MII—P S

TECHNOLOGIES

PDtrace™ Interface Specification

Document Number: MD00136
Revision 3.01
May 14, 2003

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Copyright ©2001-2003 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies™). Any
copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing
by MIPS Technologies or an authorized third party is strictly prohibited. At a minimum, this information is protected
under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word fc
is subject to use and distribution restrictions that are independent of and supplemental to any and all confidel
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE
DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSIC
OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function
or otherwise. MIPS Technologies does not assume any liability arising out of the application or use of this infori
or of any error or omission in such information. Any warranties, whether express, statutory, implied or otherw
including but not limited to the implied warranties of merchantability or fithess for a particular purpose, are exc
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third ¢
furnishing of this document does not give recipient any license to any intellectual property rights, including any
rights, that cover the information in this document.

The information contained in this document shall not be exported or transferred for the purpose of reexportin
violation of any U.S. or non-U.S. regulation, treaty, Executive Order, law, statute, amendment or supplement

The information contained in this document constitutes one or more of the following: commercial computer sc
commercial computer software documentation or other commercial items. If the user of this information, or any
documentation of any kind, including related technical data or manuals, is an agency, department, or other ent
United States government ("Government"), the use, duplication, reproduction, release, modification, disclosu
transfer of this information, or any related documentation of any kind, is restricted in accordance with Federa
Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 2.
for military agencies. The use of this information by the Government is further restricted in accordance with th
of the license agreement(s) and/or applicable contract terms and conditions covering this information from M
Technologies or an authorized third party.

MIPS, R3000, R4000, R5000 and R10000 are among the registered trademarks of MIPS Technologies, Inc. int
States and other countries, and MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-3D, MIPS-based, MIPS I, MIPS II
[, MIPS IV, MIPS V, MIPSsim, SmartMIPS, MIPS Technologies logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4K
4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20Kc, 25Kf, ASMACRO, ATLAS, At the Core of the User Experience.,
BusBridge, CoreFPGA, CorelV, EC, JALGO, MALTA, MDMX, MGB, PDtrace, Pipeline, Pro, Pro Series, SEA
SEAD-2, SOC-it and YAMON are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

Template: B1.08, Built with tags: 2B

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1 ADOUL THIS BOOKcooiiiiiiiiiiie ittt ettt e e e e e e e s bbb e e e aeaes tbeeeeeeaasesssaaannns 1
1.1 TypographiCal CONVENTIONS uiiiiiiiieiee ittt e ettt e et e e e e e e s e bbbt e et e e e e e e e s e s annbbebbbeneeeaeeaeeas 1
R = [To =« AP TP PO PPPPRTN 1

R 2 = T o B I SRS 1

G 0o U 1= g I =« AT PP POPTTPPPPPRT 1

1.2 UNPREDICTABLE and UNDEFINED coiiiiiiiiiaiiiiiiee ettt ettt e st e e e ntaeeaessnnsaeeesannneeae s 1
1.2 1 UNPREDICTABLE ...ttt ettt e ettt e e e sttt e e e et e e e e snnbae e e e e nnnbeeeeeeennsees 1

L.2.2 UNDEFINED ...iiiiiie ittt ettt s ettt ettt e e ettt e e s et e e e e s st e e e e e nnbb e e e e e nsbee e e e annnnbeeeeeennsees 2

1.3 Special Symbols in PSeudocode NOLAIONeiiiiiiiiiiiiiiiie et e e e e e 2

I o |V To] (=N [a1 (o] g T 11 o] o NPT 4
CREPLEN 2 OVEIVIEW ...ttt ettt ettt oo ekttt e e oo a bttt e e o bbb et e e s kbbbt e e e aabbb et e e aanbe hbteeeesassnneeesannneeens 5
P I o Yot TS o 1Y/ o To (= PP PPPUR P 6

A ST U] ¢ 1= 1 1] o O PP PP PP PPP PO 6
Chapter 3 The PDtrace Interface SigNalScooocuiiiiiiiiiiee e r e e e e e e e e s srnnnnes teeeeessnannns 7
3.1 PDtrace Interface Signal LIStcccuuiiiiiiiiiee i e e e e e e s e e e e e e e e e e s e e e s e nnnnreeneees 7
Chapter 4 PDtrace Interface DESCHPLONcoooiiiiiiiiiiiiiiie et e e e e e e e e e aeeeeaaanee 17
4.1 Trace OULPUL SIGNAISeeeiiiiiiiiiie ettt e ettt et e e e e e et e s e b bbb bt e et e e e e e e s s s s nbbbbeeeeeeeeeeaeaeeesaannnnes 17
4.1.1 The Instruction Completion Status SIGNalc...eeeiiiiiiiiri e 17

S - Y A) I >V Vo RN 19

4.1.3 Trace SYNCHIONIZALION eviiiiiiiiiiiiiis s e e st e e e e e e e e e e e e et et e et e et e ee e ba e s e s s e s eseeaaaeaaeaeseseessnnnns 20

N = Tol = T 1 S TP PP P OO PPPPPPPPTPPPPPPPN 20

4.1.5 Trace OVerflow and RESTAMeeiiiiiiiiiiiii e e e e e e e e e e s e eaes 20

4.1.6 Trace Type and an Example Code FragMment ...t 21

o A I 7= Vol 1Y o T [TP PPPUPPPPPPRRIN 24

O S B T L= W @ o (=T] T | = USSR 24

4.1.9 Instruction-Data Map SIgNaAIoeeeiiiiiiii e e e e e 26

4.1.10 Trace Timing EXAMPIE ...t e e e e e e e e e e e e aaaes 26

4.2 Trace INPUL SIGNAIS ...ttt e e e e e e e e bbbttt e e e e e e e e s s bbb beeee et eeeeaeeeeesaannne 27

4.3 Tracing Multi-Issue and High-Performance ProCeSSOrScoooeviiiiiiiiiiiii e 28
4.3.1 Background on High Performance PrOCESSOIScooviiviiiiiiiiiiiiiiiiiiiiieisssieseeeeeeeaaaaeeseeeeeeeennnns 28

4.3.2 The Basic Tracing MethOdOIOQYcccoiiiiiiiiiiie s e e e e e e e e e e e e aeaaaeeeeeaans 28

4.3.3 Coordinating the Instruction Completion Trace with the Address/Data Traceccccccccoeeueee 30

4.3.4 Out-of-Order Loads and Stores in the Multi-Pipe COorecccuiiiiiiiiiiiiiiieeeee e 31

4.3.5 Tagging Instructions that ISSUE TOQELNEIcccoi i e e e e e e e e e e e 31

4.3.6 MISCEIIANEOUS ...ttt ettt e e e e e e s e s st bbb et e e e e e e e e aeeeeeeaannnes 31

4.4 Trace Trigger from EJTAG Hardware Instruction/Data Breakpointsccccccceviiiiiiiiiiiiiiiiieeeneniiens 32
4.4.1 The TraceBPC Register (CPO Register 23, SEleCt 4)oovvvviiiiiiiiiiiiiiieie e, 32

4.5 SOftWArE TrACE CONIIOIeeiiiiiiiie ettt e e e e e e ettt et e e e e e e e e s saabbb b e ebeeeeaeeaeeeeeaaannnnes 33
4.5.1 Coprocessor 0 TraCe REQISIEIS eeiiiiiiiiiiiiiitte ettt e e e e e e e et e e e e e e e e e e s e e annnanes 34

4.6 Trace Enabling/Disabling CONAItION ooeiiiiiiiiiiiciee e e e e e e aaaes 39

4.7 Tracing During Processor Mode ChanQgeSuuuuiiiiiiiiiiiii i 40

4.8 Tracing Store CONItIONAIScccoiiiiiiiie e e e e e e e e e e e e e e e e e s e e eaaaaaaas 40

4.9 Tracing MIPS16€ MaCro INSIIUCLIONS coiviiiiiiiiiiieiiiiiie s e s s s e s e eaaeeas 41
4.10 Tracing MIPS16€ EXtend INSIIUCLIONS ...ieviiiiiiiiiiiiiiiieisi e e s e s et e e e e e aees 41
Chapter 5 TraCe COMPIESSIONc.coiuuiiiieiitiette ettt e ettt e e s aabbe e e e s b be e e e s s abb et e e aaabbe e e e s aanbbeeaeaaibne tasbbeeeesansnnes 43
N O (=T o o [T PP PP PPPPPTP 43

5.2 Load Or StOre AdAreSS TIACINT ...ceiiurereeeiitieieee ittt e e e ettt e e e st e e e e e tbe e e e e s abb e e e e e abbe e e e e e asbbe e e e e abbbeeeesanrees 43

5.3 Load OF StOre DAt@ TIACINGT ..veeeeeiiiriiee ettt e ettt ettt e e e st e e e ekt e e s e st b e e e e e ab b et e e e asbr e e e e e abbeeeeeannees 43

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.4 Using Early PDO_TENG ASSEIIONccciiiiii e eeeeee et s s e s eeeeeseaeeeranannns 44

APPENdiX A REVISION HISIOIY ..coiiiiiiiiiii ittt e e et e e e s ree s beeeeessnrreeeesae 45
AL REVISION HISTOIY .eiiiiiiiiiii ittt ettt e e e e e e ettt e et e e e e e e s e s a b e tte e e e e eeeeesesaa s annnbebaneeeaeaaaeaens 45
ii PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 2-1: lllustration of a PC and Data Trace FIOWcccooiiiiiii i e e e 5
Figure 2-2: Config3 ReQISIEr FOMMIALccoiiiiiiiiieeeeee s e s e e e e e e e e e e e aeeee e et et et s asaeseeeeaaaaeaeeeeeeeeeeesessssnrnnes 6
Figure 4-1: A Sample Pipeline And The PDO_INSComp Trace POiNt..........cccuuiiiiiiiiiiiiiiiiiiie e e 18
Figure 4-2: lllustration of a Pipeline and Trace Tap Points - ceeeeennnn 19
Figure 4-3: A TMOAS TraCe RECOIU.......cccoe e it s e s e s e e e e e e e e e e e e e e e e e et et e e e s e s ome——— 111111111 n s nnan 23
Figure 4-4: An Example of Load Data Bypassing an Earlier Store ... memmmeeen 25
Figure 4-5: PDtrace interface timing €XamPlec.uuuiiiiiiiiiia e mmeee e 27
Figure 4-6: An Example Showing the Coordination of Instructions and their Data...........ccccccooviiiiiiiiieiieceennnn. 30..
Figure 4-7TraCceBPCREQISIEr FOIMALcccoiiiiii it r e e e e e e e e e e e e e e e et et e e eeeeeeetete s meeeeenennnnns 33
Figure 4-8:TraceControlREQISIEr FOIMAL.........uuuiiiii i e e e e e e e e e e e e taeeeeeeee s anaeeneeens 34
Figure 4-9:TraceControlZRegiSIEr FOMMIAL.............ovviiiiiiiiiiie et e e e e e e ae e e s e s e e e e s mmmmmnns 37.
Figure 4-10UserTraceDataRegiSter FOMMIALooiiiiiiiiieieeeeei s e e e e e e e e e e e e e e et e e e e e eeeeaeaerrararar e nmnns 38.....
PDtrace™ Interface Specification, Revision 3.01 iii

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1-1: Symbols Used in Instruction Operation StateMENtSccooiiiiiiiiiiiiiiii e eemmmeme e
Table 2-1: Config3 Register Field DeSCHPONS..........ooiiiiiiiiiieiiee et
Table 3-1: PDtrace Interface SignalSccccoeeiiiiiiiiiiii e

Table 4-1: Example Code Fragment With Some PDtrace Signal Value

Table 4-2: A TMOAS Trace

Record Field DESCIPLIONS.uu ittt e e e e e e e seeeee s enees

Table 4-3: Load Order EXAMPIEottt et e e e e e e s e st be e et e e aaaeseassnbbbbeeeeeaaaeeeaaaann
Table 4-4: Data (Load/Store) Order EXAMPIEcooiiiii it eeeeeenmmmmn e
Table 4-5: Example Code Fragment Showing the Graduation Cycle and Trace Bus Number............ccccccceeeieiiiiiiiiinnnn,
Table 4-6: TraceBPC Register Field DeSCIIPLONSuuuiiiiiiiiieeeiiiiii ettt e e e mmeeeeeeeeeeae e e e e e e annnnes
Table 4-7: A List of COprocessor O TraCe REQISLEISccoii ittt e e e e e e e e e e e e e e aennes

Table 4-8: TraceControl Register Field Descriptions
Table 4-9: TraceControl2 Register Field Descriptions

Table 4-10: UserTraceData
Table A-1: Revision History

Register Field DeSCIPIONS.ttt e e 39

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1

About This Book

1.1 Typographical Conventions

This section describes the usetafic, bold andcourier fonts in this book.

