
MIPS
Verified

™

Document Number: MD00828
Revision 01.03

September 21, 2011

MIPS Technologies, Inc.
955 East Arques Avenue

Sunnyvale, CA 94085-4521

Copyright © 2011 MIPS Technologies Inc. All rights reserved.

Optimizing Performance, Power, and
Area in SoC Designs Using MIPS® Multi-

threaded Processors

Hardware-based multi-threading technology has for some time been known in the industry as a feasible technique for improving
system performance, but not too many people are aware of just how much traction the technology has gained since its early

implementations in the 1960s. This article provides a brief history of hardware based multi-threading and some examples of its
commercial adoption so far. It then gives an overview of the fundamental value of multi-threading in hardware, and describes

MIPS Technologies’ multi-threading architecture and product offerings. The article also provides several multi-threaded
application examples—including those in the areas of driver assistance systems and home gateways—to demonstrate the broad

applicability of multi-threading in real-world applications.

1 Hardware Multi-threading Background

2 Optimizing Performance, Power, and Area in SoC Designs Using MIPS® Multi-threaded Processors, Revision 01.03

Copyright © 2011 MIPS Technologies Inc. All rights reserved.

1 Hardware Multi-threading Background

Multi-threading is a hardware- or software-based processing technique which has the primary objective of exploiting
the concurrency in a computational workload to increase performance. Multi-threading can also be used to isolate
various tasks so that priority can be assigned to more time-sensitive traffic such as voice, video or critical data.

While software-based multi-threading techniques such as task switching and software-based thread scheduling are
recognized to have been in existence for some time, less is known about the history of hardware based multi-thread-
ing. Hardware-based multi-threading techniques have in fact existed for quite some time, with implementations dat-
ing back to the 1960s with the CDC6600 [1]. In the CDC6600 computer, 10 threads in hardware were used to
guarantee response time from the I/O processor to the approximately 16 peripherals. This example, where the proces-
sor ran much faster than the array of I/O devices, is a typical application which benefits greatly from multi-threading,
as the idle processing time could be replaced with useful work in switching from thread to thread. In the 1970s, the
Denelcor HEP machine [2] switched on real execution threads within the CPU rather than on I/O. Similar to the pre-
vious example, the net result was that instructions per cycle (IPC) were improved dramatically. Several other systems
and academic studies were introduced over the next decade that further demonstrated the benefits of hardware multi-
threading.

Today there is an array of multi-threaded processors in the market. Intel has brought a coarse grained version of the
technology into the high-end computing application space with its Hyper-Threading technology. Furthermore,
numerous other SoC manufacturers such as Broadcom, Lantiq, Mobileye, Netlogic Microsystems, PMC-Sierra,
Ralink Technology and Sigma Designs have also shipped millions of products with multi-threaded CPUs. Many such
SoCs are based on the multi-threaded MIPS32® 34K® core or the multi-threaded, multiprocessing MIPS32 1004K™
Coherent Processing System (CPS) based on the industry-standard MIPS® architecture. Today, hardware multi-
threading has reached mainstream adoption and is increasingly recognized as an efficient method for extracting opti-
mal performance in SoC designs.

2 Increasing Pipeline Utilization with Multi-threading

As mentioned earlier, increasing the IPC number for a given single-threaded processor is a major objective. Often,
even a very high performance processor spends much of its time idle, waiting for data to arrive. It is not uncommon
for such advanced processors with a shared memory system to spend over 50% of their time waiting for data to return
after a cache miss. This data retrieval wait time could last anywhere from tens of cycles to perhaps even hundreds of
cycles in extreme cases. Whatever the number is, the processor effectively does no useful work during most of this
time. Other instruction dependencies such as branch-mispredict, load-to-use, and others can also cause idle cycles.
Multi-threaded processors are able to switch between multiple threads to make use of these idle cycles. Rather than
letting unused cycles go to waste, cycles can now be filled with useful instructions from other threads. This leads to
better pipeline utilization and increased system throughput.

One key aspect which ensures efficiency of thread switching has to do with the management of thread-related infor-
mation, or contexts. Each task, when mapped to a thread, also has associated context information such as program
counters and a subset of register information, which are loaded and updated in hardware. In a single-threaded proces-
sor, these contexts must be swapped in or out as the processor switches between threads. Additional processing asso-
ciated with ‘save’ and ‘restore’ operations are involved when changing between threads. This tax can become very
burdensome, especially with high context switching. With multi-threaded processors supporting full context storage
for each hardware-supported thread, there is no need for ‘save’ and ‘restore’ operations. This mechanism supports
zero-cycle overhead for switching threads or contexts.

