDA mode, the STOP bits in the USART_CR2 register must be configured to “1 stop
bit”.

IrDA low-power mode

Transmitter:

In low-power mode the pulse width is not maintained at 3/16 of the bit period. Instead, the
width of the pulse is 3 times the low-power baud rate which can be a minimum of 1.42 MHz.
Generally this value is 1.8432 MHz (1.42 MHz < PSC< 2.12 MHz). A low-power mode
programmable divisor divides the system clock to achieve this value.

Universal synchronous asynchronous receiver transmitter (USART) RM0008

622/682

Receiver:

Receiving in low-power mode is similar to receiving in normal mode. For glitch detection the
USART should discard pulses of duration shorter than 1/PSC. A valid low is accepted only if
its duration is greater than 2 periods of the IrDA low-power Baud clock (PSC value in
USART_GTPR).

Note: 1 A pulse of width less than two and greater than one PSC period(s) may or may not be
rejected.

2 The receiver set up time should be managed by software. The IrDA physical layer
specification specifies a minimum of 10 ms delay between transmission and reception (IrDA
is a half duplex protocol).

Figure 251. IrDA SIR ENDEC- block diagram

Figure 252. IrDA data modulation (3/16) -Normal Mode

24.3.12 Continuous communication using DMA

The USART is capable to continue communication using the DMA. The DMA requests for
Rx buffer and Tx buffer are generated independently.

Note: You should refer to product specs for availability of the DMA controller. If DMA is not
available in the product, you should use the USART as explained in Section 24.3.2 or
24.3.3. In the USART_SR register, you can clear the TXE/ RXNE flags to achieve
continuous communication.

USART

SIR
Transmit
Encoder

SIR
Receive
Decoder

OR USART_TX

IrDA_OUT

IrDA_IN

USART_RX

TX

RX

SIREN

TX

IrDA_OUT

IrDA_IN

RX

Start
bit

0 1 0 1 0 0 1 1 0 1

3/16

stop bit

bit period

0 1 0 1 0 0 1 1 0 1

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 623/682

Transmission using DMA

DMA mode can be enabled for transmission by setting DMAT bit in the USART_CR3
register. Data is loaded from a SRAM area configured using the DMA peripheral (refer to the
DMA specification) to the USART_DR register whenever the TXE bit is set. To map a DMA
channel for USART transmission, use the following procedure (x denotes the channel
number):

1. Write the USART_DR register address in the DMA control register to configure it as the
destination of the transfer. The data will be moved to this address from memory after
each TXE event.

2. Write the memory address in the DMA control register to configure it as the source of
the transfer. The data will be loaded into the USART_DR register from this memory
area after each TXE event.

3. Configure the total number of bytes to be transferred to the DMA control register.

4. Configure the channel priority in the DMA register

5. Configure DMA interrupt generation after half/ full transfer as required by the
application.

6. Activate the channel in the DMA register.

When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector. The DMAT bit should
be cleared by software in the USART_CR3 register during the interrupt subroutine.

Note: If DMA is used for transmission, do not enable the TXEIE bit.

Reception using DMA

DMA mode can be enabled for reception by setting the DMAR bit in USART_CR3 register.
Data is loaded from the USART_DR register to a SRAM area configured using the DMA
peripheral (refer to the DMA specification) whenever a data byte is received. To map a DMA
channel for USART reception, use the following procedure:

1. Write the USART_DR register address in the DMA control register to configure it as the
source of the transfer. The data will be moved from this address to the memory after
each RXNE event.

2. Write the memory address in the DMA control register to configure it as the destination
of the transfer. The data will be loaded from USART_DR to this memory area after each
RXNE event.

3. Configure the total number of bytes to be transferred in the DMA control register.

4. Configure the channel priority in the DMA control register

5. Configure interrupt generation after half/ full transfer as required by the application.

6. Activate the channel in the DMA control register.

When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector. The DMAR bit should
be cleared by software in the USART_CR3 register during the interrupt subroutine.

Note: If DMA is used for reception, do not enable the RXNEIE bit.

Error flagging and interrupt generation in multibuffer communication

In case of multibuffer communication if any error occurs during the transaction the error flag
will be asserted after the current byte. An interrupt will be generated if the interrupt enable
flag is set. For framing error, overrun error and noise flag which are asserted with RXNE in

Universal synchronous asynchronous receiver transmitter (USART) RM0008

624/682

case of single byte reception, there will be separate error flag interrupt enable bit (EIE bit in
the USART_CR3 register), which if set will issue an interrupt after the current byte with
either of these errors.

24.3.13 Hardware flow control

It is possible to control the serial data flow between 2 devices by using the nCTS input and
the nRTS output. The Figure 253 shows how to connect 2 devices in this mode:

Figure 253. Hardware flow control between 2 USART

RTS and CTS flow control can be enabled independently by writing respectively RTSE and
CTSE bits to 1 (in the USART_CR3 register).

RTS flow control

If the RTS flow control is enabled (RTSE=1), then nRTS is asserted (tied low) as long as the
USART receiver is ready to receive a new data. When the receive register becomes empty,
nRTS is deasserted, indicating that the transmission is expected to stop at the end of the
current frame. Figure 254 shows an example of communication with RTS flow control
enabled.

Figure 254. RTS flow control

CTS flow control

If the CTS flow control is enabled (CTSE=1), then the transmitter checks the nCTS input
before transmitting the next frame. If nCTS is asserted (tied low), then the next data is
transmitted (assuming that a data is to be transmitted, in other words, if TXE=0), else the
transmission does not occur. When nCTS is deasserted during a transmission, the current
transmission is completed before the transmitter stops.

USART 1

RX circuit

TX circuit

USART 2

TX circuit

RX circuit

RXTX

TXRX

nCTS nRTS

nRTS nCTS

Start
Bit

Stop
BitData 1 IdleStart

Bit
Stop
BitData 2RX

nRTS

RXNE Data 1 read RXNE
Data 2 can now be transmitted

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 625/682

When CTSE=1, the CTSIF status bit is automatically set by hardware as soon as the nCTS
input toggles. It indicates when the receiver becomes ready or not ready for communication.
An interrupt is generated if the CTSIE bit in the USART_CR3 register is set. The figure
below shows an example of communication with CTS flow control enabled.

Figure 255. CTS flow control

Start
Bit

Stop
BitData 2 Idle Start

Bit Data 3TX

nCTS

CTS

Transmission of Data 3

Data 1 Stop
Bit

is delayed until nCTS = 0

CTS

Data 2 Data 3empty empty

Transmit data register

TDR

Writing data 3 in TDR

Universal synchronous asynchronous receiver transmitter (USART) RM0008

626/682

24.4 USART interrupts

The USART interrupt events are connected to the same interrupt vector (see Figure 256).

● During transmission: Transmission Complete, Clear to Send or Transmit Data Register
empty interrupt.

● While receiving: Idle Line detection, Overrun error, Receive Data register not empty,
Parity error, LIN break detection, Noise Flag (only in multi buffer communication) and
Framing Error (only in multi buffer communication).

These events generate an interrupt if the corresponding Enable Control Bit is set.

Figure 256. USART interrupt mapping diagram

Table 156. USART interrupt requests

Interrupt event Event flag
Enable

Control bit

Transmit Data Register Empty TXE TXEIE

CTS flag CTS CTSIE

Transmission Complete TC TCIE

Received Data Ready to be Read RXNE
RXNEIE

Overrun Error Detected ORE

Idle Line Detected IDLE IDLEIE

Parity Error PE PEIE

Break Flag LBD LBDIE

Noise Flag, Overrun error and Framing Error in multibuffer
communication

NE or ORE or FE EIE

TC
TCIE

TXE
TXEIE

IDLE
IDLEIE

RXNEIE
ORE

RXNEIE
RXNE

PE
PEIE

FE
NE

ORE EIE
DMAR

USART

LBD
LBDIE

CTS
CTSIE

interrupt

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 627/682

24.5 USART mode configuration

24.6 USART registers
Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

24.6.1 Status register (USART_SR)

Address offset: 0x00

Reset value: 0x00C0

Table 157. USART modes configuration(1)

1. X = supported; NA = not applicable.

USART modes USART1 USART2 USART3 UART4 UART5

Asynchronous mode X X X X X

Hardware Flow Control X X X NA NA

Multibuffer Communication (DMA) X X X X NA

Multiprocessor Communication X X X X X

Synchronous X X X NA NA

Smartcard X X X NA NA

Half-Duplex (Single-Wire mode) X X X X X

IrDA X X X X X

LIN X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CTS LBD TXE TC RXNE IDLE ORE NE FE PE

Res. rc_w0 rc_w0 r rc_w0 rc_w0 r r r r r

Bits 31:10 Reserved, forced by hardware to 0.

Bit 9 CTS: CTS flag

This bit is set by hardware when the nCTS input toggles, if the CTSE bit is set. It is cleared
by software (by writing it to 0). An interrupt is generated if CTSIE=1 in the USART_CR3
register.
0: No change occurred on the nCTS status line
1: A change occurred on the nCTS status line

Note: This bit is not available for UART4 & UART5.

Bit 8 LBD: LIN break detection flag
This bit is set by hardware when the LIN break is detected. It is cleared by software (by
writing it to 0). An interrupt is generated if LBDIE = 1 in the USART_CR2 register.
0: LIN Break not detected
1: LIN break detected

Note: An interrupt is generated when LBD=1 if LBDIE=1

Universal synchronous asynchronous receiver transmitter (USART) RM0008

628/682

Bit 7 TXE: Transmit data register empty
This bit is set by hardware when the content of the TDR register has been transferred into
the shift register. An interrupt is generated if the TXEIE bit =1 in the USART_CR1 register. It
is cleared by a write to the USART_DR register.
0: Data is not transferred to the shift register
1: Data is transferred to the shift register)

Note: This bit is used during single buffer transmission.

Bit 6 TC: Transmission complete

This bit is set by hardware when transmission of a frame containing Data is complete. An
interrupt is generated if TCIE=1 in the USART_CR1 register. It is cleared by a software
sequence (an read to the USART_SR register followed by a write to the USART_DR
register). The TC bit can also be cleared by writing a '0' to it. This clearing sequence is
recommended only for multibuffer communication.
0: Transmission is not complete
1: Transmission is complete

Bit 5 RXNE: Read data register not empty

This bit is set by hardware when the content of the RDR shift register has been transferred
to the USART_DR register. An interrupt is generated if RXNEIE=1 in the USART_CR1
register. It is cleared by a read to the USART_DR register. The RXNE flag can also be
cleared by writing a zero to it. This clearing sequence is recommended only for multibuffer
communication.
0: Data is not received
1: Received data is ready to be read.

Bit 4 IDLE: IDLE line detected

This bit is set by hardware when an Idle Line is detected. An interrupt is generated if the
IDLEIE=1 in the USART_CR1 register. It is cleared by a software sequence (an read to the
USART_SR register followed by a read to the USART_DR register).
0: No Idle Line is detected
1: Idle Line is detected

Note: The IDLE bit will not be set again until the RXNE bit has been set itself (i.e. a new idle
line occurs).

Bit 3 ORE: Overrun error
This bit is set by hardware when the word currently being received in the shift register is
ready to be transferred into the RDR register while RXNE=1. An interrupt is generated if
RXNEIE=1 in the USART_CR1 register. It is cleared by a software sequence (an read to the
USART_SR register followed by a read to the USART_DR register).
0: No Overrun error
1: Overrun error is detected

Note: When this bit is set, the RDR register content will not be lost but the shift register will be
overwritten. An interrupt is generated on ORE flag in case of Multi Buffer
communication if the EIE bit is set.

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 629/682

Bit 2 NE: Noise error flag
This bit is set by hardware when noise is detected on a received frame. It is cleared by a
software sequence (an read to the USART_SR register followed by a read to the
USART_DR register).
0: No noise is detected
1: Noise is detected

Note: This bit does not generate interrupt as it appears at the same time as the RXNE bit
which itself generates an interrupting interrupt is generated on NE flag in case of Multi
Buffer communication if the EIE bit is set.

Bit 1 FE: Framing error
This bit is set by hardware when a de-synchronization, excessive noise or a break character
is detected. It is cleared by a software sequence (an read to the USART_SR register
followed by a read to the USART_DR register).
0: No Framing error is detected
1: Framing error or break character is detected

Note: This bit does not generate interrupt as it appears at the same time as the RXNE bit
which itself generates an interrupt. If the word currently being transferred causes both
frame error and overrun error, it will be transferred and only the ORE bit will be set.
An interrupt is generated on FE flag in case of Multi Buffer communication if the EIE bit
is set.

Bit 0 PE: Parity error

This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by a
software sequence (a read to the status register followed by a read to the USART_DR data
register). The software must wait for the RXNE flag to be set before clearing the PE bit.
An interrupt is generated if PEIE = 1 in the USART_CR1 register.
0: No parity error
1: Parity error

Universal synchronous asynchronous receiver transmitter (USART) RM0008

630/682

24.6.2 Data register (USART_DR)

Address offset: 0x04

Reset value: Undefined

24.6.3 Baud rate register (USART_BRR)

Note: The baud counters stop counting if the TE or RE bits are disabled respectively.

Address offset: 0x08

Reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved DR[8:0]

Res. rw rw rw rw rw rw rw rw rw

Bits 31:9 Reserved, forced by hardware to 0.

Bits 8:0 DR[8:0]: Data value
Contains the Received or Transmitted data character, depending on whether it is read from
or written to.
The Data register performs a double function (read and write) since it is composed of two
registers, one for transmission (TDR) and one for reception (RDR)
The TDR register provides the parallel interface between the internal bus and the output
shift register (see Figure 1).
The RDR register provides the parallel interface between the input shift register and the
internal bus.
When transmitting with the parity enabled (PCE bit set to 1 in the USART_CR1 register), the
value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect because
it is replaced by the parity.
When receiving with the parity enabled, the value read in the MSB bit is the received parity
bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DIV_Mantissa[11:0] DIV_Fraction[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, forced by hardware to 0.

Bits 15:4 DIV_Mantissa[11:0]: mantissa of USARTDIV

These 12 bits define the mantissa of the USART Divider (USARTDIV)

Bits 3:0 DIV_Fraction[3:0]: fraction of USARTDIV

These 4 bits define the fraction of the USART Divider (USARTDIV)

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 631/682

24.6.4 Control register 1 (USART_CR1)

Address offset: 0x0C

Reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved UE M WAKE PCE PS PEIE TXEIE TCIE RXNE
IE IDLEIE TE RE RWU SBK

Res. rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:14 Reserved, forced by hardware to 0.

Bit 13 UE: USART enable

When this bit is cleared the USART prescalers and outputs are stopped and the end of the
current
byte transfer in order to reduce power consumption. This bit is set and cleared by software.
0: USART prescaler and outputs disabled
1: USART enabled

Bit 12 M: Word length

This bit determines the word length. It is set or cleared by software.
0: 1 Start bit, 8 Data bits, n Stop bit
1: 1 Start bit, 9 Data bits, 1 Stop bit

Note: The M bit must not be modified during a data transfer (both transmission and reception)

Bit 11 WAKE: Wakeup method
This bit determines the USART wakeup method, it is set or cleared by software.
0: Idle Line
1: Address Mark

Bit 10 PCE: Parity control enable
This bit selects the hardware parity control (generation and detection). When the parity
control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit
if M=0) and parity is checked on the received data. This bit is set and cleared by software.
Once it is set, PCE is active after the current byte (in reception and in transmission).
0: Parity control disabled
1: Parity control enabled

Bit 9 PS: Parity selection
This bit selects the odd or even parity when the parity generation/detection is enabled (PCE
bit set). It is set and cleared by software. The parity will be selected after the current byte.
0: Even parity
1: Odd parity

Bit 8 PEIE: PE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever PE=1 in the USART_SR register

Bit 7 TXEIE: TXE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever TXE=1 in the USART_SR register

Universal synchronous asynchronous receiver transmitter (USART) RM0008

632/682

Bit 6 TCIE: Transmission complete interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever TC=1 in the USART_SR register

Bit 5 RXNEIE: RXNE interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever ORE=1 or RXNE=1 in the USART_SR
register

Bit 4 IDLEIE: IDLE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever IDLE=1 in the USART_SR register

Bit 3 TE: Transmitter enable

This bit enables the transmitter. It is set and cleared by software.
0: Transmitter is disabled
1: Transmitter is enabled

Note: 1: During transmission, a “0” pulse on the TE bit (“0” followed by “1”) sends a preamble
(idle line) after the current word, except in smartcard mode.

2: When TE is set there is a 1 bit-time delay before the transmission starts.

Bit 2 RE: Receiver enable

This bit enables the receiver. It is set and cleared by software.
0: Receiver is disabled
1: Receiver is enabled and begins searching for a start bit

Bit 1 RWU: Receiver wakeup

This bit determines if the USART is in mute mode or not. It is set and cleared by software
and can be cleared by hardware when a wakeup sequence is recognized.
0: Receiver in active mode
1: Receiver in mute mode

Note: 1: Before selecting Mute mode (by setting the RWU bit) the USART must first receive a
data byte, otherwise it cannot function in Mute mode with wakeup by Idle line detection.

2: In Address Mark Detection wakeup configuration (WAKE bit=1) the RWU bit cannot
be modified by software while the RXNE bit is set.

Bit 0 SBK: Send break

This bit set is used to send break characters. It can be set and cleared by software. It should
be set by software, and will be reset by hardware during the stop bit of break.
0: No break character is transmitted
1: Break character will be transmitted

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 633/682

24.6.5 Control register 2 (USART_CR2)

Address offset: 0x10

Reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
LINEN STOP[1:0] CLK

EN CPOL CPHA LBCL Res. LBDIE LBDL Res. ADD[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, forced by hardware to 0.

Bit 14 LINEN: LIN mode enable
This bit is set and cleared by software.
0: LIN mode disabled
1: LIN mode enabled
The LIN mode enables the capability to send LIN Synch Breaks (13 low bits) using the SBK bit in
the USART_CR1 register, and to detect LIN Sync breaks.

Bits 13:12 STOP: STOP bits

These bits are used for programming the stop bits.
00: 1 Stop bit
01: 0.5 Stop bit
10: 2 Stop bits
11: 1.5 Stop bit

Note: The 0.5 Stop bit and 1.5 Stop bit are not available for UART4 & UART5.

Bit 11 CLKEN: Clock enable

This bit allows the user to enable the SCLK pin.
0: SCLK pin disabled
1: SCLK pin enabled

Note: This bit is not available for UART4 & UART5.

Bit 10 CPOL: Clock polarity
This bit allows the user to select the polarity of the clock output on the SCLK pin in synchronous
mode. It works in conjunction with the CPHA bit to produce the desired clock/data relationship
0: Steady low value on SCLK pin outside transmission window.
1: Steady high value on SCLK pin outside transmission window.

Note: This bit is not available for UART4 & UART5.