1.1.1 Iltalic Text
* is used foemphasis

* is used fobits, fields registers that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and vdimating point instruction formatsuch ass, D, andPS

* is used for the memory access types, sudaasedanduncached

1.1.2 Bold Text
* represents a term that is beuhefined

« is used fobits andfields that are important from a hardware perspective (for instaggister bits, which are not
programmable but accessible only to hardware)

« is used for ranges of numbers; the range is indicated by an ellipsis. For inStdrindjcates humbers 5 through 1
* is used to emphasi2éNPREDICTABLE andUNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The termdUNPREDICTABLE andUNDEFINED are used throughout this book to describe the behavior of the
processor in certain caséiNDEFINED behavior or operations can occur only as the result of executing instructions
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register).
Unprivileged software can never caldldDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can caud®lPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction, or
as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE . UNPREDICTABLE operations may cause a result to be generated or not. If a result is generated,
it is UNPREDICTABLE . UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

PDtrace™ Interface Specification, Revision 3.01 1

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

» Implementations of operations generatiyPREDICTABLE results must not depend on any data source (memory

or internal state) which is inaccessible in the current processor mode

* UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which is

inaccessible in the current processor mode. For exatdNIBREDICTABLE operations executed in user mode

must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in another process

* UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to

instruction, or as a function of time on the same implementation or instrudEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer cordiNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

« UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which there is
no exit other than powering down the processor). The assertion of any of the reset signals must restore the processor

to an operational state

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation

resembling Pascal. Special symbols used in the pseudocode notation are Tiatdd i1

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning
- Assignment
= # Tests for equality and inequality
I Bit string concatenation
xY A y-bit string formed by copies of the single-bit value
A constant valua in baseb. For instance 10#100 represents the decimal value 100, 2#100 represents the
b#n value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" pr
omitted, the default base is 10.
X Selection of bitgy throughz of bit stringx. Little-endian bit notation (rightmost bit is 0) is usedylis less than
y.-Z z, this expression is an empty (zero length) bit string.
+, - 2's complement or floating point arithmetic: addition, subtraction
0 x 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo

Floating point division

2's complement less-than comparison

2's complement greater-than comparison

IN

2's complement less-than or equal comparison

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning
> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwise logical XOR
and Bitwise logical AND
or Bitwise logical OR
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPRI[X] CPU general-purpose registerThe content o5PR[0] is always zero.
FPR[x] Floating Point operand register
FCC[CC] Floating Point condition code CECCJ0] has the same value @OC[1].
FPR[X] Floating Point (Coprocessor unit 1), general register
CPR[z,x,s] Coprocessor uni, general register, selects
CCR[z,X] Coprocessor uni, control registek
COCJ[z] Coprocessor unit condition signal
Xlat[x] Translation of the MIPS16 GPR numbeinto the corresponding 32-bit GPR number
Endian mode as configured at chip reset.(dttle-Endian, 1 Big-Endian). Specifies the endianness of the
BigEndianMem memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endianness
of Kernel and Supervisor mode execution.
The endianness for load and store instructions (Ottle-Endian, 1~ Big-Endian). In User mode, this
BigEndianCPU endianness may be switched by settingRifighit in the Statugregister. Thus, BigEndianCPU may be computed
as (BigendianMem XOR ReverseEndian).
Signal to reverse the endianness of load and store instructions. This feature is available in User mode gnly, and
ReverseEndian is implemented by setting tHREDbit of the Statugegister. Thus, ReverseEndian may be computed asg 8/
User mode).
Bit of virtual state used to specify operation for instructions that provide atomic read-modify-wirditieis set
L Lbit when a linked load occurs; it is tested and cleared by the conditional store. It is cleared, during other GPU
operation, when a store to the location would no longer be atomic. In particular, itis cleared by exception return
instructions.
This occurs as a prefix @perationdescription lines and functions as a label. It indicates the instruction fime
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to p time
label ofl. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections labeled
with the instruction time, relative to the current instructioim which the effect of that pseudocode appears|to
I, occur. For example, an instruction may have a result that is not available until after the next instruction. Juch an
I+n:, instruction has the portion of the instruction operation description that writes the result register in a se¢tion
I-n: labeled! +1.
The effect of pseudocode statements for the current instruction labellexppears to occur “at the same time”
as the effect of pseudocode statements labdiecthe following instruction. Within one pseudocode sequenge,
the effects of the statements take place in order. However, between sequences of statements for diffefent
instructions that occur “at the same time,” there is no defined order. Programs must not depend on a particular
order of evaluation between such sections.
PDtrace™ Interface Specification, Revision 3.01 3

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning

TheProgram Counteralue. During the instruction time of an instruction, this is the address of the instrugtion
word. The address of the instruction that occurs during the next instruction time is determined by assigning a
PC value toPC during an instruction time. If no value is assigneB@during an instruction time by any

pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16 instruction)
or 4 before the next instruction time. A taken branch assigns the target addresP@dhgng the instruction
time of the instruction in the branch delay slot.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 ghysical
address bits were implemented, the size of the physical address space w6l '5e=22%6 bytes.

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 32 32-bit
FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32 64-bjt FPRs
in which 64-bit data types are stored in any FPR.

FP32RegistersMode In MIPS32 implementation§;P32RegistersModes always a 0. MIPS64 implementations have a compatibility

mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a case
FP32RegisterModes computed from the FR bit in thetatusregister. If this bit is a 0, the processor operates
as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value oFP32RegistersModds computed from the FR bit in ti8tatusregister.

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch or
InstructioninBranchD| jump. This condition reflects thdynamicstate of the instruction, not tseatic state. That is, the value is falsp

elaySlot if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which is not
executed in the delay slot of a branch or jump.

Causes an exception to be signaled, using the exception parameter as the type of exception and the grgument
parameter as an exception-specific argument). Control does not return from this pseudocode function|- the
exception is signaled at the point of the call.

SignalException(exce
ption, argument)

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found atthe MIPS URL.:
http://www.mips.com

Comments or questions on the MIPS™ Architecture or this document should be directed to

Director of MIPS Architecture

MIPS Technologies, Inc.

1225 Charleston Road

Mountain View, CA 94043

or via E-mail to architecture@mips.com.

4 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2

Overview

This document contains a specification of the interface from the core used to capture PC and data trace (PDtrace™)
information from each pipeline within the processor. A trace block external to the core (but on-chip), captures this
PDtrace information and writes it to trace memory. The trace memory may be either on-chip or off-chip based on user
requirements. The trace information written to memory is compressed and assumes that post-processing software has
access to the static program image to reconstruct the dynamic program flow. Compression reduces the number of signals
(hence pins) required to gather this information and also reduces the trace size.

Figure 2-1illustrates one possible configuration for trace capture and post-analysis using software. The figure shows a
core with trace generation logic and a TAP controller. This core is connected to a trace control block (TCB) via the
PDtrace interface and via the TAP controller (since the TCB implements and uses TAP registers). Both these units are
on-chip. The trace memory associated with the trace control block can either be located on-chip, or off-chip. An on-chip
trace buffer will be smaller and will be writable by the TCB at higher speeds, while an off-chip trace memory can be
much larger and is written via the potentially slower pin interface out of the core. Probe hardware and software connects
to the TCB and the TAP controller via the chip’s pin interface and allows debugger software to start, stop, and examine
program execution traces.

Figure 2-1 lllustration of a PC and Data Trace Flow

PDtrace interface

trace-memory format

Trace
Trace Trace e Re-generation
Core Control Memory Software
Block Probe

Debugger

e

— T T

. On-chi
Il On-chip orOffchip [l Offchip [l Software

The rest of this document describes the PDtrace interface in detail. This document together with the Trace Control Block
Specification document serve three functions: (1) they provide a specification of the trace interface for the core designer,
(2) they provide sufficient detail for a third-party vendor to build the trace control block, and (3) they provide sufficient
details to design and code a post-processing software module for trace re-construction.

Implementation of PDtrace is optional for a given MIPS-compatible processor. Whether a core or processor implements
PDtrace is indicated by a bit in the Coprocessor 0 Config3 register as sheigaran2-2andTable 2-1

Note that if a core or processor does not implement EJTAG, then the PDtrace tracing logic can still be implemented.

PDtrace™ Interface Specification, Revision 3.01 5

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Overview

Figure 2-2 Config3 Register Format
31 10
m

Table 2-1Config3 Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
Write

Name Bits

31:1 As per the MIPS32 and MIPS64 Architecture
: specifications

This bitis used to indicate the presence of tracing logic
in the processor.

TL 0 R Preset Required

0 : No tracing logic implemented

1: Tracing logic implemented

2.1 Processor Modes

The PDtrace specification allows tracing to be enabled or disabled based on various processor modes. This section
precisely describes these modes, and the terminology is then used later in the document.

DebugMode ~ (Debug py=1)

ExceptionMode ~ (not DebugMode) and ((Status gxL = 1) or (Status erL=1))
KernelMode ~ (not (DebugMode or ExceptionMode)) and (Status Ksu= 2#00)
SupervisorMode ~ (not (DebugMode or ExceptionMode)) and (Status Ksu= 2#01)
UserMode «~ (not (DebugMode or ExceptionMode)) and (Status Ksu= 2#10)

2.2 Subsetting

The PDtrace specification allows four levels of subsetting. Within each level, all features required to support the level
must be implemented. The allowable subsets are:

* No PDtrace implemented

» PDtrace with PC tracing only

» PDtrace with PC and load and store address tracing only

» PDtrace with PC, load and store address, and load and store data tracing

The specific subset implemented by a processor or core can be determined by reading the TL bitGont§the
register (se&able 2-) and the ImpSubset bits (6:5) in theaceControl2register (se&able 4-9 on page 37

In addition, Trace Trigger from EJTAG Hardware breakpoints &eetion 4.4, "Trace Trigger from EJTAG Hardware
Instruction/Data Breakpoints" on page) 32optional.

6 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3

The PDtrace Interface Signals

All signals are assumed to be asserted high unless otherwise noted. The signal direction “Out” refers to a signal that is
output from the processor core, and “In” signals are those that are input to the processor core. The “PDO_" prefix to the
signal names is used to uniquely identify the signals as belonging to the PDtrace Output interface. And the “PDI_" prefix
is used to identify the PDtrace Input signals. Signals that have been repeated in the “Signal Name” column witha “_n

prefix are PDO_ signals that are to be duplicated for multi-issue processors.

3.1 PDtrace Interface Signal List

Table 3-1 PDtrace Interface Signals

eis

ware

PDO_InsComp_n[2:0]

110 Instruction branched this cycle was a lda j

111 Instruction branched this cycle was a sttB8)

A "No Instruction” (NI) can happen due to a pipeline stall or when th
instruction was killed (due to an exception).

The three encoding (101, 110, 111) for branched instruction indicat
discontinuity in the PC value for the associated instruction. Note that
only when the new PC can not be predicted from the static program
that it is traced.

ThelPC value is used for the periodic output of the full PC value for
synchronization. The tracing hardware should ensure that this is not
on an unpredictable branch, load, or store instruction.

Signal Name Direction Description
Pclk Processor clock, used by the core and the trace control block.
The core uses this signal to validate all the other Out signals. The exte¢rnal
trace control block cannot always predict if the trace data from the co
. valid or not valid since tracing depends on core execution status such as
PDO_lamTracing Out the processor mode and also since tracing can be controlled by sof]
running on the core.
This signal is used for all the _n signals, and is not duplicated.
Instruction completion status signal. The values are interpreted as
follows:
Value Description
000 | No instruction completed this cyclel}
001 | Instruction completed this cycl§ (
010 Instruction completed this cycle was a lo&g (
011 Instruction completed this cycle was a sttBg (
100 Instruction completed this cycle was a PC syRE}
PDO_InsComp[2:0] 101 | Instruction branched this cycl8]
- Out

s a
itis
low

jone

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 The PDtrace Interface Signals

Table 3-1 PDtrace Interface Signals (Continued)

Signal Name Direction Description

When asserted, this signal indicates that the current instruction spegified
in PDO_InsComp is a MIPS16e instruction. When de-asserted, the
processor is not executing a MIPS16e instruction.

This signal (along with the PDO_MIPS16Ins signal) is used by the TCB
PDO MIPS16 to compute the current PC value. Hence this is irrelevant externally jand
— out not traced to memory. Note that since external software has access {o the
program image, it can always know whether an instruction is a MIPS{L6e
PDO_MIPS16_n instruction or not.

This is an optional signal for PDtrace specification revisions less than
03.00. This signal is only relevant if the processor also implements the

MIPS16e ASE, and is not required otherwise. If a processor provides|this
signal, it is optional whether a TCB accepts this signal and uses it.

This signal accompanies the PDO_MIPS16 signal and is used to ind|cate
the type of MIPS16e instruction. Like PDO_MIPS16 this is optional, ut
must be implemented if PDO_MIPS16 is implemented.

Value Description
. Is executing a MIPS16e instruction that is not a
PDO_MIPS16ins[1:0] Oout 00 MACRO instruction and is not extended.
PDO_MIPS16Ins_n[1:0] 01 |!s executing a MIPS16e instruction that is not a

MACRO instruction and is extended.
10 [Is executing a MIPS16e MACRO instruction.
11 |Reserved

The address or data value is transmitted on this bus. The actual values
must be correlated using the PDO_TType signal described below. It is
recommended that a 64-bit processor core implement at least 32 bifs for

PDO_AD[15:0] or improved tracing capability.

PDO_AD[31:0]

PDO_AD_n[15:0] or When the transmitted data width is less than the width of the bus, the data
PDO_AD_n[31:0] is transmitted on the least-significant bits of the bus. There is no necessity
- -) to indicate the validity since the post-analyzing software knows the width
of the data. (For example, a LB implies one byte of data). The upper |bits
of the bus must be sign extended to allow the TCB to truncate the upper
bits and hence avoid tracing unneeded bits to memory.

A multi-cycle transaction sends the least-significant bits first, followed by
out the more-significant bits.

8 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

3.1 PDtrace Interface Signal List

Table 3-1 PDtrace Interface Signals (Continued)

Signal Name Direction Description

Specifies the transmission type for the transaction on the PDO_AD lipes.
The valid types are:

Value Description

000 | No transmission this cycl8IT)

001 | Transmitting the PCTPC)

010 | Transmitting the load addre34 Q)
011 | Transmitting the store addre¥SA)

PDO_TType[2:0] out 100 | Transmitting the load/store data valli®)
u
PDO_TType_n[2:0] Transmitting the processor mode, the 8-bit ASID, and th

SYNC bit. This is triggered by either a change in the procegsor
mode, by a software write to tlmtryHi register, or a trace
101 |synchronization operationTKOAS). If the processor does
not implement the standard TLB-based MMU, it is
UNPREDICTABLE whether a write to the EntryHi register
triggers a TMOAS operation. (S&ggure 4-3 on page 23

110 | Transmitting user-defined trace record - typ€U1j

14

111 | Transmitting user-defined trace record - typ€22]

Indicates the last cycle of the current transaction on the PDO_AD bps.
This signal can be asserted in the same cycle that a transaction is started,
implying that the particular transaction only took one cycle to complete.

In a multi-issue core, the PDO_TEnd signals are synchronized for al| the
PDO_AD_n transmissions associated with instructions that graduate
together. Se&ection 4.3.3, "Coordinating the Instruction Completion
PDO_TEnd Trace with the Address/Data Trace" on pagéad@etails.
Out
PDO_TEnd_n In PDtrace revision 3.00 and higher, the processor is allowed to assert this
signal early if the tracing logic determines that the upper bits of the
address or data being sent on the PDO_AD bus are redundant. Fo
example, redundant upper sign bits may be omitted and software could
easily reconstruct these bits. Note that the TCB must therefore be capable
of accepting an early PDO_TEnd signal for any transmission type. This
early assertion of PDO_TEnd is allowed, for all the values of
PDO_TMode.

Indicates the transmission mode for the bits transmitted on PDO_AD.
The mode depends on the transmission type.

