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New more feature-rich electronic devices appear everyday, while existing devices continue to 
evolve and converge into more elaborate ones. There remains, however, a strong impetus to 
integrate these functions onto as few silicon chips as possible, which is driving SOC complex-
ity up at a staggering rate. Moore’s Law provides the ammunition to meet this challenge, but 
bringing the power of semiconductor technology to bear on SOC performance in the future 
will require different architectural approaches than those used in the past. The traditional 
techniques of pipelining and superscalar instruction issue are approaching their limits and 
other techniques like vector processing, multithreading, and chip multiprocessing will be 
called on to carry the ball.  
 
SOC Complexity Skyrockets 
As the marketplace continues to become more adept with technology, companies are making 
each new electronic device more sophisticated than the last. Every new generation has more 
features and higher throughput. Convergence is compounding this growth, resulting in some 
truly elaborate devices. 
 
Still, the benefit of integrating functions onto fewer silicon chips remains as compelling as 
ever. The result is a staggering growth rate of SOC complexity. While Moore’s Law continues 
to provide the transistors necessary to construct these incredibly complex devices with reason-
able manufacturing costs, some major changes are afoot. 
 
One force driving change is the increasing need to be earlier to market. New device markets 
have steeper growth rates than those in the past and products are becoming obsolete much 
more quickly. Just a couple of months one way or the other in today’s markets can make the 
difference between success and failure, profit and loss. 
 
A second force at play is the rapid growth in development costs. Design productivity is not 
keeping pace with device complexity or the semiconductor technology enabling it, so design 
costs are rising. Worse, the fixed-costs of putting an SOC into production are rising even 
faster. By some estimates, 90nm mask costs will exceed one million dollars per set. In 1995 
on 0.35µm technology, design and mask costs usually amounted to less than 15% of the costs 
of a 250K-unit run of product; in 2003 in 90nm technology, an equivalent design might see 
design and mask costs approach 65%. 
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Driving Performance 
Rising development costs motivate companies to design fewer SOCs, but to make each one 
more flexible and programmable. Doing so allows designs to be reused to take advantage of 
economies of scale and shorten the average time it takes to get a device to market. Moreover, 
programmability will allow companies to keep products in the market longer, boosting inte-
grated profits. 
 
For programmability to be an option, however, embedded-processor cores must deliver the 
type and level of performance needed to implement functions that today require hardwired 
logic blocks or specialized (difficult to program) processors. Delivering this level of perform-
ance in a cost-effective, power-efficient, easy-to-program processor will require different ar-
chitectures and techniques than those commonly used today. 
 
While the functions implemented in SOCs are diverse and dependent on the particular appli-
cation domain the SOC will serve, there are some general trends cutting broadly across many 
embedded markets. It is generally true, for example, that in most electronic devices digital 
signal processing and multimedia processing are becoming larger components of the overall 
workload. In fact, these tasks are to a large extent driving the architecture of embedded proc-
essors1 and SOCs. 
 
As these forces converge it will drive the demand for performance well beyond the 55% com-
pound annual performance growth rate the industry has sustained over the past 30 years. 
 
Current Techniques Fall Short 
High-performance embedded processors have traditionally relied mainly on clock frequency 
and superscalar instruction issue to boost performance. Caches have played an important part 
in enabling the potential of these techniques in the face of increasing memory latencies. While 
frequency and superscalarity have served us well and will continue to be used, they have limi-
tations that will limit the gains we can expect from them in the future. 
 
The gains in operating frequencies, which have historically come at a rate of about 35% per 
year, are attributable to two factors, each of which has contributed roughly half the gains: 
semiconductor feature scaling and deeper pipelining.  
 
The intrinsic switching delay of semiconductor devices (τ = CV/I) has improved steadily at a 
rate of around 20% per year, due mostly to device scaling. Global interconnect delays have 
scaled less favorably, limiting overall chip gains to somewhat less. Over the next several 
years, the ITRS 20012 calls for intrinsic switching delays to improve at about 17% per year. 
Local interconnect performance will scale similarly, but global interconnects will lag, requir-
ing circuit design tricks to keep pace. 
 
