

 AN10420
 USB virtual COM port on LPC214x
 Rev. 01 — 04 January 2006 Application note

Document information

Info Content

Keywords USB, virtual COM port, class driver, Microcontroller, MCU, USB device
request, USB reset phase, USB enumeration phase.

Abstract This document describes how to design a virtual COM port driver using
LPC214x USB port.

Philips Semiconductors AN10420
 USB virtual COM port on LPC214x

Revision history

Rev Date Description

01 20060104 Initial version.

Contact information
For additional information, please visit: http://www.semiconductors.philips.com

For sales office addresses, please send an email to: sales.addresses@www.semiconductors.philips.com

 AN10420_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 04 January 2006 2 of 19

Philips Semiconductors AN10420
 USB virtual COM port on LPC214x

1. Introduction
This application note describes how to design a virtual COM driver using USB device on
LPC214x. It provides complete sample software to configure LPC214x USB port as a
virtual COM port and use it to communicate with the Microsoft Windows Hyper Terminal
software.

The sample software is tested on the Keil’s MCB214x board along with their ARM IDE
uVision III.

The complete source code, both LPC214x USB device driver and USB host driver for the
PC, can be found from “Technical Document (TechDoc(s))” section.

This application note is organized as below:

• General information on virtual COM port architecture.
• Basic USB concept and operation.
• Protocol and design consideration on virtual COM port.
• Virtual COM port protocol stack, driver, and key APIs.
• Virtual to physical COM port communication.
• File structure of the sample software.
• Sample software.

2. Virtual COM port
This section describes the basic concept of virtual COM port and its data flow model.

2.1 Virtual COM port architecture
Virtual COM port driver allows your PC to recognize and communicate with the remote
target as a COM port regardless the under-layer hardware connection between the PC
and target system. In this application note, the under-layer hardware communication is
between the USB device on the LPC214x and the USB host on the PC. When the USB
cable is connected, the target looks like a real serial port communicating with the PC
Hyper Terminal Software on the Windows platform.

The data flow model is shown in Fig 1.

2.2 Key components in the virtual COM port
The key components in the virtual COM port implementation include:

• USB Host driver
• USB device driver on LPC214x
• Proprietary protocol stack for COM port configuration and communication
• A physical COM (UART) port driver. This driver is used to test the communication

between a virtual COM port and a physical COM port.
• Application level test program to test the virtual COM port functionality on the USB

device side.

 AN10420_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 04 January 2006 3 of 19

Philips Semiconductors AN10420
 USB virtual COM port on LPC214x

• Windows’ HyperTerminal software or any COM port terminal utility on the Microsoft
Windows platform

Fig 1. Virtual COM port data flow model

This application note will primarily focus on the implementation of the virtual COM device
driver on the LPC214x USB device.

The source code of the virtual COM port host driver and the host driver installer will be
provided as well for testing.

3. USB device driver concept and operation
Before describing virtual COM port USB protocol stack in details, some basic USB device
driver concept and operation is introduced below.

3.1 LPC214x USB interface
The USB is a four-wire bus that supports data communication between the host and a
large number of devices (max 128) simultaneously. LPC214x USB is a full-speed device
controller compliant with USB 2.0 Specification. It supports up to 32 physical endpoints,
and all four modes: Control, Bulk, Interrupt, and Isochronous. To maximize the USB
throughput, on LPC2146/8, a DMA engine along with 8K internal DMA RAM supports
DMA transfer support for all but control endpoints.

 AN10420_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 04 January 2006 4 of 19

Philips Semiconductors AN10420
 USB virtual COM port on LPC214x

3.2 USB operation
The operation of the USB device driver can be simply defined in three phases: reset,
enumeration, and finally, operation phase.

3.2.1 USB reset phase
The USB device will be in the reset phase after power-on reset. When the USB device is
attached to the PC USB host, the host will issue a reset signal. When a USB reset signal
is detected on the bus, on the device side, the DEV_STAT bit in the Device Interrupt
Register is set and a USB interrupt will be generated. The USB device will process the
RESET interrupt and set itself to the default configuration state. The initial address of the
USB device is set to zero at reset phase.

