
Document Number: MD00412
Revision 02.12
July 19, 2005

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Microprocessor Debug Interface (MDI)
Specification

Copyright © 2001-2005 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying,
reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies
or an authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition and copyright
laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to
use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO
CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN
SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise.
MIPS Technologies does not assume any liability arising out of the application or use of this information, or of any error or omission
in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied
warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license
agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not give recipient any license
to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supplements
thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in this document, the
laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial
computer software documentation or other commercial items. If the user of this information, or any related documentation of any
kind, including related technical data or manuals, is an agency, department, or other entity of the United States government
("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this information, or any related
documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense
Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this
information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim,
MIPSpro, MIPS Technologies logo, MIPS RISC CERTIFIED POWER logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS,
4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20Kc, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 25Kf, 34K, R3000, R4000, R5000, ASMACRO,
Atlas, "At the core of the user experience.", BusBridge, CorExtend, CoreFPGA, CoreLV, EC, FastMIPS, JALGO, Malta, MDMX,
MGB, PDtrace, the Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2, SmartMIPS, SOC-it, and YAMON are trademarks or
registered trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Template: B1.14, Built with tags: 2B

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 3

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Embedded Performance, Inc. and LSI Logic Corporation own the copyrights in portions of this work, which are used
under license to MIPS Technologies, Inc.

4 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 i

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1 Overview ..1
1.1 Abstract ...1
1.2 MDI Organization ...1

Chapter 2 Terms ..3

Chapter 3 Principles of Operation ...5
3.1 Multi-thread Debugging ..5
3.2 Multi-processor Debugging ..6

3.2.1 Multi-processor Teams ...7
3.2.2 Disabled Multi-processor Devices ..9

Chapter 4 MDI Environment Command Set ...11
4.1 Version: Obtain the supported MDI versions for this MDILib implementation ..11
4.2 Connect: Establish a connnection to the MDILib ...11
4.3 Disconnect: Disconnect from the MDILib ..13

Chapter 5 Target Group Command Set ...15
5.1 Target Group Query: Retrieves the names of the defined target groups. ..15
5.2 Target Group Open: Opens a target group ..16
5.3 Target Group Close: Close a previously opened target group ..17
5.4 Target Group Execute: Place in execution mode the appropriate devices in the target group17
5.5 Target Group Stop: Stop execution for all appropriate devices in the target group ...18

Chapter 6 Device Command Set ...19
6.1 Session Control ...19

6.1.1 Device Query: Retrieves information about the devices ..19
6.1.2 Open: Opens a device. ..20
6.1.3 Close: Closes a device. ...21
6.1.4 Process Events: Callback function to process periodic events ...22
6.1.5 Synchronize State: Callback function to synchronize device state changes ...22

6.2 Resource Addresses ..23
6.3 Resource Access ...23

6.3.1 Read: Reads a contiguous range of data from the specified resource on the device.24
6.3.2 Write: Writes a contiguous range of data to the specified resource on the device.25
6.3.3 Read List: Read a set of values ...26
6.3.4 Write List ..26
6.3.5 Move: Move data from one resource to another on the device ...27
6.3.6 Fill: Fill the specified resource on the device with a pattern. ...28
6.3.7 Find: Find a pattern in a resource ...29
6.3.8 Query Cache: Retrieve cache attributes ..30
6.3.9 Get Cache Details: Get Information about the Specified Cache ...31
6.3.10 Cache Flush: Write back and/or invalidate the cache ...31
6.3.11 Cache Operation: Do Specified Operation on Specified Cache ...32
6.3.12 Cache Sync: Synchronize the caches ..33

6.4 Run Control ...33
6.4.1 Execute: Place the device into its RUNNING state ..33
6.4.2 Step: Single steps the device ...34
6.4.3 Stop: Stop execution of the device ..35
6.4.4 Abort: Terminate the current MDI function ...35
6.4.5 Reset: Performs a target reset operation ...36
6.4.6 State: Returns the current device execution status. ...37

ii Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

6.5 Breakpoints ...38
6.5.1 Set Full Breakpoint ...40
6.5.2 Set Software Breakpoint ...41
6.5.3 Clear Breakpoint ...42
6.5.4 Enable Breakpoint ...42
6.5.5 Disable Breakpoint ..43
6.5.6 Query Breakpoints ..43
6.5.7 Hardware Breakpoint Query: Retrieve a list of supported hardware breakpoint types44

