

ARM to MIPS® Architecture Migration Guide

Document Number: MD00874
Revision 00.10
May 15, 2011

MIPS Technologies, Inc.
955 East Arques Ave
Sunnyvale, CA 94085

Copyright ©2011 MIPS Technologies, Inc. All rights reserved.

ARM to MIPS® Architecture Migration Guide

Copyright ©2011 MIPS Technologies Inc. All rights reserved.

2

Copyright ©2011 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing,

modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third

party is strictly prohibited. At a minimum, this information is protected under unfair competition and copyright laws. Violations thereof may
result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and

distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES
MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT

THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS
Technologies does not assume any liability arising out of the application or use of this information, or of any error or omission in such

information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied warranties of

merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license agreement from MIPS
Technologies or an authorized third party, the furnishing of this document does not give recipient any license to any intellectual property rights,

including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, re-exported, transferred, or released, directly or indirectly, in violation of the
law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise

regarding the export, re-export, transfer, or release of the information contained in this document, the laws of the United States of America shall

be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer

software documentation, or other commercial items. If the user of this information, or any related documentation of any kind, including related

technical data or manuals, is an agency, department, or other entity of the United States government ("Government"), the use, duplication,
reproduction, release, modification, disclosure, or transfer of this information, or any related documentation of any kind, is restricted in

accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202

for military agencies. The use of this information by the Government is further restricted in accordance with the terms of the license agreement(s)
and/or applicable contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim, MIPSpro,

MicroMIPS, MIPS Technologies logo, MIPS RISC CERTIFIED POWER logo, MIPS-Verified, M14K, 1004Kc, 1004Kf, 1074Kc, 1074Kf, 4K,
4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20K, 20Kc, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 25Kf,

34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, CorExtend,

CoreFPGA, CoreLV, EC, JALGO, Malta, MDMX, MGB, PDtrace, the Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2, SmartMIPS, SOC-it,
and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

ARM to MIPS® Architecture Migration Guide

Copyright ©2011 MIPS Technologies Inc. All rights reserved.

3

Contents

Introduction ... 4

Programming model.. 5

Instruction set .. 7

CPU initialization.. 8

Exception vector and exception types... 10

Migrating applications .. 17

Summary ... 18

ARM to MIPS® Architecture Migration Guide

Copyright ©2011 MIPS Technologies Inc. All rights reserved.

4

Introduction

The purpose of this document is to describe the ease of migration from an ARM7, ARM9 or

ARM11 to the MIPS® architecture and cores.

MIPS Technologies supports the MIPS32® and MIPS64® instruction set architectures. MIPS64

allows 64-bit addressing modes to facilitate larger virtual address space. Migration from the

MIPS32 to the MIPS64 architecture is a seamless path.

ARM is a 32-bit architecture . Beyond 32-bit and 64-bit, both MIPS and ARM supports 16 bit

instructions for improved code density. Both architectures also support floating point.

Typically the application code running on these architectures is coded in a high level language

such as C or C++, so porting between architectures is straightforward. MIPS provides a GNU

tool chain that that can efficiently recompile the code to a MIPS platform. The extensive

ecosystem for MIPS provides a variety of operating systems, software development tools and

platforms from a broad range of vendors.

The bulk of the migration effort between architectures involves low-level boot code and device

initialization. The areas that need special attention are: programming model, virtual to physical

address mapping differences, cache and TLB initialization, differences in exception vectors and

exception types and interrupt exceptions. For assembly code translation, the user needs to

understand the differences in instruction set and register calling conventions.

This document is not meant to be an architecture reference manual nor a software users guide.

The purpose of this document is to illustrate the differences in areas that need special attention

by the user and also provides sample code segments for initialization of the resources.

The user is encouraged to refer to the following documents for further reading and references:

MIPS32® Architecture for Programmers Volume I: Introduction to the MIPS32® Architecture

MIPS32® Architecture for Programmers Volume II: The MIPS32® Instruction Set

MIPS® Architecture for Programmers Volume III: The MIPS32® and microMIPS32™

Privileged Resource Architecture

YAMON™ Porting Requirements Specification

YAMON™ User's Manual

Details on tools and software, development kits, reference and users manuals and application

notes can be found at mips.com.