After the reset signal is released and RESET interrupt has been processed, the device
will enter the enumeration phase.

3.2.2 USB enumeration and standard requests
During the enumeration phase, the host performs a bus enumeration to identify the
attached devices by sending a series of requests on the control pipe (endpoint 0 OUT)
using standard device request to get the device information and configuration, and
then, assign a unique address to it. Based on the information it gets, if necessary, send
SET_FEATURE, SET_CONFIGURATION, and/or SET_INTERFACE requests to
reconfigure the device. The device responds to the host requests on its default control
pipe (endpoint 0 IN).

Basic standard requests from the host during the enumeration phase includes:

• GET_STATUS – the host sends this request to get the status for a specified
recipient.

• GET_DESCRIPTOR - the host sends a get device descriptor request with the
request type, based on the request type, the device replies with its attributes
including Device Descriptor, Configuration Descriptor, vendor ID, product ID, etc.

• GET_CONFIGURATION - when the host sends this request to the device, the USB
device responds with its configuration status. In the response data field, if the
configuration value is zero, the device has not been configured. If a non-zero value is
returned, the device has been configured. Please note that, this configuration value,
is not the same as that in the configuration descriptor.

• GET_INTERFACE – once the host sends this request, the device replies with
selected alternate setting for a specific interface defined in the interface descriptor.
This request is not valid until the device has been configured.

• CLEAR_FEATURE – the host sends this request to clear or disable a specific
feature. Recipient determines the selection of the feature. For more details about
CLEAR_FEATURE and SET_FEATURE, look for Standard Feature Selector table
in the USB 2.0 Specification.

• SET_FEATURE – the host send this request to set or enable a specific feature.
• SET_ADDRESS - a USB device uses the default address zero after reset until the

host assigns a unique address using the SET_ADDRESS request. The device driver

 AN10420_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 04 January 2006 5 of 19

Philips Semiconductors AN10420
 USB virtual COM port on LPC214x

gets the address from the host and set bit 7 to enable the embedded function of the
USB engine.

• SET_DESCRIPTOR – the host sends this request to update an existing descriptor or
add a new descriptor. This is an optional request.

• SET_CONFIGURATION - the host assigns the configuration value to the device.
Based on the configuration information including interface and endpoint descriptors,
the device driver will configure the device, then enable or disable the endpoints at the
end.

• SET_INTERFACE – the host updates the interface descriptor information and
associated endpoint descriptor information. If necessary, the device driver will
configure, enable or disable the endpoints at the end.

For more details, the “Universal Serial Bus Specification 2.0”, Chapter 9, “USB Device
Framework”, has all the information about the USB requests during the enumeration
phase.

After the enumeration phase, the USB device is in the operation phase and ready for
data communication with the USB host at any time.

All the USB standard requests related APIs are located in usbcore.c.

4. Virtual COM port protocol
This chapter describes the USB descriptor of the virtual COM port, the USB interface
configuration, the end point configuration, and the protocol details of the virtual COM port
device driver.

4.1 USB virtual COM descriptor
As mentioned in the previous chapter, USB host can configure devices at start-up or
when the devices are plugged-in at run time. These devices are divided into various
device classes. Each device class defines the common behavior and protocols for
devices that serve similar functions. For example, USB mouse and keyboard devices all
belong to the Human Interface Device (HID) class.

Regardless the device class type, each device class has one descriptor structure that is
subdivided into following segments or sub descriptors. For the virtual COM port
descriptor, it includes:

• Device Descriptor, describes the general information about the device.

/* USB Standard Device Descriptor */
const BYTE USB_DeviceDescriptor[] = {

 USB_DEVICE_DESC_SIZE, /* bLength */
 USB_DEVICE_DESCRIPTOR_TYPE, /* bDescriptorType */
 WBVAL(0x0100), /* 1.00 */ /* bcdUSB */
 0x00, /* bDeviceClass */
 0x00, /* bDeviceSubClass */
 0x00, /* bDeviceProtocol */
 USB_MAX_PACKET0, /* bMaxPacketSize0 */
 WBVAL(0xC251), /* idVendor */
 WBVAL(0x1305), /* idProduct */
 WBVAL(0x0110), /* bcdDevice */

 AN10420_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 04 January 2006 6 of 19

Philips Semiconductors AN10420
 USB virtual COM port on LPC214x

 0x04, /* iManufacturer */
 0x20, /* iProduct */
 0x4A, /* iSerialNumber */
 0x01 /* bNumConfigurations */

};

• Configuration Descriptor, describes the configuration information about the device
such as number of interfaces used for this application, the power source and its
attributes, and the maximum power consumption for this device.