Chapter 7 MDILib and Target I/O Command Set ...47
7.1 Execute Command: Do the command specified ...47
7.2 Display Output: Display the MDILib supplied text to the user ..47
7.3 Get Input ...48
7.4 Evaluate Expression ..49
7.5 Lookup Resource ..50

Chapter 8 Trace Command Set ...53
8.1 Enable Tracing ..53
8.2 Disable Tracing ...54
8.3 Clear Trace Data ...54
8.4 Query Trace Status ..55
8.5 Query Trace Data ..55
8.6 Read Trace Data ..56
8.7 Read PDtrace Data ..58
8.8 Get PDtrace Mode ...59
8.9 Set PDtrace Mode ...61
8.10 Get TCB Trigger Information ...61
8.11 Set TCB Trigger Information ..62

Chapter 9 Multi-Threaded and Multi-Processor Command Set ..65
9.1 Multi-Thread Control ..65

9.1.1 Set Thread Context: Sets the current MDI thread context ID ...65
9.1.2 Get Thread Context: Returns the current MDI thread context ID ..66
9.1.3 Thread Context Query: Retrieves a list of active TCs ..66

9.2 Set Run Mode: Specify behavior when returning to the RUNNING state ...67
9.3 Multi-processor Team Control ..68

9.3.1 Create Team: Create a new multi-processor debugging team ..68
9.3.2 Team Query: Retrieves a list of active teams ...69
9.3.3 Clear Team: Removes all members from a multi-processor team ..69
9.3.4 Destroy Team: Destroys a multi-processor team ..70
9.3.5 Attach Team Member: Add a new member to a team ..70
9.3.6 Detach Team Member: Remove a single member from a team ...71
9.3.7 Team Member Query: Retrieves a list of team members ...72
9.3.8 Team Execute: Place all team members into RUNNING state ..72

Appendix A MDI.h Header File ..75

Appendix B Example Code to Setup an MDILib Connection ..85

Appendix C An MDI Addendum for MIPS32® and MIPS64® Architectures ..93
C.1 Abstract ...93
C.2 MIPS MDIDDataT Fields ...93
C.3 MIPS Exception Codes ...93
C.4 MIPS16e Instructions ..93
C.5 MIPS Resources ..93
C.6 MIPS-Specific Breakpoint Implementation ..97

C.6.1 MDISetBP() and MDISetSWBp() Function Calls ..97

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 iii

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

C.6.2 Implementation of MDISetSWBp() ..97
C.7 MIPS Specific Header File ..98

Appendix D MDI_PDtrace.h Header File ...101

Appendix E mdi_tcb.h Header File ...105

Appendix F Revision History ..108

iv Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

1.1 Abstract

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 1

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 1

Overview

1.1 Abstract

The main goal of Microprocessor Debug Interface (MDI) is to define a set of data structures and functions that abstract
hardware (or hardware simulators) for debugging purposes. Having a standard "meta" interface allows development
tools (debuggers, debug kernels, ICEs, JTAG probes etc.) from different vendors to inter-operate. A secondary goal of
the MDI specification is to define a multi-target environment in which multiple hardware abstracts may coexist

1.2 MDI Organization

MDI is divided into 5 command sets. The first set is the MDI environment. These commands establish the initial
connection, maintain version control, handle configuration, and support debugger event processing and multiple
debugger synchronization. The second command set is the target group commands. A target group is made up of one or
more target devices. The target group command set contains commands to query/open/close individual target groups as
well as special multi-target commands that control the individual devices as a group. The third command set is the
individual target device commands. This set of commands provide the fundamental functions and resources that are
needed to debug individual target devices. The fourth command set is the debugger callbacks, functions provided by the
debugger. This command set supports MDILib command processing and provides various character I/O services to both
the MDI interface and the target application. The fifth command set is the trace data commands. This command set
provides a simple interface to the tracing capabilities provided by many target devices. Another command set deals with
calls needed to support multi-threading and multi-core or multi-processor targets.