Bit 9 CPHA: Clock phase
This bit allows the user to select the phase of the clock output on the SCLK pin in synchronous
mode. It works in conjunction with the CPOL bit to produce the desired clock/data relationship (see
figures 246 to 247)
0: The first clock transition is the first data capture edge.
1: The second clock transition is the first data capture edge.

Note: This bit is not available for UART4 & UART5.

Universal synchronous asynchronous receiver transmitter (USART) RM0008

634/682

Note: These 3 bits (CPOL, CPHA, LBCL) should not be written while the transmitter is enabled.

Bit 8 LBCL: Last bit clock pulse
This bit allows the user to select whether the clock pulse associated with the last data bit
transmitted (MSB) has to be output on the SCLK pin in synchronous mode.
0: The clock pulse of the last data bit is not output to the SCLK pin.
1: The clock pulse of the last data bit is output to the SCLK pin.

Note: 1: The last bit is the 8th or 9th data bit transmitted depending on the 8 or 9 bit format selected
by the M bit in the USART_CR1 register.
2: This bit is not available for UART4 & UART5.

Bit 7 Reserved, forced by hardware to 0.

Bit 6 LBDIE: LIN break detection interrupt enable

Break interrupt mask (break detection using break delimiter).
0: Interrupt is inhibited
1: An interrupt is generated whenever LBD=1 in the USART_SR register

Bit 5 LBDL: lin break detection length

This bit is for selection between 11 bit or 10 bit break detection.
0: 10 bit break detection
1: 11 bit break detection

Bit 4 Reserved, forced by hardware to 0.

Bits 3:0 ADD[3:0]: Address of the USART node
This bit-field gives the address of the USART node.
This is used in multiprocessor communication during mute mode, for wake up with address mark
detection.

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 635/682

24.6.6 Control register 3 (USART_CR3)

Address offset: 0x14

Reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CTSIE CTSE RTSE DMAT DMAR SCEN NACK HD
SEL IRLP IREN EIE

Res. rw rw rw rw rw rw rw rw rw rw rw

Bits 31:11 Reserved, forced by hardware to 0.

Bit 10 CTSIE: CTS interrupt enable

0: Interrupt is inhibited
1: An interrupt is generated whenever CTS=1 in the USART_SR register

Note: This bit is not available for UART4 & UART5.

Bit 9 CTSE: CTS enable

0: CTS hardware flow control disabled
1: CTS mode enabled, data is only transmitted when the nCTS input is asserted (tied to 0).
If the nCTS input is deasserted while a data is being transmitted, then the transmission is
completed before stopping. If a data is written into the data register while nCTS is asserted,
the transmission is postponed until nCTS is asserted.

Note: This bit is not available for UART4 & UART5.

Bit 8 RTSE: RTS enable

0: RTS hardware flow control disabled

1: RTS interrupt enabled, data is only requested when there is space in the receive buffer.
The transmission of data is expected to cease after the current character has been
transmitted. The nRTS output is asserted (tied to 0) when a data can be received.

Note: This bit is not available for UART4 & UART5.

Bit 7 DMAT: DMA enable transmitter
This bit is set/reset by software
1: DMA mode is enabled for transmission.
0: DMA mode is disabled for transmission.

Note: This bit is not available for UART5.

Bit 6 DMAR: DMA enable receiver

This bit is set/reset by software
1: DMA mode is enabled for reception.
0: DMA mode is disabled for reception.

Note: This bit is not available for UART5.

Bit 5 SCEN: Smartcard mode enable

This bit is used for enabling Smartcard mode.
0: Smartcard Mode disabled
1: Smartcard Mode enabled

Note: This bit is not available for UART4 & UART5.

Universal synchronous asynchronous receiver transmitter (USART) RM0008

636/682

24.6.7 Guard time and prescaler register (USART_GTPR)

Address offset: 0x18

Reset value: 0x0000

Bit 4 NACK: Smartcard NACK enable
0: NACK transmission in case of parity error is disabled
1: NACK transmission during parity error is enabled.

Note: This bit is not available for UART4 & UART5.

Bit 3 HDSEL: Half-duplex selection

Selection of Single-wire Half-duplex mode
0: Half duplex mode is not selected
1: Half duplex mode is selected

Bit 2 IRLP: IrDA low-power

This bit is used for selecting between normal and low-power IrDA modes
0: Normal mode
1: Low-power mode

Bit 1 IREN: IrDA mode enable

This bit is set and cleared by software.
0: IrDA disabled
1: IrDA enabled

Bit 0 EIE: Error interrupt enable
Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing
error, overrun error or noise error (FE=1 or ORE=1 or NE=1 in the USART_SR register) in
case of Multi Buffer Communication (DMAR=1 in the USART_CR3 register).
0: Interrupt is inhibited
1: An interrupt is generated whenever DMAR=1 in the USART_CR3 register and FE=1 or
ORE=1 or NE=1 in the USART_SR register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GT[7:0] PSC[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, forced by hardware to 0.

Bits 15:8 GT[7:0]: Guard time value

This bit-field gives the Guard time value in terms of number of baud clocks.
This is used in Smartcard mode. The Transmission Complete flag is set after this guard time
value.

Note: This bit is not available for UART4 & UART5.

RM0008 Universal synchronous asynchronous receiver transmitter (USART)

 637/682

Bits 7:0 PSC[7:0]: Prescaler value

– In IrDA Low-power mode:
PSC[7:0] = IrDA Low-Power Baud Rate
Used for programming the prescaler for dividing the system clock to achieve the low-power
frequency:
The source clock is divided by the value given in the register (8 significant bits):
00000000: Reserved - do not program this value
00000001: divides the source clock by 1
00000010: divides the source clock by 2
...

– In normal IrDA mode: PSC must be set to 00000001.

– In smartcard mode:
PSC[4:0]: Prescaler value
Used for programming the prescaler for dividing the system clock to provide the smartcard
clock.
The value given in the register (5 significant bits) is multiplied by 2 to give the division factor
of the source clock frequency:
00000: Reserved - do not program this value
00001: divides the source clock by 2
00010: divides the source clock by 4
00011: divides the source clock by 6
...

Note: 1: Bits [7:5] have no effect if Smartcard mode is used.
2: This bit is not available for UART4 & UART5.

Universal synchronous asynchronous receiver transmitter (USART) RM0008

638/682

24.6.8 USART register map

The table below gives the USART register map and reset values.

Refer to Table 1 on page 35 for the register boundary addresses.

Table 158. USART register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
USART_SR

Reserved C
T

S

LB
D

T
X

E

T
C

R
X

N
E

ID
LE

O
R

E

N
E

F
E

P
E

Reset value 0 0 1 1 0 0 0 0 0 0

0x04
USART_DR

Reserved
DR[8:0]

Reset value 0 0 0 0 0 0 0 0 0

0x08
USART_BRR

Reserved
DIV_Mantissa[15:4] DIV_Fraction

[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
USART_CR1

Reserved U
E M

W
A

K
E

P
C

E

P
S

P
E

IE

T
X

E
IE

T
C

IE

R
X

N
E

IE

ID
LE

IE

T
E

R
E

R
W

U

S
B

K

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
USART_CR2

Reserved

LI
N

E
N STOP

[1:0]

C
LK

E
N

C
P

O
L

C
P

H
A

LB
C

L

R
es

er
ve

d

LB
D

IE

LB
D

L

R
es

er
ve

d

ADD[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
USART_CR3

Reserved

C
T

S
IE

C
T

S
E

R
T

S
E

D
M

AT

D
M

A
R

S
C

E
N

N
A

C
K

H
D

S
E

L

IR
LP

IR
E

N

E
IE

Reset value 0 0 0 0 0 0 0 0 0 0 0

0x18
USART_GTPR

Reserved
GT[7:0] PSC[7:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM0008 Device electronic signature

 639/682

25 Device electronic signature

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This Section applies to the whole STM32F10xxx family, unless otherwise specified.

The electronic signature is stored in the System memory area in the Flash memory module,
and can be read using the JTAG/SWD or the CPU. It contains factory-programmed
identification data that allow the user firmware or other external devices to automatically
match its interface to the characteristics of the STM32F10xxx microcontroller.

25.1 Memory size registers

25.1.1 Flash size register

Base address: 0x1FFF F7E0

Read only = 0xXXXX where X is factory-programmed

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F_SIZE

r r r r r r r r r r r r r r r r

Bits 15:0 F_SIZE: Flash memory size
This field value indicates the Flash memory size of the device in Kbytes.
Example: 0x0080 = 128 Kbytes.

Device electronic signature RM0008

640/682

25.2 Unique device ID register (96 bits)
The unique device identifier is ideally suited:

● for use as serial numbers (for example USB string serial numbers or other end
applications)

● for use as security keys in order to increase the security of code in Flash memory while
using and combining this unique ID with software cryptographic primitives and
protocols before programming the internal Flash memory

● to activate secure boot processes, etc.

The 96-bit unique device identifier provides a reference number which is unique for any
device and in any context. These bits can never be altered by the user.

The 96-bit unique device identifier can also be read in single bytes/half-words/words in
different ways and then be concatenated using a custom algorithm.

Base address: 0x1FFF F7E8

Address offset: 0x00

Read only = 0xXXXX where X is factory-programmed

Address offset: 0x02

Read only = 0xXXXX where X is factory-programmed

Address offset: 0x04

Read only = 0xXXXX XXXX where X is factory-programmed

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U_ID(15:0)

r r r r r r r r r r r r r r r r

Bits 15:0 U_ID(15:0): 15:0 unique ID bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U_ID(31:16)

r r r r r r r r r r r r r r r r

Bits 15:0 U_ID(31:16): 31:16 unique ID bits
This field value is also reserved for a future feature.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

U_ID(63:48)

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U_ID(47:32)

r r r r r r r r r r r r r r r r

Bits 31:0 U_ID(63:32): 63:32 unique ID bits

RM0008 Device electronic signature

 641/682

Address offset: 0x08

Read only = 0xXXXX XXXX where X is factory-programmed

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

U_ID(95:80)

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U_ID(79:64)

r r r r r r r r r r r r r r r r

Bits 31:0 U_ID(95:64): 95:64 Unique ID bits.

Debug support (DBG) RM0008

642/682

26 Debug support (DBG)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

This Section applies to the whole STM32F10xxx family, unless otherwise specified.

26.1 Overview
The STM32F10xxx is built around a Cortex-M3 core which contains hardware extensions for
advanced debugging features. The debug extensions allow the core to be stopped either on
a given instruction fetch (breakpoint) or data access (watchpoint). When stopped, the core’s
internal state and the system’s external state may be examined. Once examination is
complete, the core and the system may be restored and program execution resumed.

The debug features are used by the debugger host when connecting to and debugging the
STM32F10xxx MCU.

Two interfaces for debug are available:

● Serial wire

● JTAG debug port

RM0008 Debug support (DBG)

 643/682

Figure 257. Block diagram of STM32F10xxx-level and Cortex-M3-level debug support

Note: The debug features embedded in the Cortex-M3 core are a subset of the ARM CoreSight
Design Kit.

The ARM Cortex-M3 core provides integrated on-chip debug support. It is comprised of:

● SWJ-DP: Serial wire / JTAG debug port

● AHP-AP: AHB access port

● ITM: Instrumentation trace macrocell

● FPB: Flash patch breakpoint

● DWT: Data watchpoint trigger

● TPUI: Trace port unit interface (available on larger packages, where the corresponding
pins are mapped)

It also includes debug features dedicated to STM32F10xxx:

● Flexible debug pinout assignment

● MCU debug box (support for low-power modes, control over peripheral clocks, etc.)

Note: For further information on debug functionality supported by the ARM Cortex-M3 core, refer
to the Cortex-M3 r1p1 Technical Reference Manual (see Related documents on page 1) and
to the CoreSight Design Kit r1p0 TRM.

26.2 Reference ARM documentation

Cortex-M3
Core

SWJ-DP AHB-AP

Bridge

NVIC

DWT

FPB

ITM

TPIU

DCode
interface

System
interface

Internal Private
Peripheral Bus (PPB)

External Private
Peripheral Bus (PPB)

Bus Matrix

Data

Trace Port

DBGMCU

STM32F10x debug support

Cortex-M3 debug support

JTMS/

JTDI

JTDO/

JNTRST

JTCK/

SWDIO

SWCLK

TRACESWO

TRACESWO

TRACECK

TRACED[3:0]

Debug support (DBG) RM0008

644/682

● Cortex™-M3 r1p1 Technical Reference Manual (TRM) (see Related documents on
page 1)

● ARM Debug Interface V5

● ARM CoreSight Design Kit revision r1p0 Technical Reference Manual

26.3 SWJ debug port (serial wire and JTAG)
The STM32F10xxx core integrates the Serial Wire / JTAG Debug Port (SWJ-DP). It is an
ARM standard CoreSight debug port that combines a JTAG-DP (5-pin) interface and a SW-
DP (2-pin) interface.

● The JTAG Debug Port (JTAG-DP) provides a 5-pin standard JTAG interface to the AHP-
AP port.

● The Serial Wire Debug Port (SW-DP) provides a 2-pin (clock + data) interface to the
AHP-AP port.

In the SWJ-DP, the two JTAG pins of the SW-DP are multiplexed with some of the five JTAG
pins of the JTAG-DP.

Figure 258. SWJ debug port

Figure 258 shows that the asynchronous TRACE output (TRACESWO) is multiplexed with
TDO. This means that the asynchronous trace can only be used with SW-DP, not JTAG-DP.

26.3.1 Mechanism to select the JTAG-DP or the SW-DP

By default, the JTAG-Debug Port is active.

If the debugger host wants to switch to the SW-DP, it must provide a dedicated JTAG
sequence on TMS/TCK (respectively mapped to SWDIO and SWCLK) which disables the
JTAG-DP and enables the SW-DP. This way it is possible to activate the SWDP using only
the SWCLK and SWDIO pins.

TRACESWO

JTDO

JTDI

JNTRST nTRST

TDI

TDO

SWJ-DP

TDO

TDI

nTRST

TCK

TMS
nPOTRST

JTAG-DP

nPOTRST

From
power-on
reset

DBGRESETn

DBGDI

DBGDO

DBGDOEN

DBGCLK

SW-DP

SWCLKTCK

SWDOEN

SWDO

SWDITMS

SWD/JTAG
select

JTMS/SWDIO

JTCK/SWCLK

(asynchronous trace)

RM0008 Debug support (DBG)

 645/682

This sequence is:

1. Send more than 50 TCK cycles with TMS (SWDIO) =1

2. Send the 16-bit sequence on TMS (SWDIO) = 0111100111100111 (MSB transmitted
first)

3. Send more than 50 TCK cycles with TMS (SWDIO) =1

26.4 Pinout and debug port pins
The STM32F10xxx MCU is available in various packages with different numbers of available
pins. As a result, some functionality related to pin availability may differ between packages.

26.4.1 SWJ debug port pins

Five pins are used as outputs from the STM32F10xxx for the SWJ-DP as alternate functions
of General Purpose I/Os. These pins are available on all packages.

26.4.2 Flexible SWJ-DP pin assignment

After RESET (SYSRESETn or PORESETn), all five pins used for the SWJ-DP are assigned
as dedicated pins immediately usable by the debugger host (note that the trace outputs are
not assigned except if explicitly programmed by the debugger host).

However, the STM32F10xxx MCU implements the REMAP_DBGAFR register to disable
some part or all of the SWJ-DP port and so releases the associated pins for General
Purpose I/Os usage. This register is mapped on an APB bridge connected to the Cortex-M3
System Bus. Programming of this register is done by the user software program and not the
debugger host.

Table 159. SWJ debug port pins

SWJ-DP pin name
JTAG debug port SW debug port Pin

assign
mentType Description Type Debug assignment

JTMS/SWDIO I
JTAG Test Mode
Selection

I/O
Serial Wire Data
Input/Output

PA13

JTCK/SWCLK I JTAG Test Clock I Serial Wire Clock PA14

JTDI I JTAG Test Data Input - - PA15

JTDO/TRACESWO O JTAG Test Data Output -
TRACESWO if async trace
is enabled

PB3

JNTRST I JTAG Test nReset - - PB4

Debug support (DBG) RM0008

646/682

Three control bits allow the configuration of the SWJ-DP pin assignments. These bits are
reset by the System Reset.

● REMAP_AF_REG (@ 0x4001 0004 in STM32F10xxx MCU)

– READ: APB - No Wait State

– WRITE: APB - 1 Wait State if the write buffer of the AHB-APB bridge is full.

Bit 26:24= SWJ_CFG[2:0]

Set and cleared by software.

These bits are used to configure the number of pins assigned to the SWJ debug port.
The goal is to release as much as possible the number of pins to be used as General
Purpose I/Os if using a small size for the debug port.

The default state after reset is “000” (whole pins assigned for a full JTAG-DP
connection). Only one of the 3 bits can be set (it is forbidden to set more than one bit).

Note: When the APB bridge write buffer is full, it takes one extra APB cycle when writing the
REMAP_AF register. This is because the deactivation of the JTAGSW pins is done in two
cycles to guarantee a clean level on the nTRST and TCK input signals of the core.

● Cycle 1: the JTAGSW input signals to the core are tied to 1 or 0 (to 1 for nTRST, TDI
and TMS, to 0 for TCK)

● Cycle 2: the GPI/O controller takes the control signals of the SWJTAG I/O pins (like
controls of direction, pull-up/down, Schmitt trigger activation, etc.).

26.4.3 Internal pull-up and pull-down on JTAG pins

It is necessary to ensure that the JTAG input pins are not floating since they are directly
connected to flip-flops to control the debug mode features. Special care must be taken with
the SWCLK/TCK pin which is directly connected to the clock of some of these flip-flops.

To avoid any uncontrolled I/O levels, the STM32F10xxx embeds internal pull-ups and pull-
downs on JTAG input pins:

● JNTRST: Internal pull-up

● JTDI: Internal pull-up

● JTMS/SWDIO: Internal pull-up

● TCK/SWCLK: Internal pull-down

Table 160. Flexible SWJ-DP pin assignment

SWJ_
CFG
[2:0]

Available debug ports

SWJ I/O pin assigned

PA13 /
JTMS/
SWDIO

PA14 /
JTCK/

SWCLK

PA15 /
JTDI

PB3 /
JTDO

PB4/
JNTRST

000
Full SWJ (JTAG-DP + SW-DP) - Reset
State

X X X X X

001
Full SWJ (JTAG-DP + SW-DP) but without
JNTRST

X X X X

010 JTAG-DP Disabled and SW-DP Enabled X X

100 JTAG-DP Disabled and SW-DP Disabled Released

other Forbidden

RM0008 Debug support (DBG)

 647/682

Once a JTAG I/O is released by the user software, the GPIO controller takes control again.
The reset states of the GPIO control registers put the I/Os in the equivalent state:

● JNTRST: Input pull-up

● JTDI: Input pull-up

● JTMS/SWDIO: Input pull-up

● JTCK/SWCLK: Input pull-down

● JTDO: Input floating

The software can then use these I/Os as standard GPIOs.

