

microMIPSTM Instruction Set

Architecture

Uncompromised Performance,
Minimum System Cost

October 2009

MIPS Technologies, Inc.
955 East Arques Avenue

Sunnyvale, CA 94085
(408) 530-5000

© 2009 MIPS Technologies, Inc.

All rights reserved.

The transition to digital representation of all media – music, photos, video – has
completely transformed the home. Where we once had analog TV tuners and CD-centric
music systems, we now have digital set-top boxes, media players that stream Internet
content, and home network gear that would have found its only use in the enterprise a
few years ago. Engineering teams contemplating the design of a connected device are
faced with an incredibly tough balancing act. Content such as digital video requires
uncompromised performance. Meanwhile the consumer demands low cost and high
quality. The only answer is a media-capable microprocessor at the core of the product
that is architected for low system cost, low power, and application acceleration. The new
microMIPS™ architecture delivers uncompromised, 32-bit performance along with the
memory footprint of a 16-bit device – minimizing system memory and ultimately silicon
and system cost.

The microMIPS architecture is the latest in an evolving family of architectures from
MIPS Technologies. The term ‘architecture’ essentially refers to the set of instructions, or
the ISA (Instruction Set Architecture) that a processor can execute. Of course, someone
must design the processor to handle the ISA. And MIPS Technologies is delivering two
microMIPS-compatible processor cores – the MIPS32® M14K™ and M14Kc™ cores –
in the form of Intellectual Property (IP).

The MIPS® architecture originated in the early 1980s and was targeted at the workstation
market. MIPS was one of the definitive Reduced Instruction Set Computer (RISC)
architectures. RISC processors generally rely on a load/store architecture to move data
from memory to registers. Moreover, the architectures generally include hardwired logic
rather than microcode to execute instructions, thereby handling instructions in a single
clock cycle. The MIPS architecture has stayed true to the RISC tenets over the years
while adding to and enhancing the original ISA.

Today, MIPS Technologies’ primary ISAs are MIPS32 and MIPS64® – 32- and 64-bit
architectures respectively. The company has augmented the basic ISAs with extensions
called Application Specific Extensions (ASEs) that target specific applications. For
instance, the MIPS DSP ASE boosts multimedia performance for consumer-centric chip
designs.

MIPS also previously developed an extension called MIPS16e™ that was designed to
minimize code size and thus the memory required in an application. MIPS16e introduced
a number of 16-bit instructions that could be used in place of the standard 32-bit
instructions with the goal of minimizing system cost. We’ll get to the specifics of the new
microMIPS ISA shortly, and how it improves on the MIPS16e effort.

Before we get to microMIPS details, let’s consider the target application. A product such
as a video-enabled set-top box must, at a minimum, be capable of decoding digital video
in real time. Some products such as the venerable TiVo also encode video in real time.
Both are performance-intensive tasks, although the encode task is decidedly more
difficult.

Based on the application at hand, system designers can use dedicated encoder/decoder
(codec) ICs to handle video. A dedicated IC might be the only option for high-definition
formats. But for lower-fidelity devices with smaller screens, a general-purpose processor
can execute a software codec.

Programmable processors bring great benefits to multimedia-centric system designs.
Codec standards are constantly evolving for both audio and video. So long as a processor
can handle the codec task, the software option is generally less expensive than a
dedicated IC. And with a programmable processor, the software codec can evolve with a
changing standard. Even if a dedicated video codec is required in a system, design teams
can handle the audio codec in software and add features such as support for multiple
codecs. Because MIPS delivers architectures in core form, design teams can also develop
SoCs that combine the processor and dedicated functions such as codecs.

Despite the performance requirements, multimedia consumer products and networking
gear must be low cost. Traditionally, people think of memory as cheap. And in the
context of even a $500 PC, a gigabyte of memory is relatively cheap. Consumer
electronics, however, sell for less. And even savings of $10 or $20 in a bill of materials

(BOM) can make or break a product. Reducing memory requirements is a key way to cut
BOM costs.

The MIPS32 architecture offers the performance needed for media-centric applications,
but does so with the code size typical of 32-bit processors. Given the target markets of
low-footprint consumer electronics and connected appliances, the microMIPS design
team set out to develop a new architecture that could deliver on several key requirements:

 Uncompromised performance in the MIPS32 class
 A code size reduction of 30% or more and equivalent memory reduction
 Support for existing MIPS32 and MIPS64 ISAs
 Maintain the high-performance microarchitecture and legacy MIPS32 support

The microMIPS architecture and core designs deliver on all of these goals. The new
architecture is assembly-language compatible with existing source code, and offers
compatibility at the ABI (Application Binary Interface) level that defines the interface
between applications and operating systems. A microMIPS-based design won’t achieve
code size reduction on existing MIPS32 code, but programmers can easily recode
assembly language or recompile high-level code to take advantage of microMIPS.