A complete MDI specification consists of two parts: the architecture independent MDI specification (this document),
plus an addendum that provides the necessary details for a specific target architecture. This document includes the
addendum needed by the MIPS32® and MIPS64® architectures in the Appendix.

2 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 Overview

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 3

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 2

Terms

The following terms are used throughout this document:

• MDI - This specification, plus the appropriate device specific addendum.

• MDILib - An implementation of the MDI specification providing an interface to one or more devices.

• Debugger - An MDI compliant application that uses one or more MDILibs to access and control one or more devices.
Typically, this is a source- or assembly-level debugger, but it could be anything.

• Thread Context (TC) - The hardware state necessary to support a single thread of execution within a multi-threaded
CPU device, such as defined by the MIPS MT ASE. This includes a set of general purpose registers, multiplier
registers, a program counter (PC) and some privileged state.

• VPE - A virtual processing element (VPE) is an instantiation of the full CPU privileged state on a multi-threaded
CPU, sufficient to run an independent per-processor OS image - it can be thought of as a virtual CPU. Each VPE
must have at least one TC attached to it in order to execute instructions and be debuggable, but it may contain more
than one TC when running an explicitly multi-threaded OS or application. A conventional single-threaded CPU
could be considered as implementing a single VPE containing a single TC.

• Multi-processor - A collection of processing elements within a single target system. This may be a set of
single-threaded CPUs within a multi-core design, a number of VPEs within a multi-threaded CPU core, or a
combination of the two.

• Device - A specific processing element that can be accessed and controlled via MDI. Typically, this is a target board
containing a single CPU or DSP, or a simulator. In a multi-processor system, each processing element (CPU or
VPE) would be a separate device. The actual mechanism by which an MDILib accesses and controls a device is not
addressed by MDI, it is a private implementation detail of the MDILib.

• Target Group - A group of target devices that are capable of being operated on as a group, where the grouping is
statically defined by the MDILib.

• Team - A dynamic grouping of devices which stop and start normal execution simultaneously. This allows several
debuggers, each debugging a separate but loosely cooperating operating system or program on different devices to
safely view and manipulate shared resources (e.g. memory or device state), without any interference from the other
team members. Alternatively it allows a single debugger to control multiple devices executing a single symmettric
multi-processing (SMP) operating system image.

4 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Terms

3.1 Multi-thread Debugging

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 5

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3

Principles of Operation

An MDILib is implemented as a dynamically linked library in the Microsoft Win32 environment (mdi.dll) and a shared
library in the UNIX environment (mdi.so). In many cases, the caller of an interface function passes a pointer to
caller-allocated memory. In all such cases, the caller is required to maintain the validity of the pointer only until the
called function has returned.

MDI is designed to allow the MDILib to run synchronously with the debugger. The debugger passes a thread of control
to the MDILib by making a call to an MDI function. The MDILib may then use the thread to do maintenance before the
requested function is complete. If the processing time for maintenance and the requested function are longer than 100
milliseconds, the MDILib will loan the thread back to the debugger by calling the debugger’s MDICBPeriodic routine.
At this point the debugger may cancel the current MDI command, update user interfaces or do other debugger
maintenance. The debugger then returns the thread to the MDILib by exiting the MDICBPeriodic routine. The thread is
then returned to the debugger upon completion or abortion of the original MDI function. The debugger must assume that
the MDILib always uses the debugger’s thread to execute. It is therefore imperative that the debugger call MDIRunState
frequently whenever the device is running, so that the MDILib can be responsive to device events. It is also possible,
though less common, that the MDILib may want to be able to process certain device events even when the device is not
running. It is therefore recommended that the debugger also call MDIRunState frequently at all times.

Though the actual implementation of a particular MDILib or debugger may be multi-threaded, it is not desirable to
burden all MDILib implementations with a requirement to be re-entrant; therefore the communications path between
debugger and MDILib is defined to be single threaded (synchronous), that is, for a given debugger process the same
thread must make all MDILib calls.

