
Document Number: MD00439
Revision 6.16

November 23, 2010

MIPS Technologies, Inc.
955 East Arques Avenue

Sunnyvale, CA 94085-4521

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

MIPS® PDtrace™ Specification

MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Template: nB1.03, Built with tags: 2B MIPS32

Copyright © 2001-2010 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of this
information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of this information, or any related documentation of any kind, including related technical data or manuals,
is an agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16, MIPS16e, MIPS-Based,
MIPSsim, MIPSpro, MIPS Technologies logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd,
M4K, M14K, 5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc, 1074Kf,
R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CoreLV, EC,
FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED,
MGB, microMIPS, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2, SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered
trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

Table of Contents

Chapter 1: About This Book .. 11
1.1: Typographical Conventions ... 11

1.1.1: Italic Text.. 11
1.1.2: Bold Text .. 11
1.1.3: Courier Text ... 11

1.2: UNPREDICTABLE and UNDEFINED ... 11
1.2.1: UNPREDICTABLE... 12
1.2.2: UNDEFINED .. 12

1.3: Special Symbols in Pseudocode Notation... 12
1.4: For More Information ... 14

Chapter 2: Overview of the MIPS® PDtrace™ Architecture ... 15
2.1: Introduction.. 15
2.2: Processor Modes... 16
2.3: Subsetting.. 17
2.4: Overview of the Trace Control Block ... 17

Chapter 3: PDtrace™ Description ... 20
3.1: Instruction Completion Indicator (InsComp) .. 20
3.2: Trace Type and an Example Code Fragment ... 23
3.3: Trace Mode ... 28
3.4: Start of Tracing .. 28
3.5: Trace Synchronization... 28
3.6: Trace Overflow and Restart... 29
3.7: Data Order Signal.. 29
3.8: Tracing During Processor Mode Changes .. 32
3.9: Tracing Store Conditionals .. 33
3.10: Tracing MIPS16e™ Macro Instructions... 33
3.11: Tracing MIPS16e™ Extend Instructions.. 33
3.12: Tracing Instruction Cache and Data Cache Misses .. 33
3.13: Tracing Potential Function Call/Return Instructions .. 34
3.14: Tracing with MIPS® MT ASE .. 34
3.15: Tracing in WAIT State ... 35
3.16: Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints ... 35
3.17: Tracing Performance Counter Values ... 35
3.18: Filtered Data Trace Mode.. 36
3.19: Trace Enabling/Disabling Condition .. 37

Chapter 4: PDtrace™ Output Trace Formats ... 39
4.1: Single-Pipe Tracing Formats ... 39

4.1.1: Trace Format 1 (TF1)... 39
4.1.2: Trace Format 2 (TF2)... 40
4.1.3: Trace Format 3 (TF3)... 40
4.1.4: Trace Format 4 (TF4)... 41
4.1.5: Trace Format 5 (TF5)... 42
4.1.6: Trace Format 6 (TF6)... 42
MIPS® PDtrace™ Specification, Revision 6.16 3

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

4.2: Format Enhancements for the MT ASE... 44
4.2.1: Trace Format 7 (TF7)... 44
4.2.2: TF2--TF4 Augmented for MT ASE... 45

4.3: Multi-Pipe Tracing Formats ... 45
4.3.1: Multi-Pipe Trace Format 2-4 (TF2, TF3, TF4).. 45
4.3.2: Trace Format Extensions for Coherent Systems ... 46

Chapter 5: TCB Trace Word... 47
5.1: Trace Word.. 47

5.1.1: Cycle Inaccurate Trace .. 50
5.2: End of Trace Indication.. 51
5.3: On-chip Trace Memory Format ... 51
5.4: Probe Trace Word Transmission... 52

Chapter 6: Trace Compression ... 53
6.1: PC Tracing... 53
6.2: Load or Store Address Tracing.. 53
6.3: Load and Store Data Tracing .. 54
6.4: Using Early TEnd Assertion... 54

Chapter 7: PDtrace™ Control Using CP0 Registers.. 56
7.1: Trace Controls Overview ... 56
7.2: Software Trace Control.. 56

7.2.1: Coprocessor 0 Trace Registers ... 57

Chapter 8: Trace Control Block (TCB) Registers... 67
8.1: TCBCONTROLA Register ... 68
8.2: TCBCONTROLB Register ... 71
8.3: TCBCONTROLC Register... 76
8.4: TCBControlD Register... 79
8.5: TCBCONTROLE Register ... 81
8.6: TCBDATA Register ... 82
8.7: TCBCONFIG Register (Reg 0) .. 82
8.8: TCBTW Register (Reg 4) .. 84
8.9: TCBRDP Register (Reg 5) .. 85
8.10: TCBWRP Register (Reg 6).. 85
8.11: TCBSTP Register (Reg 7) ... 86
8.12: TCBTRIGx Register (Reg 16-23) .. 87
8.13: Reset State.. 91
8.14: TCB Registers in Processors Implementing the MT ASE ... 91
8.15: Memory-Mapped Access to PDtrace™ Control and On-Chip Trace RAM .. 91
8.16: On-Chip Trace Buffer Usage ... 93

Chapter 9: EJTAG Trace Registers ... 94
9.1: TraceIBPC and TraceDBPC Registers.. 94

Chapter 10: TCB Trigger Logic.. 101
10.1: Trigger Logic Overview.. 101

10.1.1: Trigger Source Logic.. 102
10.1.2: Trigger Control Logic.. 102
10.1.3: Trigger Action logic .. 103

10.2: Simultaneous Triggers... 103
4 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

10.2.1: Prioritized Trigger Actions .. 103
10.2.2: OR’ed Trigger Actions.. 103

10.3: TCB Trigger Input/Output Signals ... 104

Appendix A: Implementation-Specific PDtrace™ Enhancements for MIPS32® 74K™ Cores..... 106
A.1: Tracing the 74K to Show Pipeline Details and Execution Inefficiencies ... 106

A.1.1: Updated Trace Format 2 (TF2) for 74K-specific Information ... 107
A.1.2: Trace Format 3 (TF3) .. 107

A.2: Updated TF4 to Handle 74K™ Core-Specific DataOrder and Inefficiency Information 108
A.3: Tracing 74K™ Core in Cycle Accurate Mode ... 110
A.4: Compressing Addresses in TF3 and TF4 ... 110
A.5: Enhancements for Coherent Cores... 110

A.5.1: Extending Trace Formats .. 110
A.5.2: T8 - New Trace Format.. 111

Appendix B: PDtrace™ Enhancements for Chip-Multiprocessing Systems................................. 112
B.1: Tracing a Coherent Subsystem... 112

B.1.1: Trace Requirements .. 112
B.2: CM Trace Formats .. 114

B.2.1: CM Trace Format 1.. 114
B.2.2: CM Trace Format 2.. 115
B.2.3: CM Trace Format 3 (CM_TF3) .. 115
B.2.4: CM Trace Format 4 (CM_TF4) .. 116

B.3: Consolidating Trace Information ... 116
B.4: On-Chip Trace Memory... 116

B.4.1: CM PDTrace TCB ControlB Register .. 117
B.4.2: CM PDTrace TCB ControlE Register .. 121

B.5: Software Control of Coherence Manager Trace ... 121
B.6: Trace-Master TAP Instruction Register... 123

Appendix C: Implementation-Specific PDtrace™ Enhancements for MIPS32® 1004K™ Revision
1.2.0 and Older Cores... 124

C.1: On-Chip Trace Memory .. 124
C.1.1: CM PDTrace TCB ControlB Register .. 125
C.1.2: CM PDTrace TCB ControlE Register .. 128

C.2: Software Control of Coherence Manager Trace ... 128

Appendix D: Implementation-Specific PDtrace™ Enhancements for the MIPS32® 1074K™ Cores
130

Appendix E: Tracing Multi-Issue and High Performance Processors ... 132
E.1: Background on High Performance Processors ... 132
E.2: Basic Tracing Methodology... 132
E.3: Coordinating Instruction Completion Trace with Address/Data Trace .. 134
E.4: Out-of-Order Loads and Stores in the Multi-Pipe Core ... 135
E.5: Tagging Instructions that Issue Together.. 135
E.6: Miscellaneous ... 135

Appendix F: PDtrace™ Interface Signals (The Interface is now Deprecated as Architecture and
this Chapter is here Solely for Historical Reasons) .. 137

F.1: PDtrace™ Core Interface Signal List ... 138
MIPS® PDtrace™ Specification, Revision 6.16 5

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Appendix G: Revision History ... 149
6 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 2.1: Illustration of a PC and Data Trace Flow ... 16
Figure 2.2: Config3 Register Format... 16
Figure 2.3: TCB and Optional PIB Overview... 18
Figure 2.4: Illustration of the Core and TCB with External Trace Memory.. 18
Figure 2.5: Illustration of the Core and TCB with Internal Trace Memory ... 19
Figure 3.1: A Sample Pipeline And InsComp Trace Point ... 21
Figure 3.2: Illustration of a Pipeline and Trace Tap Points .. 23
Figure 3.3: A TMOAS Trace Record... 26
Figure 3.4: An Example of Load Data Bypassing an Earlier Store ... 31
Figure 4.1: TF1 (Trace Format 1) ... 39
Figure 4.2: TF2 (Trace Format 2 Single-Pipe) ... 40
Figure 4.3: TF2 with Optional Bits (Trace Format 2 Single-Pipe) .. 40
Figure 4.4: TF3 (Trace Format 3 Single-Pipe) ... 41
Figure 4.5: TF3 with Optional Bits (Trace Format 3 Single-Pipe) .. 41
Figure 4.6: TF3 with Optional Performance Counter and other bits (Trace Format 3 Single-Pipe) 41
Figure 4.7: TF4 (Trace Format 4 Single-Pipe) ... 42
Figure 4.8: TF4 with Optional Bits (Trace Format 4 Single-Pipe) .. 42
Figure 4.9: TF5 (Trace Format 5) ... 42
Figure 4.10: TF6 (Trace Format 6) ... 43
Figure 4.11: TF7 (Trace Format 7) ... 44
Figure 4.12: TF2 with Optional Bits and TCid Bits (Trace Format 2 Single-Pipe) .. 45
Figure 4.13: TF2 (Trace Format 2 Multi-Pipe) .. 45
Figure 4.14: TF3 (Trace Format 3 Multi-Pipe) .. 46
Figure 4.15: TF4 (Trace Format 4 Multi-Pipe) .. 46
Figure 5.1: Trace Word with Zero Source Bits ... 47
Figure 5.2: Trace Word with Two Source Bits .. 47
Figure 5.3: Trace Word with Four Source Bits ... 48
Figure 5.4: Trace Word from Example Trace in Table 5.2 ... 49
Figure 5.5: Trace Word from Example Trace in Table 5.2 (No TF1 trace) ... 50
Figure 5.6: Cycle-by-cycle Trace Word from Example Trace in Table 5.2 ... 50
Figure 5.7: Cycle-by-Cycle TR_DATA (8-bit) of Example Trace in Table 5.2 .. 52
Figure 7.1: TraceControl Register Format .. 57
Figure 7.2: TraceControl2 Register Format .. 60
Figure 7.3: TraceControl3 Register Format .. 63
Figure 7.4: UserTraceData1 and UserTraceData2 Register Format .. 65
Figure 8.1: TCBCONTROLA Register Format ... 68
Figure 8.2: TCBCONTROLB Register Format ... 72
Figure 8.3: TCBCONTROLC Register Format ... 77
Figure 8.4: TCBCONTROLD Register Format ... 79
Figure 8.5: PDtrace Control Configuration Register Format ... 80
Figure 8.6: TCBCONTROLE Register Format ... 81
Figure 8.7: TCBDATA Register Format .. 82
Figure 8.8: TCBCONFIG Register Format .. 83
Figure 8.9: TCBTW Register Format .. 85
Figure 8.10: TCBRDP Register Format .. 85
Figure 8.11: TCBWRP Register Format .. 86
Figure 8.12: TCBSTP Register Format ... 86
MIPS® PDtrace™ Specification, Revision 6.16 7

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Figure 8.13: TCBTRIGx Register Format .. 87
Figure 9.1: TraceIBPC Register Format.. 95
Figure 9.2: TraceDBPC Register Format .. 96
Figure 9.3: TraceIBPC2 Register Format.. 97
Figure 9.4: TraceDBPC2 Register Format .. 98
Figure 10.1: TCB Trigger Processing Overview ... 102
Figure A.1: Expanded TF2 (Trace Format 2 Single-Pipe) .. 107
Figure A.2: Expanded TF2 with Optional Bits (Trace Format 2 Single-Pipe) ... 107
Figure A.3: TF3 (Trace Format 3 Single-Pipe) ... 108
Figure A.4: TF3 with Optional Bits (Trace Format 3 Single-Pipe) .. 108
Figure A.5: Expanded TF3 with Optional Performance Counter and other bits (Trace Format 3 Single-Pipe) 108
Figure A.6: TF4 (Trace Format 4 Single-Pipe) ... 109
Figure A.7: Expanded TF4 (Trace Format 4 Single-Pipe) .. 109
Figure A.8: TF4 with Optional Bits (Trace Format 4 Single-Pipe) .. 109
Figure A.9: Expanded TF4 with Optional Bits (Trace Format 4 Single-Pipe) ... 110
Figure A.10: TF8 (Trace Format 8) .. 111
Figure B-1: COSId - Creation, Correlation, and Updates.. 114
Figure B-2: CM Trace Format 1 (CM_TF1) - Trace Level 0 ... 114
Figure B-3: CM Trace Format 1 (CM_TF1) - Trace Level 1.. 115
Figure B-4: CM Trace Format 2 (CM_TF2) - Trace Level 0.. 115
Figure B-5: CM Trace Format 2 (CM_TF2) - Trace Level 1.. 115
Figure B-6: CM Trace Format 3 (CM_TF3) with Trace Level 0... 115
Figure B-7: CM Trace Format 3 (CM_TF3) with Trace Level 1... 115
Figure B-8: CM TF_4 - Overflow Format... 116
Figure B.9: TCBControlD Register Format .. 121
Figure C-1: CMTraceControl Register Format ... 128
Figure E.1: An Example Showing the Coordination of Instructions and Their Data ... 134
8 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1.1: Symbols Used in Instruction Operation Statements... 12
Table 2.1: Config3 Register Field Descriptions... 16
Table 3.1: Instruction Type Completion Indicator (InsComp).. 20
Table 3.2: Trace Data Type Indicator (TType) .. 23
Table 3.3: Example Code Fragment With Some PDtrace™ Trace Values ... 24
Table 3.4: A TMOAS Trace Record Field Descriptions... 26
Table 3.5: Trace Mode Bits ... 28
Table 3.6: Load Order Example.. 29
Table 3.7: Data Order with Four Bits... 30
Table 3.8: Data (Load/Store) Order Example ... 31
Table 3.9: Possible Instructions for Function Call/Returns ... 34
Table 4.1: TCBcode and TCBinfo fields of Trace Format 6 (TF6) .. 43
Table 5.1: Trace Word Type Field Descriptions.. 48
Table 5.2: Example Trace Sequence.. 49
Table 7.1: A List of Coprocessor 0 Trace Registers ... 57
Table 7.2: TraceControl Register Field Descriptions .. 58
Table 7.3: TraceControl2 Register Field Descriptions .. 61
Table 7.4: TraceControl3 Register Field Descriptions .. 64
Table 7.5: UserTraceData1 Register Field Descriptions... 65
Table 7.6: UserTraceData2 Register Field Descriptions... 65
Table 8.1: Trace Control Block Registers ... 67
Table 8.2: Registers Selected by TCBCONTROLBREG (accessed through TCBDATA) .. 67
Table 8.3: TCBCONTROLA Register Field Descriptions .. 69
Table 8.4: TCBCONTROLB Register Field Descriptions .. 72
Table 8.5: Clock Ratio encoding of the CR field ... 76
Table 8.6: TCBCONTROLC Register Field Descriptions.. 77
Table 8.7: TCBCONTROLD Register Field Descriptions.. 79
Table 8.8: PDtrace Control Configuration Register... 80
Table 8.9: TCBCONTROLE Register Field Descriptions .. 81
Table 8.10: TCBDATA Register Field Descriptions .. 82
Table 8.11: TCBCONFIG Register Field Descriptions .. 83
Table 8.12: TCBTW Register Field Descriptions .. 85
Table 8.13: TCBRDP Register Field Descriptions .. 85
Table 8.14: TCBWRP Register Field Descriptions.. 86
Table 8.15: TCBSTP Register Field Descriptions ... 86
Table 8.16: TCBTRIGx Register Field Descriptions.. 87
Table 8.17: Mapping TCB Registers in drseg .. 91
Table 9.1: Mapping Trace Breakpoint Registers in CP0 Space or in drseg... 94
Table 9.2: TraceIBPC Register Field Descriptions.. 95
Table 9.3: TraceDBPC Register Field Descriptions .. 96
Table 9.4: TraceIBPC2 Register Field Descriptions.. 97
Table 9.5: TraceDBPC2 Register Field Descriptions .. 98
Table 9.6: BreakPoint Control Modes: IBPC and DBPC... 98
Table 10.1: TCB Trigger input and output... 104
Table A.1: Expanded Instruction Type Completion Indicator (InsComp) .. 106
Table B.1: Coherent Trace Subset Options .. 113
Table B.2: PDTrace TCBCONTROLB Register (GCR_DB_TCBControlB Offset 0x0008) 117
MIPS® PDtrace™ Specification, Revision 6.16 9

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Table B.3: TCBCONTROLE Register (GCR_DB_PD_TCBCONTROLE Offset 0x0020) 121
Table B.4: TraceControlD Register Field Descriptions ... 121
Table B.5: TraceMaster TAP Instruction Overview... 123
Table C.1: CM PDTrace Master Select Register .. 124
Table C.2: PDTrace TCBCONTROLB Register (GCR_DB_TCBControlB Offset 0x0008)................................... 125
Table C.3: TCBCONTROLE Register (GCR_DB_PD_TCBCONTROLE Offset 0x0020) 128
Table C.4: CMTraceControl Register Field Descriptions .. 128
Table E.1: Example Code Fragment Showing the Graduation Cycle and Trace Bus Number 133
Table F.1: PDtrace™ Core Interface Signals.. 138
Table F.2: PDtrace Coherence Manager Interface Signals .. 147
Table F.3: MCmd - OCP Commands.. 147
Table F.4: Cmd_AddrTarg .. 148
Table F.5: Global Intervention State ... 148
Table F.6: PIQ Stall Causes ... 148
10 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Chapter 1
About This Book

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

1.1.1 Italic Text

• is used for emphasis

• is used for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and various floating point instruction formats, such as S, D,
and PS

• is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

• represents a term that is being defined

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in
a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.
MIPS® PDtrace™ Specification, Revision 6.16 11

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 About This Book
1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which
there is no exit other than powering down the processor). The assertion of any of the reset signals must restore the
processor to an operational state

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the binary
value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix is
omitted, the default base is 10.

xy..z Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less than z,
this expression is an empty (zero length) bit string.
12 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation
+, − 2’s complement or floating point arithmetic: addition, subtraction

∗, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero.

FPR[x] Floating Point operand register x

FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].

FPR[x] Floating Point (Coprocessor unit 1), general register x

CPR[z,x,s] Coprocessor unit z, general register x, select s

CCR[z,x] Coprocessor unit z, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16 GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (0 →Little-Endian, 1 → Big-Endian). Specifies the endianness of the
memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endianness of
Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 → Little-Endian, 1 → Big-Endian). In User mode, this endian-
ness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be computed as
(BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only, and is
implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as (SRRE and

User mode).

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is set
when a linked load occurs; it is tested and cleared by the conditional store. It is cleared, during other CPU opera-
tion, when a store to the location would no longer be atomic. In particular, it is cleared by exception return
instructions.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
MIPS® PDtrace™ Specification, Revision 6.16 13

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 About This Book
1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS
URL: http://www.mips.com

For comments or questions on the MIPS32® Architecture or this document, send Email to support@mips.com.

I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction time
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current instruc-
tion appear to occur during the instruction time of the current instruction. No label is equivalent to a time label of
I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the instruction time
of another instruction. When this happens, the instruction operation is written in sections labeled with the
instruction time, relative to the current instruction I, in which the effect of that pseudocode appears to occur. For
example, an instruction may have a result that is not available until after the next instruction. Such an instruction
has the portion of the instruction operation description that writes the result register in a section labeled I+1.
The effect of pseudocode statements for the current instruction labelled I+1 appears to occur “at the same time”
as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode sequence,
the effects of the statements take place in order. However, between sequences of statements for different instruc-
tions that occur “at the same time,” there is no defined order. Programs must not depend on a particular order of
evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, this is the address of the instruction
word. The address of the instruction that occurs during the next instruction time is determined by assigning a
value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16 instruction) or
4 before the next instruction time. A taken branch assigns the target address to the PC during the instruction time
of the instruction in the branch delay slot.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 physical

address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

FP32RegistersMode Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 32 32-bit
FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32 64-bit FPRs in
which 64-bit data types are stored in any FPR.

In MIPS32 implementations, FP32RegistersMode is always a 0. MIPS64 implementations have a compatibility
mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a case
FP32RegisterMode is computed from the FR bit in the Status register. If this bit is a 0, the processor operates as
if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.
The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch or
jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is false if
a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which is not exe-
cuted in the delay slot of a branch or jump.

SignalExcep-
tion(exception, argu-

ment)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function - the excep-
tion is signaled at the point of the call.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
14 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

http://www.mips.com/
mailto:architecture@mips.com

Chapter 2
Overview of the MIPS® PDtrace™ Architecture

This document contains the MIPS® PDtrace™ specification, which defines the controls and formats for tracing pro-
gram execution on a MIPS® processor core or on a System on a Chip (SoC) that includes multiple MIPS processor
cores. The specification also defines tracing of additional SoC system elements, including system buses and other IP
(Intellectual Property) customer-defined blocks.

This document serves three functions. It provides a specification of the trace interface for the core designer, it pro-
vides sufficient detail for an architecture licensee to build a trace control block that works with existing probes from
third parties, and it provides sufficient details to design and code a post-processing software module for trace recon-
struction.

2.1 Introduction

The PDtrace specification provides trace control and formats for both the processor-specific information captured
from each pipeline within the processor and for the non-processor specific blocks, such as the CM (Coherence Man-
ager) block in the CMP system, including the details of how the trace from multiple on-chip blocks are combined to
provide a single trace stream on the chip interface pins. Note that processor-specific trace information and formats are
included in the Appendices of this document, because these can be modified per implementation and do not necessar-
ily constitute architecture.

The type of information that is captured in the trace stream and put into memory is controlled by CP0 control regis-
ters defined in the MIPS32® architecture and by TCB (Trace Control Block) control registers defined in the PDtrace
architecture. CP0 control registers can be programmed by user applications so long as the needed hardware compo-
nents and trace memory are present. The TCB control registers can be programmed by an external probe using the
EJTAG TAP controller hardware or via software through the debug memory segment (this feature is only available in
cores that implement PDtrace revision 6.00 and higher). The TCB registers allow users to control tracing at the exe-
cution time of applications, using an external agent like the debugger that communicates with these control registers
using a debugger probe.

In most implementations, the trace information from the pipeline-tracing logic in the core is captured by a block
called the Trace Control Block (TCB). This block contains registers used to control the trace information captured
from the core, and is also used to format the trace information into the architecturally-specified trace formats, ready-
ing the information for writing into trace memory. The trace memory may be either on-chip or off-chip, based on user
requirements. The trace information written to memory is compressed and assumes that post-processing software has
access to the static program image to reconstruct the dynamic program flow. Compression reduces the number of sig-
nals (hence pins) required to gather this information and also reduces the trace size.

Figure 2.1 illustrates one possible configuration for trace capture and post-analysis using software. The figure shows
a core with trace generation logic and a TAP controller. This core is connected to a trace control block (TCB) via the
TAP controller (the TCB implements and uses TAP registers). The trace memory associated with the trace control
block can be located on-chip or off-chip. An on-chip trace buffer will be smaller and will be writable by the TCB at
higher speeds, while an off-chip trace memory can be much larger and is written via the potentially slower pin inter-
face out of the core. Probe hardware and software connects to the TCB and the TAP controller via the chip’s pin
interface and allows debugger software to start, stop, and examine program execution traces.
MIPS® PDtrace™ Specification, Revision 6.16 15

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Overview of the MIPS® PDtrace™ Architecture
Figure 2.1 Illustration of a PC and Data Trace Flow

Implementation of PDtrace is optional for a given MIPS-compatible processor. Whether a core or processor imple-
ments PDtrace is indicated by a bit in the Coprocessor 0 Config3 register as shown in Figure 2.2 and Table 2.1.

Note that if a core or processor does not implement EJTAG, PDtrace tracing logic can still be implemented.

2.2 Processor Modes

The PDtrace specification allows tracing to be enabled or disabled based on various processor modes. This section
precisely describes these modes, and the terminology is then used later in the document.

DebugMode ← (DebugDM = 1)

Figure 2.2 Config3 Register Format

31 1 0

TL

Table 2.1 Config3 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

31:1 As per the MIPS32 and MIPS64 Architecture specifica-
tions

TL 0 This bit is used to indicate the presence of tracing logic
in the processor.
0 : No tracing logic implemented
1 : Tracing logic implemented

R Preset Required

Core

Trace
Gener-
ation
Logic

Trace
Control
Block

Trace
Re-generation
Software

On-core Software

Trace Memory

TAP
Controller

Debugger

Probe

Off-chip

 Format

On-chip

Memory
Trace

Off-chip

Memory
Trace

On-chip

Probe

Block
I/F

Mictor Conn.
16 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

2.3 Subsetting
ExceptionMode ← (not DebugMode) and ((StatusEXL = 1) or (StatusERL = 1))
KernelMode ← (not (DebugMode or ExceptionMode)) and (StatusKSU = 2#00)
SupervisorMode ← (not (DebugMode or ExceptionMode)) and (StatusKSU = 2#01)
UserMode ← (not (DebugMode or ExceptionMode)) and (StatusKSU = 2#10)

2.3 Subsetting

The PDtrace specification allows four levels of subsetting. Within each level, all features required to support the level
must be implemented. The allowable subsets are:

1. No PDtrace implemented

2. PDtrace with PC tracing only

3. PDtrace with PC and load and store address tracing only

4. PDtrace with PC, load and store address, and load and store data tracing

The specific subset implemented by a processor or core can be determined by reading the TL bit (0) of the Config3
register (see Table 2.1) and the ImpSubset bits (6:5) in the TraceControl2 register (see Table 7.3 on page 61).

In addition, Trace Trigger from EJTAG Hardware breakpoints (Section 3.16 “Trace Trigger from EJTAG Hardware
Instruction/Data Breakpoints”) is optional. This feature depends on the EJTAG optional feature for hardware instruc-
tion and data breakpoints. The exact nature of this subsetting is described in later chapters.

2.4 Overview of the Trace Control Block

The tracing logic within the processor core (shown in Figure 2.1) outputs all trace information to the on-core trace
control block (TCB) unit. The TCB is responsible for collecting the trace data and storing this trace data in an on-chip
trace memory or to an off-chip trace memory using the Probe Interface Block (PIB). The TCB’s control registers
accept user requests for program tracing and determine what is traced and what is output.

The description of the TCB in this document includes:

• Details on the TCB’s internal architecture, i.e., registers, and how these registers are used to control tracing

• Trace formats used by the TCB to write trace information to memory

• Interface between the TCB and the TAP controller

This document does not include:

• TCtrace Interface that connects the TCB to the Probe Interface Block, which is off-core but on-chip

• The PIB

• External Probe interface including its electrical characteristics

This information is available in core-specific documents.

Figure 2.3 shows the TCB, the PIB, and the trace data path from the TCB to the Probe IF. It is optional whether the
TCB implements on-chip trace memory and/or the TCtrace IF with a PIB and off-chip trace memory.
MIPS® PDtrace™ Specification, Revision 6.16 17

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Overview of the MIPS® PDtrace™ Architecture
Figure 2.3 TCB and Optional PIB Overview

Figure 2.4 Illustration of the Core and TCB with External Trace Memory

Figure 2.4 shows the full system configuration when the TCB is streaming data to off-chip trace memory through the
PIB. The number of pins needed for trace data on the Probe IF is configurable to 4, 8, or 16. Note that the TCtraceIF
is at the core interface boundary. The PIB is outside the core. Although cores from MIPS Technologies may include a
sample PIB implementation, its design can be modified to suit the SOC vendor and the probe vendor. For example,
whether or not a DDR memory interface is used on the ProbeIF is a decision made by the SOC vendor.

Figure 2.5 shows the configuration in which the TCB is streaming data to an on-chip trace memory. The size of the
on-chip trace memory is configurable. After trace capture has stopped, the trace data in the on-chip memory is
accessed through the EJTAG probe by the Trace Regeneration Software.

core trace data/control PIB
(Probe

Interface
Block)

TC_ChipTrigOut

TR_TRIGIN

TR_TRIGOUT

TR_DATA

TR_CLK

Core Clock

TCtrace IF

Probe IF

TCB
(Trace Control Block)

TR_PROBE_N

On-chip
Trace MemoryTCB Tap

Interface

TCB Tap IF TR_CLK

TC_ChipTrigIn

trace data/control

Core

Trace
genera-
tion logic

TAP Con-
troller

Debugger

TraceRegeneration
Software

TraceControl
TraceMask

Trace Memory

TCB TAP
interface

TCB

EJTAG
Probe

Probe IF

9

5

2

clk
PIB

TCtrace IF

On-Chip

Software/
Debug host

Off-Chip
18 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

2.4 Overview of the Trace Control Block
Figure 2.5 Illustration of the Core and TCB with Internal Trace Memory

The TCB includes two primary interfaces:

• The TCB TAP interface, which connects the EJTAG TAP controller resident within the processor core to the
TAP functionality present within the TCB.

• An optional TCtrace interface to the PIB. This interface is described along with the Probe IF in the core-specific
document. If the TCB is configured with only on-chip trace memory, the TCtrace IF and the PIB are not needed.

trace data/control

Core

Trace
genera-
tion logic

TAP Con-
troller

Debugger

TraceRegeneration
Software

TraceControl
TraceMask
TraceData

TCB TAP
interface

EJTAG
Probe

9

5

2

On-Chip

Software/
Debug host

Off-Chip

TCB

Trace
Memory
MIPS® PDtrace™ Specification, Revision 6.16 19

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Chapter 3
PDtrace™ Description

A program executes sequentially through instructions within a basic block, then jumps (or branches) to the head (first
instruction) of the next basic block. To reconstruct the dynamic execution path of the program, it is sufficient to pro-
vide the post-analyzer with the PC address of the head of each basic block. Even this is not always necessary, because
it may be possible in some instances to statically predict the value of the branch target, provided there is a separate
indication for the taken branch. Thus, PC addresses need be traced only when it is not possible to statically predict the
PC of the branch target. For the MIPS32 and MIPS64 instruction sets, the statically unpredictable instructions are JR
and JALR (for branch target address), and BEQ, BNE, BGEZ, etc. (for branch on condition). Other statically unpre-
dictable PC changes occur with taken exceptions and return from exceptions (ERET and DERET). To enable the
post-analyzer to re-synchronize itself with program execution, the PC value is also output at predictable intervals and
synchronization periods.

The next sections of this chapter describe the various bits used in the output trace formats generated by the TCB. This
information indicates how tracing information is output and therefore is needed by the trace reconstruction software
to rebuild the program execution.

3.1 Instruction Completion Indicator (InsComp)

Three bits are used as an indicator of completed instructions and their type in the processor’s pipeline. Once tracing is

initiated, a valid InsComp value is required in every cycle1, except when the TCB has requested that the trace be
stalled.

1 Implementations are allowed to disable PC tracing. If PC tracing is disabled, it is allowed that InsComp values are not generated
for instruction completion.

Table 3.1 Instruction Type Completion Indicator (InsComp)

Value Mnemonic Description

000 NI No instruction completed this cycle. A "No Instruction"
can happen due to a pipeline stall or when the instruction
was killed (due to an exception).

001 I Instruction completed this cycle

010 IL Instruction completed this cycle was a load

011 IS Instruction completed this cycle was a store

100 IPC Instruction completed this cycle was a PC sync. The IPC
value is used for the periodic output of the full PC value
for synchronization. The tracing hardware should ensure
that this is not done on an unpredictable branch, load, or
store instruction.
MIPS® PDtrace™ Specification, Revision 6.16 20

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

3.1 Instruction Completion Indicator (InsComp)
NI (No Instruction complete) is used when the internal pipe is stalled for some reason, and no instruction completes
in that cycle. It is also used when tracing has been turned off, but the internal FIFO is still emptying trace data out to
the TCB that is data-related and not instruction-related, for example, data address or data values.

Instructions within a basic block are indicated with an I, IL, or IS value. The I is used to indicate a simple instruction
that is neither a load nor a store. The IL is used to indicate a load instruction and the IS is used to indicate a store
instruction.

Unpredictable (and predictable) changes in the PC value are indicated as a branch-type instruction, i.e., IB, ILB, or
ISB. Note that the first instruction in the basic block is always indicated as a branch instruction. When this first
instruction is a load or a store, then InsComp[2:0] takes values ILB or ISB respectively, to indicate the combined con-
dition of the branch and load or store.

Implementation Notes: Figure 3.1 shows an example of when the InsComp value might be output by the processor
tracing logic, with respect to the processor pipeline implementation. This example pipeline has six stages. They are:
“fetch”, “decode”, “execute”, “memory”, “align”, and “write back”. In this example, the InsComp value is finalized
after the memory stage. That is, the instruction goes through the pipeline and is captured after the last stage when the
instruction must complete and can no longer be killed. In the example shown, this is after stage 4. This will differ, of
course, with each pipeline implementation.

Figure 3.1 A Sample Pipeline And InsComp Trace Point

Some instructions might have to provide more information for a complete picture of program execution. For instance,
a branch indicator might have to transmit the PC value if the unpredictability lies in the branch target address. If the
unpredictability was in the branch condition (i.e., determining if the branch is taken or not), then the branch target PC
value need not be transmitted; it suffices to indicate that it was a “taken” branch using the appropriate InsComp value.

The list below summarizes the three possible branching options, and the corresponding InsComp and PC tracing
action:

• When the branch is unconditional and the branch target is predictable, IB, ILB, or ISB is used for the InsComp
value, and the PC is not traced out.

101 IB Instruction branched this cycle. The three encodings (101,
110, 111) for branched instructions indicate a discontinu-
ity in the PC value for the associated instruction. Note that
it is only when the new PC cannot be predicted from the
static program flow that it is traced.

110 ILB Instruction branched this cycle was a load

111 ISB Instruction branched this cycle was a store

Table 3.1 Instruction Type Completion Indicator (InsComp) (Continued)

Value Mnemonic Description

fetch decode execute memory align writeback

1 2 3 4 5 6

InsComp
MIPS® PDtrace™ Specification, Revision 6.16 21

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Description
• When the branch is conditional, and the branch target is predictable, IB, ILB, or ISB is used only when the
branch is taken. The PC is not traced out.

• When the branch is conditional or unconditional, and the branch target is unpredictable, IB, ILB, or ISB is used
and the PC is traced (using TPC for TType, to be discussed in section Section 3.2 “Trace Type and an Example
Code Fragment”).

There are four possible circumstances that cause the value of the PC to be traced:

1. After a JR or JALR instruction

2. After a control transfer to an exception handler

3. After a return from exception (ERET or DERET instruction)

4. The PC is traced out periodically for software synchronization of trace with the static program image

When the InsComp value indicates a store in the completing instruction with an IS, then the store address and data
might have to be transmitted if the user requires them to be traced. With an ISB, the PC value might also need to be
traced out. In this situation, the PC value is sent first, followed by the store address, and finally the store data if it is
immediately available.

An ILB is similar, and might require the tracing of the PC value as well as the load address and the load data. The PC
value is sent first. If the load hits in the cache, then the PC value is sent first, followed by the load address, and finally
the load data if it is immediately available.

The load or store data may not be immediately available. This can happen when the load misses in the cache and must
be fetched from memory, or when the store data is pending the completion of a previous instruction with a long
latency that is computing the data value. In this situation, the load or store instruction is still indicated with the
appropriate InsComp value of either IL, ILB, IS, or ISB. If the PC value needs to be traced, then it is traced first, fol-
lowed by the load or store address, but the tracing of the corresponding data is deferred until it is available. While the
processor is waiting for this data, other instructions may complete in the pipeline and are indicated by the appropriate
InsComp values. When the data is available, it is traced out as soon as possible by the processor using the appropriate
DataOrder value to indicate that the data is out-of-order (see 3.7 “Data Order Signal” on page 29).

Implementation Notes: Figure 3.2 shows, for the hypothetical pipeline, the points at which the different pieces of
information could be tapped out to be traced. The PC value and the store address and load address are tapped out after
stage 4. If the load hits in the primary cache, or the store data is available, then this information may be completely
traced out at that point. If not, only the data’s address is sent, and the data value is traced out when it becomes avail-
able.
22 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

3.2 Trace Type and an Example Code Fragment
Figure 3.2 Illustration of a Pipeline and Trace Tap Points

3.2 Trace Type and an Example Code Fragment

The TType[2:0] bits are used to indicate the type of information being traced.

Table 3.2 Trace Data Type Indicator (TType)

Value Mnemonic Description

000 NT No data traced

001 TPC Tracing the PC

010 TLA Tracing the load address

011 TSA Tracing the store address

100 TD Tracing the load/store data value

101 TMOAS Tracing the processor mode, the 8-bit ASID, and the
SYNC bit. This is triggered by either a change in the pro-
cessor mode, by a software write to the EntryHi register, or
a trace synchronization operation. If the processor does
not implement the standard TLB-based MMU, it is
UNPREDICTABLE whether a write to the EntryHi regis-
ter triggers a TMOAS operation. (See Figure 3.3).

110 TU1 Tracing the user-defined trace record - type 1

111 TU2 Tracing the user-defined trace record - type 2

fetch decode execute memory align writeback

1 2 3 4 5 6

FIFO

data order
determination

compressed

compressed load/store data

PC, store, and

PC

Address / Data Values

load data
cached load datastore and

load address
from memory

load address

store data
from previous
instruction

available store data
MIPS® PDtrace™ Specification, Revision 6.16 23

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Description
An InsComp[2:0] value of IB, ILB, or ISB is traced when a branch instruction is taken, and the PC is traced in the
same cycle or later using a TType[2:0] value of TPC.

Implementation Notes: We will use Table 3.3 to illustrate these operation sequences. This table shows an example
of a MIPS assembly fragment and the values of InsComp, TType, and TEnd that will be traced upon completion of
each instruction of the code fragment in the pipeline. Assume that tracing was begun earlier, and thus the start of trac-
ing is not shown in this code fragment. The example also assumes a 32-bit processor and a 16-bit address/data trace
width. This may imply that more than one type of a certain trace format is required to trace all the address or data
value bits if more than 16 bits are being traced. Hence, the TEnd bit is used to indicate the last format of a certain type
needed to convey the same type of data. The trace formats, discussed later, allow two widths of size 16 and 32 bits to
be traced with a certain format type.

As described earlier, a taken branch is always indicated with an IB value. However, when the branch target address
can be deduced from the static program image, there is no accompanying TPC trace, that is, the value of the current
PC is not traced. An example of this can be seen in cycle 7, where the tracing of IB indicates the taken branch from
the JAL instruction in cycle 5.

