
Document Number: MD00136
Revision 3.01
May 14, 2003

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

PDtrace™ Interface Specification

Copyright ©2001-2003 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any
copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing
by MIPS Technologies or an authorized third party is strictly prohibited. At a minimum, this information is protected
under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format)
is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE
DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION
OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design
or otherwise. MIPS Technologies does not assume any liability arising out of the application or use of this information,
or of any error or omission in such information. Any warranties, whether express, statutory, implied or otherwise,
including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the
furnishing of this document does not give recipient any license to any intellectual property rights, including any patent
rights, that cover the information in this document.

The information contained in this document shall not be exported or transferred for the purpose of reexporting in
violation of any U.S. or non-U.S. regulation, treaty, Executive Order, law, statute, amendment or supplement thereto.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the
United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or
transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal
Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202
for military agencies. The use of this information by the Government is further restricted in accordance with the terms
of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, R3000, R4000, R5000 and R10000 are among the registered trademarks of MIPS Technologies, Inc. in the United
States and other countries, and MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-3D, MIPS-based, MIPS I, MIPS II, MIPS
III, MIPS IV, MIPS V, MIPSsim, SmartMIPS, MIPS Technologies logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp,
4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20Kc, 25Kf, ASMACRO, ATLAS, At the Core of the User Experience.,
BusBridge, CoreFPGA, CoreLV, EC, JALGO, MALTA, MDMX, MGB, PDtrace, Pipeline, Pro, Pro Series, SEAD,
SEAD-2, SOC-it and YAMON are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Template: B1.08, Built with tags: 2B

Table of Contents

Chapter 1 About This Book1
1.1 Typographical Conventions ..1

1.1.1 Italic Text ...1
1.1.2 Bold Text ...1
1.1.3 Courier Text ..1

1.2 UNPREDICTABLE and UNDEFINED ..1
1.2.1 UNPREDICTABLE ..1
1.2.2 UNDEFINED ...2

1.3 Special Symbols in Pseudocode Notation ..2
1.4 For More Information ..4

Chapter 2 Overview5
2.1 Processor Modes ..6
2.2 Subsetting ...6

Chapter 3 The PDtrace Interface Signals7
3.1 PDtrace Interface Signal List ..7

Chapter 4 PDtrace Interface Description17
4.1 Trace Output Signals ..17

4.1.1 The Instruction Completion Status Signal ...17
4.1.2 Start of Tracing ..19
4.1.3 Trace Synchronization ..20
4.1.4 Trace Bus ..20
4.1.5 Trace Overflow and Restart ..20
4.1.6 Trace Type and an Example Code Fragment ...21
4.1.7 Trace Mode ...24
4.1.8 Data Order Signal ..24
4.1.9 Instruction-Data Map Signal ..26
4.1.10 Trace Timing Example ...26

4.2 Trace Input Signals ...27
4.3 Tracing Multi-Issue and High-Performance Processors ...28

4.3.1 Background on High Performance Processors ...28
4.3.2 The Basic Tracing Methodology ..28
4.3.3 Coordinating the Instruction Completion Trace with the Address/Data Trace30
4.3.4 Out-of-Order Loads and Stores in the Multi-Pipe Core ...31
4.3.5 Tagging Instructions that Issue Together ..31
4.3.6 Miscellaneous ...31

4.4 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints ..32
4.4.1 The TraceBPC Register (CP0 Register 23, Select 4) ...32

4.5 Software Trace Control ...33
4.5.1 Coprocessor 0 Trace Registers ..34

4.6 Trace Enabling/Disabling Condition ..39
4.7 Tracing During Processor Mode Changes ...40
4.8 Tracing Store Conditionals ...40
4.9 Tracing MIPS16e Macro Instructions ...41
4.10 Tracing MIPS16e Extend Instructions ..41

Chapter 5 Trace Compression43
5.1 PC tracing ...43
5.2 Load or Store Address Tracing ...43
5.3 Load or Store Data Tracing ..43
PDtrace™ Interface Specification, Revision 3.01 i

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.4 Using Early PDO_TEnd Assertion ..44

Appendix A Revision History45
A.1 Revision History ..45
ii PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

PDtrace™ Interface Specification, Revision 3.01 iii

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 2-1: Illustration of a PC and Data Trace Flow ...5
Figure 2-2: Config3 Register Format ...6
Figure 4-1: A Sample Pipeline And The PDO_InsComp Trace Point ..18
Figure 4-2: Illustration of a Pipeline and Trace Tap Points ..19
Figure 4-3: A TMOAS Trace Record...23
Figure 4-4: An Example of Load Data Bypassing an Earlier Store ...25
Figure 4-5: PDtrace interface timing example ...27
Figure 4-6: An Example Showing the Coordination of Instructions and their Data ..30
Figure 4-7:TraceBPC Register Format ...33
Figure 4-8:TraceControl Register Format...34
Figure 4-9:TraceControl2 Register Format...37
Figure 4-10:UserTraceData Register Format ...38

iv PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1-1: Symbols Used in Instruction Operation Statements ...2
Table 2-1: Config3 Register Field Descriptions...6
Table 3-1: PDtrace Interface Signals ..7
Table 4-1: Example Code Fragment With Some PDtrace Signal Value ..22
Table 4-2: A TMOAS Trace Record Field Descriptions..23
Table 4-3: Load Order Example...24
Table 4-4: Data (Load/Store) Order Example ..26
Table 4-5: Example Code Fragment Showing the Graduation Cycle and Trace Bus Number ..29
Table 4-6: TraceBPC Register Field Descriptions ...33
Table 4-7: A List of Coprocessor 0 Trace Registers ..34
Table 4-8: TraceControl Register Field Descriptions ..34
Table 4-9: TraceControl2 Register Field Descriptions ..37
Table 4-10: UserTraceData Register Field Descriptions..39
Table A-1: Revision History ..45

by

ion

ions
.

, or

ated,
Chapter 1

About This Book

1.1 Typographical Conventions

This section describes the use ofitalic, bold andcourier fonts in this book.

1.1.1 Italic Text

• is used foremphasis

• is used forbits, fields, registers, that are important from a software perspective (for instance, address bits used
software, and programmable fields and registers), and variousfloating point instruction formats, such asS, D, andPS

• is used for the memory access types, such ascached anduncached

1.1.2 Bold Text

• represents a term that is beingdefined

• is used forbits andfields that are important from a hardware perspective (for instance,register bits, which are not
programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance,5..1 indicates numbers 5 through 1

• is used to emphasizeUNPREDICTABLE andUNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruct
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The termsUNPREDICTABLE andUNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases.UNDEFINED behavior or operations can occur only as the result of executing instruct
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register)
Unprivileged software can never causeUNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can causeUNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction
as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE . UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener
it is UNPREDICTABLE . UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:
PDtrace™ Interface Specification, Revision 3.01 1

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

ry

 is

process

here is
ocessor

tation

ary
 is
• Implementations of operations generatingUNPREDICTABLE results must not depend on any data source (memo
or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
inaccessible in the current processor mode. For example,UNPREDICTABLE operations executed in user mode
must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in another

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction.UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue.UNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which t
no exit other than powering down the processor). The assertion of any of the reset signals must restore the pr
to an operational state

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language no
resembling Pascal. Special symbols used in the pseudocode notation are listed inTable 1-1.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed byy copies of the single-bit valuex

b#n
A constant valuen in baseb. For instance 10#100 represents the decimal value 100, 2#100 represents the bin
value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix
omitted, the default base is 10.

xy..z
Selection of bitsy throughzof bit stringx. Little-endian bit notation (rightmost bit is 0) is used. Ify is less than
z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtraction

∗, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison
2 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

ness

, and

turn

e

me

led

h an
n

t
icular
≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose registerx. The content ofGPR[0] is always zero.

FPR[x] Floating Point operand registerx

FCC[CC] Floating Point condition code CC.FCC[0] has the same value asCOC[1].

FPR[x] Floating Point (Coprocessor unit 1), general registerx

CPR[z,x,s] Coprocessor unitz, general registerx, select s

CCR[z,x] Coprocessor unitz, control registerx

COC[z] Coprocessor unitz condition signal

Xlat[x] Translation of the MIPS16 GPR numberx into the corresponding 32-bit GPR number

BigEndianMem
Endian mode as configured at chip reset (0→Little-Endian, 1→ Big-Endian). Specifies the endianness of the
memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endian
of Kernel and Supervisor mode execution.

BigEndianCPU
The endianness for load and store instructions (0→ Little-Endian, 1→ Big-Endian). In User mode, this
endianness may be switched by setting theREbit in theStatusregister. Thus, BigEndianCPU may be computed
as (BigEndianMem XOR ReverseEndian).

ReverseEndian
Signal to reverse the endianness of load and store instructions. This feature is available in User mode only
is implemented by setting theREbit of theStatusregister. Thus, ReverseEndian may be computed as (SRREand
User mode).

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write.LLbit is set
when a linked load occurs; it is tested and cleared by the conditional store. It is cleared, during other CPU
operation, when a store to the location would no longer be atomic. In particular, it is cleared by exception re
instructions.

I :,
I+n :,
I-n :

This occurs as a prefix toOperation description lines and functions as a label. It indicates the instruction tim
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a ti
label ofI . Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections labe
with the instruction time, relative to the current instructionI , in which the effect of that pseudocode appears to
occur. For example, an instruction may have a result that is not available until after the next instruction. Suc
instruction has the portion of the instruction operation description that writes the result register in a sectio
labeledI+1.

The effect of pseudocode statements for the current instruction labelledI+1 appears to occur “at the same time”
as the effect of pseudocode statements labeledI for the following instruction. Within one pseudocode sequence,
the effects of the statements take place in order. However, between sequences of statements for differen
instructions that occur “at the same time,” there is no defined order. Programs must not depend on a part
order of evaluation between such sections.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning
PDtrace™ Interface Specification, Revision 3.01 3

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

URL:

n
g a

tion)

sical

-bit
PRs

nch or

 not

ment
e

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS

http://www.mips.com

Comments or questions on the MIPS™ Architecture or this document should be directed to

Director of MIPS Architecture
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.

PC

TheProgram Countervalue. During the instruction time of an instruction, this is the address of the instructio
word. The address of the instruction that occurs during the next instruction time is determined by assignin
value toPC during an instruction time. If no value is assigned toPC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16 instruc
or 4 before the next instruction time. A taken branch assigns the target address to thePCduring the instruction
time of the instruction in the branch delay slot.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phy
address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

FP32RegistersMode

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 32 32
FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32 64-bit F
in which 64-bit data types are stored in any FPR.

In MIPS32 implementations,FP32RegistersModeis always a 0. MIPS64 implementations have a compatibility
mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a case
FP32RegisterModeis computed from the FR bit in theStatusregister. If this bit is a 0, the processor operates
as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value ofFP32RegistersMode is computed from the FR bit in theStatus register.

InstructionInBranchD
elaySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a bra
jump. This condition reflects thedynamic state of the instruction, not thestatic state. That is, the value is false
if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which is
executed in the delay slot of a branch or jump.

SignalException(exce
ption, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argu
parameter as an exception-specific argument). Control does not return from this pseudocode function - th
exception is signaled at the point of the call.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning
4 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ce™)
his
on user
are has
f signals

hows a
 the
nits are
n-chip
n be
nnects
amine

l Block
signer,
ient

ments

nted.
Chapter 2

Overview

This document contains a specification of the interface from the core used to capture PC and data trace (PDtra
information from each pipeline within the processor. A trace block external to the core (but on-chip), captures t
PDtrace information and writes it to trace memory. The trace memory may be either on-chip or off-chip based
requirements. The trace information written to memory is compressed and assumes that post-processing softw
access to the static program image to reconstruct the dynamic program flow. Compression reduces the number o
(hence pins) required to gather this information and also reduces the trace size.

Figure 2-1 illustrates one possible configuration for trace capture and post-analysis using software. The figure s
core with trace generation logic and a TAP controller. This core is connected to a trace control block (TCB) via
PDtrace interface and via the TAP controller (since the TCB implements and uses TAP registers). Both these u
on-chip. The trace memory associated with the trace control block can either be located on-chip, or off-chip. An o
trace buffer will be smaller and will be writable by the TCB at higher speeds, while an off-chip trace memory ca
much larger and is written via the potentially slower pin interface out of the core. Probe hardware and software co
to the TCB and the TAP controller via the chip’s pin interface and allows debugger software to start, stop, and ex
program execution traces.

Figure 2-1 Illustration of a PC and Data Trace Flow

The rest of this document describes the PDtrace interface in detail. This document together with the Trace Contro
Specification document serve three functions: (1) they provide a specification of the trace interface for the core de
(2) they provide sufficient detail for a third-party vendor to build the trace control block, and (3) they provide suffic
details to design and code a post-processing software module for trace re-construction.

Implementation of PDtrace is optional for a given MIPS-compatible processor. Whether a core or processor imple
PDtrace is indicated by a bit in the Coprocessor 0 Config3 register as shown inFigure 2-2 andTable 2-1.

Note that if a core or processor does not implement EJTAG, then the PDtrace tracing logic can still be impleme

Core

Trace
genera-
tion
logic

Trace
Control
Block

Trace
Memory

Trace
Re-generation
Software

PDtrace interface

On-chip
On-chip Softwareor Off-chip

trace-memory format

TAP
controller Debugger

Probe

Off-chip
PDtrace™ Interface Specification, Revision 3.01 5

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Overview

ction

e level
2.1 Processor Modes

The PDtrace specification allows tracing to be enabled or disabled based on various processor modes. This se
precisely describes these modes, and the terminology is then used later in the document.