Note: The JTAG IEEE standard recommends to add pull-ups on TDI, TMS and nTRST but there is
no special recommendation for TCK. However, for STM32F10xxx, an integrated pull-down is
used for JTCK.

Having embedded pull-ups and pull-downs removes the need to add external resistors.

26.4.4 Using serial wire and releasing the unused debug pins as GPIOs

To use the serial wire DP to release some GPIOs, the user software must set
SWJ_CFG=010 just after reset. This release PA15, PB3 and PB4 which now become
available as GPIOs.

When debugging, the host performs the following actions:

● Under system RESET, all SWJ pins are assigned (JTAG-DP + SW-DP)

● Under system RESET, the debugger host sends the JTAG sequence to switch from the
JTAG-DP to the SW-DP.

● Still under system RESET, the debugger sets a breakpoint on vector reset

● The System Reset is released and the Core halts.

● All the debug communications from this point are done using the SW-DP. The other
JTAG pins can then be reassigned as GPIOs by the user software.

Note: For user software designs, note that:

To release the debug pins, remember that they will be first configured either in input-pull-up
(nTRST, TMS, TDI) or pull-down (TCK) or output tristate (TDO) for a certain duration after
reset until the instant when the user software releases the pins.

When debug pins (JTAG or SW or TRACE) are mapped, changing the corresponding I/O pin
configuration in the IOPORT controller has no effect.

26.5 STM32F10xxx JTAG TAP connection
The STM32F10xxx MCU integrates two serially connected JTAG TAPs, the boundary scan
TAP (IR is 5-bit wide) and the Cortex-M3 TAP (IR is 4-bit wide).

To access the TAP of the Cortex-M3 for debug purposes:

1. First, it is necessary to shift the BYPASS instruction of the boundary scan TAP.

2. Then, for each IR shift, the scan chain contains 9 bits (=5+4) and the unused TAP
instruction must be shifted in using the BYPASS instruction.

3. For each data shift, the unused TAP, which is in BYPASS mode, adds 1 extra data bit in
the data scan chain.

Debug support (DBG) RM0008

648/682

Note: Important: Once Serial-Wire is selected using the dedicated ARM JTAG sequence, the
boundary scan TAP is automatically disabled (JTMS forced high).

Figure 259. JTAG TAP connections

26.6 ID codes and locking mechanism
There are several ID codes inside the STM32F10xxx MCU. ST strongly recommends tools
designers to lock their debuggers using the MCU DEVICE ID code located in the external
PPB memory map at address 0xE0042000.

26.6.1 MCU device ID code

The STM32F10xxx MCU integrates an MCU ID code. This ID identifies the ST MCU part-
number and the die revision. It is part of the DBG_MCU component and is mapped on the
external PPB bus (see Section 26.15 on page 659). This code is accessible using the JTAG
debug port (4 to 5 pins) or the SW debug port (two pins) or by the user software. It is even
accessible while the MCU is under system reset.

DBGMCU_IDCODE

Address: 0xE004 2000

Only 32-bits access supported. Read-only.

Boundary scan
TAP

JNTRST

Cortex-M3 TAP

JTMS

TMS nTRSTTMS nTRST

JTDI

JTDO

TDI TDO TDI TDO

SW-DP

STM32F10xxx

Selected

IR is 5-bit wide IR is 4-bit wide

ai14981

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

REV_ID

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DEV_ID

r r r r r r r r r r r r

RM0008 Debug support (DBG)

 649/682

26.6.2 Boundary scan TAP

JTAG ID code

The TAP of the STM32F10xxx BSC (boundary scan) integrates a JTAG ID code equal to:

● In low-density devices:

– 0x06412041 = Revision A

● In medium-density devices:

– 0x06410041 = Revision A

– 0x16410041 = Revision B and Revision Z

● In high-density devices:

– 0x06414041 = Revision A

26.6.3 Cortex-M3 TAP

The TAP of the ARM Cortex-M3 integrates a JTAG ID code. This ID code is the ARM default
one and has not been modified. This code is only accessible by the JTAG Debug Port.
This code is 0x3BA00477 (corresponds to Cortex-M3 r1p1-01rel0, see Related documents
on page 1).

Only the DEV_ID(11:0) should be used for identification by the debugger/programmer tools.

Bits 31:16 REV_ID(15:0) Revision identifier

This field indicates the revision of the device:
In low-density devices:

– 0x1000 = Revision A
In medium-density devices:

– 0x0000 = Revision A

– 0x2000 = Revision B

– 0x2001 = Revision Z

– 0x2003 = Revision Y
In high-density devices:

– 0x1000 = Revision A

– 0x1001 = Revision Z
In connectivity line devices:

– 0x1000 = Revision A

Bits 27:12 Reserved

Bits 11:0 DEV_ID(11:0): Device identifier
This field indicates the device ID.
For low-density devices, the device ID is 0x412
For medium-density devices, the device ID is 0x410
For high-density devices, the device ID is 0x414
For connectivity devices, the device ID is 0x418

Debug support (DBG) RM0008

650/682

26.6.4 Cortex-M3 JEDEC-106 ID code

The ARM Cortex-M3 integrates a JEDEC-106 ID code. It is located in the 4KB ROM table
mapped on the internal PPB bus at address 0xE00FF000_0xE00FFFFF.

This code is accessible by the JTAG Debug Port (4 to 5 pins) or by the SW Debug Port (two
pins) or by the user software.

26.7 JTAG debug port
A standard JTAG state machine is implemented with a 4-bit instruction register (IR) and five
data registers (for full details, refer to the Cortex-M3 r1p1 Technical Reference Manual
(TRM), for references, please see Related documents on page 1):

Table 161. JTAG debug port data registers

IR(3:0) Data register Details

1111
BYPASS

[1 bit]

1110
IDCODE

[32 bits]

ID CODE

0x3BA00477 (ARM Cortex-M3 r1p1-01rel0 ID Code)

1010
DPACC

[35 bits]

Debug Port Access Register

This initiates a debug port and allows access to a debug port register.
– When transferring data IN:

Bits 34:3 = DATA[31:0] = 32-bit data to transfer for a write request
Bits 2:1 = A[3:2] = 2-bit address of a debug port register.
Bit 0 = RnW = Read request (1) or write request (0).

– When transferring data OUT:
Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read
request
Bits 2:0 = ACK[2:0] = 3-bit Acknowledge:
010 = OK/FAULT
001 = WAIT
OTHER = reserved

Refer to Table 162 for a description of the A(3:2) bits

RM0008 Debug support (DBG)

 651/682

1011
APACC
[35 bits]

Access Port Access Register

Initiates an access port and allows access to an access port register.

– When transferring data IN:
Bits 34:3 = DATA[31:0] = 32-bit data to shift in for a write request
Bits 2:1 = A[3:2] = 2-bit address (sub-address AP registers).
Bit 0 = RnW= Read request (1) or write request (0).

– When transferring data OUT:
Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read
request
Bits 2:0 = ACK[2:0] = 3-bit Acknowledge:
010 = OK/FAULT
001 = WAIT
OTHER = reserved

There are many AP Registers (see AHB-AP) addressed as the
combination of:

– The shifted value A[3:2]

– The current value of the DP SELECT register

1000
ABORT
[35 bits]

Abort Register

– Bits 31:1 = Reserved

– Bit 0 = DAPABORT: write 1 to generate a DAP abort.

Table 162. 32-bit debug port registers addressed through the shifted value A[3:2]

Address A(3:2) value Description

0x0 00 Reserved

0x4 01

DP CTRL/STAT register. Used to:
– Request a system or debug power-up

– Configure the transfer operation for AP accesses

– Control the pushed compare and pushed verify operations.
– Read some status flags (overrun, power-up acknowledges)

0x8 10

DP SELECT register: Used to select the current access port and the
active 4-words register window.

– Bits 31:24: APSEL: select the current AP
– Bits 23:8: reserved

– Bits 7:4: APBANKSEL: select the active 4-words register window on the
current AP

– Bits 3:0: reserved

0xC 11
DP RDBUFF register: Used to allow the debugger to get the final result
after a sequence of operations (without requesting new JTAG-DP
operation)

Table 161. JTAG debug port data registers

IR(3:0) Data register Details

Debug support (DBG) RM0008

652/682

26.8 SW debug port

26.8.1 SW protocol introduction

This synchronous serial protocol uses two pins:

● SWCLK: clock from host to target

● SWDIO: bidirectional

The protocol allows two banks of registers (DPACC registers and APACC registers) to be
read and written to.

Bits are transferred LSB-first on the wire.

For SWDIO bidirectional management, the line must be pulled-up on the board (100 KΩ
recommended by ARM).

Each time the direction of SWDIO changes in the protocol, a turnaround time is inserted
where the line is not driven by the host nor the target. By default, this turnaround time is one
bit time, however this can be adjusted by configuring the SWCLK frequency.

26.8.2 SW protocol sequence

Each sequence consist of three phases:

1. Packet request (8 bits) transmitted by the host

2. Acknowledge response (3 bits) transmitted by the target

3. Data transfer phase (33 bits) transmitted by the host or the target

Refer to the Cortex-M3 r1p1 TRM for a detailed description of DPACC and APACC registers.

The packet request is always followed by the turnaround time (default 1 bit) where neither
the host nor target drive the line.

Table 163. Packet request (8-bits)

Bit Name Description

0 Start Must be “1”

1 APnDP
0: DP Access

1: AP Access

2 RnW
0: Write Request

1: Read Request

4:3 A(3:2) Address field of the DP or AP registers (refer to Table 162)

5 Parity Single bit parity of preceding bits

6 Stop 0

7 Park
Not driven by the host. Must be read as “1” by the target
because of the pull-up

RM0008 Debug support (DBG)

 653/682

The ACK Response must be followed by a turnaround time only if it is a READ transaction or
if a WAIT or FAULT acknowledge has been received.

The DATA transfer must be followed by a turnaround time only if it is a READ transaction.

26.8.3 SW-DP state machine (Reset, idle states, ID code)

The State Machine of the SW-DP has an internal ID code which identifies the SW-DP. It
follows the JEP-106 standard. This ID code is the default ARM one and is set at
0x1BA01477 (corresponding to Cortex-M3 r1p1).

Note: Note that the SW-DP state machine is inactive until the target reads this ID code.

● The SW-DP state machine is in RESET STATE either after power-on reset, or after the
DP has switched from JTAG to SWD or after the line is high for more than 50 cycles

● The SW-DP state machine is in IDLE STATE if the line is low for at least two cycles after
RESET state.

● After RESET state, it is mandatory to first enter into an IDLE state AND to perform a
READ access of the DP-SW ID CODE register. Otherwise, the target will issue a
FAULT acknowledge response on another transactions.

Further details of the SW-DP state machine can be found in the Cortex-M3 r1p1 TRM and
the CoreSight Design Kit r1p0 TRM.

26.8.4 DP and AP read/write accesses

● Read accesses to the DP are not posted: the target response can be immediate (if
ACK=OK) or can be delayed (if ACK=WAIT).

● Read accesses to the AP are posted. This means that the result of the access is
returned on the next transfer. If the next access to be done is NOT an AP access, then
the DP-RDBUFF register must be read to obtain the result.
The READOK flag of the DP-CTRL/STAT register is updated on every AP read access
or RDBUFF read request to know if the AP read access was successful.

● The SW-DP implements a write buffer (for both DP or AP writes), that enables it to
accept a write operation even when other transactions are still outstanding. If the write
buffer is full, the target acknowledge response is “WAIT”. With the exception of

Table 164. ACK response (3 bits)

Bit Name Description

0..2 ACK
001: FAULT
010: WAIT

100: OK

Table 165. DATA transfer (33 bits)

Bit Name Description

0..31
WDATA or
RDATA

Write or Read data

32 Parity Single parity of the 32 data bits

Debug support (DBG) RM0008

654/682

IDCODE read or CTRL/STAT read or ABORT write which are accepted even if the write
buffer is full.

● Because of the asynchronous clock domains SWCLK and HCLK, two extra SWCLK
cycles are needed after a write transaction (after the parity bit) to make the write
effective internally. These cycles should be applied while driving the line low (IDLE
state)
This is particularly important when writing the CTRL/STAT for a power-up request. If the
next transaction (requiring a power-up) occurs immediately, it will fail.

26.8.5 SW-DP registers

Access to these registers are initiated when APnDP=0

26.8.6 SW-AP registers

Access to these registers are initiated when APnDP=1

Table 166. SW-DP registers

A(3:2) R/W
CTRLSEL bit
of SELECT

register
Register Notes

00 Read IDCODE
The manufacturer code is not set to ST
code. 0x1BA01477 (identifies the SW-DP)

00 Write ABORT

01 Read/Write 0 DP-CTRL/STAT

Purpose is to:
– request a system or debug power-up

– configure the transfer operation for AP
accesses

– control the pushed compare and pushed
verify operations.

– read some status flags (overrun, power-up
acknowledges)

01 Read/Write 1
WIRE
CONTROL

Purpose is to configure the physical serial
port protocol (like the duration of the
turnaround time)

10 Read
READ
RESEND

Enables recovery of the read data from a
corrupted debugger transfer, without
repeating the original AP transfer.

10 Write SELECT
The purpose is to select the current access
port and the active 4-words register window

11 Read/Write
READ
BUFFER

This read buffer is useful because AP
accesses are posted (the result of a read AP
request is available on the next AP
transaction),

This read buffer captures data from the AP,
presented as the result of a previous read,
without initiating a new transaction

RM0008 Debug support (DBG)

 655/682

There are many AP Registers (see AHB-AP) addressed as the combination of:

● The shifted value A[3:2]

● The current value of the DP SELECT register

26.9 AHB-AP (AHB Access Port) - valid for both JTAG-DP or SW-
DP
Features:

● System access is independent of the processor status.

● Either SW-DP or JTAG-DP accesses AHB-AP.

● The AHB-AP is an AHB master into the Bus Matrix. Consequently, it can access all the
data buses (Dcode Bus, System Bus, internal and external PPB bus) but the ICode
bus.

● Bitband transactions are supported.

● AHB-AP transactions bypass the FPB.

The address of the 32-bits AHP-AP resisters are 6-bits wide (up to 64 words or 256 bytes)
and consists of:

f) Bits [8:4] = the bits[7:4] APBANKSEL of the DP SELECT register

g) Bits [3:2] = the 2 address bits of A(3:2) of the 35-bit packet request for SW-DP.

The AHB-AP of the Cortex-M3 includes 9 x 32-bits registers:

Refer to the Cortex-M3 r1p1 TRM for further details.

26.10 Core debug
Core debug is accessed through the core debug registers. Debug access to these registers
is by means of the Advanced High-performance Bus (AHB-AP) port. The processor can
access these registers directly over the internal Private Peripheral Bus (PPB).

Table 167. Cortex-M3 AHB-AP registers

Address
offset

Register name Notes

0x00
AHB-AP Control and
Status Word

Configures and controls transfers through the AHB
interface (size, hprot, status on current transfer, address
increment type

0x04 AHB-AP Transfer Address

0x0C AHB-AP Data Read/Write

0x10 AHB-AP Banked Data 0

Directly maps the 4 aligned data words without rewriting
the Transfer Address Register.

0x14 AHB-AP Banked Data 1

0x18 AHB-AP Banked Data 2

0x1C AHB-AP Banked Data 3

0xF8 AHB-AP Debug ROM Address Base Address of the debug interface

0xFC AHB-AP ID Register

Debug support (DBG) RM0008

656/682

It consists of 4 registers:

Note: Important: these registers are not reset by a system reset. They are only reset by a power-
on reset.

Refer to the Cortex-M3 r1p1 TRM for further details.

To Halt on reset, it is necessary to:

● enable the bit0 (VC_CORRESET) of the Debug and Exception Monitor Control
Register

● enable the bit0 (C_DEBUGEN) of the Debug Halting Control and Status Register.

26.11 Capability of the debugger host to connect under system
reset
The STM32F10xxx MCU reset system comprises the following reset sources:

● POR (Power On Reset) which asserts a RESET at each power-up.

● Internal watchdog reset

● Software reset

● External reset

The Cortex-M3 differentiates the reset of the debug part (generally PORRESETn) and the
other one (SYSRESETn)

This way, it is possible for the debugger to connect under System Reset, programming the
Core Debug Registers to halt the core when fetching the reset vector. Then the host can
release the system reset and the core will immediately halt without having executed any
instructions. In addition, it is possible to program any debug features under System Reset.

Note: It is highly recommended for the debugger host to connect (set a breakpoint in the reset
vector) under system reset.

Table 168. Core debug registers

Register Description

DHCSR
The 32-bit Debug Halting Control and Status Register

This provides status information about the state of the processor enable core debug
halt and step the processor

DCRSR
The 17-bit Debug Core Register Selector Register:
This selects the processor register to transfer data to or from.

DCRDR
The 32-bit Debug Core Register Data Register:
This holds data for reading and writing registers to and from the processor selected
by the DCRSR (Selector) register.

DEMCR
The 32-bit Debug Exception and Monitor Control Register:

This provides Vector Catching and Debug Monitor Control. This register contains a
bit named TRCENA which enable the use of a TRACE.

RM0008 Debug support (DBG)

 657/682

26.12 FPB (Flash patch breakpoint)
The FPB unit:

● implements hardware breakpoints

● patches code and data from code space to system space. This feature gives the
possibility to correct software bugs located in the Code Memory Space.

The use of a Software Patch or a Hardware Breakpoint is exclusive.

The FPB consists of:

● 2 literal comparators for matching against literal loads from Code Space and remapping
to a corresponding area in the System Space.

● 6 instruction comparators for matching against instruction fetches from Code Space.
They can be used either to remap to a corresponding area in the System Space or to
generate a Breakpoint Instruction to the core.

26.13 DWT (data watchpoint trigger)
The DWT unit consists of four comparators. They are configurable as:

● a hardware watchpoint or

● a trigger to an ETM or

● a PC sampler or

● a data address sampler.

The DWT also provides some means to give some profiling informations. For this, some
counters are accessible to give the number of:

● Clock cycle

● Folded instructions

● Load store unit (LSU) operations

● Sleep cycles

● CPI (clock per instructions)

● Interrupt overhead

26.14 ITM (instrumentation trace macrocell)

26.14.1 General description

The ITM is an application-driven trace source that supports printf style debugging to trace
Operating System (OS) and application events, and emits diagnostic system information.
The ITM emits trace information as packets which can be generated as:

● Software trace. Software can write directly to the ITM stimulus registers to emit
packets.

● Hardware trace. The DWT generates these packets, and the ITM emits them.

● Time stamping. Timestamps are emitted relative to packets. The ITM contains a 21-bit
counter to generate the timestamp. The Cortex-M3 clock or the bit clock rate of the
Serial Wire Viewer (SWV) output clocks the counter.

Debug support (DBG) RM0008

658/682

The packets emitted by the ITM are output to the TPIU (Trace Port Interface Unit). The
formatter of the TPIU adds some extra packets (refer to TPIU) and then output the complete
packets sequence to the debugger host.

The bit TRCEN of the Debug Exception and Monitor Control Register must be enabled
before you program or use the ITM.

