MIIFPS

Microprocessor Debug Interface (MDI)
Specification

Document Number: M D00412
Revision 02.41
September 22, 2009

MIPS Technologies, Inc.
955 East Arques Avenue
Sunnyvale, CA 94085-4521

Copyright © 2001-2009 M I PS TechnologiesInc. All rights reserved.

Copyright © 2001-2009 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of Americaand other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies'). Any copying, reproducing, modifying or use of
thisinformation (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, thisinformation is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and al confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogies reserves the right to change the information contained in this document to improve function, design or otherwise. M| PS Technol ogies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of thisinformation, or any related documentation of any kind, including related technical data or manuals,
isan agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of thisinformation, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPSI, MIPSII, MIPSIII, MIPSIV, MIPSV, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies
logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4K S, 4K Sc, 4KSd, M4K, 5K, 5Kc, 5Kf, 24K, 24K c, 24Kf,
24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user
experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2
NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2,
SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other
countries.

All other trademarks referred to herein are the property of their respective owners.

Template: nB1.03, Built with tags: 2B

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright © 2001-2009 MIPS Technologies Inc. All rights reserved.

Table of Contents

L@ F= 10 g RO Y= = RO 5
O 0 i = ot SO U RO R PP 5

O Y T I o a7 o] o SRS 5
CREPLET 2 TEIMS ...ttt ettt b e e b e e h e s e e bt s e e bt e R e Rt e E e st e b e s e e E e e e R e e e b e AEeb e A e eb e AEeE e e eh e A e b e e e e bt e b e Rt e b enesbene s b e e nbe e ebens 7
0= 1010 gl = T aTotT o1 =Y @ o= = 1 o] o 9
BT IV LU 1 =0l D= o1 o o o S 9
T8V IV L o 0 Ter=5S'o gl I T o 11 o o1 o 10
7200 IV LU o 0 o= o G 1= = S 11

3.2.2 Disabled MUIti-proCESSOr DEVICEScceieiuerierieriereesieeeseeeesesesestesteseestestestessesessessseesessessessessessessessessessens 14

Chapter 4 MDI Environment ComMMENG SELooiiiiiiiiiie ettt st e et ebesae b b sbesee e nas 15
4.1 Version: Obtain the supported MDI versions for this MDILib implementation ..., 15

4.2 Connect: Establish aconnnection to the MDILID ..o e 15

4.3 Disconnect: Disconnect from the MDILIDcoiiiiiiiiie e s s 17
Chapter 5 Target Group COMMANG SELc.ooiriiiereetereeti ettt et b e e be e bt e st bt b e st b et be et e e et e e b e e 19
5.1 Target Group Query: Retrieves the names of the defined target groupS.coveeererrerne e 19

5.2 Target Group Open: OPenS Atargel GrOUDccoeveeieeieerieeeese e s se e e er e sr e saesresresresnenes 20

5.3 Target Group Close: Close apreviously opened targel GroUPc.oocereereerieiesenesiesesie st seere e snenens 21

5.4 Target Group Execute: Place in execution mode the appropriate devicesin thetarget groupc.cccceeeeveeenienens 21

5.5 Target Group Stop: Stop execution for all appropriate devicesin thetarget groupccoceoeveeveeveeneieneieneens 22
Chapter 6 DeVICe COMMEBNG SELccceveeeieeeeie s e e e s e e e e e s s e ese et e s resaesbesbesaessenteee e eneeneeseeseesensesaesreneeseenrenses 23
LI S =SS Lo g e 11 (o) PP PTSRSIPTPRN 23
6.1.1 Device Query: Retrieves information about the deVICES ..o virie s 23

L @ o= @] = W L= o S 24

B.1.3 ClOSE: ClOSES A UBVICE. ...eiuiieieiiiieteiste ettt ettt b e bt b et b et a et e et et et e et et bentenis 25

6.1.4 Process Events: Callback function to process periodic @VENtSccvvvieveiinerereereeeeee s 26

6.1.5 Synchronize State: Callback function to synchronize device state changescccccveeeveeverevcevieseesieseinens 26

5.2 RESOUICE AGAINESSES uetiietireete ettt ettt et s b s e bt s e b e s e Rt ea e s b e st e b et e b et e b e se ek e se et e seebeseebeseenenteneas 27

5.3 RESOUICE ACCESS ueueuerieetieteste sttt st ettt e e e e e et et e ae e s e e aeehe e b e e b e e R e R e e R a4 E e SR e R e b AE e s e n e e e et eReeh e e neebeeb e nbeebeabenbeseeanenas 27
6.3.1 Read: Reads a contiguous range of datafrom the specified resource on the device.ccccecvevvcvvivrnnnns 28

6.3.2 Write: Writes a contiguous range of datato the specified resource onthe device.ccccevvevcevcevieinnnnns 29

6.3.3 Read List: REA0 @St Of VEIUES ..ottt 30
LRSIV] (N I RS STS 31

6.3.5 Move: Move data from one resource to another N the deVICE ..o 31

6.3.6 Fill: Fill the specified resource on the device With @ pattern.ccccvvvievevenercere e 32

6.3.7 Find: FiNd @ pattern iN@TrESOUMCEceceieieereriereesieseeseeeesesessessessessessessessessessessessessesessessessessessessessessessens 33

6.3.8 Query Cache: Retrieve CaChe atITDULESccccoeveiieeeiececee e et nnens 34

6.3.9 Get Cache Details: Get Information about the Specified Cache ..o 35

6.3.10 Cache Flush: Write back and/or invalidate the cache ... 35

6.3.11 Cache Operation: Do Specified Operation on Specified CaCheccccvvvvvverercrceee e 36

6.3.12 Cache Sync: Synchronize the CACNESccieieiicccec e e re e nnens 37

B.4 RUN CONIOL ...ttt etttk sk stk se ke s e bt s e b e se e bt s b e Rt s b e ne s b e Rt e b et e b e st ek e se ek e seebeseebeneenentaneas 37
6.4.1 Execute: Place the device into itS RUNNING SEAEEccovieriirinireireereeree e 38

6.4.2 SteP: SINGIE SLEPSNE UEVICEovieeicec e st e e seeaestesresnesteneennens 38

6.4.3 Stop: Stop eXecution Of thE AEVICEccv e sne st e nnens 39

6.4.4 Abort: Terminate the current MDI fUNCHION ..o 40

6.4.5 Reset: Performs atarget reSet OPErationcceceveerieieeieeeeee s see e s e e e e ssesre e snestesresnens 40

6.4.6 State: Returns the current device EXECULION SEBEUS.coeiriiiriireriinieeneiere e 41

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

6.5 BIEAKPOINES ...ttt ettt sttt ettt h et he e b e e bt Rt e Rt e b e s E e SE e b e b SE e e e £ oA e e ReeRe e R e e Rt eReebenheeReehenbenaenne b 43

6.5.1 St FUIl BIrEBKPOINE ...ttt ettt ettt b e b bbb b e e b et e e e b e e bt e st ebeebesbesbesbenbeseens 45

6.5.2 Set SOftWare BreakPOiNT coiiiiiiinieie ettt b e se e e bt e et e ebesbesbesbesbesbeseens 46

6.5.3 ClEar BrEBKPOINTc.coeiieeeeeeeet ettt bbb bt sh s b e se e b e b et e e e s e e bt e st ebeebe s bt sbesbenbeseen 47

6.5.4 ENADIE BrEAKPOINT ...ttt sttt s h e bbb b e e bt e e e e e se e bt e aeebeebesbesbesbesbeseens 47

6.5.5 DiSADIE BrEAKPOINTeiuiieiiieieetieieeie ettt sttt et h e b e e b b e se e b e e e e e e e b e e bt e st ebesbesbeebesbenbeseens 48

6.5.6 QUENY BIrEaKPOINTS ...ttt ettt sttt h et b e bbb e b e e se e b et et e e e se e bt e st ebesbesbesbesbenbeseens 48

6.5.7 Hardware Breakpoint Query: Retrieve alist of supported hardware breakpoint typescccocvvviennnnns 49

Chapter 7 MDILib and Target 1/0 COMMENG SELc.oiieuiiieiiieiriee sttt ettt sttt 53

7.1 Execute Command: Do the command SPECITIEAccvieririreircere et 53

7.2 Display Output: Display the MDILib supplied text t0 tNE USEroovcviieiirieereereeeee e 53

AT €T B 1 o LU | ST RUR PRSPPI 54

7.4 EVAIUBLE EXPIESSION ..ottt ettt b et b e e b e bt e bt e bt h e st e b e e e b et e b et e b e st bt st ke neebese bt nenenrenea 55

7.5 LOOKUD RESDUITE ...ttt sttt sttt b s bt e bt e bt e bt se bR e st e R et e b et e b et e b e st eb e st ebene ek e seebesnenenrenea 56

Chapter 8 TraCe COMMEANG SELccvecveereeeeeeire st s e e et e s e e e e e e e e es e s e ese st e ssesaestesbeseessenseeeneeneeneeseeneesensessesreneeseenrenses 59

ST o = I = T o 59

ST I 1= o = I =t o 60

RSN O = I = o=l I - - PPN 60

8.4 QUENY TTACE SLAIUSveeveeiieeeesieeeesieeee st eseestee e ste e teseeentesseentesseenseeseeseeseesaeaneeseeeneesseenaesseensesseensenseensenseansennennsennes 61

RN O 1N oY I = o= I - - S 61

Gl = o B = o=y T - PPN 62

8.7 REAH PDIIECE DELAeeeveeetireetereeteseete sttt sttt sttt et e bt e bt sa st eae s e et s b et s b et et e st ebeseebeseebeseebeseeneneeneas 64

8.8 Gl PDIIBCE IMOUEviueiiietireete ettt sttt sttt ettt stk s b e se b s e bt sa s et ene s b e ne s b et e b et e b e neebeseebeseebeseebeneenenteneas 65

8.9 St PDIIECE IMOUE ...ttt ettt et sttt st s b e s e bt s e b b e st s b e ne b et e b et e b e st e b e st ebeneebeseebeneenentenea 67

8.10 Get TCB Trigger INFOrMBLIONoceieieirieieseeseeeseese e e s e e s e ste e st se e testese e e en e e e e eseeseeseeseesessesaesreneeseesnennen 67

8.11 Set TCB Trigger INFOrMBELIONoceiieieisieiesieseeese e et s sttt se et e e e e e e e e e e eseesesseeneetenaesaesreneesnesrenn 68

Chapter 9 Multi-Threaded and Multi-Processor COmMmand SEL ..o s 71

9.1 MUILI-TRIEAA CONEIOl ...ttt b bbbt bt b s e bt s e et e et et he e bt e aeeheebesbesaeebesbeseesbenas 71

9.1.1 Set Thread Context: Setsthe current MDI thread CONteXt IDcccooiiiiiiiieeniereee e 71

9.1.2 Get Thread Context: Returns the current MDI thread CONtext ID cooeviieirieriereee s 72

9.1.3 Thread Context Query: Retrievesalist Of aCtiVE TCScooci i e 72

9.2 Set Run Mode: Specify behavior when returning to the RUNNING Statecooeieieiiininieneneeesene e 73

9.3 MUIti-procesSOr TEAM CONLIOIccuiiuiiuirtiriertere ettt b sttt b et be bbb se e e et et e e e e e aeeaeebeebesbesaeebesbeseeseenas 74

9.3.1 Create Team: Create a new multi-processor debugging teamMcccovirirerinereree e 75

9.3.2 Teams Query: Retrieves alist Of aCtiVETEAMScceciiiieii e e 75

9.3.3 Clear Team: Removes all members from amulti-proCeSSor tEAMcccevereriereriereeeeeeeeeres e 75

9.3.4 Destroy Team: Destroys a Multi-proCESSOr TEAIMcccoiierireieriere sttt ere b sae b e e 76

9.3.5 Attach Team Member: Add anew member t0 @tEaMcccociiiiiii i 76

9.3.6 Detach Team Member: Remove asingle member from ateamcccveeveveeiicceece e 77

9.3.7 Team Member Query: Retrieves alist of team MEMDErS ... e 78

9.3.8 Team Execute: Place all team membersinto RUNNING Stcccoviiiieiinienereeeeeeeesere e 79

Chapter 10 Complex Break and Trigger and StopWatch Timer Command SEtccooveereenieieneieseeserese e 81

10.1 Set a Priming Conditon for the Specified Complex Breakpoint ..o 81

10.2 Get the Priming Conditon for the Specified Complex Breakpointcccoveerieineiineieneieseese e 81

10.3 Query Complex Breakpoint and StopWatch Configuration OPLioNScccoeerieireeneieneiesee e 82

10.4 Get the Current Value of the SLOPWELCH TIMEN oviiiiiieee e 83

10.5 Clear the Value oOf the StOPWEICH TIMEN ..o e bbb 83

10.6 Set the Mode Of the SLOPWELCH TIMES ..o bbbt 83

10.7 Get the Mode Of the SLOPWELCH TIMEN ..ottt 84

PN o o= a0 D AN Y T I g T == L= 85

Appendix B Example Code to Setup an MDILID CONNECLIONcuoviiiiieiieirerestent st s 97
2 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Appendix C An MDI Addendum for MIPS32® and MIPS64® ATrChItECIUIEScccceviiirerieiienee e 105

CLLADSIFACE ...tttk b bt b b £ bR E R bR R R R AR R bR e R R bt e R bRt e e b b e e e ra 105
C.2MIPS MDIDDEET FIEIUS ...oooicieiiiiiieiiiisireeie sttt b et e et e bt ne b 105
C.3MIPS EXCEPLION COUESooveeiieiieieieeieieee et eteete sttt st sttt e e st e et et e st e b e e bt eaeehesbesaesb et e ns e e e meeneeaeeneebeebesaeebenbenes 105

C.4A MIPSLOE INSIIUCLIONSveueiveeereseereseere sttt ettt sttt r e se b se b se b s e st e e et s r et e r et Rt e R et b et e b e e b e e s nn s 105
C.OMIPS RESDUICES ..ottt ittt et b et h b s b b e b e e e b e esne s r e s 105

C.6 MIPS-Specific Breakpoint IMPIEMENTALIONcocoiiiiiiiiee et b 109
C.6.1 MDISetBP() and MDISetSWBP() FUNCLION CallS ...c.ovcveiiierieieiiriceeres et 109

C.6.2 Implementation Of MDISEISWBPD() ...veeveruerririerierieriee ettt st st s e e bbb b e 109

C.7 MIPS SPECITIC HEAAEN FlE ...t bbb bbbttt et b e sae b b e 109
Appendix D MDI_PDtracen HEAOEN FIlE ..ottt b e st sre e 113
Appendix Emdi_tCh.n HEBAEr FIl ..ottt e e e r e rennenrenes 117
APPENAIX F REVISION HISLOIYeeiiieitiie ettt sttt ettt b e e b e bt sb e e b e e se e e et e e et eseese e st sbenbesbesrenas 121

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

1.1 Abstract

Chapter 1

Overview

1.1 Abstract

The main goal of Microprocessor Debug Interface (MDI) isto define aset of data structures and functions that abstract
hardware (or hardware simulators) for debugging purposes. Having astandard "meta" interface allows devel opment
tools (debuggers, debug kernels, ICEs, JTAG probes etc.) from different vendors to inter-operate. A secondary goal of
the MDI specification is to define a multi-target environment in which multiple hardware abstracts may coexist

1.2 MDI Organization

MDI isdivided into 5 command sets. Thefirst set is the MDI environment. These commands establish the initial
connection, maintain version control, handle configuration, and support debugger event processing and multiple
debugger synchronization. The second command set is the target group commands. A target group is made up of one or
more target devices. The target group command set contains commands to query/open/close individual target groups as
well as special multi-target commands that control the individual devices as agroup. The third command set isthe
individual target device commands. This set of commands provide the fundamental functions and resources that are
needed to debug individual target devices. Thefourth command set isthe debugger callbacks, functions provided by the
debugger. Thiscommand set supports MDILib command processing and provides various character 1/0 servicesto both
the MDI interface and the target application. The fifth command set is the trace data commands. This command set
provides asimpleinterface to the tracing capabilities provided by many target devices. Another command set dealswith
calls needed to support multi-threading and multi-core or multi-processor targets.

A complete MDI specification consists of two parts: the architecture independent MDI specification (this document),
plus an addendum that provides the necessary details for a specific target architecture. This document includes the
addendum needed by the MIPS32® and MIPS64® architecturesin the Appendix.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 5

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 1 Overview

6 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 2

Terms

The following terms are used throughout this document:

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

MDI - This specification, plus the appropriate device specific addendum.
MDILib - An implementation of the MDI specification providing an interface to one or more devices.

Debugger - An MDI compliant application that uses one or more MDILibsto access and control one or more devices.
Typicaly, thisisasource- or assembly-level debugger, but it could be anything.

Thread Context (TC) - The hardware state necessary to support a single thread of execution within a multi-threaded
CPU device, such as defined by the MIPSMT ASE. Thisincludes a set of general purpose registers, multiplier
registers, a program counter (PC) and some privileged state.

VPE - A virtual processing element (VPE) is an instantiation of the full CPU privileged state on a multi-threaded
CPU, sufficient to run an independent per-processor OS image - it can be thought of as avirtual CPU. Each VPE
must have at least one TC attached to it in order to execute instructions and be debuggable, but it may contain more
than one TC when running an explicitly multi-threaded OS or application. A conventional single-threaded CPU
could be considered as implementing a single VPE containing asingle TC.

Multi-processor - A collection of processing elements within a single target system. This may be a set of
single-threaded CPUs within a multi-core design, a number of VVPEs within a multi-threaded CPU core, or a
combination of the two.

Device - A specific processing element that can be accessed and controlled viaMDI. Typically, thisisatarget board
containing asingle CPU or DSP, or asimulator. |n amulti-processor system, each processing element (CPU or
VPE) would be a separate device. The actual mechanism by which an MDILib accesses and controls a device is not
addressed by MDI, it is a private implementation detail of the MDILib.

Target Group - A group of target devices that are capable of being operated on as a group, where the grouping is
statically defined by the MDILib.

Team - A dynamic grouping of devices which stop and start normal execution simultaneously. This allows severa
debuggers, each debugging a separate but loosely cooperating operating system or program on different devicesto
safely view and manipulate shared resources (e.g. memory or device state), without any interference from the other
team members. Alternatively it allows a single debugger to control multiple devices executing a single symmettric
multi-processing (SMP) operating system image.

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 2 Terms

8 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

3.1 Multi-thread Debugging

Chapter 3

Principles of Operation

AnMDILibisimplemented asadynamically linked library in the Microsoft Win32 environment (mdi.dll) and a shared
library in the UNIX environment (mdi.so). In many cases, the caller of an interface function passes a pointer to
caller-allocated memory. In all such cases, the caller isrequired to maintain the validity of the pointer only until the
called function has returned.

MDI is designed to allow the MDILib to run synchronously with the debugger. The debugger passes athread of control
to the MDILib by making acall to an MDI function. The MDILib may then use the thread to do maintenance before the
requested function is complete. If the processing time for maintenance and the requested function are longer than 100
milliseconds, the MDILib will loan the thread back to the debugger by calling the debugger’s MDICBPeriodic routine.
At this point the debugger may cancel the current MDI command, update user interfaces or do other debugger
maintenance. The debugger then returns the thread to the MDILib by exiting the MDICBPeriodic routine. The thread is
then returned to the debugger upon compl etion or abortion of the original M DI function. The debugger must assume that
the MDILib always usesthe debugger’sthread to execute. It istherefore imperative that the debugger call MDIRunState
frequently whenever the device is running, so that the MDILib can be responsive to device events. It isalso possible,
though less common, that the MDILib may want to be able to process certain device events even when the device is not
running. It is therefore recommended that the debugger also call MDIRunState frequently at al times.

Though the actual implementation of a particular MDILib or debugger may be multi-threaded, it is not desirable to
burden all MDILib implementations with a requirement to be re-entrant; therefore the communications path between
debugger and MDILib is defined to be single threaded (synchronous), that is, for a given debugger process the same
thread must make all MDILib calls.

The simplest devel opment environment would be a single debugger using asingle MDILib to control asingledevice. In
this case, the debugger can be implicitly linked to the standard MDILib library file (mdi .d11 or mdi . so); however,
MDI envisions that a complete development environment may include multiple devices, multiple debuggers, and
multiple MDILibs, potentially all from different vendors. In this case, each MDILib will necessarily have a unique file
name, and the debuggers must provide away for the actual MDILib file name to be configured, and use explicit linking
to load thefile and get pointersto its MDI functions at run time. To allow operability in this more complex environment,
debugger vendors are strongly encouraged to use explicit linking even if they do not support multi-device debugging.

Note that the M DI specification allows the debugger to call any MDI service function at any time, including while the
target program is running. MDILibs are encouraged to support as many services as possible during execution, but not
all target environments will be able to support all MDI services while the target device is executing, so the MDILib may
return MDIErrTargetRunning in response to most MDI callsif the service can not be performed because of target
execution. The debugger vendor should also be aware that MDILibs that do support debugger operations during
execution may do so by temporarily interrupting execution to perform the service.

To ease devel opment of debuggers and MDILibs, MDI includes C language header files defining theinterface (mdi . h)
MDILibs must #define MDI_LIB beforeincludingmdi . h in their sourcefiles. Also provided for the Microsoft Win32
environment ismdi . def, alinker input file used when building an MDILib DLL, andmdiload. c, aC languagefile
providing function MDIInit, which loads the MDILib DLL. The debugger must call MDIInit before using any of the
MDI functions. All MDI functions are built using the __stdcall calling convention for the Win32 environment.

3.1 Multi-thread Debugging

Within each processing element of a multi-threaded CPU there may be more than one TC or Thread Context: that isa
set of general purpose registersand program counter capable of executing an instruction stream, or thread. The CPU can

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 9

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 3 Principles of Operation

executeinstructionsfrom all runnable TCs"simultaneously”, or at |east apparently so, by interleaving instructions from
the TCsthrough its pipeline at high speed. However TCs are subsidiary to the processing element, and when any TC
enters debug mode (e.g. completes a single-step or hits a breakpoint), then al of the other TCs contained within that
processing element will be suspended. So TCs are not exposed as afirst class Device to which you can connect an MDI
debugger - the connection isinstead made to the processing element, and additional MDI functions described in Chapter
9, “Multi-Threaded and M ulti-Processor Command Set,” on page 71 allow adebugger to determinethelist of active TCs,
accesstheir registers, and specify their behavior (e.g. remain suspended, single step, or run freely) upon leaving debug
mode.

Notethat an MDILib controlling ahardware probe or CPU simulator is not expected to be able to debug software threads
in acomplex operating system where there are more software threads than TCs. In such operating systems the software
thread state is being context switched by the OS between hardware TCs and memory-based thread data structures. A
hardware debugger does not typically have the OS-specific knowledge that would allow it to interpret the memory-based
thread state. So while an MDI debugger can be used to debug the low-level TC management within such an operating
system, debugging "application” software threadswill typically requirethe use of an OS-provided "thread aware" remote
debug protocol - possibly tunneled through M DI via shared memory - or enhancements to the debugger to makeit OS
aware by traversing and manipulating the OS's thread data structures in memory using MDIRead() and MDIWrite().
Both of these techniques are outside the scope of this document.

3.2 Multi-processor Debugging

10

A multi-processor target contains multiple devices, either virtual (VPES) on amulti-threaded CPU core, true multi-core
CPUs, or some combination of the two - i.e. multiple CPU cores, one or more of which may contain multiple VPEs. In
all casesthe MDILib isrequired to allow multiple parallel connections to this collection of devices from one or more
debuggers simultaneously. In other words one super-debugger may open multiple MDI connections to several devices
at once, or there may be several "legacy"” single-processor debuggers running in parallel, each connecting to asingle,
separate device. The MDILib shall provide a unique Target Group/Device name and ID for each device - virtual or
physical. As a convenience for single-processor debuggers, an MDILib may coordinate some or all of the devices
internally to provide theillusion of a single device with multiple TCs, thisis recommended but is not required.

MDI requires that each device appears to the debugger or debuggers to be capable of operating independently of the
other devices, i.e. asif they weretruly independent CPU cores, even if they arein fact VPEs within the same CPU core.
All devices must be capabl e of being simultaneously in RUNNING state, or HALTED in debug mode and servicing MDI
i/o requests, or any permutation thereof. If the hardware implementation does not allow thisdirectly (e.g. if debug mode
suspends other VPEs on a multi-threaded CPU), then an MDILib must simulate the required behavior by suspending
the device which originally entered debug mode, and then returning from debug mode so that the other devices can run
target code or themselves enter debug mode to service MDI calls from other debuggers.

Requiring VPE devicesto operate asif they weretruly independent coresisimportant, sinceit allows parallel debugging
of non-cooperating or loosely cooperating separate program images using "legacy" debuggers, most of which can work
with only one program image at atime. It also permits the debugging of one VPE while the other V PEs continue to run
normally. For example you might be using an MDILib and hardware probe to debug alow-level DSP or data plane task
which is running on one VPE, while running a control plane application on a multi-tasking OS on a second VPE, or
debugging it using the OS's standard application debugger. The multi-tasking OS must continue to run uninterrupted
even whilethe signal processing deviceishalted by the MDI debugger. Figure 3-1 below illustrates the states associated
with this form of debugging, where two devices operate completely independently of each other.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

3.2 Multi-processor Debugging

Figure 3-1 State Transitions for Independent Multi-Processor Debugging

stop(A)

A RUNNING A HALTED
start(A)
stop(B)

B RUNNING B HALTED
start(B)

Actions
stop = breakpoint/single-step exception, or debugger calls MDI Stop()
start = debugger calls MDIExecute() or MDIStep()

States
HALTED = debug mode, MDIRunState() returns appropriate "non-running” status
RUNNING = normal execution mode

3.2.1 Multi-processor Teams

When the software running on devices within a multi-processor is more tightly coupled: sharing data structuresin
memory, or even running a full-blown SMP operating system with a single shared instruction and shared data (SISD)
image, then it is useful to be able to dynamically join the devices together into a debugging team, such that when any
one of them enters debug mode, the others simultaneously stop running. This presents a stable shared memory image to
the debugger(s), and permitsinspection of the state of all the cooperating processors at the "same" moment intime: in
amulti-core system "same" may mean within afew cycles, to allow timefor debug interrupts to propagate from one core
to another; in amulti-V PE processor all team members within the same CPU should stop running literally
simultaneously. A team may include devices which have not been opened by a debugger. A team is also persistent, in
that it survives MDI library disconnects, until the last disconnect from the MDILib (or MDILibs) which manage the
team.

There are several ways in which an MDI team might be used in practice - two examples being as follows:

» When debugging a different program image on each device (e.g. a control program on one, and areal-time DSP or
data plane task on the other), then several "legacy" single-processor debuggers may be used in parallel, each
debugging a single program image on asingle device. But if the user needs to debug low-level hardware interactions
between the programs/processors, then it will be helpful if both devices can be forced to stop running
simultaneously, whenever one or the other reaches a breakpoint or isforcibly stopped.

» When debugging an high-level SMP (SISD) operating system, a multi-processor aware debugger will open several
MDI connections, one for each device, and then join them together into ateam so that they stop and start execution
simultaneously, simulating a single CPU with multiple thread contexts. The debugger might present each
single-threaded device to the user asif it were one thread context within asingle virtual CPU, or if any devices
contain multiple TCs, then as a unified set of TCs. The debugger will iterate over the open MDI devicesto set global
breakpoints, execution mode, and so on.

3.2.1.1 Legacy Team Debugging

A conventional single-processor "legacy" debugger will not take kindly to its debuggee spontaneously resuming
execution when the debugger thinksit is halted. The MDI team concept therefore virtualizesthe device SHALTED state,
so that each debugger believesthat it istotally in control of its device, even though in reality it may be stopping and
starting outside of the debugger’s control.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 11

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 3 Principles of Operation

Figure 3-2 below illustrates how two devices A and B should behave when they are each controlled by a separate
"legacy" debugger, but affiliated within ateam. The crucial concept isthe FROZEN state which isinternal to the
MDILib, and not reported to the debugger. The FROZEN state may be implemented by freezing or disabling adevice's
pipeline whenever ateam member enters debug mode, or by linking one element’s debug mode output to another’s
debug interrupt input, but hiding this debug interrupt from its debugger.

The MDIRunState() function shall return M DI StatusRunning whenever adeviceisnot inthe HALTED state. It indicates
only that the processing element is capable of running without further intervention from the debugger. A device may be
in the FROZEN state, or multi-threading may have been temporarily disabled by another VPE, or all of its TCs may be
idle, or blocked waiting for some hardware event to occur - but in all cases MDIStatusRunning is returned.

When device A stops running target code and enters debug mode because it hits a breakpoint or its debugger calls
MDIStop(), then device B is stopped automatically and held in the internal FROZEN state. Asfar as debugger-B is
concerned its processor is still reported to be in the RUNNING state. If device A isinstructed to resume execution (i.e.
debugger-A calls MDIExecute or MDIStep), then device B is automatically restarted, again without notifying its
debugger. Only if device A stops, and then device B is explicitly stopped.(i.e. debugger-B calls MDIStop()), are both
reported asHALTED. From that state resuming execution of one or the other leavesits opposite number inthe HALTED
state, until its debugger tellsit to resume execution too.

This behavior extends in the obvious way when more than two devices are present in the system. For example, assume
that there are three devices A, B, and C. Assume a state where al devices are currently running. The list below isan
example of the state of the three devices and different events that cause those state transitions:

State: A-RUNNING, B-RUNNING, C-RUNNING

Event: Stop B

State: A-FROZEN, B-HALTED, C-FROZEN (A and C are frozen by halting B)

Event: Stop A

State: A-HALTED, B-HALTED, C-FROZEN (A is halted, B stays halted, and C stays frozen)
Event: Start B

State: A-HALTED, B-FROZEN, C-FROZEN (B is started, but since A is halted, B is now frozen, and C stays
frozen)

8. Event: Start A
9. State: A-RUNNING, B-RUNNING, C-RUNNING

N o o M 0w DN

From the above example, it is clear that all devicesin ateam have to be started (or unhalted) for execution to resume.
Otherwise, all devicesare kept inthe HALTED or FROZEN state as determined by whether or not MDIStop() has been
called by their respective debuggers.