Optimizing Performance, Power, and Area in SoC Designs Using MIPS® Multi-threaded Processors, Revision 01.03 3

Copyright © 2011 MIPS Technologies Inc. All rights reserved.

Figure 1 shows the basic mechanism of how multi-threading improves pipeline utilization. In this case, there are
three threads which experience cache misses at different points in time. During these stalls, other threads are doing
useful work over the same pipeline, thereby increasing IPC.

Figure 1 Multi-threading

3 Overview of MIPS Multi-threaded Technology

MIPS Technologies’ multi-threaded technology is based on a two-layered framework involving Virtual Processing
Elements (VPEs) and Thread Contexts (TCs), and it supports thread switching on every cycle. Each multi-threaded
core can support up to two VPEs which share a single pipeline among other hardware resources. However, since each
VPE includes a complete copy of the processor state as seen by the software system, each VPE appears as a complete
standalone processor to an SMP Linux operating system. For more fine-grained thread processing applications, each
VPE is capable of supporting multiple TCs. The TCs share a common execution unit but each has its own program
counter and core register files so that each can handle a thread from the software. The 34K core can support up to
nine TCs allocated across two VPEs, optimized and partitioned at run time. Figure 2 shows the relationship of the OS,
VPEs, TCs, and the common hardware in the 34K core.

3 Overview of MIPS Multi-threaded Technology

4 Optimizing Performance, Power, and Area in SoC Designs Using MIPS® Multi-threaded Processors, Revision 01.03

Copyright © 2011 MIPS Technologies Inc. All rights reserved.

Figure 2 34K® Top-level Architecture

The 34K core also allows allocation of processor cycles to threads, and sets the relative thread priorities with an
optional Quality of Service (QoS) manager block. This enables two prioritization mechanisms that determine the
flow of information across the bus. The first mechanism allows the user to prioritize one thread over another. The
second mechanism is used to allocate a specified ratio of the cycles to specific threads over time. The combined use
of both mechanisms allows effective allocation of bandwidth to the set of threads, and better control of latencies. In
real-time systems, system-level determinism is very critical, and the QoS block facilitates improvement of the pre-
dictability of a system. Hardware designers of advanced systems may replace the standard QoS block provided by
MIPS Technologies with one that is specifically tuned for their application.

The 1004K CPS is the latest generation of multi-threaded processors from MIPS Technologies. The system supports
up to four multi-threaded cores, each of which can be configured to support 2 VPEs like the 34K core. The multiple
cores in the 1004K CPS are connected via a coherence management unit to maintain coherency between the L1
caches in each CPU. The system also includes an optional block to provide coherency on data transfers from I/O
peripherals, enabling additional performance by off-loading I/O coherency schemes typically run in software as part
of the operating system. The coherent processing system also includes a global interrupt controller that accepts up to
256 interrupts and distributes them down to the cores, or even hardware threads within each core. The whole system
can be used with the MIPS L2 cache controller, which connects to the coherence management unit via an extended
256-bit wide interface for optimized throughput between the coherent system and the L2 cache. An EJTAG and a
"coherence-aware" program/data trace block rounds out the system, providing synchronized visibility into each of the
CPU cores and the coherency units in the system via development tools.

SMP Linux manages the interface to the VPEs, leaving the high level APIs untouched. This allows the leveraging of
existing legacy core unchanged on the new core. In addition, some SMP versions of RTOS’s such as ThreadX include
support for fine-grained, TC-based multi-threading. It should be noted that the multithreaded and multicore hardware
capabilities in the 1004K CPS leverage a common software programming model. That is, for example, someone
developing a threaded application in SMP Linux can effectively run that on a 34K core or a 1004K CPS without mod-
ification, and the SMP kernel can make task affinity and load-balancing decisions on the workload across threads and
cores.

Optimizing Performance, Power, and Area in SoC Designs Using MIPS® Multi-threaded Processors, Revision 01.03 5

Copyright © 2011 MIPS Technologies Inc. All rights reserved.