• Interface Descriptor, describes a specific interface within a configuration descriptor.
The interface descriptor describes the number of endpoints used by this interface,
the class and the subclass of the interface, the interface protocol, etc.

• Endpoint Descriptor, describes the information required by the host to determine the
bandwidth requirements of each endpoint. It also describes the transfer type
supported, the direction of the transfer, etc. The Endpoint Descriptor is always within
the Interface Descriptor.

/* USB Configuration Descriptor */
/* All Descriptors (Configuration, Interface, Endpoint) */
const BYTE USB_ConfigDescriptor[] = {
/* Configuration 1 */

 USB_CONFIGUARTION_DESC_SIZE, /* bLength */
 USB_CONFIGURATION_DESCRIPTOR_TYPE, /* bDescriptorType */
 WBVAL(/* wTotalLength */
 USB_CONFIGUARTION_DESC_SIZE +
 USB_INTERFACE_DESC_SIZE +
 NUM_ENDPOINTS * USB_ENDPOINT_DESC_SIZE +
 USB_INTERFACE_DESC_SIZE +
 NUM_ENDPOINTS * USB_ENDPOINT_DESC_SIZE
),
 0x02, /* bNumInterfaces */
 0x01, /* bConfigurationValue */
 0x00, /* iConfiguration */
 USB_CONFIG_BUS_POWERED | /* bmAttributes */
 USB_CONFIG_REMOTE_WAKEUP,
 USB_CONFIG_POWER_MA(100), /* bMaxPower */

/* Interface 0, Alternate Setting 0, Class Code Unknown */
 USB_INTERFACE_DESC_SIZE, /* bLength */
 USB_INTERFACE_DESCRIPTOR_TYPE, /* bDescriptorType */
 0x00, /* bInterfaceNumber */
 0x00, /* bAlternateSetting */
 NUM_ENDPOINTS, /* bNumEndpoints */

 USB_DEVICE_CLASS_VENDOR_SPECIFIC, /* bInterfaceClass */
 0xFF, /* bInterfaceSubClass, USB_SUBCLASS_CODE_UNKNOWN */
 0xFF, /* bInterfaceProtocol, USB_PROTOCOL_CODE_UNKNOWN */
 0x00, /* iInterface, STR_INDEX_INTERFACE = no_string */

/* Endpoint, EP1 Interrupt In */
 USB_ENDPOINT_DESC_SIZE, /* bLength */
 USB_ENDPOINT_DESCRIPTOR_TYPE, /* bDescriptorType */
 USB_ENDPOINT_IN(1), /* bEndpointAddress */
 USB_ENDPOINT_TYPE_INTERRUPT, /* bmAttributes */
 WBVAL(0x0004), /* wMaxPacketSize */
 0x20, /* 32ms */ /* bInterval */

/* Endpoint, EP2 Bulk Out */
 USB_ENDPOINT_DESC_SIZE, /* bLength */

 AN10420_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 04 January 2006 7 of 19

Philips Semiconductors AN10420
 USB virtual COM port on LPC214x

 USB_ENDPOINT_DESCRIPTOR_TYPE, /* bDescriptorType */
 USB_ENDPOINT_OUT(2), /* bEndpointAddress */
 USB_ENDPOINT_TYPE_BULK, /* bmAttributes */
 WBVAL(0x0040), /* wMaxPacketSize */
 0x20, /* 32ms */

/* Endpoint, EP2 Bulk In */
 USB_ENDPOINT_DESC_SIZE, /* bLength */
 USB_ENDPOINT_DESCRIPTOR_TYPE, /* bDescriptorType */
 USB_ENDPOINT_IN(2), /* bEndpointAddress */
 USB_ENDPOINT_TYPE_BULK, /* bmAttributes */
 WBVAL(0x0040), /* wMaxPacketSize */
 0x20, /* 32ms */