While in the FROZEN state a device must continue to respond to all MDI callsthat it would have done while in the
RUNNING state, i.e. at least MDIRunState() and MDIStop(). Similarly when adeviceisinthe HALTED state, then it
must be capable of responding to all normal MDI calls, irrespective of the state of the other devices.

For multi-processor aware debuggers, the MDITeamExecute() call will force al team members to be placed
simultaneously (or as simultaneously as possible) into the RUNNING state, irrespective of their previous states.

12 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

3.2 Multi-processor Debugging

Figure 3-2 State Transitionsfor L egacy Team Debugging
start(A

A HALTED
B RUNNING

a
3
&
A HALTED
B HALTED
Actions

stop = breakpoint/single-step exception, or debugger calls MDIStop()
start = debugger calls MDIExecute() or MDIStep()

tstart = debugger calls MDITeamExecute()

States

FROZEN = processor/V PE freeze or hidden debug mode, MDIRunState() returns M DI StatusRunning
HALTED = debug mode, MDIRunState() returns appropriate "non-running” status

RUNNING = normal execution mode

3.2.1.2 MP-Aware Team Debugging

A multi-processor-aware debugger may set the MDICBSync() callback linkage when connecting to an MDILib, to

indicate that it is willing to handle dynamic changes in a device's state caused by another debugger. See Section 6.1.5,
"Synchronize State: Callback function to synchronize device state changes' on page 26. |f the MDICBSync() callback is
not null then the FROZEN stateis no longer required, and starting or stopping any team member simply starts or stops
the other team members immediately. If ateam member is changed from the HALTED state to the RUNNING state by

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 13

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 3 Principles of Operation

14

the action of another debugger, then its controlling debugger is notified by a call to its MDICBSync() function with a
SyncType argument of MDISyncState.

Figure 3-3 State Transitions for M P-Awar e Team Debuggingc

a
2
stop(A or B
A RUNNING p() % HALTED
B RUNNING Sart(A or B) HALTED
Actions

stop = breakpoint/single-step exception, or debugger calls MDIStop()
start = debugger calls MDIExecute() or MDIStep()

tstart = debugger calls M DI TeamExecute()

States
HALTED = debug mode, MDIRunState() returns appropriate "non-running” status
RUNNING = normal execution mode

3.2.2 Disabled Multi-processor Devices

A disabled device is one which isincapable of executing instructions, even in debug mode. For a single-threaded CPU
this may mean that it is powered down, or its clocks are switched off. In amulti-threaded CPU it may be aV PE that has
no TCs bound to it.

Connecting to a disabled device requires special handling. The MDITGQuery() and MDIDquery() calls must list the
device even when it is disabled. The callsto MDITGOpen() and MDIOpen() must also succeed. But after that the only
MDI functions which are required to have any useful effect on the device are:

MDIStop(): Raises a debug interrupt request to the device, so that as soon as it is enabled (presumably by another
device), it will immediately enter debug mode and the HALTED state, before executing any normal instructions.

MDIRunSate(): If the device is disabled after the wait time expires, then returns M DI StatusDisabled. The debugger
can either display an error and terminate the connection, or continue to poll MDIRunState interruptibly until the
deviceisenabled. A debugger detecting that its device has switched from returning M DI StatusRunning to

MDI StatusDisabled will most likely report that the target program has been terminated, and may disconnect from the
device.

MDIAttachTM(): It is permitted to attach a disabled device to ateam even if it hasn’t been opened, but it will bein a
pending state (i.e. pending RUNNING, pending FROZEN or pending HALTED), shadowing the state diagrams
shown above, but with MDIRunState() still returning MDI StatusDisabled. If and when it is enabled then it shall
immediately switch to the equivalent real state and return the appropriate status from MDIRunState(). If it should
later be disabled again, then it will return to the appropriate pending shadow state, returning M DI StatusDi sabled.

MDIDetachTM(): It is permitted to detach a disabled device to a team, which will remove it from any pending
HALTED or FROZEN state and return it immediately to the free running state if and when it is later enabled.

MDIReset(): Be beware that this resets the whole CPU, not just the V PE to which you are connected.

All other MDI functions which target the device may return MDIErrDisabled.

Note that V PEswhich are temporarily prevented from issuing instructions by another VPE, but still have at least one TC
bound to them, are not reported as disabled, but remain in the RUNNING or HALTED states.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

4.1 Version: Obtain the supported MDI versions for this MDILib implementation

Chapter 4

MDI Environment Command Set

4.1 Version: Obtain the supported MDI versionsfor thisMDILib implementation

MDIInt32
MDIVersion (MDIVersionRangeT *versions)

Returns:
MDI Success No Error, requested data has been returned.
MDIErrParam Invalid parameter.

Structures:

typedef struct MDIVersionRange_struct ({
MDIVersionT oldest;
MDIVersionT newest;

} MDIVersionRangeT;

Description:

For the given MDILib implementation, this call retrieves the range of supported M DI specification versions. versionsis
apointer to a structure where the oldest and newest version numbers supported by this MDILib implementation are
returned. All versions between oldest and newest must al so be supported. The 32 bit version number isdivided into a16
bit Major field (Bits 31:16) and a 16 bit Minor field (Bits 15:0). The current release of this specification is version
0x000200D. For implementations that only support only one revision of the specification, oldest == newest.

The macro M DI CurrentRevision (defined in the mdi.h file) always shows the latest (or current) revision number of this
specification.

4.2 Connect: Establish a connnection tothe MDILib

MDIInt32

MDIConnect (MDIVersionT MDIVersion,
MDIHandleT * MDIHandle,
MDIConfigT * Config)

Returns:
MDI Success No Error, handle and configuration have been returned.
MDIErrFailure An unspecified error occurred, connection was not successful.
MDIErrParam Invalid parameter
MDIErrVersion Version is not supported.
MDIErrNoResource M aximum connections has been reached.

MDIErrAlreadyConnected = MDI Connection has already been made for this thread.

MDIErrConfig Required debugger callback functions are not present in Config structure.
MDIErrInvalidFunction A callback function pointer isinvalid.
Microprocessor Debug Interface (MDI) Specification, Revision 02.41 15

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 4 MDI Environment Command Set

Structures:

typedef MDIUint32 MDIVersionT;
typedef MDIUint32 MDIHandleT;

typedef struct MDIConfig_struct {
/* Provided By */
/* Other Comments */
char User[80]; /* Host: ID of caller of MDI */
char Implementer[80]/* MDI: ID of MDI implementer */
MDIUint32 MDICapability; /* MDI: Flags for optional capabilities */

MDIInt32 (__stdcall *MDICBOutput)/* Host: CB fn for MDI output */
(MDIHandleT Device, MDIInt32 Type,
char *Buffer, MDIInt32 Count);

MDIInt32 (__stdcall *MDICBInput)/* Host: CB fn for MDI input */
(MDIHandleT Device, MDIInt32 Type,
MDIInt32 Mode, char **Buffer,
MDIInt32 *Count) ;

MDIInt32 (__stdcall *MDICBEvaluate)/* Host: CB fn for expression eval */
(MDIHandleT Device, char *Buffer,
MDIInt32 *ResultType, MDIResourceT *Resource,
MDIOffsetT *Offset, MDIInt32 *Size, void **Value);

MDIInt32 (__stdcall *MDICBLookup)/* Host: CB fn for sym/src lookup */
(MDIHandleT Device, MDIInt32 Type,
MDIResourceT Resource, MDIOffsetT Offset,
char **Buffer);

MDIInt32 (__stdcall *MDICBPeriodic)/* Host: CB fn for Event processing */
(MDIHandleT Device) ;

MDIInt32 (__stdcall *MDICBSync)/* Host: CB fn for Synchronizing */
(MDIHandleT Device, MDIInt32 Type,
MDIResourceT Resource) ;

} MDIConfigT;

/* MDIConfigT.MDICapability flag values, can be OR'ed together */

#define MDICAP_NoParser 0x00000001 /* No command parser */
#define MDICAP_NoDebugOutput 0x00000002 /* No Target I/O */
#define MDICAP_TraceOutput 0x00000004 /* Supports Trace Output */
#define MDICAP_TraceCtrl 0x00000008 /* Supports Trace Control */
#define MDICAP_TargetGroups 0x00000010 /* Supports Target Groups */
#define MDICAP_PDtrace 0x00000020 /* Supports PDtrace functions */
#define MDICAP_TraceFetchI 0x00000040 /* Supports Instr Fetch during Trace */
#define MDICAP_TC 0x00000080 /* Supports Thread Contexts */
#define MDICAP_Teams 0x00000100 /* Supports Teams */
Description:
16 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

4.3 Disconnect: Disconnect from the MDILib

This opens the requested connection and is also used to configure and retrieve information about supported MDI
features.

The MDIVersion input parameter is the version of the MDI specification to which this connection will adhere. It will
typically be the highest version number within the version range returned by the MDIVersion() call, that is supported by
the debugger. If MDIVersion is not within the version range returned by MDIVersion(), MDIConnect() will return
MDIErrVersion and the connection will not be made. Note that the behavior of some MDI functions may change
dependent on the value of MDIVersion.

Oninput, Config->User contains anull-terminated ASCII character string identifying the debugger to the MDILib. The
Implementor string is returned by the MDILib. The User and Implementer strings are arbitrary, but it is recommended
that the strings include the name of the vendor of the debugger and MDILib. They are intended to allow the debugger
and MDILib to determine if the other is a known implementation, perhaps to enable vendor-specific extensions. (No
feature extensions may use public names beginning with the characters“MDI” or “Mdi”. These arereserved for the M DI
specification.)

The two values, Config->MDICBOutput and Config->MDICBInput are set to the addresses of the call-back functions
that the debugger must provide for I/O. If these are NULL, then the MDILib returnsthe MDIErrConfig error condition.
The other four callback functions (Config->M DICBEvaluate, Config->M DICBL ookup, Config->MDICBPeriodic, and
Config->MDICBSync) are optional. If these are not implemented, the debugger must initialize these valuesto NULL.

On output, the MDILib returns an unique handle, MDIHandle for the connection. This must be used in all future
interactions of this debugger to the MDILib. Since multiple debuggers are allowed to simulateneoudly talk to the
MDILib, this allows the MDILib to know which debugger is making any specific request.

Zero or more of the following flag values specifying MDILib capabilities are OR'ed together into
Config->M DI Capability. Theintent isto allow a GUI debugger to disable user interface elements not supported by the
MDILib connection.

MDICAP_NoParser MDILib has no command parser (see MDIDoCommand())
MDICAP_NoDebugOutput MDILib will not call MDICBOutput()
MDICAP_TraceOutput Capable of producing Trace Output

MDICAP_TraceCtrl Capable of controlling Trace

MDICAP_TargetGroups Capable of executing Target Group commands
MDICAP_PDtrace Capable of supporting PDtrace

MDICAP_TraceFetchl Capable of supporting Instruction Fetch during trace
MDICAP_TC Capable of supporting thread contexts

MDICAP_Teams Capable of supporting teams

4.3 Disconnect: Disconnect from the MDILib

MDIInt32
MDIDisconnect (MDIHandleT MDIHandle,
MDIUint32 Flags)

Returns:
MDISuccess No Error
MDIErrMDIHandle Invalid MDI Handle
MDIErrParam Invalid flags value
Microprocessor Debug Interface (MDI) Specification, Revision 02.41 17

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 4 MDI Environment Command Set

MDIErrWrongThread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Structures:
Flags:

MDICurrentState Close all open target groups and target devices
MDIResetState Place all open target devices in reset, then close all open target groups and target devices

Description:

Disconnect from the MDILib after first closing any open Target Groups and Devices associated with this connection. It
must be possible to disconnect even when some or all of the Devices on a multi-processor core are disabled. All team
data associated with this MDILib should be retained until the final debugger disconnects from the library.

18 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

5.1 Target Group Query: Retrieves the names of the defined target groups.

Chapter 5

Target Group Command Set

A collection of devices can form atarget group. For example, al the processors in a multiprocessor implementation
might be atarget group, while each individual processor would be one devicein this target group. Or, in another
implementation the target group could comprise of the main processor core and the DSP.

The MDILib may optionally support the ability to perform certain operations on atarget group. If so, it will set the
MDICAP_TargetGroups flag in Config->M DI Capability. If thisflag is set, then it implies not only that the MDILib
supportstarget group calls, but that thereis at least one target group present. Hence, if thisflag is set, the debugger must
usethe function callsin thisgroup to get alist of target groups and open the required group before it can query and open
a specific device within that group.

If the Config->M DI Capability flag is not set, the debugger is required to bypass all the function calls in this command
set and proceed directly to thedevice query call, MDIDQuery(). For MDILib implementationsthat do not support group
operations, al Target Group functions will return MDIErrUnsupported.

5.1 Target Group Query: Retrievesthe names of the defined target groups.

MDIInt32

MDITGQuery (MDIHandleT MDIHandle,
MDIInt32 *HowMany,
MDITGDataT *TGData)

Returns:
MDI Success No Error, requested data has been returned
MDIErrMDIHandle Invalid MDI Handle
MDIErrParam Invalid parameter
MDIErrMore More target groups defined than requested
MDIErrWrongThread Call was not made by the connected thread.
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Structures:

typedef struct MDITGData_struct {
MDITGIAT TGId;
char TGName [81] ;

} MDITGDataT;

Description:
MDIHandle must be the value returned by a previous MDIConnect() call.

If the requested number of target groups (* HowMany) is 0, the function returns no error (MDI Success) and * HowMany
is set to the number of available target groups. If *HowMany is non-zero on entry, it specifies the number of elements
inthe TGData array being passed in. Thefunction fillsin the TGData array with information for up to * HowMany target
groups and sets *HowMany to the number filled in. If there is not enough room in the TGData array to hold all the

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 19

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 5 Target Group Command Set

availabletarget groups, MDIErrMoreisreturned. If the debugger then callsMDITGQuery() again before any other MDI
functions are called, information is returned for the next * HowMany target groups.

Target groups are identified by a null terminated ASCI| string (TGData->TGName) and a unique target group 1D
(TGData->TGId). The strings are intended to be descriptive, but they are MDILib implementation-specific and the
debugger should not interpret this or rely on this for any implementation-specific information. It is simply displayable
text that names the target group. It isintended that the debugger should show these target group names to the user for
selection of the target group to be opened. The string name may not be more than 80 characters excluding the null
terminator.

Information about groups within a multi-processor shall be returned even when a group is disabled and awaiting
initialization by another device.

The target group ID (TGData->TGId) is used in the MDITGOpen() function to select the specific target group.

5.2 Target Group Open: Opensatarget group

20

MDIInt32

MDITGOpen (MDIHandleT MDIHandle,
MDITGIAT TGId,
MDIUint32 Flags,
MDIHandleT *TGHandle)

Returns:
MDI Success No Error, * TGHandl e has been set to the target group handle
MDIErrFailure An unspecified error occurred, open was not successful
MDIErrParam Invalid parameter
MDIErnTGId Invalid TGId

The TG has already been opened by another debugger either on an exclusive

MDIErrNoResource basis, or the TG does not support shared access

MDIErrWrongThread Call was not made by the connected thread
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Structures:
Flags:
MDI SharedAccess Shared Access

MDIExclusiveAccess Exclusive Access
Description:

MDIHandle must be the value returned by the previous MDIConnect call. MDILib implementations are not required to
support shared access to a Target Group.

Flagsis set to MDIEXxclusiveAccessif the debugger wants exclusive control over any open devices in thistarget group;
otherwise Flagsis set to MDISharedAccess to allow other debuggers to open devicesin this target group. If shared
accessis not supported by the target group, an attempt to open a Target Group aready opened by another debugger will
return MDIErrNoResource even if both the open calls requested shared access.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

5.3 Target Group Close: Close a previously opened target group

The handlereturned in * TGHandle is used to reference thistarget group. If the debugger does not support group execute
operation (MDITGExecute()) and is connected to an MDILib that does, then the debugger should open the selected
target group with exclusive access to avoid the possibility that devices opened by the current debugger could be affected
by group execute commands issued by another debugger.

It must be possibleto open atarget group within amulti-processor when that group isdisabled and awaiting initialization
by another device.

5.3 Target Group Close: Close a previously opened target group

MDIInt32
MDITGClose (MDIHandleT TGHandle,
MDIUint32 Flags) ;

Returns:
MDISuccess No Error
MDIErrTGHandle Invalid Target Group handle
MDIErrParam Invalid Flags parameter
MDIErrWrongThread Call was not made by the connected thread
MDIErrTargetRunning Service cannot be performed at this time because the target program is running
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Structures:
Flags:
MDICurrentState Leavein current state
MDIResetState Reset all target devices
Description:

Any open devices in the group will befirst closed automatically before the target group is closed.

It must be possible to close atarget group within a multi-processor even when that group is disabled and awaiting
initialization by another device.

Beware that using MDIResetState will reset all VPEs within a multi-threaded CPU, not just the connected V PE.

5.4 Target Group Execute: Placein execution modethe appropriate devicesin thetarget group

MDIInt32
MDITGExecute (MDIHandleT TGHandle) ;

Returns:
MDISuccess No Error
MDIErrFailure Unable to perform group execute
MDIErrTGHandle Invalid target group handle
Microprocessor Debug Interface (MDI) Specification, Revision 02.41 21

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 5 Target Group Command Set

MDIErrWrongThread
MDIErrTargetRunning
MDIErrRecursive
MDIErrDisabled

Description:

Call was not made by the connected thread

Service cannot be performed at this time because the target program is running
Recursive call was made during an MDICBPeriodic() callback

Service cannot be performed because the target group is disabled

Place all the devicesin the specified target group that have been configured for target group control in arun state and
run them. Thereis no need to call thisfunction if thereis only one device in atarget group, it sufficesto call the device
run command (Section 6.4.1, "Execute: Place the device into its RUNNING state" on page 38).

5.5 Target Group Stop: Stop execution for all appropriate devicesin thetarget group

MDIInt32

MDITGStop (MDIHandleT TGHandle)

Returns:
M DI Success
MDIErrFailure
MDIErrTGHandle
MDIErrWrongThread
MDIErrTargetRunning

MDIErrRecursive

Description:

No Error

Unable to perform group stop

Invalid target group handle

Call was not made by the connected thread

Service cannot be performed at this time because the target programis running
Recursive call was made during an MDICBPeriodic() callback

Stop the execution of all those devices in the target group that have been configured for target group control.

Issuing a stop request to atarget group within a multi-processor is permitted even if that group is disabled and awaiting
initialization by another device. The stop request should be serviced as soon as the group is enabled.

22

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

6.1 Session Control

Chapter 6

Device Command Set

The device command set is subdivided into the following sections:

e Section 6.1,
open, contro

» Section6.2,"
» Section6.3,"
* Section 6.4, "
» Section 6.5, "

6.1 Session Control

6.1.1 Device Query

MDIInt32
MDIDQuery

Structures:

"Session Control" on page 23 has commands used to identify and select the necessary device to
I, and support debugger event processing and multiple debugger synchronization.

Resource Addresses' on page 27 defines device resources and how they can be accessed.
Resource Access' on page 27 has commands that access device resources.

Run Control" on page 37 has commands that control a device.

. Retrievesinformation about the devices

(MDIHandleT Handle,
MDIInt32 *HowMany,
MDIDDataT *DData)

typedef struct MDIDData_Struct {
MDIDeviceIdT Id;

char DName [81] ;
char Family[15];
char FClass[15];
char FPart[15];
char FISA[15];
char Vendor [15];
char VFamily[15];
char VPart[15];
char VPartRev([15];
char VPartDatal[l5];
char Endian;
} MDIDDataT;
Returns:
M DI Success No Error
MDIErrTGHandle Invalid target group handle
MDIErrParam Invalid parameter
MDIErrMore M ore devices defined than requested
MDIErrWrongThread Call was not made by the connected thread.
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Breakpoints' on page 43 has commands that establish and maintain breakpoints within a device.

23

Chapter 6 Device Command Set

Description:

If the requested number of devices (*HowMany) is0, the function returns no error (M DI Success) and *HowMany is set
to the number of devicesin the target group. If *HowMany is non-zero on entry, it specifies the number of elementsin
the DData array being passed in. The function fills in the DData array with information for up to *HowMany devices
and sets * HowMany to the number filled in. If there is not enough room in the DData array to hold all the available
devices, MDIErrMore is returned. If the debugger then calls MDIDQuery again before any other MDI functions are
called, information is returned for the next * HowMany devices.

Retrieves the general configuration information about the devices in the target group, or all devicesif the MDILib does
not support Target Groups.

If the MDILib implementation did not set the MDICAP_TargetGroups capability, Handle must be the MDIHandle
returned by the previous MDIConnect() call. Otherwise Handle must be the TGHandle returned by a previous
MDITGOpen call.

DData->DNameisan 80 character plus null terminated ASCI|I string that describes and identifies adevice available for
connection. Its value is determined by the MDILib and debuggers should not attempt to interpret the data. When more
than one deviceis available, it isintended that the debugger will display the DName stringsto allow the user to select
the desired device. DData->1d is a unique device ID assigned by the MDILib, and used by the debugger to specify the
desired device to MDIOpen().

Information about devices within a multi-processor shall be returned even when a deviceis disabled and awaiting
initialization by another device. In such cases, the data returned by MDIQuery may not contain fully accurate
information about the device. The FPart, FISA, and Endian fields may return a value of "Unknown", or a cached value
from the last successful connection. A debugger may continue to open the device and then poll MDIRunState() until the
device returns a status other than MDI StatusDisable, at which point the debugger may call MDIQuery again to retrieve
valid information about the device.

Devices are also identified by family, class, generic part, vendor, vendor family, vendor part, vendor part revision and
vendor part specific fields. All of these fields are ASCII strings with a maximum length of 15 characters including null
termination. Any excess bytes in the field beyond the null termination will be set to zero to facilitate using a memory
compare function to determine if the device is supported by the debugger.

DData->Family is the type of device. Valid values for DData->Family are part of the generic MDI specification. The
only values currently specified are MDIFamilyCPU ("CPU") and MDIFamilyDSP ("DSP"). DData->FClass further
isolates the device type (E.g., MIPS, PPC, X86, etc.). DData->FPart isthe industry common name for the processor.
(LR4102, NEC5440, 80486). DData->FISA isthe "Instruction Set Architecture” supported by the device (MIPSI,
MIPS V). Valid values for DData->FClass and DData->FISA are architecture-specific and are listed in the
corresponding Appendix. DData->Vendor identifies the device manufacturer or 1P vendor. DData->VFamily,
DData->VPart, DData->VPartRev, and DData->VPartData are vendor specific values intended to refine the generic
part. It isintended that device vendors will publish alist of standard values for these fields for each of their devices.

Debugger and MDILib implementations may have their own mechanism for configuring the device type and are not
required to make any use of the architecture- and vendor-specific values; however, if they do make any use of these
fields, they are required to document which fields are inspected and what values they ook for.

6.1.2 Open: Opensadevice.

MDIInt32

MDIOpen (MDIHandleT Handle,
MDIDeviceIdT DevicelID,
MDIUint32 Flags,
MDIHandleT * DeviceHandle)

24 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

6.1 Session Control

Structures:

Flags:
MDI SharedAccess Shared Access

MDIExclusiveAccess Exclusive Access

Returns:

M DI Success No Error. Device handle isreturned in DeviceHandle

MDIErrFailure An unspecified error occurred, open was not successful

MDIErrDeviceld Invalid Device ID

MDIErrParam Invalid parameter

MDIErrHandle Invalid target group or connection handle specified

MDIErrNoResource Device aready opened, either exclusively or shared accessis not supported

MDIErrWrongThread Call was not made by the connected thread.

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

If the MDILib implementation did not set the MDICAP_TargetGroups capability, Handle must be the MDIHandle
returned by the previous MDIConnect call; otherwise Handle must be the TGHandle returned by a previous
MDITGOpen() call.

The returned handle is used to reference thisdevice in all other target device commands. Devices that are opened for
shared access may be opened by another debugger. Debuggers may be kept in sync viathe call back function
MDICBSync. MDILib implementations are not required to support shared accessto a Device. If shared access is not
supported, an attempt to open a Device already opened by another debugger will return MDIErrNoResource even if both
opens specified shared access.

It must be possible to open a device within amulti-processor when that device is disabled and awaiting initialization by

another device. A debugger must then poll MDIRunState() until the device returns a status other than
MDI StatusDisabled, at which point the debugger may call MDIQuery again to retrieve valid device information.

6.1.3 Close: Closes a device.

MDITnt32
MDIClose (MDIHandleT DeviceHandle,
MDIUint32 Flags)
Structures:
Flags:
MDICurrentState Leavein current state
MDIResetState Reset target device
Returns:
MDISuccess No Error
MDIErrFailure Unable to close for an unspecified reason
Microprocessor Debug Interface (MDI) Specification, Revision 02.41 25

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 6 Device Command Set

MDIErrParam Invalid flags parameter
MDIErrDevice Invalid device handle specified
MDIErrWrongThread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

It must be possible to close atarget group within a multi-processor even when that group is disabled and awaiting
initialization by another device.

It must be possible to close a device within a multi-processor even when that device is disabled and awaiting
initialization by another device.

Beware that using MDIResetState will reset all VPEs within a multi-threaded CPU, not just the connected V PE.

6.1.4 Process Events: Callback function to process periodic events

MDIInt32
MDICBPeriodic (MDIHandleT DeviceHandle)

Returns:
M DI Success No Error
MDIErrDevice Invalid device handle
Description:

This call-back function is optionally implemented by the debugger. Its address, or NULL if it is not implemented, is
passed to the MDILib in Config->MDICBPeriodic when MDIConnect is called. The purpose of this call-back isto give
the debugger a chance to process user events during along-running MDI service call. If the debugger implements this
function, the MDILib isrequired to cal it at least every 100 milliseconds. At this point the debugger may cancel the
current MDI command by calling MDIAbort, update user interfaces or do other debugger maintenance. It may not call
any MDI functions other than MDIAbort.

6.1.5 Synchronize State: Callback function to synchronize device state changes

MDIInt32

MDICBSync (MDIHandleT Device,
MDIInt32 SyncType,
MDIResourceT SyncResource)

Structures:

SyncType:
MDISyncBP
MDISyncState
MDISyncWrite

typedef MDIUint32 MDIResourceT;

26 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

6.2 Resource Addresses

Returns:
MDISuccess No Error
MDIErrDevice Invalid device handle
Description:

Thiscall-back function is optionally implemented by debuggers. Itsaddress, or NULL if itisnot implemented, is passed
tothe MDILibin Config->MDICBSync when MDIConnect() is called. The purpose of this callback isto inform an MDI
application of device state changes caused by MDI functions performed by others when a device has been opened in
MDI SharedA ccess mode by multiple MDI applications, or isamember of a multi-processing team. The reported device
state changes keep the application informed of resource, break point and run state changes that have occurred in the
target.

When the MDILib receives acommand that modifies the current breakpoint settings, all sharing MDI applications with
MDICBSync() call-back functions will receive an MDICBSync() call with SyncType set to MDISyncBP. The
SyncResource parameter will be set to 0.

When the MDILib receives a command that modifies the current run state of the device, all sharing MDI applications
with MDICBSync call-back functions will receive an MDICBSync() call with SyncType set to MDISyncState. The
SyncResource parameter will be set to 0.

When the MDILib receives a command that modifies a resource (MDIWrite, MDIWriteList, MDIFill, MDIMove), al
sharing MDI applications with MDICBSync() call-back functions will receive an MDICBSync() call with SyncType set
to MDISyncWrite, and SyncResource set to the resource that has been modified.

Actions to be taken by the MDI Application are application dependent, but could include querying the MDILib for
current run state, BP list, or resource values.

6.2 Resource Addresses

Deviceresources (e.g. memory and registers) areidentified by their address. An address consistsof an offset and aspace
(resource number). The space is a 32-bit unsigned integer specifying the type of resource (address “ space”), and the
offset is a 64-bit unsigned integer specifying the location of a specific storage unit within that space. The interpretation
of the offset is determined by the space. The list of specific resource numbers, and the corresponding interpretation of
the offset and meaning of the address, is architecture dependent; however, the MDI specification assumes that the offset
for "memory like" resourceswill be abyte offset whilethe offset for "register like" resourceswill bea"register number".
Thisdistinction isimportant for alignment considerations.

6.3 Resource Access

The functionsin this section allow target resources (memory and registers) to be inspected, set, and manipulated. The
following parameter descriptions apply to all of these functions:

MDIHandleT Device Device handle.

MDIResourceT SrcResource Source resource address space for data provided from the device.

MDIOffsetT SrcOffset Source resource address offset for data provided from the device.

MDIResourceT DstResource Destination resource address space for data provided from the device.

MDIOffsetT DstOffset Destination resource address offset for data provided from the device.
Microprocessor Debug Interface (MDI) Specification, Revision 02.41 27

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 6 Device Command Set

28

MDIUint32

MDIUint32

void *

ObjectSize

Count

Buffer

Size of each object being referenced by the Src and/or Dst address.
Where applicable and possible, the device should perform the actual
read or write accesses with bus cycles having the specified size. For
memory mapped resources, the offset is required to be aligned
appropriately for the object size. Valid values for ObjectSize are:

0 Vvaid only for memory mapped resources.
Object sizeis 1. The device data can be read or
written in the most efficient manner

1 Byte(8-hit)
2 Haf-word (16-bit)
4 Word (32-hbit)
8 Double word (64-hit)
The number of objects to be accessed. For memory-mapped

resources, if ObjectSizeis 0 then Count isto be interpreted as a byte
count.

The address of ahost data buffer supplying or receiving the device
data. The buffer must be large enough to hold all the data. The buffer
pointer must remain valid until the MDILib function to whichitis
passed has returned.

Device datais always passed as a packed array of Count elements, with each element in device byte order (endian). The
size of each element is given by ObjectSize. For register type resources where ObjectSize is less than the actual size of
the registers being addressed, the low order ObjectSize bytes of each register is returned by read operations and each
valueis either sign-extended or zero-extended to the register size by write operations; this is architecture-specific. For
register type resources where ObjectSize is greater than the actual size of the registers being addressed, each register
valueis either sign-extended or zero-extended to ObjectSize bytes by read operations and the high order bytes of each
value are ignored by write operations.