26.14.2 Timestamp packets, synchronization and overflow packets

Timestamp packets encode timestamp information, generic control and synchronization. It
uses a 21-bit timestamp counter (with possible prescalers) which is reset at each time
stamp packet emission. This counter can be either clocked by the CPU clock or the SWV
clock.

A synchronization packet consists of 6 bytes equal to 0x80_00_00_00_00_00 which is
emitted to the TPIU as 00 00 00 00 00 80 (LSB emitted first).

A synchronization packet is a timestamp packet control. It is emitted at each DWT trigger.

For this, the DWT must be configured to trigger the ITM: the bit CYCCNTENA (bit0) of the
DWT Control Register must be set. In addition, the bit2 (SYNCENA) of the ITM Trace
Control Register must be set.

Note: If the SYNENA bit is not set, the DWT generates Synchronization triggers to the TPIU which
will send only TPIU synchronization packets and not ITM synchronization packets.

An overflow packet consists is a special timestamp packets which indicates that data has
been written but the FIFO was full.

Table 169. Main ITM registers

Address Register Details

@E0000FB0 ITM Lock Access
Write 0xC5ACCE55 to unlock Write Access to the other ITM
registers

@E0000E80 ITM Trace Control

Bits 31-24 = Always 0

Bits 23 = Busy

Bits 22-16 = 7-bits ATB ID which identifies the source of the
trace data.

Bits 15-10 = Always 0

Bits 9:8 = TSPrescale = Time Stamp Prescaler

Bits 7-5 = Reserved

Bit 4 = SWOENA = Enable SWV behavior (to clock the
timestamp counter by the SWV clock).

Bit 3 = DWTENA: Enable the DWT Stimulus

Bit 2 = SYNCENA: this bit must be to 1 to enable the DWT to
generate synchronization triggers so that the TPIU can then
emit the synchronization packets.

Bit 1 = TSENA (Timestamp Enable)

Bit 0 = ITMENA: Global Enable Bit of the ITM

RM0008 Debug support (DBG)

 659/682

Example of configuration

To output a simple value to the TPIU:

● Configure the TPIU and assign TRACE I/Os by configuring the DBGMCU_CR (refer to
Section 26.16.2: TRACE pin assignment and Section 26.15.3: Debug MCU
configuration register)

● Write 0xC5ACCE55 to the ITM Lock Access Register to unlock the write access to the
ITM registers

● Write 0x00010005 to the ITM Trace Control Register to enable the ITM with Sync
enabled and an ATB ID different from 0x00

● Write 0x1 to the ITM Trace Enable Register to enable the Stimulus Port 0

● Write 0x1 to the ITM Trace Privilege Register to unmask stimulus ports 7:0

● Write the value to output in the Stimulus Port Register 0: this can be done by software
(using a printf function)

26.15 MCU debug component (MCUDBG)
The MCU debug component helps the debugger provide support for:

● Low-power modes

● Clock control for timers, watchdog and bxCAN during a breakpoint

● Control of the trace pins assignment

26.15.1 Debug support for low-power modes

To enter low-power mode, the instruction WFI or WFE must be executed.

The MCU implements several low-power modes which can either deactivate the CPU clock
or reduce the power of the CPU.

The core does not allow FCLK or HCLK to be turned off during a debug session. As these
are required for the debugger connection, during a debug, they must remain active. The
MCU integrates special means to allow the user to debug software in low-power modes.

@E0000E40 ITM Trace Privilege

Bit 3: mask to enable tracing ports31:24

Bit 2: mask to enable tracing ports23:16

Bit 1: mask to enable tracing ports15:8

Bit 0: mask to enable tracing ports7:0

@E0000E00 ITM Trace Enable
Each bit enables the corresponding Stimulus port to generate
trace.

@E0000000-
E000007C

Stimulus Port
Registers 0-31

Write the 32-bits data on the selected Stimulus Port (32
available) to be traced out.

Table 169. Main ITM registers

Address Register Details

Debug support (DBG) RM0008

660/682

For this, the debugger host must first set some debug configuration registers to change the
low-power mode behavior:

● In Sleep mode, DBG_SLEEP bit of DBGMCU_CR register must be previously set by
the debugger. This will feed HCLK with the same clock that is provided to FCLK
(system clock previously configured by the software).

● In STOP mode, the bit DBG_STOP must be previously set by the debugger. This will
enable the internal RC oscillator clock to feed FCLK and HCLK in STOP mode.

26.15.2 Debug support for timers, watchdog, bxCAN and I2C

During a breakpoint, it is necessary to choose how the counter of timers and watchdog
should behave:

● they can continue to count inside a breakpoint. This is usually required when a PWM is
controlling a motor, for example.

● they can stop to count inside a breakpoint. This is required for watchdog purposes.

For the bxCAN, the user can choose to block the update of the receive register during a
breakpoint.

For the I2C, the user can choose to block the SMBUS timeout during a breakpoint.

26.15.3 Debug MCU configuration register

This register allows the configuration of the MCU under DEBUG. This concerns:

● Low-power mode support

● Timer and watchdog counters support

● bxCAN communication support

● Trace pin assignment

This DBGMCU_CR is mapped on the External PPB bus at address 0xE004 2004

It is asynchronously reset by the PORESET (and not the system reset). It can be written by
the debugger under system reset.

If the debugger host does not support these features, it is still possible for the user software
to write to these registers.

DBGMCU_CR

Address: 0xE0042004

Only 32-bit access supported

POR Reset: 0x0000 0000 (not reset by system reset)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

DBG_
TIM7_
STOP

DBG_
TIM6_
STOP

DBG_
TIM5_
STOP

DBG_
TIM8_
STOP

DBG_I2C2
SMBUS
TIMEOUT

rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DBG_I2C1
SMBUS
TIMEOUT

DBG_
CAN_
STOP

DBG_
TIM4_
STOP

DBG_
TIM3_
STOP

DBG_
TIM2_
STOP

DBG_
TIM1_
STOP

DBG_
WWDG_

STOP

DBG_
IWDG
STOP

TRACE_
MODE
[1:0]

TRACE_
IOEN Reserved

DBG_
STAND

BY

DBG_
STOP

DBG_
SLEEP

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0008 Debug support (DBG)

 661/682

Bits 31:21 Reserved, must be kept cleared.

Bits 20:17 DBG_TIMx_STOP: TIMx counter stopped when core is halted (x=8..5)

0: The clock of the involved timer counter is fed even if the core is halted, and the outputs
behave normally.
1: The clock of the involved timer counter is stopped when the core is halted, and the outputs
are disabled (as if there were an emergency stop in response to a break event).

Bit 16 DBG_I2C2_SMBUS_TIMEOUT: SMBUS timeout mode stopped when Core is halted

0: Same behavior as in normal mode.
1: The SMBUS timeout is frozen

Bit 15 DBG_I2C1_SMBUS_TIMEOUT: SMBUS timeout mode stopped when Core is halted

0: Same behavior as in normal mode.
1: The SMBUS timeout is frozen.

Bit 14 DBG_CAN_STOP: Debug CAN stopped when Core is halted

0: Same behavior as in normal mode.
1: The CAN receive registers are frozen.

Bits 13:10 DBG_TIMx_STOP: TIMx counter stopped when core is halted (x=4..1)

0: The clock of the involved Timer Counter is fed even if the core is halted.
1: The clock of the involved Timer counter is stopped when the core is halted.

Bit 9 DBG_WWDG_STOP: Debug window watchdog stopped when core is halted

0: The window watchdog counter clock continues even if the core is halted.
1: The window watchdog counter clock is stopped when the core is halted.

Bit 8 DBG_IWDG_STOP: Debug independent watchdog stopped when core is halted

0: The watchdog counter clock continues even if the core is halted.
1: The watchdog counter clock is stopped when the core is halted.

Bits 7:5 TRACE_MODE[1:0] and TRACE_IOEN: Trace pin assignment control

– With TRACE_IOEN=0:

TRACE_MODE=xx: TRACE pins not assigned (default state)
– With TRACE_IOEN=1:

TRACE_MODE=00: TRACE pin assignment for Asynchronous Mode
TRACE_MODE=01: TRACE pin assignment for Synchronous Mode with a TRACEDATA size
of 1
TRACE_MODE=10: TRACE pin assignment for Synchronous Mode with a TRACEDATA size
of 2
TRACE_MODE=11: TRACE pin assignment for Synchronous Mode with a TRACEDATA size
of 4

Bit 4:3 Reserved, must be kept cleared.

Debug support (DBG) RM0008

662/682

26.16 TPIU (trace port interface unit)

26.16.1 Introduction

The TPIU acts as a bridge between the on-chip trace data from the ITM.

The output data stream encapsulates the trace source ID, that is then captured by a Trace
Port Analyzer (TPA).

The core embeds a simple TPIU, especially designed for low-cost debug (consisting of a
special version of the CoreSight TPIU).

The TPIU only supports ITM debug trace which is a limited trace as it only outputs
information coming from the ITM.

Bit 2 DBG_STANDBY: Debug Standby mode
0: (FCLK=Off, HCLK=Off) The whole digital part is unpowered.
From software point of view, exiting from Standby is identical than fetching reset vector
(except a few status bit indicated that the MCU is resuming from Standby)
1: (FCLK=On, HCLK=On) In this case, the digital part is not unpowered and FCLK and
HCLK are provided by the internal RC oscillator which remains active. In addition, the MCU
generate a system reset during Standby mode so that exiting from Standby is identical than
fetching from reset

Bit 1 DBG_STOP: Debug Stop mode

0: (FCLK=Off, HCLK=Off) In STOP mode, the clock controller disables all clocks (including
HCLK and FCLK). When exiting from STOP mode, the clock configuration is identical to the
one after RESET (CPU clocked by the 8 MHz internal RC oscillator (HSI)). Consequently,
the software must reprogram the clock controller to enable the PLL, the Xtal, etc.
1: (FCLK=On, HCLK=On) In this case, when entering STOP mode, FCLK and HCLK are
provided by the internal RC oscillator which remains active in STOP mode. When exiting
STOP mode, the software must reprogram the clock controller to enable the PLL, the Xtal,
etc. (in the same way it would do in case of DBG_STOP=0)

Bit 0 DBG_SLEEP: Debug Sleep mode

0: (FCLK=On, HCLK=Off) In Sleep mode, FCLK is clocked by the system clock as previously
configured by the software while HCLK is disabled.
In Sleep mode, the clock controller configuration is not reset and remains in the previously
programmed state. Consequently, when exiting from Sleep mode, the software does not
need to reconfigure the clock controller.
1: (FCLK=On, HCLK=On) In this case, when entering Sleep mode, HCLK is fed by the same
clock that is provided to FCLK (system clock as previously configured by the software).

RM0008 Debug support (DBG)

 663/682

Figure 260. TPIU block diagram

26.16.2 TRACE pin assignment

● Asynchronous mode

The asynchronous mode requires 1 extra pin and is available on all packages. It is only
available if using Serial Wire mode (not in JTAG mode).

● Synchronous mode

The synchronous mode requires from 2 to 6 extra pins depending on the data trace
size and is only available in the larger packages. In addition it is available in JTAG mode
and in Serial Wire mode and provides better bandwidth output capabilities than
asynchronous trace.

ITM
Asynchronous

FIFO Formatter
Trace Out

(serializer)

TRACECLKIN

TRACECK

TRACEDATA
[3:0]

TRACESWO

CLK Domain TRACECLKIN Domain

External PPB Bus

TPIU

TPIU

Table 170. Asynchronous TRACE pin assignment

TPUI pin name
Trace synchronous mode STM32F10xxx pin

assignmentType Description

TRACESWO O TRACE Async Data Output PB3

Table 171. Synchronous TRACE pin assignment

TPUI pin name
Trace synchronous mode STM32F10xxx pin

assignmentType Description

TRACECK O TRACE Clock PE2

TRACED[3:0] O
TRACE Sync Data Outputs

Can be 1, 2 or 4.
PE[6:3]

Debug support (DBG) RM0008

664/682

TPUI TRACE pin assignment

By default, these pins are NOT assigned. They can be assigned by setting the IOTRACEN
and IOTRACEMODE bits of the MCU Debug Component Configuration Register. This
configuration has to be done by the debugger host.

In addition, the number of pins to assign depends on the trace configuration (asynchronous
or synchronous).

● Asynchronous mode: 1 extra pin is needed

● Synchronous mode: from 2 to 5 extra pins are needed depending on the size of the
data trace port register (1, 2 or 4):

– TRACECK

– TRACED(0) if port size is configured to 1, 2 or 4

– TRACED(1) if port size is configured to 2 or 4

– TRACED(2) if port size is configured to 4

– TRACED(3) if port size is configured to 4

To assign the TRACE pin, the debugger host must program the bits TRACE_IOEN and
TRACE_MODE[1:0] of the Debug MCU configuration Register (DBGMCU_CR). By default
the TRACE pins are not assigned.

This register is mapped on the external PPB and is reset by the PORESET (and not by the
SYSTEM reset). It can be written by the debugger under SYSTEM reset.

Note: By default, the TRACECLKIN input clock of the TPIU is tied to GND. It is assigned to HCLK
two clock cycles after the bit TRACE_IOEN has been set.

Table 172. Flexible TRACE pin assignment

DBGMCU_CR
register

Pins assigned for:

TRACE I/O pin assigned

T
R

A
C

E
_

IO
E

N

T
R

A
C

E
_

M
O

D
E

[1
:0

]

PB3 /
JTDO/

TRACES
WO

PE2 /
TRACE

CK

PE3 /
TRACE

D[0]

PE4 /
TRACE

D[1]

PE5 /
TRACE

D[2]

PE6 /
TRACE

D[3]

0 XX
No Trace (default

state)
Released

(1)

1 00 Asynchronous Trace
TRACES

WO
Released

(usable as GPIO)

1 01
Synchronous Trace

1 bit

Released

(1)

TRACE
CK

TRACE
D[0]

1 10
Synchronous Trace

2 bit
TRACE

CK
TRACE

D[0]
TRACE

D[1]

1 11
Synchronous Trace

4 bit
TRACE

CK
TRACE

D[0]
TRACE

D[1]
TRACE

D[2]
TRACE

D[3]

(1) When Serial Wire mode is used, it is released. But when JTAG is used, it is assigned to JTDO.

RM0008 Debug support (DBG)

 665/682

The debugger must then program the Trace Mode by writing the PROTOCOL[1:0] bits in the
SPP_R (Selected Pin Protocol) register of the TPIU.

● PROTOCOL=00: Trace Port Mode (synchronous)

● PROTOCOL=01 or 10: Serial Wire (Manchester or NRZ) Mode (asynchronous mode).
Default state is 01

It then also configures the TRACE port size by writing the bits [3:0] in the CPSPS_R
(Current Sync Port Size Register) of the TPIU:

● 0x1 for 1 pin (default state)

● 0x2 for 2 pins

● 0x8 for 4 pins

26.16.3 TPUI formatter

The formatter protocol outputs data in 16-byte frames:

● seven bytes of data

● eight bytes of mixed-use bytes consisting of:

– 1 bit (LSB) to indicate it is a DATA byte (‘0’) or an ID byte (‘1’).

– 7 bits (MSB) which can be data or change of source ID trace.

● one byte of auxiliary bits where each bit corresponds to one of the eight mixed-use
bytes:

– if the corresponding byte was a data, this bit gives bit0 of the data.

– if the corresponding byte was an ID change, this bit indicates when that ID change
takes effect.

Note: Refer to the ARM CoreSight Architecture Specification v1.0 (ARM IHI 0029B) for further
information

Use of the formatter for STM32F10xxx MCU

For STM32F10xxx MCU, there is only one TRACE source (the ITM). But the formatter can
not be disabled and must be used in bypass mode because the TRACECTL pin is not
assigned. This way, the Trace Port Analyzer can decode part of the formatter protocol to
determine the position of the trigger.

Debug support (DBG) RM0008

666/682

26.16.4 TPUI frame synchronization packets

The TPUI can generate two types of synchronization packets:

● The Frame Synchronization packet (or Full Word Synchronization packet)

It consists of the word: 0x7F_FF_FF_FF (LSB emitted first). This sequence can not
occur at any other time provided that the ID source code 0x7F has not been used.

It is output periodically between frames.

In continuous mode, the TPA must discard all these frames once a synchronization
frame has been found.

● The Half-Word Synchronization packet

It consists of the half word: 0x7F_FF (LSB emitted first).

It is output periodically between or within frames.

These packets are only generated in continuous mode and enable the TPA to detect
that the TRACE port is in IDLE mode (no TRACE to be captured). When detected by
the TPA, it must be discarded.

26.16.5 Emission of synchronization frame packet

There is no Synchronization Counter register implemented in the TPIU of the core.
Consequently, the synchronization trigger can only be generated by the DWT. Refer to the
registers DWT Control Register (bits SYNCTAP[11:10]) and the DWT Current PC Sampler
Cycle Count Register.

The TPUI Frame synchronization packet (0x7F_FF_FF_FF) is emitted:

● after each TPIU reset release. This reset is synchronously released with the rising
edge of TRACECLKIN clock. This means that this packet is emitted once the bit
IO_TRACEN of the DBGMCU_CFG register has been set. In this case, the word
0x7F_FF_FF_FF is not followed by any formatted packet.

● at each DWT trigger (assuming DWT has been previously configured). Two cases
occur:

– If the bit SYNENA of the ITM is reset, only the word 0x7F_FF_FF_FF is emitted
without any formatted stream which follows.

– If the bit SYNENA of the ITM is set, then the ITM synchronization packets will
follow (0x80_00_00_00_00_00), formatted by the TPUI (trace source ID added).

26.16.6 Synchronous mode

The trace data output size can be configured to 4, 2 or 1 pin: TRACED(3:0)

The output clock is output to the debugger (TRACECK)

Here, TRACECLKIN is driven internally and is connected to HCLK only when TRACE is
used.

Note: In this synchronous mode, it is not required to provide a stable clock frequency.

The TRACE I/Os (including TRACECK) are driven by the rising edge of TRACLKIN (equal to
HCLK). Consequently, the output frequency of TRACECK is equal to HCLK/2.

RM0008 Debug support (DBG)

 667/682

26.16.7 Asynchronous mode

This is a low cost alternative to output the trace using only 1 pin: this is the asynchronous
output pin TRACESWO. Obviously there is a limited bandwidth.

TRACESWO is multiplexed with JTDO when using the SW-DP pin. This way, this
functionality is available in all STM32F10xxx packages.

This asynchronous mode requires a constant frequency for TRACECLKIN. For the standard
UART (NRZ) capture mechanism, 5% accuracy is needed. The Manchester encoded
version is tolerant up to 10%.

26.16.8 TRACECLKIN connection inside STM32F10xxx

In STM32F10xxx, this TRACECLKIN input is internally connected to HCLK. This means that
when in asynchronous trace mode, the application is restricted to use to time frames where
the CPU frequency is stable.

