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Introduction 
Scaling processing performance beyond the frequency and power envelope of single core systems has led 

to the emergence of multi-core clusters. Data access management within such processing systems becomes 

essential to ensure behavioral consistency. One solution to provide access consistency is the application of 

a memory coherence model such as MESI or MOESI within the L1 data cache hierarchy. For the MIPS 

Technologies MIPS32® 1004K™ Coherent Processing System (CPS), we -applied Open Core Protocol 

(OCP) point-to-point connectivity to establish snoop-based coherence throughout the cluster. Following are 

principles of this communication model. 

Deriving a Message-based Memory Coherence Model 
Historically, memory coherence in multiprocessor systems was often achieved through bus ‘snooping,’ 

where each core was connected to a common multi-tier bus and was able to snoop on memory access traffic 

of processor peers to regulate the coherence status of individual cache lines. For that, each core maintained 

the coherence status of L1 cache lines locally, and posted status changes to peers via the common bus. 

 

The increasing size and complexity of SoCs led to restructuring of the multi-tier bus philosophy in favor of 

localized point-to-point connections with centralized traffic routing. This allowed dramatic speedup and 

power improvements on now localized bus segments due to reduced load and segment length. Also, bus 

contention problems eased, and throughput increased for the localized data exchange. In response to this 

system architectural trend, the Open Core Protocol (OCP) standard emerged to consolidate this design 

philosophy. Further, emergence of IP provider business models catalyzed the standardization of IP 

interconnect and design methodology to facilitate design reuse centered on an open standard. 

 

Figure 1: Coherent Processing System  

However, localized bus transactions, as conducted through OCP interconnect segments, decouple 

processors throughout a multi-core cluster. Coherence schemes cannot be directly based on bus snooping 

and reliance on bus arbitration to ensure access ordering. Different methods of communication are needed 

to ensure data access consistency. Additional challenges arise in the ordering of competing L1 line data 

requests. One way to addresses these challenges is to add coherence message communication to each 

processing element as depicted in Figure 1. These messages provide the means of snoop type cache 

coherence.  
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Coherence messages embody a new type of command within the OCP protocol. Members of the processor 

system send coherence messages toward a centralized coherence manager that provides access ordering 

(serialization) and message routing to provide snoop-type access to peer members. These peers will 

respond with their individual L1 line status and post a message response. Depending on responses, the 

coherence manager initiates data movement for coherent data between cores, and funnels access toward 

higher-level memory hierarchies such as L2 and L3 caches. I/O coherence units also provide a means to 

phase-in/out data toward/from the coherent address space, and are part of coherent message exchange. 

 

In addition to new message-type commands within the OCP protocol, individual processors are required to 

respond to coherent status requests, and are therefore not solely initiators (masters) of bus transactions. The 

coherent processing system might address this requirement by providing an OCP slave port to receive and 

respond to messages initiated by the coherence manager. Coherent requests by a processor will utilize the 

OCP master port. Within the processing cluster, coherence message exchanges between cores and the 

coherence manager are dubbed ‘interventions.’ OCP slave ports of processors receiving interventions are 

therefore ‘intervention ports.’ 

 

As depicted in Figure 1, each individual processor of the 1004K system is based on our multi-threaded 

processor architecture, providing two independent threads and processing context within the envelope of a 

single-scalar, 9-stage pipeline. Level 1 data cache tag arrays are duplicated to be accessible simultaneously 

for CPU operation and intervention lookup. MESI style cache line coherency is supported. 

 

The coherence manager of the processing system receives and serializes incoming messages through its 

request unit – OCP slave ports, driven by each CPU and I/O-coherence units. Serialized messages are 

routed depending on their address space and context either to higher-level cache hierarchies using the 

‘Memory Interface Unit,’ or toward processor peers and I/O-coherence units using the ‘Snoop Agent.’ The 

snoop agent initiates OCP master transactions (interventions) to look up the coherent L1 cache line status 

for each processor. Interventions returned to the initiator of a message, called self-interventions, allow the 

initiator to provide access ordering. Responses to coherent messages initiated by CPUs as well as data 

responses are formulated within the ‘Response Unit’ and routed to individual CPUs. 

 

Coherent OCP Commands 
OCP commands used within the 1004K CPS can be classified into three categories.  

 

First are the Coherent Messages that maintain a MESI-style cache line status. These are a result of CPU 

load/store operations and can initiate data movement between CPUs and/or the memory subsystem. All 

peer CPUs of the CPS will receive coherent messages posted by an initiator, and respond according to their 

cache line coherent state. The coherence manager will initiate data movement as required. 

 

Coherent Cache Manipulation Commands are utilized for cache line maintenance within the coherent 

address space. I/O traffic will bring new coherent lines into the domain or remove coherent context from 

cache lines. Further, memory hierarchy synchronization operations are performed. 

 

The third category is Non-Coherent Commands, which perform OCP main port transactions on memory 

regions outside the coherent address space. These represent OCP read and write commands. 
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Coherent Messages 
The coherent processing system may implement four coherent messages that are caused by L1 cache line 

status changes due to CPU load/store activity. The initiating CPU sends this message as an OCP master 

port command. Peer CPUs of the system receive interventions based on this line status change and will 

respond with their local cache line status. 