For resources which are duplicated by each thread context, such as the general purpose registers, the current MDI TC
ID isused to select which TC'sregistersto access. See Section 9.1.1, "Set Thread Context: Setsthe current MDI thread

context ID" on page 71.

6.3.1 Read: Reads a contiguous range of data from the specified resource on the device.

MDIInt32

MDIRead (MDIHandleT Device,

MDIResourceT SrcResource,

MDIOffsetT SrcOffset,

void * Buffer,

MDIUint32 ObjectSize,

MDIUint32 Count)

Structures:
typedef MDIUint64

Returns:
MDISuccess

MDI ErrFailure

MDIErrDevice

MDIOffsetT;

No Error, requested data has been returned or resource address validated

Unableto perform read operation. Thisimpliesaprobe hardwarefailure or some
such fatal reason.

Invalid device handle

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

6.3 Resource Access

MDIErrSrcResource

MDIErrInvalidSrcOffset
MDIErrSrcOffsetAlignment
MDIErrSrcObjectSize

MDI ErrSrcCount

MDIErrWrongT hread
MDIErrTargetRunning
MDIErrDisabled

MDIErrRecursive

Description:

SrcResourceisan invalid or unsupported resource type, for example, the device
in question might not have a secondary or tertiary cache.

SrcOffset isinvalid for the specified resource, that is out of range.
SrcOffset isnot correctly aligned for the specified ObjectSize.
Invalid ObjectSize for the specified SrcResource.

Specified Count and SrcOffset reference space that is outside the scope for the
given resource. No objects were returned.

Call was not made by the connected thread.

Service cannot be performed at this time because the target program is running.
Service cannot be performed because the deviceis disabled.

Recursive call was made during an MDICBPeriodic() callback.

Notethat it isvalid, and useful, to call MDIRead() with Count set to 0. In this case, no datais transferred and the return
value can be checked to determine whether the addressis valid and access to the resource is supported. The MDILib is
required to validate the address and return MDIErrSrcResource, MDIErrlnvalidSrcOffset, or
MDIErrSrcOffsetAlignment as appropriate, even when Count is 0. When there are no errors, then MDISuccessis

returned even if no datais returned.

Note that it isthe responsibility of the debugger to have allocated Buffer of the appropriate size before calling

MDIRead().

6.3.2 Write: Writesa contiguousrange of datato the specified resource on the device.

MDIInt32

MDIWrite (MDIHandleT Device,
MDIResourceT DstResource,
MDIOffsetT DstOffset,
void *Buffer,
MDIUint32 ObjectSize,
MDIUint32 Count)

Returns:
MDI Success No Error, requested data has been written.

MDI ErrFailure

MDIErrDevice
MDIErrDstResource

MDIErrinvalidDstOff set
MDIErrDstOffsetAlignment
MDIErrDstObjectSize

MDIErrDstCount

MDIErrWrongT hread

Unable to perform write operation. Thisimplies a probe hardware failure or
some such fatal reason.

Invalid device handle.

DstResource is an invalid or unsupported resource type, for example, the
specified device might not have floating-point registers, if there is no floating
point unit.

DstOffset isinvalid for the specified resource.
DstOffset is not correctly aligned for the specified ObjectSize.
Invalid ObjectSize for the specified DstResource.

Specified Count and DstOffset reference space that is outside the scope for the
given resource. No objects were written.

Call was not made by the connected thread.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 29

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 6 Device Command Set

MDIErrTargetRunning Service cannot be performed at this time because the target program is running
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

Description:

6.3.3 Read List: Read a set of values

MDIInt32

MDIReadList (MDIHandleT Device,
MDIUint32 ObjectSize,
MDICRangeT *SrcList,
MDIUint32 ListCount,
void *Buffer)

Structures:
typedef struct MDICRange_struct {
MDIOffsetT Offset;
MDIResourceT Resource;
MDIInt32 Count;

} MDICRangeT;

Returns:
MDI Success No Error, requested data has been returned.

Unableto perform read operation. Thisimpliesaprobe hardwarefailure or some
such fatal reason.

MDIErrFailure
MDIErrDevice Invalid device handle.

MDIErrSrcResource Invalid or unsupported resource type in SrcList.
MDIErrInvalidSrcOffset Offset isinvalid for the specified resource, i.e., it is out of range.
MDIErrSrcOffsetAlignment Offset is not correctly aligned for the specified ObjectSize.
MDIErrSrcObjectSize Invalid ObjectSize for the specified Resource.

Specified Count and SrcOffset reference space that is outside the scope for the

MDIErrSrcCount given resource.

MDIErrWrongThread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the device is disabled.
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.
Description:

Read a set of valuesfrom alist of addressranges on the device. Thelist may contain different resource types, but asingle
ObjectSze must apply to all objectsin thelist.

SrcListisan array of object descriptors, each of which includes an address (Resource and Offset) and the number of
objectsto read. ListCount is the number of entriesin the SrcList array.

30 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

6.3 Resource Access

6.3.4 WriteList

MDIInt32

MDIWriteList (MDIHandleT Device,
MDIUint32 ObjectSize,
MDICRangeT * DstList,
MDIUint32 ListCount,
void *Buffer)

Returns:
MDI Success No Error, requested data has been written.

; Unable to perform write operation. Thisimplies a probe hardware failure or
MDIErrFailure some such fatal reason.
MDIErrDevice Invalid device handle.

DstResourceisan invalid or unsupported resource type, for example, the device
might not have floating-point registers.

MDIErrDstResource
MDIErrinvalidDstOffset DstOffset isinvalid for the specified resource.
MDIErrDstOffsetAlignment DstOffset is not correctly aligned for the specified ObjectSize.
MDIErrDstObjectSize Invalid ObjectSize for the specified Resource.

Specified Count and DstOff set reference space that is outside the scope for the

MDIErrDstCount given resource. No objects were written.

MDIErrWrongT hread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the device is disabled.
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.
Description:

Write a set of valuesto alist of address ranges on the device. Thelist may contain different resource types, but asingle
ObjectSze must apply to all objectsin thelist.

DstList isan array of object descriptors, each of which includes an address (Resource and Offset) and the number of
objectsto write. ListCount is the number of entriesin the DstList array.

6.3.5 Move: Move data from one resource to another on the device

MDIInt32

MDIMove (MDIHandleT Device,
MDIResourceT SrcResource,
MDIOffsetT SrcOffset,
MDIResourceT DstResource,
MDIOffsetT DstOffset,
MDIUint32 ObjectSize,
MDIUint32 Count,
MDIUint32 Direction) ;

Structures:

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 31

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 6 Device Command Set

32

Direction
MDIMoveForward Start to End
MDIMoveBackward End to Start

Returns:
MDI Success No Error, requested data has been moved.
MDIErrFailure Unable to perform read operation.
MDIErrDevice Invalid device handle.
MDIErrSrcResource SrcResourceis an invalid or unsupported resource type.

MDIErrInvalidSrcOffset SrcOffset isinvalid for the specified SrcResource.
MDIErrSrcOffsetAlignment SrcOffset is not correctly aligned for the specified ObjectSize.
MDIErrSrcObjectSize Invalid ObjectSize for the specified SrcResource.

Specified Count and SrcOffset reference space that is outside the scope for the
given SrcResource.

MDIErrSrcCount
MDIErrDstResource DstResourceisan invalid or unsupported resource type.
MDIErrinvalidDstOffset DstOffset isinvalid for the specified DstResource.
MDIErrDstOffsetAlignment DstOffset is not correctly aligned for the specified ObjectSize.

Specified Count and DstOffset reference space that is outside the scope for the

MDIErrDstCount given resource.

MDIErrDstObjectSize Invalid ObjectSize for the specified DstResource.
MDIErrAbort Command was aborted in response to an MDIAbort call.
MDIErrWrongThread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the device is disabled.
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.
Description:

Moves data from one resource to another resource on the device. If Direction is set to MDIMoveForward the move will
be done starting from the beginning of the range until the end is reached. If Direction is set to MDIMoveBackward, the
move will be done backwards starting from the end of the range to the beginning.

6.3.6 Fill: Fill the specified resource on the device with a pattern.

MDIInt32

MDIFill (MDIHandleT Device,
MDIResourceT DstResource,
MDIRangeT DstRange,
void *Buffer,
MDIUint32 ObjectSize,
MDIUint32 Count) ;

Structures:
typedef struct MDIRange_struct {

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

6.3 Resource Access

MDIOffsetT Start;
MDIOffsetT End;

} MDIRangeT;

Returns:
MDISuccess
MDIErrFailure
MDIErrDevice
MDIErrDstResource
MDIErrinvalidDstOffset
MDIErrDstOffsetAlignment
MDIErrDstObjectSize

MDIErrDstCount

MDIErrAbort
MDIErrWrongT hread
MDIErrTargetRunning
MDIErrDisabled

MDIErrRecursive

Description:

No Error, requested data has been written.

Unable to perform fill operation.

Invalid device handle.

DstResourceisan invalid or unsupported resource type.
DstRangeisinvalid for the specified resource.

DstOffset is not correctly aligned for the specified ObjectSize.
Invalid ObjectSize for the specified DstResource.

Specified Count and DstOff set reference space that is outside the scope for the
given resource. No objects were written.

Command was aborted in response to an MDIAbort call.

Call was not made by the connected thread.

Service cannot be performed at this time because the target program is running.
Service cannot be performed because the device is disabled.

Recursive call was made during an MDICBPeriodic() callback.

The pattern is an array of Count objects of size ObjectSze. It is not required that the destination range be an exact
multiple of the pattern size. ObjectSze must be non-zero. The MDILib is required to support this function only for
memory-mapped resources, and up to a maximum Count of 256.

6.3.7 Find: Find a pattern in aresource

MDIInt32
MDIFind (MDIHandleT

Device,

MDIResourceT SrcResource,
MDIRangeT SrcRange,

void *Buffer,

void *MaskBuffer,
MDIUint32 ObjectSize,
MDIUint32 Count,

MDIOffsetT

*FoundOffset,

MDIUint32 Mode)

Structures:

Search mode:
MDIMatchForward

M DIMismatchForward

MDIMatchBackward

Match specified Pattern, searching forward from the start address.

Matches anything that is not the specified Pattern, searching forward from the
start address.

Matches specified Pattern, searching backward from the end address.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 33

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 6 Device Command Set

34

MDIMismatchBackward Matches anything that is not the specified Pattern, searching backward from the

end address.
Returns:
No Error, requested pattern match has been found at the address returned in
MDI Success FoundOffset.
MDINotFound No Error, entire range was searched without finding a pattern match.
MDIErrFailure Unable to perform find operation.
MDIErrDevice Invalid device handle.
MDIErrSrcResource Invalid Resource type.

MDIErrinvalidSrcOff set SrcRange isinvalid for the specified SrcResource.
MDIErrSrcOffsetAlignment SrcOffset is not correctly aligned for the specified ObjectSize.

MDIErrSrcObjectSize Invalid ObjectSize for the specified SrcResource.
MDIErrAbort Command was aborted in response to an MDIAbort call.
MDIErrWrongThread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the device is disabled.
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.
Description:

Finds an optionally masked pattern in aresource. The resource address range is searched for a match or mismatch with
apattern consisting of Count values of size ObjectSze, possibly masked. ObjectS ze must be non-zero. Buffer isan array
of Count values to compare. MaskBuffer isthe array of Count mask values to apply before comparing, or NULL if no
masking is desired. The search can be forwards or backwards through the specified range. If amatch isfound, the
starting offset of the match is returned in * FoundOffset.

The MDILib isrequired to support this function only for memory-mapped resources, and up to a maximum Count of
256.

6.3.8 Query Cache: Retrieve cache attributes

MDIInt32
MDICacheQuery (MDIHandleT Device,
MDICacheInfoT CacheInfol[2]);

Structures:
typedef struct MDICacheInfo_struct {
MDIInt32 Type;

MDIUint32 LineSize; // Bytes of data in a cache line
MDIUint32 LinesPerSet; // Number of lines in a set

MDIUint32 Sets; // Number of sets

MDIUint32 TagSize; // Number of bytes in a cache tag entry

} MDICacheInfoT;

Returns:
MDISuccess No Error, cache information has been returned.
MDIErrFailure Unable to perform the query operation.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

6.3 Resource Access

MDIErrDevice Invalid device handle.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrDisabled Service cannot be performed because the deviceis disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.
Description:

Retrieve the attributes of the caches, if present, on the target device. MDILibs are encouraged, but not required to return
useful information.

Information is returned in the Cachelnfo array for up to two caches. If it exists and the information is available, thefirst
element will contain information about the primary unified or instruction cache and Cachelnfo[0]. Type will be set to
MDICacheTypeUnified or MDICacheTypelnstruction. If it exists and the information is available, the second element
will describe a separate data cache and Cachelnfo[1]. Type will be set to MDICacheTypeData. If thereis no such cache,
or no information is available, the Cachelnfo.Type member will be set to MDICacheTypeNone.

6.3.9 Get Cache Details: Get Information about the Specified Cache

MDIInt32
MDICacheInfo (MDIHandleT Device,
MDIResourceT Resource,
MDICacheInfoT *CacheInfo)
Returns:
M DI Success No Error, cache information has been returned.
MDIErrFailure Unable to perform the query operation.
MDIErrDevice Invalid device handle.
MDIErrNoResource The named resource is not a cache, or the named cache does not exist.
MDIErrWrongThread Call was not made by the connected thread.
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.
Description:

Retrieve the attributes of the cache specified by Resource, if present, on the target device. MDILibs are encouraged, but
not required to return useful information. Cachelnfo pointsto a single MDICachelnfoT structure. Thisfunctionisa
specialized version of the MDICacheQuery() function described above.

Note that unified caches should return information for instruction cache only, with Cachel nfoT->Type set to
MDICacheTypeUnified. In this case, MDIErrNoResource is returned for a data cache (since the unified cache resources
share the same resource number as the instruction cache).

6.3.10 Cache Flush: Write back and/or invalidate the cache

MDIInt32

MDICacheFlush (MDIHandleT Device,
MDIUint32 Type,
MDIUint32 Flags);

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 35

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 6 Device Command Set

36

Structures:
M DI CacheWriteBack
MDICachelnvalidate

Returns:
MDISuccess
MDIErrFailure
MDIErrDevice
MDIErrWrongThread
MDIErrTargetRunning
MDIErrDisabled

MDIErrRecursive

Description:

Write Back All Dirty Cache Linesif set.
Invalidate All Cache Linesif set.

No Error, cache operation is complete.

Requested cache operation cannot be performed.

Invalid device handle.

Call was not made by the connected thread.

Service cannot be performed at this time because the target program is running.
Service cannot be performed because the deviceis disabled

Recursive call was made during an MDICBPeriodic() callback.

Typeis set to MDICacheTypeUnified, MDICacheTypel nstruction, or MDICacheTypeData to specify which cacheto
operate on. Flags indicate the operations to perform with values potentially OR'ed together, If Flags specifies both a
write back and invalidate, the write back will happen before the invalidate.

6.3.11 Cache Operation: Do Specified Operation on Specified Cache

MDIInt32

MDICacheOp (MDIHandleT Device,
MDIResourceT Resource,
MDIInt32 Type,
MDIResourceT AddrResource,
MDIOffsetT Offset,
MDIUint32 Size);

Structures:

op:
MDICacheWriteBack Write back dirty cache lines specified. 0x01
MDICachelnvalidate Invalidate cache lines specified. 0x02
MDICacheWBlInval Write back and invalidate dirty cache lines specified. 0x03
MDICachel ock Lock the lines of cache specified. 0x05

MDICacheHit
M DI Cachel ndex

Returns:
MDISuccess
MDIErrFailure
MDIErrDevice
MDIErrUnsupported

Do one of the above 4 operationsfor the virtual address range specified Ox00
by offset and size.

Do one of the above 4 operations for the cache line index specified by 0x80
offset and set number specified by size.

No Error, cache operation is complete.
Requested cache operation cannot be performed.
Invalid device handle.

The specified op flag is not supported.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

6.4 Run Control

MDIErrWrongThread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.
Description:

Resource specifies which cache to operate on. Type indicates the operation to perform with one of MDICacheHit or
MDICachelndex OR'ed in. Addr Resour ce specifies the address resource and the Offset depends on the type of operation,
i.e. avirtual addressfor hit-type operations, or acachelineindex for index-type operations. Sze specifiesthe size of the
addressregionin bytes, starting at the specified offset to which to apply the hit-type operation. For index-type operations,
Sze specifies the cache set (way) number. Aninvalid Sze value is reported as MDIErrFailure.

6.3.12 Cache Sync: Synchronizethe caches

MDIInt32
MDICacheSync (MDIHandleT Device
MDIResourceT AddrResource,
MDIOffsetT Offset,
MDIUint32 Size);
Returns:
MDI Success No Error, cache operation is complete.
MDIErrFailure Requested cache operation cannot be performed.
MDIErrDevice Invalid device handle.
MDIErrWrongT hread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the device is disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.
Description:

Thisis acomprehensive synchronize call that for the entire cache hierarchy writes back dirty data cache lines and
invalidates instruction caches. This routine allows the software to be worry-free with respect to the details of the cache
hierarchy and the method by which the hierarchy can be brought to a known state. Some architectures provide a
convenenient instruction or some other hardware mechanism by which to achievethis synchronization. Thiscall ismeant
to invoke that architecture-specific mechanism. For example, in the M1PS32 Release 2 architecture, this routine would
invoke the "SYNCI" instruction over the specified global or ASID virtual memory address range.

6.4 Run Control

The debugger requests device execution by calling MDIExecute() or MDIStep(). It must then periodically call
MDIRunState() to monitor the status of the target until execution halts. If the CPU has not started running before
MDIRunState compl etes, then it returns M DI StatusNotRunning. In general, the actual target execution will have begun
by the time MDIExecute() returns and the requested number of steps will have been executed by the time MDIStep()
returns, but thisis not required to be the case. For example some types of target systems such as simulators may not
behave this way. The actual execution may only take place during the MDIRunState() calls. Also, it is only during
MDIRunState() calls that the MDILib is ableto service 1/0 requests and other events that the target debug environment

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 37

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 6 Device Command Set

may support. Debuggersthat do not support user operationswhilethetarget isexecuting will usually tell MDIRunState()
towait indefinitely; otherwise, the debugger should call MDIRunState() asfrequently as possible with afairly short wait
interval.

6.4.1 Execute: Placethedeviceintoits RUNNING state

MDIInt32
MDIExecute (MDIHandleT Device)

Returns:
MDISuccess No Error, deviceisinits RUNNING state.
MDIErrFailure Device cannot be set to its RUNNING state.
MDIErrDevice Invalid device handle.
MDIErrWrongThread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.
Description:

When the version of the API specified to MDIConnect() is 0x0002000C or lower then if thereis a breakpoint set on the
first instruction to be executed, it should not be taken. In other words, at least oneinstruction should always be executed
as aresult of an MDIExecute() call. If there are cases where this may not happen, the MDILib implementation must
document the circumstances. When the selected API version is 0x0002000D or higher, a breakpoint at the first
instruction must be honored, and it is up to the debugger to perform a single-step with breakpoints removed if it wants
to step over a breakpoint.

The behavior of the device and its TCs (if any) upon returning to RUNNING state is governed by any previous callsto
the MDISetRunM ode() function, see Section 9.2, "Set Run Mode: Specify behavior when returning to the RUNNING
state" on page 73. Multi-processor aware debuggers may use the MDI TeamExecute() function, described in Section
9.3.8, "Team Execute: Place all team membersinto RUNNING state" on page 79.

6.4.2 Step: Single stepsthe device

MDIInt32

MDIStep (MDIHandleT Device,
MDIUint32 Steps,
MDIUint32 Mode)

Structures:
MDI Steplnto Step Into
MDI StepForward Step Forward
MDI StepOver Step Over

Returns:
MDI Success No Error, stepping isinitiated.
MDIErrFailure Devicerefusesto single step.

38 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

6.4 Run Control

MDIErrDevice
MDIErrWrongThread
MDIErrTargetRunning
MDIErrDisabled

MDIErrRecursive

Invalid device handle.

Call was not made by the connected thread.

Service cannot be performed at this time because the target program is running.
Service cannot be performed because the deviceis disabled

Recursive call was made during an MDICBPeriodic() callback.

Description:
Initiates the execution of the specified number of instructionsin the specified mode.

In Step Into mode, thereis no special handling of procedure calls, interrupts, traps or exceptions. If an interrupt or
exception is pending when a step is initiated, and the target system supports stepping through interrupt handlers, the
actual instruction stepped may bethefirst instruction in the handler rather than the instruction at the PC. In environments
where interrupts are occurring faster than the time it takes to step through the interrupt handler, it may not be possible
to make any progress in the foreground application in Step Into mode.

In Step Forward mode (also known as "step over traps"), the device ensures that each step operation executes an
instruction in the foreground application. It may accomplish this by noticing when an interrupt is taken, and using
breakpoints and full-speed execution to continue until the instruction at the original PC is executed. Asaminimum this
may be implemented simply by disabling interrupts while executing the target instructions.

In Step Over mode, the target system steps over procedure calls as well asinterrupts and exceptions. If a procedure call
instruction is being stepped, the called procedure is executed at full speed until it returns. This counts as one step.
Support for Step Over mode is optional, sinceit is more usually implemented within the invoking debugger.

When the version of the API specified to MDIConnect() is 0x0002000C or lower then in any mode, if a breakpoint is
encountered at any point after the first instruction is executed it is honored and execution stops. If there is a breakpoint
set on the first instruction to be executed, it should not be taken--if there are cases where this may not happen, the
MDILib implementation must document the circumstances. When the selected API version is 0x0002000D or higher, a
breakpoint at the first instruction must be honored, and it is up to the debugger to perform asingle-step with breakpoints
removed if it wants to step over a breakpoint.

The MDI Step() function is now almost redundant, and when Stepsisequal to 1 is equivalent to the following sequence
of cals. See Chapter 9, “Multi-Threaded and Multi-Processor Command Set,” on page 71 for details.

MDITCIAT tcid;

if (MDIGetTC (Device, &tcid) != MDISuccess)
tcid = -1;

MDISetRunMode (Device, tcid, Mode, 0);

MDIExecute (Device);

6.4.3 Stop: Stop execution of the device

MDIInt32
MDIStop (MDIHandleT Device)

Returns:
MDI Success No Error, device will attempt to stop.
MDIErrDevice Invalid device handle.

MDIErrWrongT hread

Call was not made by the connected thread.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 39

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 6 Device Command Set

MDIErrRecursive

Description:

Recursive call was made during an MDICBPeriodic() callback.

If the device is currently running, execution is halted. If the device is running, the debugger should still call
MDIRunState to determine that it has successfully halted.

It must be possible to issue a stop to a device when it is disabled. It shall respond to the stop request as soon asit is

enabled.

6.4.4 Abort: Terminatethe current MDI function

MDIInt32
MDIAbort

Returns:
M DI Success
MDIErrFailure
MDIErrWrongT hread

MDIErrRecursive

Description:

(MDIHandleT Device)

No Error, current MDI Command is aborted.

Not called from within debugger callback routine.

Call was not made by the connected thread.

Recursive call was made during an MDICBPeriodic() callback.

Abort isused from a debugger call back function to terminate the current MDI function. MDI functions that are thus
terminated return MDIErrAbort.

6.4.5 Reset: Performsatarget reset operation

MDIInt32
MDIReset

(MDIHandleT Device,

MDIUint32 Mode,
MDIUint32 Flags)

Structures:

Mode:
MDIFull Reset
MDIDeviceReset

MDICPUReset
M DI Peripheral Reset

Flags:
MDINonlntrusive

Returns:
MDISuccess

40

Full Reset, reset entire target system if possible.
Device Reset, if device consists of a CPU plus peripherals, reset both if possible.

CPU Reset, if device consists of a CPU plus peripherals, reset just the CPU if
possible.

Peripheral Reset, if device consists of a CPU plus peripherals, reset just the
peripherasif possible.

Reset the target system and allow normal execution to continue unaffected by the
debugger.

No Error, device has been reset and RunState has changed to RESET.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

6.4 Run Control

MDIErrFailure Device refuses to reset.
MDIErrDevice Invalid device handle.
MDIErrWrongThread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.
Description:

Depending on the type of target system and the debug tool used to contral it, there are several possible types of reset
operations. The MDI specification supports the following reset concepts:

* MDIFullReset - A full reset of the entire target system. Normally, this means asserting a physical board-level
reset signal that affects all components on the target board. Only hardware debug tools (1CEs) and board-level
simulators are likely to support this reset option.

» MDIDeviceReset - A full reset of the target device (CPU/DSP and any associated on-chip periphera circuitry).
For typical single processor devices, including microcontroller and SoC devices, this may mean asserting a
physical reset signal that is connected directly to the component rather than the entire board's reset circuit. For
multi-processor devices where asserting a physical reset signal would reset all processors, the MDILib should
treat MDIDeviceReset as a combination of MDICPUReset plus MDIPeripheralReset. In other words, it should
use other means to reset or emulate resetting the specific CPU/DSP and peripheral logic being debugged, and
assert the physical reset signal only as part of an MDIFullReset.

* MDICPUReset - Resets just the CPU/DSP being debugged. For microcontroller and SoC devices that support
separate resetting of the processor and its associated peripheral logic, the peripheral logic is not reset. A reset
issued to a VVPE device within a multi-threaded CPU will reset the whole CPU, not just the specified device.

» MDIPeripheralReset - For microcontroller and SoC devices that support separate resetting of the processor and
its associated peripheral logic, only the peripheral logic is reset. If there is no peripheral logic, or it can not be
reset without also resetting the processor, nothing is done.

MDILibs are not required to implement all four modes as distinct operations. If the debugger regquests an unsupported
reset mode, the closest supported subset mode is performed instead. The MDILib must clearly document the supported
modes and any mapping of unsupported modes.

Similarly, debuggersare not required to provide auser interfacefor all four modes. If the debugger supportsonly asingle
type of reset, it is recommended that it map thisto the MDIDeviceReset mode.

6.4.6 State: Returnsthe current device execution status.

MDIInt32

MDIRunState (MDIHandleT Device,
MDIInt32 WaitTime,
MDIRunStateT *RunState) ;

Structures:
typedef struct MDIRunState_struct {
MDIUint32 Status;
union u_info

{

void *ptr;
MDIUint32 value;
} Info;

} MDIRunStateT;

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 6 Device Command Set

42

RunState->Status RunState->I nfo

MDI StatusNotRunning Not used.

MDI StatusRunning Not used

MDI StatusHalted Not used

M DI StatusExited value = exit code

MDI StatusBPHit value =BpID

MDI StatusUsrBPHit Not used

MDI StatusException value = exception code

MDI StatusStepsDone Not used

MDI StatusTraceFull Not used

MDI StatusDisabled Not used.
Returns:

M DI Success No Error, RunState has been |oaded with the device's current state.

MDIErrDevice Invalid device handle.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.
Description:

Returns the current device execution status in the MDIRunStateT structure pointed to by parameter, RunSate. If the
deviceiscurrently running, thisfunction will wait a specified amount of timefor the statusto change. WaitTime specifies
an approximate maximum amount of time to wait, in milliseconds. If WaitTime is O or the device is not running, the
current status is returned immediately. If it is MDIWaitForever, MDIRunState will wait indefinitely for the device to
stop running. Otherwise, WaitTime specifies an approximate time to wait before returning the status. If the device status
changes before the time period expires, MDIRunState() will return the new status immediately.

If the device status has not changed since the last call to MDIRunState, RunState-> Status will be set to

MDI StatusNotRunning, M DI StatusRunning, or MDI StatusDisabled. It may take somefinitetime for adeviceto change
its status from MDIStatusNotRunning to M DI StatusRunning, and a debugger must be willing to wait and timeout this
transition.

If the target has stopped execution since the last call, RunSate->Status will be set to one of the other codes to indicate
the cause of the halt. MDI StatusExited meansthat the target program terminated itself by calling exit or asimilar system
service. MDIStatusBPHit means that a breakpoint set by the debugger was taken. MDI StatusUsrBPHit means that the

target was halted by the breakpoint mechanism, but not at a breakpoint set by the debugger. M DI StatusException means
that the target program took an unexpected interrupt/trap/exception. Exception codes are architecture specific.

MDI StatusStepsDone means that the number of steps requested in the MDIStep() call have been completed.

MDI StatusTraceFull means that execution halted due to filling up the trace buffer. MDIStatusHalted is returned for all

other halt reasons, including being halted in response to an MDIStop() call.

M DI StatusDisabled means that the device can neither execute target code nor enter the halted state. In this state only
MDIReset(), MDIStop() and MDIRunState() may have any useful effect on the device. This status would occur, for
example, when connected to a V PE does not yet have any TCs bound to it.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

6.5 Breakpoints

There are al so three flag values that can be OR'ed with the M DI StatusRunning, M DI StatusNotRunning, and
MDI StatusHalted values in RunState->Status to provide additional information. They are:

MDI StatusReset currently held reset; this should typically be reported by the debugger

MDI StatusWasReset reset was asserted & released

MDIStatusDescription RunState->Info.ptr points to a descriptive string
MDI StatusReset will be combined with MDIStatusRunning if the device may resume execution at any time by the
release of Reset M DI StatusReset or MDI StatuswWasReset will be combined with M DI StatusNotRunning or

MDI StatusHalted if the execution was halted due to atarget reset but will not be resumed until the next MDIExecute()
cal.