DebugMode ← (Debug DM = 1)
ExceptionMode ← (not DebugMode) and ((Status EXL = 1) or (Status ERL = 1))
KernelMode ← (not (DebugMode or ExceptionMode)) and (Status KSU = 2#00)
SupervisorMode ← (not (DebugMode or ExceptionMode)) and (Status KSU = 2#01)
UserMode ← (not (DebugMode or ExceptionMode)) and (Status KSU = 2#10)

2.2 Subsetting

The PDtrace specification allows four levels of subsetting. Within each level, all features required to support th
must be implemented. The allowable subsets are:

• No PDtrace implemented

• PDtrace with PC tracing only

• PDtrace with PC and load and store address tracing only

• PDtrace with PC, load and store address, and load and store data tracing

The specific subset implemented by a processor or core can be determined by reading the TL bit (0) of theConfig3
register (seeTable 2-1) and the ImpSubset bits (6:5) in theTraceControl2 register (seeTable 4-9 on page 37).

In addition, Trace Trigger from EJTAG Hardware breakpoints (seeSection 4.4, "Trace Trigger from EJTAG Hardware
Instruction/Data Breakpoints" on page 32) is optional.

Figure 2-2Config3 Register Format

31 1 0

TL

Table 2-1Config3 Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

31:1 As per the MIPS32 and MIPS64 Architecture
specifications

TL 0

This bit is used to indicate the presence of tracing logic
in the processor.

0 : No tracing logic implemented

1 : Tracing logic implemented

R Preset Required
6 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

al that is
to the

prefix
a “_n”
Chapter 3

The PDtrace Interface Signals

All signals are assumed to be asserted high unless otherwise noted. The signal direction “Out” refers to a sign
output from the processor core, and “In” signals are those that are input to the processor core. The “PDO_” prefix
signal names is used to uniquely identify the signals as belonging to the PDtrace Output interface. And the “PDI_”
is used to identify the PDtrace Input signals. Signals that have been repeated in the “Signal Name” column with
prefix are PDO_ signals that are to be duplicated for multi-issue processors.

3.1 PDtrace Interface Signal List

Table 3-1 PDtrace Interface Signals

Signal Name Direction Description

Pclk Processor clock, used by the core and the trace control block.

PDO_IamTracing Out

The core uses this signal to validate all the other Out signals. The external
trace control block cannot always predict if the trace data from the core is
valid or not valid since tracing depends on core execution status such as
the processor mode and also since tracing can be controlled by software
running on the core.

This signal is used for all the _n signals, and is not duplicated.

PDO_InsComp[2:0]

PDO_InsComp_n[2:0]
Out

Instruction completion status signal. The values are interpreted as
follows:

A "No Instruction" (NI) can happen due to a pipeline stall or when the
instruction was killed (due to an exception).

The three encoding (101, 110, 111) for branched instruction indicates a
discontinuity in the PC value for the associated instruction. Note that it is
only when the new PC can not be predicted from the static program flow
that it is traced.

TheIPC value is used for the periodic output of the full PC value for
synchronization. The tracing hardware should ensure that this is not done
on an unpredictable branch, load, or store instruction.

Value Description

000 No instruction completed this cycle (NI)

001 Instruction completed this cycle (I)

010 Instruction completed this cycle was a load (IL)

011 Instruction completed this cycle was a store (IS)

100 Instruction completed this cycle was a PC sync (IPC)

101 Instruction branched this cycle (IB)

110 Instruction branched this cycle was a load (ILB)

111 Instruction branched this cycle was a store (ISB)
PDtrace™ Interface Specification, Revision 3.01 7

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 The PDtrace Interface Signals
PDO_MIPS16

PDO_MIPS16_n
Out

When asserted, this signal indicates that the current instruction specified
in PDO_InsComp is a MIPS16e instruction. When de-asserted, the
processor is not executing a MIPS16e instruction.

This signal (along with the PDO_MIPS16Ins signal) is used by the TCB
to compute the current PC value. Hence this is irrelevant externally and
not traced to memory. Note that since external software has access to the
program image, it can always know whether an instruction is a MIPS16e
instruction or not.

This is an optional signal for PDtrace specification revisions less than
03.00. This signal is only relevant if the processor also implements the
MIPS16e ASE, and is not required otherwise. If a processor provides this
signal, it is optional whether a TCB accepts this signal and uses it.

PDO_MIPS16Ins[1:0]

PDO_MIPS16Ins_n[1:0]
Out

This signal accompanies the PDO_MIPS16 signal and is used to indicate
the type of MIPS16e instruction. Like PDO_MIPS16 this is optional, but
must be implemented if PDO_MIPS16 is implemented.

PDO_AD[15:0] or

PDO_AD[31:0]

PDO_AD_n[15:0] or

PDO_AD_n[31:0]

Out

The address or data value is transmitted on this bus. The actual values
must be correlated using the PDO_TType signal described below. It is
recommended that a 64-bit processor core implement at least 32 bits for
improved tracing capability.

A multi-cycle transaction sends the least-significant bits first, followed by
the more-significant bits.

When the transmitted data width is less than the width of the bus, the data
is transmitted on the least-significant bits of the bus. There is no necessity
to indicate the validity since the post-analyzing software knows the width
of the data. (For example, a LB implies one byte of data). The upper bits
of the bus must be sign extended to allow the TCB to truncate the upper
bits and hence avoid tracing unneeded bits to memory.

Table 3-1 PDtrace Interface Signals (Continued)

Signal Name Direction Description

Value Description

00 Is executing a MIPS16e instruction that is not a
MACRO instruction and is not extended.

01 Is executing a MIPS16e instruction that is not a
MACRO instruction and is extended.

10 Is executing a MIPS16e MACRO instruction.

11 Reserved
8 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

3.1 PDtrace Interface Signal List
PDO_TType[2:0]

PDO_TType_n[2:0]
Out

Specifies the transmission type for the transaction on the PDO_AD lines.
The valid types are:

PDO_TEnd

PDO_TEnd_n
Out

Indicates the last cycle of the current transaction on the PDO_AD bus.
This signal can be asserted in the same cycle that a transaction is started,
implying that the particular transaction only took one cycle to complete.

In a multi-issue core, the PDO_TEnd signals are synchronized for all the
PDO_AD_n transmissions associated with instructions that graduate
together. SeeSection 4.3.3, "Coordinating the Instruction Completion
Trace with the Address/Data Trace" on page 30 for details.

In PDtrace revision 3.00 and higher, the processor is allowed to assert this
signal early if the tracing logic determines that the upper bits of the
address or data being sent on the PDO_AD bus are redundant. For
example, redundant upper sign bits may be omitted and software could
easily reconstruct these bits. Note that the TCB must therefore be capable
of accepting an early PDO_TEnd signal for any transmission type. This
early assertion of PDO_TEnd is allowed, for all the values of
PDO_TMode.

PDO_TMode

PDO_TMode_n
Out

Indicates the transmission mode for the bits transmitted on PDO_AD.
The mode depends on the transmission type.

Table 3-1 PDtrace Interface Signals (Continued)

Signal Name Direction Description

Value Description

000 No transmission this cycle (NT)

001 Transmitting the PC (TPC)

010 Transmitting the load address (TLA)

011 Transmitting the store address (TSA)

100 Transmitting the load/store data value (TD)

101

Transmitting the processor mode, the 8-bit ASID, and the
SYNC bit. This is triggered by either a change in the processor
mode, by a software write to theEntryHi register, or a trace
synchronization operation. (TMOAS). If the processor does
not implement the standard TLB-based MMU, it is
UNPREDICTABLE whether a write to the EntryHi register
triggers a TMOAS operation. (SeeFigure 4-3 on page 23).

110 Transmitting user-defined trace record - type 1 (TU1)

111 Transmitting user-defined trace record - type 2 (TU2)

PDO_TType PDO_TMode

000(NT)

101(TMOAS)
Reserved

001(TPC)
0 -> delta from last PC value

1 -> compression algorithm A (full address)

010(TLA)

011(TSA)

0 -> delta from last data address of that type

1 -> compression algorithm B (full address)

100(TD)

110(TU1)

111(TU2)

0 -> Reserved

1 -> compression algorithm C (full data)
PDtrace™ Interface Specification, Revision 3.01 9

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 The PDtrace Interface Signals
PDO_DataOrder[3:0]

PDO_DataOrder_n[3:0]
Out

This signal is used to indicate the degree of out-of-order-ness of load and
store data. Using this order value allows load and store data to be traced
out as it becomes available, thus avoiding the need to internally buffer
data. Note that only sixteen outstanding data values are allowed because
of the limitation imposed by the signal width of 4 bits. This signal takes
on the following values:

Table 3-1 PDtrace Interface Signals (Continued)

Signal Name Direction Description

Value Description

0000 data from oldest load/store instruction (is in-order)

0001 data from second-oldest load/store instruction

0010 data from third-oldest load/store instruction

0011 data from fourth-oldest load/store instruction

0100 data from fifth-oldest load/store instruction

0101 data from sixth-oldest load/store instruction

0110 data from seventh-oldest load/store instruction

0111 data from eighth-oldest load/store instruction

1000 data from ninth-oldest load/store instruction

1001 data from tenth-oldest load/store instruction

1010 data from eleventh-oldest load/store instruction

1011 data from twelfth-oldest load/store instruction

1100 data from thirteenth-oldest load/store instruction

1101 data from fourteenth-oldest load/store instruction

1110 data from fifteenth-oldest load/store instruction

1111 data from sixteenth-oldest load/store instruction
10 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

3.1 PDtrace Interface Signal List
PDO_DataForIns[7:0]

PDO_DataForIns_n[7:0]
Out

The value indicates which pieces of data will be transmitted for the
corresponding instruction in PDO_InsComp.

PDO_TrigI[N:0] Out

This one-hot vector indicates which of the N+1 implemented EJTAG
hardware instruction breakpoints caused a trigger. The instruction
causing the trigger is indicated on the corresponding PDO_InsComp bus,
if tracing has been turned on. Note that EJTAG restricts the maximum
number of implementable hardware instruction breakpoints to 15.

PDO_TrigD[N:0] Out

This one-hot vector indicates which of the N+1 implemented EJTAG
hardware data breakpoints caused a trigger. The instruction causing the
trigger is not necessarily the one on the PDO_InsComp bus since data
triggers may be imprecise. Note that EJTAG restricts the maximum
number of implementable hardware data breakpoints to 15.

PDO_TrigOn Out
This bit is asserted if at least one trigger in PDO_TrigI[N:0] or
PDO_TrigD[N:0] turns trace on. (SeeSection 4.4, "Trace Trigger from
EJTAG Hardware Instruction/Data Breakpoints" on page 32).

PDO_TrigOff Out

This is asserted if no trigger turns trace on (i.e., PDO_TrigOn is not
asserted), and at least one of the indicated triggers in PDO_TrigI[N:0] or
PDO_TrigD[N:0] turns trace off. (SeeSection 4.4, "Trace Trigger from
EJTAG Hardware Instruction/Data Breakpoints" on page 32).

Table 3-1 PDtrace Interface Signals (Continued)

Signal Name Direction Description

Bit # Description

0

A value of zero indicates that the TPC sent (indicated in
bit position 1 of this signal) is associated with a statically
predictable address change, i.e., the external software
does not need to be sent the value in TPC for accurate
tracing. A value of one indicates that the TPC sent is
associated with a statically unpredictable address change.

Note that TPC values for statically predictable address
changes are sent only when the PDI_TraceAllBranch
option is set. Since the TCB does not know whether the
TPC is for a statically predictable or unpredictable address
change, it uses the information in this bit to determine
whether to transmit through the TPC value to trace
memory.

Note that any data in internal buffers when the
PDI_TraceAllBranch signal is de-asserted will have valid
values for this bit position, but the TCB does not explicitly
know how much data was in the buffers. Hence there will
be some small period of time, a few cycles probably, when
more address information may be traced than explicitly
required by external software.

1 A value of 1 indicates that TPC will be sent.

2 A value of 1 indicates that TLA will be sent.

3 A value of 1 indicates that TSA will be sent.

4 A value of 1 indicates that TD will be sent.

5 A value of 1 indicates that TMOAS will be sent.

6 A value of 1 indicates that TU1 will be sent.

7 A value of 1 indicates that TU2 will be sent.
PDtrace™ Interface Specification, Revision 3.01 11

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 The PDtrace Interface Signals
PDO_Overflow Out

This signals an internal FIFO overflow error in the core and implies the
following:

• the current transmission is to be abandoned in the current cycle

• the FIFO is emptied so that previously collected trace information in
the FIFO is lost

• a new transmission begins in the next cycle with a TMOAS and a full
PC address

PDO_ValidModes[1:0] Out

This signal specifies the subset of tracing that is supported by the
processor (seeSection 2.2, "Subsetting" on page 6).

PDO_IssueTag_n[5:0] Out

This signal is used in multi-issue processors and it is signaled with
PDO_InsComp_n. In multi-issue processors, instructions that issue
together are assigned a matching tag value, specified by this signal value.

A six bit internal counter increments each cycle, and the instructions that
issue in that cycle are assigned the counter value When the maximum
counter value is reached, it simply restarts at zero.

This feature facilitates the performance debugging of code schedulers for
high-end processors. These tag values are available every cycle, but it is
anticipated that the TCB will trace this to memory only when specially
requested by the user.

PDI_TCBPresent In
When asserted this indicates that the TCB hardware is present and
connected to the core’s tracing logic. Hence the core can consider the
other PDI_ signals to be valid.

PDI_TraceOn In

This is the signal asserted by the external trace block into the core that
states whether tracing is globally turned on or off. It is expected that this
signal be continuously asserted to turn on tracing.

0 : tracing off

1 : tracing is turned on

Table 3-1 PDtrace Interface Signals (Continued)

Signal Name Direction Description

Encoding Meaning

00 PC tracing only

01 PC and load and store address tracing only

10 PC, load and store address, and load and
store data

11 Reserved
12 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

3.1 PDtrace Interface Signal List
PDI_TraceMode[2:0] In

When tracing is turned on, this signal specifies what information is to be
traced by the core:

The PDO_ValidModes signal determines which of these encoding are
supported by the processor. The operation of the processor is
UNPREDICTABLE if PDI_TraceMode is set to a value which is not
supported by the processor.

PDI_G In

The global bit, which if asserted to 1, implies that all processes are to be
traced. If 0, then trace data is sent only for a process that matches
PDI_ASID[7:0]. If the processor does not implement the standard
TLB-based MMU, this signal is ignored by the processor and is treated as
if it were asserted.