PDO_TType PDO_TMode
O0OO(NT)
Reserved
101(TMOAS)
0 -> delta from last PC value
PDO_TMode 001(TPC) . .
- Out 1 -> compression algorithm A (full address
PDO_TMode_n 010(TLA) |0 -> delta from last data address of that type
011(TSA) 1 -> compression algorithm B (full address
100(TD)
0 -> Reserved
110(TU1)
1 -> compression algorithm C (full data)
111(TU2)
PDtrace™ Interface Specification, Revision 3.01 9

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 The PDtrace Interface Signals

10

Table 3-1 PDtrace Interface Signals (Continued)

Signal Name

Direction

Description

PDO_DataOrder[3:0]
PDO_DataOrder_n[3:0]

Out

This signal is used to indicate the degree of out-of-order-ness of load and
store data. Using this order value allows load and store data to be tfaced
out as it becomes available, thus avoiding the need to internally buffer
data. Note that only sixteen outstanding data values are allowed begause
of the limitation imposed by the signal width of 4 bits. This signal takes

on the following values:

Value

Description

0000 | data from oldest load/store instruction (is in-order)

0001 | data from second-oldest load/store instruction

0010 | data from third-oldest load/store instruction

0011 | data from fourth-oldest load/store instruction

0100 | data from fifth-oldest load/store instruction

0101 | data from sixth-oldest load/store instruction

0110 | data from seventh-oldest load/store instruction

0111 | data from eighth-oldest load/store instruction

1000 | data from ninth-oldest load/store instruction

1001 | data from tenth-oldest load/store instruction

1010 | data from eleventh-oldest load/store instruction

1011 | data from twelfth-oldest load/store instruction

1100 | data from thirteenth-oldest load/store instruction

1101 | data from fourteenth-oldest load/store instruction

1110 | data from fifteenth-oldest load/store instruction

1111 | data from sixteenth-oldest load/store instruction

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

3.1 PDtrace Interface Signal List

Table 3-1 PDtrace Interface Signals (Continued)

Signal Name Direction Description
The value indicates which pieces of data will be transmitted for the
corresponding instruction in PDO_InsComp.
Bit # Description
A value of zero indicates that the TPC sent (indicatedl in
bit position 1 of this signal) is associated with a statically
predictable address change, i.e., the external softwafe
does not need to be sent the value in TPC for accurate
tracing. A value of one indicates that the TPC sent ig|
associated with a statically unpredictable address change.
Note that TPC values for statically predictable addregs
changes are sent only when the PDI_TraceAllBranch
option is set. Since the TCB does not know whether the
0 TPCis for a statically predictable or unpredictable addfess
change, it uses the information in this bit to determing
whether to transmit through the TPC value to trace
memory.
PDO_DataForlns[7:0] o y
ut L
. Note that any data in internal buffers when the
PDO_DataForl 7:0 . : - .
DataForins_n{7:0] PDI_TraceAllBranch signal is de-asserted will have valid
values for this bit position, but the TCB does not explic|tly
know how much data was in the buffers. Hence there will
be some small period of time, a few cycles probably, when
more address information may be traced than explicitly
required by external software.
1 |Avalue of 1 indicates that TPC will be sent.
2 | Avalue of 1 indicates that TLA will be sent.
3 | Avalue of 1 indicates that TSA will be sent.
4 | Avalue of 1 indicates that TD will be sent.
5 |Avalue of 1 indicates that TMOAS will be sent.
6 | A value of 1 indicates that TU1 will be sent.
7 | Avalue of 1 indicates that TU2 will be sent.
This one-hot vector indicates which of the N+1 implemented EJTAG
hardware instruction breakpoints caused a trigger. The instruction
PDO_Trigl[N:0] Out causing the trigger is indicated on the corresponding PDO_InsComp|bus,
if tracing has been turned on. Note that EJTAG restricts the maximym
number of implementable hardware instruction breakpoints to 15.
This one-hot vector indicates which of the N+1 implemented EJTAG
hardware data breakpoints caused a trigger. The instruction causing the
PDO_TrigD[N:0] Out trigger is not necessarily the one on the PDO_InsComp bus since data
triggers may be imprecise. Note that EJTAG restricts the maximum
number of implementable hardware data breakpoints to 15.
This bit is asserted if at least one trigger in PDO_TrigI[N:0] or
PDO_TrigOn Out PDO_TrigD[N:0] turns trace on. (S&ction 4.4, "Trace Trigger from
EJTAG Hardware Instruction/Data Breakpoints" on page 32
This is asserted if no trigger turns trace on (i.e., PDO_TrigOn is not
PDO TriqOff out asserted), and at least one of the indicated triggers in PDO_TrigI[N:Q] or
-9 PDO_TrigD[N:0] turns trace off. (Se®ection 4.4, "Trace Trigger from
EJTAG Hardware Instruction/Data Breakpoints" on page 32
PDtrace™ Interface Specification, Revision 3.01 11

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 The PDtrace Interface Signals

Table 3-1 PDtrace Interface Signals (Continued)

Signal Name Direction Description

This signals an internal FIFO overflow error in the core and implies the
following:

 the current transmission is to be abandoned in the current cycle

PDO_Overflow Out « the FIFO is emptied so that previously collected trace information in

the FIFO is lost

¢ anew transmission begins in the next cycle with a TMOAS and a|full
PC address

This signal specifies the subset of tracing that is supported by the
processor (seBection 2.2, "Subsetting" on page 6

Encoding Meaning
. 00 PC tracing only
PDO_ValidModes|[1:0] Out -
01 PC and load and store address tracing pnly
10 PC, load and store address, and load and
store data
11 Reserved

This signal is used in multi-issue processors and it is signhaled with
PDO_InsComp_n. In multi-issue processors, instructions that issue
together are assigned a matching tag value, specified by this signal yalue.

A six bitinternal counter increments each cycle, and the instructions fthat
. issue in that cycle are assigned the counter value When the maximpm
PDO_lssueTag_n[5:0] Out counter value is reached, it simply restarts at zero.

This feature facilitates the performance debugging of code schedulefs for
high-end processors. These tag values are available every cycle, byt it is
anticipated that the TCB will trace this to memory only when specially
requested by the user.

When asserted this indicates that the TCB hardware is present and
PDI_TCBPresent In connected to the core’s tracing logic. Hence the core can consider the
other PDI_ signals to be valid.

This is the signal asserted by the external trace block into the core that
states whether tracing is globally turned on or off. It is expected that this
signal be continuously asserted to turn on tracing.
PDI_TraceOn In
0 : tracing off

1 :tracing is turned on

12 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

3.1 PDtrace Interface Signal List

Table 3-1 PDtrace Interface Signals (Continued)

Signal Name Direction Description

When tracing is turned on, this signal specifies what information is tq be
traced by the core:

Mode Trace Mode
000 | Trace PC
001 | Trace PC and load address
010 | Trace PC and store address
011 | Trace PC and both load/store addresses

Trace PC and load data (optional for all
100 |PDtrace specification revisions less than
PDI_TraceMode[2:0] In 03.00)

101 Trace PC and load address and data
110 Trace PC and store address and data

Trace PC and both load/store address jand

11 data

The PDO_ValidModes signal determines which of these encoding gre
supported by the processor. The operation of the processor is
UNPREDICTABLE if PDI_TraceMode is set to a value which is not
supported by the processor.

The global bit, which if asserted to 1, implies that all processes are tp be
traced. If 0, then trace data is sent only for a process that matches
PDI_G In PDI_ASID[7:0]. If the processor does not implement the standard

TLB-based MMU, this signal is ignored by the processor and is treated as
if it were asserted.

When the global bit is 0, only the process whose ASID matches this ASID
PDI_ASID[7:0] In value will be traced. If the processor does not implement the standard
TLB-based MMU, this signal is ignored by the processor.

Enables tracing in User Mode (sBection 2.1, "Processor Modes" on
page 6. This enables tracing only if the PDI_TraceOn is also assertefl or
the hardware breakpoint trace triggers on, and either the PDI_G bit is set
or the PDI_ASID matches the current process ASID.

PDI_U In

Enables tracing in Supervisor Mode (for those processors that implement
Supervisor Mode), otherwise, this signal is not required Gesgtion 2.1,
PDI S In "Processor Modes" on pagg &his enables tracing only if the

- PDI_TraceOn is also asserted or the hardware breakpoint trace triggers
on, and either the PDI_G bit is set or the PDI_ASID matches the curfent
process ASID.

Enables tracing in Kernel Mode (s8ection 2.1, "Processor Modes" on
page 9. This enables tracing only if the PDI_TraceOn is also asserted or

PDI_K In the hardware breakpoint trace triggers on, and either the PDI_G bit i set
or the PDI_ASID matches the current process ASID.
Enables tracing when in Exception Mode (Seetion 2.1, "Processor

PDI E In Modes" on page)6 This enables tracing only if the PDI_TraceOn is al$o

asserted or the hardware breakpoint trace triggers on, and either th
PDI_G bit is set or the PDI_ASID matches the current process ASI[

~

Enables tracing in Debug Mode (s&ection 2.1, "Processor Modes" o
PDI_DM In page 6. This feature is useful to debug the debug handler code via {
EJTAG and TAP controller port.

55
o

This signal is used by the external trace block to indicate to the core that
PDI_InhibitOverflow In the core pipeline should be back-pressured (and stalled) instead of
allowing the trace FIFO to overflow and hence lose trace informatiop.

PDtrace™ Interface Specification, Revision 3.01 13

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 The PDtrace Interface Signals

14

Table 3-1 PDtrace Interface Signals (Continued)

Signal Name Direction Description

When asserted, this signal is used by the external trace block to indicate
to the core that it must stop transmitting trace information in the next
cycle. This request may be essential when the trace control block ig
imminent danger of over-running its internal trace buffer.

in

In the cycle when the signal is asserted, the value on all the PDO_signals
are valid and must be captured by the TCB.

In the cycle after the one where the core sees an assertion of this sjgnal
the core must not transmit any valid trace informatiomox of the PDO _
output signal bits (including PDO_InsComp).

PDI_StallSending In

In the cycle after the TCB de-asserts this signal again, PDtrace PDO _
signals are valid and must be captured by the TCB. (Note that som¢
processors cannot arbitrarily stall their pipeline on any given cycle. In this
situation, the implementation on the processor side must provide
sufficient buffering to hold trace information until the pipeline can be
stalled).

This signal is an enable signal for the PDI_SyncPeriod, PDI_TBImpl, and
PDI_OffChipTB signals. When asserted, the core latches these valdies.
This signal, and the signals which it controls must be asserted befofe
tracing can begin.

PDI_SyncOffEn In

This signal is used to set the synchronization period bits in the
TraceControl2register. The value specifies the period (in cycles) for
sending synchronization information.

SyncPeriod | Period (in cycles) for| Period (in cycles) for
On-chip memory Off-chip memory

000 pa 2’
001
010
011
100
101
110
111

PDI_SyncPeriod[2:0] In

Nb| N[NG| N[M| M| N
N
s

The “On-chip” column value is used when the trace data is being wriften
to an on-chip trace buffer. Conversely, the “Off-chip” column is used
when the trace data is being written to an off-chip trace buffer. This
selection is made by the value of PDI_OffChipTB signal, which is
subsequently loaded into the TBU field in ffraceControl2register.

When this signal is a 1, the TCB has implemented both an on-chip and an
off-chip trace buffer, and the PDI_OffChipTB signal indicates to which
the trace is currently being written. When this signal is a 0, the
PDI_TBImpl In PDI_OffChipTB signal indicates which buffer is implemented. This value
is written into theTraceControl2CPO register (as the TBI bit). It is
optional for the TCB to provide this signal to the core logic for all T¢B
implementations compatible to PDtrace specifications less than 03.p0.

When one, this signal indicates that the trace data is being sent off-chip to
an external trace memory. When zero, this indicates an on-chip trage
PDI_OffChipTB In buffer. The value of this signal to the core changes how the core interprets
the trace synchronization period bits. This signal value is written intojthe

TraceControl2CPO register (as the TBU bit).

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

3.1 PDtrace Interface Signal List

Table 3-1 PDtrace Interface Signals (Continued)

Signal Name Direction Description

When asserted, the core’s tracing logic will emit PC values for all taken
branches encountered in the execution stream, including all conditipnal
PDI_TraceAllBranch In and unconditional, predictable and unpredictable branches. When
de-asserted, the core reverts to normal tracing mode.

PDtrace™ Interface Specification, Revision 3.01 15

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 The PDtrace Interface Signals

16 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4

PDtrace Interface Description

A program executes sequentially through instructions within a basic block followed by a jump (or branch) to the head
(first instruction) of the next basic block. To reconstruct the dynamic execution path of the program, it is sufficient to
provide the post-analyzer with the PC address of the head of each basic block. Even this is not always necessary, since
it may be possible in some instances to statically predict the value of the branch target, provided there is a separate
indication for the taken branch. Hence, PC addresses need to be traced only when it is not possible to statically predict
the branch target PC. For the MIPS32 and MIPS64 instruction sets, the statically unpredictable instructions are JR and
JALR (for branch target address), and BEQ, BNE, BGEZ, etc. (for branch condition). Other statically unpredictable PC
changes happen with taken exceptions and return from exceptions (ERET and DERET). To enable the post-analyzer to
re-synchronize itself with the program execution, the PC value is also output at predictable intervals and synchronization
periods.

The tracing mechanism can be controlled either by hardware via the input signals from the external trace block or
controlled by software. Software control is possible via bits in a Coprocessor 0 register. In addition, there is one extra
bitin the register used to select control between the hardware and software mechanisms. The reset value of this bit selects
hardware tracing control. If software wants to take over tracing, it can set all the tracing control bits in the Coprocessor

0 register to the desired value and then set the select bit to transfer tracing control to the bits in the register.

This chapter describes the details of the general tracing mechanism, including hardware and software trace control.

4.1 Trace Output Signals

4.1.1 The Instruction Completion Status Signal

The PDO_InsComp[2:0] signal from the core’s tracing logic is used as an indicator of completed instructions and their
type in the processor’s pipeline. Once tracing is initiated, a valid PDO_InsComp value must be transmitted every cycle
(except when the TCB has asserted the PDI_StallSending signal).

NI (No Instruction complete) is used when the internal pipe is stalled for some reason or the other, and no instruction
completes in that cycle. Itis also used when tracing has been turned off, but the internal FIFO is still emptying trace data
out to the TCB on the PDO_AD bus.

Instructions within a basic block are indicated with &, orIS value. Thd is used to indicate a simple instruction that
is neither a load nor a store. THeis used to indicate a load instruction and IBés used to indicate a store instruction.

Unpredictable (and predictable) changes in the PC value is indicated as a branch-type instruct®nilii, or ISB.
Note that the first instruction in the basic block is always indicated as a branch instruction. When this first instruction is

PDtrace™ Interface Specification, Revision 3.01 17

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

18

aload or a store, then the PDO_InsComp[2:0] takes valitR®r ISB respectively, to indicate the combined condition
of the branch and load or store.

Figure 4-1 A Sample Pipeline And The PDO_InsComp Trace Point

1 2 3 4 5 6
fetch |~ decode —® execute —p» memory align | —® writeback
PDO_InsComp

Figure 4-1shows an example of when the PDO_InsComp signal might be output by the core tracing logic, with respect
to the processor pipeline implementation. This example pipeline has six stages. They are: “fetch”, “decode”, “execute”,
“memory”, “align”, and “write back”. The PDO_InsComp signal is output after the memory stage. That is, the
instruction goes through the pipeline and is output after the last stage when the instrustioamplete and can no

longer be killed. In the example shown, this is after stage 4. This will differ, of course, with each pipeline

implementation.

