
 1

Achieving Cache Coherence in a

MIPS32® Multicore Design

Document Number: MD00888

Revision 01.00

August 17, 2008

MIPS Technologies, Inc.

995 East Arques Avenue

Sunnyvale, CA 94085-4521

Copyright © 2008 MIPS Technologies Inc. All rights reserved.

 2

Copyright © 2008 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying,

reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS

Technologies or an authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition

and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to

use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO

CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN

SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise.

MIPS Technologies does not assume any liability arising out of the application or use of this information, or of any error or omission

in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied

warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license

agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not give recipient any license to

any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in

violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supplements

thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in this document, the

laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial

computer software documentation or other commercial items. If the user of this information, or any related documentation of any

kind, including related technical data or manuals, is an agency, department, or other entity of the United States government

("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this information, or any related

documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense

Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further

restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this

information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim,

MIPSpro, MIPS Technologies logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS,

4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc,

1004Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,

CorExtend, CoreFPGA, CoreLV, EC, FPGA, View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR,

HyperDebug, HyperJTAG, JALGO, Malta, MDMX, MED, MGB, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2,

SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the

United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

 3

Introduction
Scaling processing performance beyond the frequency and power envelope of single core systems has led

to the emergence of multi-core clusters. Data access management within such processing systems becomes

essential to ensure behavioral consistency. One solution to provide access consistency is the application of

a memory coherence model such as MESI or MOESI within the L1 data cache hierarchy. For the MIPS

Technologies MIPS32® 1004K™ Coherent Processing System (CPS), we -applied Open Core Protocol

(OCP) point-to-point connectivity to establish snoop-based coherence throughout the cluster. Following are

principles of this communication model.

Deriving a Message-based Memory Coherence Model
Historically, memory coherence in multiprocessor systems was often achieved through bus ‘snooping,’

where each core was connected to a common multi-tier bus and was able to snoop on memory access traffic

of processor peers to regulate the coherence status of individual cache lines. For that, each core maintained

the coherence status of L1 cache lines locally, and posted status changes to peers via the common bus.

The increasing size and complexity of SoCs led to restructuring of the multi-tier bus philosophy in favor of

localized point-to-point connections with centralized traffic routing. This allowed dramatic speedup and

power improvements on now localized bus segments due to reduced load and segment length. Also, bus

contention problems eased, and throughput increased for the localized data exchange. In response to this

system architectural trend, the Open Core Protocol (OCP) standard emerged to consolidate this design

philosophy. Further, emergence of IP provider business models catalyzed the standardization of IP

interconnect and design methodology to facilitate design reuse centered on an open standard.

Figure 1: Coherent Processing System

However, localized bus transactions, as conducted through OCP interconnect segments, decouple

processors throughout a multi-core cluster. Coherence schemes cannot be directly based on bus snooping

and reliance on bus arbitration to ensure access ordering. Different methods of communication are needed

to ensure data access consistency. Additional challenges arise in the ordering of competing L1 line data

requests. One way to addresses these challenges is to add coherence message communication to each

processing element as depicted in Figure 1. These messages provide the means of snoop type cache

coherence.

OCP

OCP
Snoop
Port

CPU0

 L1

CACHE

L1
Snoop
Tags

CPU1

 L1
CACHE

L1
Snoop
Tags

OCP

CPU2

 L1

CACHE

L1
Snoop
Tags

OCP

CPU3

 L1

CACHE

L1
Snoop
Tags

OCP

Global
Interrupt

Controller

OCP

IOCU

Port

Snoop
Port

Snoop
Port

Snoop
Port

L2
Cache

OCP

OCP

Memory Interface Unit

Request

Unit

Response

Unit

Snoop

Agent

 4

Coherence messages embody a new type of command within the OCP protocol. Members of the processor

system send coherence messages toward a centralized coherence manager that provides access ordering

(serialization) and message routing to provide snoop-type access to peer members. These peers will

respond with their individual L1 line status and post a message response. Depending on responses, the

coherence manager initiates data movement for coherent data between cores, and funnels access toward

higher-level memory hierarchies such as L2 and L3 caches. I/O coherence units also provide a means to

phase-in/out data toward/from the coherent address space, and are part of coherent message exchange.

In addition to new message-type commands within the OCP protocol, individual processors are required to

respond to coherent status requests, and are therefore not solely initiators (masters) of bus transactions. The

coherent processing system might address this requirement by providing an OCP slave port to receive and

respond to messages initiated by the coherence manager. Coherent requests by a processor will utilize the

OCP master port. Within the processing cluster, coherence message exchanges between cores and the

coherence manager are dubbed ‘interventions.’ OCP slave ports of processors receiving interventions are

therefore ‘intervention ports.’