/* Interface 1, Alternate Setting 0, Class Code Unknown */
 USB_INTERFACE_DESC_SIZE, /* bLength */
 USB_INTERFACE_DESCRIPTOR_TYPE, /* bDescriptorType */
 0x01, /* bInterfaceNumber */
 0x00, /* bAlternateSetting */
 NUM_ENDPOINTS, /* bNumEndpoints */
 USB_DEVICE_CLASS_VENDOR_SPECIFIC, /* bInterfaceClass */
 0xFF, /* bInterfaceSubClass, USB_SUBCLASS_CODE_UNKNOWN */
 0xFF, /* bInterfaceProtocol, USB_PROTOCOL_CODE_UNKNOWN */
 0x00, /* iInterface, STR_INDEX_INTERFACE = no_string */

/* Endpoint, EP4 Interrupt In */
 USB_ENDPOINT_DESC_SIZE, /* bLength */
 USB_ENDPOINT_DESCRIPTOR_TYPE, /* bDescriptorType */
 USB_ENDPOINT_IN(4), /* bEndpointAddress */
 USB_ENDPOINT_TYPE_INTERRUPT, /* bmAttributes */
 WBVAL(0x0004), /* wMaxPacketSize */
 0x20, /* 32ms */ /* bInterval */

/* Endpoint, EP5 Bulk Out */
 USB_ENDPOINT_DESC_SIZE, /* bLength */
 USB_ENDPOINT_DESCRIPTOR_TYPE, /* bDescriptorType */
 USB_ENDPOINT_OUT(5), /* bEndpointAddress */
 USB_ENDPOINT_TYPE_BULK, /* bmAttributes */
 WBVAL(0x0040), /* wMaxPacketSize */
 0x20, /* 32ms */

/* Endpoint, EP5 Bulk In */
 USB_ENDPOINT_DESC_SIZE, /* bLength */
 USB_ENDPOINT_DESCRIPTOR_TYPE, /* bDescriptorType */
 USB_ENDPOINT_IN(5), /* bEndpointAddress */
 USB_ENDPOINT_TYPE_BULK, /* bmAttributes */
 WBVAL(0x0040), /* wMaxPacketSize */
 0x20, /* 32ms */

/* Terminator */
 0 /* bLength */

};

• String Descriptor, includes information such as vendor name, product information,
etc.

All the descriptors have been defined in “usbdesc.c” file. For more details about USB
descriptor, please refer to “Chapter 9.6, Standard USB Descriptor Definitions, USB
Specification 2.0”.

The following chapter will describe how the interfaces and endpoints are being set to
support virtual COM port communication.

 AN10420_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 04 January 2006 8 of 19

Philips Semiconductors AN10420
 USB virtual COM port on LPC214x

4.2 Endpoint configuration for virtual COM port
In the virtual COM port device driver implementation, two interface descriptors have been
created to accommodate two virtual COM ports. Under each interface descriptor, vendor
specific class code (0xFF) has been chosen. Three endpoints have been used for each
interface. Here is the endpoint configuration table:

Table 1: Interface and Endpoint Setting For virtual COM Port
Interface Number Endpoint Number (physical

EP#, type)
Description

0 EP1 IN (3, interrupt) Report modem status of the device
in UART0 or virtual COM port 0

0 EP2 OUT (4, bulk) Data transfer from host to the
device on UART0 or virtual COM
port 0

0 EP2 IN (5, bulk) Data transfer from device to the
host on UART0 or virtual COM port
0

1 EP4 IN (9, interrupt) Report modem status of the device
in UART1 or virtual COM port 1

1 EP5 OUT (10, bulk) Data transfer from host to the
device on UART1 or virtual COM
port 1

1 EP5 IN (11, bulk) Data transfer from device to the
host on UART1 or virtual COM port
1

4.3 Virtual COM port protocol
In order to establish the COM port communication, after the USB Reset phase and
entering the enumeration phase, the USB host is responsible for sending the COM port
information such as COM port baud rate, data bits, stop bits, hardware handshaking to
the USB device. To do so, USB host uses the vendor specific request to set up the
virtual COM port on the USB device. For more details about USB Device Request and
the format of the setup data, please refer to “Chapter 9.3 USB Device Request: in “USB
Specification 2.0”

Based on the vendor specific request from the host, the USB device will configure the
on-chip COM port accordingly. Once the configuration is accomplished, the data from the
USB host can be transmitted or received to/from the on-chip COM port seamlessly via
the virtual COM port.