An example of an IB value traced for the InsComp value and accompanied by a corresponding TPC (to trace the stat-
ically unpredictable PC value) can be seen in cycle 10. This is triggered by the JR instruction in cycle 8. Cycle 10 is
the branch target and also the first instruction of the new basic block. (Cycle 9 is the execution of the instruction in the
branch delay slot). Note that the TPC trace could be directly started in cycle 10 since the implemented FIFO was
empty.

The TEnd bit is used to indicate the end of any trace format previously started. If the PC change value can be traced in
a single cycle, then the TEnd bit may be traced in the same cycle as the TType value TPC. An example of this is seen
in cycle 10. Otherwise, it may follow the required number of cycles later, for example in cycle 4, where it used 2
cycles to trace the store address value.

Note that at the processor’s discretion, the TEnd bit may be used to cut off redundant sign bits from an address or data
transmission; that is, the tracing is curtailed, and not all the upper bits of an address or data need to be stored in trace
memory. The reconstruction software must recognize this situation and sign-extend the address or data appropriately
before use.

When a load instruction is executed, the InsComp value that indicates this is IL and ILB, and a store is indicated using
IS and ISB. The user might have requested that load and store addresses (and data) be traced. In this situation, the
load address and store address are traced using TLA or TSA respectively for the TType value.

Table 3.3 Example Code Fragment With Some PDtrace™ Trace Values

Cycle
No. PC Instruction InsComp[2:0] TType[2:0] TEnd

1 0x00400188 SW $6, 0xe170($1) IS TSA 1

2 0x0040018c SW $4, 0xb134($28) IS TSA 1

3 0x00400190 SW $5, 0xb130($28) IS TSA 1

4 0x00400194 SW $0, 0x1c($29) IS TSA 0

5 0x00400198 JAL 0x418d9c I TSA 1

6 0x0040019c OR $30, $0, $0 I NT x

7 0x00418d9c NOP IB NT x

8 0x00418da0 JR $31 I NT x

9 0x00418da4 NOP I NT x
24 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

3.2 Trace Type and an Example Code Fragment
An example of store address tracing is seen in Table 3.3 at cycles 1, 2, 3, and 4. The store instruction in cycles 1, 2,
and 3 uses only 1 cycle to trace the store address, while the store address associated with the store in cycle 4 uses 2
cycles (perhaps it was not possible to compress the store address to less than 16 bits in this case). Note that in this
case only the store address, not the data, is sent as per the user request. If store data is also being traced, then the store
data is sent immediately following the store address using a TD value for the TType bits. If the store data is not imme-
diately available, it is sent later with the appropriate DataOrder value.

Assume that sometime between cycle 4 and cycle 14, the user changes the requested trace output and wants load and
store data to also be traced. In this case, the load instruction LW in cycle 14 will transmit not only the address, but
also the associated data. Note that sometimes the load data is not immediately available, since the load might miss in
the first-level cache. In this situation, the load address is traced immediately, and the load data is traced when it
becomes available. The association of the load data with the corresponding load address is done using the DataOrder
signal (not shown in the table).

The ILB in cycle 14 needs two cycles to trace the PC value, and then traces the load address using TLA in cycle 16.
The load data is then traced using TD during cycles 17 and 18. In this example, the load must have hit in the cache;
otherwise, the associated load could have been separated from the instruction by an arbitrary number of cycles
(required to satisfy the load miss from secondary memory).

An example of the periodic PC trace IPC for synchronization is shown in cycle 18. The required tracing for a syn-
chronization includes sending a record of the process ASID and processor mode. This uses the TType[2:0] value of
TMOAS, as seen in cycle 19 (traced as soon as the previous TD completes). This is followed by a tracing of the full
PC value, which takes 2 cycles (cycles 20 and 21). Because load/store address tracing is turned on (as described in
3.5 “Trace Synchronization” on page 28), the synchronization operation is not completed until a load and store full
address trace is also sent (not shown in Table 3.3). A load or store address trace is always tied to a load or store
instruction respectively. The full load or store address is thus not sent until the next occurrence of a load or store
instruction after the IPC trace.

The TMOAS trace is used to track any modifications to the ASID or the processor mode. This tracking is enabled
whenever tracing is on before the mode change takes place. If tracing is off when an ASID or mode change occurs, no
mode transaction occurs. Figure 3.3 illustrates the bits that are traced in the right-most position for a TMOAS record.

10 0x004001a0 JAL 0x411c40 IB TPC 1

11 0x004001a4 NOP I NT x

12 0x00411c40 JR $31 IB NT x

13 0x00411c44 NOP I NT x

14 0x00414adc LW $4, 0xb134($28) ILB TPC 0

15 0x00414ae0 BEQ $14, $0, 0x414af8 I TPC 1

16 0x00414ae4 ADDIU $29, $29, 0xffe0 I TLA 1

17 0x00414af8 OR $7, $0, $0 IB TD 0

18 0x00414afc NOP IPC TD 1

19 0x00414b00 ADDU $6, $6, $2 I TMOAS 1

20 0x00414b04 OR $7, $2, $0 I TPC 0

21 0x00414b08 SLTU $1, $2, $1 I TPC 1

Table 3.3 Example Code Fragment With Some PDtrace™ Trace Values (Continued)

Cycle
No. PC Instruction InsComp[2:0] TType[2:0] TEnd
MIPS® PDtrace™ Specification, Revision 6.16 25

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Description
Like other TType records, a TMOAS record can be split into two transactions in the trace formats, with the upper 16
bits sent in the second transaction. The first and the second (final) transaction can be defined using the TEND bit,
which is set to 0 in the first and to 1 in the second (refer to the section on TCB trace formats for a description of
TEND). Note that only the lower 16 bits of the TMOAS record are needed if the processor does not support multiple
outstanding load instructions, and thus an optimization on such processors would only send one TMOAS trace record
with TEND set to 1.

Figure 3.3 A TMOAS Trace Record
31 30 23 22 21 20 19 16 15 14 13 12 11 10 8 7 0

0 TCid
DK
ill

V
PIK
ill

PendL
SY
NC

EPL 0 ISAM POM ASID

Table 3.4 A TMOAS Trace Record Field Descriptions

Fields

DescriptionName Bits

TCid 30..23 TC ID
Only required if the processor implements MT; otherwise reserved. ID of the
TC that corresponds to the DKill signal assertion (see below).

DKill 22 Data Instruction Kill
Only required if the processor implements MT; otherwise reserved. When a
ITC data instruction is killed for a given TC, this is indicated by asserting a
TMOAS record with this bit set and a TCid value. When this bit is not set to
one, this indicates that no Data kill information is valid in this TMOAS
record.
Implementation Notes: Since a TC whose ITC data instructions were killed
may not execute an instruction for awhile, and data completion for other TCs
may occur in the meantime, this TMOAS indication record is sent on an
instruction that belongs to a different TC right after the late exception that
killed the ITC instruction.

V 21 Valid
Only required if the processor implements MT; otherwise ignored. This bit
determines whether or not only the DKill bits are valid in this TMOAS
record or the entire TMOAS record is valid. That is, if V is 0, then all defined
TMOAS bits are valid, and if V is 1, then only bits 30..22 are valid.

PIKill 20 Processor Instruction Kill
Only required if the processor implements MT; otherwise ignored. This bit
indicates that the instruction just previously traced was actually killed after it
was traced. This scenario is possible in some situations where, for example,
an exception is taken after the ER stage of the ALU pipe. There are at least
two cases to consider:
• If an exception occurs after ER when tracing a LW/SW accessing ITC

memory in a core implementing MT.
• If in an MT core, a TC is halted while executing Wait, Yield, or an instruc-

tion accessing ITC memory.
26 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

3.2 Trace Type and an Example Code Fragment
PendL 19:16 Pending Load
This field is valid only when SYNC is 1, see below. When SYNC is 1, this
field indicates the number of outstanding loads at the IPC cycle. If the num-
ber of loads is zero, then all data transmission TDs after that are ignored until
the next load instruction, at which point counting is restarted. Such TD trans-
missions are from store instructions which could not complete before the
IPC signal was sent.
Note that a sync happens with an InsComp value of IPC. Depending on
whether or not there is data buffered up internally waiting to be sent out, the
accompanying TMOAS may not be sent until several cycles later. In the
meantime, any data sent in between the IPC and the TMOAS record may be
ignored (at trace start or after an overflow) since this belongs to load and
store instructions that happened before the sync. Now, if there are any load or
store instructions between the IPC and the TMOAS, then the data for this
will only be seen after the TMOAS is transmitted, since they would be buff-
ered behind the TMOAS.

SYNC 15 Synchronization
When 0, this record was sent when the ASID, POM, or ISAM changed.
When 1, this record was sent for a synchronization event.

EPL 14 When 1, the PendL field is to be interpreted as (PendL + 16). When 0, the
PendL field is interpreted by itself. This is introduced in PDtrace rev. 6.00.

ISAM 12:11 Instruction Set Architecture Mode

POM 10:8 Program Operating Mode

ASID 7:0 The ASID of the current process. If the processor does not implement the
standard TLB-based MMU, this field is always traced as a zero because the
EntryHi register, and hence the ASID, is not defined.

0 31,13 Reserved for future use

Table 3.4 A TMOAS Trace Record Field Descriptions

Fields

DescriptionName Bits

Value In Architecture Mode

00 MIPS32

01 MIPS64

10 MIPS16e from MIPS32 mode

01 MIPS16e from MIPS64 mode

Value Description

000 Kernel Mode (EXL = 0, ERL = 0)

001 Exception Mode (EXL = 1, ERL = 0)

010 Exception Mode (EXL = don’t care, ERL = 1)

011 Debug Mode

100 Supervisor Mode

101 User Mode

110 Reserved

111 Reserved
MIPS® PDtrace™ Specification, Revision 6.16 27

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Description
In addition to the TType values discussed above, there are two, TU1 and TU2, which are used for user-triggered trac-
ing. Whenever the user writes to a special register, the register values are traced out using one of the above TType val-
ues (depending on the exact register being written to).

3.3 Trace Mode

The TMode value is used to indicate the compression method used to transmit the address or data value. This is used
by the external software to regenerate the program flow. The compression technique depends on the particular type of
value being transmitted. A more detailed description is provided in Chapter 6, “Trace Compression” on page 53.

3.4 Start of Tracing

When tracing is first started, or when it is re-started after a break, some basic information is first needed to allow
external software to identify the trace start point in the static program image, and to make some reasonable conclu-
sions about the processor mode at the start of tracing. The first record that is traced is a TMOAS. This trace record
type shows the processor mode and the ASID value of the currently executing processor. This record is followed by a
trace of the full PC value for the first instruction traced. This first traced instruction must use an IB, ILB, or ISB
InsComp value so that the external software can correlate the PC transmission with the InsComp value. In addition, if
load/store address tracing is turned on, then the first encountered load/store instruction will send the full address
instead of a delta value. Note that the synchronization counter is reset to the value in TraceControl2SyP when tracing
is started.

3.5 Trace Synchronization

After the full PC value, or the full address for the load/store instruction, has been sent to the start of tracing, subse-
quent traced addresses may all be delta values. Hence, it is possible that the external software will occasionally lose
track of the current execution point in the static program image. To fix this potential problem, the tracing logic sends
periodic synchronization information.

The synchronization tracing function is triggered when the internal synchronization counter overflows based on the
synchronization period bits as set in the TraceControl2 CP0 register. Similar to the start of tracing, when the syn-
chronization period is reached, an IPC is sent for InsComp, accompanied by a TMOAS record, followed by a full PC
value. To simplify this IPC transaction type, the hardware must ensure that the instruction used to synchronize the PC
value is not a branch, load, or store instruction. Hence, the synchronization period is an approximate point, where the
transmission of the IPC can be delayed by a few instructions until an instruction is found that is neither a branch, load,

Table 3.5 Trace Mode Bits

TType TMode

000 (NT)
101 (TMOAS)

Reserved

001 (TPC) 0 -> delta from last PC value
1 -> compression algorithm A (full address)

010 (TLA)
011 (TSA)

0 -> delta from last data address of that type
1 -> compression algorithm B (full address)

100 (TD)
110 (TU1)
111 (TU2)

0 -> Reserved
1 -> compression algorithm C (full data)
28 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

3.6 Trace Overflow and Restart
or a store instruction. Note that the TMOAS associated with synchronization is sent only when the IPC instruction
has been identified, to prevent other TType records between the TMOAS and the full PC trace for the synchroniza-
tion. At this juncture, if load/store addresses are not being traced, then this completes all the transmissions needed for
synchronization. If load/store addresses are being traced, then the first load and store instructions encountered after
the IPC transmission trace a full address value, rather than a delta. This completes the synchronization process. Note
that the synchronization counter is reset to the value in TraceControl2SyP after the IPC has been sent.

Note that the TMOAS record that is traced for synchronization uses a value of 1 for the SYNC bit field (see Figure
3.3). This is an aid used by external software to synchronize the InsComp stream and the data stream. To use this bit
to synchronize, external software will look in the trace buffer for the first IPC entry; when it finds one, it starts look-
ing in the trace buffer from the current cycle onwards for the first TMOAS record with the SYNC bit set to one. The
first PC value following this TMOAS record will be a full PC transmission that corresponds to the IPC entry.

The TMOAS record also traces the number of outstanding loads and stores if data value tracing is underway. This
ensures that in an out-of-order data return processor, the software using the record as a synchronization will know
how many data values are still anticipated and count them correctly. See Figure 3.3.

3.6 Trace Overflow and Restart

In a real implementation, an internal FIFO or buffers may be used to hold address and data values waiting to be com-
pressed, formatted, and traced out of the processor. It is possible to have a program sequence that overflows one or
more of these FIFOs. When the FIFO overflows, the core is essentially losing trace data, and hence the output
becomes illogical and is no longer a true representation of the program execution sequence. In this situation, the most
natural thing for the core logic to do is abandon tracing in the current cycle, discard all entries in the FIFO, and restart
tracing from the next completed instruction in the following cycle. Note that in this situation, the first new instruction
to be traced after the overflow must have its full PC value, so this should be treated as an IB, ILB, or ISB. Similar to a
trace start or re-start situation, a TMOAS record is first sent after the overflow, and before the full PC value is trans-
mitted.

It should be possible for the entire program trace to be captured under all circumstances, and no trace records lost.
This is done using the InhibitOverflow control bit from the program or the user’s debugger. When asserted, this bit
implies that the processor core must back-pressure the pipeline and stall it without overflowing the FIFO. (Hence, if
InhibitOverflow is asserted, the core must ensure that Overflow is never asserted.) The pipeline is restarted as soon as
the FIFO starts emptying again.

3.7 Data Order Signal

The data order bits DataOrder are used to indicate the out-of-orderness of load and store data that is traced out. The
main purpose of this is to allow load and store data to be traced out as and when it becomes available, and not main-
tain local storage that sequences it. This works by indicating the position of the traced load/store data in the list of
current outstanding loads/stores starting at the oldest. For example, assume that the program issues 5 loads A, B, C,
D, E, respectively.

Table 3.6 Load Order Example

Load Cycle # Cache Op
Load Data
Available

Data Traced
Out DataOrder

A 1 Miss - - -

B 2 Hit B B 1 (second oldest)

C 3 Hit C C 1 (second oldest)
MIPS® PDtrace™ Specification, Revision 6.16 29

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Description
Table 3.6 shows an example of how these five loads may be traced. Load data that hits in the first-level cache is usu-
ally available at some fixed delay from instruction issue. So without loss of generality, we assume in the table that
load data is available in the same cycle as the issued instruction. The number of bits used to specify the DataOrder is
processor implementation-specific and depends on the number of possible outstanding loads and stores in that imple-
mentation. It is assumed that the default number for an implementation of a moderately complex processor is 4 bits,
and thus all the examples below use this value.

If the number of outstanding data supported by four bits is exceeded, the processor simply issues the overflow signal,
clears its internal buffers, and restarts tracing. If the InhibitOverflow signal is asserted, before continuing the proces-
sor must stall until at least some of the outstanding loads/stores are satisfied. Note that if data values are being traced,
limits are being reached on other resources like the internal FIFO, and thus it is unlikely that the number-of-outstand-
ing-data limit will be so easily reached.

Some processors will graduate a store instruction while still waiting for the store data to become available. Thus a
load can bypass a store, and thus load data will be available before a preceding store’s store data is available. An
example is illustrated in Figure 3.4.

D 4 Miss - - -

E 5 Hit E E 2 (third oldest)

- k - A A 0 (oldest)

- k+p - D D 0 (oldest)

Table 3.7 Data Order with Four Bits

Value Description

0000 data from oldest load/store instruction (is in-order)

0001 data from second-oldest load/store instruction

0010 data from third-oldest load/store instruction

0011 data from fourth-oldest load/store instruction

0100 data from fifth-oldest load/store instruction

0101 data from sixth-oldest load/store instruction

0110 data from seventh-oldest load/store instruction

0111 data from eighth-oldest load/store instruction

1000 data from ninth-oldest load/store instruction

1001 data from tenth-oldest load/store instruction

1010 data from eleventh-oldest load/store instruction

1011 data from twelfth-oldest load/store instruction

1100 data from thirteenth-oldest load/store instruction

1101 data from fourteenth-oldest load/store instruction

1110 data from fifteenth-oldest load/store instruction

1111 data from sixteenth-oldest load/store instruction

Table 3.6 Load Order Example (Continued)

Load Cycle # Cache Op
Load Data
Available

Data Traced
Out DataOrder
30 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

3.7 Data Order Signal
Figure 3.4 An Example of Load Data Bypassing an Earlier Store

Block (1) in Figure 3.4 shows a small program fragment and the sequence of InsComp and TType traces. This proces-
sor will graduate and trace all instructions including the first store ISa. This store then waits for the data in r1 before it
actually completes its execution. Some processors will order store data. Hence the second store ISb will wait for ISa
before it can complete. But the following loads, ILc and ILd would complete without any delay. In this situation, the
TType column of block (1) shows the sequence of data availability. But if the processor must trace data sequentially,
then it is required to trace out data in-order as shown in the left column of block (2). This sequential requirement can
be avoided by using the DataOrder bits used to order both the loads and stores. The DataOrder values for the data is
shown in the right column of block (2).

Another example that illustrates the combined load/store ordering is shown in Figure 3.8. This table shows in column
one a sequence of only the loads and stores from a program fragment. The second column shows the sequence in
which the data associated with the loads and stores become available, and the third column shows the DataOrder sig-
nal that is needed to trace out the sequence as available.

(1)

Cycle Program InsComp TType Comments

m+0 DIV r3, r2 I NT multi-cycle instr

m+1 MFHI r1 I NT

m+2 SW r1, 0(r3) ISa TSAa data not available

m+3 SW r4, 0(r7) ISb TSAb data not available

m+4 LW r4, 0(r6) ILc TDb store data

m+5 LW r5, 4(r6) ILd TLAc cache hit

m+6 TDc load data

m+7 TLAd cache hit

m+8 TDd load data

m+9+k TDa store data

(2)

Required Data Order DataOrder

TDa 1

TDb 1

TDc 1

TDd 0

Table 3.8 Data (Load/Store) Order Example

Load/Store Data Trace Order DataOrder

Load-A - -

Load-B - -

Store-C - -

Load-D - -

Store-E - -
MIPS® PDtrace™ Specification, Revision 6.16 31

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Description
3.8 Tracing During Processor Mode Changes

Note that during normal execution, the processor will change its operation mode frequently. For example, when exe-
cuting user-level code, an interrupt may cause the processor to jump to kernel mode to service the interrupt. When the
interrupt has been serviced, the processor will switch back to user mode. A mode change is indicated in the tracing
logic by tracing out a TMOAS for TType.

In the situation that the mode change affects tracing, for example, the tracing system has been set up to trace only in
user mode and not in kernel mode, then the interrupt service routine should not be traced. Upon jumping to kernel
mode, the core tracing logic will add a TMOAS as the last record. In the meantime, all the accompanying InsComp
values are traced as NI (No Instruction) until the TMOAS entry is traced. Once the TMOAS record has been output,
nothing new is traced until execution jumps back into user mode. Note that pending information about outstanding
loads and stores that were executed before the mode switch could still be traced. By knowing the static instruction
stream in the user program, and using the TMOAS record, the external trace reconstruction software can figure out
that tracing was suspended when the processor jumped to kernel mode.

When jumping from a non-tracing mode to a tracing mode, the first record output is TMOAS to indicate the mode
change. This is followed by a full PC value of the first instruction in the tracing mode. This will enable the external
trace reconstruction software to resynchronize itself and track program execution in the desired mode.

When tracing is turned on and the processor enters Debug Mode where tracing is turned off, in the cycle-accurate
tracing situation where every cycle is recorded including the ones where no instruction is executed, it is recommended
that the processor turn off tracing as soon as it is detected that the DM bit is set. Otherwise, since it might take hun-
dreds of cycles to fetch the first debug mode instruction through the TAP/probe and execute it, the trace buffer will fill
with records of idle cycles before the execution of the first debug instruction can be used to detect that tracing must be
turned off. Thus, recording the entry into Debug mode as a processor mode change and then immediately stopping all
tracing will prevent useful trace information in the trace buffer from being overwritten. In this situation, in the pres-
ence of MIPS MT, it is recommended that all DM bits (in each VPE) be checked, and when any one of them is set,
tracing be immediately stopped when in cycle accurate mode).

Store-F - -

Store-G - -

Store-H - -

Load-I I 8 (ninth oldest)

- A 0 (oldest)

- C 1 (second oldest)

- E 2 (third oldest)

- F 2 (third oldest)

- G 2 (third oldest)

- H 2 (third oldest)

- B 0 (oldest)

- D 0 (oldest)

Table 3.8 Data (Load/Store) Order Example (Continued)

Load/Store Data Trace Order DataOrder
32 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

3.9 Tracing Store Conditionals
3.9 Tracing Store Conditionals

A store conditional instruction that is part of an LL/SC operation may or may not perform the actual store operation.
A store conditional is always traced out as an IS or ISB for the InsComp value. If a store address or data is being
traced, then this associated information is traced as well. It is the responsibility of software to determine from the con-
text of the tracing and the program source whether the store conditional was successful or not. For typical uses of LL/
SC pairs where the code executes in a loop until the SC succeeds, it should be easy to determine if the SC succeeded.

3.10 Tracing MIPS16e™ Macro Instructions

In the MIPS16e™ ASE, several single MIPS16e instructions expand to a fixed sequence of multiple 32-bit instruc-
tions. These include the SAVE, RESTORE, and ASMACRO instructions. (See the MIPS32® Architecture for Pro-
grammers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architecture, document
number MD00076).

When executing a Macro instruction, note that the PC address does not change for the instructions that comprise the
macro instruction, and thus the core does not output a PC value until it executes the first instruction outside the
Macro. In fact, the core indicates the completion of the Macro instruction by outputting a full PC value for the first
instruction executed after the macro instruction. This instruction could either have been reached sequentially by fall-
ing out of the macro sequence, or by executing a branch instruction from within the macro sequence. This full PC
value is output using a branch indication, e.g., IB for the InsComp value, even though this instruction is most likely
not a branch target. The external reconstruction software will note the preceding Macro instruction, and hence be able
to handle this situation correctly.

Within the macro sequence, normal tracing is carried out. Note that the macro sequence can include, in addition to
arithmetic and logical instructions, load and store instructions, which will be traced in a manner similar to loads/
stores that are not in a macro instruction sequence. (Note that any branch instruction inside the Macro sequence can
only branch out of the Macro sequence and not to any location within the sequence, since all instructions within the
sequence have the same PC value).

3.11 Tracing MIPS16e™ Extend Instructions

A MIPS16e extend instruction is considered a single instruction, and therefore the PC of the extend part is traced.
Note that a branch to a MIPS16e extend instruction is to the extend part of the instruction. (For details, refer to the
MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the
MIPS32® Architecture, document number MD00076).

3.12 Tracing Instruction Cache and Data Cache Misses

With revision 4.0 of the specification, the PDtrace interface adds the feature in which misses in the instruction cache
and data cache are traced out by the Trace Control Block. This information is associated with the InsComp signal for
instruction caches misses. The instruction cache miss and the data cache miss indicate a miss in the first level of the
cache hierarchy. If instruction cache miss tracing is enabled, and PC tracing is disabled, the full PC of the instruction
that missed in the cache must be traced.

Implementation Notes: In a processor that implements an instruction fetch buffer and does speculative execution
and instruction prefetching, the instruction cache miss information may be duplicated for all instructions in a cache
line, or the instruction cache miss could have been hidden from the back-end of the execution pipeline due to
prefetching. And since tracing is done when an instruction graduates, at the back-end of the pipeline, the instruction
cache miss statistics are not guaranteed to be 100% accurate. This problem is made worse in the presence of MIPS
MIPS® PDtrace™ Specification, Revision 6.16 33

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Description
MT, where due to frequently switching execution between thread contexts, cache miss information for a specific
instruction of a specific thread context can be lost by the time that instruction is traced out.

Similarly, in an implementation it is possible that not all load/store misses are traced due to certain constraints in how
the pipeline timeline is implemented, or not all operations shown as misses might actually have been a miss. For
example, in the MIPS32 24KE pipeline, a store operation that misses in the microTLB will show up as a hit in the
output trace, whether or not this store actually missed in the cache. This is due to the fact that the store operation
passes beyond the trace point in the pipeline before the cache miss or hit logic is done.

3.13 Tracing Potential Function Call/Return Instructions

To debug a program and understand its behavior, it is often sufficient to understand the execution call graph. When
trace memory is limited, this can be an effective means for program debug for error or performance. To facilitate this
feature, revision 4.0 of the PDtrace specification adds the ability for the processor to trace a potential function call
instruction or a function return instruction.

Note that the conditional procedure call instructions BGEZAL, BGEZALL, BLTZAL, and BLTZALL are intention-
ally omitted from this list. Since executing these instructions does not automatically imply a procedure call, one
would have to examine the PC trace to be certain whether or not a procedure call was invoked. When the TFCR bit is
set and PC Tracing is enabled, the FCR bit should be set in the trace format used for the function call/return instruc-
tion. When PC Tracing is disabled, in addition to the FCR bit being set for the function call/return instruction, the full
PC of the function call/return instruction must be traced.

3.14 Tracing with MIPS® MT ASE

When the MT ASE is present on the processor, for effective program debug and analysis, trace data needs to be qual-
ified with the VPE and the TC number of the instruction being traced. The user via the debugger can request that only
instructions from a particular VPE or TC be traced. The analogous function in the CP0 trace control register is pro-
vided via the TCNum and CPUId bits.

On the trace output, if MT is present on the processor, then every instruction traced is qualified with the TC identifi-
cation. Software can tell from the TCid which VPE it belongs to by reading the appropriate MT CP0 registers. Each
PC, address, and data delta computation is done on a per-TC basis. The processor is therefore expected to maintain
per-TC delta values. The first time that a PC is traced for a thread, the full address is traced. This initiates the process
whereby future instructions from that thread are done using delta PC values.

To clarify further, each thread of instruction trace is independent and thus must carry its own output of the TMOAS
record, i.e., whenever trace is initiated for a new thread, a TMOAS is required for that thread. This is because each
thread can have its own processor mode such as MIPS32 or MIPS16e, and this needs to be indicated correctly for that
thread. In other words, every time trace is re-started for a thread, perhaps because of a FIFO overflow, a separate
TMOAS is required on a per thread basis. A sync operation also requires a TMOAS on a per TC basis. If tracing is
initiated for only a single TC, then only a single TMOAS is required. But if tracing is initiated for multiple TCs or per

Table 3.9 Possible Instructions for Function Call/Returns

ISA Function Call Instructions Function Return Instructions

MIPS32 JAL, JALR, JALR.HB, JALX JR, JR.HB, ERET, DERET

MIPS64 JAL, JALR, JALR.HB JR, JR.HB, ERET, DERET

MIPS16e JAL, JALR, JALRC, JALX JR, JRC
34 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

3.15 Tracing in WAIT State
VPE, then separate TMOAS records are required per TC as described above. Also note that when multiple TCs are
being traced, and a TMOAS is sent for the first TC after a sync, the sync counter is restarted, even though all TMOAS
for other TCs have not yet been sent. Note that TMOAS is also sent on a TC restart, that is, a write to the TC restart
register.

3.15 Tracing in WAIT State

A processor enters a WAIT or sleep state when transitioning to a low-power mode. In this situation, since the proces-
sor is not executing any instructions or doing any useful work, it is not necessary to continue tracing, which can be an
unnecessary drain on power.

3.16 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints

The MIPS EJTAG Specification describes the hardware data and instruction breakpoint feature. In brief, a core or
processor can optionally implement up to 15 instruction and up to 15 data EJTAG hardware breakpoints. These break-
points, when encountered during program execution, cause the processor to take a debug exception. Important to this
discussion is that a bit (TE bit 2) in the breakpoint control register, when set, allows a trigger signal to be generated
(instead of, or in addition to, causing a debug exception). The PC/Data tracing interface uses this trigger signal to trig-
ger trace on/off and to enable other tracing modes. When a trigger is generated, this information is traced into the
trace memory so the trace software can have knowledge of when trace triggers were generated.

Please refer to Chapter 9, “EJTAG Trace Registers” on page 94 for the description of the registers which control trace
triggering through EJTAG breakpoints.

3.17 Tracing Performance Counter Values

Dumping performance counter values through the trace stream provides the ability to correlate performance counter
events to the specific instruction execution path. In fact, this provides is a non-intrusive read out of the performance
counter values that does not alter execution behavior. In addition, with the right mechanisms in place, it can allow the
ability to dynamically change the granularity of reading out the counter values without requiring recompilation of
user code. For example, if a particular type of stall is suspected to be high in a particular function, that function can be
traced individually, and the performance counter set to detect those stalls and dumped out periodically, thereby allow-
ing a better correlation of that stall type to particular code blocks within that function to narrow down the perfor-
mance bottleneck.

The performance counter trace feature has been defined in specification revision 06.00 and higher. The PeC bit (bit 8
in TraceControl3 and bit 0 in TCBControlE) defines whether or not this optional feature is implemented. Another
bit, PeCE (bit 9 in TraceControl3 and bit 1 in TCBControlE), indicates during program execution whether or not
the feature is enabled. As before, the bit in the TCB register is used by external probe-based debugging and trace con-
trol, and the bit in TraceControl3 is used when software-controlled tracing is in effect. Four other bits (bits 9, 10, 11,
and 12 in the TraceControl3 register and bits 2, 3, 4, and 5 in TCBControlE register) are used to enable the specific
events that can trigger a dump of the performance counter values. These four events are:

1. Synchronization counter expiration trigger (PeCSync)

2. Hardware trace breakpoint trigger (PeCBP)

3. Function call, function return, or exception occurrence trigger (PeCFCR)

4. When any active performance counter in the processor overflows (PeCOvf)
MIPS® PDtrace™ Specification, Revision 6.16 35

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Description
Bit 15 PCTD (Performance Counter Trace Disable) in the Performance Counter Control register is used to provide
more detailed control over whether or not a particular performance counter value should be dumped with all the oth-
ers. This bit is used to disable the specified performance counter from being traced when performance counter trace is
enabled and a performance counter trace event is triggered. Note that the reset and default value for this bit is 0, which
enables tracing of this performance counter. Software must explicitly set this bit to 1 to disable tracing this counter
value.

The number of performance counters is implementation-specific. Implementations may choose to include an addi-
tional cycle counter to help calculate event frequencies. This optional cycle counter has these properties:

1. It is not visible in the normal Coprocessor 0 register space, instead its output is only visible in Performance
Counter trace information.

2. Is 32-bits in width, up-counting from 0x0000000 to 0xFFFFFFFF.

3. Increments at an implementation-specific rate, though the preferred rate is the CPU pipeline clock fre-
quency.

4. Roll-overs the count from 0xFFFFFFFF to 0x00000000 without any type of overflow indication.

5. The counter increments only after the PeCE bit is set and at least one of the Performance Counter is traced.
The counter does not increment when either the Performance Counter feature is disabled (PeCE bit is clear)
or none of the Performance Counters are being traced (all of the PCTD bits are set).

6. Anytime a trigger event causes a Performance Counter value to be deposited into the trace and at least one of
the Performance Counters is traced (at least one of the PCTD bits is clear), the value of the cycle counter is
also deposited into the trace. The value of the cycle counter is deposited into the trace immediately after the
Performance Counter values.

7. If none of the Performance Counters are traced (all of the PCTD bits are set), the cycle counter value is not
deposited into the trace.

It is not required to have a reset value for this counter, though if the counter is initialized by reset, a reset value of
0x00000000 is preferred. It is also implementation specific if the counter is reset upon the clearing of the PeCE bit.

3.18 Filtered Data Trace Mode

This mode is added in PDtrace Specification revision 06.00 and higher. Bit 0 in TraceControl3 (FDT bit) is used to
either disable (value 0) or enable (value 1) this mode. When this mode is enabled, data load and store addresses are
compared to the hardware data breakpoint address, if the addresses match, the data value associated with that match
along with the address are traced out.

This mode works even when data address and/or value tracing is turned on. However, the general usage model is
when both PC and Data trace are turned off since it may not always be possible to identify data that was traced due to
a match vs. the regular data stream. This mode is used to shadow one or more static (fixed-address) variables. When
there is a store to the variable, the store value is captured into the trace. Since there are generally two or more data
triggers/watchpoints, the trace will need to uniquely identify the shadowed variable by also tracing out the associated
address.

A main use of this filtered data trace is to support tracing of events in an application code on a Linux system. This
type of instrumented code tracing is primarily used for performance analysis although it can also be used for event
36 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

3.19 Trace Enabling/Disabling Condition
logging and debug. (This mode has been introduced to provide a mechanism to do low-overhead event tracing from
user application code, since the User Trace Data registers require a kernel call from user mode.)

Another potential use of this mechanism is to set a watchpoint and track values written to an I/O or peripheral register.
Off-chip trace probes can timestamp these values, thus providing valuable performance information on the delta
between writes, assuming this was the intended use.

3.19 Trace Enabling/Disabling Condition

The input control values to the core that enable tracing can be from the TCB registers or from the CP0 control regis-
ters. In addition, trace can also be triggered on and off by the EJTAG hardware instruction and data breakpoint set-
tings, as described in 3.16 “Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints” on page 35. The
equations specified here clarify the conditions under which different input factors will enable or disable tracing.

Trace enabling and disabling from software is similar to the hardware method, with the exception that the bits in the
control register are used instead of the input enables from registers in the TCB. The TraceControl TS bit controls
whether hardware (via the TCB), or software (via theTraceControl register) controls tracing functionality.

In any given cycle n, an instruction is traced if the following equation evaluates true:

TraceOn & (TriggerOn(n) | MatchEnable | TriggerEnable | DQEnable | FilterDataTraceActive) (EQ 1)

In every cycle, the following state variable is set and then used in the next cycle:

TriggerOn(n+1) <- TraceOn & (TriggerEnable | (TriggerOn(n) & (~TriggerDisable)) (EQ 2)

The various expressions used in (EQ 1) and (EQ 2) are defined here.

TraceOn ← ((TraceControlTS & TraceControlOn) |
 ((~TraceControlTS) & TCBCONTROLAOn))

MatchEnable ←
(TraceControlTS &
 MTEnableR &
 (TraceControlG | (((TraceControlASID ^ EntryHiASID) & (~TraceControlASID_M)) =0)) &
 ((TraceControlU & UserMode) |
 (TraceControlK & KernelMode) |
 (TraceControlS & SupervisorMode) |
 (TraceControlE & ExceptionMode) |
 (TraceControlD & DebugMode))) |
((not TraceControlTS) &
 MTEnable &
 (TCBCONTROLAG or (TCBCONTROLAASID = EntryHiASID)) &
 ((TCBCONTROLAU & UserMode) |
 (TCBCONTROLAK & KernelMode) |
 (TCBCONTROLAS & SupervisorMode) |
 (TCBCONTROLAE & ExceptionMode) |
 (TCBCONTROLAD & DebugMode)))

MTEnableR ← (MT ASE not present) |
 ((MT ASE present) &
 ((!TCV) |

 (TCV & TCNum=current_TC_context) |
 (!VPEV) |

 (VPEV & VPENum=current_VPE)))
MIPS® PDtrace™ Specification, Revision 6.16 37

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Description
MTEnable ← (MT ASE not present) |
 ((MT ASE present) &
 ((!TCBCONTROLCTCValid) |

 (TCBCONTROLCTCnum & TCNum=current_TC_context) |
 (!TCBCONTROLCCPUValid) |

 (TCBCONTROLCCPUValid & VPENum=current_VPE)))

TriggerEnable ← Lowest Numbered Trigger turns on tracing either because the DBPC or
IBPC value was 001, 011, 101, or 111

TriggerDisable ← Lowest Numbered Trigger turns off tracing because the DBPC or IBPC
value was 000 or 100

FilterDataTraceActive ← TraceControl3FDT &
(Load_Address_Matches_Hardware_Breakpoint_Address |

Store_AddresS_Matches_Hardware_Breakpoint_Address)

As seen in the (EQ 1), trace can be turned on only if the master switch On or PDI_TraceOn is first asserted (TraceOn).
Once asserted, there are three ways in which instruction tracing can occur:

1. A trigger had occurred in the past that turned on tracing, but no trace disabling trigger had occurred since then
(TriggerOn(n)).

2. The input enable signals from the TCB or the trace control register indicate a tracing condition (MatchEnable).
This type of tracing is done over general program areas. For example, all of user-level code for a particular pro-
cess (ASID specified), or some such conditions.

3. The third method to turn on tracing is from the processor side using the EJTAG hardware breakpoint triggers
(TriggerEnable). If EJTAG is implemented, and hardware breakpoints can be set, then using this method, fine
grain tracing control is possible. It is possible to send a trigger signal that turns on tracing at a particular instruc-
tion. For example, it would be possible to trace a single procedure in a program by triggering on trace at the first
instruction, and triggering off trace at the last instruction.

Trace is turned off when (EQ 1) evaluates false. Note that tracing can be unilaterally turned off by de-asserting the On
bit or the PDI_TraceOn signal.
38 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Chapter 4
PDtrace™ Output Trace Formats

One of the two main functions of the TCB is to capture trace information and send it to an on-chip or off-chip trace
memory. This trace information is then analyzed by the trace reconstruction software in the debugger. Since tracing
the entire run of a program can require a lot of storage, compression of trace information is a desirable goal. While the
trace information undergoes one level of compression in the core, further compression is possible before the trace
information is stored to trace memory by the TCB. The TCB achieves this compression using a number of trace for-
mats, which eliminate the storage of unnecessary trace bits in each cycle. This chapter describes these formats.

In PDtrace revision 05.00 and higher, a mechanism is added to decouple load/store cache miss indications from data
tracing. This is done by augmenting existing trace formats with load/store hit/miss information (see Section 4.3.2.1).
The load/store miss indication information is always sent at a fixed offset from the INSCOMP message for that par-
ticular instruction. The offset is implementation-dependent (2 for the MIPS 34K core family). Since the offset is
always fixed, we do not need a mechanism at startup to identify the offset.

In PDtrace revision 06.00 and higher, a new feature is added for complex cores like the MIPS 74K core family to pro-
vide the user with information about why no instructions completed in a particular cycle. Existing trace formats are
expanded to include this information. The extensions to the trace formats are described in Appendix A,
“Implementation-Specific PDtrace™ Enhancements for MIPS32® 74K™ Cores”.

4.1 Single-Pipe Tracing Formats

The formats discussed in this section are relevant only when the core or processor being traced is a single-issue, i.e.,
single pipeline implementation. The multi-pipeline case is discussed in 4.3 “Multi-Pipe Tracing Formats”.