The simplest development environment would be a single debugger using a single MDILib to control a single device. In
this case, the debugger can be implicitly linked to the standard MDILib library file (mdi.dll or mdi.so); however,
MDI envisions that a complete development environment may include multiple devices, multiple debuggers, and
multiple MDILibs, potentially all from different vendors. In this case, each MDILib will necessarily have a unique file
name, and the debuggers must provide a way for the actual MDILib file name to be configured, and use explicit linking
to load the file and get pointers to its MDI functions at run time. To allow operability in this more complex environment,
debugger vendors are strongly encouraged to use explicit linking even if they do not support multi-device debugging.

Note that the MDI specification allows the debugger to call any MDI service function at any time, including while the
target program is running. MDILibs are encouraged to support as many services as possible during execution, but not
all target environments will be able to support all MDI services while the target device is executing, so the MDILib may
return MDIErrTargetRunning in response to most MDI calls if the service can not be performed because of target
execution. The debugger vendor should also be aware that MDILibs that do support debugger operations during
execution may do so by temporarily interrupting execution to perform the service.

To ease development of debuggers and MDILibs, MDI includes C language header files defining the interface (mdi.h)
MDILibs must #define MDI_LIB before including mdi.h in their source files. Also provided for the Microsoft Win32
environment is mdi.def, a linker input file used when building an MDILib DLL, and mdiload.c, a C language file
providing function MDIInit, which loads the MDILib DLL. The debugger must call MDIInit before using any of the
MDI functions. All MDI functions are built using the __stdcall calling convention for the Win32 environment.

3.1 Multi-thread Debugging

Within each processing element of a multi-threaded CPU there may be more than one TC or Thread Context: that is a
set of general purpose registers and program counter capable of executing an instruction stream, or thread. The CPU can

6 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Principles of Operation

execute instructions from all runnable TCs "simultaneously", or at least apparently so, by interleaving instructions from
the TCs through its pipeline at high speed. However TCs are subsidiary to the processing element, and when any TC
enters debug mode (e.g. completes a single-step or hits a breakpoint), then all of the other TCs contained within that
processing element will be suspended. So TCs are not exposed as a first class Device to which you can connect an MDI
debugger - the connection is instead made to the processing element, and additional MDI functions described in Chapter
9, “Multi-Threaded and Multi-Processor Command Set,” on page 65 allow a debugger to determine the list of active TCs,
access their registers, and specify their behavior (e.g. remain suspended, single step, or run freely) upon leaving debug
mode.

Note that an MDILib controlling a hardware probe or CPU simulator is not expected to be able to debug software threads
in a complex operating system where there are more software threads than TCs. In such operating systems the software
thread state is being context switched by the OS between hardware TCs and memory-based thread data structures. A
hardware debugger does not typically have the OS-specific knowledge that would allow it to interpret the memory-based
thread state. So while an MDI debugger can be used to debug the low-level TC management within such an operating
system, debugging "application" software threads will typically require the use of an OS-provided "thread aware" remote
debug protocol - possibly tunneled through MDI via shared memory - or enhancements to the debugger to make it OS
aware by traversing and manipulating the OS’s thread data structures using MDIRead() and MDIWrite(). Both of these
techniques are outside the scope of this document.

3.2 Multi-processor Debugging

A multi-processor target contains multiple devices, either virtual (VPEs) on a multi-threaded CPU core, true multi-core
CPUs, or some combination of the two - i.e. multiple CPU cores, one or more of which may contain multiple VPEs. In
all cases the MDILib is required to allow multiple parallel connections to this collection of devices from one or more
debuggers simultaneously. In other words one super-debugger may open multiple MDI connections to several devices
at once, or there may be several "legacy" single-processor debuggers running in parallel, each connecting to a single,
separate device.The MDILib shall provide a unique Target Group/Device name and ID for each device - virtual or
physical. As a convenience for single-processor debuggers, an MDILib may coordinate some or all of the devices
internally to provide the illusion of a single device with multiple TCs, but this is not required.

MDI requires that each device appears to the debugger or debuggers to be capable of operating independently of the
other devices, i.e. as if they were truly independent CPU cores, even if they are in fact VPEs within the same CPU core.
All devices must be capable of being simultaneously in RUNNING state, or HALTED in debug mode and servicing MDI
i/o requests, or any permutation thereof. If the hardware implementation does not allow this directly (e.g. if debug mode
suspends other VPEs on a multi-threaded CPU), then an MDILib must simulate the required behavior by suspending
the device which originally entered debug mode, and then returning from debug mode so that the other devices can run
target code or enter debug mode to service MDI calls from other debuggers.