 

The first message type is the CohReadOwn, denoting a cache miss that occurred through an attempt to 

modify a cache line. Peer cores encountering this line in status ‘Modified’ will force a write-back into the 

memory subsystem and perform a local invalidate. As an optimization, locally encountered line data will be 

forwarded to the requester CPU to reduce access latency. The requester CPU will install this line as 

‘Exclusive’ and perform the line modifying instruction. Then the cache line status will change to 

‘Modified.’ While waiting for line refill, the requester CPU will continue execution of another thread. 

 

The CohReadShared message indicates that a cache miss occurred through a line read operation. No line 

modification is intended. Peer cores encountering this line in status ‘Modified’ will force a write-back into 

the memory subsystem. Hitting peer lines will migrate to ‘Shared’ status. Hit data is forwarded to the 

requester core and installed in state ‘Shared.’ Then the line read operation is performed. While waiting for 

line refill, the requester CPU will continue execution of another thread. 

 

CohUpgrade indicates that a line modifying instruction encountered a cache hit on a ‘Shared’ line. Peer 

cores will be notified to invalidate hitting lines. The ‘Shared’ line is then upgraded to ‘Modified’ after the 

modifying instruction is executed. 

 

Finally, the CohWriteBack message signifies eviction of a coherent cache line. The coherence manager 

will initiate data movement through the intervention port and forward data to the memory subsystem. The 

evicted cache line is then replaced by a new – possibly coherent – address. In this case, a CohReadOwn or 

CohReadShared has caused the eviction. 

 

Coherent Cache Manipulation Commands 
In response to cache manipulations, coherence messages are initiated and sent to peers.  

 CohCopyBack – write back a coherent cache line to the memory subsystem. Cache line hits in 

state ‘Modified’ will be written back. Line status migrates to ‘Shared.’ CopyBack data movement 

will be initiated by the coherence manager using the intervention port. 

 CohInvalidate – purge a coherent cache line without writing back its contents to the memory 

subsystem. This command is always data-less and is posted to each peer of the CPS. Invalidate 

type cache operations cause a CohInvalidate message. 

 CohWriteInvalidate – an I/O coherence unit injects a new cache line into the coherent domain. 

Existing peer line data will be invalidated throughout the CPS. 

 CohReadInvalidate – an I/O coherence unit notifies the system about a cache line leaving the 

coherent domain. Existing peer line data will be invalidated throughout the CPS. 

 CohCompletionSync – data-less command to maintain ordering. Local buffers of CPS peers are 

flushed towards the memory subsystem. The CPU-SYNC instruction causes the CohCompletion-

Sync for CPUs attending the coherent domain. SYNC command arguments (sync types) help 

control the depth of flush operations throughout memory hierarchies. The coherent processing 

system reserves certain argument encodings to support low overhead access ordering. 

 

Non-Coherent Commands 
Traditional OCP commands such as ‘Read’ and ‘Write’ are supported throughout the coherent processing 

system to handle data access for non-coherent memory access. The Read command is issued when a miss 

within a cached, non-coherent address or an un-cached access causes a read operation from the memory 

subsystem. Response data – if cacheable – will be installed as non-coherent, whereas un-cached data are 

consumed directly. Fetch as well as load/store activity causes Read transactions. The Write command is 

issued when cached, non-coherent eviction data, or un-cached address range stores will be written back to 

the memory subsystem. The OCP main port of a core performs the command and data phases of the 

transaction. 
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Figure 2: Coherent Read Own Messaging 

 

 

 

Figure 3: Coherent Read Shared Messaging 
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Example – CohReadShared 

 
CPU0 encounters a load miss on a 

coherent cache line and initiates a 

cohReadShared message (no intent to 

modify). The coherence manager 

sends interventions to all cores where 

core 1 responds with a hit – 

‘Modified.’ The coherence manager 

now initiates a write-back of the 

modified line, and moves line data 

from the core 1 intervention port to the 

memory subsystem. The hitting Core 1 

cache line migrates to ‘Shared’ status. 

Line data movement also forwards to 

core 0 where it is installed in the 

‘Shared’ state. 
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Example – CohReadOwn 

 
CPU 0 encounters a store miss and 

initiates a cohReadOwn (intent to 

modify) message toward the coherence 

manager. The coherence manager sends 

interventions toward all cores. None of 

the peers have this cache line available, 

and an OCP read request is directed 

toward the L2 cache. Returning data 

will be installed with the coherence 

attribute ‘Exclusive’ at the requester 

core. After the store operation 

completes, the cache line status 

migrates to ‘Modified.’ 
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Figure 4: Coherent Upgrade Messaging 

 

Conclusion 
The Open Core Protocol (OCP) interconnect lent itself well to support message-based coherence 

implementations. A centralized coherence manager serializes coherence messages emanating from an 

individual core and inquires about the coherence status of peer cores. Data forwarding between cores 

decreases access latency and reduces traffic to higher levels of memory hierarchy. Individual cores posses 

an OCP master port to initiate data access and an OCP slave port to receive inquiries from the coherence 

manager. 
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Example – CohUpgrade 
Core 0 encounters a store hit on a 

‘Shared’ marked cache line. A 

cohUpgrade request is sent and the 

coherence manager initiates interventions 

to all cores. Core 1 responds with a hit 

‘Shared’ and invalidates its line. Core 0 

is permitted to upgrade its cache line to 

‘Exclusive.’ After the store has 

completed, the cache line status migrates 

to ‘Modified.’ State ‘Exclusive’ is 

required (rather than ‘Modified’ 

immediately) since between intervention 

response and store execution, other cores 

could intervene and force a modified 

write-back—migrating to ‘Shared’ 

without awaiting the core 0 store. 
 