6.5 Breakpoints

The following data structure is used to fully describe a breakpoint being set or queried:

typedef struct MDIBpData_struct {

MDIBpIdT Id; // Unique ID assigned by MDISetBp ()
MDIBpT Type; // Breakpoint type

MDIUint32 Enabled; // 0 if currently disabled, else 1
MDIResourceT Resource;

MDIRangeT Range; // Range.End may be an end addr or mask
MDIUint64 Data; // valid only for data read/write breaks
MDIUint64 DataMask; // valid only for data read/write breaks
MDIUint32 PassCount;// Pass count reloaded when hit
MDIUint32 PassesToGo;// Passes to go until next hit

} MDIBpDataT;

Idisaunique D assigned by MDISetBp or MDISetSWBp and used to specify a particular breakpoint for the other calls.
The reserved value MDIAIIBpID (-1) may not be used as a breakpoint I1D. Type is the breakpoint type. The debugger
can specify one of the following breakpoint typesto MDI SetBp:

Type:

MDIBPT_SWInstruction Isan instruction execution breakpoint. Execution stops when control
reachestheinstruction at the address specified. The addressis specified
by the combination of the Resource field and the Range.Sart field. The
PassCount val ue specifies the number of times to pass by the break
condition before actually halting. The values that make the most sense
for an architecture and MDILib implementation can be found in the
architecture addendum aswell asin the documentation for the specific
MDILib. This breakpoint type is usually implemented by inserting a
specia instruction in memory--in which case al devices which share
memory and execute the instruction will enter debug mode, where it
will bereported as M DI StatusUsrBpHit to all except the deviceswhich
have requested a software breakpoint at that address.

MDIBPT_SWOneShot A temporary Instruction execution breakpoint. Like
MDIBPT_SWInstruction, except that PassCount isnot applicable
and the breakpoint is deleted automatically once execution stops for
any reason. This breakpoint typeis useful for the common "run to
cursor" debugger function.

MDIBPT_HWInstruction A Hardware Instruction breskpoint. Target devices that provide
hardware breakpoint capabilities may allow execution to be halted
when an instruction or range of instructionsis fetched or executed.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 43

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 6 Device Command Set

44

MDIBPT_HWData

MDIBPT_HWBus

MDIBPT_HWInstructionPrimed

MDIBPT_HWInstructionQualified
MDIBPT_HWInstructionTuple
MDIBPT_HWDataPrimed
MDIBPT_HWDataQualified
MDIBPT_HWDataTuple

A Hardware Data access breakpoint. Target devices that provide
hardware breakpoint capabilities may allow execution to be halted
when adatum is loaded or stored at a particular address or range of
addresses.

A Hardware Data bus breakpoint. Target devicesthat provide hardware
breakpoint capabilities may allow execution to be halted when certain
bus transactions are detected.

Thisand the next 5 breakpoint types belong to the Complex Break and
Trigger (CBT) architectural extension to the EJTAG breakpoint types.
All these breakpoint types must specify the index of the instruction
(inst0..N) or data (data0..N) breakpoint usingthe MDIBPT _IndexMask
value since unlike regular instruction or data breakpoints, the CBT
breakpoints have different settings depending on their position. For
example, for the primed breakpoint types the priming conditions for
instO, inst1, datad, datal, etc. are different. Similarly, the qualifying
condition for each qualified breakpoint is different and
implementation-dependent. Since primed, qualified, and tuples are
breakpint types, the standard MDI routines for query, enable, disable,
and clear apply.

This representsthe CBT primed instruction breakpoints.
Thisrepresentsa CBT qualified instruction breakpoints.
Thisrepresentsa CBT instruction breakpoint of atuple-type.
ThisisaCBT primed data breakpoint.

ThisisaCBT qualified data breakpoint.

ThisisaCBT data breakpoint of atuple-type.

All three Hardware breakpoint types may have one or more of the following flag bits OR'ed in to specify additional

qualifications:

MDIBPT_HWFlg_AddrMask

MDIBPT_HWFlg_AddrRange

MDIBPT_HWFlg_Trigger

MDIBPT_HWFlg_TriggerOnly

MDIBPT_HWFlg_TCMatch

The break addressin Range.Start and the actual address are masked by
the value in Range.End before being compared. Non-zero bitsin the
mask indicate address and data bits to be masked (excluded) from the
comparison. Zero bits indicate that the corresponding address bits are
to be compared.

Any address in the range from Range.Sart to Range.End will trigger
the break.

If the target device supports it, matching the break condition should
causea"trigger" signal to be generated. Thisisintended to be used with
probes and emulators that provide an external trigger signal for
connection to other devices, such as logic analyzers (or vice-versa).

LikeMDIBPT HWFlg_Trigger, except that device execution
should not actually stop when the break conditionis met. If thisflagis
set, the MDIBPT_HWFIg_Trigger flag is aso implied and its actua
valueisignored.

If thetarget deviceis multi-threaded, then by default a Hardware break
will occur when accessed by any thread context (TC). But when this
flag isset the break will occur only when accessed by the TC which was
"current" when MDISetBp() was called. On a multi-V PE processor all
hardware breakpoints should be specific to the device which request
them, and should not trigger on accesses by other VPE devices.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

6.5 Breakpoints

MDIBPT_HWFlg_InvertMatch This flag supports the IVM (invert value match) bit, which isvalid for
data breakpoints and permits match inversion to be notified.

The Data and Bus Hardware breakpoint types may also have one or more of the following flag bits OR'ed in to specify
additional qualifications:

MDIBPT_HWFlg_DataValue The break will occur only if the data value specified in Data is read
from and/or written to the break address.
MDIBPT_HWFlg_DataMask The mask value specified in DataMask is applied to the data value

before comparison. Non-zero bits in the mask indicate corresponding
address bits to be excluded from the comparison.

MDIBPT_HWFlg_DataRead The break will occur on read accesses.
MDIBPT_HWFlg_DataWrite The break will occur on write accesses.

If neither MDIBPT_HWF1g_DataRead hor MDIBPT_HWF1g_DataWrite isspecified, the effect isthe same asif
both are specified - the break will occur on any access type, read or write.

PassCount specifiesthe number of timesthe break condition must be satisfied before device execution is stopped and
the halted status reported back to the debugger. For example, a software breakpoint with PassCount set to one will be
taken every time the breakpoint condition is met, but if it is set to ten, then the break will be taken every tenth time the
break condition is met. If PassCount is set to zero, then MDISetBp() will assume a pass count value of one.

All MDILib implementations are required to support the two software breakpoint types. Support for the hardware
breakpoint types depends on the capabilities of the target device and is therefore optional. If an unsupported type of
hardware breakpoint is requested, MDISetBp() will return MDIErrUnsupported.

The maximum number of breakpoints of a particular type that can be set also depends on the underlying capabilities of
the target device. With some devicesthe limit, if any, may not even be known to the MDILib implementation; therefore
MDI does not specify a minimum number of breakpoints that MDILib implementations must support. If an attempt to
set a breakpoint exceeds a capacity limit, MDISetBp() and MDISetSWBp() will return MDIErrNoResource.

6.5.1 Set Full Breakpoint

MDIInt32
MDISetBp (MDIHandleT Device,
MDIBpDataT *BpData)

Structures:
typedef struct MDIBpData_struct {

MDIBpIdT 14d;
MDIBpT Type;
MDIUint32 Enabled; /* 0 1f currently disabled, else 1 */
MDIResourceT Resource;
MDIRangeT Range; /* Range.End may be an end addr or mask */
MDIUint64 Data; /* valid only for data write breaks */
MDIUint64 DataMask; /* valid only for data write breaks */
MDIUint32 PassCount; /* Pass count reloaded when hit */
MDIUint32 PassesToGo; /* Passes to go until next hit */

} MDIBpDataT;

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 45

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 6 Device Command Set

Returns:
MDISuccess No Error, BpData->Id has been set to the handl e needed to reference this specific
breakpoint.
MDIErrDevice Invalid device handle.
MDIErrBPType Invalid breakpoint type. Must be one of the basic 5 types defined.
MDIErrDstResource Invalid Resource type.
MDIErrUnsupported The device doesn't support the type of breakpoint requested.
MDIErrRange Specified range is outside the scope for the given resource.
MDIErrNoResource The resources needed to implement the request are not available.
MDIErrDuplicateBP A similar breakpoint has already been defined for this device, or for global
breakpoints on any device
MDIErrWrongThread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.
Description:

Setup a breakpoint from afull specification, return a unique breakpoint 1D that will be used to refer to the breakpoint in
other calls. On entry, BpData members Type, Enabled, Resource, and Range.Start must be initialized for all breakpoint
types. PassCount must be initialized for all breakpoint types except MDIBPT_SWOneShot. For hardware breakpoints
with the MDIBPT_ HWF1lg_AddrMask ofr MDIBPT_HWF1g_AddrRange attribute, Range.End must be initialized.
For data breakpoints with the MDIBPT_HWF1g_DataWrite and MDIBPT_HWF1g_DataValue atributes, Data
must be initialized. PassesToGo isignored by MDISetBp. If MDIBPT HWFlg_DataMask isalso set, DataMask
must be initialized.

If the breakpoint is set successfully, MDISetBp() will set BpData->1d to the breakpoint ID it assigned. No other
members of * BpData will be modified by MDISetBp(). When a breakpoint will trigger on all devices which reference
the same memory address (e.g. asoftware breakpoint) the MDlIlib returnsan MDIErrDuplicateBp error if another device
has a similar breakpoint at the same address.

6.5.2 Set Software Breakpoint

MDIInt32

MDISetSWBp (MDIHandleT Device,
MDIResourceT Resource,
MDIOffsetT Offset,
MDIBpIdT *BpId)

Returns:
MDISuccess No Error, *Bpld has been set to the handle needed to reference this specific
breakpoint. The breakpoint is set to the enabled state, with PassCount set to 1.
MDIErrDevice Invalid device handle.
MDIErrDstResource Invalid Resource type.
MDIErrRange Specified range is outside the scope for the given resource.
MDIErrNoResource The resources needed to implement the request are not available.
46 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

6.5 Breakpoints

MDIErrDuplicateBP A similar breakpoint has already been defined for this device, or for global
breakpoints on any device.

MDIErrNoResource The resources needed to implement the request are not available.
MDIErrWrongThread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

Description:

Set up an enabled breakpoint of type MDIBPT _SWInstruction with apass count of one. Sincethisis expected to
be the most common operation, this simpler form of MDISetBp is provided as "syntactic sugar” for the debugger.

If the breakpoint is set successfully, MDISetSWBp will set *BpId to the breakpoint ID it assigned. When a software
breakpoint will trigger on all devices which execute the same memory address, the MDILib must return an
MDIErrDuplicateBP error when another device has a software breakpoint set at the same address.

6.5.3 Clear Breakpoint

MDIInt32
MDIClearBp (MDIHandleT Device,
MDIBpIdT BpId)

Returns:
MDI Success No Error, all breakpoints or breakpoint Bpld has been removed.
MDIErrDevice Invalid device handle.
MDIErrBPId Invalid Breakpoint ID.
MDIErrWrongT hread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the device is disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.
Description:

Clears a specified breakpoint, or clear all breakpoints on the selected device using a Bpld value of MDIAIIBpID.

6.5.4 Enable Breakpoint

MDIInt32
MDIEnableBp (MDIHandleT Device,
MDIBpIdT BpId)

Returns:
MDI Success No Error, breakpoint Bpld has been enabled.
MDIErrDevice Invalid device handle.
MDIErrBPId Invalid Breakpoint ID.
Microprocessor Debug Interface (MDI) Specification, Revision 02.41 47

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 6 Device Command Set

48

MDIErrWrongThread
MDIErrTargetRunning
MDIErrDisabled

MDIErrRecursive

Description:

Call was not made by the connected thread.

Service cannot be performed at this time because the target program is running.
Service cannot be performed because the deviceis disabled

Recursive call was made during an MDICBPeriodic() callback.

Enables a breakpoint on the selected device. Enabling a previously disabled breakpoint does not affect its PassesToGo
value. A Bpld value of MDIAIIBpID will enable all breakpoints.

6.5.5 Disable Breakpoint

MDIInt32
MDIDisableBp (

Returns:
MDISuccess
MDIErrDevice
MDIErrBPId
MDIErrWrongThread
MDIErrTargetRunning
MDIErrDisabled

MDIErrRecursive

Description:

MDIHandleT Device,
MDIBpIdT BpId)

No Error, breakpoint Bpld has been disabled.

Invalid device handle.

Invalid Breakpoint 1D.

Call was not made by the connected thread.

Service cannot be performed at this time because the target program is running.
Service cannot be performed because the deviceis disabled

Recursive call was made during an MDICBPeriodic() callback.

Disables a breakpoint on a selected device. A disabled breakpoint will not affect target execution and its PassesToGo
value will not be decremented, until it is re-enabled. Its current PassesToGo value will remain in effect when it is
re-enabled. A Bpld value of MDIAIIBpID will disable al breakpoints.

6.5.6 Query Breakpoints

MDIInt32

MDIBpQuery (MDIHandleT Device,
MDIInt32 *HowMany,
MDIBpDataT BpData)

Returns:
M DI Success
MDIErrDevice
MDIErrBPId
MDIErrMore
MDIErrWrongT hread
MDIErrTargetRunning

No Error, information for a single breakpoint or all breakpointsis returned.
Invalid device handle.

Invalid Breakpoint ID.

M ore breakpoints defined then requested.

Call was not made by the connected thread.

Service cannot be performed at this time because the target program is running.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

6.5 Breakpoints

MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.
Description:

Queriesthe set of defined breakpoints on a selected device.

If the requested number of breakpoints (*HowMany) is 0, then the function returns no error (MDISuccess) and
*HowMany is set to the number of defined breakpoints. If *HowMany is set to fewer breakpoints than there are set, then
the *HowMany value is modified upon return to indicate the number of returned breakpoints. If more breakpoints are
set than the value specified in *HowMany, then MDIErrMore is returned. In this situation, if another MDIBpQuery()
call is made before any other calls to the MDILib, more breakpoints are returned as requested by the * HowMany value.

6.5.7 Hardware Breakpoint Query: Retrieve alist of supported hardware breakpoint types

MDIInt32
MDIHwBpQuery (MDIHandleT Device,
MDIInt32 *HowMany,
MDIBpInfoT *BpInfo)
Structures:
typedef struct MDIBpData_struct {
MDIInt32 Num;
MDIBpT Type;

} MDIBpInfoT

Type isabitmap composed of some of these new values:

#define MDIBPT_ HWType_Exec 0x00000001 // bpt on execute supported
#define MDIBPT_ HWType_Data 0x00000002 // bpt on data access supported
#define MDIBPT_ HWType_Bus 0x00000004 // bpt on ext h/w access supported
#define MDIBPT_HWType_AlignMask 0x000000F0 // min addr alignment (27n)
#define MDIBPT_HWType_AlignShift 4
#define MDIBPT_ HWType_MaxSMask 0x00003F00 // max size (2”n)
#define MDIBPT_HWType_ MaxSShift 8
#define MDIBPT_ HWType_ VirtAddr 0x00004000 // matches on virtual address
#define MDIBPT_ HWType_ ASID 0x00008000 // ASID included in virtual address
Some breakpoint defines that already exist in MDI are;
#define MDIBPT_HWFlg_ AddrMask 0x00010000 // address mask supported
#define MDIBPT HWFlg_AddrRange 0x00020000 // address range supported
#define MDIBPT_ HWFlg_DataValue 0x00040000 // data value match supported
#define MDIBPT_HWFlg DataMask 0x00080000 // data masking supported
#define MDIBPT HWFlg_DataRead 0x00100000 // bpt on data read supported
#define MDIBPT HWFlg_DataWrite 0x00200000 // bpt on data write supported
#define MDIBPT_HWFlg Trigger 0x00400000 // ext trigger output supported
#define MDIBPT HWFlg_ TriggerOnly 0x00800000 // ext trigger only supported
#define MDIBPT_HWFlg_ TCMatch 0x01000000 // Set bpt for specified TC
#define MDIBPT_HWFlg_InvertMatch 0x02000000 //"not" match
Returns:
MDI Success No Error, information for asingle breakpoint or all breakpointsis returned.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

49

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 6 Device Command Set

50

MDIErrDevice Invalid device handle.
MDIErrParam Invalid parameter, *HowMany may not be negative
MDIErrMore More breakpoints defined then requested.
MDIErrWrongThread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.
Description:

Queries the available hardware breakpoint resources of the target device.

If the requested number of breakpoint resource (* HowMany) is 0, the function returns no error (MDISuccess) and
*HowMany is set to the number of types. If *HowMany is non-zero on entry, it specifies the number of elementsin the
BPInfo array being passed in. The function fillsin the BPInfo array with theinformation for up to * HowMany breakpoint
resources and sets * HowMany to the number filled in. If there is not enough room in the BPInfo array to hold al the
available resource, MDIErrMoreis returned. If the debugger then calls this function again before any other MDI
functions are called, information is returned for the next * HowMany breakpoint resources.

MDIBpInfoT->Type is abitmap that specifies the exact type of hardware breakpoint supported, and MDIBplnfo->.Num
is the number of breakpoints that support this combination of features. If MDIBpInfoT->Num has avalue of -1, then it
supports an infinite number of such breakpoints (as might easily be the case for a simulator).

For hardware breakpoints that support only address masking and not address ranges, the MDILib is encouraged to
virtualize support for an address range. In other words, it should generate the smallest mask which surrounds a given
address range, and then check the address which causes a data breakpoint and only return control to the debugger if the
addressisindeed in the originally requested range. This may involve disassembling the faulting instruction to determine
the data address.

Example 1: A MIPS 4Kc core with 2 coprocessor 0 data/instruction watchpoints would return:
*HowMany =1;

BpInfo[0] .Num = 2;

BpInfo[0].Type =(MDIBPT HWType_ Exec |
MDIBPT_HWType_Data |
(3 << MDIBPT HWType_AlignShift) |
(12 << MDIBPT_HWType_MaxSShift) |
MDIBPT HWType_ VirtAddr |
MDIBPT_HWType_ASID |
MDIBPT_HWFlg_AddrMask |
MDIBPT_HWFlg_DataRead |
MDIBPT_HWFlg_DataWrite) ;

Example 2: A MIPS 4Kc core with 2 data and 4 instruction EJTAG hardware breakpoints would return:
*HowMany =2;

BpInfo[0] .Num = 2;

BpInfo[0].Type =(MDIBPT_HWType_Data |
(0 << MDIBPT_ HWType_AlignShift) |
(31 << MDIBPT_HWType_MaxSShift) |
MDIBPT HWType_ VirtAddr |
MDIBPT_HWType_ASID |

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

6.5 Breakpoints

MDIBPT_HWFlg_AddrMask |
MDIBPT HWFlg_DataValue |
MDIBPT_HWFlg_DataMask |
MDIBPT_HWFlg_ DataRead |
MDIBPT_HWFlg_DataWrite |
MDIBPT_ HWFlg_Trigger |
MDIBPT HWFlg_TriggerOnly) ;
BpInfo[l] .Num = 4;
BpInfo[l].Type =(MDIBPT_HWType_Exec
(1 << MDIBPT_ HWType_AlignShift)
(31 << MDIBPT_HWType_MaxSShift)
MDIBPT HWType_ VirtAddr
MDIBPT_HWType_ASID
MDIBPT_HWFlg_AddrMask
MDIBPT_HWFlg_Trigger
MDIBPT_HWFlg_ TriggerOnly) ;

Example 3: A simulator that supports an "unlimited” number of hardware breakpoints, with unrestricted addressrange
would return:

*HowMany =1;

BpInfo[O] .Num = -1;

BpInfo[0].Type =(MDIBPT_HWType_Exec
MDIBPT HWType_Data
(0 << MDIBPT_HWType_AlignShift)
(63 << MDIBPT_HWType MaxSShift)
MDIBPT_HWType_VirtAddr
MDIBPT_HWType_ ASID
MDIBPT_HWF1lg_ AddrRange
MDIBPT_HWF1lg_ DataValue
MDIBPT_HWF1lg_DataMask
MDIBPT_HWF1lg_DataRead
MDIBPT HWFlg_DataWrite
MDIBPT_HWFlg_ TCMatch) ;

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 51

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 6 Device Command Set

52 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

7.1 Execute Command: Do the command specified

Chapter 7

MDILib and Target /O Command Set

The goal of MDI isto allow interoperability between any debugger written in conformance with this specification and
any conforming MDILib implementation; however, no generic API specification can envision and abstract all possible
device behavior. There are many possible types of devices (simulators, device resident debug kernels, JTAG/BDM
probes, ICE's, etc.) with awide range of possible capabilities and configuration requirements. To allow for non-standard
services and responses in a standard way, M DI provides mechanisms for MDILib specific commands to be executed,
and requires the debugger to provide character input and output servicesto the MDILib. To further support MDILib
command parsing and output formatting, the debugger is strongly encouraged to provide expression evaluation and
symbolic lookup services to the MDILib.

Therequired input and output services al so serve asacommunication channel between the user and the program running
on the target device.

7.1 Execute Command: Do the command specified

MDIInt32
MDIDoCommand (MDIHandleT Device,
char *Buffer)
Returns:
M DI Success No Error, command has been executed.
MDIErrDevice Invalid device handle.
MDIErrUnsupported MDILib has no command parser.
MDIErrWrongT hread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

A single command string is passed to the MDILib for parsing and execution. If an MDILib has no command parser, then
it will settheMDICap_NoParser flag in Config->MDICapability and this function will do nothing; otherwise, the
debugger isrequired to provide amechanism for the user to provide command lines to be passed to the MDILib viathis
function without interpretation by the debugger.

Device will be MDINoHandle if the command is not associated with a particular device connection. This would be the
case for calls to MDIDoCommand() made before MDIOpen() has been called.

7.2 Display Output: Display the MDILib supplied text to the user

MDIInt32

MDICBOutput (MDIHandleT Device,
MDIInt32 Type,
char *Buffer,
MDIInt32 Count)

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 53

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 7 MDILib and Target I/O Command Set

Returns:
MDI Success No Error, output has been displayed.
MDIErrDevice Invalid device handle.
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Structures:
Type:
MDIIOTypeMDIOut "stdout” from the MDILib
MDIIOTypeMDIErr "stderr" from the MDILib
MDIIOTypeMDINotify GUI notification from MDILib
MDIIOTypeTgtOut "stdout” from the running target program
MDIIOTypeTgtErr "stderr" from the running target program
Description:

This callback function isimplemented by the debugger. Its addressis passed to the MDILib in Config->MDICBOutput
when MDIConnect() is called. The debugger must display the MDILib-supplied text to the user. The debugger may
choose to display the various types of output in different ways, for example putting MDILib output and program output
in separate windows, or displaying MDILib error output in a pop-up dialog.

This function can be called only when the MDILib is servicing a debugger request; in other words, it cannot be called
asynchronoudly, it isonly called recursively after the debugger has made any one of the MDILib calls.

Devicewill be MDINoHandle if the output is not associated with a particular device connection. Type specifiesthe type
of output. Count is the number of charactersin Buffer. Thereis no specific limit to the length of the character data. The
data may include LF charactersto signal desired line breaks, but no other non-printable ASCII characters are allowed.
The data might not end with an LF, for example the MDILib might be displaying a prompt to be followed by a request
for input. While the debugger is encouraged to honor line breaksit is not required. The MDI1OTypeMDINotify code
specifically requests a GUI to display pop-up warning dialog requiring an acknowledgement (OK) by the user before
control isreturned to the MDILib. If no GUI is present, treat as MDI1OTypeM DI Err.

7.3 Get Input

54

MDIInt32

MDICBInput (MDIHandleT Device,
MDIInt32 Type,
MDIInt32 Mode,
char **Buffer,
MDIInt32 *Count)

Returns:

MDI Success No Error, input has been obtained.

MDIErrDevice Invalid device handle.

MDIErrUnsupported Debugger does not support non-blocking and/or unbuffered input.
Structures:

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

7.4 Evaluate Expression

Type:
MDIIOTypeMDIIn "stdin" for the MDILib
MDIIOTypeTgtin "stdin" for the running target program
Mode:
MDI1OModeNormal blocking, line buffered
MDIIOTypeRawBIlock blocking unbuffered

MDIIOTypeRawNoBlock non-blocking unbuffered (can return * Count == 0)
Description:

This callback function isimplemented by the debugger. and its address is passed to the MDILib in
Config->MDICBInput when MDIConnect() iscalled. The debugger must get up to aline of character input from the user
and deliver it to the MDILib. The characters entered by the user are not to be interpreted or modified by the debugger,
except for the end-of-line.

This function can be called only when the MDILib is servicing a debugger request. In other words, it can not be called
asynchronoudly, it isonly called recursively after the debugger has made an MDILib call.

Device will be MDINoHandle if the input request is not associated with a particular device connection. The debugger
supplies the buffer holding the data, and returns its address to the MDILib in * Buffer, and returns the number of
charactersit containsin * Count. Type specifiesthetype of input. Mode specifies the mode of theinput. In buffered mode,
only asingle lineis returned per call on MDICBInput, but there is no specific limit to the length of theline. In
non-blocking unbuffered mode, the data available at the time of the call is returned. In blocking unbuffered mode, the
debugger will return as soon as any input is available (typically one character, but possibly more due to a "paste” event
for example).

The debugger is encouraged to support all three modes, but is only required to support MDIIOModeNormal.

7.4 Evaluate Expression

MDIInt32
MDICBEvaluate (MDIHandleT Device,
char *Buffer,
MDIInt32 *ResultType,
MDIResourceT *SrcResource,
MDIOffsetT *SrcOffset,
MDIInt32 *Size,
void **Value)
Returns:
MDI Success No Error, expression result has been returned.
MDIErrDevice Invalid device handle.
MDIErrFailure Expression could not be evaluated.
Structures:
ResultType:
MDIEval TypeResource Addressisreturned in * SrcResource,* SrcOff set.
Microprocessor Debug Interface (MDI) Specification, Revision 02.41 55

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 7 MDILib and Target I/O Command Set

M DI Eval TypeChar Result is a single character.

MDIEval Typelnt Result isasigned int of size *Size.

MDIEva TypeUInt Result isan unsigned int of size * Size.

M DI Eval TypeFl oat Result is afloating point value of size * Size.

MDIEval TypeNone Result of size * Size has no type, or the debugger does not support types.
Description:

This callback function is optionally implemented by the debugger. Its address, or NULL if it is not implemented, is
passed to the MDILib in Config->MDICBEvaluate when MDIConnect() is called. The purpose of this callback isto
allow the MDILib command parser to support expressions which will be evaluated according to the debugger's rules.
The debugger is encouraged but not required to provide this service.

Thisfunction can be called only when the MDILib is executing a transparent mode command. In other words, it can not
be called asynchronously, it is only called recursively after the debugger has called MDIDoCommand(). During the
course of evaluating the expression, the debugger may need to access device resources so it may recursively call other
MDI functions before returning.

The expression may evaluate to a scalar value, or it may evaluate to an addressable resource. The debugger indicates
which by returning the appropriate value in * ResultType.

If the result isascalar value, then the debugger stores the value in host byte order in a buffer whose address and size is
returned in * Buffer and * Size.

7.5 Lookup Resource

MDIInt32

MDICBLookup (MDIHandleT Device,
MDIInt32 Type,
MDIResourceT SrcResource,
MDIOffsetT SrcOffset,
char **Buffer)

Returns:
MDI Success No Error, string has been returned.
MDIErrDevice Invalid device handle.
MDIErrLookupNone Address did not match a symbol or source line.
MDIErrLookupError Invalid address for look up.

Structures:

Type:

Debugger - returns "sym" on exact match, or "sym+delta’, wheresymis
MDILookupNearest the nearest symbol with alower address and deltais the offset from the
symbol's address to the requested address, in hex.

MDILookupExact Debugger - returns "sym" on exact match only.

56 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

7.5 Lookup Resource

Debugger - returns the source line associated with the resource address,
if any. Thisisintended to be an “exact match” lookup. The debugger
should return a source line only for the first of a group of instructions
generated by the source line. Support for thislookup is optional.

MDILookupSource

Description:

This callback function is optionally implemented by the debugger. Its address, or NULL if it is not implemented, is
passed to the MDILib in Config->MDICBLookup when MDIConnect() iscalled. The purpose of thiscallback isto allow
the MDILib command parser to decorate command output with symbolicinformation. The MDILib passesarequest type
and an address. The debugger generates the requested type of ASCII string into a static buffer, and returns the address
of the buffer to the MDILib. The debugger is encouraged but not required to provide this service.

Thisfunction can be called only when the MDILib is executing atransparent mode command. 1n other words, it can not
be called asynchronously; only called recursively after the debugger has called MDIDoCommand. It is not expected that
the debugger would need to access target resources to perform the lookup, but it is allowed to do so; thusit may
recursively call other MDI functions before returning.

The MDILib requests a particular type of symbolic information by passing one of the values for Type specified above.

If the lookup is successful, then the debugger returns the address of a buffer containing the resulting NULL terminated
ASCII string in * Buffer. The pointer must remain valid and the contents of the buffer must remain unchanged only until
the MDILib calls another callback function or returns from MDIDoCommand(), whichever comesfirst. The MDILib
must not make any further use of the returned pointer after that time.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 57

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 7 MDILib and Target I/O Command Set

58 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

8.1 Enable Tracing

Chapter 8

Trace Command Set

It is often the case that a device provides some type of trace output reporting on the status of the code being executed.
For example, the MIPS EJTAG specification includesthe ability to shift out execution status and PC addressinformation
as the processor runs. An Instruction Set Simulator could obviously record execution activity, and bustracing is
supported by many ICE vendors.

Since it would be desirable to allow a debugger to display trace information in awell-integrated way, MDI includes an
abstraction for tracing services, however, the actual capabilities and features of any particular device that supports
tracing will vary widely. It is not possible to create a standard API that will provide full access to all possible tracing
systems; therefore, MDI only provides abinary abstraction for the lowest common denominator: a sequence of PC and
possibly data addresses and optionally the associated instructions/values. An MDILib can provideits own user interface
for extended functions.

Sincenot all deviceswill be capable of generating trace information, support for the Trace Data command set is optional
inthe MDILib. The MDILib will set theMDICap_TraceOutput flag in Config->MDICapability if it supports the
MDITraceClear, MDITraceStatus, MDI TraceCount, and MDI TraceRead functions. The MDILib will set the
MDICap_TraceCtrl flagin Config->MDICapability if it supports the MDITraceEnable, and MDITraceDisable
functions.

