MSc Eng. Marcin Stolarski
Warsaw University of Technology

Faculty of Electronics and Information Technology

Institute of Radioelectronics
M.Stolarski@elka.pw.edu.pl

STEC 2005

Program methods of masking errors in programs, data and calculations, which
are the result of computer malfunction caused by space radiation.

Abstract: During operations in space, computer is exposed
to radiation. One of the results of this radiation is a single
bit error (single event upset) in ram memory, processor or
in another logic component of a computer. This error can
stop processor or (which is very dangerous) can generate
wrong results of calculation, because of invalid data proc-
essing or running an illegal program code. To prevent such
situation we can use hardware solutions like excess encod-
ing of data (for example EEC to the RAM memory) or
triple redundancy of processing units (voting the right
result). In this brief I would like to present another way of
solving this problem — program masking. I shall present
tree methods of masking: library of templates with triple
redundancy of data and calculation procedures, error
detection in programs using the CFCSS method and triple
redundancy of processes.

The first method relies on developing a library of
template classes for C++ language. In code of template
class, an algorithm will be placed making the triple data
redundancy. The next task of this template is the overload-
ing of the operators (for example: +) which will provide the
triple calculation for redundant data. Variables in code
(primitives) have to be replaced with variables from this
library. Use of this library will prevent us from single er-
rors of data and single errors of counting, at cost of proces-
sor memory usage and processor time.

The next method is to change the program code to
the network-like structure. The nodes of the network are
conditional instructions and the edges represent code be-
tween these conditional instructions. Each node has its own
name - signature. CFCSS algorithm checks if the program
code is making ‘permitted’ jumps. If not, and the program
made the ‘forbidden’ jump, it is highly possible it has hap-
pened because of executing wrong (changed by SEU) in-
struction or data.

The third method is to run three identical proc-
esses simultaneously. If one of these processes achieve dif-
ferent results comparing to the other two, we can assume
that this process is operating on invalid data or has not
executed properly and should be terminated. Next step is to
fork one of unaffected processes, to keep constant number
of redundant processes. This method seems to work very
good and raises significantly immunity of computer system
for errors having source at single event upsets. Neverthe-
less, this method creates new problems such as synchroni-
zation between processes or using the real time tasks.

This brief is about pros and cons of these three
methods and their influence on making computer systems
in high radiation environments more reliable.

1. Introduction

Electronic hardware and software working in space
is vulnerable to radiation that may cause malfunctions.
To provide reliable life time many hardware solutions
are used as in-system error correction or radiation hard-
ened technology. But these solutions are not cost effec-
tive, and implicates on board design from scratch. On
the other hand, software solutions are not that reliable,
but much more cost-effective and easy to duplicate.

2. Space enviroment conditions

For Earth Orbit's satellites space environment var-
ies from, let us say, neutral on LEO (Low Earth's Orbit),
through hostile Van Allen belts area to unprotected outer
space. Based on research [1], it has been found out, that
commercial electronics is radiation-proof up to 10krad.
Unfortunately, this value is to small for reliable work in
space. To decrease interaction of radiation and electron-
ics, hardware is shielded by aluminum chassis of thick-
ness above 5 mm. That wall thickness should protect
OBE (On Board Electronics) against radiation below,
and above Van Allen belts. To prevent satellite from
general failure during passing the Van Allen belts On
Board Computer should be powered off. In high-budget
solutions some hi-tech specialized components are used,
that the Author will describe later in the article.

Electronics in space is vulnerable to several types
of damage. Under influence of ionizing radiation such
things can happen:

- SEL Single Event Latchups - turning on the parasitic
tiristor in CMOS structure which usually effects is
short-circuiting power lines.

- SEB Single Event Burnouts - destruction of
MOSFET structure - effects of SEL

- SET Single Event Transients - voltage peaks, very
dangerous in combinatorial logic where it can act as
false clock edges

- SEU Single Event Upsets - changes in flip-flop state.

- SEL is a very dangerous phenomena, because it is a
source of non-temporary electronic damage. As a
protection, thick chassis walls are used, as well as
devices being made in special technology.

— SET and SEU are nod-destructive errors, but cause
improper acting of logical elements and could gener-



ate false data. This can be avoided by using hardware
redundancy and special algorithms in software.