PDI_ASID[7:0] In
When the global bit is 0, only the process whose ASID matches this ASID
value will be traced. If the processor does not implement the standard
TLB-based MMU, this signal is ignored by the processor.

PDI_U In

Enables tracing in User Mode (seeSection 2.1, "Processor Modes" on
page 6). This enables tracing only if the PDI_TraceOn is also asserted or
the hardware breakpoint trace triggers on, and either the PDI_G bit is set
or the PDI_ASID matches the current process ASID.

PDI_S In

Enables tracing in Supervisor Mode (for those processors that implement
Supervisor Mode), otherwise, this signal is not required (seeSection 2.1,
"Processor Modes" on page 6). This enables tracing only if the
PDI_TraceOn is also asserted or the hardware breakpoint trace triggers
on, and either the PDI_G bit is set or the PDI_ASID matches the current
process ASID.

PDI_K In

Enables tracing in Kernel Mode (seeSection 2.1, "Processor Modes" on
page 6). This enables tracing only if the PDI_TraceOn is also asserted or
the hardware breakpoint trace triggers on, and either the PDI_G bit is set
or the PDI_ASID matches the current process ASID.

PDI_E In

Enables tracing when in Exception Mode (seeSection 2.1, "Processor
Modes" on page 6). This enables tracing only if the PDI_TraceOn is also
asserted or the hardware breakpoint trace triggers on, and either the
PDI_G bit is set or the PDI_ASID matches the current process ASID.

PDI_DM In
Enables tracing in Debug Mode (seeSection 2.1, "Processor Modes" on
page 6). This feature is useful to debug the debug handler code via the
EJTAG and TAP controller port.

PDI_InhibitOverflow In
This signal is used by the external trace block to indicate to the core that
the core pipeline should be back-pressured (and stalled) instead of
allowing the trace FIFO to overflow and hence lose trace information.

Table 3-1 PDtrace Interface Signals (Continued)

Signal Name Direction Description

Mode Trace Mode

000 Trace PC

001 Trace PC and load address

010 Trace PC and store address

011 Trace PC and both load/store addresses

100
Trace PC and load data (optional for all
PDtrace specification revisions less than
03.00)

101 Trace PC and load address and data

110 Trace PC and store address and data

111 Trace PC and both load/store address and
data
PDtrace™ Interface Specification, Revision 3.01 13

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 The PDtrace Interface Signals
PDI_StallSending In

When asserted, this signal is used by the external trace block to indicate
to the core that it must stop transmitting trace information in the next
cycle. This request may be essential when the trace control block is in
imminent danger of over-running its internal trace buffer.

In the cycle when the signal is asserted, the value on all the PDO_ signals
are valid and must be captured by the TCB.

In the cycle after the one where the core sees an assertion of this signal
the core must not transmit any valid trace information onanyof the PDO_
output signal bits (including PDO_InsComp).

In the cycle after the TCB de-asserts this signal again, PDtrace PDO_
signals are valid and must be captured by the TCB. (Note that some
processors cannot arbitrarily stall their pipeline on any given cycle. In this
situation, the implementation on the processor side must provide
sufficient buffering to hold trace information until the pipeline can be
stalled).

PDI_SyncOffEn In

This signal is an enable signal for the PDI_SyncPeriod, PDI_TBImpl, and
PDI_OffChipTB signals. When asserted, the core latches these values.
This signal, and the signals which it controls must be asserted before
tracing can begin.

PDI_SyncPeriod[2:0] In

This signal is used to set the synchronization period bits in the
TraceControl2register. The value specifies the period (in cycles) for
sending synchronization information.

The “On-chip” column value is used when the trace data is being written
to an on-chip trace buffer. Conversely, the “Off-chip” column is used
when the trace data is being written to an off-chip trace buffer. This
selection is made by the value of PDI_OffChipTB signal, which is
subsequently loaded into the TBU field in theTraceControl2 register.

PDI_TBImpl In

When this signal is a 1, the TCB has implemented both an on-chip and an
off-chip trace buffer, and the PDI_OffChipTB signal indicates to which
the trace is currently being written. When this signal is a 0, the
PDI_OffChipTB signal indicates which buffer is implemented. This value
is written into theTraceControl2 CP0 register (as the TBI bit). It is
optional for the TCB to provide this signal to the core logic for all TCB
implementations compatible to PDtrace specifications less than 03.00.

PDI_OffChipTB In

When one, this signal indicates that the trace data is being sent off-chip to
an external trace memory. When zero, this indicates an on-chip trace
buffer. The value of this signal to the core changes how the core interprets
the trace synchronization period bits. This signal value is written into the
TraceControl2 CP0 register (as the TBU bit).

Table 3-1 PDtrace Interface Signals (Continued)

Signal Name Direction Description

SyncPeriod Period (in cycles) for
On-chip memory

Period (in cycles) for
Off-chip memory

000 22 27

001 23 28

010 24 29

011 25 210

100 26 211

101 27 212

110 28 213

111 29 214
14 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

3.1 PDtrace Interface Signal List
PDI_TraceAllBranch In

When asserted, the core’s tracing logic will emit PC values for all taken
branches encountered in the execution stream, including all conditional
and unconditional, predictable and unpredictable branches. When
de-asserted, the core reverts to normal tracing mode.

Table 3-1 PDtrace Interface Signals (Continued)

Signal Name Direction Description
PDtrace™ Interface Specification, Revision 3.01 15

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 The PDtrace Interface Signals
16 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

 head
nt to
ry, since
arate
predict
JR and
le PC
lyzer to
ization

 or
e extra
it selects
essor

ntrol.

their
cycle

ruction
e data

t
.

tion is
Chapter 4

PDtrace Interface Description

A program executes sequentially through instructions within a basic block followed by a jump (or branch) to the
(first instruction) of the next basic block. To reconstruct the dynamic execution path of the program, it is sufficie
provide the post-analyzer with the PC address of the head of each basic block. Even this is not always necessa
it may be possible in some instances to statically predict the value of the branch target, provided there is a sep
indication for the taken branch. Hence, PC addresses need to be traced only when it is not possible to statically
the branch target PC. For the MIPS32 and MIPS64 instruction sets, the statically unpredictable instructions are
JALR (for branch target address), and BEQ, BNE, BGEZ, etc. (for branch condition). Other statically unpredictab
changes happen with taken exceptions and return from exceptions (ERET and DERET). To enable the post-ana
re-synchronize itself with the program execution, the PC value is also output at predictable intervals and synchron
periods.

The tracing mechanism can be controlled either by hardware via the input signals from the external trace block
controlled by software. Software control is possible via bits in a Coprocessor 0 register. In addition, there is on
bit in the register used to select control between the hardware and software mechanisms. The reset value of this b
hardware tracing control. If software wants to take over tracing, it can set all the tracing control bits in the Coproc
0 register to the desired value and then set the select bit to transfer tracing control to the bits in the register.

This chapter describes the details of the general tracing mechanism, including hardware and software trace co

4.1 Trace Output Signals

4.1.1 The Instruction Completion Status Signal

The PDO_InsComp[2:0] signal from the core’s tracing logic is used as an indicator of completed instructions and
type in the processor’s pipeline. Once tracing is initiated, a valid PDO_InsComp value must be transmitted every
(except when the TCB has asserted the PDI_StallSending signal).

NI (No Instruction complete) is used when the internal pipe is stalled for some reason or the other, and no inst
completes in that cycle. It is also used when tracing has been turned off, but the internal FIFO is still emptying trac
out to the TCB on the PDO_AD bus.

Instructions within a basic block are indicated with aI, IL , or IS value. TheI is used to indicate a simple instruction tha
is neither a load nor a store. TheIL is used to indicate a load instruction and theIS is used to indicate a store instruction

Unpredictable (and predictable) changes in the PC value is indicated as a branch-type instruction, i.e.,IB, ILB, or ISB.
Note that the first instruction in the basic block is always indicated as a branch instruction. When this first instruc
PDtrace™ Interface Specification, Revision 3.01 17

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

spect
cute”,

r
dress.

target
sComp

tracing

hey are:

a
d
iately

The PC
 is sent,
a load or a store, then the PDO_InsComp[2:0] takes valuesILB or ISB respectively, to indicate the combined condition
of the branch and load or store.

Figure 4-1 A Sample Pipeline And The PDO_InsComp Trace Point

Figure 4-1shows an example of when the PDO_InsComp signal might be output by the core tracing logic, with re
to the processor pipeline implementation. This example pipeline has six stages. They are: “fetch”, “decode”, “exe
“memory”, “align”, and “write back”. The PDO_InsComp signal is output after the memory stage. That is, the
instruction goes through the pipeline and is output after the last stage when the instructionmust complete and can no
longer be killed. In the example shown, this is after stage 4. This will differ, of course, with each pipeline
implementation.

Some instructions might have to transmit more information for a complete picture of the program execution. Fo
instance, a branch indicator might have to transmit the PC value if the unpredictability lies in the branch target ad
If the unpredictability was in the branch condition (i.e., determining if the branch is taken or not), then the branch
PC value need not be transmitted; it suffices to indicate that it was a “taken” branch using the appropriate PDO_In
value.

The list below summarizes the three possible branching options, and the corresponding PDO_InsComp and PC
action:

• When the branch is unconditional and the branch target is predictable,IB, ILB, or ISB is used for the PDO_InsComp
value, and the PC is not traced out.

• When the branch is conditional, and the branch target is predictable,IB, ILB, or ISB is used only when the branch is
taken. The PC is not traced out.

• When the branch is conditional or unconditional, and the branch target is unpredictable,IB, ILB, or ISB is used and
the PC is traced (usingTPC for the PDO_TType signal).

There are four possible circumstances that cause the PC to be transmitted in the PDtrace MIPS architecture. T

1. after a JR or JALR instruction.

2. after a control transfer to an exception handler.

3. after a return from exception (ERET or DERET instruction).

4. the PC is traced out periodically for software synchronization of trace with the static program image.

When the PDO_InsComp value indicates a store in the completing instruction with anIS, then the store address and dat
might have to be transmitted if the user requires these to be traced. With aISB the PC value might also need to be trace
out. In this situation, the PC value is sent first, followed by the store address, and finally the store data if it is immed
available.

An ILB is similar, and might require the tracing of the PC value as well as the load address and the load data.
value is sent first. If the load hits in the cache, then this works like the store described above, i.e., the PC value
followed immediately by the load address and data.

fetch decode execute memory align writeback

1 2 3 4 5 6

PDO_InsComp
18 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.1 Trace Output Signals

must be

he
ssor is
Comp

ut to
e primary
ly the

ows
lusions

the
ion
n
n, then
The load or store data may not be immediately available. This can happen if the load misses in the cache and
fetched from memory, or the store data is pending the completion of a previous (long latency) instruction that is
computing the data value. In this situation, the load or store instruction is still indicated with the appropriate
PDO_InsComp value of eitherIL , ILB, IS, or ISB. If the PC value needs to be sent, then it is sent first, followed by t
load or store address, but the sending of the corresponding data is deferred until it is available. While the proce
waiting for this data, other instructions may complete in the pipeline and are indicated by the appropriate PDO_Ins
values. When the data is available, it is traced out as soon as possible by the processor using the appropriate
PDO_DataOrder value to indicate the out-of-orderness of the data (seeSection 4.1.8, "Data Order Signal" on page 24).

Figure 4-2shows, for the hypothetical pipeline, the points at which the different pieces of information are tapped o
be traced. The PC value and the store address and load address are tapped out after stage 4. If the load hits in th
cache, or the store data is available, then this information may be completely traced out at that point. If not, on
data’s address is sent and the data value is traced out when it becomes available.

Figure 4-2 Illustration of a Pipeline and Trace Tap Points

4.1.2 Start of Tracing

When tracing is first started, or when it is re-started after a break, some basic information is first output that all
external software to identify the trace start point in the static program image, and make some reasonable conc
about the processor mode at the start of tracing. The first record that is traced is aTMOAS (see PDO_TType inTable
3-1 on page 7andFigure 4-3 on page 23). This trace record type shows the processor mode and the ASID value of
currently executing processor. This record is followed by a transmission of the full PC value for the first instruct
traced. This first traced instruction must use aIB, ILB, or ISB PDO_InsComp value so that the external software ca
correlate the PC transmission with the PDO_InsComp value. In addition, if load/store address tracing is turned o
the first encountered load or store instruction will send the full address instead of a delta value. Note that the
synchronization counter is reset to the value in TraceControl2SyP when tracing is started.

fetch decode execute memory align writeback

1 2 3 4 5 6

FIFO

data order
determination

compressed

compressed load/store data

PC, store, and

PC

PDO_AD

load data
cached load datastore and

load address
from mem

load address

store data
from previous
instruction

available store data
PDtrace™ Interface Specification, Revision 3.01 19

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

,
will lose

send

 the

ull
re
the

een
being
ced, then
lta.

DO_AD

not be
mit. The

ently of
and the
zing the
e, as

us. It is
e trace

erflow.
estarts
to be
ed as a
4.1.3 Trace Synchronization

Once the full PC value, or the full address for the load/store instruction has been sent during the start of tracing
subsequent traced addresses may all be delta values. Hence, it is possible that occasionally the external software
track of the current execution point in the static program image. To fix this potential problem, the tracing logic will
periodic synchronization information.

The synchronization tracing function is triggered when the internal synchronization counter overflows based on
synchronization period bits as set in theTraceControl2 CP0 register. Similar to the start of tracing, when the
synchronization period is reached, aTMOASrecord is first inserted in the PDO_AD tracing sequence, followed by a f
PC value accompanied by anIPC for PDO_InsComp. To simplify thisIPC transaction type, the hardware must ensu
that the instruction used to synchronize the PC value is neither a branch, a load or a store instruction. Hence,
synchronization period is an approximate point, where the transmission of theIPCcan be delayed by a few instructions
until an instruction is found that is neither a branch, load, or a store instruction. Note that theTMOAS associated with
synchronization is sent only when theIPCinstruction has been identified, to prevent other PDO_TType records betw
theTMOAS and the full PC transmission for the synchronization. At this juncture, if load/store addresses are not
traced, then this completes all the transmissions needed for synchronization. If load/store addresses are being tra
the first load or store instruction encountered after theIPC transmission sends a full address value, rather than a de
This completes the synchronization process. Note that the synchronization counter is reset to the value in
TraceControl2SyP once theIPC has been sent.