The other half of the frequency gains have come mainly from deeper instruction pipelines, 
although improved design tools and circuit-design innovations have also contributed. Deeper 
pipelining distributes the work of executing an instruction over more discrete clock cycles, 
reducing the amount of work done each cycle and allowing the operating frequency to rise 
proportionally.  
 
Pipelining comes at a cost. Deeper pipelines are less efficient. Each additional pipeline stage 
introduces overhead, to the tune of a couple of fan-out-four-equivalent (FO4) inverter delays 
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per stage. Architectural efficiency also suffers. Deeper pipelines have long restart penalties on 
changes in control flow, requiring complex mechanisms such as branch predictors and specu-
lative execution.  
 
There are practical limits to how far pipelining can be pushed and still deliver a performance 
gain. Well-formed clock pulses are difficult to deliver below a period equivalent to about 
seven FO4 inverter delays. Dividing logic components, such as ALUs, into pieces smaller 
than about 15 FOV inverters ends up creating more work than can be recovered from the fre-
quency gain. While embedded-processor pipelines are not yet being pushed as far as those in 
their PC-processor cousins, efficiency is still an issue, and it will limit the frequency gains we 
can expect from deeper pipelines in the long run. 
 
It is an unfortunate misperception in the market that processor frequency is a reliable measure 
of performance and more is always better. But high frequency has downsides, whether from 
more aggressive circuit design or deeper pipelines. The main disadvantage is power dissipa-
tion: longer pipelines are less efficient, faster devices leak more current, and switching de-
vices at a higher rate requires considerably more energy.  
 
With high frequency designs, static power dissipation is high because fast (low-Vt) transistors 
have high subthreshold leakage characteristics. Dynamic power dissipation (CV2F) is higher 
because switching capacitance (C) goes up with pipeline stages, frequency (F) goes up (obvi-
ously), and the supply voltage (Vdd) must be raised in proportion to frequency for the circuit to 
operate. Semiconductor scaling has in the past saved the day on dynamic power because each 
generation operates at lower Vdd. Voltage scaling, however, will slow as we approach the lim-
its set by silicon physics. Moreover, lower supply voltages (Vdd) force switching thresholds 
(Vt) down, boosting static power. 
 
Superscalar instruction issue will also approach limits. This technique introduces many of the 
same efficiency losses as pipelining, plus others relating to parallel dependency analysis. In-
struction dispatch logic complexity goes up exponentially with issue width. Dynamic instruc-
tion reordering is often required to sidestep hazards and find enough instruction parallelism to 
fill the issue slots; complexity goes up with the depth of this instruction window. Extra pipe-
line stages may have to be added to prevent this complexity from reducing frequency, creating 
a snowball of complexity. 
 
Regardless of the cleverness of a superscalar design, the technique is fundamentally con-
strained by the amount of instruction-level parallelism (ILP) in programs. If there is not much 
ILP available, superscalar efficiency will be low, leaving execution units under utilized. While 
theoretical studies show high ILP in some programs, others show precious little. Furthermore, 
much of the ILP discovered in these studies turns out to be data-level parallelism (DLP). If 
DLP is extracted by other less expensive means, which we will discuss later, the superscalar 
hardware can be left with little to chew on.  
 
The biggest problem with superscalar techniques is the rapidly diminishing returns on transis-
tor usage. While significant speedups are achieved in moving from a single-issue scalar design 
to a dual-issue design, very much less is gained by adding a third issue slot. Beyond four-
issue, the gains are essentially nil. In combination with deep pipelining, which is the common 
usage, superscalar design, when pushed too far, results in very complex logic with very little 
to show for it. 
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Very-long-instruction-word (VLIW) machines were devised to reduce the complexity of issu-
ing multiple instructions in parallel. VLIWs foist the task of instruction scheduling from 
hardware onto the compiler, thus—theoretically—mitigating the diminishing returns of super-
scalars. Results, however, have been disappointing. In practice, VLIWs end up requiring many 
of the same complex mechanisms as superscalars: branch predictors, forwarding paths, pipe-
line interlocks (e.g. scoreboards), etc. Plus, new mechanisms, such as predication, code com-
pression, and rotating registers, have to be tacked on to compensate for the absence of dy-
namic instruction-scheduling facilities. VLIWs suffer badly on some types of code because 
compilers don’t have the benefit of runtime information to efficiently schedule the machines 
resources. As a result, the complexity of VLIWs has not been convincingly lower than that of 
superscalars with similar performance. 
 