4.1.1 Trace Format 1 (TF1)

A processor stall is identified when InsComp[2:0] is 000, TType[2:0] is 000, and no overflow occurs. When the pro-
cessor is stalled, no execution trace information needs to be recorded except that this was a stall cycle. This can be
done efficiently using a single bit “1” for this format. This is Trace Format 1 (TF1) as show in Figure 4.1. Note that
this stall information is needed only when tracing is used to account for all execution cycles, i.e., cycle-accurate trac-
ing (TCBCONTROLBCA = 1, see 8.2 “TCBCONTROLB Register”). However, TF1 generation is suppressed if the
processor executes a WAIT instruction. Once the processor exits the WAIT state, TF1 messages resume.

Note that when parsing a trace format sequence, if the first bit of the trace format is a one, then this is TF1 and the
next bit is the first bit of the next trace format.

Figure 4.1 TF1 (Trace Format 1)

0

1

MIPS® PDtrace™ Specification, Revision 6.16 39

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Output Trace Formats
4.1.2 Trace Format 2 (TF2)

A study of program traces shows that with only PC tracing enabled, nothing of significance needs to be captured a
large percentage of the time. For instance, when TType[2:0] is NT (000), i.e., No data Trace, there is nothing to be
traced. So, when TType[2:0] is NT and InhibitOverflow is 0, the only significant trace output is InsComp[2:0].
Having used a single bit value of “1” for TF1, we indicate the combination of non-zero InsComp[2:0], zero
TType[2:0], and zero overflow in two bits (102). The next three bits of the format are the value of InsComp[2:0].
This trace format with five bits is called Trace Format 2 (TF2), as shown in Figure 4.2.

Figure 4.2 TF2 (Trace Format 2 Single-Pipe)

Revision 4.00 (and higher) of the PDtrace specification introduces the ability to trace instruction fetch misses and to
tag an instruction that might be a function call or return. These are fundamental properties that could impact most
instructions in the stream that are represented by a non-zero InsComp value. Therefore, TF2 can optionally be aug-
mented by two bits to trace out this information. These bits are optional and only traced when specifically requested
by the user via bit TLSIF (bit 11) in TCBCONTROLB register. Hence, for correct interpretation of the trace formats,
the trace reconstruction software must be told whether or not these 2 bits are present in each relevant trace format.
This impacts other formats well, and will be discussed in each sub-section separately. The two optional bits of the
TF2 format are shown in Figure 4.3.

• The Im bit indicates the Instruction miss for this instruction in the instruction cache.

• The optional Fcr bit indicates that this instruction is potentially a function call or return instruction.

Figure 4.3 TF2 with Optional Bits (Trace Format 2 Single-Pipe)

4.1.3 Trace Format 3 (TF3)

When TType[2:0] is not NT (000) and there is no overflow, all trace information needs to be captured. This is the
TF3 format shown in Figure 4.4. The DataOrder[2:0] value is an exception in that it only needs to be captured on the
last cycle of a Data Trace (DT for the TType[2:0] value). Hence, a slight distinction is made between this format TF3
(which excludes the LoadOrder[2:0] value, see Figure 4.4), and the format TF4 (which includes the DataOrder[2:0]
value, see Figure 4.7). This shows a data order value of 4 bits, but this is implementation-dependent and the number
of bits in the DataOrder field is preset by the implementation in the TCBCONTROLCNumDO bits. The total length of
the format increases by the corresponding number of bits.

TF3 is distinguished from TF2 by having 0002 on the first three bits. TF3 may be either 27 or 43 bits wide, depending
on whether 16 or 32 bits is specified by the TCBCONTROLAADW field. (See 8.1 “TCBCONTROLA Register”).

When cycle-by-cycle accuracy is not needed, the least-significant bit of TF3 may be removed by the TCB hardware.
Please refer to Section 5.1.1 on page 50.

4 2 1 0

InsComp 1 0

6 5 4 2 1 0

Im
Fc
r

InsComp 1 0
40 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

4.1 Single-Pipe Tracing Formats
Figure 4.4 TF3 (Trace Format 3 Single-Pipe)

Revision 4.00 (and higher) of the PDtrace specification introduces the ability to trace instruction fetch misses and to
tag an instruction that might be a function call or return. These are fundamental properties that could impact most
instructions in the stream that are represented by a non-zero InsComp value. Therefore, TF3 can optionally be aug-
mented by two bits to trace out this information. These bits are optional and only traced when specifically requested
by the user. Hence, the trace reconstruction software must be told whether these bits are present. This impacts other
formats well, and will be discussed in each sub-section separately. The two optional bits of the TF3 format are shown
in Figure 4.5.

Figure 4.5 TF3 with Optional Bits (Trace Format 3 Single-Pipe)

Revision 6.00 (and higher) of the PDtrace specification introduces the ability to trace performance counter values. If
this feature is enabled by the user, this information is traced through TF3, which can be optionally augmented by one
bit. This expanded version of the TF3 format is show in Figure 4.6. If the PCV bit is set to zero, reconstruction soft-
ware must interpret the trace format as before. If the PCV bit is set to one, reconstruction software must interpret the
AD bits of the format as the value of the performance counter. In addition, the TType must be set to DT, and TEnd
must be set to zero.

Figure 4.6 TF3 with Optional Performance Counter and other bits (Trace Format 3 Single-Pipe)

4.1.4 Trace Format 4 (TF4)

The TF4 format is shown in Figure 4.7. TF4 covers the case when TType[2:0] is set to DT and TEnd is set to 1, that
is, the last cycle of the current data trace. This is shown in Figure 4.7, where the pattern on bits [9:6] distinguishes
TF4 from TF3. Bits [8:6] are equal to 0012 for a Type[2:0] value of DT and bit 9 has a value of 1 for TEnd.

Note that the TF4 format will be used for the last cycle of both Load and Store Data transmission, a small ineffi-
ciency.

26(42) 11 10 9 8 6 5 3 2 1 0

AD TMode TEnd TType InsComp 0 0 0

(44)

28 27 26 11 10 9 8 6 5 3 2 1 0

Im Fcr AD TMode TEnd TType InsComp 0 0 0

(45)

29 28 27 26 11 10 9 8 6 5 3 2 1 0

PCV Im Fcr AD TMode TEnd TType InsComp 0 0 0
MIPS® PDtrace™ Specification, Revision 6.16 41

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Output Trace Formats
Figure 4.7 TF4 (Trace Format 4 Single-Pipe)

Revision 4.00 (and higher) of the PDtrace specification introduces the ability to trace instruction fetch misses, load/
store data misses, and to tag an instruction that might be a function call or return. Therefore, TF4 can optionally be
augmented by three bits to trace out this information. These bits are optional and only traced when specifically
requested by the user. Hence, the trace reconstruction software must be told if these 3 bits are present. The optional
bits of the TF4 format are shown in Figure 4.8. For non-coherent MIPS cores, only this format includes the LSm bit,
that is, the bit that indicates a possible load/store data cache miss. This is because a data miss is associated with the
transmitted data rather than the instruction that caused the miss.

Figure 4.8 TF4 with Optional Bits (Trace Format 4 Single-Pipe)

4.1.5 Trace Format 5 (TF5)

When an overflow happens all other trace values are undefined and hence all current cycle trace values can be dis-
carded. (When an overflow does occur, the trace always sends a full PC value in the next cycle. This is used for
resynchronizing to the execution path.) The Trace Format 5 (TF5) shown in Figure 4.9 indicates an overflow.

Revision 4.00 of the PDtrace specification added one bit to this format for a total of 5 bits in preparation for future
additional features. Those expected features proved to be unnecessary and for that reason Revision 6.13 (and higher)
reverts the length of this format back to 4 bits.

Figure 4.9 TF5 (Trace Format 5)

4.1.6 Trace Format 6 (TF6)

Trace Format 6 (TF6) shown in Table 4.10 is provided to the TCB to transmit information that does not directly orig-
inate from the cycle by cycle trace data. That is TF6 can be used by the TCB to store any information it wants in the
trace memory, within the constraints of the specified format. This information can then be used by software for any
purpose. For example, TF6 can be used to indicate a special condition, trigger, semaphore, breakpoint, or break in
tracing that is encountered by the TCB.

30(46) 15 14 11 10 9 8 7 6 5 3 2 1 0

AD DataOrder TMode 1 1 0 0 InsComp 0 0 0

(49)

33 32 31 30 15 14 11 10 9 8 7 6 5 3 2 1 0

LS
m

Im
Fc
r

AD DataOrder TMode 1 1 0 0 InsComp 0 0 0

4 3 2 1 0

1 1 0 0
42 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

4.1 Single-Pipe Tracing Formats
Figure 4.10 TF6 (Trace Format 6)

The definition of TCBcode and TCBinfo is shown in Table 4.1.

Revision 4.00 (and higher) of the PDtrace specification uses two of the TCBcode fields to indicate that Instruction or
Data Hardware Breakpoints were caused by the instruction in the trace format immediately preceding this TF6 for-
mat. Whether the trigger caused by the breakpoint turned trace off or on is indicated by the appropriate TCBinfo field
value. Note that if the processor is tracing and trace is turned off, this would be passed on to the external trace mem-
ory appropriately. If the processor is not tracing, and trace is turned on by a hardware breakpoint, then this record
would show up in trace memory as the first instruction to be traced (it is also the one that triggered trace on). If tracing
is on-going and other triggers continue to keep turning on trace, then this would show up as a TF6 in trace memory.
Revision 5.00 (and higher) of the PDtrace specification define an additional bit in TCBInfo, when TCBcode ‘1001’ is
used (see Table 4.1).

Table 4.1 TCBcode and TCBinfo fields of Trace Format 6 (TF6)

TCBcode Description TCBinfo

0000 Trigger Start: Identifies start-point of trace. TCBinfo identifies what caused the trigger. Cause of trigger.
Taken from the Trigger
control register gener-
ating this trigger.

0100 Trigger End: Identifies end-point of trace. TCBinfo identifies what caused the trigger.

1000 Reserved. This value used to indicate a trigger center. Starting from PDtrace rev 6.00, this
value is reserved for future use.

1100 Trigger Info: Information-point in trace. TCBinfo identifies what caused the trigger.

00011 No trace cycles: Number of cycles where the processor is not sending trace data, but a stall is
not requested by the TCB. This can happen when the processor, during its execution, switches
modes internally that take it from a trace output required region to one where trace output was
not requested.
For example, if it was required to trace in User-mode but not in Kernel-mode, then when the
processor jumps to Kernel-mode from User-mode, and an internal FIFO is emptied, then the
processor stops sending trace information. In order to maintain an accurate account of total
execution cycles, the number of such no-trace cycles have to be tracked and counted. This
TCBcode does this tracking.

Number of cycles (All
zeros is equal to 256).
If more than 256 is
needed, the TF6 format
is repeated.

01011 Back stall cycles: Number of cycles when no trace information was sent, for whatever rea-
son.

1001 Instruction or Data Hardware Breakpoint Trigger: Indicates that one or more of the instruc-
tion or data breakpoints were signalled and caused a trace trigger. Bit 8 of the TCBinfo field
indicates whether it was an instruction (0) or data (1) breakpoint that caused the trigger. Bit 9
indicates whether or not trace was turned off (0) or on (1) by this trigger. Bits 13:10 encodes
the hardware breakpoint number. Bit 14 indicates if tracing from the coherence manager was
affected (1) or not (0).
When tracing is turned off, a TF6 will be the last format that appears in the trace memory for
that tracing sequence. The next trace record should be another TF6 that indicated a trigger on
signal.
It is important to note that a trigger that turns on tracing when tracing is already on will not
necessarily get traced out, and is optional depending on whether or not there is a free slot
available during tracing. Similarly, when tracing is turned off, then a trigger that turns off
tracing will not necessarily appear in trace memory. Finally, if multiple breakpoints cause
trigger actions, only one of the matching breakpoints is encoded in bits 13:10, and the trigger
action is reported in bit 9.

Values are as
described.

15 8 7 4 3 2 1 0

TCBinfo TCBcode 0 1 0 0
MIPS® PDtrace™ Specification, Revision 6.16 43

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Output Trace Formats
4.2 Format Enhancements for the MT ASE

In the presence of hardware-based multi-threading such as that provided by the MT ASE, there needs to be a method
to indicate the thread ID (or TC, thread context) for every traced instruction. This is possible in one of two ways:

1. The first method would typically be used when the multithreading method is coarse-grained or block-based, that
is, instructions from a single thread are executed for a while before switching to another thread. In this type of
scheme, it would suffice to trace out the thread ID every time it changes and continue tracing instructions until
there is a context switch. At which point, the new thread ID is traced, and so on. The thread ID thus traced is done
using trace format 7 (TF7) illustrated in this section.

2. The second method is used when instructions from multiple threads are interleaved with a finer granularity. In
this situation, the thread ID might change every cycle, or in the case of a scheme like SMT (SImultaneous multi-
threading), different instructions issued every cycle might belong to different thread contexts. In this situation,
the thread ID must be traced with every traced instruction. This might add significantly to the amount of trace
data, but there is no avoiding this extra burden. In this situation, every trace format discussed thus far, with the
exception of TF1, TF5, and TF7, will be prefixed with a number of bits needed for the thread context value.

Bits in the TCB control register MTtrace determine which method is chosen, as well as the option to not trace the
thread ID in a processor implementing the MT ASE.

4.2.1 Trace Format 7 (TF7)

Trace Format 7 (TF7) shown in Table 4.11 is provided to the TCB to transmit information about the current Thread
ID and is only used by a processor that implements the MT ASE. This format is used to indicate that the formats
being sent following this one all belong to the indicated Thread ID. Note that this is a sub-format of TF6. with a TCB-
code value of 1110 and with the TCid value in the TCBinfo field.

Figure 4.11 TF7 (Trace Format 7)

1101 Reserved for future use Undefined

0010, 0110
1010

1110 Used for processors implementing MIPS MT ASE, see format TF7 TC value

xx11 TCB implementation dependent Implementation depen-
dent

1. TF6 formats with this TCBcode is not transmitted when TCBCONTROLBCA is 0

Table 4.1 TCBcode and TCBinfo fields of Trace Format 6 (TF6) (Continued)

TCBcode Description TCBinfo

15 8 7 4 3 2 1 0

TC
TCBcode

1110
0 1 0 0
44 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

4.3 Multi-Pipe Tracing Formats
4.2.2 TF2--TF4 Augmented for MT ASE

Up to 8 bits for the TC value is prepended to formats TF2, TF3, and TF4. The figure below illustrates the example of
pre-pending 4 bits to format TF2 to support a hypothetical 34K core. Three bits in the TCB control register TCbits
indicate how many TCid bits are needed for a particular core. In this example, the TCbit value would be set to four.

Figure 4.12 TF2 with Optional Bits and TCid Bits (Trace Format 2 Single-Pipe)

4.3 Multi-Pipe Tracing Formats

A processor with multiple pipelines requires additional support for sending trace information to trace memory. The
TCB can perform some combining and the kind of format crunching as shown in the single-pipe case to reduce the
number of bits that are sent out each cycle. If there are k pipelines within the core, 1, 2,... k, then for each cycle, the
TCB generates a trace format from each pipeline, in that respective order. The external software programmer must
refer to the User’s Guide for that core to determine the order of the pipelines as hooked up to the PDtrace™ interface.

The trace format TF1 is usable by the TCB without change for multi-pipe tracing. The TF1 format indicates that the
specific pipe did not complete an instruction and had no data to send.

TF5 is a common format. That is, all the pipes have to flush the trace buffer when just one of them has overflowed.
Hence, a single instance of TF5 will suffice to cover all the 1..k pipeline stages. The trace reconstruction software
must take this into account as it parses the trace formats in trace memory.

The TF6 format is also usable by the TCB without change, and as a common format. A TF6 format can be used after
all the formats for the respective pipelines have been sent. Note that if needed, pipeline-specific information can be
encoded within the TF6 format bits.

4.3.1 Multi-Pipe Trace Format 2-4 (TF2, TF3, TF4)

The TF2, TF3, and TF4 formats need the additional PgmOrder[2:0] value for multi-pipeline tracing. The PgmOrder
field is added to all of them, right after the InsComp field, as shown in Figure 4.13, Figure 4.14, and Figure 4.15. The
PgmOrder field is 3 bits wide to allow up to 8 pipelines. The number of processor pipelines is specified in the
TCBCONFIGPiN field. See 8.7 “TCBCONFIG Register (Reg 0)” on page 82.

Figure 4.13 TF2 (Trace Format 2 Multi-Pipe)

10 7 6 5 4 2 1 0

TCid Im
Fc
r

InsComp 1 0

7 5 4 2 1 0

PgmOrder InsComp 1 0
MIPS® PDtrace™ Specification, Revision 6.16 45

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Output Trace Formats
Figure 4.14 TF3 (Trace Format 3 Multi-Pipe)

TF4 for multi-pipe trace is defined as was the case for single-pipe trace. In the example in Figure 4.15, the TEnd bit
(bit 12) is set, and the TType field (bits 8:6) is set to DT (1002).

Figure 4.15 TF4 (Trace Format 4 Multi-Pipe)

4.3.2 Trace Format Extensions for Coherent Systems

The PDtrace architecture requires the coherent synchronization Id to be traced out from each core in a coherent sys-
tem to allow correlation between requests from a core with transactions at the CM. The exact implementation of how
this information is made available is highly dependent on the particular core on which it is implemented. We describe
one mechanism that is implemented in the 34K core for CMP and extends every existing trace format by between 1
and 4 bits in Section 4.3.2.1.

4.3.2.1 Expanding Existing Trace Formats

The first mechanism expands trace formats TF2,TF3,and TF4. Each of these formats is expanded by one to four bits.
Each instruction that is capable of generating a bus request (“LSU” instruction) adds at least two bits. All non-LSU
instructions add a single bit (0) to the end of the trace formats. An LSU instruction that hits in the cache adds two bits
a “10”. If the instruction misses in the cache, it adds four bits - 11XY, where XY represent the COSId. The hit/miss/
COSId information for an LSU instruction is always sent after the instruction completion message for that instruction
has been sent. Specifically, it is always attached to the second LSU instruction after the original instruction. For the
34K, this guarantees that the hit/miss information is available at the time it needs to be sent out. Note: An implemen-
tation may choose to treat the LSm bit in a TF4 packet as a ‘don’t care’. Reconstruction software must not rely on the
accuracy of this value to get a data cache hit/miss indication.

29(45) 14 13 12 11 9 8 6 5 3 2 1 0

AD
TMod

e
TEnd PgmOrder TType InsComp 0 0 0

32(48) 17 16 14 13 12 11 9 8 7 6 5 3 2 1 0

AD LoadOrder
TMod

e
1 PgmOrder 1 0 0 InsComp 0 0 0
46 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Chapter 5
TCB Trace Word

Following the compression of data into the Trace Formats described in Chapter 4, “PDtrace™ Output Trace Formats”
on page 39, the trace information must be streamed to either on-chip or off-chip dedicated trace memory. As previ-
ously explained, each of the major Trace Formats is a different size. In order to ensure the efficient storage of this
information in a fixed-width on-chip memory and the transmission of this data through a fixed-width interface to off-
chip memory, the Trace Formats are first gathered into Trace Words of regular width. This section describes the for-
mat of these Trace Words.

5.1 Trace Word

A Trace Word (TW) is defined to be 64 bits wide. A TW has a 4-bit type indicator on bits [3:0], an optional 2 or 4 bits
to indicate the origin or source of this trace word, and regular TFs stacked up in the remaining 58 or 56 respective bits
of the word. Figure 5.1, Figure 5.2, and Figure 5.3 show the 64-bit wide TW. The source bits are valuable and used in
an environment where trace data from multiple cores or different sources needs to be combined and written into a sin-
gle trace memory. The trace regeneration software can then use these bits to sort out which trace words belong to
which core or other traced logic in the chip or SOC.

It is recommended to allow the number of source bits be a configuration option for a core. The value thus chosen is
written to the two-bit TWSrcWidth field in the TCB Control register (Figure 8.2 on page 72). For non-zero source
options, the value of source to be used is preset to 0 during configuration in the TWSrcVal field in the TCB Control
register. This value can be overwritten by software if needed and changed from the default value of zero.

Note that in all Trace Word examples illustrated later in this chapter, it is assumed that the source field is zero. But
those examples could have been constructed in a similar manner for source field widths of 2 and 4 bits without any
loss of generality.

Figure 5.1 Trace Word with Zero Source Bits

Figure 5.2 Trace Word with Two Source Bits

63 4 3 0

Trace Type

63 6 5 4 3 0

Trace Source Type
MIPS® PDtrace™ Specification, Revision 6.16 47

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 TCB Trace Word
Figure 5.3 Trace Word with Four Source Bits

The Trace portion of a TW consists of one or more Trace Formats, TF1 through TF6. Note that trace formats TF1,
TF2, TF5, and TF6 have a fixed size, while TF3 and TF4 can vary in size. The sizes of formats TF3 and TF4 are
based on the value of the ADW bits. A further optimization is possible with an address value; that is, the redundant
sign bits (in the upper address bits) can be optionally chopped from the formats, especially if the format straddles two
TWs. This happens when TType is set to TPC, TLA, or TSA, TEnd is set to 1, and TMode is set to 0.

When Type is set to the TMOAS processor mode, this is traced as a TF3 with the TMOAS information in the AD
field of that trace format type.

A TW is built by adding the TFs back to back until all 60 bits of the Trace field are used. If the last TF does not fit in
Trace, it spills to the first bits of the Trace field in the next TW. The Type indicator is used to indicate where the first
new TF starts in the new Trace field, which indirectly indicates the number of bits used to complete the TF from the
previous TW.

When a TF cannot be completed in the remaining bits of a TWn, it is sometimes more efficient to discard those bits of
the TWn and simply repeat all of them in the following TWn+1. This is indicated in TWn+1 by setting Type to 1.
When Type is 1, the first new TF of a TW starts at bit 0 in the Trace field. Since the previous TWn ended with an
uncompleted TF, a Type of 1 in TWn+1 instructs the decode software to discard the uncompleted TF in TWn. Table
5.1 describes the word types for the TW.

Table 5.1 Trace Word Type Field Descriptions

Decimal
value of the
Type field

The first new
TF starts at

this bit in the
Trace field Description

0 N/A This TW does not carry any trace information. The Trace field is set to all zeroes.
In the off-chip interface, the Trace field can be truncated to make the TW fit the bit-width of the
off-chip interface.
For on-chip trace, this TW is not stored in memory.

1 0 This indicates a situation where a new TF is started at the beginning of this TW. This can happen
when: (1) a new trace is begun, (2) the TF in the previous TW was completed, and (3) an incom-
plete TF at the end of the previous TW is discarded.
If the last trace format of the previous TW was a TF3 with TType set to TPC, TLA or TSA, TEnd
set to 1, TMode set to 0, and with at least one AD bit, that is considered to be a completed TF for-
mat, and no bits are discarded from the previous TW.

2 - 14 (Type - 1) * 4 The partial TF from the previous TW is completed in this TW in the bits available before the first
new TF, i.e., bits 0..((Type -1)*4)-1) in the Trace field.
If extra bits are available after completing the straddling TF, the rest of the bits until the first new
TF start are undefined.
TF3 formats sending the last part of a relative address are allowed to remove the AD bits to only
show the needed sign bits. This enables compression of sign-extended address or data bits when
the TF3 straddles a TW.

63 8 7 4 3 0

Trace Source Type
48 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

5.1 Trace Word
As an example of how a TW is built, consider the trace sequence shown in Table 5.2. In this example, the ADW value
is assumed to be 16 bits wide (a zero value for TCBCONTROLAADW).

The TF sequence in Table 5.2 will create the set of TWs shown in Figure 5.4. The shaded boxes containing a “u” are
unused bits. Shaded boxes with an “s” indicate redundant sign-bits from a TF3 format; these sign-bits could not be
removed by compression, and must be included as part of the AD field. A “1” indicates the single bit of 1 in a TF1
format.

Figure 5.4 Trace Word from Example Trace in Table 5.2

15 56 If an implementation does not support any TFs longer than 56 bits and does not utilize a 4-bit
source field, type 15 can be used to indicate that the first new TF begins at bit 56. In such an imple-
mentation, a TF can always be completed within 2 TWs, and the continuation field below is not
needed.

No new TF The TF started in the previous TW could not be completed within 52 bits1. It might complete in
this TW, but if it does not complete, then the next TW will have a Type value higher than one.

1. 52 bits is the maximum allowable bits used to complete a TF from a previous TWn-1, if a new one is to start in TWn. This is so

because a Type value of 14 indicates the maximum bit position (bit 52) in the Trace field, where a new TF will start.

Table 5.2 Example Trace Sequence

Cycle # Trace Format Cycle # Trace Format

1 TF3 (16 significant AD bits) 2 TF3 (16 significant AD bits)

3 TF2 4 TF1

5 TF1 6 TF1

7 TF1 8 TF2

9 TF2 10 TF1

12 TF2 11 TF2

13 TF2 14 TF1

15 TF3 (5 significant AD bits) 16 TF1

17 TF2 18 TF2

19 TF2 20 TF2

21 TF3 (11 significant AD bits) 22 TF1

23 TF3 (6 significant AD bits) 24 TF6 (Stop indicator)

Trace Type

5 5 5 4 4 4 3 3 2 2 2 1 1

TW 9 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 3 0

1 1 TF2 TF3 TF3 1
2 TF2 1 s s s s s s s s s s s TF3 1 TF2 TF2 TF2 1 TF2 TF2 1 1 1 1
3 TF3 1 s s s s s TF3 TF2 TF2 TF2 u TF2 2
4 u TF6 (stop) TF3 2

Table 5.1 Trace Word Type Field Descriptions (Continued)

Decimal
value of the
Type field

The first new
TF starts at

this bit in the
Trace field Description
MIPS® PDtrace™ Specification, Revision 6.16 49

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 TCB Trace Word
In the example in Figure 5.4, the TF3 straddling TW3/TW4 have had insignificant sign bits cut from the full TF3 for-
mat. It is optional for TCB hardware to do this extra compression of TF3 formats, but TW decode software must
always be designed to handle this extra compression.

5.1.1 Cycle Inaccurate Trace

The TF1 format is needed only when a sequence of the trace must show cycle-by-cycle behavior of the processor
without missing any cycles. When the trace regeneration software only needs to show the sequence of instructions
executed, the TF1 format which shows processor stall cycles can be omitted. In this latter situation, an additional
optimization removes bit zero on the other TFs before storing to trace memory. The example trace sequence in Table
5.2 will then produce the TWs shown in Figure 5.5. Note that to reconstruct the trace accurately, external software
must know what type of tracing was enabled at the TCB.

Figure 5.5 Trace Word from Example Trace in Table 5.2 (No TF1 trace)

In the example shown in Figure 5.5, the TF3 straddling TW2/TW3 has had insignificant sign bits removed from the
full TF3 format. It is optional for TCB hardware to make this extra compression of TF3 format, but TW decode soft-
ware must be able to handle this.

Additionally when not tracing for cycle accurate information, the TF6 formats TCBcode 0001 and 0101 are omitted
from the Trace Words (not shown in Figure 5.4 and Figure 5.5). Cycle accurate versus cycle inaccurate tracing in con-
trolled by the TCBCONTROLBCA bit.

5.1.1.1 Trace Word collection.

Figure 5.6 shows how the TCB builds Trace Words using the Trace Formats cycle-by-cycle, using the trace informa-
tion. Trace Words from Figure 5.4 are used.

Figure 5.6 Cycle-by-cycle Trace Word from Example Trace in Table 5.2

Trace Type

5 5 5 4 4 4 3 3 2 2 2 1 1

TW 9 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 3 0

1 TF2 TF2 TF3 TF3 1
2 TF3 TF2 TF2 TF2 TF2 s s s s s s s s s s s TF3 TF2 TF2 TF2 TF2 1
3 TF6 (stop) s s s s s s s s s s TF3 s TF3 6
4 u TF6 2

Trace Type

5 5 5 4 4 4 3 3 2 2 2 1 1

Cycle TW 9 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 3 0

1

1

free TF3 1
2 free TF3 TF3 1
3 f TF2 TF3 TF3 1
4 1 TF2 TF3 TF3 1
50 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

5.2 End of Trace Indication
5.2 End of Trace Indication

In the examples in the previous section, the Trigger TF6 (stop: TCBcode == 0100) was used to indicate an End Trig-
ger, and this also implied an end to the tracing. This stop trigger deasserts TCBCONTROLBEN, and the TCB flushes
out the current TW. However, the TCBCONTROLBEN bit can be deasserted for other reasons, and this trace end must
be indicated externally using a different mechanism to distinguish it from the end-trigger case. The recommended
method to accomplish this is to allow the TCB to fill the unused bits in the last TW with zeroes. Note that nine bits of
consecutive zeroes in the Trace field will be identified as a TF3 with no information; that is, InsComp and TType are
both zero. Ordinarily this will never be generated by the Trace Format generator, and can therefore be used as a end-
of-trace indicator.

If less than nine bits remain in the last TW, an incomplete TF is detected by trace software. After that, no additional
TWs are generated by the TCB. This should not be a problem for trace-regenerating software, as this is just like any
other arbitrary cut in the trace stream.

5.3 On-chip Trace Memory Format

The on-chip trace memory is defined to be a 64-bit wide memory. The TWs defined in 5.1 “Trace Word”, are stored
in consecutive address locations. The trace memory is only written when a full TW is available, and thus a new TW
might not be written each cycle, since a new TW might not be created each cycle.

The memory image will exactly match the TW sequence shown in Figure 5.4 or Figure 5.5, depending on whether
TF1 formats are included.

5

2

free 1 1
6 free 1 1 1
7 free 1 1 1 1
8 free TF2 1 1 1 1
9 free TF2 TF2 1 1 1 1
10 free 1 TF2 TF2 1 1 1 1
11 free TF2 1 TF2 TF2 1 1 1 1
12 free TF2 TF2 1 TF2 TF2 1 1 1 1
13 free TF2 TF2 TF2 1 TF2 TF2 1 1 1 1
14 free 1 TF2 TF2 TF2 1 TF2 TF2 1 1 1 1
15 free s s s s s s s s s s s TF3 1 TF2 TF2 TF2 1 TF2 TF2 1 1 1 1
16 free 1 s s s s s s s s s s s TF3 1 TF2 TF2 TF2 1 TF2 TF2 1 1 1 1

17

TF2 1 s s s s s s s s s s s TF3 1 TF2 TF2 TF2 1 TF2 TF2 1 1 1 1

3

free u TF2 2
18 free TF2 u TF2 2
19 free TF2 TF2 u TF2 2
20 free TF2 TF2 TF2 u TF2 2
21 free s s s s s TF3 TF2 TF2 TF2 u TF2 2
22 free 1 s s s s s TF3 TF2 TF2 TF2 u TF2 2

23

TF3 1 s s s s s TF3 TF2 TF2 TF2 u TF2 2

4

free TF3 2
24 u TF6 (stop) TF3 2

Trace Type

5 5 5 4 4 4 3 3 2 2 2 1 1

Cycle TW 9 6 2 8 4 0 6 2 8 4 0 6 2 8 4 0 3 0
MIPS® PDtrace™ Specification, Revision 6.16 51

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 TCB Trace Word
5.4 Probe Trace Word Transmission

The Probe interface can support a TR_DATA bus width of 4, 8, or 16 bits. When a TW is ready to be sent, it is put on
the TC_Data pins to the PIB. The PIB will feed the TW through on the available TR_DATA pins, starting with
TC_Data[n:0] on the TR_DATA[n:0] utilized pins. Depending on the value of n, this will take 16, 8, or 4 transmissions.
If a clock multiplier is used in the PIB, then 2, 4, 8, or 16 transmissions can be completed in one core clock cycle.

As long as no new TW is available for transmission, the TC_Data bus will show all zeros, allowing the PIB to keep
transmitting this on the TR_DATA bits to also show all zeros.

On an 8-pin TR_DATA trace interface, running at core-clock frequency, the trace from the TW’s in Figure 5.6 will look
as shown in Figure 5.7 on the Probe IF. This assumes sufficient buffering to hold the TWs in the TCB when they
become available for transmission, and a latency of one clock before the first part of an available TW on the TC_data
bus appears on the TR_DATA pins.

Figure 5.7 Cycle-by-Cycle TR_DATA (8-bit) of Example Trace in Table 5.2

The probe sampling the TR_DATA pins should look for a non-zero transmission. When that occurs, the following bits
up to a collective count of 64-bits (i.e., including the first non-zero 4/8/16-bit value) will form a TW. After 64 bits, the
probe should begin looking for a new non-zero transmission. A non-zero transmission can start at any time after a full
TW is received.

Cycle TR_DATA[7:0] Cycle TR_DATA[7:0] Cycle TR_DATA[7:0] Cycle TR_DATA[7:0]

1 zero 11 TW1[55:48] 21 TW2[31:24] 31 TW3[47:40]

2 zero 12 TW1[63:56] 22 TW2[39:32] 32 TW3[55:48]

3 zero 13 zero 23 TW2[47:40] 33 TW3[63:56]

4 zero 14 zero 24 TW2[55:48] 34 TW4[7:0]

5 TW1[7:0] 15 zero 25 TW2[63:56] 35 TW4[15:8]

6 TW1[15:8] 16 zero 26 TW3[7:0] 36 TW4[23:16]

7 TW1[23:16] 17 zero 27 TW3[15:8] 37 zero

8 TW1[31:24] 18 TW2[7:0] 28 TW3[23:16] 38 zero

9 TW1[39:32] 19 TW2[15:8] 29 TW3[31:24] 39 zero

10 TW1[47:40] 20 TW2[23:16] 30 TW3[39:32] 40 zero
52 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Chapter 6
Trace Compression

This chapter describes compression techniques that can be used when tracing different values. The methods used are
quite different for each “type" of value. For example, the PC may be sent as a delta from the previous PC address. At
other times, the full PC value needs to be sent when the trace process starts at the beginning of tracing, or after a
buffer overflow, or for synchronization; in this case, the PC can be sent un-compressed, or some method such as bit-
block compression can be used. The sections below discuss these various techniques as they correspond to the TMode
bit value in the Trace Word. Note that the single-bit TMode bit allows two ways in which to send the information
being currently traced.

6.1 PC Tracing

When TMode is zero, it implies that the delta of the PC value is transmitted. This delta is computed from the PC value
of the instruction executed just before the branch target instruction (e.g., the instruction executed in the branch delay
slot after a branch instruction). The computed delta is then right-shifted by one bit, since this bit is never used. Note
that the value can be negative or positive, thus is a signed 16-bit value, and the upper bits need to be sign-extended
before transmission.

PC_delta = (new_PC - last_PC) >> 1 (EQ 1)

If the width of the computed delta value is bigger than the width of the data field (ADW), the lower bits are sent first,
followed by the upper bits.

When the TMode value is one, it implies that the full PC value is transmitted. Depending on the width of the bus, this
may take multiple cycles. Again, the first cycle transmits the least significant bits, and so on.

6.2 Load or Store Address Tracing

With a TMode value pf zero, the load address transmitted is a delta from the last transmitted load address. Stores are
similar, where the computed delta is from the last transmitted store address. Note that the last load instruction can be
a load instruction of any type, i.e., LB, LW, etc., and the same is true for stores.

load_address_delta = current_load_address - last_load_address (EQ 2)

store_address_delta = current_store_address - last_store_address (EQ 3)

Note that the delta transmission is quite effective when the load or store addresses are increasing or decreasing
sequentially.

With a TMode value of one, the value transmitted is the full address of either the load or the store. Depending on the
width of the trace bus and the processor data width, this could require multiple cycles to transmit.
MIPS® PDtrace™ Specification, Revision 6.16 53

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Trace Compression
6.3 Load and Store Data Tracing

Though data values are less prone to good compression techniques, delta values and bit-block compression tech-
niques might be useful in achieving some compression ratio. This revision of the PDtrace specification does not dic-
tate any compression for data values. The TMode value of zero is reserved for a future compression scheme, and the
TMode value of one is used to transmit the full data value.

6.4 Using Early TEnd Assertion

This technique was discussed in Table F.1. When tracing data address or value, the tracing logic can optionally make
a decision to cut off the trailing sign bits of the data and assert TEnd early, before all the bits of the address or data
have been traced. For example, redundant sign bits need not be transmitted for accurate reconstruction of the data.
Note that this data compression technique can be applied to any value traced in the AD field in the trace formats, be it
PC address, load/store address, or load/store data. Also note that this technique is optional, but the software must be
capable of handling this situation for implementations with PDtrace Specification 03.00 and higher.
54 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

6.4 Using Early TEnd Assertion
MIPS® PDtrace™ Specification, Revision 6.16 55

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Chapter 7
PDtrace™ Control Using CP0 Registers

PDtrace permits users to control both the type and amount of trace data produced, within predetermined constraints,
in order to minimize the trace bandwidth to the useful set. Trace data output can be controlled by software, using CPO
registers, or by the debug probe, using registers in the Trace Control Block (TCB). This chapter describes software
control; debug probe control is described in Chapter 8, “Trace Control Block (TCB) Registers” on page 67.

7.1 Trace Controls Overview

The majority of trace control bits are used to specify the conditions under which tracing is enabled. The list below
briefly explains the various types of trace controls.

• An overall trace control bit TraceControlOn, controls whether tracing is turned on or off. When this bit is asserted,
the control bits that control the per-instruction decision of whether the core should trace or not include bits in
TraceControl such as G, ASID, U, S, K, E, and D. These bits are expected to be modified only when the processor
is not tracing. That is, if tracing is currently on, then tracing must be turned off, a change made to one of these
bits, and then tracing turned back on. If not done in this way, the ability of the reconstruction software to parse
the trace output obtained from the TCB is not guaranteed.

For processors that implement MIPS MT ASE or in a multi-processor configuration, there are other control bits
such as TCNum and CPUid that control which thread context, VPE (virtual processing element), or CPU in the
configuration is currently tracing. The same rule about changing the control bits only when tracing is turned off
applies here with.

• When tracing is turned on, one needs to specify what kind of information is to be traced, i.e., only the PC, or also
the load/store addresses and data. This is done using the Mode bits in TraceControl2. In addition to this, another
bit, TraceControlTB specifies that the PC of all taken branches be traced, not only the ones that are statically
unpredictable. When asserted, this will generate a lot of trace data, since in a RISC architecture such as MIPS,
typically every third or fourth instruction is a branch instruction. The main purpose of this all-branches tracing is
to enable the TCB to track the execution addresses in the core without referring to the static program image,
when needed. This knowledge can be used by the TCB to provide additional filtering of the trace data.

• TraceControlIO (InhibitOverflow) is used to ensure that trace data is never lost because of implementation-spe-
cific internal FIFO or buffer overflow. This loss of trace data could result when a large number of bits are traced
each cycle while the bandwidth out of the core or TCB is far less. If this bit is asserted and an internal FIFO is in
imminent danger of overflowing, the core must stall its pipe while the FIFO is emptied.

7.2 Software Trace Control

Just as the TCB hardware can control tracing functionality using the input PDI_ signals, the PDtrace architecture
allows software to control tracing with similar enables and with the same flexibility. This is done by setting bits in the
Coprocessor 0 TraceControl register to appropriate values. To ensure that only hardware or software can control trac-
ing at any given point in time, a trace select bit is used in TraceControl. A processor reset sets the trace select bit to the
default trace input select from the TCB hardware.
MIPS® PDtrace™ Specification, Revision 6.16 56

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

7.2 Software Trace Control
7.2.1 Coprocessor 0 Trace Registers

This section describes all the Coprocessor 0 trace registers required for implementing PDtrace tracing logic in the
core, with the exception of TraceIBPC and TraceDBPC, which were described in Section 3.16 “Trace Trigger from
EJTAG Hardware Instruction/Data Breakpoints”.