If the underlying hardware implements the M1PS PDtrace™ interface, then the MDI library has the option to support
the interface required to access this capability. Thisisindicated by theMDICap_PDtrace flagin

Config->MDI Capability. The interface primarily consists of a set of three new trace-related calls that are described at
the end of this chapter, from Section 8.7, "Read PDtrace Data" to Section 8.9, "Set PDtrace Mode". In addition to the
new subroutine calls, a new include fileis needed, mdi_pdtrace.h, which is specified in the Appendix.

Finally, to support the Trace Control Block (TCB) that would attach to one end of a PDtrace interface, two functions
that set and get the trigger conditions are provided. The mdi_tcb.h file is provided in the Appendix of this document.

8.1 Enable Tracing

MDIInt32
MDITraceEnable (MDIHandleT Device)

Returns:
MDI Success No Error, tracing has been enabled.
MDIErrDevice Invalid device handle.
MDIErrUnsupported Device does not support tracing.
MDIErrWrongT hread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

Description:

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 59

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 8 Trace Command Set

This function enables the tracing capabilities of the device. MDI assumes that when tracing is enabled, trace datais
captured only when the device is executing code. Thus, it is not necessary for the debugger to explicitly disable tracing
after execution stops in order to avoid capturing unwanted data. It isvalid for the debugger to enable tracing at the start
of the session, and leave it enabled from then on. This means that for devices whose actua tracing capabilities are not
tied to execution (e.g. alogic analyzer), must be managed by the MDILib to emulate this "execution tracing”.

It is unspecified whether enabling tracing causes any previously captured trace datato be cleared from the device'strace
buffer. Further, it is unspecified whether captured trace datais automatically cleared each time device execution begins.

8.2 Disable Tracing

MDIInt32
MDITraceDisable (MDIHandleT Device)

Returns:
MDISuccess No Error, tracing has been disabled.
MDIErrDevice Invalid device handle.
MDIErrUnsupported Device does not support tracing.
MDIErrWrongT hread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

This function disables the tracing capabilities of the device. If the deviceis currently executing code, tracing will be
halted immediately, and depending on the capabilities of the tracing system, it may be necessary for the MDILib to
temporarily halt execution in order to disable trace capture.

8.3 Clear Trace Data

MDIInt32
MDITraceClear (MDIHandleT Device)

Returns:
MDI Success No Error, the trace buffer has been cleared.
MDIErrDevice Invalid device handle.
MDIErrTracing Deviceis currently tracing.
MDIErrUnsupported Device does not support tracing.
MDIErrWrongT hread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

Description:

60 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

8.4 Query Trace Status

This function causes any previously captured trace data to be cleared from the device's trace buffer. If tracing is enabled
and the device is currently executing code, then the debugger must call M DI TraceDisable before this function can be
caled.

8.4 Query Trace Status

MDIInt32
MDITraceStatus (MDIHandleT Device,
MDIUint32 *Status)

Returns:
MDI Success No Error, the current trace status has been returned.
MDIErrDevice Invalid device handle.
MDIErrUnsupported Device does not support tracing.
MDIErrWrongT hread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

This function returns the current state of the tracing system. Many devices will support mechanismsto qualify tracing,
such as beginning or ending capture when atrigger event is detected, or ending capture when the trace buffer becomes
full. While M DI can not abstract an interface for configuring such trace capabilities, the debugger should recognize that
they may exist. If the debugger supports fetching and displaying trace data while the device is executing, then it should
use this function to determine when it is appropriate to do so.

On return, * Status will contain one of the following values:

MDITraceStatusNone Tracing is not enabled, or the deviceis not executing.

MDITraceStatusTracing Tracing underway, with no termination condition.

MDI TraceStatuswWaiting Conditional trace capture has not yet begun.

MDITraceStatuskilling Tracing, with conditional completion expected.

MDI TraceStatusStopped Conditional trace capture has completed.
If no trace conditions are configured, or the device does not support triggered/conditional tracing, then M DI TraceStatus
will return MDITraceStatusTracing if MDITraceEnable has been called and the device is executing; otherwise it will
return MDI TraceStatusNone. MDI TraceStatuswWaiting will be returned when a conditional trigger event has been
configured that causes trace capture to begin, and the event has not yet occurred. MDI TraceStatusFilling is returned if
trace capture has begun, and a conditional trigger event has been configured that can terminate trace capture before the

device stops executing. Finally, MDITraceStatusStopped is returned after such a condition has occurred and no more
trace data will be captured.

8.5 Query Trace Data

MDITnt32
MDITraceCount (MDIHandleT Device,
MDIUint32 *FrameCount)
Microprocessor Debug Interface (MDI) Specification, Revision 02.41 61

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 8 Trace Command Set

Returns:
M DI Success No Error, the frame count has been returned.
MDIErrDevice Invalid device handle.
MDIErrTracing Deviceiscurrently tracing.
MDIErrUnsupported Device does not support tracing.
MDIErrWrongThread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

This function returns the number of "frames" of trace data currently captured by the device. Although it may be called
at any time when the deviceis not executing, and when tracing is disabled if the deviceis executing. If tracing is enabled
and the device is currently executing code, then the debugger must call MDITraceDisable before this function can be
called. A "frame" of trace data describes a single instruction or data access performed by the target. A "frame" of trace
datain the PDtrace context is the number of words of trace data. The debugger must call this function before calling
MDITraceRead() or MDIPDtraceRead() to transfer actual trace data.

8.6 Read Trace Data

62

MDIInt32
MDITraceRead (MDIHandleT Device,
MDIUint32 FirstFrame,
MDIUint32 FrameCount,
MDIUint32 IncludeInstructions,
MDITrcFrameT *Frames)
Structures:
typedef struct MDITrcFrame_Struct {
MDIUint32 Type;
MDIResourceT Resource;
MDIOffsetT Offset;
MDIUint64 Value;

} MDITrcFrameT;

Type:
MDITTypePC Resource and Offset give the address of afetched or executed instruction.
MDITTypelnst \éﬂ £ contains the instruction whose address is given by Resource and
MDITTypeRead Resource and Offset give the address of aloaded data value.
MDITTypeWrite Resource and Offset give the address of a stored data value.
MDITTypeAccess Resource and Offset give the address of aloaded or stored data value.

Value contains the 8-hit data value read from the address given by

MDITTypeRData 8 Resource and Offset.

Value contains the 8-bit data value written to the address given by

MDITTypeWData 8 Resource and Offset.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

8.6 Read Trace Data

Value contains the 16-bit data value read from the address given by

MDITTypeRData_16 Resource and Offset.

Value contains the 16-bit data value written to the address given by

MDITTypeWData 16 Resource and Offset.

Value contains the 32-bit data value read from the address given by

MDITTypeRData_32 Resource and Offset.

Value contains the 32-bit data value written to the address given by
MDITTypeWData_32 Resource and Offset.

Value contains the 64-bit data val ue read from the address given by

MDITTypeRData 64 Resource and Offset.

MDITTypeWData 64 Value contains the 64-bit data value written to the address given by

Resource and Offset.
Returns:
M DI Success No Error, FrameCount frames have been returned.
MDIErrDevice Invalid device handle.
MDIErrinvalidFrames Requested frame rangeisinvalid.
MDIErrTracing Deviceiscurrently tracing.
MDIErrUnsupported Device does not support tracing.
MDIErrWrongThread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

Thisfunction returns the requested range of "frames" of trace data. Although it may be called any number of times after
MDITraceCount() has been called, until the next time MDITraceEnable() is called (if MDITraceDisable() had
previously been called) or device execution is resumed (if tracing remained enabled). The debugger must call
MDITraceCount() before this function can be called after new trace data has been captured. A "frame" of trace data
describes asingle instruction or data access performed by the target. Type specifies how to interpret the rest of the frame
data.

Depending on the capabilities of the device, data accesses may not be captured by the tracing system at all, or the values
loaded and stored by data accesses may not be available. If the data values are avail able, they will always be included
with the trace data since they would not otherwise be available to the debugger. If the debugger requests instruction
values, and the underlying tracing system does not capture them, then the MDILib is required to fetch the instructions
from device memory so they can beincluded in the trace data, if the MDILib is capable of doing so. Thisisindicated by
acapability flag MDICAP_TraceFetchl.

FirstFrameisthe frame number of the oldest frame to be returned in this call. Frames are numbered from 1 to N, where
N isthe total number of frames returned by MDITraceCount() and frame 1 is the oldest frame. FrameCount is the
number of frames to be returned in * Frames.

For instruction frames, it may be more efficient for the debugger to read the instruction values from the executable file
rather than have the MDIL.ib fetch them over what may be aremote communicationslink. In that case, the debugger will
set Includel nstructions to 0. If Includelnstructionsis set 1, then the MDILib will include the instruction values in the
trace frame data.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 63

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 8 Trace Command Set

8.7 Read PDtrace Data

MDIInt32

MDIPDtraceRead (MDIHandleT Device,
MDITraceFrameNumberT FrameNumber,
MDITraceFrameCountT Count,
MDIUint32 Instructions,
MDITraceFrameT *Data)

Structures:
typedef struct {
MDIUint32 Word; // address of beginning of trace frame in trace memory
MDIUint32 Bit; // bit number of beginning of trace frame within trace word.

} MDITraceFrameNumberT;

typedef struct MDITraceFrame_Struct {
MDITraceFrameNumberT FrameNumber;
MDIUint32 Type;
MDIResourceT Resource;
MDIOffsetT Offset;
MDIUint64 Value;

} MDITraceFrameT;

#define MDIType_TYPE_MASK 0x00000fff
#define MDIType_MOD_MASK Oxf£f£££000

/* Expanded trace types obtained using MDIType_TYPE_MASK */

#define MDITTypeOverflow 64 // trace fifo overflowed, information lost
#define MDITTypeTriggerStart 65 // value=trigger cause
#define MDITTypeTriggerEnd 66 // value=trigger cause
#define MDITTypeTriggerAbout 67 // value=trigger cause
#define MDITTypeTriggerInfo 68 // value=trigger cause
#define MDITTypeNotraceCycles 69 // value=number of notrace cycles
#define MDITTypeBackstallCycles 70 // value=number of backstall cycles
#define MDITTypelIdleCyclces 71 // value=number of idle cycles
#define MDITTypeTcbMessage 72 // addr=TCBcode, value=TCBinfo field
#define MDITTypeModelInit 73 // value = new mode from following table
#define MDITTypeModeChange 74 // value = new mode from following table
// 12:11 ISAM 00 = MIPS32
// 01 = MIPS64
// 10 = MIPS16
// 11 = reserved
// 10:8 MODE 000 = kernel, EXL=0, ERL=0
// 001 = kernel, EXL=1, ERL=0
// 010 = kernel, ERL=1
// 011 = debug mode
// 100 = supervisor mode
// 101 = user mode
// other = reserved
// 7:0 ASID
#define MDITypeUTM 75 // addr=1(TUl)or 2(TU2) value=user value

/* Expanded trace types obtained using MDIType_ MOD_MASK */

#define MDITType_MOD_IM 0x00001000 // instruction cache miss signal
#define MDITType_MOD_LSM 0x00002000 // data cache miss signal

#define MDITType_MOD_FCR 0x00004000 // function call/return instruction
#define MDITType_MOD_CPU 0x00F00000 // which CPU this message applies to
#define MDITType_MOD_TC O0xFF000000 // which TC this message applies to

64 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

8.8 Get PDtrace Mode

/* Extended flags for MDISetBp() */
#define MDIBPT_HWFlg_ TraceOnOnly 0x80000000
#define MDIBPT_HWFlg_TraceOffOnly 0x40000000

/* Values for Instructions parameter to MDITrcRead(): */
#define MDITraceReadNoInstructions 0
#define MDITraceReadInstructions 1
Returns:
MDI Success No Error, FrameCount frames have been returned.
MDIErrDevice Invalid device handle.
MDIErrIinvalidFrames Requested frame rangeisinvalid.
MDIErrTracing Deviceis currently tracing.
MDIErrUnsupported Device does not support tracing.
MDIErrWrongThread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

Thisfunction returnsthe requested range of trace framesfrom the hardware. Again, sinceaframeisnot easily identified,
anumbering scheme is used that rather than being an integer is a composite frame number. This composite consists of
the trace word address combined with the bit number of the start of the message. For example, if trace word 12345 has
the last part of atrace message that started in 12344, then a complete message, then part of a message that is continued
in 12346, then there would be two trace frames 12345.16 and 12345.52.

When requesting trace data, the FrameNumber parameter would be this composite with 0 being the oldest trace word
being collected and the number returned in Count (minus one) being the youngest. The return structure includes the
frame number Data->FrameNumber since these are no longer sequential.

It isimportant to note that the caller must allocate * Count+1 for the size of Data since one extraframe can be returned
under certain circumstances.

8.8 Get PDtrace Mode

MDIInt32
MDIGetPDtraceMode (MDIHandleT Device,
MDITraceModeT *TraceMode)

Structures:

typedef struct {

MDIUint32 Mode; // trace mode (see definitions below)
MDIUint32 Knob; // other trace mode knobs (see definitions below)
MDIUint32 Knob2 // some more trace mode knobs (see defines below)

} MDITraceModeT;

Mode is a bitmap composed of values:

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 65

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 8 Trace Command Set

#define PDtraceMODE_PC 0x00000001 // trace the PC

#define PDtraceMODE_LA 0x00000002 // trace the load address
#define PDtraceMODE_SA 0x00000004 // trace the store address
#define PDtraceMODE_LD 0x00000008 // trace the load data
#define PDtraceMODE_SD 0x00000010 // trace the store data

Knob is a bitmap composed of values:

#define PDtraceKNOB_Dbg 0x00000001 // trace in debug mode

#define PDtraceKNOB_Exc 0x00000002 // trace in exception and error modes
(EXL or ERL set)

#define PDtraceKNOB_Sup 0x00000004 // trace in supervisor mode

#define PDtraceKNOB_Ker 0x00000008 // trace in kernel mode

#define PDtraceKNOB_Usr 0x00000010 // trace in user mode

#define PDtraceKNOB_ASIDMask 0x00001F70 // if G=0, trace in this process only
#define PDtraceKNOB_ASIDShift 5

#define PDtraceKNOB_G 0x00002000 // trace in all processes

#define PDtraceKNOB_SyPMask 0x0001C000 // Synchronization period

#define PDtraceKNOB_SyPShift 14

#define PDtraceKNOB_TMMask 0x00060000 // On-chip trace 00=traceto,
0Ol=tracefrom

#define PDtraceKNOB_TMShift 17

#define PDtraceKNOB_OfC 0x00080000 // Trace sent to off-chip memory
#define PDtraceKNOB_CA 0x00100000 // cycle-accurate (include idle cycle
records)

#define PDtraceKNOB_IO 0x00200000 // inhibit overflow (stall CPU to
prevent overflow)

#define PDtraceKNOB_AB 0x00400000 // Send PC info for all branches,
predictable or not

#define PDtraceKNOB_CRMask 0x03800000 // Trace clock ratio

#define PDtraceKNOB_CRShift 23

#define PDtraceKNOB_Cal 0x04000000 // l=calibration mode (test pattern)
#define PDtraceKNOB_EN 0x08000000 // l=Enable trace initially. O0O=don't
generate trace until trace-on event.

#define PDtraceKNOB_debug 0x10000000 // 1l=set trace hardware to debug (not

for customer use)

Knob2 is abitmap composed of values:

#define PDtraceKNOB2_im 0x00000001; // trace instr fetch cache miss bit
#define PDtraceKNOB2_lsm 0x00000002; // trace load/store cache miss bit
#define PDtraceKNOB2_fcr 0x00000004; // trace instr func. call/return bit
#define PDtraceKNOB2_tlsif 0x00000008; // record im, 1lsm, and fcr in trace
#define PDtraceKNOB2_id 0x000000F0; // processor id to record when trace
is shared among processors
#define PDtraceKNOB2_cpuG 0x00000100; // enable trace for all CPU's
#define PDtraceKNOB2_cpufilter 0x0001FEOQOQ; // If cpuG=0, trace only this CPU id
#define PDtraceKNOB2_tcG 0x00020000; // enable trace for all TC's
#define PDtraceKNOB2_ tcfilter 0x03FC0000; // If tcG=0, trace only this TC id
#define PDtraceKNOB2_tracetc 0x04000000; // record TC info in trace
Returns:

MDISuccess No Error, tracing mode has been obtained.
MDIErrDevice Invalid device handle.
MDIErrUnsupported Device does not support tracing.

66 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

8.9 Set PDtrace Mode

MDIErrWrongThread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

This function gets the current tracing mode that is set for the PDtrace functionality.

8.9 Set PDtrace Mode

MDIInt32
MDISetPDtraceMode (MDIHandleT Device,
MDITraceModeT TraceMode)

Returns:
MDI Success No Error, tracing mode has been set.
MDIErrDevice Invalid device handle.
MDIErrUnsupported Device does not support tracing.
MDIErrWrongT hread Call was not made by the connected thread.
MDIErrTargetRunning Service cannot be performed at this time because the target program is running.
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

This function sets the current tracing mode to that in the TraceMode parameter.

8.10 Get TCB Trigger Information

MDIInt32
MDIGetTcbTrigger (MDIHandleT Device,
MDIUint32 TriggerId,
MDITcbTriggerT *Trigger)
Structures:
typedef struct {
MDIUint32 DebugMode; // Fire at Debug Mode rising edge
MDIUint32 ChipTrigIn; // Fire at Chip Trigger In rising edge
MDIUint32 ProbeTrigIn; // Fire at Probe Trigger In rising edge

} MDITcbConditionT;

typedef struct {

MDIUint32 ChipTrigOut; // Generate Chip Trigger Out pulse
MDIUint32 ProbeTrigOut; // Generate Probe Trigger Out pulse
MDIUint32 TraceMessage; // Insert Message in Trace

MDIUint8 TraceMessageInfo; // 8-bit info for trace message

} MDITcbActionT;

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

67

Chapter 8 Trace Command Set

typedef struct {

MDITcbConditionT Condition; // Conditions for firing trigger

MDIUint32 Type;
MDIUint32 FireOnce;

// Type of trigger
// Fire once only

MDITcbActionT Action; // Actions to be executed when trigger fires

} MDITcbTriggerT;

/* Action selections for hardware breakpoints */

typedef enum {
TRIGACTION_TRC,
TRIGACTION_ARM,
TRIGACTION_TON_IF_ARME

// Single event trace
// Set ARM condition
D,

TRIGACTION_TOFF_IF_ ARMED,

TRIGACTION_TRC_IF_ARME
TRIGACTION_DISARM
} MDITcbActionT;

Returns:
M DI Success
MDIErrDevice
MDIErrUnsupported
MDIErrWrongThread
MDIErrTargetRunning
MDIErrDisabled

MDIErrRecursive

Description:

D,
// Clear ARM condition

No Error, trigger information has been obtained.

Invalid device handle.

Device does not support tracing.

Call was not made by the connected thread.

Service cannot be performed at this time because the target program is running.
Service cannot be performed because the deviceis disabled

Recursive call was made during an MDICBPeriodic() callback

This function gets the current trigger state that is set in the TCB.

8.11 Set TCB Trigger Information

MDIInt32
MDISetTcbTrigger (MDIHandleT Device,
MDIUint32 TriggerId,
MDITcbTriggerT *Trigger)
Returns:
MDISuccess No Error, trigger information has been set.
MDIErrDevice Invalid device handle.

MDIErrUnsupported
MDIErrWrongT hread
MDIErrTargetRunning
MDIErrDisabled

MDIErrRecursive

Description:

Device does not support tracing.

Call was not made by the connected thread.

Service cannot be performed at this time because the target program is running.
Service cannot be performed because the deviceis disabled

Recursive call was made during an MDICBPeriodic() callback

This function sets the current TCB trigger state to that in the parameter Trigger.

68

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

8.11 Set TCB Trigger Information

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 69

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 8 Trace Command Set

70 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

9.1 Multi-Thread Control

Chapter 9

Multi-Threaded and Multi-Processor Command Set

The functionsin this command set augment other MDI functions described elsawhere in this document to provide
support for multi-thread and multi-processor debugging.

Sincenot all deviceswill be capable of supporting multi-threading, support for these functionsisoptional inan MDILib.
AnMDILibwill only set theMDICap_TC in Config->MDICapability if it supports the functions which relate to thread
context control. Similarly an MDILib will set theMDICap_Teams flag in Config->MDICapability if it supports
multi-processor teams.

9.1 Multi-Thread Control

9.1.1 Set Thread Context: Setsthecurrent MDI thread context |D

MDIInt32
MDISetTC (MDIHandleT Device,
MDITCIAT TCId)

Returns:
MDI Success No Error, current TC ID has been set
MDIErrDevice Invalid device handle.
MDIErrUnsupported Device does not support multiple TCs
MDIErTCld The specified TC ID isnot avalid for this device
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

This call setsthe current MDI Thread Context (TC) ID to TCld, which must be avalid TC ID bound to this device, as
returned by MDIGetTC() or MDITCQuery(). Note that TCs assigned to adevice need not be contiguous. Upon entering
debug mode due to a breakpoint or single-step exception, the MDILib shall automatically set the current MDI TCID to
that of the TC which caused the exception. When entering debug mode asynchronously, for example, because of acall
MDIStop(), the current TC ID may be set to that of any TC within the device, including ahalted or free TC if the device
contains no runnable TCs, or has not yet been activated. However, the TC 1D must reference arunnable TC if oneis
available.

The current MDI TC ID selects the thread context to be used when servicing other MDI functions, in particular thosein
Section 6.3, "Resource Access' on page 27. For hardware breakpoints it specifies the TC to match if the
MDIBPT_HWEFIg TCMatch flag is used, see Section 6.5.1, "Set Full Breakpoint" on page 45 and Section 6.5.7,
"Hardware Breakpoint Query: Retrieve alist of supported hardware breakpoint types' on page 49. Software breakpoints
which are implemented by writing a breakpoint instruction at the breakpoint address are by definition global, and will
be taken by any TC or device which executes the breakpoint instruction. Note that the current MDI TC may be changed
spontaneously by a CPU reset since this may cause the previous TC to no longer be bound to the VPE.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 71

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 9 Multi-Threaded and Multi-Processor Command Set

9.1.2 Get Thread Context: Returnsthe current MDI thread context |D

MDIInt32
MDIGetTC (MDIHandleT Device,
MDITCIAT *TCId)

Returns:
M DI Success No Error, current TC ID has been returned
MDIErrDevice Invalid device handle.
MDIErrUnsupported Device does not support multiple TCs
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

This call returnsthe current MDI Thread Context ID.

9.1.3 Thread Context Query: Retrievesa list of active TCs

MDIInt32

MDITCQuery (MDIHandleT Device,
MDIInt32 *HowMany,
MDITCDataT *TCData)

Returns:
MDISuccess No Error
MDIErrDevice Invalid device handle
MDIErrUnsupported Device does not support multiple TCs
MDIErrParam Invalid parameter, *HowMany should not be negative
MDIErrMore More Thread Contexts exist in the processor than requested
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Structures:

typedef struct MDITCData_struct {
MDITCIAT TCId;
MDIUInt32 Status;

} MDITCDataT;

Status:
MDITCStatusHalted TC has been halted and is not capable of running
MDITCStatusFree TC has not been allocated and is not capable of running
MDITCStatusRunning TC isrunnable and not blocked
MDITCStatusBlockedonWait TCisrunnable, but is blocked by a WAIT instruction waiting for an interrupt
MDITCStatusBlockedonYield TCisrunnable, but is blocked by a YIELD instruction waiting for an external event
MDITCStatusBlockedonGS TCisrunnable, but is blocked waiting for Gating Storage
MDITCStatusSuspended TC is suspended by debugger (OR’ ed with other values)
72 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

9.2 Set Run Mode: Specify behavior when returning to the RUNNING state

Description:

If the requested number of Thread Contexts (* HowMany) is O, the function returns no error (M DI Success) and
*HowMany is set to the number of TCsin the processor. If * HowMany is greater than zero on the call, then this positive
value indicates the number of elementsin the TCData array. The function will then fill in the array with information
about the Thread Contexts in the current VVPE, ensuring that the first TCData entry filled inisthe current MDI TC. The
*HowMany return value is set to the number of TC status returned. If the TCData array is not large enough to hold all
the TCsin the current device, then MDIErrMore is returned along with afilled array. If the debugger then calls
MDIQueryTC again before any other MDI function is called, then the TCData for the next * HowMany TCsis returned.

To only retrieve information about the current TC, * HowMany should be set to 1, and TCData should point to asingle
MDITCDataT structure. The current TC may be a halted or free TC if the device contains no runnable TCs, or has not
yet been activated.

A TC's dtate at the time of the last entry to debug mode can be obtained by AND’ing TCData[].Status with
MDITCStatusMask. The value MDITCStatusSuspended may be OR'’ ed with Status to indicate that the TC was
suspended by the debugger using MDISetRunMode(). The MDILib must only set MDITCStatusSuspended if the API
version specified to MDIConnect() was 0x0002001E or higher.

9.2 Set Run Mode: Specify behavior when returning to the RUNNING state

MDITInt32
MDISetRunMode (MDIHandleT Device,
MDITCIAT TCId,
MDIUint32 StepMode,
MDIUint32 SuspendMode)
Returns:
M DI Success No Error, mode has been set.
MDIErrDevice Invalid device handle.
MDIErnTCId The specified TC ID valueis not avalid for this device
MDIErrTargetRunning Trying to change execution mode of the thread when it is running
MDIErrUnsupported Device does not support multiple TCs
MDIErrParam Invalid values of SSCtl and SuspendCtl
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
SepMode:
MDINoStep Run normally - no single step
MDIStepinto Step Into
M DI StepForward Step Forward
MDI StepOver Step Over
Description:

This call specifies how athread context (TC) within adevice, or the whole device, should behave after the next call to
M DI Execute() or MDI TeamExecute(). Each device, and each TC within a multi-threaded device, can be independently
programmed to:

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 73

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 9 Multi-Threaded and Multi-Processor Command Set

1. Remain suspended: The MDI library should "offline" the device or TC before |eaving debug mode.

2. Single step: Execute one instruction from the device or TC and take a single-step exception once completed. If
more than one TC is selected for single-step, then the first TC to complete an instruction will cause a debug
exception and the other TCs may or may not have made any forward progress.

3. Runfreely: no single-step or suspension.

When any TC causes adebug exception (breakpoint, single-step, etc.), then all TCswithin that device are suspended and
may be examined by the debugger until MDIExecute() or MDITeamExecute() is called again.

The TCid value specifies a particular TC within a multi-threaded device, or -1 to indicate all TCswithin the device. If
the device is not multi-threaded then a TCid value of -1 defines the execution behavior of the device. After being set by
this call, each device or TC's execution mode is sticky until changed by another call to this function naming the same
TCid, or aTCid of -1. Upon re-entering debug mode all single-step and suspend modes shall be reset (switched off).

Toindicatethat a TC or device should take a single-step exception, use a SSMode value other than MDINoStep - avalue
of MDINoStep means that a single-step exception shall not be enabled for the specified TC or device. For adescription
of the various values of SSMlode, see Section 6.4.2, "Step: Single steps the device" on page 38.

To indicate that a TC or device should be suspended while the other TCs or devices are running, use a SuspendMode
value of 1. Using avaue of 0 impliesthat this TC or device will not be suspended, i.e. it will be considered by the
processor’s policy manager for normal or single-step execution upon leaving debug mode.

AnMDILib may return an error of MDIErrParam if the debugger requests a set of single-step and suspend modes which
are not compatible with each other (e.g. it may not be possible to support a combination of MDISteplnto and
MDI StepForward on different TCs).

The examples below illustrate some commonly desired functionality:

e All TCsto run normaly:
MDISetRunMode (TCid=-1, SSMode=MDINoStep, SuspendMode=0)

e Single-step al TCsin Step Forward mode:
MDISetRunMode (TCid=-1, SSMode=MDIStepForward, SuspendMode=0)

» Single-step TC 4 in Step Into mode, all other TCsto run freely:
MDISetRunMode (TCid=-1, SSMode=MDINoStep, SuspendMode=0)
MDISetRunMode (TCid=4, SSMode=MDIStepInto, SuspendMode=0)

» Single-step TC 2 and TC3 in Step Forward mode, while suspending all other TCs:
MDISetRunMode (TCid=-1, SSMode=MDINoStep, SuspendMode=1)
MDISetRunMode (TCid=2, SSMode=MDIStepForward, SuspendMode=0)
MDISetRunMode (TCid=3, SSMode=MDIStepForward, SuspendMode=0)

9.3 Multi-processor Team Control

74

The functionsin this section can be used to affiliate a number of devicesinto a multi-processor debugging team, so that
they stop and start execution together in a synchronized manner. The devices, or team members, may be single-threaded
CPU cores within a multi-core system, VPEs within a multi-threaded CPU, or some combination of these.

A team is persistent, in that will not be deleted, or have members removed from it, just because adeviceis closed. The
team will vanish only when MDIDestroyTeam() is called, or the last debugger disconnects from the MDILib or group
of MDILibs which are maintaining the team.

For amore detailed discussion see Section 3.2, "Multi-processor Debugging” on page 10.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

9.3 Multi-processor Team Control

9.3.1 Create Team: Create a new multi-processor debugging team

MDITInt32

MDITeamCreate (MDIHandleT MDIHandle,

MDITeamIdT *TeamId) ;

Returns:

MDI Success No Error, new empty team created

MDIErrMDIHandle Invalid MDI Handle

MDIErrUnsupported MDI library does not support teams

MDIErrTooManyTeams The MDILib cannot create another team

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

MDIHandle must be the value returned by a previous MDIConnect() call.

Creates anew empty team and returnsits ID in * Teamld. It is acceptable for an MDILib to limit the number of teams
which it can support, including to zero or one, and return M DIErrTooManyTeams when this limit is exceeded.

9.3.2 Teams Query: Retrievesalist of active teams

MDITnt32
MDIQueryTeams (MDIHandleT MDIHandle,
MDIInt32 *HowMany,
MDITeamIdT *TeamIds)
Returns:
MDISuccess No Error
MDIErrMDIHandle Invalid MDI Handle
MDIErrUnsupported MDI library does not support teams
MDIErrParam Invalid parameter, *HowMany should not be negative
MDIErrMore M ore teams defined than requested
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

MDIHandle must be the value returned by a previous MDIConnect() call.