Below table is a proprietary protocol between the USB host and device for the virtual
COM port configuration.

Using the USB device request type vendor specific request, the host is responsible to
establish the request values sent to the device in the setup packet. The length of every
USB setup packet is 8 bytes. The 8 bytes contain the type of the request, the request,
the setup value, the index, and the length as shown in the following Table:

Table 2: Vendor specific interface table
0 1 2 3 4 5 6 7
RequestType Request Value Index Length

 AN10420_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 04 January 2006 9 of 19

Philips Semiconductors AN10420
 USB virtual COM port on LPC214x

The first byte of the setup packet represents “Request Type”. The Request Type
identifies the characteristics of the request shown as follows:

Table 3: Request Type Configuration Request Table
Bit 7 6 5 4 3 2 1 0
 Direction Type Recipient
 0=Host

to Device
1=Device
to Host

0=Standard
1=Class
2=Vendor
3=Reserved

0=Device, 1=Interface, 2=Endpoint,
3=Other
4..31=Reserved

0x41 0 1 0 0 0 0 0 1
 Host to

Device
direction

Vendor type Interface recipient

In the second byte, “Request” field specifies the particular request for configuring the
UART device followed with a value shown as follows:

Table 4: Virtual COM Configuration Table
Request
(bit 4~0 only)

 Data Value (2
bytes)

 MSB LSB
0x00 -
0x01 -
0x02 -
0x03 Set Baud Rate 0x00 0x0C 9600 Baud Rate
 0x06 19.2K
 0x03 38.4K
 0x02 57.6K
 0x01 115.2K
0x04 Set Stop Bit 0x00 0x00 1 stop bit
 0x01 2 stop bits
0x05 Set Data Bit 0x00 0x00 5 bits data length
 0x01 6 bits
 0x02 7 bits
 0x03 8 bits
0x06 Set Parity 0x00 0x00 Odd parity
 0x01 Even parity
0x07 Set Flow

Control
 N/A

0x08 Set DTR 0x00 0x00 DTR clear
(LPC2148 UART1
only)

 0x01 DTR set (LPC2148
UART1 only)

0x09 Set RTS 0x00 0x00 RTS clear
(LPC2148 UART1
only)

 0x01 RTS set (LPC2148
UART1 only)

 AN10420_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 04 January 2006 10 of 19

Philips Semiconductors AN10420
 USB virtual COM port on LPC214x

0x0A -
0x0B Burst Transmit

EP0

0x0C Modem Status
Bit 7, 6, and 5 of the “Request” is used to represent the channel number of UART as
shown on the following table.

Table 5: Virtual COM channel selection table
Bit 7 Bit 6 Bit 5 Request byte Channel number
0 0 0 0x0 1 (UART0 on LPC214x)
0 0 1 0x2 2 (UART1 on LPC214x)
0 1 0 0x4 3 (N/A)
0 1 1 0x6 4 (N/A)
1 0 0 0x8 5 (N/A)
1 0 1 0xA 6 (N/A)
1 1 0 0xC 7 (N/A)
1 1 1 0xE 8 (N/A)
Here is an example of a Vendor Interface device request:

Table 6: Vendor interface device request example
Byte 0 1 2 3 4 5 6 7
 RequestType Request Value Index Length
Setup
*

0x41 0x03 0x00 0x0C 00 00 00 00

As seen in the last column of above table, 0x41 indicates the direction of the setup
request is from host to device (bit 7 is 0), the type is “vendor” (bit 6 and 5 is 10b), and the
recipient is “interface” (bit 4 through 0 is 00001b). Finally, the SETUP request is to set
the baud rate of the COM port 0 at 9600.

