MIIFPS

MIPS® PDtrace™ Specification

Document Number: M D00439
Revision 6.16
November 23, 2010

MIPS Technologies, Inc.
955 East Arques Avenue
Sunnyvale, CA 94085-4521

Copyright © 2001-2010 M1PS Technologies Inc. All rightsreserved.

Copyright © 2001-2010 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of Americaand other countries.

This document containsinformation that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of this
information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, thisinformation is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and al confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogies reserves the right to change the information contained in this document to improve function, design or otherwise. M| PS Technol ogies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of thisinformation, or any related documentation of any kind, including related technical data or manuals,
isan agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of thisinformation, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPSI, MIPSII, MIPSIII, MIPS 1V, MIPSV, MIPSr3, MIPS32, MIPS64, microM1PS32, microM|PS64, MIPS-3D, MIPS16, MIPS16e, M| PS-Based,
MIPSsim, MIPSpro, MIPS Technologies|ogo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4K S, 4K Sc, 4K d,
M4K, M14K, 5K, 5Kc, 5Kf, 24K, 24K c, 24K f, 24K E, 24K Ec, 24K Ef, 34K, 34K c, 34Kf, 74K, 74K c, 74Kf, 1004K, 1004K c, 1004Kf, 1074K, 1074Kc, 1074Kf,
R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CorelLV, EC,
FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED,
MGB, microMIPS, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2, SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered
trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

Template: nB1.03, Built with tags: 2B MIPS32

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1: About ThiS BOOK .o, 11
1.1: TypOgraphiCal CONVENTIONSttt e e e e e e e ettt et e e e e e e e s s s e nabe b be e e e e eeaaeeeeaaannbbsbreeeaaaaeas 11
R | =1 o I ST PP TR PPPPPRPRR 11

O = 1o o =Y PR UPPPRRORPPRR 11

G O 0o U 1Y g I 4 AT PP TR PPPRRRPRR 11

1.2: UNPREDICTABLE and UNDEFINEDcccoiiiiiiiiiiiiiiie ettt ettt etee e e e s sstae e e e s ssbaa e e e s ensaeeeeanees 11
1.2.2: UNPREDICTABLE ...ttt ettt e ettt e e e ettt e e e e sttt e e e e snbe e e e e e abbeeeeeeantaeeeeaasbaaeaenas 12

L.2.2: UNDEFINEDiiiiie ettt ettt e e e sttt e e e e ekttt e e e e aa bt e e e e e e anbb e e e e e atbeeeeeeanbaeaeeeansbeaeaenas 12

1.3: Special Symbols in PSeUdOCOAE NOTATIONuuuiiiiiiiieeei ettt e e e e e e e e e e e e e e e as 12
S o |V (o (=N [g1 (o] =1 1 o o H PP U PRSPPI 14
Chapter 2: Overview of the MIPS® PDtrace™ ArChiteCtUreoouviiiiiii i 15
2200 I 1o o VT 1 o P 15
A o Yo =TS0 T 1Y/ [To 1= PR 16
PR MU 1= 1 11T PP RPOOUPPRPOTPPPR 17
2.4: Overview of the Trace CONLrOl BIOCKiiiiii it e e e e e e e e e e eeeeaeeas 17
Chapter 3: PDIraCe™ DeSCIIPTION ..uuiiiiiieiiiiiiiiie it e ettt e e e e e e e e s e e e e e e e e s s aibb e neeeeeesaannes 20
3.1: Instruction Completion Indicator (INSCOMP)coioiiiiiiiiiiie e r e e e e e s e e s e e e e e e e e e s e e annrerreereees 20
3.2: Trace Type and an Example Code FragmeEntcccuuuieiiiiiee e e e s e s s re e e e e e e e e s e anaeeaeee s 23

I N I = Tot Vo To = PP OOUPPRPTPPPR 28
G - 1 Ao) I - V][o [P 28
T I = Yot RS Y/ o a0 1= L1 T o IR 28
3.6: Trace OVErflOW N0 RESTAIT........coiiiiiiiie ittt e e et e e e e et bt e e e s bt e e e e s anbaeeeeesrbreeeeaas 29
I A DT L= IO 1 (o L= T[T | PP 29
3.8: Tracing During Processor MOAde ChanQESccccuuiiiiiiiiiiee ettt e e e e e e e e s e e e e e e e e e e s e st aaeaeeees 32
3.9: Tracing Store CONAItIONAIScooiiiiiiiiii it e e e e e e e e e et e e e e e s s s e e e e eeeeaeeessesansrnrrenreeaeeas 33
3.10: Tracing MIPS16€™ MaCro INStIUCTIONScciii ittt e e e e e e e e st e e e e e e e e e s s s e e e e e aeeeesessnenrreneeeaeeas 33
3.11: Tracing MIPS16e™ EXteNd INSITUCHIONS......c.cii it e e e e e e s e e e e e e e e e e e s s s eaeeeas 33
3.12: Tracing Instruction Cache and Data CacChe MISSEScceiiiiiiiiiiiiiiiiie e e e 33
3.13: Tracing Potential Function Call/Return INSIIUCLIONScceeeiiiiiiiiiiiiieeee e e e e e 34
3.14: Tracing With MIPS® MT ASEuuiiiiiiiiiiii ettt e e e e e e e e s et e e e teae e e e s s s e a bt aeeeeeaeeeesesnnsentranreeaaeas 34
N S I = Tt o BT I S - = USSP 35
3.16: Trace Trigger from EJTAG Hardware Instruction/Data Breakpointsccccoecccvviiiiieieee e, 35
3.17: Tracing Performance COUNLET VAIUEScooiiiiiiiiiiieiie ettt e e e e e s s e e e e e e e e s e e saanrreeeeeaeeas 35
3.18: Filtered Data TraCe MOUE.........ooiiiiiiiie ittt ettt et e e e ettt e e e sttt e e e e anbb e e e e abbeeeeesanbbeeeeeasbreaeeaas 36
3.19: Trace Enabling/Disabling CONGITIONcceiiiiiiiiiiieiiee e e e e e e e e e e e s e s s e ereeaeeas 37
Chapter 4: PDtrace™ Output Trace FOrmatscoooeiiiiiiiii e, 39
4.1: SINgle-Pipe TraCing FOMMIALSccoiiiiiiiiiti ettt e e e e e e e ettt e e e e e e e e e s aaannsbbsaeeeeeaaaeeeaeaanneeneees 39

g O I = ot o T 0 A (It T PRUPP TR 39

4.0.2: Trace FOIMAL 2 (T 2) .ottt e ettt et e e e e e e e e e s e nba b et e e e e e aaeaeeaeeannnrsneees 40

4.0.3: Trace FOIMAL 3 (T3 .eiiiiiiiiiiiiiitt ettt e e e e e oottt ettt e e e e e e e e e s e sbn bt e beeeeeaaeaeeaaaannnrnnenes 40
A.0.4:Trace FOIMAL 4 (T oottt e e oo oottt ettt e e e e e e e e s e nbabb e bt e eeeaaeeeeaaaannnreenees 41

4.0.5: Trace FOIMAL 5 (THD) .eiiiiiiiiiiiiitt ettt oottt e e e e e e e e s e bbb e ittt e e e aaeeeeaeaannneeenees 42

4.0.6: Trace FOIMAL 6 (THB) ..cceie ittt ettt e e e e oottt et e e e e e e e e e s e bbbt e b e e e eeeaeaeeaeaannneennees 42

MIPS® PDtrace™ Specification, Revision 6.16 3

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

4.2: Format Enhancements fOr the MT ASEo oot e e e e e e et e e e e e e e eaaeeaes 44

4.2.0: TracCe FOIMMAL 7 (T 7) eeiiiiiiieieieiiieit s e s s e e e e e e e e e e e e e e et ettt et e et et e e e e e e s e eaaeaaeaeeaeaeaeseseseeeessssssnnrnnes 44

4.2.2: TF2--TF4A AUgMeENted fOr MT ASE ... eee e aenrnaanaaas 45

4.3: MUItI-PIpE TraCing FOIMIALScooiiiiiiiiiiiie ettt e e ettt et e e e e e e s e bbb bbb et et e e e e e e e e e s annbnbee e 45
4.3.1: Multi-Pipe Trace Format 2-4 (TF2, TE3, TFA) ...ttt 45

4.3.2: Trace Format Extensions for Coherent SYSIEMScoovviviiiiiiiiiiiiies e 46
Chapter 5: TCB TraCe WOrd ..., 47
LR I I = Yot YA Lo o USRS a7
5.1.1: CYCIE INACCUIALE TIBCE .. .ueeeieiiutieitee ittt ettt e ekttt e e ekttt e e ekt e e e st e e e st e et e e st e e s annne s 50

I = o To o) i W = Vot [o [Tor= i [o) o PO USRS 51
5.3: ON-Chip Trace MeMOIY FOIMMALvveiiiiiitiii ettt et e e st e e et e e e e anbeeee e 51
5.4: Probe Trace WOrd TraNSMUSSIONuuuueeitetaeeetatiaiittteeeeeeaaeeeeesaaanttebeeeeeaaaaeeaasaaassstasseeeeeaaeaeesaannsestreeeeeeaens 52
Chapter 6: TraCe COMPIESSIONuuuiiiiiieeiiiiiiite it e e e et e et e e e e e e e e e e e et e s s s e e e e e e e e s aannrreneeeeesaaannes 53
L0 I O I = Vo T o PR 53
(SIZ2 I T- To o) g3 o] =30 AN [0 [YT I = od Vo P 53
(SRS = To Jr= T (o RS (o T (=T D - = W I -V [o PR 54

(S S W LS o ==Y g Y I = T NS TT= T o] o P 54
Chapter 7: PDtrace™ Control USing CPO REQISTEISuuiiiiiiiiiiiiiiiieieee e 56
7.1 Trace CONLIOIS OVEIVIEWcoiiiiiiiititie ettt e oo e ettt ettt e e e e e e o e a b bbbttt e e e e e e e e e e s bbbt beeeeeaaeas 56
7.2: SOtWAIE TraC@ CONIIOL....c.iiiiiii ittt e e e e e e et bttt e e e e e e e e e s bbb aeeeeeaaeas 56
7.2.1: CoprocesSOr O TraCe REQISIEIScoiiiiiiiiiiititie ettt e e et e e et e e e e e e e et e beeeeeeas 57
Chapter 8: Trace Control Block (TCB) REQISIEIS. ..o, 67
8.1: TCBCONTROLA REGISTENeeiiiutiieiiiieeitie ettt ettt ettt ettt e e st e e et e e e asbe e e e be e e aabe e e e asbeeeabbeeesmbeeeanbeeeanbeeeanseaeas 68
8.2: TCBCONTROLB REQISTETeiittiieiiiee it ettt ettt et ettt e ssbe e e et e e e aate e e e be e e aabe e e e asbeeeabbeeesmbeeeanbeeesnbeaeanneaens 71
8.3: TCBCONTROLC REGISEIeiiiiutiieitiee et ettt ettt et ekt e e et e e et e e e asbe e e e bt e e aabb e e e ambe e ettt e e smbeeeanbeeesnbeeeanneaens 76
8.4 TCBCONIIOID REQISIETeiieiitiiie ettt ettt e ekttt e e e okt e e e e e bt e e e e e bbbt e e e e asba e e e e e abbreeeeaas 79
8.5: TCBCONTROLE REQISTETeeiiiutiieiiiee ittt ettt ettt ettt et e et e e s s be e e ettt e e bb e e e amb e e e bbe e e smbeeeanbeeesnbeaeanseaeas 81
8.6: TCBDATA REUISIEI ...t ettt ettt ettt ookt e ook bttt e 41kt e e a4 ek b bt e e e e ekt et e e e e aabb e e e e e abbreeee e 82
8.7: TCBCONFIG REQISLEN (REY D) ..eeeiiitiiieeiitiii ettt etttk e e et e e e e et et e e e e bt e e e e e aaba e e e e e anbreeeeaas 82
8.8: TCBTW REQISIEN (REU 4) ...oitiiieee ittt ettt e ekt e e e okt e e a4 e a b bt e e e ettt e e e e aabb e e e e e abbreea e 84
8.9: TCBRDP REGISIET (RET 5) ..utieiieiiitiiiee etttk e ekt e e et a bt e e e sttt e e e anba e e e e s anbreee e 85
8.10: TCBWRP REQISIET (REQ B) ... teeeeeiitieieeiittiie e ettt ettt e ettt e e ekttt e e e ekt e e e e aa b bt e e e s bt et e e e e aaba e e e e e abbreeaeaas 85
8.11: TCBSTP REQISIEN (REG 7)) . etteeeeeiiteeie ettt ettt e ket e e e ek et e e e e a bt e e e s bttt e e e anba e e e e e abbreeeeaas 86
8.12: TCBTRIGX REGISIEr (REG L16-23) ...eeeiieiitiiieeeiaitii ettt etttk e ek e e et e e e e ettt e e e e st e e e e abbreeee e 87
ST I =TT S = L= PP 91
8.14: TCB Registers in Processors Implementing the MT ASEoooiiiiiiii e 91
8.15: Memory-Mapped Access to PDtrace™ Control and On-Chip Trace RAMcccuiiiiiiiiiieieeeiiiiiieeee 91
8.16: ON-Chip TracCe BUTTEr USAGEceiiirieiieiitiie etttk e et e ettt e et e e e e anbreee e 93
Chapter 9: EJTAG Trace REQGISTEIS ...coiiiiiiiiiiiiiiiie ettt e e e e e e e n e e e e e e aannes 94
9.1: TracelBPC and TraCEDBPC REQISIEIS. ...uuiiiiei ittt e e e e e e e s e e e e e e e e s e s st ereaaeaeeeesssanssrnaeeeeeees 94
Chapter 10: TCB TrigQer LOGIC ...uuuuiuiiiiiieiiiiiiiieie e e ettt e e st e e e e e e e e e e e e e e e s nsbbnneeeeeeeaans 101
O I I T T = gl I Yo (ol @ LY =T YT U 101
10.1.1: TrIQQEr SOUICE LOGIC . .ciiiiiiieeeeie ettt e e e e e e e e e e e e e e e e e e et e e e e eeeae et et e e e e e e e e aaaaeeeaeaeaeees 102

O I I T o = g @ 1 e I I T oSSR 102

O I S I T o = 10 T o o [SSRPP 103

OIS g [0 e= T (=T TU Ll I g o T [T U S 103

4 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

10.2.1: Prioritized Trigger ACHIONSccoi ittt e e e e e e e e e e e e e e e e e et e e et e e e e e e e e e e e e aeaaaaeaeees 103

OB A O] =T I I o o [T gt o 1 SRR 103
10.3: TCB Trigger INpUt/OULPUL SIGNAISeeiiiiiiiiie ettt ettt e e e e e e e e e e e aee s 104
Appendix A: Implementation-Specific PDtrace™ Enhancements for MIPS32® 74K™ Cores..... 106
A.1: Tracing the 74K to Show Pipeline Details and Execution Inefficienciesccoovieiiiiiiiiiiccee 106
A.1.1: Updated Trace Format 2 (TF2) for 74K-specific INfOrmationcoooviiiiiiiiiieiiiiiice e 107
AL.2: Trace FOIMAL 3 (TF3) ettt e et et e e st bt e e e ekt e e e e s anbneeeeeaa 107
A.2: Updated TF4 to Handle 74K™ Core-Specific DataOrder and Inefficiency Information 108
A.3: Tracing 74K™ Core in Cycle ACCUIate MOUEcuuiiiiiiiiiiiee et 110
A.4: Compressing AAdresses iN TF3 @nd TF4 ... 110
A.5: ENhancements fOr CONEIENT COMES.oiiuiiiiiiiiii e ettt e e e e e e e e ettt e e e ae e e e e e s e e annntbeteeeaeaaeeeeaeannns 110
A5 1 EXENTING TraC FOMMALSeeiiiiiiitiiiie ettt e ettt e e et e e e e abb et e e s nnbaeeeeeans 110
A.5.2: T8 - NEW TTACE FOMMAL. ...t e e e e e e e e e e e e e e et e eeeeeebebbababnnna e as 111
Appendix B: PDtrace™ Enhancements for Chip-Multiprocessing Systems........ccccccccevvviiininnnnn. 112
B.1: Tracing @ CONEreNt SUDSYSIEIMuiiiiiiiee i r e e e e e e s e et r e e e e e e e e e s snsnnrenaenreeeaees 112
0 I I = Vot TN =0 [U= 0 =T £ 112
B.2: CIM TFACE FOMMALSeiiiieieiiiiiiite ettt ettt e e e e oottt e e e e e e a4 e e e bbbt e e et e e e e e e s e ne e e e e eeee s 114
B.2.1: CM TraCE FOIMAL L.. ...ttt ei oottt ettt e e e e e e e e ettt e e e e e s e s e b e e e e e e eeees 114
B.2.2: CIM TrACE FOIMAL 2. ...ttt ettt e e e e e e s e e ettt e e e e e e s et e e e e e e eeees 115
B.2.3: CM Trace FOrmMat 3 (CM _TF3) .iiceeiei ittt e e e e e e s sttt e e et e e e e e e s e et reeaaeeeaesesnnnnsannnneeeeeeees 115
B.2.4: CM Trace FOrmMat 4 (CM _TF4) ...ccoi ittt ettt e e e e e e s e e e e e e e e e e e e e e s e nnnnsennneaneeeeees 116
B.3: Consolidating Trace INfOrMEALIONciviieiii it e e e e e e s e e e e e e e e e e e s s e snnraraeereeeeees 116
S @ T B o 11 o T I = (o =N 1V 1= ' o o PR 116
B.4.1: CM PDTrace TCB CONtrOIB REQISIENuuiiiiiiiiieeeeie ittt et e e e e e s s e e e e e e e e s e s e snnnannneeeeeeees 117
B.4.2: CM PDTrace TCB CONrOIE REQISIENvuiiiiiiiiieeeei ettt e e e e s e e e e e e e s e s e nnnnannneeneeeee s 121
B.5: Software Control of COherence ManN@QEr TIACEuuuiiiieeeiiiieciiiieiee et e e e e e e s e s st eeeaeee e e s ansnnnrrnaaeerreeees 121
B.6: Trace-Master TAP INSrUCHON REGISIEI ... it e s e e e e e e e e e s e eeeaeeees 123

Appendix C: Implementation-Specific PDtrace™ Enhancements for MIPS32® 1004K™ Revision

O I= 1o o I @ Lo [T G 0o] T PRSPPI 124
C.1: ON-ChiP TrACE MEIMOIY ...ciiiiieeiiiiiiiiit ettt e e e e ettt et e e e e e e e e e s e bbbt b e et e e eaaaeaaeaeaannnbebeeseeaeaaaaeesaaannnnbennees 124
C.1.1: CM PDTrace TCB CONtrolB REQISETuuiiiiiiiiiaaae ittt e e e e e e e e e eeaae s 125

C.1.2: CM PDTrace TCB CONtrOIE REQISIETuuiiiiiiiiiieeaeei ittt e e e e e e e e eaaae s 128

C.2: Software Control of CoOherence ManagEer TIACEuuuuiiiiiiaie ettt a e e e e e e et e e e e e e e e e e e e aanneeeeees 128

Appendix D: Implementation-Specific PDtrace™ Enhancements for the MIPS32® 1074K™ Cores
130

Appendix E: Tracing Multi-Issue and High Performance ProCessorscccccvveeiiiniieciicinneeenne 132
E.1: Background on High PerformanCe PrOCESSOIScoovviiiiiiiiiiiiiiiee e s e 132
E.2: BasSiC Tracing MethOUOIOQYuuuuuuuiiieiiie e e e e e ee ettt eeaeaeae st sesr e e s 132
E.3: Coordinating Instruction Completion Trace with Address/Data TracCeccccuuveeeiiiiieeeiniiiiiiiiieeee e 134
E.4: Out-of-Order Loads and Stores in the MUlti-Pipe COreocuiiiiiiiiiiee et 135
E.5: Tagging INStructions that ISSUE TOQEINETcccoii i s 135
E.B: IMISCEIIANEOUS ...ttt e oottt et e e e oo e 4o e e bbb b bttt e et e e e e e e e e nn bbb beeeeeaaeens 135

Appendix F: PDtrace™ Interface Signals (The Interface is now Deprecated as Architecture and

this Chapter is here Solely for Historical REASONS) ...uuuuiiiiiieiiiiiiiiiiiie et 137
F.1: PDtrace™ Core INterface SIgNal LISToooiiiiiiioiiiiiiie e e s e e 138
MIPS® PDtrace™ Specification, Revision 6.16 5

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

APPENIX G: REVISION HISTOTY ottt e e e e e e e e e s st eeeeaeeaaas 149

6 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 2.1: lllustration of @ PC and Data TracCe FIOWuueiiiiiiiiii e e e e e e e e e e e e e e aaaaaees 16
Figure 2.2: Config3 ReQIStEr FOIMAL..........ccoiiiiiii et e e e e e e e e et ettt e e e e e e e e e e e aaeaaeaeaeaeees 16
Figure 2.3: TCB and OptioNal PIB OVEIVIEW..........cuiiiiiiiiiiiiie ettt e ettt e e e e e e e e bbbt e e e e e e e e e e s e anabbeeneeeeeeas 18
Figure 2.4: lllustration of the Core and TCB with External Trace MEMOIYccovuuuiiiiiiiiiiiiiieie e e eeeeaeeeeeeeaeeens 18
Figure 2.5: lllustration of the Core and TCB with Internal Trace MEemOIYoovvviririiriiiiiiiiiie e e e e e e e e eeeeeeeeeeaeaens 19
Figure 3.1: A Sample Pipeline And INSCOMP Trace POINToiiiiiiiiiiiiiiii et 21
Figure 3.2: lllustration of a Pipeline and Trace Tap POINTSccoiiiiiiiiii e 23
Figure 3.3: A TMOAS TracCe RECOIccco it e e s e e e e e e e e e e e et et et e et e ee et e et s e e e e e e s e aeaaaaaaaeaeeeees 26
Figure 3.4: An Example of Load Data Bypassing an Earlier Storeccuueeeiiiiiiiiiiiiiiecece e 31
Figure 4.1: TEL (Trace FOIMMAL L) ...ccoiiiiiii e e e e s e e e e e e e e e e e e e e e e et e e e e e ae e e st e bt s e e e e e e e aeaaaeaeaeaeeeees 39
Figure 4.2: TF2 (Trace Format 2 SiNGIE-PIPE) ...ocuii it e e e e s 40
Figure 4.3: TF2 with Optional Bits (Trace Format 2 Single-PiPE)cooiiiiiiiiiii e 40
Figure 4.4: TE3 (Trace FOrmat 3 SiNGIE-PIPE) ...ooviiiiiiiiiiie et e e 41
Figure 4.5: TF3 with Optional Bits (Trace Format 3 SiNgle-PiPe)cooiiiiiiiiiieiiieeeee e 41
Figure 4.6: TF3 with Optional Performance Counter and other bits (Trace Format 3 Single-Pipe)ccccceeeee. 41
Figure 4.7: TF4 (Trace Format 4 SiNGIE-PIPE) ...oeiii it e e e 42
Figure 4.8: TF4 with Optional Bits (Trace Format 4 Single-PiPE)cooiiiiiiiiiiieee e 42
Figure 4.9: TES (Trace FOIMAL 5) ...cciiiii it s et e e e e e e e e e e e e e e et et e e e et e et e e e e e e s e e e aeaaaeaeaeeeees 42
Figure 4.10: TFB (Trace FOIMAL 6)ccceee i s e e e e e e e e e e e e e e e e e e et e e e e e e et e e et e et a s e e e e s e aeaaaaaeaeaeeeees 43
Figure 4.11: TE7 (TracCe FOIMAL 7) ..ccooiii i e e e et e e e e e e e e e e e e e et e et e et e et et a et s e e e e e s e e eaaaaaeaeaeaeees 44
Figure 4.12: TF2 with Optional Bits and TCid Bits (Trace Format 2 Single-Pipe) ... 45
Figure 4.13: TF2 (Trace Format 2 MUILI-PIPE)cooi it 45
Figure 4.14: TF3 (Trace Format 3 MUILI-PIPE)ooeiiiiiiiiiiiee et 46
Figure 4.15: TF4 (Trace Format 4 MUILi-PIPE)oooi it e et 46
Figure 5.1: Trace Word With Zero SOUICE BILSeeiuiiiiiiiiiiiieis ettt s e e e e e e e e e e e aaaaaaaaaaeees 47
Figure 5.2: Trace Word With TWO SOUICE BILSoevuiiiiiiiiiiiie s e e e e e e e e e e aaaaaaaaaaeees 47
Figure 5.3: Trace Word With FOUr SOUICE BILSvvvuiiiiiiiiiiiiie sttt s e s e e e e e e e e e aaaeaaeaaaeees 48
Figure 5.4: Trace Word from Example Trace in Table 5.2 ... 49
Figure 5.5: Trace Word from Example Trace in Table 5.2 (NO TFL traCe)uuueiiieeriiiiiiiiiiiiiieieeee e 50
Figure 5.6: Cycle-by-cycle Trace Word from Example Trace in Table 5.2 ... 50
Figure 5.7: Cycle-by-Cycle TR_DATA (8-bit) of Example Trace in Table 5.2 ... 52
Figure 7.1: TraceControl RegISIEr FOIMMALoiiiiiiiiiiiii et e e ettt s e s e e e e e e e e e aeaaaeaaeaaaeee 57
Figure 7.2: TraceControl2 RegISIEr FOIMMALoviiiieiiiiiii et e ettt s e s e e e e e e e e e aeaaaaaaaaanaee 60
Figure 7.3: TraceControl3 RegISIEr FOIMMALcoviiiiiiiiiiitee et e e e e e e s e e e e e e e e e aeaaaaaaaaaaeees 63
Figure 7.4: UserTraceDatal and UserTraceData2 Register FOrmMatoooviiiiiiiiiiiiiiiiiiiieis e eeee e e e e eeaenens 65
Figure 8.1: TCBCONTROLA ReEQISIEr FOMMALccevviiiiiiiiiiiiiiiieee e e e e e e e e e e e e e e e e et et eeeee ettt a e s e e e e e e e aeaeaaaaaaeaaeeees 68
Figure 8.2: TCBCONTROLB ReQISIEr FOMMALevvviiiiiiiiiiiiiieisie s e e e e e e e e e e e e e e e et s s e s e e e e e e e e eaeaaaaaaaaaneees 72
Figure 8.3: TCBCONTROLC REQISIEr FOIMALeevviiiiiiiiiiiiiiie i et e e e e ettt e e s e e e e e e e e eaeaaaaaaaaanaens 77
Figure 8.4: TCBCONTROLD REQISIEr FOIMMALeeveiiiiiiiiiiiiiiiees e e ettt s e s e e e e e e e e e aeaeaaaaaaaaaees 79
Figure 8.5: PDtrace Control Configuration RegiSter FOrMaALlcoooieiiiiiiiiiii e e e e e e e e e e e e aaanaens 80
Figure 8.6: TCBCONTROLE ReQISIEr FOMALcvvviiiiiiiiiiiiieieie e e e e ee e e e e e e e e et et e et s e s e s e e e e e eeaeaaaeaaaaaneees 81
Figure 8.7: TCBDATA REQISIEr FOIMMALccoiiiiiiiiieieeeeeee e s e e e e e e e e e et e et e et a s e e e e e s e e eaaeaaaaeaeeeees 82
Figure 8.8: TCBCONFIG ReQISIEr FOIMMIALciiiiiiiiiiiiiiiiii i e e e e e e e e e e e e e et e ettt e e s e s e e e e aaeaeaaaeaaeaaaeees 83
Figure 8.9: TCBTW REQISIEr FOIMALccoiiiiiiiiiii et s e e e e e e e e e et e et e e et et e e s e e e e e e s e e eaaeaaeeeaeeeees 85
Figure 8.10: TCBRDP REQISIEr FOIMMALcciiiiiiiiiiiieeieie e e e e e e e e e e e e et et e e e e e e e e e e e e s e e e aaaaaeaeaeaeees 85
Figure 8.11: TCBWRP ReQISIEr FOIMMALccciiiiiiiiiiieiieiii s e s e e e e e e e e e e e e et e e e e e e e e e et a s e e e e e s e e e aaeaaeaeaeeeees 86
Figure 8.12: TCBSTP REQISIEr FOMMALcccoiiiiiiieieieeee e e e e e e e e e et e et e e e e et a e e e e e e s e e e aaeaaaaeaeeeees 86
MIPS® PDtrace™ Specification, Revision 6.16 7

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Figure 8.13: TCBTRIGX ReQISIEr FOMMALociiiiiiiiiiiiiiii et e e e e e e e e e e e et e e et s s e s e e e e e e aaeaeaaaaaaeaaaeees 87

Figure 9.1: TracelBPC RegQIStEr FOMMAL............ciiiiiiiiiiiiiiie e e e e e e e e e e e e et et et e e e ettt a e s e e e e e e aeeaeaaaaaaraaaeaes 95
Figure 9.2: TraceDBPC ReEQISIEr FOIMMIAL..........oiiiiiiiiiiiiii et e e e e e e e e e e et e e e e e s e s e e e eaeeaeaaaaaaraaneees 96
Figure 9.3: TracelBPC2 RegQISter FOMMAL............ooiiiiiiiiiiiiieeis e e e e e e e e e e e e e ettt e et s s e s e e e e aeeaeaaaaaaeaaaeees 97
Figure 9.4: TraceDBPC2 ReEQISIEr FOIMIAL..........oiiiiiiiiiiiiiiieie s s et e e e e e e e e e e ettt e e ae et e e s e e e e e aaaeaeaaaeaaeaaeeees 98
Figure 10.1: TCB Trigger ProCeSSING OVEIVIEWuuuuuuuruuuueiiiasasaiasaaeeeaeaatetetereeeesasarsrsraras e aaaaaaaaaaaaaeeeees 102
Figure A.1: Expanded TF2 (Trace Format 2 SiNgIE-PIPE)uuuiiiiiiiiiiiiiiiiiie ettt 107
Figure A.2: Expanded TF2 with Optional Bits (Trace Format 2 Single-Pipe) ... 107
Figure A.3: TF3 (Trace FOormat 3 SINGIE-PIPE)ouiiiiiiiiiiiite et e e e 108
Figure A.4: TF3 with Optional Bits (Trace Format 3 SiNgIe-PIPe)cooiiiiiiiiiiiiiiiee e 108
Figure A.5: Expanded TF3 with Optional Performance Counter and other bits (Trace Format 3 Single-Pipe) 108
Figure A.6: TF4 (Trace FOormat 4 SINGIE-PIPE)ou ittt e e e 109
Figure A.7: Expanded TF4 (Trace Format 4 SiNgIE-PiPE)uuuuiiiiiiiiiaiiiiiie ettt 109
Figure A.8: TF4 with Optional Bits (Trace Format 4 SiNgle-PiPe)coooiiiiiiiiiiiiiiee e 109
Figure A.9: Expanded TF4 with Optional Bits (Trace Format 4 Single-Pipe) ... 110
Figure A.10: TF8 (TracCe FOIMAL 8)ccciiiiiiiiiiie et e e e e e e e e e e e e et et e et e e e e e et e et e bt e s e e e e e e e eaeaaaaaeaeees 111
Figure B-1: COSId - Creation, Correlation, and UPAteS............uiiiiiiiiiiiiiiiiiiiee e 114
Figure B-2: CM Trace Format 1 (CM_TF1) - Trace LEVEI Occiiiiiiiii i 114
Figure B-3: CM Trace Format 1 (CM_TF1) - Trace LeVEl L.......cccooiiiiiiiiii s 115
Figure B-4: CM Trace Format 2 (CM_TF2) - Trace LEVEl O.......cciiiiiiiii e 115
Figure B-5: CM Trace Format 2 (CM_TF2) - TraCe LEVEI L.......ccoiiiiiiiiii i 115
Figure B-6: CM Trace Format 3 (CM_TF3) With Trace LeVel O.......cccooiiiiiiiiiiieee s 115
Figure B-7: CM Trace Format 3 (CM_TF3) With Trace LeVel L.......cccoooi i 115
Figure B-8: CM TF_4 - OVErflOW FOMMAL...........oiiiiiiiiiiieei st e e e et e e e a e e e e e aeeaaaaeaeees 116
Figure B.9: TCBCoNtrolD ReQISIEr FOIMMALcoiiiiiiiiiiiiieii sttt e e e e a e e e e e eaaeaeaeees 121
Figure C-1: CMTraceControl REQISIEr FOMMALouuiiiiiiiiiiiiiis s e e s e e e e e e e e ettt e e e e e e e e aaeaaaaeaeees 128
Figure E.1: An Example Showing the Coordination of Instructions and Their Datacccccceveeiiiieiiiiiniiiinnee. 134
8 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1.1: Symbols Used in Instruction Operation StatemMENTS.uuiiiiiiiiiiiiiiiie e 12
Table 2.1: Config3 Register Field DeSCIIPIIONSuuuu ittt e s e e aanneees 16
Table 3.1: Instruction Type Completion INdicator (INSCOMP)uuuuriiiiiiiieei ittt a e 20
Table 3.2: Trace Data Type INAICAOr (TTYPE) ...uuuuurtiiieiiieieeeii ittt e e e e et e e e e e e e e e e e s ebbba e e e e e e e e e e e e s aaannrnees 23
Table 3.3: Example Code Fragment With Some PDtrace™ Trace Valuesc.uuveeiiiiiiiiiiiiiiiiiiieeeee e 24
Table 3.4: A TMOAS Trace Record Field DeSCIIPLIONS.cciiiiiiiiiiiiie ettt e e e e e e e e e e s eanaeee 26
Table 3.5 TIACE MOUE BitS......i.uiieiiiiitiiiee ettt ettt e ekt e e ettt e e e e kb et e e s e bt e e e s asb et e e s snreeee e 28
Table 3.6: LOAd Order EXAMIPIEttt et e e e e e e e o ek bbb bttt e et e e e e e e e e abbbbsbe e et e e eeeeeaananns 29
Table 3.7: Data Order WIth FOUE BilS.........coiiiiiiiiiiiiii ittt s e e e s 30
Table 3.8: Data (Load/Store) Order EXAMPIE it e e e e e e e e e e e e e e e s e e aanneeee 31
Table 3.9: Possible Instructions for FUNCION Call/REIUIMNSeviiiiiiiiiici et 34
Table 4.1: TCBcode and TCBinfo fields of Trace FOrmat 6 (TFB6)ceiiiiiiiiiiiiie i 43
Table 5.1: Trace Word Type Field DEeSCIIPLIONSuutiiiiiieeaiie ittt e et e e e e e e e e et b e e e e e e e e e e s e e aannenes 48
Table 5.2: EXAMPIE TrACE SEOUEBNCEcetii ittt et e e e e e a4 ook bbbttt e et e e e e e e s s e bnbbeseeeeeaeaeeeaaaanns 49
Table 7.1: A List of COprocessor 0 TraCe REGISIEIScciiiiiiiiiiiiiiii ettt e e a e e e e e e s aanneeee 57
Table 7.2: TraceControl Register Field DESCIIPLIONSccooiiiiiiiiiiiii et e e e e e e e s aannaees 58
Table 7.3: TraceControl2 Register Field DESCHIPLONSooiiiiiiiiiiiiieiie ettt e e e e e e e s aaneees 61
Table 7.4: TraceControl3 Register Field DESCHIPLIONSooiiiiiiiiiiiiieiie ettt e e e e e e e e s aaneees 64
Table 7.5: UserTraceDatal Register Field DeSCIPIONS......c.oiiiiuiiiiiiiiiie et e e e e 65
Table 7.6: UserTraceData2 Register Field DeSCIPIONS........oiiiiiiiiiiiieiie ettt e e e e e 65
Table 8.1: Trace Control BIOCK REQISIEISttt e e e e e e e e e e e e et e e e e e e e eeas 67
Table 8.2: Registers Selected by TCBCONTROLBRg (accessed through TCBDATA)ccoeiciiiiiiiiiiiiciieeee, 67
Table 8.3: TCBCONTROLA Register Field DESCHPLONSoiiiiiiiiiiieiiee ettt e et e e e e e e e eaaneeee 69
Table 8.4: TCBCONTROLB Register Field DESCHPLONSoiiiiiiiiiieiie ettt e e e e e e e e eineeee 72
Table 8.5: Clock Ratio encoding of the CR field ... 76
Table 8.6: TCBCONTROLC Register Field DeSCIPLIONS.......oiiiiiiiiiiieiee ettt e e e e e e e 77
Table 8.7: TCBCONTROLD Register Field DeSCIPLIONS........oiiiiiiiiiieieee ettt e e e e e e e aaneees 79
Table 8.8: PDtrace Control Configuration REQISIEN...........ooiiiiiiiiee e 80
Table 8.9: TCBCONTROLE Register Field DESCHPLONSoiiiiiiiiiieiiee ettt e e e e e e e 81
Table 8.10: TCBDATA Register Field DEeSCIIPLIONSuiiiiiiiiiiiiiiiiei ettt e e e e e e e e e e s eanaees 82
Table 8.11: TCBCONFIG Register Field DeSCHPUONScoiiiiiiiiiiii ittt e e e e e e e e s enenees 83
Table 8.12: TCBTW Register Field DEeSCIIPLIONSeiiiiiiieeiiiiiiiiei ettt e e e e e e e e e e e e e e e e s e e aanneees 85
Table 8.13: TCBRDP Register Field DEeSCIIPLIONSuuiiiiiiaiiiiiiiiee ettt ettt a e e e e s e e e e e e e e e e s e e aannneee 85
Table 8.14: TCBWRP Register Field DeSCIPLIONS.uuiiiiieaiii ittt e e e e e e e e e e e e e e e s e sanneees 86
Table 8.15: TCBSTP Register Field DESCIPLIONSuiiiiiiieeiiiiiitiiee ettt e e e e e e e e s e e e e e e e e e e e s e e annneees 86
Table 8.16: TCBTRIGX Register Field DeSCIPLIONS.uiii ittt e e e e e e e e e e s e eaneneee 87
Table 8.17: Mapping TCB REQISIEIS IN AISEQ ...uuuuttiiiiiiieieeai ittt e e e ettt e e e e e e e e e s bbb a e et e e e e e e e s e s aannnees 91
Table 9.1: Mapping Trace Breakpoint Registers in CPO Space OF iN ArSEQ.........uuuuueriiiiaaaniiiiiiiiiiiieeee e e e e 94
Table 9.2: TracelBPC Register Field DeSCIPLIONS.u ittt ettt e e e e e e e e e e e e e e s e e aanneeee 95
Table 9.3: TraceDBPC Register Field DeSCIPLIONSuiiiiiiiiiiiiiiii ettt e e e e e e e e e e e e s e aaaneeee 96
Table 9.4: TracelBPC2 Register Field DESCIPLIONS.uii ittt e e e e e e e e e e e s e sannneee 97
Table 9.5: TraceDBPC2 Register Field DEeSCIIPLIONSciiiiiiiiitiiiie ettt e e e et e e e e e e e e e s e aanneeee 98
Table 9.6: BreakPoint Control Modes: IBPC and DBPC.........coocuiiiiiiiiiiiie ittt 98
Table 10.1: TCB Trigger iNPUL 8N OULPUL........oiiiiiiiiiiie ettt e et e e e e e e e e e s e bbb e beeeeaaaeeeaaeanns 104
Table A.1: Expanded Instruction Type Completion Indicator (INSCOMP)ccoviiiiiiiiiiiiiiiieie e 106
Table B.1: Coherent Trace SUDSEt OPLIONSoiiuitiiiiiiii ittt e e e et e e e e e e e e e s e b b bbb b e e e eeaaaeeaaaanns 113
Table B.2: PDTrace TCBCONTROLB Register (GCR_DB_TCBControlB Offset 0X0008)..............eevvvevnciieieiennnn. 117
MIPS® PDtrace™ Specification, Revision 6.16 9

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Table B.3:
Table B.4:
Table B.5:
Table C.1:
Table C.2:
Table C.3:
Table C.4:
Table E.1:
Table F.1:
Table F.2:
Table F.3:
Table F.4:
Table F.5:
Table F.6:

10

TCBCONTROLE Register (GCR_DB_PD_TCBCONTROLE Offset 0X0020)ccvverureerieienineenne 121
TraceControlD Register Field DeSCIPLIONScc.uiiiiiiiiiiiie et e e e e e e 121
TraceMaster TAP INSIIUCHON OVEIVIEWccoiiiiiiiiiiiiie ittt e et e e e e e e e e e e aaenbe e 123

CM PDTrace Master SEIECE REQISIENuuuiiiiiiiiiii e e e et a e e e e e e e e aaaaeaeees 124
PDTrace TCBCONTROLB Register (GCR_DB_TCBControlB Offset 0X0008)........ccccceveveeeeeeeeereeennne. 125
TCBCONTROLE Register (GCR_DB_PD_TCBCONTROLE Offset 0X0020)ccccvvvveeiiiieieeniienenn. 128
CMTraceControl Register Field DEeSCHPLIONSuuuiiiiiiiieeaiii it 128
Example Code Fragment Showing the Graduation Cycle and Trace Bus Number............cccccccoeevnnn. 133
PDtrace™ Core INterfaCe SIGNaAIS.........cooo it a e e e e e aaaeaeaes 138
PDtrace Coherence Manager Interface SIigNalScoeieiiiiiiii e 147
MCMA - OCP COMMEANTGS ...ttt ettt e e e e e e e e bbbt e et e e e e e e e e e e bbb be e et e e e e e e e e e e e e asnnbbbbeeeeeeeeeas 147
(O 2o [AN (o [1= o [P PPPRPUPUPPPTRTPN 148
Global INTEIVENTION STALEeiiiiiiiii ittt e et e e e e e e s bbb e e e e e e e e e e e e e ann 148
(O I = 1 = 10 LSRR 148

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Chapter 1

About This Book

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fontsin this book.
1.1.1 Italic Text
* isused for emphasis

» isusedfor bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmabl e fields and registers), and various floating point instruction formats, suchas S D,
and PS

* isused for the memory access types, such as cached and uncached

1.1.2 Bold Text

* representsaterm that is being defined

» isused for bitsand fields that are important from a hardware perspective (for instance, register bits, which are
not programmabl e but accessible only to hardware)

» isusedfor ranges of numbers; therangeisindicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

* isused to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

Theterms UNPREDICTABL E and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructionsin
aprivileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

MIPS® PDtrace™ Specification, Revision 6.16 11

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

About This Book

1.2.1 UNPREDICTABLE

UNPREDI CTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as afunction of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause aresult to be generated or not. If aresult is gener-
ated, itisUNPREDICTABLE. UNPREDICTABL E operations may cause arbitrary exceptions.

UNPREDI CTABLE results or operations have several implementation restrictions:

* Implementations of operations generating UNPREDICTABL E results must not depend on any data source
(memory or internal state) which isinaccessible in the current processor mode

« UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
isinaccessible in the current processor mode. For example, UNPREDICTABL E operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as afunction of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:
* UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which

thereisno exit other than powering down the processor). The assertion of any of the reset signals must restore the
processor to an operational state

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning
«— Assignment
= # Tests for equality and inequality
[Bit string concatenation
xY A y-bit string formed by y copies of the single-bit value x
b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the binary

value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix is
omitted, the default baseis 10.

Xy.z Selection of bitsy through z of bit string x. Little-endian bit notation (rightmost bit is0) isused. If yislessthan z,
this expression is an empty (zero length) bit string.