ARM to MIPS® Architecture Migration Guide

Copyright ©2011 MIPS Technologies Inc. All rights reserved.

5

Programming Model

MIPS Security Levels:

At the kernel level all processor resources are accessible. At the supervisor level all registers,

supervisor segment and the 2GB user segment are accessible. At the user level the 2GB virtual

address space is accessible. Typical usages are kernel and user modes. Supervisor mode is rarely

used.

The kernel, supervisor and user state selection is made via the status register.

Mode KSU ERL EXL

Kernel x x x 1

 x x 1 x

 0 0 x x

Supervisor 0 1 0 0

User 1 0 0 0

ARM cores support 8 operating modes. FIQ, IRQ, Supervisor, System, Monitor, User,

Undefined and Abort. Applications normally run in user mode.

ARM to MIPS® Architecture Migration Guide

Copyright ©2011 MIPS Technologies Inc. All rights reserved.

6

MIPS handles interrupt exceptions, undefined instructions and memory access violations in the

kernel mode.

MIPS32 architecture specifies fixed memory map. The address space is divided into 4 regions:

 kseg2, TLB-mapped cacheable kernel space

 kseg1, direct-mapped uncached kernel space

 kseg0, direct-mapped cached kernel space

 kuseg, TLB-mapped cacheable user space

kseg0 and kseg1 segments are direct mapped and map to the first 512 megabytes of the physical

address space. The rest of the regions are TLB-mapped and cacheable. Reset vector is

0xBFC00000 – kseg1. All exceptions default to kseg1 and can be relocated to kseg0 upon

enabling of caches.

The ARM reset vector defaults to 0x00000000 or 0xFFFF0000 based on the SCTLR.V bit. When

the MMU is enabled the vector table can be located anywhere in the memory. The MMU and the

MPU allow several different regions of memory with different protection and cache-ability

attributes in ARM cores. Address space is flat and address translation takes place in mapped

regions.

The following figure shows the virtual address to physical address mapping of the modes

supported in MIPS cores:

ARM to MIPS® Architecture Migration Guide

Copyright ©2011 MIPS Technologies Inc. All rights reserved.

7

Instruction set

Instruction sets for MIPS and ARM are similar. MIPS also supports application specific

extensions (ASE) for DSP, security, multi-threading and other technologies. The CorExtend™

feature enables user defined instructions to be part of the core instructions set. All instruction in

ARM can be conditionally executed based on ALU condition codes. MIPS provides conditional

branches only. The MIPS ISA is fully backward-compatible and to some extent the ARMs

architecture is also backward-compatible. The following table lists the classes of

instructions that both architectures support.

ARM to MIPS® Architecture Migration Guide

Copyright ©2011 MIPS Technologies Inc. All rights reserved.

8

 ARM1136JF-S™ MIPS32® 24Kc™

Add ADD{cond}{S} <Rd>, <Rn>, <operand2> ADD rd, rs, rt

Subtract SUB{cond}{S} <Rd>, <Rn>, <operand2> SUB rd, rs, rt

Multiply MUL{cond}{S} <Rd>, <Rm>, <Rs> MUL rd, rs, rt

Multiply-accumulate MLA{cond}{S} <Rd>, <Rm>, <Rs>, <Rn> MADD rs, rt

Count leading zeros CLZ{cond} <Rd>, <Rm> CLZ rd, rs

AND AND{cond}{S} <Rd>, <Rn>, <operand2> ADD rd, rs, rt

XOR EOR{cond}{S} <Rd>, <Rn>, <operand2> XOR rd, rs, rt

OR ORR{cond}{S} <Rd>, <Rn>, <operand2> OR rd, rs, rt

Branch B{cond} <label> J target

Branch with link BL{cond} <label> JAL target

Branch and exchange BX{cond} <Rm> JALX target

Word LDR{cond} <Rd>, <a_mode2> LW rt, offset(base)

Byte LDR{cond}B <Rd>, <a_mode2> LBU rt, offset(base)

Byte signed LDR{cond}SB <Rd>, <a_mode3> LB rt, offset(base)

Halfword LDR{cond}H <Rd>, <a_mode3> LHU rt, offset(base)