The index and length fields in the vendor specific interface request table are defined but
not used. They are reserved for future expansion.

5. USB device driver and APIs
This chapter describes the initialization sequence and some lower level APIs for USB
device configuration and communication. The central piece of the USB driver that deals
with the SETUP packets from the host at endpoint 0 is mentioned below as well.

5.1 LPC214x USB initialization
After the power up, the USB initialization should include below steps:

• Turn on USB PCLK
• Configure 48Mhz PLL1 for USB clock
• Setup Vectored Interrupt Controller (VIC) for USB
• Set up minimum numbers of USB registers including index and packet size register

for Control OUT (0) and Control IN (1) endpoints.
• Set USB Device Interrupt Enable register

 AN10420_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 04 January 2006 11 of 19

Philips Semiconductors AN10420
 USB virtual COM port on LPC214x

• Use protocol engine commands SET_ADDRESS to reset device address to zero,
and SET_DEVICE_STATUS to make a soft connection.

5.2 Key APIs for lower-level USB driver
The key APIs for the lower-level USB driver in the attached sample program include:

• void WrCmd (DWORD Cmd) – the API to write a command to the protocol
command engine. The list of the commands can be found in Protocol Engine
Command Code Table, Chapter 14, USB Device Controller, LPC214x User’s
Manual.

• void WrCmdDat (DWORD Cmd, DWORD Dat) – the API to write both command
and data to the protocol command engine.

• DWORD RdCmdDat (DWORD Cmd) – the API to write the command to and then
read the data from the protocol command engine. The return value of this API is the
value read from the protocol command engine.

• void USB_Init (void) – this routine initializes all the supporting modules for the USB,
for more details, see previous section, “LPC214x USB Initialization”.

• void USB_Reset (void) – this routine resets the value of index register and
maximum packet size registers for CONTROL endpoints 0 and 1, clear all the
interrupts for all the endpoints.

• DWORD USB_ReadEP (BYTE EPNumber, BYTE *DataPtr) – this module is a key
API used to read data from an endpoint. The first parameter is the endpoint number
where the data will be read from, the second parameter is the pointer pointing to the
data area just read from. The return value is the number of bytes read from this
endpoint.

• DWORD USB_WriteEP (BYTE EPNumber, BYTE DataPtr, DWORD Length) – this
module is a key API used to write data to an endpoint. The first parameter is the
endpoint number where the data will be written, the second parameter is the pointer
pointing to the data area to be written to, the third parameter is the length of the data
block. The return value is the number of bytes written to this endpoint.

• void USB_EnableEP (BYTE EPNumber) – Enable a particular endpoint. The
parameter is the endpoint number.

• viod USB_DisableEP (BYTE EPNumber) – Disable a particular endpoint. The
parameter is the endpoint number.

• void USB_ISR(void) – The most important module in the driver, the USB interrupt
handler. It handles interrupts such as DEVI_STAT, FRAME interrupt for isochronous
mode, and EP_SLOW data transfer. Please note, only EP_SLOW interrupt transfer is
used for the sample software, EP_FAST interrupt transfer is disabled. The interrupt
handler is responsible for all the device interrupts whenever the state has changed in
the USB Device Interrupt register. The flow chart of the interrupt handler is in the
following figure.

• USB_EndPointx(DWORD Event) - This is the event callback routine for each
endpoint, “x” is the logical endpoint number. The defined endpoint “Event”s in
“vcomuser.c” include,
• USB_EVT_SETUP
• USB_EVT_OUT
• USB_EVT_IN
• USB_EVT_OUT_NAK

 AN10420_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 04 January 2006 12 of 19

Philips Semiconductors AN10420
 USB virtual COM port on LPC214x

• USB_EVT_IN_NAK
• USB_EVT_OUT_STALL
• USB_EVT_IN_STALL

5.3 Setup packets at endpoint 0
The data transfer on each endpoint is determined when an EP_SLOW interrupt is
generated. Once the EP_SLOW interrupt occurs, the interrupt handler checks the status
of the endpoint interrupt status register. If the interrupts occur on the control endpoint,
EP0 OUT indicating a USB device request from the host has arrived, the interrupt
handler then will send SELECT_ENDPOINT command to the command protocol engine
using WrCmd() followed by a RdCmdDat() to get the type of the USB packet, once the
“STP” bit is set in Select Endpoint Register indicating a SETUP packet has arrived. When
this happens, the USB_EndPoint0() in usbcore.c event callback will be invoked. This is
the central piece of the USB driver to deal with the setup requests from the host in the
enumeration phase.