3. Hardaware methods of error masking

Hardware solutions can be divided into several
categories. Every of these increases computer systems
immunity against radiation, but does not guarantee it.
That is why it is very important to apply as many of this
solutions in single project as possible. First solution for
increasing hardware radiation immunity is the use of
proper technology. In the older satellites electron lamp
electronics was applied. There were no observed influ-
ences of radiation on that type of electronics, but that
technology produced devices utilizing much of weigh,
space and power budget. Also, they were not very com-
plicated. In modern spacecrafts IC’s are commonly used
which are made in technologies using bigger smallest
size of structure than in typical earth environment. There
also can be found a new generation of IC's made in Sili-
con On Insulator technology.

Another category of solutions is hardware redun-
dancy. In this way, several identical logic components
are used to process the same data. The return data is then
processed by voting unit, whereas data from malfunc-
tioning device should be over voted by data from other
devices (possibly working properly). This could be ap-
plied to several modules of which On Board Computer
consists of, for example: a memory. Even whole com-
puter systems could be redundant. This solution is highly
reliable, but also one of the most expensive (this idea is
used in NASA's Space Shuttle where in voting process 5
computers take part).

Another group of hardware solutions are correction
codes used in memories. When error is detected, system
is capable to recover true data using an excess coding. If
excess co/decoding is implemented in hardware, whole
protection could be transparent from the system point of
view.

When all methods fail, and computer system breaks
down, it is common that reset is enough for recovery.
Very simple device providing this functionality is a
program called Watchdog. Running system should set
watchdog with information of proper functioning. It
could be even one pulse on selected line. When there is
no pulse in determined period, watchdog overflows, and
resets master system. Simple and effective.

4. Software methods for error masking.

Another way of error masking is software error
masking. It is based on additional computing and addi-
tional memory size, directed to mask errors caused by
space radiation. Unfortunately, this method can deal
only with temporary damage (SEU), or with damage that
does not affect execution of code (partially damaged
memory or CPU, which influences the effect of code
execution not fetching nor decoding).

4.1. CFCSS - Control flow checking by soft-
ware signatures

//File name: ftl.h
//Author: Marcin Stolarski

//Fault Tolerance Digit Template
template <class T> class FTDT {
private:
T x1, x2, x3;

public:
FTDT () ;
FTIDT (T in);
~FTDT () ;
void compare () ;
FTDT<T>& operator+ (FITDI<T>& in);
FTDT<T>& operator+ (T in);
FTDT<T>& operator++();
FTDT<T>& operator- (FTDTI<T>& in);
FIDT<T>& operator-(T in);
FTDT<T>& operator--();
FTDT<T>& operator* (FTDT<T>& in);
FIDT<T>& operator* (T in);
FTDT<T>& operator/ (FITDT<T>& in);
FTDT<T>& operator/ (T in);
FTDT<T>& operator=(FTDT<T>& in);
FTIDT<T>& operator=(T in);
int operator==(FTDT<T>& in);
int operator==(T in);
int operator<(FTDT<T>& in);
int operator<(T in);
int operator<=(FTDT<T>& in);
int operator<=(T in);
int operator>(FTDT<T>& in);
int operator>(T in);
int operator>=(FTDT<T>& in);
int operator>=(T in);
T x();
void show() ;
void showf () ;

//Fault Tolerance Digit Template metods
template <class T> FTDT<T>::FTDT () {
x1=0;
x2=0;
x3=0;
compare () ;

}i

template <class T> FTDT<T>&
FTDT<T>::operator+ (FTDT<T>& in) {
x1+=in.x1;
x2+=1in.x2;
x3+=1in.x3;
compare () ;
return *this;
bi

template <class T> void FTDT<T>::compare ()
{
while (! ((x1==x2)6&& (x2==x3))) {
if (x1==x2) x3=x2;
else 1f (x2==x3) x1=x2;
else x2=x1;

//Predefined types
typedef FTDT<int> FTint;

Fig 1. Template class FTDT with example of methods
and execute.



First presented solution is an idea to distribute
whole code over a graph of unforbidden passes. Nodes
of this graph are branch instructions, and edges of this
graph are bulk code gathered between these branch in-
structions. Each node is marked with proper signature.
CFCSS algorithm checks if flow of control over program
code goes through possible ways, by comparing run-time
processed signatures with static one, embedded in code
by compiler (or post-processor). With this control we are
able to detect changes in execution flow that are not
possible in correctly executing software.