Benchmarks

MIPS engineers have run a series of benchmarks testing both performance and code size.
In the CSiBE code-size benchmark, microMIPS delivers a 35% reduction relative to
MIPS32. And in the Dhrystone performance benchmark, microMIPS delivers 98% of the
performance of MIPS32.

MIPS engineers ran the benchmarks on both simulations of the microMIPS ISA and on
the RTL (Register Transfer Level) representation of the M14K and M14Kc cores that
will be handed off to licensees working on IC designs.

The benchmarks prove that the microMIPS architecture delivers similar memory savings
as the MIPS16e ASE, but with much better performance. The question is how? The list of

reasons includes new optimized 16- and 32-bit instructions, an optimized recoding of
MIPS32 instructions, and optimized op code format and register utilization.

The earlier stated fact that microMIPS is a complete architecture – not an extension − is
also key. Both MIPS16e, and for that matter the similarly-targeted ARM Thumb
technologies, are extensions. Both microMIPS and these extensions rely on the concept
of new 16-bit versions of regularly used instructions to minimize code size. And all
deliver reductions in code size. But only microMIPS delivers 32-bit performance.

microMIPS Performance

To understand the significance of the new architecture, consider how programmers use
the 16-bit instructions. With MIPS16e or Thumb, the programmer must expressly swap
into 16-bit mode to use the new instructions. But the new instructions are a subset of the
overall 32-bit ISAs. Moreover, the MIPS16e and Thumb designs must use the normal 32-
bit mode to execute privileged instructions and therefore exception handling. The 32-bit
mode is also requisite for floating-point instructions and other regularly occurring
operations. The mode switch to and from 16-bit mode adds performance overhead.

The microMIPS ISA offers the most commonly used instructions in a 16-bit format as
well as all of the instructions from the MIPS32/64 ISAs. In effect, microMIPS offers two
ISAs in one architecture. As with MIPS16e, the programmer can swap between MIPS32
and microMIPS modes. But for code written expressly for the new microMIPS ISA,
there’s never a need for a mode swap.

The microMIPS mode can handle all operations such as exception handling, and offers a
superset of the MIPS32 ISA. With MIPS16e, the programmer had to swap modes to use
ASEs such as MIPS DSP. The microMIPS mode can seamlessly access the ASEs. The
need to run legacy binary code is really the only reason that would prompt a programmer
to use the MIPS32 mode.

In addition to eliminating mode switches, the microMIPS ISA includes several other
performance enhancements. The ISA includes new instructions that boost performance
and reduce code size. For example, the ISA includes both 16- and 32-bit instructions that
perform multiple load or store operations with a single instruction. The 16-bit Load Word
Multiple (LWM16) instruction can move data from consecutive memory locations to as
many as five registers, while the 32-bit version can load nine registers with a single
instruction.

The microMIPS ISA also eliminates an important shortcoming of MIPS16e − the
MIPS16e ASE could only access 8 of 32 GPRs (General Purpose Registers). Some of the
16-bit microMIPS instructions – such as arithmetic instructions – are also limited to eight
GPRs. But Move instructions in microMIPS can access all 32 GPRs, and obviously all
32-bit instructions can reach all GPRs. Finally, microMIPS provides hardware support
for instructions that are misaligned due to the mix of 16- and 32-bit instructions.

In total, the microMIPS ISA adds 54 new instructions – a mix of 16- and 32-bit
instructions. The rest of the ISA is comprised of instructions from the MIPS32 and
MIPS64 ISAs – although the microMIPS implementation remaps op codes. You will find
a more detailed description of the architecture a bit later in this whitepaper.

Cores and Development Tools

MIPS customers can immediately start microMIPS based designs using MIPS’ new
M14K and M14Kc cores. The base-level M14K core targets typical microcontroller
applications. The M14Kc adds some features and targets home entertainment and home
networking products. The enhancements in the M14Kc include cache that boosts
performance and a Memory Management Unit (MMU) that allows demand-paging
operating systems such as Linux to run on the processor.