New Techniques to the Rescue 
Pipelining and superscalar techniques have proven effective as far as they go, and most em-
bedded processors aren’t yet pushing them to their limits. But high-end and mid-range em-
bedded processors soon will if the demand for performance materializes as we expect. 
 
Fortuitously, 90nm semiconductor technology will arrive in time to enable some new tech-
niques to pick up where pipelining and superscalar techniques leave off. In 90nm technology, 
logic densities will approach 106 transistors/mm2, and embedded SRAM densities will exceed 
106 bits/mm2. At these densities, the marginal manufacturing costs for a million logic transis-
tors or a million bits of memory will be on the order of six cents ($0.06) on a nominally sized 
SOC in the range of 80mm2.  
 
Three techniques that will come to the fore are vector processing, multithreading, and chip 
multiprocessing (CMP). These techniques have two characteristics in common: they exploit 
different levels of parallelism than pipelining and superscalar issue, and they are transistor 
intensive. Unlike pipelining and superscalar techniques, which are extraordinarily complex, 
vectors, threading, and CMP are simpler, relying more on arrayed datapath elements than 
complex control structures. 
 
Pipelining and superscalar techniques both exploit fine-grain instruction-level parallelism 
(ILP); pipelining exploits ILP by temporal means, superscalar by spatial means. Vector proc-
essing, in contrast, exploits fine-grain data-level parallelism (DLP); multithreading exploits 
medium-grain thread-level parallelism (TLP); and chip multiprocessing exploits coarse-grain 
process-level parallelism (PLP). 
 
Multithreading 
As previously pointed out, one limitation on ILP hardware is the lack of parallelism in a single 
instruction stream. Another impediment is the presence of long-latency operations, such as 
memory accesses. Both problems stall the instruction pipeline, reducing the average instruc-
tion issue rate and leading to under utilization of the execution units. 
 
The idea behind multithreading is to exploit a higher-level of parallelism, thread-level paral-
lelism, to keep execution units busy during times the pipeline would otherwise be stalled. A 
thread is an instruction stream that is data, memory, and control independent of other streams. 
The independence of threads can be exploited by switching to a new thread when one thread 
stalls. 
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Many forms of multithreading have been devised over the years. The coarsest (and oldest) 
form is simple interrupt-driven multitasking. This age-old technique has been enhanced over 
the years with various hardware structures to reduce granularity by lowering the overhead of 
switching threads. Indeed, the key to effective multithreading is lower thread-switch overhead, 
which allows more pipeline stalls to be covered. 
 
The ultimate in fine-grain multithreading, called simultaneous multithreading3 (SMT), was 
first described by Susan Eggers and Dean Tullsen at the University of Washington. In this 
approach, instructions from several threads are interleaved onto the machine’s execution units. 
Such fine-grained threading makes it possible to cover latencies as short as those arising from 
even single-cycle pipeline hazards, eliminating many of the IPC-robbing bubbles typically 
found in superscalar pipelines. 
 
All forms of hardware-assisted multithreading require the duplication of processor resources 
to hold the architectural state of each running thread within the core. While this might sound 
expensive, state- and context-holding resources typically amount to a small portion of the 
core’s transistors. 
 
Part of the beauty of SMT is that it uses facilities similar to the out-of-order execution facili-
ties that many superscalar designs use to improve efficiency. SMT piggybacks easily on top of 
existing register-renaming and reorder-buffer facilities, adding only slightly to the complexity 
of a superscalar design. 
 
Throughput improvements over single-thread superscalar implementations can be impressive. 
Results are dependent on the specifics of the underlying hardware and the workload, but in-
vestments of an additional 10% in hardware for a second thread can boost throughput on the 
order of 30%. 
 
Moreover, because of its ability to fill issue slots and boost execution-unit utilization, SMT 
enables the construction of wider superscalar machines than would otherwise make sense. 
Wide superscalars do have the distinct advantage of high single-thread performance on 
threads rich in ILP. SMT machines can easily shift hardware resources among threads, giving 
high peak performance on a single thread or high aggregate throughput on several threads. 
 