Figure 3 1004K™ Top-level Architecture

4 Multi-threading Application Examples

There are several factors that a designer must consider when deciding whether a multi-threading system is appropriate
for a specific application. First, a designer must consider the software and the desired feature set, including the differ-
ent tasks, the ways these tasks might be partitioned, performance needs for each task, bus interaction for the different
tasks, the special needs for tasks such as multimedia, and other considerations. Other key considerations include the
level of coordination among the tasks, security, and of course power consumption and cost.

Needless to say, the analysis is often not straightforward, so a good understanding of priorities is critical. For exam-
ple, if the goal is achieving the highest IPC in the lowest cost footprint, a designer may create the multi-threaded sys-
tem to utilize the different threads in a single core and run at the highest frequency. In another design, power may be
a key priority so a designer might choose to spread tasks over several threads over multiple cores, and scale down the
frequency to reduce power consumption. The key to a MIPS-Based multi-threaded system is scalability, enabling
designers to achieve the highest possible performance when needed, or to scale back when performance isn’t the
highest priority.

In another instance, a system may need to run 2 operating systems and meet very stringent QoS and costs constraints.
The designer can run the software utilizing two VPEs, where one is running an RTOS and the other running bare iron
while fully isolating QoS-sensitive applications such as voice or video. This can all be achieved without having to
implement a second core. The following examples of use models that have been deployed in MIPS-Based multi-
threaded SoCs for automotive and networking demonstrate the breadth of applications that can benefit from multi-
threading.

4.1 Case Study – Driver Assistance Systems in Automotive

The first example of a real-world deployment of multi-threaded system design is from Mobileye, the leader in vision-
based Driver Assistance Systems (DAS). Advancements in image and video analytics in terms of performance and
cost have allowed these technologies to make their way into consumer markets. However, making continuous
improvements on such technology is a very daunting task. Mobileye used the multi-threaded features of the MIPS32
34Kf processor to dramatically improve the performance and efficiency of its EyeQ2 vision system (based originally

4 Multi-threading Application Examples

6 Optimizing Performance, Power, and Area in SoC Designs Using MIPS® Multi-threaded Processors, Revision 01.03

Copyright © 2011 MIPS Technologies Inc. All rights reserved.

on a competitor’s single-threaded core) which takes data from a camera and looks for elements within the image to
generate warnings for lane-departures, forward-collisions, vision/radar fusion, and pedestrian detection for example.

The EyeQ2 SoC system has an array of Vision Computer Engines (VCEs) which are connected as peripherals to the
main CPU bus and provide and receive real-time data. In this system, large amounts of data and instructions are
transferred from the CPU to the VCEs. This, along with the typical instruction cache misses, leads to a very challeng-
ing bottleneck which is not addressable by single-threaded CPUs. In fact, Mobileye’s original EyeQ1 system had an
IPC of only 0.3. Given the performance requirements, utilizing a single threaded architecture for EyeQ2 would have
meant either slowing down the whole system or having to skip the processing of data, potentially causing errors.
Increasing the CPU clock speed only exacerbates the problem, as this just increases the frequency of processor stalls.
Furthermore, adding additional cores increases the number of bus contentions, thus impairing the real-time band-
width.

Through simulation, Mobileye concluded that a multi-threaded system would provide a boost in performance by
managing multiple operations across the entire system which included 8 VCEs. One 34Kf core with 4 threads was
used to interact with the 8 VCEs. Furthermore, a QoS manager played an important role in tuning and prioritizing
critical threads. In effect, this architecture helped in increasing the IPC by 3x from 0.3 to 0.9. Usage of the QoS man-
ager was critical in taking the IPC from 0.6 to 0.9. Furthermore, with such a high IPC, increasing the CPU clock led
to meaningful improvements. In fact, because of its use of multi-threaded and other architectural improvements,
Mobileye was able to achieve its performance goals with just a modest increase in frequency from 110MHz to
166MHz while maintaining its power consumption at 3W, which was the same as the prior generation’s power con-
sumption. In addition, a second 34Kf core was instantiated to enable support for a user's proprietary algorithm.
Communication between threads across the two processors was achieved by making modifications to an inter-thread
communication block, which facilitated a more coherent system. For those interested in more details, a focused case
study on the development of the EyeQ2 SoC is available in the EE Times [3]. For its future EyeQ3 system, even
higher performance and lower cost will be required. Mobileye will be implementing a 4-CPU 1004Kf coherent pro-
cessing system to ensure that the design meets these goals.

These features, along with standard codec, ADC, DAC, mixer/volume control and amplifier functions, form a family
of completely “integrate-able” analog audio IP. Designers can select the features they need for each application, keep-
ing the area needed to implement these features to a minimum.