Note: Important: when using asynchronous trace: it is important to be aware that:

The default clock of the STM32F10xxx MCU is the internal RC oscillator. Its frequency
under reset is different from the one after reset release. This is because the RC calibration is
the default one under system reset and is updated at each system reset release.

Consequently, the Trace Port Analyzer (TPA) should not enable the trace (with the bit
IOTRACEN) under system reset, because a Synchronization Frame Packet will be issued
with a different bit time than trace packets which will be transmitted after reset release.

26.16.9 TPIU registers

The TPIU APB registers can be read and written only if the bit TRCENA of the Debug
Exception and Monitor Control Register (DEMCR) is set. Otherwise, the registers are read
as zero (the output of this bit enables the PCLK of the TPIU).

Table 173. Important TPIU registers

Address Register Description

0xE0040004 Current port size

Allows the trace port size to be selected:
Bit 0: Port size = 1
Bit 1: Port size = 2
Bit 2: Port size = 3, not supported
Bit 3: Port Size = 4

Only 1 bit must be set. By default, the port size is one bit.
(0x00000001)

0xE00400F0
Selected pin
protocol

Allows the Trace Port Protocol to be selected:
Bit1:0=
00: Sync Trace Port Mode
01: Serial Wire Output - manchester (default value)
10: Serial Wire Output - NRZ
11: reserved

Debug support (DBG) RM0008

668/682

26.16.10 Example of configuration

● Set the bit TRCENA in the Debug Exception and Monitor Control Register (DEMCR)

● Write the TPIU Current Port Size Register to the desired value (default is 0x1 for a 1-bit
port size)

● Write TPIU Formatter and Flush Control Register to 0x102 (default value)

● Write the TPIU Select Pin Protocol to select the sync or async mode. Example: 0x2 for
async NRZ mode (UART like)

● Write the DBGMCU Control Register to 0x20 (bit IO_TRACEN) to assign TRACE I/Os
for async mode. A TPIU Sync packet is emitted at this time (FF_FF_FF_7F)

● Configure the ITM and write the ITM Stimulus register to output a value

0xE0040304
Formatter and
flush control

Bit 31-9 = always ‘0’
Bit 8 = TrigIn = always ‘1’ to indicate that triggers are indicated
Bit 7-4 = always 0
Bit 3-2 = always 0
Bit 1 = EnFCont. In Sync Trace mode (Select_Pin_Protocol
register bit1:0=00), this bit is forced to ‘1’: the formatter is
automatically enabled in continuous mode. In asynchronous
mode (Select_Pin_Protocol register bit1:0 <> 00), this bit can
be written to activate or not the formatter.
Bit 0 = always 0

The resulting default value is 0x102

Note: In synchronous mode, because the TRACECTL pin is not
mapped outside the chip, the formatter is always enabled in
continuous mode -this way the formatter inserts some control
packets to identify the source of the trace packets).

0xE0040300
Formatter and
flush status

Not used in Cortex-M3, always read as 0x00000008

Table 173. Important TPIU registers (continued)

Address Register Description

RM0008 Debug support (DBG)

 669/682

26.17 DBG register map
The following table summarizes the Debug registers.

Table 174. DBG register map and reset values
Addr. Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x
E

00
42

00
0

DBGMCU_
IDCODE REV_ID

Reserved
DEV_ID

Reset value(1) X

0x
E

00
42

00
4

DBGMCU_CR
Reserved

D
B

G
_T

IM
7_

S
TO

P

D
B

G
_T

IM
6_

S
TO

P

D
B

G
_T

IM
5_

S
TO

P

D
B

G
_T

IM
8_

S
TO

P

D
B

G
_I

2C
2_

S
M

B
U

S
_T

IM
E

O
U

T

D
B

G
_I

2C
1_

S
M

B
U

S
_T

IM
E

O
U

T

D
B

G
_C

A
N

_S
TO

P

D
B

G
_T

IM
4_

S
TO

P

D
B

G
_T

IM
3_

S
TO

P

D
B

G
_T

IM
2_

S
TO

P

D
B

G
_T

IM
1_

S
TO

P

D
B

G
_W

W
D

G
_S

TO
P

D
B

G
_I

W
D

G
_S

TO
P

T
R

A
C

E
_M

O
D

E
[1

:0
]

T
R

A
C

E
_I

O
E

N

R
es

er
ve

d

D
B

G
_S

TA
N

D
B

Y

D
B

G
_S

TO
P

D
B

G
_S

le
ep

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. The reset value is product dependent. For more information, refer to Section 26.6.1: MCU device ID code.

Revision history RM0008

670/682

27 Revision history

Table 175. Document revision history

Date Revision Changes

19-Oct-2007 1

Document reference number changed from UM0306 to RM008. The
changes below were made with reference to revision 1 of 01-Jun-2007 of
UM0306.

EXTSEL[2:0] and JEXTSEL[2:0] removed from Table 43: ADC pins on
page 148 and VREF+ range modified in Remarks column.

Notes added to Section 10.3.9 on page 151, Section 10.9.2 on page 159,
Section 10.9.7 on page 162 and Section 10.9.9 on page 163.

SPI_CR2 corrected to SPI_CR1 in 1 clock and 1 bidirectional data wire on
page 541.
fCPU frequency changed to fPCLK in Section 22.2: SPI and I2S main features
on page 534.
Section 22.3.6: CRC calculation on page 542 and Section 22.3.7: SPI
communication using DMA (direct memory addressing) on page 543
modified.

Note added to bit 13 description changed in Section 22.5.1: SPI control
register 1 (SPI_CR1) (not used in I2S mode) on page 559. Note for bit 4
modified in Section 22.5.3: SPI status register (SPI_SR) on page 563.
On 64-pin packages on page 46 modified.
Section 7.3.2: Using OSC_IN/OSC_OUT pins as GPIO ports PD0/PD1 on
page 107 updated.

Description of SRAM at address 0x4000 6000 modified in Figure 2: Memory
map on page 39 and Table 1: Register boundary addresses.
Note added to Section 20.2: USB main features on page 460 and
Section 21.2: bxCAN main features on page 491.

Figure 3: Power supply overview and On 100-pin and 144- pin packages
modified.
Formula added to Bits 25:24 description in CAN bit timing register
(CAN_BTR) on page 520.
Section 9.3: DMA functional description on page 131 modified.
Example of configuration on page 659 modified.
MODEx[1:0] bit definitions corrected in Section 7.2.2: Port configuration
register high (GPIOx_CRH) (x=A..G) on page 103.

Downcounting mode on page 208 modified.
Figure 75: Output stage of capture/compare channel (channel 4) on
page 219 and Figure 77: Output compare mode, toggle on OC1. modified.
OCx output enable conditions modified in Section 12.3.10: PWM mode on
page 223.
Section 12.3.19: TIMx and external trigger synchronization on page 238 title
changed.
CC1S, CC2S, CC3S and CC4S definitions modified for (1, 1) bit setting
modified in Section 12.4.7: Capture/compare mode register 1
(TIMx_CCMR1) and Section 12.4.8: Capture/compare mode register 2
(TIMx_CCMR2).
CC1S, CC2S, CC3S and CC4S definitions for (1, 1) bit setting modified in
Section 13.4.7: Capture/compare mode register 1 (TIMx_CCMR1) and
Section 13.4.8: Capture/compare mode register 2 (TIMx_CCMR2).

AFIO_EVCR pins modified in Table 35: AFIO register map and reset values
on page 118. Section 12.3.6: Input capture mode on page 219 modified.

RM0008 Revision history

 671/682

19-Oct-2007
continued

1
continued

Figure 108: Counter timing diagram, internal clock divided by 1,
TIMx_ARR=0x6 and Figure 123: Output compare mode, toggle on OC1.
modified.

CKD definition modified in Section 13.4.1: Control register 1 (TIMx_CR1).
Bit 8 and Bit 9 added to Section 5.4.2: RTC clock calibration register
(BKP_RTCCR).
Bit 15 and Bit 16 added to DBGMCU_CR on page 660. Section 23.5: I2C
debug mode on page 586 added.
Stop and Standby modified in Table 7: Low-power mode summary.
Table 9: Sleep-on-exit modified. Debug mode on page 54 modified.
HSITRIM[4:0] bit description modified in Section 6.3.1: Clock control register
(RCC_CR). Note modified in MCO description in Section 6.3.2: Clock
configuration register (RCC_CFGR). RCC_CR row modified in RCC -
register map and reset values on page 93.

Bits 15:0 description modified in Section 7.2.6: Port bit reset register
(GPIOx_BRR) (x=A..G). Embedded boot loader on page 41 added.
Figure 9, Figure 11, Figure 12, Figure 13 and Figure 14 modified.

Section 2.3.3: Embedded Flash memory on page 37 modified.

REV_ID bit description added to DBGMCU_IDCODE on page 648.
Reset value modified in Clock control register (RCC_CR) on page 74 and
HSITRIM[4:0] description modified.
Section 7.1.1 on page 97 modified. Bit definitions modified in Section 7.2:
GPIO registers on page 102. Wakeup latency description modified in
Table 10: Stop mode.
Clock control register (RCC_CR) reset value modified.

Note added in ASOS and ASOE bit descriptions in 5.4.2 on page 60.

Section 26.15.2: Debug support for timers, watchdog, bxCAN and I2C
modified. Table 174: DBG register map and reset values updated.

Section 20.5.3: Buffer descriptor table clarified.
Center-aligned mode (up/down counting) on page 210 and Center-aligned
mode (up/down counting) on page 277 updated.
Figure 79: Center-aligned PWM waveforms (ARR=8) on page 225 and
Figure 125: Center-aligned PWM waveforms (ARR=8) on page 290
modified.
RSTCAL description modified in Section 10.12.3: ADC control register 2
(ADC_CR2).
Note changed below Table 64: Watchdog timeout period (with 40 kHz input
clock). Note added below Figure 7: Clock tree.
ADC conversion time modified in Section 10.2: ADC main features.
Auto-injection on page 151 updated.
Note added in Section 10.9.9: Combined injected simultaneous +
interleaved. Note added to Section 7.3.2: Using OSC_IN/OSC_OUT pins as
GPIO ports PD0/PD1. Small text changes. Internal LSI RC frequency
changed from 32 to 40 kHz. Table 64: Watchdog timeout period (with 40 kHz
input clock) updated. Option byte addresses corrected in Figure 2: Memory
map and Table 3: Flash module organization (medium-density devices).
Information block organization modified in Section 2.3.3: Embedded Flash
memory.
External event that trigger ADC conversion is EXTI line instead of external
interrupt (see Section 10: Analog-to-digital converter (ADC)).
Appendix A: Important notes on page 500 added.

Table 175. Document revision history (continued)

Date Revision Changes

Revision history RM0008

672/682

20-Nov-2007 2

Figure 236: USART block diagram modified.
Procedure modified in Character reception on page 607.
In Section 24.3.4: Fractional baud rate generation:

– Equation legend modified
– Table 154: Error calculation for programmed baud rates modified

– Note added

Small text changes. In CAN bit timing register (CAN_BTR) on page 520, bit
15 is reserved.
Flash memory organization corrected, Table 3: Flash module organization
(medium-density devices) modified in Section 2.3.3: Embedded Flash
memory.
Note added below Figure 3: Power supply overview in Section 4.1: Power
supplies.
RTCSEL[1:0] bit description modified in Backup domain control register
(RCC_BDCR).
Names of bits [0:2] corrected for RCC_APB1RSTR and RCC_APB1ENR in
Table 14: RCC - register map and reset values.
Impedance value specified in A.4: Voltage glitch on ADC input 0 on
page 500.
In Section 22.5.1: SPI control register 1 (SPI_CR1) (not used in I2S mode),
BR[2:0] description corrected.
Prescaler buffer behavior specified when an update event occurs (see
upcounting mode on page 272, Downcounting mode on page 275 and
Center-aligned mode (up/down counting) on page 277).
AWDCH[4:0] modified in Section 10.12.2: ADC control register 1
(ADC_CR1) and bits [26:24] are reserved in Section 10.12.4: ADC sample
time register 1 (ADC_SMPR1).
CAN_BTR bit 8 is reserved in Table 146: bxCAN register map and reset
values. CAN master control register (CAN_MCR) on page 511 corrected.

VREF+ range corrected in Table 43: ADC pins and in On 100-pin and 144- pin
packages on page 46.
Start condition on page 576 updated. Note removed in Table 17: CAN1
alternate function remapping. Note added in Table 25: Timer 4 alternate
function remapping.
In Section 7.4.2: AF remap and debug I/O configuration register
(AFIO_MAPR), bit definition modified for USART2_REMAP = 0. In
Section 7.4.3: External interrupt configuration register 1 (AFIO_EXTICR1),
bit definition modified for SPI1_REMAP = 0.
In Table 173: Important TPIU registers, at 0xE0040004, bit2 set is not
supported.
TRACE port size setting corrected in TPUI TRACE pin assignment on
page 664. Figure 9, Figure 11, Figure 12, Figure 13 and Figure 14 modified.
Figure 10: Basic structure of a five-volt tolerant I/O port bit added.
Table 7.3.1: Using OSC32_IN/OSC32_OUT pins as GPIO ports PC14/PC15
on page 107 added.
Bit descriptions modified in Section 15.4.5 and Section 15.4.6.
JTAG ID code corrected in Section 26.6.2: Boundary scan TAP on page 649.
Modified: Section 17.2: WWDG main features, Section 5.2: BKP main
features, Section 5.3.1: Tamper detection, Section 5.3.2: RTC calibration,
Section 20.3: USB functional description, Controlling the downcounter: on
page 355, Section 4.1.2: Battery backup domain, Section 8.2: Introduction.
ASOE bit description modified in Section 5.4.2: RTC clock calibration
register (BKP_RTCCR).

Table 175. Document revision history (continued)

Date Revision Changes

RM0008 Revision history

 673/682

08-Feb-2008 3

Figure 3: Power supply overview on page 45 modified.

Section 6.1.2: Power reset on page 67 modified.

Section 6.2: Clocks on page 67 modified.
Definition of Bits 26:24 modified in Section 7.4.2: AF remap and debug I/O
configuration register (AFIO_MAPR) on page 113.
AFIO_EVCR bits corrected in Table 35: AFIO register map and reset values on
page 118.
Number of maskable interrupt channels modified in Section 8.1: Nested
vectored interrupt controller (NVIC) on page 119.
Section 9.3.6: Interrupts on page 135 added. Small text changes.

Examples modified in Figure 85: 6-step generation, COM example
(OSSR=1) on page 231.

Table 56: Output control bits for complementary OCx and OCxN channels
with break feature on page 258 modified.

Register names modified in Section 21.7.4: CAN filter registers on
page 526.
Small text change in Section 23.3.3: I2C master mode on page 576.

Bits 5:0 frequency description modified in Section 23.6.2: Control register 2
(I2C_CR2) on page 589.

Section 20.3.1: Description of USB blocks on page 462 modified.

Section 22.3.4: Simplex communication on page 541 modified.
Section 22.3.6: CRC calculation on page 542 modified.

Note added in BUSY flag on page 542.
Section 22.3.9: Disabling the SPI on page 545 added.
Appendix A: Important notes, removed.

22-May-2008

4
continued
on next
page

Reference manual updated to apply to devices containing up to 512 Kbytes
of Flash memory (High-density devices). Document restructured. Small text
changes. Definitions of Medium-density and High-density devices added to
all sections.
In Section 2: Memory and bus architecture on page 33:

– Figure 1: System architecture on page 33, Figure 2: Memory map on
page 39, Table 1: Register boundary addresses on page 35 updated

– Note and text added to AHB/APB bridges (APB) on page 34

– SRAM size in Section 2.3.1: Embedded SRAM on page 36
– Section 2.3.3: Embedded Flash memory on page 37 updated (Flash size,

page size, number of pages, Reading Flash memory, Table 4: Flash
module organization (high-density devices) on page 39 added)

– Prefetch buffer on/off specified in Reading Flash memory
bit_number definition modified in Section 2.3.2: Bit banding on page 36.

Section 3: CRC calculation unit on page 42 added (Table 1: Register
boundary addresses on page 35 updated, Figure 2: Memory map on
page 39 updated and CRCEN bit added to Section 6.3.6: AHB peripheral
clock enable register (RCC_AHBENR) on page 84).

Entering Stop mode on page 51 specified.
Updated in Section 5: Backup registers (BKP) on page 58: number of
backup registers and available storage size and Section 5.1: BKP
introduction. ASOE definition modified in Section 5.4.2: RTC clock
calibration register (BKP_RTCCR) on page 60.

Table 175. Document revision history (continued)

Date Revision Changes

Revision history RM0008

674/682

22-May-2008

continued

4

continued

In Section 6: Reset and clock control (RCC) on page 66:

– LSI calibration on page 71 added

– Figure 6: Reset circuit on page 67 updated
– APB2 peripheral reset register (RCC_APB2RSTR) on page 80 updated

– APB1 peripheral reset register (RCC_APB1RSTR) on page 82 updated

– AHB peripheral clock enable register (RCC_AHBENR) updated
– APB2 peripheral clock enable register (RCC_APB2ENR) updated

– APB1 peripheral clock enable register (RCC_APB1ENR) on page 88
updated (see Section Table 14.: RCC - register map and reset values).

– LSERDYIE definition modified in Clock interrupt register (RCC_CIR)

– HSITRIM[4:0] definition modified in Clock control register (RCC_CR)
In Section 7: General-purpose and alternate-function I/Os (GPIOs and
AFIOs) on page 95:
– GPIO ports F and G added

– In Section 7.3: Alternate function I/O and debug configuration (AFIO) on
page 107 remapping for High-density devices added, note modified under
Section 7.3.2, Section 7.3.3 on page 107 modified

– AF remap and debug I/O configuration register (AFIO_MAPR) on
page 113 updated

Updated in Section 8: Interrupts and events on page 119:
– number of maskable interrupt channels

– number of GPIOs (see Figure 16: External interrupt/event GPIO mapping)

In Section 9: DMA controller (DMA) on page 130:
– number of DMA controllers and configurable DMA channels updated

– Figure 17: DMA block diagram on page 131 updated, notes added

– Note updated in Section 9.3.2: Arbiter on page 132
– Note updated in Section 9.3.6: Interrupts on page 135

– Figure 18: DMA1 request mapping on page 136 updated

– DMA2 controller on page 137 added
In Section 10: Analog-to-digital converter (ADC) on page 146:

– ADC3 added (Figure 20: Single ADC block diagram on page 147 updated,
Table 48: External trigger for injected channels for ADC3 added, etc.)

Section 11: Digital-to-analog converter (DAC) on page 180 added.
In Section 12: Advanced-control timers (TIM1&TIM8) on page 201:

– Advanced control timer TIM8 added (see Figure 46: Advanced-control
timer block diagram on page 203)

– TS[2:0] modified in Section 12.4.3: Slave mode control register
(TIMx_SMCR) on page 245.

In Section 13: General-purpose timer (TIMx) on page 268:

– TIM5 added
– Figure 94: General-purpose timer block diagram on page 270 updated.