Note that theTMOAS record that is sent for synchronization uses a value of 1 for the SYNC bit field (seeFigure 4-3).
This is an aid used by external software to synchronize the PDO_InsComp stream and the data stream on the P
bus. To use this bit to synchronize, external software will look in the trace buffer for the firstIPC entry, when it finds
one, it starts looking in the trace buffer from the current cycle onwards for the firstTMOAS record with the SYNC bit
set to one. The first PC value following thisTMOAS record will be a full PC transmission that corresponds to theIPC
entry.

4.1.4 Trace Bus

When a PC, load/store address, or load/store value is to be traced, they are sent on the PDO_AD[15:0] (or
PDO_AD[31:0]) signal bus, accompanied by an appropriate PDO_TType signal. Since the width of this bus may
adequate to transmit the entire address or data in one cycle, each transaction can take multiple cycles to trans
PDO_TEnd signal is used to indicate the last cycle of the current transaction.

A FIFO at the core is used to hold pending transactions and values. The draining of the FIFO happens independ
the PDO_InsComp signal. Hence, there is some cycle delay between the tracing of the PDO_InsComp signal
corresponding address or data on the PDO_AD bus. To provide external software with some means of synchroni
two streams, theTMOAS record that is sent during a synchronization trace has a special SYNC bit that is set to on
discussed above.

4.1.5 Trace Overflow and Restart

As noted earlier, a FIFO is used to hold address and data values waiting to be transmitted over the PDO_AD b
possible to have a program sequence that overflows this FIFO. In the situation that the FIFO overflows, the cor
logic will assert the PDO_Overflow signal to indicate that the current tracing is being abandoned due to a FIFO ov
In this situation, the internal core logic abandons tracing in the current cycle, discards all entries in the FIFO, and r
tracing from the next completed instruction in the following cycle. Note that in this situation, the first instruction
signalled after the assertion of the PDO_Overflow signal must have its full PC value sent, so this should be treat
IB, ILB, or ISB. An example of this can be seen in the timing diagram inFigure 4-5. Similar to a trace start or re-start
situation, a TMOAS record is first sent after the overflow, and before the full PC value is transmitted.
20 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.1 Trace Output Signals

is done
the
e that

rs:

the
it may
olution.

 with

 the

dresses,
IFO will
serve

us. A
an

_TEnd
racing
32-bit

an

e 10 is
ranch

can be
e value
mple
End is

address
s or data
 the

e

It is possible for the entire program trace to be captured under all circumstances, and no trace records lost. This
using the PDI_InhibitOverflow signal. When asserted, this implies that the processor core must back-pressure
pipeline and stall it without overflowing the FIFO. (Hence, if PDI_InhibitOverflow is asserted, the core must ensur
PDO_Overflow never gets asserted.) The pipeline is restarted as soon as the FIFO starts emptying again.

Note that the size of the FIFO is implementation-dependent and its size should be based on the following facto

• If all the traced data is to be saved at all times, and the FIFO is too small for the amount of trace data, then
processor pipeline will need to be stalled more frequently. Hence, a larger FIFO would be desired. Sometimes,
not matter whether the processor is stalled when debugging, hence a smaller FIFO might be an acceptable s

• The width of the processor, the width of the PDtrace PDO_AD bus and how quickly the FIFO can be drained
respect to the processor speed.

• The frequency of the processor and the frequency of the external pin interface is also a factor in how quickly
FIFO can be drained.

• The amount of data that is expected to be traced in a typical usage. That is, only PC tracing, or load/store ad
or load/store data is also traced. Each scenario will result in more data being traced, and consequently the F
fill faster and overflow sooner, and will need to be larger if the processor is not to be stalled often in order to pre
all the traced data.

4.1.6 Trace Type and an Example Code Fragment

The PDO_TType[2:0] signal is used to indicate the type of information being transmitted on the PDO_AD trace b
PDO_InsComp[2:0] value ofIB, ILB, or ISB is output when a branch instruction is taken, and the PDO_TType[2:0] c
begin with a PC transmissionTPCat this same cycle or later. We will useTable 4-1to illustrate these transmissions. This
table shows an example of a MIPS assembly fragment and the values of PDO_InsComp, PDO_TType, and PDO
that will be transmitted upon completion of each instruction of the code fragment in the pipeline. Assume that t
was begun earlier, hence the start of tracing is not shown in this code fragment. The example also assumes a
processor and a 16-bit PDO_AD bus.

As described earlier, a taken branch is always indicated with anIB transmission. But when the branch target address c
be deduced from the static program image, then there is no accompanyingTPCtransmission. An example of this can be
seen in cycle 7, where the transmission of theIB indicates the taken branch from the JAL instruction in cycle 5.

An example of anIB transmission for the PDO_InsComp value accompanied by a correspondingTPC (to transmit the
statically unpredictable PC value), can be seen in cycle 10. This is triggered by the JR instruction in cycle 8. Cycl
the branch target, also the first instruction of the new basic block. (Cycle 9 is the execution of the instruction in the b
delay slot). Note that theTPC transmission could be directly started on cycle 10 since the FIFO was empty.

The PDO_TEnd signal is used to indicate the end of any previously-started transmission. If the PC change value
transmitted in a single cycle, then the PDO_TEnd signal may be transmitted in the same cycle as the PDO_TTyp
TPC. An example of this is seen in cycle 10. Otherwise, it may follow the required number of cycles later, for exa
in cycle 4, where it took 2 cycles to transmit the store address value. After a transaction is begun, until PDO_T
asserted, the value of PDO_TType must stay asserted at the original value.

Note that at the processor’s discretion, the PDO_TEnd signal may be used to cut off redundant sign bits from an
or data transmission. That is the transmission is terminated early and hence not all the upper bits of an addres
needs to be stored in trace memory. The reconstruction software must recognize this situation and sign-extend
address or data appropriately before use.

When a load instruction is executed, PDO_InsComp indicates this usingIL andILB, and a store is indicated usingIS
andISB. The user might have requested that load and store addresses (and data) be traced. In this situation, th
PDO_TType value will transmit the load address and the store address usingTLA or TSA respectively.
PDtrace™ Interface Specification, Revision 3.01 21

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

nd
2 cycles.
ase store
store data
ot

and store
ociated
l cache.
le. The
hown in

, the
s

An example of store address tracing is seen inTable 4-1at cycles 1, 2, 3, and 4. The store instruction in cycles 1, 2, a
3 take only 1 cycle to send the store address. While the store address associated with the store in cycle 4 takes
(Perhaps it was not possible to compress the store address to less than 16 bits in this case). Note that in this c
data is not sent, only the store address is sent, as per the user request. If store data is also being traced, then the
is sent immediately following the store address using aTD value on the PDO_TType signal lines. If the store data is n
immediately available, it is sent later with the appropriate PDO_DataOrder value.

Assume that sometime between cycle 4 and cycle 14, the user changes the desired trace output, and wants load
data to also be sent. Hence, the load instruction LW in cycle 14 will transmit not only the address, but also the ass
data. Note that sometimes the load data is not immediately available since the load might miss in the first-leve
In this situation, the load address is transmitted immediately and the load data is sent when it becomes availab
association of the load data with the corresponding load address is done using the PDO_DataOrder signal (not s
the table).

TheILB in cycle 14 sends the PC value in two cycles, and then sends the load address usingTLA in cycle 16. The load
data is then sent usingTD during cycles 17 and 18. The load must have hit the cache in this example, for otherwise

Table 4-1 Example Code Fragment With Some PDtrace Signal Value

Cycle
No.

PC Instruction PDO_InsComp
[2:0]

PDO_TType
[2:0]

PDO_TEnd

1 0x00400188 SW $6, 0xe170($1) IS TSA 1

2 0x0040018c SW $4, 0xb134($28) IS TSA 1

3 0x00400190 SW $5, 0xb130($28) IS TSA 1

4 0x00400194 SW $0, 0x1c($29) IS TSA 0

5 0x00400198 JAL 0x418d9c I TSA 1

6 0x0040019c OR $30, $0, $0 I NT x

7 0x00418d9c NOP IB NT x

8 0x00418da0 JR $31 I NT x

9 0x00418da4 NOP I NT x

10 0x004001a0 JAL 0x411c40 IB TPC 1

11 0x004001a4 NOP I NT x

12 0x00411c40 JR $31 IB NT x

13 0x00411c44 NOP I NT x

14 0x00414adc LW $4, 0xb134($28) ILB TPC 0

15 0x00414ae0 BEQ $14, $0, 0x414af8 I TPC 1

16 0x00414ae4 ADDIU $29, $29, 0xffe0 I TLA 1

17 0x00414af8 OR $7, $0, $0 IB TD 0

18 0x00414afc NOP IPC TD 1

19 0x00414b00 ADDU $6, $6, $2 I TMOAS 1

20 0x00414b04 OR $7, $2, $0 I TPC 0

21 0x00414b08 SLTU $1, $2, $1 I TPC 1
22 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.1 Trace Output Signals

tisfy the

a
e[2:0]

s is thus

cking
 change
associated load could have been separated from the instruction by an arbitrary number of cycles (required to sa
load miss from secondary memory).

An example of the periodic PC traceIPC for synchronization is shown in cycle 18. The required transmissions for
synchronization includes sending a record of the process ASID and processor mode. This uses the PDO_TTyp
value ofTMOAS, as seen in cycle 19 (sent as soon as the previousTD transmission completes). This is followed by a
tracing of the full PC value, which takes 2 cycles (sent during cycles 20 and 21). As discussed inSection 4.1.3, "Trace
Synchronization" on page 20, since load/store address tracing is turned on, the synchronization operation is not
completed until a load and store full address transmission has also been sent (not shown inTable 4-1). A load and store
address transmission is always tied to a load and store instruction, respectively. The full load and store addres
not sent until the next respective occurrence of a load and store instruction after theIPC transmission.

TheTMOAStransaction is used to essentially track any modifications to the ASID and the processor mode. This tra
is enabled whenever tracing is on before the mode change takes place. If tracing is off when an ASID or mode
occurs, no mode transaction occurs.Figure 4-3 illustrates the bits that are traced in the right-most position on the
PDO_AD bus for aTMOAS record.

Figure 4-3 ATMOAS Trace Record

15 14 13 12 11 10 8 7 0

SYNC 0 ISAM POM ASID

Table 4-2 ATMOAS Trace Record Field Descriptions

Fields Description

Name Bits

SYNC 15 When 0, this record was sent when the ASID, POM, or ISAM changed.
When 1, this record was sent for a synchronization event.

0 14:13 Reserved for future use

ISAM 12:11

POM 10:8

ASID 7:0
The ASID of the current process. If the processor does not implement the
standard TLB-based MMU, this field is always traced as a zero because the
EntryHi register, and hence the ASID, is not defined.

Value Description

00 MIPS32

01 MIPS64

10 MIPS16 from MIPS32 mode

01 MIPS16 from MIPS64 mode

Value Description

000 Kernel Mode (EXL = 0, ERL = 0)

001 Exception Mode (EXL = 1, ERL = 0)

010 Exception Mode (EXL = don’t care, ERL = 1)

011 Debug Mode

100 Supervisor Mode

101 User Mode

110 Reserved

111 Reserved
PDtrace™ Interface Specification, Revision 3.01 23

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

e

e on the
epends

ced out.
and not

a in the
ds A, B,

sually
d data

rflow
cessor
lues are

a load
xample is
In addition to the PDO_TType values discussed above, there are two,TU1 andTU2 which are used for user-triggered
tracing. Whenever the user writes to a special register, the register values are traced out using one of the abov
PDO_TType values (depending on a bit in a control register). Details on this mechanism are described inSection 4.5.1,
"Coprocessor 0 Trace Registers" on page 34.

4.1.7 Trace Mode

The PDO_TMode signal is used to indicate the compression method used to transmit the address or data valu
PDO_AD bus. This is used by the external software to regenerate the program flow. The compression technique d
on the particular type of value being transmitted. A more detailed description is provided inChapter 5, “Trace
Compression,” on page 43.

4.1.8 Data Order Signal

The data order signal PDO_DataOrder is used to indicate the out-of-order-ness of load and store data that is tra
The main purpose of this signal is to allow load and store data to be traced out as and when it becomes available,
maintain local storage that sequences it. This signal works by indicating the position of the traced load/store dat
list of current outstanding loads/stores starting at the oldest. For example, assume that the program issues 5 loa
C, D, E, respectively.

Table 4-3shows an example of how these five loads may be traced. Load data that hits in the first-level cache is u
available at some fixed delay from instruction issue. So without loss of generality, we assume in the table that loa
is available the same cycle as the issued instruction.

If the number of outstanding data supported by four bits is exceeded, then the processor simply issues the ove
signal, clears its internal buffers and restarts tracing. If the PDI_InhibitOverflow signal is asserted, then the pro
must stall until at least some of the outstanding loads/stores are satisfied before continuing. Note that if data va
being traced, limits are being reached on other resources like the internal FIFO, and thus it is unlikely that the
number-of-outstanding-data limit will be so easily reached.

Some processors will graduate a store instruction while still waiting for the store data to become available. Thus,
can bypass a store and thus load data will be available before a preceding store’s store data is available. An e
illustrated inFigure 4-4.