4.2 Case Study – Broadband CPE / Residential Gateway

The residential gateway is another system that continues to experience increasing integration. Customer premises
equipment for broadband have evolved to being more than just modem devices providing basic access to broadband
services like DSL, Cable or PON. They have become integrated Residential Gateways or Integrated Access Devices
which include features such as routing/switching, twisted-pair/co-axial/powerline/WiFi networking capabilities,
security, USB and VoIP support, along with basic modem functionality. Some architectures also include integrated
storage functionality in which the gateway acts as a media server. This integration has made gateway system design
very challenging, and multi-threading can improve performance and/or improve the overall architecture for these
devices.

One company that has successfully deployed a multi-threaded MIPS-Based SoC for gateways is Ralink Technology, a
global technology leader in the wireless home networking and broadband access semiconductor markets. ADSL IAD
is Ralink’s first chip based on the 34K core. The chip is currently in mass production and has been deployed success-
fully in the network of a European telecommunications operator. Multi-threading has proven to be very appropriate
for this triple-play system, as it helps to run multiple applications more efficiently. Furthermore, the isolation of time-
sensitive traffic via the use of Virtual Processing Elements (VPEs) is key for ensuring deterministic response. The
SoC implements a single 34K core and four threads over two VPEs. The first VPE, VPE0, implements three threads
which support WLAN, Ethernet and USB processing, while the second VPE, VPE1, implements one thread support-

Optimizing Performance, Power, and Area in SoC Designs Using MIPS® Multi-threaded Processors, Revision 01.03 7

Copyright © 2011 MIPS Technologies Inc. All rights reserved.

ing ATM and VoIP. With this architecture, Ralink is able to efficiently provide deterministic VoIP response and sup-
port for multiple applications in a single device.

5 The Future of MIPS Multi-threading: Simultaneous
Multi-threading

Today, MIPS’ multi-threading is based around temporal—also known as interleaved—multi-threading technology, in
which a maximum of one instruction can be issued into the execution pipeline in any given cycle. As we have dis-
cussed in this paper, temporal multi-threading offers tremendous benefits compared to single-threaded architectures.
The next enhancement in multi-threading for MIPS processors is Simultaneous Multi-threading (SMT), in which
multiple instructions from different threads can be issued into the execution pipeline within the same clock cycle.

To better understand the advantage of SMT, let us first consider a non-threaded processor with a single execution
pipeline. To try to increase performance in this case, a designer might start by simply increasing the number of execu-
tion pipelines to two, for example, in order to execute more instructions at the same time. However, due to the depen-
dencies of the instructions and likely cache memory misses, the performance increase will be non linear. In other
words, while there is an effective doubling of hardware execution resources and a desire for a similar increase in per-
formance, the result is more typically on the order of only a 1.3X improvement.

Therefore, to augment performance, other techniques such as “out-of-order execution” or “speculative execution”
(e.g. pre-fetching and branch prediction) can be employed in conjunction with the multiple execution pipelines to try
to increase the IPC to be closer to 2X. Unfortunately, such techniques usually come with a sizable area/cost/power
penalty. Hence these techniques are commonly reserved for designs where the highest performance is critical, and
area/power are secondary.

In contrast, hardware multithreading provides a different means to maximize execution efficiency. It does so by hav-
ing alternative workloads, rather than applying large amounts of logic and buffers to eke out IPC improvements via
manipulating instruction ordering and predictive execution. SMT, because it is able to efficiently intersperse instruc-
tions from concurrent, independent threads, can better fill multiple execution unit pipelines. In this example with two
pipelines, the net effect is that performance can get closer to the ideal 2X level in a more area- and power-efficient
manner than alternate techniques.

SMT technology will be introduced in MIPS Technologies’ next generation family of multi-threaded processors.
Through SMT, multiple instructions from different threads can be executed concurrently over multiple execution
pipelines. Depending on the nature of the application, significant further improvement can be seen in the IPC due to
SMT.

SMT offers a significant performance advantage to Linux-based processors such as those used for applications pro-
cessing in consumer electronics and mobile devices. Standard SMP Linux can map tasks into the virtual processors,
thereby enabling the hardware to take advantage of the parallelism available in the multi-tasking operating system.