Halfword signed LDR{cond}SH <Rd>, <a_mode3> LH rt, offset(base)

Word STR{cond} <Rd>, <a_mode2> SW rt, offset(base)

Byte STR{cond}B <Rd>, <a_mode2> SB rt, offset(base)

Halfword STR{cond}H <Rd>, <a_mode3> SH rt, offset(base)

Move to ARM reg from

coproc

MRC{cond} <cp_num>, <op1>, <Rd>, <CRn>,

<CRm>{, <op2>} MFC0 rt, rd, sel

Move to coproc from ARM

reg

MCR{cond} <cp_num>, <op1>, <Rd>, <CRn>,

<CRm>{, <op2>} MTC0 rt, rd, sel

Signed add high 16 + 16, low

16 + 16, set GE flags SADD16{cond} <Rd>, <Rn>, <Rm> ADDQ.PH rd,rs,rt

Saturated add high 16 + 16,

low 16 + 16 QADD16{cond} <Rd>, <Rn>, <Rm> ADDQ_S.PH rd,rs,rt

Signed high 16 - low 16, low

16 + high 16, set GE flags SSUBADDX{cond} <Rd>, <Rn>, <Rm> SUBQ.PH rd,rs,rt

Saturated high 16 - low 16,

low 16 + high 16 QSUBADDX{cond} <Rd>, <Rn>, <Rm> SUBQ_S.PH rd,rs,rt

Four saturated unsigned 8 + 8 UQADD8{cond} <Rd>, <Rn>, <Rm> ADDU_S.QB rd, rs, rt

Four saturated 8 - 8 QSUB8{cond} <Rd>, <Rn>, <Rm> ADD_S.QB rd, rs, rt

Four saturated unsigned 8 - 8 UQSUB8{cond} <Rd>, <Rn>, <Rm> SUBU_S.QB rd, rs, rt

ARM to MIPS® Architecture Migration Guide

Copyright ©2011 MIPS Technologies Inc. All rights reserved.

9

CPU Initialization

The cache architecture for both the ARM and MIPS architectures are fairly similar: independent

L1 for instruction and data and common a L2. MIPS caches are 1, 2 or 4 ways set associate and

the line size is 4 or 8 words. Both architectures support write-back and write-thru options.

Caches are disabled at reset.

The following code segments show cache operations for a MIPS32 24Kc core and the

ARM1136JF-S:

Function ARM1136JF-S™ MIPS32® 24Kc™

Enabling

Cache

MRC p15, 0, r0, c1, c0, 0 ; read

CP15 register 1 into r0

ORR r0, r0, #(0x1 <<12) ; enable I

Cache

ORR r0, r0, #(0x1 <<2) ; enable D

Cache

MCR p15, 0, r0, c1, c0, 0 ; write

CP15 register 1

 mfc0 t0, C0_Config1

/* set kseg0 as Cacheable, noncoherent, write-back, write allocate */

ori t0,t0, 0x3

mtc0 t0, C0_Config1

Function ARM1136JF-S™ MIPS32® 24Kc™

Invalidate

Cache

 MRC p15,0,R0,c0,c0,1 ; Read cache type reg

 AND R0,R0,#0x1C0000 ; Extract D cache size

 MOV R0,R0, LSR #18 ; Move to bottom bits

 ADD R0,R0,#7 ; Get Index loop max

 MOV R1,#3:SHL:30 ; Set up Set = 3

 MOV R2,#0 ; Set up Index counter

 MOV R3,#1

 MOV R3,R3, LSL R0 ; Set up Index loop max

index_loop

 ORR R4,R2,R1 ; Way and Set format

 MCR p15,0,R4,c7,c14,2 ; Clean&inval D cache

line

 ADD R2,R2,#1:SHL:5 ; Increment Index

 CMP R2,R3 ; Done all index values?