Table 4-3 Load Order Example

Load Cycle # Cache Op Load Data
Available

Data Traced
Out

PDO_DataOrder

A 1 Miss - - -

B 2 Hit B B 1 (second oldest)

C 3 Hit C C 1 (second oldest)

D 4 Miss - - -

E 5 Hit E E 2 (third oldest)

- k - A A 0 (oldest)

- k+p - D D 0 (oldest)
24 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.1 Trace Output Signals

bus
n waits
nd store
. In
ace

in which
er signal
Figure 4-4 An Example of Load Data Bypassing an Earlier Store

Block (1) in Figure 4-4 shows a small program fragment and the sequence of the PDO_InsComp and PDO_AD
transmissions. This processor will graduate and trace all instructions including the first store ISa. This store the
for the data in r1 before it actually completes its execution. Some processors will order store data. Hence the seco
ISb will wait for ISa before it can complete. But the following loads, ILc and ILd would complete without any delay
this situation, the PDO_AD column of block(1) shows the sequence of data availability. But if the processor must tr
data sequentially, then it is required to trace out data in-order as shown in the left column of block(2). This sequentiality
requirement can be avoided by using the PDO_DataOrder signal that orders both the loads and stores. The
PDO_DataOrder values for the data is shown in the right column of block(2).

Another example that illustrates the combined load/store ordering is shown inTable 4-4. This table shows in column
one, a sequence of only the loads and stores from a program fragment. The second column shows the sequence
the data associated with the loads and stores become available, and the third column shows the PDO_DataOrd
that is needed to trace out the sequence as available.

(1)

Cycle Program PDO_InsComp PDO_AD Comments

m+0 DIV r3, r2 I NT multi-cycle instr

m+1 MFHI r1 I NT

m+2 SW r1, 0(r3) ISa TSAa data not available

m+3 SW r4, 0(r7) ISb TSAb data not available

m+4 LW r4, 0(r6) ILc TDb store data

m+5 LW r5, 4(r6) ILd TLAc cache hit

m+6 TDc load data

m+7 TLAd cache hit

m+8 TDd load data

m+9+k TDa store data

(2)

Required Data Order PDO_DataOrder

TDa 1

TDb 1

TDc 1

TDd 0
PDtrace™ Interface Specification, Revision 3.01 25

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

us for
the

 the

cycles

ype.
kes two
sion of
4.1.9 Instruction-Data Map Signal

This signal provides some redundant per instruction information on the PDtrace interface. An 8-bit
PDO_DataForIns[7:0] bus, per PDO_InsComp, defines which pieces of data will be transmitted on the PDO_AD b
that instruction. SeeTable 3-1 for details on how the 8 signal bits are defined. This allows the logic block reading
interface to prepare up-front for the information that will be sent on the PDO_AD bus for a given instruction.

4.1.10 Trace Timing Example

The timing diagram shown inFigure 4-5 illustrates an example of the timing and usage of the signals described in
previous sections.

The figure shows a single cycle PC transmission in cycle 1. Cycles 3 and 4 illustrate an example where it takes two
to transmit the new PC value.

The PDO_TType[2:0] signal is also used to indicate the begin of transmission of a load or store data address (TLA/TSA)
and the actual data itself (TD). The PDO_TEnd signal is used to indicate the completion of the current transmission t
In Figure 4-5 for example, cycle 5 shows the beginning of a load data address transmission. This transaction ta
cycles, hence, the end of this transaction is indicated in cycle 6 by the asserted PDO_TEnd signal. The transmis
the data that corresponds to this load address then begins in cycle 7 and ends in cycle 10.

Table 4-4 Data (Load/Store) Order Example

Load/Store Data Trace
Order

PDO_DataOrder

Load-A - -

Load-B - -

Store-C - -

Load-D - -

Store-E - -

Store-F - -

Store-G - -

Store-H - -

Load-I I 8 (ninth oldest)

- A 0 (oldest)

- C 1 (second oldest)

- E 2 (third oldest)

- F 2 (third oldest)

- G 2 (third oldest)

- H 2 (third oldest)

- B 0 (oldest)

- D 0 (oldest)
26 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.2 Trace Input Signals

it is also
, 16, 17,
nal is
e
s to be

The list

B
alues.

l is
ot,

r also

that are
ture like
 is to
his

use of
le on

e that
ger of

 to
Cycle 12 indicates the beginning of an instruction where the PC changes value, and needs to be transmitted, but
a store data instruction, thus the need to transmit the store address and the data. In the meantime, cycles 14, 15
18 all need to transmit data addresses and values, and the FIFO overflows at cycle 18. The PDO_Overflow sig
asserted at cycle 18. Now, all the load and store values from cycles 14-18 are discarded. Cycle 19 indicates th
completion of an instruction that needs no tracing, but since this is after a PDO_Overflow, the full PC value need
transmitted, which is done during cycles 19 and 20, hence anIB is used for PDO_InsComp (rather thanI).

Figure 4-5 PDtrace interface timing example

4.2 Trace Input Signals

The majority of the trace input signals are used to specify the conditions under which tracing is to be enabled.
below briefly explains the various types of trace input signals to the core:

• The PDI_TCBPresent signal is really a validity signal for all the other input signals. This tells the core that TC
hardware is present and connected to the core. The core then regards the other input signals to have valid v

• An overall trace control signal PDI_TraceOn controls whether tracing can be triggered on or not. If this signa
asserted, then the input signals that control the per instruction decision of whether the core should trace or n
include input trace signals such as PDI_G, PDI_ASID, PDI_U, PDI_S, PDI_K, PDI_E, and PDI_DM. Refer toTable
3-1 for an explanation of when each of these signals enable tracing.

• When tracing is turned on, the TCB needs to specify what kind of information is to be traced, i.e., just the PC, o
the load/store addresses and data. This is done using the PDO_TMode signal. SeeTable 3-1for details. In addition to
this, another signal, PDI_TraceAllBranch asks that the PC of all taken branches be traced, not just the ones
statically unpredictable. When asserted, this signal will generate a lot of trace data, since in a RISC architec
MIPS, typically every 3 or 4 instructions is a branch instruction. The main purpose of this all-branches tracing
enable the TCB to track the execution addresses on the core without referring to the static program image. T
knowledge can be used by the TCB to provide additional filtering on the trace data.

• Two signals, PDI_InhibitOverflow and PDI_StallSending are used to ensure that trace data is never lost beca
internal FIFO or buffer overflow. (This condition would result when a large number of bits are traced each cyc
the average while the bandwidth out of the core or TCB is far less. The PDI_InhibitOverflow is used to ensur
the FIFO on the core’s tracing logic does not overflow. If this signal is asserted and the FIFO is in imminent dan
overflowing, then the core must stall its pipe while the FIFO is emptied.

If the TCB’s internal buffer is in danger of imminent overflow, the PDI_StallSending signal is used by the TCB

PDO_InsComp[2:0]

PDO_TType[2:0]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PDO_TMode

PDO_AD[15:0]

PD0_Overflow

PDO_TEnd

Pclk

17 18 19 20

IB I IB I IL NI I ISB IB

PC PC PCload-addr store-addrload-data st-data

NII I IL IL IS IS ILI

asid

TPC NT NTTPC TPC TMOASTDTLA TSATD
PDtrace™ Interface Specification, Revision 3.01 27

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

ing
 can
cycle
read by

ls are
d
trace

llows a
cessors
atures

l logic
e in the
uction
ructions

proceed
ruction
s will
number

of issue
umber
e control
le, still
ime, the
ulated
nd this
signal to the core to stop sending trace data on the PDtrace interface. The core stalls until the PDI_StallSend
signal is de-asserted by the TCB. Note that the cycle after the PDI_StallSending signal is asserted, the TCB
ignore all PDO_ signals from the core, including the PDO_InsComp as well the PDO_AD bus signals. In the
after the TCB de-asserts PDI_StallSending, all PDO_ signals from the core are considered valid and must be
the TCB.

• The signal PDI_SyncOffEn is an enable for the signals PDI_SyncPeriod and PDI_OffChipTB. These two signa
used to set the synchronization interval. As shown inTable 3-1, the synchronization interval is specified in cycles an
is interpreted based on the value of PDI_OffChipTB. That is, whether the trace is being stored on-chip within a
buffer in the TCB, or being sent off-chip to some larger trace memory.

4.3 Tracing Multi-Issue and High-Performance Processors

4.3.1 Background on High Performance Processors

This section addresses the tracing needs of multi-issue pipeline processors and describes a mechanism that a
workable and efficient tracing of program execution on such processors. The features of high performance pro
are not in general, very suitable for effectively tracing the sequential execution of a program. Such processor fe
include, but are not limited to:

• Superscalarity or multi-issue

• Aggressive, out-of-order dynamic scheduling with big fetch and issue windows

• Deep pipelines

• Multi-latency pipelines

• Multiple outstanding load misses

A processor that is designed to issue multiple instructions, and moreover out of order from the original program
sequence, will also implement what is typically known as the re-order buffer. This re-order buffer and its contro
is responsible for putting the issued instructions back in-order (of the original program sequence). There is a stag
pipeline when instructions are graduated from the re-order buffer, i.e., the point where it is certain that the instr
will not stop due to an exception (or any other reason), and can proceed to completion. This graduation of inst
from the re-order buffer is done in program sequence.

There are several things to note here, one, the graduated instructions have not completed their execution and will
to do so further in the pipeline, for example, the register write-back of the computed result of an arithmetic inst
will happen later in the pipeline. The second thing to note, is that, typically, the number of graduating instruction
not exceed the number of issue slots of the processor. But the number can vary from a minimum of zero up to the
of issue slots at the front of the pipe plus the number load miss completions from the bus and cache units, etc.

4.3.2 The Basic Tracing Methodology

The trace methodology in this document proposes that instructions be traced at the point of graduation. It is
recommended that a number of instructions be simultaneously traced, the recommended number is the number
slots of the processor, let us call this the “number of instruction trace slots”. It is possible that in some cycles the n
of graduating instructions is greater than the number of instruction trace slots. In these cases, the processor’s trac
logic must buffer the instruction(s) that could not be traced earlier, and trace them at the beginning of the next cyc
maintaining the program sequence order. Note that the size of such a buffer need not be very large, since over t
number of issued instructions will equal the number of graduated instructions. The size of this buffer can be calc
based on the maximum number of instructions that can graduate from the re-order buffer on any given cycle, a
number is based on the processor’s pipeline depths and other pipeline-related information.
28 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.3 Tracing Multi-Issue and High-Performance Processors

ngle
n trace

o
s of two
p_1
omp_1

h
es a
r cycle.
All the signals marked “Out” inTable 3-1are signals output from the processor core and represent the activity of a si
instruction within the core. Most of these signals need to be duplicated as many times as the number of instructio
slots within the core. Signals that must be duplicated are shown inTable 3-1 also with signal names appended with a
“_n”, where n is used to designate the instruction trace slot number. For example, a two-issue core can trace tw
instructions and use the signals PDO_InsComp_0 and PDO_InsComp_1 to represent the completion status value
simultaneously graduating instructions. If only one instruction graduates on any given cycle, then PDO_InsCom
sends a value of 000. When no instruction graduates on a given cycle, then both PDO_InsComp_0 and PDO_InsC
send 000 values.

The same example code fragment from before is shown inTable 4-5 and this table shows the graduation cycle of eac
instruction and the number of the instruction trace slot that actually traces that instruction. This example assum
simple two-issue processor that allows up to one load/store instruction per issue and one branch instruction pe

s

Table 4-5 Example Code Fragment Showing the Graduation Cycle and Trace Bus Number

Instr
No.

PC Instruction Graduation
Cycle

Trace Bus
Number

1 0x00400188 SW $6, 0xe170($1) n+0 0

2 0x0040018c SW $4, 0xb134($28) n+1 0

3 0x00400190 SW $5, 0xb130($28) n+2 0

4 0x00400194 SW $0, 0x1c($29) n+3 0

5 0x00400198 JAL 0x418d9c n+4 0

6 0x0040019c OR $30, $0, $0 n+4 1

7 0x00418d9c NOP n+5 0

8 0x00418da0 JR $31 n+5 1

9 0x00418da4 NOP n+6 0

10 0x004001a0 JAL 0x411c40 n+7 0

11 0x004001a4 NOP n+7 1

12 0x00411c40 JR $31 n+8 0

13 0x00411c44 NOP n+8 1

14 0x00414adc LW $4, 0xb134($28) n+9 0

15 0x00414ae0 BEQ $14, $0, 0x414af8 n+9 1

16 0x00414ae4 ADDIU $29, $29, 0xffe0 n+10 0

17 0x00414af8 OR $7, $0, $0 n+10 1

18 0x00414afc NOP n+11 0

19 0x00414b00 ADDU $6, $6, $2 n+11 1

20 0x00414b04 OR $7, $2, $0 n+12 0

21 0x00414b08 SLTU $1, $2, $1 n+12 1
PDtrace™ Interface Specification, Revision 3.01 29

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

ation
y,
 a

data is
ily free
e

ement
ociated

the last
ence all
ehavior

s
tion
4.3.3 Coordinating the Instruction Completion Trace with the Address/Data Trace

When an instruction is traced on a particular instruction trace slot, say using PDO_InsComp_k, then all other inform
for that instruction is sent on the signals of the “k”th instruction trace slot. For example, the address and data, if an
associated with that instruction is sent on the PDO_AD_k bus. Thus, once an instruction begins its trace life on
particular instruction trace slot, it must complete its life on the same slot. The exception to this occurs when the
not immediately available. In this situation, the data can be sent on any of the PDO_AD_n bus that is temporar
and hence chosen by the processor to send that data. SeeSection 4.3.4, "Out-of-Order Loads and Stores in the Multi-Pip
Core".

The process of identifying the data associated with particular instructions has been simplified by making it a requir
that all the data associated with instructions traced on the same cycle be in lock-step. Specifically, all the data ass
with instructions that are traced together on the different PDO_InsComp_n are such that their end points (i.e.,
data cycle) are synchronized to be traced together. This requirement makes it easier for an external block to sequ
the data operations in the various PDO_AD_n buses into the program sequence. An example that illustrates this b
is shown inFigure 4-6.