12 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
+, - 2's complement or floating point arithmetic: addition, subtraction
#, X 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwiselogical NOR
xor Bitwiselogical XOR
and Bitwise logical AND
or Bitwiselogical OR
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPR[x] CPU general-purpose register x. The content of GPR[Q] is aways zero.
FPR[X] Floating Point operand register x
FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COCJ[1].
FPR[X] Floating Point (Coprocessor unit 1), general register x
CPR[z,x,5] Coprocessor unit z, general register x, select s
CCR[zX] Coprocessor unit z, control register x
COC[z] Coprocessor unit z condition signal
Xlat[x] Translation of the MIPS16 GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (O —Little-Endian, 1 — Big-Endian). Specifies the endianness of the
memory interface (see LoadMemory and StoreM emory pseudocode function descriptions), and the endianness of
Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this endian-
ness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be computed as
(BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. Thisfeatureis availablein User mode only, and is
implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as (SRge and
User mode).
LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is set

when alinked load occurs; it istested and cleared by the conditional store. It is cleared, during other CPU opera-
tion, when a store to the location would no longer be atomic. In particular, it is cleared by exception return
instructions.

MIPS® PDtrace™ Specification, Revision 6.16 13

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol

Meaning

1+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as alabel. It indicates the instruction time
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current instruc-
tion appear to occur during the instruction time of the current instruction. No label is equivalent to atime label of
|. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the instruction time
of another instruction. When this happens, the instruction operation is written in sections labeled with the
instruction time, relative to the current instruction |, in which the effect of that pseudocode appears to occur. For
example, an instruction may have aresult that is not available until after the next instruction. Such an instruction
has the portion of the instruction operation description that writes the result register in a section labeled 1+1.
The effect of pseudocode statements for the current instruction labelled | +1 appears to occur “ at the same time”
asthe effect of pseudocode statements labeled | for the following instruction. Within one pseudocode sequence,
the effects of the statements take place in order. However, between sequences of statements for different instruc-
tions that occur “at the sametime,” there is no defined order. Programs must not depend on a particular order of
evaluation between such sections.

The Program Counter value. During the instruction time of an instruction, thisis the address of the instruction
word. The address of the instruction that occurs during the next instruction time is determined by assigning a
value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16 instruction) or
4 before the next instruction time. A taken branch assigns the target address to the PC during the instruction time
of the instruction in the branch delay slot.

PABITS

The number of physical address bitsimplemented is represented by the symbol PABITS. As such, if 36 physical
address bits were implemented, the size of the physical address space would be 27B!TS = 236 pytes,

FP32RegistersMode

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRS). In MIPS32, the FPU has 32 32-hit
FPRsinwhich 64-bit data types are stored in even-odd pairs of FPRs. In M1PS64, the FPU has 32 64-bit FPRsin
which 64-bit data types are stored in any FPR.

In MIPS32 implementations, FP32Register sModeis always a 0. MIPS64 implementations have a compatibility
mode in which the processor references the FPRs asiif it were a MIPS32 implementation. In such acase
FP32Register M ode is computed from the FR bit in the Satus register. If thisbitisa0, the processor operates as
if it had 32 32-bit FPRs. If thisbit isa 1, the processor operates with 32 64-bit FPRs.

The value of FP32Register sM ode is computed from the FR bit in the Satus register.

InstructionlnBranchDe-

Indicates whether the instruction at the Program Counter address was executed in the delay slot of abranch or

laySlot jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the valueisfase if
abranch or jJump occurs to an instruction whose PC immediately follows a branch or jump, but which is not exe-
cuted in the delay slot of abranch or jump.
Signal Excep- Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
tion(exception, argu- | parameter as an exception-specific argument). Control does not return from this pseudocode function - the excep-
ment) tion issignaled at the point of the call.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about M1PS products can be found at the MIPS
URL: http://www.mips.com

For comments or questions on the MIPS32® Architecture or this document, send Email to support@mips.com.

14

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

http://www.mips.com/
mailto:architecture@mips.com

Chapter 2

Overview of the MIPS® PDtrace™ Architecture

This document contains the MIPS® PDtrace™ specification, which defines the controls and formats for tracing pro-
gram execution on a MIPS® processor core or on a System on a Chip (SoC) that includes multiple MIPS processor
cores. The specification also defines tracing of additional SoC system elements, including system buses and other 1P
(Intellectual Property) customer-defined blocks.

This document serves three functions. It provides a specification of the trace interface for the core designer, it pro-
vides sufficient detail for an architecture licensee to build a trace control block that works with existing probes from
third parties, and it provides sufficient details to design and code a post-processing software module for trace recon-
struction.

2.1 Introduction

The PDtrace specification provides trace control and formats for both the processor-specific information captured
from each pipeline within the processor and for the non-processor specific blocks, such asthe CM (Coherence Man-
ager) block in the CMP system, including the details of how the trace from multiple on-chip blocks are combined to
provide asingletrace stream on the chip interface pins. Note that processor-specific trace information and formats are
included in the Appendices of this document, because these can be modified per implementation and do not necessar-
ily constitute architecture.

The type of information that is captured in the trace stream and put into memory is controlled by CPO control regis-
ters defined in the MIPS32® architecture and by TCB (Trace Control Block) control registers defined in the PDtrace
architecture. CPO control registers can be programmed by user applications so long as the needed hardware compo-
nents and trace memory are present. The TCB control registers can be programmed by an external probe using the
EJTAG TAP controller hardware or via software through the debug memory segment (this featureisonly availablein
cores that implement PDtrace revision 6.00 and higher). The TCB registers allow usersto control tracing at the exe-
cution time of applications, using an external agent like the debugger that communicates with these control registers
using adebugger probe.

In most implementations, the trace information from the pipeline-tracing logic in the core is captured by a block
called the Trace Control Block (TCB). This block contains registers used to control the trace information captured
from the core, and is also used to format the trace information into the architecturally-specified trace formats, ready-
ing the information for writing into trace memory. The trace memory may be either on-chip or off-chip, based on user
requirements. The trace information written to memory is compressed and assumes that post-processing software has
access to the static program image to reconstruct the dynamic program flow. Compression reduces the number of sig-
nals (hence pins) required to gather this information and also reduces the trace size.

Figure 2.1 illustrates one possible configuration for trace capture and post-analysis using software. The figure shows
a core with trace generation logic and a TAP controller. This core is connected to atrace control block (TCB) viathe
TAP controller (the TCB implements and uses TAP registers). The trace memory associated with the trace control
block can be located on-chip or off-chip. An on-chip trace buffer will be smaller and will be writable by the TCB at
higher speeds, while an off-chip trace memory can be much larger and is written via the potentially slower pin inter-
face out of the core. Probe hardware and software connects to the TCB and the TAP controller viathe chip’s pin
interface and allows debugger software to start, stop, and examine program execution traces.

MIPS® PDtrace™ Specification, Revision 6.16 15

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Overview of the MIPS® PDtrace™ Architecture

Figure 2.1 Illustration of a PC and Data Trace Flow

r LI} 1
Trace Memory ;
Format 1 Off—ch|p|
Trace
1 MemoryI
[9
Probe Trace
E = Re-generation
[Block Software
1 On-chip Probe
Trace
I Memoryl .
o e Mictor Conn. Debugger
-

T~ T T

I On-core I On-chip [off-chip [Software

Implementation of PDtrace is optional for a given MIPS-compatible processor. Whether a core or processor imple-
ments PDtrace isindicated by abit in the Coprocessor 0 Config3 register as shown in Figure 2.2 and Table 2.1.

Note that if acore or processor does not implement EJTAG, PDtrace tracing logic can still be implemented.

Figure 2.2 Config3 Register Format

31 10
[

Table 2.1 Config3 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
311 As per the MIPS32 and MIPS64 Architecture specifica
tions
TL 0 This bit is used to indicate the presence of tracing logic R Preset Required
in the processor.
0: No tracing logic implemented
1: Tracing logic implemented

2.2 Processor Modes

The PDtrace specification allows tracing to be enabled or disabled based on various processor modes. This section
precisely describes these modes, and the terminology is then used later in the document.

DebugMode ¢« (Debugpy = 1)

16 MIPS® PDtrace™ Specification, Revision 6.16
Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

2.3 Subsetting

ExceptionMode ¢« (not DebugMode) and ((Statusgyg;, = 1) or (Statusgg; = 1))
KernelMode ¢ (not (DebugMode or ExceptionMode)) and (Statusggy = 2#00)
SupervisorMode <« (not (DebugMode or ExceptionMode)) and (Statusggy = 2#01)
UserMode ¢« (not (DebugMode or ExceptionMode)) and (Statusggy = 2#10)

2.3 Subsetting

The PDtrace specification allows four levels of subsetting. Within each level, al features required to support the level
must be implemented. The allowable subsets are:

1. No PDtraceimplemented

2. PDtrace with PC tracing only

3. PDtrace with PC and load and store address tracing only

4. PDtrace with PC, load and store address, and load and store data tracing

The specific subset implemented by a processor or core can be determined by reading the TL bit (0) of the Config3
register (see Table 2.1) and the ImpSubset bits (6:5) in the TraceControl2 register (see Table 7.3 on page 61).

In addition, Trace Trigger from EJTAG Hardware breakpoints (Section 3.16 “Trace Trigger from EJTAG Hardware

Instruction/Data Breakpoints”) is optional. This feature depends on the EJTAG optional feature for hardware instruc-
tion and data breakpoints. The exact nature of this subsetting is described in later chapters.

2.4 Overview of the Trace Control Block

The tracing logic within the processor core (shown in Figure 2.1) outputs al trace information to the on-core trace
control block (TCB) unit. The TCB isresponsible for collecting the trace data and storing thistrace datain an on-chip
trace memory or to an off-chip trace memory using the Probe Interface Block (PIB). The TCB's control registers
accept user requests for program tracing and determine what is traced and what is output.

The description of the TCB in this document includes:

» Detailsonthe TCB’sinterna architecture, i.e., registers, and how these registers are used to control tracing

» Traceformats used by the TCB to write trace information to memory

* Interface between the TCB and the TAP controller

This document does not include:

» TCitrace Interface that connects the TCB to the Probe I nterface Block, which is off-core but on-chip

e ThePIB

e Externa Probeinterface including its electrical characteristics

Thisinformation is available in core-specific documents.

Figure 2.3 shows the TCB, the PIB, and the trace data path from the TCB to the Probe IF. It is optional whether the
TCB implements on-chip trace memory and/or the TCtrace |F with a PIB and off-chip trace memory.

MIPS® PDtrace™ Specification, Revision 6.16 17

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Overview of the MIPS® PDtrace™ Architecture

Figure 2.3 TCB and Optional PIB Overview

Core Clock l

Probe IF
TCB
core trace data/control (Trace Control Block) TCtrace IF PIB TR_TRIGIN
- - > (Probe TR_TRIGOUT
R, Interface TR DATA
'+ On-chip Block)
TCB Tep IF TCBTap |.Trace Memory' TR_CLK
-] nicriace | Z TR_PROBE_N

TC_ChipTrigOut
TC_ChipTrigin

Figure 2.4 lllustration of the Core and TCB with External Trace Memory

On-Chip Off-Chip

trace data/control
Probe IF
TCtrace IF
Software/
Trace Debug host
genera- .
tion logic ¢ I I
+> race Regeneratio
Core l 2 TCB PIB Trace Memory Software
9 E—
| el |
TCB TAP
TAP Con- o~ 6 I interface I TraceControl Debugger
troller oo mm d TraceMask EJTAG
< / Probe
5

Figure 2.4 shows the full system configuration when the TCB is streaming data to off-chip trace memory through the
PIB. The number of pins needed for trace data on the Probe I F is configurable to 4, 8, or 16. Note that the TCtracel F
isat the coreinterface boundary. The PIB is outside the core. Although cores from MIPS Technol ogies may include a
sample PIB implementation, its design can be modified to suit the SOC vendor and the probe vendor. For example,
whether or not a DDR memory interface is used on the Probel F is a decision made by the SOC vendor.

Figure 2.5 shows the configuration in which the TCB is streaming data to an on-chip trace memory. The size of the
on-chip trace memory is configurable. After trace capture has stopped, the trace data in the on-chip memory is
accessed through the EJTAG probe by the Trace Regeneration Software.

18 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

2.4 Overview of the Trace Control Block

Figure 2.5 Illustration of the Core and TCB with Internal Trace Memory

On-Chip Off-Chip
trace data/control
Software/
Trace Debug host
genera- TCB L |
tion logic I I
Core ’ ’ 1 Trace 1 I race Regeneratio]
e Memory Software
| 1
L - . ‘
9
‘ - Fpre—n TraceControl
1 .TCBT P 1 TraceMask Debugger
TAP Con- <+ interface TraceData
troller] ol EJTAG
< Probe
5

The TCB includes two primary interfaces:

» TheTCB TAP interface, which connects the EJTAG TAP controller resident within the processor core to the
TAP functionality present within the TCB.

* Anoptional TCtrace interface to the PIB. Thisinterface is described along with the Probe | F in the core-specific
document. If the TCB is configured with only on-chip trace memory, the TCtrace |F and the PIB are not needed.

MIPS® PDtrace™ Specification, Revision 6.16 19

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Chapter 3

PDtrace™ Description

A program executes sequentially through instructions within a basic block, then jumps (or branches) to the head (first
instruction) of the next basic block. To reconstruct the dynamic execution path of the program, it is sufficient to pro-
vide the post-analyzer with the PC address of the head of each basic block. Even thisis not always necessary, because
it may be possible in some instances to statically predict the value of the branch target, provided there is a separate
indication for the taken branch. Thus, PC addresses need be traced only when it is not possible to statically predict the
PC of the branch target. For the MIPS32 and MIPS64 instruction sets, the statically unpredictable instructions are JR
and JALR (for branch target address), and BEQ, BNE, BGEZ, etc. (for branch on condition). Other statically unpre-
dictable PC changes occur with taken exceptions and return from exceptions (ERET and DERET). To enable the
post-analyzer to re-synchronize itself with program execution, the PC value is also output at predictable intervals and
synchronization periods.

The next sections of this chapter describe the various bits used in the output trace formats generated by the TCB. This
information indicates how tracing information is output and therefore is needed by the trace reconstruction software
to rebuild the program execution.

3.1 Instruction Completion Indicator (InsComp)

Three bits are used as an indicator of completed instructions and their type in the processor’s pipeline. Oncetracing is

initiated, avalid InsComp value is required in every cyclel, except when the TCB has requested that the trace be
stalled.

Table 3.1 Instruction Type Completion Indicator (InsComp)

Value Mnemonic Description

000 NI No instruction completed this cycle. A "No Instruction™
can happen due to a pipeline stall or when the instruction
was killed (due to an exception).

001 | Instruction completed this cycle

010 IL Instruction completed this cycle was aload

011 IS Instruction completed this cycle was a store

100 IPC Instruction completed this cycle was a PC sync. The IPC

valueis used for the periodic output of the full PC value
for synchronization. The tracing hardware should ensure
that thisis not done on an unpredictable branch, load, or
store instruction.

L mplementations are allowed to disable PC tracing. If PC tracing is disabled, it is allowed that InsComp values are not generated
for instruction completion.

MIPS® PDtrace™ Specification, Revision 6.16 20
Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

3.1 Instruction Completion Indicator (InsComp)

Table 3.1 Instruction Type Completion Indicator (InsComp) (Continued)

Value Mnemonic Description

101 IB Instruction branched this cycle. The three encodings (101,
110, 111) for branched instructions indicate a discontinu-
ity in the PC value for the associated instruction. Note that
it is only when the new PC cannot be predicted from the
static program flow that it is traced.

110 ILB Instruction branched this cycle was aload

111 1SB Instruction branched this cycle was a store

NI (No Instruction complete) is used when the internal pipeis stalled for some reason, and no instruction completes
inthat cycle. It is also used when tracing has been turned off, but the internal FIFO is still emptying trace data out to
the TCB that is data-related and not instruction-related, for example, data address or data val ues.

Instructions within abasic block areindicated withan I, IL, or ISvalue. The | isused to indicate a simple instruction
that is neither aload nor astore. The IL isused to indicate aload instruction and the IS is used to indicate a store
instruction.

Unpredictable (and predictable) changes in the PC value are indicated as a branch-type instruction, i.e., 1B, ILB, or
ISB. Note that the first instruction in the basic block is always indicated as a branch instruction. When this first
instruction isaload or astore, then InsComp[2:0] takes values ILB or | SB respectively, to indicate the combined con-
dition of the branch and load or store.

Implementation Notes: Figure 3.1 shows an example of when the InsComp value might be output by the processor
tracing logic, with respect to the processor pipeline implementation. This example pipeline has six stages. They are:
“fetch”, “decode”, “execute”, “memory”, “align”, and “write back”. In this example, the InsComp value is finalized
after the memory stage. That is, the instruction goes through the pipeline and is captured after the last stage when the
instruction must complete and can no longer be killed. In the example shown, thisis after stage 4. Thiswill differ, of
course, with each pipeline implementation.

Figure 3.1 A Sample Pipeline And InsComp Trace Point

1 2 3 4 5 6
fetch |~ decode —®= execute —® memory align |— writeback
InsComp

Some instructions might have to provide more information for acomplete picture of program execution. For instance,
abranch indicator might have to transmit the PC value if the unpredictability liesin the branch target address. If the

unpredictability wasin the branch condition (i.e., determining if the branch istaken or not), then the branch target PC
value need not be transmitted; it sufficesto indicate that it was a*“taken” branch using the appropriate InsComp value.

The list below summarizes the three possible branching options, and the corresponding InsComp and PC tracing
action:

* When the branch is unconditional and the branch target is predictable, 1B, ILB, or 1SB is used for the InsComp

value, and the PC is not traced out.

MIPS® PDtrace™ Specification, Revision 6.16 21

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Description

* When the branch is conditional, and the branch target is predictable, 1B, ILB, or ISB is used only when the
branch istaken. The PC is not traced out.

* Whenthebranchis conditional or unconditional, and the branch target is unpredictable, 1B, ILB, or ISB isused
and the PC is traced (using TPC for TType, to be discussed in section Section 3.2 “Trace Type and an Example
Code Fragment”).

There are four possible circumstances that cause the value of the PC to be traced:

1. AfteraJRor JALR instruction

2. After acontrol transfer to an exception handler

3. After areturn from exception (ERET or DERET instruction)

4. ThePCistraced out periodically for software synchronization of trace with the static program image

When the InsComp value indicates a store in the completing instruction with an IS, then the store address and data
might have to be transmitted if the user requires them to be traced. With an 1SB, the PC value might also need to be
traced out. In this situation, the PC value is sent first, followed by the store address, and finally the store dataiif itis
immediately available.

AnILB issimilar, and might require the tracing of the PC value as well as the |oad address and the |oad data. The PC
valueis sent first. If the load hitsin the cache, then the PC valueis sent first, followed by the load address, and finally
theload dataiif it isimmediately available.

Theload or store data may not be immediately available. This can happen when the load missesin the cache and must
be fetched from memory, or when the store data is pending the completion of a previous instruction with along
latency that is computing the datavalue. In thissituation, the load or store instruction is still indicated with the
appropriate InsComp value of either IL, ILB, IS, or ISB. If the PC value needs to be traced, then it is traced first, fol-
lowed by the load or store address, but the tracing of the corresponding datais deferred until it is available. While the
processor iswaiting for this data, other instructions may complete in the pipeline and are indicated by the appropriate
InsComp values. When the datais available, it istraced out as soon as possible by the processor using the appropriate
DataOrder value to indicate that the data is out-of-order (see 3.7 “Data Order Signal” on page 29).

Implementation Notes: Figure 3.2 shows, for the hypothetical pipeline, the points at which the different pieces of
information could be tapped out to be traced. The PC value and the store address and | oad address are tapped out after
stage 4. If the load hitsin the primary cache, or the store data is available, then this information may be completely
traced out at that point. If not, only the data’s address is sent, and the data value is traced out when it becomes avail-
able.

22 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

3.2 Trace Type and an Example Code Fragment

Figure 3.2 lllustration of a Pipeline and Trace Tap Points

1 2 3 4 5 6
fetch | —® decode —®» execute |—® memory B align —®{writeback
PC available store data
store and cached load data
load address < load data
data order from memory

determination store data

from previous
v instruction

compressed
PC, store, and
load address

+ compressed load/store data

FIFO

Address / Data Values

3.2 Trace Type and an Example Code Fragment

The TType[2:0] bits are used to indicate the type of information being traced.

Table 3.2 Trace Data Type Indicator (TType)

Value Mnemonic Description
000 NT No data traced
001 TPC Tracing the PC
010 TLA Tracing the load address
011 TSA Tracing the store address
100 TD Tracing the load/store data value
101 TMOAS Tracing the processor mode, the 8-bit ASID, and the

SYNC bit. Thisistriggered by either achange in the pro-
cessor mode, by a software write to the EntryHi register, or
atrace synchronization operation. If the processor does
not implement the standard TLB-based MMU, it is
UNPREDICTABL E whether awrite to the EntryHi regis-
ter triggers a TMOAS operation. (See Figure 3.3).

110 TUl Tracing the user-defined trace record - type 1
111 TU2 Tracing the user-defined trace record - type 2
MIPS® PDtrace™ Specification, Revision 6.16 23

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Description

An InsComp[2:0] value of IB, ILB, or ISB is traced when a branch instruction is taken, and the PC is traced in the
same cycleor later using a TType[2:0] value of TPC.

Implementation Notes: We will use Table 3.3 to illustrate these operation sequences. This table shows an example
of aMIPS assembly fragment and the values of InsComp, TType, and TEnd that will be traced upon completion of
each instruction of the code fragment in the pipeline. Assume that tracing was begun earlier, and thus the start of trac-
ing is not shown in this code fragment. The example also assumes a 32-bit processor and a 16-bit address/data trace
width. This may imply that more than one type of a certain trace format is required to trace all the address or data
value bitsif morethan 16 bits are being traced. Hence, the TEnd bit is used to indicate the last format of a certain type
needed to convey the same type of data. The trace formats, discussed later, allow two widths of size 16 and 32 bitsto
be traced with a certain format type.

As described earlier, ataken branch is aways indicated with an 1B value. However, when the branch target address
can be deduced from the static program image, there is no accompanying TPC trace, that is, the value of the current
PC is not traced. An example of this can be seen in cycle 7, where the tracing of IB indicates the taken branch from
the JAL instruction in cycle 5.

An example of an IB value traced for the InsComp value and accompanied by a corresponding TPC (to trace the stat-
ically unpredictable PC value) can be seen in cycle 10. Thisistriggered by the JR instruction in cycle 8. Cycle 10 is
the branch target and also thefirst instruction of the new basic block. (Cycle 9 isthe execution of the instruction in the
branch delay slot). Note that the TPC trace could be directly started in cycle 10 since the implemented FIFO was
empty.

The TEnd bit is used to indicate the end of any trace format previously started. If the PC change value can betraced in
asingle cycle, then the TEnd bit may be traced in the same cycle as the TType value TPC. An example of thisis seen
in cycle 10. Otherwise, it may follow the required number of cycleslater, for examplein cycle 4, whereit used 2
cyclesto trace the store address val ue.

Note that at the processor’s discretion, the TEnd bit may be used to cut off redundant sign bits from an address or data
transmission; that is, the tracing is curtailed, and not all the upper bits of an address or data need to be stored in trace
memory. The reconstruction software must recognize this situation and sign-extend the address or data appropriately
before use.

When aload instruction is executed, the InsComp value that indicatesthisis|L and ILB, and astoreisindicated using
ISand ISB. The user might have requested that load and store addresses (and data) be traced. In this situation, the
load address and store address are traced using TLA or TSA respectively for the TType value.

Table 3.3 Example Code Fragment With Some PDtrace™ Trace Values

Cycle
No. PC Instruction InsComp[2:0] TType[2:0] TEnd
1 0x00400188 SW $6, Oxel70($1) IS TSA 1
2 0x0040018c SwW $4, 0xb134($28) IS TSA 1
3 0x00400190 SwW $5, 0xb130($28) IS TSA 1
4 0x00400194 SW $0, 0x1c($29) IS TSA 0
5 0x00400198 JAL 0x418d9c I TSA 1
6 0x0040019¢c OR $30, $0, $0 I NT X
7 0x00418d9c NOP 1B NT X
8 0x00418da0 JR $31 I NT X
9 0x00418da4 NOP I NT X

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

3.2 Trace Type and an Example Code Fragment

Table 3.3 Example Code Fragment With Some PDtrace™ Trace Values (Continued)

Cycle
No. PC Instruction InsComp[2:0] TType[2:0] TEnd
10 0x00400180 JAL 0x411c40 1B TPC 1
11 0x00400184 NOP I NT X
12 0x00411c40 JR $31 1B NT X
13 0x00411c44 NOP I NT X
14 0x00414adc LW $4, 0xb134($28) ILB TPC 0
15 0x00414ae0 BEQ $14, $0, 0x414af8 I TPC 1
16 | 0x00414ae4 ADDIU $29, $29, Oxffed I TLA 1
17 0x00414af8 OR $7, $0, $0 1B TD 0
18 | 0x00414afc NOP IPC TD 1
19 0x00414b00 ADDU $6, $6, $2 I TMOAS 1
20 0x00414b04 OR $7, $2, $0 I TPC 0
21 | 0x00414b08 SLTU $1, $2, $1 I TPC 1

An example of store addresstracingisseenin Table 3.3 at cycles 1, 2, 3, and 4. The store instruction in cycles 1, 2,
and 3 uses only 1 cycleto trace the store address, while the store address associated with the store in cycle 4 uses 2
cycles (perhaps it was not possible to compress the store address to less than 16 bitsin this case). Note that in this
case only the store address, not the data, is sent as per the user request. If store datais also being traced, then the store
datais sent immediately following the store address using a TD value for the TType bits. If the store datais not imme-
diately available, it is sent later with the appropriate DataOrder value.

Assume that sometime between cycle 4 and cycle 14, the user changes the requested trace output and wants load and
store data to also be traced. In this case, the load instruction LW in cycle 14 will transmit not only the address, but
also the associated data. Note that sometimes the load datais not immediately available, since the load might missin
the first-level cache. In this situation, the load address is traced immediately, and the load datais traced when it
becomes available. The association of the load data with the corresponding load address is done using the DataOrder
signal (not shown in the table).

The ILB in cycle 14 needs two cycles to trace the PC value, and then traces the load address using TLA in cycle 16.
Theload dataisthen traced using TD during cycles 17 and 18. In this example, the load must have hit in the cache;
otherwise, the associated |oad could have been separated from the instruction by an arbitrary number of cycles
(required to satisfy the load miss from secondary memory).

An example of the periodic PC trace | PC for synchronization is shown in cycle 18. The required tracing for a syn-
chronization includes sending a record of the process ASID and processor mode. This uses the TType[2:0] value of
TMOAS, as seen in cycle 19 (traced as soon as the previous TD completes). Thisis followed by atracing of the full
PC value, which takes 2 cycles (cycles 20 and 21). Because |oad/store address tracing is turned on (as described in
3.5 “Trace Synchronization” on page 28), the synchronization operation is not completed until aload and store full
address trace is also sent (not shown in Table 3.3). A load or store address trace is always tied to aload or store
instruction respectively. The full load or store addressis thus not sent until the next occurrence of aload or store
instruction after the | PC trace.

The TMOAS trace is used to track any modifications to the ASID or the processor mode. Thistracking is enabled
whenever tracing is on before the mode change takes place. If tracing is off when an ASID or mode change occurs, no
mode transaction occurs. Figure 3.3 illustrates the bits that are traced in the right-most position for a TMOAS record.

MIPS® PDtrace™ Specification, Revision 6.16 25

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Description

Like other TType records, a TMOAS record can be split into two transactions in the trace formats, with the upper 16
bits sent in the second transaction. The first and the second (final) transaction can be defined using the TEND bit,
whichissetto Ointhefirst and to 1 in the second (refer to the section on TCB trace formats for a description of
TEND). Note that only the lower 16 bits of the TMOAS record are needed if the processor does not support multiple
outstanding load instructions, and thus an optimization on such processors would only send one TMOA Strace record
with TEND set to 1.

Figure 3.3 A TMOAS Trace Record
31 30 23 22 21 20 19 16 15 14 13 12 11 10 8 7 0

0 TCid 5|K \% IFI>:K PendL EI: EPL| O | ISAM POM ASID

Table 3.4 A TMOAS Trace Record Field Descriptions

Fields

Name Bits Description

TCid 30..23 TCID
Only required if the processor implements M T; otherwise reserved. ID of the
TC that corresponds to the DKill signal assertion (see below).

DKill 22 Data Instruction Kill

Only required if the processor implements MT; otherwise reserved. When a
ITC datainstruction iskilled for agiven TC, thisisindicated by asserting a
TMOAS record with this bit set and a TCid value. When this bit is not set to
one, thisindicates that no Data kill information isvalid in this TMOAS
record.

Implementation Notes: SinceaTC whose I TC datainstructions werekilled
may not execute an instruction for awhile, and data completion for other TCs
may occur in the meantime, this TMOAS indication record is sent on an
instruction that belongs to a different TC right after the late exception that
killed the ITC instruction.

\Y 21 Valid

Only required if the processor implements MT; otherwise ignored. This bit
determines whether or not only the DKill bitsare valid in this TMOAS
record or theentire TMOAS recordisvalid. That is, if V is0, then al defined
TMOAS hitsarevalid, and if V is 1, then only bits 30..22 are valid.

PIKill 20 Processor Instruction Kill

Only required if the processor implements MT; otherwise ignored. This bit

indicates that the instruction just previously traced was actually killed after it

was traced. This scenario is possible in some situations where, for example,

an exception is taken after the ER stage of the ALU pipe. There are at |east

two cases to consider:

« If an exception occurs after ER when tracing a LW/SW accessing ITC
memory in acoreimplementing MT.

e Ifinan MT core, aTC is halted while executing Wait, Yield, or an instruc-
tion accessing ITC memory.

26 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

3.2 Trace Type and an Example Code Fragment

Table 3.4 A TMOAS Trace Record Field Descriptions

Fields
Name Bits Description
PendL 19:16 Pending Load
Thisfield isvalid only when SYNC is 1, see below. When SYNC is 1, this
field indicates the number of outstanding loads at the IPC cycle. If the num-
ber of loadsis zero, then al datatransmission TDs after that areignored until
the next load instruction, at which point counting isrestarted. Such TD trans-
missions are from store instructions which could not complete before the
IPC signal was sent.
Note that a sync happens with an InsComp value of IPC. Depending on
whether or not there is data buffered up internally waiting to be sent out, the
accompanying TMOAS may not be sent until several cycles later. In the
meantime, any data sent in between the I|PC and the TMOAS record may be
ignored (at trace start or after an overflow) since this belongs to load and
storeinstructionsthat happened before the sync. Now, if thereare any load or
store instructions between the |PC and the TMOAS, then the data for this
will only be seen after the TMOAS is transmitted, since they would be buff-
ered behind the TMOAS.
SYNC 15 Synchronization
When 0, this record was sent when the ASID, POM, or ISAM changed.
When 1, this record was sent for a synchronization event.
EPL 14 When 1, the PendL field isto be interpreted as (PendL + 16). When 0, the
PendL field isinterpreted by itself. Thisisintroduced in PDtrace rev. 6.00.
ISAM 12:11 Instruction Set Architecture Mode
Value In Architecture Mode
00 MIPS32
01 MIPS64
10 MIPS16e from MIPS32 mode
01 MIPS16e from M1PS64 mode
POM 10:8 Program Operating Mode
Value Description
000 Kernel Mode (EXL = 0, ERL =0)
001 Exception Mode (EXL =1, ERL =0)
010 Exception Mode (EXL =don’t care, ERL = 1)
011 Debug Mode
100 Supervisor Mode
101 User Mode
110 Reserved
111 Reserved
ASID 7:0 The ASID of the current process. If the processor does not implement the
standard TLB-based MMU, thisfield is always traced as a zero because the
EntryHi register, and hence the ASID, is not defined.
0 31,13 Reserved for future use

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

27

PDtrace™ Description

In addition to the TType values discussed above, there are two, TU1 and TU2, which are used for user-triggered trac-
ing. Whenever the user writesto a special register, the register values are traced out using one of the above TType val-
ues (depending on the exact register being written to).

3.3 Trace Mode

The TMode value is used to indicate the compression method used to transmit the address or data value. Thisis used
by the external software to regenerate the program flow. The compression technique depends on the particul ar type of
value being transmitted. A more detailed description is provided in Chapter 6, “ Trace Compression” on page 53.

Table 3.5 Trace Mode Bits

TType TMode

000 (NT) Reserved
101 (TMOAYS)
001 (TPC) 0 -> deltafrom last PC value

1-> compression algorithm A (full address)
010 (TLA) 0-> deltafrom last data address of that type
011 (TSA) 1 -> compression agorithm B (full address)
100 (TD) 0 -> Reserved
110 (TUD) 1-> compression algorithm C (full data)
111 (TU2)

3.4 Start of Tracing

When tracing isfirst started, or when it is re-started after a break, some basic information is first needed to allow
external software to identify the trace start point in the static program image, and to make some reasonabl e conclu-
sions about the processor mode at the start of tracing. The first record that istraced isa TMOAS. This trace record
type shows the processor mode and the ASID value of the currently executing processor. Thisrecord isfollowed by a
trace of the full PC value for the first instruction traced. Thisfirst traced instruction must use an 1B, ILB, or ISB
InsComp value so that the external software can correlate the PC transmission with the InsComp value. In addition, if
load/store address tracing is turned on, then the first encountered load/store instruction will send the full address
instead of adeltavalue. Note that the synchronization counter isreset to the valuein TraceControl2g» when tracing

is started.

3.5 Trace Synchronization

28

After the full PC value, or the full address for the load/store instruction, has been sent to the start of tracing, subse-
guent traced addresses may all be delta values. Hence, it is possible that the external software will occasionally lose
track of the current execution point in the static program image. To fix this potential problem, the tracing logic sends
periodic synchronization information.

The synchronization tracing function is triggered when the internal synchronization counter overflows based on the
synchronization period bits as set in the TraceControl2 CPO register. Similar to the start of tracing, when the syn-
chronization period is reached, an IPC is sent for InsComp, accompanied by a TMOAS record, followed by afull PC
value. To ssimplify this | PC transaction type, the hardware must ensure that the instruction used to synchronize the PC
valueisnot abranch, load, or store instruction. Hence, the synchronization period is an approximate point, where the
transmission of the IPC can be delayed by afew instructions until an instruction isfound that is neither abranch, load,

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

3.6 Trace Overflow and Restart

or astore instruction. Note that the TMOA S associated with synchronization is sent only when the |PC instruction
has been identified, to prevent other TType records between the TMOAS and the full PC trace for the synchroniza-
tion. At thisjuncture, if load/store addresses are not being traced, then this completes all the transmissions needed for
synchronization. If load/store addresses are being traced, then the first load and store instructions encountered after
the IPC transmission trace afull address value, rather than a delta. This completes the synchronization process. Note
that the synchronization counter is reset to the value in TraceControl2g p after the IPC has been sent.

Note that the TMOAS record that is traced for synchronization uses avalue of 1 for the SYNC bit field (see Figure
3.3). Thisisan aid used by external software to synchronize the InsComp stream and the data stream. To use this bit
to synchronize, external software will ook in the trace buffer for the first IPC entry; when it finds one, it starts [ook-
ing in the trace buffer from the current cycle onwards for the first TMOAS record with the SYNC bit set to one. The
first PC value following this TMOAS record will be afull PC transmission that corresponds to the |PC entry.

The TMOAS record also traces the number of outstanding loads and storesif data value tracing is underway. This
ensures that in an out-of-order data return processor, the software using the record as a synchronization will know
how many data values are till anticipated and count them correctly. See Figure 3.3.

3.6 Trace Overflow and Restart

In area implementation, an internal FIFO or buffers may be used to hold address and data values waiting to be com-
pressed, formatted, and traced out of the processor. It is possible to have a program sequence that overflows one or
more of these FIFOs. When the FIFO overflows, the core is essentially losing trace data, and hence the output
becomesillogical and is no longer atrue representation of the program execution sequence. In this situation, the most
natural thing for the core logic to do is abandon tracing in the current cycle, discard al entriesin the FIFO, and restart
tracing from the next completed instruction in the following cycle. Note that in this situation, the first new instruction
to be traced after the overflow must haveitsfull PC value, so this should be treated asan IB, ILB, or ISB. Similar to a
trace start or re-start situation, a TMOAS record isfirst sent after the overflow, and before the full PC valueis trans-
mitted.

It should be possible for the entire program trace to be captured under all circumstances, and no trace records lost.
Thisis done using the InhibitOverflow control bit from the program or the user’s debugger. When asserted, this bit
implies that the processor core must back-pressure the pipeline and stall it without overflowing the FIFO. (Hence, if
InhibitOverflow is asserted, the core must ensure that Overflow is never asserted.) The pipelineis restarted as soon as
the FIFO starts emptying again.

3.7 Data Order Signal

The data order bits DataOrder are used to indicate the out-of-orderness of load and store data that is traced out. The
main purpose of thisisto allow load and store data to be traced out as and when it becomes available, and not main-
tain local storage that sequencesit. This works by indicating the position of the traced |oad/store datain the list of
current outstanding loads/stores starting at the oldest. For example, assume that the program issues 5 loads A, B, C,
D, E, respectively.

Table 3.6 Load Order Example

Load Data Data Traced
Load Cycle # Cache Op Available Out DataOrder
A 1 Miss - - -
B 2 Hit B B 1 (second oldest)
C 3 Hit 1 (second oldest)

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc.

All rights reserved.

29

PDtrace™ Description

30

Table 3.6 Load Order Example (Continued)

Load Data Data Traced
Load Cycle # Cache Op Available Out DataOrder
D 4 Miss - - -
E 5 Hit E E 2 (third ol dest)
- k - A A 0 (oldest)
- k+p - D D 0 (oldest)

Table 3.6 shows an example of how these five loads may be traced. Load data that hitsin the first-level cacheis usu-
ally available at some fixed delay from instruction issue. So without loss of generality, we assume in the table that
load data is available in the same cycle as the issued instruction. The number of bits used to specify the DataOrder is
processor implementation-specific and depends on the number of possible outstanding loads and stores in that imple-
mentation. It is assumed that the default number for an implementation of a moderately complex processor is 4 hits,
and thus all the examples below use this value.

Table 3.7 Data Order with Four Bits

Value Description
0000 data from oldest load/store instruction (is in-order)
0001 data from second-oldest |oad/store instruction
0010 data from third-oldest load/store instruction
0011 data from fourth-oldest load/store instruction
0100 data from fifth-oldest load/store instruction
0101 data from sixth-oldest |oad/store instruction
0110 data from seventh-oldest |oad/store instruction
0111 data from eighth-oldest |oad/store instruction
1000 data from ninth-oldest |oad/store instruction
1001 data from tenth-oldest |oad/store instruction
1010 data from eleventh-oldest |oad/store instruction
1011 data from twelfth-oldest |oad/store instruction
1100 data from thirteenth-oldest load/store instruction
1101 data from fourteenth-oldest |oad/store instruction
1110 data from fifteenth-oldest |oad/store instruction
1111 data from sixteenth-oldest |oad/store instruction

If the number of outstanding data supported by four bits is exceeded, the processor simply issues the overflow signal,
clearsitsinternal buffers, and restarts tracing. If the InhibitOverflow signal is asserted, before continuing the proces-
sor must stall until at least some of the outstanding loads/stores are satisfied. Note that if data values are being traced,
limits are being reached on other resources like the internal FIFO, and thusit is unlikely that the number-of-outstand-
ing-data limit will be so easily reached.

Some processors will graduate a store instruction while still waiting for the store data to become available. Thusa
load can bypass a store, and thus load data will be available before a preceding store's store datais available. An
exampleisillustrated in Figure 3.4.

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

3.7 Data Order Signal

Figure 3.4 An Example of Load Data Bypassing an Earlier Store

(1)

Cycle Program InsComp TType Comments
m+0 DIV r3,r2 | NT multi-cycle instr
m+1 MFHI r1 | NT
m+2 SWr1, 0(r3) 1Sa TSAa data not available
m+3 SW r4, 0(r7) 1Sh TSAb data not available
m+4 LW r4, 0(r6) ILc TDb store data
m+5 LW r5, 4(r6) ILd TLAC cache hit
m+6 TDc load data
m+7 TLAd cache hit
m+8 TDd load data

m+9+k TDa store data

@)
Required Data Order DataOrder
TDa 1
TDb 1
TDc 1
TDd 0

Block (1) in Figure 3.4 shows asmall program fragment and the sequence of InsComp and TType traces. This proces-
sor will graduate and trace all instructionsincluding thefirst store | Sa. This store then waits for the datain rl before it
actually completes its execution. Some processors will order store data. Hence the second store I Sb will wait for |Sa
before it can complete. But the following loads, ILc and ILd would complete without any delay. In this situation, the
TType column of block (1) shows the sequence of data availability. But if the processor must trace data sequentially,
then it isrequired to trace out datain-order as shown in the left column of block (2). This sequential requirement can
be avoided by using the DataOrder bits used to order both the loads and stores. The DataOrder values for the dataiis
shown in the right column of block (2).

Another example that illustrates the combined |oad/store ordering is shown in Figure 3.8. Thistable showsin column
one a sequence of only the loads and stores from a program fragment. The second column shows the sequence in
which the data associated with the loads and stores become available, and the third column shows the DataOrder sig-
nal that is needed to trace out the sequence as available.

Table 3.8 Data (Load/Store) Order Example

Load/Store Data Trace Order DataOrder

Load-A - -
Load-B - -
Store-C - -
Load-D - -
Store-E - -

MIPS® PDtrace™ Specification, Revision 6.16 31

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Description

Table 3.8 Data (Load/Store) Order Example (Continued)

Load/Store Data Trace Order DataOrder
Store-F - -
Store-G - -
Store-H - -

Load-I | 8 (ninth oldest)
- A 0 (oldest)
- C 1 (second oldest)
- E 2 (third ol dest)
- F 2 (third ol dest)
- G 2 (third ol dest)
- H 2 (third ol dest)
- B 0 (oldest)
- D 0 (oldest)

3.8 Tracing During Processor Mode Changes

32

Note that during normal execution, the processor will change its operation mode frequently. For example, when exe-
cuting user-level code, an interrupt may cause the processor to jump to kernel mode to service the interrupt. When the
interrupt has been serviced, the processor will switch back to user mode. A mode changeisindicated in the tracing
logic by tracing out a TMOAS for TType.

In the situation that the mode change affects tracing, for example, the tracing system has been set up to trace only in
user mode and not in kernel mode, then the interrupt service routine should not be traced. Upon jumping to kernel
mode, the core tracing logic will add a TMOAS as the last record. In the meantime, all the accompanying InsComp
values are traced as NI (No Instruction) until the TMOAS entry is traced. Once the TMOAS record has been output,
nothing new is traced until execution jumps back into user mode. Note that pending information about outstanding
loads and stores that were executed before the mode switch could still be traced. By knowing the static instruction
stream in the user program, and using the TM OAS record, the external trace reconstruction software can figure out
that tracing was suspended when the processor jumped to kernel mode.

When jumping from a non-tracing mode to a tracing mode, the first record output is TMOAS to indicate the mode
change. Thisisfollowed by afull PC value of the first instruction in the tracing mode. Thiswill enable the external
trace reconstruction software to resynchronize itself and track program execution in the desired mode.