Requiring VPE devices to operate as if they were truly independent cores is important, since it allows parallel debugging
of non-cooperating or loosely cooperating separate program images using "legacy" debuggers, most of which can work
with only one program image at a time. It also permits the debugging of one VPE while the other VPEs continue to run
normally. For example you might be using an MDILib and hardware probe to debug a low-level DSP or data plane task
which is running on one VPE, while running a control plane application on a multi-tasking OS on a second VPE, or
debugging it using the OS’s standard application debugger. The multi-tasking OS must continue to run uninterrupted
even while the signal processing device is halted by the MDI debugger. Figure 3-1 below illustrates the states associated
with this form of debugging, where two devices operate completely independently of each other.

3.2 Multi-processor Debugging

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 7

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Figure 3-1 State Transitions for Independent Multi-Processor Debugging

3.2.1 Multi-processor Teams

When the software running on devices within a multi-processor is more tightly coupled, sharing data structures in
memory, or even running a full-blown SMP operating system with a single shared instruction and shared data (SISD)
image, then it is useful to be able to dynamically join the devices together into a debugging team, such that when any
one of them enters debug mode, the others simultaneously stop running. This presents a stable shared memory image to
the debugger(s), and permits inspection of the state of all the cooperating processors at the "same" moment in time (in
a multi-core system "same" may mean within a few cycles, to allow time for debug interrupts to propagate from one core
to another). A team may include devices which have not been opened by a debugger. A team is also persistent, in that it
survives MDI library disconnects, until the last disconnect from the MDILib (or MDILibs) which manage the team.

There are several ways in which an MDI team might be used in practice - two examples being as follows:

• When debugging a different program image on each device (e.g. a control program on one, and a real-time DSP or
data plane task on the other), then several "legacy" single-processor debuggers may be used in parallel, each
debugging a single program image on a single device. But if the user needs to debug low-level hardware interactions
between the programs/processors, then it will be helpful if both devices can be forced to stop running
simultaneously, whenever one or the other reaches a breakpoint or is forcibly stopped.

• When debugging an high-level SMP (SISD) operating system, a multi-processor aware debugger will open several
MDI connections, one for each device, and then join them together into a team so that they stop and start execution
simultaneously, simulating a single CPU with multiple thread contexts. The debugger might present each
single-threaded device to the user as if it were one thread context within a single virtual CPU, or if any devices
contain multiple TCs, then as a unified set of TCs. The debugger will iterate over the open MDI devices to set global
breakpoints, execution mode, and so on.

3.2.1.1 Legacy Team Debugging

A conventional single-processor "legacy" debugger will not take kindly to its debuggee spontaneously resuming
execution when the debugger thinks it is halted. The MDI team concept therefore virtualizes the device’s HALTED state,
so that each debugger believes that is totally in control of its device, even though in reality it may be stopping and starting
outside of the debugger’s control.

Figure 3-2 below illustrates how two devices A and B should behave when they are each controlled by a separate
"legacy" debugger, but affiliated within a team. The crucial concept is the FROZEN state which is internal to the

stop = breakpoint/single-step exception, or debugger calls MDIStop()
start = debugger calls MDIExecute() or MDIStep()

HALTED = debug mode, MDIRunState() returns appropriate "non-running" status
RUNNING = normal execution mode

Actions

States

A RUNNING A HALTED
stop(A)

start(A)

B RUNNING B HALTED
stop(B)

start(B)

8 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Principles of Operation

MDILib, and not reported to the debugger. The FROZEN state may be implemented by freezing or disabling a device’s
pipeline whenever a team member enters debug mode, or by linking one element’s debug mode output to another’s
debug interrupt input, but hiding this debug interrupt from its debugger.

The MDIRunState() function shall return MDIStatusRunning whenever a device is not in the HALTED state. It indicates
only that the processing element is capable of running without further intervention from the debugger. A device may be
in the FROZEN state, or multi-threading may have been temporarily disabled by another VPE, or all of its TCs may be
idle, or blocked waiting for some hardware event to occur - but in all cases MDIStatusRunning is returned.