Table 7.1 shows a list of all the Coprocessor 0 trace-related registers. The compliance level is specified assuming that
tracing is implemented, i.e., that the TL bit in Coprocessor 0 Config3 is 1 (Table 2.1).

Note that the UserTraceData register was renamed to UserTraceData1 in PDtrace specification revision 06.00 and
higher because of the introduction of the UserTraceData2 register. This revision of the specification also introduces a
new trace control register, TraceControl3 , which needs to be implemented whether or not performance counter trac-
ing, an optional feature, is implemented.

7.2.1.1 TraceControl Register (CP0 Register 23, Select 1)

The TraceControl register configuration is shown in Figure 7.1 and Table 7.2. Note the special behavior of the
ASID_M, ASID, and G fields when the processor does not implement the standard TLB-based MMU.

Table 7.1 A List of Coprocessor 0 Trace Registers

Register
Number Sel Register Name Reference Compliance

23 1 TraceControl 7.2.1.1 “TraceControl Register (CP0 Register
23, Select 1)” on page 57

Required

23 2 TraceControl2 7.2.1.2 “TraceControl2 Register (CP0
Register 23, Select 2)” on page 60

Required

23 3 UserTraceData1 7.2.1.4 “UserTraceData1 and
UserTraceData2 Registers (CP0 Register 23
Select 3 and CP0 Register 24 Select 3)” on
page 65

Required

23 4 TraceIBPC 9.1 “TraceIBPC and TraceDBPC Registers”
on page 94

Required

23 5 TraceDBPC “TraceIBPC and TraceDBPC Registers” on
page 94

Required

24 2 TraceControl3 7.2.1.3 “The TraceControl3 Register (CP0
Register 24, Select 2)” on page 63

Required for
PDtrace spec
revision 06.00

and higher

24 3 UserTraceData2 7.2.1.4 “UserTraceData1 and
UserTraceData2 Registers (CP0 Register 23
Select 3 and CP0 Register 24 Select 3)” on
page 65

Required for
PDtrace spec
revision 06.00

and higher

Figure 7.1 TraceControl Register Format
31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 2 1 0

TS UT Impl TB IO D E K S U ASID_M ASID G TFCRTLSM TIM On
MIPS® PDtrace™ Specification, Revision 6.16 57

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Control Using CP0 Registers
Table 7.2 TraceControl Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

TS 31 The trace select bit is used to select between the trace
control block and the software trace control bits. A value
of zero selects the trace control block registers, and a
value of one selects the trace control bits in the
TraceControl register.

R/W 0 Required

0 30 The previously defined use of this bit to specify user
trace formats (as type 1 or type 2), is deprecated in
PDtrace specification revisions 05.00 and higher. This
functionality is now provided by the UserTraceData1 and
UserTraceData2 registers.

0 0 Reserved

Impl 29:28 Reserved for implementation-specific use. Refer to the
core-specific implementation document for usage
details.

Impl-
specific

Impl-spe-
cific

Reserved fir
implementation

TB 27 Trace All Branch. When set to 1, this tells the processor
to trace the PC value for all taken branches, instead of
only those whose branch target address is statically
unpredictable.

R/W Undefined Required

IO 26 Inhibit Overflow. This bit is used to indicate to the core’s
trace logic that slow but complete tracing is desired.
Hence, the core tracing logic must not allow a FIFO
overflow, which results in discarded trace data. This is
achieved by stalling the pipeline when the FIFO is nearly
full, so that no trace records are lost.

R/W Undefined Required

D 25 When set to one, this enables tracing in Debug Mode
(see 2.2 “Processor Modes” on page 16). For trace to be
enabled in Debug mode, the On bit must be one, and
either the G bit must be one, or the current process
ASID must match the ASID field in this register.
When set to zero, trace is disabled in Debug Mode,
regardless of other bits.

R/W Undefined Required

E 24 When set to one, tracing in Exception Mode (see
2.2 “Processor Modes” on page 16) is enabled. For trace
to be enabled in Exception mode, the On bit must be one,
and either the G bit must be one, or the current process
ASID must match the ASID field in this register.
When set to zero, trace is disabled in Exception Mode,
regardless of other bits.

R/W Undefined Required

K 23 When set to one, tracing in Kernel Mode (see
2.2 “Processor Modes” on page 16) is enabled. For trace
to be enabled in Kernel mode, the On bit must be one,
and either the G bit must be one, or the current process
ASID must match the ASID field in this register.
When set to zero, trace is disabled in Kernel Mode,
regardless of other bits.

R/W Undefined Required
58 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

7.2 Software Trace Control
S 22 When set to one, tracing in Supervisor Mode (see
2.2 “Processor Modes” on page 16) is enabled. For trace
to be enabled in Supervisor mode, the On bit must be
one, and either the G bit must be one, or the current pro-
cess ASID must match the ASID field in this register.
When set to zero, trace is disabled in Supervisor Mode,
regardless of other bits.
If the processor does not implement Supervisor Mode,
this bit is ignored on write and returns zero on read.

R/W Undefined Required (if
Supervisor

Mode is imple-
mented, is

Reserved other-
wise)

U 21 When set to one, tracing in User Mode (see
2.2 “Processor Modes” on page 16) is enabled. For trace
to be enabled in User mode, the On bit must be one, and
either the G bit must be one, or the current process ASID
must match the ASID field in this register.
When set to zero, trace is disabled in User Mode, regard-
less of other bits.

R/W Undefined Required

ASID_M 20:13 Mask value applied to the ASID comparison (when the
G bit is zero). A “1” in any bit in this field inhibits the
corresponding ASID bit from participating in the match.
As such, a value of zero in this field compares all bits of
ASID. Note that the ability to mask the ASID value is not
available in the hardware register bit; it is only available
via the software control register.
If the processor does not implement the standard TLB-
based MMU, this field is ignored on writes and returns
zero on reads.

R/W Undefined Required

ASID 12:5 The ASID field to match when the G bit is zero. When
the G bit is one, this field is ignored.
If the processor does not implement the standard TLB-
based MMU, this field is ignored on writes and returns
zero on reads.

R/W Undefined Required

G 4 When set, tracing is enabled for all processes, provided
that other enabling bits (U, S, etc.,) are also true.
If the processor does not implement the standard TLB-
based MMU, this field is ignored on writes and returns 1
on reads. This causes all match equations to work cor-
rectly in the absence of an ASID.

R/W Undefined Required

TFCR 3 When set, this indicates to the PDtrace interface that the
optional Fcr bit must be traced in the appropriate trace
formats. If PC tracing is disabled, the full PC of the func-
tion call (or return) instruction must also be traced. Note
that function call/return information is only traced if
tracing is actually enabled for the current mode.

R/W Undefined Required

Table 7.2 TraceControl Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
State ComplianceName Bits
MIPS® PDtrace™ Specification, Revision 6.16 59

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Control Using CP0 Registers
7.2.1.2 TraceControl2 Register (CP0 Register 23, Select 2)

The TraceControl2 register, described in Figure 7.2 and Table 7.3, provides additional trace control and status infor-
mation. Note that some fields in the TraceControl2 register are read-only, but have a reset state of “Undefined”. This is
because these values are loaded from TCB register bits.

TLSM 2 When set, this indicates to the PDtrace interface that
information about data cache misses should be traced. If
PC, load/store address and data tracing are disabled (see
the TraceControl2Mode field), the full PC and load/store

address are traced for data cache misses. If load/store
data tracing is enabled, the LSm bit must be traced in the
appropriate trace format. Note that data cache miss
information is only traced if tracing is actually enabled
for the current mode.

R/W Undefined Required

TIM 1 When set, this indicates to the PDtrace interface that the
optional Im bit must be traced in the appropriate trace
formats. If PC tracing is disabled, the full PC of the
instruction that missed in the I-cache must be traced.
Note that instruction cache miss information is only
traced if tracing is actually enabled in the current mode.

R/W Undefined Required

On 0 This is the master trace enable switch in software con-
trol. When zero, tracing is always disabled. When set to
one, tracing is enabled whenever the other enabling bits
are also true.

R/W 0 Required

Figure 7.2 TraceControl2 Register Format
31 30 29 28 21 20 19 12 11 7 6 5 4 3 2 0

SyPExt
CPU
IdV CPUId TCV TCNum Mode

Valid-
Modes

TBI TBU SyP

Table 7.2 TraceControl Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
State ComplianceName Bits
60 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

7.2 Software Trace Control
Table 7.3 TraceControl2 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

SyPExt 31:30 This field is optional for PDtrace revisions 06.00 and
higher and preset to 0 for earlier revisions. This is used
to optionally extend the length of the synchronization
period field SyP (bits 2:0) in this register. The value of
SyP is extended by assuming that these two bits are jux-
taposed to the left of the three bits of SyP (SyPExt.SyP).
When only SyP was used to specify the synchronization

period, the value was 2x, where x was computed from
SyP by adding 5 to the actual value represented by the
bits. A similar formula applied to the 5 bits just obtained
by the juxtaposition of SyPExt and SyP. Sync period val-

ues greater than 231 are UNPREDICTABLE. Since the
value of 11010 represents the value of 31 (with +5), all
values greater than 11010 are UNPREDICTABLE.

Note that with these new bits, a sync period range of 25

to 231 cycles can now be obtained.

0 or R/
W (for

PDtrace
revi-
sions
06.00
and

higher)

0 Required for
PDtrace rev
06.00 and

higher.

CPUIdV 29 Only implemented on a processor with MT or multi-core
SOC. Otherwise, this field must be written as zero and
returns zero on reads. When set, the CPUId field speci-
fies the number of the VPE or CPU that must be traced.
Otherwise, instructions from all VPEs are traced when
other conditions for tracing are valid. On an MT system,
this bit is ignored if TCV is set.

R/W Undefined
for a multi-
VPE MT or
multi-core
processor,

0 otherwise

Required if MT
ASE is imple-
mented, other-
wise reserved

CPUId 28:21 Only implemented on a processor with MT or multi-core
SOC. Otherwise, this field must be written as zero;
returns zero on reads. On an MT core, specifies the num-
ber of the VPE to trace when CPUIdV is set. On a multi-
core system, this is the Ebase.CPUId value. On an MT
system, this bit is ignored if TCV is set.

R/W Undefined
for a multi-
VPE MT or
multi-core
processor,

0 otherwise

Required if MT
ASE is imple-
mented, other-
wise reserved

TCV 20 Only implemented on a processor with MT. Otherwise,
this field must be written as zero and returns zero on
reads. When set, the TCNum field specifies the number
of the TC that must be traced. Otherwise, instructions
from all TCs are traced when other conditions for tracing
are valid.

R/W Undefined
for a MT
processor,

0 otherwise

Required if MT
ASE is imple-
mented, other-
wise reserved

TCNum 19:12 Only implemented on a processor with MT. Otherwise,
this field must be written as zero; returns zero on read.
Specifies the number of the TC to trace when TCV is set.
For any given MT implementation, only the appropriate
number of bits encoding the TC number are used in the
right-most position of this field; the upper bits are
ignored.

R/W Undefined
for a MT
processor,

0 otherwise

Required if MT
ASE is imple-
mented, other-
wise reserved
MIPS® PDtrace™ Specification, Revision 6.16 61

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Control Using CP0 Registers
Mode 11:7 These 5 bits provide the trace mode values.
It is optional for an implementation to allow PC tracing
to be turned off. This must be clearly documented by the
core implementation-specific document. When it is
optional, bit 11 is tied to a value of 1 and setting bit 11 to
0 is simply ignored by the processor. Reading this bit
always returns a value of one.

R/W Undefined Required

Valid-
Modes

6:5 This field specifies the subset of tracing that is supported
by the processor (see 2.3 “Subsetting” on page 17).

R Preset Required

TBI 4 This bit indicates how many trace buffers are imple-
mented by the TCB, as follows:

This bit is loaded when the TCBCONTROLBOfC bit is

set.

R Undefined Required

Table 7.3 TraceControl2 Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Bit Trace The Following

0 PC

1 Load address

2 Store address

3 Load data

4 Store data

Encoding Meaning

00 PC tracing only

01 PC and load and store address tracing
only

10 PC, load and store address, and load
and store data

11 Reserved

Encoding Meaning

0 Only one trace buffer is implemented,
and the TBU bit of this register indi-
cates which trace buffer is imple-
mented

1 Both on-chip and off-chip trace buffers
are implemented by the TCB, and the
TBU bit of this register indicates to
which trace buffer the traces is cur-
rently written.
62 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

7.2 Software Trace Control
7.2.1.3 The TraceControl3 Register (CP0 Register 24, Select 2)

The TraceControl3 register, described in Figure 7.3 and Table 7.3, provides additional trace control and status infor-
mation. Note that some fields in the TraceControl3 register are read-only, but have a reset state of “Undefined”. This is
because these values are loaded from TCB register bits.

TBU 3 This bit denotes to which trace buffer the trace is cur-
rently being written and is used to select the appropriate
interpretation of the TraceControl2SyP field.

This bit is loaded from the TCBCONTROLBOfC

R Undefined Required

SyP 2:0 The period (in cycles) to which the internal synchroniza-
tion counter is reset when tracing is started or when the
synchronization counter has overflowed.

This field is loaded from the TCBCONTROLBSyP bits.

R Undefined Required

Figure 7.3 TraceControl3 Register Format
31 16 15 14 13 12 11 10 9 8 7 3 2 1 0

0 0
PeC
Ovf

PeC
FC
R

PeC
BP

PeC
Syn

c

PeC
E

PeC 0
TrI-
DLE

TRP
AD

FDT

Table 7.3 TraceControl2 Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Trace data is being sent to an on-chip
trace buffer

1 Trace Data is being sent to an off-chip
trace buffer

SyP Sync Period

000 25

001 26

010 27

011 28

100 29

101 210

110 211

111 212
MIPS® PDtrace™ Specification, Revision 6.16 63

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Control Using CP0 Registers
Table 7.4 TraceControl3 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 31:16 Reserved for future use; Must be written as zero; returns
zero on reads.

0 0 Reserved

0 15:14 Reserved for future use; Must be written as zero; returns
zero on reads. (Hint to architect: reserved for future
expansion of performance counter trace events).

0 0 Reserved

PeCOvf 13 Trace performance counters when one of the perfor-
mance counters overflows its count value. Enabled when
set to 1.

R/W 0 Required after
revision 06.00

and higher

PeCFCR 12 Trace performance counters on function call/return or on
an entry to an exception handler. Enabled when set to 1.

R/W 0 Required after
revision 06.00

and higher

PeCBP 11 Trace performance counters on hardware breakpoint
match trigger. Enabled when set to 1.

R/W 0 Required after
revision 06.00

and higher

PeCSync 10 Trace performance counters on synchronization counter
expiration. Enabled when set to 1.

R/W 0 Required after
revision 06.00

and higher

PeCE 9 Performance counter tracing enable. When set to 0, trac-
ing of performance counter values as specified is dis-
abled. To enable, this bit must be set to 1. This bit is used
under software control. When trace is controlled by an
external probe, this enabling is done via the TCB control
register.

R/W 0 Required after
revision 06.00

and higher

PeC 8 Specifies whether or not Performance Control Tracing is
implemented. This is an optional feature that may be
omitted by implementation choice. See 3.17 “Tracing
Performance Counter Values” on page 35 for details.

R Preset Required after
revision 06.00

and higher

0 7:3 Reserved for future use. Must be written as zero; returns
zero on reads.

0 0 Required after
revision 06.00

and higher

TrIDLE 2 Trace Unit Idle. This bit indicates if the trace hardware is
currently idle (not processing any data). This can be use-
ful when switching control of trace from hardware to
software and vice versa. The bit is read-only and updated
by hardware.

R 1 Required after
revision 06.00

and higher

TRPAD 1 Trace RAM access disable bit, disables program soft-
ware access to the on-chip trace RAM using load/store
instructions. This bit is a copy of the TRPAD bit (bit 18)
in TCBCONTROLB.

The affected registers are TCBTW*, TCBRDP, TCBWP,
TCBSTP. None of these registers are writeable when
TRPAD is set. Reads of TCBTW* return zero with no
side-effects when TRPAD is set.

R 0 Required after
revision 06.00

and higher
64 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

7.2 Software Trace Control
7.2.1.4 UserTraceData1 and UserTraceData2 Registers (CP0 Register 23 Select 3 and CP0 Register 24
Select 3)

A software write to any bits in the UserTraceData1 register will trigger a trace record to be written indicating a type 1
user format. Similarly, a write by software to any bits in the UserTraceData2 register will trigger a trace record to be
written indicating a type 2 user format. The UT bit in the TraceControl register was used to dictate the type of trace
record, but the use of this bit has been deprecated in the PDtrace architecture revisions 06.00 and higher. It is imple-
mentation dependent whether or not writes to this register cause dependency stalling, or the latency between writes to
the register and the subsequent generation of the trace record. Please read the core-specific implementation specifica-
tion for this information. Please note that since these two registers are in CP0 register space, the access to these regis-
ters is ruled by CP0 access restrictions imposed by the system. For example, when a processor is under the control of
an operating system such as Linux, these registers cannot be written by code executing in user-level privilege mode.

FDT 0 Filtered Data Trace Mode enable bit. When the bit is 0,
this mode is disabled. When set to 1, this mode is
enabled. Reset value is 0. This mode is described in
Section 3.18 on page 36

R/W 0 Required after
revision 06.00

and higher

Figure 7.4 UserTraceData1 and UserTraceData2 Register Format
31 32-bit Register 0

63 64-bit Register 0

Table 7.5 UserTraceData1 Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Data 31:0 or
63:0

Software readable/writable data. When written, this trig-
gers a user format trace record type1 into the trace
stream to be written to the trace memory.

R/W 0 Required

Table 7.6 UserTraceData2 Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Data 31:0 or
63:0

Software readable/writable data. When written, this trig-
gers a user format trace record type 2 into the trace
stream to be written to trace memory.

R/W 0 Required for
PDtrace spec

06.00 and
higher

Table 7.4 TraceControl3 Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits
MIPS® PDtrace™ Specification, Revision 6.16 65

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Control Using CP0 Registers
66 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Chapter 8
Trace Control Block (TCB) Registers

The TCB uses several registers to control its operation. These registers are accessed via the EJTAG TAP interface.
This chapter describes these registers in detail. They are listed in Table 8.1 and Table 8.2.

Table 8.1 Trace Control Block Registers

Register Name
EJTAG TAP Controller

Instruction Value Description

TCBCONTROLA 0x10 Control register in the TCB mainly used for controlling the trace input signals
to the core on the PDtrace interface.

TCBCONTROLB 0x11 Control register in the TCB mainly used to specify what to do with the trace
information. The REG [25:21] field in this register specifies the TCB internal
register to be accessed by the TCBDATA register. A list of all the registers that
can be accessed by the TCBDATA register is shown in Table 8.2.

TCBDATA 0x12 This register is used to access registers specified by the REG field in the
TCBCONTROLB register.

TCBCONTROLC 0x13 Control Register in the TCB used to control and hold tracing information.

TCBCONTROLD 0x15 Added to support tracing on coherent cores such as the MIPS 1004K in
PDtrace revision 05.00 and higher.

TCBCONTROLE 0x16 Added for support of new features in PDtrace revision 06.00 and higher. New
features include, for example, performance counter tracing, etc.

Table 8.2 Registers Selected by TCBCONTROLBREG (accessed through TCBDATA)

REG[4:0]
Register
Selected Register Description Compliance

0 TCBCONFIG TCB Configuration register that contains information about the TCB hardware configu-
ration.

Required

1-3 Reserved Reserved for future use. Reserved

4 TCBTW Trace Word Read. This register holds the Trace Word just read from on-line trace mem-
ory.

Required if on-
chip memory

exists.5 TCBRDP Trace Word Read Pointer. Points to the location in the on-line trace memory where the
next Trace Word will be read. A TW read has the side-effect of post-incrementing this
register value to point to the next TW location. (A maximum value wraps the address
around to the beginning of the trace memory.)

6 TCBWRP Trace Word Write Pointer. Points to the location in the on-line trace memory where the
next new Trace Word will be written.

7 TCBSTP Trace Word Start Pointer. Pointer into Trace Buffer that is used to determine when all
entries in the trace buffer have been filled.

8-15 Reserved Reserved for future use. Reserved
MIPS® PDtrace™ Specification, Revision 6.16 67

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Trace Control Block (TCB) Registers
8.1 TCBCONTROLA Register

The trace output from the processor on the PDtrace interface can be controlled by the trace input signals to the proces-
sor from the TCB. The TCB uses a control register, TCBCONTROLA, whose values are used to change the signal val-
ues on the PDtrace input interface. External software (i.e., debugger), can therefore manipulate the trace output by
writing to the TCBCONTROLA register.

The TCBCONTROLA register is written by the EJTAG TAP controller instruction TCBCONTROLA (0x10). See the
MIPS EJTAG Specification (MD00047) for more details regarding new TAP instructions. Starting with PDtrace rev
6.00, this register is also mapped to offset 0x3000 in drseg. See Section 8.15 “Memory-Mapped Access to PDtrace™
Control and On-Chip Trace RAM” on page 91 for information on how this register can be accessed via drseg.

Compliance: This register is required.

The format of the TCBCONTROLA register is shown below, and the fields are described in Table 8.3.

Figure 8.1 TCBCONTROLA Register Format

16-23 TCBTRIGx Trigger Control registers 0-7 are used to specify some conditions that cause the firing
of triggers, and to control the resulting action.

Optional

24-31 Reserved Reserved for future use. Reserved

31 30 29 27 26 25 24 23 22 20 19 18 17 16 15 14 13 12 5 4 3 2 1 0

SyPExt Impl 0 VModes ADW SyP TB IO D E S K U ASID G
TF
C
R

T
LS
M

TI
M

On

Table 8.2 Registers Selected by TCBCONTROLBREG (accessed through TCBDATA) (Continued)

REG[4:0]
Register
Selected Register Description Compliance
68 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.1 TCBCONTROLA Register
Table 8.3 TCBCONTROLA Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

SyPExt 31:30 These two bits used to be implementation-specific until
PDtrace spec revision 06.00, when it reverts to architectur-
ally defined bits to extend the SyP (sync period) field for
implementations that need a higher numbers of cycles
between synchronization events.
The value of SyP is extended by assuming that these two
bits are juxtaposed to the left of the three bits of SyP
(SyPExt.SyP). When only SyP was used to specify the

synchronization period, the value was 2x, where x was
computed from SyP by adding 5 to the actual value repre-
sented by the bits. A similar formula is applied to the 5
bits just obtained by the juxtaposition of SyPExt and SyP.

Sync period values greater than 231 are UNPREDICT-
ABLE. Since the value of 11010 represents the value of 31
(with +5), all values greater than 11010 are UNPREDICT-
ABLE.

Note that with these new bits, a sync period range of 25 to

231 cycles can now be obtained.

0 or R/W
(for spec
revisions
06.00 and

higher)

0 Required after
PDtrace revi-

sion 06.00 and
higher

Impl 29:27 This field is reserved for implementation-specific use.
Refer to the processor specification for the format and def-
inition of this field.

Undefined Optional

0 26 Reserved for future use. Must be written as zero; returns
zero on read.

0 0 Required

VModes 25:24 This field specifies the type of tracing that is supported by
the processor, as follows:

This field is preset to the TCB register value ValidModes

R Preset Required

ADW 23 The address and data value width used in the trace for-
mats.
0: The width is 16 bits.
1: The width is 32 bits.

R Preset Required

Encoding Meaning

00 PC tracing only

01 PC and load and store address tracing
only

10 PC, load, and store address, and load
and store data.

11 Reserved
MIPS® PDtrace™ Specification, Revision 6.16 69

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Trace Control Block (TCB) Registers
SyP 22:20 Used to indicate the synchronization period.
The period (in cycles) between which the periodic syn-
chronization information is to be sent is defined as shown
in the table below, when the trace buffer is either on-chip
or off-chip (as determined by the TCBCONTROLBOfC bit).

R/W 000 Required

TB 19 Trace All Branches. This signal is used to indicate that the
core must trace either full or incremental PC values for all
branches instead of only the unpredictable ones.

R/W Undefined Required

IO 18 Inhibit Overflow. This signal is used to indicate to the core
trace logic that slow but complete tracing is desired.
Hence, the core tracing logic must not allow a FIFO over-
flow, which results in discarded trace data. This is
achieved by stalling the pipeline when the FIFO is nearly
full, so that no trace records are lost.

R/W Undefined Required

D 17 When set to one, tracing is enabled in Debug mode, i.e.,
when the DM bit is one in the Debug register. For trace to
be enabled in Debug mode, the On bit must be one and
either the G bit must be one, or the current process must
match the ASID field in this register.
When set to zero, trace is disabled in Debug mode, regard-
less of other bits.

R/W Undefined Required

E 16 This controls when tracing is enabled. When set, tracing is
enabled when either the EXL or ERL bits in the Status reg-
ister is one, provided that the On bit (bit 0) is also set, and
either the G bit is set or the current process ASID matches
the ASID field in this register.

R/W Undefined Required

S 15 When set, tracing is enabled when the core is in Supervi-
sor mode as defined in the MIPS32 or MIPS64 architec-
ture specification, the On bit (bit 0) is set, and either the G
bit is set or the current process ASID matches the ASID
field in this register.

R/W Undefined Required

Table 8.3 TCBCONTROLA Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

SyP Sync Period

000 25

001 26

010 27

011 28

100 29

101 210

110 211

111 212
70 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.2 TCBCONTROLB Register
8.2 TCBCONTROLB Register

The TCB includes a second control register, TCBCONTROLB (0x11). This register controls what happens to the trace
information once it arrives at the TCB. Starting with PDtrace rev 6.00, this register is also mapped to offset 0x3008 in

K 14 When set, this enables tracing when the On bit is set and
the core is in Kernel mode. Unlike the usual definition of
Kernel Mode, this bit enables tracing only when the ERL
and EXL bits in the Status register are zero, the On bit (bit
0) is set, and either the G bit is set or the current process
ASID matches the ASID field in this register.

R/W Undefined Required

U 13 When set, this enables tracing when the core is in User
mode as defined in the MIPS32 or MIPS64 architecture
specification, the On bit (bit 0) is set, and either the G bit is
set or the current process ASID matches the ASID field in
this register.

R/W Undefined Required

ASID 12:5 The ASID field to match when the G bit is zero. When the
G bit is one, this field is ignored.

R/W Undefined Required

G 4 When set, tracing is enabled for all processes, provided
that other enabling functions (U, S, etc.,) are also true.

R/W Undefined Required

TFCR 3 When set, this indicates to the PDtrace interface that the
optional Fcr bit must be traced in the appropriate trace for-
mats. If PC tracing is disabled, the full PC of the function
call (or return) instruction must also be traced. Note that
function call/return information is only traced if tracing is
actually enabled for the current mode.

R/W Undefined Required for
PDtrace revi-
sions 4.00 and

higher

TLSM 2 When set, this indicates to the PDtrace interface that infor-
mation about data cache misses should be traced. If PC,
load/store address and data tracing are disabled (see the
TraceControl2Mode field), the full PC and load/store

address are traced for data cache misses. If load/store data
tracing is enabled, the LSm bit must be traced in the appro-
priate trace format. Note that data cache miss information
is only traced if tracing is actually enabled for the current
mode.

R/W Undefined Required for
PDtrace revi-
sions 4.00 and

higher

TIM 1 When set, this indicates to the PDtrace interface that the
optional Im bit must be traced in the appropriate trace for-
mats. If PC tracing is disabled, the full PC of the instruc-
tion that missed in the I-cache must be traced. Note that
instruction cache miss information is only traced if tracing
is actually enabled in the current mode.

R/W Undefined Required for
PDtrace revi-
sions 4.00 and

higher

On 0 This is the global trace enable switch to the core. When
zero, tracing from the core is always disabled, unless
enabled by core internal software override.
When set to one, tracing is enabled whenever the other
enabling bits are also true.

R/W 0 Required

Table 8.3 TCBCONTROLA Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits
MIPS® PDtrace™ Specification, Revision 6.16 71

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Trace Control Block (TCB) Registers
drseg. See Section 8.15 “Memory-Mapped Access to PDtrace™ Control and On-Chip Trace RAM” on page 91 for
information on how this register can be accessed via drseg.

Compliance: This register is required.

The format of the TCBCONTROLB register is shown below, and the fields are described in Table 8.4.

Figure 8.2 TCBCONTROLB Register Format

31
3
0

2
8 27 26

2
5

2
1 20 19 18 17 16 15 14 13 12 11 10 8 7 6 3 2 1 0

WE Impl
TWSrc-
Width

REG WR 0 TRPAD FDT RM TR BF TM
TL
SIF

CR Cal TWSrcVal
C
A

Of
C

E
N

Table 8.4 TCBCONTROLB Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

WE 31 Write Enable.
Only when set to 1 will the other bits be written in
TCBCONTROLB.
This bit always reads 0.

R 0 Required

Impl 30:28 This field is reserved for implementations. Refer to the
processor specification for the format and definition of
this field.

Undefined Optional

TWSrc-
Width

27:26 Used to indicate the number of bits used in the source field
of the Trace Word. This is a configuration option of the
core that cannot be modified by software.

R Preset Required for
PDtrace revi-
sions 4.00 and

higher

REG 25:21 Register select. This field specifies the register (one
among the set of registers in Table 8.2) that can be
accessed through the TCBDATA register.

R/W 0 Required

WR 20 The write register field, when set, allows the register
selected by the REG field to be written as well as read
when TCBDATA is accessed. Otherwise, the selected regis-
ter is read only.
Note that a JTAG register cannot be only written—it is
always read and written. Therefore, a register that has a
side-effect on read (see 8.9 “TCBRDP Register (Reg 5)”)
will have the same side-effect when written, since a read
also happens on a write. Hence, it is specified that when
this field is set, it is implementation-dependent whether a
side-effect of a read will occur when writing.

R/W 0 Required

0 19 Reserved for future use. Must be written as zero; returns
zero on read.

0 0 Reserved

Encoding Meaning

00 Zero source field width

01 2-bit source field width

10 4-bit source field width

11 Reserved
72 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.2 TCBCONTROLB Register
TRPAD 18 Trace RAM access disable bit. Disables program software
access to the on-chip trace RAM using load/store instruc-
tions. If probe access is not provided in the implementa-
tion, this register bit must be tied to zero to allow software
to control access.

The affected registers are TCBTW*, TCBRDP, TCBWP,
TCBSTP. None of these registers are writeable when
TRPAD is set. Reads to TCBTW* returns zero with no side-
effects when TRPAD is set.

R/W 0 Required after
revision 06.00

and higher

FDT 17 Filtered Data Trace Mode enable bit. When the bit is 0,
this mode is disabled. When set to 1, this mode is enabled.
Reset value is 0. This mode is described in Section 3.18 on
page 36.

R/W 0 Required after
revision 06.00

and higher

RM 16 Read on-chip trace memory.
When written to 1, the read address pointer of the on-chip
memory in register TCBRDP is set to the value in
TCBSTP.
Subsequent access to the TCBTW register (through the
TCBDATA register) will automatically increment the read
pointer in register TCBRDP after each read.
When the write pointer is reached, this bit is automatically
reset to 0, and the TCBTW register will read all zeros.
When set to 1, writing 1 again has no effect. The bit is
reset by setting the TR bit or by reading the last Trace
word in TCBTW.

R/W 0 Required
if on-chip

memory exists.
Otherwise
reserved.

TR 15 Trace memory reset.
When written to one, the address pointers for the on-chip
trace memory TCBSTP, TCBRDP and TCBWRP are reset
to zero. Also the RM and BF bits are reset to 0.
This bit is automatically reset to 0 when the reset specified
above is completed.

R/W1 0 Required
if on-chip

memory exists.
Otherwise
reserved.

BF 14 Buffer Full indicator that the TCB uses to communicate to
external software that the on-chip trace memory is full.
Note that this applies only when the on-chip trace memory
is being used in the Trace-From and Trace-To modes. (See
C.1 “On-Chip Trace Memory” on page 124.)
This bit is cleared when writing a 1 to the TR bit

R 0 Required
if on-chip

memory exists.
Otherwise
reserved.

Table 8.4 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits
MIPS® PDtrace™ Specification, Revision 6.16 73

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Trace Control Block (TCB) Registers
TM 13:12 Trace Mode. This field determines how the trace memory
is filled when using the simple-break control in the
PDtrace IF to start or stop trace.

In Trace-To mode, the on-chip trace memory is filled, con-
tinuously wrapping around, overwriting older Trace
Words, as long as there is trace data coming from the core.
In Trace-From mode, the on-chip trace memory is filled
from the point that the core starts tracing until the on-chip
trace memory is full (when the write pointer address is the
same as the start pointer address).
In both cases, de-asserting the EN bit in this register will
also stop the fill to the trace memory.
If a TCBTRIGx trigger control register is used to start/stop
tracing, then this field should be set to Trace-To mode.

R/W 0 Required
if on-chip

memory exists.
Otherwise
reserved.

TLSIF 11 When set, this indicates to the TCB that information about
Load and Store data cache misses, instruction cache
misses, and function calls are to be taken from the PDtrace
interface and traced out in the appropriate trace formats as
the three optional bits LSm, Im, and Fcr.

R/W 0 Required for
PDtrace revi-
sions 4.00 and

higher

CR 10:8 Off-chip Clock Ratio. Writing this field sets the ratio of
the core clock to the off-chip trace memory interface
clock. The clock-ratio encoding is shown in Table 8.5.
Remark: For example, a clock ratio of 1:2 implies a two
times slow down of the Probe interface clock to the core
clock. However, one data packet is sent per core clock ris-
ing edge, while a data packet is sent on every edge of the
Probe interface clock, since the Probe interface works in
double data rate (DDR) mode.

R/W 100 Required
if off-chip trace
interface exists.

Otherwise
reserved.

Table 8.4 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

TM Trace Mode

00 Trace-To

01 Trace-From

10 Reserved

11 Reserved
74 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.2 TCBCONTROLB Register
Cal 7 Calibrate off-chip trace interface.
If set, the off-chip trace pins will produce the trace pattern
shown below in consecutive trace clock cycles. If more
than 4 data pins exist, the pattern is replicated for each set
of 4 pins. The pattern repeats from top to bottom until the
Cal bit is deasserted.

Note: The clock source of the TCB and PIB must be run-
ning.

R/W 0 Required
if off-chip trace
interface exists.

Otherwise
reserved.

TWSrcVal 6:3 These bits are used to indicate the value of the TW source
field that will be traced if TWSrcBits indicates a source bit
field width of 2 or 4 bits. Note that if the field is 2 bits,
then only bits 4:3 of this field will be used in the TW.

R/W 0 Required for
PDtrace revi-
sions 4.00 and

higher.

CA 2 Cycle accurate trace.
When set to 1 the trace will include stall information.
When set to 0 the trace will exclude stall information, and
remove bit zero from all transmitted TF’s.
The stall information included/excluded is:
• TF6 formats with TCBcode 0001 and 0101.
• All TF1 formats except within the context of multi-pipe

processor tracing (when it is used for individual pipes
within the sequence of pipe outputs).

R/W 0 Required

OfC 1 If set to 1, trace is sent to off-chip memory using TR_DATA
pins.
If not set, trace info is sent to on-chip memory.
This bit is read only if either off-chip or on-chip option
exists.

R/W Preset Required

Table 8.4 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Calibrations pattern

3 2 1 0

T
hi

s
pa

tte
rn

 is
 r

ep
lic

at
ed

 f
or

 e
ve

ry
 4

 b
its

of
T

R
_D

AT
A

 p
in

s.

0 0 0 0

1 1 1 1

0 0 0 0

0 1 0 1

1 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1
MIPS® PDtrace™ Specification, Revision 6.16 75

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Trace Control Block (TCB) Registers
8.3 TCBCONTROLC Register

The trace output from the processor on the PDtrace interface can be controlled by the trace input signals to the proces-
sor from the TCB. The TCB uses a control register, TCBCONTROLC, whose values are used to change the signal val-
ues on the PDtrace input interface. External software (i.e., debugger), can therefore manipulate the trace output by
writing the TCBCONTROLC register.

The TCBCONTROLC register is written by an EJTAG TAP controller instruction, TCBCONTROLC (0x13). See the
MIPS EJTAG Specification (MD00047) for more details regarding new TAP instructions. Starting with PDtrace rev
6.00, this register is also mapped to offset 0x3010 in drseg. See Section 8.15 “Memory-Mapped Access to PDtrace™
Control and On-Chip Trace RAM” on page 91 on how this register can be accessed via drseg.

Compliance: This register is required for PDtrace revisions 4.00 and higher.

EN 0 Enable trace.
This is the master enable for trace to be generated from the
TCB. This bit can be set or cleared, either by writing this
register or from a start/stop trigger.
When set to 1, trace information is sampled on the output
pins or written into the on-chip trace memory. Trace
Words are generated and sent to either on-chip memory or
to the Trace Probe. The target of the trace is selected by
the OfC bit.
When set to 0, trace information on the output trace pins is
ignored. A potential TF6-stop (from a stop trigger) is gen-
erated as the last information, the TCB pipe-line is
flushed, and trace output is stopped.

R/W 0 Required

Table 8.5 Clock Ratio encoding of the CR field

CR/CRMin/CRMax Clock Ratio

000 8:1 (Trace clock is eight times that of core clock)

001 4:1 (Trace clock is four times that of core clock)

010 2:1 (Trace clock is double that of core clock)

011 1:1 (Trace clock is same as core clock)

100 1:2 (Trace clock is one half of core clock)

101 1:4 (Trace clock is one fourth of core clock)

110 1:6 (Trace clock is one sixth of core clock)

111 1:8 (Trace clock is one eighth of core clock)

Table 8.4 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits
76 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.3 TCBCONTROLC Register
The format of the TCBCONTROLC register is shown below, and the fields are described in Table 8.3.

Figure 8.3 TCBCONTROLC Register Format
31 30 29 28 27 23 22 21 14 13 12 5 4 2 1 0

0
Num
DO

Mode
CP
Uv
alid

CPUid
TC
vali
d

TCnum TCbits

MT
trac
eTy
pe

MT
trac
eT
C

Table 8.6 TCBCONTROLC Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 31:30 Reserved for future use. Must be written as zero; returns
zero on read.

0 0 Reserved

NumDO 29:28 Specifies the number of bits needed by this implementa-
tion to specify the DataOrder:
00 - Four bits
01 - Five bits
10 - Six bits
11 - Eight bits

R Preset Required for
PDtrace revi-
sion 5.0 and

higher

Mode 27:23 When tracing is turned on, this bit specifies what informa-
tion is to be traced by the core. It uses 5 bits, where each
bit turns on tracing of a specific tracing mode. The table

shows what trace value is turned on when that bit value is
a 1. If the corresponding bit is 0, the Trace Value shown in
column two is not traced by the processor. This implemen-
tation is required for all processors using PDtrace specifi-
cation 4.00 and higher.
Obviously, the processor has to support the tracing mode
that is being requested for this bit to have any effect. For
example, if the processor only supports PC tracing, then
only bit 0 is read by the processor, and other bits are
ignored, and so on. Which bits are ignored and which are
read can be obtained by reading the ValidModes bits.
It is optional for an implementation to allow PC tracing to
be turned off. This must be clearly documented by the core
implementation-specific document. When it is optional,
bit 23 is tied to a value of 1, and setting bit 23 to 0 is sim-
ply ignored by the processor. Reading this bit always
returns a value of one.