When tracing is turned on and the processor enters Debug Mode where tracing is turned off, in the cycle-accurate
tracing situation where every cycleisrecorded including the ones where no instruction is executed, it isrecommended
that the processor turn off tracing as soon asit is detected that the DM bit is set. Otherwise, since it might take hun-
dreds of cyclesto fetch the first debug mode instruction through the TAP/probe and execute it, the trace buffer will fill
with records of idle cycles before the execution of thefirst debug instruction can be used to detect that tracing must be
turned off. Thus, recording the entry into Debug mode as a processor mode change and then immediately stopping all
tracing will prevent useful trace information in the trace buffer from being overwritten. In this situation, in the pres-
ence of MIPS MT, it is recommended that all DM bits (in each VPE) be checked, and when any one of them is set,
tracing be immediately stopped when in cycle accurate mode).

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

3.9 Tracing Store Conditionals

3.9 Tracing Store Conditionals

A store conditional instruction that is part of an LL/SC operation may or may not perform the actual store operation.
A store conditional is always traced out asan IS or ISB for the InsComp value. If astore address or datais being
traced, then this associated information is traced aswell. It isthe responsibility of software to determine from the con-
text of the tracing and the program source whether the store conditional was successful or not. For typical usesof LL/
SC pairs where the code executes in aloop until the SC succeeds, it should be easy to determine if the SC succeeded.

3.10 Tracing MIPS16e™ Macro Instructions

In the MIPS16e™ ASE, several single MIPS16e instructions expand to a fixed sequence of multiple 32-bit instruc-
tions. These include the SAVE, RESTORE, and ASMACRO instructions. (See the MIPS32® Architecture for Pro-
grammers Volume [V-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architecture, document
number MD0O0076).

When executing a Macro instruction, note that the PC address does not change for the instructions that comprise the
macro instruction, and thus the core does not output a PC value until it executes the first instruction outside the
Macro. In fact, the core indicates the completion of the Macro instruction by outputting afull PC value for the first
instruction executed after the macro instruction. Thisinstruction could either have been reached sequentially by fall-
ing out of the macro sequence, or by executing a branch instruction from within the macro sequence. This full PC
value isoutput using a branch indication, e.g., IB for the InsComp value, even though this instruction is most likely
not abranch target. The external reconstruction software will note the preceding Macro instruction, and hence be able
to handle this situation correctly.

Within the macro sequence, normal tracing is carried out. Note that the macro sequence can include, in addition to
arithmetic and logical instructions, load and store instructions, which will be traced in a manner similar to loads/
storesthat are not in a macro instruction sequence. (Note that any branch instruction inside the Macro sequence can
only branch out of the Macro sequence and not to any location within the sequence, since all instructions within the
seguence have the same PC value).

3.11 Tracing MIPS16e™ Extend Instructions

A MIPS16e extend instruction is considered a single instruction, and therefore the PC of the extend part is traced.
Note that a branch to a MIPS16e extend instruction isto the extend part of the instruction. (For details, refer to the
MIPS32® Architecture for Programmers Volume | V-a: The MIPS16e™ Application-Specific Extension to the
MIPS32® Architecture, document number MD00Q76).

3.12 Tracing Instruction Cache and Data Cache Misses

With revision 4.0 of the specification, the PDtrace interface adds the feature in which missesin the instruction cache
and data cache are traced out by the Trace Control Block. This information is associated with the InsComp signal for
instruction caches misses. The instruction cache miss and the data cache missindicate amissin the first level of the

cache hierarchy. If instruction cache misstracing is enabled, and PC tracing is disabled, the full PC of the instruction
that missed in the cache must be traced.

Implementation Notes: In aprocessor that implements an instruction fetch buffer and does specul ative execution
and instruction prefetching, the instruction cache miss information may be duplicated for al instructions in a cache
line, or the instruction cache miss could have been hidden from the back-end of the execution pipeline due to
prefetching. And since tracing is done when an instruction graduates, at the back-end of the pipeline, the instruction
cache miss statistics are not guaranteed to be 100% accurate. This problem is made worse in the presence of MIPS

MIPS® PDtrace™ Specification, Revision 6.16 33

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Description

MT, where due to frequently switching execution between thread contexts, cache miss information for a specific
instruction of a specific thread context can be lost by the time that instruction is traced out.

Similarly, in an implementation it is possible that not all |oad/store misses are traced due to certain constraints in how
the pipeline timeline is implemented, or not all operations shown as misses might actually have been a miss. For
example, in the MIPS32 24KE pipeline, a store operation that misses in the microTLB will show up asahit in the
output trace, whether or not this store actually missed in the cache. Thisis due to the fact that the store operation
passes beyond the trace point in the pipeline before the cache miss or hit logic is done.

3.13 Tracing Potential Function Call/Return Instructions

To debug a program and understand its behavior, it is often sufficient to understand the execution call graph. When
trace memory is limited, this can be an effective means for program debug for error or performance. To facilitate this
feature, revision 4.0 of the PDtrace specification adds the ability for the processor to trace a potential function call
instruction or a function return instruction.

Table 3.9 Possible Instructions for Function Call/Returns

ISA Function Call Instructions Function Return Instructions
MIPS32 JAL, JALR, JALR.HB, JALX JR, JR.HB, ERET, DERET
MIPS64 JAL, ALR, JALR.HB JR, JR.HB, ERET, DERET
MIPS1l6e | JAL,JALR,JALRC, JALX JR, JRC

Note that the conditional procedure call instructions BGEZAL, BGEZALL, BLTZAL, and BLTZALL areintention-
ally omitted from this list. Since executing these instructions does not automatically imply a procedure call, one
would have to examine the PC trace to be certain whether or not a procedure call wasinvoked. When the TFCR bit is
set and PC Tracing is enabled, the FCR bit should be set in the trace format used for the function call/return instruc-
tion. When PC Tracing is disabled, in addition to the FCR bit being set for the function call/return instruction, the full
PC of the function call/return instruction must be traced.

3.14 Tracing with MIPS® MT ASE

34

When the MT ASE is present on the processor, for effective program debug and analysis, trace data needs to be qual-
ified with the V PE and the TC number of the instruction being traced. The user viathe debugger can request that only
instructions from a particular VPE or TC be traced. The analogous function in the CPO trace control register is pro-
vided viathe TCNum and CPUId bits.

On thetrace output, if MT is present on the processor, then every instruction traced is qualified with the TC identifi-
cation. Software can tell from the TCid which VPE it belongsto by reading the appropriate MT CPO registers. Each
PC, address, and data delta computation is done on a per-TC basis. The processor is therefore expected to maintain
per-TC deltavalues. Thefirst time that a PC istraced for athread, the full addressistraced. Thisinitiates the process
whereby future instructions from that thread are done using delta PC values.

To clarify further, each thread of instruction trace is independent and thus must carry its own output of the TMOAS
record, i.e., whenever traceisinitiated for anew thread, a TMOAS is required for that thread. Thisis because each
thread can have its own processor mode such as MIPS32 or MIPS16e, and this needsto beindicated correctly for that
thread. In other words, every time trace is re-started for athread, perhaps because of a FIFO overflow, a separate
TMOAS isrequired on a per thread basis. A sync operation also requiresa TMOAS on aper TC basis. If tracing is
initiated for only asingle TC, then only asingle TMOAS isrequired. But if tracing isinitiated for multiple TCs or per

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

3.15 Tracing in WAIT State

VPE, then separate TMOAS records are required per TC as described above. Also note that when multiple TCs are
being traced, and aTMOAS s sent for thefirst TC after async, the sync counter isrestarted, even though all TMOAS
for other TCs have not yet been sent. Note that TMOAS isaso sent on a TC restart, that is, awrite to the TC restart
register.

3.15 Tracing in WAIT State

A processor enters aWAIT or sleep state when transitioning to alow-power mode. In this situation, since the proces-
SOr is not executing any instructions or doing any useful work, it is not necessary to continue tracing, which can be an
unnecessary drain on power.

3.16 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints

The MIPS EJTAG Specification describes the hardware data and instruction breakpoint feature. In brief, a core or
processor can optionally implement up to 15 instruction and up to 15 data EJTAG hardware breakpoints. These break-
points, when encountered during program execution, cause the processor to take a debug exception. Important to this
discussion isthat a bit (TE bit 2) in the breakpoint control register, when set, allows atrigger signal to be generated
(instead of, or in addition to, causing a debug exception). The PC/Datatracing interface uses thistrigger signal to trig-
ger trace on/off and to enable other tracing modes. When atrigger is generated, thisinformation is traced into the
trace memory so the trace software can have knowledge of when trace triggers were generated.

Please refer to Chapter 9, “EJTAG Trace Registers’ on page 94 for the description of the registerswhich control trace
triggering through EJTAG breskpoints.

3.17 Tracing Performance Counter Values

Dumping performance counter values through the trace stream provides the ability to correlate performance counter
events to the specific instruction execution path. In fact, this providesis a non-intrusive read out of the performance
counter values that does not alter execution behavior. In addition, with the right mechanismsin place, it can alow the
ability to dynamically change the granularity of reading out the counter values without requiring recompilation of
user code. For example, if aparticular type of stall is suspected to be high in aparticular function, that function can be
traced individually, and the performance counter set to detect those stalls and dumped out periodically, thereby allow-
ing a better correlation of that stall type to particular code blocks within that function to narrow down the perfor-
mance bottleneck.

The performance counter trace feature has been defined in specification revision 06.00 and higher. The PeC bit (bit 8
in TraceControl3 and bit 0 in TCBControlE) defines whether or not this optional feature is implemented. Another
bit, PeCE (bit 9 in TraceControl3 and bit 1 in TCBControlE), indicates during program execution whether or not
the feature is enabled. Asbefore, the bit in the TCB register is used by external probe-based debugging and trace con-
trol, and the bit in TraceControl3 is used when software-controlled tracing isin effect. Four other bits (bits 9, 10, 11,
and 12 in the TraceControl3 register and bits 2, 3, 4, and 5in TCBControlE register) are used to enable the specific
eventsthat can trigger adump of the performance counter values. These four events are:

1. Synchronization counter expiration trigger (PeCSync)
2. Hardware trace breakpoint trigger (PeCBP)
3. Function call, function return, or exception occurrence trigger (PeCFCR)

4. When any active performance counter in the processor overflows (PeCOVf)

MIPS® PDtrace™ Specification, Revision 6.16 35

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Description

Bit 15 PCTD (Performance Counter Trace Disable) in the Performance Counter Control register isused to provide
more detailed control over whether or not a particular performance counter value should be dumped with all the oth-
ers. Thisbit isused to disable the specified performance counter from being traced when performance counter traceis
enabled and a performance counter trace event istriggered. Note that the reset and default value for thishit is0, which
enables tracing of this performance counter. Software must explicitly set this bit to 1 to disable tracing this counter
value.

The number of performance counters isimplementation-specific. Implementations may choose to include an addi-
tional cycle counter to help calculate event frequencies. This optional cycle counter has these properties:

1. Itisnotvisiblein the normal Coprocessor O register space, instead its output is only visible in Performance
Counter trace information.

2. 1s32-bitsin width, up-counting from 0x0000000 to OxFFFFFFFF.

3. Increments at an implementation-specific rate, though the preferred rate isthe CPU pipeline clock fre-
quency.

4. Roll-oversthe count from OxFFFFFFFF to 0x00000000 without any type of overflow indication.

5. The counter increments only after the PeCE bit is set and at least one of the Performance Counter is traced.
The counter does not increment when either the Performance Counter feature is disabled (PeCE hit isclear)
or none of the Performance Counters are being traced (all of the PCTD bhits are set).

6. Anytimeatrigger event causes a Performance Counter value to be deposited into the trace and at | east one of
the Performance Countersis traced (at least one of the PCTD bhitsis clear), the value of the cycle counter is
also deposited into the trace. The value of the cycle counter is deposited into the trace immediately after the
Performance Counter values.

7. If none of the Performance Counters are traced (all of the PCTD hits are set), the cycle counter value is not
deposited into the trace.

It is not required to have areset value for this counter, though if the counter isinitialized by reset, areset value of
0x00000000 is preferred. 1t is also implementation specific if the counter is reset upon the clearing of the PeCE bit.

3.18 Filtered Data Trace Mode

36

Thismode is added in PDtrace Specification revision 06.00 and higher. Bit 0 in TraceControl3 (FDT bit) isused to
either disable (value 0) or enable (value 1) this mode. When this mode is enabled, dataload and store addresses are
compared to the hardware data breakpoint address, if the addresses match, the data val ue associated with that match
along with the address are traced out.

This mode works even when data address and/or value tracing is turned on. However, the general usage model is
when both PC and Data trace are turned off since it may not always be possible to identify data that was traced dueto
amatch vs. the regular data stream. This mode is used to shadow one or more static (fixed-address) variables. When
there is a store to the variable, the store value is captured into the trace. Since there are generally two or more data
triggers/watchpoints, the trace will need to uniquely identify the shadowed variable by also tracing out the associated
address.

A main use of thisfiltered datatrace isto support tracing of eventsin an application code on aLinux system. This
type of instrumented code tracing is primarily used for performance analysis although it can aso be used for event

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

3.19 Trace Enabling/Disabling Condition

logging and debug. (This mode has been introduced to provide a mechanism to do low-overhead event tracing from
user application code, since the User Trace Data registers require akernel call from user mode.)

Another potential use of this mechanism isto set awatchpoint and track values written to an I/O or peripheral register.
Off-chip trace probes can timestamp these values, thus providing valuable performance information on the delta
between writes, assuming this was the intended use.

3.19 Trace Enabling/Disabling Condition

Theinput control values to the core that enable tracing can be from the TCB registers or from the CPO control regis-
ters. In addition, trace can also be triggered on and off by the EJTAG hardware instruction and data breakpoint set-
tings, asdescribed in 3.16 “Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints’ on page 35. The
equations specified here clarify the conditions under which different input factors will enable or disable tracing.

Trace enabling and disabling from software is similar to the hardware method, with the exception that the bitsin the
control register are used instead of the input enables from registersin the TCB. The TraceControl 15 bit controls

whether hardware (viathe TCB), or software (viatheTraceControl register) controls tracing functionality.

In any given cycle n, an instruction is traced if the following equation evaluates true:

TraceOn & (TriggerOn(n) | MatchEnable | TriggerEnable | DQEnable | FilterDataTraceActive) (EQ1)
In every cycle, the following state variable is set and then used in the next cycle:

TriggerOn(n+1) <- TraceOn & (TriggerEnable | (TriggerOn(n) & (~TriggerDisable)) (EQ2
The various expressions used in (EQ 1) and (EQ 2) are defined here.

TraceOn <« ((TraceControlpg & TraceControlgy,)
((~TraceControlqg) & TCBCONTROLAG,))

MatchEnable «
(TraceControlqg &
MTEnableR &

(TraceControlg | (((TraceControlgrp ~ EntryHiagqrp) & (~TraceControlgrpy)) =0)) &

((TraceControly UserMode) | B
(TraceControly KernelMode) |
(TraceControlg SupervisorMode) |
(TraceControly ExceptionMode) |
(TraceControly & DebugMode))) |

((not TraceControlqpg) &

MTEnable &

(TCBCONTROLAg or (TCBCONTROLA,grp = EntryHi,grp)) &

((TCBCONTROLA;; & UserMode) |
(TCBCONTROLA; & KernelMode) |
(TCBCONTROLAg SupervisorMode) |
(|

(

&
&
&
&

&
&
TCBCONTROLAy & ExceptionMode)
TCBCONTROLAL & DebugMode)))
MTEnableR < (MT ASE not present) |

((MT ASE present) &

((rrev) |

(TCV & TCNum=current_TC_context) |
(IVPEV) |
(VPEV & VPENum=current_VPE)))

MIPS® PDtrace™ Specification, Revision 6.16 37

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Description

38

MTEnable ¢« (MT ASE not present) |
((MT ASE present) &
((! TCBCONTROLCrpcyatia) |
(TCBCONTROLCrepum & TCNum=current TC_context) |
(! TCBCONTROLCcpyyaiia) |
(TCBCONTROLC(pyyalia & VPENum=current_VPE)))

TriggerEnable ¢« Lowest Numbered Trigger turns on tracing either because the DBPC or
IBPC value was 001, 011, 101, or 111

TriggerDisable « Lowest Numbered Trigger turns off tracing because the DBPC or IBPC
value was 000 or 100

FilterDataTraceActive <« TraceControl3gpr &
(Load_Address_Matches_Hardware_Breakpoint_Address |
Store_AddresS_Matches_Hardware_Breakpoint_Address)

Asseeninthe (EQ 1), trace can be turned on only if the master switch On or PDI_TraceOn isfirst asserted (TraceOn).
Once asserted, there are three ways in which instruction tracing can occur:

1.

A trigger had occurred in the past that turned on tracing, but no trace disabling trigger had occurred since then
(TriggerOn(n)).

Theinput enable signals from the TCB or the trace control register indicate a tracing condition (MatchEnable).
Thistype of tracing is done over general program areas. For example, all of user-level code for a particular pro-
cess (ASID specified), or some such conditions.

The third method to turn on tracing is from the processor side using the EJTAG hardware breakpoint triggers
(TriggerEnable). If EJTAG isimplemented, and hardware breakpoints can be set, then using this method, fine
grain tracing control is possible. It is possible to send atrigger signal that turns on tracing at a particular instruc-
tion. For example, it would be possible to trace a single procedure in a program by triggering on trace at the first
instruction, and triggering off trace at the last instruction.

Traceisturned off when (EQ 1) evaluates false. Note that tracing can be unilaterally turned off by de-asserting the On
bit or the PDI_TraceOn signal.

MIPS® PDtrace™ Specification, Revision 6.16
Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Chapter 4

PDtrace™ Output Trace Formats

One of the two main functions of the TCB isto capture trace information and send it to an on-chip or off-chip trace
memory. Thistrace information is then analyzed by the trace reconstruction software in the debugger. Since tracing
the entire run of aprogram can require alot of storage, compression of trace information isadesirable goal. While the
trace information undergoes one level of compression in the core, further compression is possible before the trace
information is stored to trace memory by the TCB. The TCB achieves this compression using a number of trace for-
mats, which eliminate the storage of unnecessary trace bitsin each cycle. This chapter describes these formats.

In PDtrace revision 05.00 and higher, a mechanism is added to decouple |oad/store cache miss indications from data
tracing. Thisis done by augmenting existing trace formats with load/store hit/missinformation (see Section 4.3.2.1).
The load/store miss indication information is always sent at a fixed offset from the INSCOM P message for that par-
ticular instruction. The offset isimplementation-dependent (2 for the MIPS 34K core family). Since the offset is
always fixed, we do not need a mechanism at startup to identify the offset.

In PDtrace revision 06.00 and higher, a new feature is added for complex coreslike the MIPS 74K core family to pro-
vide the user with information about why no instructions completed in a particular cycle. Existing trace formats are
expanded to include this information. The extensions to the trace formats are described in Appendix A,
“Implementation-Specific PDtrace™ Enhancements for MIPS32® 74K™ Cores’.

4.1 Single-Pipe Tracing Formats

The formats discussed in this section are relevant only when the core or processor being traced is asingle-issue, i.e.,
single pipeline implementation. The multi-pipeline caseis discussed in 4.3 “Multi-Pipe Tracing Formats”.

4.1.1 Trace Format 1 (TF1)

A processor stall isidentified when InsComp[2:0] is 000, TType[2:0] is 000, and no overflow occurs. When the pro-
cessor is stalled, no execution trace information needs to be recorded except that thiswas a stall cycle. This can be
done efficiently using asingle bit “1” for thisformat. Thisis Trace Format 1 (TF1) as show in Figure 4.1. Note that
this stall information is needed only when tracing is used to account for all execution cycles, i.e., cycle-accurate trac-
ing (TCBCONTROLBcp =1, see 8.2 “TCBCONTROLB Register”). However, TF1 generation is suppressed if the

processor executes a WAIT instruction. Once the processor exits the WAIT state, TF1 messages resume.

Note that when parsing atrace format sequence, if the first bit of the trace format is aone, then thisis TF1 and the
next bit isthefirst bit of the next trace format.

Figure 4.1 TF1 (Trace Format 1)

MIPS® PDtrace™ Specification, Revision 6.16 39

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Output Trace Formats

4.1.2 Trace Format 2 (TF2)

A study of program traces shows that with only PC tracing enabled, nothing of significance needs to be captured a
large percentage of the time. For instance, when TType[2:0] isNT (000), i.e., No data Trace, there is nothing to be
traced. So, when TType[2:0] isNT and InhibitOverflow is 0, the only significant trace output is InsComp[2:0].
Having used a single bit value of “1” for TF1, we indicate the combination of non-zero InsComp|[2:0], zero
TType[2:0], and zero overflow in two bits (10,). The next three bits of the format are the value of InsComp[2:0].

This trace format with five bits is called Trace Format 2 (TF2), as shown in Figure 4.2.

Figure 4.2 TF2 (Trace Format 2 Single-Pipe)

4 2 1 0

InsComp | 1|0

Revision 4.00 (and higher) of the PDtrace specification introduces the ability to trace instruction fetch misses and to
tag an instruction that might be afunction call or return. These are fundamental properties that could impact most
instructions in the stream that are represented by a non-zero InsComp value. Therefore, TF2 can optionally be aug-
mented by two bits to trace out this information. These bits are optional and only traced when specifically requested
by the user viabit TLSIF (bit 11) in TCBCONTROLB register. Hence, for correct interpretation of the trace formats,
the trace reconstruction software must be told whether or not these 2 bits are present in each relevant trace format.
This impacts other formats well, and will be discussed in each sub-section separately. The two optional bits of the
TF2 format are shown in Figure 4.3.

e Thelm bit indicates the Instruction miss for this instruction in the instruction cache.
e Theoptiona Fcr bit indicates that thisinstruction is potentially a function call or return instruction.

Figure 4.3 TF2 with Optional Bits (Trace Format 2 Single-Pipe)

Im Fe InsComp | 1|0

40

4.1.3 Trace Format 3 (TF3)

When TType[2:0] isnot NT (000) and there is no overflow, all trace information needs to be captured. Thisisthe
TF3 format shown in Figure 4.4. The DataOrder[2:0] valueisan exception in that it only needsto be captured on the
last cycle of aDataTrace (DT for the TType[2:0] value). Hence, aslight distinction is made between thisformat TF3
(which excludesthe LoadOrder[2:0] value, see Figure 4.4), and the format TF4 (which includes the DataOrder[2:0]
value, see Figure 4.7). This shows a data order value of 4 bits, but this is implementation-dependent and the number
of bitsin the DataOrder field is preset by the implementation in the TCBCONTROLCy,mpo bits. The total length of

the format increases by the corresponding number of bits.

TF3isdistinguished from TF2 by having 000, on thefirst three bits. TF3 may be either 27 or 43 bits wide, depending
on whether 16 or 32 bits is specified by the TCBCONTROLAppyy field. (See 8.1 “TCBCONTROLA Register”).

When cycle-by-cycle accuracy is not needed, the least-significant bit of TF3 may be removed by the TCB hardware.
Please refer to Section 5.1.1 on page 50.

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

4.1 Single-Pipe Tracing Formats

Figure 4.4 TF3 (Trace Format 3 Single-Pipe)

26(42) 1 10 9 8 6 5 3 2 1 0

AD TMode|TEnd| TType | InsComp |0 | 0|0

Revision 4.00 (and higher) of the PDtrace specification introduces the ability to trace instruction fetch misses and to
tag an instruction that might be afunction call or return. These are fundamental properties that could impact most
instructions in the stream that are represented by a non-zero InsComp value. Therefore, TF3 can optionally be aug-
mented by two bits to trace out this information. These bits are optional and only traced when specifically requested
by the user. Hence, the trace reconstruction software must be told whether these bits are present. Thisimpacts other
formats well, and will be discussed in each sub-section separately. The two optional bits of the TF3 format are shown

in Figure 4.5.
Figure 4.5 TF3 with Optional Bits (Trace Format 3 Single-Pipe)
(44)
28 27 26 11 10 9 8 6 5 3 2 1 0
Im | Fer AD TMode|TEnd| TType | InsComp |0| 0|0

Revision 6.00 (and higher) of the PDtrace specification introduces the ability to trace performance counter values. If
thisfeature is enabled by the user, thisinformation is traced through TF3, which can be optionally augmented by one
bit. This expanded version of the TF3 format is show in Figure 4.6. If the PCV bit is set to zero, reconstruction soft-
ware must interpret the trace format as before. If the PCV hit is set to one, reconstruction software must interpret the
AD bits of the format as the value of the performance counter. In addition, the TType must be set to DT, and TEnd

must be set to zero.

Figure 4.6 TF3 with Optional Performance Counter and other bits (Trace Format 3 Single-Pipe)

(45)
29 28 27 26 1 10 9 8 6 5 3 2 1 0

PCV | Im | Fcr AD TMode|TEnd| TType | InsComp |0| 0| O

4.1.4 Trace Format 4 (TF4)

The TF4 format is shown in Figure 4.7. TF4 covers the case when TType[2:0] isset to DT and TEnd is set to 1, that
is, the last cycle of the current datatrace. Thisis shown in Figure 4.7, where the pattern on bits [9:6] distinguishes
TF4 from TF3. Bits[8:6] are equal to 001, for a Type[2:0] value of DT and bit 9 hasavalue of 1 for TEnd.

Note that the TF4 format will be used for the last cycle of both Load and Store Data transmission, a small ineffi-
ciency.

MIPS® PDtrace™ Specification, Revision 6.16 41
Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Output Trace Formats

Figure 4.7 TF4 (Trace Format 4 Single-Pipe)

30(46) 15 14 11 10 9 8 7 6 5 3 2 1 0

AD DataOrder [TMode| 1 |1|0| 0| InsComp (O[O | O

Revision 4.00 (and higher) of the PDtrace specification introduces the ability to trace instruction fetch misses, load/
store data misses, and to tag an instruction that might be afunction call or return. Therefore, TF4 can optionally be
augmented by three bitsto trace out this information. These bits are optional and only traced when specifically
requested by the user. Hence, the trace reconstruction software must be told if these 3 bits are present. The optional
bits of the TF4 format are shown in Figure 4.8. For non-coherent MIPS cores, only this format includes the L Sm hit,
that is, the bit that indicates a possible load/store data cache miss. Thisis because a data miss is associated with the
transmitted data rather than the instruction that caused the miss.

Figure 4.8 TF4 with Optional Bits (Trace Format 4 Single-Pipe)

49)
33 32 31 30 15 14 11 10 9 8 7 6 5 3 2 1 0
"ms Im Frc AD DataOrder |TMode| 1 | 1| 0|0 | Inscomp|0]| 0|0

4.1.5 Trace Format 5 (TF5)

When an overflow happens all other trace values are undefined and hence all current cycle trace values can be dis-
carded. (When an overflow does occur, the trace always sends afull PC value in the next cycle. Thisis used for
resynchronizing to the execution path.) The Trace Format 5 (TF5) shown in Figure 4.9 indicates an overflow.

Revision 4.00 of the PDtrace specification added one bit to this format for atotal of 5 bitsin preparation for future
additional features. Those expected features proved to be unnecessary and for that reason Revision 6.13 (and higher)
reverts the length of this format back to 4 bits.

Figure 4.9 TF5 (Trace Format 5)

42

4.1.6 Trace Format 6 (TF6)

Trace Format 6 (TF6) shown in Table 4.10 is provided to the TCB to transmit information that does not directly orig-
inate from the cycle by cycle trace data. That is TF6 can be used by the TCB to store any information it wantsin the
trace memory, within the constraints of the specified format. This information can then be used by software for any
purpose. For example, TF6 can be used to indicate a specia condition, trigger, semaphore, breakpoint, or bresk in
tracing that is encountered by the TCB.

MIPS® PDtrace™ Specification, Revision 6.16
Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

4.1 Single-Pipe Tracing Formats

Figure 4.10 TF6 (Trace Format 6)

15 8 7

TCBinfo

TCBcode 0|j1]0]0

The definition of TCBcode and TCBinfo is shown in Table 4.1.

Revision 4.00 (and higher) of the PDtrace specification uses two of the TCBcode fields to indicate that Instruction or
Data Hardware Breakpoints were caused by the instruction in the trace format immediately preceding this TF6 for-
mat. Whether the trigger caused by the breakpoint turned trace off or on isindicated by the appropriate TCBinfo field
value. Note that if the processor istracing and trace is turned off, this would be passed on to the external trace mem-
ory appropriately. If the processor is not tracing, and trace is turned on by a hardware breakpoint, then this record
would show up in trace memory asthefirst instruction to be traced (it is al so the one that triggered trace on). If tracing
is on-going and other triggers continue to keep turning on trace, then this would show up as a TF6 in trace memory.
Revision 5.00 (and higher) of the PDtrace specification define an additional bit in TCBInfo, when TCBcode ‘1001’ is
used (see Table 4.1).

Table 4.1 TCBcode and TCBinfo fields of Trace Format 6 (TF6)

TCBcode Description TCBinfo
0000 Trigger Start: Identifies start-point of trace. TCBinfo identifies what caused the trigger. Cause of trigger.
0100 Trigger End: Identifies end-point of trace. TCBinfo identifies what caused the trigger. Taken ”0”? theTrigger
control register gener-
1000 Reserved. This value used to indicate a trigger center. Starting from PDtrace rev 6.00, this | ating this trigger.
valueisreserved for future use.
1100 Trigger Info: Information-point in trace. TCBinfo identifies what caused the trigger.

00011 No trace cycles: Number of cycleswhere the processor is not sending trace data, but astall is | Number of cycles (All
not requested by the TCB. This can happen when the processor, during its execution, switches | zerosis equal to 256).
modesinternally that take it from atrace output required region to one where trace output was | If more than 256 is
not requested. needed, the TF6 format
For example, if it was reguired to trace in User-mode but not in Kernel-mode, then when the | is repeated.
processor jumps to Kernel-mode from User-mode, and an internal FIFO is emptied, then the
processor stops sending trace information. In order to maintain an accurate account of total
execution cycles, the number of such no-trace cycles have to be tracked and counted. This
TCBcode does this tracking.

01011 Back stall cycles: Number of cycles when no trace information was sent, for whatever rea-
son.

1001 Instruction or Data Hardware Breakpoint Trigger: Indicates that one or more of theinstruc- | Values are as
tion or data breakpoints were signalled and caused atrace trigger. Bit 8 of the TCBinfo field | described.

indicates whether it was an instruction (0) or data (1) breakpoint that caused the trigger. Bit 9
indicates whether or not trace was turned off (0) or on (1) by thistrigger. Bits 13:10 encodes
the hardware breakpoint number. Bit 14 indicates if tracing from the coherence manager was
affected (1) or not (0).

When tracing isturned off, a TF6 will be the last format that appears in the trace memory for
that tracing sequence. The next trace record should be another TF6 that indicated atrigger on
signal.

It isimportant to note that atrigger that turns on tracing when tracing is already on will not
necessarily get traced out, and is optional depending on whether or not there is afree slot
available during tracing. Similarly, when tracing is turned off, then atrigger that turns off
tracing will not necessarily appear in trace memory. Finaly, if multiple breakpoints cause
trigger actions, only one of the matching breakpointsis encoded in bits 13:10, and the trigger
actionisreported in bit 9.

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

43

PDtrace™ Output Trace Formats

Table 4.1 TCBcode and TCBinfo fields of Trace Format 6 (TF6) (Continued)

TCBcode Description TCBinfo
1101 Reserved for future use Undefined
0010, 0110
1010
1110 Used for processorsimplementing MIPS MT ASE, see format TF7 TCvaue
xx11 TCB implementation dependent Implementation depen-
dent

1. TF6 formats with this TCBcode is not transmitted when TCBCONTROLB, iSO
4.2 Format Enhancements for the MT ASE

In the presence of hardware-based multi-threading such as that provided by the MT ASE, there needs to be a method
to indicate the thread ID (or TC, thread context) for every traced instruction. Thisis possiblein one of two ways:

1. Thefirst method would typically be used when the multithreading method is coarse-grained or block-based, that
is, instructions from a single thread are executed for awhile before switching to another thread. In thistype of
scheme, it would suffice to trace out the thread ID every time it changes and continue tracing instructions until
thereisacontext switch. At which point, the new thread ID istraced, and so on. The thread ID thustraced isdone
using trace format 7 (TF7) illustrated in this section.

2. The second method is used when instructions from multiple threads are interleaved with afiner granularity. In
this situation, the thread 1D might change every cycle, or in the case of a scheme like SMT (SImultaneous multi-
threading), different instructions issued every cycle might belong to different thread contexts. In this situation,
the thread ID must be traced with every traced instruction. This might add significantly to the amount of trace
data, but there is no avoiding this extra burden. In this situation, every trace format discussed thus far, with the
exception of TF1, TF5, and TF7, will be prefixed with a number of bits needed for the thread context value.

Bitsin the TCB control register MTtrace determine which method is chosen, as well as the option to not trace the
thread ID in a processor implementing the MT ASE.

4.2.1 Trace Format 7 (TF7)

Trace Format 7 (TF7) shown in Table 4.11 is provided to the TCB to transmit information about the current Thread
ID and is only used by a processor that implementsthe MT ASE. Thisformat is used to indicate that the formats
being sent following this one al belong to the indicated Thread ID. Note that thisis a sub-format of TF6. with a TCB-
code value of 1110 and with the TCid value in the TCBinfo field.

Figure 4.11 TF7 (Trace Format 7)

15 8 7 4 3 2 1 O

TCBcode
TC 1110 0|1]0]0

44 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

4.3 Multi-Pipe Tracing Formats

4.2.2 TF2--TF4 Augmented for MT ASE

Up to 8 hitsfor the TC value is prepended to formats TF2, TF3, and TF4. The figure below illustrates the example of
pre-pending 4 bits to format TF2 to support a hypothetical 34K core. Three bitsin the TCB control register TChits
indicate how many TCid bits are needed for a particular core. In this example, the TChit value would be set to four.

Figure 4.12 TF2 with Optional Bits and TCid Bits (Trace Format 2 Single-Pipe)

10 7 6 5 4 2 1 0

1Gid |im| ™| Inscomp | 1| 0

4.3 Multi-Pipe Tracing Formats

A processor with multiple pipelines requires additional support for sending trace information to trace memory. The
TCB can perform some combining and the kind of format crunching as shown in the single-pipe case to reduce the
number of bits that are sent out each cycle. If there are k pipelines within the core, 1, 2,... k, then for each cycle, the
TCB generates a trace format from each pipeline, in that respective order. The external software programmer must
refer to the User’s Guide for that core to determine the order of the pipelines as hooked up to the PDtrace™ interface.

The trace format TF1 is usable by the TCB without change for multi-pipe tracing. The TF1 format indicates that the
specific pipe did not complete an instruction and had no data to send.

TF5 isacommon format. That is, all the pipes have to flush the trace buffer when just one of them has overflowed.
Hence, asingle instance of TF5 will suffice to cover all the 1..k pipeline stages. The trace reconstruction software
must take this into account as it parses the trace formats in trace memory.

The TF6 format is a so usable by the TCB without change, and as a common format. A TF6 format can be used after
all the formats for the respective pipelines have been sent. Note that if needed, pipeline-specific information can be
encoded within the TF6 format bits.

4.3.1 Multi-Pipe Trace Format 2-4 (TF2, TF3, TF4)

The TF2, TF3, and TF4 formats need the additional PgmOrder[2:0] value for multi-pipeline tracing. The PgmOr der
field isadded to all of them, right after the InsComp field, as shown in Figure 4.13, Figure 4.14, and Figure 4.15. The
PgmOrder field is 3 bits wide to allow up to 8 pipelines. The number of processor pipelinesis specified in the
TCBCONFIGpy field. See 8.7 “TCBCONFIG Register (Reg 0)” on page 82.

Figure 4.13 TF2 (Trace Format 2 Multi-Pipe)

PgmOrder | InsComp | 1 | O

MIPS® PDtrace™ Specification, Revision 6.16 45

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Output Trace Formats

Figure 4.14 TF3 (Trace Format 3 Multi-Pipe)

29(45) 14 13 12 11 9 8 6 5 3 2 1 0
AD T'\’G'fd TEnd | PgmOrder| TType | InsComp | 0|00

TF4 for multi-pipe trace is defined as was the case for single-pipe trace. In the example in Figure 4.15, the TEnd bit
(bit 12) is set, and the TTypefield (bits 8:6) is set to DT (100,).

Figure 4.15 TF4 (Trace Format 4 Multi-Pipe)

32(48) 17 16 14 13 12 11 9 8 7 6 5 3 2 1 0
AD LoadOrder T'\iOd 1({PgmOrder|{ 1| 0| 0| InsComp|0|0O|O

4.3.2 Trace Format Extensions for Coherent Systems

The PDtrace architecture requires the coherent synchronization 1d to be traced out from each core in a coherent sys-
tem to allow correlation between requests from a core with transactions at the CM. The exact implementation of how
thisinformation is made available is highly dependent on the particular core on which it isimplemented. We describe
one mechanism that isimplemented in the 34K core for CMP and extends every existing trace format by between 1
and 4 bitsin Section 4.3.2.1.

4.3.2.1 Expanding Existing Trace Formats

The first mechanism expands trace formats TF2, TF3,and TF4. Each of these formats is expanded by one to four bits.
Each instruction that is capable of generating a bus request (“LSU” instruction) adds at least two bits. All non-LSU
instructions add asingle bit (0) to the end of the trace formats. An LSU instruction that hits in the cache adds two bits
a“10". If the instruction missesin the cache, it adds four bits- 11XY, where XY represent the COSId. The hit/miss/
COsld information for an LSU instruction is always sent after the instruction completion message for that instruction
has been sent. Specifically, it is always attached to the second L SU instruction after the original instruction. For the
34K, this guarantees that the hit/missinformation is available at the time it needs to be sent out. Note: An implemen-
tation may chooseto treat the LSm bit in a TF4 packet asa‘don’t care’. Reconstruction software must not rely on the
accuracy of this value to get a data cache hit/missindication.

46 MIPS® PDtrace™ Specification, Revision 6.16
Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Chapter 5

TCB Trace Word

Following the compression of datainto the Trace Formats described in Chapter 4, “ PDtrace™ Output Trace Formats’
on page 39, the trace information must be streamed to either on-chip or off-chip dedicated trace memory. As previ-
ously explained, each of the major Trace Formatsis a different size. In order to ensure the efficient storage of this
information in afixed-width on-chip memory and the transmission of this data through a fixed-width interface to off-
chip memory, the Trace Formats are first gathered into Trace Words of regular width. This section describes the for-
mat of these Trace Words.

5.1 Trace Word

A Trace Word (TW) is defined to be 64 bitswide. A TW has a4-hit typeindicator on bits[3:0], an optional 2 or 4 bits
to indicate the origin or source of thistrace word, and regular TFs stacked up in the remaining 58 or 56 respective bits
of theword. Figure 5.1, Figure 5.2, and Figure 5.3 show the 64-bit wide TW. The source bits are valuable and used in
an environment where trace data from multiple cores or different sources needs to be combined and written into asin-
gle trace memory. The trace regeneration software can then use these bits to sort out which trace words belong to
which core or other traced logic in the chip or SOC.

It is recommended to allow the number of source bits be a configuration option for a core. The value thus chosen is
written to the two-bit TWSrcWidth field in the TCB Control register (Figure 8.2 on page 72). For non-zero source
options, the value of sourceto be used is preset to 0 during configuration in the TWSrcVal field in the TCB Control
register. This value can be overwritten by software if needed and changed from the default value of zero.

Note that in al Trace Word examples illustrated later in this chapter, it is assumed that the source field is zero. But
those examples could have been constructed in a similar manner for source field widths of 2 and 4 bits without any
loss of generality.

Figure 5.1 Trace Word with Zero Source Bits

63 4 3 0
Trace Type
Figure 5.2 Trace Word with Two Source Bits
63 6 5 4 3 0
Trace Source Type
MIPS® PDtrace™ Specification, Revision 6.16 a7

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

TCB Trace Word

Figure 5.3 Trace Word with Four Source Bits

63

Trace Source Type

The Trace portion of a TW consists of one or more Trace Formats, TF1 through TF6. Note that trace formats TF1,
TF2, TF5, and TF6 have afixed size, while TF3 and TF4 can vary in size. The sizes of formats TF3 and TF4 are
based on the value of the ADW bits. A further optimization is possible with an address value; that is, the redundant
sign bits (in the upper address bits) can be optionally chopped from the formats, especiadly if the format straddles two
TWs. This happenswhen TTypeisset to TPC, TLA, or TSA, TEnd isset to 1, and TModeis set to 0.

When Typeis set to the TM OAS processor mode, thisis traced as a TF3 with the TM OAS information in the AD
field of that trace format type.

A TW ishbuilt by adding the TFs back to back until all 60 bits of the Trace field are used. If the last TF does not fitin
Trace, it spillsto thefirst bits of the Tracefield in the next TW. The Typeindicator is used to indicate where the first
new TF startsin the new Trace field, which indirectly indicates the number of bits used to complete the TF from the
previous TW.

When a TF cannot be completed in the remaining bits of aTW,,, it is sometimes more efficient to discard those bits of
the TW,, and simply repeat all of them in the following TW,,,;. Thisisindicated in TW,;4 by setting Typeto 1.
When Typeis 1, thefirst new TF of a TW starts at bit 0 in the Trace field. Since the previous TW,, ended with an
uncompleted TF, a Type of 1in TW,,,4 instructs the decode software to discard the uncompleted TF in TW,,. Table
5.1 describes the word types for the TW.

Table 5.1 Trace Word Type Field Descriptions

The first new

Decimal TF starts at
value of the | this bitin the
Type field Trace field Description

0 N/A This TW does not carry any trace information. The Tracefield is set to al zeroes.

In the off-chip interface, the Trace field can be truncated to make the TW fit the bit-width of the
off-chip interface.
For on-chip trace, this TW is not stored in memory.

1 0 Thisindicates a situation where anew TF is started at the beginning of this TW. This can happen
when: (1) anew traceis begun, (2) the TF in the previous TW was completed, and (3) an incom-
plete TF at the end of the previous TW is discarded.

If the last trace format of the previous TW wasa TF3 with TTypeset to TPC, TLA or TSA, TEnd
set to 1, TMode set to 0, and with at least one AD bit, that is considered to be a completed TF for-
mat, and no bits are discarded from the previous TW.

2-14 (Type-1)* 4 | Thepartial TF from the previous TW is completed in this TW in the bits available before the first

new TF, i.e., bits 0..((Type -1)*4)-1) in the Tracefield.

If extra bits are available after completing the straddling TF, the rest of the bits until the first new
TF start are undefined.

TF3 formats sending the last part of arelative address are allowed to remove the AD bits to only
show the needed sign bits. This enables compression of sign-extended address or data bits when
the TF3 straddlesa TW.

48

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

5.1 Trace Word

Table 5.1 Trace Word Type Field Descriptions (Continued)

The first new
Decimal TF starts at
value of the | this bitin the
Type field Trace field Description
15 56 If an implementation does not support any TFs longer than 56 bits and does not utilize a 4-bit
source field, type 15 can be used to indicate that the first new TF begins at bit 56. In such an imple-
mentation, a TF can always be completed within 2 TWs, and the continuation field below is not
needed.
Nonew TF | The TF started in the previous TW could not be completed within 52 bitsk. It might completein
this TW, but if it does not complete, then the next TW will have a Type value higher than one.