When device A stops running target code and enters debug mode because it hits a breakpoint or its debugger calls
MDIStop(), then device B is stopped automatically and held in the internal FROZEN state. As far as debugger-B is
concerned its processor is still reported to be in the RUNNING state. If device A is instructed to resume execution (i.e.
debugger-A calls MDIExecute or MDIStep), then device B is automatically restarted, again without notifying its
debugger. Only if device A stops, and then device B is explicitly stopped.(i.e. debugger-B calls MDIStop()), are both
reported as HALTED. From that state resuming execution of one or the other leaves its opposite number in the HALTED
state, until its debugger tells it to resume execution too.

While in the FROZEN state a device must continue to respond to all MDI calls that it would have done while in the
RUNNING state, i.e. at least MDIRunState() and MDIStop(). Similarly when a device is in the HALTED state, then it
must be capable of responding to all normal MDI calls, irrespective of the state of the other devices.

For multi-processor aware debuggers, the MDITeamExecute() call will force all team members to be placed
simultaneously (or as simultaneously as possible) into the RUNNING state, irrespective of their previous states.

Figure 3-2 State Transitions for Legacy Team Debugging

A FROZEN
B HALTED

A HALTED
B FROZEN

A RUNNING
B RUNNING

A HALTED
B RUNNING

A HALTED
B HALTED

A RUNNING
B HALTED

sto
p(

B)
sta

rt(
B)

stop(A)

start(A)
sta

rt(
B)

sto
p(

B)

start(A)stop(A)

stop(A)

start(A
)

start(B)

st
op

(B
)

stop = breakpoint/single-step exception, or debugger calls MDIStop()
start = debugger calls MDIExecute() or MDIStep()

FROZEN = processor/VPE freeze or hidden debug mode, MDIRunState() returns MDIStatusRunning
HALTED = debug mode, MDIRunState() returns appropriate "non-running" status
RUNNING = normal execution mode

Actions

States

tstart

tstart = debugger calls MDITeamExecute()

3.2 Multi-processor Debugging

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 9

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

3.2.1.2 MP-Aware Team Debugging

A multi-processor debugger may set the MDICBSync() callback linkage when connecting to an MDILib, to indicate that
it is willing to handle dynamic changes in a device’s state caused by another debugger. See Section 6.1.5, "Synchronize
State: Callback function to synchronize device state changes" on page 22. If the MDICBSync() callback is not null then
the FROZEN state is no longer required, and starting or stopping any team member simply starts or stops the other team
members immediately. If a team member is changed from the HALTED state to the RUNNING state by the action of
another debugger, then its controlling debugger is notified by a call to its MDICBSync() function with a SyncType
argument of MDISyncState.

Figure 3-3 State Transitions for MP-Aware Team Debuggingc

3.2.2 Disabled Multi-processor Devices

A disabled device is one which is incapable of executing instructions, even in debug mode. For a single-threaded CPU
this may mean that it is powered down, or its clocks are switched off. In a multi-threaded CPU it may be a VPE that has
no TCs bound to it.

Connecting to a disabled device requires special handling. The MDITGQuery() and MDIDquery() calls must list the
device even when it is disabled. The calls to MDITGOpen() and MDIOpen() must also succeed. But after that the only
MDI functions which are required to have any useful effect on the device are:

• MDIStop(): Raises a debug interrupt request to the device, so that as soon as it is enabled (presumably by another
device), it will immediately enter debug mode and the HALTED state, before executing any normal instructions.

• MDIRunState(): If the device is disabled after the wait time expires, then returns MDIStatusDisabled. The debugger
can either display an error and terminate the connection, or continue to poll MDIRunState interruptibly until the
device is enabled. A debugger detecting that its device has switched from returning MDIStatusRunning to
MDIStatusDisabled will most likely report that the target program has been terminated, and may disconnect from the
device.

• MDIAttachTM(): It is permitted to attach a disabled device to a team,.even if it hasn’t been opened, but it will be in
a pending state (i.e. pending RUNNING, pending FROZEN or pending HALTED), shadowing the state diagrams
shown above, but with MDIRunState() still returning MDIStatusDisabled. If and when it is enabled then it shall
immediately switch to the equivalent real state and return the appropriate status from MDIRunState(). If it should
later be disabled again, then it will return to the appropriate pending shadow state, returning MDIStatusDisabled.