There is, however, the matter of software. Unfortunately, the thread-level parallelism on 
which SMTs thrive must be explicitly identified to the hardware. While obvious parallelism 
exists in separate tasks, which a multitasking OS could schedule onto an SMT, that level of 
parallelism may actually be more suited to chip multiprocessors, which we discuss later. The 
ideal role for SMT would be executing smaller threads from a single program, where the shar-
ing of instructions and data in the caches is essentially free and very fast. 
 
Today, however, especially in the embedded world, programmers rarely construct programs in 
multithreaded fashion. While this technique is growing more popular for other reasons, it is 
not likely to happen on a large scale anytime soon. The hoped-for solution is that compilers 
can be taught to automatically divide programs into independent threads. Scheduling loop 
iterations as different threads is one obvious possibility, but finding more general independent 
control flows is the Holy Grail. 
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With the adoption of SMT in the Pentium 4, which Intel labels “hyper-threading,” research 
into multithreading is gearing up. Led by John Shen, director of Intel’s microarchitecture lab, 
research is underway on clever ways to bring thread hardware to bear on single programs, 
such as speculative precomputation and adaptive dynamic prefetch threads4. 
 
Embedded systems offer another opportunity for SMT. In many systems, real-time response is 
critical. Traditional single-threaded processors take long and variable amounts of time re-
sponding to priority interrupts. Multithreaded processors keep multiple tasks ready to run at a 
nanosecond’s notice, eliminating the overhead of switching to a high priority task, greatly 
accelerating real-time response. 
 
Vector Processing  
A serious obstacle to scaling multi-issue machines to higher issue rates is the Flynn bottle-
neck. This bottleneck describes the difficulty of fetching and issuing many instructions in par-
allel, which explains the exponential growth in the complexity of superscalar machines. 
Deeply pipelined machines aren’t much better. From the perspective of instructions per cycle 
(IPC), scheduling a deep pipeline is as difficult as scheduling a wide-issue pipeline. 
 
Vector processors address Flynn’s bottleneck. In a vector machine, a single instruction per-
forms many operations, perhaps an entire loop’s worth, greatly reducing the instruction fetch 
and issue bandwidth requirements for a given amount of work. 
 
The limitation on vector architectures is that they apply only where high degrees of data-level 
parallelism exist. That is, where operations on the data set are such that the result of any op-
eration is independent of other operations. This characteristic is why early vector machines 
like the Illiac-IV, CDC Star, TI ASC, and CRAY-1 were developed for scientific applications 
where computations are based mostly on matrix algebra. 
 
Early vector machines, however, suffered badly from Amdahl’s Law, which shows that the 
overall speedup is dramatically lowered by even small amounts of scalar code that cannot be 
vectorized. Since early vector machines had very poor performance on the scalar portions of 
the code, they were relegated to niche markets like weather forecasting and weapons simula-
tions. Vector processors fell even further out of favour as computing turned more toward PCs. 
For the first decade of the PC era, workloads were almost entirely scalar in nature, requiring 
architectures more adept at general-purpose and control-oriented processing. 
 
Several years ago, however, digital multimedia technologies began to take hold on PCs. To-
day, multimedia content is growing rapidly relative to other tasks, and it is demanding more 
and more of the CPU’s attention. Given its phenomenal market appeal, multimedia will domi-
nate the PC workload, if it doesn’t already, and is now rapidly migrating down into consumer 
devices of every sort. 
 
The switch in emphasis from general-purpose to multimedia workloads changes the architec-
ture called for in embedded processors. Multimedia processing is more akin to scientific proc-
essing than to general-purpose processing. Multimedia workloads are largely concerned with 
processing (filtering, decompressing, etc.) streams of digital signals using block-oriented algo-
rithms. This processing tends to be computationally intense and highly data parallel, much 
like scientific applications.  
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Multimedia processing, however, has an additional requirement not usually imposed on scien-
tific applications: it must often be performed in real time. This requirement puts extraordinary 
pressure on the performance of the processor. Traditional superscalar or pipelined embedded 
processors are poorly equipped for the job. Indeed, the out-of-order and speculative techniques 
often used to boost their efficiency can be detrimental to real-time processing. When pushed 
very far, the execution schedule can become highly nondeterministic. Uncertainty in the exe-
cution time degrades real-time performance because it requires guard-banding of deadlines, 
which throws away potentially useful CPU cycles.  
 