R/W 0 Required for
PDtrace revi-
sions 4.00 and

higher
Bit # Set Trace The Following

0 PC

1 Load address

2 Store address

3 Load data

4 Store data
MIPS® PDtrace™ Specification, Revision 6.16 77

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Trace Control Block (TCB) Registers
CPUvalid 22 This bit indicates whether or not to use the value in the
CPUid field as the CPU to be traced. Only implemented on
a processor with MT or multi-core SOC. Otherwise, this
field must be written as zero and returns zero on read.
When set, the CPUId field specifies the number of the VPE
or CPU that must be traced. Otherwise, instructions from
all VPEs are traced when other conditions for tracing are
valid. On an MT system, this bit is ignored if TCV is
asserted.

R/W 0 Required for
PDtrace revi-
sions 4.00 and
higher if MT is

present or
multi-core

CPUId 21:14 This bit indicates the value of the CPU ID to be traced if
CPUvalid is set.

R/W Undefined Required for
PDtrace revi-
sions 4.00 and
higher if MT is

present or
multi-core

TCvalid 13 This bit indicates whether or not to use the value in the
TCnum field as the TC to be trace.

R/W 0 Required for
PDtrace revi-
sions 4.00 and
higher if MT is

present

TCnum 12:5 This bit indicates the value of the TC to be traced if
TCvalid is set.

R/W Undefined Required for
PDtrace revi-
sions 4.00 and
higher if MT is

present

TCbits 4:2 This value is used by the TCB to determine the number of
bits needed to represent the TC value for this MT ASE
core configuration. This value can range from 1 to 8 bits
when the value is 0 to 7. This determines the number of
bits that will be used in the trace formats generated by this
core.

R Preset Required for
PDtrace revi-
sions 4.00 and
higher if MT is

present

MTtrace-
Type

1 This bit indicates the type of implemented multi-thread-
ing: fine-grained, i.e., switch threads every cycle (bit value
0), or coarse-grained, which is also referred to as block
multithreading (bit value 1).

R Preset Required for
PDtrace revi-
sions 4.00 and
higher if MT is

present

MTtraceTC 0 This bit is used by the TCB to either disable or enable TC
tracing. A value of 0 implies that a TC value is not traced,
and a value of 1 implies that a TC value is traced. Whether
or not the TC value is traced usingTF7 format or aug-
mented TF formats is determined by the type of multi-
threading, that is, the MTtraceType field. If the type bit is
0, that is, fine-grained multi-threading, then each TF for-
mat is augmented by the TC information. If the type bit is
1, then a TF7 format is used, and each TF format is not
augmented.

R/W Undefined Required for
PDtrace revi-
sions 4.00 and
higher if MT is

present

Table 8.6 TCBCONTROLC Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits
78 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.4 TCBControlD Register
8.4 TCBControlD Register

The trace control block adds a new register, TCBControlD, to control trace output from the Coherence Manager in the
MIPS 1004K core. Note: The value of the TCBControlB field TWSrcWidth must be set to ‘10’ on a 1004K core to
indicate that the source ID field is 4 bits wide. The TCBCONTROLD register is written by the EJTAG TAP controller
instruction TCBCONTROLD (0x15). See the MIPS EJTAG Specification (MD00047) for more details regarding new
TAP instructions. Starting with PDtrace rev 6.00, this register is also mapped to offset 0x3018 in drseg. See Section
8.15 “Memory-Mapped Access to PDtrace™ Control and On-Chip Trace RAM” on page 91 for information on how
this register can be accessed via drseg.

Compliance: This register is required for PDtrace revisions 05.00 and higher. In a non-coherent core that implements
PDtrace rev 5.00 or higher, all bit-fields are read-only.

The format of the TCBCONTROLD register is shown below, and the fields are described in Table 8.7.

Figure 8.4 TCBCONTROLD Register Format
31 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 2 1 0

Impl Reserved
TWS
rcVal

WB 0 IO TLev AE
Core_CM

_En
CM_
En

Table 8.7 TCBCONTROLD Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Impl 31:16 Reserved for implementations. Check core documentation Undefined Optional

Reserved 15:12 Reserved for future use. Must be written as 0 and reads as 0 0 0 Required for
PDtrace revi-
sion 05.00 or

higher

TWSrcVal 11:8 The source ID of the CM. 0 0 Required for
PDtrace revi-
sion 05.00 or

higher

WB 7 When this bit is set, Coherent Writeback requests are
traced. If this bit is not set, all Coherent Writeback requests
are suppressed from the CM trace stream

R/W 0 Required for
PDtrace revi-
sion 05.00 or

higher

Reserved 6 Reserved for future use. Must be written as 0, and read as 0 0 0 Required for
PDtrace revi-
sion 05.00 or

higher

IO 5 Inhibit Overflow on CM FIFO full condition. Will stall the
CM until forward progress can be made

R/W Undefined Required for
PDtrace revi-
sion 05.00 or

higher
MIPS® PDtrace™ Specification, Revision 6.16 79

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Trace Control Block (TCB) Registers
Since each core in the system has its own set of TCBControl registers, one core must be made the ‘master’ core that
controls trace functionality for the CM. This can be done using a CMP GCR control register to designate a core as the
master trace control for the CM. This control register is located in the global debug block within the GCR address
space of the CM, at offset 0x0000. The format of the register is given below.

Figure 8.5 PDtrace Control Configuration Register Format

TLev 4:3 This defines the current trace level being used by CM trac-
ing

R/W Undefined Required for
PDtrace revi-
sion 05.00 or

higher

AE 2 When set to 1, address tracing is always enabled for the
CM. This affects trace output from the serialization unit of
the CM.

R/W 0 Required for
PDtrace revi-
sion 05.00 or

higher

Core_CM_En 1 Each core can enable or disable CM tracing using this bit.
This bit is not routed through the master core, but is indi-
vidually controlled by each core. Setting this bit can enable
tracing from the CM even if tracing is being controlled
through software, if all other enabling functions are true.

R/W 0 Required for
PDtrace revi-
sion 05.00 or

higher

CM_EN 0 This is the master trace enable for the CM. When zero, trac-
ing from the CM is always disabled. When set to one, trac-
ing is enabled if other enabling functions are true.

R/W 0 Required for
PDtrace revi-
sion 05.00 or

higher

Table 8.8 PDtrace Control Configuration Register

Name Bits Description Read / Write Reset State Compliance

0 31-5 Reserved for future use. Must be written as zero; returns zero on read. R 0 Required

TS 4 The trace select bit is used to select between the hardware and the software
trace control bits. A value of zero selects the external hardware trace block
signals, and a value of one selects the trace control bits in the CMTrace-
Control register.

R/W 0 Required

CoreID 3:0 ID of core that controls PDtrace configuration for the coherent subsystem. R/W 0 Required

Table 8.7 TCBCONTROLD Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

00 No Timing Information

01 Include Stall Times, Causes

10 Reserved

11 Reserved

31 4 3 2 1 0

0 TS Core ID
80 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.5 TCBCONTROLE Register
Each core in the coherent multiprocessor system has independent control over the Core_CM_EN bit. (i.e., this field is
not muxed using the GCR control register. Each core can turn on or turn off trace by setting this bit. The signal will be
a wire-or of the N core signals and the SW_Trace_ON signal).

8.5 TCBCONTROLE Register

The trace output from the processor on the PDtrace interface can be controlled by the trace input signals to the proces-
sor from the TCB. The TCB uses a control register, TCBCONTROLE, whose values are used to change the signal val-
ues on the PDtrace input interface. External software (i.e., debugger), can therefore manipulate the trace output by
writing the TCBCONTROLE register. This register was added for PDtrace specification revision 06.00 and higher.

The TCBCONTROLE register is written by the EJTAG TAP controller instruction TCBCONTROLE (0x16). See the
MIPS EJTAG Specification (MD00047) for more details regarding new TAP instructions. Starting with PDtrace rev
6.00, this register is also mapped to offset 0x3020 in drseg. See Section 8.15 “Memory-Mapped Access to PDtrace™
Control and On-Chip Trace RAM” on page 91 on how this register can be accessed via drseg.

Compliance: This register is required for PDtrace revisions 06.00 and higher.

The format of the TCBCONTROLE register is shown below, and the fields are described in Table 8.9.

Figure 8.6 TCBCONTROLE Register Format
31 23 22 21 14 13 12 8 7 6 5 4 3 2 1 0

0 TdIDLE 0
PecO

vf
PeCF
CR

PeC
BP

PeC
Sync

PeC
E

PeC

Table 8.9 TCBCONTROLE Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 31:9 Reserved for future use. Must be written as zero; returns
zero on read.

0 0 Reserved

TrIDLE 8 Trace Unit Idle. This bit indicates if the trace hardware is
currently idle (not processing any data). This can be useful
when switching control of trace from hardware to software
and vice versa. The bit is read-only and updated by the
trace hardware.

R 1 Required after
revision 06.00

and higher

0 7:6 Reserved for future use; Must be written as zero; returns
zero on read. (Hint to architect: reserved for future expan-
sion of performance counter trace events).

0 0 Reserved

PeCOvf 5 Trace performance counters when one of the performance
counters overflows its count value. Enabled when set to 1.

R/W 0 Required after
revision 06.00

and higher

PeCFCR 4 Trace performance counters on function call/return or on
an exception handler entry. Enabled when set to 1.

R/W 0 Required after
revision 06.00

and higher

PeCBP 3 Trace performance counters on hardware breakpoint
match trigger. Enabled when set to 1.

R/W 0 Required after
revision 06.00

and higher
MIPS® PDtrace™ Specification, Revision 6.16 81

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Trace Control Block (TCB) Registers
8.6 TCBDATA Register

The TCBDATA register (0x12) is used to access the registers defined by the TCBCONTROLBREG field, see Table 8.2.
Regardless of which register or data entry is accessed through TCBDATA, the register is only written if the
TCBCONTROLBWR bit is set. For read only registers the TCBCONTROLBWR is a don’t-care.

Compliance: This register is required.

The format of the TCBDATA register is shown below, and the field is described in Table 8.10. The width of TCBDATA
is 64 bits when on-chip trace words (TWs) are accessed (TCBTW access).

Figure 8.7 TCBDATA Register Format

8.7 TCBCONFIG Register (Reg 0)

The TCBCONFIG register holds hardware configuration information in the TCB. This register is also mapped to off-
set 0x3028 in drseg. See Section 8.15 “Memory-Mapped Access to PDtrace™ Control and On-Chip Trace RAM” on
page 91 for information on how this register can be accessed via drseg..

PeCSync 2 Trace performance counters on synchronization counter
expiration. Enabled when set to 1.

R/W 0 Required after
revision 06.00

and higher

PeCE 1 Performance counter tracing enable. When set to 0, the
tracing out of performance counter values as specified is
disabled. To enable, this bit must be set to 1. This bit is
used under software control. When trace is controlled by
an external probe, this enabling is done via the TCB con-
trol register.

R/W 0 Required after
revision 06.00

and higher

PeC 0 Specifies whether or not Performance Control Tracing is
implemented. This is an optional feature that may be omit-
ted by implementation choice. See 3.17 “Tracing
Performance Counter Values” on page 35 for details.

R Preset Required after
revision 06.00

and higher

31(63) 0

Data

Table 8.10 TCBDATA Register Field Descriptions

Fields

Description Read/Write
Reset
State ComplianceNames Bits

Data 31:0
63:0

Register fields or data as defined by
the TCBCONTROLBREG field

Only writable if
TCBCONTROLBWR is

set

0 Required

Table 8.9 TCBCONTROLE Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits
82 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.7 TCBCONFIG Register (Reg 0)
Compliance: This register is required.

Figure 8.8 TCBCONFIG Register Format
31 30 25 24 21 20 17 16 14 13 11 10 9 8 6 5 4 3 0

CF
1

Impl TRIG SZ CRMax CRMin PW PiN
On
T

Of
T

REV

Table 8.11 TCBCONFIG Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

CF1 31 This bit is set if a TCBCONFIG1 register exists. In this
revision, TCBCONFIG1 does not exist, and this bit reads
zero.

R 0 Required

Impl 30:25 This field is reserved for implementations. Refer to the
processor specification for the format and definition of
this field.

0 Undefined Optional

TRIG 24:21 Number of triggers implemented. This also indicates the
number of TCBTRIGx registers that exist.

R Legal values
are 0 - 8

Required

SZ 20:17 On-chip trace memory size. This field holds the encoded
size of the on-chip trace memory.

The size in bytes is given by 2(SZ+8). I.e., the lowest value
is 256 bytes, and the highest is 8Mb.

R Preset Required
if on-chip

memory exists.
Otherwise
reserved.

CRMax 16:14 Off-chip Maximum Clock Ratio.
This field indicates the maximum ratio of the core clock to
the off-chip trace memory interface clock. The clock-ratio
encoding is shown in Table 8.5.

R Preset Required
if off-chip trace
interface exists.

Otherwise
reserved.

CRMin 13:11 Off-chip Minimum Clock Ratio.
This field indicates the minimum ratio of the core clock to
the off-chip trace memory interface clock. The clock-ratio
encoding is shown in Table 8.5.

R Preset Required
if off-chip trace
interface exists.

Otherwise
reserved.

PW 10:9 Probe Width: Number of bits available on the off-chip
trace interface TR_DATA pins. The number of TR_DATA
pins is encoded, as shown in the table.

This field is preset based on input signals to the TCB and
the actual capability of the TCB.

R Preset Required
if off-chip trace
interface exists.

Otherwise
reserved.PW Number of bits used on TR_DATA

00 4 bits

01 8 bits

10 16 bits

11 reserved
MIPS® PDtrace™ Specification, Revision 6.16 83

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Trace Control Block (TCB) Registers
8.8 TCBTW Register (Reg 4)

The TCBTW register is used to read Trace Words from the on-chip trace memory. The TW read is the TW pointed to
by the TCBRDP register. A side effect of reading the TCBTW register is that the TCBRDP register increments to the
next TW in the on-chip trace memory. If TCBRDP is at the max size of the on-chip trace memory, the increment
wraps back to address zero. Starting with PDtrace rev 6.00, the TCBTW register is mapped to offset 0x3100 in drseg.
To read a 64-bit trace word from memory on a 32-bit processor, the user is required to execute two load word instruc-
tions. The first instruction targets offset 0x3104 in drseg, and the second one accesses offset 0x3100. An access to off-
set 0x3100 automatically causes the read pointer to be incremented. The use of load halfword or load byte
instructions can lead to unpredictable results, and is not recommended. See Section 8.15 “Memory-Mapped Access

PiN 8:6 Pipe number.
For single-pipeline processors this field must read 0.
For multi-pipeline processor, this field indicates the num-
ber of pipes which are traced. If non-zero, this also indi-
cates that the 3-bit PgmOrder field is included in the TF2,
TF3 and TF4 Trace Formats, as shown in Figure 4.2
through Figure 4.8.
The table below indicates the number of bits in PgmOrder
for the possible values of PiN.

R Preset Required

OnT 5 When set, this bit indicates that on-chip trace memory is
present. This bit is preset based on the selected option
when the TCB is implemented.

R Preset Required

OfT 4 When set, this bit indicates that off-chip trace interface is
present. This bit is preset based on the selected option
when the TCB is implemented, and on the existence of a
PIB module (TC_PibPresent asserted).

R Preset Required

REV 3:0 Revision of TCB. An implementation that conforms to the
described architecture in this document (PDtrace revision
4.xx) must have revision 1. An implementation that con-
forms to PDtrace specification revision 05.00 must have
this field set to integer value 2. An implementation that
conforms to PDtrace specification 06.00 must have this
field set to integer value 3.

R 0 Required

Table 8.11 TCBCONFIG Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

PiN

Number
of Pipes
traced

PgmOrder field included
in the TF2, TF3 and TF4

Trace Formats

000 1 No

001 2 Yes

010 3

011 4

100 5

101 6

110 7

111 8
84 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.9 TCBRDP Register (Reg 5)
to PDtrace™ Control and On-Chip Trace RAM” on page 91 for information on how this register can be accessed via
drseg..

Compliance: Required if on-chip trace memory is implemented.

The format of the TCBTW register is shown below, and the field is described in Table 8.12.

Figure 8.9 TCBTW Register Format

8.9 TCBRDP Register (Reg 5)

The TCBRDP register is the address pointer to on-chip trace memory. It points to the TW read when reading the
TCBTW register. When writing the TCBCONTROLBRM bit to 1, this pointer is reset to the current value of TCBSTP.
Starting with PDtrace rev 6.00, this register is also mapped to offset 0x3108 in drseg. See Section 8.15 “Memory-
Mapped Access to PDtrace™ Control and On-Chip Trace RAM” on page 91 on how this register can be accessed via
drseg..

Compliance: Required if on-chip trace memory is implemented.

The format of the TCBRDP register is shown below, and the field is described in Table 8.12. The value of n depends
on the size of the on-chip trace memory. Because the address points to a 64-bit TW, the lower three bits are always
zero.

Figure 8.10 TCBRDP Register Format

8.10 TCBWRP Register (Reg 6)

The TCBWRP register is the address pointer to on-chip trace memory. It points to the location where the next new TW
for on-chip trace will be written. Starting with PDtrace rev 6.00, this register is also mapped to offset 0x3110 in drseg.

63 0

Data

Table 8.12 TCBTW Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceNames Bits

Data 63:0 Trace Word R/W 0 Required

31 n+1 n 0

Address

Table 8.13 TCBRDP Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceNames Bits

Data 31:(n+1) Reserved. Must be written zero and reads back zero. 0 0 Required

Address n:0 Byte address of on-chip trace memory word. R/W 0 Required
MIPS® PDtrace™ Specification, Revision 6.16 85

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Trace Control Block (TCB) Registers
See Section 8.15 “Memory-Mapped Access to PDtrace™ Control and On-Chip Trace RAM” on page 91 on how this
register can be accessed via drseg.

Compliance: Required if on-chip trace memory is implemented.

The format of the TCBWRP register is shown below, and the field is described in Table 8.12. The value of n depends
on the size of the on-chip trace memory. Because the address points to a 64-bit TW, the lower three bits are always
zero.

Figure 8.11 TCBWRP Register Format

8.11 TCBSTP Register (Reg 7)

The TCBSTP register is the start pointer register. This pointer is used to determine when all entries in the trace buffer
have been filled (when TCBWRP has the same value as TCBSTP). This pointer is reset to zero when the
TCBCONTROLBTR bit is written to 1. If a continuous trace to on-chip memory wraps around the on-chip memory,
TSBSTP will have the same value as TCBWRP. Starting with PDtrace rev 6.00, this register is also mapped to offset
0x3118 in drseg. See Section 8.15 “Memory-Mapped Access to PDtrace™ Control and On-Chip Trace RAM” on
page 91 on how this register can be accessed via drseg..

Compliance: Required if on-chip trace memory is implemented.

The format of the TCBSTP register is shown below, and the field is described in Table 8.12. The value of n depends
on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero.

Figure 8.12 TCBSTP Register Format

31 n+1 n 0

Address

Table 8.14 TCBWRP Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceNames Bits

Data 31:(n+1) Reserved. Must be written zero and reads back zero. 0 0 Required

Address n:0 Byte address of on-chip trace memory word. R/W 0 Required

31 n+1 n 0

Address

Table 8.15 TCBSTP Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceNames Bits

Data 31:(n+1) Reserved. Must be written zero and reads back zero. 0 0 Required

Address n:0 Byte address of on-chip trace memory word. R/W 0 Required
86 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.12 TCBTRIGx Register (Reg 16-23)
8.12 TCBTRIGx Register (Reg 16-23)

Eight Trigger Control registers are defined. Each register is named TCBTRIGx, where x is a single digit number from
0 to 7 (TCBTRIG0 is Reg 16). The actual number of trigger registers implemented is defined in the TCBCONFIGTRIG

field. An unimplemented register will read all zeros and writes are ignored. Starting with PDtrace rev 6.00, these reg-
isters are also mapped from offset 0x3200 to 0x3238 in drseg. See Section 8.15 “Memory-Mapped Access to
PDtrace™ Control and On-Chip Trace RAM” on page 91 on how this register can be accessed via drseg.

Each Trigger Control register controls when an associated trigger is fired and the resulting action. Refer to Chapter
10, “TCB Trigger Logic” on page 101 for a detailed description of trigger logic issues.

Compliance: The number of implemented trigger registers must be equal to the number in TCBCONFIGTRIG.

Figure 8.13 TCBTRIGx Register Format
31 24 23 22 20 19 16 15 14 13 11 10 7 6 5 4 3 2 1 0

TCBinfo
Tr
ac
e

Impl 0

C
H
Tr
o

P
D
Tr
o

Impl 0 DM

C
H
Tr
i

P
D
Tr
i

Type
F
O

T
R

Table 8.16 TCBTRIGx Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceNames Bits

TCBinfo 31:24 TCBinfo to be used in a TF6 trace format when this trigger
fires.

R/W 0 Required

Trace 23 When set, generate a TF6 trace information when this trig-
ger fires. Use TCBinfo field for the TCBinfo of TF6 and
use Type field for the two MSB of the TCBtype of TF6.
The two LSBs of TCBtype are 00.
The write value of this bit always controls the action from
the firing of this trigger.
When this trigger fires, if another higher priority trigger
fires simultaneously, then the action of this trigger can be
suppressed. That is, the issue of the TF6 format would be
suppressed. If this ever happens, this can be detected by
reading the value of this field. If the Trace field was set to
1, and this trigger action was suppressed, then the read of
this Trace field will return a 0. (Note that the read value is
always 0 if the write value was 0). The read value of 0
indicating a suppressed trigger action is valid until the
TCBTRIGx register is again written. That is, the read value
is 0 if the trigger fires but the trigger action was ever sup-
pressed, since the last write.

R/W 0 Required

Impl 22:20 These bits are reserved for implementation specific trigger
actions (internal to the TCB). Refer to the processor speci-
fication for the format and definition of this field.

0 Optional

0 19:16 Reserved. Must be written zero, reads back zero 0 0 Reserved

CHTro 15 When set, when this trigger fires, generate a single cycle
strobe on TC_ChipTrigOut.

R/W 0 Required
MIPS® PDtrace™ Specification, Revision 6.16 87

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Trace Control Block (TCB) Registers
PDTro 14 When set, when this trigger fires, generate a single cycle
strobe on TC_ProbeTrigOut.

R/W 0 Required

Impl 13:11 These bits are reserved for implementation specific trigger
sources (internal or external to the TCB). Refer to the pro-
cessor specification for the format and definition of this
field.

0 Optional

0 10:7 Reserved. Must be written zero, reads back zero 0 0 Reserved

DM 6 When set, this Trigger will fire when a rising edge on the
Debug mode indication from the core is detected.
The write value of this bit always controls when this trig-
ger will fire.
If this trigger fires because this DM field is set, i.e., this is
the cause of the trigger firing, then this can be determined
by reading this DM field. If the DM field was written 1,
then a read value of 1 indicates that this trigger has fired
since the last write. Note that the action from a firing trig-
ger could have been suppressed, and therefore, reading
this field would be the only definite way to tell if the trig-
ger fired and whether this was the cause. This special read
value is valid until the TCBTRIGx register is written.
Note that if the write value was 0 the read value is always
0.

R/W 0 Optional

CHTri 5 When set, this Trigger will fire when a rising edge on
TC_ChipTrigIn is detected.
The write value of this bit always controls when this trig-
ger will fire.
If this trigger fires because this CHTri field is set, i.e., this
is the cause of the trigger firing, then this can be deter-
mined by reading this CHTri field. If the CHTri field was
written 1, then a read value of 1 indicates that this trigger
has fired since the last write. Note that the action from a
firing trigger could have been suppressed, and therefore,
reading this field would be the only definite way to tell if
the trigger fired and whether this was the cause. This spe-
cial read value is valid until the TCBTRIGx register is writ-
ten.
Note that if the write value was 0 the read value is always
0.

R/W 0 Required

Table 8.16 TCBTRIGx Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceNames Bits
88 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.12 TCBTRIGx Register (Reg 16-23)
PDTri 4 When set, this Trigger will fire when a rising edge on
TC_ProbeTrigIn is detected.
The write value of this bit always controls when this trig-
ger will fire.
If this trigger fires because this PDTri field is set, i.e., this
is the cause of the trigger firing, then this can be deter-
mined by reading this PDTri field. If the PDTri field was
written 1, then a read value of 1 indicates that this trigger
has fired since the last write. Note that the action from a
firing trigger could have been suppressed, and therefore,
reading this field would be the only definite way to tell if
the trigger fired and whether this was the cause. This spe-
cial read value is valid until the TCBTRIGx register is writ-
ten.
Note that if the write value was 0 the read value is always
0.

R/W 0 Required

Table 8.16 TCBTRIGx Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceNames Bits
MIPS® PDtrace™ Specification, Revision 6.16 89

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Trace Control Block (TCB) Registers
Type 3:2 Trigger Type: The Type indicates the action to take when
this trigger fires. The table below show the Type values
and the corresponding Trigger action.

The action is to set or clear the TCBCONTROLBEN bit. A

Start trigger will set TCBCONTROLBEN, an End trigger

will clear TCBCONTROLBEN. Prior to revision 6.00 of the

PDtrace architecture, the value of ‘10’ indicated a Center
trigger. This has been deprecated as of revision 6.00 and is
reserved for future use.
If Trace is set, then a TF6 format is added to the trace
words. For Start and Info triggers this is done before any
other TFs in that same cycle. For End triggers, the TF6
format is added after any other TFs in that same cycle.
If the TCBCONTROLBTM field is implemented it must be

set to Trace-To mode (00), for the Type field to control on-
chip trace fill.
The write value of this bit always controls the behavior of
this trigger.
When this trigger fires, the read value will change to indi-
cate if the trigger action was ever suppressed. If so the
read value will be 11. If the write value was 11 the read
value is always 11. This special read value is valid until
the TCBTRIGx register is written.
If the condition is not true, i.e., either the trigger did not
fire or it fired and the action was not suppressed, then it is
valid for the read value to read anything but 11.

R/W 0 Required

FO 1 Fire Once. When set, this trigger will not re-fire until the
TR bit is deasserted. When deasserted, this trigger will fire
each time one of the trigger sources indicates trigger.

R/W 0 Required

TR 0 Trigger happened. When set, this trigger fired since the TR
bit was last written 0.
This bit is used to inspect if the trigger fired since this bit
was last written zero.
When set, all the trigger source bits (bit 4 to 13) will
change their read value to indicate if the particular bit was
the source to fire this trigger. Only enabled trigger sources
can set the read value, but more than one is possible.
Also, when set, the Type field and the Trace field will have
read values which indicate if the trigger action was ever
suppressed by a higher priority trigger.

R/W0 0 Required

Table 8.16 TCBTRIGx Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceNames Bits

Type Trigger action

00 Trigger Start: Trigger start-point of
trace.

01 Trigger End: Trigger end-point of trace.

10 Reserved. Has no effect

11 Trigger Info: No action trigger, only for
trace info.
90 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.13 Reset State
8.13 Reset State

Reset state for all register fields is entered when one or both of the following two things happen:

1. ETT_SoftReset input is set high.

2. ETT_TRST_N input is set low.

Most fields can be reset synchronously on the next rising edge of ETT_TCK.

The fields TCBCONTROLAOn and TCBCONTROLBEN should be reset asynchronously on any of the above two
events. Internal registers in the core-clock domain that need to reset must treat ETT_SoftReset and ETT_TRST_N as
asynchronous reset inputs. It is not guaranteed that the core-clock is running when either of the two resets are
asserted. For synchronous register reset, the reset event must be remembered until the core-clock starts running.

8.14 TCB Registers in Processors Implementing the MT ASE

In the presence of MT (Multi-Threading), there are potentially multiple TAP controllers in the processor, one per
VPE (Virtual Processing Element). But such a processor only has a single pipeline, hence only implements a single
PDtrace interface and a single TCB (Trace Control Block). Thus there is only a single copy of the TCB registers as
well on the core. In this situation, the TCB registers may be written from any one of the TAP controllers on the core.
In the situation that more than one TAP controller is instructed to write a TCB register in the same instruction
sequence from a probe, the write from TAP0 will succeed.

8.15 Memory-Mapped Access to PDtrace™ Control and On-Chip Trace RAM

PDtrace specification revision 06.00 and higher provides mechanisms by which PDtrace can be controlled entirely
through software and the on-chip trace memory can be accessed directly by software using load and store instruc-
tions. Access is provided by mapping most TCB registers to drseg space, which then allows software to access these
registers in debug mode. Since all TCB registers are mapped directly to drseg, the TCBData register does not need to
be mapped.

The mapped drseg registers are shown in Table 8.17.

Table 8.17 Mapping TCB Registers in drseg

Offset in drseg Register Name Description

0x3000 TCBControlA The TCBControlA register. See Section 8.1 “TCBCONTROLA Register” for more details
about register contents.

0x3008 TCBControlB The TCBControlB register. See Section 8.2 “TCBCONTROLB Register” for more details
about register contents.

0x3010 TCBControlC The TCBControlC register. See Section 8.3 “TCBCONTROLC Register” for more details
about register contents.

0x3018 TCBControlD The TCBControlD register. See Section 8.4 “TCBControlD Register” for more details about
register contents.

0x3020 TCBControlE The TCBControlE register. See Section 8.5 “TCBCONTROLE Register” for more details
about register contents.
MIPS® PDtrace™ Specification, Revision 6.16 91

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Trace Control Block (TCB) Registers
These mappings are “active” only when an external probe is either not present, or not enabled (i.e., the ProbEN bit in
the EJTAG Control Register or ECR is set to zero). If the mappings are active, writes to the TCB registers via drseg are
enabled (so long as these writes are otherwise permitted). If the mappings are inactive, writes to the TCB registers via
drseg are ignored. Note that a hardware probe could set the ProbEN bit to zero and still access the TCBControl regis-
ters. Writing the TCB registers via the probe and drseg simultaneously will result in unpredictable behavior. Software
should not rely on reads from the TCB registers via drseg to return reliable data when the mappings are inactive. If the
mappings are active on reset (i.e., ProbEN=0), software is responsible for initializing all control register fields, except
On (bit 0 in TCBControlA) and EN (bit 0 in TCBControlB). Those control bits must be set to zero on a core reset if the
drseg mappings are active.

On-chip trace memory can be read by doing a load instruction to TCBTW. On a 32-bit core, two load instructions must
be executed to load a 64-bit trace word. These load instructions must target two different addresses. The first must tar-
get an offset of (+4) from the TCBTW register, and the second load instruction must target the TCBTW register.
Accessing the TCBTW has the side effect of automatically incrementing the value of TCBRDP to the next trace word.
The trace memory cannot be written to via this mechanism. Software can also do direct loads and stores to TCBRDP

0x3028 TCBConfig The TCBConfig register. See Section 8.7 “TCBCONFIG Register (Reg 0)” for more details
about register contents.

0x3100 TCBTW Trace Word read register. This register holds the Trace Word just read from on-line trace mem-
ory. See Section 8.8 “TCBTW Register (Reg 4)” for more details about register contents.

0x3108 TCBRDP Trace Word Read pointer. It points to the location in the on-line trace memory where the next
Trace Word will be read. A TW read has the side-effect of post-incrementing this register value
to point to the next TW location. (A maximum value wraps the address around to the begin-
ning of the trace memory). See Section 8.9 “TCBRDP Register (Reg 5)” for more details
about register contents.

0x3110 TCBWRP Trace Word Write pointer. It points to the location in the on-line trace memory where the next
new Trace Word will be written. See Section 8.10 “TCBWRP Register (Reg 6)” for more
details about register contents.

0x3118 TCBSTP Trace Word Start Pointer. Pointer into Trace Buffer that is used to determine when all entries in
the trace buffer have been filled. See Section 8.11 “TCBSTP Register (Reg 7)” for more
details about register contents.

0x3120 BKUPRDP This is not a TCB register, but is needed on a reset to save the TCBRDP value before that regis-
ter is reset to 0. This allows the software that comes up after a (hard or soft) reset to know the
last-known good value of TCBRDP before system crash, and potentially read the trace memory
from or to the appropriate trace memory location.

0x3128 BKUPWRP This is not a TCB register, but needed on a reset to save the TCBWRP value before that register
is reset to 0. This allows the software that comes up after a (hard or soft) reset to know the last-
known good value of TCBWRP before system crash, and potentially read the trace memory
from or to the appropriate trace memory location.

0x3130 BKUPSTP This is not a TCB register, but needed on a reset to save the TCBSTP value before that register
is reset to 0. This allows the software that comes up after a (hard or soft) reset to know the last-
known good value of TCBSTP before system crash, and potentially read the trace memory
from or to the appropriate trace memory location.

0x3200-0x3238 TCBTrigX The TCBTrigX set of registers. The number of implemented registers is determined by the value
in TCBCONFIGTRIG. See Section 8.12 “TCBTRIGx Register (Reg 16-23)” for more details

about register contents.

Table 8.17 Mapping TCB Registers in drseg

Offset in drseg Register Name Description
92 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

8.16 On-Chip Trace Buffer Usage
and TCBWRP at the beginning of the trace memory dump function. Note that writing to these registers in the middle
of the trace logic writing into this memory can result in UNPREDICTABLE results and junked values in the trace
memory.

Whether or not software has access to on-chip trace memory is controlled via one bit in TCBCONTROLB (TRPAD, bit
18). This is a control DISABLE bit. The bit in TCBCONTROLB is mirrored in TraceControl3.

Tracing is stopped when the system crashes and an exception handler is invoked on the crash. The last known good
values of TCBRDP, TCBWRP, and TCBSTP are saved in the backup registers shown in the table. Software should not
rely on TCBRDP, TCBWRP, and TCBSTP holding their last known good values across a reset, and should use the
backup registers for this purpose.

8.16 On-Chip Trace Buffer Usage

To initialize the on-chip trace buffer, the TR bit of the TCBControlB register is set by software. This will initialize
TCBRDP, TCBWRP and TCBSTP pointers to zero. These pointers do not have to explicitly written by software for
initialization, the reset function that is caused by setting the TR bit is sufficient.

When it is desired to read out the Trace Words from the on-chip buffer, software first sets the RM bit in TCBControlB.
This will load the TCBRDP register with the value held in the TCBSTP register. The TraceWord pointed to by
TCBRDP can be then read out through the TCBTW register. The read will automatically update the TCBRDP value to
point to the next newer entry. A subsequent read from TCBTW register will thus read out the next newer TraceWord.
Software does not have to explicitly update the TCBRDP register.

If the TM field of TCBControlB register is set to Trace-From mode, the trace-buffer contents stop being updated when
the trace-buffer is full (when TCBWRP points to the same entry as TCBSTP). This event is denoted by the BF bit of
TCBControlB register. The BF bit can be polled by software to decide when to read out the trace buffer contents.

For production testing, such as stuck-at testing of memory cells within the trace buffer, the TCBRDP and TCBWRP
registers can be explicitly written by software to write and read specific entries within the trace buffer. As previously
stated, for normal usage these pointer registers do not have to be explicitly written by software.
MIPS® PDtrace™ Specification, Revision 6.16 93

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Chapter 9
EJTAG Trace Registers

9.1 TraceIBPC and TraceDBPC Registers

Any actions in the tracing logic triggered by a particular EJTAG hardware breakpoint is determined by bits in the
TraceIBPC (Trace Instruction Break Point Control) and TraceDBPC (Trace Data Break Point Control) registers. Each
register uses 3 bits per breakpoint. A few bits are added for other information, so that each register holds information
for 9 hardware breakpoints. If more than 9 breakpoints are implemented for either instructions or data, then an addi-
tional register is required, namely, TraceIBPC2 (instruction) or TraceDBPC2 (data). which are available as memory-
mapped registers in the EJTAG memory drseg space as shown in Table 9.1. PDtrace revision 05.00 and higher add the

ability to simultaneously trigger tracing from other components in a coherent system, such as the coherence manager
in the MIPS 1004K core (refer to Table 9.6 which defines how tracing can be triggered in system components). If a
trigger that is set to enable CM tracing fires, the corresponding Core_CM_EN bit in TCBControlD is set to one. Simi-
larly, if a trigger that is set to disable tracing fires on a core, the Core_CM_EN bit is set to zero.

The EJTAG control logic, upon encountering a hardware breakpoint, signals the triggered breakpoint to the trace
logic. If more than one breakpoint triggers every cycle, in the previous revision of the specification, even if one of the
triggers turned on trace, then the trace turned on, and all triggers have to turn trace off to turn off tracing. Now, the
possible trace modes generated by the triggers are more complex, hence if more than one trigger is generated in any
given cycle, and there is at least one trigger from the instruction side and one trigger from the data side, then the data
trigger is ignored. If there are multiple triggers, and all are either instruction triggers or all are data triggers, then all
except the lowest numbered one are ignored.

The type of tracing that is triggered is determined by the tracing mode Mode bits [27:23] in the TCBCONTROLC reg-
ister, or if in software control, by the Mode bits [11:7] in the TraceControl2 register (described in “TraceControl2
Register (CP0 Register 23, Select 2)” on page 60 of this document).

Note that the disable bit in the TraceIBPC or the TraceDBPC register can be used to globally disable the triggering of
hardware breakpoints. One bit is used to disable instruction breakpoints, and the other is used to disable data break-
points (see Table 9.1 and Table 9.2).

Table 9.1 Mapping Trace Breakpoint Registers in CP0 Space or in drseg

CP0 register
number/select or
Offset in drseg Register Mnemonic

Description

Register 23, Select 4 TraceIBPC Holds information about the first 9 instruction breakpoints.

Register 23, Select 5 TraceDBPC Holds information about the first 9 data breakpoints.

0x1FF8 TraceIBPC2 Holds information about the last 6 instruction breakpoints.

0x2FF8 TraceDBPC2 Holds information about the last 6 data breakpoints.
MIPS® PDtrace™ Specification, Revision 6.16 94

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

9.1 TraceIBPC and TraceDBPC Registers
PDtrace tracing logic can be implemented with no EJTAG implementation. Therefore software (external or internal)
must read the Coprocessor 0 Config1 register to determine if EJTAG is implemented before assuming the presence of
the TraceDBPC or TraceIBPC registers. Moreover, for a core implementing EJTAG, the EJTAG hardware breakpoints
are optional. The Debug Control register (at offset 0x0000 in drseg) has bits DataBrk and InstBrk that specify whether
any EJTAG data or instruction hardware breakpoints are implemented. If both these bits are set to 0, then no hardware
breakpoints are implemented in EJTAG on that core, and the trace register specified in this section is also not imple-
mented (i.e., the tracing logic does not implement the feature of trace triggering from EJTAG). So one must first
ensure that EJTAG is implemented, then examine the values of DataBrk and InstBrk in the Debug Control register to
make sure that at least one of them is not zero.

In a processor implementing the MIPS MT ASE, EJTAG breakpoints can either be shared or not between any of the
VPEs (Virtual Processor Elements) in an MT environment. This sharing property for instruction breakpoints, if they
exist, is determined by bit IBPshare of the IBS (Instruction Breakpoint Status) register in EJTAG drseg memory, and
for data breakpoints, if they exist, by bit DBPshare bit in the DBS (Data Breakpoint Status) register in EJTAG drseg
memory. If the breakpoints are not shared, then the TraceIBPC or the TraceDBPC registers are duplicated per VPE;
otherwise, they are shared. When they are shared, the IE or the DE bit is also shared (see Table 9.2 and Table 9.3), so
breakpoints are enabled for PDtrace for all VPEs or for none of them.