Table 59: TIMx Internal trigger connection on page 308 modified.
Section 14: Basic timer (TIM6&7) on page 324 added.

RTC clock sources specified in Section 15.2: RTC main features on
page 337. Section 15.1: RTC introduction modified.
Section 18: Flexible static memory controller (FSMC) on page 359 added.
Section 19: SDIO interface (SDIO) on page 405 added.

Table 175. Document revision history (continued)

Date Revision Changes

RM0008 Revision history

 675/682

22-May-2008

continued

4

continued

Figure 203: CAN frames on page 509 modified. Bits 31:21 and bits 20:3
modified in TX mailbox identifier register (CAN_TIxR) (x=0..2) on page 521.
Bits 31:21 and bits 20:3 modified in Rx FIFO mailbox identifier register
(CAN_RIxR) (x=0..1) on page 524.

Section 23.3.7: DMA requests on page 583 modified. DMAEN bit 11
description modified in Section 23.6.2: Control register 2 (I2C_CR2) on
page 589.
Clock phase and clock polarity on page 538 modified. Transmit sequence on
page 540 modified. Receive sequence on page 541 added. Reception
sequence on page 557 modified. Underrun flag (UDR) on page 558
modified.

I2S feature added (see Section 22: Serial peripheral interface (SPI) on
page 533).

In Section 26: Debug support (DBG) on page 642:

– DBGMCU_IDCODE on page 648 and DBGMCU_CR on page 660
updated

– TMC TAP changed to boundary scan TAP

– Address onto which DBGMCU_CR is mapped modified in
Section 26.15.3: Debug MCU configuration register on page 660.

Section 25: Device electronic signature on page 639 added.
REV_ID(15:0) definition modified in Section 26.6.1: MCU device ID code on
page 648.

Table 175. Document revision history (continued)

Date Revision Changes

Revision history RM0008

676/682

28-Jul-2008 5

Developed polynomial form updated in Section 3.2: CRC main features on
page 42.
Figure 3: Power supply overview on page 45 modified.

Section 4.1.2: Battery backup domain on page 46 modified.

Section 6.2.5: LSI clock on page 71 specified.
Section 7.1.4: Alternate functions (AF) on page 98 clarified.

Note added to Table 27: Timer 2 alternate function remapping on page 110.

Bits are write-only in Section 9.4.2: DMA interrupt flag clear register
(DMA_IFCR) on page 140.

Register name modified in Section 10.3.1: ADC on-off control on page 148.
Recommended sampling time given in Section 10.10: Temperature sensor
on page 164.
Bit attributes modified in Section 10.12.1: ADC status register (ADC_SR) on
page 166.

Note modified for bits 23:0 in Section 10.12.4: ADC sample time register 1
(ADC_SMPR1) on page 172.

Note added in Section 11.2: DAC main features on page 180.
Formula updated in Section 11.3.5: DAC output voltage on page 184.

DBL[4:0] description modified in Section 12.3.19: TIMx and external trigger
synchronization on page 238.

Figure 76 on page 221 and Figure 122 on page 286 modified.

Section 22.5.3: SPI status register (SPI_SR) on page 563 modified.
Closing the communication on page 579 updated.

Notes added to Section 23.6.8: Clock control register (I2C_CCR) on
page 596. TCK replaced by TPCLK1 in Section 23.6.8 and Section 23.6.9.

OVR changed to ORE in Figure 256: USART interrupt mapping diagram on
page 626.

Section 24.6.1: Status register (USART_SR) on page 627 updated.

Slave select (NSS) pin management on page 537 clarified.
Small text changes.

Table 175. Document revision history (continued)

Date Revision Changes

RM0008 Revision history

 677/682

26-Sep-2008 6

This reference manual also applies to low-density STM32F101xx,
STM32F102xx and STM32F103xx devices, and to medium-density
STM32F102xx devices. In all sections, definitions of low-density and
medium-density devices updated.

Section 1.3: Peripheral availability on page 32 added.

Section 2.3.3: Embedded Flash memory on page 37 updated. Section 4.1.2:
Battery backup domain on page 46 modified. Reset value of Port input data
register (GPIOx_IDR) (x=A..G) on page 103 modified. Note added in
Section 7.4: AFIO registers on page 112. Note removed from bits 18:0
description in Section 8.3.6: Pending register (EXTI_PR) on page 128.

Section 12.2: TIM1&TIM8 main features on page 201 and Section 13.2:
TIMx main features on page 269 updated. In Section 13.3.15: Timer
synchronization on page 298, TS=000.

FSMC_CLK signal direction corrected in Figure 156: FSMC block diagram
on page 360. “Feedback clock” paragraph removed from Section 18.5.3:
General timing rules on page 368.
In Section 18.5.6: NOR/PSRAM controller registers on page 387: reset
value modified, WAITEN bit default value after reset is 1, bits [5:6] definition
modified, , FACCEN default value after reset specified. NWE signal behavior
corrected in Figure 172: Synchronous multiplexed write mode - PSRAM
(CRAM) on page 385. The FSMC interface does not support COSMO RAM
and OneNAND devices, and it does not support the asynchronous wait
feature. SRAM and ROM 32 memory data size removed from Table 75: NOR
Flash/PSRAM supported memories and transactions on page 367.
Data latency versus NOR Flash latency on page 382 modified. Bits 19:16
bits are reserved in SRAM/NOR-Flash write timing registers 1..4
(FSMC_BWTR1..4) on page 391.

Section 18.6.3: Timing diagrams for NAND, ATA and PC Card on page 395
modified.Definition of PWID bits modified in Section 18.6.7: NAND Flash/PC
Card controller registers on page 398. Section 18.6.6: Error correction code
computation ECC (NAND Flash) on page 398 modified.
Interrupt Mapper definition modified in Section 20.3.1: Description of USB
blocks on page 462. USB register and memory base addresses modified in
Section 20.5: USB registers on page 475.

Section 23.3.8: Packet error checking on page 585 modified.
Section : Start bit detection on page 606 added. PE bit description specified
in Status register (USART_SR) on page 627.
“RAM size register” section removed from Section 25: Device electronic
signature on page 639. Bit definitions updated in FIFO status and interrupt
register 2..4 (FSMC_SR2..4) on page 400.

Small text changes.

Table 175. Document revision history (continued)

Date Revision Changes

Revision history RM0008

678/682

23-Dec-2008 7

Memory map figure removed from reference manual. Section 2.1: System
architecture on page 33 modified. Section 2.4: Boot configuration on
page 41 modified. Exiting Sleep mode on page 50 modified. Section 5.3.2:
RTC calibration on page 59 updated. Wakeup event management on
page 123 updated.
Section 6.3: RCC registers on page 74 updated. Section 9.2: DMA main
features on page 130 updated.
Section 9.3.5: Error management modified. Figure 17: DMA block diagram
on page 131 modified. Section 9.3.4: Programmable data width, data
alignment and endians on page 133 added.
Bit definition modified in Section 9.4.5: DMA channel x peripheral address
register (DMA_CPARx) (x = 1 ..7) on page 143 and Section 9.4.6: DMA
channel x memory address register (DMA_CMARx) (x = 1 ..7) on page 143.

Note added below Figure 76: PWM input mode timing and Figure 122: PWM
input mode timing.

FSMC_NWAIT signal direction corrected in Figure 156: FSMC block
diagram on page 360.

Value to set modified for bit 6 in Table 81: FSMC_BCRx bit fields, Table 84:
FSMC_BCRx bit fields and Table 90: FSMC_BCRx bit fields. Table 97: 8-bit
NAND Flash, Table 98: 16-bit NAND Flash and Table 99: 16-bit PC Card
modified. NWAIT and INTR signals separated in Table 99: 16-bit PC Card.
Note added in PWAITEN bit definition in PC Card/NAND Flash control
registers 2..4 (FSMC_PCR2..4) on page 398.
Bit definitions updated in FIFO status and interrupt register 2..4
(FSMC_SR2..4) on page 400. Note modified in ADDHLD and ADDSET bit
definitions in SRAM/NOR-Flash chip-select timing registers 1..4
(FSMC_BTR1..4) on page 389. Bit 8 is reserved in PC Card/NAND Flash
control registers 2..4 (FSMC_PCR2..4) on page 398.

MEMWAIT[15:8] bit definition modified in Common memory space timing
register 2..4 (FSMC_PMEM2..4) on page 401.

ATTWAIT[15:8] bit definition modified in Attribute memory space timing
registers 2..4 (FSMC_PATT2..4) on page 402.

Section 18.6.5: NAND Flash pre-wait functionality on page 397 modified.
Figure 173: NAND/PC Card controller timing for common memory access
modified.
Note added below Table 67: NOR/PSRAM bank selection on page 362.
32-bit external memory access removed from Table 68: External memory
address on page 363 and note added.

Caution: added to Section 18.6.1: External memory interface signals on
page 393.
NIOS16 description modified in Table 99: 16-bit PC Card on page 394.
Register description modified in Attribute memory space timing registers 2..4
(FSMC_PATT2..4) on page 402.

Resetting the password on page 426 step 2 corrected.
write_data signal modified in Figure 173: NAND/PC Card controller timing
for common memory access.
bxCAN main features on page 491 modified.
Section 23.3.8: Packet error checking on page 585 modified.
Section 26.6.3: Cortex-M3 TAP modified.
DBG_TIMx_STOP positions modified in DBGMCU_CR on page 660.
Small text changes.

Table 175. Document revision history (continued)

Date Revision Changes

RM0008 Revision history

 679/682

11-Feb-2009 8

Reset value corrected in Section 3.4.1: Data register (CRC_DR).

Section 10.10: Temperature sensor modified. Reset value corrected in
Section 10.12.7: ADC watchdog high threshold register (ADC_HTR).

Section 11.3.9: Triangle-wave generation and Figure 44: DAC triangle wave
generation updated.

Section 21.4: STM32F10xxx in Debug mode added. Bit 16 updated in CAN
master control register (CAN_MCR) on page 511.

Note added to Section 22.3.6: CRC calculation.

Changes concerning the I2C peripheral (Inter-integrated circuit (I2C)
interface):

– In Slave transmitter on page 574: text changes and Figure 231: Transfer
sequence diagram for slave transmitter modified.

– In Slave receiver on page 575: text changes and Figure 232: Transfer
sequence diagram for slave receiver modified.

– Master transmitter on page 577 and Master receiver on page 578 clarified.

– In Closing the communication on page 578: text changes and Figure 233:
Transfer sequence diagram for master transmitter modified.

– Figure 234: Transfer sequence diagram for master receiver modified.
– Overrun/underrun error (OVR) on page 580 clarified.

– Section 23.3.7: DMA requests and Section 23.3.8: Packet error checking
updated.

– In Section 23.6.1: Control register 1 (I2C_CR1): note modified under
STOP bit and notes modified under POS bit.

– Receiver mode modified in DR bit description in Section 23.6.5: Data
register (I2C_DR).

– Note added to TxE and RxNE bit descriptions in Section 23.6.6: Status
register 1 (I2C_SR1).

Changes in FSMC section:

– Data setup and Address hold min values corrected in Table 71:
Programmable NOR/PSRAM access parameters.

– Memory wait min value corrected in Table 96: Programmable NAND/PC
Card access parameters.

– Bit descriptions modified in SRAM/NOR-Flash chip-select timing registers
1..4 (FSMC_BTR1..4) on page 389.

– DATAST and ADDHLD are reserved when equal to 0x0000 in
SRAM/NOR-Flash chip-select timing registers 1..4 (FSMC_BTR1..4) on
page 389 and SRAM/NOR-Flash write timing registers 1..4
(FSMC_BWTR1..4) on page 391.

– Bit descriptions modified in Common memory space timing register 2..4
(FSMC_PMEM2..4)

– ATTHOLDx and ATTWAITx bit descriptions modified in Attribute memory
space timing registers 2..4 (FSMC_PATT2..4)

– IOHOLDx bit description modified in I/O space timing register 4
(FSMC_PIO4)

Table 175. Document revision history (continued)

Date Revision Changes

RM0008 Index

 680/682

Index

A
ADC_CR1 .167
ADC_CR2 .169
ADC_DR .177
ADC_HTR .174
ADC_JDRx .177
ADC_JOFRx .173
ADC_JSQR .176
ADC_LTR .174
ADC_SMPR1 .172
ADC_SMPR2 .173
ADC_SQR1 .174
ADC_SQR2 .175
ADC_SQR3 .176
ADC_SR .166
AFIO_EVCR .112
AFIO_EXTICR1 .116
AFIO_EXTICR2 .116
AFIO_EXTICR3 .117
AFIO_EXTICR4 .117
AFIO_MAPR .113

B
BKP_CR .61
BKP_CSR .62
BKP_DRx .60
BKP_RTCCR .60

C
CAN_BTR .520
CAN_ESR .519
CAN_FA1R .528
CAN_FFA1R .528
CAN_FiRx .529
CAN_FM1R .527
CAN_FMR .526
CAN_FS1R .527
CAN_IER .518
CAN_MCR .511
CAN_MSR .513
CAN_RDHxR .526
CAN_RDLxR .525
CAN_RDTxR .524
CAN_RF0R .516
CAN_RF1R .517
CAN_RIxR .524

CAN_TDHxR . 523
CAN_TDLxR . 523
CAN_TDTxR . 522
CAN_TIxR . 521
CAN_TSR . 514
CRC_DR . 43
CRC_IDR . 44

D
DBGMCU_CR . 660
DBGMCU_IDCODE 648
DMA_CCRx . 141
DMA_CMARx . 143
DMA_CNDTRx . 142
DMA_CPARx . 143
DMA_IFCR . 140
DMA_ISR . 139

E
EXTI_EMR . 126
EXTI_FTSR . 127
EXTI_IMR . 126
EXTI_PR . 128
EXTI_RTSR . 127
EXTI_SWIER . 128

G
GPIOx_BRR . 105
GPIOx_BSRR . 104
GPIOx_CRH . 103
GPIOx_CRL . 102
GPIOx_IDR . 103
GPIOx_LCKR . 105
GPIOx_ODR . 104

I
I2C_CCR . 596
I2C_CR1 . 587
I2C_CR2 . 589
I2C_DR . 591
I2C_OAR1 . 590
I2C_OAR2 . 591
I2C_SR1 . 592
I2C_SR2 . 595
I2C_TRISE . 597

RM0008 Index

 681/682

IWDG_KR .350
IWDG_PR .350
IWDG_RLR .351
IWDG_SR .352

P
PWR_CR .54
PWR_CSR .56

R
RCC_AHBENR .84
RCC_APB1ENR .88
RCC_APB1RSTR .82
RCC_APB2ENR .86
RCC_APB2RSTR .80
RCC_BDCR .90
RCC_CFGR .75
RCC_CIR .78
RCC_CR .74
RCC_CSR .92
RTC_ALRH .346
RTC_ALRL .346
RTC_CNTH .345
RTC_CNTL .345
RTC_CRH .341
RTC_CRL .342
RTC_DIVH .344
RTC_DIVL .344
RTC_PRLH .343
RTC_PRLL .344

S
SDIO_CLKCR .446
SDIO_DCOUNT .451
SDIO_DCTRL .450
SDIO_DLEN .450
SDIO_DTIMER .449
SDIO_FIFO .458
SDIO_FIFOCNT .457
SDIO_ICR .453
SDIO_MASK .455
SDIO_POWER .445
SDIO_RESPCMD .448
SDIO_RESPx .449
SDIO_STA .452
SPI_CR1 .559
SPI_CR2 .562
SPI_CRCPR .565
SPI_DR .564
SPI_I2SCFGR .566

SPI_I2SPR . 568
SPI_RXCRCR . 565
SPI_SR . 563
SPI_TXCRCR . 566

T
TIMx_ARR . 319, 334
TIMx_BDTR . 262
TIMx_CCER . 256, 317
TIMx_CCMR1 . 252, 312
TIMx_CCMR2 . 255, 316
TIMx_CCR1 . 260, 319
TIMx_CCR2 . 261, 320
TIMx_CCR3 . 261, 320
TIMx_CCR4 . 262, 321
TIMx_CNT 259, 318, 334
TIMx_CR1 242, 304, 330
TIMx_CR2 243, 305, 332
TIMx_DCR . 264, 321
TIMx_DIER 247, 309, 332
TIMx_DMAR . 266, 322
TIMx_EGR 250, 311, 333
TIMx_PSC 259, 318, 334
TIMx_RCR . 260
TIMx_SMCR . 245, 306
TIMx_SR . 249, 310, 333

U
USART_BRR . 630
USART_CR1 . 631
USART_CR2 . 633
USART_CR3 . 635
USART_DR . 630
USART_GTPR . 636
USART_SR . 627
USB_ADDRn_RX . 487
USB_ADDRn_TX . 486
USB_BTABLE . 481
USB_CNTR . 475
USB_COUNTn_RX . 487
USB_COUNTn_TX . 486
USB_DADDR . 481
USB_EPnR . 482
USB_FNR . 480
USB_ISTR . 477

W
WWDG_CFR . 357
WWDG_CR . 357
WWDG_SR . 358

RM0008

682/682

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	Contents
	List of tables
	List of figures
	1 Documentation conventions
	1.1 List of abbreviations for registers
	1.2 Glossary
	1.3 Peripheral availability

	2 Memory and bus architecture
	2.1 System architecture
	ICode bus
	DCode bus
	System bus
	DMA bus
	BusMatrix
	AHB/APB bridges (APB)

	2.2 Memory organization
	2.3 Memory map
	2.3.1 Embedded SRAM
	2.3.2 Bit banding
	2.3.3 Embedded Flash memory
	Reading Flash memory
	Programming and erasing Flash memory

	2.4 Boot configuration
	Embedded boot loader

	3 CRC calculation unit
	3.1 CRC introduction
	3.2 CRC main features
	3.3 CRC functional description
	3.4 CRC registers
	3.4.1 Data register (CRC_DR)
	3.4.2 Independent data register (CRC_IDR)
	3.4.3 Control register (CRC_CR)
	3.4.4 CRC register map

	4 Power control (PWR)
	4.1 Power supplies
	4.1.1 Independent A/D converter supply and reference voltage
	On 100-pin and 144- pin packages
	On 64-pin packages

	4.1.2 Battery backup domain
	4.1.3 Voltage regulator

	4.2 Power supply supervisor
	4.2.1 Power on reset (POR)/power down reset (PDR)
	4.2.2 Programmable voltage detector (PVD)

	4.3 Low-power modes
	4.3.1 Slowing down system clocks
	4.3.2 Peripheral clock gating
	4.3.3 Sleep mode
	Entering Sleep mode
	Exiting Sleep mode

	4.3.4 Stop mode
	Entering Stop mode

	4.3.5 Standby mode
	Entering Standby mode
	I/O states in Standby mode
	Debug mode

	4.3.6 Auto-wakeup (AWU) from low-power mode

	4.4 Power control registers
	4.4.1 Power control register (PWR_CR)
	4.4.2 Power control/status register (PWR_CSR)
	4.4.3 PWR register map