Some instructions might have to transmit more information for a complete picture of the program execution. For
instance, a branch indicator might have to transmit the PC value if the unpredictability lies in the branch target address.
If the unpredictability was in the branch condition (i.e., determining if the branch is taken or not), then the branch target
PC value need not be transmitted; it suffices to indicate that it was a “taken” branch using the appropriate PDO_InsComp
value.

The list below summarizes the three possible branching options, and the corresponding PDO_InsComp and PC tracing
action:

» When the branch is unconditional and the branch target is predictBbl&B, or ISB is used for the PDO_InsComp
value, and the PC is not traced out.

» When the branch is conditional, and the branch target is predict&hlg,B, or ISB is used only when the branch is
taken. The PC is not traced out.

* When the branch is conditional or unconditional, and the branch target is unprediBtalhB, or ISB is used and
the PC is traced (usingPC for the PDO_TType signal).
There are four possible circumstances that cause the PC to be transmitted in the PDtrace MIPS architecture. They are:
1. after a JR or JALR instruction.
2. after a control transfer to an exception handler.
3. after a return from exception (ERET or DERET instruction).
4. the PCis traced out periodically for software synchronization of trace with the static program image.
When the PDO_InsComp value indicates a store in the completing instruction wihthen the store address and data
might have to be transmitted if the user requires these to be traced. 8iithe PC value might also need to be traced

out. In this situation, the PC value is sent first, followed by the store address, and finally the store data if it is immediately
available.

An ILB is similar, and might require the tracing of the PC value as well as the load address and the load data. The PC
value is sent first. If the load hits in the cache, then this works like the store described above, i.e., the PC value is sent,
followed immediately by the load address and data.

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.1 Trace Output Signals

The load or store data may not be immediately available. This can happen if the load misses in the cache and must be
fetched from memory, or the store data is pending the completion of a previous (long latency) instruction that is
computing the data value. In this situation, the load or store instruction is still indicated with the appropriate
PDO_InsComp value of eithél, ILB, IS, or ISB. If the PC value needs to be sent, then it is sent first, followed by the

load or store address, but the sending of the corresponding data is deferred until it is available. While the processor is
waiting for this data, other instructions may complete in the pipeline and are indicated by the appropriate PDO_InsComp
values. When the data is available, it is traced out as soon as possible by the processor using the appropriate
PDO_DataOrder value to indicate the out-of-orderness of the dat&éstien 4.1.8, "Data Order Signal” on pagg.24

Figure 4-2shows, for the hypothetical pipeline, the points at which the different pieces of information are tapped out to

be traced. The PC value and the store address and load address are tapped out after stage 4. If the load hits in the primary
cache, or the store data is available, then this information may be completely traced out at that point. If not, only the
data’s address is sent and the data value is traced out when it becomes available.

Figure 4-2 lllustration of a Pipeline and Trace Tap Points

1 2 3 4 5 6
fetch |~ decode —®| €xecute | —p memory P align | —® writeback
PC available store data
store and cached load data
load address i load data
data order from mem
determination store data
from previous
* instruction

compressed
PC, store, and
load address

* compressed load/store data

4.1.2 Start of Tracing

When tracing is first started, or when it is re-started after a break, some basic information is first output that allows
external software to identify the trace start point in the static program image, and make some reasonable conclusions
about the processor mode at the start of tracing. The first record that is trad®&tids\a (see PDO_TType ifable

3-1 on page andFigure 4-3 on page 33This trace record type shows the processor mode and the ASID value of the
currently executing processor. This record is followed by a transmission of the full PC value for the first instruction
traced. This first traced instruction must usB dLB, orISB PDO_InsComp value so that the external software can
correlate the PC transmission with the PDO_InsComp value. In addition, if load/store address tracing is turned on, then
the first encountered load or store instruction will send the full address instead of a delta value. Note that the
synchronization counter is reset to the value in TraceCogjsihen tracing is started.

PDtrace™ Interface Specification, Revision 3.01 19

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

4.1.3 Trace Synchronization

Once the full PC value, or the full address for the load/store instruction has been sent during the start of tracing,
subsequent traced addresses may all be delta values. Hence, it is possible that occasionally the external software will lose
track of the current execution point in the static program image. To fix this potential problem, the tracing logic will send
periodic synchronization information.

The synchronization tracing function is triggered when the internal synchronization counter overflows based on the
synchronization period bits as set in fraceControl2CPO register. Similar to the start of tracing, when the
synchronization period is reachedl IOAS record is firstinserted in the PDO_AD tracing sequence, followed by a full
PC value accompanied by HC for PDO_InsComp. To simplify thi$*C transaction type, the hardware must ensure
that the instruction used to synchronize the PC value is neither a branch, a load or a store instruction. Hence, the
synchronization period is an approximate point, where the transmission I6f@ean be delayed by a few instructions

until an instruction is found that is neither a branch, load, or a store instruction. Note TdOAS associated with
synchronization is sent only when tHeC instruction has been identified, to prevent other PDO_TType records between
the TMOAS and the full PC transmission for the synchronization. At this juncture, if load/store addresses are not being
traced, then this completes all the transmissions needed for synchronization. If load/store addresses are being traced, then
the first load or store instruction encountered aftetRransmission sends a full address value, rather than a delta.
This completes the synchronization process. Note that the synchronization counter is reset to the value in
TraceControl3yponce thdPC has been sent.

Note that th&fMOAS record that is sent for synchronization uses a value of 1 for the SYNC bit fiekigsee 4-3.

This is an aid used by external software to synchronize the PDO_InsComp stream and the data stream on the PDO_AD
bus. To use this bit to synchronize, external software will look in the trace buffer for the@iesttry, when it finds

one, it starts looking in the trace buffer from the current cycle onwards for thEMI&AS record with the SYNC bit

set to one. The first PC value following thisIOAS record will be a full PC transmission that corresponds ttRBe

entry.

4.1.4 Trace Bus

When a PC, load/store address, or load/store value is to be traced, they are sent on the PDO_AD[15:0] (or
PDO_AD[31:0]) sighal bus, accompanied by an appropriate PDO_TType signal. Since the width of this bus may not be
adequate to transmit the entire address or data in one cycle, each transaction can take multiple cycles to transmit. The
PDO_TENnd signal is used to indicate the last cycle of the current transaction.

A FIFO at the core is used to hold pending transactions and values. The draining of the FIFO happens independently of
the PDO_InsComp signal. Hence, there is some cycle delay between the tracing of the PDO_InsComp signal and the
corresponding address or data on the PDO_AD bus. To provide external software with some means of synchronizing the
two streams, th& MOAS record that is sent during a synchronization trace has a special SYNC bit that is set to one, as
discussed above.

4.1.5 Trace Overflow and Restart

As noted earlier, a FIFO is used to hold address and data values waiting to be transmitted over the PDO_AD bus. Itis
possible to have a program sequence that overflows this FIFO. In the situation that the FIFO overflows, the core trace
logic will assert the PDO_ Overflow signal to indicate that the current tracing is being abandoned due to a FIFO overflow.
In this situation, the internal core logic abandons tracing in the current cycle, discards all entries in the FIFO, and restarts
tracing from the next completed instruction in the following cycle. Note that in this situation, the first instruction to be
signalled after the assertion of the PDO_Overflow signal must have its full PC value sent, so this should be treated as a
IB, ILB, orISB. An example of this can be seen in the timing diagraRigare 4-5 Similar to a trace start or re-start
situation, a TMOAS record is first sent after the overflow, and before the full PC value is transmitted.

20 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.1 Trace Output Signals

Itis possible for the entire program trace to be captured under all circumstances, and no trace records lost. This is done
using the PDI_InhibitOverflow signal. When asserted, this implies that the processor core must back-pressure the
pipeline and stall it without overflowing the FIFO. (Hence, if PDI_InhibitOverflow is asserted, the core must ensure that
PDO_Overflow never gets asserted.) The pipeline is restarted as soon as the FIFO starts emptying again.

Note that the size of the FIFO is implementation-dependent and its size should be based on the following factors:

« If all the traced data is to be saved at all times, and the FIFO is too small for the amount of trace data, then the
processor pipeline will need to be stalled more frequently. Hence, a larger FIFO would be desired. Sometimes, it may
not matter whether the processor is stalled when debugging, hence a smaller FIFO might be an acceptable solution.

» The width of the processor, the width of the PDtrace PDO_AD bus and how quickly the FIFO can be drained with
respect to the processor speed.

» The frequency of the processor and the frequency of the external pin interface is also a factor in how quickly the
FIFO can be drained.

» The amount of data that is expected to be traced in a typical usage. That is, only PC tracing, or load/store addresses,
or load/store data is also traced. Each scenario will result in more data being traced, and consequently the FIFO will
fill faster and overflow sooner, and will need to be larger if the processor is not to be stalled often in order to preserve
all the traced data.

4.1.6 Trace Type and an Example Code Fragment

The PDO_TType[2:0] signal is used to indicate the type of information being transmitted on the PDO_AD trace bus. A
PDO_InsComp[2:0] value dB, ILB, orISB is output when a branch instruction is taken, and the PDO_TType[2:0] can
begin with a PC transmissidrPCat this same cycle or later. We will uSable 4-1to illustrate these transmissions. This

table shows an example of a MIPS assembly fragment and the values of PDO_InsComp, PDO_TType, and PDO_TEnd
that will be transmitted upon completion of each instruction of the code fragment in the pipeline. Assume that tracing
was begun earlier, hence the start of tracing is not shown in this code fragment. The example also assumes a 32-bit
processor and a 16-bit PDO_AD bus.

As described earlier, a taken branch is always indicated witB @armnsmission. But when the branch target address can
be deduced from the static program image, then there is no accompam@tgansmission. An example of this can be
seen in cycle 7, where the transmission oflhendicates the taken branch from the JAL instruction in cycle 5.

An example of aiB transmission for the PDO_InsComp value accompanied by a correspdfdir{tp transmit the
statically unpredictable PC value), can be seen in cycle 10. This is triggered by the JR instruction in cycle 8. Cycle 10 is
the branch target, also the first instruction of the new basic block. (Cycle 9 is the execution of the instruction in the branch
delay slot). Note that tHEPC transmission could be directly started on cycle 10 since the FIFO was empty.

The PDO_TEnd signal is used to indicate the end of any previously-started transmission. If the PC change value can be
transmitted in a single cycle, then the PDO_TEnd signal may be transmitted in the same cycle as the PDO_TType value
TPC. An example of this is seen in cycle 10. Otherwise, it may follow the required number of cycles later, for example

in cycle 4, where it took 2 cycles to transmit the store address value. After a transaction is begun, until PDO_TEnd is
asserted, the value of PDO_TType must stay asserted at the original value.

Note that at the processor’s discretion, the PDO_TEnd signal may be used to cut off redundant sign bits from an address
or data transmission. That is the transmission is terminated early and hence not all the upper bits of an address or data
needs to be stored in trace memory. The reconstruction software must recognize this situation and sign-extend the
address or data appropriately before use.

When a load instruction is executed, PDO_InsComp indicates thislusamglILB, and a store is indicated usil®)
andISB. The user might have requested that load and store addresses (and data) be traced. In this situation, the
PDO_TType value will transmit the load address and the store addres3 lusirng TSA respectively.

PDtrace™ Interface Specification, Revision 3.01 21

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

22

Table 4-1 Example Code Fragment With Some PDtrace Signal Value

Cycle PC Instruction PDO_InsComp | PDO_TType | PDO_TEnd
No. [2:0] [2:0]
1 0x00400188 SW $6, Oxel70(%$1) IS TSA 1
2 0x0040018c SW $4, 0xb134($28) IS TSA 1
3 0x00400190 SW $5, 0xb130($28) IS TSA 1
4 0x00400194 SW $0, 0x1c($29) IS TSA 0
5 0x00400198 JAL 0x418d9c | TSA 1
6 0x0040019c OR $30, $0, $0 | NT X
7 0x00418d9c NOP 1B NT X
8 0x00418da0 JR $31 I NT X
9 0x00418da4 NOP | NT X
10 0x004001a0 JAL 0x411c40 1B TPC 1
11 0x004001a4 NOP | NT X
12 0x00411c40 JR $31 1B NT X
13 0x00411c44 NOP | NT X
14 0x00414adc LW $4, 0xb134($28) ILB TPC 0
15 0x00414ae0 BEQ $14, $0, 0x414af8 | TPC 1
16 0x00414ae4 ADDIU $29, $29, 0xffe0 | TLA 1
17 0x00414af8 OR $7, $0, $0 1B TD 0
18 0x00414afc NOP IPC TD 1
19 0x00414b00 ADDU $6, $6, $2 | TMOAS 1
20 0x00414b04 OR $7, $2, $0 | TPC 0
21 0x00414b08 SLTU $1, $2, $1 I TPC 1

An example of store address tracing is seendhle 4-1at cycles 1, 2, 3, and 4. The store instruction in cycles 1, 2, and

3 take only 1 cycle to send the store address. While the store address associated with the store in cycle 4 takes 2 cycles.
(Perhaps it was not possible to compress the store address to less than 16 bits in this case). Note that in this case store
data is not sent, only the store address is sent, as per the user request. If store data is also being traced, then the store date
is sent immediately following the store address usifidpavalue on the PDO_TType signal lines. If the store data is not
immediately available, it is sent later with the appropriate PDO_DataOrder value.

Assume that sometime between cycle 4 and cycle 14, the user changes the desired trace output, and wants load and store
data to also be sent. Hence, the load instruction LW in cycle 14 will transmit not only the address, but also the associated
data. Note that sometimes the load data is not immediately available since the load might miss in the first-level cache.
In this situation, the load address is transmitted immediately and the load data is sent when it becomes available. The
association of the load data with the corresponding load address is done using the PDO_DataOrder signal (not shown in
the table).

ThelLB in cycle 14 sends the PC value in two cycles, and then sends the load addreSd.dsingcycle 16. The load
data is then sent usiniD during cycles 17 and 18. The load must have hit the cache in this example, for otherwise, the

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.1 Trace Output Signals

associated load could have been separated from the instruction by an arbitrary number of cycles (required to satisfy the
load miss from secondary memory).

An example of the periodic PC trald&C for synchronization is shown in cycle 18. The required transmissions for a
synchronization includes sending a record of the process ASID and processor mode. This uses the PDO_TType[2:0]
value of TMOAS, as seen in cycle 19 (sent as soon as the previdiiansmission completes). This is followed by a

tracing of the full PC value, which takes 2 cycles (sent during cycles 20 and 21). As disc@&sebin4.1.3, "Trace
Synchronization" on page 26ince load/store address tracing is turned on, the synchronization operation is not
completed until a load and store full address transmission has also been sent (not shalwea #). A load and store

address transmission is always tied to a load and store instruction, respectively. The full load and store address is thus
not sent until the next respective occurrence of a load and store instruction af€® tfEsmission.