Figure 9.1 TraceIBPC Register Format
31 30 29 28 27 26 24 23 21 20 18 17 15 14 12 11 9 8 6 5 3 2 0

MB 0 PCT IE 0 IBPC8 IBPC7 IBPC6 IBPC5 IBPC4 IBPC3 IBPC2 IBPC1 IBPC0

Table 9.2 TraceIBPC Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

MB 31 Indicates that additional instruction hardware break-
points are present and that register TraceIBPC2 should be
used.

R 0/1 Required

0 30 Reserved. Reads as zero and non-writable. R 0 Required

PCT 29 Specifies whether or not a performance counter trigger
(PCT) signal is generated when an EJTAG hardware
instruction breakpoint match occurs. This feature is
enabled only if the IE bit is also set to 1.

R/W 0 Required after
PDtrace revision

06.00 and
higher if instruc-
tion breakpoints
are implemented

in EJTAG.
Reserved other-

wise.
MIPS® PDtrace™ Specification, Revision 6.16 95

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 EJTAG Trace Registers
IE 28 Used to specify whether the trigger signal from an
EJTAG instruction breakpoint should trigger tracing
functions or not:

Writes to this bit are ignored if instruction breakpoints
are not implemented in EJTAG.

R/W 0 Required

0 27 The previously defined use of this bit is deprecated since
values 2 through 7 of the trigger control bits have been
taken over to support CMP tracing and performance
counter tracing. It now reverts back to being reserved.
Reads as zero, and non-writable.

R 0 Required

IBPCn 3n-1:3n-3 These three bits are decoded to enable different tracing
modes. Table 9.6 shows the possible interpretations.
Each set of 3 bits represents the encoding for the instruc-
tion breakpoint n in the EJTAG implementation, if it
exists. If the breakpoint does not exist, the bits are
reserved, read as zero, and writes are ignored.

R/W 0 LSB required,
Upper two bits
are Optional.
Required for
breakpoints

implemented in
EJTAG

Figure 9.2 TraceDBPC Register Format
31 30 29 28 27 26 24 23 21 20 18 17 15 14 12 11 9 8 6 5 3 2 0

MB 0 PCT DE 0 DBPC8 DBPC7 DBPC6 DBPC5 DBPC4 DBPC3 DBPC2 DBPC1 DBPC0

Table 9.3 TraceDBPC Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

MB 31 Indicates that more instruction hardware breakpoints are
present and that register TraceDBPC2 should be used.

R 0/1 Required

0 30 Reserved. Reads as zero, and non-writable. R 0 Required

Table 9.2 TraceIBPC Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Disables trigger signals from instruction
breakpoints

1 Enables trigger signals from instruction
breakpoints
96 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

9.1 TraceIBPC and TraceDBPC Registers
PCT 29 Specifies whether or not a performance counter trigger
(PCT) signal is generated when an EJTAG hardware
data breakpoint match occurs. This feature is enabled
only if the DE bit is also set to 1.

R/W 0 Required after
PDtrace revision

06.00 and
higher if instruc-
tion breakpoints
are implemented

in EJTAG.
Reserved other-

wise

DE 28 Used to specify whether the trigger signal from the
EJTAG data breakpoint should trigger tracing functions
or not:
0 : disables trigger signals from data breakpoints
1 : enables trigger signals from data breakpoints
Writes to this bit are ignored if data breakpoints are not
implemented in EJTAG.

R/W 0 Required

0 27 The previously defined use of this bit is deprecated since
values 2 through 7 of the trigger control bits have been
taken over to support CMP tracing and performance
counter tracing. It now reverts back to being reserved.
Reads as zero and is non-writable.

R 0 Required

DBPCn 3n-1:3n-3 The three bits are decoded to enable different tracing
modes. Table 9.6 shows the possible interpretations.
Each set of 3 bits represents the encoding for the data
breakpoint n in the EJTAG implementation, if it exists.
If the breakpoint does not exist then the bits are reserved,
read as zero and writes are ignored.

R/W 0 LSB required,
Upper two bits
are Optional.
Required for
breakpoints

implemented in
EJTAG

Figure 9.3 TraceIBPC2 Register Format
31 18 17 15 14 12 11 9 8 6 5 3 2 0

0 IBPC14 IBPC13 IBPC12 IBPC11 IBPC10 IBPC9

Table 9.4 TraceIBPC2 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

IBPCn 3n-31:3n-
33

The three bits are decoded to enable different tracing
modes. Table 9.6 shows the possible interpretations.
Each set of 3 bits represents the encoding for the instruc-
tion breakpoint n in the EJTAG implementation, if it
exists.

R/W 0 Required

Table 9.3 TraceDBPC Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits
MIPS® PDtrace™ Specification, Revision 6.16 97

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 EJTAG Trace Registers
Figure 9.4 TraceDBPC2 Register Format
31 18 17 15 14 12 11 9 8 6 5 3 2 0

0 DBPC14 DBPC13 DBPC12 DBPC11 DBPC10 DBPC9

Table 9.5 TraceDBPC2 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

DBPCn 3n-31:3n-
33

These three bits are decoded to enable different tracing
modes. Table 9.6 shows the possible interpretations.
Each set of 3 bits represents the encoding for the data
breakpoint n in the EJTAG implementation, if it exists.

R/W 0 Required

Table 9.6 BreakPoint Control Modes: IBPC and DBPC

Value Trigger Action Description

000 Unconditional Trace Stop for
both the processor and the com-
ponents of the coherence sys-
tem

Unconditionally stop tracing (from the processor as well
as the coherence components that support tracing) if
tracing was turned on. If tracing is already off, then there
is no effect.

001 Unconditional Trace Start in
the processor

Unconditionally start tracing of the processor if tracing
was turned off. If tracing is already turned on, there is no
effect.

010 Unconditional Trace Stop for
the processor

Unconditionally stop tracing of the processor if tracing
was turned on. If tracing is already turned off then there
is no effect.

011 Unconditional Trace Start for
both the processor and the com-
ponents of the coherence sys-
tem

Unconditionally start tracing if tracing was turned off. If
tracing is already turned on, there is no effect. Do this for
both the processor as well as the coherence components
that support tracing.

100 Identical to trigger condition
000, and in addition, also dump
the full performance counter
values into the trace stream

As before, but also dump the full values of all the imple-
mented performance counters into the trace stream. Note
that this does not provide the ability to dump individual
and/or specific performance counters for two reasons:
One, there aren’t sufficient bits available for this type of
fine-grain control, and second, performance counter
dumping on a breakpoint trigger should be uncommon
enough to not overwhelm the trace stream with bits.

101 Identical to trigger condition
001, and in addition, also dump
the full performance counter
values into the trace stream

As before, but also dump the full values of all the imple-
mented performance counters into the trace stream.

110 None Reserved for future use
98 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

9.1 TraceIBPC and TraceDBPC Registers
111 Identical to trigger condition
011, and in addition, also dump
the full performance counter
values into the trace stream

As before, but also dump the full values of all the imple-
mented performance counters into the trace stream.

Table 9.6 BreakPoint Control Modes: IBPC and DBPC

Value Trigger Action Description
MIPS® PDtrace™ Specification, Revision 6.16 99

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 EJTAG Trace Registers
100 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Chapter 10
TCB Trigger Logic

The TCB is defined to optionally feature a trigger unit. Most of the actual implementation and functionality is imple-
mentation-dependent, but if implemented, the baseline structure must be as defined in this section.

10.1 Trigger Logic Overview

The trigger logic is functionally split in three parts.

• Trigger Source logic.

• Trigger Control logic

• Trigger Action logic.

Figure 10.1 shows the functional overview of the trigger flow in the TCB.
MIPS® PDtrace™ Specification, Revision 6.16 101

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 TCB Trigger Logic
Figure 10.1 TCB Trigger Processing Overview

10.1.1 Trigger Source Logic

A number of source events can be defined that cause a trigger to fire when the corresponding source condition is sat-
isfied.

In this version of the TCB, three sources have been defined. These are the two trigger inputs TC_ChipTrigIn and
TC_ProbeTrigIn (see 10.3 “TCB Trigger Input/Output Signals”), and the Debug Mode (DM) indication from the pro-
cessor core. The input triggers are all rising-edge triggers, and the Trigger Source logic must convert the edge into a
single cycle strobe to the Trigger Control logic.

10.1.2 Trigger Control Logic

Eight possible Trigger Control registers (TCBTRIGx, x={0..7}) are defined. Each of these registers controls a trigger
fire mechanism. They can have each of the Trigger Sources as the trigger event and they can fire one or more of the
Trigger Actions. This is defined in the Trigger Control register TCBTRIGx (see Section 8.12 “TCBTRIGx Register
(Reg 16-23)”).

Trigger Control Logic 7

Trigger Control Logic 1

Trigger Control Logic 0

Trigger Control Logic 7

Trigger Control Logic 1

Trigger Control Logic 0

Trigger Action Logic

Trigger sources

Trigger strobes

Priority/
OR-function

Priority/
OR-function

Priority/
OR-function

Trigger Source Logic

Trigger control 1 to 7 is
optional in this trigger logic.

Depending on the trigger action,
the Action strobes must pass
through a priority function or an
OR gate
102 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

10.2 Simultaneous Triggers
10.1.3 Trigger Action logic

A number of possible trigger actions in this version of the TCB are:

• Two output trigger strobes, TC_ChipTrigOut and TC_ProbeTrigOut. These are explained in 10.3 “TCB Trigger
Input/Output Signals”.

• The TF6 trace format as information output into trace memory. This is explained in Section 8.12 “TCBTRIGx
Register (Reg 16-23)”. Also see Section 10.2 “Simultaneous Triggers” below.

• The Start and End trigger actions. These are also explained in the sections pointed to above. Earlier revisions of
the PDtrace architecture (prior to revision 6.00) defined a center trigger action. This trigger action is no longer
defined.

10.2 Simultaneous Triggers

Two or more triggers can fire simultaneously. The resulting behavior depends on trigger action set for each of them,
and whether they should produce a TF6 trace information output or not. There are two groups of trigger actions: Pri-
oritized and OR’ed.

10.2.1 Prioritized Trigger Actions

For prioritized simultaneous trigger actions, the trigger control register which has the lowest number takes prece-
dence over the higher numbered TCBTRIGx registers. The oldest trigger takes precedence over everything.

The following trigger actions are prioritized when two or more TCBTRIGx registers fire simultaneously:

• Trigger Start and End type triggers (TCBTRIGxType field set to 00 or 01), which will assert/deassert the
TCBCONTROLBEN bit.

• Triggers which produce TF6 trace information in the trace flow (TCBTRIGxTrace bit is set).

Regardless of priority, the TCBTRIGxTR bit is set when the trigger fires, even if the trigger action was suppressed. If
the trigger is set to only fire once (the TCBTRIGxFO bit is set), then the suppressed trigger action will not be possible
until after TCBTRIGxTR is written 0.

If a Trigger action is suppressed by a higher priority trigger, then the read value, when the TCBTRIGxTR bit is set, for
the TCBTRIGxTrace field will be 0 for suppressed TF6 trace information actions. The read value in the TCBTRIGxType

field for suppressed Start/End/ triggers will be 11. This indication of a suppressed action is sticky. If any of the two
actions (Trace and Type) are ever suppressed for a multi-fire trigger (the TCBTRIGxFO bit is zero), then the read val-
ues in TCBTRIGxTrace and/or TCBTRIGxType, are set to indicate a suppressed action.

10.2.2 OR’ed Trigger Actions

The simple trigger actions CHTro, PDTro and CTATrg from each TCBTRIGx register’s action logic, are effectively
OR’ed together to produce the final trigger. For example, one or more expected trigger strobes on TC_ChipTrigOut
can disappear. External logic should therefore not rely on counting of strobes to predict a specific event unless simul-
taneous triggers are known not to occur.
MIPS® PDtrace™ Specification, Revision 6.16 103

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 TCB Trigger Logic
10.3 TCB Trigger Input/Output Signals

Two sets of trigger input/outputs are defined on the TCB. One set is defined to be chip internal, and the other set is
defined to be part of the probe interface. Table 10.1 shows the TCB signal names, and the related probe pin name for
the probe trigger signals.

Table 10.1 TCB Trigger input and output

TCB pin name Probe pin name Description

TC_ChipTrigIn N/A Rising edge trigger input. The source should be on-chip. The input
is considered async. I.e. double registered in the TCB.

TC_ChipTrigOut N/A Single cycle (relative to core clock) high strobe, trigger output. The
target is supposed to be an on-chip unit.

TC_ProbeTrigIn TR_TRIGIN Rising edge trigger input. The source should be the Probe Trigger
input. The input is considered async. I.e. double registered in the
TCB.

TC_ProbeTrigOut TR_TRIGOUT Single cycle (relative to probe clock TC_ProbeClk) high strobe,
trigger output. The target is supposed to be the Probes Trigger out-
put.
104 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

10.3 TCB Trigger Input/Output Signals
MIPS® PDtrace™ Specification, Revision 6.16 105

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Appendix A
Implementation-Specific PDtrace™ Enhancements for
MIPS32® 74K™ Cores

A.1 Tracing the 74K to Show Pipeline Details and Execution Inefficiencies

The 74K core implements PDtrace revision 06.00 and higher. A bit in the trace control register specifies that 74K-spe-
cific trace information will be included in the trace stream. This is bit 28 in TraceControl and bit 28 in
TCBCONTROLA. Setting this bit to a value of 1 implies that the 74K-specific tracing, that is described in this section,
will be output into the trace stream.

The following 74K-specific inefficiencies are traced to determine the cause of lost performance. This information is
encoded into an expanded version of the INSCOMP field of TF2, TF3, and TF4. The field is expanded by one bit, and
the expanded encodings identify potential performance bottlenecks. This increases the length of TF2, TF3 and TF4
by one bit.

• "Load/store cache miss information (INSCOMP=1000)

• "Branch/return mispredict information (INSCOMP=1001)

• "Replay (load consumer or branch likely or cacheop) (INSCOMP=1010)

• "Graduation stall due to backpressure (stall due to LSGB full and other) (INSCOMP=1011)

The re-encoded INSCOMP field is illustrated in Table A.1. The updated versions of the three trace formats are
described next.

Table A.1 Expanded Instruction Type Completion Indicator (InsComp)

Value Mnemonic Description

0000 NI No instruction completed this cycle. A "No Instruction" can happen due to a pipeline stall or when
the instruction was killed (due to an exception).

00001 I Instruction completed this cycle

0010 IL Instruction completed this cycle was a load

0011 IS Instruction completed this cycle was a store

0100 IPC Instruction completed this cycle was a PC sync. The IPC value is used for the periodic output of
the full PC value for synchronization. The tracing hardware should ensure that this is not done on
an unpredictable branch, load, or store instruction.

0101 IB Instruction branched this cycle. The three encoding (101, 110, 111) for branched instruction indi-
cates a discontinuity in the PC value for the associated instruction. Note that it is only when the
new PC can not be predicted from the static program flow that it is traced.

0110 ILB Instruction branched this cycle was a load

0111 ISB Instruction branched this cycle was a store
MIPS® PDtrace™ Specification, Revision 6.16 106

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

A.1 Tracing the 74K to Show Pipeline Details and Execution Inefficiencies
A.1.1 Updated Trace Format 2 (TF2) for 74K-specific Information

If bit 28 in TraceControl (if trace is being controlled by software), or bit 28 in TCBControlA (if trace is being con-
trolled through a probe) is set on a 74K core, TF2 is expanded by 1 bit. The two variants of TF2 in their expanded
form are shown below. The difference between the regular TF2 and the expanded TF2 is the extra bit in the InsComp
field.

Figure A.1 Expanded TF2 (Trace Format 2 Single-Pipe)

Revision 4.00 (and higher) of the PDtrace specification introduces the ability to trace instruction fetch misses and to
tag an instruction that might be a function call or return. These are fundamental properties that could impact most
instructions in the stream that are represented by a non-zero InsComp value. Therefore, TF2 can optionally be aug-
mented by two bits to trace out this information. These bits are optional and only traced when specifically requested
by the user. Hence, the trace reconstruction software must be told whether these bits are present. This impacts other
formats well, and will be discussed in each sub-section separately. The two optional bits of the TF2 format are shown
in Figure A.2.

Figure A.2 Expanded TF2 with Optional Bits (Trace Format 2 Single-Pipe)

A.1.2 Trace Format 3 (TF3)

If bit 28 in TraceControl (if trace is being controlled by software), or bit 28 in TCBControlA (if trace is being con-
trolled through a probe) is set on a 74K core, TF2 is expanded by 1 bit. The two variants of TF3 in their expanded
form are shown below. The difference between the regular TF3 and the expanded TF2 is the extra bit in the InsComp
field. The expanded TF3 may be either 28 or 44 bits wide, depending on whether 16 or 32 bits is specified by the
TCBCONTROLAADW field. (See 8.1 “TCBCONTROLA Register”).

1000 NI74_LSM No instruction completed this cycle - 74K - Load/Store Miss

1001 NI74_BMP No instruction completed this cycle - 74K - Branch/return Mispredict

1010 NI74_RPL No instruction completed this cycle - 74K - Instruction Replay

1011 NI74_GST No instruction completed this cycle - 74K - Backpressure stall

1100-1111 - Reserved for future use

Table A.1 Expanded Instruction Type Completion Indicator (InsComp) (Continued)

Value Mnemonic Description

5 2 1 0

InsComp 1 0

7 6 5 2 1 0

Im
Fc
r

InsComp 1 0
MIPS® PDtrace™ Specification, Revision 6.16 107

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Implementation-Specific PDtrace™ Enhancements for MIPS32® 74K™ Cores
Figure A.3 TF3 (Trace Format 3 Single-Pipe)

Revision 4.00 (and higher) of the PDtrace specification introduces the ability to trace instruction fetch misses and to
tag an instruction that might be a function call or return. These are fundamental properties that could impact most
instructions in the stream that are represented by a non-zero InsComp value. Therefore, TF3 can optionally be aug-
mented by two bits to trace out this information. These bits are optional and only traced when specifically requested
by the user. Hence, the trace reconstruction software must be told whether these bits are present. This impacts other
formats well, and will be discussed in each subsection separately. The two optional bits of the TF3 format are shown
in Figure A.4.

Figure A.4 TF3 with Optional Bits (Trace Format 3 Single-Pipe)

Revision 6.00 (and higher) of the PDtrace specification introduces the ability to trace performance counter values. If
this feature is enabled by the user, this information is traced through TF3, which can be optionally augmented by one
bit. This version of the TF3 format is shown in Figure A.5. If the PCV bit is set to one, reconstruction software must
interpret the AD bits of the format as the value of the performance counter. In addition, the TType must be set to DT,
and TEnd must be set to zero.

Figure A.5 Expanded TF3 with Optional Performance Counter and other bits (Trace Format 3 Single-Pipe)

A.2 Updated TF4 to Handle 74K™ Core-Specific DataOrder and Inefficiency
Information

The 74K core can have up to 21 outstanding loads and many other store operations in the system at any given time,
hence the 4 bits currently being used in trace format TF4 is inadequate. Hence TF4 will be redone to use an additional
fifth bit for the DataOrder field.

If bit 28 in TraceControl (if trace is being controlled by software), or bit 28 in TCBControlA (if trace is being con-
trolled through a probe) is set on a 74K core, TF2 is expanded by 1 bit. The two variants of TF3 in their expanded
form are shown below. The difference between the regular TF3 and the expanded TF2 is the extra bit in the InsComp
field.

27(43) 12 11 10 9 7 6 3 2 1 0

AD TMode
TEn

d
TType InsComp 0 0 0

(45)

29 28 27 12 11 10 9 7 6 3 2 1 0

Im
Fc
r

AD TMode
TEn

d
TType InsComp 0 0 0

(46)

30 29 28 27 12 11 10 9 7 6 3 2 1 0

PCV Im Fcr AD TMode TEnd TType InsComp 0 0 0
108 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

A.2 Updated TF4 to Handle 74K™ Core-Specific DataOrder and Inefficiency Information
The TF4 format is shown in Figure A.6. TF4 covers the case when TType[2:0] is set to DT and TEnd is set to 1, that is,
the last cycle of the current data trace. This is shown in Figure A.6, where the pattern on bits [9:6] distinguishes TF4
from TF3. Bits [8:6] are equal to 0012 for a Type[2:0] value of DT and bit 9 has a value of 1 for TEnd.

Note that the TF4 format will be used for the last cycle of both Load and Store Data transmission, a small ineffi-
ciency.

PDtrace revision 06.00 and higher introduces an alteration to the number of bits needed for the DataOrder field. Since
the 74K core can have up to 21 outstanding memory transactions, the original TF4 format with 4 bits for DataOrder
would not suffice. Hence, if the core type is identified to be a 74K implementation, the TF4 format is recognized as
shown in the figures in this section.

Figure A.6 TF4 (Trace Format 4 Single-Pipe)

Figure A.7 Expanded TF4 (Trace Format 4 Single-Pipe)

Revision 4.00 (and higher) of the PDtrace specification introduces the ability to trace instruction fetch misses, load/
store data misses, and to tag an instruction that might be a function call or return. Therefore, TF4 can optionally be
augmented by three bits to trace out this information. These bits are optional and only traced when specifically
requested by the user. Hence, the trace reconstruction software must be told if these 3 bits are present. The optional
bits of TF4 are shown in Figure A.8. For non-coherent MIPS cores, only this format includes the LSm bit, that is the
bit that indicates a possible load/store data cache miss. This is because a data miss is associated with the transmitted
data rather than the instruction that caused the miss.

Figure A.8 TF4 with Optional Bits (Trace Format 4 Single-Pipe)

31(47) 16 15 11 10 9 8 7 6 5 3 2 1 0

AD DataOrder TMode 1 1 0 0 InsComp 0 0 0

32(48) 17 16 12 11 10 9 8 7 6 3 2 1 0

AD DataOrder TMode 1 1 0 0 InsComp 0 0 0

(50)

34 33 32 31(47) 16 15 11 10 9 8 7 6 5 3 2 1 0

LSm Im Fcr AD DataOrder TMode 1 1 0 0 InsComp 0 0 0
MIPS® PDtrace™ Specification, Revision 6.16 109

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Implementation-Specific PDtrace™ Enhancements for MIPS32® 74K™ Cores
Figure A.9 Expanded TF4 with Optional Bits (Trace Format 4 Single-Pipe)

A.3 Tracing 74K™ Core in Cycle Accurate Mode

The 74K core can graduate zero, one, or two instructions in any given cycle. When tracing normally, that is, not in
cycle-accurate mode, the stream of graduated instructions that are traced cannot be tracked back to whether or not any
pair graduated together, or how many cycles apart they graduated. This is the typical behavior for other cores as well,
with the exception that most other cores do not graduate two instructions in any given cycle. Hence, it is not necessary
to do anything differently for the 74K core in this regard.

If cycle-accurate tracing is used, it is assumed that all graduation slots, whether empty or not, are traced with NI or
some other InsComp value. In this case, the assumption made is that graduation slot0 and slot1 are traced in that
order.

A.4 Compressing Addresses in TF3 and TF4

The 74K implementation of the PDtrace architecture includes an additional optimization that allows the use of 16-bit
addresses, even when the ADW bit (bit 23 in TCBControlA) is set to 1, indicating a 32-bit address/data value width. If
an address can be represented in 16 bits, the TF3 and TF4 formats are shortened to their 16-bit data variants. This is
indicated by using a TMode value of 0 to indicate a delta value for the address. If the address cannot be represented in
16 bits (i.e., it requires 32 bits), TMode is set to 1 in the TF3 and TF4 formats.

A.5 Enhancements for Coherent Cores

To support correlation of transactions in coherent systems, the 74K implementation of the PDtrace architecture
includes a mechanism to trace a coherent synchronization ID (COSId) for every instruction that causes a data bus
transaction (see Section B.1.1.2 “Synchronizing CPU and Coherent Interconnect Trace Messages”). Instructions that
can cause data bus transactions (loads, stores, cache operations, prefetches, and syncs) are referred to as ‘LSU
instructions’. Due to the nature of the 74K pipeline, load instructions are handled in a special manner and require a
single bit extension to all trace formats. All other instructions (and some loads) use a new trace format (TF8) to trace
the coherent synchronization ID. The rest of this section describes this mechanism in more detail.

A.5.1 Extending Trace Formats

Every existing trace format that includes an INSCOMP field (TF2, TF3, TF4) is expanded by one bit. This bit is only
valid if the INSCOMP type is IL or ILB and is used to indicate if the load was a cache miss—a zero implies that the
instruction was a cache hit, and a one implies that the instruction was a cache miss. For all other INSCOMP types, the
extra bit is present but holds no valid information. If a load instruction generates an extra bit value of one, a TF8 mes-
sage may be generated; if the extra bit value is zero, a TF8 will not be generated.

(51)

35 34 33 32(48) 17 16 12 11 10 9 8 7 6 3 2 1 0

LSm Im Fcr AD DataOrder TMode 1 1 0 0 InsComp 0 0 0
110 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

A.5 Enhancements for Coherent Cores
A.5.2 T8 - New Trace Format

For load instructions that are treated as potential cache misses (extra bit value of 1 with corresponding INSCOMP),
and for all other LSU operations, a TF8 message can potentially be generated. Any instruction that generates a data
bus transaction is required to generate a TF8. To minimize bandwidth usage, instructions that do not generate a bus
transaction (typically cache hits) do not generate any additional trace information. However, to allow reconstruction
software to correlate cache miss indicators in the trace stream with the instruction completion indicators in the trace
stream, these instructions must be explicitly accounted for. To simplify this process, LSU operations are divided into
three categories: loads, stores, and “other” operations. Each category has an associated 8-bit counter, which counts
the number of cache hits for that category since the last cache miss. This counter is reset to 0 when a miss occurs or if
the counter saturates.

Details of Trace Format 8 (TF8) are shown in Figure A.10. COSId represents the coherent synchronization ID. The
BT field indicates whether or not a bus transaction has occurred. If BT is zero, no bus transaction has occurred, and
the TF8 is being used to indicate a counter overflow (the COSId value is undefined in this case). If BT is one, a bus
transaction was generated for a cache miss, and the corresponding counter must be reset. The L field is used to indi-
cate load instructions. If L is 0, the instruction is not a load, if L is 1, the TF8 corresponds to a load instruction. The S
field is used to indicate store instructions. If S is 0, the instruction is not a store; if S is 1, the TF8 corresponds to a
store instruction. If L and S are zero, the instruction is a non-load/store LSU operation. L and S can never be 1 in the
same TF8. For TF8, TType is 4, TMode is 0 and TEnd is 1. To reduce bandwidth consumption, it is recommended
that no TF8 be generated by a core when the coherent interconnect is not tracing transactions (i.e., if the coherent
interconnect tracing is turned off globally, or only for that particular core). In addition, a TF8 should only be gener-
ated for an instruction that has an instruction completion message traced.

Figure A.10 TF8 (Trace Format 8)

Each TF8 message corresponds to one of the three LSU instruction categories. The category is explicitly identified by
the values of the L and S fields. If a counter reaches its maximum count value, the maximum value is sent out in a
TF8, along with appropriate values for the L and S fields to identify which counter has saturated. It is possible for a
counter to saturate at the same time as a miss. This can be determined by examining the BT bit—in case of a miss, the
BT bit must be 1.

26 25 24 17 16 15 14 13 12 11 10 9 8 6 5 3 2 1 0

CosID Counter[7:0] BT S L 0 0 0 TMode TEnd TType InsComp 0 0 0
MIPS® PDtrace™ Specification, Revision 6.16 111

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Appendix B
PDtrace™ Enhancements for Chip-Multiprocessing
Systems

B.1 Tracing a Coherent Subsystem

Memory operations in a coherent multiprocessor system can involve more than a single processor core and memory,
since cache subsystems of other processors in the coherence domain must participate in coherent read and write trans-
actions. In addition, each valid block of memory in a local processor cache can now be in one of multiple states
(Modified, Exclusive, Shared, or in case of a MOESI protocol, Owned). Since each coherent transaction can involve
one of two paths (get data from memory, or get data from another processor), the latency of the operation is not fixed.
Finally, the coherence system as implemented by MIPS Technologies, and defined in OCP v3.0 introduces a new
port, known as an ‘intervention port’ that deals with coherence requests from other processors that can affect the state
of local cache lines. The coherence system introduces a new hardware block called the ‘Coherence Manager’ (CM)
which is a system block responsible for queueing, ordering, processing and responding to all memory requests.

B.1.1 Trace Requirements

Trace data is gathered at each core and at the coherence manager. This data must then be combined together to recre-
ate an execution trace. There are two primary operations at the core that are affected by coherence - load/store instruc-
tion execution, and memory port transactions. It is useful to trace main memory port transactions, since this provides
a method of establishing a global order of memory instructions (by correlating a memory instruction with its main
port transaction in case of a miss, and finally the request being serialized at the CM). To allow post-processing soft-
ware to correlate CPU transactions with their corresponding CM transactions, we use a small identifier called the
coherent synchronization ID (COSId) to synchronize transactions that is periodically updated to allow software to
align transactions. The first CPU and CM transactions to use the new COSID are used to align transactions. There is
sufficient detail in a trace to enable the reconstruction of program execution across multiple coherent cores. For per-
formance debugging, timing information is collected to help determine potential bottlenecks in the system. It is possi-
ble to trace a coherent (or other) request as it is processed by the system, gathering information about the transaction
type, cache hit/miss status, etc. Tracing support allows a user to gather different levels of detail from the CM. The CM
is connected to a set of CPUs and IO devices and the user can selectively trace transactions that belong to only some
of those cores or IO devices (applicable for external interface tracing).

B.1.1.1 Gathering Subsets of Trace Data

To reduce the information that a user must examine to find potentially interesting behavior, it is possible to trace only

a subset of trace data from various sources1. The table below describes trace data subsets at various sources.

1 This can also be used to reduce off-chip bandwidth requirements, but that is not the primary intent.
MIPS® PDtrace™ Specification, Revision 6.16 112

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

B.1 Tracing a Coherent Subsystem
B.1.1.2 Synchronizing CPU and Coherent Interconnect Trace Messages

To synchronize CPU trace messages with those gathered from the coherent interconnect, the new identifier (COSId)
is added in the core trace block. The COSId is included in trace messages from the core and is sent to the coherent
interconnect for inclusion in trace messages. Each core maintains an independent COSId, and trace messages from
the coherent interconnect always hold the COSId of the originating core. The COSId is updated periodically when a
load or store miss occurs at the processor. The first CPU trace message using the new COSId corresponds to the first
CM message that will use the new COSId, thus providing reconstruction software an exact point at which the two
traces match. Using this match point, other trace messages from the CPU and CM can be correlated. PDtrace supports
periodic synchronization messages in the form of PC syncs or TMOAS records (A PC sync is a TMOAS record with
a SYNC value of 1). The new COSIds will be updated at most as frequently as the CPU sends out a PC sync/TMOAS
record, with the added restriction that the COSId cannot be updated unless a miss occurs. Thus, the CPU can send out
multiple PC syncs without updating the COSId, if no load/store misses occur during that time.

If PC tracing is disabled, then the COSId will be incremented when the synchronization counters within the core
expires.

In case of overflow at the core, a new PC sync message must be sent. At the same time, the COSId must be updated
(so long as there is a corresponding cache miss). In case of overflow at the CM, a signal must be sent back to all CPUs
in the system requesting new COSIds. Figure B-1 illustrates the use of the COSId.

Table B.1 Coherent Trace Subset Options

Source Trace Subset Options Source Trace Subset Options

Core Trace All Instructions CM - RQU Trace Request

Trace All Memory Instructions Trace Request + Address

Trace Instructions that Miss in the I-Cache Trace Request + Stall Information

Trace Instructions that Miss in the D-Cache Trace Request + Address + Stall Information

Memory Instruc-
tions

Trace Address + Data CM - IVU Trace Request

Trace Address Only Trace Request + Stall Information
MIPS® PDtrace™ Specification, Revision 6.16 113

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Enhancements for Chip-Multiprocessing Systems
B.2 CM Trace Formats

Trace data can have two sources within the CM: the serialization response handler (SRH) or the Intervention Unit
(IVU). The SRH uses two trace formats (CM_TF1, CM_TF2), and the IVU uses one format (CM_TF3). One trace
format (CM_TF4) is used to indicate that overflow has occurred. The first one to four bits of a trace packet can be
used to determine the packet type.

B.2.1 CM Trace Format 1

When request addresses are not being traced, the CM_TF1 trace format, shown in Figure B-2 and Figure B-3, is used.
If the TLev field in TCBControlD (or CMTraceControl) is set to 1, each packet also includes the SRH_WaitTime
field. The packet width varies from 14 bits (trace level 0) to 22 bits (trace level 1). Trace reconstruction software must
determine the total packet length by examining the appropriate control bits in the TCBControlD or CMTraceControl
register.

Figure B-2 CM Trace Format 1 (CM_TF1) - Trace Level 0

Core

CM

Request
+ COSId

COSId

COSId

CM Trace Message

CPU Trace Message

00

00

00

00

01

01

01

00

00

01

01

01

01

01

CPU Trace Messages CM Trace Messages

Correlating CPU/CM messages using COSIdCOSId exchange and use in trace messages

Time

COSId 00

Cache
Miss

PCSync PCSync PCSync PCSync PCSync PCSync PCSync

01 10 11 00 01

CM Overflow

10

COSId updates: (a) PCSync followed by cache miss (first five changes), (b) CM overflow followed by cache miss

Figure B-1 COSId - Creation, Correlation, and Updates

13 11 10 6 5 4 3 1 0

AddrTarg MCmd COSId SrcPort 1
114 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

B.2 CM Trace Formats
Figure B-3 CM Trace Format 1 (CM_TF1) - Trace Level 1

B.2.2 CM Trace Format 2

When request addresses are being traced, the CM_TF2 trace format, shown in Figure B-4 and Figure B-5, are used.
Since each core sets the lowest three address bits to zero, only address bits [31:3] are traced. If the TLev field in
TCBControlD (or CMTraceControl) is set to 1, each packet also includes the SRH_WaitTime field. The packet
width varies from 45 bits (trace level 0) to 53 bits (trace level 1). Trace reconstruction software must determine the
total packet length by examining the appropriate control bits in TCBControlD or the CMTraceControl register.

Figure B-4 CM Trace Format 2 (CM_TF2) - Trace Level 0

Figure B-5 CM Trace Format 2 (CM_TF2) - Trace Level 1

B.2.3 CM Trace Format 3 (CM_TF3)

Trace data from the IVU uses the CM_TF3 trace format, shown in Figure B-6 and Figure B-7. If the trace level (TLev
in TCBControlD or CMTraceControl) is set to 1, each packet also includes two additional fields (WaitTime and Stall-
Cause). Each packet is 18 bits (trace level 0), or 29 bits (trace level 1). The SCF field indicates if a Store Conditional
Failed, and the SCC field indicates if a Store Conditional was cancelled. Trace reconstruction software must deter-
mine the trace level being used by examining the TCBControlD or CMTraceControl register.

Figure B-6 CM Trace Format 3 (CM_TF3) with Trace Level 0

Figure B-7 CM Trace Format 3 (CM_TF3) with Trace Level 1

21 14 13 11 10 6 5 4 3 1 0

WaitTime AddrTarg MCmd COSId SrcPort 1

44 16 15 13 12 8 7 6 5 3 2 1 0

Address[31:3] AddrTarg MCmd COSId SrcPort 1 0 0

52 45 44 16 15 13 12 8 7 6 5 3 2 1 0

WaitTime Address[31:3] AddrTarg MCmd COSId SrcPort 1 0 0

17 16 15 13 12 7 6 5 4 2 1 0

SCC SCF IntvResult RespBV COSId SrcPort 1 0

28 26 25 18 17 16 15 13 12 7 6 5 4 2 1 0

StallCause WaitTime SCC SCF IntvResult RespBV COSId SrcPort 1 0
MIPS® PDtrace™ Specification, Revision 6.16 115

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Enhancements for Chip-Multiprocessing Systems
B.2.4 CM Trace Format 4 (CM_TF4)

If the CM_IO (Inhibit Overflow) bit is not set, it is possible for trace packets to be lost if internal trace buffers are
filled. The CM indicates trace buffer overflow by outputting a CM_TF4 packet. Regular packets resume after the
CM_TF4 packet. The coherence manager must also resynchronize with all cores by requesting a new COSId.

Figure B-8 CM TF_4 - Overflow Format

B.3 Consolidating Trace Information

The coherence manager and each core in the system can generate trace data. This data must be passed through some
hardware block (the ‘Funnel’) that merges it into a single output stream and sends it to the user. A block diagram is
given below:

The Funnel must allow the user control over which sources contribute to the final trace data being sent to the on-chip
trace buffer or an external probe. For example, it should be possible to disable tracing data from the CM while gather-
ing data from Core0 and Core1. Since each load/store miss can be traced at the core and the CM, this provides one
possible method to determine execution order. Each message from the CM can act as a synchronization point for
instruction execution at CPUs. Some external software that is aware of the potentially different clock domains under
which the CPUs and the CM operate must be used to establish execution order.

B.4 On-Chip Trace Memory

On-chip trace memory is supported in coherent cores that implement revision 6.10 and higher of the PDtrace archi-
tecture. This memory is shared by all processor cores and the coherence manager and is accessed as previously
defined in the PDtrace architecture specification via the TCBTW register.

The on-chip trace memory is controlled by TCBControl registers TCBControlB and TCBControlE. These registers are
within a JTAG TAP controller known as the TraceMaster. The TraceMaster is implemented outside of the processor
cores. The TraceMaster is hosted within the Coherence Manager.

These on-chip trace memory control registers are also accessible through the CM GCR space. These GCR registers
give software a view of the TraceMaster TAP registers. These GCR registers include:

3 2 1 0

1 0 0 0

Core 0

Core 1

CM

Trace Data From Core 1

Trace Data

Trace Data From Core 0

from CM
Funnel
116 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

B.4 On-Chip Trace Memory
• TCBControlB - described in this Appendix.

• TCBControlD - describe in this Appendix.

• TCBControlE - described in this Appendix.

• TCBConfig - described in Section 8.7 on page 82.

• TCBRDP - described in Section 8.9 on page 85.

• TCBWRP - described in Section 8.10 on page 85.

• TCBSTP - described in Section 8.11 on page 86.

• TCBTW - described in Section 8.8 on page 84.

B.4.1 CM PDTrace TCB ControlB Register

TCBControlB is changed from the single-CPU version by only implementing the necessary bits which control the
on-chip trace buffer.

Table B.2 PDTrace TCBCONTROLB Register (GCR_DB_TCBControlB Offset 0x0008)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

WE 31 Write Enable.
Only when set to 1 will the other bits be written in
TCBCONTROLB.
This bit will always read 0.

R 0 Required

Impl 30:28 This field is reserved for implementations. Refer to the proces-
sor specification for the format and definition of this field.

Undefined Optional

TWSrc-
Width

27:26 Used to indicate the number of bits used in the source field of
the Trace Word, this is a configuration option of the core that
cannot be modified by software.
00 - zero source field width
01 - two bit source field width
10 - four bit source field width
11 - reserved for future use

R Preset Required for
PDtrace revi-
sions 4.00 and

higher

REG 25:21 Register select: This field specifies the register, (one among the
set of registers in Table 8.2) that can be accessed through the
TCBDATA register.

R/W 0 Required

WR 20 The write register field, when set, allows the register selected by
the REG field to be written as well as read when TCBDATA is
accessed. Otherwise, the selected register is only read.
Note that a JTAG register cannot be only written, it is always
read and written. Therefore, a register that has a side-effect on
read (see Table 8.13 “TCBRDP Register Field Descriptions”)
will have the same side-effect when written, since a read also
happens on a write. Hence, it is specified that when this field is
set, it is implementation- dependent whether a side-effect of a
read will occur when writing.