 BNE index_loop ; Loop until done

 mfc0 a1, C0_Config1

 and a1, M_Config1IL

 srl a1, S_Config1IL

 li v0, 0x2

 sll v0, a1 /* a1 = I-cache line size */

 mfc0 t9, C0_Config1

 and t8, t9, M_Config1IA

 srl t8, S_Config1IA

 addiu t8, 1 /* t8 = associativity */

 and t9, M_Config1IS

 srl t9, S_Config1IS

 li t7, 0x40

 sll t7, t9 /* t7 = sets per way */

 multu t8, t7

 mflo a0 /* a0=cache size */

 MTC0(zero, C0_TagHi)

 MTC0(zero, C0_TagLo)

0:

 li a2, KSEG0BASE /* Calc 1st cache line address*/

 addu a3, a2, a0 /* Calc last cache line address*/

 subu a3, a1

1: /* Loop through all lines, invalidating each of them */

 cache ICACHE_INDEX_STORE_TAG, 0(a2) /* clear tag */

 bne a2, a3, 1b

 addu a2, a1

ARM to MIPS® Architecture Migration Guide

Copyright ©2011 MIPS Technologies Inc. All rights reserved.

10

TLB initialization:

Both the ARM and MIPS architectures support virtual-to-physical address translation via TLB

scheme. Page sizes ranging from 4KB to 256MB are supported by both architectures. In the

MIPS architecture, on a TLB miss, a system exception is raised and an exception handler loads

the appropriate configuration in the TLB. In the ARM architecture, TLB misses are handled in

hardware by a two-level page table walk mechanism. MIPS also supports a couple of simpler

schemes - Fixed address translation and Block address translation. ARM supports such schemes

via the Memory Protection Unit (MPU).

The following code segment shows TLB initialization:

Function ARM1136JF-S™ MIPS32® 24Kc™

Initialize

TLB Entry

 - N/A void initTLBEntryByIndex (int idx) {

 int i;

 __asm__ __volatile ("move $t0, %0" : : "r"

(idx));

 __asm__ __volatile (

 "mtc0 $t0, $0, 0;" // set index

 "lui $t1, 0xa000;"

 "sll $t0, $t0, 16;"

 "or $t1, $t0,$t1;"

 "mtc0 $t1, $10,0;" //entryhi

 "mtc0 $zero, $2,0;" //entrylo0

 "mtc0 $zero, $3,0;" //entrylo1

 "mtc0 $zero, $5,0;" //pagemask

 "tlbwi;"

 "ehb;"

);

 return;

}

ARM to MIPS® Architecture Migration Guide

Copyright ©2011 MIPS Technologies Inc. All rights reserved.

11

Exception vector and exception type

The following table is a summary of the exception vector and types for the MIPS and ARM

architectures:

The following tables list the details of exception vector, exception types and priorities for the

ARM and MIPS architectures:

ARM Exception vector
address(V=0, V=1) Mode on entry

MIPS Exception vector address
(SI_UseExceptionBase,
Status.BEV, Status.EXL,
Cause.IV, EJTAG ProbEn)

Exception Types

0x0000.0000,
0xFFFF.0000 Supervisor

16#BFC0.0000 Reset, NMI

0x0000.0004,
0xFFFF.0004 Undefined

16#BFC0.0200 Other, TLB Refill

0x0000.0008,
0xFFFF.0008 Supervisor

16#BFC0.0300 Cache Error

0x0000.000C,
0xFFFF.000C Prefetch Abort

16#BFC0.0380 TLB Refill, Interrupt, All
Others

0x0000.0010,
0xFFFF.0010 Data Abort

16#BFC0.0400 Interrupt

0x0000.0014,
0xFFFF.0014 Reserved

16#BFC0.0480 EJTAG Debug

0x0000.0018,
0xFFFF.0018 IRQ

16#8000.0180 TLB Refill, Interrupt, All
Others

0x0000.001C,
0xFFFF.001C FIQ

16#8000.0280 Interrupt

 16#A000.0100 Cache Error

 16#FF20.0200 EJTAG Debug

EBase31..30=2#10 || 1 ||
EBase28..12 ||
EBase12..0=16#000

Cache Error

EBase31..30=2#10 || 1 ||
EBase28..12 ||
EBase12..0=16#480

EJTAG Debug

ARM1136JF-S™ MIPS32® 24Kc™

Support 7 different types/priorities of

exceptions

Support 35 different types/priorities of exceptions:

offering the programmer more knowledge of what went

wrong and allowing the user to handle it differently

Exception base is predefined to 0x0000.0000

and 0xFFFF.0000

Exception base is predefined to 0xBFC0.0000 and

0x8000.0000

 Exception base can be changed by EBase

ARM to MIPS® Architecture Migration Guide

Copyright ©2011 MIPS Technologies Inc. All rights reserved.