Figure 4-3 ATMOAS Trace Record
15 14 13 12 11 10 8 7 0
\SYNC\ 0 ISAM POM ASID

Table 4-2 ATMOAS Trace Record Field Descriptions

Fields Description
Name Bits
SYNC 15 When 0, this record was sent when the ASID, POM, or ISAM changed.
When 1, this record was sent for a synchronization event.
0 14:13 Reserved for future use
Value Description

00 MIPS32

ISAM 12:11 01 |MIPS64
10 MIPS16 from MIPS32 mode
01 MIPS16 from MIPS64 mode

Value Description

000 |Kernel Mode (EXL =0, ERL = 0)

001 |Exception Mode (EXL = 1, ERL = 0)

010 |Exception Mode (EXL = don't care, ERL = 1)
POM 108 011 |Debug Mode

100 |Supervisor Mode
101 |User Mode

110 |Reserved

111 |Reserved

The ASID of the current process. If the processor does not implement the
ASID 7:0 standard TLB-based MMU, this field is always traced as a zero becausg the
EntryHi register, and hence the ASID, is not defined.

TheTMOAS transaction is used to essentially track any modifications to the ASID and the processor mode. This tracking

is enabled whenever tracing is on before the mode change takes place. If tracing is off when an ASID or mode change
occurs, no mode transaction occirigure 4-3illustrates the bits that are traced in the right-most position on the

PDO_AD bus for &MOAS record.

PDtrace™ Interface Specification, Revision 3.01 23

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

24

In addition to the PDO_TType values discussed above, there aréd@andTU2 which are used for user-triggered
tracing. Whenever the user writes to a special register, the register values are traced out using one of the above
PDO_TType values (depending on a bit in a control register). Details on this mechanism are desSdim4.5.1,
"Coprocessor 0 Trace Registers” on page 34

4.1.7 Trace Mode

The PDO_TMode signal is used to indicate the compression method used to transmit the address or data value on the
PDO_AD bus. This is used by the external software to regenerate the program flow. The compression technique depends
on the particular type of value being transmitted. A more detailed description is provitlealiter 5, “Trace

Compression,” on page 43

4.1.8 Data Order Signal

The data order signal PDO_DataOrder is used to indicate the out-of-order-ness of load and store data that is traced out.
The main purpose of this signal is to allow load and store data to be traced out as and when it becomes available, and not
maintain local storage that sequences it. This signal works by indicating the position of the traced load/store data in the
list of current outstanding loads/stores starting at the oldest. For example, assume that the program issues 5 loads A, B,
C, D, E, respectively.

Table 4-3 Load Order Example

Load Cycle # Cache Op Load Data Data Traced PDO_DataOrder
Available Out
A 1 Miss - - -
B 2 Hit B B 1 (second oldest)
C 3 Hit C C 1 (second oldest)
D 4 Miss - - -
E 5 Hit E E 2 (third oldest)
- k - A A 0 (oldest)
- k+p - D D 0 (oldest)

Table 4-3shows an example of how these five loads may be traced. Load data that hits in the first-level cache is usually
available at some fixed delay from instruction issue. So without loss of generality, we assume in the table that load data
is available the same cycle as the issued instruction.

If the number of outstanding data supported by four bits is exceeded, then the processor simply issues the overflow
signal, clears its internal buffers and restarts tracing. If the PDI_InhibitOverflow signal is asserted, then the processor
must stall until at least some of the outstanding loads/stores are satisfied before continuing. Note that if data values are
being traced, limits are being reached on other resources like the internal FIFO, and thus it is unlikely that the
number-of-outstanding-data limit will be so easily reached.

Some processors will graduate a store instruction while still waiting for the store data to become available. Thus, a load
can bypass a store and thus load data will be available before a preceding store’s store data is available. An example is
illustrated inFigure 4-4

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.1 Trace Output Signals

Figure 4-4 An Example of Load Data Bypassing an Earlier Store

(1)
Cycle Program PDO_InsComp PDO_AD Comments
m+0 DIV r3, 12 | NT multi-cycle instr
m+1 MFHI rl [NT
m+2 SWrl, 0(r3) ISa TSAa data not available
m+3 SW r4, 0(r7) ISb TSAb data not availablg
m+4 LW r4, 0(r6) ILc TDb store data
m+5 LW r5, 4(r6) ILd TLAC cache hit
m+6 TDc load data
m+7 TLAd cache hit
m+8 TDd load data
m+9+k TDa store data
2
Required Data Order PDO_DataOrder
TDa 1
TDb 1
TDc 1
TDd 0

Block (1) in Figure 4-4shows a small program fragment and the sequence of the PDO_InsComp and PDO_AD bus
transmissions. This processor will graduate and trace all instructions including the first store 1Sa. This store then waits
for the data in r1 before it actually completes its execution. Some processors will order store data. Hence the second store
ISb will wait for ISa before it can complete. But the following loads, ILc and ILd would complete without any delay. In

this situation, the PDO_AD column of blo¢k) shows the sequence of data availability. But if the processor must trace
data sequentially, then it is required to trace out data in-order as shown in the left column d)lddks sequentiality
requirement can be avoided by using the PDO_DataOrder signal that orders both the loads and stores. The
PDO_DataOrder values for the data is shown in the right column of ¢@pck

Another example that illustrates the combined load/store ordering is shdabl@4-4 This table shows in column

one, a sequence of only the loads and stores from a program fragment. The second column shows the sequence in which
the data associated with the loads and stores become available, and the third column shows the PDO_DataOrder signal
that is needed to trace out the sequence as available.

PDtrace™ Interface Specification, Revision 3.01 25

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

26

Table 4-4 Data (Load/Store) Order Example

Load/Store Data Trace PDO_DataOrder
Order
Load-A - -
Load-B - -
Store-C - -
Load-D - -
Store-E - -
Store-F - -
Store-G - -
Store-H - -
Load-I | 8 (ninth oldest)
- A 0 (oldest)
- C 1 (second oldest)
- E 2 (third oldest)
- F 2 (third oldest)
- G 2 (third oldest)
- H 2 (third oldest)
- B 0 (oldest)
- D 0 (oldest)

4.1.9 Instruction-Data Map Signal

This signal provides some redundant per instruction information on the PDtrace interface. An 8-bit
PDO_DataForiIns[7:0] bus, per PDO_InsComp, defines which pieces of data will be transmitted on the PDO_AD bus for
that instruction. Se€able 3-1for details on how the 8 signal bits are defined. This allows the logic block reading the
interface to prepare up-front for the information that will be sent on the PDO_AD bus for a given instruction.

4.1.10 Trace Timing Example

The timing diagram shown iRigure 4-5illustrates an example of the timing and usage of the signals described in the
previous sections.

The figure shows a single cycle PC transmissionin cycle 1. Cycles 3 and 4 illustrate an example where it takes two cycles
to transmit the new PC value.

The PDO_TType[2:0] signal is also used to indicate the begin of transmission of a load or store data at&AVasX)

and the actual data itselfD). The PDO_TENnd signal is used to indicate the completion of the current transmission type.

In Figure 4-5for example, cycle 5 shows the beginning of a load data address transmission. This transaction takes two
cycles, hence, the end of this transaction is indicated in cycle 6 by the asserted PDO_TEnd signal. The transmission of
the data that corresponds to this load address then begins in cycle 7 and ends in cycle 10.

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.2 Trace Input Signals

Cycle 12 indicates the beginning of an instruction where the PC changes value, and needs to be transmitted, but it is also
a store data instruction, thus the need to transmit the store address and the data. In the meantime, cycles 14, 15, 16, 17,
18 all need to transmit data addresses and values, and the FIFO overflows at cycle 18. The PDO_Overflow signal is
asserted at cycle 18. Now, all the load and store values from cycles 14-18 are discarded. Cycle 19 indicates the
completion of an instruction that needs no tracing, but since this is after a PDO_Overflow, the full PC value needs to be
transmitted, which is done during cycles 19 and 20, hent® srused for PDO_InsComp (rather tHan

Figure 4-5 PDtrace interface timing example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pclk

PDO_InsComp[2:0]

PDO_TType[2:0]

PDO_TEnd

PDO_AD[15:0] Pe G ot ‘ X ‘store‘-addr Xst‘-data ‘ ‘X:
PDO_TMode 1IX_ X X X X X
PDO_Overflow / N\

4.2 Trace Input Signals

The majority of the trace input signals are used to specify the conditions under which tracing is to be enabled. The list
below briefly explains the various types of trace input signals to the core:

« The PDI_TCBPresent signal is really a validity signal for all the other input signals. This tells the core that TCB
hardware is present and connected to the core. The core then regards the other input signals to have valid values.

« An overall trace control signal PDI_TraceOn controls whether tracing can be triggered on or not. If this signal is
asserted, then the input signals that control the per instruction decision of whether the core should trace or not,
include input trace signals such as PDI_G, PDI_ASID, PDI_U, PDI_S, PDI_K, PDI_E, and PDI_DM. Ré&édi¢o
3-1for an explanation of when each of these signals enable tracing.

» When tracing is turned on, the TCB needs to specify what kind of information is to be traced, i.e., just the PC, or also
the load/store addresses and data. This is done using the PDO_TMode sigiiabl&ex 1for details. In addition to
this, another signal, PDI_TraceAllBranch asks that the PC of all taken branches be traced, not just the ones that are
statically unpredictable. When asserted, this signal will generate a lot of trace data, since in a RISC architecture like
MIPS, typically every 3 or 4 instructions is a branch instruction. The main purpose of this all-branches tracing is to
enable the TCB to track the execution addresses on the core without referring to the static program image. This
knowledge can be used by the TCB to provide additional filtering on the trace data.

» Two signals, PDI_InhibitOverflow and PDI_StallSending are used to ensure that trace data is never lost because of
internal FIFO or buffer overflow. (This condition would result when a large number of bits are traced each cycle on
the average while the bandwidth out of the core or TCB is far less. The PDI_InhibitOverflow is used to ensure that
the FIFO on the core’s tracing logic does not overflow. If this signal is asserted and the FIFO is in imminent danger of
overflowing, then the core must stall its pipe while the FIFO is emptied.

If the TCB's internal buffer is in danger of imminent overflow, the PDI_StallSending signal is used by the TCB to

PDtrace™ Interface Specification, Revision 3.01 27

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

signal to the core to stop sending trace data on the PDtrace interface. The core stalls until the PDI_StallSending
signal is de-asserted by the TCB. Note that the cycle after the PDI_StallSending signal is asserted, the TCB can
ignore all PDO _ signals from the core, including the PDO_InsComp as well the PDO_AD bus signals. In the cycle
after the TCB de-asserts PDI_StallSending, all PDO _ signals from the core are considered valid and must be read by
the TCB.

» The signal PDI_SyncOffEn is an enable for the signals PDI_SyncPeriod and PDI_OffChipTB. These two signals are
used to set the synchronization interval. As showhahle 3-1 the synchronization interval is specified in cycles and
is interpreted based on the value of PDI_OffChipTB. That is, whether the trace is being stored on-chip within a trace
buffer in the TCB, or being sent off-chip to some larger trace memory.

4.3 Tracing Multi-lssue and High-Performance Processors

28

4.3.1 Background on High Performance Processors

This section addresses the tracing needs of multi-issue pipeline processors and describes a mechanism that allows a
workable and efficient tracing of program execution on such processors. The features of high performance processors
are not in general, very suitable for effectively tracing the sequential execution of a program. Such processor features
include, but are not limited to:

» Superscalarity or multi-issue
» Aggressive, out-of-order dynamic scheduling with big fetch and issue windows

» Deep pipelines

Multi-latency pipelines

Multiple outstanding load misses

A processor that is designed to issue multiple instructions, and moreover out of order from the original program
sequence, will also implement what is typically known as the re-order buffer. This re-order buffer and its control logic
is responsible for putting the issued instructions back in-order (of the original program sequence). There is a stage in the
pipeline when instructions are graduated from the re-order buffer, i.e., the point where it is certain that the instruction
will not stop due to an exception (or any other reason), and can proceed to completion. This graduation of instructions
from the re-order buffer is done in program sequence.

There are several things to note here, one, the graduated instructions have not completed their execution and will proceed
to do so further in the pipeline, for example, the register write-back of the computed result of an arithmetic instruction
will happen later in the pipeline. The second thing to note, is that, typically, the number of graduating instructions will
not exceed the number of issue slots of the processor. But the number can vary from a minimum of zero up to the number
of issue slots at the front of the pipe plus the number load miss completions from the bus and cache units, etc.

4.3.2 The Basic Tracing Methodology

The trace methodology in this document proposes that instructions be traced at the point of graduation. It is
recommended that a number of instructions be simultaneously traced, the recommended number is the number of issue
slots of the processor, let us call this the “number of instruction trace slots”. It is possible that in some cycles the number
of graduating instructions is greater than the number of instruction trace slots. In these cases, the processor’s trace control
logic must buffer the instruction(s) that could not be traced earlier, and trace them at the beginning of the next cycle, still
maintaining the program sequence order. Note that the size of such a buffer need not be very large, since over time, the
number of issued instructions will equal the number of graduated instructions. The size of this buffer can be calculated
based on the maximum number of instructions that can graduate from the re-order buffer on any given cycle, and this
number is based on the processor’s pipeline depths and other pipeline-related information.

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.3 Tracing Multi-Issue and High-Performance Processors

All the signals marked “Out” ifable 3-1are signals output from the processor core and represent the activity of a single
instruction within the core. Most of these signals need to be duplicated as many times as the number of instruction trace
slots within the core. Signals that must be duplicated are shovabla 3-1also with signal names appended with a

“_n”, where n is used to designate the instruction trace slot number. For example, a two-issue core can trace two
instructions and use the signals PDO_InsComp_0 and PDO_InsComp_1to represent the completion status values of two
simultaneously graduating instructions. If only one instruction graduates on any given cycle, then PDO_InsComp_1
sends a value of 000. When no instruction graduates on a given cycle, then both PDO_InsComp_0 and PDO_InsComp_1
send 000 values.

The same example code fragment from before is showabie 4-5and this table shows the graduation cycle of each
instruction and the number of the instruction trace slot that actually traces that instruction. This example assumes a
simple two-issue processor that allows up to one load/store instruction per issue and one branch instruction per cycle.