Re-enter vector processing. Massive transistor budgets will enable a new, and in many ways 
superior, form of vector processing than that found in early vector machines. The new vector 
architecture has been called single-instruction-multiple-data (SIMD), although this is a some-
what more restrictive use of the term than Flynn originally intended in his taxonomy of com-
puter architectures. 
 
SIMD architecture has a number of advantages in modern processors. For starters, SIMD exe-
cution units are easy to add to existing processing engines. A SIMD instruction is identical in 
every respect to a scalar instruction except that the scalar operands are replaced by short fixed-
length vector operands. SIMD instructions can be added to work on operands in the existing 
general register file (which only makes sense in 64-bit architectures), the floating-point regis-
ter file, or even a new wider register file especially for SIMD vectors. 
 
The result is that SIMD integrates seamlessly with scalar processing. Microarchitecture tech-
niques that accelerate scalar engines will accelerate the vector engine in the same way, acting 
as a multiplier on the vector speedup. Moreover, SIMD machines suffer less from Amdahl’s 
law because of the fast scalar engine underneath and the fine-grain integration of vector and 
scalar instructions, greatly reducing the problem that plagued early vector machines. 
 
SIMD architecture relies on spatially parallel execution units, unlike early vector machines 
that relied more on deeply pipelined units. The use of parallel units is enabled by inexpensive 
transistors. Most modern processor architectures have now added SIMD instruction-set exten-
sions of some variety, and at 90nm we expect these extensions to become heavily used in em-
bedded processors. 
 
SIMD vectors are especially powerful in embedded systems that perform digital-signal and 
multimedia processing. Let’s say, for example, a multimedia stream requires processing of 16-
bit fractional data elements. A 128-bit wide SIMD vector unit would, with a single instruction, 
perform eight parallel multiply-add operations, which are the heart and sole of many signal-
processing algorithms. On these algorithms, speedups approaching the SIMD parallelism are 
possible in many critical inner loops. Overall application speedup will be less due to Amdahl, 
but it can still be large, since these loops often occupy the majority of CPU cycles. 
 
SIMD speedup does not have to be taken in the form of performance. It could be taken as a 
power savings. Let’s say we were to add SIMD to a processor and get some degree of applica-
tion-level speedup. This gain could instead be used to reduce operating frequency while hold-
ing performance constant. The SIMD units add transistors, but dynamic power consumption 
goes up only linearly with transistors. Lowering frequency, on the other hand, not only lowers 
the power directly, but it also allows the supply voltage to be lowered, which is a quadratic 
term in the power equation (P=CV2F).  
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Furthermore, while the SIMD units may add transistors, they may not add silicon area. A 
lower operating frequency would allow the core to be optimized for area rather than speed. 
The difference can be significant; indeed, die size might actually be lower with the SIMD 
units than without. 
 
The downside of SIMD architecture is that data-level parallelism must be explicitly exposed 
to the hardware by the programmer or by the compiler. Finding and exposing data-level paral-
lelism is not always easy. Most programmers are not experienced in doing it, nor do they have 
much interest in worrying about such details—they’d much rather trust the compiler to take 
care of it for them. The majority of current compilers, however, don’t schedule for SIMD. 
While vectorizing-compiler technology exists for FORTRAN on supercomputers, the now 
ubiquitous C language is more difficult to vectorize.  Successful C vector pre-processors have, 
however, been demonstrated by companies like Veridian Systems (www.psrv.com). With 
SIMD now becoming a regular feature of major PC and server processor architectures (e.g., 
x86-SSE, PowerPC-AltiVec, SPARC-VIS, etc.), SIMD vectorizing C compilers will undoubt-
edly materialize. 
 
Even under the best of circumstances, however, there is a level of SIMD potential that com-
pilers will never uncover. The simple fact is that only so much speedup can be gained by vec-
torizing a basically scalar algorithm. Much bigger gains can be achieved by fundamentally 
redesigning the algorithm for execution on a data-parallel machine. This task requires humans, 
although high-level tools like MATLAB (www.mathworks.com) and Mathematica 
(www.wolfram.com) can help. Fortunately, again, the presence of SIMD in the major proces-
sor architectures will eventually produce a vector-savvy base of algorithm programmers. 
 