12

EBase31..30=2#10 ||
EBase29..12 ||
EBase12..0=16#000

All Others, Reset, NMI

EBase31..30=2#10 ||
EBase29..12 ||
EBase12..0=16#200

All Others, TLB Refill

EBase31..30=2#10 ||
EBase29..12 ||
EBase12..0=16#380

TLB Refill, Interrupt, All
Others

EBase31..30=2#10 ||
EBase29..12 ||
EBase12..0=16#400

Interrupt

EBase31..30=2#10 ||
EBase29..12 ||
EBase12..0=16#480

EJTAG Debug

2#101 ||
SI_ExceptionBase[28:12] ||
16#300

Cache Error

ARM1136JF-S™ MIPS32® 24Kc™
Priority Name Priority Name Description

1
 Reset (highest
priority). 1 Reset

Assertion of SI_Reset
signal

 2 DSS
EJTAG Debug Single
Step

 3 DINT

EJTAG Debug
Interrupt.; caused by
the assertion of the
external EJ_DINT input,
or by setting the
EjtagBrk bit in the ECR
register

 4 DDBLImpr/DDBSImpr
Debug Data Break
Load/Store Imprecise

 5 NMI
Asserting edge of
SI_NMI signal

2 Precise Data Abort. 6 Machine Check
TLB write that conflicts
with an existing entry

3 FIQ. 7 Interrupt

Assertion of unmasked
hardware or software
interrupt signal

4 IRQ.

7
SWI (lowest
priority)

 8 Deferred Watch

Deferred Watch
(unmasked by K|DM-
>!(K|DM) transition)

 9 DIB

EJTAG debug hardware
instruction break
matched

ARM to MIPS® Architecture Migration Guide

Copyright ©2011 MIPS Technologies Inc. All rights reserved.

13

 10 WATCH

A reference to an
address in one of the
watch registers (fetch)

6 Prefetch Abort. 11 AdEL

Fetch address
alignment error; fetch
reference to protected
address.

2 Precise Data Abort. 12 TLBL

Fetch TLB miss; fetch
TLB hit to page with
V=0

 13 ICache Error
Parity error on ICache
access

5
 Imprecise Data
Aborts. 14 IBE

Instruction fetch bus
error

 15 DBp

EJTAG Breakpoint
(execution of SDBBP
instruction)

 16 Sys
Execution of SYSCALL
instruction

7 BKPT 17 Bp
Execution of BREAK
instruction

 18 CpU

Execution of a
coprocessor instruction
for a coprocessor that
is not enabled

 19 CEU

Execution of a
CorExtend instruction
modifying local state
when CorExtend is not
enabled

7
Undefined
instruction 20 RI

Execution of a
Reserved Instruction

 21 FPE
Floating Point
exception

 22 C2E
Coprocessor2
Exception

 23 IS1

Implementation
specific Coprocessor2
exception

 24 Ov

Execution of an
arithmetic instruction
that overflowed

 25 Tr

Execution of a trap
(when trap condition is
true)

 26 DDBL / DDBS
EJTAG Data Address
Break (address only)

 27 WATCH

A reference to an
address in one of the
watch registers (data)

2 Precise Data Abort. 28 AdEL Load address alignment

ARM to MIPS® Architecture Migration Guide

Copyright ©2011 MIPS Technologies Inc. All rights reserved.

14

error. Load reference
to protected address

2 Precise Data Abort. 29 AdES

Store address
alignment error. Store
to protected address

2 Precise Data Abort. 30 TLBL

Load TLB miss. Load
TLB hit to page with
V=0

2 Precise Data Abort. 31 TLBS

Store TLB miss. Store
TLB hit to page with
V=0

2 Precise Data Abort. 32 TLB Mod
Store to TLB page with
D=0

5
 Imprecise Data
Aborts. 33 DCache Error

Cache parity error -
imprecise

5
 Imprecise Data
Aborts. 34 L2 Cache Error

L2 Cache ECC error -
imprecise

5
 Imprecise Data
Aborts. 35 DBE

Load or store bus error
- imprecise

Interrupt exception

The MIPS and ARM architectures have similar interrupt schemes. The MIPS architecture has an

integrated interrupt controller that supports up to 6 priorities in VI mode and up to 63 priorities

in EIC mode. The ARM architecture requires an external interrupt controller to support VI mode.