If the requested number of teams (*HowMany) is 0, the function returns no error (MDISuccess) and *HowMany is set
to the number of active teams. If *HowMany is non-zero on entry, it specifies the number of elements in the TeamID
array being passed in. The function fillsin the Teamlds array with the IDs for up to *HowMany teams and sets
*HowMany to the number filled in. If there is not enough room in the Teamlds array to hold all the available teams,
MDIErrMoreis returned. If the debugger then calls this function again before any other MDI functions are called,
information is returned for the next *HowMany teams.

9.3.3 Clear Team: Removes all member s from a multi-processor team

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 75

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 9 Multi-Threaded and Multi-Processor Command Set

MDIInt32

MDITeamClear (MDIHandleT MDIHandle,

MDITeamIdT TeamId)

Returns:

MDI Success No Error, team deleted

MDIErrMDIHandle Invalid MDI Handle

MDIErrUnsupported MDI library does not support teams

MDIErrTeamld Invalid team ID

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

MDIHandle must be the value returned by a previous MDIConnect() call. Teamld specifies the id of the team to be
cleared - that isall membersare removed from theteam. All team members currently in FROZEN state must be switched
to the RUNNING state; team membersin any other state remain unaffected. The team id and associated state remain
active however, and new members may be added to the team.

9.3.4 Destroy Team: Destroys a multi-processor team
MDIInt32

MDITeamDestroy (MDIHandleT MDIHandle,
MDITeamIdT TeamId)

Returns:

MDI Success No Error, team deleted

MDIErrMDIHandle Invalid MDI Handle

MDIErrUnsupported MDI library does not support teams

MDIErrTeamld Invalid team ID

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

MDIHandle must be the value returned by a previous MDIConnect() call. Teamld specifies the id of the team to be
destroyed. All team members currently in FROZEN state must be switched to the RUNNING state; team membersin
any other state remain unaffected. The team |D and associated state can then be released and recycled by the MDILib.

9.3.5 Attach Team Member: Add a new member to a team

MDIInt32
MDITMAttach (MDIHandleT MDIHandle,
MDITeamIdT TeamId,
MDITMDataT *TMData)
Returns:
MDISuccess No Error
MDIErrMDIHandle Invalid MDI Handle
MDIErrUnsupported MDI library does not support teams
76 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

9.3 Multi-processor Team Control

MDIErrTeamid Invalid team 1D

MDIErTGId Invalid Target Group ID in *TMData

MDIErrDeviceld Invalid Device ID in *TMData

MDIErrAlreadyMember The deviceis already ateam member

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Structures:

typedef struct MDITMData_struct {
MDIHandleT MDIHandle;
MDITGIDT TGId;
MDIDeviceIDT DevId;

} MDITMDataT;

Description:

MDIHandle must be the value returned by a previous MDIConnect() call. Teamld must be ateam id returned by a call
to MDICreateTeam() or MDIQueryTeams().

Thiscall addsasingle deviceto an existing team. A device may be amember of only oneteam at atime, soif itisalready
amember of this or any other team, then MDIErrAlreadyMember shall be returned.

Theids TMData->TGId and TMData->Devld specify a device managed by the library whose handleisin
TMData->MDIHandle, avalue returned by a previous call to MDIConnect(). An MDILib is permitted to return
MDIErrMDIHandle if TMData->MDIHandle is not the same as the MDIHandle argument, but may optionally permit
the creation of teams which cross library and probe boundaries. It is not necessary for the new device to have already
been opened by this debugger or any other.

Refer to Section 3.2.1, "Multi-processor Teams' on page 11 for adescription of the various states associated with devices
in ateam. If the new deviceis currently in RUNNING state, and if any existing member of the team is currently
HALTED, then the new device must be placed immediately in the FROZEN state. It is permissible to add a currently
disabled device to ateam, in which case if any existing team member is HALTED, then the new device must be placed
ina"pending" FROZEN state, in anticipation of it being enabled. If the new deviceis currently HALTED, then any
existing team members which are RUNNING or disabled must beimmediately switched to FROZEN (or pending
FROZEN) state. In all other cases the states of the new device and existing team members remain unchanged.

9.3.6 Detach Team Member: Remove a single member from a team

MDITnt32
MDITMDetach (MDIHandleT MDIHandle,

MDITeamIdT TeamId,

MDITMDataT *TMData)

Returns:
MDI Success No Error, new empty team created
MDIErrMDIHandle Invalid MDI Handle
MDIErrUnsupported MDI library does not support teams
MDIErrTeamld Invalid team ID
MDIErTGId Invalid target group id in * TM Data
MDIErrDeviceld Invalid deviceid in *TMData
Microprocessor Debug Interface (MDI) Specification, Revision 02.41 77

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 9 Multi-Threaded and Multi-Processor Command Set

78

MDIErrNotMember The device is not a member of this team
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

MDIHandle must be the value returned by a previous MDIConnect() call. Teamld must be ateam ID returned by a call
to MDICreateTeam() or MDIQueryTeams().

This call removes a single device from the specified team. If the device is not in the team then MDIErrNotAffiliated is
returned.

The device isdescribed by the * TMData which includes the handle of the M DI library module which controlsit (usually
the same as the MDIModule argument), and its Target Group 1D and Device ID within that library. It is not necessary
for the device to already be opened by this debugger or any other debugger.

Refer to Section 3.2.2, "Disabled Multi-processor Devices' on page 14 for a description of the states associated with
devicesin ateam. If the removed deviceis currently in HALTED state, and no other team membersarein the HALTED
state, then any other team member in the FROZEN state must be placed immediately in the RUNNING state if they are
enabled. If the removed deviceisin the FROZEN state, then it should immediately be restarted and placed in the
RUNNING state. In al other cases the states of the new device and existing team members remain unchanged.

9.3.7 Team Member Query: Retrievesalist of team members

MDIInt32
MDIQueryTM (MDIHandleT MDIHandle,
MDITeamIdT TeamId,
MDIInt32 *HowMany,
MDITMDataT *TMData)
Returns:
MDI Success No Error
MDIErrMDIHandle Invalid MDI Handle
MDIErrUnsupported MDI library does not support teams
MDIErrTeamld Invalid team ID
MDIErrParam Invalid parameter, *HowMany should not be negative
MDIErrMore More team members exist than requested
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

MDIHandle must be the value returned by a previous MDIConnect() call. Teamld must be ateam ID returned by a call
to MDICreateTeam() or MDIQueryTeams().

If the requested number of team members (* HowMany) is 0, the function returns no error (M DI Success) and * HowMany
is set to the number of team membersin Teamid. If *HowMany is non-zero on entry, it specifies the number of elements
in the TMData array being passed in. The function fillsin the TMData array with the information for up to *HowMany
team members and sets * HowMany to the number filled in. If there is not enough room in the TMData array to hold all
the available members, MDIErrMore is returned. If the debugger then calls this function again before any other MDI
functions are called, information is returned for the next * HowMany team members.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

9.3 Multi-processor Team Control

9.3.8 Team Execute: Place all team membersinto RUNNING state

MDIInt32
MDITeamExecute (MDIHandleT MDIHandle,
MDITeamIdT TeamId)

Returns:

MDISuccess No Error

MDIErrMDIHandle Invalid MDI Handle

MDIErrUnsupported MDI library does not support teams

MDIErrTeamld Invalid team 1D

MDIErrWrongThread Call was not made by the connected thread

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

MDIHandle must be the value returned by a previous MDIConnect() call. Places all team members "simultaneously"
into the RUNNING state, irrespective of their current state. This call will normally be used only by a multi-processor
aware debugger which is controlling al of the team members, for example an SMP operating system kernel debugger.
The behavior of each TC and device after returning to RUNNING state is governed by any previous callsto the

MDI SetRunM ode() function, see Section 9.2, " Set Run Mode: Specify behavior when returning to the RUNNING state"
on page 73. In ateam containing only VPE devices within asingle core, al team members must resume execution in
precise synchronization. In ateam containing multiple cores there may be asmall delay between each device restarting,
though the MDILib should attempt to make such adelay as short as possible. Any team member entering debug mode
while the others are awaiting restart should abort the restart operation and leave all other membersin the HALTED or
FROZEN state, as appropriate.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 79

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 9 Multi-Threaded and Multi-Processor Command Set

80 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

10.1 Set a Priming Conditon for the Specified Complex Breakpoint

Chapter 10

Complex Break and Trigger and StopWatch Timer Command Set

The functionsin this command set augment other MDI functions described elsawhere in this document to provide
support for debugging breakpoint and trigger conditionsthat are complex. For example, breakpointsthat can be primied
or qualified by other breakpoints and conditions, as well as breakpoints that may need to trigger ssmultaneoudly (as a
tuple for example with other breakpoints).

The commands in this chapter also provides support for StopWatch timers provided in hardware.

10.1 Set a Priming Conditon for the Specified Complex Breakpoint

MDIInt32
MDISetBpPrimingCondition (MDIBpIdT BpId
MDIPrimingConditon Cond)

Returns:
MDISuccess No Error, Bpld has been set to the priming condition specified.
MDIErrBPId Invalid Breakpoint ID
MDIErrParam Theindex into the priming condition table is bad

Description:

Set the priming condition for the specified breakpoint.

If the breakpoint is set successfully, thiswill set the breakpoint specified by BpId with the priming condition specified
by the table entry pointed to by the index specified in the input parameter cond.

10.2 Get the Priming Conditon for the Specified Complex Breakpoint

MDIInt32
MDIGetBpPrimingCondition (MDIBpIdT BpId
MDIPrimingConditon *Cond)

Returns:
MDI Success No Error, priing condition for Bpld has been returned successfully
MDIErrBPId Invalid Breakpoint ID

Description:

Get the priming condition for the specified breakpoint.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 81

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 10 Complex Break and Trigger and StopWatch Timer Command Set

10.3 Query Complex Breakpoint and StopWatch Configuration Options

MDIInt32

MDICbtConfigQuery (MDIHandleT Device,
MDICbtConfigTypeT ConfigType,
MDICbtBkptTypeT BkptType,
MDIUint32 Index,
MDIInt32 *HowMany,
MDICbtConfigT *CbtConfig)

Returns:

MDISuccess No Error

MDIErrDevice Invalid device handle.

MDIErrResource Index exceeds hardware resources

MDIErrParam Invalid parameter, *HowMany should not be negative

MDIErrMore More data exists than requested

MDIErrUnsupported Device does not support CBT

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

The caller specifies the configuration type they want to query in ConfigType. as either primed, qualified, tuple, or
stopwatch type. The BkptType specifies whether an instruction or data breakpoint configuration iswanted. For the
stopwatch type, the stopwatch pair define is used. The Index specifies which instruction or data breakpoint is wanted.
For the stopwatch type, thisis the index of the pair (0 for 1st, 1 for 2nd, etc.).

If the requested number (*HowMany) is 0, the function returns no error (M DI Success) and * HowMany is set to the
number of possible configuration choices. If *HowMany is non-zero on entry, it specifiesthe number of elementsin the
ChbtConfig array being passed in. If there is not enough room in the CbtConfig array to hold all available data,
MDIErrMoreisreturned. If the debugger then callsthe Query routine again before any other MDI functions are called,
information isreturned for the next * HowMany devices. CbtConfig isan array of *HowMany elements. It specifiesthe
type (instruction, data, etc.) and the index (for instruction, data, or stopwatch pairs).

The error MDIErrResource is returned if the Index exceeds hardware capability. For example, inst5 islast valid
instruction breakpoint in the implementation, so when calling this query function with inst6, this error will be returned

Coding exampl e to retrieve configuration of primed conditions for instO:
*howMany = 0;
if ((err = MDICbtConfigQuery (myHandle, MDICBTCONFIGTYPE_PRIMED,
MDICBTCONFIG_INSTRUCTION, 0, *howMany, NULL) {
/* check for error here, then continue processing */
}
cbtConfig = malloc (*howMany * sizeof (MDICbtConfigT)) ;
if ((err = MDICbtConfigQuery (myHandle, MDICBTCONFIGTYPE_PRIMED,
MDICBTCONFIG_INSTRUCTION, 0, *howMany, cbtConfig) ({
/* check for error here, then continue processing */
}

The pair configuration of a pair of breakpoints used as the start/stop triggers for the StopWatch timer is also obtained
using this config query command.

82 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

10.4 Get the Current Value of the StopWatch Timer

10.4 Get the Current Value of the StopWatch Timer

MDIInt32
MDIGetStopWatchValue (MDIHandleT Device,
MDIUint32 *Value)

Returns:
MDISuccess No Error, current value of StopWatch Timer has been returned
MDIErrDevice Invalid device handle.
MDIErrUnsupported Device does not support StopWatch Timer
MDIErrDisabled Service cannot be performed because the deviceis disabled
MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

This call returns the current value of the StopWatch Timer in the processor.

10.5 Clear the Value of the StopWatch Timer

MDIInt32
MDIClearStopWatch (MDIHandleT Device)

Returns:

MDI Success No Error, Timer cleared

MDIErrMDIHandle Invalid device handle

MDIErrUnsupported Device does not support StopWatch Timer

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

Clears the value of the StopWatch Timer.

10.6 Set the Mode of the StopWatch Timer

MDIInt32

MDISetStopWatchMode (MDIHandleT Device,
MDIStopWatchModeT Mode,
MDIUint32 PairIndex,
MDIUint32 startInstIndex,
MDIUint32 stopInstIndex)

Returns:
MDI Success No Error, Timer mode set
MDIErrMDIHandle Invalid device handle
MDIErrUnsupported Device does not support StopWatch Timer

Device does not support the specified Pairlndex or startinstindex or

MDlInvalidPeram stoplnstindex; only valid when Mode is MDI StopWatchPair

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 83

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Chapter 10 Complex Break and Trigger and StopWatch Timer Command Set

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

Sets the mode of the StopWatch Timer. The currently defined modes are free-running or set to a particular start/stop
breakpoint pair. If the latter, then the index of the pair is defined by the Pairlndex value, and the breakpoint that starts
thetimeis specified in startinstindex, and the breakpoint that stops the timer is specified in stoplnstindex. A value of -1
for either of these parametersimplies that the current breakpoint settings are to remain unchanged and will be used.

10.7 Get the Mode of the StopWatch Timer

84

MDIInt32

MDIGetStopWatchMode (MDIHandleT Device,
MDIStopWatchModeT *Mode,
MDIUint32 *PairIndex,
MDIUint32 *startInstIndex,
MDIUint32 *stopInstIndex)

Returns:

M DI Success No Error, Timer mode returned

MDIErrMDIHandle Invalid device handle

MDIErrUnsupported Device does not support StopWatch Timer

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback
Description:

Returns the mode of the StopWatch Timer. The currently defined modes are free-running or set to a particular start/stop
breakpoint pair. If the latter, then the index of the pair is returned in the Pairlndex value, the breakpoint that starts the
timer is returned in startinstindex, and the breakpoint that stops the timer is returned in stoplnstindex.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Appendix A
MDI.h Header File

The user should verify the compiler’s syntax for a 64-bit signed and unsigned entity, using Microsoft’s Visual C++

version 6.0's 64 hit specifiers. The following portion of the specification may be used as a C header file to implement
the specification:

/%
#1i

Start of header file for MDI (mdi.h) */
fndef MDI_Specification_Definitions

#define MDI_Specification_Definitions

/*
*
*
*
*
*
*
*

*

*

*

To build MDILib:
Define MDI_LIB before #include "mdi.h"
Include mdi.def in the link on Windows hosts.

When building an MDI application (debugger) :

In one source file only, define MDILOAD_DEFINE before
#include "mdi.h" to define pointer variables for the API
functions.

/

typedef unsigned int MDIUint32;
typedef int MDIInt32;

#i

fdef _MSC_VER
typedef unsigned _ _int64 MDIUinté64;
typedef __ int64 MDIInté64;

#ifndef _ stdcall
#define _ stdcall _ stdcall
#endif

#else

#if _ WORDSIZE == 64
typedef unsigned long MDIUinté64;
typedef long MDIInt64;

#else
typedef unsigned long long MDIUint64;
typedef long long MDIInt64;

#endif

#ifndef _ stdcall
#define _ stdcall
#endif

#ifndef __declspec
#define _ declspec(e)
#endif

#endif

typedef MDIUint32 MDIVersionT;
typedef struct MDIVersionRange_struct

{

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

85

Appendix A MDI.h Header File

MDIVersionT oldest;
MDIVersionT newest;
} MDIVersionRangeT;

/*
* Define various revision fields
*/
#define MDIMajor 2
#define MDIMinor 32 /* 32 decimal */
#define MDIOldMajor 1
#define MDIOldMinor 0
#define MDICurrentRevision (
#define MDIOldestRevision (

(MDIMajor << 16) | MDIMinor)
(MDIOldMajor << 16) | MDIOldMinor)

typedef MDIUint32 MDIHandleT;
#define MDINoHandle ((MDIHandleT)-1)

typedef MDIUint32 MDITGIAT;

typedef struct MDITGData_struct

{
MDITGIAT TGId; /* MDI ID to reference this Target Group */

char TGName[81]; /* Descriptive string identifying this TG */
} MDITGDataT;

typedef MDIUint32 MDIDeviceIdT;

typedef struct MDIDData_Struct
{

MDIDeviceIdT Id; /* MDI ID to reference this device */
char DName[81]; /* Descriptive string identifying this device */
char Family[15]; /* Device'’s Family (CPU, DSP) */

char FClass[15]; /* Device’s Class (MIPS, X86, PPC) */
char FPart[15]; /* Generic Part Name */

char FISA[15]; /* Instruction Set Architecture */
char Vendor[15]; /* Vendor of Part */

char VFamily[15]; /* Vendor Family name */

char VPart[15]; /* Vendor Part Number */

char VPartRev[15]; /* Vendor Part Revision Number */
char VPartDatal[l5]; /* Used for Part Specific Data */
char Endian; /* 0 Big Endian, 1 Little Endian */

} MDIDDataT;

/* Valid values for MDIDDataT.Family: */
#define MDIFamilyCPU "CPU"
#define MDIFamilyDSP "DSP"

/* Valid values for MDIDDataT.Endian: */
#define MDIEndianBig 0
#define MDIEndianLittle 1

/* MDI Resources */
typedef MDIUint32 MDIResourceT;

typedef MDIUint64 MDIOffsetT;

typedef struct MDIRange_struct

{
MDIOffsetT Start;
MDIOffsetT End;

86 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

}

MDIRangeT;

typedef struct MDICRange_struct

{

}

MDIOffsetT Offset;

MDIResourceT Resource;

MDIInt32 Count;
MDICRangeT;

typedef struct MDIConfig_struct

{

/* Provided By: Other Comments */

char User[80]; /* Host: ID of caller of MDI */
char Implementer[80]; /* MDI ID of who implemented MDI */
MDIUint32 MDICapability; /* MDI: Flags for optional capabilities */

/* Host: CB fn for MDI output */

MDIInt32 (__stdcall *MDICBOutput) (MDIHandleT Device,
MDIInt32 Type,
char *Buffer,
MDIInt32 Count);

/* Host: CB fn for MDI input */

MDIInt32 (__stdcall *MDICBInput) (MDIHandleT Device,
MDIInt32 Type,
MDIInt32 Mode,
char **Buffer,
MDIInt32 *Count) ;

/* Host: CB fn for expression eval */

MDIInt32 (__stdcall *MDICBEvaluate) (MDIHandleT Device,
char *Buffer,
MDIInt32 *ResultType,
MDIResourceT *Resource,
MDIOffsetT *Offset,
MDIInt32 *Size,
void **Value) ;

/* Host: CB fn for sym/src lookup */

MDIInt32 (__stdcall *MDICBLookup) (MDIHandleT Device,
MDIInt32 Type,
MDIResourceT Resource,
MDIOffsetT Offset,
char **Buffer);

/* Host: CB fn for Event processing */
MDIInt32 (__stdcall *MDICBPeriodic) (MDIHandleT Device) ;

/* Host: CB fn for Synchronizing */
MDIInt32 (__stdcall *MDICBSync) (MDIHandleT Device,

MDIInt32 Type,
MDIResourceT Resource) ;

} MDIConfigT;

/* MDIConfigT.MDICapability flag values, can be OR’ed together */

#define MDICAP_NoParser 1 /* No command parser */
#define MDICAP_NoDebugOutput 2 /* No Target I/0 */
#define MDICAP_TraceOutput 4 /* Supports Trace Output */

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

87

Appendix A MDI.h Header File

88

#define MDICAP_TraceCtrl 8 /* Supports Trace Control */

#define MDICAP_TargetGroups 0x10 /* Supports Target Groups */

#define MDICAP_PDtrace 0x20 /* Supports PDtrace functions */

#define MDICAP_TraceFetchI 0x40 /* Supports Instruction Fetch during Trace */
#define MDICAP_TC 0x80 /* Supports Thread Contexts */

#define MDICAP_Teams 0x100 /* Supports Teams */

typedef struct MDIRunState_struct
{
/**
* MdiStatus values
*
Temporary states:
* NotRunning group: Halted, StepsDone, BPHit, UsrBPHit, Exception,

TraceFull, ...
*

* These states will show up on the 1st call to RunState().

* After the 1st call, the new state will be MDIStatusNotRunning.
*

* States used for transitions:

*

These state inform the RunLoop() that a specific MdiDevice is requesting
a cpu state (DevState) change.

*

*

* MdiStatusHalting:
* the mdi device wants to stop. The cpu could still be running or
already halted.
*
* MdiStatusStartingRun:
* the mdi device would like to run as soon as possible. The cpu might
still be halted by other vdev.
*
*/
MDIUint32 Status;
union u_info
{
void *ptr;
MDIUint32 value;
} Info;
} MDIRunStateT;

/* Status values: Info interpretation: */

#define MDIStatusNotRunning 1 /* none */

#define MDIStatusRunning 2 /* none */

#define MDIStatusHalted 3 /* none */

#define MDIStatusStepsDone 4 /* none */

#define MDIStatusExited 5 /* Info.value exit value */
6
7
8

#define MDIStatusBPHit /* Info.value = BpID */

#define MDIStatusUsrBPHit /* none */

#define MDIStatusException /* Info.value = which exception */
#define MDIStatusTraceFull 9 /* none */

/* 10 is skipped to maintained backward compatibility */

#define MDIStatusDisabled 11 /* Device is not in execution mode */

#define MDIStatusMask Oxff /* Status values are in lowest byte */

/* These can be OR’ed in with MDIStatusRunning and MDIStatusNotRunning
*/

#define MDIStatusReset 0x100 /* currently held reset */

#define MDIStatusWasReset 0x200 /* reset asserted & released */

#define MDIStatusResetMask 0x300 /* reset state mask */

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

/* This can also be OR’ed in with MDIStatusHalted */
#define MDIStatusDescription 0x0400 /* Info.ptr = Descriptive string */

typedef struct MDICacheInfo_struct

{
MDIInt32 Type;

MDIUint32 LineSize; /* Bytes of data in a cache line */
MDIUint32 LinesPerSet; /* Number of lines in a set */
MDIUint32 Sets; /* Number of sets */

} MDICacheInfoT;

/* Values for MDICacheInfoT.Type (Cache types): */
#define MDICacheTypeNone
#define MDICacheTypeUnified
#define MDICacheTypelInstruction
#define MDICacheTypeData

w N - O

typedef MDIUint32 MDIBpT;

#define MDIBPT_SWInstruction
#define MDIBPT_ SWOneShot

#define MDIBPT_HWInstruction
#define MDIBPT_HWData

#define MDIBPT_HWBus

#define MDIBPT_HWInstructionPrimed
#define MDIBPT_ HWInstructionQualified
#define MDIBPT_HWInstructionTuple
#define MDIBPT_HWDataPrimed
#define MDIBPT_ HWDataQualified
#define MDIBPT HWDataTuple

P P WO oo Jo0 Ui WwWN B

R O

/* Hardware breakpoint types may have one or more of the following */
/* flag bits OR’ed in to specify additional qualifications. */

#define MDIBPT HWFlg_ AddrMask 0x10000
#define MDIBPT_HWFlg_AddrRange 0x20000
#define MDIBPT_ HWFlg_DataValue 0x40000
#define MDIBPT_HWFlg DataMask 0x80000
#define MDIBPT_HWF1lg_ DataRead 0x100000
#define MDIBPT_HWFlg_DataWrite 0x200000
#define MDIBPT_HWFlg Trigger 0x400000
#define MDIBPT_HWFlg TriggerOnly 0x800000
#define MDIBPT_HWFlg_ TCMatch 0x1000000

#define MDIBPT_HWFlg InvertMatch 0x2000000 // ’'not’ match
#define MDIBPT_HWFlg_ TypeQualMask Oxfff£f0000

#define MDIBPT_TypeMax MDIBPT_HWDataTuple

#define MDIBPT_TypeMask Oxff

/* Hardware breakpoint types 6 to 11 must specify the index of the instruction or
data breakpoint in MDIBPT IndexMask bits */

#define MDIBPT_IndexMask 0xff00

typedef MDIUint32 MDIBpIdT;
#define MDIA11BpID (~ (MDIBpIdT)O)
typedef struct MDIBpData_struct

{

MDIBpIdT Id;
MDIBpT Type;

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Appendix A MDI.h Header File

MDIUint32 Enabled; /* 0 if currently disabled, else 1 */
MDIResourceT Resource;

MDIRangeT Range; /* Range.End may be an end addr or mask */
MDIUint64 Data; /* valid only for data write breaks */
MDIUint64 DataMask; /* valid only for data write breaks */
MDIUint32 PassCount; /* Pass count reloaded when hit */
MDIUint32 PassesToGo; /* Passes to go until next hit */

} MDIBpDataT;

#define MDIBPT_ HWType_Exec 1
#define MDIBPT_ HWType_Data 2
#define MDIBPT_HWType_Bus 4

#define MDIBPT_HWTYpe_AlignMask O0xfO0
#define MDIBPT HWType_AlignShift 4
#define MDIBPT_HWType_MaxSMask 0x3f00
#define MDIBPT_HWType_ MaxSShift 8
#define MDIBPT_ HWType_ VirtAddr 0x4000
#define MDIBPT_ HWType_ ASID 0x8000

typedef struct MDIBpInfo_struct
{

MDIInt32 Num;

MDIUint32 Type;
} MDIBpInfoT;

/* MDI Trace data type */
typedef struct MDITrcFrame_Struct
{
MDIUint32 Tvype;
MDIResourceT Resource;
MDIOffsetT Offset;
MDIUint64 Value;
} MDITrcFrameT;

#define MDITTypePC 1 /* Instruction address only */

#define MDITTypelnst 2 /* Instruction address and value */
#define MDITTypeRead 3 /* Data Load address only */

#define MDITTypeWrite 4 /* Data Store address only */

#define MDITTypeAccess 5 /* Data Access (Load/Store) address only */
#define MDITTypeRData_8 6 /* Data Load address and 8-bit value */
#define MDITTypeWData_8 7 /* Data Store address and 8-bit value */
#define MDITTypeRData_16 8 /* Data Load address and 16-bit value */
#define MDITTypeWData_16 9 /* Data Store address and 16-bit value */
#define MDITTypeRData_32 10 /* Data Load address and 32-bit value */
#define MDITTypeWData_32 11 /* Data Store address and 32-bit value */
#define MDITTypeRData_64 12 /* Data Load address and 64-bit value */
#define MDITTypeWData_64 13 /* Data Store address and 64-bit value */
/* Values for Flags parameter to MDITGOpen () and MDIOpen(): */
#define MDISharedAccess 0

#define MDIExclusiveAccess 1

/* Values for Flags parameter to MDITGClose() and MDIClose(): */
#define MDICurrentState 0
#define MDIResetState 1

/* Values for SyncType parameter to MDICBSync(): */
#define MDISyncBP 0
#define MDISyncState 1
#define MDISyncWrite 2

90 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

/* Values for Direction parameter to MDIMove(): */
#define MDIMoveForward 0
#define MDIMoveBackward 1

/* Values for Mode parameter to MDIFind(): */
#define MDIMatchForward 0

#define MDIMismatchForward 1

#define MDIMatchBackward 2

#define MDIMismatchBackward 3

/* Values for Mode parameter to MDIStep(): */
#define MDIStepInto 0

#define MDIStepForward 1

#define MDIStepOver 2

#define MDINoStep ((MDIUint32)~0)

/* "Wait Forever" value for WaitTime parameter to MDIRunState(): */
#define MDIWaitForever -1

/* Values for Mode parameter to MDIReset(): */
#define MDIFullReset 0
#define MDIDeviceReset 1
#define MDICPUReset 2
#define MDIPeripheralReset 3

/* Values for Flags parameter to MDIReset(): */
#define MDINonIntrusive 1

/* Values for Flags parameter to MDICacheFlush(): */
#define MDICacheHit 0

#define MDICacheWriteBack 1
#define MDICacheInvalidate 2

#define MDICacheWBInval (MDICacheWriteBack|MDICacheInvalidate)
/* 4 is skipped for backward compatibility */

#define MDICacheLock 5

#define MDICacheIndex 0x80

/* Values for Status parameter from MDITraceStatus(): */

#define MDITraceStatusNone 1
#define MDITraceStatusTracing 2
#define MDITraceStatusWaiting 3
#define MDITraceStatusFilling 4
#define MDITraceStatusStopped 5

/* Values for Type parameter to MDICBOutput () and MDICBInput(): */
#define MDIIOTypeMDIIn 1
#define MDIIOTypeMDIOut 2
#define MDIIOTypeMDIErr 3
#define MDIIOTypeTgtIn 4
#define MDIIOTypeTgtOut 5
#define MDIIOTypeTgtErr 6
#define MDITIOTypeMDNotify 7

/* Values for Mode parameter to MDICBInput(): */
#define MDIIOModeNormal 1
#define MDITIORawBlock 2
#define MDIIORawNoBlock 3

/* Values for Type parameter to MDICBEvaluate(): */

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Appendix A MDI.h Header File