Table 4-5 Example Code Fragment Showing the Graduation Cycle and Trace Bus Number

Instr PC Instruction Graduation Trace Bus
No. Cycle Number
1 0x00400188 SW $6, 0xel70($1) n+0 0
2 0x0040018c SwW $4, 0xb134($28) n+1 0
3 0x00400190 SW $5, 0xb130($28) n+2 0
4 0x00400194 | SW $0, 0x1c($29) n+3 0
5 0x00400198 JAL 0x418d9c n+4 0
6 0x0040019c OR $30, $0, $0 n+4 1
7 0x00418d9c NOP n+5 0
8 0x00418da0 JR $31 n+5 1
9 0x00418da4 NOP n+6 0
10 0x004001a0 JAL 0x411c40 n+7 0
11 0x004001a4 NOP n+7 1
12 0x00411c40 JR $31 n+8 0
13 0x00411c44 NOP n+8 1
14 0x00414adc LW $4, 0xb134($28) n+9 0
15 0x00414ae0 BEQ $14, $0, 0x414af8 n+9 1
16 0x00414ae4 ADDIU $29, $29, 0xffe0 n+10 0
17 0x00414af8 OR $7, $0, $0 n+10 1
18 0x00414afc NOP n+11 0
19 0x00414b00 ADDU $6, $6, $2 n+1l 1
20 0x00414b04 OR $7, $2, $0 n+12 0
21 0x00414b08 SLTU $1, $2, $1 n+12 1

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

29

Chapter 4 PDtrace Interface Description

30

4.3.3 Coordinating the Instruction Completion Trace with the Address/Data Trace

When an instruction is traced on a particular instruction trace slot, say using PDO_InsComp_k, then all other information
for that instruction is sent on the signals of the™kistruction trace slot. For example, the address and data, if any,
associated with that instruction is sent on the PDO_AD_k bus. Thus, once an instruction begins its trace life on a
particular instruction trace slot, it must complete its life on the same slot. The exception to this occurs when the data is
not immediately available. In this situation, the data can be sent on any of the PDO_AD _n bus that is temporarily free
and hence chosen by the processor to send that dat&esten 4.3.4, "Out-of-Order Loads and Stores in the Multi-Pipe
Core".

The process of identifying the data associated with particular instructions has been simplified by making it a requirement
that all the data associated with instructions traced on the same cycle be in lock-step. Specifically, all the data associated
with instructions that are traced together on the different PDO_InsComp_n are such that their end points (i.e., the last
data cycle) are synchronized to be traced together. This requirement makes it easier for an external block to sequence all
the data operations in the various PDO_AD_n buses into the program sequence. An example that illustrates this behavior
is shown inFigure 4-6

Figure 4-6shows four blocks of information. The first ofi¢ shows the instruction complete (PDO_InsComp) values
in the program sequence. The second b{@¢khows these values as they would be transmitted on the two instruction

Figure 4-6 An Example Showing the Coordination of Instructions and their Data

(1))
Program Sequence PDO_InsComp_0O PDO_InsComp_1 cycle
ILBa ILBa ILb n
ILb ISc ILd n+1
ISc
ILd
(3
Cycle PDO_AD 0 PDO AD 1 PDO_TEnd 0 PDO_TEnd 1 Comments
m+0 TPCal NT 0 X
m+1 TPCa2 NT 1 X
m+2 TLAal NT 0 X
m+3 TLAaZ2 TLAb1 1 1
m+4 TDal TDb1 0 0

completion of all _AD
m+5 TDa2 TDb2 1 1 transfers for instructions
traced in cycle n

m+6 TSAcl NT 0 X
m+7 TSAc?2 TLAd1
m+8 TDcl TDd1 0 0

completion of all _AD
m+9 TDc2 TDd2 1 1 transfers for instructions
traced in cycle n+1

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.3 Tracing Multi-Issue and High-Performance Processors

(4)

Data in Program Sequence
TPCal, TPCaz2,
TLAal, TLAaz,
TLADb1,

TDal, TDa2
TDbl, TDb2
TSAc1, TSAc2
TLAd1

TDcl, TDc2
TDd1, TDd2

trace slots, i.e., PDO_InsComp_0and PDO_InsComp_1. The third (8pskows the PDO_AD and PDO_TEnd values

for the two trace slots. Note that the data trace information for the instructions that were simultaneously traced on
PDO_InsComp_0 and PDO_InsComp_1 are traced such that their PDO_TEnd is coordinated. For the PDO_InsComp
values traced in cycle n (in blogR)), the data transmission ends in cycle m+5 (in bI(®). And for the PDO_InsComp

values traced in cycle n+1 (in blo¢X)), the data transmission ends in cycle m+9 (in b(@k

The external block reading the signals on the interface can then take the data values from the two PDO_AD buses, and
knowing the program sequence order (in bligl, can put the data trace in order, as shown in ek

4.3.4 Out-of-Order Loads and Stores in the Multi-Pipe Core

When a multi-pipe core needs to send out-of-order data, it uses the PDO_DataOrder signal just like the single-pipe core.

When an out-of-order data is returned, it can be traced on any free PDO_AD_n bus, not necessarily the one that traced
the corresponding instruction. This is because, instruction tracing is sequentialized by the PDO_InsComp_n order and
therefore the data can be associated with the correct instruction once the PDO_DataOrder value is known. Note that since
the PDO_AD_n busses are implicitly ordered, for data transmissions that end on the same cycle, the dataon PDO_AD k

is before the data on PDO_AD_k+1.

4.3.5 Tagging Instructions that Issue Together

With the method of tracing graduating instructions in sequence, it is not possible to know which instructions issue
together without additional information. This information might be invaluable to tune a code optimizer for high
performance processors. In order to trace this information, the processor tags all the instructions that issue together, using
the signal PDO_IssueTag_n. This tag value is also traced out with each PDO_InsComp_n value. A tag value of 6 bits is
being initially proposed, assuming an issue window of about 64 instructions. Note that this tag information can be traced
out of the TCB only if the user requires it, hence it will not incur bandwidth on the external pins unless there is a real
need for this information. Thus, it is recommended that the TCB allow the external tracing of this information under
user discretion.

4.3.6 Miscellaneous
The input signals to a multi-pipeline core are not duplicated. A single set of signals control tracing options on all the

pipelines.

PDtrace™ Interface Specification, Revision 3.01 31

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

When tracing is first started (or re-started after a break), PDO_InsComp_0 is the first traced instruction in the static
program image and this will output th&OAS record and the full PC.

When there is a need for synchronization, the core can choose any PDO_InsComp_n to $&dAlsrecord and the

full PC value, as long as these two are both done on the same instruction in the trace slot. Note that if load/store addresses
are also being traced, then a full load/store address value is part of the synchronization tracing. This may not always be
possible on the instruction chosen by the core. But these should be sent on the next sequential load/store instruction. This
is a situation that the external software has to take into account when recognizing synchronization transmissions in the
multi-pipeline core or processor.

4.4 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints

The MIPS EJTAG Specification describes the hardware data and instruction breakpoint feature. In brief, a core or
processor can optionally implement up to 15 instruction and up to 15 data EJTAG hardware breakpoints. These
breakpoints, when encountered during program execution, cause the processor to take a debug exception. Important to
this discussion is that a bit (TE bit 2) in the breakpoint control register, when set, allows a trigger signal to be generated
(instead of, or in addition to, causing a debug exception). The PC/Data tracing interface uses this trigger signal to trigger
trace on/off.

In addition, when a trigger is generated, all information relating to this trigger is sent on the PDtrace interface to the
TCB. The TCB passes this information on to the trace memory so the trace software can have knowledge of when trace
triggers were generated. The signals that comprise this information is desciibétkiB-1as PDO_TrigOn,

PDO_TrigOff, PDO_Trigl[N-1:0] and PDO_TrigD[N-1:0].

4.4.1 TheTraceBPCRegister(CPO Register 23, Select 4)

Whether a particular hardware breakpoint triggers trace on or off, is determined by 30 separate HitaceBRC
register (Trace Break Point Control). (15 bits for hardware instruction breakpoint plus 15 bits for hardware data
breakpoints). The type of tracing that is triggered is determined by the tracing mode signal PDO_TMode, or if in
software control, by the Mode[3:1] bits in theaceControlregister (described iBection 4.5.1.1, "The TraceControl
Register (CPO Register 23, Select 1)" on pagef3His document).

The EJTAG control logic, upon encountering a hardware breakpoint, will signal the triggered breakpoint to the trace
logic. If more than one breakpoint triggers every cycle, the tracing logic will trigger trace on even if one of them triggers
off. The trace is turned off only if all of them triggers off.

Note that it is possible for the tracing mechanism to globally disable the hardware breakpoint-enabled triggering of
tracing using two bits in th&raceBPCregister. One bit is used to disable instruction breakpoints, and the other is used
to disable data breakpoints, as showRigure 4-7andTable 4-6

Itis possible that PDtrace tracing logic is implemented with no EJTAG implementation. Thus, it is the responsibility of
(external or internal) software to read the Coprocessor 0 Configl register to determine if EJTAG is implemented before
assuming the presence of ffraceBPCregister. Moreover, the EJTAG hardware breakpoints are optional for a core
implementing EJTAG. The Debug Control Register (at offset 0x0000 in drseg) has bits DataBrk and InstBrk that specify
whether any EJTAG data or instruction hardware breakpoints are implemented. If both these bits are set to 0, then no
hardware breakpoints are implemented in EJTAG on that core, afldabeBPQregister specified in this section is also

not implemented, i.e., the tracing logic does not implement the feature of trace triggering from EJTAG. Thus one must
first ensure that EJTAG is implemented, then examine the values of DataBrk and InstBrk in the Debug Control register,
and ensure that at least one of them is not zero, before assuming the presenbaocéBRCregister.

32 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.5 Software Trace Control

31 30

Figure 4-7 TraceBPCRegister Format

16 15 14

e

DBPON \ |q

IBPON

Table 4-6 TraceBPCRegister Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

DE

31

Used to specify whether the trigger signal from EJTAG

data breakpoint should trigger tracing functions or not:

0 : disables trigger signals from data breakpoints

1: enables trigger signals from data breakpoints

R/W

Required

DBPOn

30:16

Each of the 15 bits corresponds to the 15 possible
EJTAG hardware data breakpoints that may be

implemented. For example, bit 16 corresponds to the
first data breakpoint. If only 4 data breakpoints are
present in the EJTAG implementation, then only bit|
16,17,18, and 19 are used. The rest are always igng
by the tracing logic since they will never be triggere

o=

A value of one for each bit implies that a trigger fro
the corresponding data breakpoint should start traci
And a value of zero implies that tracing should be
turned off with the trigger signal.

53

K

g.

Required

15

Used to specify whether the trigger signal from EJTAG
instruction breakpoint should trigger tracing functions
or not:

R/W

0 : disables trigger signals from instruction breakpoipts

1 : enables trigger signals from instruction breakpo|nts

Required

IBPON

14:0

Each of the 15 bits corresponds to the 15 possible
EJTAG hardware instruction breakpoints that may he

implemented. Bit O corresponds to the first instructipn

breakpoint, and so on. If only 2 instruction breakpoints
are present in the EJTAG implementation, then onl

bits 0 and 1 are used. The rest are always ignored by tr'}glw

tracing logic since they will never be triggered.

A value of one for each bit implies that a trigger from
the corresponding instruction breakpoint should stgrt
tracing. And a value of zero implies that tracing should
be turned off with the trigger signal.

Required

4.5 Software Trace Control

Just as the TCB hardware can control tracing functionality using the input PDI_ signals, the PDtrace architecture allows
software to control tracing with similar enables and with the same flexibility. This is done by setting bits in the
Coprocessor FraceControlregister to appropriate values. To ensure that only one of hardware or software can control
tracing at any given pointin time, a trace select bit is used in the trace control registeeContro). A processor reset

sets the trace select bit to default trace input select from the TCB hardware.

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

33

Chapter 4 PDtrace Interface Description

4.5.1 Coprocessor 0 Trace Registers
This section describes all the Coprocessor 0 trace registers needed for implementing PDtrace tracing logic in the core
(with the exception ofraceBPC which was described Bection 4.4, "Trace Trigger from EJTAG Hardware
Instruction/Data Breakpointg"

Table 4-7shows a list of all the Coprocessor 0 tracing-related registers. The compliance level is specified assuming that
tracing is implemented, i.e., the TL bit in Coprocessor 0 Config3Tatdlg 2-).

Table 4-7 A List of Coprocessor 0 Trace Registers

Register | Sel Register Reference .
Compliance
Number Name
Section 4.5.1.1, "The
TraceControl Register :
23 1 TraceControl (CPO Register 23, Select Required
1)" on page 34
Section 4.5.1.2, "The
TraceControl2 Register :
23 2 TraceControl2 (CPO Register 23, Select Required
2)" on page 37
Section 4.5.1.3, "The
| UserTraceData Register :
23 3 UserTraceData (CPO Register 23, Select Required
3)" on page 38
Section 4.4.1, "The Required (only if EJTAG hardwarg
TraceBPC Register (CPO| data or instruction breakpoint has
23 4 TraceBPC Register 23, Select 4)" on| been implemented, otherwise not
page 32 required).

4.5.1.1 TheTraceControlRegister (CPO Register 23, Select 1)

TheTraceControkegister configuration is shown igure 4-8andTable 4-8 Note the special behavior of the ASID_M,
ASID, and G fields if the processor does not implement the standard TLB-based MMU.

Figure 4-8 TraceControlRegister Format
31 30 29 28 27 26 25 24 23 22 21 20 13 12 543 10
ITSuT 0 [TBI0 D| E| K| 8] U] ASID_M ASID | G Mode | oh

Table 4-8TraceControlRegister Field Descriptions

Fields Description Read/ | Reset State| Compliance
Write

Name Bits

The trace select bit is used to select between the
hardware and the software trace control bits. A valug of
TS 31 zero selects the external hardware trace block signglB/W 0 Required
and a value of one selects the trace control bits in the
TraceControlregister.

34 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.5 Software Trace Control

Table 4-8TraceControlRegister Field Descriptions (Continued)

Fields Description Read/ | Reset State| Compliance
Write

Name Bits

This bit is used to indicate the type of user-triggered
trace record. A value of zero implies a user type 1 and
a value of one implies a user type 2.

ut 30 The actual triggering of a user trace record happeng o'rD\/W Undefined Required
a write to theJserTraceDataegister. This is a 32-bit
register for 32-bit processors and a 64-bit register fpr
64-bit processors.

0 29:28 Reserved for future use; Must be written as zero; 0 0 Reserved

returns zero on read.

Trace All Branch. When set to 1, this tells the processor

B 27 to trace the PC value for all taken branches, not just hﬁNV
ones whose branch target address is statically

unpredictable.

Undefined Required

Inhibit Overflow. This signal is used to indicate to th
core trace logic that slow but complete tracing is
10 26 desired. Hence, the core tracing logic must not allov

FIFO overflow and discard trace data. This is achieV
by stalling the pipeline when the FIFO is nearly full, §
that no trace records are ever lost.