As depicted in Figure 1, each individual processor of the 1004K system is based on our multi-threaded

processor architecture, providing two independent threads and processing context within the envelope of a

single-scalar, 9-stage pipeline. Level 1 data cache tag arrays are duplicated to be accessible simultaneously

for CPU operation and intervention lookup. MESI style cache line coherency is supported.

The coherence manager of the processing system receives and serializes incoming messages through its

request unit – OCP slave ports, driven by each CPU and I/O-coherence units. Serialized messages are

routed depending on their address space and context either to higher-level cache hierarchies using the

‘Memory Interface Unit,’ or toward processor peers and I/O-coherence units using the ‘Snoop Agent.’ The

snoop agent initiates OCP master transactions (interventions) to look up the coherent L1 cache line status

for each processor. Interventions returned to the initiator of a message, called self-interventions, allow the

initiator to provide access ordering. Responses to coherent messages initiated by CPUs as well as data

responses are formulated within the ‘Response Unit’ and routed to individual CPUs.

Coherent OCP Commands
OCP commands used within the 1004K CPS can be classified into three categories.

First are the Coherent Messages that maintain a MESI-style cache line status. These are a result of CPU

load/store operations and can initiate data movement between CPUs and/or the memory subsystem. All

peer CPUs of the CPS will receive coherent messages posted by an initiator, and respond according to their

cache line coherent state. The coherence manager will initiate data movement as required.

Coherent Cache Manipulation Commands are utilized for cache line maintenance within the coherent

address space. I/O traffic will bring new coherent lines into the domain or remove coherent context from

cache lines. Further, memory hierarchy synchronization operations are performed.

The third category is Non-Coherent Commands, which perform OCP main port transactions on memory

regions outside the coherent address space. These represent OCP read and write commands.

 5

Coherent Messages
The coherent processing system may implement four coherent messages that are caused by L1 cache line

status changes due to CPU load/store activity. The initiating CPU sends this message as an OCP master

port command. Peer CPUs of the system receive interventions based on this line status change and will

respond with their local cache line status.

The first message type is the CohReadOwn, denoting a cache miss that occurred through an attempt to

modify a cache line. Peer cores encountering this line in status ‘Modified’ will force a write-back into the

memory subsystem and perform a local invalidate. As an optimization, locally encountered line data will be

forwarded to the requester CPU to reduce access latency. The requester CPU will install this line as

‘Exclusive’ and perform the line modifying instruction. Then the cache line status will change to

‘Modified.’ While waiting for line refill, the requester CPU will continue execution of another thread.

The CohReadShared message indicates that a cache miss occurred through a line read operation. No line

modification is intended. Peer cores encountering this line in status ‘Modified’ will force a write-back into

the memory subsystem. Hitting peer lines will migrate to ‘Shared’ status. Hit data is forwarded to the

requester core and installed in state ‘Shared.’ Then the line read operation is performed. While waiting for

line refill, the requester CPU will continue execution of another thread.

CohUpgrade indicates that a line modifying instruction encountered a cache hit on a ‘Shared’ line. Peer

cores will be notified to invalidate hitting lines. The ‘Shared’ line is then upgraded to ‘Modified’ after the

modifying instruction is executed.

Finally, the CohWriteBack message signifies eviction of a coherent cache line. The coherence manager

will initiate data movement through the intervention port and forward data to the memory subsystem. The

evicted cache line is then replaced by a new – possibly coherent – address. In this case, a CohReadOwn or

CohReadShared has caused the eviction.

Coherent Cache Manipulation Commands
In response to cache manipulations, coherence messages are initiated and sent to peers.

 CohCopyBack – write back a coherent cache line to the memory subsystem. Cache line hits in

state ‘Modified’ will be written back. Line status migrates to ‘Shared.’ CopyBack data movement

will be initiated by the coherence manager using the intervention port.

 CohInvalidate – purge a coherent cache line without writing back its contents to the memory

subsystem. This command is always data-less and is posted to each peer of the CPS. Invalidate

type cache operations cause a CohInvalidate message.

 CohWriteInvalidate – an I/O coherence unit injects a new cache line into the coherent domain.

Existing peer line data will be invalidated throughout the CPS.

 CohReadInvalidate – an I/O coherence unit notifies the system about a cache line leaving the

coherent domain. Existing peer line data will be invalidated throughout the CPS.

 CohCompletionSync – data-less command to maintain ordering. Local buffers of CPS peers are

flushed towards the memory subsystem. The CPU-SYNC instruction causes the CohCompletion-

Sync for CPUs attending the coherent domain. SYNC command arguments (sync types) help

control the depth of flush operations throughout memory hierarchies. The coherent processing

system reserves certain argument encodings to support low overhead access ordering.