#define MDIEvalTypeResource 1
#define MDIEvalTypeChar 2
#define MDIEvalTypeInt 3
#define MDIEvalTypeUInt 4
#define MDIEvalTypeFloat 5
#define MDIEvalTypeNone 6

/* Values for Type parameter to MDICBLookup(): */
#define MDILookupNearest 1
#define MDILookupExact 2
#define MDILookupSource 3

/* MDI function return values: */

#define MDISuccess 0 /* Success */

#define MDINotFound 1 /* MDIFind() did not find a match */

#define MDIErrFailure -1 /* Unable to perform operation */

#define MDIErrDevice -2 /* Invalid Device handle */

#define MDIErrSrcResource -3 /* Invalid Resource type */

#define MDIErrDstResource -4 /* Invalid Resource type */

#define MDIErrInvalidSrcOffset -5 /* Offset is invalid for the specified
resource */

#define MDIErrInvalidDstOffset -6 /* Offset is invalid for the specified
resource */

#define MDIErrSrcOffsetAlignment -7 /* Offset is not correctly aligned for the
specified ObjectSize*/

#define MDIErrDstOffsetAlignment -8 /* Offset is not correctly aligned for the
specified ObjectSize */

#define MDIErrSrcCount -9 /* Count causes reference outside of
the resource space */

#define MDIErrDstCount -10 /* Count causes reference outside of
the resource space */

#define MDIErrBPType -13 /* Invalid breakpoint type */

#define MDIErrRange -14 /* Specified range is outside of the
scope for the resource */

#define MDIErrNoResource -15 /* Hardware resources not available */

#define MDIErrBPId -16 /* Invalid Breakpoint ID */

#define MDIErrMore -17 /* More data is available than was
requested */

#define MDIErrParam -18 /* A parameter is in error, see
specific instructions */

#define MDIErrTGHandle -19 /* Invalid Target Group Handle */

#define MDIErrMDIHandle -20 /* Invalid MDI Environment Handle */

#define MDIErrVersion -21 /* Version not supported */

#define MDIErrLoadLib -22 /* MDIInit(): Error loading library */

#define MDIErrModule -23 /* MDIInit(): Unable to link required
MDI functions from library */

#define MDIErrConfig -24 /* Required callback functions not
present */

#define MDIErrDeviceId -25 /* Invalid device ID */

#define MDIErrAbort -26 /* Command has been aborted */

#define MDIErrUnsupported -27 /* Unsupported feature */

#define MDIErrLookupNone -28 /* Address did not match a symbol or
source line. */

#define MDIErrLookupError -29 /* Invalid address for look up. */

#define MDIErrTracing -30 /* Can't clear trace buffer while
capturing is in progress */

#define MDIErrInvalidFunction -31 /* Function pointer is invalid */

#define MDIErrAlreadyConnected -32 /* MDI Connection has already been made
for this thread */

#define MDIErrTGId -33 /* Invalid Target Group ID */

92 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

#define

#define

#define

#define

#define

#define
#define
#define
#define
#define
#define
#define
#define

typedef

typedef

MDIErrDuplicateBP -34 /* A similar breakpoint has already been
defined for this device, or for global
breakpoints on any device */

MDIErrInvalidFrames -35 /* Range of requested trace frames is
invalid */
MDIErrWrongThread -36 /* Call was not made by the connected
thread */
MDIErrTargetRunning -37 /* Trying to change execution mode of the
thread when it is running */
MDIErrRecursive -38 /* Illegal recursive call from from
MDICDPeriodic */
MDIErrSrcObjectSize -39 /* Invalid ObjectSize for resource */
MDIErrDstObjectSize -40 /* Invalid ObjectSize for resource */
MDIErrTCId -41 /* TC is not valid for device */
MDIErrTooManyTeams -42 /* Too many teams for MDILib */
MDIErrTeamId -43 /* Invalid team ID */
MDIErrDisabled -44 /* Device is disabled */
MDIErrAlreadyMember -45 /* Device 1s already a team member */
MDIErrNotMember -46 /* Device is not a team member */
MDIInt32 MDITCIAT;

struct {

MDIUint32 TCId;
MDIUint32 Status;
} MDITCDataT;

#define
#define
#define
#define
#define
#define

#define
#define

typedef

typedef

MDITCStatusHalted
MDITCStatusFree
MDITCStatusRunning
MDITCStatusBlockedOnWait
MDITCStatusBlockedOnYield
MDITCStatusBlockedOnGS

U W NP o

MDITCStatusMask Oxff
MDITCStatusSuspended 0x100

MDIInt32 MDITeamIdT;

struct {

/* MDIHandle is no longer used but it is remained here

for backword compatibility for FS2 */

MDIHandleT MDIHandle;
MDIHandleT TGHandle;
MDIHandleT DevHandle;
MDIUint32 Flags;

} MDITMDataT;

/* Cond parameter to MDISetBpPrimingCondition(): */

typedef

MDIUint32 MDIPrimingConditionT;

/* Values for ConfigType parameter to MDICbtConfigQuery(): */

typedef
#define
#define
#define
#define

MDIUint32 MDICbtConfigTypeT;

MDICBT ConfigType_Primed 0
MDICBT ConfigType_Qualified 1
MDICBT ConfigType_Tuple 2
MDICBT_ConfigType_StopWatch 3

/* Values for BkptType parameter to MDICbtConfigQuery(): */

typedef

MDIUint32 MDICbtBPTypeT;

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 93

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Appendix A MDI.h Header File

94

#define MDICBT_BPType_StopWatchPair 0
#define MDICBT_ BPType_Instruction 1
#define MDICBT_BPType_Data 2

/* Type and Type2 parameters to MDICbtConfigQuery(): */
typedef MDIUint32 MDICbtConfigItemTypeT;

/* Index parameter to MDICbtConfigQuery(): */
typedef MDIUint32 MDICbtIndexT;

/* Values for CbtConfig parameter to MDICbtConfigQuery(): */
typedef struct MDICbtConfig_struct
{
MDICbtConfigItemTypeT Type;//type of configuration item
MDICbtIndexT Index;//index for item
MDICbtConfigItemTypeT Type2;//used for stopwatch pairs only
MDICbtIndexT Index2;// used for stopwatch pairs only
} MDICbtConfigT;

/* Values for MDICbtConfigT.Type and .Type2 (Config types): */

#define MDICBT_Config_Bypass 0 //used for primed
#define MDICBT Config Instruction 1

#define MDICBT_Config_Data 2

/* Value parameter to MDIGetStopWatchvValue(): */

typedef MDIUint32 MDIStopWatchvValueT;

/* Values for Mode parameter to MDISetStopWatchMode(): */
typedef MDIUint32 MDIStopWatchModeT;

#define MDICBT_StopWatch FreeRun 0 // in free run mode

#define MDICBT_StopWatch_ Pair 1 // pair defined in PairIndex

/* PairIndex parameter to MDISetStopWatchMode(): */
typedef MDIUint32 MDIPairIndexT;

/* StartInstIndex parameter to MDISetStopWatchMode(): */
typedef MDIUint32 MDIStartIndexT;

/* StopInstIndex parameter to MDISetStopWatchMode(): */
typedef MDIUint32 MDIStopIndexT;

/* Function Prototypes */
#ifdef _ cplusplus
extern "C" {

#endif
#if defined(MDI_LIB) /* MDILib, do extern function declarations */
#define yf(str) extern int _ declspec(dllexport) _ stdcall str

#elif defined(MDILOAD_DEFINE) /* debugger, do function pointer definitions */
#define yf(str) int (__stdcall *str)

#else /* debugger, do extern function pointer
declarations */
#define yf(str) extern int (__stdcall *str)
#endif
/* 0 */
v (MDIVersion) (MDIVersionRangeT *) ;
vf (MDIConnect) (MDIVersionT, MDIHandleT*, MDIConfigT*) ;

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

yf (MDIDisconnect) (MDIHandleT, MDIUint32);

v (MDITGQuery) (MDIHandleT, MDIInt32*, MDITGDataT*) ;

v (MDITGOpen) (MDIHandleT, MDITGIAT, MDIUint32, MDIHandleT *);

/* 5 */

vE (MDITGClose) (MDIHandleT, MDIUint32);

v (MDITGExecute) (MDIHandleT) ;

vE (MDITGStop) (MDIHandleT) ;

v (MDIDQuery) (MDIHandleT, MDIInt32%*, MDIDDataT *);

vf (MDIOpen) (MDIHandleT, MDIDeviceIdT, MDIUint32, MDIHandleT *);

/* 10 */

v (MDIClose) (MDIHandleT, MDIUint32);

vf (MDIRead) (MDIHandleT, MDIResourceT, MDIOffsetT, void*, MDIUint32,
MDIUint32) ;

vE (MDIWrite) (MDIHandleT, MDIResourceT, MDIOffsetT, void*, MDIUint32,
MDIUint32) ;

vf (MDIReadList) (MDIHandleT, MDIUint32, MDICRangeT*, MDIUint32, void¥*);

vf (MDIWriteList) (MDIHandleT, MDIUint32, MDICRangeT*, MDIUint32, void*);

/* 15 */

v (MDIMove) (MDIHandleT, MDIResourceT, MDIOffsetT, MDIResourceT,

MDIOffsetT, MDIUint32, MDIUint32, MDIUint32) ;

vf (MDIFill) (MDIHandleT, MDIResourceT, MDIRangeT, void*, MDIUint32,
MDIUint32) ;

vf (MDIFind) (MDIHandleT, MDIResourceT, MDIRangeT, void*, void¥*,

MDIUint32, MDIUint32, MDIOffsetT*, MDIUint32);

vEi (MDIExecute) (MDIHandleT) ;

vEi (MDIStep) (MDIHandleT, MDIUint32, MDIUint32) ;

/* 20 */

v (MDIStop) (MDIHandleT) ;

vf (MDIReset) (MDIHandleT, MDIUint32);

vEi (MDICacheQuery) (MDIHandleT, MDICacheInfoT*);

vf (MDICacheFlush) (MDIHandleT, MDIUint32, MDIUint32);

vi (MDIRunState) (MDIHandleT, MDIInt32, MDIRunStateT *);

/* 25 */

v (MDISetBp) (MDIHandleT, MDIBpDataT¥*) ;

vi (MDISetSWBp) (MDIHandleT, MDIResourceT , MDIOffsetT , MDIBpIdT*);

vi (MDIClearBp) (MDIHandleT, MDIBpIdT) ;

vf (MDIEnableBp) (MDIHandleT, MDIBpIdT) ;

vf (MDIDisableBp) (MDIHandleT, MDIBpIAT) ;

/* 30 */

vEi (MDIBpQuery) (MDIHandleT, MDIInt32*, MDIBpDataT*);

v (MDIDoCommand) (MDIHandleT, char¥*);

v (MDIAbort) (MDIHandleT) ;

vf (MDITraceEnable) (MDIHandleT) ;

yvf (MDITraceDisable) (MDIHandleT) ;

/* 35 */

vi (MDITraceClear) (MDIHandleT) ;

vf (MDITraceStatus) (MDIHandleT, MDIUint32 *);

yvf (MDITraceCount) (MDIHandleT, MDIUint32 *);

v (MDITraceRead) (MDIHandleT, MDIUint32, MDIUint32, MDIUint32, MDITrcFrameT
*);

vi (MDISetTC) (MDIHandleT, MDITCIAT) ;

/* 40 */

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

95

Appendix A MDI.h Header File

96

vE (MDIGetTC) (MDIHandleT, MDITCIAT*);

v (MDITCQuery) (MDIHandleT, MDIInt32%*, MDITCDataT*) ;

v (MDISetRunMode) (MDIHandleT, MDITCIAT, MDIUint32, MDIUint32) ;

vf (MDITeamCreate) (MDIHandleT, MDITeamIdT¥*) ;

vi (MDIQueryTeams) (MDIHandleT, MDIInt32*, MDITeamIdT*) ;

/* 45 */

vf (MDIHwBpQuery) (MDIHandleT, MDIInt32*%, MDIBpInfoT¥*);

vf (MDICacheOp) (MDIHandleT, MDIResourceT, MDIInt32, MDIResourceT, MDIOffsetT,
MDIUint32);

vf (MDICacheSync) (MDIHandleT, MDIResourceT, MDIOffsetT, MDIUint32);
vi (MDICacheInfo) (MDIHandleT, MDIResourceT, MDICacheInfoT¥*);
v (MDITeamClear) (MDIHandleT, MDITeamIdT) ;

/* 50

*/

MDITeamDestroy) (MDIHandleT, MDITeamIdT) ;
MDITMAttach) (MDIHandleT, MDITeamIdT, MDITMDataT*) ;

MDIQueryTM) (MDIHandleT, MDITeamIdT, MDIInt32*, MDITMDataT¥*) ;

yE(
yE(
vi (MDITMDetach) (MDIHandleT, MDITeamIdT, MDITMDataT¥*) ;
yE(
vE(

MDITeamExecute) (MDIHandleT, MDITeamIdT) ;

/* 55

*/

vE (MDISetBpPrimingCondition) (MDIHandleT, MDIBpIdT, MDIPrimingConditionT) ;
vf (MDIGetBpPrimingCondition) (MDIHandleT, MDIBpIdT, MDIPrimingConditionT*) ;
vf (MDICbtConfigQuery) (MDIHandleT, MDICbtConfigTypeT, MDICbtBPTypeT,

MDICbtIndexT, MDIInt32*, MDICbtConfigT¥*) ;

v (MDIGetStopWatchValue) (MDIHandleT, MDIStopWatchvValueT*) ;
vi(MDIClearStopWatch) (MDIHandleT) ;
v (MDISetStopWatchMode) (MDIHandleT, MDIStopWatchModeT, MDIPairIndexT,

MDIStartIndexT, MDIStopIndexT) ;

vf (MDIGetStopWatchMode) (MDIHandleT, MDIStopWatchModeT*, MDIPairIndexT*,

#undef yf

MDIStartIndexT*, MDIStopIndexT¥*) ;

#ifdef _ cplusplus

}
#endif

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Appendix B

Example Code to Setup an MDILib Connection

/*******************‘k**

This may serve as a starting point to connect to MDI.dll
The mdiinit.c is used to find and link the MDI.dll

***/

#if defined(_WIN32) || defined(__CYGWIN32_)
#include <windows.h>

#else

typedef void *HMODULE;

#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MDI_ALLOCATE
#include <mdi.h>

#include <mdimips.h>
#include <mdiinit.h>

MDIHandleT MDIhandle;
MDIHandleT TGhandle;
MDIHandleT Devhandle;
MDIDDataT DeviceData;
MDIConfigT config;

#define ec(str) {str, #str}
struct errorcodes_struct {

int errorcode;
char *str;

} errorcodes[] = {

ec(MDIErrFailure),
ec(MDIErrDevice),
ec(MDIErrSrcResource),
ec(MDIErrDstResource),
ec(MDIErrInvalidSrcOffset),
ec(MDIErrInvalidDstOffset),
ec(MDIErrSrcOffsetAlignment),
ec(MDIErrDstOffsetAlignment),
ec(MDIErrSrcCount),
ec(MDIErrDstCount),
ec (MDIErrBPType),
ec (MDIErrRange),
ec (MDIErrNoResource),
ec(MDIErrBPId),
ec (MDIErrMore),
ec(MDIErrParam),
ec(MDIErrTGHandle),
ec(MDIErrMDIHandle),
ec(MDIErrVersion)

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

97

Appendix B Example Code to Setup an MDILib Connection

98

MDIErrLoadLib
MDIErrModule
MDIErrConfig
MDIErrDeviceId
MDIErrAbort
MDIErrUnsupported
MDIErrLookupNone
MDIErrLookupError
MDIErrTracing
MDIErrInvalidFunction
MDIErrAlreadyConnected
MDIErrTGId
MDIErrDuplicateBP
MDIErrInvalidFrames
MDIErrWrongThread
MDIErrTargetRunning
MDIErrRecursive

0, "Undefined"

Y

/**

ChkMDIerr If errno is != 0,
Returns 0 if errno is MDISuccess, otherwise -1.

Display the MDI error on the console

***/

int ChkMDIerr (int errno)

{

int i;

if

(errno)
{
for (i = 0;
errorcodes[1] .err
i++)
{
}
fprintf (stderr,
"\nMDI Error (
return -1;

}

return 0;

orcode && errorcodes[i].errorcode != errno;

%d) %s\n", errno, errorcodes[i].str);

/*******************‘k**

SelectDevice
Returns -1 if no devices are present otherwise, index of selected device in device

arr

ay.

~k**/

int

SelectDevice (MDIDDataT *base,

{

int

i;

char buffer[81];

int

if

value;

('number)

{

int number)

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

return (-1);
}
if (number == 1)
{
return (0);
}
do
{
fprintf (stdout, "Select Device:\n");
for (i = 0; 1 < number ; i++)
{
fprintf (stdout, " %02d) %s\n", i + 1, base[i].DName) ;
}
fprintf (stdout, "Enter Number (1-%d) >", number) ;
fgets (buffer, sizeof (buffer), stdin);
value = atoi (buffer);

}
while (value < 1 || value > number) ;
return (value - 1);

/**

SelectTarget
Returns -1 if no Target groups are present otherwise, index of selected target

group 1in target group array.
***/

int
SelectTarget (MDITGDataT *base, int number)
{

int 1i;

char buffer([81];

int value;

if (!number)
{
return (-1);
}

if (number == 1)
{
return (0);
}

do

{
fprintf (stdout, "Select Target Group:\n");

for (i = 0; i < number ; i++)
{
fprintf (stdout, " %$02d) %s\n", i + 1, base[i].TGName) ;
}

fprintf (stdout, "Enter Number (1-%d) >", number) ;

fgets (buffer, sizeof (buffer), stdin);
value = atoi (buffer);

}
while (value < 1 || value > number) ;
return (value - 1);

/**

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Appendix B Example Code to Setup an MDILib Connection

OpenDev
Creates an array of the available devices in the target group, but if more than 1,

it queries the user as to which device it wants to connect.

Returns
If successful on device open, then DevHandle is set and 0 is

returned
If error, then a number < 0 is returned to indicate the error
~k**/
int
openDev (void)
{

MDIDDataT temp;

MDIDDataT *tempbase;

int NumDevices;

int retval;

int SelectedDevice;

NumDevices = 0;
retval = MDIDQuery (TGhandle, &NumDevices, &temp) ;
if (ChkMDIerr (retval))

{

return retval;

}

tempbase = (MDIDDataT *)malloc (NumDevices * sizeof (MDIDDataT)) ;
retval = MDIDQuery (TGhandle, &NumDevices, tempbase);
if (ChkMDIerr (retval))

{

free (tempbase);

return retval;

}

SelectedDevice = SelectDevice (tempbase, NumDevices) ;

if (SelectedDevice < 0)
{
free (tempbase) ;
return (-5000) ;

}

memmove (&DeviceData, &tempbase[SelectedDevice], sizeof (MDIDDataT)) ;

free (tempbase) ;

retval = MDIOpen (TGhandle, DeviceData.Id, MDIExclusiveAccess, &Devhandle) ;
ChkMDIerr (retval) ;

return retval;

/**

openTG

If the MDI DLL does not support target groups, then set the TGhandel to the
MDIhandle and return 0; otherwise, create an array of the available target groups
If more than 1, query the user as to which target group it wants to connect.

Returns
If successful on target group open, then TGhandle is set and 0is returned

If error, then a number < 0 is returned to indicate the error

100 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

k*/
int
openTG (void)
{
int retval;
MDITGDataT temp;
MDITGDataT *tempbase;
int SelectedTarget;
int NumTargets;

/* If the MDI DLL we're connecting to, does not do target groups,
then just use the MDIhandle for the TGhandle */

if (! (config.MDICapability & MDICAP_TargetGroups))

{
TGhandle = MDIhandle;
return 0;

}

NumTargets = 0;
retval = MDITGQuery (MDIhandle, &NumTargets, &temp) ;
if (ChkMDIerr (retval))

{

return retval;

}

tempbase = (MDITGDataT *)malloc (NumTargets * sizeof (MDITGDataT)) ;
if (!tempbase)

{

return -5000;

}
retval = MDITGQuery (MDIhandle, &NumTargets, tempbase);
if (ChkMDIerr (retval))

{

free (tempbase) ;

return retval;

}
if (NumTargets > 1)

{

SelectedTarget = SelectTarget (tempbase, NumTargets) ;

}
else

{
SelectedTarget = 0;

}

if (SelectedTarget < 0)
{
free (tempbase) ;
return -5001;
}

retval = MDITGOpen (MDIhandle, tempbase[SelectedTarget].TGId,
MDIExclusiveAccess, &TGhandle);
free (tempbase) ;

ChkMDIerr (retval) ;

return retval;

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

101

Appendix B Example Code to Setup an MDILib Connection

102

}

/***k****k****************k******k****k*********************************

MDIDbgOutput

Required MDI output routine.

Returns MDISuccess

Just send buffers along to stderr and stdout

***/

int __ stdcall

MDIDbgOutput (MDIHandleT handle,

{

MDIInt32 Type, char *Buffer, MDIInt32 Count)

if (Type == MDIIOTypeMDIErr || Type == MDIIOTypeTgtErr)

fwrite(Buffer, Count,

else

fwrite(Buffer, Count,

return(MDISuccess);

}

stderr);

stdout) ;

/**

MDIDbgInput

Required MDI input routine.

Returns MDISuccess

Just get a line from the console and send it in.

***/

int _ stdcall

MDIDbgInput (MDIHandleT handle,

MDIInt32 Type, MDIInt32 Mode,

char **Buffer, MDIInt32 *Count)

static charlinebuf[1024 1];

*Buffer = fgets(linebuf,
*Count = strlen(linebuf

return(MDISuccess);

}

sizeof (linebuf), stdin);

/**

opendevice

Load MDI dll through MDIInit.

Connect to MDI dll through MDIConnect.

Open a Target Group

Open the device we want to drive.

Returns MDISuccess if succesful number < 0 if error
***/

int

opendevice (void)

{
int retval;
MDIVersionT version;
HMODULE h;

retval = MDIInit (0, &h);

if (ChkMDIerr (retval))

{

return retval;

}

version = MDICurrentRevision;

memset (&config, 0, sizeof

config.MDICBOutput =

(config));
MDIDbgOutput;

config.MDICBInput = MDIDbgInput;

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

retval = MDIConnect (version, &MDIhandle, &config);
if (ChkMDIerr (retval))

{

return retval;

}

if (openTG())
{
retval = MDIDisconnect (MDIhandle, 0);
ChkMDIerr (retval) ;
return -5000;
}

if (openDev())
{
retval = MDITGClose (TGhandle, O0);
ChkMDIerr (retval) ;
retval = MDIDisconnect (MDIhandle, 0);
ChkMDIerr (retval) ;
return -5001;
}
return O;

}

/**

closedevice
Close down the resources that were used in opendevice
Returns MDISuccess if succesful number < 0 if error
***/
int
closedevice (void)
{
int closeerror;
int retval;

retval = MDIClose (Devhandle, 0);
closeerror = retval;

ChkMDIerr (retval) ;

retval = MDITGClose (TGhandle, 0);
closeerror |= retval;

ChkMDIerr (retval) ;

retval = MDIDisconnect (MDIhandle, 0);
closeerror |= retval;

ChkMDIerr (retval) ;

return closeerror;

int
main (int argc, char *argvl[])

{

if (opendevice())
{
return (-1);

}
/* Application Code */
if (closedevice())

{

return (-1);

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 103
Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Appendix B Example Code to Setup an MDILib Connection

}

return (0);

104 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

C.1 Abstract

Appendix C
An MDI Addendum for MIPS32® and MIPS64® Architectures

C.1 Abstract

The MIPS architecture-specific resource objects of the MIPS Debug Interface (MDI) are described in this appendix.

C.2 MIPSMDIDDataT Fields

Valid values for the MDIDDataT.FFamily and MDIDDataT.FI SA fields returned by MDIDQuery() are architecture
specific. For MIPS, MDIDDataT.FFamily must be set to MDIMIP_FClass ("MIPS"). Valid valuesfor
MDIDDataT.FISA are:

MDIMIP_FISA_M1 "MIPS"

MDIMIP_FISA_M2 "MIPSIT"
MDIMIP_FISA_M3 "MIPSHI"
MDIMIP_FISA_M4 "MIPSIV"
MDIMIP_FISA_M5 "MIPSV"
MDIMIP_FISA_M32 "MIPS32"
MDIMIP_FISA_M64 "MIPS64"

C.3 MIPS Exception Codes

When MDIRunState() returns a RunState. Status value of MDI StatusException, the meaning of RunState.Info.valueis
architecture-specific. For MIPS processors, the value returned are the contents of the ExcCode field of the CPO Cause
register.

C.4 MIPS16e Instructions

For MIPS processors, it is necessary for the MDILib to know if a software breakpoint isbeing set viathe MDIBpSet and
MDISWBpSet (functions are on a normal 32-bit instruction or a MIPS16e instruction). Also, it is necessary for the
debugger to know whether an instruction trace frame returned by MDITraceRead() isaMIPS16e instruction or not. For
both cases, MIPS16e instructions are signaled by setting the low order bit in the corresponding address offset to 1.
mdimips.h definesthe name MDIMIP_FIg MIPS16 for this purpose.

C.5 MIPS Resources

The "Programming Mnemonic" is the macro name defined in the header file mdimips .h, made available with this
MDI addendum. Asaminimum, al MIPS MDILib implementations are required to support the following encodings:
MDIMIPCPU, MDIMIPPC, MDIMIPHILO, MDIMIPCPO, MDIMIPPHY SICAL, and MDIMIPGVIRTUAL.
MDIMIPGVIRTUAL support may be limited to the physically mapped segments. If the target processor includes

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 105

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Appendix C An MDI Addendum for MIPS32® and MIPS64® Architectures

floating point hardware, the MDILib implementation is also required to support MDIMIPCP1, MDIMIPCP1C,
MDIMIPFP, MDIMIPFPR, and MDIMIPDFP (if double precision is available).

For register type resources, if the size of the object being written to that register is smaller than the width of the register,
then the register is written into the low-order bits and sign-extended. If the sizeis smaller and the register is being read,
then the low-order bits of the register supply the value. When the size of the object being read is larger than the register
width, then the register value is sign-extended to the desired width. If the size islarger than the register being written,
then the high-order bits are ignored.

It is strongly recommended that M1PS MDILib implementations support all encodings for resources that the target
system actually provides. Table C-1 lists the specific resource encodings (address spaces) defined for the MIPS

architecture:
Table C-1 : MIPS32/M1PS64 Resour ce Definition
MIPS Resource MDI Mnemonic Offset Definition
CPU General Registers MDIMIPCPU Offset is the register number, 0-31
PC Pseudo Register MDIMIPPC Offset will be 0. If it isa MIPS16e instruction, then bit

Oisset to value one.

OffsetisOfor register HI, 1 for register LO, 2 for ACX,
HI/LO Registers MDIMIPHILO 3for HI1, 4for LO1, 5for ACX1, 6for HI2, 7 for LO2,
8 for ACX2,9for HI3, 10 for LO3, and 11 for ACX3.

Each CPx general register set consists of up to 256 banks

MDIMIPCPx of 32 registers. Offset(bits 12:5) select the bank.
Coprocessor General Registers Offset(bits 4:0) select the register. Progamatically,
x=0,1,20r3 ((bank << 5) + register = Offset). CPx generd registers

are those accessed by the MTCx/MFCx instructions.

Each CPx control register set consists of up to 256 banks

MDIMIPCPxC of 32 registers. Offset(bits 12:5) select the bank.
Coprocessor Control Registers Offset(bits 4:0) select the register. Progamatically,
x=0,1,2,0r3 ((bank << 5) + register = Offset). CPx control registers

are those accessed by the CTCx/CFCx instructions.

Offset is 0 to n-1, where n is the number of
single-precision registers available:

16 MIPSI, MIPSII.

CPU Single-precision FP Pseudo MDIMIPEP 32 MIPS I, MIPS 1V, MIPSV, MIPS32, MIPS64.
Registers

These are the single precision (32-hit) floating-point
valuesimplemented in floating-point general purpose
registers (FGRs). Offsets 0-15 map to FGRS[0,2,4,...]
in MIPS1 and MIPS Il processors, since the odd

numbered FGRs can not hold a single-precision value.

Offset is 0 to n-1, where n is the number of
double-precision registers available:

16 MIPSI, MIPS I, MIPS32.

CPU Double-precision FP 32 MIPSIII, MIPS 1V, MIPS V, MIPS64.
Pseudo Registers MDIMIPDFP - . . .
These are the double precision (64-bit) floating-point
valuesimplemented in floating-point general purpose
registers (FGRs). Offsets0-15 map to FGRS[0,2,4,...] in
MIPS I, MIPS Il and MIPS32 processors, since it takes

two 32-bit FGRs to hold each double precision value.

106 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

C.5 MIPS Resources

Table C-1 : MIPS32/M1PS64 Resour ce Definition

FP registers access via software
model

MDIMIPFPR

If implemented, thisresource providesasoftware model
of the FP register without the debugger requiring a
detailed knowledge of how the hardware is
implemented. In essense, it provides the abstraction of
the ValueFPR() and StoreFPR() pseudo-code defined in
the second volume of the MIPS64 Architecture
Programming Manual.

The details for how this resource worksis shownin
Table C-2, Table C-3, and Table C-4.

192 bit Accumulator

MDIMIP192ACC

The 192-bit accumulator register is addressed as three
64-hit registers. Offset is O for the high 64 bits, 1 for the
middle 64 bits, and 2 for the low-order 64 bits.

Primary Instruction and Unified
Cache Tags

MDIMIPPICACHET
MDIMIPPUCACHET

This spaceis organized as an array of cache tag entries
each of TagSize/ 4 registers, where TagSizeis returned
by MDICacheQuery () in MDICachelnfoT. Each
cache tag entry consists of cache tag registers followed
by cache parity registers. For processors that do not
support cache parity bits, writes to the cache parity
registers are ignored and reads return zero.

Offset is 0 through n-1, where n is the total number of
registersin all cachetag entries. For multi-set caches, all
of the cache tag entries for set 0 are followed by all of
the cache tag entries for set 1, etc.