External interrupts are mapped to FIQ and IRQ; hence faster response times on the MIPS

architecture. The MIPS architecture also has a cause register that reflects the cause of the

interrupt. The following table summarizes the interrupt schemes for each architecture:

The following table details the interrupt exceptions for ARM and MIPS.

ARMv5 MIPS32® 24Kc™

ARM1136JF-S™ MIPS32® 24Kc™

Two types FIQ and IRQ One type but 3 operating modes (Compatibility, VI,

EIC)

Bank registers for supporting better interrupt

response

Shadow register for better interrupt service response

Maximum 16 active registers can be used Maximum 32 active registers can be used

Need to handshake with external interrupt

controller to get effective vector address

Has faster interrupt response time (CPU will calculate

the vector address

ARM to MIPS® Architecture Migration Guide

Copyright ©2011 MIPS Technologies Inc. All rights reserved.

15

Exception Address FIQhandler Exception Address Interrupt Handler

0x0000.001C
 LDR PC,
[R8,#HandlerAddress] 0x8000.02A0 Interrupt Handler 1

 Include code to process the interrupt

 ERET

#Handler Addr1 FIQ1handler 0x8000.02C0 Interrupt Handler 2

 ... Include code to process
the interrupt ... Include code to process the interrupt

 STR R0, [R8,#AckFinished] ...

 SUBS PC, R14, #4 ...

 ... ERET

#Handler Addr2 FIQ2handler 0x8000.02E0 Interrupt Handler 3

 ... Include code to process
the interrupt ... Include code to process the interrupt

 STR R0, [R8,#AckFinished] ...

 SUBS PC, R14, #4 ...

 ... ERET

Exception Address FIQhandler Exception Address Interrupt Handler

#Handler Addr1 FIQ1handler 0x8000.02A0 Interrupt Handler 1

 ... Include code to process
the interrupt ... Include code to process the interrupt

 STR R0, [R8,#AckFinished] ...

 SUBS PC, R14, #4 ...

 ... ERET

#Handler Addr2 FIQ2handler 0x8000.02C0 Interrupt Handler 2

 ... Include code to process
the interrupt ... Include code to process the interrupt

 STR R0, [R8,#AckFinished] ...

 SUBS PC, R14, #4 ...

 ... ERET

#Handler Addr3 FIQ2handler 0x8000.02E0 Interrupt Handler 3

 ... Include code to process
the interrupt ... Include code to process the interrupt

 STR R0, [R8,#AckFinished] ...

 SUBS PC, R14, #4 ...

 ... ERET

ARM to MIPS® Architecture Migration Guide

Copyright ©2011 MIPS Technologies Inc. All rights reserved.

16

Application Binary Interface (ABI)

When coding in assembly, the ARM architecture provides 6 active registers (vx) for arithmetic

and load store operations. The MIPS architecture provides 18 active registers (tx + sx). The

MIPS architecture provides 32 general purpose registers, while ARM has only 16 active

registers. A larger register set eases register pressure for compiled code.

The following table shows the register calling convention for ARM and MIPS:

Number Name Purpose Number Name Purpose

 $0 $0 Always 0

 $1 $at

The Assembler Temporary used by the

assembler in expanding pseudo-ops.

r12 Ip

Intra-procedure-call scratch

register $2-$3 $v0-$v1

These registers contain the Returned Value of a

subroutine; if the value is 1 word only $v0 is

significant.

r0-r3 a1-a4

Argument, result, or scratch

registers $4-$7 $a0-$a3

The Argument registers, these registers contain

the first 4 argument values for a subroutine call.

r4-r11 v1-v8 Variable registers

$8-$15,

$24,$25 $t0-$t9 The Temporary Registers.

 $16-$23 $s0-$s7 The Saved Registers.