R/W 0 Required
MIPS® PDtrace™ Specification, Revision 6.16 117

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Enhancements for Chip-Multiprocessing Systems
0 19,17 Read as Zero. Writes ignored. Must be written with a value of
0x0.

R 0 Reserved

TRPAD 18 Trace RAM access disable bit, disables program software
access to the on-chip trace RAM using load/store instructions.
If probe access is not provided in the implementation, then this
register bit must be tied to zero value to allow software to con-
trol access.

The affected registers are TCBTW*, TCBRDP, TCBWP, TCBSTP.
None of these registers are writeable when TRPAD is set. Reads
to TCBTW* return zero with no side-effects when TRPAD is set.

R 0 Required after
revision 06.00

and higher

RM 16 Read on-chip trace memory.
When written to 1, the read address-pointer of the on-chip
memory in register TCBRDP is set to the value held in TCBSTP.
Subsequent access to the TCBTW register (through the
TCBDATA register), will automatically increment the read
pointer in register TCBRDP after each read.
When the write pointer is reached, this bit is automatically reset
to 0, and the TCBTW register will read all zeros.
Once set to 1, writing 1 again will have no effect. The bit is
reset by setting the TR bit or by reading the last Trace word in
TCBTW.

R/W 0 Required
if on-chip

memory exists.
Otherwise
reserved.

TR 15 Trace memory reset.
When written to one, the address pointers for the on-chip trace
memory TCBSTP, TCBRDP and TCBWRP are reset to zero.
Also the RM and BF bits are reset to 0.
This bit is automatically reset back to 0, when the reset speci-
fied above is completed.

R/W1 0 Required
if on-chip

memory exists.
Otherwise
reserved.

BF 14 Buffer Full indicator that the TCB uses to communicate to
external software that the on-chip trace memory is full. Note
that this applies only in the situation that the on-chip trace
memory is being deployed in the trace-from and trace-to
mode.
This bit is cleared when writing a 1 to the TR bit

R 0 Required
if on-chip

memory exists.
Otherwise
reserved.

Table B.2 PDTrace TCBCONTROLB Register (GCR_DB_TCBControlB Offset 0x0008) (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits
118 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

B.4 On-Chip Trace Memory
TM 13:12 Trace Mode. This field determines how the trace memory is
filled when using the simple-break control in the PDtrace™ IF
to start or stop trace.

In Trace-To mode, the on-chip trace memory is filled, continu-
ously wrapping around, overwriting older Trace Words, as long
as there is trace data coming from the core.
In Trace-From mode, the on-chip trace memory is filled from
the point that the core starts tracing until the on-chip trace mem-
ory is full (when the write pointer address is the same as the
start pointer address).
In both cases, de-asserting the EN bit in this register will also
stop fill to the trace memory.
If a TCBTRIGx trigger control register is used to start/stop trac-
ing, then this field should be set to Trace-To mode.

R/W 0 Required
if on-chip

memory exists.
Otherwise
reserved.

0 11 Read as Zero. Writes ignored. Must be written with a value of
0x0.

R 0 Reserved

CR 10:8 Off-chip Clock Ratio. Writing this field, sets the ratio of the
core clock to the off-chip trace memory interface clock. The
clock-ratio encoding is shown in Table 8.5 on page 76.
Remark: For example, a clock ratio of 1:2 implies a two times
slow down of the Probe interface clock to the core clock. But,
one data packet is sent per core clock rising edge, while a data
packet is sent on every edge of the Probe interface clock, since
the Probe interface works in double data rate (DDR) mode.

R/W 100 Required
if off-chip trace
interface exists.

Otherwise
reserved.

Table B.2 PDTrace TCBCONTROLB Register (GCR_DB_TCBControlB Offset 0x0008) (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

TM Trace Mode

00 Trace-To

01 Trace-From

10 Reserved

11 Reserved
MIPS® PDtrace™ Specification, Revision 6.16 119

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Enhancements for Chip-Multiprocessing Systems
Cal 7 Calibrate off-chip trace interface.
If set, the off-chip trace pins will produce the following pattern
in consecutive trace clock cycles. If more than 4 data pins exist,
the pattern is replicated for each set of 4 pins. The pattern
repeats from top to bottom until the Cal bit is de-asserted.

Note: The clock source of the TCB and PIB must be running.

R/W 0 Required
if off-chip trace
interface exists.

Otherwise
reserved.

0 6:2 Read as Zero. Writes ignored. Must be written with a value of
0x0.

R 0 Reserved.

OfC 1 If set to 1, trace is sent to off-chip memory using TR_DATA pins.
If not set, trace info is sent to on-chip memory.
This bit is read only if either off-chip or on-chip option exists.

R/W Preset Required

EN 0 Enable Trace Memory Writes.

When set to “1”, trace information is sampled on the output pins
or written into the on-chip trace memory. Trace Words are gen-
erated and sent to either on-chip memory or to the Trace Probe.
The target of the trace is selected by the OfC bit.
When set to “0”, trace information on the output trace pins are
ignored. A potential TF6-stop (from a stop trigger) is generated
as the last information, and the TCB pipe-line is flushed, and
trace output is stopped.

R/W 0 Required

Table B.2 PDTrace TCBCONTROLB Register (GCR_DB_TCBControlB Offset 0x0008) (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Calibrations pattern

3 2 1 0

T
hi

s
pa

tte
rn

 is
 r

ep
lic

at
ed

 f
or

 e
ve

ry
 4

 b
its

of
T

R
_D

AT
A

 p
in

s.

0 0 0 0

1 1 1 1

0 0 0 0

0 1 0 1

1 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1
120 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

B.5 Software Control of Coherence Manager Trace
B.4.2 CM PDTrace TCB ControlE Register

Similarly, TCBControlE is also modified from the single-core version to only have the status bits related to the on-
chip trace buffer.

B.4.2.1 TCBCONTROLE Register

B.5 Software Control of Coherence Manager Trace

As previously described, the Coherence Manager itself can generate trace information. Software control of this trace
information is enabled through the TCBControlD register in the GCR register space (Debug Control Block, offset
0x0010). A coherent core that implements revision 6.00 and above of the PDtrace architecture also provides software
access to the TCBControlD register via drseg.

Figure B.9 TCBControlD Register Format

Table B.3 TCBCONTROLE Register (GCR_DB_PD_TCBCONTROLE Offset 0x0020)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 31:9 Reserved for future use. Must be written as zero; returns
zero on read.

0 0 Reserved

TrIDLE 8 Trace Unit Idle. This bit indicates if the trace hardware is
currently idle (not processing any data). This can be useful
when switching control of trace from hardware to software
and vice versa. The bit is read-only and updated by the
trace hardware.

R 1 Required after
revision 06.00

and higher

0 7:0 Reserved for future use. Must be written as zero; returns
zero on read. (Hint to architect: reserved for future expan-
sion of performance counter trace events).

0 0 Reserved

31 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 2 1 0

Impl Reserved
TW

SrcVal
WB 0 IO TLev AE

Global
CM

En

CM_
En

Table B.4 TraceControlD Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Impl 31:16 Reserved for implementations. Check core documentation. Undefined Optional

Reserved 15:13 Reserved for future use. Must be written as 0, and read as 0. 0 0 Required

TWSrcVal 11:8 The source ID of the CM. 0 0 Required

WB 7 When this bit is set, Coherent Writeback requests are traced.
If this bit is not set, all Coherent Writeback requests are sup-
pressed from the CM trace stream.

R/W 0 Required

Reserved 6 Reserved for future use. Must be written as 0, and read as 0. 0 0 Required
MIPS® PDtrace™ Specification, Revision 6.16 121

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Enhancements for Chip-Multiprocessing Systems
IO 5 Inhibit Overflow on CM FIFO full condition. Will stall the
CM until forward progress can be made

R/W Undefined Required

TLev 4:3 This defines the current trace level being used by CM trac-
ing.

R/W Undefined Required

AE 2 When set to 1, address tracing is always enabled for the CM.
This affects trace output from the serialization unit of the
CM.

R/W 0 Required

Global_CM_
En

1 Setting this bit to 1 enables tracing from the CM as long as
the CM_EN bit is also enabled.

R/W 0 Required

CM_EN 0 This is the master trace enable switch to the CM. When
zero, tracing from the CM is always disabled. When set to
one, tracing is enabled whenever the other enabling func-
tions are also true.

R/W 0 Required

Table B.4 TraceControlD Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encodin
g Meaning

00 No Timing Information

01 Include Stall Times, Causes

10 Reserved

11 Reserved
122 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

B.6 Trace-Master TAP Instruction Register
B.6 Trace-Master TAP Instruction Register

Table B.5 shows the allocation of the TAP instructions for the TraceMaster. The TraceMaster is the entity which con-
trols the PDTrace Trace-Buffer memory. The TraceMaster is hosted by the Coherence Manager.

Within the table above, the text in bold represents differences between the TraceMaster instruction register with the
instruction registers of the TAP controllers associated with the processor cores.

Please refer to MD00047 - MIPS® EJTAG Specification for the full description of these EJTAG commands and
registers.

Table B.5 TraceMaster TAP Instruction Overview

Code Instruction Function

All 0’s (Free for other use) Free for other use, such as JTAG boundary scan.

0x01 IDCODE Selects Device Identification (ID) register.

0x02 (Free for other use) Free for other use, such as JTAG boundary scan.

0x03 IMPCODE Selects Implementation register - only EJTAGVer field implemented.

0x04 - 0x07 (Free for other use) Free for other use, such as JTAG boundary scan.

0x08 Not Used Instructions using this code are ignored.

0x09 Not Used Instructions using this code are ignored.

0x0A CONTROL Selects EJTAG Control register - only Rocc, Doze & Halt fields imple-
mented - these reflect the status of the Coherence Manager.

0x0B ALL Selects EJTAG Control registers.

0x0C Not Used Instructions using this code are ignored.

0x0D Not Used Instructions using this code are ignored.

0x0E Not Used Instructions using this code are ignored.

0x0F (EJTAG reserved) Reserved for future EJTAG use.

0x10 Not Used

0x11 TCBCONTROLB Controls what to do with trace outputs from CPU cores.

0x12 TCBDATA Used to access the registers specified by the TCBCONTROLBREG field and

transfers data between the TAP and the TCB control register.

0x13 Not Used Instructions using this code are ignored.

0x14 Not Used Instructions using this code are ignored.

0x15 TCBCONTROLD Controls what trace outputs come from the Coherence Manager.

0x16 TCBCONTROLE Gives status of the trace buffer.
Performance Counter related fields are implemented only if the Coher-
ence Manager has its own Performance Counters which can be traced.

0x17 Not Used Instructions using this code are ignored.

0x18 - 0x1B (EJTAG reserved) Reserved for future EJTAG use.

0x1C - All 1’s (Free for other use) Free for other use, such as JTAG boundary scan.

All 1’s BYPASS Select Bypass register.
MIPS® PDtrace™ Specification, Revision 6.16 123

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Appendix C
Implementation-Specific PDtrace™ Enhancements for
MIPS32® 1004K™ Revision 1.2.0 and Older Cores

C.1 On-Chip Trace Memory

NOTE: This section only applies to 1004K Releases 1.2.0 (PRID Revision Field = 0x28) and older. For 1004K
Release 1.3.0 (PRID Revision Field = 0x2c) and newer, please refer to Appendix B, “PDtrace™ Enhancements
for Chip-Multiprocessing Systems” on page 112.

On-chip trace memory is supported in coherent cores that implement revision 6.10 and higher of the PDtrace archi-
tecture. This memory is shared by all processor cores and the Coherence Manager and is accessed as previously
defined in the PDtrace architecture specification via the TCBTW register.

To ensure consistent read/write behavior, the Trace_Master_CoreID field in the PDtrace_Master_Select_Register
within the shared GCR address space is used to grant on-chip memory access to a single core. Read/Write requests
from other cores (via drseg or via the TAP controller) are ignored.

Also within the GCR space are the registers necessary to control the shared on-chip trace memory and report its sta-
tus. These registers include:

Table C.1 CM PDTrace Master Select Register

Register Fields

Description
Read/
Write

Reset
State ComplianceName Bits

0 [31:5] Read as Zero. Writes ignored. R 0x0 Reserved

Trace_Select_GCR [4] Used to select between the EJTAG and GCR trace control
registers.
A value of zero indicates that the CM PDTrace is controlled
by the EJTAG TBCCONTROLD register associated with the
core selected by the Trace_Master_CoreID field.
A value of one indicates that the CM PDTrace is controlled
by the CM Trace Control register.

R/W 0x0 Required

Trace_Master_CoreID [3:0] CM Port ID that controls PDTrace Configuration when
Trace_Select_GCR field is zero.

Also selects which CM Port ID is allowed to read or write
the following registers:
GCR_DB_TCBTW
GCR_DB_TCBRDP
GCR_DB_TCBWRP
GCR_DB_STP
GCR_DB_TCBCONTROLB GCR_DB_TCBCONTROLE
GCR_DB_PDT_CONTROL
GCR_DB_TCBConfig

R/W 0x0 Required
MIPS® PDtrace™ Specification, Revision 6.16 124

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

C.1 On-Chip Trace Memory
• TCBControlB

• TCBControlE

• TCBConfig

• TCBRDP

• TCBWRP

• TCBSTP

• TCBTW

Access to these registers is controlled by PDtrace_Master_Select_RegisterTrace_Master_CoreID as previously described.

C.1.1 CM PDTrace TCB ControlB Register

NOTE: This section only applies to 1004K Releases 1.2.0 (PRID Revision Field = 0x28) and older. For 1004K
Release 1.3.0 (PRID Revision Field = 0x2c) and newer, please refer to Appendix B, “PDtrace™ Enhancements
for Chip-Multiprocessing Systems” on page 112.

TCBControlB is changed from the single-CPU version by only implementing the necessary bits which control the on-
chip trace buffer.

Table C.2 PDTrace TCBCONTROLB Register (GCR_DB_TCBControlB Offset 0x0008)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

WE 31 Write Enable.
Only when set to 1 will the other bits be written in
TCBCONTROLB.
This bit will always read 0.

R 0 Required

Impl 30:28 This field is reserved for implementations. Refer to the
processor specification for the format and definition of
this field.

Undefined Optional

0 27:17 Read as Zero. Writes ignored. Must be written with a
value of 0x0.

R 0 Reserved

RM 16 Read on-chip trace memory.
When written to 1, the read address-pointer of the on-chip
memory in register TCBRDP is set to the value held in
TCBSTP.
Subsequent access to the TCBTW register (through the
TCBDATA register), will automatically increment the read
pointer in register TCBRDP after each read.
When the write pointer is reached, this bit is automatically
reset to 0, and the TCBTW register will read all zeros.
Once set to 1, writing 1 again will have no effect. The bit
is reset by setting the TR bit or by reading the last Trace
word in TCBTW.

R/W 0 Required
if on-chip

memory exists.
Otherwise
reserved.
MIPS® PDtrace™ Specification, Revision 6.16 125

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Implementation-Specific PDtrace™ Enhancements for MIPS32® 1004K™ Revision 1.2.0 and Older Cores
TR 15 Trace memory reset.
When written to one, the address pointers for the on-chip
trace memory TCBSTP, TCBRDP and TCBWRP are reset
to zero. Also the RM and BF bits are reset to 0.
This bit is automatically reset to 0 when the reset specified
above is completed.

R/W1 0 Required
if on-chip

memory exists.
Otherwise
reserved.

BF 14 Buffer Full indicator that the TCB uses to communicate to
external software that the on-chip trace memory is full.
Note that this applies only in the situation that the on-chip
trace memory is being deployed in the trace-from and
trace-to mode.
This bit is cleared when writing a 1 to the TR bit.

R 0 Required
if on-chip

memory exists.
Otherwise
reserved.

TM 13:12 Trace Mode. This field determines how the trace memory
is filled when using the simple-break control in the
PDtrace IF to start or stop trace.

In Trace-To mode, the on-chip trace memory is filled,
continuously wrapping around, overwriting older Trace
Words, as long as there is trace data coming from the core.
In Trace-From mode, the on-chip trace memory is filled
from the point that the core starts tracing until the on-chip
trace memory is full (when the write pointer address is the
same as the start pointer address).
In both cases, de-asserting the EN bit in this register will
also stop fill to the trace memory.
If a TCBTRIGx trigger control register is used to start/stop
tracing, then this field should be set to Trace-To mode.

R/W 0 Required
if on-chip

memory exists.
Otherwise
reserved.

0 11 Read as Zero. Writes ignored. Must be written with a
value of 0x0.

R 0 Reserved

CR 10:8 Off-chip Clock Ratio. Writing this field, sets the ratio of
the core clock to the off-chip trace memory interface
clock. The clock-ratio encoding is shown in Table 8.5 on
page 76.
Remark: For example, a clock ratio of 1:2 implies a two
times slow down of the Probe interface clock to the core
clock. But, one data packet is sent per core clock rising
edge, while a data packet is sent on every edge of the
Probe interface clock, since the Probe interface works in
double data rate (DDR) mode.

R/W 100 Required
if off-chip trace
interface exists.

Otherwise
reserved.

Table C.2 PDTrace TCBCONTROLB Register (GCR_DB_TCBControlB Offset 0x0008) (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

TM Trace Mode

00 Trace-To

01 Trace-From

10 Reserved

11 Reserved
126 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

C.1 On-Chip Trace Memory
Cal 7 Calibrate off-chip trace interface.
If set, the off-chip trace pins will produce the following
pattern in consecutive trace clock cycles. If more than 4
data pins exist, the pattern is replicated for each set of 4
pins. The pattern repeats from top to bottom until the Cal
bit is de-asserted.

Note: The clock source of the TCB and PIB must be run-
ning.

R/W 0 Required
if off-chip trace
interface exists.

Otherwise
reserved.

0 6:2 Read as Zero. Writes ignored. Must be written with a
value of 0x0.

R 0 Reserved

OfC 1 If set to 1, trace is sent to off-chip memory using TR_DATA
pins.
If not set, trace info is sent to on-chip memory.
This bit is read only if either off-chip or on-chip option
exists.

R/W Preset Required

0 0 Read as Zero. Writes ignored. Must be written with a
value of 0x0.

R 0 Reserved

Table C.2 PDTrace TCBCONTROLB Register (GCR_DB_TCBControlB Offset 0x0008) (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Calibrations pattern

3 2 1 0

T
hi

s
pa

tte
rn

 is
 r

ep
lic

at
ed

 f
or

 e
ve

ry
 4

 b
its

of
T

R
_D

AT
A

 p
in

s.

0 0 0 0

1 1 1 1

0 0 0 0

0 1 0 1

1 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1
MIPS® PDtrace™ Specification, Revision 6.16 127

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Implementation-Specific PDtrace™ Enhancements for MIPS32® 1004K™ Revision 1.2.0 and Older Cores
C.1.2 CM PDTrace TCB ControlE Register

NOTE: This section only applies to 1004K Releases 1.2.0 (PRID Revision Field = 0x28) and older. For 1004K
Release 1.3.0 (PRID Revision Field = 0x2c) and newer, please refer to Appendix B, “PDtrace™ Enhancements
for Chip-Multiprocessing Systems” on page 112.

Similarly, TCBControlE is also modified from the single-core version to only have the status bits related to the on-
chip trace buffer.

C.2 Software Control of Coherence Manager Trace

NOTE: This section only applies to 1004K Releases 1.2.0 (PRID Revision Field = 0x28) and older. For 1004K
Release 1.3.0 (PRID Revision Field = 0x2c) and newer, please refer to Appendix B, “PDtrace™ Enhancements
for Chip-Multiprocessing Systems” on page 112.

As previously mentioned, the Coherence Manager itself can generate trace information. Software control of this trace
information is enabled through the CMTraceControl register in the GCR register space (Debug Control Block, offset
0x0010). This register is very similar to the TCBControlD register and is described below. A coherent core that imple-
ments revision 6.00 and above of the PDtrace architecture also provides software access to the TCBControlD register
via drseg.

Figure C-1 CMTraceControl Register Format

Table C.3 TCBCONTROLE Register (GCR_DB_PD_TCBCONTROLE Offset 0x0020)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 31:9 Reserved for future use. Must be written as zero; returns
zero on read.

0 0 Reserved

TrIDLE 8 Trace Unit Idle. This bit indicates if the trace hardware is
currently idle (not processing any data). This can be useful
when switching control of trace from hardware to software
and vice versa. The bit is read-only and updated by the
trace hardware.

R 1 Required after
revision 06.00

and higher

0 7:0 Reserved for future use; Must be written as zero; returns
zero on read. (Hint to architect: Reserved for future expan-
sion of performance counter trace events).

0 0 Reserved

31 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 2 1 0

Impl Reserved
TW

SrcVal
WB 0 IO TLev AE

SW_
Trace
_ON

CM_
En

Table C.4 CMTraceControl Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Impl 31:16 Reserved for implementations. Check core documentation Undefined Optional
128 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

C.2 Software Control of Coherence Manager Trace
Reserved 15:13 Reserved for future use. Must be written as 0, and read as 0 0 0 Required

TWSrcVal 11:8 The source ID of the CM. 0 0 Required

WB 7 When this bit is set, Coherent Writeback requests are traced.
If this bit is not set, all Coherent Writeback requests are sup-
pressed from the CM trace stream

R/W 0 Required

Reserved 6 Reserved for future use. Must be written as 0, and read as 0 0 0 Required

IO 5 Inhibit Overflow on CM FIFO full condition. Will stall the
CM until forward progress can be made

R/W Undefined Required

TLev 4:3 This defines the current trace level being used by CM trac-
ing.

R/W Undefined Required

AE 2 When set to 1, address tracing is always enabled for the CM.
This affects trace output from the serialization unit of the
CM.

R/W 0 Required

SW_Trace_
ON

1 Setting this bit to 1 enables tracing from the CM as long as
the CM_EN bit is also enabled.

R/W 0 Required

CM_EN 0 This is the master trace enable switch to the CM. When
zero, tracing from the CM is always disabled. When set to
one, tracing is enabled whenever the other enabling func-
tions are also true.

R/W 0 Required

Table C.4 CMTraceControl Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

00 No Timing Information

01 Include Stall Times, Causes

10 Reserved

11 Reserved
MIPS® PDtrace™ Specification, Revision 6.16 129

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Appendix D
Implementation-Specific PDtrace™ Enhancements for the
MIPS32® 1074K™ Cores

The Content of this Appendix has been moved to Appendix B, “PDtrace™ Enhancements for Chip-Multiprocessing
Systems” on page 112. The reason for this is that both the 1004K and 1074K products lines now share the same
access method (the Trace-Master JTAG TAP controller) for the PDtrace control registers.
MIPS® PDtrace™ Specification, Revision 6.16 130

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

MIPS® PDtrace™ Specification, Revision 6.16 131

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Appendix E
Tracing Multi-Issue and High Performance Processors

This section of the PDtrace specification is now designated as an Appendix, because it is no longer clear if this
method for tracing multi-issue pipelines is useful and will ever be implemented. This method may be deprecated from
the specification in a future release.

E.1 Background on High Performance Processors

This section addresses the tracing needs of multi-issue pipeline processors and describes a mechanism that allows a
workable and efficient tracing of program execution on such processors. The features of high performance processors
are not, in general, very suitable for effectively tracing the sequential execution of a program. Such processor features
include, but are not limited to:

• Superscalar or multi-issue

• Aggressive, out-of-order dynamic scheduling with large fetch and issue windows

• Deep pipelines

• Multi-latency pipelines

• Multiple outstanding load misses

A processor that is designed to issue multiple instructions, and, moreover, out of order from the original program
sequence, will also implement what is typically known as the re-order buffer. This re-order buffer and its control logic
is responsible for putting the issued instructions back in-order (of the original program sequence). There is a stage in
the pipeline when instructions are graduated from the re-order buffer, i.e., the point where it is certain that the instruc-
tion will not stop due to an exception (or any other reason), and can proceed to completion. This graduation of
instructions from the re-order buffer is done in program sequence.

There are several things to note here. First, the graduated instructions have not completed their execution and will
proceed to do so further in the pipeline; for example, the register write-back of the computed result of an arithmetic
instruction will happen later in the pipeline. The second thing to note is that, typically, the number of graduating
instructions will not exceed the number of issue slots of the processor. But the number can vary from a minimum of
zero up to the number of issue slots at the front of the pipe, plus the number of load miss completions from the bus
and cache units, etc.

E.2 Basic Tracing Methodology

The trace methodology described in this document proposes that instructions be traced at the point of graduation. It is
recommended that a number of instructions be simultaneously traced, and that the recommended number is the num-
ber of issue slots of the processor—let us call this the “number of instruction trace slots”. It is possible that in some
cycles the number of graduating instructions is greater than the number of instruction trace slots. In these cases, the
processor’s trace control logic must buffer the instruction(s) that could not be traced earlier, and trace them at the
MIPS® PDtrace™ Specification, Revision 6.16 132

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

E.2 Basic Tracing Methodology
beginning of the next cycle, still maintaining the program sequence order. Note that the size of such a buffer need not
be very large, because over time the number of issued instructions will equal the number of graduated instructions.
The size of this buffer can be calculated based on the maximum number of instructions that can graduate from the re-
order buffer on any given cycle, and this number is based on the processor’s pipeline depth and other pipeline-related
factors.

All the signals marked “Out” are signals output from the processor core and represent the activity of a single instruc-
tion within the core. Most of these signals need to be duplicated as many times as the number of instruction trace slots
within the core. Signals that must be duplicated are shown in Table F.1 also with signal names appended with a “_n”,
where n is used to designate the instruction trace slot number. For example, a two-issue core can trace two instruc-
tions and use InsComp_0 and InsComp_1 to represent the completion status values of two simultaneously graduating
instructions. If only one instruction graduates on any given cycle, then InsComp_1 has a value of 000. When no
instruction graduates on a given cycle, then both InsComp_0 and InsComp_1 have 000 values.

The same example code fragment from before is shown in Table E.1 and this table shows the graduation cycle of each
instruction and the number of the instruction trace slot that actually traces that instruction. This example assumes a
simple two-issue processor that allows up to one load/store instruction per issue and one branch instruction per cycle.

Table E.1 Example Code Fragment Showing the Graduation Cycle and Trace Bus Number

Instr
No. PC Instruction

Graduation
Cycle Slot Number

1 0x00400188 SW $6, 0xe170($1) n+0 0

2 0x0040018c SW $4, 0xb134($28) n+1 0

3 0x00400190 SW $5, 0xb130($28) n+2 0

4 0x00400194 SW $0, 0x1c($29) n+3 0

5 0x00400198 JAL 0x418d9c n+4 0

6 0x0040019c OR $30, $0, $0 n+4 1

7 0x00418d9c NOP n+5 0

8 0x00418da0 JR $31 n+5 1

9 0x00418da4 NOP n+6 0

10 0x004001a0 JAL 0x411c40 n+7 0

11 0x004001a4 NOP n+7 1

12 0x00411c40 JR $31 n+8 0

13 0x00411c44 NOP n+8 1

14 0x00414adc LW $4, 0xb134($28) n+9 0

15 0x00414ae0 BEQ $14, $0, 0x414af8 n+9 1

16 0x00414ae4 ADDIU $29, $29, 0xffe0 n+10 0

17 0x00414af8 OR $7, $0, $0 n+10 1

18 0x00414afc NOP n+11 0

19 0x00414b00 ADDU $6, $6, $2 n+11 1

20 0x00414b04 OR $7, $2, $0 n+12 0

21 0x00414b08 SLTU $1, $2, $1 n+12 1
MIPS® PDtrace™ Specification, Revision 6.16 133

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Tracing Multi-Issue and High Performance Processors
E.3 Coordinating Instruction Completion Trace with Address/Data Trace

When an instruction is traced on a particular instruction trace slot, say using InsComp_k, then all other information

for that instruction is sent on the signals of the “k”th instruction trace slot. For example, the address and data, if any,
associated with that instruction is sent on the same slot. Thus, once an instruction begins its trace life on a particular
instruction trace slot, it must complete its life on the same slot. The exception to this occurs when the data is not
immediately available. In this situation, the data can be sent on any of the slots that is temporarily free and hence cho-
sen by the processor to send that data. See E.4 “Out-of-Order Loads and Stores in the Multi-Pipe Core”.

The process of identifying the data associated with particular instructions has been simplified by making it a require-
ment that all the data associated with instructions traced on the same cycle be in lock-step. Specifically, all the data
associated with instructions that are traced together on the different InsComp_n are such that their end points (i.e., the
last data cycle) are synchronized to be traced together. This requirement makes it easier for an external block to
sequence all the data operations into the program sequence. An example that illustrates this behavior is shown in
Figure E.1.

Figure E.1 An Example Showing the Coordination of Instructions and Their Data

(1) (2)

Program Sequence InsComp_0 InsComp_1 cycle

ILBa ILBa ILb n

ILb ISc ILd n+1

ISc

ILd

(3)

Cycle TType_0 TType_1 TEnd_0 TEnd_1 Comments

m+0 TPCa1 NT 0 x

m+1 TPCa2 NT 1 x

m+2 TLAa1 NT 0 x

m+3 TLAa2 TLAb1 1 1

m+4 TDa1 TDb1 0 0

m+5 TDa2 TDb2 1 1
completion of all TType
transfers for instructions

traced in cycle n

m+6 TSAc1 NT 0 x

m+7 TSAc2 TLAd1 1 1

m+8 TDc1 TDd1 0 0

m+9 TDc2 TDd2 1 1
completion of all TType
transfers for instructions

traced in cycle n+1

(4)

Data in Program Sequence
134 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

E.4 Out-of-Order Loads and Stores in the Multi-Pipe Core
Figure E.1 shows four blocks of information. The first one (1) shows the instruction complete (InsComp) values in
the program sequence. The second block (2) shows these values as they would be transmitted on the two instruction
trace slots, i.e., InsComp_0 and InsComp_1. The third block (3) shows the TType and TEnd values for the two trace
slots. Note that the data trace information for the instructions that were simultaneously traced on InsComp_0 and
InsComp_1 are traced such that their TEnd is coordinated. For the InsComp values traced in cycle n (in block (2)), the
data transmission ends in cycle m+5 (in block (3)). And for the InsComp values traced in cycle n+1 (in block (2)), the
data transmission ends in cycle m+9 (in block (3)).

The external block reading the signals on the interface can then take the data values, and knowing the program
sequence order (in block (1)), can put the data trace in order, as shown in block (4).

E.4 Out-of-Order Loads and Stores in the Multi-Pipe Core

When a multi-pipe core needs to send out-of-order data, it uses the DataOrder signal just like the single-pipe core.
When an out-of-order data is returned, it can be traced on any free slot, not necessarily the one that traced the corre-
sponding instruction. This is because instruction tracing is sequentialized by the InsComp_n order, and therefore the
data can be associated with the correct instruction once the DataOrder value is known. Note that since the slots are
implicitly ordered, for data transmissions that end on the same cycle, the data on TType_k is before the data on
TType_k+1.

E.5 Tagging Instructions that Issue Together

With the method of tracing graduating instructions in sequence, it is not possible to know which instructions issue
together without additional information. This information might be invaluable to tune a code optimizer for high per-
formance processors. In order to trace this information, the processor tags all the instructions that issue together,
using the signal IssueTag_n. This tag value is also traced out with each InsComp_n value. A tag value of 6 bits is
being initially proposed, assuming an issue window of about 64 instructions. Note that this tag information can be
traced out of the TCB only if the user requires it, hence it will not incur bandwidth on the external pins unless there is
a real need for this information. Thus, it is recommended that the TCB allow the external tracing of this information
under user discretion.

E.6 Miscellaneous

Tracing from each one of the multiple pipelines is controlled by the same set of bits, either in CP0 or in the TCB, as
well be described in other chapters.

TPCa1, TPCa2,

TLAa1, TLAa2,

TLAb1,

TDa1, TDa2

TDb1, TDb2

TSAc1, TSAc2

TLAd1

TDc1, TDc2

TDd1, TDd2
MIPS® PDtrace™ Specification, Revision 6.16 135

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Tracing Multi-Issue and High Performance Processors
When tracing is first started (or re-started after a break), InsComp_0 is the first traced instruction in the static program
image and this will output the TMOAS record and the full PC.

When there is a need for synchronization, the core can choose any InsComp_n to send the TMOAS record and the
full PC value, as long as these two are both done on the same instruction in the trace slot. Note that if load/store
addresses are also being traced, then a full load/store address value is part of the synchronization tracing. This may
not always be possible on the instruction chosen by the core. But these should be sent on the next sequential load/
store instruction. This is a situation that the external software has to take into account when recognizing synchroniza-
tion transmissions in the multi-pipeline core or processor.
136 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

Appendix F
PDtrace™ Interface Signals (The Interface is now
Deprecated as Architecture and this Chapter is here Solely
for Historical Reasons)

All signals are assumed to be asserted high unless otherwise noted. The signal direction “Out” refers to a signal that is
output from the processor core or coherence manager, and “In” signals are those that are input to the processor core or
coherence manager. The “PDO_” prefix to the signal names is used to uniquely identify the signals as belonging to
the PDtrace Output interface. And the “PDI_” prefix is used to identify the PDtrace Input signals. Signals that have
been repeated in the “Signal Name” column with a “_n” prefix are PDO_ signals that are to be duplicated for multi-
issue processors.
MIPS® PDtrace™ Specification, Revision 6.16 137

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Interface Signals (The Interface is now Deprecated as Architecture and this Chapter is here Solely for His-
F.1 PDtrace™ Core Interface Signal List

Table F.1 PDtrace™ Core Interface Signals

Signal Name Direction Description

Pclk Processor clock, used by the core and the trace control block.

PDO_IamTracing Out The core uses this signal to validate all the other Out signals. The external
trace control block cannot always predict if the trace data from the core is valid
or not valid, since tracing depends on core execution status such as the proces-
sor mode and also since tracing can be controlled by software running on the
core.
This signal is used for all the _n signals, and is not duplicated.

PDO_InsComp[2:0]
PDO_InsComp_n[2:0]

Out Instruction completion status signal. The values are interpreted as follows:

A "No Instruction" (NI) can occur due to a pipeline stall or when the instruc-
tion was killed (due to an exception).
The three encodings (101, 110, 111) for branched instruction indicates a dis-
continuity in the PC value for the associated instruction. Note that it is only
when the new PC cannot be predicted from the static program flow that it is
traced.
The IPC value is used for the periodic output of the full PC value for synchro-
nization. The tracing hardware should ensure that this is not done on an unpre-
dictable branch, load, or store instruction.

PDO_MIPS16
PDO_MIPS16_n

Out When asserted, this signal indicates that the current instruction specified in
PDO_InsComp is a MIPS16e instruction. When de-asserted, the processor is
not executing a MIPS16e instruction.
This signal (along with the PDO_MIPS16Ins signal) is used by the TCB to
compute the current PC value. Hence this is irrelevant externally and not
traced to memory. Note that since external software has access to the program
image, it can always know whether an instruction is a MIPS16e instruction or
not.
This is an optional signal for PDtrace specification revisions less than 03.00.
This signal is only relevant if the processor also implements the MIPS16e
ASE, and is not required otherwise. If a processor provides this signal, it is
optional whether a TCB accepts this signal and uses it.

Value Description

000 No instruction completed this cycle (NI)

001 Instruction completed this cycle (I)

010 Instruction completed this cycle was a load (IL)

011 Instruction completed this cycle was a store (IS)

100 Instruction completed this cycle was a PC sync (IPC)

101 Instruction branched this cycle (IB)

110 Instruction branched this cycle was a load (ILB)

111 Instruction branched this cycle was a store (ISB)
138 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

F.1 PDtrace™ Core Interface Signal List
PDO_MIPS16Ins[1:0]
PDO_MIPS16Ins_n[1:0]

Out This signal accompanies the PDO_MIPS16 signal and is used to indicate the
type of MIPS16e instruction. Like PDO_MIPS16 this is optional, but must be
implemented if PDO_MIPS16 is implemented.

PDO_AD[15:0] or
PDO_AD[31:0]
PDO_AD_n[15:0] or
PDO_AD_n[31:0]

Out The address or data value is transmitted on this bus. The actual values must be
correlated using the PDO_TType signal described below. It is recommended
that a 64-bit processor core implement at least 32 bits for improved tracing
capability.
A multi-cycle transaction sends the least-significant bits first, followed by the
more-significant bits.
When the transmitted data width is less than the width of the bus, the data is
transmitted on the least-significant bits of the bus. There is no necessity to
indicate the validity since the post-analyzing software knows the width of the
data. (For example, a LB implies one byte of data). The upper bits of the bus
must be sign extended to allow the TCB to truncate the upper bits and hence
avoid tracing unneeded bits to memory.

PDO_TType[2:0]
PDO_TType_n[2:0]

Out Specifies the transmission type for the transaction on the PDO_AD lines. The
valid types are:

Table F.1 PDtrace™ Core Interface Signals (Continued)

Signal Name Direction Description

Value Description

00 Is executing a MIPS16e instruction that is not a MACRO
instruction and is not extended.

01 Is executing a MIPS16e instruction that is not a MACRO
instruction and is extended.

10 Is executing a MIPS16e MACRO instruction.

11 Reserved

Value Description

000 No transmission this cycle (NT)

001 Transmitting the PC (TPC)

010 Transmitting the load address (TLA)

011 Transmitting the store address (TSA)

100 Transmitting the load/store data value (TD)

101 Transmitting the processor mode, the 8-bit ASID, and the
SYNC bit. This is triggered by either a change in the proces-
sor mode, by a software write to the EntryHi register, or a
trace synchronization operation. (TMOAS). If the processor
does not implement the standard TLB-based MMU, it is
UNPREDICTABLE whether a write to the EntryHi register
triggers a TMOAS operation. (See Figure 3.3).

110 Transmitting user-defined trace record - type 1 (TU1)

111 Transmitting user-defined trace record - type 2 (TU2)
MIPS® PDtrace™ Specification, Revision 6.16 139

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Interface Signals (The Interface is now Deprecated as Architecture and this Chapter is here Solely for His-
PDO_TEnd
PDO_TEnd_n

Out Indicates the last cycle of the current transaction on the PDO_AD bus. This sig-
nal can be asserted in the same cycle that a transaction is started, implying that
the particular transaction only took one cycle to complete.
In a multi-issue core, the PDO_TEnd signals are synchronized for all the
PDO_AD_n transmissions associated with instructions that graduate together.
See Section E.3 “Coordinating Instruction Completion Trace with Address/
Data Trace” on page 134 for details.
In PDtrace revision 3.00 and higher, the processor is allowed to assert this sig-
nal early if the tracing logic determines that the upper bits of the address or
data being sent on the PDO_AD bus are redundant. For example, redundant
upper sign bits may be omitted and software could easily reconstruct these
bits. Note that the TCB must therefore be capable of accepting an early
PDO_TEnd signal for any transmission type. This early assertion of
PDO_TEnd is allowed for all the values of PDO_TMode.

PDO_TMode
PDO_TMode_n

Out Indicates the transmission mode for the bits transmitted on PDO_AD. The
mode depends on the transmission type.