 AN10420_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 04 January 2006 13 of 19

Philips Semiconductors AN10420
 USB virtual COM port on LPC214x

Fig 2. USB interrupt handler flowchart

 AN10420_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 04 January 2006 14 of 19

Philips Semiconductors AN10420
 USB virtual COM port on LPC214x

6. Virtual COM port key APIs and file structure
This section will cover some functional level APIs, describe implementation details of the
virtual COM port sample software, and a test sample to move data between a virtual
COM port and a physical COM port.

6.1 Virtual COM port key APIs
After the standard requests from the host in USB enumeration stage, the host will finally
send vendor specific request to configure the virtual COM port. The key module to
process this vendor specific request is,

• BYTE VCOM_SetSIOSetup (BYTE Cmd, BYTE Data) - Based on the request
table and channel table in Table 6.3 and Table 6.4, once the USB device
receives the request from the host, it will act as a command processor, interpret
the command byte, use “Cmd” byte bit 5,6,7 to determine the UART channel
(see Table 6.4), and then, and “Cmd” byte bit 0 through 4 to configure the UART
port baud rate, data bit, stop bits, hardware handshaking signal, etc. (See Table
6.3) “Cmd” byte contains both channel information and request in Table 6.3,
while “Data” byte contains the LSB configuration data value in column 4 of Table
6.3. MSB byte is always zero, thus, will be ignored. The return value indicates
the status of the UART configuration.

Many UART API support modules are only used to support above setup module
such as:

o Void SetSIOBaudrate (BYTE channel, BYTE ConfigValue)
o Void SetSIOStopBit (BYTE channel, BYTE ConfigValue)
o Void SetSIODataBit (BYTE channel, BYTE ConfigValue)
o Void SetSIOParity (BYTE channel, BYTE ConfigValue)

• Void init_serial (void) – This initialization routine is used to establish two physical

COM ports, UART0 and UART1, on LPC214x. The physical COM ports are used
to test the communication between the virtual COM ports and the physical COM
ports.

• void DeviceData2Host (BYTE PortNum) - the module which transmit data from

USB device to the host. Based on the UART port number, it gets data from the
UART buffer or physical COM port, and then call USB_WriteEP() to send data to
the host virtual terminal.

• void DeviceData2UART (BYTE PortNum) - the module which receives data from

the USB host. It calls USB_ReadEP() to get data from the USB endpoint and
dump it to the UART buffer or physical COM port based on the port number.

6.2 Virtual to physical COM port communication
The main routine of the software to test the virtual COM port driver is, use hyper-terminal
to send data to the LPC214x via USB virtual COM port, whenever the LPC214x receives
the data, it uses physical COM port to forward data to the hyper-terminal via UART 0 or
UART1 on the LPC214x, vice versa. See below diagram:

 AN10420_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 04 January 2006 15 of 19

Philips Semiconductors AN10420
 USB virtual COM port on LPC214x

Fig 3. Virtual COM and physical COM

The USB host driver will create two USB virtual COM ports on LPC214x, COMx and
COM(x+1). “x” is not a fixed number, as the host driver will check the status of the PC
COM port configuration first, and then assign the number to each virtual COM port.
Virtual COMx is used to communicate with physical UART0 while virtual COM(x+1) is
used to communicate with physical UART1.

Two modules mentioned above, DevceData2UART() and DeviceData2Host(), are
primarily used for virtual COM to physical COM port communication. However, please
note that, if the UART cable is not available, the module could take data from the USB
host terminal, save into the UART buffer, and simply light up some LEDs to see the
result, not necessarily forward the data to another physical COM port.