1. 52 bits is the maximum allowabl e bits used to complete a TF from a previous TW,, 4, if anew oneisto start in TW,,. Thisisso
because a Type vaue of 14 indicates the maximum bit position (bit 52) in the Trace field, where anew TF will start.

Asan example of how aTW isbuilt, consider the trace sequence shown in Table 5.2. In this example, the ADW value
is assumed to be 16 bits wide (a zero value for TCBCONTROLAxpw)-

Table 5.2 Example Trace Sequence

Cycle # Trace Format Cycle # Trace Format
1 TF3 (16 significant AD bits) 2 TF3 (16 significant AD bits)
3 TF2 4 TF1
5 TF1 6 TF1
7 TF1 8 TF2
9 TF2 10 TF1
12 TF2 11 TF2
13 TF2 14 TF1
15 TF3 (5 significant AD bits) 16 TF1
17 TF2 18 TF2
19 TF2 20 TF2
21 TF3 (11 significant AD bits) 22 TF1
23 TF3 (6 significant AD bits) 24 TF6 (Stop indicator)

The TF sequence in Table 5.2 will create the set of TWs shown in Figure 5.4. The shaded boxes containing a“u” are
unused bits. Shaded boxes with an “s” indicate redundant sign-bits from a TF3 format; these sign-bits could not be

removed by compression, and must be included as part of the AD field. A “1” indicatesthe single bit of 1inaTF1

format.
Figure 5.4 Trace Word from Example Trace in Table 5.2
Trace Type
5 5 5 4 4 3 3 2 2 1 1
TW |9 6 2 8 0 6 2 4 0 6 2 8 4 0 0
1 1| TF2 TF3 TF3 1
2 | TR2|1]9]s]s]s[s]s]s]s|s[s]s TF3 [TR2 | TR2 TF2 [TF2 [TR2 [11f1 1
3 TF3 1 S TF3 TF2 TF2 | TF2 |ul TF2 2
4 u| u|u| u| u| u| u| u| u| u| u| u|u u u u| TF6 (stop) TF3 2

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

49

TCB Trace Word

In the examplein Figure 5.4, the TF3 straddling TW5/TW 4 have had insignificant sign bits cut from the full TF3 for-

mat. It isoptional for TCB hardware to do this extra compression of TF3 formats, but TW decode software must
always be designed to handle this extra compression.

5.1.1 Cycle Inaccurate Trace

The TF1 format is needed only when a sequence of the trace must show cycle-by-cycle behavior of the processor
without missing any cycles. When the trace regeneration software only needs to show the sequence of instructions
executed, the TF1 format which shows processor stall cycles can be omitted. In this latter situation, an additional
optimization removes bit zero on the other TFs before storing to trace memory. The example trace sequencein Table
5.2 will then produce the TWs shown in Figure 5.5. Note that to reconstruct the trace accurately, external software
must know what type of tracing was enabled at the TCB.

Figure 5.5 Trace Word from Example Trace in Table 5.2 (No TF1 trace)

Trace Type
5 5 4 4 3 3 2 2 2 1 1
TW |9 2 8 4 6 8 4 0 6 2 8 4 0 0
1 TF2 | TF2 | TF3 TF3 1
2 TF3| TF2 | TF2 | TF2 | TF2 s|s|s|s|s S| S| S| S|S| TF3 | TF2 | TF2 | TF2 | TF2 1
3 TF6 (stop) s|s|s s|s|s|s|s TF3 S| TF3 6
4 u|u|u|u|u|u|u|u|u|u|u|u|u|uuuu ululu uu|u|u|u|u|u|u|u|u|u|u|u|u|u|u|uuu|u|u|u|u|u|u|u|u|u|u|u|u|u|u|u|u|TF6 2

In the example shown in Figure 5.5, the TF3 straddling TW,/TW3 has had insignificant sign bits removed from the

full TF3 format. It is optional for TCB hardware to make this extra compression of TF3 format, but TW decode soft-
ware must be able to handle this.

Additionally when not tracing for cycle accurate information, the TF6 formats TCBcode 0001 and 0101 are omitted
from the Trace Words (not shown in Figure 5.4 and Figure 5.5). Cycle accurate versus cycle inaccurate tracing in con-
trolled by the TCBCONTROLB, bit.

5.1.1.1 Trace Word collection.

Figure 5.6 shows how the TCB builds Trace Words using the Trace Formats cycle-by-cycle, using the trace informa-
tion. Trace Words from Figure 5.4 are used.

Figure 5.6 Cycle-by-cycle Trace Word from Example Trace in Table 5.2

Trace Type
5 5 4 4 4 3 3 2 2 2 1 1
Cycle[TW |9 6 8 4 0 6 2 8 4 0 6 2 8 4 0/3 (
1 free TF3 1
2 free TF3 TF3 1
3 fl TF2 TF3 TF3 1
4 111 TR2 TF3 TF3 1
50 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

5.2 End of Trace Indication

Trace Type
5 5 5 4 4 3 3 2 1 1
Cycle| TW |9 6 2 8 0 6 2 0 6 2 4 0|3 @

5 free 1 1
6 free 11 1
7 free 111 1
8 free TF2 (111 1
9 free TF2 TF2 |21 1
10 free 1 TR2 TF2 |21 1
11 free TF2 (1 TRF2 TF2 (411 1
12 free TF2 TF2 (1 TF2 TF2 (1411 1
13 free TF2 TF2 TF2 (1 TR2 TF2 (411 1
14 free 1 TR2 TF2 TF2 (1] TR2 TF2 (111 1
15 free |s|s|s|s|s|s|s|s|s|s|s TF3 1 TR2 TF2 TF2 |1 TR2 TF2 |12 1
16 free|1|s|s|s|s|s|s|s|s|s TF3 1 TR2 TF2 TF2 |1 TR2 TF2 |21 1

2 |TF2|1]s|s|s|s|s|s|s|s|s|s|s| TF3 1 TR2 TF2 TF2 (1 TR2 TF2 (411 1
17 free uTF2| 2
18 free TF2 (U TF2| 2
19 free TF2 TF2 [u TF2| 2
20 free TF2 TF2 TF2 U TF2| 2
21 free TF3 TF2 TF2 TF2 U TF2| 2
22 free 1)|s|s|s|s|s TF3 TF2 TF2 TF2 [u TF2| 2

3 TF3 1)s|s|s|s|s TF3 TF2 TF2 TF2 [u TF2| 2
23 free TF3 2
24 | 4 u| u|u| TF6 (stop) TF3 | 2

5.2 End of Trace Indication

In the examplesin the previous section, the Trigger TF6 (stop: TCBcode == 0100) was used to indicate an End Trig-
ger, and this also implied an end to the tracing. This stop trigger deasserts TCBCONTROLBgy;, and the TCB flushes
out the current TW. However, the TCBCONTROLBEy bit can be deasserted for other reasons, and this trace end must
be indicated externally using a different mechanism to distinguish it from the end-trigger case. The recommended
method to accomplish thisisto allow the TCB to fill the unused bitsin the last TW with zeroes. Note that nine bits of
consecutive zeroes in the Trace field will be identified as a TF3 with no information; that is, InsComp and TType are
both zero. Ordinarily thiswill never be generated by the Trace Format generator, and can therefore be used as a end-
of-trace indicator.

If less than nine bits remain in the last TW, an incomplete TF is detected by trace software. After that, no additional
TWs are generated by the TCB. This should not be a problem for trace-regenerating software, asthisisjust like any
other arbitrary cut in the trace stream.

5.3 On-chip Trace Memory Format

The on-chip trace memory is defined to be a 64-bit wide memory. The TWsdefined in 5.1 “Trace Word”, are stored
in consecutive address locations. The trace memory is only written when afull TW is available, and thus a new TW
might not be written each cycle, since anew TW might not be created each cycle.

The memory image will exactly match the TW sequence shown in Figure 5.4 or Figure 5.5, depending on whether
TF1 formats are included.

MIPS® PDtrace™ Specification, Revision 6.16 51

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

TCB Trace Word

5.4 Probe Trace Word Transmission

The Probe interface can support a TR_DATA bus width of 4, 8, or 16 bits. When a TW isready to be sent, it is put on
the TC_Data pinsto the PIB. The PIB will feed the TW through on the available TR_DATA pins, starting with
TC_Data[n:0] on the TR_DATA[n:0] utilized pins. Depending on the value of n, thiswill take 16, 8, or 4 transmissions.
If aclock multiplier isused in the PIB, then 2, 4, 8, or 16 transmissions can be completed in one core clock cycle.

Aslong as no new TW is available for transmission, the TC_Data bus will show all zeros, allowing the PIB to keep
transmitting this on the TR_DATA bits to also show all zeros.

On an 8-pin TR_DATA trace interface, running at core-clock frequency, the trace from the TW’sin Figure 5.6 will ook
as shown in Figure 5.7 on the Probe | F. This assumes sufficient buffering to hold the TWsin the TCB when they
become available for transmission, and alatency of one clock before the first part of an available TW on the TC_data
bus appears on the TR_DATA pins.

Figure 5.7 Cycle-by-Cycle TR_DATA (8-bit) of Example Trace in Table 5.2

Cycle TR_DATA[7:0] Cycle TR_DATA[7:0] Cycle TR_DATA[7:0] Cycle TR_DATA[7:0]
1 zero 1 | TWq[55:48] 01 | TW,[31:24] a1 | TW547:40]
2 zero 12 TW,[63:56] 22 TW,[39:32] 32 TW;[55:48]
3 zero 13 zero 23 TW,[47:40] 33 TW;[63:56]
4 zero 14 zero 24 TW,[55:48] 34 TW,[7:0]
5 TWq[7:0] 15 zero 25 | TW,[63:56] 35 | TW,[15:8]
6 TW,[15:8] 16 zero 26 TW4[7:0] 6 | TW,[23:16]
7 TW,[23:16] 17 zero 27 TW3[15:8] 37 zero
8 TW,[31:24] 18 TW,[7:0] 28 TW;[23:16] 38 zero
9 TW4[39:32] 19 TW,[15:8] 29 TW;[31:24] 39 zero
10 TW,[47:40] 20 TW,[23:16] 30 TW;[39:32] 40 zero

The probe sampling the TR_DATA pins should look for a non-zero transmission. When that occurs, the following bits
up to acollective count of 64-hits (i.e., including the first non-zero 4/8/16-bit value) will form a TW. After 64 hits, the
probe should begin looking for anew non-zero transmission. A non-zero transmission can start at any time after afull
TW isreceived.

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Chapter 6

Trace Compression

This chapter describes compression techniques that can be used when tracing different values. The methods used are
quite different for each “type" of value. For example, the PC may be sent as a delta from the previous PC address. At
other times, the full PC value needs to be sent when the trace process starts at the beginning of tracing, or after a
buffer overflow, or for synchronization; in this case, the PC can be sent un-compressed, or some method such as hit-
block compression can be used. The sections bel ow discuss these various techniques as they correspond to the TMode
bit value in the Trace Word. Note that the single-bit TMode bit allows two ways in which to send the information
being currently traced.

6.1 PC Tracing

When TModeis zero, it impliesthat the delta of the PC value istransmitted. Thisdeltais computed from the PC value
of the instruction executed just before the branch target instruction (e.g., the instruction executed in the branch delay
dot after abranch instruction). The computed deltais then right-shifted by one bit, since this bit is never used. Note
that the value can be negative or positive, thusis a signed 16-bit value, and the upper bits need to be sign-extended
before transmission.

PC _delta= (new_PC -last PC) >>1 (EQYL)

If the width of the computed delta value is bigger than the width of the datafield (ADW), the lower bits are sent first,
followed by the upper bits.

When the TMode value is one, it implies that the full PC value is transmitted. Depending on the width of the bus, this
may take multiple cycles. Again, the first cycle transmits the least significant bits, and so on.

6.2 Load or Store Address Tracing

With a TMode value pf zero, the load address transmitted is a delta from the last transmitted |oad address. Stores are
similar, where the computed deltais from the last transmitted store address. Note that the last load instruction can be
aload instruction of any type, i.e., LB, LW, etc., and the sameis true for stores.

load_address delta= current_load_address - last_|load address (EQ2)
store_address delta= current_store address - last_store_address (EQ3)

Note that the delta transmission is quite effective when the load or store addresses are increasing or decreasing
sequentially.

With a TMode value of one, the value transmitted is the full address of either the load or the store. Depending on the
width of the trace bus and the processor data width, this could require multiple cycles to transmit.

MIPS® PDtrace™ Specification, Revision 6.16 53

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Trace Compression

6.3 Load and Store Data Tracing

Though data values are less prone to good compression techniques, delta values and bit-block compression tech-
niques might be useful in achieving some compression ratio. This revision of the PDtrace specification does not dic-
tate any compression for data values. The TMode value of zero is reserved for afuture compression scheme, and the
TMode value of oneis used to transmit the full data value.

6.4 Using Early TEnd Assertion

54

Thistechnique was discussed in Table F.1. When tracing data address or value, the tracing logic can optionally make
adecision to cut off the trailing sign bits of the data and assert TEnd early, before al the bits of the address or data
have been traced. For example, redundant sign bits need not be transmitted for accurate reconstruction of the data.
Note that this data compression technique can be applied to any value traced in the AD field in the trace formats, be it
PC address, load/store address, or load/store data. Also note that this technique is optional, but the software must be
capable of handling this situation for implementations with PDtrace Specification 03.00 and higher.

MIPS® PDtrace™ Specification, Revision 6.16
Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

6.4 Using Early TEnd Assertion

MIPS® PDtrace™ Specification, Revision 6.16 55

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Chapter 7

PDtrace™ Control Using CPO Registers

PDtrace permits usersto control both the type and amount of trace data produced, within predetermined constraints,
in order to minimize the trace bandwidth to the useful set. Trace data output can be controlled by software, using CPO
registers, or by the debug probe, using registersin the Trace Control Block (TCB). This chapter describes software
control; debug probe control is described in Chapter 8, “Trace Control Block (TCB) Registers’ on page 67.

7.1 Trace Controls Overview

The magjority of trace control bits are used to specify the conditions under which tracing is enabled. Thelist below
briefly explains the various types of trace controls.

» Anoverall trace control bit TraceControlg,, controls whether tracing is turned on or off. When thisbit is asserted,
the control bitsthat control the per-instruction decision of whether the core should trace or not include bitsin
TraceControl such as G, ASID, U, S, K, E, and D. These bits are expected to be modified only when the processor
isnot tracing. That is, if tracing is currently on, then tracing must be turned off, a change made to one of these
bits, and then tracing turned back on. If not done in this way, the ability of the reconstruction software to parse
the trace output obtained from the TCB is not guaranteed.

For processors that implement MIPS MT ASE or in a multi-processor configuration, there are other control bits
such as TCNum and CPUid that control which thread context, VPE (virtual processing element), or CPU in the
configuration is currently tracing. The same rule about changing the control bits only when tracing is turned off
applies here with.

* Whentracing isturned on, one needs to specify what kind of information isto be traced, i.e., only the PC, or also
the load/store addresses and data. Thisis done using the Mode bitsin TraceControl2. In addition to this, another
bit, TraceControl;g specifies that the PC of all taken branches be traced, not only the onesthat are statically
unpredictable. When asserted, thiswill generate alot of trace data, since in a RISC architecture such as MIPS,
typically every third or fourth instruction is a branch instruction. The main purpose of this all-branchestracing is
to enable the TCB to track the execution addresses in the core without referring to the static program image,
when needed. This knowledge can be used by the TCB to provide additional filtering of the trace data.

» TraceControl,q (InhibitOverflow) is used to ensure that trace datais never lost because of implementation-spe-
cific internal FIFO or buffer overflow. Thisloss of trace data could result when alarge number of bits are traced
each cycle while the bandwidth out of the core or TCB isfar less. If thisbit is asserted and an internal FIFO isin
imminent danger of overflowing, the core must stall its pipe while the FIFO is emptied.

7.2 Software Trace Control

Just as the TCB hardware can control tracing functionality using the input PDI_ signals, the PDtrace architecture
allows software to control tracing with similar enables and with the same flexibility. Thisis done by setting bitsin the
Coprocessor 0 TraceControl register to appropriate values. To ensure that only hardware or software can control trac-
ing at any given point intime, atrace select bit isused in TraceControl. A processor reset setsthe trace select hit to the
default trace input select from the TCB hardware.

MIPS® PDtrace™ Specification, Revision 6.16 56

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

7.2 Software Trace Control

7.2.1 Coprocessor 0 Trace Registers

This section describes all the Coprocessor 0 trace registers required for implementing PDtrace tracing logic in the
core, with the exception of TracelBPC and TraceDBPC, which were described in Section 3.16 “Trace Trigger from
EJTAG Hardware Instruction/Data Breakpoints”.

Table 7.1 showsalist of all the Coprocessor O trace-related registers. The compliance level is specified assuming that
tracing isimplemented, i.e., that the TL bit in Coprocessor 0 Config3 is1 (Table 2.1).

Note that the UserTraceData register was renamed to UserTraceDatal in PDtrace specification revision 06.00 and
higher because of the introduction of the UserTraceData2 register. This revision of the specification also introduces a
new trace control register, TraceControl3 , which needs to be implemented whether or not performance counter trac-
ing, an optional feature, isimplemented.

Table 7.1 A List of Coprocessor 0 Trace Registers

Register C I
Number Sel Register Name Reference ompliance
23 1 TraceControl 7.2.1.1 “TraceControl Register (CPO Register Required
23, Select 1)” on page 57 €
23 2 TraceControl2 7.2.1.2 “TraceControl2 Register (CPO Reqired
Register 23, Select 2)” on page 60 €
23 3 UserTraceDatal | 7.2.1.4 “UserTraceDatal and
UserTraceData2 Registers (CPO Register 23 Required
Select 3 and CPO Register 24 Select 3)” on €
page 65
23 4 TracelBPC 9.1 “TracelBPC and TraceDBPC Registers’ .
Required
on page 94
23 5 TraceDBPC “TracelBPC and TraceDBPC Registers’ on .
Required
page 94
24 2 TraceControl3 7.2.1.3 “The TraceControl3 Register (CPO Required for
Register 24, Select 2)” on page 63 PDtrace spec
revision 06.00
and higher
24 3 UserTraceData2 | 7.2.1.4 “UserTraceDatal and _ Required for
UserTraceData2 Registers (CPO Register 23 PDtrace spec
Select 3 and CPO Register 24 Select 3)” on revision 06.00
page 65 and higher

7.2.1.1 TraceControl Register (CPO Register 23, Select 1)

The TraceControl register configuration is shown in Figure 7.1 and Table 7.2. Note the special behavior of the
ASID_M, ASID, and G fields when the processor does not implement the standard TL B-based MMU.

Figure 7.1 TraceControl Register Format

31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 2 1 0
TS|UT| Impl [TB|IO|D|E| K| S|U ASID_M ASID G |TFCRTLSM|TIM| On
MIPS® PDtrace™ Specification, Revision 6.16 57

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Control Using CPO Registers

Table 7.2 TraceControl Register Field Descriptions

Fields
Read/ Reset
Name Bits Description Write State Compliance

TS 31 The trace select bit is used to select between the trace R/W 0 Required
control block and the software trace control bits. A value
of zero selects the trace control block registers, and a
value of one selects the trace control bitsin the
TraceControl register.

0 30 The previously defined use of this bit to specify user 0 0 Reserved
trace formats (astype 1 or type 2), is deprecated in
PDtrace specification revisions 05.00 and higher. This
functionality is now provided by the UserTraceDatal and
UserTraceData2 registers.

Impl 29:28 Reserved for implementation-specific use. Refer to the Impl- Impl-spe- Reserved fir
core-specific implementation document for usage specific cific implementation
details.

B 27 Trace All Branch. When set to 1, thistells the processor R/W Undefined Required
to trace the PC value for all taken branches, instead of
only those whose branch target addressiis statically
unpredictable.

10 26 Inhibit Overflow. Thisbit isused to indicate to the core’'s R/W Undefined Required
trace logic that slow but complete tracing is desired.
Hence, the core tracing logic must not allow a FIFO
overflow, which resultsin discarded trace data. Thisis
achieved by stalling the pipeline when the FIFO isnearly
full, so that no trace records are lost.

D 25 When set to one, this enables tracing in Debug Mode R/W Undefined Required
(see 2.2 “Processor Modes” on page 16). For traceto be
enabled in Debug mode, the On bit must be one, and
either the G bit must be one, or the current process
ASID must match the ASID field in this register.

When set to zero, trace is disabled in Debug Mode,
regardless of other hits.

E 24 When set to one, tracing in Exception Mode (see R/W Undefined Required
2.2 “Processor Modes’ on page 16) isenabled. For trace
to be enabled in Exception mode, the On bit must be one,
and either the G bit must be one, or the current process
ASID must match the ASID field in this register.

When set to zero, traceis disabled in Exception Mode,
regardless of other hits.

K 23 When set to one, tracing in Kernel Mode (see R/W Undefined Required
2.2 “Processor Modes’ on page 16) isenabled. For trace
to be enabled in Kernel mode, the On bit must be one,
and either the G bit must be one, or the current process
ASID must match the ASID field in this register.

When set to zero, trace is disabled in Kernel Mode,
regardless of other hits.

58 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

7.2 Software Trace Control

Table 7.2 TraceControl Register Field Descriptions (Continued)

Fields

Name Bits

Description

Read/
Write

Reset
State

Compliance

When set to one, tracing in Supervisor Mode (see

2.2 “Processor Modes’ on page 16) isenabled. For trace
to be enabled in Supervisor mode, the On bit must be
one, and either the G bit must be one, or the current pro-
cess ASID must match the ASID field in this register.
When set to zero, traceis disabled in Supervisor Mode,
regardless of other hits.

If the processor does not implement Supervisor Mode,
this bit isignored on write and returns zero on read.

RIW

Undefined

Required (if
Supervisor
Modeisimple-
mented, is
Reserved other-
wise)

When set to one, tracing in User Mode (see

2.2 “Processor Modes’ on page 16) isenabled. For trace
to be enabled in User mode, the On bit must be one, and
either the G bit must be one, or the current process ASID
must match the ASID field in this register.

When set to zero, trace isdisabled in User Mode, regard-
less of other hits.

RIW

Undefined

Required

ASID_M 20:13

Mask value applied to the ASID comparison (when the
G hitiszero). A “1” in any bit in thisfield inhibits the
corresponding ASID bit from participating in the match.
As such, avalue of zero in thisfield compares all bits of
ASID. Note that the ability to mask the ASID valueis not
available in the hardware register bit; it is only available
viathe software control register.

If the processor does not implement the standard TLB-
based MMU, thisfield isignored on writes and returns
Zero on reads.

RIW

Undefined

Required

ASID 12:5

The ASID field to match when the G hit is zero. When
the G bit isone, thisfield isignored.

If the processor does not implement the standard TLB-
based MMU, thisfield isignored on writes and returns
Z€ero on reads.

RIW

Undefined

Required

When set, tracing is enabled for all processes, provided
that other enabling bits (U, S, etc.,) are also true.

If the processor does not implement the standard TLB-
based MMU, thisfield isignored on writes and returns 1
on reads. This causes all match equations to work cor-
rectly in the absence of an ASID.

R/W

Undefined

Required

TFCR 3

When set, this indicates to the PDtrace interface that the
optional Fer bit must be traced in the appropriate trace
formats. If PC tracing is disabled, the full PC of the func-
tion call (or return) instruction must also be traced. Note
that function call/return information is only traced if
tracing is actually enabled for the current mode.

RIW

Undefined

Required

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

59

PDtrace™ Control Using CPO Registers

Table 7.2 TraceControl Register Field Descriptions (Continued)

Fields
Read/ Reset
Name Bits Description Write State Compliance

TLSM 2 When set, this indicates to the PDtrace interface that R/W Undefined Required
information about data cache misses should be traced. If
PC, load/store address and data tracing are disabled (see
the TraceControl2)qqe field), the full PC and load/store
address are traced for data cache misses. If load/store
datatracing is enabled, the L Sm bit must be traced in the
appropriate trace format. Note that data cache miss
information is only traced if tracing is actually enabled
for the current mode.

TIM 1 When set, this indicates to the PDtrace interface that the R/W Undefined Required
optional Im bit must be traced in the appropriate trace
formats. If PC tracing is disabled, the full PC of the
instruction that missed in the I-cache must be traced.
Note that instruction cache missinformation is only
traced if tracing is actually enabled in the current mode.

On 0 Thisisthe master trace enable switch in software con- R/W 0 Required
trol. When zero, tracing is always disabled. When set to
one, tracing is enabled whenever the other enabling bits
are also true.

7.2.1.2 TraceControl2 Register (CPO Register 23, Select 2)
The TraceControl2 register, described in Figure 7.2 and Table 7.3, provides additional trace control and status infor-

mation. Note that somefieldsin the TraceControl2 register are read-only, but have areset state of “Undefined”. Thisis
because these values are loaded from TCB register bits.

Figure 7.2 TraceControl2 Register Format

31 30 29 28 21 20 19 12 11 7 6 5 4 3 2 0
CPU valid-
SyPExt| 1dV CPUId TCV TCNum Mode TBI|TBU SyP
Modes
60 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

7.2 Software Trace Control

Table 7.3 TraceControl2 Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

SyPEXxt 31:30 Thisfield is optional for PDtrace revisions 06.00 and Oor R/ 0 Required for
higher and preset to O for earlier revisions. Thisis used W (for PDtrace rev
to optionally extend the length of the synchronization PDtrace 06.00 and
period field SyP (bits 2:0) in this register. The value of revi- higher.
SyP is extended by assuming that these two bits are jux- sions
taposed to the | eft of the three bits of SyP (SyPExt.SyP). 06.00
When only SyP was used to specify the synchronization and
period, the value was 2%, where x was computed from higher)

SyP by adding 5 to the actual value represented by the
bits. A similar formula applied to the 5 bits just obtained
by the juxtaposition of SyPExt and SyP. Sync period val-
ues greater than 23! are UNPREDICTABLE. Since the
value of 11010 represents the value of 31 (with +5), all
values greater than 11010 are UNPREDICTABLE.

Note that with these new bits, a sync period range of 2°
to 231 cycles can now be obtained.

CPUIdV 29 Only implemented on a processor with MT or multi-core R/W Undefined | Requiredif MT
SOC. Otherwisg, this field must be written as zero and foramulti- | ASEisimple-
returns zero on reads. When set, the CPUId field speci- VPEMT or mented, other-
fies the number of the VPE or CPU that must be traced. multi-core wise reserved
Otherwise, instructions from all VPEs are traced when processor,
other conditionsfor tracing are valid. On an MT system, 0 otherwise
thisbit isignored if TCV is set.

CPUId 28:21 Only implemented on a processor with MT or multi-core R/W Undefined | Requiredif MT
SOC. Otherwise, this field must be written as zero; foramulti- | ASEisimple-
returns zero on reads. On an MT core, specifies the num- VPEMT or mented, other-
ber of the VPE to trace when CPUIdV is set. On amulti- multi-core wise reserved
core system, thisisthe Ebase.CPUId value. Onan MT processor,
system, thisbit isignored if TCV is set. 0 otherwise

TCV 20 Only implemented on a processor with MT. Otherwise, R/W Undefined | Requiredif MT
this field must be written as zero and returns zero on foraMT ASEisimple-
reads. When set, the TCNum field specifies the number processor, mented, other-
of the TC that must be traced. Otherwise, instructions O otherwise | wisereserved
from al TCsare traced when other conditionsfor tracing
arevalid.

TCNum 19:12 Only implemented on a processor with MT. Otherwise, R/W Undefined | Requiredif MT
this field must be written as zero; returns zero on read. foraMT ASE isimple-
Specifies the number of the TC to trace when TCV is set. processor, mented, other-
For any given MT implementation, only the appropriate 0 otherwise | wisereserved
number of bits encoding the TC number are used in the
right-most position of thisfield; the upper bits are
ignored.

MIPS® PDtrace™ Specification, Revision 6.16 61

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Control Using CPO Registers

Table 7.3 TraceControl2 Register Field Descriptions (Continued)

Fields
Read / Reset

Name Bits Description Write State Compliance

Mode 11:7 These 5 bits provide the trace mode val ues. R/W Undefined Required
It is optional for an implementation to allow PC tracing
to be turned off. This must be clearly documented by the
core implementation-specific document. When it is
optional, bit 11 istied to avalue of 1 and setting bit 11 to
0issimply ignored by the processor. Reading this bit
aways returns a value of one.

Bit Trace The Following
PC

Load address

Store address

Load data

Store data

AW N~ O

Valid- 6:5 Thisfield specifies the subset of tracing that is supported R Preset Required
Modes by the processor (see 2.3 “Subsetting” on page 17).

Encoding Meaning

00 PC tracing only

01 PC and load and store address tracing
only

10 PC, load and store address, and load
and store data

11 Reserved

TBI 4 This bit indicates how many trace buffers are imple- R Undefined Required
mented by the TCB, asfollows:

Encoding Meaning

0 Only one trace buffer isimplemented,
and the TBU bit of this register indi-
cates which trace buffer isimple-
mented

1 Both on-chip and off-chip trace buffers
areimplemented by the TCB, and the
TBU bit of thisregister indicates to
which trace buffer the tracesis cur-
rently written.

Thisbit is loaded when the TCBCONTROLB ¢ bit is
Set.

62 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

7.2 Software Trace Control

Table 7.3 TraceControl2 Register Field Descriptions (Continued)

Fields
Read / Reset

Name Bits Description Write State Compliance

TBU 3 This bit denotes to which trace buffer the trace is cur- R Undefined Required
rently being written and is used to select the appropriate
interpretation of the TraceControl2gp field.

Encoding Meaning

0 Trace datais being sent to an on-chip
trace buffer

1 Trace Datais being sent to an off-chip
trace buffer

Thisbit is loaded from the TCBCONTROLB ¢

SyP 2:0 The period (in cycles) to which theinternal synchroniza- R Undefined Required
tion counter is reset when tracing is started or when the
synchronization counter has overflowed.

SyP Sync Period
000 5
001 26
010 o7
011 8
100 29
101 210
110 o1l
111 212

Thisfield isloaded from the TCBCONTROLBgp bits.

7.2.1.3 The TraceControl3 Register (CPO Register 24, Select 2)
The TraceControl3 register, described in Figure 7.3 and Table 7.3, provides additional trace control and status infor-

mation. Note that somefieldsin the TraceControl3 register are read-only, but have areset state of “Undefined”. Thisis
because these values are loaded from TCB register bits.

Figure 7.3 TraceControl3 Register Format

31 16 15 14 13 12 11 10 9 8 7 3 2 1 0
PeC PeC
PeC| PeC| PeC Trl-| TRP,
0 O |ouf Fé: BP gé” E |PeC 0 oLe AaD|PT
MIPS® PDtrace™ Specification, Revision 6.16 63

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Control Using CPO Registers

Table 7.4 TraceControl3 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance

0 31:16 Reserved for future use; Must be written as zero; returns 0 0 Reserved
zero on reads.

0 15:14 Reserved for future use; Must be written as zero; returns 0 0 Reserved
zero on reads. (Hint to architect: reserved for future
expansion of performance counter trace events).

PeCOvf 13 Trace performance counters when one of the perfor- R/W 0 Required after
mance counters overflows its count value. Enabled when revision 06.00
setto 1. and higher

PeCFCR 12 Trace performance counters on function call/return or on R/W 0 Required after
an entry to an exception handler. Enabled when set to 1. revision 06.00

and higher

PeCBP 11 Trace performance counters on hardware breakpoint R/W 0 Required after
match trigger. Enabled when set to 1. revision 06.00

and higher

PeCSync 10 Trace performance counters on synchronization counter R/W 0 Required after
expiration. Enabled when set to 1. revision 06.00

and higher
PeCE 9 Performance counter tracing enable. When set to O, trac- R/W 0 Required after
ing of performance counter values as specified isdis- revision 06.00
abled. To enable, thisbit must be set to 1. Thishit isused and higher
under software control. When trace is controlled by an
external probe, this enabling is done viathe TCB control
register.

PeC 8 Specifieswhether or not Performance Control Tracing is R Preset Required after
implemented. Thisis an optional feature that may be revision 06.00
omitted by implementation choice. See 3.17 “Tracing and higher
Performance Counter Values’ on page 35 for details.

0 73 Reserved for future use. Must be written as zero; returns 0 0 Required after
zero on reads. revision 06.00
and higher

TrIDLE 2 Trace Unit Idle. Thishit indicatesif thetrace hardwareis R 1 Required after
currently idle (not processing any data). This can be use- revision 06.00
ful when switching control of trace from hardware to and higher
software and vice versa. The bit isread-only and updated
by hardware.

TRPAD 1 Trace RAM access disable bit, disables program soft- R 0 Required after
ware access to the on-chip trace RAM using |oad/store revision 06.00
instructions. This bit is a copy of the TRPAD bit (bit 18) and higher
in TCBCONTROLB.

The affected registers are TCBTW?*, TCBRDP, TCBWP,
TCBSTP. None of these registers are writeable when
TRPAD is set. Reads of TCBTW* return zero with no
side-effects when TRPAD is set.

64

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

7.2 Software Trace Control

Table 7.4 TraceControl3 Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
FDT 0 Filtered Data Trace Mode enable bit. When the bit is 0, R/W 0 Required after
thismode is disabled. When set to 1, thismodeis revision 06.00
enabled. Reset value is 0. This modeis described in and higher
Section 3.18 on page 36

7.2.1.4 UserTraceDatal and UserTraceData2 Registers (CPO Register 23 Select 3 and CPO Register 24
Select 3)

A software writeto any hitsin the UserTraceDatal register will trigger atrace record to be written indicating atype 1
user format. Similarly, awrite by software to any bitsin the UserTraceData2 register will trigger atrace record to be
written indicating atype 2 user format. The UT bit in the TraceControl register was used to dictate the type of trace
record, but the use of this bit has been deprecated in the PDtrace architecture revisions 06.00 and higher. It isimple-
mentation dependent whether or not writesto this register cause dependency stalling, or the latency between writesto
the register and the subsequent generation of the trace record. Please read the core-specific implementation specifica-
tion for thisinformation. Please note that since these two registers arein CPO register space, the accessto these regis-
tersisruled by CPO access restrictions imposed by the system. For example, when a processor is under the control of
an operating system such as Linux, these registers cannot be written by code executing in user-level privilege mode.

Figure 7.4 UserTraceDatal and UserTraceData2 Register Format
31 32-bit Register 0

63 64-bit Register 0

Table 7.5 UserTraceDatal Register Field Descriptions

Fields
Read/ Reset
Name Bits Description Write State Compliance
Data 31:00r Software readable/writable data. When written, this trig- R/W 0 Required
63.0 gersauser format trace record typel into the trace
stream to be written to the trace memory.
Table 7.6 UserTraceData2 Register Field Descriptions
Fields
Read/ Reset
Name Bits Description Write State Compliance
Data 31:00r Software readable/writable data. When written, thistrig- R/W 0 Required for
63:0 gersauser format trace record type 2 into the trace PDtrace spec
stream to be written to trace memory. 06.00 and
higher
MIPS® PDtrace™ Specification, Revision 6.16 65

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Control Using CPO Registers

66 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Chapter 8

Trace Control Block (TCB) Registers

The TCB uses several registersto control its operation. These registers are accessed viathe EJTAG TAP interface.
This chapter describes these registersin detail. They are listed in Table 8.1 and Table 8.2.

Table 8.1 Trace Control Block Registers

EJTAG TAP Controller
Register Name Instruction Value Description

TCBCONTROLA 0x10 Control register in the TCB mainly used for controlling the trace input signals
to the core on the PDtrace interface.

TCBCONTROLB 0x11 Control register in the TCB mainly used to specify what to do with the trace
information. The REG [25:21] field in this register specifies the TCB internal
register to be accessed by the TCBDATA register. A list of all the registers that
can be accessed by the TCBDATA register is shown in Table 8.2.

TCBDATA 0x12 Thisregister is used to access registers specified by the REG field in the
TCBCONTROLB register.

TCBCONTROLC 0x13 Control Register in the TCB used to control and hold tracing information.

TCBCONTROLD 0x15 Added to support tracing on coherent cores such as the MIPS 1004K in
PDtrace revision 05.00 and higher.

TCBCONTROLE 0x16 Added for support of new features in PDtrace revision 06.00 and higher. New
featuresinclude, for example, performance counter tracing, etc.

Table 8.2 Registers Selected by TCBCONTROLBRgg (accessed through TCBDATA)

Register
REG[4:0] Selected Register Description Compliance
0 TCBCONFIG | TCB Configuration register that contains information about the TCB hardware configu- Required
ration.
1-3 Reserved Reserved for future use. Reserved
4 TCBTW Trace Word Read. This register holds the Trace Word just read from on-line trace mem- | Required if on-
ory. chip memory
5 TCBRDP | Trace Word Read Pointer. Points to the location in the on-line trace memory where the exists.
next Trace Word will beread. A TW read has the side-effect of post-incrementing this
register value to point to the next TW location. (A maximum value wraps the address
around to the beginning of the trace memory.)
6 TCBWRP | Trace Word Write Pointer. Points to the location in the on-line trace memory where the
next new Trace Word will be written.
7 TCBSTP Trace Word Start Pointer. Pointer into Trace Buffer that is used to determine when all
entriesin the trace buffer have been filled.
8-15 Reserved Reserved for future use. Reserved
MIPS® PDtrace™ Specification, Revision 6.16 67

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Trace Control Block (TCB) Registers

Table 8.2 Registers Selected by TCBCONTROLBRgg (accessed through TCBDATA) (Continued)

Register
REG[4:0] Selected Register Description Compliance
16-23 TCBTRIGx | Trigger Control registers 0-7 are used to specify some conditions that cause the firing Optional
of triggers, and to control the resulting action.
24-31 Reserved Reserved for future use. Reserved

8.1 TCBCONTROLA Register

The trace output from the processor on the PDtrace interface can be controlled by the trace input signalsto the proces-
sor from the TCB. The TCB uses a control register, TCBCONTROLA, whose values are used to change the signal val-
ues on the PDtrace input interface. External software (i.e., debugger), can therefore manipulate the trace output by

writing to the TCBCONTROLA register.

The TCBCONTROLA register iswritten by the EJTAG TAP controller instruction TCBCONTROLA (0x10). Seethe
MIPS EJTAG Specification (MD00047) for more details regarding new TAP instructions. Starting with PDtrace rev
6.00, thisregister isaso mapped to offset 0x3000 in drseg. See Section 8.15 “Memory-Mapped Access to PDtrace™
Control and On-Chip Trace RAM” on page 91 for information on how this register can be accessed via drseg.

Compliance: This register isrequired.

The format of the TCBCONTROLA register is shown below, and the fields are described in Table 8.3.

Figure 8.1 TCBCONTROLA Register Format

31 30 29 27 26 25 24 23 22 20 19 18 17 16 15 14 13 12 3 2 1 0
TR T I

SyPExt| Impl 0 | VModes | ADW SyP TB|IO|D|E|S|K|U ASID C|LS M On
RIM

68

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

MIPS® PDtrace™ Specification, Revision 6.16

8.1 TCBCONTROLA Register

Table 8.3 TCBCONTROLA Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

SyPExt 31:30 These two bits used to be implementati on-specific until Oor R'W 0 Required after
PDtrace spec revision 06.00, when it revertsto architectur- | (for spec PDtrace revi-
ally defined bits to extend the SyP (sync period) field for | revisions sion 06.00 and
implementations that need a higher numbers of cycles 06.00 and higher
between synchronization events. higher)
The value of SyP is extended by assuming that these two
bits are juxtaposed to the | eft of the three bits of SyP
(SyPEXxt.SyP). When only SyP was used to specify the

synchronization period, the value was 2%, where x was
computed from SyP by adding 5 to the actual value repre-
sented by the bits. A similar formulais applied to the 5
bits just obtained by the juxtaposition of SyPExt and SyP.

Sync period values greater than 23! are UNPREDICT-
ABLE. Sincethevalue of 11010 representsthe value of 31
(with +5), all values greater than 11010 are UNPREDICT-
ABLE.

Note that with these new bits, a sync period range of 25to

231 cycles can now be obtained.

Impl 29:27 Thisfield is reserved for implementation-specific use. Undefined Optional
Refer to the processor specification for the format and def-
inition of thisfield.

0 26 Reserved for future use. Must be written as zero; returns 0 0 Required
zero on read.

VModes 25:24 Thisfield specifies the type of tracing that is supported by R Preset Required
the processor, as follows:

Encoding Meaning

00 PC tracing only

01 PC and load and store address tracing
only

10 PC, load, and store address, and load
and store data.

11 Reserved

Thisfield is preset to the TCB register value ValidModes

ADW 23 The address and data value width used in the trace for- R Preset Required
mats.

0: Thewidth is 16 bits.
1: The width is 32 bits.

MIPS® PDtrace™ Specification, Revision 6.16 69

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Trace Control Block (TCB) Registers

Table 8.3 TCBCONTROLA Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

SyP

22:20

Used to indicate the synchronization period.

The period (in cycles) between which the periodic syn-
chronization information is to be sent is defined as shown
in the table below, when the trace buffer is either on-chip
or off-chip (as determined by the TCBCONTROLB ¢ bit).

SyP Sync Period
000 25
001 26
010 o7
011 28
100 29
101 210
110 o1l
111 212

RIW

000

Required

B

19

Trace All Branches. Thissignal isused to indicate that the
core must trace either full or incremental PC valuesfor all
branches instead of only the unpredictable ones.

RIW

Undefined

Required

18

Inhibit Overflow. Thissignal isused to indicate to the core
trace logic that slow but complete tracing is desired.
Hence, the core tracing logic must not allow a FIFO over-
flow, which results in discarded trace data. Thisis
achieved by stalling the pipeline when the FIFO is nearly
full, so that no trace records are | ost.

R/W

Undefined

Required

17

When set to one, tracing is enabled in Debug mode, i.e.,
when the DM bit is one in the Debug register. For trace to
be enabled in Debug mode, the On bit must be one and
either the G bit must be one, or the current process must
match the ASID field in thisregister.

When set to zero, trace is disabled in Debug mode, regard-
less of other bits.

RIW

Undefined

Required

16

This controlswhen tracing is enabled. When set, tracing is
enabled when either the EXL or ERL bitsin the Status reg-
ister is one, provided that the On bit (bit 0) is also set, and
either the G hit is set or the current process ASID matches
the ASID field in this register.

RIW

Undefined

Required

15

When set, tracing is enabled when the coreisin Supervi-
sor mode as defined in the MIPS32 or M1PS64 architec-
ture specification, the On bit (bit 0) is set, and either the G
bit is set or the current process ASID matches the ASID
field in this register.

RIW

Undefined

Required

70

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Table 8.3 TCBCONTROLA Register Field Descriptions (Continued)

8.2 TCBCONTROLB Register

Fields
Read / Reset
Name Bits Description Write State Compliance

K 14 When set, this enables tracing when the On bit is set and R/W Undefined Required
the coreisin Kernel mode. Unlike the usual definition of
Kernel Mode, this bit enables tracing only when the ERL
and EXL bitsin the Status register are zero, the On bit (bit
0) is set, and either the G bit is set or the current process
ASID matchesthe ASID field in this register.

U 13 When set, this enables tracing when the coreisin User R/W Undefined Required
mode as defined in the MIPS32 or MI1PS64 architecture
specification, the On bit (bit 0) is set, and either the G bit is
set or the current process ASID matches the ASID field in
thisregister.

ASID 12:5 The ASID field to match when the G bit is zero. When the R/W Undefined Required
G bitisone, thisfield isignored.