SMT offers particular benefits for applications including those in the Networking and Storage segments. These types
of applications involve highly concurrent processes that could be handled very efficiently by SMT. With the addition
of SMT, one can expect increased performance when doing common networking data plane processing functions like
route lookups, NAT, and TCP reassembly. In Storage, many applications today use MIPS Technologies’ multi-thread-
ing technology to increase efficiency of read/write operations, by up to 3X in some instances. This can be further
increased with SMT.

In MIPS’ next generation processors with SMT, MIPS is also offering 64-bit processing, which will also be key as
users now have a licensable core that allows them to take advantage of the increased virtual addressing (VA) and

6 Summary

8 Optimizing Performance, Power, and Area in SoC Designs Using MIPS® Multi-threaded Processors, Revision 01.03

Copyright © 2011 MIPS Technologies Inc. All rights reserved.

physical address (PA) space and more efficient data movement that comes with a 64-bit processor. Memory size
requirements in networking applications continue to grow, and more and more SoC vendors are asking for a 64-bit
core to integrate in next generation SoCs including those for networking. A 64-bit core gives users the ability to
extend beyond the 4GB limits of 32-bit processors, to many terabytes and beyond. And storage applications, with
their persistent movement of data in and out of memory, will benefit from the ability to move bigger chunks of data
each clock cycle.

6 Summary

Hardware multi-threading is a technology that has reached the mainstream, and there exist today many SoC suppliers
who provide MIPS-based multi-threaded SoCs for a variety of applications. We have focused specifically on applica-
tions in networking and automotive, but multi-threading can be used in any system which has many concurrent tasks,
or in any system where QoS is critical. Other vendors have implemented MIPS-Based multi-threading in SoCs for set
top boxes, high-end storage and networking infrastructure equipment. Some evaluation has also begun for the use of
multi-threading in mobile applications such as smartphones and tablets. These devices continue to grow in complex-
ity as integrated communications, productivity and multimedia entertainment devices. Multi-threading would be an
ideal solution for efficiently processing multiple mobile applications, some of which are latency-sensitive.

Alternate “brute force” approaches of using multiple cores to process threads simultaneously can certainly be
employed, but using multi-threading is by far a more elegant and lower-cost approach to achieving IPC and/or QoS
performance requirements. By offering single-core and multi-core products which support hardware multi-threading
today and with the next generation 64-bit processors with SMT support on the horizon, MIPS Technologies is
uniquely positioned to enable designers to develop high-performance and low-power SoCs in a very cost efficient
manner.

Delfin Rodillas is a Marketing Director for the Networks Markets at MIPS Technologies. He can be reached by email
at delfin@mips.com.

7 References

[1] J.E. Thornton, “Parallel Operation in the Control Data 6600”, Proceedings-Spring Joint Computer Conference,
1964

[2] B.J. Smith, “Architecture and applications of the HEP multiprocessor computer system”, In SPIE, volume 298,
pages 241-248, 1981

[3] R. Elchanan and P. Del Vecchio, “Multi-threaded design tackles SoC performance bottlenecks: Part 1,” EE Times,
http://www.eetimes.com/design/automotive-design/4011117/Multi-threaded-design-tackles-SoC-performance-bot-
tlenecks-Part-1, 2006

Optimizing Performance, Power, and Area in SoC Designs Using MIPS® Multi-threaded Processors, Revision: 01.03

Copyright © 2011 MIPS Technologies Inc. All rights reserved.

Template: nW1.03, Built with tags: 2B

Copyright © 2011 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of
this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of this information, or any related documentation of any kind, including related technical data or manuals,
is an agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16, MIPS16e, MIPS-Based,
MIPSsim, MIPSpro, MIPS Technologies logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd,
M4K, M14K, 5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc, 1074Kf,
R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CoreLV, EC,
FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug, HyperJTAG, IASim, JALGO, Logic Navigator, Malta,
MDMX, MED, MGB, microMIPS, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2, SmartMIPS, SOC-it, System Navigator, and YAMON are
trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

	Optimizing Performance, Power, and Area in SoC Designs Using MIPS® Multi- threaded Processors
	1 Hardware Multi-threading Background
	2 Increasing Pipeline Utilization with Multi-threading
	3 Overview of MIPS Multi-threaded Technology
	4 Multi-threading Application Examples
	4.1 Case Study - Driver Assistance Systems in Automotive
	4.2 Case Study - Broadband CPE / Residential Gateway

	5 The Future of MIPS Multi-threading: Simultaneous Multi-threading
	6 Summary
	7 References