 $26-$27 $k0-$k1 The Kernel Reserved registers. DO NOT USE.

r9 sb Static base $28 $gp

The Global Pointer used for addressing static

global variables. For now, ignore this.

r13 sp Stack pointer $29 $sp The Stack Pointer.

r11 fp Frame pointer $30 $fp (or $s8)

The Frame Pointer: programs that do not use an

explicit frame pointer (e.g., everything assigned

in ECE314) can use register $30 as another

saved register – not recommended however

r14 lr Link register $31 $ra The Return Address in a subroutine call

r15 pc Program counter

ARM to MIPS® Architecture Migration Guide

Copyright ©2011 MIPS Technologies Inc. All rights reserved.

17

Migrating applications

Reset, initialization and exception handling are typically done in assembly, but it is common that

the application itself is coded in C/C++ (high level language). The application and any device

drivers must be recompiled with the MIPS tool chain. Any assembly code can be translated

manually, as there is almost a one-to-one equivalent instruction.

The bulk of the effort in migration entails changes to the initialization and low level boot code.

MIPS Technologies provides the YAMON™ PROM monitor as reference code that runs on

MIPS development boards. There are boot loaders available from third party vendors and open

source.

On both the ARM and MIPS architectures, applications normally will run in user mode. On an

exception, ARM will switch to Supervisor mode and MIPS will enter the kernel mode. The

exception handler switches the mode back to user mode upon handling the exception. On ARM

stacks and stack pointers for each mode need to be initialized. Only the kernel stack needs to be

initialized on MIPS. Exceptions save context in reserved memory space.

Memory map on the MIPS architecture is fixed and user space is kuseg segment of the memory.

Kseg0-3 is reserved for kernel. Cached system data resides in kseg0 and uncached in kseg1.

ARM allows the system data and user code to be mapped to anywhere in the valid address range.

I/O devices in the MIPS architecture are mapped in kseg1 and anywhere in valid memory range

on the ARM architecture.

In both ARM and MIPS most of the exception handling is done in software. ARM supports two

external interrupt handlers, namely FIQ and IRQ. FIQ is normally used for low latency interrupts

and has a higher priority. Nested interrupts are typically handled by IRQ through a 2 -stage

interrupt handler. The nested IRQ handler must save the registers on the system stack before

enabling the interrupts, in order to prevent corruption of the return address.

MIPS supports six external interrupts, and each can be masked independently. Nested interrupts

are handled in a similar fashion. Exception context must be saved before re-enabling the

interrupts. Configuring interrupts is straightforward in the MIPS architecture. Only the status

register fields must be programmed.

The MIPS ISA defines both MIPS32 and MIPS64. MIPS64 offers larger virtual address and

physical address space, and MIPS32 applications can be seamlessly migrated to MIPS64 to take

advantage of the 64-bit pointers. Long word is 128 bits in MIPS64 and in both MIPS32 and

MIPS64, char is 8-bit unsigned. MIPS provides N32 and N64 ABIs for embedding assembly

code with C/C++.

MIPS Technologies offers the MIPS Navigator™ Integrated Component Suite (ICS) that comes

with a GNU compiler and debugger, JTAG level debugger, profiler and event analyzer. Several

other software vendors also provide tool suite for MIPS processors.

ARM to MIPS® Architecture Migration Guide

Copyright ©2011 MIPS Technologies Inc. All rights reserved.

18

Summary

MIPS Technologies licenses its MIPS32 and MIPS64 architectures, and also offers single-core,

multi-core, superscalar and multi-threaded families of cores based on the MIPS32 architecture.

Several of MIPS Technologies’ licensees also offer high-performance, multicore products based

on the MIPS64 architecture.

With its architectures and cores, MIPS has a large footprint in digital home and networking

applications, and growing traction in mobile devices.

MIPS cores are the industry’s most area efficient, offering high performance at the lowest power

dissipation. With its multi-threading technology, companies can efficiently implement a

parallelizable application by maximizing the instructions per cycle (IPC). The QoS features in

the multi-threaded family of products help ensure real-time application performance. The breadth

and the rich features of MIPS’ product portfolio, coupled with a flexible business model, enable

MIPS licensees to create MIPS-Based products that range from 32-bit microcontrollers and

energy efficient mobile devices to ‘green’ supercomputers and high end networking

infrastructure.