System design teams can start development leveraging MIPS’ new SEAD-3 SoC
Evaluation and Development Platform – essentially the same board used in the
performance benchmarks. The 8x7.5-inch board includes 64 Mbytes of flash memory and
4 Mbytes of 32-bit-wide SRAM. Two versions offer a choice of LX50 or LX110 Xilinx
FPGAs. The latter offers more I/O in the FPGA and a DDR II SDRAM socket. The
boards also include expansion connector, MicroSD card slot and GPIO, I2C, SPI, and
ADC interfaces.

For software development, MIPS offers a comprehensive suite of tools for microMIPS.
The offerings include the CodeSourcery Sourcery G++ (SG++) suite which includes the
Eclipse Integrated Development Environment (IDE) and complete GNU toolchain
including C and C++ compilers, linker, assembler, and debugger. SG++ is available for
both Bare Iron/RTOS and Linux targets. MIPS also offers the MIPS Navigator™
Integrated Component Suite (ICS), an Eclipse-based IDE that integrates the SG++
toolchain, fully supports the MIPS System Navigator™ probe and provides support for
debug plug-ins such as the Hot Spot Analyzer and Linux Event Analyzer.

Microarchitecture and ISA Details

Now let’s dig deeper into the microarchitecture that underlies microMIPS, examples of
instructions, and a look at the instruction word and op code formats.

The microMIPS-based M14K and M14Kc cores implement the same high-performance
5-stage pipeline used in the MIPS32 M4K® family microarchitecture – delivering 1.5
DMIPS/MHz Dhrystone performance. The real difference comes in the instruction-
decode stage, or I-Stage at the beginning of the pipeline. The instruction decoder in a
microMIPS implementation performs two operations in sequence. First, the decoder
translates or recodes the microMIPS instruction into a MIPS32 instruction. Then the
decoder handles the MIPS32 instruction just as in any other design.

The recode and decode implementation offers many advantages. The microMIPS team
was assured of realizing the performance of a proven MIPS32 microarchitecture. When

in MIPS32 mode, the instruction flow simply bypasses the recode step. Because the
operation is implemented in the instruction decoder, the memory savings realized by
16-bit instructions apply both to main memory and cache.

The serial instruction-decode architecture delivers both microMIPS as a new optimized
ISA and the ability to support the MIPS32/64 ISAs. And the architecture clearly
differentiates microMIPS and MIPS16e. The latter used a 16-bit instruction decoder that
operated in parallel with the primary instruction decoder. As mentioned earlier,
programmers had to explicitly swap into 16-bit mode and there was no access to the
privileged instructions needed for exception handling in 16-bit mode. The microMIPS
ISA is optimized and complete with full access to privileged instructions and no required
mode switches.

Paired 16- and 32-bit microMIPS Instructions

Now let’s have a detailed look at some microMIPS and MIPS32 instructions to
understand the new ISA and how it impacts code size and performance. The MIPS32 ISA
includes a Load Word (LW) instruction. The microMIPS ISA includes 16- and 32-bit
Load Word) instructions (LW16 and LW32). The 32-bit LW and LW32 instructions
execute in an identical fashion, although the microMIPS LW32 instruction did get a new
op code. The microMIPS LW16 is a new instruction. The instruction word diagrams
below provide details.

The instructions load data from memory that’s pointed to by a base address stored in a
GPR added to an offset value, and stores the value into the target GPR (rt). As you can
see, the base and target fields in the 16-bit versions can only access 8 of the GPRs while
the 32-bit version can access all 32 GPRs. And the offset in the 16-bit version is 4 bits in
length rather than 16. But the 16-bit version gets an effective offset of 6 bits because, at
execution time, the specified offset is left shifted by two bits with zeros inserted in the
least significant bits.

Other new instructions offer a greater offset range and access to all 32 registers. For
instance, the Load Word from Stack Pointer (LWSP16) instruction doesn’t need a base
GPR field because the use of the stack pointer as the base is implied. That leaves room in
the op code for a 5-bit target register field – reaching all 32 GPRs. And the 5-bit offset

field is again left shifted by 2 bits to effectively provide a 7-bit offset value. See the
instruction word below.

Let’s also consider an instruction that can impact both code size and performance. Earlier
we mentioned the Load Word Multiple instructions – new 16- and 32-bit (LWM16 and
LWM32) instructions introduced with the microMIPS ISA. These new instructions have
a direct impact on code size because a single instruction loads multiple registers from
sequential memory locations.

Above, you see the 32-bit version of the LWM instruction. We’ll explain the POOL32 op
code shortly, but for now, focus on the instruction. The 5-bit reglist field specifies both
which and how many registers get loaded with data during execution. One to nine GPRs
are loaded from successive memory locations pointed to by the contents of the base GPR
added to the offset.