Figure 4-6 shows four blocks of information. The first one(1) shows the instruction complete (PDO_InsComp) value
in the program sequence. The second block(2) shows these values as they would be transmitted on the two instruc

Figure 4-6 An Example Showing the Coordination of Instructions and their Data

(1) (2)

Program Sequence PDO_InsComp_0 PDO_InsComp_1 cycle

ILBa ILBa ILb n

ILb ISc ILd n+1

ISc

ILd

(3)

Cycle PDO_AD_0 PDO_AD_1 PDO_TEnd_0 PDO_TEnd_1 Comments

m+0 TPCa1 NT 0 x

m+1 TPCa2 NT 1 x

m+2 TLAa1 NT 0 x

m+3 TLAa2 TLAb1 1 1

m+4 TDa1 TDb1 0 0

m+5 TDa2 TDb2 1 1
completion of all _AD

transfers for instructions
traced in cycle n

m+6 TSAc1 NT 0 x

m+7 TSAc2 TLAd1 1 1

m+8 TDc1 TDd1 0 0

m+9 TDc2 TDd2 1 1
completion of all _AD

transfers for instructions
traced in cycle n+1
30 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.3 Tracing Multi-Issue and High-Performance Processors

s
 on
sComp

es, and

e core.
t traced
der and
at since
_AD_k

ue

er, using
bits is

traced
a real
nder

ll the
trace slots, i.e., PDO_InsComp_0 and PDO_InsComp_1. The third block(3)shows the PDO_AD and PDO_TEnd value
for the two trace slots. Note that the data trace information for the instructions that were simultaneously traced
PDO_InsComp_0 and PDO_InsComp_1 are traced such that their PDO_TEnd is coordinated. For the PDO_In
values traced in cycle n (in block(2)), the data transmission ends in cycle m+5 (in block(3)). And for the PDO_InsComp
values traced in cycle n+1 (in block(2)), the data transmission ends in cycle m+9 (in block(3)).

The external block reading the signals on the interface can then take the data values from the two PDO_AD bus
knowing the program sequence order (in block(1)), can put the data trace in order, as shown in block(4).

4.3.4 Out-of-Order Loads and Stores in the Multi-Pipe Core

When a multi-pipe core needs to send out-of-order data, it uses the PDO_DataOrder signal just like the single-pip
When an out-of-order data is returned, it can be traced on any free PDO_AD_n bus, not necessarily the one tha
the corresponding instruction. This is because, instruction tracing is sequentialized by the PDO_InsComp_n or
therefore the data can be associated with the correct instruction once the PDO_DataOrder value is known. Note th
the PDO_AD_n busses are implicitly ordered, for data transmissions that end on the same cycle, the data on PDO
is before the data on PDO_AD_k+1.

4.3.5 Tagging Instructions that Issue Together

With the method of tracing graduating instructions in sequence, it is not possible to know which instructions iss
together without additional information. This information might be invaluable to tune a code optimizer for high
performance processors. In order to trace this information, the processor tags all the instructions that issue togeth
the signal PDO_IssueTag_n. This tag value is also traced out with each PDO_InsComp_n value. A tag value of 6
being initially proposed, assuming an issue window of about 64 instructions. Note that this tag information can be
out of the TCB only if the user requires it, hence it will not incur bandwidth on the external pins unless there is
need for this information. Thus, it is recommended that the TCB allow the external tracing of this information u
user discretion.

4.3.6 Miscellaneous

The input signals to a multi-pipeline core are not duplicated. A single set of signals control tracing options on a
pipelines.

(4)

Data in Program Sequence

TPCa1, TPCa2,

TLAa1, TLAa2,

TLAb1,

TDa1, TDa2

TDb1, TDb2

TSAc1, TSAc2

TLAd1

TDc1, TDc2

TDd1, TDd2
PDtrace™ Interface Specification, Revision 3.01 31

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

tatic

dresses
ays be

ion. This
s in the

 or
e
portant to
erated
trigger

o the
n trace

n

trace
gers

g of
sed

ity of
before
re
pecify
hen no

must
gister,
When tracing is first started (or re-started after a break), PDO_InsComp_0 is the first traced instruction in the s
program image and this will output theTMOAS record and the full PC.

When there is a need for synchronization, the core can choose any PDO_InsComp_n to send theTMOAS record and the
full PC value, as long as these two are both done on the same instruction in the trace slot. Note that if load/store ad
are also being traced, then a full load/store address value is part of the synchronization tracing. This may not alw
possible on the instruction chosen by the core. But these should be sent on the next sequential load/store instruct
is a situation that the external software has to take into account when recognizing synchronization transmission
multi-pipeline core or processor.

4.4 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints

The MIPS EJTAG Specification describes the hardware data and instruction breakpoint feature. In brief, a core
processor can optionally implement up to 15 instruction and up to 15 data EJTAG hardware breakpoints. Thes
breakpoints, when encountered during program execution, cause the processor to take a debug exception. Im
this discussion is that a bit (TE bit 2) in the breakpoint control register, when set, allows a trigger signal to be gen
(instead of, or in addition to, causing a debug exception). The PC/Data tracing interface uses this trigger signal to
trace on/off.

In addition, when a trigger is generated, all information relating to this trigger is sent on the PDtrace interface t
TCB. The TCB passes this information on to the trace memory so the trace software can have knowledge of whe
triggers were generated. The signals that comprise this information is described inTable 3-1 as PDO_TrigOn,
PDO_TrigOff, PDO_TrigI[N-1:0] and PDO_TrigD[N-1:0].

4.4.1 TheTraceBPC Register (CP0 Register 23, Select 4)

Whether a particular hardware breakpoint triggers trace on or off, is determined by 30 separate bits in theTraceBPC
register (Trace Break Point Control). (15 bits for hardware instruction breakpoint plus 15 bits for hardware data
breakpoints). The type of tracing that is triggered is determined by the tracing mode signal PDO_TMode, or if i
software control, by the Mode[3:1] bits in theTraceControl register (described inSection 4.5.1.1, "The TraceControl
Register (CP0 Register 23, Select 1)" on page 34 of this document).

The EJTAG control logic, upon encountering a hardware breakpoint, will signal the triggered breakpoint to the
logic. If more than one breakpoint triggers every cycle, the tracing logic will trigger trace on even if one of them trig
off. The trace is turned off only if all of them triggers off.

Note that it is possible for the tracing mechanism to globally disable the hardware breakpoint-enabled triggerin
tracing using two bits in theTraceBPCregister. One bit is used to disable instruction breakpoints, and the other is u
to disable data breakpoints, as shown inFigure 4-7 andTable 4-6.

It is possible that PDtrace tracing logic is implemented with no EJTAG implementation. Thus, it is the responsibil
(external or internal) software to read the Coprocessor 0 Config1 register to determine if EJTAG is implemented
assuming the presence of theTraceBPC register. Moreover, the EJTAG hardware breakpoints are optional for a co
implementing EJTAG. The Debug Control Register (at offset 0x0000 in drseg) has bits DataBrk and InstBrk that s
whether any EJTAG data or instruction hardware breakpoints are implemented. If both these bits are set to 0, t
hardware breakpoints are implemented in EJTAG on that core, and theTraceBPCregister specified in this section is also
not implemented, i.e., the tracing logic does not implement the feature of trace triggering from EJTAG. Thus one
first ensure that EJTAG is implemented, then examine the values of DataBrk and InstBrk in the Debug Control re
and ensure that at least one of them is not zero, before assuming the presence of theTraceBPC register.
32 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.5 Software Trace Control

allows

ntrol
4.5 Software Trace Control

Just as the TCB hardware can control tracing functionality using the input PDI_ signals, the PDtrace architecture
software to control tracing with similar enables and with the same flexibility. This is done by setting bits in the
Coprocessor 0TraceControlregister to appropriate values. To ensure that only one of hardware or software can co
tracing at any given point in time, a trace select bit is used in the trace control register (TraceControl). A processor reset
sets the trace select bit to default trace input select from the TCB hardware.

Figure 4-7TraceBPC Register Format

31 30 16 15 14 0

DE DBPOn IE IBPOn

Table 4-6TraceBPC Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

DE 31

Used to specify whether the trigger signal from EJTAG
data breakpoint should trigger tracing functions or not:

0 : disables trigger signals from data breakpoints

1 : enables trigger signals from data breakpoints

R/W 0 Required

DBPOn 30:16

Each of the 15 bits corresponds to the 15 possible
EJTAG hardware data breakpoints that may be
implemented. For example, bit 16 corresponds to the
first data breakpoint. If only 4 data breakpoints are
present in the EJTAG implementation, then only bits
16,17,18, and 19 are used. The rest are always ignored
by the tracing logic since they will never be triggered.

A value of one for each bit implies that a trigger from
the corresponding data breakpoint should start tracing.
And a value of zero implies that tracing should be
turned off with the trigger signal.

R/W 0 Required

IE 15

Used to specify whether the trigger signal from EJTAG
instruction breakpoint should trigger tracing functions
or not:

0 : disables trigger signals from instruction breakpoints

1 : enables trigger signals from instruction breakpoints

R/W 0 Required

IBPOn 14:0

Each of the 15 bits corresponds to the 15 possible
EJTAG hardware instruction breakpoints that may be
implemented. Bit 0 corresponds to the first instruction
breakpoint, and so on. If only 2 instruction breakpoints
are present in the EJTAG implementation, then only
bits 0 and 1 are used. The rest are always ignored by the
tracing logic since they will never be triggered.

A value of one for each bit implies that a trigger from
the corresponding instruction breakpoint should start
tracing. And a value of zero implies that tracing should
be turned off with the trigger signal.

R/W 0 Required
PDtrace™ Interface Specification, Revision 3.01 33

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

he core

ng that
4.5.1 Coprocessor 0 Trace Registers

This section describes all the Coprocessor 0 trace registers needed for implementing PDtrace tracing logic in t
(with the exception ofTraceBPC, which was described inSection 4.4, "Trace Trigger from EJTAG Hardware
Instruction/Data Breakpoints").

Table 4-7shows a list of all the Coprocessor 0 tracing-related registers. The compliance level is specified assumi
tracing is implemented, i.e., the TL bit in Coprocessor 0 Config3 is 1 (Table 2-1).

4.5.1.1 TheTraceControl Register (CP0 Register 23, Select 1)

TheTraceControlregister configuration is shown inFigure 4-8andTable 4-8. Note the special behavior of the ASID_M,
ASID, and G fields if the processor does not implement the standard TLB-based MMU.

Table 4-7 A List of Coprocessor 0 Trace Registers

Register
Number

Sel Register
Name

Reference
Compliance

23 1 TraceControl

Section 4.5.1.1, "The
TraceControl Register
(CP0 Register 23, Select
1)" on page 34

Required

23 2 TraceControl2

Section 4.5.1.2, "The
TraceControl2 Register
(CP0 Register 23, Select
2)" on page 37

Required

23 3 UserTraceData

Section 4.5.1.3, "The
UserTraceData Register
(CP0 Register 23, Select
3)" on page 38

Required

23 4 TraceBPC

Section 4.4.1, "The
TraceBPC Register (CP0
Register 23, Select 4)" on
page 32

Required (only if EJTAG hardware
data or instruction breakpoint has
been implemented, otherwise not

required).

Figure 4-8TraceControl Register Format

31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 1 0

TS UT 0 TB IO D E K S U ASID_M ASID G Mode On

Table 4-8TraceControl Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

TS 31

The trace select bit is used to select between the
hardware and the software trace control bits. A value of
zero selects the external hardware trace block signals,
and a value of one selects the trace control bits in the
TraceControl register.

R/W 0 Required
34 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.5 Software Trace Control
UT 30

This bit is used to indicate the type of user-triggered
trace record. A value of zero implies a user type 1 and
a value of one implies a user type 2.

The actual triggering of a user trace record happens on
a write to theUserTraceData register. This is a 32-bit
register for 32-bit processors and a 64-bit register for
64-bit processors.

R/W Undefined Required

0 29:28 Reserved for future use; Must be written as zero;
returns zero on read. 0 0 Reserved

TB 27

Trace All Branch. When set to 1, this tells the processor
to trace the PC value for all taken branches, not just the
ones whose branch target address is statically
unpredictable.

R/W Undefined Required

IO 26

Inhibit Overflow. This signal is used to indicate to the
core trace logic that slow but complete tracing is
desired. Hence, the core tracing logic must not allow a
FIFO overflow and discard trace data. This is achieved
by stalling the pipeline when the FIFO is nearly full, so
that no trace records are ever lost.

R/W Undefined Required

D 25

When set to one, this enables tracing in Debug Mode
(seeSection 2.1, "Processor Modes" on page 6). For
trace to be enabled in Debug mode, the On bit must be
one, and either the G bit must be one, or the current
process ASID must match the ASID field in this
register.

When set to zero, trace is disabled in Debug Mode,
irrespective of other bits.

R/W Undefined Required

E 24

When set to one, this enables tracing in Exception
Mode (seeSection 2.1, "Processor Modes" on page 6).
For trace to be enabled in Exception mode, the On bit
must be one, and either the G bit must be one, or the
current process ASID must match the ASID field in this
register.

When set to zero, trace is disabled in Exception Mode,
irrespective of other bits.

R/W Undefined Required

K 23

When set to one, this enables tracing in Kernel Mode
(seeSection 2.1, "Processor Modes" on page 6). For
trace to be enabled in Kernel mode, the On bit must be
one, and either the G bit must be one, or the current
process ASID must match the ASID field in this
register.

When set to zero, trace is disabled in Kernel Mode,
irrespective of other bits.

R/W Undefined Required

S 22

When set to one, this enables tracing in Supervisor
Mode (seeSection 2.1, "Processor Modes" on page 6).
For trace to be enabled in Supervisor mode, the On bit
must be one, and either the G bit must be one, or the
current process ASID must match the ASID field in this
register.

When set to zero, trace is disabled in Supervisor Mode,
irrespective of other bits.

If the processor does not implement Supervisor Mode,
this bit is ignored on write and returns zero on read.

R/W Undefined

Required (if
Supervisor
Mode is
implemented,
is Reserved
otherwise)

Table 4-8TraceControl Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset State Compliance

Name Bits
PDtrace™ Interface Specification, Revision 3.01 35

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description
U 21

When set to one, this enables tracing in User Mode (see
Section 2.1, "Processor Modes" on page 6). For trace to
be enabled in User mode, the On bit must be one, and
either the G bit must be one, or the current process
ASID must match the ASID field in this register.