Non-Coherent Commands
Traditional OCP commands such as ‘Read’ and ‘Write’ are supported throughout the coherent processing

system to handle data access for non-coherent memory access. The Read command is issued when a miss

within a cached, non-coherent address or an un-cached access causes a read operation from the memory

subsystem. Response data – if cacheable – will be installed as non-coherent, whereas un-cached data are

consumed directly. Fetch as well as load/store activity causes Read transactions. The Write command is

issued when cached, non-coherent eviction data, or un-cached address range stores will be written back to

the memory subsystem. The OCP main port of a core performs the command and data phases of the

transaction.

 6

Figure 2: Coherent Read Own Messaging

Figure 3: Coherent Read Shared Messaging

SHARED

Core0 D$$

INVALID

Load
Miss

cohReadShared OC_MCmd

cohReadShared IV_MCmd

Lookup
Core
1,2,3 MODIFIED

Hit

DVA
IV_SResp

WRITE
L2_MCmd

WR DATA L2_SData

Core0 D$$

SHARED

Fill

SResp
OC_SResp

Core0 D$$

SHARED

Load

M
A

IN

P
O

R
T

IN
T

E
R

V
.

P
O

R
T

L
2

 M
A

IN

P
O

R
T

C

O
R

E

D
C

A
C

H
E

O

T
H

E
R

D
C

A
C

H
E

S

Core initiated Core initiated Coh. Manager

WR DATA IV_SDATA

Example – CohReadShared

CPU0 encounters a load miss on a

coherent cache line and initiates a

cohReadShared message (no intent to

modify). The coherence manager

sends interventions to all cores where

core 1 responds with a hit –

‘Modified.’ The coherence manager

now initiates a write-back of the

modified line, and moves line data

from the core 1 intervention port to the

memory subsystem. The hitting Core 1

cache line migrates to ‘Shared’ status.

Line data movement also forwards to

core 0 where it is installed in the

‘Shared’ state.

Core0 D$$

INVALID

Store
Miss

cohReadOwn OC_MCmd

cohReadOwn IV_MCmd

Lookup
Core
1,2,3 INVALID

Miss

OK
IV_SResp

Read
L2_MCmd

Fill DATA L2_SData

Core0 D$$

EXCLUSIV

Fill

SResp
OC_SResp

Core0 D$$

MODIFIED

Store

M
A

IN

P
O

R
T

IN

T
E

R
V

.

P
O

R
T

L
2

 M
A

IN

P
O

R
T

C

O
R

E

D
C

A
C

H
E

O
T

H
E

R

D
C

A
C

H
E

S

Core initiated Core initiated Coh. Manager

Example – CohReadOwn

CPU 0 encounters a store miss and

initiates a cohReadOwn (intent to

modify) message toward the coherence

manager. The coherence manager sends

interventions toward all cores. None of

the peers have this cache line available,

and an OCP read request is directed

toward the L2 cache. Returning data

will be installed with the coherence

attribute ‘Exclusive’ at the requester

core. After the store operation

completes, the cache line status

migrates to ‘Modified.’

 7

Figure 4: Coherent Upgrade Messaging

Conclusion
The Open Core Protocol (OCP) interconnect lent itself well to support message-based coherence

implementations. A centralized coherence manager serializes coherence messages emanating from an

individual core and inquires about the coherence status of peer cores. Data forwarding between cores

decreases access latency and reduces traffic to higher levels of memory hierarchy. Individual cores posses

an OCP master port to initiate data access and an OCP slave port to receive inquiries from the coherence

manager.

INVALID

Core0 D$$

SHARED

Store
Hit

cohUpgrade OC_MCmd

cohUpgrade IV_MCmd

Lookup
Core
1,2,3 SHARED

Hit

OK
IV_SResp

L2_MCmd

L2_SData

Core0 D$$

EXCLUSIV

OK
OC_SResp

p

Core0 D$$

MODIFIED

Store

M
A

IN

P
O

R
T

IN
T

E
R

V
.

P
O

R
T

L

2
 M

A
IN

P
O

R
T

C
O

R
E

D
C

A
C

H
E

O

T
H

E
R

D
C

A
C

H
E

S

Core initiated Core initiated Coh.
Manager

Example – CohUpgrade
Core 0 encounters a store hit on a

‘Shared’ marked cache line. A

cohUpgrade request is sent and the

coherence manager initiates interventions

to all cores. Core 1 responds with a hit

‘Shared’ and invalidates its line. Core 0

is permitted to upgrade its cache line to

‘Exclusive.’ After the store has

completed, the cache line status migrates

to ‘Modified.’ State ‘Exclusive’ is

required (rather than ‘Modified’

immediately) since between intervention

response and store execution, other cores

could intervene and force a modified

write-back—migrating to ‘Shared’

without awaiting the core 0 store.