Undefined Required

O‘%@J [¢)
s

When set to one, this enables tracing in Debug Mogle
(seeSection 2.1, "Processor Modes" on paye-6r
trace to be enabled in Debug mode, the On bit must be
one, and either the G bit must be one, or the current
D 25 process ASID must match the ASID field in this R/W Undefined Required
register.

When set to zero, trace is disabled in Debug Mode
irrespective of other bits.

When set to one, this enables tracing in Exception
Mode (seeSection 2.1, "Processor Modes" on page 6
For trace to be enabled in Exception mode, the On|bit
must be one, and either the G bit must be one, or the
E 24 current process ASID must match the ASID field in thHisR/W Undefined Required
register.

When set to zero, trace is disabled in Exception Modle,
irrespective of other bits.

When set to one, this enables tracing in Kernel Mogle
(seeSection 2.1, "Processor Modes" on paye-6r
trace to be enabled in Kernel mode, the On bit must|be
one, and either the G bit must be one, or the current
K 23 process ASID must match the ASID field in this R/W Undefined Required
register.

When set to zero, trace is disabled in Kernel Mode
irrespective of other bits.

When set to one, this enables tracing in Superviso
Mode (seeSection 2.1, "Processor Modes" on page 6
For trace to be enabled in Supervisor mode, the On|bit

must be one, and either the G bit must be one, or the Required (if
current process ASID must match the ASID field in this f/lu%er_/lsor
register. . Mode is

S 22 R/W Undefined implemented,
When setto zero, trace is disabled in Supervisor Mofle, is Reserved
irrespective of other bits. otherwise)

this bit is ignored on write and returns zero on read.

If the processor does not implement Supervisor MoTe,

PDtrace™ Interface Specification, Revision 3.01 35

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

Table 4-8TraceControlRegister Field Descriptions (Continued)

Fields

Description

Name

Bits

Read/
Write

Reset State

Compliance

21

When setto one, this enables tracing in User Mode (
Section 2.1, "Processor Modes" on pajeHer trace to

be enabled in User mode, the On bit must be one,

either the G bit must be one, or the current procesg
ASID must match the ASID field in this register.

When set to zero, trace is disabled in User Mode,
irrespective of other bits.

see

and
R/W

Undefined

Required

ASID_M

20:13

This is a mask value applied to the ASID comparis
(done when the G bit is zero). A “1” in any bit in this
field inhibits the corresponding ASID bit from
participating in the match. As such, a value of zero
this field compares all bits of ASID. Note that the

ability to mask the ASID value is not available in the
hardware signal bit; it is only available via the softwaf

control register.

If the processor does not implement the standard
TLB-based MMU, this field is ignored on write and
returns zero on read.

n

in

h

R/W

Undefined

Required

ASID

12:5

The ASID field to match when the G bit is zero. Wheg
the G bit is one, this field is ignored.

If the processor does not implement the standard
TLB-based MMU, this field is ignored on write and
returns zero on read.

R/W

Undefined

Required

When set, this implies that tracing is to be enabled
all processes, provided that other enabling function
(like U, S, etc.,) are also true.

If the processor does not implement the standard
TLB-based MMU, this field is ignored on write and
returns 1 on read. This causes all match equations
work correctly in the absence of an ASID.

for

R/W

to

Undefined

Required

Mode

3:1

These three bits provide the same trace mode functi
as the PDI_TraceMode[2:0] signal, and is describe
here again.

Mode
000
001
010
011

Trace Mode

Trace PC

Trace PC and load address

Trace PC and store address

Trace PC and both load/store addresses

100 specification revisions less than 03.00)

101
110
111

Trace PC and load address and data

Trace PC and store address and data

Trace PC and both load/store address and |d3

The TraceControldyjigmodesfield determines which of
these encoding are supported by the processor. Th
operation of the processorUNPREDICTABLE if

this field is set to a value which is not supported by t

Trace PC and load data (optional for all PDtrace

pns
il

" RIW

ta

he

processor.

Undefined

Required

36

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 4-8TraceControlRegister Field Descriptions (Continued)

Fields Description Read/ | Reset State| Compliance
- Write
Name Bits
This is the master trace enable switch in software
control. When zero, tracing is always disabled. Whe ;
On 0 set to one, tracing is enabled whenever the other Riw 0 Required

enabling functions are also true.

4.5.1.2 TheTraceControl2Register (CP0O Register 23, Select 2)

The TraceControl2 register provides additional control and status information. It is described-grecid-9and

Table 4-9 Note that some fields in tHEaceControl2register are read-only, but have a reset state of “Undefined”. This
is because these values are loaded from various PDtrace Interface Signals wibénsyreOffEn signal is asserted. As
such, these fields in ti@aceControl2register will not have valid values until the TCB asserts the PDI_SyncOffEn signal.

Figure 4-9 TraceControl2Register Format
31 7 6 5 4 3 2 0

0 Valid |TB|TB
Modes | | U

SyP

Table 4-9TraceControl2Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
- Write
Name Bits
0 317 Reserved for future use; Must be written as zero; 0 0 Reserved

returns zero on read.

This field specifies the subset of tracing that is
supported by the processor (S=ztion 2.2,
"Subsetting" on page)6

Encoding Meaning

ValidModes | 6:5 00 PC tracing only R Preset Required
01 PC and load and store address tracing|only

10 PC, load and store address, and load gnd
store data

11 Reserved

This bit indicates how many trace buffers are
implemented by the TCB, as follows:

Encoding Meaning

0 Only one trace buffer is implemented, a
the TBU bit of this register indicates whig

trace buffer is implemented) _
TBI 4 - - R Undefined Required
1 Both on-chip and off-chip trace buffers gre

implemented by the TCB and the TBU bit pf
this register indicates to which trace buffer
the traces is currently written.

5 a

This bit is loaded from the PDI_TBImpl signal when the
PDI_SyncOffEn signal is asserted.

PDtrace™ Interface Specification, Revision 3.01 37

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

Table 4-9TraceControl2Register Field Descriptions (Continued)

Fields Description Read/ | Reset State| Compliance
Write

Name Bits

This bit denotes to which trace buffer the trace is
currently being written and is used to select the
appropriate interpretation of the TraceContegk2

field.
Encoding Meaning
TBU 3 0 Trace data is being sent to an on-chip trace R Undefined Required
buffer
1 Trace Data is being sent to an off-chip trgce
buffer

This bit is loaded from the PDI_OffChipTB signal when th
PDI_SyncOffEn signal is asserted.

1]

The period (in cycles) to which the internal
synchronization counter is reset when tracing is started,
or when the synchronization counter has overflowef.

SyP On-chip Off-chip
000 2 27
001 b 28
010 2 2°
011 b2 210
100 b 211
SyP 2:0 101 bl 512 R Undefined Required
110 ba 218
111 2 214

The “On-chip” column value is used when the trace
data is being written to an on-chip trace buffer (e.qg,
TraceControlzgy = 0). Conversely, the “Off-chip”

column is usec?when the trace data is being writter
an off-chip trace buffer (e.g, TraceContrdg = 1).

—

(o]

This field is loaded from the PDI_SyncPeriod signal
when the PDI_SyncOffEn signal is asserted.

4.5.1.3 TheUserTraceDataRegister (CP0 Register 23, Select 3)

A software write to any bits in theserTraceDataegister will trigger a trace record to be written indicating a type 1 or
type 2 user format. The type is based on the UT bit ifitheeControlregister. This register cannot be written to in
consecutive cycles. The trace output data is UNPREDICTABLE if this register is written in consecutive cycles.

Figure 4-10UserTraceDataRegister Format

31 32-bit Register 0
63 64-bit Register 0
38 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.6 Trace Enabling/Disabling Condition

Table 4-10UserTraceDataRegister Field Descriptions

Fields Description Read/ | Reset State| Compliance
- Write
Name Bits
31:0 or | Software readable/writable data. When written, thig
Data triggers a user format trace record out of the PDtragceR/W 0 Required
63:0 interface that transmits the Data field to trace memory.

4.6 Trace Enabling/Disabling Condition

As seenirSection 4.2, "Trace Input Signals” on pagetB&re are several input signals into the core that enable tracing.

In addition, trace can also be triggered on and off by the EJTAG hardware instruction and data breakpoint settings, as
seen inSection 4.4, "Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints" on pafee32quations

specified here clarify the conditions under which different input factors will enable or disable tracing.

Trace enabling and disabling from software is similar to the hardware method, with the exception that the bits in the
control register are used instead of the input enable signals from the TCB. The Trace&bmntrohtrols whether
hardware (via the TCB), or software (via ffraceControlregister) controls tracing functionality.

In any given cycle n, an instruction is traced if the following equation evaluates true:

TraceOn & (TriggerOn(n) | MatchEnable | TriggerEnable) (EQ1)
And every cycle, the following state variable is set and then used in the next cycle:

TriggerOn(n+1) <- TraceOn & (TriggerEnable | (TriggerOn(n) & (~TriggerDisable)) (EQ 2)
The various expressions usediQ 1)and(EQ 2)are defined here.

TraceOn < ((TraceControl 15 & TraceControl on |

((~TraceControl T1s) & PDI _TraceOn))

MatchEnable —
(TraceControl 1g &
(TraceControl G | ((TraceControl asp N EntryHi agqp) & (~TraceControl Asip M)=0)) &
((TraceControl u& UserMode) | -

(TraceControl k & KernelMode) |

(TraceControl s & SupervisorMode) |

(TraceControl g & ExceptionMode) |

(TraceControl p & DebugMode))) |
((not TraceControl T9) &

(PDI _Gor(PDI _ASID =EntryHi agp)) &
((PDI _U & UserMode) |

(PDI _K & KernelMode) |

(PDI _S & SupervisorMode) |

(PDI _E & ExceptionMode) |

(PDI _DM & DebugMode)))

TriggerEnable -

((EJTAG_data_trigger[i]) & TraceBPC pe & (TraceBPC pgponjj) =1)) |
((EJTAG_inst_trigger[i]) & TraceBPC iE & (TraceBPC gponp =1))
TriggerDisable -
((EJTAG_data_trigger][i]) & TraceBPC pe & (TraceBPC pgponjj) =0)) |
((EJTAG_inst_trigger[i]) & TraceBPC iE & (TraceBPC |gpon =0))
PDtrace™ Interface Specification, Revision 3.01 39

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

As seen in th€EQ 1), trace can be turned on only if the master switch On or PDI_TraceOn is first asSeeed@r).
Once asserted, there are three ways in which instruction tracing can occur:

1. Atrigger had occurred in the past that turned on tracing, but no trace disabling trigger had occurred since then
(Triggeron(n).

2. The input enable signals from the TCB or the trace control register indicate a tracing coki@ditahrEqable
This type of tracing is done over general program areas. For example, all of user-level code for a particular process
(ASID specified), or some such conditions.

3. The third method to turn on tracing is from the processor side using the EJTAG hardware breakpoint triggers
(TriggerEnablg If EJTAG is implemented, and hardware breakpoints can be set, then using this method, fine grain
tracing control is possible. It is possible to send a trigger signal that turns on tracing at a particular instruction. For
example, it would be possible to trace a single procedure in a program by triggering on trace at the first instruction,
and triggering off trace at the last instruction.

Trace is turned off whefEQ 1)evaluates false. Note that tracing can be unilaterally turned off by de-asserting the On
bit or the PDI_TraceOn signal.

4.7 Tracing During Processor Mode Changes

Note that during normal execution, the processor will change its operation mode frequently. For example, when
executing user-level code, an interrupt may cause the processor to jump to kernel mode to service the interrupt. When
the interrupt has been serviced, the processor will switch back to user mode. A mode change is indicated in the tracing
logic by tracing out ZMOAS for PDO_TType.

In the situation that the mode change affects tracing, for example, the tracing system has been set up to trace only in user
mode and not in kernel mode, then the interrupt service routine should not be traced. Upon jumping to kernel mode, the
core tracing logic will add aMOAS as the last record in the FIFO (or if the FIFO is empty, will output directly). While

the entries in the FIFO until thEMOAS entry are being traced out, the core will use a PDO_InsComp valhié (o
Instruction). Once th&@ MOAS record has been output, the core tracing logic will de-assert its PDO_lamTracing signal
until the interrupt service routine is done and execution jumps back into user mode. By knowing the static instruction
stream in the user program, and using Th@OAS record, the external trace reconstruction software can figure out that
tracing was suspended when the processor jumped to kernel mode.

When jumping from a non-tracing mode to a tracing mode, the first record outpdDAS to indicate the mode
change. This is followed by a full PC value of the first instruction in the tracing mode. This will enable the external trace
reconstruction software to re-synchronize itself and track program execution in the desired mode.

4.8 Tracing Store Conditionals

40

A store conditional instruction part of an LL/SC operation may or may not perform the actual store operation. This
section describes the tracing rules for such an instruction.

A store conditional that performs the store operation is traced out @SB for PDO_InsComp. If store address
or data is being traced, then this associated information is traced as well.

A store conditional that does not perform its store is traced a®atB for PDO_InsComp (or even dRC). And no
associated address or data will therefore be traced for this instruction.

It is the responsibility of software to determine from context of the tracing and the program source whether the store
conditional was successful or not.

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.9 Tracing MIPS16e Macro Instructions

4.9 Tracing MIPS16e Macro Instructions

4.10

In the MIPS16é&M ASE, several single MIPS16e instructions expand to a fixed sequence of multiple 32-bit instructions.
These include the SAVE and RESTORE and ASMACRO instructions. (See the “M®@8¢hitecture for

Programmers Volume IV-a: The MIPS18kApplication-Specific Extension to the MIPS32Architecture”,

document number MD00076).

When executing a Macro instruction, note that the PC address does not change for the instructions that comprise the
macro instruction, hence the core does not output a PC value until it executes the first instruction outside the Macro. In
fact, the core indicates the completion of the Macro instruction by outputting a full PC value for the first instruction
executed after the macro instruction. This instruction could either have been reached sequentially by falling out of the
macro sequence, or by executing a branch instruction from within the macro sequence. This full PC value is output using
a branch indication e.glB for the PDO_InsComp value, even though this instruction is most likely not a branch target.
The external re-construction software will note the preceding Macro instruction, and hence be able to handle this
situation correctly.

Within the macro sequence, normal tracing is carried out. Note that the macro sequence can include, in addition to
arithmetic and logical instructions, load and store instructions, which will be traced in a manner similar to loads/stores
that are notin a macro instruction sequence. (Note that any branch instruction inside the Macro sequence can only branch
out of the Macro sequence and not to any location within the sequence since all instructions within the sequence have
the same PC value).

Tracing MIPS16e Extend Instructions

A MIPS16€dM extend instruction is considered a single instruction, and therefore the PC of the extend part is traced.
Note that a branch to a MIPS16e extend instruction is to the extend part of the instruction. (For details, refer to the
“MIPS32™ Architecture for Programmers Volume IV-a: The MIPST6&pplication-Specific Extension to the
MIPS32'™™ Architecture”, document number MD00076).