When set to zero, trace is disabled in User Mode,
irrespective of other bits.

R/W Undefined Required

ASID_M 20:13

This is a mask value applied to the ASID comparison
(done when the G bit is zero). A “1” in any bit in this
field inhibits the corresponding ASID bit from
participating in the match. As such, a value of zero in
this field compares all bits of ASID. Note that the
ability to mask the ASID value is not available in the
hardware signal bit; it is only available via the software
control register.

If the processor does not implement the standard
TLB-based MMU, this field is ignored on write and
returns zero on read.

R/W Undefined Required

ASID 12:5

The ASID field to match when the G bit is zero. When
the G bit is one, this field is ignored.

If the processor does not implement the standard
TLB-based MMU, this field is ignored on write and
returns zero on read.

R/W Undefined Required

G 4

When set, this implies that tracing is to be enabled for
all processes, provided that other enabling functions
(like U, S, etc.,) are also true.

If the processor does not implement the standard
TLB-based MMU, this field is ignored on write and
returns 1 on read. This causes all match equations to
work correctly in the absence of an ASID.

R/W Undefined Required

Mode 3:1

These three bits provide the same trace mode functions
as the PDI_TraceMode[2:0] signal, and is described
here again.

The TraceControl2ValidModesfield determines which of
these encoding are supported by the processor. The
operation of the processor isUNPREDICTABLE if
this field is set to a value which is not supported by the
processor.

R/W Undefined Required

Table 4-8TraceControl Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset State Compliance

Name Bits

Mode Trace Mode

000 Trace PC

001 Trace PC and load address

010 Trace PC and store address

011 Trace PC and both load/store addresses

100
Trace PC and load data (optional for all PDtrace
specification revisions less than 03.00)

101 Trace PC and load address and data

110 Trace PC and store address and data

111 Trace PC and both load/store address and data
36 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

is
4.5.1.2 TheTraceControl2 Register (CP0 Register 23, Select 2)

The TraceControl2 register provides additional control and status information. It is described here inFigure 4-9 and
Table 4-9. Note that some fields in theTraceControl2register are read-only, but have a reset state of “Undefined”. Th
is because these values are loaded from various PDtrace Interface Signals when thePDI_SyncOffEn signal is asserted. As
such, these fields in theTraceControl2 register will not have valid values until the TCB asserts the PDI_SyncOffEn signal.

On 0

This is the master trace enable switch in software
control. When zero, tracing is always disabled. When
set to one, tracing is enabled whenever the other
enabling functions are also true.

R/W 0 Required

Figure 4-9TraceControl2 Register Format

31 7 6 5 4 3 2 0

0 Valid
Modes

TB
I

TB
U SyP

Table 4-9TraceControl2 Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

0 31:7 Reserved for future use; Must be written as zero;
returns zero on read. 0 0 Reserved

ValidModes 6:5

This field specifies the subset of tracing that is
supported by the processor (seeSection 2.2,
"Subsetting" on page 6).

R Preset Required

TBI 4

This bit indicates how many trace buffers are
implemented by the TCB, as follows:

This bit is loaded from the PDI_TBImpl signal when the
PDI_SyncOffEn signal is asserted.

R Undefined Required

Table 4-8TraceControl Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset State Compliance

Name Bits

Encoding Meaning

00 PC tracing only

01 PC and load and store address tracing only

10 PC, load and store address, and load and
store data

11 Reserved

Encoding Meaning

0 Only one trace buffer is implemented, and
the TBU bit of this register indicates which
trace buffer is implemented

1 Both on-chip and off-chip trace buffers are
implemented by the TCB and the TBU bit of
this register indicates to which trace buffer
the traces is currently written.
PDtrace™ Interface Specification, Revision 3.01 37

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

r

4.5.1.3 TheUserTraceData Register (CP0 Register 23, Select 3)

A software write to any bits in theUserTraceDataregister will trigger a trace record to be written indicating a type 1 o
type 2 user format. The type is based on the UT bit in theTraceControl register. This register cannot be written to in
consecutive cycles. The trace output data is UNPREDICTABLE if this register is written in consecutive cycles.

TBU 3

This bit denotes to which trace buffer the trace is
currently being written and is used to select the
appropriate interpretation of the TraceControl2SyP
field.

This bit is loaded from the PDI_OffChipTB signal when the
PDI_SyncOffEn signal is asserted.

R Undefined Required

SyP 2:0

The period (in cycles) to which the internal
synchronization counter is reset when tracing is started,
or when the synchronization counter has overflowed.

The “On-chip” column value is used when the trace
data is being written to an on-chip trace buffer (e.g,
TraceControl2TBU = 0). Conversely, the “Off-chip”
column is used when the trace data is being written to
an off-chip trace buffer (e.g, TraceControl2TBU = 1).

This field is loaded from the PDI_SyncPeriod signal
when the PDI_SyncOffEn signal is asserted.

R Undefined Required

Figure 4-10UserTraceData Register Format

31 32-bit Register 0

63 64-bit Register 0

Table 4-9TraceControl2 Register Field Descriptions (Continued)

Fields Description Read/
Write

Reset State Compliance

Name Bits

Encoding Meaning

0 Trace data is being sent to an on-chip trace
buffer

1 Trace Data is being sent to an off-chip trace
buffer

SyP On-chip Off-chip

000 22 27

001 23 28

010 24 29

011 25 210

100 26 211

101 27 212

110 28 213

111 29 214
38 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.6 Trace Enabling/Disabling Condition

ng.
ngs, as

n the

 1)

 2)
4.6 Trace Enabling/Disabling Condition

As seen inSection 4.2, "Trace Input Signals" on page 27there are several input signals into the core that enable traci
In addition, trace can also be triggered on and off by the EJTAG hardware instruction and data breakpoint setti
seen inSection 4.4, "Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints" on page 32. The equations
specified here clarify the conditions under which different input factors will enable or disable tracing.

Trace enabling and disabling from software is similar to the hardware method, with the exception that the bits i
control register are used instead of the input enable signals from the TCB. The TraceControlTS bit controls whether
hardware (via the TCB), or software (via theTraceControl register) controls tracing functionality.

In any given cycle n, an instruction is traced if the following equation evaluates true:

TraceOn & (TriggerOn(n) | MatchEnable | TriggerEnable) (EQ

And every cycle, the following state variable is set and then used in the next cycle:

TriggerOn(n+1) <- TraceOn & (TriggerEnable | (TriggerOn(n) & (~TriggerDisable)) (EQ

The various expressions used in(EQ 1) and(EQ 2) are defined here.

TraceOn ← ((TraceControl TS & TraceControl On) |
 ((~TraceControl TS) & PDI _TraceOn))

MatchEnable ←
(TraceControl TS &
 (TraceControl G | (((TraceControl ASID ^ EntryHi ASID) & (~TraceControl ASID_M))=0)) &
 ((TraceControl U & UserMode) |
 (TraceControl K & KernelMode) |
 (TraceControl S & SupervisorMode) |
 (TraceControl E & ExceptionMode) |
 (TraceControl D & DebugMode))) |
((not TraceControl TS) &
 (PDI _G or (PDI _ASID = EntryHi ASID)) &
 ((PDI _U & UserMode) |
 (PDI _K & KernelMode) |
 (PDI _S & SupervisorMode) |
 (PDI _E & ExceptionMode) |
 (PDI _DM & DebugMode)))

TriggerEnable ←
((EJTAG_data_trigger[i]) & TraceBPC DE & (TraceBPC DBPOn[i] = 1)) |
((EJTAG_inst_trigger[i]) & TraceBPC IE & (TraceBPC IBPOn[i] = 1))

TriggerDisable ←
((EJTAG_data_trigger[i]) & TraceBPC DE & (TraceBPC DBPOn[i] = 0)) |
((EJTAG_inst_trigger[i]) & TraceBPC IE & (TraceBPC IBPOn[i] = 0))

Table 4-10UserTraceData Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

Data
31:0 or

63:0

Software readable/writable data. When written, this
triggers a user format trace record out of the PDtrace
interface that transmits the Data field to trace memory.

R/W 0 Required
PDtrace™ Interface Specification, Revision 3.01 39

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description

then

rocess

rs
grain
n. For
ction,

e On

t. When
tracing

y in user
de, the
le

gnal
uction
hat

trace

his

 store
As seen in the(EQ 1), trace can be turned on only if the master switch On or PDI_TraceOn is first asserted (TraceOn).
Once asserted, there are three ways in which instruction tracing can occur:

1. A trigger had occurred in the past that turned on tracing, but no trace disabling trigger had occurred since
(TriggerOn(n)).

2. The input enable signals from the TCB or the trace control register indicate a tracing condition (MatchEnable).
This type of tracing is done over general program areas. For example, all of user-level code for a particular p
(ASID specified), or some such conditions.

3. The third method to turn on tracing is from the processor side using the EJTAG hardware breakpoint trigge
(TriggerEnable). If EJTAG is implemented, and hardware breakpoints can be set, then using this method, fine
tracing control is possible. It is possible to send a trigger signal that turns on tracing at a particular instructio
example, it would be possible to trace a single procedure in a program by triggering on trace at the first instru
and triggering off trace at the last instruction.

Trace is turned off when(EQ 1) evaluates false. Note that tracing can be unilaterally turned off by de-asserting th
bit or the PDI_TraceOn signal.

4.7 Tracing During Processor Mode Changes

Note that during normal execution, the processor will change its operation mode frequently. For example, when
executing user-level code, an interrupt may cause the processor to jump to kernel mode to service the interrup
the interrupt has been serviced, the processor will switch back to user mode. A mode change is indicated in the
logic by tracing out aTMOAS for PDO_TType.

In the situation that the mode change affects tracing, for example, the tracing system has been set up to trace onl
mode and not in kernel mode, then the interrupt service routine should not be traced. Upon jumping to kernel mo
core tracing logic will add aTMOAS as the last record in the FIFO (or if the FIFO is empty, will output directly). Whi
the entries in the FIFO until theTMOAS entry are being traced out, the core will use a PDO_InsComp value ofNI (No
Instruction). Once theTMOAS record has been output, the core tracing logic will de-assert its PDO_IamTracing si
until the interrupt service routine is done and execution jumps back into user mode. By knowing the static instr
stream in the user program, and using theTMOAS record, the external trace reconstruction software can figure out t
tracing was suspended when the processor jumped to kernel mode.

When jumping from a non-tracing mode to a tracing mode, the first record output isTMOAS to indicate the mode
change. This is followed by a full PC value of the first instruction in the tracing mode. This will enable the external
reconstruction software to re-synchronize itself and track program execution in the desired mode.

4.8 Tracing Store Conditionals

A store conditional instruction part of an LL/SC operation may or may not perform the actual store operation. T
section describes the tracing rules for such an instruction.

• A store conditional that performs the store operation is traced out as anIS or ISB for PDO_InsComp. If store address
or data is being traced, then this associated information is traced as well.

• A store conditional that does not perform its store is traced as anI or IB for PDO_InsComp (or even anIPC). And no
associated address or data will therefore be traced for this instruction.

It is the responsibility of software to determine from context of the tracing and the program source whether the
conditional was successful or not.
40 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.9 Tracing MIPS16e Macro Instructions

ions.

ise the
cro. In
ion
t of the
t using
get.
is

n to
stores
y branch
ce have

aced.
 the
4.9 Tracing MIPS16e Macro Instructions

In the MIPS16eTM ASE, several single MIPS16e instructions expand to a fixed sequence of multiple 32-bit instruct
These include the SAVE and RESTORE and ASMACRO instructions. (See the “MIPS32TM Architecture for
Programmers Volume IV-a: The MIPS16eTM Application-Specific Extension to the MIPS32TM Architecture”,
document number MD00076).

When executing a Macro instruction, note that the PC address does not change for the instructions that compr
macro instruction, hence the core does not output a PC value until it executes the first instruction outside the Ma
fact, the core indicates the completion of the Macro instruction by outputting a full PC value for the first instruct
executed after the macro instruction. This instruction could either have been reached sequentially by falling ou
macro sequence, or by executing a branch instruction from within the macro sequence. This full PC value is outpu
a branch indication e.g.,IB for the PDO_InsComp value, even though this instruction is most likely not a branch tar
The external re-construction software will note the preceding Macro instruction, and hence be able to handle th
situation correctly.

Within the macro sequence, normal tracing is carried out. Note that the macro sequence can include, in additio
arithmetic and logical instructions, load and store instructions, which will be traced in a manner similar to loads/
that are not in a macro instruction sequence. (Note that any branch instruction inside the Macro sequence can onl
out of the Macro sequence and not to any location within the sequence since all instructions within the sequen
the same PC value).

4.10 Tracing MIPS16e Extend Instructions

A MIPS16eTM extend instruction is considered a single instruction, and therefore the PC of the extend part is tr
Note that a branch to a MIPS16e extend instruction is to the extend part of the instruction. (For details, refer to
“MIPS32TM Architecture for Programmers Volume IV-a: The MIPS16eTM Application-Specific Extension to the
MIPS32TM Architecture”, document number MD00076).
PDtrace™ Interface Specification, Revision 3.01 41

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 PDtrace Interface Description
42 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ods used
ddress.
r a buffer
block
O_TMode
g

m the
branch
used.
xtended

)

t first,

of the

ores are
an be a

EQ 4)

(EQ 5)

g

ing on

chniques
 any
Chapter 5

Trace Compression

This section is a discussion of compression techniques that may be used when tracing different values. The meth
are quite different for each “type" of value. For example, the PC may be sent as a delta from the previous PC a
Sometimes the full PC value needs to be sent when the trace process starts either at the beginning of tracing, afte
overflow, or for synchronization. In this case, the PC can be sent un-compressed, or some method such as bit-
compression can be used. The sections below discuss these various techniques as they correspond to the PD
signal value. Note that the single-bit PDO_TMode signal allows two ways in which to send the information bein
currently traced.