G 4 When set, tracing is enabled for all processes, provided R/W Undefined Required
that other enabling functions (U, S, etc.,) are also true.

TFCR 3 When set, thisindicates to the PDtrace interface that the R/W Undefined Required for
optional Fcr bit must be traced in the appropriate trace for- PDtrace revi-
mats. If PC tracing is disabled, the full PC of the function sions 4.00 and
call (or return) instruction must also be traced. Note that higher
function call/return information is only traced if tracing is
actually enabled for the current mode.

TLSM 2 When set, thisindicates to the PDtrace interface that infor- R/W Undefined Required for
mation about data cache misses should be traced. If PC, PDtrace revi-
load/store address and data tracing are disabled (see the sions 4.00 and
TraceControl2)qqe field), the full PC and load/store higher
address are traced for data cache misses. If |oad/store data
tracing is enabled, the LSm bit must be traced in the appro-
priate trace format. Note that data cache miss information
isonly traced if tracing is actually enabled for the current
mode.

TIM 1 When set, thisindicates to the PDtrace interface that the R/W Undefined Required for
optional Im bit must be traced in the appropriate trace for- PDtrace revi-
mats. If PC tracing is disabled, the full PC of the instruc- sions 4.00 and
tion that missed in the I-cache must be traced. Note that higher
instruction cache missinformationisonly traced if tracing
isactually enabled in the current mode.

On 0 Thisisthe global trace enable switch to the core. When R/W 0 Required
zero, tracing from the core is always disabled, unless
enabled by coreinternal software override.
When set to one, tracing is enabled whenever the other
enabling bits are also true.

8.2 TCBCONTROLB Register

The TCB includes a second control register, TCBCONTROLB (0x11). Thisregister controls what happensto the trace
information once it arrives at the TCB. Starting with PDtracerev 6.00, thisregister is also mapped to offset 0x3008 in

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

71

Trace Control Block (TCB) Registers
drseg. See Section 8.15 “Memory-Mapped Access to PDtrace™ Control and On-Chip Trace RAM” on page 91 for
information on how this register can be accessed via drseg.
Compliance: Thisregister isrequired.
The format of the TCBCONTROLB register is shown below, and the fields are described in Table 8.4.

Figure 8.2 TCBCONTROLB Register Format

3 2 2 2
31 0 8 27 26 5 1 20 19 18 17 16 15 14 13 12 11 10 8 7 6 3 2 1 0
TWSrc- TL C |Of |E
WE| Impl Width REG WR| O |TRAD|FDT|RM [TR|BF| TM SF CR Ca | TWSrcva Ale IN
Table 8.4 TCBCONTROLB Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
WE 31 Write Enable. R 0 Required
Only when set to 1 will the other bits be written in
TCBCONTROLB.
This bit dlways reads 0.
Impl 30:28 Thisfield is reserved for implementations. Refer to the Undefined Optional
processor specification for the format and definition of
thisfield.
TWSrc- 27:26 Used to indicate the number of bits used in the sourcefield R Preset Required for
Width of the Trace Word. Thisis a configuration option of the PDtrace revi-
core that cannot be modified by software. sions 4.00 and
higher
Encoding Meaning
00 Zero source field width
01 2-bit source field width
10 4-bit source field width
11 Reserved
REG 25:21 Register select. Thisfield specifies the register (one R/W 0 Required
among the set of registersin Table 8.2) that can be
accessed through the TCBDATA register.
WR 20 The write register field, when set, allows the register R/W 0 Required
selected by the REG field to be written as well asread
when TCBDATA is accessed. Otherwise, the selected regis-
ter isread only.
Note that a JTAG register cannot be only written—it is
always read and written. Therefore, aregister that hasa
side-effect on read (see 8.9 “TCBRDP Register (Reg 5)”)
will have the same side-effect when written, since aread
also happens on awrite. Hence, it is specified that when
thisfield is set, it isimplementation-dependent whether a
side-effect of aread will occur when writing.
0 19 Reserved for future use. Must be written as zero; returns 0 0 Reserved
zero on read.
72 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.2 TCBCONTROLB Register

Table 8.4 TCBCONTROLB Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance

TRPAD 18 Trace RAM access disable bit. Disables program software R/W 0 Required after
access to the on-chip trace RAM using load/store instruc- revision 06.00
tions. If probe accessis not provided in the implementa- and higher
tion, this register bit must be tied to zero to alow software
to control access.
The affected registers are TCBTW?*, TCBRDP, TCBWP,
TCBSTP. None of these registers are writeable when
TRPAD is set. Readsto TCBTW* returns zero with no side-
effects when TRPAD is set.

FDT 17 Filtered Data Trace Mode enable bit. When the bit is 0, R/W 0 Required after
thismodeisdisabled. When set to 1, this mode is enabled. revision 06.00
Reset valueis 0. Thismodeis described in Section 3.18 on and higher
page 36.

RM 16 Read on-chip trace memory. R/W 0 Required
When written to 1, the read address pointer of the on-chip if on-chip
memory in register TCBRDP is set to thevaluein memory exists.
TCBSTP. Otherwise
Subsequent access to the TCBTW register (through the reserved.
TCBDATA register) will automatically increment the read
pointer in register TCBRDP after each read.

When the write pointer is reached, thisbit isautomatically
reset to 0, and the TCBTW register will read all zeros.
When set to 1, writing 1 again has no effect. The bit is
reset by setting the TR bit or by reading the last Trace
word in TCBTW.

TR 15 Trace memory reset. R/W1 0 Required
When written to one, the address pointers for the on-chip if on-chip
trace memory TCBSTP, TCBRDP and TCBWRP are reset memory exists.
to zero. Also the RM and BF hits are reset to 0. Otherwise
Thisbit isautomatically reset to O when the reset specified reserved.
above is completed.

BF 14 Buffer Full indicator that the TCB usesto communicate to R 0 Required
external software that the on-chip trace memory isfull. if on-chip
Notethat this applies only when the on-chip trace memory memory exists.
isbeing used in the Trace-From and Trace-To modes. (See Otherwise
C.1 “On-Chip Trace Memory” on page 124.) reserved.
This bit is cleared when writing a 1 to the TR hit

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Trace Control Block (TCB) Registers

Table 8.4 TCBCONTROLB Register Field Descriptions (Continued)

Fields
Read / Reset

Name Bits Description Write State Compliance

™ 13:12 Trace Mode. Thisfield determines how the trace memory R/W 0 Required
isfilled when using the simple-break control in the if on-chip
PDtrace IF to start or stop trace. memory exists.

Otherwise
™ Trace Mode reserved.
00 Trace-To
01 Trace-From
10 Reserved
11 Reserved
In Trace-To mode, the on-chip trace memory isfilled, con-
tinuously wrapping around, overwriting older Trace
Words, as long asthere is trace data coming from the core.
In Trace-From mode, the on-chip trace memory isfilled
from the point that the core starts tracing until the on-chip
trace memory isfull (when the write pointer addressisthe
same as the start pointer address).
In both cases, de-asserting the EN bit in this register will
also stop the fill to the trace memory.
If aTCBTRIGx trigger control register is used to start/stop
tracing, then thisfield should be set to Trace-To mode.

TLSIF 11 When set, thisindicatesto the TCB that information about R/W 0 Required for
Load and Store data cache misses, instruction cache PDtrace revi-
misses, and function calls are to be taken from the PDtrace sions 4.00 and
interface and traced out in the appropriate trace formats as higher
the three optional bits LSm, Im, and Fcr.

CR 10:8 Off-chip Clock Ratio. Writing this field sets the ratio of R/W 100 Required
the core clock to the off-chip trace memory interface if off-chiptrace
clock. The clock-ratio encoding is shown in Table 8.5. interface exists.
Remark: For example, aclock ratio of 1:2 implies atwo Otherwise
times slow down of the Probe interface clock to the core reserved.
clock. However, one data packet is sent per core clock ris-
ing edge, while a data packet is sent on every edge of the
Probe interface clock, since the Probe interface works in
double data rate (DDR) mode.

74

MIPS® PDtrace™ Specification, Revision 6.16
Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.2 TCBCONTROLB Register

Table 8.4 TCBCONTROLB Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
Cd 7 Calibrate off-chip trace interface. R/W 0 Required
If set, the off-chip trace pinswill produce the trace pattern if off-chiptrace
shown below in consecutive trace clock cycles. If more interface exists.
than 4 data pins exist, the pattern is replicated for each set Otherwise
of 4 pins. The pattern repeats from top to bottom until the reserved.
Cal bit is deasserted.
Calibrations pattern
3 2 1 o0
ojofjo0|oO
111111
@ ojofjo0|oO
E
< of1]0(12
g
3 1(0|1|0
= U
25 [1]o0]o0]o0
o
S <Dt| of1]0/|O0
? Elolo|1]o0
c® lolo]o]1
&
3 1(1|1]0
e
= 111101
11011
o111
Note: The clock source of the TCB and PIB must be run-
ning.

TWSrcVval 6:3 These bits are used to indicate the value of the TW source R/W 0 Required for
field that will betraced if TWSrcBitsindicates a source bit PDtrace revi-
field width of 2 or 4 bits. Note that if the field is 2 bits, sions 4.00 and
then only bits 4:3 of thisfield will be used in the TW. higher.

CA 2 Cycle accurate trace. R/W 0 Required
When set to 1 the trace will include stall information.
When set to 0 the trace will exclude stall information, and
remove bit zero from all transmitted TF's.
The stall information included/excluded is:
* TF6 formats with TCBcode 0001 and 0101.
« All TF1 formats except within the context of multi-pipe
processor tracing (when it is used for individual pipes
within the sequence of pipe outputs).
ofC 1 If setto 1, trace is sent to off-chip memory using TR_DATA R/W Preset Required
pins.
If not set, trace info is sent to on-chip memory.
Thisbit isread only if either off-chip or on-chip option
exists.

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Trace Control Block (TCB) Registers

Table 8.4 TCBCONTROLB Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
EN 0 Enable trace. R/W 0 Required

Thisisthe master enablefor trace to be generated from the
TCB. This bit can be set or cleared, either by writing this
register or from a start/stop trigger.

When set to 1, trace information is sampled on the output
pins or written into the on-chip trace memory. Trace
Words are generated and sent to either on-chip memory or
to the Trace Probe. The target of the trace is selected by
the OfC hit.

When set to 0, trace information on the output trace pinsis
ignored. A potential TF6-stop (from a stop trigger) is gen-
erated as the last information, the TCB pipe-lineis
flushed, and trace output is stopped.

Table 8.5 Clock Ratio encoding of the CR field

CR/CRMin/CRMax Clock Ratio
000 8:1 (Trace clock is eight times that of core clock)
001 4:1 (Trace clock isfour times that of core clock)
010 2:1 (Trace clock is double that of core clock)
011 1:1 (Trace clock is same as core clock)
100 1:2 (Trace clock is one half of core clock)
101 1:4 (Trace clock is one fourth of core clock)
110 1:6 (Trace clock is one sixth of core clock)
111 1:8 (Trace clock is one eighth of core clock)

8.3 TCBCONTROLC Register

76

The trace output from the processor on the PDtrace interface can be controlled by the trace input signalsto the proces-
sor from the TCB. The TCB uses a control register, TCBCONTROLC, whose values are used to change the signal val-

ues on the PDtrace input interface. External software (i.e., debugger), can therefore manipulate the trace output by
writing the TCBCONTROLC register.

The TCBCONTROLC register iswritten by an EJTAG TAP controller instruction, TCBCONTROLC (0x13). Seethe
MIPS EJTAG Specification (MD00047) for more details regarding new TAP instructions. Starting with PDtrace rev

6.00, thisregister isalso mapped to offset 0x3010 in drseg. See Section 8.15 “Memory-Mapped Accessto PDtrace™

Control and On-Chip Trace RAM” on page 91 on how this register can be accessed via drseg.

Compliance: Thisregister isrequired for PDtrace revisions 4.00 and higher.

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

The format of the TCBCONTROL C register is shown below, and the fields are described in Table 8.3.

Figure 8.3 TCBCONTROLC Register Format

8.3 TCBCONTROLC Register

31 30 29 28 27 23 22 21 14 13 12 5 2 1
Num cP e :\r/laj: {\r/la-tl;
0 Mode Uv CPUid vali TCnum TChits
DO . ely| el
aid d
pe| C
Table 8.6 TCBCONTROLC Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
0 31:30 Reserved for future use. Must be written as zero; returns 0 0 Reserved
zero on read.
NumDO 29:28 Specifies the number of bits needed by thisimplementa- R Preset Required for
tion to specify the DataOrder: PDtrace revi-
00 - Four bits sion5.0 and
01 - Five hits higher
10 - Six bits
11 - Eight bits
Mode 27:23 When tracing is turned on, this bit specifies what informa- R/W 0 Required for
tion isto be traced by the core. It uses 5 hits, where each PDtrace revi-
bit turns on tracing of a specific tracing mode. The table sions 4.00 and
higher
Bit # Set Trace The Following
0 PC
1 Load address
2 Store address
3 Load data
4 Store data
shows what trace value is turned on when that bit valueis
al. If the corresponding bit is 0, the Trace Value shown in
column two is not traced by the processor. Thisimplemen-
tation is required for all processors using PDtrace specifi-
cation 4.00 and higher.
Obviously, the processor has to support the tracing mode
that is being requested for this bit to have any effect. For
example, if the processor only supports PC tracing, then
only bit 0 isread by the processor, and other bits are
ignored, and so on. Which bits are ignored and which are
read can be obtained by reading the validModes bits.
Itisoptional for an implementation to allow PC tracing to
beturned off. This must be clearly documented by the core
implementati on-specific document. When it is optional,
bit 23 istied to avalue of 1, and setting bit 23to O issim-
ply ignored by the processor. Reading this bit always
returns a value of one.
MIPS® PDtrace™ Specification, Revision 6.16 77

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Trace Control Block (TCB) Registers

Table 8.6 TCBCONTROLC Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
CPUvalid 22 This bit indicates whether or not to use the value in the R/W 0 Required for
CPUid field asthe CPU to betraced. Only implemented on PDtrace revi-
aprocessor with MT or multi-core SOC. Otherwise, this sions 4.00 and
field must be written as zero and returns zero on read. higher if MT is
When set, the CPUId field specifies the number of the VPE present or
or CPU that must be traced. Otherwise, instructions from multi-core
all VPEs are traced when other conditions for tracing are
vaid. On an MT system, thisbit isignored if TCV is
asserted.
CPUId 21:14 This bit indicates the value of the CPU ID to be traced if R/W Undefined Required for
CPUvallid is set. PDtrace revi-
sions 4.00 and
higher if MT is
present or
multi-core
TCvalid 13 This bit indicates whether or not to use the value in the R/W 0 Required for
TCnum field asthe TC to be trace. PDtrace revi-
sions 4.00 and
higher if MT is
present
TCnum 125 This bit indicates the value of the TC to be traced if R/W Undefined Required for
TCvalid is set. PDtrace revi-
sions 4.00 and
higher if MT is
present
TChits 4.2 Thisvalueisused by the TCB to determine the number of R Preset Required for
bits needed to represent the TC value for thisMT ASE PDtrace revi-
core configuration. This value can range from 1 to 8 bits sions 4.00 and
when the valueis 0 to 7. This determines the number of higher if MT is
bitsthat will be used in the trace formats generated by this present
core.
MTtrace- 1 This bit indicates the type of implemented multi-thread- R Preset Required for
Type ing: fine-grained, i.e., switch threads every cycle (bit value PDtrace revi-
0), or coarse-grained, which is also referred to as block sions 4.00 and
multithreading (bit value 1). higher if MT is
present
MTtraceTC 0 Thisbit is used by the TCB to either disable or enable TC R/W Undefined Required for
tracing. A value of 0 impliesthat a TC valueis not traced, PDtrace revi-
and avalue of 1impliesthat aTC valueistraced. Whether sions 4.00 and
or not the TC valueistraced usingTF7 format or aug- higher if MT is
mented TF formats is determined by the type of multi- present
threading, that is, the MTtraceTypefield. If the type bit is
0, that is, fine-grained multi-threading, then each TF for-
mat is augmented by the TC information. If the type bit is
1, then aTF7 format is used, and each TF format is not
augmented.

78

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.4 TCBControlD Register

8.4 TCBControlD Register

Thetrace control block adds a new register, TCBControlD, to control trace output from the Coherence Manager in the
MIPS 1004K core. Note: The value of the TCBControlB field TWSrcwidth must be set to * 10° on a1004K coreto
indicate that the source ID field is 4 bitswide. The TCBCONTROLD register iswritten by the EJTAG TAP controller
instruction TCBCONTROLD (0x15). Seethe MIPS EJTAG Specification (MD00047) for more details regarding new
TAP instructions. Starting with PDtrace rev 6.00, this register is also mapped to offset 0x3018 in drseg. See Section
8.15 “Memory-Mapped Access to PDtrace™ Control and On-Chip Trace RAM” on page 91 for information on how
this register can be accessed via drseg.

Compliance: Thisregister isrequired for PDtrace revisions 05.00 and higher. In a non-coherent core that implements
PDtrace rev 5.00 or higher, al bit-fields are read-only.

The format of the TCBCONTROLD register is shown below, and the fields are described in Table 8.7.

Figure 8.4 TCBCONTROLD Register Format

31 26 25 24 23 22 21 20 19 18 17 16 15 12 1 8 7 6 5 4 3 2 1 0
TWS Core CM |CM_
Impl Reserved reval WB|O0|IO| TLev |AE _En En

Table 8.7 TCBCONTROLD Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
Impl 31:16 Reserved for implementations. Check core documentation Undefined Optional
Reserved 15:12 Reserved for future use. Must be written as 0 and reads as 0 0 0 Required for
PDtrace revi-
sion 05.00 or
higher
TWSrcVal 11:8 The source ID of the CM. 0 0 Required for
PDtrace revi-
sion 05.00 or
higher
WB 7 When this bit is set, Coherent Writeback requests are R/W 0 Required for
traced. If thisbit isnot set, all Coherent Writeback requests PDtrace revi-
are suppressed from the CM trace stream sion 05.00 or
higher
Reserved 6 Reserved for future use. Must be written as 0, and read as 0 0 0 Required for
PDtrace revi-
sion 05.00 or
higher
10 5 Inhibit Overflow on CM FIFO full condition. Will stall the R/W Undefined Required for
CM until forward progress can be made PDtrace revi-
sion 05.00 or
higher
MIPS® PDtrace™ Specification, Revision 6.16 79

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Trace Control Block (TCB) Registers

Table 8.7 TCBCONTROLD Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
TLev 4:3 This defines the current trace level being used by CM trac- R/W Undefined Required for
ing PDtrace revi-
Encodin Meanin sion 05.00 or
g g higher
00 No Timing Information
01 Include Stall Times, Causes
10 Reserved
11 Reserved
AE 2 When set to 1, address tracing is always enabled for the R/W 0 Required for
CM. This affects trace output from the serialization unit of PDtrace revi-
the CM. sion 05.00 or
higher
Core CM_En 1 Each core can enable or disable CM tracing using this bit. R/W 0 Required for
This bit is not routed through the master core, but isindi- PDtrace revi-
vidually controlled by each core. Setting this bit can enable sion 05.00 or
tracing from the CM even if tracing is being controlled higher
through software, if al other enabling functions are true.

CM_EN 0 Thisisthe master trace enable for the CM. When zero, trac- | R/W 0 Required for
ing from the CM is always disabled. When set to one, trac- PDtrace revi-
ing is enabled if other enabling functions are true. sion 05.00 or

higher

Since each core in the system has its own set of TCBControl registers, one core must be made the ‘master’ core that
controlstrace functionality for the CM. This can be done usinga CMP GCR control register to designate acore asthe
master trace control for the CM. This control register is located in the global debug block within the GCR address

space of the CM, at offset 0x0000. The format of the register is given below.

Figure 8.5 PDtrace Control Configuration Register Format

31 4 3 2 1 0
0 |TS| CorelD
Table 8.8 PDtrace Control Configuration Register
Name | Bits Description Read / Write | Reset State | Compliance
0 31-5 | Reserved for future use. Must be written as zero; returns zero on read. R 0 Required
TS 4 | Thetrace select bit isused to select between the hardware and the software R/W 0 Required
trace control bits. A value of zero selectsthe external hardware trace block
signals, and a value of one selects the trace control bitsin the CM Trace-
Control register.
CorelD | 3:0 [ID of corethat controls PDtrace configuration for the coherent subsystem. R/W 0 Required

80

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.5 TCBCONTROLE Register

Each corein the coherent multiprocessor system has independent control over the Core_CM_EN bhit. (i.e, thisfield is
not muxed using the GCR control register. Each core can turn on or turn off trace by setting thisbit. The signal will be
awire-or of the N core signals and the SW_Trace_ON signal).

8.5 TCBCONTROLE Register

The trace output from the processor on the PDtrace interface can be controlled by the trace input signalsto the proces-
sor from the TCB. The TCB uses a control register, TCBCONTROLE, whose values are used to change the signal val-
ues on the PDtrace input interface. External software (i.e., debugger), can therefore manipulate the trace output by
writing the TCBCONTROLE register. This register was added for PDtrace specification revision 06.00 and higher.

The TCBCONTROLE register iswritten by the EJTAG TAP controller instruction TCBCONTROLE (0x16). Seethe
MIPS EJTAG Specification (MD00047) for more details regarding new TAP instructions. Starting with PDtrace rev
6.00, thisregister is also mapped to offset 0x3020 in drseg. See Section 8.15 “Memory-Mapped Access to PDtrace™
Control and On-Chip Trace RAM” on page 91 on how this register can be accessed via drseg.

Compliance: Thisregister isrequired for PDtrace revisions 06.00 and higher.

The format of the TCBCONTROLE register is shown below, and the fields are described in Table 8.9.

Figure 8.6 TCBCONTROLE Register Format
31 23 22 21 14 13 12 8 7 6 5 4 3 2 1 0

PecO|PeCF| PeC | PeC | PeC
0 TdIDLE| O vi | CrR|BP |sync| E PeC

Table 8.9 TCBCONTROLE Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
0 31:9 Reserved for future use. Must be written as zero; returns 0 0 Reserved
zero on read.

TrIDLE 8 Trace Unit Idle. Thisbit indicatesif the trace hardware is R 1 Required after
currently idle (not processing any data). This can be useful revision 06.00
when switching control of trace from hardware to software and higher
and vice versa. The bit is read-only and updated by the
trace hardware.

0 76 Reserved for future use; Must be written as zero; returns 0 0 Reserved
zero on read. (Hint to architect: reserved for future expan-
sion of performance counter trace events).

PeCOvVf 5 Trace performance counters when one of the performance R/W 0 Required after
counters overflows its count value. Enabled when set to 1. revision 06.00

and higher

PeCFCR 4 Trace performance counters on function call/return or on R/W 0 Required after
an exception handler entry. Enabled when set to 1. revision 06.00

and higher

PeCBP 3 Trace performance counters on hardware breakpoint R/W 0 Required after
match trigger. Enabled when set to 1. revision 06.00

and higher
MIPS® PDtrace™ Specification, Revision 6.16 81

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Trace Control Block (TCB) Registers

Table 8.9 TCBCONTROLE Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
PeCSync 2 Trace performance counters on synchronization counter R/W 0 Required after
expiration. Enabled when set to 1. revision 06.00
and higher
PeCE 1 Performance counter tracing enable. When set to 0, the R/W 0 Required after
tracing out of performance counter values as specified is revision 06.00
disabled. To enable, this bit must be set to 1. Thisbit is and higher
used under software control. When trace is controlled by
an external probe, this enabling is done viathe TCB con-
trol register.

PeC 0 Specifies whether or not Performance Control Tracing is R Preset Required after
implemented. Thisis an optional feature that may be omit- revision 06.00
ted by implementation choice. See 3.17 “Tracing and higher
Performance Counter Values’ on page 35 for details.

8.6 TCBDATA Register

The TCBDATA register (0x12) is used to access the registers defined by the TCBCONTROLBRe field, see Table 8.2.

Regardless of which register or data entry is accessed through TCBDATA, the register is only written if the
TCBCONTROLByR bit is set. For read only registers the TCBCONTROLBy, isadon’t-care.

Compliance: This register isrequired.

The format of the TCBDATA register is shown below, and the field is described in Table 8.10. The width of TCBDATA

is 64 bits when on-chip trace words (TWSs) are accessed (TCBTW access).

Figure 8.7 TCBDATA Register Format

31(63) 0
Data
Table 8.10 TCBDATA Register Field Descriptions
Fields
Reset
Names Bits Description Read/Write State Compliance
Data 31.0 Register fields or data as defined by Only writable if 0 Required
63:0 the TCBCONTROLBRg field TCBCONTROLByR s
Set

8.7 TCBCONFIG Register (Reg 0)

The TCBCONFIG register holds hardware configuration information in the TCB. Thisregister is aso mapped to off-

set 0x3028 in drseg. See Section 8.15 “Memory-Mapped Accessto PDtrace™ Control and On-Chip Trace RAM” on

page 91 for information on how this register can be accessed via drseg..

82

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.7 TCBCONFIG Register (Reg 0)

Compliance: Thisregister isrequired.

Figure 8.8 TCBCONFIG Register Format

31 30 25 24 21 20 17 16 14 13 1 10 9 8 6 5 4 3 0
ClF Impl TRIG Sv4 CRMax | CRMin PW PiN %n ?_f REV
Table 8.11 TCBCONFIG Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
CF1 31 Thisbit isset if a TCBCONFIGL1 register exists. In this R 0 Required
revision, TCBCONFIG1 does not exist, and this bit reads
zero.
Impl 30:25 Thisfield is reserved for implementations. Refer to the 0 Undefined Optional
processor specification for the format and definition of
thisfield.
TRIG 24:21 Number of triggers implemented. This also indicates the R Legal values Required
number of TCBTRIGx registers that exist. are0-8
Z 20:17 On-chip trace memory size. Thisfield holds the encoded R Preset Required
size of the on-chip trace memory. if on-chip
Thesizein bytesis given by 2(57*8) | e., the lowest value memory exists.
is 256 bytes, and the highest is 8Mb. Otherwise
reserved.
CRMax 16:14 Off-chip Maximum Clock Ratio. R Preset Required
Thisfield indicates the maximum ratio of the core clock to if off-chiptrace
the off-chip trace memory interface clock. The clock-ratio interface exists.
encoding isshown in Table 8.5. Otherwise
reserved.
CRMin 13:11 Off-chip Minimum Clock Ratio. R Preset Required
Thisfield indicates the minimum ratio of the core clock to if off-chiptrace
the off-chip trace memory interface clock. The clock-ratio interface exists.
encoding isshown in Table 8.5. Otherwise
reserved.
PW 10:9 Probe Width: Number of bits available on the off-chip R Preset Required
trace interface TR_DATA pins. The number of TR_DATA if off-chiptrace
pinsisencoded, as shown in the table. interface exists.
- Otherwise
PW Number of bits used on TR_DATA reserved.
00 |4 bits
01 |8hits
10 |16 hits
11 |reserved
Thisfield is preset based on input signals to the TCB and
the actual capability of the TCB.
MIPS® PDtrace™ Specification, Revision 6.16 83

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Trace Control Block (TCB) Registers

Table 8.11 TCBCONFIG Register Field Descriptions (Continued)

Fields
Read / Reset

Name Bits Description Write State Compliance

PiN 8:6 Pipe number. R Preset Required
For single-pipeline processors this field must read 0.

For multi-pipeline processor, this field indicates the num-
ber of pipes which are traced. If non-zero, this also indi-
cates that the 3-bit PgmOrder field isincluded in the TF2,
TF3 and TF4 Trace Formats, as shown in Figure 4.2
through Figure 4.8.

The table below indicates the number of bitsin PgmOrder
for the possible values of PiN.

Number |PgmOrder field included
of Pipes |inthe TF2, TF3 and TF4
PiN traced Trace Formats

000 1 No
001
010
011
100
101
110
111

Yes

N[O OBl WDN

onT 5 When set, this bit indicates that on-chip trace memory is R Preset Required
present. This bit is preset based on the selected option
when the TCB isimplemented.

OfT 4 When set, this bit indicates that off-chip trace interfaceis R Preset Required
present. This bit is preset based on the selected option
when the TCB isimplemented, and on the existence of a
PIB module (TC_PibPresent asserted).

REV 3.0 Revision of TCB. Animplementation that conformsto the R 0 Required
described architecture in this document (PDtrace revision
4.xx) must have revision 1. An implementation that con-
forms to PDtrace specification revision 05.00 must have
thisfield set to integer value 2. An implementation that
conforms to PDtrace specification 06.00 must have this
field set to integer value 3.

8.8 TCBTW Register (Reg 4)

84

The TCBTW register is used to read Trace Words from the on-chip trace memory. The TW read isthe TW pointed to
by the TCBRDP register. A side effect of reading the TCBTW register is that the TCBRDP register increments to the
next TW in the on-chip trace memory. If TCBRDP is at the max size of the on-chip trace memory, the increment
wraps back to address zero. Starting with PDtrace rev 6.00, the TCBTW register is mapped to offset 0x3100 in drseg.
To read a 64-bit trace word from memory on a 32-hit processor, the user is required to execute two load word instruc-
tions. Thefirst instruction targets offset 0x3104 in drseg, and the second one accesses offset 0x3100. An access to off-
set 0x3100 automatically causes the read pointer to be incremented. The use of load halfword or load byte
instructions can lead to unpredictable results, and is not recommended. See Section 8.15 “Memory-Mapped Access

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

63

8.9 TCBRDP Register (Reg 5)
to PDtrace™ Control and On-Chip Trace RAM” on page 91 for information on how this register can be accessed via
drseg..

Compliance: Required if on-chip trace memory isimplemented.
The format of the TCBTW register is shown below, and the field is described in Table 8.12.

Figure 8.9 TCBTW Register Format

Data

Table 8.12 TCBTW Register Field Descriptions

Fields
Read / Reset
Names Bits Description Write State Compliance
Data 63:0 Trace Word R/W 0 Required

8.9 TCBRDP Register (Reg 5)

31

The TCBRDP register isthe address pointer to on-chip trace memory. It points to the TW read when reading the
TCBTW register. When writing the TCBCONTROLBR), bit to 1, this pointer is reset to the current value of TCBSTP.

Starting with PDtrace rev 6.00, this register is also mapped to offset 0x3108 in drseg. See Section 8.15 “Memory-
Mapped Accessto PDtrace™ Control and On-Chip Trace RAM” on page 91 on how thisregister can be accessed via
drseg..

Compliance: Required if on-chip trace memory isimplemented.
The format of the TCBRDP register is shown below, and the field is described in Table 8.12. The value of n depends

on the size of the on-chip trace memory. Because the address points to a 64-bit TW, the lower three bits are always
zero.

Figure 8.10 TCBRDP Register Format

n+1l n 0

Address

Table 8.13 TCBRDP Register Field Descriptions

Fields
Read / Reset
Names Bits Description Write State Compliance
Data 31:(n+1) |[Reserved. Must be written zero and reads back zero. 0 0 Required
Address n:0 Byte address of on-chip trace memory word. R/W 0 Required

8.10 TCBWRP Register (Reg 6)

The TCBWRP register is the address pointer to on-chip trace memory. It pointsto the location where the next new TW
for on-chip trace will be written. Starting with PDtrace rev 6.00, thisregister is al so mapped to offset 0x3110 in drseg.

MIPS® PDtrace™ Specification, Revision 6.16 85

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Trace Control Block (TCB) Registers

31

See Section 8.15 “Memory-Mapped Accessto PDtrace™ Control and On-Chip Trace RAM” on page 91 on how this
register can be accessed via drseg.

Compliance: Required if on-chip trace memory isimplemented.
The format of the TCBWRP register is shown below, and the field is described in Table 8.12. The value of n depends
on the size of the on-chip trace memory. Because the address points to a 64-bit TW, the lower three bits are always

Zero.

Figure 8.11 TCBWRP Register Format

n+l n 0

Address

Table 8.14 TCBWRP Register Field Descriptions

Fields
Read / Reset
Names Bits Description Write State Compliance
Data 31:(n+1) [Reserved. Must be written zero and reads back zero. 0 0 Required
Address n:0 Byte address of on-chip trace memory word. R/W 0 Required

8.11

31

TCBSTP Register (Reg 7)

The TCBSTP register isthe start pointer register. This pointer is used to determine when all entriesin the trace buffer
have been filled (when TCBWRP has the same value as TCBSTP). This pointer is reset to zero when the
TCBCONTROLBR hit iswritten to 1. If a continuous trace to on-chip memory wraps around the on-chip memory,
TSBSTP will have the same value as TCBWRP. Starting with PDtrace rev 6.00, this register is also mapped to offset
0x3118 in drseg. See Section 8.15 “Memory-Mapped Access to PDtrace™ Control and On-Chip Trace RAM” on
page 91 on how this register can be accessed viadrseg..

Compliance: Required if on-chip trace memory isimplemented.

The format of the TCBSTP register is shown below, and the field is described in Table 8.12. The value of n depends
on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero.

Figure 8.12 TCBSTP Register Format

n+l n 0

Address

Table 8.15 TCBSTP Register Field Descriptions

Fields
Read / Reset
Names Bits Description Write State Compliance
Data 31:(n+1) [Reserved. Must be written zero and reads back zero. 0 0 Required
Address n:0 Byte address of on-chip trace memory word. R/W 0 Required

86

MIPS® PDtrace™ Specification, Revision 6.16
Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.12 TCBTRIGx Register (Reg 16-23)

8.12 TCBTRIGx Register (Reg 16-23)

Eight Trigger Control registers are defined. Each register is named TCBTRIGx, where x isasingle digit number from
0to 7 (TCBTRIGO is Reg 16). The actual number of trigger registersimplemented is defined in the TCBCONFIGg g
field. An unimplemented register will read all zeros and writes are ignored. Starting with PDtrace rev 6.00, these reg-
isters are also mapped from offset 0x3200 to 0x3238 in drseg. See Section 8.15 “Memory-Mapped Access to
PDtrace™ Control and On-Chip Trace RAM” on page 91 on how this register can be accessed via drseg.

Each Trigger Control register controls when an associated trigger isfired and the resulting action. Refer to Chapter
10, “TCB Trigger Logic” on page 101 for a detailed description of trigger logic issues.

Compliance: The number of implemented trigger registers must be equal to the number in TCBCONFIGTR -

Figure 8.13 TCBTRIGx Register Format

31 24 23 22 20 19 16 15 14 13 11 10 7 6 5 4 3 2 1 0

C|P C|P

H|D H|D
el | 1mel 0 DM

o|lo i

Tr
TCBinfo ac
e

Impl 0

o
)

Type

Table 8.16 TCBTRIGx Register Field Descriptions

Fields

Names

Bits

Description

Read /
Write

Reset
State

Compliance

TCBinfo

31:24

TCBinfoto beused in aTF6 trace format when thistrigger
fires.

R/W

Required

Trace

23

When set, generate a TF6 trace information when thistrig-
ger fires. Use TCBinfo field for the TCBinfo of TF6 and
use Type field for the two MSB of the TCBtype of TF6.
The two LSBs of TCBtype are 00.

The write value of this bit always controls the action from
thefiring of thistrigger.

When this trigger fires, if another higher priority trigger
fires simultaneously, then the action of thistrigger can be
suppressed. That is, the issue of the TF6 format would be
suppressed. If this ever happens, this can be detected by
reading the value of thisfield. If the Trace field was set to
1, and thistrigger action was suppressed, then the read of
this Trace field will return a0. (Note that theread valueis
always 0 if the write value was 0). The read value of 0
indicating a suppressed trigger action isvalid until the
TCBTRIGX register isagain written. That is, the read value
isOif the trigger fires but the trigger action was ever sup-
pressed, since the last write.

RIW

Required

Impl

22:20

These bits are reserved for implementation specific trigger
actions (internal to the TCB). Refer to the processor speci-
fication for the format and definition of thisfield.

Optional

19:16

Reserved. Must be written zero, reads back zero

Reserved

CHTro

15

When set, when this trigger fires, generate asingle cycle
strobe on TC_ChipTrigOut.

RIW

Required

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Trace Control Block (TCB) Registers

Table 8.16 TCBTRIGx Register Field Descriptions (Continued)

Fields
Read / Reset

Names Bits Description Write State Compliance

PDTro 14 When set, when this trigger fires, generate asingle cycle R/W 0 Required
strobe on TC_ProbeTrigOut.

Impl 13:11 These bits are reserved for implementation specific trigger 0 Optional
sources (internal or external to the TCB). Refer to the pro-
cessor specification for the format and definition of this
field.

0 10:7 Reserved. Must be written zero, reads back zero 0 0 Reserved

DM 6 When set, this Trigger will fire when arising edge on the R/W 0 Optional
Debug mode indication from the core is detected.

The write value of this bit always controls when thistrig-
ger will fire.

If thistrigger fires because thisDM field is set, i.e,, thisis
the cause of the trigger firing, then this can be determined
by reading this DM field. If the DM field was written 1,
then aread value of 1 indicates that this trigger hasfired
since the last write. Note that the action from afiring trig-
ger could have been suppressed, and therefore, reading
this field would be the only definite way to tell if the trig-
ger fired and whether this was the cause. This specia read
valueisvalid until the TCBTRIGx register iswritten.
Notethat if the write value was 0 the read value is dways
0.

CHTri 5 When set, this Trigger will fire when arising edge on R/W 0 Required
TC_ChipTrigin is detected.

The write value of this bit always controls when thistrig-
ger will fire.

If thistrigger fires because this CHTri field is set, i.e., this
isthe cause of the trigger firing, then this can be deter-
mined by reading this CHTri field. If the CHTri field was
written 1, then aread value of 1 indicates that this trigger
has fired since the last write. Note that the action from a
firing trigger could have been suppressed, and therefore,
reading this field would be the only definite way to tell if
the trigger fired and whether this was the cause. This spe-
cial read valueisvalid until the TCBTRIGx register iswrit-
ten.

Note that if the write value was 0 the read value is dways
0.

88 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.12 TCBTRIGx Register (Reg 16-23)

Table 8.16 TCBTRIGx Register Field Descriptions (Continued)

Fields

Names

Bits

Description

Read /
Write

Reset
State

Compliance

PDTri

4

When set, this Trigger will fire when arising edge on
TC_ProbeTrigin is detected.

The write value of this bit always controls when thistrig-
ger will fire.

If thistrigger fires because this PDTri field is set, i.e,, this
isthe cause of thetrigger firing, then this can be deter-
mined by reading this PDTri field. If the PDTri field was
written 1, then aread value of 1 indicates that this trigger
has fired since the last write. Note that the action from a
firing trigger could have been suppressed, and therefore,
reading this field would be the only definite way to tell if
thetrigger fired and whether this was the cause. This spe-
cial read valueisvalid until the TCBTRIGx register iswrit-
ten.

Notethat if the write value was 0 the read value is aways
0.

RIW

0

Required

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

89

Trace Control Block (TCB) Registers

Table 8.16 TCBTRIGx Register Field Descriptions (Continued)

Fields
Read / Reset
Names Bits Description Write State Compliance
Type 32 Trigger Type: The Type indicates the action to take when R/W 0 Required

thistrigger fires. The table below show the Type values
and the corresponding Trigger action.

Type Trigger action

00 |Trigger Start: Trigger start-point of
trace.

01 |[Trigger End: Trigger end-point of trace.
10 |Reserved. Hasno effect

11 |Trigger Info: No action trigger, only for
trace info.

The action isto set or clear the TCBCONTROLBEy bit. A
Start trigger will set TCBCONTROLBEy, an End trigger
will clear TCBCONTROLBgy. Prior to revision 6.00 of the
PDtrace architecture, the value of ‘10’ indicated a Center
trigger. This has been deprecated as of revision 6.00 and is
reserved for future use.

If Traceis set, then a TF6 format is added to the trace
words. For Start and Info triggers thisis done before any
other TFsin that same cycle. For End triggers, the TF6
format is added after any other TFsin that same cycle.

If the TCBCONTROLBy, field isimplemented it must be
set to Trace-To mode (00), for the Type field to control on-
chip tracefill.

The write value of this bit always controls the behavior of
thistrigger.

When this trigger fires, the read value will change to indi-
cate if the trigger action was ever suppressed. If so the
read value will be 11. If the write value was 11 the read
valueisaways 11. This special read valueisvalid until
the TCBTRIGx register iswritten.

If the condition is not true, i.e., either the trigger did not
fire or it fired and the action was not suppressed, theniitis
valid for the read value to read anything but 11.

FO 1 Fire Once. When set, thistrigger will not re-fire until the R/W 0 Required
TR bit is deasserted. When deasserted, thistrigger will fire
each time one of the trigger sources indicates trigger.

TR 0 Trigger happened. When set, thistrigger fired sincethe TR | R/WO 0 Required
bit was last written 0.

This bit isused to inspect if the trigger fired since this bit
was last written zero.

When set, all the trigger source hits (bit 4 to 13) will
changetheir read value to indicate if the particular bit was
the source to fire this trigger. Only enabled trigger sources
can set the read value, but more than oneis possible.
Also, when set, the Typefield and the Trace field will have
read values which indicate if the trigger action was ever
suppressed by a higher priority trigger.

90 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.13 Reset State

8.13 Reset State

Reset state for all register fields is entered when one or both of the following two things happen:
1. ETT_SoftReset input is set high.

2. ETT_TRST_Ninputisset low.

Most fields can be reset synchronously on the next rising edge of ETT_TCK.

The fields TCBCONTROLAQ,, and TCBCONTROLBgy should be reset asynchronously on any of the above two
events. Internal registersin the core-clock domain that need to reset must treat ETT_SoftReset and ETT_TRST_N as
asynchronous reset inputs. It is not guaranteed that the core-clock is running when either of the two resets are
asserted. For synchronous register reset, the reset event must be remembered until the core-clock starts running.

8.14 TCB Registers in Processors Implementing the MT ASE

In the presence of MT (Multi-Threading), there are potentially multiple TAP controllers in the processor, one per
VPE (Virtua Processing Element). But such a processor only has a single pipeline, hence only implements asingle
PDtrace interface and asingle TCB (Trace Control Block). Thusthereis only a single copy of the TCB registers as
well on the core. In this situation, the TCB registers may be written from any one of the TAP controllers on the core.
In the situation that more than one TAP controller isinstructed to write a TCB register in the same instruction
seguence from a probe, the write from TAPO will succeed.

8.15 Memory-Mapped Access to PDtrace™ Control and On-Chip Trace RAM

PDtrace specification revision 06.00 and higher provides mechanisms by which PDtrace can be controlled entirely
through software and the on-chip trace memory can be accessed directly by software using load and store instruc-
tions. Accessis provided by mapping most TCB registers to drseg space, which then allows software to access these
registersin debug mode. Since al TCB registers are mapped directly to drseg, the TCBData register does not need to
be mapped.

The mapped drseg registers are shown in Table 8.17.

Table 8.17 Mapping TCB Registers in drseg

Offset in drseg | Register Name Description

0x3000 TCBControlA The TCBControlA register. See Section 8.1 “TCBCONTROLA Register” for more details
about register contents.

0x3008 TCBControlB The TCBControlB register. See Section 8.2 “TCBCONTROLB Register” for more details
about register contents.

0x3010 TCBControlC The TCBControlC register. See Section 8.3 “TCBCONTROLC Register” for more details
about register contents.

0x3018 TCBControlD The TCBControlD register. See Section 8.4 “TCBControlD Register” for more details about
register contents.