Chip Multiprocessing 
At the other end of the spectrum from DLP lies an entirely different level of parallelism: proc-
ess-level parallelism. PLP is high-level, coarse-grain parallelism that exists due to the natural 
independence of separate programs or processes. Current SOCs have considerable PLP and, as 
SOCs integrate more functions, PLP will become even more abundant. 
 
The PLP ground is fertile because it cannot be harvested with pipelining, superscalar, or 
SIMD techniques. PLP is similar to TLP, the distinction being one primarily of granularity. 
Due to their similarity, multithreading hardware can also get at PLP, but there are advantages 
to using CMP where possible, leaving multithreading hardware to the fine-grain threads to 
which CMP is less well suited. 
 
Where PLP exists, CMP is an ideal means of exploiting it. Compared with building a single 
monolithic processor fast enough to execute two parallel tasks in a given time, two lesser 
processors running in parallel offer a superior solution. 
 
One reason is real-time response. While a single high-speed CPU gives the best response time 
in a single-tasking environment, as the task load increases queuing theory predicts that the 
response time goes badly nonlinear. What’s really needed in most multimedia systems and 
SOCs, however, is adequate response with multiple tasks running rather than blinding re-
sponse with a single task.  
 

http://www.psrv.com
http://www.mathworks.com
http://www.wolfram.com
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Multiple processors lower the multiprogramming level, providing a more desirable response-
time profile and a higher task capacity. A processor with the horsepower to produce the same 
average response time on two tasks as two lesser processors, for example, would have 20% 
worse response time to four tasks and twice as bad a response to eight.  
 
In this example, the single processor would have to be more powerful by about 20% than each 
of the lesser processors. Obviously, the smaller processors would be less complex and easier 
to build. They could also run at higher frequency because longer wires switch more slowly 
than short ones. Furthermore, the decentralized control structure of the multiprocessor would 
scale better with process technology than the more centralized control structures of a single, 
larger, more powerful processor. 
 
CMP construction also offers scalability in another dimension. Today, SOCs are commonly 
designed as an assortment of specialized processing elements and hardwired logic blocks con-
nected in a bizarre organization reminiscent of a Picasso masterpiece. This approach is usually 
taken on the basis of silicon efficiency. But such designs are inherently unscalable. Conceptu-
ally, a regular CMP array would provide a more scalable approach, providing more or less 
aggregate performance through the simple addition or removal of processor cores.  
 
While the CMP approach might be less silicon efficient than the specialized design, the differ-
ence can be mitigated to some extent by the redundancy of the processor array, which creates 
an effectively smaller die. Even ignoring these effects, however, the lower efficiency of the 
CMP architecture will become irrelevant over time. As the trends we discussed previously 
take hold, the more scalable, more programmable, more reusable, CMP approach will become 
the most cost-effective solution, even if not the one with the smallest die size. 
 
Summary 
A number of trends are converging that promise to radically change the architecture of em-
bedded processors and SOCs. The limits of instruction-level parallelism will be reached and 
the traditional techniques of deeper pipelines and superscalar instruction issue will run out of 
steam. Frequency gains through process scaling alone will not keep processors on their his-
torical performance pace.  
 
At the same time, the clear economic benefits of more programmable SOCs and the insatiable 
appetite for multimedia processing power will drive the performance demands on embedded 
processors up dramatically—faster even than that predicted by Moore’s Law. Fortunately, the 
massive transistor budgets and falling transistor costs afforded by 90nm process technology 
will enable new architectural techniques to tap into the levels of parallelism that have hereto-
fore gone largely ignored by embedded processors. 
 
Multithreading will exploit thread-level parallelism to boost throughput and execution unit 
efficiency, despite increasing memory latency. Vector processing in the modern form of SIMD 
execution units will be added to conventional embedded RISC cores to exploit the data-level 
parallelism abundant in multimedia streams. Chip multiprocessing will exploit process-level 
parallelism to raise task capacity and improve real-time response while at the same time offer 
a superior architecture for more scalable, more programmable SOCs. 
 
While each of these techniques is powerful in its own right, each exploits a different level of 
parallelism and can be readily combined together, along with conventional pipelining and 
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superscalar techniques, to create embedded processor cores with performance adequate to 
radically change the way SOCs are designed. 
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