5.1 PC tracing

When PDO_TMode is zero, this implies that the delta of the PC value is transmitted. This delta is computed fro
PC value of the instruction executed just before the branch target instruction (e.g., the instruction executed in the
delay slot after a branch instruction). The computed delta is then right-shifted by one bit, since this bit is never
Note that the value can be negative or positive, hence is a signed 16-bit value, and the upper bits need to be sign-e
before transmission.

PC_delta = (new_PC - last_PC) >> 1 (EQ 3

If the width of the computed delta value is bigger than the width of the PDO_AD bus, then the lower bits are sen
followed by the upper bits.

When the PDO_TMode value is one, this implies that the full PC value is transmitted. Depending on the width
bus, this may take multiple cycles. Again, the first cycle transmits the least significant bits, and so on.

5.2 Load or Store Address Tracing

With a PDO_TMode zero value, the load address transmitted is a delta from the last transmitted load address. St
similar, where the computed delta is from the last transmitted store address. Note that the last load instruction c
load instruction of any type, i.e., LB, LW, etc. The same is true for stores.

load_address_delta = current_load_address - last_load_address (

store_address_delta = current_store_address - last_store_address

Note that the delta transmission is quite effective when the load or store addresses are increasing or decreasin
sequentially.

With a PDO_TMode value of one, the value transmitted is the full address of either the load or the store. Depend
the width of the trace bus and the processor data width, this could take multiple cycles to transmit.

5.3 Load or Store Data Tracing

The data values are less prone to good compression techniques. But delta values and bit-block compression te
might be useful in achieving some compression ratio. This version of the PDtrace specification does not dictate
PDtrace™ Interface Specification, Revision 3.01 43

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Trace Compression

d the

 it
e bits
struction

be it PC
ng logic,
ation
compression for data values. The PDO_TMode value of zero is reserved for a future compression scheme. An
PDO_TMode value of one is used to transmit the full data value.

5.4 Using Early PDO_TEnd Assertion

This technique was discussed in theTable on page 9. When the processor is transmitting data on the PDO_AD bus,
can optionally make a decision to cut off the trailing sign bits of the data and assert PDO_TEnd early, before all th
of the address or data has been sent. For example, redundant sign bits need not be transmitted for accurate recon
of the data. Note that this data compression technique can be applied to any transmission on the PDO_AD bus,
address, load/store address, or load/store data. Also note that this technique is optional for the processor traci
but the TCB and software must be capable of handling this situation for implementations with PDtrace Specific
03.00 and higher.
44 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.1 Revision History
Appendix A

Revision History

A.1 Revision History

Table A-1 Revision History

Revision Date Description

1.6 August 29, 2000

Changes in this revision:

Add the requirement that the data address be also periodically gathered
for synchronization purposes, per FS2.

Modify Figure 3 to show that the load data is picked up after alignment,
per lhh.

typo fixes

1.7 September12, 2000

Changes in this revision:

Add a separate input signal that says whether to trace in Debug mode or
not (i.e., DM = 1 in theDebugregister), per Scott who wants to be able
to debug the debug handler code.

Put back Figure 3 to tap load/store data pre-alignment, per Franz.

Add a section (3.17) to show when tracing is enabled.

Allow the ASID to be masked under software control, per Scott.

Amend Figure 1 to show the EJTAG/TAP controller and its connection
to the debugger.

Add to Table 2, to show the use of the PDO_InsComp signal valueIPC
(100).

Add a chapter (6) on the trace capture block and its interaction with the
external debugger software.

Add TOC

Fix typos, grammar, sentence construction.

1.8 October 27, 2000

Changes in this revision:

Change the way loads are tracked and traced out.

Add the tracing out of ASID and processor mode as part of the periodic
synchronization.

Add details to the multi-issue tracing section.

The above changes require a modification to the output format section.

Add a chapter to discuss the trace capture block (TCB), that includes: a
definition of the control registers within the TCB, and the mechanism to
write these registers from the external probe (or debugger).

Define tracing with an on-chip trace buffer versus off-chip trace buffer.

Add another Out signal from the core, PDO_IamTracing, that the core
uses to signal to the TCB that it is actually sending valid trace data.
PDtrace™ Interface Specification, Revision 3.01 45

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Revision History
1.9 November 20, 2000

Changes in this revision:

Add tracing of processor ISA mode, and whether processor is in Debug
mode or not.

Get rid of the TCBTraceMask register, is not really needed.

Allocate some bits in the TraceControl register as implementation
dependent.

Specify that full addresses are used for on-chip trace memory.

Change the encoding of bits from the EJTAG logic to the tracing logic,
send all 30 bits of breakpoint trigger.

Fix the logical expression in 3.1.8.

2.0 December 19, 2000

Changes in this revision:

Add a signal from the TCB to the core tracing logic, PDI_StallSending,
that inhibits the core from sending trace data. Note that the core does not
stop tracing, only stops sending trace information to the TCB. Used by
the TCB when its internal buffer is in imminent danger of overflowing.
(The core will stall if its internal FIFO will overflow).

Make the synchronization period programmable, by using some bits in a
register to hold this value. These bits can be updated by either software
or by the TCB (based on the trace buffer size).

Add a signal from the TCB to the core tracing logic that signals whether
the TCB is using an on-chip or off-chip trace buffer. This changes the
way in which the core interprets the synchronization period bits in the
register.

The chapter on trace control block (TCB) has been cut off into another
document, since it is not directly relevant to the PDtrace architecture.

2.01 January 25, 2001

Changes in this revision:

Add a signal PDI_TCBPresent to indicate that the TCB hardware is
present.

Clearer explanation of how the PDI_StallSending signal works.

Change in how the PDI_EXL and the corresponding X bit in the
TraceControl register works.

Coding change in the PDI_TraceMode[2:0] signal.

2.02 February 12, 2001

Changes in this revision:

Change in how the PDI_EXL and the corresponding X bit in the
TraceControlregister works. Tracing triggers on when either EXL or the
ERL bit is a 1, this enables tracing after a cold reset.

Table A-1 Revision History

Revision Date Description
46 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.1 Revision History
2.03 March 22, 2001

Changes in this revision:

• Add a register description table forUserTraceData.

• Add a PDI_TraceAllBranch signal to indicate that all branches
(conditional, unconditional, predictable, and unpredictable) are to be
traced.

• Change the PDO_InsComp definition for unconditional predictable
branches (jumps), so that these trace out asIB, ILB, andISB (rather
thanI, IL , andIS).

• Document how tracing is handled within MACRO instructions and
the SAVE/RESTORE instruction.

• Document what happens when a mode change happens within the
processor and this changes the tracing mode, i.e., either turns it off or
on.

• Fix typos.

2.04 June 20, 2001

Changes in this revision:

• Converted document to new template

• PDO_TMode’s reserved bit field of 100 is now used for tracing PC
values and load data (this is optional for all PDtrace specifications
less than 03.00 and conforming TCB implementations.

• Three PDO_ signal bits have been added, PDO_MIPS16 and
PDO_MIPS16Ins that are used only by processors implementing the
MIPS16 ASE, and are optional.

• The sense of EQ1, EQ2, and EQ3 used to compute the delta address
values have been reversed.

• Add the PDI_TraceAllBranch to the Trace Control Register.

• Note that the select position of the COP0 registers implemented for
tracing have all been changed, so that the control registers are
together and the optional registerTraceBPC is the last one.

• Note that the end of a MIPS16 Macro instruction was indicated by
the transmission of a full PC value. This was more fully specified so
that this full PC value is accompanied by an PDO_InsComp value
that indicates a branch, e.g., IB, ILB, etc.

• The PDI_EXL has been changed to PDI_E, and similarly in the
TraceControl register, X has been changed to E.

• Bits 22 and 23 in theTraceControl register (K and S), have switched
places.

• TheTraceControl2 register has been re-arranged, and instead of the
bit OfC, two new bits TBU and TBI have been added.

• TheTMOAS record has been augmented with an extra bit for the
POM field and with a new bit called the SYNC bit.

• Add an Input signal PDI_TBImpl from the TCB to the core tracing
logic to say whether on-chip, off-chip, or both buffers are
implemented by the TCB. This signal is optional for all TCB
implementations that are compatible to PDtrace specifications less
than 03.00.

Table A-1 Revision History

Revision Date Description
PDtrace™ Interface Specification, Revision 3.01 47

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Revision History
2.05 June 28, 2001

Changes in this revision:

• Convert the stand-alone document to a book format and add LOF and
LOT pages.

• Add trademark symbol to PDtrace

• Fix minor typos.

2.06 August 8, 2001

Changes in this revision:

• Define the behavior if the processor implements a fixed mapping
MMU, rather than the standard TLB-based MMU.

• Define the polarity of the TraceControlASID_M field.

• Precisely define the processor modes which for which tracing may be
enabled. SeeSection 2.1, "Processor Modes" on page 6 for these
definitions.

• Make the equations for turning on and off trace more precise and
convert to standard notation.

• Add the standard “About This Book” chapter to define syntax and
conventions.

• Eliminate the R/W fields in TraceControl2.

• More fully describe the synchronization counter, including when it
must be restarted.

• Make it explicit that ASID and processor mode changes are not
traced if tracing is off when the change occurs. That is, ASID and
processor mode changes are not traced if tracing is currently off.

• Add subsetting rules for PDtrace (seeSection 2.2, "Subsetting" on
page 6)

• Add the PDO_ValidModes signal and the ValidModes field in the
TraceControl2 register to specify which tracing modes the processor
supports.

2.07 March 21, 2002

Changes in this revision: (RT)

• Change the name of the TraceControl2 register field ValidModes to
ImpSubset since this field indicated the implemented subset of
tracing.

• Get ready for commercial release, breakup the single file into
individual chapter files, fix typos, cross-references, etc.

Table A-1 Revision History

Revision Date Description
48 PDtrace™ Interface Specification, Revision 3.01

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.1 Revision History
3.00 November 26, 2002

Changes in this revision: (RT)

• Change the way multi-issue tracing is done (seeSection 4.3.1,
"Background on High Performance Processors" on page 28).

• Change the use of PDO_LoadOrder signal to PDO_DataOrder (see
Section 4.3.4, "Out-of-Order Loads and Stores in the Multi-Pipe
Core" on page 31).

• Increase the width of PDO_DataOrder signal to 4 bits (seeTable 3-1
on page 7).

• Add a new signal called PDO_DataPerIns[7:0] (seeTable 3-1 on
page 7).

• Allow PDO_TEnd to be asserted early to cut off redundant upper bits
of an address or data (seeTable 3-1 on page 7).

• Add a section to clarify how tracing is handled for store conditional
instructions (seeSection 4.8, "Tracing Store Conditionals" on page
40).

• Make the PDO_TMode bit 0 value for PDO_TType values ofTD,
TU1, andTU2 to be Reserved.

• Add PDO_Trig signals on the PDtrace interface that transmit trace
trigger information to the TCB. SeeSection 4.4, "Trace Trigger from
EJTAG Hardware Instruction/Data Breakpoints" on page 32.

• Add MIPS16 in MIPS64 option to ISAM inTMOAS. SeeTable 4-2
on page 23.

• Rewrite the trace enable equation to fix errors in the first version. See
Section 4.6, "Trace Enabling/Disabling Condition" on page 39.

• Fix grammatical errors and typos.

3.01 May 14, 2003
Removed the trace slot-specific signals PDO_TrigI_n, PDO_TrigD_n,
PDO_TrigOn, and PDI_TrigOff, since these are superfluous. Fix minor
typos.

Table A-1 Revision History

Revision Date Description
PDtrace™ Interface Specification, Revision 3.01 49

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

	PDtrace™ Interface Specification
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1� Typographical Conventions
	1.1.1� Italic Text
	1.1.2� Bold Text
	1.1.3� Courier Text

	1.2� UNPREDICTABLE and UNDEFINED
	1.2.1� UNPREDICTABLE
	1.2.2� UNDEFINED

	1.3� Special Symbols in Pseudocode Notation
	1.4� For More Information

	Overview
	2.1� Processor Modes
	2.2� Subsetting

	The PDtrace Interface Signals
	3.1� PDtrace Interface Signal List

	PDtrace Interface Description
	4.1� Trace Output Signals
	4.1.1� The Instruction Completion Status Signal
	4.1.2� Start of Tracing
	4.1.3� Trace Synchronization
	4.1.4� Trace Bus
	4.1.5� Trace Overflow and Restart
	4.1.6� Trace Type and an Example Code Fragment
	4.1.7� Trace Mode
	4.1.8� Data Order Signal
	4.1.9� Instruction-Data Map Signal
	4.1.10� Trace Timing Example

	4.2� Trace Input Signals
	4.3� Tracing Multi-Issue and High-Performance Processors
	4.3.1� Background on High Performance Processors
	4.3.2� The Basic Tracing Methodology
	4.3.3� Coordinating the Instruction Completion Trace with the Address/Data Trace
	4.3.4� Out-of-Order Loads and Stores in the Multi-Pipe Core
	4.3.5� Tagging Instructions that Issue Together
	4.3.6� Miscellaneous

	4.4� Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints
	4.4.1� The TraceBPC Register (CP0 Register 23, Select 4)

	4.5� Software Trace Control
	4.5.1� Coprocessor 0 Trace Registers
	4.5.1.1� The TraceControl Register (CP0 Register 23, Select 1)
	4.5.1.2� The TraceControl2 Register (CP0 Register 23, Select 2)
	4.5.1.3� The UserTraceData Register (CP0 Register 23, Select 3)

	4.6� Trace Enabling/Disabling Condition
	4.7� Tracing During Processor Mode Changes
	4.8� Tracing Store Conditionals
	4.9� Tracing MIPS16e Macro Instructions
	4.10� Tracing MIPS16e Extend Instructions

	Trace Compression
	5.1� PC tracing
	5.2� Load or Store Address Tracing
	5.3� Load or Store Data Tracing
	5.4� Using Early PDO_TEnd Assertion

	Revision History
	A.1� Revision History