	5 Backup registers (BKP)
	5.1 BKP introduction
	5.2 BKP main features
	5.3 BKP functional description
	5.3.1 Tamper detection
	5.3.2 RTC calibration

	5.4 BKP registers
	5.4.1 Backup data register x (BKP_DRx) (x = 1 ..42)
	5.4.2 RTC clock calibration register (BKP_RTCCR)
	5.4.3 Backup control register (BKP_CR)
	5.4.4 Backup control/status register (BKP_CSR)
	5.4.5 BKP register map

	6 Reset and clock control (RCC)
	6.1 Reset
	6.1.1 System reset
	Software reset
	Low-power management reset

	6.1.2 Power reset
	6.1.3 Backup domain reset

	6.2 Clocks
	6.2.1 HSE clock
	External source (HSE bypass)
	External crystal/ceramic resonator (HSE crystal)

	6.2.2 HSI clock
	Calibration

	6.2.3 PLL
	6.2.4 LSE clock
	External source (LSE bypass)

	6.2.5 LSI clock
	LSI calibration

	6.2.6 System clock (SYSCLK) selection
	6.2.7 Clock security system (CSS)
	6.2.8 RTC clock
	6.2.9 Watchdog clock
	6.2.10 Clock-out capability

	6.3 RCC registers
	6.3.1 Clock control register (RCC_CR)
	6.3.2 Clock configuration register (RCC_CFGR)
	6.3.3 Clock interrupt register (RCC_CIR)
	6.3.4 APB2 peripheral reset register (RCC_APB2RSTR)
	6.3.5 APB1 peripheral reset register (RCC_APB1RSTR)
	6.3.6 AHB peripheral clock enable register (RCC_AHBENR)
	6.3.7 APB2 peripheral clock enable register (RCC_APB2ENR)
	6.3.8 APB1 peripheral clock enable register (RCC_APB1ENR)
	6.3.9 Backup domain control register (RCC_BDCR)
	6.3.10 Control/status register (RCC_CSR)
	6.3.11 RCC register map

	7 General-purpose and alternate-function I/Os (GPIOs and AFIOs)
	7.1 GPIO functional description
	7.1.1 General-purpose I/O (GPIO)
	7.1.2 Atomic bit set or reset
	7.1.3 External interrupt/wakeup lines
	7.1.4 Alternate functions (AF)
	7.1.5 Software remapping of I/O alternate functions
	7.1.6 GPIO locking mechanism
	7.1.7 Input configuration
	7.1.8 Output configuration
	7.1.9 Alternate function configuration
	7.1.10 Analog input configuration

	7.2 GPIO registers
	7.2.1 Port configuration register low (GPIOx_CRL) (x=A..G)
	7.2.2 Port configuration register high (GPIOx_CRH) (x=A..G)
	7.2.3 Port input data register (GPIOx_IDR) (x=A..G)
	7.2.4 Port output data register (GPIOx_ODR) (x=A..G)
	7.2.5 Port bit set/reset register (GPIOx_BSRR) (x=A..G)
	7.2.6 Port bit reset register (GPIOx_BRR) (x=A..G)
	7.2.7 Port configuration lock register (GPIOx_LCKR) (x=A..G)

	7.3 Alternate function I/O and debug configuration (AFIO)
	7.3.1 Using OSC32_IN/OSC32_OUT pins as GPIO ports PC14/PC15
	7.3.2 Using OSC_IN/OSC_OUT pins as GPIO ports PD0/PD1
	7.3.3 CAN alternate function remapping
	7.3.4 JTAG/SWD alternate function remapping
	7.3.5 ADC alternate function remapping
	7.3.6 Timer alternate function remapping
	7.3.7 USART Alternate function remapping
	7.3.8 I2C 1 alternate function remapping
	7.3.9 SPI 1 alternate function remapping

	7.4 AFIO registers
	7.4.1 Event control register (AFIO_EVCR)
	7.4.2 AF remap and debug I/O configuration register (AFIO_MAPR)
	7.4.3 External interrupt configuration register 1 (AFIO_EXTICR1)
	7.4.4 External interrupt configuration register 2 (AFIO_EXTICR2)
	7.4.5 External interrupt configuration register 3 (AFIO_EXTICR3)
	7.4.6 External interrupt configuration register 4 (AFIO_EXTICR4)

	7.5 GPIO and AFIO register maps

	8 Interrupts and events
	8.1 Nested vectored interrupt controller (NVIC)
	Features
	8.1.1 SysTick calibration value register
	8.1.2 Interrupt and exception vectors

	8.2 External interrupt/event controller (EXTI)
	8.2.1 Main features
	8.2.2 Block diagram
	8.2.3 Wakeup event management
	8.2.4 Functional description
	Hardware interrupt selection
	Hardware event selection
	Software interrupt/event selection

	8.2.5 External interrupt/event line mapping

	8.3 EXTI registers
	8.3.1 Interrupt mask register (EXTI_IMR)
	8.3.2 Event mask register (EXTI_EMR)
	8.3.3 Rising trigger selection register (EXTI_RTSR)
	8.3.4 Falling trigger selection register (EXTI_FTSR)
	8.3.5 Software interrupt event register (EXTI_SWIER)
	8.3.6 Pending register (EXTI_PR)
	8.3.7 EXTI register map

	9 DMA controller (DMA)
	9.1 DMA introduction
	9.2 DMA main features
	9.3 DMA functional description
	9.3.1 DMA transactions
	9.3.2 Arbiter
	9.3.3 DMA channels
	Programmable data sizes
	Pointer incrementation
	Channel configuration procedure
	Circular mode
	Memory-to-memory mode

	9.3.4 Programmable data width, data alignment and endians
	Addressing an AHB peripheral that does not support byte or halfword write operations

	9.3.5 Error management
	9.3.6 Interrupts
	9.3.7 DMA request mapping
	DMA1 controller
	DMA2 controller

	9.4 DMA registers
	9.4.1 DMA interrupt status register (DMA_ISR)
	9.4.2 DMA interrupt flag clear register (DMA_IFCR)
	9.4.3 DMA channel x configuration register (DMA_CCRx) (x = 1 ..7)
	9.4.4 DMA channel x number of data register (DMA_CNDTRx) (x = 1 ..7)
	9.4.5 DMA channel x peripheral address register (DMA_CPARx) (x = 1 ..7)
	9.4.6 DMA channel x memory address register (DMA_CMARx) (x = 1 ..7)
	9.4.7 DMA register map

	10 Analog-to-digital converter (ADC)
	10.1 ADC introduction
	10.2 ADC main features
	10.3 ADC functional description
	10.3.1 ADC on-off control
	10.3.2 ADC clock
	10.3.3 Channel selection
	Temperature sensor/VREFINT internal channels

	10.3.4 Single conversion mode
	10.3.5 Continuous conversion mode
	10.3.6 Timing diagram
	10.3.7 Analog watchdog
	10.3.8 Scan mode
	10.3.9 Injected channel management
	Triggered injection
	Auto-injection

	10.3.10 Discontinuous mode
	Regular group
	Injected group

	10.4 Calibration
	10.5 Data alignment
	10.6 Channel-by-channel programmable sample time
	10.7 Conversion on external trigger
	10.8 DMA request
	10.9 Dual ADC mode
	10.9.1 Injected simultaneous mode
	10.9.2 Regular simultaneous mode
	10.9.3 Fast interleaved mode
	10.9.4 Slow interleaved mode
	10.9.5 Alternate trigger mode
	10.9.6 Independent mode
	10.9.7 Combined regular/injected simultaneous mode
	10.9.8 Combined regular simultaneous + alternate trigger mode
	10.9.9 Combined injected simultaneous + interleaved

	10.10 Temperature sensor
	Reading the temperature

	10.11 ADC interrupts
	10.12 ADC registers
	10.12.1 ADC status register (ADC_SR)
	10.12.2 ADC control register 1 (ADC_CR1)
	10.12.3 ADC control register 2 (ADC_CR2)
	10.12.4 ADC sample time register 1 (ADC_SMPR1)
	10.12.5 ADC sample time register 2 (ADC_SMPR2)
	10.12.6 ADC injected channel data offset register x (ADC_JOFRx)(x=1..4)
	10.12.7 ADC watchdog high threshold register (ADC_HTR)
	10.12.8 ADC watchdog low threshold register (ADC_LTR)
	10.12.9 ADC regular sequence register 1 (ADC_SQR1)
	10.12.10 ADC regular sequence register 2 (ADC_SQR2)
	10.12.11 ADC regular sequence register 3 (ADC_SQR3)
	10.12.12 ADC injected sequence register (ADC_JSQR)
	10.12.13 ADC injected data register x (ADC_JDRx) (x= 1..4)
	10.12.14 ADC regular data register (ADC_DR)
	10.12.15 ADC register map

	11 Digital-to-analog converter (DAC)
	11.1 DAC introduction
	11.2 DAC main features
	11.3 DAC functional description
	11.3.1 DAC channel enable
	11.3.2 DAC output buffer enable
	11.3.3 DAC data format
	11.3.4 DAC conversion
	11.3.5 DAC output voltage
	11.3.6 DAC trigger selection
	11.3.7 DMA request
	11.3.8 Noise generation
	11.3.9 Triangle-wave generation

	11.4 Dual DAC channel conversion
	11.4.1 Independent trigger without wave generation
	11.4.2 Independent trigger with same LFSR generation
	11.4.3 Independent trigger with different LFSR generation
	11.4.4 Independent trigger with same triangle generation
	11.4.5 Independent trigger with different triangle generation
	11.4.6 Simultaneous software start
	11.4.7 Simultaneous trigger without wave generation
	11.4.8 Simultaneous trigger with same LFSR generation
	11.4.9 Simultaneous trigger with different LFSR generation
	11.4.10 Simultaneous trigger with same triangle generation
	11.4.11 Simultaneous trigger with different triangle generation

	11.5 DAC registers
	11.5.1 DAC control register (DAC_CR)
	11.5.2 DAC software trigger register (DAC_SWTRIGR)
	11.5.3 DAC channel1 12-bit right-aligned data holding register (DAC_DHR12R1)
	11.5.4 DAC channel1 12-bit left aligned data holding register (DAC_DHR12L1)
	11.5.5 DAC channel1 8-bit right aligned data holding register (DAC_DHR8R1)
	11.5.6 DAC channel2 12-bit right aligned data holding register (DAC_DHR12R2)
	11.5.7 DAC channel2 12-bit left aligned data holding register (DAC_DHR12L2)
	11.5.8 DAC channel2 8-bit right-aligned data holding register (DAC_DHR8R2)
	11.5.9 Dual DAC 12-bit right-aligned data holding register (DAC_DHR12RD)
	11.5.10 DUAL DAC 12-bit left aligned data holding register (DAC_DHR12LD)
	11.5.11 DUAL DAC 8-bit right aligned data holding register (DAC_DHR8RD)
	11.5.12 DAC channel1 data output register (DAC_DOR1)
	11.5.13 DAC channel2 data output register (DAC_DOR2)
	11.5.14 DAC register map

	12 Advanced-control timers (TIM1&TIM8)
	12.1 TIM1&TIM8 introduction
	12.2 TIM1&TIM8 main features
	12.3 TIM1&TIM8 functional description
	12.3.1 Time-base unit
	Prescaler description

	12.3.2 Counter modes
	Upcounting mode
	Downcounting mode
	Center-aligned mode (up/down counting)

	12.3.3 Repetition counter
	12.3.4 Clock selection
	Internal clock source (CK_INT)
	External clock source mode 1
	External clock source mode 2

	12.3.5 Capture/compare channels
	12.3.6 Input capture mode
	12.3.7 PWM input mode
	12.3.8 Forced output mode
	12.3.9 Output compare mode
	12.3.10 PWM mode
	PWM edge-aligned mode
	PWM center-aligned mode

	12.3.11 Complementary outputs and dead-time insertion
	Re-directing OCxREF to OCx or OCxN

	12.3.12 Using the break function
	12.3.13 Clearing the OCxREF signal on an external event
	12.3.14 6-step PWM generation
	12.3.15 One-pulse mode
	12.3.16 Encoder interface mode
	12.3.17 Timer input XOR function
	12.3.18 Interfacing with Hall sensors
	12.3.19 TIMx and external trigger synchronization
	Slave mode: Reset mode
	Slave mode: Gated mode
	Slave mode: Trigger mode
	Slave mode: external clock mode 2 + trigger mode

	12.3.20 Timer synchronization
	12.3.21 Debug mode

	12.4 TIM1&TIM8 registers
	12.4.1 Control register 1 (TIMx_CR1)
	12.4.2 Control register 2 (TIMx_CR2)
	12.4.3 Slave mode control register (TIMx_SMCR)
	12.4.4 DMA/Interrupt enable register (TIMx_DIER)
	12.4.5 Status register (TIMx_SR)
	12.4.6 Event generation register (TIMx_EGR)
	12.4.7 Capture/compare mode register 1 (TIMx_CCMR1)
	12.4.8 Capture/compare mode register 2 (TIMx_CCMR2)
	12.4.9 Capture/compare enable register (TIMx_CCER)
	12.4.10 Counter (TIMx_CNT)
	12.4.11 Prescaler (TIMx_PSC)
	12.4.12 Auto-reload register (TIMx_ARR)
	12.4.13 Repetition counter register (TIMx_RCR)
	12.4.14 Capture/compare register 1 (TIMx_CCR1)
	12.4.15 Capture/compare register 2 (TIMx_CCR2)
	12.4.16 Capture/compare register 3 (TIMx_CCR3)
	12.4.17 Capture/compare register 4 (TIMx_CCR4)
	12.4.18 Break and dead-time register (TIMx_BDTR)
	12.4.19 DMA control register (TIMx_DCR)
	12.4.20 DMA address for full transfer (TIMx_DMAR)
	12.4.21 TIM1&TIM8 register map

	13 General-purpose timer (TIMx)
	13.1 TIMx introduction
	13.2 TIMx main features
	13.3 TIMx functional description
	13.3.1 Time-base unit
	Prescaler description

	13.3.2 Counter modes
	upcounting mode
	Downcounting mode
	Center-aligned mode (up/down counting)

	13.3.3 Clock selection
	Internal clock source (CK_INT)
	External clock source mode 1
	External clock source mode 2

	13.3.4 Capture/compare channels
	13.3.5 Input capture mode
	13.3.6 PWM input mode
	13.3.7 Forced output mode
	13.3.8 Output compare mode
	13.3.9 PWM mode
	PWM edge-aligned mode
	PWM center-aligned mode

	13.3.10 One pulse mode
	Particular case: OCx fast enable:

	13.3.11 Clearing the OCxREF signal on an external event
	13.3.12 Encoder interface mode
	13.3.13 Timer input XOR function
	13.3.14 Timers and external trigger synchronization
	Slave mode: Reset mode
	Slave mode: Gated mode
	Slave mode: Trigger mode
	Slave mode: External Clock mode 2 + trigger mode

	13.3.15 Timer synchronization
	Using one timer as prescaler for the another
	Using one timer to enable another timer
	Using one timer to start another timer
	Using one timer as prescaler for another timer
	Starting 2 timers synchronously in response to an external trigger

	13.3.16 Debug mode

	13.4 TIMx registers
	13.4.1 Control register 1 (TIMx_CR1)
	13.4.2 Control register 2 (TIMx_CR2)
	13.4.3 Slave mode control register (TIMx_SMCR)
	13.4.4 DMA/Interrupt enable register (TIMx_DIER)
	13.4.5 Status register (TIMx_SR)
	13.4.6 Event generation register (TIMx_EGR)
	13.4.7 Capture/compare mode register 1 (TIMx_CCMR1)
	Output compare mode
	Input capture mode

	13.4.8 Capture/compare mode register 2 (TIMx_CCMR2)
	Output compare mode
	Input capture mode

	13.4.9 Capture/compare enable register (TIMx_CCER)
	13.4.10 Counter (TIMx_CNT)
	13.4.11 Prescaler (TIMx_PSC)
	13.4.12 Auto-reload register (TIMx_ARR)
	13.4.13 Capture/compare register 1 (TIMx_CCR1)
	13.4.14 Capture/compare register 2 (TIMx_CCR2)
	13.4.15 Capture/compare register 3 (TIMx_CCR3)
	13.4.16 Capture/compare register 4 (TIMx_CCR4)
	13.4.17 DMA control register (TIMx_DCR)
	13.4.18 DMA address for full transfer (TIMx_DMAR)
	13.4.19 TIMx register map

	14 Basic timer (TIM6&7)
	14.1 TIM6&7 introduction
	14.2 TIM6&TIM7 main features
	14.3 TIM6&TIM7 functional description
	14.3.1 Time-base unit
	Prescaler description

	14.3.2 Counting mode
	14.3.3 Clock source
	14.3.4 Debug mode

	14.4 TIM6&TIM7 registers
	14.4.1 Control register 1 (TIMx_CR1)
	14.4.2 Control register 2 (TIMx_CR2)
	14.4.3 DMA/Interrupt enable register (TIMx_DIER)
	14.4.4 Status register (TIMx_SR)
	14.4.5 Event generation register (TIMx_EGR)
	14.4.6 Counter (TIMx_CNT)
	14.4.7 Prescaler (TIMx_PSC)
	14.4.8 Auto-reload register (TIMx_ARR)
	14.4.9 TIM6&7 register map

	15 Real-time clock (RTC)
	15.1 RTC introduction
	15.2 RTC main features
	15.3 RTC functional description
	15.3.1 Overview
	15.3.2 Resetting RTC registers
	15.3.3 Reading RTC registers
	15.3.4 Configuring RTC registers
	Configuration procedure:

	15.3.5 RTC flag assertion

	15.4 RTC registers
	15.4.1 RTC control register high (RTC_CRH)
	15.4.2 RTC control register low (RTC_CRL)
	15.4.3 RTC prescaler load register (RTC_PRLH / RTC_PRLL)
	RTC prescaler load register high (RTC_PRLH)
	RTC prescaler load register low (RTC_PRLL)

	15.4.4 RTC prescaler divider register (RTC_DIVH / RTC_DIVL)
	RTC prescaler divider register high (RTC_DIVH)
	RTC prescaler divider register low (RTC_DIVL)

	15.4.5 RTC counter register (RTC_CNTH / RTC_CNTL)
	RTC counter register high (RTC_CNTH)
	RTC counter register low (RTC_CNTL)

	15.4.6 RTC alarm register high (RTC_ALRH / RTC_ALRL)
	RTC alarm register high (RTC_ALRH)
	RTC alarm register low (RTC_ALRL)

	15.4.7 RTC register map

	16 Independent watchdog (IWDG)
	16.1 IWDG introduction
	16.2 IWDG main features
	16.3 IWDG functional description
	16.3.1 Hardware watchdog
	16.3.2 Register access protection
	16.3.3 Debug mode

	16.4 IWDG registers
	16.4.1 Key register (IWDG_KR)
	16.4.2 Prescaler register (IWDG_PR)
	16.4.3 Reload register (IWDG_RLR)
	16.4.4 Status register (IWDG_SR)
	16.4.5 IWDG register map