0x3020 TCBControlE The TCBControlE register. See Section 8.5 “TCBCONTROLE Register” for more details
about register contents.

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

91

Trace Control Block (TCB) Registers

Table 8.17 Mapping TCB Registers in drseg

Offset in drseg | Register Name Description

0x3028 TCBConfig The TCBConfig register. See Section 8.7 “TCBCONFIG Register (Reg 0)” for more details

about register contents.

0x3100 TCBTW Trace Word read register. This register holds the Trace Word just read from on-line trace mem-

ory. See Section 8.8 “TCBTW Register (Reg 4)” for more details about register contents.

0x3108 TCBRDP Trace Word Read pointer. It points to the location in the on-line trace memory where the next

Trace Word will beread. A TW read hasthe side-effect of post-incrementing this register value
to point to the next TW location. (A maximum value wraps the address around to the begin-
ning of the trace memory). See Section 8.9 “TCBRDP Register (Reg 5)” for more details
about register contents.

0x3110 TCBWRP Trace Word Write pointer. It points to the location in the on-line trace memory where the next

new Trace Word will be written. See Section 8.10 “TCBWRP Register (Reg 6)” for more
details about register contents.

0x3118 TCBSTP Trace Word Start Pointer. Pointer into Trace Buffer that is used to determinewhen all entriesin

the trace buffer have been filled. See Section 8.11 “TCBSTP Register (Reg 7)” for more
details about register contents.

0x3120 BKUPRDP Thisisnot aTCB register, but is needed on areset to save the TCBRDP value before that regis-

ter isreset to 0. This allows the software that comes up after a (hard or soft) reset to know the
last-known good value of TCBRDP before system crash, and potentially read the trace memory
from or to the appropriate trace memory location.

0x3128 BKUPWRP Thisisnot a TCB register, but needed on areset to save the TCBWRP value before that register

isreset to 0. This allows the software that comes up after a (hard or soft) reset to know the last-
known good value of TCBWRP before system crash, and potentially read the trace memory
from or to the appropriate trace memory location.

0x3130 BKUPSTP Thisisnot a TCB register, but needed on areset to save the TCBSTP value before that register

isreset to 0. This allows the software that comes up after a (hard or soft) reset to know the last-
known good value of TCBSTP before system crash, and potentially read the trace memory
from or to the appropriate trace memory location.

0x3200-0x3238 TCBTrigX The TCBTrigX set of registers. The number of implemented registersis determined by the value

in TCBCONFIGTR - See Section 8.12 “TCBTRIGx Register (Reg 16-23)” for more details
about register contents.

92

These mappings are “active” only when an external probeis either not present, or not enabled (i.e., the ProbEN bit in
the EJTAG Control Register or ECR is set to zero). |f the mappings are active, writesto the TCB registersviadrseg are
enabled (so long as these writes are otherwise permitted). If the mappings areinactive, writesto the TCB registersvia
drseg are ignored. Note that a hardware probe could set the ProbEN bit to zero and still access the TCBControl regis-
ters. Writing the TCB registers viathe probe and drseg simultaneously will result in unpredictable behavior. Software
should not rely on reads from the TCB registersviadrseg to return reliable datawhen the mappings are inactive. If the
mappings are active on reset (i.e., ProbEN=0), software isresponsiblefor initializing al control register fields, except
On (bit 0in TCBControlA) and EN (bit 0 in TCBControlB). Those control bits must be set to zero on acorereset if the
drseg mappings are active.

On-chip trace memory can be read by doing aload instruction to TCBTW. On a 32-hit core, two load instructions must
be executed to load a 64-hit trace word. These load instructions must target two different addresses. The first must tar-
get an offset of (+4) from the TCBTW register, and the second load instruction must target the TCBTW register.
Accessing the TCBTW has the side effect of automatically incrementing the value of TCBRDP to the next trace word.
The trace memory cannot be written to via this mechanism. Software can aso do direct loads and storesto TCBRDP

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.16 On-Chip Trace Buffer Usage

and TCBWRP at the beginning of the trace memory dump function. Note that writing to these registersin the middle
of the trace logic writing into this memory can result in UNPREDICTABLE results and junked values in the trace
memory.

Whether or not software has access to on-chip trace memory is controlled viaone bit in TCBCONTROLB (TRPAD, bit
18). Thisisacontrol DISABLE bit. The bit in TCBCONTROLB ismirrored in TraceControl3.

Tracing is stopped when the system crashes and an exception handler isinvoked on the crash. The last known good
values of TCBRDP, TCBWRP, and TCBSTP are saved in the backup registers shown in the table. Software should not
rely on TCBRDP, TCBWRP, and TCBSTP holding their last known good values across areset, and should use the
backup registersfor this purpose.

8.16 On-Chip Trace Buffer Usage

To initialize the on-chip trace buffer, the TR bit of the TCBControlB register is set by software. Thiswill initialize
TCBRDP, TCBWRP and TCBSTP pointers to zero. These pointers do not have to explicitly written by software for
initialization, the reset function that is caused by setting the TR bit is sufficient.

When it is desired to read out the Trace Words from the on-chip buffer, software first setsthe RM bit in TCBControlB.
Thiswill load the TCBRDP register with the value held in the TCBSTP register. The TraceWord pointed to by
TCBRDP can be then read out through the TCBTW register. The read will automatically update the TCBRDP value to
point to the next newer entry. A subsequent read from TCBTW register will thus read out the next newer TraceWord.
Software does not have to explicitly update the TCBRDP register.

If the TM field of TCBControlB register is set to Trace-From mode, the trace-buffer contents stop being updated when
the trace-buffer is full (when TCBWRP points to the same entry as TCBSTP). This event is denoted by the BF bit of
TCBControlB register. The BF bit can be polled by software to decide when to read out the trace buffer contents.

For production testing, such as stuck-at testing of memory cells within the trace buffer, the TCBRDP and TCBWRP
registers can be explicitly written by software to write and read specific entries within the trace buffer. As previously
stated, for normal usage these pointer registers do not have to be explicitly written by software.

MIPS® PDtrace™ Specification, Revision 6.16 93

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Chapter 9

EJTAG Trace Registers

9.1 TracelBPC and TraceDBPC Registers

Any actions in the tracing logic triggered by a particular EJTAG hardware breakpoint is determined by bitsin the
TracelBPC (Trace Instruction Break Point Control) and TraceDBPC (Trace Data Break Point Control) registers. Each
register uses 3 bits per breakpoint. A few bits are added for other information, so that each register holds information
for 9 hardware breakpoints. If more than 9 breakpoints are implemented for either instructions or data, then an addi-
tional register isrequired, namely, TracelBPC2 (instruction) or TraceDBPC2 (data). which are available as memory-
mapped registersin the EJTAG memory drseg space as shown in Table 9.1. PDtrace revision 05.00 and higher add the

Table 9.1 Mapping Trace Breakpoint Registers in CP0O Space or in drseg

CPO register
number/select or Description
Offset in drseg Register Mnemonic
Register 23, Select 4 | TracelBPC Holds information about the first 9 instruction breakpoints.
Register 23, Select 5 | TraceDBPC Holds information about the first 9 data breakpoints.
Ox1FF8 TracelBPC2 Holds information about the last 6 instruction breakpoints.
Ox2FF8 TraceDBPC2 Holds information about the last 6 data breakpoints.

ability to simultaneously trigger tracing from other components in a coherent system, such as the coherence manager
in the MIPS 1004K core (refer to Table 9.6 which defines how tracing can be triggered in system components). If a
trigger that is set to enable CM tracing fires, the corresponding Core_ CM_EN hit in TCBControlD is set to one. Simi-
larly, if atrigger that is set to disable tracing fires on a core, the Core_ CM_EN hit is set to zero.

The EJTAG control logic, upon encountering a hardware breakpoint, signals the triggered breakpoint to the trace
logic. If more than one breakpoint triggers every cycle, in the previous revision of the specification, even if one of the
triggers turned on trace, then the trace turned on, and all triggers have to turn trace off to turn off tracing. Now, the
possible trace modes generated by the triggers are more complex, hence if more than one trigger is generated in any
given cycle, and there is at least one trigger from the instruction side and one trigger from the data side, then the data
trigger isignored. If there are multiple triggers, and all are either instruction triggers or all are data triggers, then all
except the lowest numbered one are ignored.

Thetype of tracing that is triggered is determined by the tracing mode Mode bits [27:23] in the TCBCONTROLC reg-
ister, or if in software control, by the Mode bits [11:7] in the TraceControl2 register (described in “ TraceControl 2
Register (CPO Register 23, Select 2)” on page 60 of this document).

Note that the disable hit in the TracelBPC or the TraceDBPC register can be used to globally disable the triggering of
hardware breakpoints. One bit is used to disable instruction breakpoints, and the other is used to disable data break-
points (see Table 9.1 and Table 9.2).

MIPS® PDtrace™ Specification, Revision 6.16 94

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

9.1 TracelBPC and TraceDBPC Registers

PDtrace tracing logic can be implemented with no EJTAG implementation. Therefore software (external or internal)
must read the Coprocessor 0 Configl register to determineif EJTAG isimplemented before assuming the presence of
the TraceDBPC or TracelBPC registers. Moreover, for acore implementing EJTAG, the EJTAG hardware breakpoints
are optional. The Debug Control register (at offset 0x0000 in drseg) has bits DataBrk and InstBrk that specify whether
any EJTAG data or instruction hardware breakpoints are implemented. If both these bits are set to 0, then no hardware
breakpoints are implemented in EJTAG on that core, and the trace register specified in this section is aso not imple-
mented (i.e., the tracing logic does not implement the feature of trace triggering from EJTAG). So one must first
ensure that EJTAG isimplemented, then examine the values of DataBrk and InstBrk in the Debug Control register to
make sure that at least one of them is not zero.

In a processor implementing the MIPS MT ASE, EJTAG breakpoints can either be shared or not between any of the
VPEs (Virtual Processor Elements) in an MT environment. This sharing property for instruction breakpoints, if they
exigt, is determined by bit IBPshare of the IBS (Instruction Breakpoint Status) register in EJTAG drseg memory, and
for data breakpoints, if they exist, by bit DBPshare bit in the DBS (Data Breakpoint Status) register in EJTAG drseg
memory. If the breakpoints are not shared, then the TracelBPC or the TraceDBPC registers are duplicated per VPE;
otherwise, they are shared. When they are shared, the IE or the DE bit is also shared (see Table 9.2 and Table 9.3), so
breakpoints are enabled for PDtrace for al VPEs or for none of them.

Figure 9.1 TracelBPC Register Format
31 30 29 28 27 26 24 23 21 20 18 17 15 14 12 11 9 8 6 5 3 2 0

MB O |PCTIIE| 0| IBPCg | IBPC; | IBPCs | IBPC; | IBPC, | IBPC; | IBPC, | IBPC; | IBPC,

Table 9.2 TracelBPC Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
MB 31 Indicates that additional instruction hardware break- R 0/1 Required
pointsare present and that register TracelBPC2 should be
used.
30 Reserved. Reads as zero and non-writable. R 0 Required
PCT 29 Specifies whether or not a performance counter trigger R/W 0 Required after
(PCT) signd is generated when an EJTAG hardware PDtracerevision
instruction breaskpoint match occurs. Thisfeatureis 06.00 and
enabled only if the IE bitisalso set to 1. higher if instruc-
tion breakpoints
areimplemented
in EJTAG.
Reserved other-
wise.
MIPS® PDtrace™ Specification, Revision 6.16 95

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

EJTAG Trace Registers

Table 9.2 TracelBPC Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
IE 28 Used to specify whether the trigger signal from an R/W 0 Required
EJTAG instruction breakpoint should trigger tracing
functions or not:
Encoding Meaning
0 Disables trigger signals from instruction
breakpoints
1 Enables trigger signals from instruction
breakpoints
Writes to this bit are ignored if instruction breakpoints
are not implemented in EJTAG.
0 27 The previously defined use of this bit is deprecated since R 0 Required
values 2 through 7 of the trigger control bits have been
taken over to support CMP tracing and performance
counter tracing. It now reverts back to being reserved.
Reads as zero, and non-writable.
IBPCn 3n-1:3n-3 | Thesethree bits are decoded to enable different tracing R/W 0 L SB required,
modes. Table 9.6 shows the possible interpretations. Upper two bits
Each set of 3 bits represents the encoding for the instruc- are Optional.
tion breakpoint n in the EJTAG implementation, if it Required for
exists. If the breakpoint does not exist, the bits are breakpoints
reserved, read as zero, and writes are ignored. implemented in
EJTAG
Figure 9.2 TraceDBPC Register Format
31 30 29 28 27 26 24 23 21 20 18 17 15 14 12 11 9 8 6 5 3 2 0
MB| 0 |PCT|DE| 0 | DBPCg | DBPC; | DBPCg | DBPCs | DBPC, | DBPC3; | DBPC, | DBPC; | DBPC,
Table 9.3 TraceDBPC Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
MB 31 Indicates that more instruction hardware breakpoints are R 0/1 Required
present and that register TraceDBPC2 should be used.
0 30 Reserved. Reads as zero, and non-writable. R 0 Required

96

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

9.1 TracelBPC and TraceDBPC Registers

Table 9.3 TraceDBPC Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
PCT 29 Specifies whether or not a performance counter trigger R/W 0 Required after
(PCT) signd is generated when an EJTAG hardware PDtracerevision
data breakpoint match occurs. This feature is enabled 06.00 and
only if the DE bit isalso set to 1. higher if instruc-
tion breakpoints
areimplemented
in EJTAG.
Reserved other-
wise
DE 28 Used to specify whether the trigger signal from the R/W 0 Required
EJTAG data breakpoint should trigger tracing functions
or not:
0: disables trigger signals from data breakpoints
1: enablestrigger signals from data breakpoints
Writes to this bit are ignored if data breakpoints are not
implemented in EJTAG.
0 27 The previously defined use of this bit is deprecated since R 0 Required
values 2 through 7 of the trigger control bits have been
taken over to support CMP tracing and performance
counter tracing. It now reverts back to being reserved.
Reads as zero and is non-writable.
DBPCn 3n-1:3n-3 | The three bits are decoded to enable different tracing R/W 0 L SB required,
modes. Table 9.6 shows the possible interpretations. Upper two bits
Each set of 3 bits represents the encoding for the data are Optional.
breakpoint n in the EJTAG implementation, if it exists. Required for
If the breakpoint does not exist then the bits are reserved, breakpoints
read as zero and writes are ignored. implemented in
EJTAG
Figure 9.3 TracelBPC2 Register Format
31 18 17 15 14 12 11 9 8 6 5 3 2 0
0 IBPCy4 | IBPCy3 | IBPCy, | IBPCyq | IBPCyg | IBPCq
Table 9.4 TracelBPC2 Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
IBPCn 3n-31:3n- | Thethree bits are decoded to enable different tracing R/W 0 Required
33 modes. Table 9.6 shows the possible interpretations.
Each set of 3 hits represents the encoding for the instruc-
tion breakpoint n in the EJTAG implementation, if it
exists.
MIPS® PDtrace™ Specification, Revision 6.16 97

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

EJTAG Trace Registers

Figure 9.4 TraceDBPC2 Register Format

31 18 17 15 14 12 11 9 8 6 5 3 2
0 DBPCy4 | DBPCy3 | DBPC;, | DBPCy; | DBPCyq | DBPCy
Table 9.5 TraceDBPC2 Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
DBPCn 3n-31:3n- | These three bits are decoded to enable different tracing R/W 0
33 modes. Table 9.6 shows the possible interpretations.
Each set of 3 bits represents the encoding for the data
breakpoint n in the EJTAG implementation, if it exists.
Table 9.6 BreakPoint Control Modes: IBPC and DBPC
Value Trigger Action Description

000 Unconditional Trace Stop for Unconditionally stop tracing (from the processor as well
both the processor and the com- | as the coherence components that support tracing) if
ponents of the coherence sys- tracing was turned on. If tracing isalready off, then there
tem is no effect.

001 Unconditional Trace Start in Unconditionally start tracing of the processor if tracing
the processor was turned off. If tracing is already turned on, thereisno

effect.

010 Unconditional Trace Stop for Unconditionally stop tracing of the processor if tracing
the processor was turned on. If tracing is aready turned off then there

is no effect.

011 Unconditional Trace Start for Unconditionally start tracing if tracing was turned off. If
both the processor and the com- | tracingisalready turned on, thereis no effect. Do thisfor
ponents of the coherence sys- both the processor as well as the coherence components
tem that support tracing.

100 Identical to trigger condition As before, but also dump the full values of al the imple-
000, and in addition, dlsodump | mented performance countersinto the trace stream. Note
the full performance counter that this does not provide the ability to dump individual
values into the trace stream and/or specific performance counters for two reasons:

One, there aren’t sufficient bits available for this type of
fine-grain control, and second, performance counter
dumping on a breakpoint trigger should be uncommon
enough to not overwhelm the trace stream with bits.

101 Identical to trigger condition As before, but also dump the full values of al the imple-
001, and in addition, dlsodump | mented performance counters into the trace stream.
the full performance counter
valuesinto the trace stream

110 None Reserved for future use

98

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

9.1 TracelBPC and TraceDBPC Registers

Table 9.6 BreakPoint Control Modes: IBPC and DBPC

Value

Trigger Action

Description

111

Identical to trigger condition
011, and in addition, also dump
the full performance counter
values into the trace stream

As before, but also dump the full values of al the imple-
mented performance counters into the trace stream.

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

99

EJTAG Trace Registers

100 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Chapter 10

TCB Trigger Logic

The TCB is defined to optionally feature atrigger unit. Most of the actual implementation and functionality isimple-
mentation-dependent, but if implemented, the baseline structure must be as defined in this section.

10.1 Trigger Logic Overview

Thetrigger logic isfunctionaly split in three parts.
e Trigger Sourcelogic.
e Trigger Control logic
» Trigger Action logic.

Figure 10.1 shows the functional overview of the trigger flow in the TCB.

MIPS® PDtrace™ Specification, Revision 6.16 101

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

TCB Trigger Logic

102

Figure 10.1 TCB Trigger Processing Overview

Trigger sources

YUY YUYy

Trigger Source Logic

Tr

=

gger strobes

Trigger control 1to 7 is v
optional in this trigger logic.

Trigger Control Logic 7

,_v ~
Trigger Control Logic 1

Trigger Control Logic 0

Priority/
OR-function

Depending on the trigger action,
the Action strobes must pass
through a priority function or an
OR gate

Priority/
OR-function

Trigger Action Logic

10.1.1 Trigger Source Logic

A number of source events can be defined that cause atrigger to fire when the corresponding source condition is sat-
isfied.

In this version of the TCB, three sources have been defined. These are the two trigger inputs TC_ChipTrigin and
TC_ProbeTrigin (see 10.3 “TCB Trigger Input/Output Signals’), and the Debug Maode (DM) indication from the pro-
cessor core. The input triggers are all rising-edge triggers, and the Trigger Source logic must convert the edge into a
single cycle strobe to the Trigger Control logic.

10.1.2 Trigger Control Logic

Eight possible Trigger Control registers (TCBTRIGX, x={0..7}) are defined. Each of these registers controls atrigger
fire mechanism. They can have each of the Trigger Sources as the trigger event and they can fire one or more of the
Trigger Actions. Thisis defined in the Trigger Control register TCBTRIGXx (see Section 8.12 “TCBTRIGx Register
(Reg 16-23)").

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

10.2 Simultaneous Triggers

10.1.3 Trigger Action logic

A number of possible trigger actionsin this version of the TCB are:

» Two output trigger strobes, TC_ChipTrigOut and TC_ProbeTrigOut. These are explained in 10.3 “TCB Trigger
Input/Output Signals’.

* TheTF6 trace format as information output into trace memory. Thisis explained in Section 8.12 “TCBTRIGx
Register (Reg 16-23)”. Also see Section 10.2 “Simultaneous Triggers’ below.

» The Start and End trigger actions. These are also explained in the sections pointed to above. Earlier revisions of
the PDtrace architecture (prior to revision 6.00) defined a center trigger action. This trigger action is no longer
defined.

10.2 Simultaneous Triggers

Two or more triggers can fire simultaneously. The resulting behavior depends on trigger action set for each of them,
and whether they should produce a TF6 trace information output or not. There are two groups of trigger actions: Pri-
oritized and OR’ ed.

10.2.1 Prioritized Trigger Actions

For prioritized simultaneous trigger actions, the trigger control register which has the lowest number takes prece-
dence over the higher numbered TCBTRIGx registers. The oldest trigger takes precedence over everything.

The following trigger actions are prioritized when two or more TCBTRIGXx registers fire smultaneously:

* Trigger Start and End type triggers (TCBTRIGxyp, field set to 00 or 01), which will assert/deassert the
TCBCONTROLBEy hit.

» Triggers which produce TF6 trace information in the trace flow (TCBTRIGx; 5 bit is Set).

Regardless of priority, the TCBTRIGxtR bit is set when the trigger fires, even if the trigger action was suppressed. |f
the trigger is set to only fire once (the TCBTRIGxg(bit is set), then the suppressed trigger action will not be possible
until after TCBTRIGxR iSswritten O.

If aTrigger action is suppressed by a higher priority trigger, then the read value, when the TCBTRIGxR bit is set, for
the TCBTRIGXTyce field will be O for suppressed TF6 trace information actions. The read value in the TCBTRIGX ype

field for suppressed Start/End/ triggers will be 11. Thisindication of a suppressed action is sticky. If any of the two
actions (Trace and Type) are ever suppressed for a multi-fire trigger (the TCBTRIGxg(bit is zero), then the read val-

ues in TCBTRIGXtyace and/or TCBTRIGx Ty, are set to indicate a suppressed action.
10.2.2 OR’ed Trigger Actions

The simple trigger actions CHTro, PDTro and CTATrg from each TCBTRIGx register’s action logic, are effectively
OR’ ed together to produce the final trigger. For example, one or more expected trigger strobes on TC_ChipTrigOut
can disappear. External logic should therefore not rely on counting of strobes to predict a specific event unless simul-
taneous triggers are known not to occur.

MIPS® PDtrace™ Specification, Revision 6.16 103

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

TCB Trigger Logic

10.3 TCB Trigger Input/Output Signals

Two sets of trigger input/outputs are defined on the TCB. One set is defined to be chip internal, and the other set is
defined to be part of the probe interface. Table 10.1 shows the TCB signal names, and the related probe pin name for
the probe trigger signals.

Table 10.1 TCB Trigger input and output

TCB pin name Probe pin name Description

TC_ChipTrigin N/A Rising edge trigger input. The source should be on-chip. The input
is considered async. |.e. double registered in the TCB.

TC_ChipTrigOut N/A Single cycle (relative to core clock) high strobe, trigger output. The
target is supposed to be an on-chip unit.

TC_ProbeTrigln TR_TRIGIN Rising edge trigger input. The source should be the Probe Trigger
input. Theinput is considered async. |.e. double registered in the
TCB.

TC_ProbeTrigOut | TR_TRIGOUT Single cycle (relative to probe clock TC_ProbeClIk) high strobe,
trigger output. The target is supposed to be the Probes Trigger out-
put.

104 MIPS® PDtrace™ Specification, Revision 6.16
Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

10.3 TCB Trigger Input/Output Signals

MIPS® PDtrace™ Specification, Revision 6.16 105

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Appendix A

Implementation-Specific PDtrace™ Enhancements for
MIPS32® 74K™ Cores

A.1 Tracing the 74K to Show Pipeline Details and Execution Inefficiencies

The 74K core implements PDtrace revision 06.00 and higher. A bit in the trace control register specifiesthat 74K -spe-
cific trace information will be included in the trace stream. Thisis bit 28 in TraceControl and bit 28 in
TCBCONTROLA. Setting thisbit to avalue of 1 impliesthat the 74K -specific tracing, that is described in this section,
will be output into the trace stream.

The following 74K -specific inefficiencies are traced to determine the cause of lost performance. Thisinformation is
encoded into an expanded version of the INSCOMP field of TF2, TF3, and TF4. Thefield is expanded by one bit, and
the expanded encodings identify potential performance bottlenecks. Thisincreases the length of TF2, TF3 and TF4
by one hit.

» "Load/store cache missinformation (INSCOM P=1000)

"Branch/return mispredict information (INSCOM P=1001)

"Replay (load consumer or branch likely or cacheop) (INSCOMP=1010)
» "Graduation stall due to backpressure (stall dueto LSGB full and other) (INSCOMP=1011)

There-encoded INSCOMP field isillustrated in Table A.1. The updated versions of the three trace formats are
described next.

Table A.1 Expanded Instruction Type Completion Indicator (InsComp)

Value Mnemonic Description
0000 NI No instruction completed this cycle. A "No Instruction” can happen dueto a pipeline stall or when
theinstruction was killed (due to an exception).
00001 I Instruction completed this cycle
0010 IL Instruction completed this cycle was aload
0011 IS Instruction completed this cycle was a store
0100 IPC Instruction completed this cycle was a PC sync. The IPC value is used for the periodic output of

the full PC value for synchronization. The tracing hardware should ensure that thisis not done on
an unpredictable branch, load, or store instruction.

0101 1B Instruction branched this cycle. The three encoding (101, 110, 111) for branched instruction indi-
cates adiscontinuity in the PC value for the associated instruction. Note that it is only when the
new PC can not be predicted from the static program flow that it is traced.

0110 ILB Instruction branched this cycle was aload
0111 ISB Instruction branched this cycle was a store
MIPS® PDtrace™ Specification, Revision 6.16 106

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

A.1 Tracing the 74K to Show Pipeline Details and Execution Inefficiencies

Table A.1 Expanded Instruction Type Completion Indicator (InsComp) (Continued)

Value Mnemonic Description
1000 NI74_LSM No instruction completed this cycle - 74K - Load/Store Miss
1001 NI74_BMP No instruction completed this cycle - 74K - Branch/return Mispredict
1010 NI74_RPL No instruction completed this cycle - 74K - Instruction Replay
1011 NI74_GST No instruction completed this cycle - 74K - Backpressure stall
1100-1111 - Reserved for future use

A.1.1 Updated Trace Format 2 (TF2) for 74K-specific Information

If bit 28 in TraceControl (if trace is being controlled by software), or bit 28 in TCBControlA (if trace is being con-
trolled through a probe) is set on a 74K core, TF2 is expanded by 1 bit. The two variants of TF2 in their expanded
form are shown below. The difference between the regular TF2 and the expanded TF2 is the extra bit in the InsComp
field.

Figure A.1 Expanded TF2 (Trace Format 2 Single-Pipe)

5 2 1 0

InsComp | 1|0

Revision 4.00 (and higher) of the PDtrace specification introduces the ability to trace instruction fetch misses and to
tag an instruction that might be afunction call or return. These are fundamental properties that could impact most
instructions in the stream that are represented by a non-zero InsComp value. Therefore, TF2 can optionally be aug-
mented by two bits to trace out this information. These bits are optional and only traced when specifically requested
by the user. Hence, the trace reconstruction software must be told whether these bits are present. Thisimpacts other
formats well, and will be discussed in each sub-section separately. The two optional bits of the TF2 format are shown
inFigure A.2.

Figure A.2 Expanded TF2 with Optional Bits (Trace Format 2 Single-Pipe)

Im Fe InsComp | 1|0

A.1.2 Trace Format 3 (TF3)

If bit 28 in TraceControl (if trace is being controlled by software), or bit 28 in TCBControlA (if trace is being con-
trolled through a probe) is set on a 74K core, TF2 is expanded by 1 bit. The two variants of TF3 in their expanded
form are shown below. The difference between the regular TF3 and the expanded TF2 is the extra bit in the InsComp
field. The expanded TF3 may be either 28 or 44 bits wide, depending on whether 16 or 32 bitsis specified by the
TCBCONTROLAppyy field. (See 8.1 “TCBCONTROLA Register”).

MIPS® PDtrace™ Specification, Revision 6.16 107

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Implementation-Specific PDtrace™ Enhancements for MIPS32® 74K™ Cores

Figure A.3 TF3 (Trace Format 3 Single-Pipe)

27(43) 12 11 10 9 7 6 3 2 1 0
AD TMode TE” TType | InsComp | 0|00

Revision 4.00 (and higher) of the PDtrace specification introduces the ability to trace instruction fetch misses and to
tag an instruction that might be afunction call or return. These are fundamental properties that could impact most
instructions in the stream that are represented by a non-zero InsComp value. Therefore, TF3 can optionally be aug-
mented by two bits to trace out this information. These bits are optional and only traced when specifically requested
by the user. Hence, the trace reconstruction software must be told whether these bits are present. Thisimpacts other
formats well, and will be discussed in each subsection separately. The two optional bits of the TF3 format are shown
inFigure A 4.

Figure A.4 TF3 with Optional Bits (Trace Format 3 Single-Pipe)

(45)

29 28 27 12 1 0 9 7 6 3 2 1 0
Im Frc AD TMode Tgn TType | InsComp [0 |0 | O

Revision 6.00 (and higher) of the PDtrace specification introduces the ability to trace performance counter values. If
thisfeature is enabled by the user, thisinformation is traced through TF3, which can be optionally augmented by one
bit. This version of the TF3 format is shown in Figure A.5. If the PCV hit is set to one, reconstruction software must
interpret the AD bits of the format as the value of the performance counter. In addition, the TType must be set to DT,
and TEnd must be set to zero.

Figure A.5 Expanded TF3 with Optional Performance Counter and other bits (Trace Format 3 Single-Pipe)

(46)
30 29 28 27 12 11 0 9 7 6 3 2 1 0

PCV | Im|Fcr AD TMode |TEnd| TType | InsComp |0 |0 | O

A.2 Updated TF4 to Handle 74K™ Core-Specific DataOrder and Inefficiency

108

Information

The 74K core can have up to 21 outstanding loads and many other store operations in the system at any given time,
hence the 4 bits currently being used in trace format TF4 isinadequate. Hence TF4 will be redone to use an additional
fifth bit for the DataOrder field.

If bit 28 in TraceControl (if trace is being controlled by software), or bit 28 in TCBControlA (if trace is being con-
trolled through a probe) is set on a 74K core, TF2 is expanded by 1 bit. The two variants of TF3 in their expanded
form are shown below. The difference between the regular TF3 and the expanded TF2 is the extra bit in the InsComp
field.

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

A.2 Updated TF4 to Handle 74K™ Core-Specific DataOrder and Inefficiency Information

The TF4 format is shown in Figure A.6. TF4 coversthe case when TType[2:0] isset to DT and TEnd isset to 1, that is,
the last cycle of the current datatrace. Thisis shown in Figure A.6, where the pattern on bits [9:6] distinguishes TF4
from TF3. Bits[8:6] are equal to 001, for a Type[2:0] value of DT and bit 9 has avalue of 1 for TEnd.

Note that the TF4 format will be used for the last cycle of both Load and Store Data transmission, a small ineffi-
ciency.

PDtrace revision 06.00 and higher introduces an alteration to the number of bits needed for the DataOrder field. Since
the 74K core can have up to 21 outstanding memory transactions, the original TF4 format with 4 bits for DataOrder
would not suffice. Hence, if the core type isidentified to be a 74K implementation, the TF4 format is recognized as
shown in the figuresin this section.

Figure A.6 TF4 (Trace Format 4 Single-Pipe)

31(47) 16 15 1 10 9 8 7 6 5 3 2 1 0

AD DataOrder [TMode| 1 [1|0| 0| InsComp (O[O |O

Figure A.7 Expanded TF4 (Trace Format 4 Single-Pipe)

32(48) 17 16 12 11 10 9 8 7 6 3 2 1 0

AD DataOrder [TMode| 1 [1|0| 0| InsComp (O[O |O

Revision 4.00 (and higher) of the PDtrace specification introduces the ability to trace instruction fetch misses, load/
store data misses, and to tag an instruction that might be afunction call or return. Therefore, TF4 can optionally be
augmented by three bits to trace out thisinformation. These bits are optional and only traced when specifically
requested by the user. Hence, the trace reconstruction software must be told if these 3 bits are present. The optional
bits of TF4 are shown in Figure A.8. For non-coherent MIPS cores, only this format includes the LSm bit, that isthe
bit that indicates a possible |oad/store data cache miss. Thisis because a datamissis associated with the transmitted
data rather than the instruction that caused the miss.

Figure A.8 TF4 with Optional Bits (Trace Format 4 Single-Pipe)

(50)

34 33 32 31(47) 16 15 1 10 9 8 7 6 5 3 2 1 0

LSm|Im | Fer AD DataOrder |TMode| 1 | 1|0 | O | InsComp [0O| 0| O
MIPS® PDtrace™ Specification, Revision 6.16 109

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Implementation-Specific PDtrace™ Enhancements for MIPS32® 74K™ Cores

Figure A.9 Expanded TF4 with Optional Bits (Trace Format 4 Single-Pipe)

()
35

34 33 32(48) 17 16 12 11 10 9 8 7 6 3 2 1 0

LSm

Im | Fer AD DataOrder [TMode | 1 |1|0| 0| InsComp (O[O |O

A.3 Tracing 74K™ Core in Cycle Accurate Mode

The 74K core can graduate zero, one, or two instructions in any given cycle. When tracing normally, that is, not in
cycle-accurate mode, the stream of graduated instructionsthat are traced cannot be tracked back to whether or not any
pair graduated together, or how many cycles apart they graduated. Thisisthe typical behavior for other coresaswell,
with the exception that most other cores do not graduate two instructionsin any given cycle. Hence, it is not necessary
to do anything differently for the 74K core in this regard.

If cycle-accurate tracing is used, it is assumed that all graduation slots, whether empty or not, are traced with NI or
some other InsComp value. In this case, the assumption made is that graduation slotO and dotl are traced in that
order.

A.4 Compressing Addresses in TF3 and TF4

The 74K implementation of the PDtrace architecture includes an additional optimization that allows the use of 16-bit
addresses, even when the ADW bit (bit 23 in TCBControlA) is set to 1, indicating a 32-bit address/data value width. If
an address can be represented in 16 bits, the TF3 and TF4 formats are shortened to their 16-bit data variants. Thisis
indicated by using a TMode value of 0 to indicate a deltavalue for the address. If the address cannot be represented in
16 bits (i.e., it requires 32 bits), TModeis set to 1 in the TF3 and TF4 formats.

A.5 Enhancements for Coherent Cores

To support correlation of transactions in coherent systems, the 74K implementation of the PDtrace architecture
includes a mechanism to trace a coherent synchronization ID (COSId) for every instruction that causes a data bus
transaction (see Section B.1.1.2 “ Synchronizing CPU and Coherent Interconnect Trace Messages’). Instructions that
can cause data bus transactions (loads, stores, cache operations, prefetches, and syncs) arereferred to as ‘L SU
instructions'. Due to the nature of the 74K pipeline, load instructions are handled in a special manner and require a
single bit extension to al trace formats. All other instructions (and some loads) use a new trace format (TF8) to trace
the coherent synchronization ID. The rest of this section describes this mechanism in more detail.

A.5.1 Extending Trace Formats

110

Every existing trace format that includes an INSCOMP field (TF2, TF3, TF4) is expanded by one bit. Thisbit isonly
valid if the INSCOMP typeis|IL or ILB and isused to indicate if the load was a cache miss—a zero implies that the

instruction was a cache hit, and a one impliesthat the instruction was a cache miss. For all other INSCOMP types, the
extrabit is present but holds no valid information. If aload instruction generates an extra bit value of one, a TF8 mes-
sage may be generated; if the extra bit valueis zero, a TF8 will not be generated.

MIPS® PDtrace™ Specification, Revision 6.16
Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

A.5 Enhancements for Coherent Cores

A.5.2 T8 - New Trace Format

For load instructions that are treated as potential cache misses (extra bit value of 1 with corresponding INSCOMP),
and for all other LSU operations, a TF8 message can potentially be generated. Any instruction that generates a data
bus transaction is required to generate a TF8. To minimize bandwidth usage, instructions that do not generate a bus
transaction (typically cache hits) do not generate any additional trace information. However, to allow reconstruction
software to correlate cache miss indicators in the trace stream with the instruction completion indicators in the trace
stream, these instructions must be explicitly accounted for. To simplify this process, L SU operations are divided into
three categories: loads, stores, and “other” operations. Each category has an associated 8-bit counter, which counts
the number of cache hitsfor that category since the last cache miss. This counter is reset to 0 when amiss occurs or if
the counter saturates.

Details of Trace Format 8 (TF8) are shown in Figure A.10. COSId represents the coherent synchronization ID. The
BT field indicates whether or not a bus transaction has occurred. If BT is zero, no bus transaction has occurred, and
the TF8 is being used to indicate a counter overflow (the COSId value is undefined in this case). If BT isone, abus
transaction was generated for a cache miss, and the corresponding counter must be reset. The L field is used to indi-
cateload instructions. If L is O, theinstructionisnot aload, if L is 1, the TF8 corresponds to aload instruction. The S
field isused to indicate store instructions. If Sis 0, theinstruction is not astore; if Sis 1, the TF8 corresponds to a
storeinstruction. If L and S are zero, the instruction is a non-load/store L SU operation. L and S can never be 1 in the
same TF8. For TF8, TTypeis4, TModeis0 and TEnd is 1. To reduce bandwidth consumption, it is recommended
that no TF8 be generated by a core when the coherent interconnect is not tracing transactions (i.e., if the coherent
interconnect tracing is turned off globally, or only for that particular core). In addition, a TF8 should only be gener-
ated for an instruction that has an instruction completion message traced.

Figure A.10 TF8 (Trace Format 8)

26 25 24 17 16 15 14 13 12 11 10 9 8 6 5 3 2 1 0

CoslD Counter[7:0] BT |[S|L|O0|[O|0]|TMode|TEnd| TType | InsComp O |0 | O

Each TF8 message corresponds to one of the three LSU instruction categories. The category isexplicitly identified by
the values of the L and Sfields. If a counter reaches its maximum count value, the maximum value is sent out in a
TF8, along with appropriate values for the L and S fields to identify which counter has saturated. It is possible for a
counter to saturate at the same time asamiss. This can be determined by examining the BT bit—in case of amiss, the
BT bit must be 1.

MIPS® PDtrace™ Specification, Revision 6.16 111

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Appendix B

PDtrace™ Enhancements for Chip-Multiprocessing
Systems

B.1 Tracing a Coherent Subsystem

Memory operations in a coherent multiprocessor system can involve more than a single processor core and memory;,
since cache subsystems of other processors in the coherence domain must participate in coherent read and write trans-
actions. In addition, each valid block of memory in alocal processor cache can now be in one of multiple states
(Modified, Exclusive, Shared, or in case of aMOES! protocol, Owned). Since each coherent transaction can involve
one of two paths (get datafrom memory, or get data from another processor), the latency of the operation is not fixed.
Finally, the coherence system as implemented by MIPS Technologies, and defined in OCP v3.0 introduces a new
port, known as an ‘intervention port’ that deal s with coherence requests from other processors that can affect the state
of local cache lines. The coherence system introduces a new hardware block called the * Coherence Manager’ (CM)
which is a system block responsible for queueing, ordering, processing and responding to all memory requests.

B.1.1 Trace Requirements

Trace datais gathered at each core and at the coherence manager. This data must then be combined together to recre-
ate an execution trace. There are two primary operations at the core that are affected by coherence - load/store instruc-
tion execution, and memory port transactions. It is useful to trace main memory port transactions, since this provides
amethod of establishing a global order of memory instructions (by correlating a memory instruction with its main
port transaction in case of amiss, and finally the request being serialized at the CM). To allow post-processing soft-
wareto correlate CPU transactions with their corresponding CM transactions, we use a small identifier called the
coherent synchronization 1D (COSId) to synchronize transactions that is periodically updated to allow software to
aign transactions. Thefirst CPU and CM transactions to use the new COSID are used to align transactions. Thereis
sufficient detail in atrace to enable the reconstruction of program execution across multiple coherent cores. For per-
formance debugging, timing information is collected to help determine potential bottlenecks in the system. It is possi-
ble to trace a coherent (or other) request asit is processed by the system, gathering information about the transaction
type, cache hit/miss status, etc. Tracing support allows auser to gather different levels of detail from the CM. The CM
is connected to a set of CPUs and 1O devices and the user can selectively trace transactions that belong to only some
of those cores or 10 devices (applicable for external interface tracing).

B.1.1.1 Gathering Subsets of Trace Data

To reduce the information that a user must examine to find potentially interesting behavior, it is possible to trace only
asubset of trace data from various sourcest. The table below describes trace data subsets at various sources.

1 This can also be used to reduce off-chip bandwidth requirements, but that is not the primary intent.

MIPS® PDtrace™ Specification, Revision 6.16 112

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

B.1 Tracing a Coherent Subsystem

Table B.1 Coherent Trace Subset Options

Source Trace Subset Options Source Trace Subset Options
Core Trace All Instructions CM - RQU Trace Request
Trace All Memory Instructions Trace Request + Address
Trace Instructions that Missin the I-Cache Trace Request + Stall Information
Trace Instructions that Miss in the D-Cache Trace Request + Address + Stall Information
Memory Instruc- Trace Address + Data CM -IVU Trace Request
tions Trace Address Only Trace Request + Stall Information

B.1.1.2 Synchronizing CPU and Coherent Interconnect Trace Messages

To synchronize CPU trace messages with those gathered from the coherent interconnect, the new identifier (COSId)
isadded in the core trace block. The COSId isincluded in trace messages from the core and is sent to the coherent
interconnect for inclusion in trace messages. Each core maintains an independent COSId, and trace messages from
the coherent interconnect always hold the COSId of the originating core. The COSId is updated periodically when a
load or store miss occurs at the processor. The first CPU trace message using the new COSId corresponds to the first
CM message that will use the new COSId, thus providing reconstruction software an exact point at which the two
traces match. Using this match point, other trace messages from the CPU and CM can be correlated. PDtrace supports
periodic synchronization messages in the form of PC syncs or TMOAS records (A PC syncisa TMOAS record with
aSYNC value of 1). The new COSldswill be updated at most as frequently as the CPU sends out a PC sync/TMOAS
record, with the added restriction that the COSId cannot be updated unless a miss occurs. Thus, the CPU can send out
multiple PC syncs without updating the COSld, if no load/store misses occur during that time.

If PC tracing is disabled, then the COSId will be incremented when the synchronization counters within the core
expires.

In case of overflow at the core, a new PC sync message must be sent. At the same time, the COSId must be updated

(so long asthereisacorresponding cache miss). In case of overflow at the CM, asignal must be sent back to all CPUs
in the system requesting new COSlds. Figure B-1 illustrates the use of the COSld.

MIPS® PDtrace™ Specification, Revision 6.16 113

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Enhancements for Chip-Multiprocessing Systems

|:| cosld CPU Trace M es CM Trace Messages
. |00| | 00
Core + N | |
—r | | [
¥ CPU Trace Message [00] | o1 |
~ s %] | (o]

[]cosa 1] 1]

. .

oM . [o1] | [o1]
- |

[0z] | [0z]
CM Trace Message
COSId exchange and use in trace messages Correlating CPU/CM messages using COSld
COSld 00— 01 10 - 11—900——Pp» 0110
Time
PCIS\/nc Pclsync PCIS\/nc PCSP/nc Pclsync PCS}/nc PCS}/nc
| ? | | ? | ? | ? ? ? | ? * T |
Cache

Miss | M overflow

COSld updates:. (a) PCSync followed by cache miss (first five changes), (b) CM overflow followed by cache miss
Figure B-1 COSId - Creation, Correlation, and Updates

B.2 CM Trace Formats

Trace data can have two sources within the CM: the serialization response handler (SRH) or the Intervention Unit
(IVU). The SRH uses two trace formats (CM_TF1, CM_TF2), and the IVU uses one format (CM_TF3). One trace
format (CM_TF4) is used to indicate that overflow has occurred. Thefirst one to four bits of atrace packet can be
used to determine the packet type.