Table F.1 PDtrace™ Core Interface Signals (Continued)

Signal Name Direction Description

PDO_TType PDO_TMode

000 (NT)
101 (TMOAS)

Reserved

001 (TPC) 0 -> delta from last PC value
1 -> compression algorithm A (full address)

010 (TLA)
011 (TSA)

0 -> delta from last data address of that type
1 -> compression algorithm B (full address)

100 (TD)
110 (TU1)
111 (TU2)

0 -> Reserved
1 -> compression algorithm C (full data)
140 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

F.1 PDtrace™ Core Interface Signal List
PDO_DataOrder[3:0]
PDO_DataOrder_n[3:0]

Out This signal is used to indicate the degree of out-of-order-ness of load and store
data. Using this order value allows load and store data to be traced out as it
becomes available, thus avoiding the need to internally buffer data. Note that
only sixteen outstanding data values are allowed because of the limitation
imposed by the signal width of 4 bits. This signal takes on the following val-
ues:

PDO_TrigI[N:0] Out This vector indicates which of the N+1 implemented EJTAG hardware instruc-
tion breakpoints caused a trigger. The instruction causing the trigger is indi-
cated on the corresponding PDO_InsComp bus, if tracing has been turned on.
Note that EJTAG restricts the maximum number of implementable hardware
instruction breakpoints to 15.

PDO_TrigD[N:0] Out This vector indicates which of the N+1 implemented EJTAG hardware data
breakpoints caused a trigger. The instruction causing the trigger is not neces-
sarily the one on the PDO_InsComp bus since data triggers may be imprecise.
Note that EJTAG restricts the maximum number of implementable hardware
data breakpoints to 15.

PDO_TrigOn Out This bit is asserted if at least one trigger in PDO_TrigI[N:0] or PDO_TrigD[N:0]
turns trace on. (See 3.16 “Trace Trigger from EJTAG Hardware Instruction/
Data Breakpoints” on page 35).

PDO_TrigOff Out This is asserted if no trigger turns trace on (i.e., PDO_TrigOn is not asserted),
and at least one of the indicated triggers in PDO_TrigI[N:0] or PDO_TrigD[N:0]
turns trace off. (See 3.16 “Trace Trigger from EJTAG Hardware Instruction/
Data Breakpoints” on page 35).

Table F.1 PDtrace™ Core Interface Signals (Continued)

Signal Name Direction Description

Value Description

0000 data from oldest load/store instruction (is in-order)

0001 data from second-oldest load/store instruction

0010 data from third-oldest load/store instruction

0011 data from fourth-oldest load/store instruction

0100 data from fifth-oldest load/store instruction

0101 data from sixth-oldest load/store instruction

0110 data from seventh-oldest load/store instruction

0111 data from eighth-oldest load/store instruction

1000 data from ninth-oldest load/store instruction

1001 data from tenth-oldest load/store instruction

1010 data from eleventh-oldest load/store instruction

1011 data from twelfth-oldest load/store instruction

1100 data from thirteenth-oldest load/store instruction

1101 data from fourteenth-oldest load/store instruction

1110 data from fifteenth-oldest load/store instruction

1111 data from sixteenth-oldest load/store instruction
MIPS® PDtrace™ Specification, Revision 6.16 141

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Interface Signals (The Interface is now Deprecated as Architecture and this Chapter is here Solely for His-
PDO_Overflow Out This signals an internal FIFO overflow error in the core and implies the fol-
lowing:
• the current transmission is to be abandoned in the current cycle
• the FIFO is emptied so that previously collected trace information in the

FIFO is lost
• a new transmission begins in the next cycle with a TMOAS and a full PC

address

PDO_ValidModes[1:0] Out This signal specifies the subset of tracing that is supported by the processor
(see 2.3 “Subsetting” on page 17).

PDO_IssueTag_n[5:0] Out This signal is used in multi-issue processors and it is signaled with
PDO_InsComp_n. In multi-issue processors, instructions that issue together
are assigned a matching tag value, specified by this signal value.
A six bit internal counter increments each cycle, and the instructions that issue
in that cycle are assigned the counter value. When the maximum counter value
is reached, it simply restarts at zero.
This feature facilitates the performance debugging of code schedulers for
high-end processors. These tag values are available every cycle, but it is antici-
pated that the TCB will trace this to memory only when specially requested by
the user.

PDO_IMiss
PDO_IMiss_n

Out When asserted, this signals whether the load or store instruction specified by
PDO_InsComp in this cycle missed in the instruction cache during the fetch
operation. This signal is ignored if PDO_InsComp indicated that no instruction
completes this cycle (i.e., when it is 000).

PDO_LSMiss
PDO_LSMiss_n

Out When asserted, this signals whether the load or store data specified by
PDO_TType of TD in this cycle missed in the data cache during the data load
or store operation. The data cache miss is indicated with the transmitted data
rather than the instruction that caused the miss because in the pipeline a data
cache miss cannot often be detected at the time that the instruction is transmit-
ted with the appropriate PDO_InsComp value. It is the reconstruction software
which needs to associate the data with the corresponding PC and data address.

PDO_FuncCR
PDO_FuncCR_n

Out When asserted, this signal indicates that this instruction can potentially be
either a function call instruction or a function return instruction. See Chapter
F, “PDtrace™ Interface Signals (The Interface is now Deprecated as
Architecture and this Chapter is here Solely for Historical Reasons)” on
page 137 for details.
Note that it is possible for a single instruction to assert both PDO_IMiss as well
as this signal.

PDO_TC[7:0]
PDO_TC_n[7:0]

Out For a processor that implements multithreading (MIPS MT ASE), and for a
valid PDO_InsComp value (when not NI), this signal indicates the thread con-
text number of the traced instruction. A given implementation only needs to
use as many encoded bits for this signal as the total TCs implemented. For
example, the 34Kc core with maximum 9 possible TCs will only require 4 bits.
The PC delta value that is transmitted by the core is now maintained on a per-
TC basis.

Table F.1 PDtrace™ Core Interface Signals (Continued)

Signal Name Direction Description

Encoding Meaning

00 PC tracing only

01 PC and load and store address tracing only

10 PC, load and store address, and load and store data

11 Reserved
142 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

F.1 PDtrace™ Core Interface Signal List
PDO_CPUid[7:0]
PDO_CPUid_n[7:0]

Out Optional output for a processor indicating the processor number
(Ebase.CPUNum) of the traced instruction. It would be used in a multi-core
design, where the Ebase.CPUNum field for the core is used to tag the trace
from different cores in the multi-core environment. If the core were not imple-
mented in a multi-core design, then the TCB would simply ignore the value on
this signal.

PDO_COSId[1:0] Out Coherent Synchronization ID. This is a 2-bit value used to synchronize core
trace messages with trace messages received from the coherent interconnect.
Required for all processors using PDtrace specification 5.00 and higher.

PDI_TCBPresent In When asserted this indicates that the TCB hardware is present and connected
to the core’s tracing logic. Hence the core can consider the other PDI_ signals
to be valid.

PDI_TraceOn In This is the signal asserted by the external trace block into the core that states
whether tracing is globally turned on or off. It is expected that this signal be
continuously asserted to turn on tracing.
0 : Tracing off
1 : Tracing is turned on

PDI_TraceMode[4:0] In When tracing is turned on, this signal specifies what information is to be traced
by the core. It uses 5 bits, where each bit turns on tracing for a specific tracing
mode. The table shows what trace value is turned on when that bit value is a 1.

If the corresponding bit is 0, then the Trace Value shown in column two is not
traced by the processor. This implementation is required for all processors
using PDtrace specification 4.00 and higher.
Obviously, the processor has to support the tracing mode that is being
requested for this input signal to have any effect. For example, if the processor
only supports PC tracing, then only bit 0 is read by the processor, and other
other bits are ignored, and so on. Which bits are ignored and which are read
can be obtained by reading the PDO_ValidModes output signal.
It is optional for an implementation to allow PC tracing to be turned off. This
must be clearly documented by the core implementation-specific document.
When it is optional, bit 0 is tied to a value of 1 and setting bit 0 to 0 is simply
ignored by the processor.

PDI_G In The global bit, which if asserted to 1, implies that all processes are to be
traced. If 0, then trace data is sent only for a process that matches
PDI_ASID[7:0]. If the processor does not implement the standard TLB-based
MMU, this signal is ignored by the processor and is treated as if it were
asserted.

PDI_ASID[7:0] In When the global bit is 0, only the process whose ASID matches this ASID
value will be traced. If the processor does not implement the standard TLB-
based MMU, this signal is ignored by the processor.

Table F.1 PDtrace™ Core Interface Signals (Continued)

Signal Name Direction Description

Bit # Set Trace The Following

0 PC

1 Load address

2 Store address

3 Load data

4 Store data
MIPS® PDtrace™ Specification, Revision 6.16 143

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Interface Signals (The Interface is now Deprecated as Architecture and this Chapter is here Solely for His-
PDI_U In Enables tracing in User Mode (see 2.2 “Processor Modes” on page 16). This
enables tracing only if the PDI_TraceOn is also asserted or the hardware break-
point trace triggers on, and either the PDI_G bit is set or the PDI_ASID matches
the current process ASID.

PDI_S In Enables tracing in Supervisor Mode (for those processors that implement
Supervisor Mode), otherwise, this signal is not required (see 2.2 “Processor
Modes” on page 16). This enables tracing only if the PDI_TraceOn is also
asserted or the hardware breakpoint trace triggers on, and either the PDI_G bit
is set or the PDI_ASID matches the current process ASID.

PDI_K In Enables tracing in Kernel Mode (see 2.2 “Processor Modes” on page 16).
This enables tracing only if the PDI_TraceOn is also asserted or the hardware
breakpoint trace triggers on, and either the PDI_G bit is set or the PDI_ASID
matches the current process ASID.

PDI_E In Enables tracing when in Exception Mode (see 2.2 “Processor Modes” on
page 16). This enables tracing only if the PDI_TraceOn is also asserted or the
hardware breakpoint trace triggers on, and either the PDI_G bit is set or the
PDI_ASID matches the current process ASID.

PDI_DM In Enables tracing in Debug Mode (see 2.2 “Processor Modes” on page 16). This
feature is useful to debug the debug handler code via the EJTAG and TAP con-
troller port.

PDI_InhibitOverflow In This signal is used by the external trace block to indicate to the core that the
core pipeline should be back-pressured (and stalled) instead of allowing the
trace FIFO to overflow and hence lose trace information.

PDI_StallSending In When asserted, this signal is used by the external trace block to indicate to the
core that it must stop transmitting trace information in the next cycle. This
request may be essential when the trace control block is in imminent danger of
over-running its internal trace buffer.
In the cycle when the signal is asserted, the value on all the PDO_ signals are
valid and must be captured by the TCB.
In the cycle after the one where the core sees an assertion of this signal the
core must not transmit any valid trace information on any of the PDO_ output
signal bits (including PDO_InsComp).
In the cycle after the TCB de-asserts this signal again, PDtrace PDO_ signals
are valid and must be captured by the TCB. (Note that some processors cannot
arbitrarily stall their pipeline on any given cycle. In this situation, the imple-
mentation on the processor side must provide sufficient buffering to hold trace
information until the pipeline can be stalled).

PDI_SyncOffEn In This signal is an enable signal for the PDI_SyncPeriod, PDI_TBImpl, and
PDI_OffChipTB signals. When asserted, the core latches these values. This sig-
nal, and the signals which it controls must be asserted before tracing can begin.

Table F.1 PDtrace™ Core Interface Signals (Continued)

Signal Name Direction Description
144 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

F.1 PDtrace™ Core Interface Signal List
PDI_SyncPeriod[2:0] In This signal is used to set the synchronization period bits in the TraceControl2
register. The value specifies the period (in cycles) for sending synchronization
information.

PDI_TBImpl In When this signal is a 1, the TCB has implemented both an on-chip and an off-
chip trace buffer, and the PDI_OffChipTB signal indicates to which the trace is
currently being written. When this signal is a 0, the PDI_OffChipTB signal indi-
cates which buffer is implemented. This value is written into the TraceControl2
CP0 register (as the TBI bit). It is optional for the TCB to provide this signal to
the core logic for all TCB implementations compatible to PDtrace specifica-
tions less than 03.00.

PDI_OffChipTB In When one, this signal indicates that the trace data is being sent off-chip to an
external trace memory. When zero, this indicates an on-chip trace buffer. The
value of this signal to the core changes how the core interprets the trace syn-
chronization period bits. This signal value is written into the TraceControl2
CP0 register (as the TBU bit).

PDI_TraceAllBranch In When asserted, the core’s tracing logic will emit PC values for all taken
branches encountered in the execution stream, including all conditional and
unconditional, predictable and unpredictable branches. When de-asserted, the
core reverts to normal tracing mode.

PDI_TraceIMiss In When asserted, PDO_IMiss is set when the processor detects an instruction
cache miss for the current instruction being traced. Like all other trace signals,
this input signal causes active tracing only when tracing is currently turned on.
If PDI_TraceMode[0], i.e., bit 0 is turned off, that is, no PC tracing has been
requested, then a PDO_IMiss assertion is accompanied by a full PC value. Oth-
erwise there is no special action taken for this instruction other than asserting
the PDO_IMiss bit.

PDI_TraceLSMiss In When asserted, when PDO_LSMiss is set when the processor detects a data
cache miss on a load or a store. Like all other trace signals, this input signal
causes active tracing only when tracing is currently turned on.
If PDI_TraceMode[0] is turned off, that is PC tracing is disabled, then the PC of
the missed instruction will not be available to the reconstruction software. If
PDI_TraceMode[1] or PDI_TraceMode[2] is turned off, that is no data address
tracing is enabled, then no data address is traced for the address that missed in
the cache. Even if PDI_TraceMode[3] or PDI_TraceMode[4] is turned off, the
full data value for the missed instruction is traced out.

Table F.1 PDtrace™ Core Interface Signals (Continued)

Signal Name Direction Description

SyncPeriod
Period (in cycles) for sending

sync records

000 25

001 26

010 27

011 28

100 29

101 210

110 211

111 212
MIPS® PDtrace™ Specification, Revision 6.16 145

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Interface Signals (The Interface is now Deprecated as Architecture and this Chapter is here Solely for His-
PDI_TraceFuncCR In When asserted, PDO_FuncCR is set when the current instruction could be a
function call or return instruction. Like all other trace signals, this input signal
causes active output tracing only when tracing is turned on.
If PDI_TraceMode[0], i.e., bit 0 is turned off, that is, no PC tracing has been
requested, then a PDO_IMiss assertion is accompanied by a full PC value. Oth-
erwise there is no special action taken for this instruction other than asserting
the PDO_IMiss bit.

PDI_TCNum[7:0] In Only implemented in a processor with MT. When PDI_TCNumValid is
asserted, this signal gives the number of the Thread Context that is to be
traced. Only the number of bits required to encode the total TC number is
implemented. As long as PDI_TraceTCValid is asserted, no instruction from
any other thread is traced. If the required TC does not execute any instructions,
then no instructions are traced, the PDO_InsComp value will remain NI. When
instructions from other TCs are executed, these are marked as NI on the
PDtrace interface.

PDI_TCNumValid In Only implemented in a processor with MT. When asserted, the PDI_TCNum
signal is taken by the processor and used as the number of the TC whose
instructions are to be traced. This signal must remain asserted as long as trac-
ing is required from a specific TC. If not asserted, then tracing reverts to other
conditions being fulfilled.

PDI_CPUId[7:0] In Implemented in a processor with MT, where this signal gives the number of
the VPE that is to be traced, if PDI_CPUIdValid is asserted. As long as
PDI_VPENumValid is asserted, no instruction from any other VPE is traced. If
the required VPE does not execute any instructions, then no instructions are
traced, the PDO_InsComp value will remain NI. When instructions from other
VPEs are executed, these are marked as NI on the PDtrace interface. This bit is
ignored if TCNumValid is asserted.
In a multi-core processor SOC environment, this specifies the id of the proces-
sor that is to be traced if PDI_CPUIdValid is asserted.

PDI_CPUIdValid In Only implemented in a processor with MT or in a multi-core SOC implemen-
tation. When asserted, the PDI_CPUId signal is taken by the processor and
used as the number of the VPE (or core) whose instructions are to be traced.
This bit is ignored if TCNumValid is asserted.

Table F.1 PDtrace™ Core Interface Signals (Continued)

Signal Name Direction Description
146 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

F.1 PDtrace™ Core Interface Signal List
F.1.0.1 PDtrace Coherence Manager Interface Signals

Table F.2 PDtrace Coherence Manager Interface Signals

Signal Name Direction Width Description

COSId_n Input 2 COSId input received from processor core. One copy of signal per core

SRH_SrcPort Output 3 Source of the request that was serialized

SRH_COSId Output 2 Coherent Sync ID of transaction. Used to correlate CPU and CM transactions

SRH_MCmd Output 5 Command in the request that was serialized (See Table F.3)

SRH_WaitTime Output 8 This is active only in timing mode. Tracks how many cycles the transaction spent stalled
in the SRH. Saturates at 255 cycles.

SRH_Address Output 29 This is active when we are tracing addresses from the SRH - provides the address corre-
sponding to the request being traced.

SRH_AddrTarg Output 3 Target of the current request (see Table F.4) (Indicates speculative reads as well)

IVU_COSId Output 2 Coherent Sync ID at the Intervention Unit

IVU_SrcPort Output 3 The core that made the original request that resulted in this intervention

IVU_RespBV Output 6 Bit vector of intervention port responses. Bit corresponding to a core is set to ‘1’ if the
intervention hit, and set to ‘0’ if the intervention missed.

IVU_IntvResult Output 3 Global Intervention State for this cache line (see Table F.5)

IVU_SC_Cancel Output 1 This transaction was cancelled due to a previous SC Fail

IVU_SC_Failed Output 1 This intervention will cause a future SC to fail

IVU_PIQ_WaitTime Output 8 Cycle count that each transaction spends at the top of the PIQ. Saturates at 255

IVU_PIQ_StallCause Output 3 What was the last reason this transaction was stalled on top of the PIQ. (see Table F.6)

Table F.3 MCmd - OCP Commands

Value Command Description Value Command Description

0x00 IDLE 0x0C COH_UPGRADE Coherent Upgrade (SC bit == 0)

0x01 LEGACY_WR_UC Uncached legacy write, CCA=UC,
UCA, WT

0x0D COH_WB Coherent Writeback

0x02 LEGACY_RD_UC Uncached legacy read, CCA = UC 0x10 COH_COPYBACK Coherent Copyback

0x03 LEGACY_WR_WB Cached legacy write, CCA = WB 0x11 COH_COPYBACKINV Coherent Copyback Invalidate

0x04 LEGACY_RD_WB Cached legacy read, CCA = WB, WT 0x12 COH_INV Coherent Invalidate

0x05 LEGACY_SYNC Uncached legacy read with MRe-
qInfo[3] == 1

0x13 COH_WR_INV Coherent Write Invalidate

0x06 L2_L3_CACHEOP_
WR

Uncached legacy write with MAd-
drSpace != 0

0x14 COH_CMPL_SYNC Coherent Completion Sync with
MReqInfo[3] == 0

0x07 L2_L3_CACHEOP_R
D

Uncached legacy read with MAd-
drSpace != 0

0x15 COH_CMPL_SYNC_M
EM

Coherent Completion Sync with
MReqInfo[3] == 1

0x08 COH_RD_OWN Coherent Read Own 0x17 COH_WR_INV_FULL Coherent Invalidate due to a full line

0x09 COH_RD_SHR Coherent Read Shared 0x18 COH_RD_OWN_SC Coherent Read own with SC bit == 1

0x0A COH_RD_DISCARD Coherent Read Discard 0x1C COH_UPGRADE_SC Coherent Upgrade with SC bit == 1

0x0B COH_RD_SHR_AL
WAYS

Coherent Read Share Always
MIPS® PDtrace™ Specification, Revision 6.16 147

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 PDtrace™ Interface Signals (The Interface is now Deprecated as Architecture and this Chapter is here Solely for His-
Table F.4 Cmd_AddrTarg

Value Target Value Target

0x0 Memory/L2 with no specu-
lation. L2 allocation bit = 0

0x1 Memory/L2 with no specu-
lation. L2 allocation bit = 1

0x2 Memory/L2 with pecula-
tion. L2 allocation bit = 0

0x3 Memory/L2 with specula-
tion. L2 allocation bit = 1

0x4 GCR 0x5 GIC

0x6 MMIO 0x7 Reserved

Table F.5 Global Intervention State

Value State

0x0 Invalid

0x1 Shared

0x2 Modified

0x3 Exclusive

0x4-0x7 Reserved

Table F.6 PIQ Stall Causes

Value Cause Value Cause

0x0 No Stall 0x1 Awaiting Intervention Results from CPU(s)

0x2 Waiting for IMQ empty (for Sync only) or IMQ
full (for other request types)

0x3 IWDB Full

0x4 TRSQ Full 0x5 IRTQ Full

0x6 Waiting for speculative request to clear RMQ 0x7 PDtrace Stall
148

Copyright © 2001-2010 MIPS Technologies
MIPS® PDtrace™ Specification, Revision 6.16

Inc. All rights reserved.

Appendix G
Revision History

Revision Date Description

1.6 August 29, 2000 Changes in this revision:
Add the requirement that the data address be also periodically gathered for
synchronization purposes, per FS2.
Modify Figure 3 to show that the load data is picked up after alignment,
per lhh.
typo fixes

1.7 September12, 2000 Changes in this revision:
Add a separate input signal that says whether to trace in Debug mode or
not (i.e., DM = 1 in the Debug register), per Scott who wants to be able to
debug the debug handler code.
Put back Figure 3 to tap load/store data pre-alignment, per Franz.
Add a section (3.17) to show when tracing is enabled.
Allow the ASID to be masked under software control, per Scott.
Amend Figure 1 to show the EJTAG/TAP controller and its connection to
the debugger.
Add to Table 2, to show the use of the PDO_InsComp signal value IPC
(100).
Add a chapter (6) on the trace capture block and its interaction with the
external debugger software.
Add TOC
Fix typos, grammar, sentence construction.

1.8 October 27, 2000 Changes in this revision:
Change the way loads are tracked and traced out.
Add the tracing out of ASID and processor mode as part of the periodic
synchronization.
Add details to the multi-issue tracing section.
The above changes require a modification to the output format section.
Add a chapter to discuss the trace capture block (TCB), that includes: a
definition of the control registers within the TCB, and the mechanism to
write these registers from the external probe (or debugger).
Define tracing with an on-chip trace buffer versus off-chip trace buffer.
Add another Out signal from the core, PDO_IamTracing, that the core uses
to signal to the TCB that it is actually sending valid trace data.

1.9 November 20, 2000 Changes in this revision:
Add tracing of processor ISA mode, and whether processor is in Debug
mode or not.
Get rid of the TCBTraceMask register, is not really needed.
Allocate some bits in the TraceControl register as implementation depen-
dent.
Specify that full addresses are used for on-chip trace memory.
Change the encoding of bits from the EJTAG logic to the tracing logic,
send all 30 bits of breakpoint trigger.
Fix the logical expression in 3.1.8.
MIPS® PDtrace™ Specification, Revision 6.16 149

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Revision History
2.0 December 19, 2000 Changes in this revision:
Add a signal from the TCB to the core tracing logic, PDI_StallSending,
that inhibits the core from sending trace data. Note that the core does not
stop tracing, only stops sending trace information to the TCB. Used by the
TCB when its internal buffer is in imminent danger of overflowing. (The
core will stall if its internal FIFO will overflow).
Make the synchronization period programmable, by using some bits in a
register to hold this value. These bits can be updated by either software or
by the TCB (based on the trace buffer size).
Add a signal from the TCB to the core tracing logic that signals whether
the TCB is using an on-chip or off-chip trace buffer. This changes the way
in which the core interprets the synchronization period bits in the register.
The chapter on trace control block (TCB) has been cut off into another
document, since it is not directly relevant to the PDtrace architecture.

2.01 January 25, 2001 Changes in this revision:
Add a signal PDI_TCBPresent to indicate that the TCB hardware is
present.
Clearer explanation of how the PDI_StallSending signal works.
Change in how the PDI_EXL and the corresponding X bit in the Trace-
Control register works.
Coding change in the PDI_TraceMode[2:0] signal.

2.02 February 12, 2001 Changes in this revision:
Change in how the PDI_EXL and the corresponding X bit in the Trace-
Control register works. Tracing triggers on when either EXL or the ERL
bit is a 1, this enables tracing after a cold reset.

2.03 March 22, 2001 Changes in this revision:
• Add a register description table for UserTraceData.
• Add a PDI_TraceAllBranch signal to indicate that all branches (condi-

tional, unconditional, predictable, and unpredictable) are to be traced.
• Change the PDO_InsComp definition for unconditional predictable

branches (jumps), so that these trace out as IB, ILB, and ISB (rather than
I, IL, and IS).

• Document how tracing is handled within MACRO instructions and the
SAVE/RESTORE instruction.

• Document what happens when a mode change happens within the pro-
cessor and this changes the tracing mode, i.e., either turns it off or on.

• Fix typos.

Revision Date Description
150 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

2.04 June 20, 2001 Changes in this revision:
• Converted document to new template
• PDO_TMode’s reserved bit field of 100 is now used for tracing PC val-

ues and load data (this is optional for all PDtrace specifications less than
03.00 and conforming TCB implementations.

• Three PDO_ signal bits have been added, PDO_MIPS16 and
PDO_MIPS16Ins that are used only by processors implementing the
MIPS16 ASE, and are optional.

• The sense of EQ1, EQ2, and EQ3 used to compute the delta address val-
ues have been reversed.

• Add the PDI_TraceAllBranch to the Trace Control Register.
• Note that the select position of the COP0 registers implemented for trac-

ing have all been changed, so that the control registers are together and
the optional register TraceBPC is the last one.

• Note that the end of a MIPS16 Macro instruction was indicated by the
transmission of a full PC value. This was more fully specified so that
this full PC value is accompanied by an PDO_InsComp value that indi-
cates a branch, e.g., IB, ILB, etc.

• The PDI_EXL has been changed to PDI_E, and similarly in the Trace-
Control register, X has been changed to E.

• Bits 22 and 23 in the TraceControl register (K and S), have switched
places.

• The TraceControl2 register has been re-arranged, and instead of the bit
OfC, two new bits TBU and TBI have been added.

• The TMOAS record has been augmented with an extra bit for the POM
field and with a new bit called the SYNC bit.

• Add an Input signal PDI_TBImpl from the TCB to the core tracing logic
to say whether on-chip, off-chip, or both buffers are implemented by the
TCB. This signal is optional for all TCB implementations that are com-
patible to PDtrace specifications less than 03.00.

2.05 June 28, 2001 Changes in this revision:
• Convert the stand-alone document to a book format and add LOF and

LOT pages.
• Add trademark symbol to PDtrace
• Fix minor typos.

Revision Date Description
MIPS® PDtrace™ Specification, Revision 6.16 151

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Revision History
2.06 August 8, 2001 Changes in this revision:
• Define the behavior if the processor implements a fixed mapping MMU,

rather than the standard TLB-based MMU.
• Define the polarity of the TraceControlASID_M field.

• Precisely define the processor modes which for which tracing may be
enabled. See Section 2.2, "Processor Modes" on page 16 for these defi-
nitions.

• Make the equations for turning on and off trace more precise and convert
to standard notation.

• Add the standard “About This Book” chapter to define syntax and con-
ventions.

• Eliminate the R/W fields in TraceControl2.
• More fully describe the synchronization counter, including when it must

be restarted.
• Make it explicit that ASID and processor mode changes are not traced if

tracing is off when the change occurs. That is, ASID and processor
mode changes are not traced if tracing is currently off.

• Add subsetting rules for PDtrace (see Section 2.3, "Subsetting" on page
17)

• Add the PDO_ValidModes signal and the ValidModes field in the
TraceControl2 register to specify which tracing modes the processor
supports.

2.07 March 21, 2002 Changes in this revision: (RT)
• Change the name of the TraceControl2 register field ValidModes to

ImpSubset since this field indicated the implemented subset of tracing.
• Get ready for commercial release, breakup the single file into individual

chapter files, fix typos, cross-references, etc.

3.00 November 26, 2002 Changes in this revision: (RT)
• Change the way multi-issue tracing is done (see Section E.1,

"Background on High Performance Processors" on page 132).
• Change the use of PDO_LoadOrder signal to PDO_DataOrder (see

Section E.4, "Out-of-Order Loads and Stores in the Multi-Pipe Core" on
page 135).

• Increase the width of PDO_DataOrder signal to 4 bits.
• Add a new signal called PDO_DataPerIns[7:0].
• Allow PDO_TEnd to be asserted early to cut off redundant upper bits of

an address or data.
• Add a section to clarify how tracing is handled for store conditional

instructions (see Section 3.9, "Tracing Store Conditionals" on page 33).
• Make the PDO_TMode bit 0 value for PDO_TType values of TD, TU1,

and TU2 to be Reserved.
• Add PDO_Trig signals on the PDtrace interface that transmit trace trig-

ger information to the TCB. See Section 3.16, "Trace Trigger from
EJTAG Hardware Instruction/Data Breakpoints" on page 35.

• Add MIPS16 in MIPS64 option to ISAM in TMOAS. See Table 3.4 on
page 26.

• Rewrite the trace enable equation to fix errors in the first version. See
Section 3.19, "Trace Enabling/Disabling Condition" on page 37.

• Fix grammatical errors and typos.

3.01 May 14, 2003 Removed the trace slot-specific signals PDO_TrigI_n, PDO_TrigD_n,
PDO_TrigOn, and PDI_TrigOff, since these are superfluous. Fix minor
typos.

Revision Date Description
152 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

4.10 July 4, 2005 Changes in this revision:
• Merged the PDtrace and most of the TCB document
• Modified how PDI_TraceMode works. This necessitated moving the

Mode bits from TraceControl to the TraceControl2 register.

• Simplified the SyncPeriod values to range from 25 to 212 for both types
of trace memory, on-chip or off-chip.

• Revamped how the EJTAG hardware breakpoint trigger impacts tracing.
This has an impact on what used to be the TraceBPC control register.
See spec for change details. Added the ability to trace based on a ARM-
trace-DISARM feature, as well as to allow data qualified tracing.

• Added the ability to trace instruction and data cache misses
• Added the ability to trace instructions that are potential function calls or

function returns.
• Added support to trace multi-threaded processors that implement the

MIPS MT ASE.
• Added a PendL, pending load field to the TMOAS record
• Added a TCBControlC TCB register to deal with the added features

4.20 September 14, 2005 Changes include clarification of behavior under MT and removal of the
MC bit in TCBControlB register.

4.30 January 30, 2006 Update the TMOAS record to add the V, DKill, and TCid fields for a MT-
specific processor and remove a bad reference in chapter 7.

4.40 July 17, 2006 Change the drseg addresses of the TraceIBPC2 (0x1F28 to 0x1FF8) and
TraceDBPC2 (0x2F28 to 0x2FF8) registers.

5.00 November 15, 2007 Significant change in the PDtrace architecture, the PDtrace interface is no
longer architecture and the only externally software-visible parts are the
control registers in CP0, in the TCB, and the TCB trace bits using the
defined TCB formats. Adds CMP support.

6.00 June 23, 2008 Add Performance counter support, Filtered data trace mode, and software
access to on-chip trace memory. Expanded PEndL in TMOAS record.

6.10 November 06, 2008 Added 74K specific updates, on-chip trace memory updates for the 1004K

6.11 November 11, 2008 Added ability to start a TF at bit 56 if the Type15 continuation value is not
otherwise needed

6.12 June 26, 2009 MIPS Technologies-only release for internal review:
• LSB of TF3 may be optimized away for non-cycle-accurate mode
• TCBTW register is writeable with predictable results

6.13 July 20, 2009 • Moved EJTAG trigger registers to their own chapter.
• Moved Section on Memory map access of TCBRegisters from Chapter 2

to the TCB Register chapter.
• Performance Counter Tracing now includes an optional additional cycle

counter.
• Added section on how the On-Chip Trace Buffer is used.
• For 1004K chapter, put in more description of the necessary control reg-

isters for on-chip trace buffer, e.g., TCBControlB.
• More accurate description of how TCBSTP is affected by the TCBCon-

trolB.RM and TCBControlB.TR bits.
• TF5 indicator is 4-bits again (previously widened to 5-bits in 4.00)

6.14 August 25, 2010 • Corrected definition of TF8.
• Added Chapter for 1074K with description of TraceMaster TAP control-

ler.
• Clarifications for when PC Tracing is disabled.

Revision Date Description
MIPS® PDtrace™ Specification, Revision 6.16 153

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

 Revision History
6.15 September 07 2010 • Explicitly list which registers are affected by TRPAD bit.
• TRPAD bit in TraceControl3 is read-only. TCBControlB descriptions

were incorrect.
• Rearrange chapters to put more basic topics at the beginning of docu-

ment.
• Pulled in tech writers’ english grammer/syntax edits.

6.16 November 23, 2010 • Move 1074K Appendix content to CMP Appendix - Trace-Master
access method now shared with 1004K product line.

Revision Date Description
154 MIPS® PDtrace™ Specification, Revision 6.16

Copyright © 2001-2010 MIPS Technologies Inc. All rights reserved.

	MIPS® PDtrace™ Specification
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	Overview of the MIPS® PDtrace™ Architecture
	2.1 Introduction
	2.2 Processor Modes
	2.3 Subsetting
	2.4 Overview of the Trace Control Block

	PDtrace™ Description
	3.1 Instruction Completion Indicator (InsComp)
	3.2 Trace Type and an Example Code Fragment
	3.3 Trace Mode
	3.4 Start of Tracing
	3.5 Trace Synchronization
	3.6 Trace Overflow and Restart
	3.7 Data Order Signal
	3.8 Tracing During Processor Mode Changes
	3.9 Tracing Store Conditionals
	3.10 Tracing MIPS16e™ Macro Instructions
	3.11 Tracing MIPS16e™ Extend Instructions
	3.12 Tracing Instruction Cache and Data Cache Misses
	3.13 Tracing Potential Function Call/Return Instructions
	3.14 Tracing with MIPS® MT ASE
	3.15 Tracing in WAIT State
	3.16 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints
	3.17 Tracing Performance Counter Values
	3.18 Filtered Data Trace Mode
	3.19 Trace Enabling/Disabling Condition

	PDtrace™ Output Trace Formats
	4.1 Single-Pipe Tracing Formats
	4.1.1 Trace Format 1 (TF1)
	4.1.2 Trace Format 2 (TF2)
	4.1.3 Trace Format 3 (TF3)
	4.1.4 Trace Format 4 (TF4)
	4.1.5 Trace Format 5 (TF5)
	4.1.6 Trace Format 6 (TF6)

	4.2 Format Enhancements for the MT ASE
	4.2.1 Trace Format 7 (TF7)
	4.2.2 TF2--TF4 Augmented for MT ASE

	4.3 Multi-Pipe Tracing Formats
	4.3.1 Multi-Pipe Trace Format 2-4 (TF2, TF3, TF4)
	4.3.2 Trace Format Extensions for Coherent Systems
	4.3.2.1 Expanding Existing Trace Formats

	TCB Trace Word
	5.1 Trace Word
	5.1.1 Cycle Inaccurate Trace
	5.1.1.1 Trace Word collection.

	5.2 End of Trace Indication
	5.3 On-chip Trace Memory Format
	5.4 Probe Trace Word Transmission

	Trace Compression
	6.1 PC Tracing
	6.2 Load or Store Address Tracing
	6.3 Load and Store Data Tracing
	6.4 Using Early TEnd Assertion

	PDtrace™ Control Using CP0 Registers
	7.1 Trace Controls Overview
	7.2 Software Trace Control
	7.2.1 Coprocessor 0 Trace Registers
	7.2.1.1 TraceControl Register (CP0 Register 23, Select 1)
	7.2.1.2 TraceControl2 Register (CP0 Register 23, Select 2)
	7.2.1.3 The TraceControl3 Register (CP0 Register 24, Select 2)
	7.2.1.4 UserTraceData1 and UserTraceData2 Registers (CP0 Register 23 Select 3 and CP0 Register 24 Select 3)

	Trace Control Block (TCB) Registers
	8.1 TCBCONTROLA Register
	8.2 TCBCONTROLB Register
	8.3 TCBCONTROLC Register
	8.4 TCBControlD Register
	8.5 TCBCONTROLE Register
	8.6 TCBDATA Register
	8.7 TCBCONFIG Register (Reg 0)
	8.8 TCBTW Register (Reg 4)
	8.9 TCBRDP Register (Reg 5)
	8.10 TCBWRP Register (Reg 6)
	8.11 TCBSTP Register (Reg 7)
	8.12 TCBTRIGx Register (Reg 16-23)
	8.13 Reset State
	8.14 TCB Registers in Processors Implementing the MT ASE
	8.15 Memory-Mapped Access to PDtrace™ Control and On-Chip Trace RAM
	8.16 On-Chip Trace Buffer Usage

	EJTAG Trace Registers
	9.1 TraceIBPC and TraceDBPC Registers

	TCB Trigger Logic
	10.1 Trigger Logic Overview
	10.1.1 Trigger Source Logic
	10.1.2 Trigger Control Logic
	10.1.3 Trigger Action logic

	10.2 Simultaneous Triggers
	10.2.1 Prioritized Trigger Actions
	10.2.2 OR’ed Trigger Actions

	10.3 TCB Trigger Input/Output Signals

	Implementation-Specific PDtrace™ Enhancements for MIPS32® 74K™ Cores
	A.1 Tracing the 74K to Show Pipeline Details and Execution Inefficiencies
	A.1.1 Updated Trace Format 2 (TF2) for 74K-specific Information
	A.1.2 Trace Format 3 (TF3)

	A.2 Updated TF4 to Handle 74K™ Core-Specific DataOrder and Inefficiency Information
	A.3 Tracing 74K™ Core in Cycle Accurate Mode
	A.4 Compressing Addresses in TF3 and TF4
	A.5 Enhancements for Coherent Cores
	A.5.1 Extending Trace Formats
	A.5.2 T8 - New Trace Format

	PDtrace™ Enhancements for Chip-Multiprocessing Systems
	B.1 Tracing a Coherent Subsystem
	B.1.1 Trace Requirements
	B.1.1.1 Gathering Subsets of Trace Data
	B.1.1.2 Synchronizing CPU and Coherent Interconnect Trace Messages

	B.2 CM Trace Formats
	B.2.1 CM Trace Format 1
	B.2.2 CM Trace Format 2
	B.2.3 CM Trace Format 3 (CM_TF3)
	B.2.4 CM Trace Format 4 (CM_TF4)

	B.3 Consolidating Trace Information
	B.4 On-Chip Trace Memory
	B.4.1 CM PDTrace TCB ControlB Register
	B.4.2 CM PDTrace TCB ControlE Register
	B.4.2.1 TCBCONTROLE Register

	B.5 Software Control of Coherence Manager Trace
	B.6 Trace-Master TAP Instruction Register

	Implementation-Specific PDtrace™ Enhancements for MIPS32® 1004K™ Revision 1.2.0 and Older Cores
	C.1 On-Chip Trace Memory
	C.1.1 CM PDTrace TCB ControlB Register
	C.1.2 CM PDTrace TCB ControlE Register

	C.2 Software Control of Coherence Manager Trace

	Implementation-Specific PDtrace™ Enhancements for the MIPS32® 1074K™ Cores
	Tracing Multi-Issue and High Performance Processors
	E.1 Background on High Performance Processors
	E.2 Basic Tracing Methodology
	E.3 Coordinating Instruction Completion Trace with Address/Data Trace
	E.4 Out-of-Order Loads and Stores in the Multi-Pipe Core
	E.5 Tagging Instructions that Issue Together
	E.6 Miscellaneous

	PDtrace™ Interface Signals (The Interface is now Deprecated as Architecture and this Chapter is here Solely for Historical Reasons)
	F.1 PDtrace™ Core Interface Signal List
	F.1.0.1 PDtrace Coherence Manager Interface Signals

	Revision History