	17 Window watchdog (WWDG)
	17.1 WWDG introduction
	17.2 WWDG main features
	17.3 WWDG functional description
	17.4 How to program the watchdog timeout
	17.5 Debug mode
	17.6 Debug registers
	17.6.1 Control register (WWDG_CR)
	17.6.2 Configuration register (WWDG_CFR)
	17.6.3 Status register (WWDG_SR)
	17.6.4 WWDG register map

	18 Flexible static memory controller (FSMC)
	18.1 FSMC main features
	18.2 Block diagram
	18.3 AHB interface
	18.3.1 Supported memories and transactions
	General transaction rules
	Configuration registers

	18.4 External device address mapping
	18.4.1 NOR/PSRAM address mapping
	Wrap support for NOR Flash/PSRAM

	18.4.2 NAND/PC Card address mapping

	18.5 NOR Flash/PSRAM controller
	18.5.1 External memory interface signals
	NOR Flash, nonmultiplexed I/Os
	NOR Flash, multiplexed I/Os
	PSRAM

	18.5.2 Supported memories and transactions
	18.5.3 General timing rules
	Signals synchronization

	18.5.4 NOR Flash/PSRAM controller timing diagrams
	Asynchronous static memories (NOR Flash, SRAM)
	Mode 1 - SRAM/CRAM
	Mode A - SRAM/PSRAM (CRAM) OE toggling
	Mode 2/B - NOR Flash
	Mode C - NOR Flash - OE toggling
	Mode D - asynchronous access with extended address
	Mode muxed - asynchronous access muxed NOR Flash

	18.5.5 Synchronous burst read
	Data latency versus NOR Flash latency
	Single-burst transfer
	Wait management

	18.5.6 NOR/PSRAM controller registers
	SRAM/NOR-Flash chip-select control registers 1..4 (FSMC_BCR1..4)
	SRAM/NOR-Flash chip-select timing registers 1..4 (FSMC_BTR1..4)
	SRAM/NOR-Flash write timing registers 1..4 (FSMC_BWTR1..4)

	18.6 NAND Flash/PC Card controller
	18.6.1 External memory interface signals
	8-bit NAND Flash
	16-bit NAND Flash

	18.6.2 NAND Flash / PC Card supported memories and transactions
	18.6.3 Timing diagrams for NAND, ATA and PC Card
	18.6.4 NAND Flash operations
	18.6.5 NAND Flash pre-wait functionality
	18.6.6 Error correction code computation ECC (NAND Flash)
	18.6.7 NAND Flash/PC Card controller registers
	PC Card/NAND Flash control registers 2..4 (FSMC_PCR2..4)
	FIFO status and interrupt register 2..4 (FSMC_SR2..4)
	Common memory space timing register 2..4 (FSMC_PMEM2..4)
	Attribute memory space timing registers 2..4 (FSMC_PATT2..4)
	I/O space timing register 4 (FSMC_PIO4)
	ECC result registers 2/3 (FSMC_ECCR2/3)

	19 SDIO interface (SDIO)
	19.1 SDIO main features
	19.2 SDIO bus topology
	19.3 SDIO functional description
	19.3.1 SDIO adapter
	Adapter register block
	Control unit
	Command path
	Data path
	Data FIFO

	19.3.2 SDIO AHB Interface
	SDIO Interrupts
	SDIO/DMA Interface: procedure for data transfers between the SDIO and memory

	19.4 Card functional description
	19.4.1 Card identification mode
	19.4.2 Card reset
	19.4.3 Operating voltage range validation
	19.4.4 Card identification process
	19.4.5 Block write
	19.4.6 Block read
	19.4.7 Stream access, stream write and stream read (MultiMediaCard only)
	Stream write (MultiMediaCard only)
	Stream read (MultiMediaCard only)

	19.4.8 Erase: group erase and sector erase
	19.4.9 Wide bus selection or deselection
	19.4.10 Protection management
	Internal card write protection
	Mechanical write protect switch
	Password protect
	Setting the password
	Resetting the password
	Locking a card
	Unlocking the card
	Forcing erase

	19.4.11 Card status register
	19.4.12 SD status register
	SIZE_OF_PROTECTED_AREA
	SPEED_CLASS
	PERFORMANCE_MOVE
	AU_SIZE
	ERASE_SIZE
	ERASE_TIMEOUT
	ERASE_OFFSET

	19.4.13 SD I/O mode
	SD I/O interrupts
	SD I/O suspend and resume
	SD I/O ReadWait

	19.4.14 Commands and responses
	Application-specific and general commands
	Command types
	Command formats
	Commands for the MultiMediaCard/SD module

	19.5 Response formats
	19.5.1 R1 (normal response command)
	19.5.2 R1b
	19.5.3 R2 (CID, CSD register)
	19.5.4 R3 (OCR register)
	19.5.5 R4 (Fast I/O)
	19.5.6 R4b
	19.5.7 R5 (interrupt request)
	19.5.8 R6

	19.6 SDIO I/O card-specific operations
	19.6.1 SDIO I/O read wait operation by SDIO_D2 signalling
	19.6.2 SDIO read wait operation by stopping SDIO_CK
	19.6.3 SDIO suspend/resume operation
	19.6.4 SDIO interrupts

	19.7 CE-ATA specific operations
	19.7.1 Command completion signal disable
	19.7.2 Command completion signal enable
	19.7.3 CE-ATA interrupt
	19.7.4 Aborting CMD61

	19.8 HW flow control
	19.9 SDIO registers
	19.9.1 SDIO power control register (SDIO_POWER)
	19.9.2 SDI clock control register (SDIO_CLKCR)
	19.9.3 SDIO argument register (SDIO_ARG)
	19.9.4 SDIO command register (SDIO_CMD)
	19.9.5 SDIO command response register (SDIO_RESPCMD)
	19.9.6 SDIO response 0..4 register (SDIO_RESPx)
	19.9.7 SDIO data timer register (SDIO_DTIMER)
	19.9.8 SDIO data length register (SDIO_DLEN)
	19.9.9 SDIO data control register (SDIO_DCTRL)
	19.9.10 SDIO data counter register (SDIO_DCOUNT)
	19.9.11 SDIO status register (SDIO_STA)
	19.9.12 SDIO interrupt clear register (SDIO_ICR)
	19.9.13 SDIO mask register (SDIO_MASK)
	19.9.14 SDIO FIFO counter register (SDIO_FIFOCNT)
	19.9.15 SDIO data FIFO register (SDIO_FIFO)
	19.9.16 SDIO register map

	20 USB full speed device interface (USB)
	20.1 USB introduction
	20.2 USB main features
	20.3 USB functional description
	20.3.1 Description of USB blocks

	20.4 Programming considerations
	20.4.1 Generic USB device programming
	20.4.2 System and power-on reset
	USB reset (RESET interrupt)
	Structure and usage of packet buffers
	Endpoint initialization
	IN packets (data transmission)
	OUT and SETUP packets (data reception)
	Control transfers

	20.4.3 Double-buffered endpoints
	20.4.4 Isochronous transfers
	20.4.5 Suspend/Resume events

	20.5 USB registers
	20.5.1 Common registers
	USB control register (USB_CNTR)
	USB interrupt status register (USB_ISTR)
	USB frame number register (USB_FNR)
	USB device address (USB_DADDR)
	Buffer table address (USB_BTABLE)

	20.5.2 Endpoint-specific registers
	USB endpoint n register (USB_EPnR), n=[0..7]

	20.5.3 Buffer descriptor table
	Transmission buffer address n (USB_ADDRn_TX)
	Transmission byte count n (USB_COUNTn_TX)
	Reception buffer address n (USB_ADDRn_RX)
	Reception byte count n (USB_COUNTn_RX)

	20.5.4 USB register map

	21 Controller area network (bxCAN)
	21.1 bxCAN introduction
	21.2 bxCAN main features
	21.2.1 General description
	CAN 2.0B active core
	Control, status and configuration registers
	Tx mailboxes
	Acceptance filters
	Receive FIFO

	21.3 bxCAN operating modes
	21.3.1 Initialization mode
	21.3.2 Normal mode
	21.3.3 Sleep mode (low power)
	21.3.4 Test mode
	21.3.5 Silent mode
	21.3.6 Loop back mode
	21.3.7 Loop back combined with silent mode

	21.4 STM32F10xxx in Debug mode
	21.5 bxCAN functional description
	21.5.1 Transmission handling
	Transmit priority
	Abort
	Non-automatic retransmission mode

	21.5.2 Time triggered communication mode
	21.5.3 Reception handling
	Valid message
	FIFO management
	Overrun
	Reception related interrupts

	21.5.4 Identifier filtering
	Scalable width
	Mask mode
	Identifier list mode
	Filter bank scale and mode configuration
	Filter match index
	Filter priority rules

	21.5.5 Message storage
	Transmit mailbox
	Receive mailbox

	21.5.6 Error management
	Bus-Off recovery

	21.5.7 Bit timing

	21.6 bxCAN interrupts
	21.7 CAN registers
	21.7.1 Register access protection
	21.7.2 CAN control and status registers
	CAN master control register (CAN_MCR)
	CAN master status register (CAN_MSR)
	CAN transmit status register (CAN_TSR)
	CAN receive FIFO 0 register (CAN_RF0R)
	CAN receive FIFO 1 register (CAN_RF1R)
	CAN interrupt enable register (CAN_IER)
	CAN error status register (CAN_ESR)
	CAN bit timing register (CAN_BTR)

	21.7.3 Mailbox registers
	TX mailbox identifier register (CAN_TIxR) (x=0..2)
	Mailbox data length control and time stamp register (CAN_TDTxR) (x=0..2)
	Mailbox data low register (CAN_TDLxR) (x=0..2)
	Mailbox data high register (CAN_TDHxR) (x=0..2)
	Rx FIFO mailbox identifier register (CAN_RIxR) (x=0..1)
	Receive FIFO mailbox data length control and time stamp register (CAN_RDTxR) (x=0..1)
	Receive FIFO mailbox data low register (CAN_RDLxR) (x=0..1)
	Receive FIFO mailbox data high register (CAN_RDHxR) (x=0..1)

	21.7.4 CAN filter registers
	CAN filter master register (CAN_FMR)
	CAN filter mode register (CAN_FM1R)
	CAN filter scale register (CAN_FS1R)
	CAN filter FIFO assignment register (CAN_FFA1R)
	CAN filter activation register (CAN_FA1R)
	Filter bank i register x (CAN_FiRx) (i=0..13, x=1..2)

	21.7.5 bxCAN register map

	22 Serial peripheral interface (SPI)
	22.1 SPI introduction
	22.2 SPI and I2S main features
	22.2.1 SPI features
	22.2.2 I2S features

	22.3 SPI functional description
	22.3.1 General description
	Slave select (NSS) pin management
	Clock phase and clock polarity
	Data frame format

	22.3.2 SPI slave mode
	Procedure
	Transmit sequence
	Receive sequence

	22.3.3 SPI master mode
	Procedure
	Transmit sequence
	Receive sequence

	22.3.4 Simplex communication
	1 clock and 1 bidirectional data wire
	1 clock and 1 data wire (receive-only in full-duplex mode)

	22.3.5 Status flags
	BUSY flag
	Tx buffer empty flag (TXE)
	Rx buffer not empty (RXNE)

	22.3.6 CRC calculation
	22.3.7 SPI communication using DMA (direct memory addressing)
	DMA capability with CRC

	22.3.8 Error flags
	Master mode fault (MODF)
	Overrun condition
	CRC error

	22.3.9 Disabling the SPI
	22.3.10 SPI interrupts

	22.4 I2S functional description
	22.4.1 General description
	22.4.2 Supported audio protocols
	I2S Phillips standard
	MSB justified standard
	LSB justified standard
	PCM standard

	22.4.3 Clock generator
	22.4.4 I2S master mode
	Procedure
	Transmission sequence
	Reception sequence

	22.4.5 I2S slave mode
	Transmission sequence
	Reception sequence

	22.4.6 Status flags
	Busy flag (BSY)
	Tx buffer empty flag (TXE)
	RX buffer not empty (RXNE)
	Channel Side flag (CHSIDE)

	22.4.7 Error flags
	Underrun flag (UDR)
	Overrun flag (OVR)

	22.4.8 I2S interrupts
	22.4.9 DMA features

	22.5 SPI and I2S registers
	22.5.1 SPI control register 1 (SPI_CR1) (not used in I2S mode)
	22.5.2 SPI control register 2 (SPI_CR2)
	22.5.3 SPI status register (SPI_SR)
	22.5.4 SPI data register (SPI_DR)
	22.5.5 SPI CRC polynomial register (SPI_CRCPR) (not used in I2S mode)
	22.5.6 SPI Rx CRC register (SPI_RXCRCR) (not used in I2S mode)
	22.5.7 SPI Tx CRC register (SPI_TXCRCR) (not used in I2S mode)
	22.5.8 SPI_I2S configuration register (SPI_I2SCFGR)
	22.5.9 SPI_I2S prescaler register (SPI_I2SPR)
	22.5.10 SPI register map

	23 Inter-integrated circuit (I2C) interface
	23.1 I2C introduction
	23.2 I2C main features
	23.3 I2C functional description
	23.3.1 Mode selection
	Communication flow

	23.3.2 I2C slave mode
	Slave transmitter
	Slave receiver
	Closing slave communication

	23.3.3 I2C master mode
	Start condition
	Slave address transmission
	Master transmitter
	Closing the communication
	Master receiver
	Closing the communication

	23.3.4 Error conditions
	Bus error (BERR)
	Acknowledge failure (AF)
	Arbitration lost (ARLO)
	Overrun/underrun error (OVR)

	23.3.5 SDA/SCL line control
	23.3.6 SMBus
	Introduction
	Similarities between SMBus and I2C
	Differences between SMBus and I2C
	SMBus application usage
	Device identification
	Bus protocols
	Address resolution protocol (ARP)
	Unique device identifier (UDID)
	SMBus alert mode
	Timeout error
	How to use the interface in SMBus mode

	23.3.7 DMA requests
	Transmission using DMA
	Reception using DMA

	23.3.8 Packet error checking

	23.4 I2C interrupts
	23.5 I2C debug mode
	23.6 I2C registers
	23.6.1 Control register 1 (I2C_CR1)
	23.6.2 Control register 2 (I2C_CR2)
	23.6.3 Own address register 1 (I2C_OAR1)
	23.6.4 Own address register 2 (I2C_OAR2)
	23.6.5 Data register (I2C_DR)
	23.6.6 Status register 1 (I2C_SR1)
	23.6.7 Status register 2 (I2C_SR2)
	23.6.8 Clock control register (I2C_CCR)
	23.6.9 TRISE register (I2C_TRISE)
	23.6.10 I2C register map

	24 Universal synchronous asynchronous receiver transmitter (USART)
	24.1 USART introduction
	24.2 USART main features
	24.3 USART functional description
	24.3.1 USART character description
	24.3.2 Transmitter
	Character transmission
	Configurable stop bits
	Single byte communication
	Break characters
	Idle characters

	24.3.3 Receiver
	Start bit detection
	Character reception
	Break character
	Idle character
	Overrun error
	Noise error
	Framing error
	Configurable stop bits during reception

	24.3.4 Fractional baud rate generation
	How to derive USARTDIV from USART_BRR register values

	24.3.5 Multiprocessor communication
	Idle line detection (WAKE=0)
	Address mark detection (WAKE=1)

	24.3.6 Parity control
	24.3.7 LIN (local interconnection network) mode
	LIN transmission
	LIN reception

	24.3.8 USART synchronous mode
	24.3.9 Single wire half duplex communication
	24.3.10 Smartcard
	24.3.11 IrDA SIR ENDEC block
	IrDA low-power mode

	24.3.12 Continuous communication using DMA
	Transmission using DMA
	Reception using DMA
	Error flagging and interrupt generation in multibuffer communication

	24.3.13 Hardware flow control
	RTS flow control
	CTS flow control

	24.4 USART interrupts
	24.5 USART mode configuration
	24.6 USART registers
	24.6.1 Status register (USART_SR)
	24.6.2 Data register (USART_DR)
	24.6.3 Baud rate register (USART_BRR)
	24.6.4 Control register 1 (USART_CR1)
	24.6.5 Control register 2 (USART_CR2)
	24.6.6 Control register 3 (USART_CR3)
	24.6.7 Guard time and prescaler register (USART_GTPR)
	24.6.8 USART register map

	25 Device electronic signature
	25.1 Memory size registers
	25.1.1 Flash size register

	25.2 Unique device ID register (96 bits)
	Base address: 0x1FFF F7E8

	26 Debug support (DBG)
	26.1 Overview
	26.2 Reference ARM documentation
	26.3 SWJ debug port (serial wire and JTAG)
	26.3.1 Mechanism to select the JTAG-DP or the SW-DP

	26.4 Pinout and debug port pins
	26.4.1 SWJ debug port pins
	26.4.2 Flexible SWJ-DP pin assignment
	26.4.3 Internal pull-up and pull-down on JTAG pins
	26.4.4 Using serial wire and releasing the unused debug pins as GPIOs

	26.5 STM32F10xxx JTAG TAP connection
	26.6 ID codes and locking mechanism
	26.6.1 MCU device ID code
	DBGMCU_IDCODE

	26.6.2 Boundary scan TAP
	JTAG ID code

	26.6.3 Cortex-M3 TAP
	26.6.4 Cortex-M3 JEDEC-106 ID code

	26.7 JTAG debug port
	26.8 SW debug port
	26.8.1 SW protocol introduction
	26.8.2 SW protocol sequence
	26.8.3 SW-DP state machine (Reset, idle states, ID code)
	26.8.4 DP and AP read/write accesses
	26.8.5 SW-DP registers
	26.8.6 SW-AP registers

	26.9 AHB-AP (AHB Access Port) - valid for both JTAG-DP or SW- DP
	26.10 Core debug
	26.11 Capability of the debugger host to connect under system reset
	26.12 FPB (Flash patch breakpoint)
	26.13 DWT (data watchpoint trigger)
	26.14 ITM (instrumentation trace macrocell)
	26.14.1 General description
	26.14.2 Timestamp packets, synchronization and overflow packets
	Example of configuration

	26.15 MCU debug component (MCUDBG)
	26.15.1 Debug support for low-power modes
	26.15.2 Debug support for timers, watchdog, bxCAN and I2C
	26.15.3 Debug MCU configuration register
	DBGMCU_CR

	26.16 TPIU (trace port interface unit)
	26.16.1 Introduction
	26.16.2 TRACE pin assignment
	TPUI TRACE pin assignment

	26.16.3 TPUI formatter
	26.16.4 TPUI frame synchronization packets
	26.16.5 Emission of synchronization frame packet
	26.16.6 Synchronous mode
	26.16.7 Asynchronous mode
	26.16.8 TRACECLKIN connection inside STM32F10xxx
	26.16.9 TPIU registers
	26.16.10 Example of configuration

	26.17 DBG register map

	27 Revision history
	Index