PDtrace™ Interface Specification, Revision 3.01 41

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

42 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5

Trace Compression

This section is a discussion of compression techniques that may be used when tracing different values. The methods used
are quite different for each “type" of value. For example, the PC may be sent as a delta from the previous PC address.
Sometimes the full PC value needs to be sent when the trace process starts either at the beginning of tracing, after a buffer
overflow, or for synchronization. In this case, the PC can be sent un-compressed, or some method such as bit-block
compression can be used. The sections below discuss these various techniques as they correspond to the PDO_TMode
signal value. Note that the single-bit PDO_TMode signal allows two ways in which to send the information being
currently traced.

5.1 PC tracing

When PDO_TMode is zero, this implies that the delta of the PC value is transmitted. This delta is computed from the
PC value of the instruction executed just before the branch target instruction (e.g., the instruction executed in the branch
delay slot after a branch instruction). The computed delta is then right-shifted by one bit, since this bit is never used.
Note that the value can be negative or positive, hence is a signed 16-bit value, and the upper bits need to be sign-extended
before transmission.

PC_delta = (new_PC -last PC)>>1 (EQ 3)

If the width of the computed delta value is bigger than the width of the PDO_AD bus, then the lower bits are sent first,
followed by the upper bits.

When the PDO_TMode value is one, this implies that the full PC value is transmitted. Depending on the width of the
bus, this may take multiple cycles. Again, the first cycle transmits the least significant bits, and so on.

5.2 Load or Store Address Tracing

With a PDO_TMode zero value, the load address transmitted is a delta from the last transmitted load address. Stores are
similar, where the computed delta is from the last transmitted store address. Note that the last load instruction can be a
load instruction of any type, i.e., LB, LW, etc. The same is true for stores.

load_address_delta = current_load_address - last_load_address (EQ 4)

store_address_delta = current_store_address - last_store_address (EQ5)

Note that the delta transmission is quite effective when the load or store addresses are increasing or decreasing
sequentially.

With a PDO_TMode value of one, the value transmitted is the full address of either the load or the store. Depending on
the width of the trace bus and the processor data width, this could take multiple cycles to transmit.
5.3 Load or Store Data Tracing

The data values are less prone to good compression techniques. But delta values and bit-block compression techniques
might be useful in achieving some compression ratio. This version of the PDtrace specification does not dictate any

PDtrace™ Interface Specification, Revision 3.01 43

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Trace Compression

compression for data values. The PDO_TMode value of zero is reserved for a future compression scheme. And the
PDO_TMode value of one is used to transmit the full data value.

5.4 Using Early PDO_TEnd Assertion

44

This technique was discussed in Tadble on page.9Vhen the processor is transmitting data on the PDO_AD bus, it

can optionally make a decision to cut off the trailing sign bits of the data and assert PDO_TEnd early, before all the bits

of the address or data has been sent. For example, redundant sign bits need not be transmitted for accurate reconstruction
of the data. Note that this data compression technique can be applied to any transmission on the PDO_AD bus, be it PC
address, load/store address, or load/store data. Also note that this technique is optional for the processor tracing logic,

but the TCB and software must be capable of handling this situation for implementations with PDtrace Specification
03.00 and higher.

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.1 Revision History

Appendix A

Revision History

A.1 Revision History

Table A-1 Revision History

Revision

Date

Description

1.6

August 29, 2000

Changes in this revision:

Add the requirement that the data address be also periodically gathered
for synchronization purposes, per FS2.

Modify Figure 3 to show that the load data is picked up after alignment,
per Ihh.

typo fixes

1.7

September12, 2000

Changes in this revision:
Add a separate input signal that says whether to trace in Debug mogle or
not (i.e., DM = 1 in theDebugregister), per Scott who wants to be able
to debug the debug handler code.

Put back Figure 3 to tap load/store data pre-alignment, per Franz.
Add a section (3.17) to show when tracing is enabled.

Allow the ASID to be masked under software control, per Scott.

Amend Figure 1 to show the EJTAG/TAP controller and its connection
to the debugger.

Add to Table 2, to show the use of the PDO_InsComp signal v&Gde
(100).

Add a chapter (6) on the trace capture block and its interaction with|the
external debugger software.

Add TOC

Fix typos, grammar, sentence construction.

18

October 27, 2000

Changes in this revision:
Change the way loads are tracked and traced out.

Add the tracing out of ASID and processor mode as part of the periodic
synchronization.

Add details to the multi-issue tracing section.

The above changes require a modification to the output format segtion.

Add a chapter to discuss the trace capture block (TCB), that includes: a
definition of the control registers within the TCB, and the mechanism to
write these registers from the external probe (or debugger).

Define tracing with an on-chip trace buffer versus off-chip trace buffer.

Add another Out signal from the core, PDO_lamTracing, that the core
uses to signal to the TCB that it is actually sending valid trace datd.

PDtrace™ Interface Specification, Revision 3.01

45

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Revision History

Table A-1 Revision History

Revision

Date

Description

1.9

November 20, 2000

Changes in this revision:

Add tracing of processor ISA mode, and whether processor is in D¢
mode or not.

Get rid of the TCBTraceMask register, is not really needed.

Allocate some bits in the TraceControl register as implementation
dependent.

Specify that full addresses are used for on-chip trace memory.

Change the encoding of bits from the EJTAG logic to the tracing lo
send all 30 bits of breakpoint trigger.

Fix the logical expression in 3.1.8.

bug

Ty

C,

2.0

December 19, 2000

Changes in this revision:

Add a signal from the TCB to the core tracing logic, PDI_StallSendi
that inhibits the core from sending trace data. Note that the core doe
stop tracing, only stops sending trace information to the TCB. Use

ng,
5 not
i by

the TCB when its internal buffer is in imminent danger of overflowing.

(The core will stall if its internal FIFO will overflow).

Make the synchronization period programmable, by using some bits|
register to hold this value. These bits can be updated by either soft
or by the TCB (based on the trace buffer size).

Add a signal from the TCB to the core tracing logic that signals whet
the TCB is using an on-chip or off-chip trace buffer. This changes t
way in which the core interprets the synchronization period bits in {
register.

The chapter on trace control block (TCB) has been cut off into ano
document, since it is not directly relevant to the PDtrace architectu

ina
vare

her
he
he

ther
re.

2.01

January 25, 2001

Changes in this revision:

Add a signal PDI_TCBPresent to indicate that the TCB hardware i
present.

Clearer explanation of how the PDI_StallSending signal works.

Change in how the PDI_EXL and the corresponding X bit in the
TraceControlregister works.

Coding change in the PDI_TraceMode[2:0] signal.

D

2.02

February 12, 2001

Changes in this revision:

Change in how the PDI_EXL and the corresponding X bit in the
TraceControkegister works. Tracing triggers on when either EXL or t
ERL bit is a 1, this enables tracing after a cold reset.

ne

46

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.1 Revision History

Table A-1 Revision History

Revision

Date

Description

2.03

March 22, 2001

Changes in this revision:

Add a register description table fdserTraceData.

Add a PDI_TraceAllBranch signal to indicate that all branches
(conditional, unconditional, predictable, and unpredictable) are td
traced.

Change the PDO_InsComp definition for unconditional predictal]
branches (jumps), so that these trace olBak B, andISB (rather
thanl, IL, andIS).

Document how tracing is handled within MACRO instructions an
the SAVE/RESTORE instruction.

Document what happens when a mode change happens within {
processor and this changes the tracing mode, i.e., either turns it g
on.

Fix typos.

be

le

he
ff or

2.04

June 20, 2001

Changes in this revision:

Converted document to new template

PDO_TMode’s reserved bit field of 100 is now used for tracing P
values and load data (this is optional for all PDtrace specificatio
less than 03.00 and conforming TCB implementations.

Three PDO_ signal bits have been added, PDO_MIPS16 and
PDO_MIPS16Ins that are used only by processors implementing
MIPS16 ASE, and are optional.

The sense of EQ1, EQ2, and EQ3 used to compute the delta ad
values have been reversed.

Add the PDI_TraceAllBranch to the Trace Control Register.

Note that the select position of the COPO registers implemented
tracing have all been changed, so that the control registers are
together and the optional registeaceBPCis the last one.

Note that the end of a MIPS16 Macro instruction was indicated |
the transmission of a full PC value. This was more fully specified
that this full PC value is accompanied by an PDO_InsComp valy
that indicates a branch, e.g., IB, ILB, etc.

The PDI_EXL has been changed to PDI_E, and similarly in the
TraceControlregister, X has been changed to E.

Bits 22 and 23 in th&raceControlregister (K and S), have switche
places.

The TraceControl2register has been re-arranged, and instead of
bit OfC, two new bits TBU and TBI have been added.

The TMOAS record has been augmented with an extra bit for the
POM field and with a new bit called the SYNC bit.

Add an Input signal PDI_TBImpl from the TCB to the core tracin
logic to say whether on-chip, off-chip, or both buffers are
implemented by the TCB. This signal is optional for all TCB
implementations that are compatible to PDtrace specifications le
than 03.00.

the

dress

for

SO

[oN

he

SS

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

a7

Appendix A Revision History

Table A-1 Revision History

Revision Date Description

Changes in this revision:

» Convert the stand-alone document to a book format and add LOF/and
2.05 June 28, 2001 LOT pages.
» Add trademark symbol to PDtrace

» Fix minor typos.

Changes in this revision:

» Define the behavior if the processor implements a fixed mapping
MMU, rather than the standard TLB-based MMU.

» Define the polarity of the TraceContxg|p v field.

* Precisely define the processor modes which for which tracing may be
enabled. Se€ection 2.1, "Processor Modes" on pader@hese
definitions.

» Make the equations for turning on and off trace more precise and
convert to standard notation.

» Add the standard “About This Book” chapter to define syntax and

2.06 August 8, 2001 conventions.

» Eliminate the R/W fields in TraceControl2.

=3

» More fully describe the synchronization counter, including when
must be restarted.

» Make it explicit that ASID and processor mode changes are not
traced if tracing is off when the change occurs. That is, ASID ang
processor mode changes are not traced if tracing is currently off

« Add subsetting rules for PDtrace (sgection 2.2, "Subsetting" on
page §

» Add the PDO_ValidModes signal and the ValidModes field in the
TraceControl2register to specify which tracing modes the procesgsor
supports.

Changes in this revision: (RT)

—

* Change the name of the TraceControl2 register field ValidModeg to
207 March 21, 2002 {gg%lébset since this field indicated the implemented subset of
» Get ready for commercial release, breakup the single file into

individual chapter files, fix typos, cross-references, etc.

48 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.1l Revi

sion History

Table A-1 Revision History

Revision

Date

Description

3.00

November 26, 2002

Changes in this revision: (RT)

» Change the way multi-issue tracing is done Geetion 4.3.1,
"Background on High Performance Processors" on page 28

» Change the use of PDO_LoadOrder signal to PDO_DataOrder (
Section 4.3.4, "Out-of-Order Loads and Stores in the Multi-Pipe
Core" on page 31

* Increase the width of PDO_DataOrder signal to 4 bitsTabke 3-1
on page Y.

» Add a new signal called PDO_DataPerlns[7:0] (Eae 3-1 on
page 7.

» Allow PDO_TENd to be asserted early to cut off redundant upper
of an address or data (SEble 3-1 on page)’7

» Add a section to clarify how tracing is handled for store conditioral

instructions (se&ection 4.8, "Tracing Store Conditionals" on pag

» Make the PDO_TMode bit 0 value for PDO_TType valueshf
TU1, andTU2 to be Reserved.

» Add PDO_Trig signals on the PDtrace interface that transmit tra
trigger information to the TCB. Segection 4.4, "Trace Trigger from
EJTAG Hardware Instruction/Data Breakpoints" on page 32

» Add MIPS16 in MIPS64 option to ISAM iMOAS. Se€eTable 4-2
on page 23

» Rewrite the trace enable equation to fix errors in the first version.
Section 4.6, "Trace Enabling/Disabling Condition" on page 39

 Fix grammatical errors and typos.

ee

U7

hits

Le

See

3.01

May 14, 2003

Removed the trace slot-specific signals PDO_Trigl_n, PDO_TrigD |
PDO_TrigOn, and PDI_TrigOff, since these are superfluous. Fix mi

typos.

LN,
nor

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

49

	PDtrace™ Interface Specification
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1� Typographical Conventions
	1.1.1� Italic Text
	1.1.2� Bold Text
	1.1.3� Courier Text

	1.2� UNPREDICTABLE and UNDEFINED
	1.2.1� UNPREDICTABLE
	1.2.2� UNDEFINED

	1.3� Special Symbols in Pseudocode Notation
	1.4� For More Information

	Overview
	2.1� Processor Modes
	2.2� Subsetting

	The PDtrace Interface Signals
	3.1� PDtrace Interface Signal List

	PDtrace Interface Description
	4.1� Trace Output Signals
	4.1.1� The Instruction Completion Status Signal
	4.1.2� Start of Tracing
	4.1.3� Trace Synchronization
	4.1.4� Trace Bus
	4.1.5� Trace Overflow and Restart
	4.1.6� Trace Type and an Example Code Fragment
	4.1.7� Trace Mode
	4.1.8� Data Order Signal
	4.1.9� Instruction-Data Map Signal
	4.1.10� Trace Timing Example

	4.2� Trace Input Signals
	4.3� Tracing Multi-Issue and High-Performance Processors
	4.3.1� Background on High Performance Processors
	4.3.2� The Basic Tracing Methodology
	4.3.3� Coordinating the Instruction Completion Trace with the Address/Data Trace
	4.3.4� Out-of-Order Loads and Stores in the Multi-Pipe Core
	4.3.5� Tagging Instructions that Issue Together
	4.3.6� Miscellaneous

	4.4� Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints
	4.4.1� The TraceBPC Register (CP0 Register 23, Select 4)

	4.5� Software Trace Control
	4.5.1� Coprocessor 0 Trace Registers
	4.5.1.1� The TraceControl Register (CP0 Register 23, Select 1)
	4.5.1.2� The TraceControl2 Register (CP0 Register 23, Select 2)
	4.5.1.3� The UserTraceData Register (CP0 Register 23, Select 3)

	4.6� Trace Enabling/Disabling Condition
	4.7� Tracing During Processor Mode Changes
	4.8� Tracing Store Conditionals
	4.9� Tracing MIPS16e Macro Instructions
	4.10� Tracing MIPS16e Extend Instructions

	Trace Compression
	5.1� PC tracing
	5.2� Load or Store Address Tracing
	5.3� Load or Store Data Tracing
	5.4� Using Early PDO_TEnd Assertion

	Revision History
	A.1� Revision History