Primary Data Cache Tags

MDIMIPPDCACHET

See Primary Instruction and Unified Cache Tags' offset
definition above.

Secondary Instruction and
Unified Cache Tags

MDIMIPSICACHET
MDIMIPSUCACHET

See Primary Instruction and Unified Cache Tegs' offset
definition above.

Secondary Data Cache Tags

MDIMIPSDCACHET

See Primary Instruction and Unified Cache Tags' offset
definition above.

Tertiary Instruction and Unified
Cache Tags

MDIMIPTICACHET
MDIMIPTUCACHET

See Primary Instruction and Unified Cache Tegs' offset
definition above.

Tertiary Data Cache Tags

MDIMIPTDCACHET

See Primary Instruction and Unified Cache Tags offset
definition above.

Primary Instruction and Unified
Cache Data

MDIMIPPICACHE
MDIMIPPUCACHE

Offset is the byte offset within the cache. For multi-set
caches, set 0 comes first in the address space,
immediately followed by set 1, etc.

Primary Data Cache Data

MDIMIPPDCACHE

See Primary Instruction and Unified Cache offset
definition above.

Secondary Instruction and
Unified Cache Data

MDIMIPSICACHE
MDIMIPSUCACHE

See Primary Instruction and Unified Cache offset
definition above.

Secondary Data Cache Data

MDIMIPSDCACHE

See Primary Instruction and Unified Cache offset
definition above.

Tertiary Instruction and Unified
Cache Data

MDIMIPTICACHE
MDIMIPTUCACHE

See Primary Instruction and Unified Cache offset
definition above.

Tertiary Data Cache Data

MDIMIPTDCACHE

See Primary Instruction and Unified Cache offset
definition above.

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

107

Appendix C An MDI Addendum for MIPS32® and MIPS64® Architectures

Table C-1 : MIPS32/M1PS64 Resour ce Definition

This spaceis organized as an array of TLB entries.
Offset is 0 through n-1 where nistwo or four timesthe
number of TLB entries availablein the MMU,
depending on type:

Trand ate Lookaside Buffers MDIMIPTLB For MIPS1 style single entry MMUs, a TLB entry
consists of two registers, EntryLo followed by EntryHi.

For MIPS3 style double entry MMUs, a TLB entry
consistsof four registers, EntryL o0, EntryL o1, EntryHi,

and PageMask.
Physical Memory MDIMIPPHY SICAL Offset isthe physical byte address.
Global Virtua Memory MDIMIPGVIRTUAL Offset isthe virtual byte address.

Offset is the byte address within the virtual address
space specified by the given ASID value. The
MOIMIPVIRTUAL + | MDIMIPVIRTUAL equate is set to 0x1000. Specific
ASID spaces can then be referenced as
MDIMIPVIRTUAL + asid.

ASID Virtual Memory

For processors that implement the MIPS EJTAG
specification, this resource refersto the

EJTAG Memory MDIMIPEJTAG memory-mapped EJTAG registers. Offset is the byte
offset from the beginning of register bank, as specified
in the EJTAG specification.

For processorsthat implement Release 2 of the M1PS32
or MIPS64 architecture and include shadow register

. sets. The architectural maximum limit for nis 16. The
Release 2 Shadow Register St | MDIMIPSRS number of the shadow register set is specified by the
offset field. The SRS bank number and register number
are combined using (set* 32)+regno.

DSPControl register (used by th .
MIPS%“S[SA?E)“(” YIhe | MDIMIPDSP For processors that implement the M1PS DSP ASE

For processors that implement the MIPS MT ASE, this
ITC Memory MDIMIPITC defines the ITC memory. Offset is the byte offset from
the start of the ITC region.

Registers accesssed using the RDHWR Release 2

Release 2 Hardware registers MDIMIPHWR instruction. Thisis aread-only resource.

Table C-2: MDIMIPFPR Resource Detailsfor MIPSIII, 1V, & MIPS64, or MIPS32 with 64-bit FP

Data FP32 Offset Read Write
Size Registers
Mode
4 na Even& Odd | VALUE <- FPR[OFFSET]3; o FPR[OFFSET] <- VALUEg;
8 FR=1 Even& Odd | VALUE <- FPR[OFFSET]g3 o FPR[OFFSET] <- VALUEg3 o
VALUE <-

FPR[OFFSET] <- VALUEg ,

8 FR=0 Even (FPR[OFFSET+1]3; << 32)
FPR[OFFSET+1] <- VALUEg; 3o

| FPRIOFFSET]31 0

8 FR=0 Odd MDI ErrSrcOffsetAlignment M DI ErrDstOff setAlignment

108 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

C.6 MIPS-Specific Breakpoint Implementation

Table C-3: MDIMIPFPR Resource Details for M1PS32 (32-bit FP)

Data Offset Read Write
Size
4 Even & Odd | VALUE <- FPR[OFFSET]3; o FPR[OFFSET] <- VALUEg; ¢
FPR[OFFSET] <- VALUEg; o
8 Even VALUE <- (FPR[OFFSET+1]3; << 32) || FPR[OFFSET]3; o
FPR[OFFSET+1] <- VALUEg; 3o
8 Odd MDIErrSrcOffsetAlignment MDIErrDstOffsetAlignment

Table C-4 : MDIMIPFPR Resource Detailsfor MIPSI1 & |1

Data Offset Read Write

Size
4 Even VALUE <- FPR[OFFSET/2]3; o FPR[OFFSET/2]3; o <- VALUEg
4 Odd VALUE <- FPR[OFFSET/2]¢3 32 FPR[OFFSET/2]¢3 30 <- VALUEg; o
8 Even VALUE <- FPR[OFFSET]g3 o FPR[OFFSET] <- VALUEg; o
8 Odd MDIErrSrcOffsetAlignment MDIErrDstOffsetAlignement

C.6 MIPS-Specific Breakpoint | mplementation

C.6.1 MDISetBP() and M DI SetSWBp() Function Calls

With respect to the M DI SetBP() function call, when initializing the Range parameter in the MDIBpDataT datastructure,
if the instruction is MIPS16e, then bit O of range.start should have avalue of 1.

For the MDISetSWBp() function call, the offset must be odd if it is a MIPS16e instruction.

C.6.2 Implementation of M DI SetSWBp()
MDIBPT_SWiInstruction isimplemented in the M1PS architecture using the BREAK or SDBBP instruction. The

hardware breakpoints, for example MDIBPT_HWInstruction, isimplemented using either the coprocessor 0 Watch
registers, or the EJTAG hardware breakpoint registers.

C.7 MIPS Specific Header File

The following header file, mdimips.h, may be used as a C header file to implement the specification for MIPS
architectures:

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 109

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Appendix C An MDI Addendum for MIPS32® and MIPS64® Architectures

110

/* Start of header file for MIPS Specific MDI

(MDImips.h) */

#ifndef MDI_MIPS_Specification_Definitions
#define MDI_MIPS_Specification_Definitions

/* Valid values for MDIDDataT.FClass: */

#define MDIMIP_FClass

"MIPS"

/* Valid values for MDIDDataT.FISA: */

#define MDIMIP_FISA_ M1
#define MDIMIP_FISA_ M2
#define MDIMIP FISA M3
#define MDIMIP FISA M4
#define MDIMIP_FISA_ M5
#define MDIMIP FISA M32
#define MDIMIP_FISA_M64

"MIPSI"
"MIPSII"
"MIPSIII"
"MIPSIV"
"MIPSV"
"MIPS32"
"MIPS64"

/* Valid values for Resource */

#define MDIMIPCPU
#define MDIMIPPC
#define MDIMIPHILO
#define MDIMIPTLB
#define MDIMIPPICACHET
#define MDIMIPPUCACHET
#define MDIMIPPDCACHET
#define MDIMIPSICACHET
#define MDIMIPSUCACHET
#define MDIMIPSDCACHET
#define MDIMIP192ACC
#define MDIMIPCPO
#define MDIMIPCPOC
#define MDIMIPCP1
#define MDIMIPCPI1C
#define MDIMIPCP2
#define MDIMIPCP2C
#define MDIMIPCP3
#define MDIMIPCP3C
#define MDIMIPFP
#define MDIMIPDFP
#define MDIMIPPICACHE
#define MDIMIPPUCACHE
#define MDIMIPPDCACHE
#define MDIMIPSICACHE
#define MDIMIPSUCACHE
#define MDIMIPSDCACHE
#define MDIMIPPHYSICAL
#define MDIMIPGVIRTUAL
#define MDIMIPEJTAG
#define MDIMIPSRS
#define MDIMIPFPR
#define MDIMIPDSP
#define MDIMIPTICACHET
#define MDIMIPTUCACHET
// 31 skipped for backwards
#define MDIMIPTDCACHET
#define MDIMIPTICACHE
#define MDIMIPTUCACHE
// 34 skipped for backwards
#define MDIMIPTDCACHE
#define MDIMIPITCVIRTUAL
#define MDIMIPITC

u s W N

MDIMIPPICACHET
6

7
MDIMIPSICACHET
8

9

10

11

12

13

14

15

16

17

18

19

20
MDIMIPPICACHE
21

22
MDIMIPSICACHE
23

24

25

26

27

28

29

30
MDIMIPTICACHET
compatibility with Spec rev 2.11
32

33
MDIMIPTICACHE

compatibility with spec rev 2.11

35
36
MDIMIPITCVIRTUAL // for backwards compatibility

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

C.7 MIPS Specific Header File

#define MDIMIPHWR 37
#define MDIMIPCURPC 38
#define MDIMIPVIRTUAL 0x00001000 /* 0x10xx: 0x1000+ASID value */

/* FS2: enables host-based memory cache when combined with MDIMIPPHYSICAL,
MDIMIPGVIRTUAL, or MDIMIPVIRTUAL */
#define MDIMIPHOSTCACHE 0x80000000

/*

** For MDISetBp(),MDISetSWBp (), MDITraceRead(), and for the MDIMIPPC
** resource, setting the low order address bit to 1 means that

** the addressed instruction is a MIPSl6e instruction.

*/

#define MDIMIP_Flg_MIPS16 1

#endif

/* End of header file for MIPS Specific MDI (MDImips.h) */

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 111

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Appendix C An MDI Addendum for MIPS32® and MIPS64® Architectures

112 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Appendix D
MDI_PDtrace.h Header File

/* Start of header file for PDtrace (mdi_PDtrace.h) */

#ifndef MDITRACE_Specification_Definitions
#define MDITRACE_Specification_Definitions

/*
This is the trace extensions for the MDI specification. Upon approval,
this header file will be merged into mdi.h.

*/

/*
From mdi.h:

To build MDILib:
Define MDI_LIB before #include "mdi.h"
Include mdi.def in the link on Windows hosts.

To build an MDI application (debugger) :
Compile mdiinit.c and include it in your 1link
Make a call to
int MDIInit (char *MDIdllpathandname, HMODULE *handle)
to explicitly load the specified MDILib before making any other MDI calls.
*/

#include "mdi.h" //need standard defines
/* Trace Resources */

typedef MDIUint32 MDITraceFrameCountT;

/* MDI Trace data type */

typedef struct {
MDIUint32 Word; // address of beginning of trace frame in trace memory
MDIUint32 Bit; // bit number of beginning of trace frame within trace word.
} MDITraceFrameNumberT;

typedef struct MDITraceFrame_Struct
MDITraceFrameNumberT FrameNumber;
MDIUint32 Type;
MDIResourceT Resource;
MDIOffsetT Offset;
MDIUint64 Value;

} MDITraceFrameT;

typedef struct {

MDIUint32 Mode; // trace mode (see definitions above)
MDIUint32 Knob; // other trace mode knobs (see definitions below)
MDIUint32 Knob2; // more trace mode knobs (see defines below)

} MDITraceModeT;
/* Values for Mode member of MDITraceMode: */

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 113

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Appendix D MDI_PDtrace.h Header File

114

#define PDtraceMODE_PC
#define PDtraceMODE_LA
#define PDtraceMODE_SA
#define PDtraceMODE_LD
#define PDtraceMODE_SD

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010

/* Values for Knob member of MDITraceMode:

#define PDtraceKNOB_Dbg
#define PDtraceKNOB_Exc

(EXL or ERL set)

#define PDtraceKNOB_Sup
#define PDtraceKNOB_Ker
#define PDtraceKNOB_Usr
#define PDtraceKNOB_ASIDMask
#define PDtraceKNOB_ASIDShift
#define PDtraceKNOB_G
#define PDtraceKNOB_SyPMask
#define PDtraceKNOB_SyPShift
#define PDtraceKNOB_TMMask
#define PDtraceKNOB_TMShift
#define PDtraceKNOB_OfC
#define PDtraceKNOB_CA
records)

#define PDtraceKNOB_IO
overflow)

#define PDtraceKNOB_AB
predictable or not

#define PDtraceKNOB_CRMask
#define PDtraceKNOB_CRShift
#define PDtraceKNOB_Cal
#define PDtraceKNOB_EN

0x00000001
0x00000002

0x00000004
0x00000008
0x00000010
0x00001F70
5
0x00002000
0x0001C000
14
0x00060000
17
0x00080000
0x00100000

0x00200000

0x00400000

0x03800000

23

0x04000000
0x08000000

generate trace until trace-on event.

#define PDtraceKNOB_debug
customer use)

0x10000000

// trace the PC

// trace the load address
// trace the store address
// trace the load data

// trace the store data

*/

// trace in debug mode
// trace in exception and error modes

// trace in supervisor mode
// trace in kernel mode
// trace in user mode

// if G=0, trace in this process only

// trace in all processes
// Synchronization period
// On-chip trace 00=traceto, Ol=tracefrom

// Trace sent to off-chip memory
// cycle-accurate (include idle cycle

// inhibit overflow (stall CPU to prevent
// Send PC info for all branches,
// Trace clock ratio

// l=calibration mode
// l=Enable trace initially.

(test pattern)
O=don't

// l=set trace hardware to debug (not for

/* Values for Knob2 member of MDITraceMode: */

#define PDtraceKNOB2_im
#define PDtraceKNOB2_lsm
#define PDtraceKNOB2_fcr
#define PDtraceKNOB2_tlsif
#define PDtraceKNOB2_id

is shared among processors
#define PDtraceKNOB2_cpuG
#define PDtraceKNOB2_cpufilter
#define PDtraceKNOB2_ tcG
#define PDtraceKNOB2_tcfilter
#define PDtraceKNOB2_tracetc

#define MDIType_TYPE_MASK
#define MDIType_MOD_MASK

/* Expanded trace types */

#define MDITTypeOverflow
#define MDITTypeTriggerStart
#define MDITTypeTriggerEnd
#define MDITTypeTriggerAbout
#define MDITTypeTriggerInfo

0x00000001;
0x00000002;
0x00000004;
0x00000008;
0x000000F0;

0x00000100;
0x0001FE00;
0x00020000;
0x03FC0000;
0x04000000;

0x00000fff
Oxf££££000

64 //
65 /7
66 /7
67 /7
68 /7

// trace instr fetch cache miss bit
// trace load/store cache miss bit
// trace instr func. call/return bit
// record im, lsm, and fcr in trace
// processor id to record when trace

// enable trace for all CPU's

// If cpuG=0, trace only this CPU id
// enable trace for all TC's

// If teG=0, trace only this TC id
// record TC info in trace

trace fifo overflowed, information lost
value=trigger cause
value=trigger cause
value=trigger cause

value=trigger cause

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

#define MDITTypeNotraceCycles
#define MDITTypeBackstallCycles
#define MDITTypelIdleCyclces
#define MDITTypeTcbMessage
#define MDITTypeModelnit
#define MDITTypeModeChange

#define MDITypeUTM

69
70
71
72
73
74

75

/7
!/
/7
/7
/7
/7
/7
//
/7
/7
/7
/7
/7
//
/7
/7
/7
/7
/7

value=number
value=number
value=number
addr=TCBcode

value = new mode
value = new mode

12:11 TIsAM

10:8 MODE

7:0 ASID
addr=1 (TU1)

of notrace cycles

of backstall cycles
of idle cycles

, value=TCBinfo field

from following table
from following table

00 = MIPS32
01 = MIPS64
10 = MIPS16
11 = reserved
000 = kernel, EXL=0, ERL=0
001 = kernel, EXL=1, ERL=0
010 = kernel, ERL=1
011 = debug mode

100 = supervisor mode
101 = user mode

other =

or 2 (TU2)

/* Expanded trace types obtained using MDIType_MOD_MASK */
#define MDITType_MOD_IM 0x00001000
#define MDITType_MOD_LSM 0x00002000
#define MDITType_MOD_FCR 0x00004000
#define MDITType_MOD_CPU 0x00F00000
#define MDITType_MOD_TC OxFF000000

/* Extended flags for MDISetBp()
#define MDIBPT_HWFlg TraceOnOnly
#define MDIBPT HWFlg_ TraceOffOnly

*/

//
//
//
//
//

reserved

value=user value

instruction cache miss signal
data cache miss signal

function call/return instruction
which CPU this message applies to
which TC this message applies to

0x80000000
0x40000000

/* Values for Instructions parameter to MDITrcRead() :

#define MDITraceReadNoInstructions

#define MDITraceReadInstructions
/* Function Prototypes */

#ifdef __ _cplusplus

extern "C" {

#endif

#if defined(MDI_LIB)

/* MDILib, do extern function declarations */
#define yf(str) extern int _ stdcall str

#elif defined(MDILOAD_DEFINE)

/* mdiinit.c, do function pointer defintions */

*/

#define yf(str) int (__stdcall *str)

#else

/* debugger, do extern function pointer declarations */
#define yf(str) extern int (__stdcall *str)

#endif

/* MDIPDtraceRead: caller must allocate

is returned
under certain circumstances. *

/

yvf (MDIPDtraceRead) (MDIHandleT Device,

MDITraceFrameCountT *Count, MDIUint32 Instructions,

yvf (MDIGetPDtraceMode) (MDIHandleT Device,

Tk

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Count+1' for

MDITraceModeT

'Data' since one extra frame

MDITraceFrameNumberT FrameNumber,
MDITraceFrameT *Data) ;

*TraceMode) ;

115

Appendix D MDI_PDtrace.h Header File

yvf (MDISetPDtraceMode) (MDIHandleT Device, MDITraceModeT TraceMode) ;

#undef yf

#ifdef _ cplusplus
}

#endif

#endif

/* End of header file for MDITRACE (mditrace.h) */

116 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Appendix E
mdi_tcb.h Header File

/* Start of header file for Win32 MDI (mdi.h) */

#ifndef MDITCB_Specification_Definitions
#define MDITCB_Specification_Definitions

/*
This is the FS2 specific TCB extensions. These are not supported by
MDI but are made available to implementers if useful.

*/

/*
From mdi.h:

To build MDILib:
Define MDI_LIB before #include "mdi.h"
Include mdi.def in the link on Windows hosts.

To build an MDI application (debugger) :
Compile mdiinit.c and include it in your 1link
Make a call to
int MDIInit (char *MDIdllpathandname, HMODULE *handle)
to explicitly load the specified MDILib before making any other MDI calls.

*/
#include "mdi.h" //need standard defines
typedef unsigned int MDIUintS8;

/* Values for DebugMode member of MDITcbConditionT: */

#define MDIDebugModeRisingEdge 0
#define MDINoDebugModeRisingEdge 1

/* Values for ChipTrigIn member of MDITcbConditionT: */

#define MDIChipTrigInRisingEdge 0
#define MDINoChipTrigInRisingEdge 1

/* Values for ProbeTrigIn member of MDITcbConditionT: */

#define MDIProbeTrigInRisingEdge 0
#define MDINoProbeTrigInRisingEdge 1

/* Values for ChipTrigOut member of MDITcbActionT: */

#define MDIChipTrigOutPulse 0
#define MDINoChipTrigOutPulse 1

/* Values for ProbeTrigOut member of MDITcbActionT: */

#define MDIProbeTrigOutPulse 0
#define MDINoProbeTrigOutPulse 1
Microprocessor Debug Interface (MDI) Specification, Revision 02.41 117

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Appendix E mdi_tcbh.h Header File

/* Values for TraceMessage member of MDITcbActionT: */

#define MDIInsertTraceMessage 0
#define MDIDontInsertTraceMessage 1

/* Values for Type member of MDITcbTriggerT: */

#define MDITcbTypelInfo 0 // Do nothing or Generate Trace
message only

#define MDITcbTypeStart 1 // Start Trace

#define MDITcbTypeStop 2 // Stop Trace

#define MDITcbTypeAbout 3 // Stop Trace delayed
/* Values for FireOnce member of MDITcbTriggerT: */

#define MDIFireOnce 0

#define MDIDontFireOnce 1

typedef struct {

MDIUint32 DebugMode; // Fire at Debug Mode rising edge
MDIUint32 ChipTrigln; // Fire at Chip Trigger In rising edge
MDIUint32 ProbeTriglIn; // Fire at Probe Trigger In rising edge

} MDITcbConditionT;

typedef struct {

MDIUint32 ChipTrigOut; // Generate Chip Trigger Out pulse
MDIUint32 ProbeTrigOut; // Generate Probe Trigger Out pulse
MDIUint32 TraceMessage; // Insert Message in Trace

MDIUint8 TraceMessageInfo; // 8-bit info for trace message

} MDITcbActionT;

typedef struct {

MDITcbConditionT condition; // Conditions for firing trigger

MDIUint32 Type; // Type of trigger

MDIUint32 FireOnce; // Fire once only

MDITcbActionT Action; // Actions to be executed when trigger fires

} MDITcbTriggerT;

/* Action selections for hardware breakpoints */
typedef enum {

TRIGACTION_TRC, // Single event trace
TRIGACTION_ARM, // Set ARM condition
TRIGACTION_TON_IF_ARMED,
TRIGACTION_TOFF_IF_ARMED,
TRIGACTION_TRC_IF_ARMED,

TRIGACTION_DISARM // Clear ARM condition

} MDITcbActionT;

#define MAX_TCBTRIG 8

#if defined(MDI_LIB)

/* MDILib, do extern function declarations */
#define yf(str) extern int _ stdcall str

#elif defined(MDILOAD_DEFINE)

/* mdiinit.c, do function pointer defintions */

#define yf(str) int (__stdcall *str)
#else
/* debugger, do extern function pointer declarations */
#define yf(str) extern int (__stdcall *str)
#endif
118 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

yvf (MDIGetTcbTrigger) (MDIHandleT Device,
*Trigger) ;
vf (MDISetTcbTrigger) (MDIHandleT Device,
*Trigger) ;

MDIUint32 TriggerId, MDITcbTriggerT

MDIUint32 TriggerId, MDITcbTriggerT

#endif

/* End of header file for MDITCB (mditcb.h) */

Microprocessor Debug Interface (MDI) Specification, Revision 02.41 119

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

120 Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

Appendix F

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant

changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changesto figures. Change bars
on figure titles are used to denote a potential change in the figure itself.

Version Date Comments
1.00 15 October 2001 Initial release
Revisionsinclude:
2.00 15 July 2003 ¢ Syntax, typos, grammar
» Additions for PDtrace/TCB tracing methodol ogy
210 30 December 2004 ng%lg onal cleanup, additions to support MT ASE, DSP ASE, and multi-core
211 24 January 2005 Resolved some open issues and incorporated Ernie and Nigel's comments
212 19 July 2005 Additional cleanups
2.20 29 March 2006 Clean ups and updates mainly around the MP and M T chapters and concepts
* Added MDITCStatusSuspended to MDITCQuery return
2.30 4 June 2007 » Added the Complex Break Trigger (CBT) chapter
» Added InvertMatch flag, valid for hardware data breakpoints
231 20 July 2007 Typo fixesin 2.30, no functionality change
Cleaned up mdi.h and mdimips.h--added complex break and trigger, rename Bkpt
to BP for consistent naming, updated version humber to 2.32, made consistent
2.32 21 August 2007 upper/lower case usage in #defines, added back a missing #define
MDIMIPHOSTCACHE and added a new reset define for Eclipse Nav IDE group
(specificaly for FS2 use).
240 19 October 2007 Clean up of mdimips.h for backwards compatibility with rev 2.11
» Removed unused MDIErrDeviceHandle, MDIErrDevicesOpen, and
MDIErrinvalidData
» Added invalid source and destination ObjectSize return values
MDIErrSrcObjectSize and MDIErrDstObjectSize
* Clarification on MDICacheSync() example: global or ASID virtual memory are
241 22 September 2009 both valid resources for MIPS32 Release 2

« Added MDINonlIntrusive flag to MDIReset()
* Clarified the Size parameter in MDICacheOp()

» Added TagSize to MDICachelnfoT. Specified the MIPS cache tag entry
structure

Microprocessor Debug Interface (MDI) Specification, Revision 02.41

Copyright (c) 2001-2009 MIPS Technologies, Inc. All rights reserved.

121

	Microprocessor Debug Interface (MDI) Specification
	Table of Contents
	Overview
	1.1 Abstract
	1.2 MDI Organization

	Terms
	Principles of Operation
	3.1 Multi-thread Debugging
	3.2 Multi-processor Debugging
	3.2.1 Multi-processor Teams
	3.2.1.1 Legacy Team Debugging
	3.2.1.2 MP-Aware Team Debugging

	3.2.2 Disabled Multi-processor Devices

	MDI Environment Command Set
	4.1 Version: Obtain the supported MDI versions for this MDILib implementation
	4.2 Connect: Establish a connnection to the MDILib
	4.3 Disconnect: Disconnect from the MDILib

	Target Group Command Set
	5.1 Target Group Query: Retrieves the names of the defined target groups.
	5.2 Target Group Open: Opens a target group
	5.3 Target Group Close: Close a previously opened target group
	5.4 Target Group Execute: Place in execution mode the appropriate devices in the target group
	5.5 Target Group Stop: Stop execution for all appropriate devices in the target group

	Device Command Set
	6.1 Session Control
	6.1.1 Device Query: Retrieves information about the devices
	6.1.2 Open: Opens a device.
	6.1.3 Close: Closes a device.
	6.1.4 Process Events: Callback function to process periodic events
	6.1.5 Synchronize State: Callback function to synchronize device state changes

	6.2 Resource Addresses
	6.3 Resource Access
	6.3.1 Read: Reads a contiguous range of data from the specified resource on the device.
	6.3.2 Write: Writes a contiguous range of data to the specified resource on the device.
	6.3.3 Read List: Read a set of values
	6.3.4 Write List
	6.3.5 Move: Move data from one resource to another on the device
	6.3.6 Fill: Fill the specified resource on the device with a pattern.
	6.3.7 Find: Find a pattern in a resource
	6.3.8 Query Cache: Retrieve cache attributes
	6.3.9 Get Cache Details: Get Information about the Specified Cache
	6.3.10 Cache Flush: Write back and/or invalidate the cache
	6.3.11 Cache Operation: Do Specified Operation on Specified Cache
	6.3.12 Cache Sync: Synchronize the caches

	6.4 Run Control
	6.4.1 Execute: Place the device into its RUNNING state
	6.4.2 Step: Single steps the device
	6.4.3 Stop: Stop execution of the device
	6.4.4 Abort: Terminate the current MDI function
	6.4.5 Reset: Performs a target reset operation
	6.4.6 State: Returns the current device execution status.

	6.5 Breakpoints
	6.5.1 Set Full Breakpoint
	6.5.2 Set Software Breakpoint
	6.5.3 Clear Breakpoint
	6.5.4 Enable Breakpoint
	6.5.5 Disable Breakpoint
	6.5.6 Query Breakpoints
	6.5.7 Hardware Breakpoint Query: Retrieve a list of supported hardware breakpoint types

	MDILib and Target I/O Command Set
	7.1 Execute Command: Do the command specified
	7.2 Display Output: Display the MDILib supplied text to the user
	7.3 Get Input
	7.4 Evaluate Expression
	7.5 Lookup Resource

	Trace Command Set
	8.1 Enable Tracing
	8.2 Disable Tracing
	8.3 Clear Trace Data
	8.4 Query Trace Status
	8.5 Query Trace Data
	8.6 Read Trace Data
	8.7 Read PDtrace Data
	8.8 Get PDtrace Mode
	8.9 Set PDtrace Mode
	8.10 Get TCB Trigger Information
	8.11 Set TCB Trigger Information

	Multi-Threaded and Multi-Processor Command Set
	9.1 Multi-Thread Control
	9.1.1 Set Thread Context: Sets the current MDI thread context ID
	9.1.2 Get Thread Context: Returns the current MDI thread context ID
	9.1.3 Thread Context Query: Retrieves a list of active TCs

	9.2 Set Run Mode: Specify behavior when returning to the RUNNING state
	9.3 Multi-processor Team Control
	9.3.1 Create Team: Create a new multi-processor debugging team
	9.3.2 Teams Query: Retrieves a list of active teams
	9.3.3 Clear Team: Removes all members from a multi-processor team
	9.3.4 Destroy Team: Destroys a multi-processor team
	9.3.5 Attach Team Member: Add a new member to a team
	9.3.6 Detach Team Member: Remove a single member from a team
	9.3.7 Team Member Query: Retrieves a list of team members
	9.3.8 Team Execute: Place all team members into RUNNING state

	Complex Break and Trigger and StopWatch Timer Command Set
	10.1 Set a Priming Conditon for the Specified Complex Breakpoint
	10.2 Get the Priming Conditon for the Specified Complex Breakpoint
	10.3 Query Complex Breakpoint and StopWatch Configuration Options
	10.4 Get the Current Value of the StopWatch Timer
	10.5 Clear the Value of the StopWatch Timer
	10.6 Set the Mode of the StopWatch Timer
	10.7 Get the Mode of the StopWatch Timer

	MDI.h Header File
	Example Code to Setup an MDILib Connection
	An MDI Addendum for MIPS32® and MIPS64® Architectures
	C.1 Abstract
	C.2 MIPS MDIDDataT Fields
	C.3 MIPS Exception Codes
	C.4 MIPS16e Instructions
	C.5 MIPS Resources
	C.6 MIPS-Specific Breakpoint Implementation
	C.6.1 MDISetBP() and MDISetSWBp() Function Calls
	C.6.2 Implementation of MDISetSWBp()

	C.7 MIPS Specific Header File

	MDI_PDtrace.h Header File
	mdi_tcb.h Header File
	Revision History