B.2.1 CM Trace Format 1

When request addresses are not being traced, the CM_TF1 trace format, shown in Figure B-2 and Figure B-3, is used.
If the TLev fieldin TCBControlD (or CMTraceControl) is set to 1, each packet aso includes the SRH_WaitTime
field. The packet width variesfrom 14 bits (trace level 0) to 22 bits (trace level 1). Trace reconstruction software must
determine the total packet length by examining the appropriate control bitsin the TCBControlD or CMTraceControl
register.

Figure B-2 CM Trace Format 1 (CM_TF1) - Trace Level O

13 11 10 6 5 4 3 1 0
|AddrTarg| MCmd |COSId| SrcPort |l|

114 MIPS® PDtrace™ Specification, Revision 6.16
Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

B.2 CM Trace Formats

Figure B-3 CM Trace Format 1 (CM_TF1) - Trace Level 1

21 14 13 11 10

6 5 4 3

1 0

| WatTime | AddrTarg | MCmd

| COSId|

SrcPort

B

B.2.2 CM Trace Format 2

When request addresses are being traced, the CM_TF2 trace format, shown in Figure B-4 and Figure B-5, are used.
Since each core sets the lowest three address bits to zero, only address bits [31:3] are traced. If the TLev field in
TCBControlD (or CMTraceControl) is set to 1, each packet also includes the SRH_WaitTime field. The packet
width varies from 45 bits (trace level 0) to 53 bits (trace level 1). Trace reconstruction software must determine the
total packet length by examining the appropriate control bitsin TCBControlD or the CMTraceControl register.

Figure B-4 CM Trace Format 2 (CM_TF2) - Trace Level 0

44 16 15 13 12 8 7 6 5 3210
| Address31:3] | AddrTarg | MCmd [cosid] ScPot [1]0]0]

Figure B-5 CM Trace Format 2 (CM_TF2) - Trace Level 1
52 45 44 16 15 13 12 8 7 6 5 3210
| WaitTime | Addres{31:3] | AddrTarg | MCmd [cosid] ScPot | 1]0]0]

B.2.3 CM Trace Format 3 (CM_TF3)

Trace datafrom the IVU usesthe CM_TF3 trace format, shown in Figure B-6 and Figure B-7. If thetrace level (TLev
in TCBControlD or CMTraceControl) is set to 1, each packet also includes two additional fields (WaitTime and Stall-
Cause). Each packet is 18 hits (trace level 0), or 29 bits (trace level 1). The SCF field indicatesif a Store Conditional

Failed, and the SCC field indicates if a Store Conditional was cancelled. Trace reconstruction software must deter-

mine the trace level being used by examining the TCBControlD or CMTraceControl register.

Figure B-6 CM Trace Format 3 (CM_TF3) with Trace Level 0

17 16 15 13 12 7 6 5 4

2 10

|SCO|SCF] IntvResult| ~ RespBV | cosid|

SrcPort

[2]0]

Figure B-7 CM Trace Format 3 (CM_TF3) with Trace Level 1

28 26 25 18 17 16 15 13 12 7 6 5 4

210

StallCause WaitTime

|scc| scF| IntvResult| RespBV | cosid|

SrcPort

BO

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

115

PDtrace™ Enhancements for Chip-Multiprocessing Systems

B.2.4 CM Trace Format 4 (CM_TF4)

If the CM_IO (Inhibit Overflow) bit is not set, it is possible for trace packetsto be lost if internal trace buffers are
filled. The CM indicates trace buffer overflow by outputting a CM_TF4 packet. Regular packets resume after the
CM_TF4 packet. The coherence manager must also resynchronize with al cores by requesting a new COSId.

3 210

[2[00 o]

Figure B-8 CM TF_4 - Overflow Format

B.3 Consolidating Trace Information

The coherence manager and each core in the system can generate trace data. This data must be passed through some
hardware block (the ‘ Funnel’) that mergesit into a single output stream and sends it to the user. A block diagram is
given below:

Trace Data From Core O

Core(0 [*
oM Trace Data Funnd I
from CM
Corel |-u *

Trace Data From Core 1

The Funnel must allow the user control over which sources contribute to the final trace data being sent to the on-chip
trace buffer or an external probe. For example, it should be possible to disable tracing data from the CM while gather-
ing data from Core0 and Corel. Since each load/store miss can be traced at the core and the CM, this provides one
possible method to determine execution order. Each message from the CM can act as a synchronization point for
instruction execution at CPUs. Some external software that is aware of the potentially different clock domains under
which the CPUs and the CM operate must be used to establish execution order.

B.4 On-Chip Trace Memory

On-chip trace memory is supported in coherent cores that implement revision 6.10 and higher of the PDtrace archi-
tecture. This memory is shared by all processor cores and the coherence manager and is accessed as previously
defined in the PDtrace architecture specification viathe TCBTW register.

The on-chip trace memory is controlled by TCBControl registers TCBControlB and TCBControlE. These registers are
within a JTAG TAP controller known as the TraceMaster. The TraceMaster isimplemented outside of the processor
cores. The TraceMaster is hosted within the Coherence Manager.

These on-chip trace memory control registers are also accessible through the CM GCR space. These GCR registers
give software aview of the TraceMaster TAP registers. These GCR registers include:

116 MIPS® PDtrace™ Specification, Revision 6.16
Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

B.4.1

* TCBControlB - described in this Appendix.

e TCBControlD - describe in this Appendix.

* TCBControlE - described in this Appendix.

» TCBConfig - described in Section 8.7 on page 82.

e TCBRDP - described in Section 8.9 on page 85.

+ TCBWRP - described in Section 8.10 on page 85.

e TCBSTP - described in Section 8.11 on page 86.

e TCBTW - described in Section 8.8 on page 84.

CM PDTrace TCB ControlB Register

B.4 On-Chip Trace Memory

TCBControlB is changed from the single-CPU version by only implementing the necessary bits which control the
on-chip trace buffer.

Table B.2 PDTrace TCBCONTROLB Register (GCR_DB_TCBControlB Offset 0x0008)

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

WE

31

Write Enable.

Only when set to 1 will the other bits be writtenin
TCBCONTROLB.

This bit will alwaysread 0.

R

0

Required

Impl

30:28

Thisfield is reserved for implementations. Refer to the proces-
sor specification for the format and definition of thisfield.

Undefined

Optional

TWSrc-
Width

27:26

Used to indicate the number of bits used in the source field of
the Trace Word, thisis a configuration option of the core that
cannot be modified by software.

00 - zero source field width

01 - two bit source field width

10 - four bit source field width

11 - reserved for future use

Preset

Required for
PDtrace revi-
sions 4.00 and
higher

REG

2521

Register select: Thisfield specifies the register, (one among the
set of registersin Table 8.2) that can be accessed through the
TCBDATA register.

R/W

Required

WR

20

The writeregister field, when set, allows the register selected by
the REG field to be written as well asread when TCBDATA is
accessed. Otherwise, the selected register isonly read.

Note that a JTAG register cannot be only written, it is aways
read and written. Therefore, aregister that has a side-effect on
read (see Table 8.13 “TCBRDP Register Field Descriptions”)
will have the same side-effect when written, since aread also
happens on awrite. Hence, it is specified that when thisfield is
set, it isimplementation- dependent whether a side-effect of a
read will occur when writing.

RIW

Required

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

117

PDtrace™ Enhancements for Chip-Multiprocessing Systems

Table B.2 PDTrace TCBCONTROLB Register (GCR_DB_TCBControlB Offset 0x0008) (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
0 19,17 Read as Zero. Writesignored. Must be written with a value of R 0 Reserved
0x0.
TRPAD 18 Trace RAM access disable bit, disables program software R 0 Required after
access to the on-chip trace RAM using load/store instructions. revision 06.00
If probe access is not provided in the implementation, then this and higher
register bit must be tied to zero value to allow software to con-
trol access.
The affected registersare TCBTW*, TCBRDP, TCBWP, TCBSTP.
None of these registers are writeable when TRPAD is set. Reads
to TCBTW* return zero with no side-effects when TRPAD is set.

RM 16 Read on-chip trace memory. R/W 0 Required
When written to 1, the read address-pointer of the on-chip if on-chip
memory in register TCBRDP is set to the value held in TCBSTP. memory exists.
Subsequent access to the TCBTW register (through the Otherwise
TCBDATA register), will automatically increment the read reserved.
pointer in register TCBRDP after each read.

When the write pointer is reached, thisbit is automatically reset
to 0, and the TCBTW register will read all zeros.

Once set to 1, writing 1 again will have no effect. The bit is
reset by setting the TR bit or by reading the last Trace word in
TCBTW.

TR 15 Trace memory reset. R/W1 0 Required
When written to one, the address pointers for the on-chip trace if on-chip
memory TCBSTP, TCBRDP and TCBWRP are reset to zero. memory exists.
Also the RM and BF bitsare reset to 0. Otherwise
Thisbit is automatically reset back to 0, when the reset speci- reserved.
fied above is completed.

BF 14 Buffer Full indicator that the TCB uses to communicate to R 0 Required
external software that the on-chip trace memory isfull. Note if on-chip
that this applies only in the situation that the on-chip trace memory exists.
memory is being deployed in the trace-from and trace-to Otherwise
mode. reserved.
Thisbit is cleared when writing a 1 to the TR bit

118 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

B.4 On-Chip Trace Memory

Table B.2 PDTrace TCBCONTROLB Register (GCR_DB_TCBControlB Offset 0x0008) (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

™

13:12

Trace Mode. This field determines how the trace memory is
filled when using the simple-bresk control in the PDtrace™ |F
to start or stop trace.

™

00 Trace-To
01 Trace-From
10 Reserved
11 Reserved

In Trace-To mode, the on-chip trace memory isfilled, continu-
ously wrapping around, overwriting older Trace Words, as long
asthere istrace data coming from the core.

In Trace-From mode, the on-chip trace memory isfilled from
the point that the core starts tracing until the on-chip trace mem-
ory isfull (when the write pointer address is the same as the
start pointer address).

In both cases, de-asserting the EN bit in this register will also
stop fill to the trace memory.

If aTCBTRIGx trigger control register is used to start/stop trac-
ing, then thisfield should be set to Trace-To mode.

Trace Mode

RIW

0

Required

if on-chip
memory exists.

Otherwise

reserved.

11

Read as Zero. Writesignored. Must be written with a value of
0x0.

Reserved

CR

10:8

Off-chip Clock Ratio. Writing thisfield, setstheratio of the
core clock to the off-chip trace memory interface clock. The
clock-ratio encoding is shown in Table 8.5 on page 76.
Remark: For example, aclock ratio of 1:2 implies atwo times
slow down of the Probe interface clock to the core clock. But,
one data packet is sent per core clock rising edge, while a data
packet is sent on every edge of the Probe interface clock, since
the Probe interface works in double data rate (DDR) mode.

R/W

100

Required
if off-chiptrace
interface exists.
Otherwise
reserved.

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

119

PDtrace™ Enhancements for Chip-Multiprocessing Systems

Table B.2 PDTrace TCBCONTROLB Register (GCR_DB_TCBControlB Offset 0x0008) (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
Ca 7 Calibrate off-chip trace interface. R/W 0 Required
If set, the off-chip trace pins will produce the following pattern if off-chiptrace
in consecutive trace clock cycles. If more than 4 data pins exist, interface exists.
the pattern is replicated for each set of 4 pins. The pattern Otherwise
repeats from top to bottom until the Cal bit is de-asserted. reserved.
Calibrations pattern
3 2 1 0
ojofjo0|oO
1)11]1]1
@ ojofjo0|oO
=
% o(1(0|1
3 11010
= U
S5 [1]olo]o
o
eg (0100
B
5 F ofof1|o0
=]
S ojo|o|1
g 1|11]1]0
2
=
= 111]0]1
11011
o111
Note: The clock source of the TCB and PIB must be running.
0 6:2 Read as Zero. Writesignored. Must be written with a value of R 0 Reserved.
0x0.
ofC 1 If set to 1, traceis sent to off-chip memory using TR_DATA pins. R/W Preset Required
If not set, trace info is sent to on-chip memory.
Thisbit isread only if either off-chip or on-chip option exists.
EN 0 Enable Trace Memory Writes. R/W 0 Required

When setto“1”, traceinformation is sampled on the output pins
or written into the on-chip trace memory. Trace Words are gen-
erated and sent to either on-chip memory or to the Trace Probe.
Thetarget of the trace is selected by the OfC bit.

When set to “0”, trace information on the output trace pins are
ignored. A potential TF6-stop (from a stop trigger) is generated
asthelast information, and the TCB pipe-lineis flushed, and
trace output is stopped.

120

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

B.5 Software Control of Coherence Manager Trace

B.4.2 CM PDTrace TCB ControlE Register

Similarly, TCBControlE is aso modified from the single-core version to only have the status hits related to the on-
chip trace buffer.

B.4.2.1 TCBCONTROLE Register

Table B.3 TCBCONTROLE Register (GCR_DB_PD_TCBCONTROLE Offset 0x0020)

Fields
Read / Reset
Name Bits Description Write State Compliance
0 319 Reserved for future use. Must be written as zero; returns 0 0 Reserved
zero on read.

TrIDLE 8 Trace Unit Idle. Thisbit indicates if the trace hardware is R 1 Required after
currently idle (not processing any data). This can be useful revision 06.00
when switching control of trace from hardware to software and higher
and vice versa. The bit is read-only and updated by the
trace hardware.

0 7.0 Reserved for future use. Must be written as zero; returns 0 0 Reserved
zero on read. (Hint to architect: reserved for future expan-
sion of performance counter trace events).

B.5 Software Control of Coherence Manager Trace

As previously described, the Coherence Manager itself can generate trace information. Software control of this trace
information is enabled through the TCBControlD register in the GCR register space (Debug Control Block, offset
0x0010). A coherent core that implements revision 6.00 and above of the PDtrace architecture also provides software
access to the TCBControlD register via drseg.

Figure B.9 TCBControlD Register Format

31 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 2 1 0
Globa
T™W CM_
Impl Reserved Sreval WB|O0|IO| TLev |AE| _CM_ En
En
Table B.4 TraceControlD Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
Impl 31:16 Reserved for implementations. Check core documentation. Undefined Optional
Reserved 15:13 Reserved for future use. Must be written as 0, and read as O. 0 0 Required
TWSrcVal 11:8 The source ID of the CM. 0 0 Required
WB 7 When thisbit is set, Coherent Writeback requests are traced. R/W 0 Required
If thisbit isnot set, all Coherent Writeback requests are sup-
pressed from the CM trace stream.
Reserved 6 Reserved for future use. Must be written as 0, and read as 0. 0 0 Required
MIPS® PDtrace™ Specification, Revision 6.16 121

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Enhancements for Chip-Multiprocessing Systems

Table B.4 TraceControlD Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
10 5 Inhibit Overflow on CM FIFO full condition. Will stall the R/W Undefined Required
CM until forward progress can be made
TLev 4:3 This defines the current trace level being used by CM trac- R/W Undefined Required
ing.
Encodin
g Meaning
00 No Timing Information
01 Include Stall Times, Causes
10 Reserved
11 Reserved
AE 2 When set to 1, addresstracing is always enabled for the CM. R/W 0 Required
This affects trace output from the serialization unit of the
CM.
Global_CM_ 1 Setting this bit to 1 enables tracing from the CM aslong as R/W 0 Required
En the CM_EN hit is also enabled.
CM_EN 0 Thisisthe master trace enable switch to the CM. When R/W 0 Required
zero, tracing from the CM is always disabled. When set to
one, tracing is enabled whenever the other enabling func-
tions are also true.
122 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

B.6 Trace-Master TAP Instruction Register

B.6 Trace-Master TAP Instruction Register

Table B.5 shows the alocation of the TAP instructions for the TraceMaster. The TraceMaster is the entity which con-
trols the PDTrace Trace-Buffer memory. The TraceMaster is hosted by the Coherence Manager.

Table B.5 TraceMaster TAP Instruction Overview

Code Instruction Function

AllQ0's (Free for other use) Free for other use, such as JTAG boundary scan.

0x01 IDCODE Selects Device Identification (ID) register.

0x02 (Free for other use) Free for other use, such as JTAG boundary scan.

0x03 IMPCODE Selects Implementation register - only EJTAGVer field implemented.

0x04 - 0x07 (Free for other use) Free for other use, such as JTAG boundary scan.

0x08 Not Used Instructions using this code are ignored.

0x09 Not Used Instructions using this code are ignored.

Ox0A CONTROL Selects EJTAG Control register - only Rocc, Doze & Halt fieldsimple-
mented - these reflect the status of the Coherence M anager.

0x0B ALL Selects EJTAG Control registers.

ox0C Not Used Instructions using this code are ignored.

0x0D Not Used Instructions using this code are ignored.

Ox0E Not Used Instructions using this code are ignored.

OxOF (EJTAG reserved) Reserved for future EJTAG use.

0x10 Not Used

Ox11 TCBCONTROLB Controls what to do with trace outputs from CPU cores.

0x12 TCBDATA Used to access the registers specified by the TCBCONTROLBRg field and
transfers data between the TAP and the TCB control register.

0x13 Not Used Instructions using this code are ignored.

0x14 Not Used Instructions using this code are ignored.

0x15 TCBCONTROLD Controls what trace outputs come from the Coherence Manager.

0x16 TCBCONTROLE Gives status of the trace buffer.
Performance Counter related fields are implemented only if the Coher-
ence Manager hasits own Performance Counterswhich can betraced.

0x17 Not Used Instructions using this code are ignored.

0x18 - 0x1B (EJTAG reserved) Reserved for future EJTAG use.

0x1C-All 1's (Free for other use) Free for other use, such as JTAG boundary scan.

All I's BYPASS Select Bypass register.

Within the table above, the text in bold represents differences between the TraceMaster instruction register with the
instruction registers of the TAP controllers associated with the processor cores.

Please refer to MD00047 - MIPS® EJTAG Specification for the full description of these EJTAG commands and

registers.

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

123

Appendix C

Implementation-Specific PDtrace™ Enhancements for
MIPS32® 1004K™ Revision 1.2.0 and Older Cores

C.1 On-Chip Trace Memory

NOTE: This section only appliesto 1004K Releases 1.2.0 (PRID Revision Field = 0x28) and older. For 1004K
Release 1.3.0 (PRID Revision Field = 0x2c) and newer, pleaserefer to Appendix B, “ PDtrace™ Enhancements
for Chip-Multiprocessing Systems’ on page 112.

On-chip trace memory is supported in coherent cores that implement revision 6.10 and higher of the PDtrace archi-
tecture. This memory is shared by all processor cores and the Coherence Manager and is accessed as previously
defined in the PDtrace architecture specification viathe TCBTW register.

To ensure consistent read/write behavior, the Trace_Master_CorelD field in the PDtrace_Master_Select_Register
within the shared GCR address space is used to grant on-chip memory access to a single core. Read/Write requests
from other cores (viadrseg or viathe TAP controller) areignored.

Table C.1 CM PDTrace Master Select Register

Register Fields

Trace_Select_GCR field is zero.

Also selectswhich CM Port ID is allowed to read or write
the following registers:

GCR_DB_TCBTW

GCR_DB_TCBRDP

GCR_DB_TCBWRP

GCR_DB_STP

GCR_DB_TCBCONTROLB GCR_DB_TCBCONTROLE
GCR_DB_PDT_CONTROL

GCR_DB_TCBConfig

Read/ | Reset
Name Bits Description Write | State [Compliance

0 [31:5] |[Read asZero. Writesignored. R 0x0 |Reserved
Trace_Select_ GCR [4] Used to select between the EJTAG and GCR trace control R/W 0x0 |Required

registers.

A vaue of zero indicates that the CM PDTrace is controlled

by the EJTAG TBCCONTROLD register associated with the

core selected by the Trace_Master_CorelD field.

A value of oneindicates that the CM PDTraceis controlled

by the CM Trace Control register.
Trace Master_CorelD [3:0] |CM Port ID that controls PDTrace Configuration when R/W 0x0 |Required

Also within the GCR space are the registers necessary to control the shared on-chip trace memory and report its sta-
tus. These registersinclude:

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

124

C.1 On-Chip Trace Memory

e TCBControlB

e TCBControlE

* TCBConfig
e TCBRDP

« TCBWRP
« TCBSTP

e TCBTW

Accessto these registersis controlled by PDtrace_Master_Select_Registerrace Master_CorelD @ Previously described.
C.1.1 CM PDTrace TCB ControlB Register

NOTE: This section only appliesto 1004K Releases 1.2.0 (PRID Revision Field = 0x28) and older. For 1004K
Release 1.3.0 (PRID Revision Field = 0x2c) and newer, please refer to Appendix B, “ PDtrace™ Enhancements
for Chip-Multiprocessing Systems’ on page 112.

TCBControlB is changed from the single-CPU version by only implementing the necessary bits which control the on-
chip trace buffer.

Table C.2 PDTrace TCBCONTROLB Register (GCR_DB_TCBControlB Offset 0x0008)

Fields
Read /

Write

Reset
State

Name Bits Description Compliance

WE 31 Write Enable. R 0
Only when set to 1 will the other bits be written in
TCBCONTROLB.

This bit will alwaysread 0.

Required

Impl 30:28 Thisfield is reserved for implementations. Refer to the Undefined
processor specification for the format and definition of

thisfield.

Read as Zero. Writesignored. Must be written with a R 0
value of 0x0.

Optional

0 2717 Reserved

RM 16 RIW 0

Read on-chip trace memory.

When written to 1, the read address-pointer of the on-chip
memory in register TCBRDP is set to the value held in
TCBSTP.

Subsequent access to the TCBTW register (through the
TCBDATA register), will automatically increment the read
pointer in register TCBRDP after each read.

When the write pointer is reached, thisbit is automatically
reset to 0, and the TCBTW register will read all zeros.
Once set to 1, writing 1 again will have no effect. The bit
isreset by setting the TR hit or by reading the last Trace
word in TCBTW.

Required

if on-chip
memory exists.

Otherwise

reserved.

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

125

Implementation-Specific PDtrace™ Enhancements for MIPS32® 1004K™ Revision 1.2.0 and Older Cores

Table C.2 PDTrace TCBCONTROLB Register (GCR_DB_TCBControlB Offset 0x0008) (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance

TR 15 Trace memory reset. R/W1 0 Required
When written to one, the address pointers for the on-chip if on-chip
trace memory TCBSTP, TCBRDP and TCBWRP are reset memory exists.
to zero. Also the RM and BF hits are reset to 0. Otherwise
Thisbit isautomatically reset to 0 when the reset specified reserved.
above is completed.

BF 14 Buffer Full indicator that the TCB usesto communicate to R 0 Required
external software that the on-chip trace memory isfull. if on-chip
Note that this applies only in the situation that the on-chip memory exists.
trace memory is being deployed in the trace-from and Otherwise
trace-to mode. reserved.
Thisbit is cleared when writing a 1 to the TR bit.

™ 13:12 Trace Mode. Thisfield determines how the trace memory R/W 0 Required
isfilled when using the simple-break control in the if on-chip
PDtrace IF to start or stop trace. memory exists.

Otherwise
™ Trace Mode reserved.
00 Trace-To
01 Trace-From
10 Reserved
11 Reserved
In Trace-To mode, the on-chip trace memory isfilled,
continuously wrapping around, overwriting older Trace
Words, as long asthere is trace data coming from the core.
In Trace-From mode, the on-chip trace memory isfilled
from the point that the core starts tracing until the on-chip
trace memory isfull (when the write pointer addressisthe
same as the start pointer address).
In both cases, de-asserting the EN bit in this register will
also stop fill to the trace memory.
If aTCBTRIGx trigger control register is used to start/stop
tracing, then thisfield should be set to Trace-To mode.
0 11 Read as Zero. Writesignored. Must be written with a R 0 Reserved
value of 0xO0.

CR 10:8 Off-chip Clock Ratio. Writing thisfield, setsthe ratio of R/W 100 Required
the core clock to the off-chip trace memory interface if off-chiptrace
clock. The clock-ratio encoding is shown in Table 8.5 on interface exists.
page 76. Otherwise
Remark: For example, aclock ratio of 1:2 implies atwo reserved.
times slow down of the Probe interface clock to the core
clock. But, one data packet is sent per core clock rising
edge, while adata packet is sent on every edge of the
Probe interface clock, since the Probe interface works in
double data rate (DDR) mode.

126

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

C.1 On-Chip Trace Memory

Table C.2 PDTrace TCBCONTROLB Register (GCR_DB_TCBControlB Offset 0x0008) (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
Cd 7 Calibrate off-chip trace interface. R/W 0 Required
If set, the off-chip trace pins will produce the following if off-chiptrace
pattern in consecutive trace clock cycles. If more than 4 interface exists.
data pins exist, the pattern is replicated for each set of 4 Otherwise
pins. The pattern repeats from top to bottom until the Cal reserved.
bit is de-asserted.
Calibrations pattern
3 2 1 o0
ojofjo0|oO
111111
@ ojofjo0|oO
E
< of1]0(12
5
E 4 1(0|1|0
285 [1]0|0]0
B
8 |o|1|o0]o0
g
> E ofoj]1(0
g |ojofof1
&
3 1(1|1]0
e
= 111101
11011
o111
Note: The clock source of the TCB and PIB must be run-
ning.
0 6:2 Read as Zero. Writesignored. Must be written with a R 0 Reserved
value of 0x0.
ofC 1 If setto 1, trace is sent to off-chip memory using TR_DATA R/W Preset Required
pins.
If not set, trace info is sent to on-chip memory.
Thisbit isread only if either off-chip or on-chip option
exists.
0 0 Read as Zero. Writesignored. Must be written with a R 0 Reserved
value of 0xO0.
MIPS® PDtrace™ Specification, Revision 6.16 127

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Implementation-Specific PDtrace™ Enhancements for MIPS32® 1004K™ Revision 1.2.0 and Older Cores

C.1.2 CM PDTrace TCB ControlE Register

NOTE: Thissection only appliesto 1004K Releases 1.2.0 (PRID Revision Field = 0x28) and older. For 1004K
Release 1.3.0 (PRID Revision Field = 0x2c) and newer, please refer to Appendix B, “ PDtrace™ Enhancements
for Chip-Multiprocessing Systems’ on page 112.

Similarly, TCBControlE is aso modified from the single-core version to only have the status hits related to the on-
chip trace buffer.

Table C.3 TCBCONTROLE Register (GCR_DB_PD_TCBCONTROLE Offset 0x0020)

Fields
Read / Reset
Name Bits Description Write State Compliance
0 31:9 Reserved for future use. Must be written as zero; returns 0 0 Reserved
zero on read.

TrIDLE 8 Trace Unit Idle. Thisbit indicates if the trace hardware is R 1 Required after
currently idle (not processing any data). This can be useful revision 06.00
when switching control of trace from hardware to software and higher
and vice versa. The bit is read-only and updated by the
trace hardware.

0 7.0 Reserved for future use; Must be written as zero; returns 0 0 Reserved
zero on read. (Hint to architect: Reserved for future expan-
sion of performance counter trace events).

C.2 Software Control of Coherence Manager Trace

NOTE: This section only appliesto 1004K Releases 1.2.0 (PRID Revision Field = 0x28) and older. For 1004K
Release 1.3.0 (PRID Revision Field = 0x2c) and newer, please refer to Appendix B, “ PDtrace™ Enhancements
for Chip-Multiprocessing Systems’ on page 112.

As previously mentioned, the Coherence Manager itself can generate trace information. Software control of thistrace
information is enabled through the CMTraceControl register in the GCR register space (Debug Control Block, offset
0x0010). Thisregister isvery similar to the TCBControlD register and is described below. A coherent core that imple-
ments revision 6.00 and above of the PDtrace architecture also provides software access to the TCBControlD register
viadrseg.

Figure C-1 CMTraceControl Register Format

31 26 25 24 23 22 21 20 19 18 17 16 15 12 1 8 7 6 5 4 3 2 1 0
SW_

Impl Reserved W WB| O |IO| TLev |AE|Trace CM_

Srcva ON En

Table C.4 CMTraceControl Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
Impl 31:16 Reserved for implementations. Check core documentation Undefined Optional

128

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

C.2 Software Control of Coherence Manager Trace

Table C.4 CMTraceControl Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
Reserved 15:13 Reserved for future use. Must be written as 0, and read as 0 0 0 Required
TWSrcVal 11:8 The source ID of the CM. 0 0 Required
WB 7 When thisbit is set, Coherent Writeback requests are traced. R/W 0 Required
If thishit isnot set, all Coherent Writeback requests are sup-
pressed from the CM trace stream
Reserved 6 Reserved for future use. Must be written as 0, and read as 0 0 0 Required
[} 5 Inhibit Overflow on CM FIFO full condition. Will stall the R/W Undefined Required
CM until forward progress can be made
TLev 4:3 This defines the current trace level being used by CM trac- R/W Undefined Required
ing.
Encoding Meaning
00 No Timing Information
01 Include Stall Times, Causes
10 Reserved
11 Reserved
AE 2 When set to 1, addresstracing is always enabled for the CM. R/W 0 Required
This affects trace output from the serialization unit of the
CM.
SW_Trace_ 1 Setting this bit to 1 enables tracing from the CM aslong as R/W 0 Required
ON the CM_EN bit is also enabled.
CM_EN 0 Thisisthe master trace enable switch to the CM. When R/W 0 Required
zero, tracing from the CM is always disabled. When set to
one, tracing is enabled whenever the other enabling func-
tions are also true.
MIPS® PDtrace™ Specification, Revision 6.16 129

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Appendix D

Implementation-Specific PDtrace™ Enhancements for the
MIPS32® 1074K™ Cores

The Content of this Appendix has been moved to Appendix B, “PDtrace™ Enhancements for Chip-Multiprocessing
Systems’ on page 112. The reason for thisis that both the 1004K and 1074K products lines now share the same
access method (the Trace-Master JTAG TAP controller) for the PDtrace control registers.

MIPS® PDtrace™ Specification, Revision 6.16 130

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

MIPS® PDtrace™ Specification, Revision 6.16 131

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Appendix E

Tracing Multi-Issue and High Performance Processors

This section of the PDtrace specification is now designated as an Appendix, becauseit is no longer clear if this
method for tracing multi-issue pipelinesis useful and will ever beimplemented. This method may be deprecated from
the specification in afuture release.

E.1 Background on High Performance Processors

This section addresses the tracing needs of multi-issue pipeline processors and describes a mechanism that allows a
workable and efficient tracing of program execution on such processors. The features of high performance processors
arenot, in general, very suitable for effectively tracing the sequential execution of a program. Such processor features
include, but are not limited to:

e Superscalar or multi-issue

» Aggressive, out-of-order dynamic scheduling with large fetch and issue windows
» Deep pipelines

e Multi-latency pipelines

* Multiple outstanding load misses

A processor that is designed to issue multiple instructions, and, moreover, out of order from the original program
sequence, will also implement what istypically known asthe re-order buffer. Thisre-order buffer and its control logic
isresponsible for putting the issued instructions back in-order (of the original program sequence). Thereisastagein
the pipeline when instructions are graduated from the re-order buffer, i.e., the point where it is certain that the instruc-
tion will not stop due to an exception (or any other reason), and can proceed to completion. This graduation of
instructions from the re-order buffer is done in program sequence.

There are several things to note here. First, the graduated instructions have not completed their execution and will
proceed to do so further in the pipeline; for example, the register write-back of the computed result of an arithmetic
instruction will happen later in the pipeline. The second thing to note is that, typically, the number of graduating
instructions will not exceed the number of issue slots of the processor. But the number can vary from aminimum of
zero up to the number of issue slots at the front of the pipe, plus the number of load miss completions from the bus
and cache units, etc.

E.2 Basic Tracing Methodology

The trace methodol ogy described in this document proposes that instructions be traced at the point of graduation. Itis
recommended that a number of instructions be simultaneously traced, and that the recommended number is the num-
ber of issue slots of the processor—Iet us call this the “ number of instruction trace slots”. It is possible that in some
cycles the number of graduating instructionsis greater than the number of instruction trace sots. In these cases, the
processor’s trace control logic must buffer the instruction(s) that could not be traced earlier, and trace them at the

MIPS® PDtrace™ Specification, Revision 6.16 132

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

E.2 Basic Tracing Methodology

beginning of the next cycle, still maintaining the program sequence order. Note that the size of such a buffer need not
be very large, because over time the number of issued instructions will equal the number of graduated instructions.
The size of this buffer can be calculated based on the maximum number of instructions that can graduate from the re-
order buffer on any given cycle, and this number is based on the processor’s pipeline depth and other pipeline-related
factors.

All the signals marked “Out” are signals output from the processor core and represent the activity of a single instruc-
tion within the core. Most of these signals need to be duplicated as many times as the number of instruction trace slots
within the core. Signals that must be duplicated are shown in Table F.1 also with signal names appended witha*“_n”,
where n is used to designate the instruction trace slot number. For example, a two-issue core can trace two instruc-
tions and use InsComp_0 and InsComp_1 to represent the compl etion status val ues of two simultaneously graduating
instructions. If only one instruction graduates on any given cycle, then InsComp_1 has a value of 000. When no
instruction graduates on a given cycle, then both InsComp_0 and InsComp_1 have 000 values.

The same example code fragment from beforeis shown in Table E.1 and this table shows the graduation cycle of each
instruction and the number of the instruction trace slot that actually traces that instruction. This example assumes a
simple two-issue processor that allows up to one |oad/store instruction per issue and one branch instruction per cycle.

Table E.1 Example Code Fragment Showing the Graduation Cycle and Trace Bus Number

Instr Graduation
No. PC Instruction Cycle Slot Number
1 0x00400188 SwW $6, 0xel70($1) n+0 0
2 0x0040018c SW $4, 0xb134($28) n+1 0
3 0x00400190 SwW $5, 0xb130($28) n+2 0
4 0x00400194 SwW $0, 0x1c($29) n+3 0
5 0x00400198 JAL 0x418d9c n+4 0
6 0x0040019¢c OR $30, $0, $0 n+4 1
7 0x00418d9c NOP n+5 0
8 0x00418da0 JR $31 n+5 1
9 0x00418da4 NOP n+6 0
10 0x004001a0 JAL 0x411c40 n+7 0
11 0x004001a4 NOP n+7 1
12 | 0x00411c40 JR $31 n+8 0
13 0x00411c44 NOP n+8 1
14 | 0x00414adc LW $4, 0xb134($28) n+9 0
15 | 0x00414ae0 BEQ $14, $0, 0x414af8 n+9 1
16 0x00414ae4 ADDIU $29, $29, Oxffed n+10 0
17 | 0x00414af8 OR $7, $0, $0 n+10 1
18 | 0x00414afc NOP n+11 0
19 0x00414b00 ADDU $6, $6, $2 n+11 1
20 | 0x00414h04 OR $7, $2, $0 n+12 0
21 | 0x00414b08 SLTU $1, $2, $1 n+12 1
MIPS® PDtrace™ Specification, Revision 6.16 133

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Tracing Multi-Issue and High Performance Processors

E.3 Coordinating Instruction Completion Trace with Address/Data Trace

134

When aninstruction is traced on a particular instruction trace slot, say using InsComp_k, then all other information

for that instruction is sent on the signals of the “k” M instruction trace slot. For example, the address and data, if any,
associated with that instruction is sent on the same slot. Thus, once an instruction begins itstrace life on a particular
instruction trace dot, it must completeits life on the same slot. The exception to this occurs when the datais not
immediately available. In this situation, the data can be sent on any of the slotsthat istemporarily free and hence cho-
sen by the processor to send that data. See E.4 “Out-of-Order Loads and Stores in the Multi-Pipe Core”.

The process of identifying the data associated with particular instructions has been simplified by making it arequire-
ment that all the data associated with instructions traced on the same cycle be in lock-step. Specifically, all the data
associated with instructionsthat are traced together on the different InsComp_n are such that their end points (i.e., the
last data cycle) are synchronized to be traced together. This requirement makes it easier for an external block to
sequence all the data operations into the program sequence. An example that illustrates this behavior is shown in
FigureE.1.

Figure E.1 An Example Showing the Coordination of Instructions and Their Data

(1))
Program Sequence InsComp_0O InsComp_1 cycle
ILBa ILBa ILb n
ILb ISc ILd n+1
ISc
ILd
(3

Cycle TType O TType 1 TEnd O TEnd_1 Comments

m+0 TPCal NT 0 X

m+1 TPCa2 NT 1 X

m+2 TLAal NT 0 X

m+3 TLAa2 TLADb1 1 1

m+4 TDal TDbl 0 0

completion of all TType
m+5 TDa2 TDb2 1 1 transfers for instructions
traced in cycle n

m+6 TSAc1 NT 0 X
m+7 TSAc2 TLAd1 1 1
m+8 TDcl TDd1 0 0

completion of all TType
m+9 TDc2 TDd2 1 1 transfers for instructions
traced in cycle n+1

(4)

Data in Program Sequence

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

E.4 Out-of-Order Loads and Stores in the Multi-Pipe Core

TPCal, TPCa2,
TLAal, TLA&2,
TLADL,

TDal, TDa2
TDb1, TDb2
TSAcl, TSAc2
TLAd1

TDcl1, TDc2
TDd1, TDd2

Figure E.1 shows four blocks of information. The first one (1) shows the instruction complete (InsComp) valuesin
the program sequence. The second block (2) shows these values as they would be transmitted on the two instruction
trace dots, i.e., InsComp_0 and InsComp_1. The third block (3) shows the TType and TEnd values for the two trace
dots. Note that the data trace information for the instructions that were simultaneously traced on InsComp_0 and
InsComp_1 aretraced such that their TEnd is coordinated. For the InsComp valuestraced in cyclen (in block (2)), the
datatransmission endsin cycle m+5 (in block (3)). And for the InsComp valuestraced in cycle n+1 (in block (2)), the
data transmission ends in cycle m+9 (in block (3)).

The external block reading the signals on the interface can then take the data values, and knowing the program
sequence order (in block (1)), can put the data trace in order, as shown in block (4).

E.4 Out-of-Order Loads and Stores in the Multi-Pipe Core

When a multi-pipe core needs to send out-of-order data, it uses the DataOrder signal just like the single-pipe core.
When an out-of-order datais returned, it can be traced on any free dot, not necessarily the one that traced the corre-
sponding instruction. Thisis because instruction tracing is sequentialized by the InsComp_n order, and therefore the
data can be associated with the correct instruction once the DataOrder value is known. Note that since the slots are
implicitly ordered, for data transmissions that end on the same cycle, the data on TType k is before the data on
TType k+1.

E.5 Tagging Instructions that Issue Together

With the method of tracing graduating instructions in sequence, it is not possible to know which instructions issue
together without additional information. This information might be invaluable to tune a code optimizer for high per-
formance processors. In order to trace this information, the processor tags all the instructions that issue together,
using the signal IssueTag_n. Thistag valueis also traced out with each InsComp_n value. A tag value of 6 bitsis
being initially proposed, assuming an issue window of about 64 instructions. Note that this tag information can be
traced out of the TCB only if the user requiresit, henceit will not incur bandwidth on the external pinsunlessthereis
area need for thisinformation. Thus, it is recommended that the TCB allow the external tracing of thisinformation
under user discretion.

E.6 Miscellaneous

Tracing from each one of the multiple pipelinesis controlled by the same set of bits, either in CPO or in the TCB, as
well be described in other chapters.

MIPS® PDtrace™ Specification, Revision 6.16 135

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Tracing Multi-Issue and High Performance Processors

136

When tracing isfirst started (or re-started after abreak), InsComp_0 isthefirst traced instruction in the static program
image and this will output the TMOAS record and the full PC.

When thereis a need for synchronization, the core can choose any InsComp_n to send the TMOAS record and the
full PC value, as long as these two are both done on the same instruction in the trace slot. Note that if load/store
addresses are also being traced, then afull load/store address value is part of the synchronization tracing. This may
not always be possible on the instruction chosen by the core. But these should be sent on the next sequential 1oad/
store instruction. Thisis a situation that the external software has to take into account when recognizing synchroniza-
tion transmissions in the multi-pipeline core or processor.

MIPS® PDtrace™ Specification, Revision 6.16
Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Appendix F

PDtrace™ Interface Signals (The Interface is now

Deprecated as Architecture and this Chapter is here Solely
for Historical Reasons)

All signals are assumed to be asserted high unless otherwise noted. The signal direction “Out” refersto asignal that is
output from the processor core or coherence manager, and “In” signals are those that are input to the processor core or
coherence manager. The “PDO_" prefix to the signal names is used to uniquely identify the signals as belonging to
the PDtrace Output interface. And the “PDI_" prefix is used to identify the PDtrace Input signals. Signals that have

been repeated in the “ Signal Name” column with a“_n" prefix are PDO_ signalsthat are to be duplicated for multi-
i SSUe processors.

MIPS® PDtrace™ Specification, Revision 6.16 137

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Interface Signals (The Interface is now Deprecated as Architecture and this Chapter is here Solely for His-

F.1 PDtrace™ Core Interface Signal List

Table F.1 PDtrace™ Core Interface Signals

Signal Name Direction Description
Pclk Processor clock, used by the core and the trace control block.
PDO_lamTracing Out The core usesthis signal to validate all the other Out signals. The external

trace control block cannot always predict if the trace datafrom the coreisvalid
or not valid, since tracing depends on core execution status such as the proces-
sor mode and also since tracing can be controlled by software running on the
core.

Thissignal isused for al the _n signals, and is not duplicated.

PDO_InsComp[2:0] Out Instruction completion status signal. The values are interpreted as follows:
PDO_InsComp_n[2:0]

Value Description

000 No instruction completed this cycle (NI)
001 Instruction completed this cycle (1)

010 Instruction completed this cycle was aload (IL)

011 Instruction completed this cycle was a store (1S)

100 Instruction completed this cycle was a PC sync (1PC)
101 Instruction branched this cycle (IB)

110 Instruction branched this cycle was aload (ILB)

111 Instruction branched this cycle was a store (1SB)

A "No Instruction” (NI) can occur due to a pipeline stall or when the instruc-
tion was killed (due to an exception).

The three encodings (101, 110, 111) for branched instruction indicates a dis-
continuity in the PC value for the associated instruction. Note that it is only
when the new PC cannot be predicted from the static program flow that it is
traced.

The IPC value is used for the periodic output of the full PC value for synchro-
nization. The tracing hardware should ensure that this is not done on an unpre-
dictable branch, load, or store instruction.

PDO_MIPS16 Out When asserted, this signal indicates that the current instruction specified in
PDO_MIPS16_n PDO_InsComp isaMIPS16e instruction. When de-asserted, the processor is
not executing a MIPS16e instruction.

Thissignal (along with the PDO_MIPS16Ins signal) is used by the TCB to
compute the current PC value. Hence thisisirrelevant externally and not
traced to memory. Note that since external software has access to the program
image, it can aways know whether an instruction is a MIPS16e instruction or
not.

Thisisan optional signal for PDtrace specification revisions less than 03.00.
Thissignal isonly relevant if the processor also implements the MIPS16e
ASE, and is not required otherwise. If a processor providesthissignal, itis
optional whether a TCB accepts this signal and usesiit.