 AN10420_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 04 January 2006 16 of 19

Philips Semiconductors AN10420
 USB virtual COM port on LPC214x

7. File structure of the virtual COM port sample
To facilitate the understanding of the sample software, the file structure of the virtual
COM port source is provided below:
Abstract.txt - Keil uVision III abstract file. It describes how to use two different

methods, with UART cable or without UART cable, to test the virtual
COM port driver.

Demo.c - main entry of the sample software
Demo.h - definitions and include file for the main entry
Startup.s - boot-up file
Type.h - various type definition
Usb.h - USB descriptor data structures and class definitions
Usbcfg.h - USB configuration header file
Usbcore.c - USB standard class request, USB command processor
Usbcore.h - definition and include file for usbcore.c
Usbdesc.c - USB descriptor configuration
Usbdesc.h - definition and include file for usbdesc.c
Usbhw.c - USB hardware initialization and lower-level driver APIs
Usbhw.h - prototyping for usbhw.c
Usbreg.h - hardware USB block register definitions for LPC214x
Vcomuser.c - Virtual COM port configuration and physical COM port APIs
Vcomuser.h - endpoint event definition and include files for vcomuser.c
Virtualcom.prj - Keil uVision III project file

 AN10420_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 04 January 2006 17 of 19

Philips Semiconductors AN10420
 USB virtual COM port on LPC214x

8. Disclaimers
Life support — These products are not designed for use in life support
appliances, devices, or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so
at their own risk and agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to
make changes in the products - including circuits, standard cells, and/or
software - described or contained herein in order to improve design and/or
performance. When the product is in full production (status ‘Production’),
relevant changes will be communicated via a Customer Product/Process
Change Notification (CPCN). Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no

licence or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products
are free from patent, copyright, or mask work right infringement, unless
otherwise specified.

Application information — Applications that are described herein for any of
these products are for illustrative purposes only. Philips Semiconductors
make no representation or warranty that such applications will be suitable for
the specified use without further testing or modification.

9. Trademarks
Notice — All referenced brands, product names, service names and
trademarks are the property of the respective owners.

 AN10420_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 04 January 2006 18 of 19

Philips Semiconductors AN10420
 USB virtual COM port on LPC214x

10. Contents
1. Introduction ...3
2. Virtual COM Port..3
2.1 Virtual COM Port Architecture.............................3
2.2 Key components in the virtual COM port3
3. USB Device Driver Concept and Operation4
3.1 LPC214x USB Interface......................................4
3.2 USB Operation..5
3.2.1 USB Reset Phase ...5
3.2.2 USB Enumeration and Standard Requests.........5
4. Virtual COM Port Protocol6
4.1 USB virtual COM Descriptor6
4.2 Endpoint Configuration for virtual COM port9
4.3 Virtual COM Port Protocol...................................9
5. USB Device Driver and APIs.............................11
5.1 LPC214x USB Initialization11
5.2 Key APIs for lower-level USB driver..................12
5.3 Setup Packets at Endpoint 0.............................13
6. Virtual COM Port Key APIs and File Structure 15
6.1 Virtual COM Port Key APIs15
6.2 Virtual to Physical COM Port Communication...15
7. File Structure of the virtual COM Port Sample17
8. Disclaimers ..18
9. Trademarks ..18
10. Contents...19

Document number: AN10420_1
Published in The Netherlands

 © Koninklijke Philips Electronics N.V. 2006
All rights are reserved. Reproduction in whole or in part is prohibited without the prior
written consent of the copyright owner. The information presented in this document does
not form part of any quotation or contract, is believed to be accurate and reliable and may
be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under
patent- or other industrial or intellectual property rights.

Date of release:04 January 2006

	Introduction
	Virtual COM port
	Virtual COM port architecture
	Key components in the virtual COM port

	USB device driver concept and operation
	LPC214x USB interface
	USB operation

	Virtual COM port protocol
	USB virtual COM descriptor
	Endpoint configuration for virtual COM port
	Virtual COM port protocol

	USB device driver and APIs
	LPC214x USB initialization
	Key APIs for lower-level USB driver
	Setup packets at endpoint 0

	Virtual COM port key APIs and file structure
	Virtual COM port key APIs
	Virtual to physical COM port communication

	File structure of the virtual COM port sample
	Contents