Other new instructions also directly reduce code size. Consider the 16-bit Jump Register,
Adjust Stack Pointer (JRASSIUSP) instruction. This single 16-bit instruction both
transfers execution to an address stored in GPR 31, and applies and modifies the Stack
Pointer (GPR 29) by adding a 7-bit immediate value to the Stack Pointer. The single
instruction replaces two instructions commonly used when returning from a subroutine
call. The instruction word below demonstrates how much can be accomplished with 16
bits when the jump target and new SP are predetermined based on GPR contents.

All of the microMIPS instructions use a 6-bit primary or major op code, and that op code
is stored in the top 6 bits of the instruction word. Some instructions are grouped or pooled
together using the same 6-bit major op code and a secondary or minor op code. For
example, the 32-bit Load Word Pair (LWP) and Load Word Multiple (see two recent
examples above for minor op code fields) instructions use the same 6-bit major op code,
but different minor op codes. In 32-bit instructions, the minor op code is located in the
upper 4 bits of the lower half (lower 16 bits) of the instruction word. In the 16-bit case,
the minor op code follows the major op code. The pooled op codes save space for future
extensions by not using every possible 6-bit code.

microMIPS Coding Example

To understand the advantages that microMIPS offers in terms of code size, let’s examine
a short code sequence implemented both in MIPS32 mode and in microMIPS mode using
16-bit instructions. Consider the sequence of instructions in the diagram below. And
remember that the memory sequence is right to left rather than left to right.

The LW instruction fetches a value from memory. A 16-bit instruction is used in the
microMIPS example. The ADDU instruction adds two unsigned words. The second LW
instruction is a 32-bit instruction in both cases. The example depicts how the instruction
is split across two memory words. Still, the succeeding 16-bit branch instruction in the
microMIPS example fits in the top 16-bits of the memory word that also contains the top-
16 bits of the 32-bit LW instruction. That example shows a savings of one memory word.
Likewise, 16-bit versions of the AND and subtract (SUBU) instructions after the branch
illustrate another saved memory word.

Summary

The microMIPS ISA offers programmers, and more importantly compilers, the best of
16- and 32-bit architectures. When needed for larger offsets or larger immediate values,
the compiler will automatically use the 32-bit options. When a smaller offset or access to
a subset of registers will suffice, the compiler will use the 16-bit version and
automatically deliver code savings. The keys to minimum code size and maximum
performance are:

 New optimized ISA
 Proven high-performance microarchitecture
 New 16-bit and 32-bit instructions
 Most commonly used instructions available in 16-bit version
 No mode switch required for 16-bit instructions
 Hardware support for misaligned instructions and branches

The microMIPS architecture delivers on performance and code size for new applications,
and backward compatibility for legacy applications.

Copyright © 2009 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and
other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS
Technologies”). Any copying, reproducing, modifying or use of this information (in whole or in
part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party
is strictly prohibited. At a minimum, this information is protected under unfair competition and
copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or
Microsoft Word format) is subject to use and distribution restrictions that are independent of and
supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A
DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN
SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS
TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to
improve function, design or otherwise. MIPS Technologies does not assume any liability arising
out of the application or use of this information, or of any error or omission in such information.

Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as
expressly provided in any written license agreement from MIPS Technologies or an authorized
third party, the furnishing of this document does not give recipient any license to any intellectual
property rights, including any patent rights that cover the information in this document.

The information contained in this document shall not be exported, re-exported, transferred, or
released, directly or indirectly, in violation of the law of any country or international law,
regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a
conflict arise regarding the export re-export, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial
computer software, commercial computer software documentation or other commercial items. If
the user of this information, or any related documentation of any kind, including related technical
data or manuals, is an agency, department, or other entity of the United States government
(“Government”), the use, duplication, reproduction, release, modification, disclosure, or transfer of
this information, or any related documentation of any kind, is restricted in accordance with
Federal Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition
Regulation Supplement 227.7202 for military agencies. The use of this information by the
Government is further restricted in accordance with the terms of the license agreement(s) and/or
applicable contract terms and conditions covering this information from MIPS Technologies or an
authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32,
microMIPS64, MIPS-3D, MIPS16, MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS
Technologies logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc,
4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K, 5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc,
24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, R3000, R4000, R5000,
ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo,
FS2 NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED,
MGB, microMIPS, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2, SmartMIPS, SOC-it,

System Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies,
Inc. in the United States and other countries.