4.2. Tripled data and calculations redundancy.

Another interesting mechanism of improving sys-
tem stability is tripled redundancy of data and calcula-
tions.

Author proposes using special library of variables,
which implies tripling data and calculations made on that
data.

The idea is very simple. When using C++ it is ob-
vious that we can use classes with overloaded operators
instead of simple variables [Fig. 1].

Now, instead of using common "int" type, "FTint"
shall be used, and methods of this class shall mask data
errors from RAM and calculation errors made during
computation in CPU. All calculations are made 3 times
on tripled data, and then data integrity is checked. Un-
fortunately, overloading operators do not give all proper-
ties of normal variables, and when using "printf", in case
of displaying value, "x" method should be used. This
problem does not exist when using iostream library in-
stead of stdio. Of course, this method does not protect
program code in any way.

4.3. Tripled process redundancy.

Another way of protecting systems from software
errors generated by radiation is process redundancy. It is
based on tripling running processes, and voting it's out-
come is voted. If one of the processes appears to be
erroneous, it is killed, and one of the two that seems to
work properly is forked - duplicated, to keep the same
amount of processes all the time. Keep in mind that
when running on single processor machine these proc-
esses do not execute in parallel, but are switched con-
tinuously. This could cause loss of synchronization so it
is important to keep some mechanisms providing it.

Another problem is a real-time tasks processing.
Usually, these tasks contain time stamps which will
differ in each of this tripled processes. Despite that this
solution has great advantage - it protects data and pro-
gram code at the same time.

In special cases we could imagine 3 virtual ma-
chines running on one computer which will obtain ex-
actly the same amount of processor time and other sys-
tem resources.

Results of computation shall be voted on the virtual
machine level. In theory, this solution could replace
triple redundancy of computers with voting system.
Unfortunately, it is very hard to predict if the realization
of this idea is applicable in addition to the fact that vir-

tual machine's software should protect own resources
against errors.

4.4. Data storage systems.

It has been a long time since the first data storage
system was protected against errors in stored data. In this
system data is usually stored on hard discs, which can be
easily damage, so solutions like RAID 1 (mirroring) or
RAID 5 have been developed.

In RAID 1 the same data is stored on 2 discs. If
data on one disc is lost or damaged (damage is detected
on discs and sectors), it still remains valid on another
one. Unfortunately this implies hardware doubling. It is
possible to mirror data on one disc, but only errors origi-
nating from damaged sector are covered.

In RAID 5 data is distributed over n=3 (max. n=
32) discs. Algorithm distributes data over n-1 discs, and
on the last one checksum is kept. If a disc containing
checksum is destroyed, system alerts, but data remains
safe. If data disc is malfunctioning, system is able to
recover data stored on it relying on other data discs and
the checksum. At cost of processing power data integrity
is kept. If RAID 5 service is implemented in software,
storage system is slowed due to complicated algorithms
of data recovery.

After discs are replaced, they are automatically
coupled into the system.

5. Summary

Building computer systems for space environments
is not an easy task and is very challenging for their con-
structors. System should be reliable and able to self-
recover from minor malfunctions. It is intended to work
in harsh environment: high radiation, high temperature
changes, vacuum. On the other side there are limitations
in weight and power consumption.

In this paper, methods of hardware error masking
like redundancy or overflow coding used in space indus-
try have been shown. These solutions are good but ex-
pensive. Use of COTS elements does not provide
enough error protection.

In the second part of the paper, software error
masking methods have been shown, which, at cost of
memory utilization and processing power, are able to
replace hardware methods.

Author’s idea of prototypes library using tripled
data and calculations redundancy for covering CPU and
ram errors has been proposed. Also, Author proposed
using of virtual machines in terms of replacing hardware
and system redundancy. Unfortunately, these solutions
are still in testing phase or theoretical discussions and
need more research to be carried out.

If research prove a significant increase in overall
protection using only software methods, it would boost
development of space computer systems due to decrease
of its prototyping and final costs.



References

National Semiconductor Radiation Owner’s Man-
ual

dr inz. Krzysztof Mroczek Porownanie technologii
uktadow FPGA pod wzgledem podatnosci na bledy
spowodowane przez promieniowanie jonizujqce w
warunkach ziemskich.

Nahmsuk Oh*, Philip P. Shirvani and Edward J.
McCluskey Control Flow Checking by Software
Signatures 1EEE Transactions on Reliability Spe-
cial Section on: Fault Tolerant VLSI Systems