138 MIPS® PDtrace™ Specification, Revision 6.16
Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

F.1 PDtrace™ Core Interface Signal List

Table F.1 PDtrace™ Core Interface Signals (Continued)

Signal Name

Direction

Description

PDO_MIPS16Ing[1:0]
PDO_MIPS16Ins n[1:0]

Out

This signal accompanies the PDO_MIPS16 signal and is used to indicate the
type of MIPS16e instruction. Like PDO_MIPS16 thisis optional, but must be
implemented if PDO_MIPS16 isimplemented.

Value Description
00 |Isexecuting a MIPS16e instruction that is not aMACRO
instruction and is not extended.

01 |Isexecuting aMIPS16e instruction that is not aMACRO
instruction and is extended.

10 |Isexecuting aMIPS16e MACRO instruction.
11 Reserved

PDO_AD[15:0] or
PDO_ADI[31:0]
PDO_AD_n[15:0] or
PDO_AD_n[31:0]

Out

The address or data value is transmitted on this bus. The actual values must be
correlated using the PDO_TType signal described below. It is recommended
that a 64-bit processor core implement at |east 32 bits for improved tracing
capability.

A multi-cycle transaction sends the |east-significant bitsfirst, followed by the
more-significant bits.

When the transmitted data width is |ess than the width of the bus, the datais
transmitted on the |east-significant bits of the bus. Thereis no necessity to
indicate the validity since the post-analyzing software knows the width of the
data. (For example, aLB implies one byte of data). The upper bits of the bus
must be sign extended to allow the TCB to truncate the upper bits and hence
avoid tracing unneeded bits to memory.

PDO_TType[2:0]
PDO_TType n[2:0]

Out

Specifies the transmission type for the transaction on the PDO_AD lines. The
valid types are:

Value Description

000 |No transmission thiscycle (NT)

001 |Transmitting the PC (TPC)

010 |Transmitting the load address (TLA)

011 |Transmitting the store address (TSA)

100 | Transmitting the load/store data value (TD)

101 |Transmitting the processor mode, the 8-hit ASID, and the
SYNC bit. Thisistriggered by either a change in the proces-
sor mode, by a software write to the EntryHi register, or a
trace synchronization operation. (TMOAYS). If the processor
does not implement the standard TLB-based MMU, it is
UNPREDICTABL E whether awrite to the EntryHi register
triggersa TMOAS operation. (See Figure 3.3).

110 |Transmitting user-defined trace record - type 1 (TU1)
111 |Transmitting user-defined trace record - type 2 (TU2)

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

139

PDtrace™ Interface Signals (The Interface is now Deprecated as Architecture and this Chapter is here Solely for His-

Table F.1 PDtrace™ Core Interface Signals (Continued)

Signal Name Direction Description
PDO_TEnd Out Indicates the last cycle of the current transaction on the PDO_AD bus. Thissig-
PDO_TEnd_n nal can be asserted in the same cycle that atransaction is started, implying that

the particular transaction only took one cycle to complete.

In amulti-issue core, the PDO_TEnd signals are synchronized for all the
PDO_AD_n transmissions associated with instructions that graduate together.
See Section E.3 “Coordinating Instruction Completion Trace with Address/
Data Trace” on page 134 for details.

In PDtrace revision 3.00 and higher, the processor is allowed to assert thissig-
nal early if the tracing logic determines that the upper bits of the address or
data being sent on the PDO_AD bus are redundant. For example, redundant
upper sign bits may be omitted and software could easily reconstruct these
bits. Note that the TCB must therefore be capable of accepting an early
PDO_TEnd signal for any transmission type. This early assertion of
PDO_TEnd is alowed for all the values of PDO_TMode.

PDO_TMode Out Indicates the transmission mode for the bits transmitted on PDO_AD. The
PDO_TMode n mode depends on the transmission type.
PDO_TType PDO_TMode
000 (NT) Reserved
101 (TMOAS)
001 (TPC) 0 -> deltafrom last PC value
1 -> compression algorithm A (full address)
010 (TLA) 0 -> deltafrom last data address of that type
011 (TSA) 1 -> compression algorithm B (full address)
100 (TD) 0 -> Reserved
110 (TUL) 1 -> compression algorithm C (full data)
111 (TU2)
140 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

F.1 PDtrace™ Core Interface Signal List

Table F.1 PDtrace™ Core Interface Signals (Continued)

Signal Name Direction Description
PDO_DataOrder[3:0] Out Thissignal isused to indicate the degree of out-of-order-ness of load and store
PDO_DataOrder_n[3:0] data. Using this order value allows load and store data to be traced out as it

becomes available, thus avoiding the need to internally buffer data. Note that
only sixteen outstanding data values are allowed because of the limitation
imposed by the signal width of 4 bits. This signal takes on the following val-

ues:
Value Description
0000 |datafrom oldest load/store instruction (is in-order)
0001 |datafrom second-oldest load/store instruction
0010 |datafrom third-oldest load/store instruction
0011 |datafrom fourth-oldest load/store instruction
0100 |datafrom fifth-oldest load/store instruction
0101 |datafrom sixth-oldest load/store instruction
0110 |datafrom seventh-oldest load/store instruction
0111 |datafrom eighth-oldest |oad/store instruction
1000 |datafrom ninth-oldest load/store instruction
1001 |datafrom tenth-oldest load/store instruction
1010 |datafrom eleventh-oldest load/store instruction
1011 |datafrom twelfth-oldest load/store instruction
1100 |datafrom thirteenth-oldest load/store instruction
1101 |datafrom fourteenth-oldest load/store instruction
1110 |datafrom fifteenth-oldest |load/store instruction
1111 |datafrom sixteenth-oldest |oad/store instruction
PDO_Trigl[N:0] Out This vector indicates which of the N+1 implemented EJTAG hardware instruc-

tion breakpoints caused a trigger. The instruction causing the trigger is indi-
cated on the corresponding PDO_InsComp bus, if tracing has been turned on.
Note that EJTAG restricts the maximum number of implementable hardware
instruction breakpointsto 15.

PDO_TrigD[N:0] Out This vector indicates which of the N+1 implemented EJTAG hardware data
breakpoints caused atrigger. The instruction causing the trigger is not neces-
sarily the one on the PDO_InsComp bus since data triggers may be imprecise.
Note that EJTAG restricts the maximum number of implementable hardware
data breakpointsto 15.

PDO_TrigOn Out Thisbit is asserted if at |east one trigger in PDO_Trigl[N:0] or PDO_TrigD[N:0]
turnstrace on. (See 3.16 “Trace Trigger from EJTAG Hardware Instruction/
Data Breakpoints’ on page 35).

PDO_TrigOff Out Thisis asserted if no trigger turnstrace on (i.e., PDO_TrigOn is not asserted),
and at least one of the indicated triggersin PDO_TrigI[N:0] or PDO_TrigD[N:0]
turns trace off. (See 3.16 “Trace Trigger from EJTAG Hardware Instruction/
Data Breakpoints’ on page 35).

MIPS® PDtrace™ Specification, Revision 6.16 141

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Interface Signals (The Interface is now Deprecated as Architecture and this Chapter is here Solely for His-

Table F.1 PDtrace™ Core Interface Signals (Continued)

Signal Name Direction Description

PDO_Overflow Out Thissignals an internal FIFO overflow error in the core and implies the fol -

lowing:

« the current transmission is to be abandoned in the current cycle

» the FIFO isemptied so that previously collected trace information in the
FIFOislost

« anew transmission beginsin the next cycle witha TMOAS and afull PC
address

PDO_ValidModeq[1:0] Out This signal specifies the subset of tracing that is supported by the processor
(see 2.3 “Subsetting” on page 17).

Encoding Meaning

00 PC tracing only

01 PC and load and store address tracing only
10 PC, load and store address, and load and store data
11 Reserved

PDO_lIssueTag_n[5:0] Out Thissignal is used in multi-issue processors and it is signaled with

PDO_InsComp_n. In multi-issue processors, instructions that issue together
are assigned a matching tag value, specified by thissignal value.

A six bitinternal counter increments each cycle, and the instructions that issue
in that cycle are assigned the counter value. When the maximum counter value
isreached, it Ssmply restarts at zero.

This feature facilitates the performance debugging of code schedulers for
high-end processors. These tag values are available every cycle, but it isantici-
pated that the TCB will trace this to memory only when specially requested by

the user.
PDO_IMiss Out When asserted, this signals whether the load or store instruction specified by
PDO_IMiss n PDO_InsComp in this cycle missed in the instruction cache during the fetch

operation. Thissignal isignored if PDO_InsComp indicated that no instruction
completesthis cycle (i.e., when it is 000).

PDO_L SMiss Out When asserted, this signals whether the load or store data specified by
PDO_LSMiss n PDO_TType of TD in this cycle missed in the data cache during the data load
or store operation. The data cache missis indicated with the transmitted data
rather than the instruction that caused the miss because in the pipeline a data
cache miss cannot often be detected at the time that the instruction is transmit-
ted with the appropriate PDO_InsComp value. It isthe reconstruction software
which needs to associate the data with the corresponding PC and data address.

PDO_FuncCR Out When asserted, this signal indicates that this instruction can potentially be
PDO_FuncCR_n either afunction call instruction or a function return instruction. See Chapter
F, “PDtrace™ Interface Signals (The Interface is now Deprecated as
Architecture and this Chapter is here Solely for Historical Reasons)” on

page 137 for details.

Notethat it is possible for asingleinstruction to assert both PDO_IMiss aswell

asthissignal.
PDO_TC[7:0] Out For a processor that implements multithreading (MIPSMT ASE), and for a
PDO_TC n[7:0] valid PDO_InsComp value (when not NI), this signal indicates the thread con-

text number of the traced instruction. A given implementation only needs to
use as many encoded bits for this signal asthetotal TCsimplemented. For
example, the 34K ¢ core with maximum 9 possible TCswill only require 4 bits.
The PC deltavalue that is transmitted by the core is now maintained on a per-
TC basis.

142 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

F.1 PDtrace™ Core Interface Signal List

Table F.1 PDtrace™ Core Interface Signals (Continued)

Signal Name

Direction

Description

PDO_CPUId[7:0]
PDO_CPUid_n[7:0]

Out

Optional output for a processor indicating the processor number
(Ebase.CPUNum) of the traced instruction. It would be used in a multi-core
design, where the Ebase.CPUNum field for the core is used to tag the trace
from different coresin the multi-core environment. If the core were not imple-
mented in amulti-core design, then the TCB would simply ignore the value on
thissignal.

PDO_COSId[1:0]

Out

Coherent Synchronization ID. Thisis a 2-bit value used to synchronize core
trace messages with trace messages received from the coherent interconnect.
Required for all processors using PDtrace specification 5.00 and higher.

PDI_TCBPresent

When asserted this indicates that the TCB hardware is present and connected
to the core’s tracing logic. Hence the core can consider the other PDI_ signals
to bevalid.

PDI_TraceOn

Thisisthe signal asserted by the external trace block into the core that states
whether tracing is globally turned on or off. It is expected that this signal be
continuously asserted to turn on tracing.

0 : Tracing off

1 : Tracingisturned on

PDI_TraceMode[4:0]

When tracing isturned on, this signal specifieswhat information isto betraced
by the core. It uses 5 bits, where each bit turns on tracing for a specific tracing
mode. The table shows what trace valueis turned on when that bit valueisal.

Bit # Set
0 PC
1 Load address
2 Store address
3 Load data
4 Store data

Trace The Following

If the corresponding bit is O, then the Trace Value shown in column two is not
traced by the processor. Thisimplementation is required for all processors
using PDtrace specification 4.00 and higher.

Obviously, the processor has to support the tracing mode that is being
requested for thisinput signal to have any effect. For example, if the processor
only supports PC tracing, then only bit O is read by the processor, and other
other bits areignored, and so on. Which bits are ignored and which are read
can be obtained by reading the PDO_ValidModes output signal.

It is optional for an implementation to allow PC tracing to be turned off. This
must be clearly documented by the core implementation-specific document.
When it isoptional, bit O istied to avalue of 1 and setting bit 0 to 0 issimply
ignored by the processor.

The global bit, which if asserted to 1, implies that all processes are to be
traced. If 0, then trace datais sent only for a process that matches
PDI_ASID[7:0]. If the processor does not implement the standard TL B-based
MMU, thissignal isignored by the processor and is treated asiif it were
asserted.

PDI_ASID[7:0]

When the global bit is 0, only the process whose ASID matches this ASID
value will be traced. If the processor does not implement the standard TLB-
based MMU, thissignal isignored by the processor.

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

143

PDtrace™ Interface Signals (The Interface is now Deprecated as Architecture and this Chapter is here Solely for His-

Table F.1 PDtrace™ Core Interface Signals (Continued)

Signal Name Direction Description

PDI_U In Enablestracing in User Mode (see 2.2 “Processor Modes’ on page 16). This
enablestracing only if the PDI_TraceOn is a so asserted or the hardware break-
point trace triggers on, and either the PDI_G hit is set or the PDI_ASID matches
the current process ASID.

PDI_S In Enables tracing in Supervisor Mode (for those processors that implement
Supervisor Mode), otherwise, this signal is not required (see 2.2 “Processor
Modes’ on page 16). This enables tracing only if the PDI_TraceOn is also
asserted or the hardware breakpoint trace triggers on, and either the PDI_G bit
is set or the PDI_ASID matches the current process ASID.

PDI_K In Enablestracing in Kernel Mode (see 2.2 “Processor Modes’ on page 16).
This enablestracing only if the PDI_TraceOn is also asserted or the hardware
breakpoint trace triggers on, and either the PDI_G bit is set or the PDI_ASID
matches the current process ASID.

PDI_E In Enables tracing when in Exception Mode (see 2.2 “Processor Modes” on
page 16). This enablestracing only if the PDI_TraceOn is also asserted or the
hardware breakpoint trace triggers on, and either the PDI_G hit is set or the
PDI_ASID matches the current process ASID.

PDI_DM In Enablestracing in Debug Mode (see 2.2 “Processor Modes’ on page 16). This
feature is useful to debug the debug handler code viathe EJTAG and TAP con-
troller port.

PDI_InhibitOverflow In This signal is used by the external trace block to indicate to the core that the

core pipeline should be back-pressured (and stalled) instead of allowing the
trace FIFO to overflow and hence lose trace information.

PDI_StallSending In When asserted, thissignal is used by the external trace block to indicate to the
core that it must stop transmitting trace information in the next cycle. This
request may be essential when the trace control block isin imminent danger of
over-running itsinterna trace buffer.

In the cycle when the signal is asserted, the value on all the PDO_ signals are
valid and must be captured by the TCB.

In the cycle after the one where the core sees an assertion of this signal the
core must not transmit any valid trace information on any of the PDO_ output
signal bits (including PDO_InsComp).

In the cycle after the TCB de-asserts this signal again, PDtrace PDO_ signals
arevalid and must be captured by the TCB. (Note that some processors cannot
arbitrarily stall their pipeline on any given cycle. In this situation, the imple-
mentation on the processor side must provide sufficient buffering to hold trace
information until the pipeline can be stalled).

PDI_SyncOffEn In Thissignal is an enable signal for the PDI_SyncPeriod, PDI_TBImpl, and
PDI_OffChipTB signals. When asserted, the core latches these values. This sig-
nal, and the signals which it controls must be asserted before tracing can begin.

144 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

F.1 PDtrace™ Core Interface Signal List

Table F.1 PDtrace™ Core Interface Signals (Continued)

Signal Name

Direction

Description

PDI_SyncPeriod[2:0]

In

This signal is used to set the synchronization period bits in the TraceControl 2
register. The value specifies the period (in cycles) for sending synchronization
information.

Period (in cycles) for sending
sync records

SyncPeriod
000 25
001 6
010 o7
011 28
100 29
101 210
110 ol1

111 212

PDI_TBImpl

When thissignal isa 1, the TCB has implemented both an on-chip and an off-
chip trace buffer, and the PDI_OffChipTB signal indicates to which the traceis
currently being written. When thissignal isa0, the PDI_OffChipTB signal indi-
cateswhich buffer isimplemented. Thisvalue iswritten into the TraceControl2
CPO register (asthe TBI bit). It isoptional for the TCB to providethissignal to
the corelogic for all TCB implementations compatible to PDtrace specifica-
tions less than 03.00.

PDI_OffChipTB

When one, this signal indicates that the trace datais being sent off-chip to an
external trace memory. When zero, thisindicates an on-chip trace buffer. The
value of this signal to the core changes how the core interprets the trace syn-
chronization period bits. This signal value is written into the TraceControl2
CPO register (asthe TBU hit).

PDI_TraceAllBranch

When asserted, the core’s tracing logic will emit PC values for all taken
branches encountered in the execution stream, including all conditional and
unconditional, predictable and unpredictable branches. When de-asserted, the
core reverts to normal tracing mode.

PDI_TracelMiss

When asserted, PDO_IMiss is set when the processor detects an instruction
cache missfor the current instruction being traced. Like all other trace signals,
thisinput signal causes active tracing only when tracing is currently turned on.
If PDI_TraceMode[0], i.e., bit O isturned off, that is, no PC tracing has been
requested, then aPDO_IMiss assertion is accompanied by afull PC value. Oth-
erwise thereis no special action taken for thisinstruction other than asserting
the PDO_IMiss hit.

PDI_TraceL SMiss

When asserted, when PDO_LSMiss is set when the processor detects adata
cache miss on aload or astore. Like all other trace signals, thisinput signal
causes active tracing only when tracing is currently turned on.

If PDI_TraceMode[0] isturned off, that is PC tracing is disabled, then the PC of
the missed instruction will not be available to the reconstruction software. If
PDI_TraceMode[1] or PDI_TraceMode[2] isturned off, that is no data address
tracing is enabled, then no data addressis traced for the address that missed in
the cache. Even if PDI_TraceMode[3] or PDI_TraceMode[4] isturned off, the
full data value for the missed instruction is traced out.

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

145

PDtrace™ Interface Signals (The Interface is now Deprecated as Architecture and this Chapter is here Solely for His-

Table F.1 PDtrace™ Core Interface Signals (Continued)

Signal Name Direction Description

PDI_TraceFuncCR In When asserted, PDO_FuncCR is set when the current instruction could be a
function call or return instruction. Like all other trace signals, thisinput signal
causes active output tracing only when tracing is turned on.

If PDI_TraceMode[0], i.e., bit O isturned off, that is, no PC tracing has been
requested, then aPDO_IMiss assertion is accompanied by afull PC value. Oth-
erwise thereis no special action taken for thisinstruction other than asserting
the PDO_IMiss hit.

PDI_TCNum[7:0] In Only implemented in a processor with MT. When PDI_TCNumValid is
asserted, this signal gives the number of the Thread Context that isto be
traced. Only the number of bits required to encode the total TC number is
implemented. Aslong as PDI_TraceTCValid is asserted, no instruction from
any other thread istraced. If the required TC does not execute any instructions,
then no instructions are traced, the PDO_InsComp vaue will remain NI. When
instructions from other TCs are executed, these are marked as NI on the
PDtrace interface.

PDI_TCNumValid In Only implemented in a processor with MT. When asserted, the PDI_TCNum
signal istaken by the processor and used as the number of the TC whose
instructions are to be traced. This signal must remain asserted as long as trac-
ing isrequired from a specific TC. If not asserted, then tracing reverts to other
conditions being fulfilled.

PDI_CPUId[7:0] In Implemented in a processor with MT, where this signal gives the number of
the VPE that isto be traced, if PDI_CPUIdValid is asserted. Aslong as
PDI_VPENumValid is asserted, no instruction from any other VPE istraced. If
the required V PE does not execute any instructions, then no instructions are
traced, the PDO_InsComp value will remain NI. When instructions from other
V PEs are executed, these are marked as NI on the PDtraceinterface. Thisbit is
ignored if TCNumValid is asserted.

In amulti-core processor SOC environment, this specifies the id of the proces-
sor that isto betraced if PDI_CPUIdValid is asserted.

PDI_CPUIdValid In Only implemented in a processor with MT or in a multi-core SOC implemen-
tation. When asserted, the PDI_CPUId signa is taken by the processor and
used as the number of the VPE (or core) whose instructions are to be traced.
Thisbitisignored if TCNumValid is asserted.

146 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

F.1 PDtrace™ Core Interface Signal List

F.1.0.1 PDtrace Coherence Manager Interface Signals

Table F.2 PDtrace Coherence Manager Interface Signals

Signal Name Direction | Width Description

COsId_n Input 2 COSld input received from processor core. One copy of signal per core

SRH_SrcPort Output 3 Source of the request that was serialized

SRH_COSId Output 2 Coherent Sync ID of transaction. Used to correlate CPU and CM transactions

SRH_MCmd Output 5 Command in the request that was serialized (See Table F.3)

SRH_WaitTime Output 8 Thisis active only in timing mode. Tracks how many cycles the transaction spent stalled
in the SRH. Saturates at 255 cycles.

SRH_Address Output 29 Thisis active when we are tracing addresses from the SRH - provides the address corre-
sponding to the request being traced.

SRH_AddrTarg Output 3 Target of the current request (see Table F.4) (Indicates speculative reads as well)

IVU_COsId Output 2 Coherent Sync ID at the Intervention Unit

IVU_SrcPort Output 3 The core that made the original request that resulted in thisintervention

IVU_RespBV Output 6 Bit vector of intervention port responses. Bit corresponding to acoreissetto ‘1’ if the
intervention hit, and set to ‘O’ if the intervention missed.

IVU_IntvResult Output 3 Global Intervention State for this cache line (see Table F.5)

IVU_SC_Cancel Output 1 This transaction was cancelled due to a previous SC Fail

IVU_SC Failed Output 1 Thisintervention will cause a future SC to fail

IVU_PIQ WaitTime Output 8 Cycle count that each transaction spends at the top of the PIQ. Saturates at 255

IVU_PIQ StallCause | Output 3 What was the last reason this transaction was stalled on top of the PIQ. (see Table F.6)

Table F.3 MCmd - OCP Commands

Value| Command Description Value Command Description
0x00 IDLE 0x0C COH_UPGRADE Coherent Upgrade (SC bit == 0)
0x01 | LEGACY_WR_ UC | Uncached legacy write, CCA=UC, | 0x0D COH_WB Coherent Writeback
UCA, WT
0x02 | LEGACY_RD_UC | Uncached legacy read, CCA =UC | 0x10 | COH_COPYBACK Coherent Copyback
0x03 | LEGACY_WR WB| Cached legacy write, CCA =WB | 0x11 |COH_COPYBACKINV| Coherent Copyback Invalidate
0x04 | LEGACY_RD_WB | Cached legacy read, CCA = WB, WT| 0x12 COH_INV Coherent Invalidate
0x05 | LEGACY_SYNC Uncached legacy read with MRe- | 0x13 COH_WR_INV Coherent Write Invalidate
ginfo[3] ==1
0x06 | L2 L3 CACHEOP_| Uncached legacy writewith MAd- | Ox14 | COH_CMPL_SYNC Coherent Completion Sync with
WR drSpace!=0 MRegInfo[3] ==
0x07 [L2_L3_CACHEOP R Uncached legacy read with MAd- | Ox15 |COH_CMPL_SYNC_M| Coherent Completion Sync with
D drSpace!=0 EM MReglInfo[3] ==
0x08 | COH_RD_OWN Coherent Read Own 0x17 | COH_WR_INV_FULL | Coherent Invalidate due to afull line
0x09 COH_RD_SHR Coherent Read Shared 0x18 | COH_RD_OWN_SC |Coherent Read own with SC bit ==
OX0A |COH_RD_DISCARD Coherent Read Discard 0x1C | COH_UPGRADE_SC | Coherent Upgrade with SC bit ==
O0xOB | COH_RD_SHR_AL Coherent Read Share Always
WAY'S
MIPS® PDtrace™ Specification, Revision 6.16 147

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

PDtrace™ Interface Signals (The Interface is now Deprecated as Architecture and this Chapter is here Solely for His-

Table F.4 Cmd_AddrTarg

Table F.5 Global Intervention State

Value Target Value Target Value State

0x0 |Memory/L2 withno specu-| Ox1 [Memory/L2 with no specu- 0x0 Invalid
lation. L2 alocation bit = 0 lation. L2 alocation bit = 1 oxl Shared
e Il e b2 | woane
Ox4 GCR x5 GIC O3 Exclusve
0x6 MMIO 0x7 Reserved Ox4-Ox7 Reserved
Table F.6 PIQ Stall Causes

Value Cause Value Cause
0x0 No Stall Ox1 Awaiting Intervention Results from CPU(s)
0x2 Waiting for IMQ empty (for Sync only) or IMQ 0x3 IWDB Full

full (for other request types)

0x4 TRSQ Full 0x5 IRTQ Full
0x6 Waiting for speculative request to clear RMQ 0ox7 PDtrace Stall

148

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Appendix G

Revision History

Revision Date Description

16 August 29, 2000 Changesin thisrevision:
Add the requirement that the data address be also periodically gathered for
synchronization purposes, per FS2.
Modify Figure 3 to show that the load datais picked up after alignment,
per Ihh.
typo fixes

17 September12, 2000 Changesin thisrevision:
Add a separate input signal that says whether to trace in Debug mode or
not (i.e.,, DM = 1in the Debug register), per Scott who wants to be able to
debug the debug handler code.
Put back Figure 3 to tap load/store data pre-alignment, per Franz.
Add a section (3.17) to show when tracing is enabled.
Allow the ASID to be masked under software control, per Scott.
Amend Figure 1 to show the EJTAG/TAP controller and its connection to
the debugger.
Add to Table 2, to show the use of the PDO_InsComp signal value |PC
(100).
Add a chapter (6) on the trace capture block and its interaction with the
external debugger software.
Add TOC
Fix typos, grammar, sentence construction.

1.8 October 27, 2000 Changesin thisrevision:
Change the way loads are tracked and traced out.
Add the tracing out of ASID and processor mode as part of the periodic
synchronization.
Add details to the multi-issue tracing section.
The above changes require a modification to the output format section.
Add a chapter to discuss the trace capture block (TCB), that includes: a
definition of the control registers within the TCB, and the mechanism to
write these registers from the external probe (or debugger).
Define tracing with an on-chip trace buffer versus off-chip trace buffer.
Add another Out signal from the core, PDO_lamTracing, that the core uses
to signal to the TCB that it is actually sending valid trace data.

1.9 November 20, 2000 Changesin thisrevision:
Add tracing of processor ISA mode, and whether processor isin Debug
mode or not.
Get rid of the TCBTraceMask register, is not really needed.
Allocate some bits in the TraceControl register asimplementation depen-
dent.
Specify that full addresses are used for on-chip trace memory.
Change the encoding of bits from the EJTAG logic to the tracing logic,
send al 30 bits of breakpoint trigger.
Fix the logical expressionin 3.1.8.

MIPS® PDtrace™ Specification, Revision 6.16 149

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Revision History

Revision Date Description

20 December 19, 2000 Changesin thisrevision:
Add asignal from the TCB to the core tracing logic, PDI_Stall Sending,
that inhibits the core from sending trace data. Note that the core does not
stop tracing, only stops sending trace information to the TCB. Used by the
TCB when itsinternal buffer isin imminent danger of overflowing. (The
corewill stall if itsinternal FIFO will overflow).
Make the synchronization period programmable, by using some bitsin a
register to hold this value. These bits can be updated by either software or
by the TCB (based on the trace buffer size).
Add asigna from the TCB to the core tracing logic that signals whether
the TCB is using an on-chip or off-chip trace buffer. This changes the way
in which the core interprets the synchronization period bits in the register.
The chapter on trace control block (TCB) has been cut off into another
document, sinceit is not directly relevant to the PDtrace architecture.

201 January 25, 2001 Changesin thisrevision:
Add asignal PDI_TCBPresent to indicate that the TCB hardwareis
present.
Clearer explanation of how the PDI_Stall Sending signal works.
Change in how the PDI_EXL and the corresponding X bit in the Trace-
Control register works.
Coding change in the PDI_TraceMode[2:0] signal.

2.02 February 12, 2001 Changesin thisrevision:
Change in how the PDI_EXL and the corresponding X bit in the Trace-
Control register works. Tracing triggers on when either EXL or the ERL
bitisal, thisenablestracing after a cold reset.

2.03 March 22, 2001 Changesin thisrevision:

» Add aregister description table for User TraceData.

» Add aPDI_TraceAllBranch signa to indicate that al branches (condi-
tional, unconditional, predictable, and unpredictable) are to be traced.

» Change the PDO_InsComp definition for unconditional predictable
branches (jumps), so that thesetrace out as|B, ILB, and | SB (rather than
I, 1L, and 1S).

» Document how tracing is handled within MACRO instructions and the
SAVE/RESTORE instruction.

» Document what happens when a mode change happens within the pro-
cessor and this changes the tracing mode, i.e., either turnsit off or on.

» Fix typos.

150 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Revision Date

Description

2.04 June 20, 2001

Changesin thisrevision:

» Converted document to new template

* PDO_TMode'sreserved bit field of 100 is now used for tracing PC val-
ues and load data (thisis optional for all PDtrace specifications less than
03.00 and conforming TCB implementations.

e Three PDO_signal bits have been added, PDO_MIPS16 and
PDO_MIPS16Ins that are used only by processors implementing the
MIPS16 ASE, and are optional.

» Thesense of EQL, EQ2, and EQ3 used to compute the delta address val-
ues have been reversed.

» Add the PDI_TraceAllBranch to the Trace Control Register.

* Note that the select position of the COPO registers implemented for trac-
ing have all been changed, so that the control registers are together and
the optional register TraceBPC isthe last one.

* Notethat the end of a MIPS16 Macro instruction was indicated by the
transmission of afull PC value. Thiswas more fully specified so that
this full PC value is accompanied by an PDO_InsComp value that indi-
catesabranch, e.g., IB, ILB, etc.

» The PDI_EXL has been changed to PDI_E, and similarly in the Trace-
Control register, X has been changed to E.

 Bits 22 and 23 in the TraceControl register (K and S), have switched
places.

» The TraceControl2 register has been re-arranged, and instead of the bit
OfC, two new bits TBU and TBI have been added.

» The TMOAS record has been augmented with an extra bit for the POM
field and with a new bit called the SYNC bit.

* Addan Input signal PDI_TBImpl from the TCB to the core tracing logic
to say whether on-chip, off-chip, or both buffers are implemented by the
TCB. Thissignal is optional for all TCB implementations that are com-
patible to PDtrace specifications less than 03.00.

2.05 June 28, 2001

MIPS® PDtrace™ Specification, Revision 6.16

Changesin thisrevision:

» Convert the stand-alone document to a book format and add LOF and
LOT pages.

» Add trademark symbol to PDtrace

* Fix minor typos.

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

151

Revision History

Revision Date

Description

2.06 August 8, 2001 Changesin thisrevision:

Define the behavior if the processor implements a fixed mapping MM U,
rather than the standard TLB-based MMU.
Define the polarity of the TraceControl agp v field.

Precisely define the processor modes which for which tracing may be
enabled. See Section 2.2, "Processor Modes' on page 16 for these defi-
nitions.

Make the equationsfor turning on and off trace more precise and convert
to standard notation.

Add the standard “About This Book” chapter to define syntax and con-
ventions.

Eliminate the R/W fieldsin TraceControl2.

Morefully describe the synchronization counter, including when it must
be restarted.

Make it explicit that ASID and processor mode changes are not traced if
tracing is off when the change occurs. That is, ASID and processor
mode changes are not traced if tracing is currently off.

Add subsetting rules for PDtrace (see Section 2.3, " Subsetting" on page
17)

Add the PDO_ValidModes signa and the ValidModes field in the
TraceControl2 register to specify which tracing modes the processor
supports.

207 March 21, 2002 Changesin thisrevision: (RT)

Change the name of the TraceControl 2 register field ValidModes to
ImpSubset since this field indicated the implemented subset of tracing.
Get ready for commercial release, breakup the single file into individual
chapter files, fix typos, cross-references, etc.

3.00 November 26, 2002 Changesin thisrevision: (RT)

Change the way multi-issue tracing is done (see Section E.1,
"Background on High Performance Processors’ on page 132).

Change the use of PDO_L 0adOrder signal to PDO_DataOrder (see
Section E.4, "Out-of-Order Loads and Storesin the Multi-Pipe Core" on
page 135).

Increase the width of PDO_DataOrder signal to 4 bits.

Add anew signa called PDO_DataPerlng[7:0].

Allow PDO_TEnd to be asserted early to cut off redundant upper bits of
an address or data.

Add a section to clarify how tracing is handled for store conditional
instructions (see Section 3.9, "Tracing Store Conditionals" on page 33).
Make the PDO_TMaode bit 0 value for PDO_TType values of TD, TU1,
and TU2 to be Reserved.

Add PDO_Trig signals on the PDtrace interface that transmit trace trig-
ger information to the TCB. See Section 3.16, "Trace Trigger from
EJTAG Hardware I nstruction/Data Breakpoints" on page 35.

Add MIPS16 in MIPS64 option to ISAM in TMOAS. See Table 3.4 on
page 26.

Rewrite the trace enable equation to fix errorsin the first version. See
Section 3.19, "Trace Enabling/Disabling Condition" on page 37.

Fix grammatical errors and typos.

3.01 May 14, 2003 Removed the trace slot-specific signals PDO_Trigl_n, PDO_TrigD_n,
PDO_TrigOn, and PDI_TrigOff, since these are superfluous. Fix minor

typos.

152

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Revision

Date

Description

4.10

July 4, 2005

Changesin thisrevision:

Merged the PDtrace and most of the TCB document
Modified how PDI_TraceMode works. This necessitated moving the
Mode bits from TraceControl to the TraceControl 2 register.

Simplified the SyncPeriod values to range from 2° to 212 for both types
of trace memory, on-chip or off-chip.

Revamped how the EJTAG hardware breakpoint trigger impacts tracing.
This has an impact on what used to be the TraceBPC control register.
See spec for change details. Added the ability to trace based on a ARM-
trace-DISARM feature, aswell asto allow data qualified tracing.
Added the ability to trace instruction and data cache misses

Added the abhility to trace instructions that are potential function calls or
function returns.

Added support to trace multi-threaded processors that implement the
MIPSMT ASE.

Added aPendL, pending load field to the TMOAS record

Added a TCBControlC TCB register to deal with the added features

4.20

September 14, 2005

Changes include clarification of behavior under MT and removal of the
MC bit in TCBControlB register.

4.30

January 30, 2006

Update the TMOAS record to add the V, DKill, and TCid fieldsfor aMT-
specific processor and remove a bad reference in chapter 7.

4.40

July 17, 2006

Change the drseg addresses of the Tracel BPC2 (0x1F28 to Ox1FF8) and
TraceDBPC2 (0x2F28 to Ox2FF8) registers.

5.00

November 15, 2007

Significant change in the PDtrace architecture, the PDtrace interface is no
longer architecture and the only externally software-visible parts are the
control registersin CPO, in the TCB, and the TCB trace bits using the
defined TCB formats. Adds CMP support.

6.00

June 23, 2008

Add Performance counter support, Filtered data trace mode, and software
access to on-chip trace memory. Expanded PEndL in TMOAS record.

6.10

November 06, 2008

Added 74K specific updates, on-chip trace memory updates for the 1004K

6.11

November 11, 2008

Added ability to start a TF at bit 56 if the Typel5 continuation value is not
otherwise needed

6.12

June 26, 2009

MIPS Technologies-only release for internal review:

LSB of TF3 may be optimized away for non-cycle-accurate mode
TCBTW register is writeable with predictable results

6.13

July 20, 2009

Moved EJTAG trigger registers to their own chapter.

Moved Section on Memory map access of TCBRegistersfrom Chapter 2
to the TCB Register chapter.

Performance Counter Tracing now includes an optional additional cycle
counter.

Added section on how the On-Chip Trace Buffer is used.

For 1004K chapter, put in more description of the necessary control reg-
isters for on-chip trace buffer, e.g., TCBControlB.

More accurate description of how TCBSTP is affected by the TCBCon-
trolB.RM and TCBControlB.TR hits.

TF5 indicator is 4-bits again (previously widened to 5-bitsin 4.00)

6.14

MIPS® PDtrace™ Specification, Revision 6.16

August 25, 2010

Corrected definition of TF8.

Added Chapter for 1074K with description of TraceMaster TAP control-
ler.

Clarifications for when PC Tracing is disabled.

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

153

Revision History

Revision Date Description

6.15 September 07 2010 « Explicitly list which registers are affected by TRPAD hit.
» TRPAD bit in TraceControl 3 is read-only. TCBControl B descriptions
were incorrect.
» Rearrange chaptersto put more basic topics at the beginning of docu-
ment.
 Pulled in tech writers' english grammer/syntax edits.

6.16 November 23, 2010 * Move 1074K Appendix content to CMP Appendix - Trace-Master
access method now shared with 1004K product line.

154 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

	MIPS® PDtrace™ Specification
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	Overview of the MIPS® PDtrace™ Architecture
	2.1 Introduction
	2.2 Processor Modes
	2.3 Subsetting
	2.4 Overview of the Trace Control Block

	PDtrace™ Description
	3.1 Instruction Completion Indicator (InsComp)
	3.2 Trace Type and an Example Code Fragment
	3.3 Trace Mode
	3.4 Start of Tracing
	3.5 Trace Synchronization
	3.6 Trace Overflow and Restart
	3.7 Data Order Signal
	3.8 Tracing During Processor Mode Changes
	3.9 Tracing Store Conditionals
	3.10 Tracing MIPS16e™ Macro Instructions
	3.11 Tracing MIPS16e™ Extend Instructions
	3.12 Tracing Instruction Cache and Data Cache Misses
	3.13 Tracing Potential Function Call/Return Instructions
	3.14 Tracing with MIPS® MT ASE
	3.15 Tracing in WAIT State
	3.16 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints
	3.17 Tracing Performance Counter Values
	3.18 Filtered Data Trace Mode
	3.19 Trace Enabling/Disabling Condition

	PDtrace™ Output Trace Formats
	4.1 Single-Pipe Tracing Formats
	4.1.1 Trace Format 1 (TF1)
	4.1.2 Trace Format 2 (TF2)
	4.1.3 Trace Format 3 (TF3)
	4.1.4 Trace Format 4 (TF4)
	4.1.5 Trace Format 5 (TF5)
	4.1.6 Trace Format 6 (TF6)

	4.2 Format Enhancements for the MT ASE
	4.2.1 Trace Format 7 (TF7)
	4.2.2 TF2--TF4 Augmented for MT ASE

	4.3 Multi-Pipe Tracing Formats
	4.3.1 Multi-Pipe Trace Format 2-4 (TF2, TF3, TF4)
	4.3.2 Trace Format Extensions for Coherent Systems
	4.3.2.1 Expanding Existing Trace Formats

	TCB Trace Word
	5.1 Trace Word
	5.1.1 Cycle Inaccurate Trace
	5.1.1.1 Trace Word collection.

	5.2 End of Trace Indication
	5.3 On-chip Trace Memory Format
	5.4 Probe Trace Word Transmission

	Trace Compression
	6.1 PC Tracing
	6.2 Load or Store Address Tracing
	6.3 Load and Store Data Tracing
	6.4 Using Early TEnd Assertion

	PDtrace™ Control Using CP0 Registers
	7.1 Trace Controls Overview
	7.2 Software Trace Control
	7.2.1 Coprocessor 0 Trace Registers
	7.2.1.1 TraceControl Register (CP0 Register 23, Select 1)
	7.2.1.2 TraceControl2 Register (CP0 Register 23, Select 2)
	7.2.1.3 The TraceControl3 Register (CP0 Register 24, Select 2)
	7.2.1.4 UserTraceData1 and UserTraceData2 Registers (CP0 Register 23 Select 3 and CP0 Register 24 Select 3)

	Trace Control Block (TCB) Registers
	8.1 TCBCONTROLA Register
	8.2 TCBCONTROLB Register
	8.3 TCBCONTROLC Register
	8.4 TCBControlD Register
	8.5 TCBCONTROLE Register
	8.6 TCBDATA Register
	8.7 TCBCONFIG Register (Reg 0)
	8.8 TCBTW Register (Reg 4)
	8.9 TCBRDP Register (Reg 5)
	8.10 TCBWRP Register (Reg 6)
	8.11 TCBSTP Register (Reg 7)
	8.12 TCBTRIGx Register (Reg 16-23)
	8.13 Reset State
	8.14 TCB Registers in Processors Implementing the MT ASE
	8.15 Memory-Mapped Access to PDtrace™ Control and On-Chip Trace RAM
	8.16 On-Chip Trace Buffer Usage

	EJTAG Trace Registers
	9.1 TraceIBPC and TraceDBPC Registers

	TCB Trigger Logic
	10.1 Trigger Logic Overview
	10.1.1 Trigger Source Logic
	10.1.2 Trigger Control Logic
	10.1.3 Trigger Action logic

	10.2 Simultaneous Triggers
	10.2.1 Prioritized Trigger Actions
	10.2.2 OR’ed Trigger Actions

	10.3 TCB Trigger Input/Output Signals

	Implementation-Specific PDtrace™ Enhancements for MIPS32® 74K™ Cores
	A.1 Tracing the 74K to Show Pipeline Details and Execution Inefficiencies
	A.1.1 Updated Trace Format 2 (TF2) for 74K-specific Information
	A.1.2 Trace Format 3 (TF3)

	A.2 Updated TF4 to Handle 74K™ Core-Specific DataOrder and Inefficiency Information
	A.3 Tracing 74K™ Core in Cycle Accurate Mode
	A.4 Compressing Addresses in TF3 and TF4
	A.5 Enhancements for Coherent Cores
	A.5.1 Extending Trace Formats
	A.5.2 T8 - New Trace Format

	PDtrace™ Enhancements for Chip-Multiprocessing Systems
	B.1 Tracing a Coherent Subsystem
	B.1.1 Trace Requirements
	B.1.1.1 Gathering Subsets of Trace Data
	B.1.1.2 Synchronizing CPU and Coherent Interconnect Trace Messages

	B.2 CM Trace Formats
	B.2.1 CM Trace Format 1
	B.2.2 CM Trace Format 2
	B.2.3 CM Trace Format 3 (CM_TF3)
	B.2.4 CM Trace Format 4 (CM_TF4)

	B.3 Consolidating Trace Information
	B.4 On-Chip Trace Memory
	B.4.1 CM PDTrace TCB ControlB Register
	B.4.2 CM PDTrace TCB ControlE Register
	B.4.2.1 TCBCONTROLE Register

	B.5 Software Control of Coherence Manager Trace
	B.6 Trace-Master TAP Instruction Register

	Implementation-Specific PDtrace™ Enhancements for MIPS32® 1004K™ Revision 1.2.0 and Older Cores
	C.1 On-Chip Trace Memory
	C.1.1 CM PDTrace TCB ControlB Register
	C.1.2 CM PDTrace TCB ControlE Register

	C.2 Software Control of Coherence Manager Trace

	Implementation-Specific PDtrace™ Enhancements for the MIPS32® 1074K™ Cores
	Tracing Multi-Issue and High Performance Processors
	E.1 Background on High Performance Processors
	E.2 Basic Tracing Methodology
	E.3 Coordinating Instruction Completion Trace with Address/Data Trace
	E.4 Out-of-Order Loads and Stores in the Multi-Pipe Core
	E.5 Tagging Instructions that Issue Together
	E.6 Miscellaneous

	PDtrace™ Interface Signals (The Interface is now Deprecated as Architecture and this Chapter is here Solely for Historical Reasons)
	F.1 PDtrace™ Core Interface Signal List
	F.1.0.1 PDtrace Coherence Manager Interface Signals

	Revision History