• MDIReset(): but beware that this resets the whole CPU, not just the VPE to which you are connected..

A RUNNING
B RUNNING

A HALTED
B HALTED

stop = breakpoint/single-step exception, or debugger calls MDIStop()
start = debugger calls MDIExecute() or MDIStep()

HALTED = debug mode, MDIRunState() returns appropriate "non-running" status
RUNNING = normal execution mode

Actions

States

tstart

tstart = debugger calls MDITeamExecute()

stop(A or B)

start(A or B)

10 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Principles of Operation

All other MDI functions which target the device may return MDIErrDisabled.

Note that VPEs which are temporarily prevented from issuing instructions by another VPE, but still have at least one TC
bound to them, are not reported as disabled, but remain in the RUNNING or HALTED states.

4.1 Version: Obtain the supported MDI versions for this MDILib implementation

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 11

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 4

MDI Environment Command Set

4.1 Version: Obtain the supported MDI versions for this MDILib implementation

MDIInt32
MDIVersion (MDIVersionRangeT *versions)

Returns:

Structures:
typedef struct MDIVersionRange_struct {
 MDIVersionT oldest;
 MDIVersionT newest;
} MDIVersionRangeT;

Description:

For the given MDILib implementation, this call retrieves the range of supported MDI specification versions. versions is
a pointer to a structure where the oldest and newest version numbers supported by this MDILib implementation are
returned. All versions between oldest and newest must also be supported. The 32 bit version number is divided into a 16
bit Major field (Bits 31:16) and a 16 bit Minor field (Bits 15:0). The current release of this specification is version
0x000200C. For implementations that only support only one revision of the specification, oldest == newest.

The macro MDICurrentRevision (defined in the mdi.h file) always shows the latest (or current) revision number of this
specification.

4.2 Connect: Establish a connnection to the MDILib

MDIInt32
MDIConnect (MDIVersionT MDIVersion,

MDIHandleT * MDIHandle,
MDIConfigT * Config)

Returns:

MDISuccess No Error, requested data has been returned.

MDIErrParam Invalid parameter.

MDISuccess No Error, handle and configuration have been returned.

MDIErrFailure An unspecified error occurred, connection was not successful.

MDIErrParam Invalid parameter

MDIErrVersion Version is not supported.

MDIErrNoResource Maximum connections has been reached.

MDIErrAlreadyConnected MDI Connection has already been made for this thread.

MDIErrConfig Required debugger callback functions are not present in Config structure.

MDIErrInvalidFunction A callback function pointer is invalid.

12 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 MDI Environment Command Set

Structures:

typedef MDIUint32 MDIVersionT;

typedef MDIUint32 MDIHandleT;

typedef struct MDIConfig_struct {
/* Provided By */
/* Other Comments */
char User[80]; /* Host: ID of caller of MDI */
char Implementer[80]/* MDI: ID of MDI implementer */
MDIUint32 MDICapability; /* MDI: Flags for optional capabilities */

MDIInt32 (__stdcall *MDICBOutput)/* Host: CB fn for MDI output */
 (MDIHandleT Device, MDIInt32 Type,
 char *Buffer, MDIInt32 Count);

MDIInt32 (__stdcall *MDICBInput)/* Host: CB fn for MDI input */
 (MDIHandleT Device, MDIInt32 Type,
 MDIInt32 Mode, char **Buffer,
 MDIInt32 *Count);

MDIInt32 (__stdcall *MDICBEvaluate)/* Host: CB fn for expression eval */
 (MDIHandleT Device, char *Buffer,
 MDIInt32 *ResultType, MDIResourceT *Resource,
 MDIOffsetT *Offset, MDIInt32 *Size, void **Value);

MDIInt32 (__stdcall *MDICBLookup)/* Host: CB fn for sym/src lookup */
 (MDIHandleT Device, MDIInt32 Type,
 MDIResourceT Resource, MDIOffsetT Offset,
 char **Buffer);

MDIInt32 (__stdcall *MDICBPeriodic)/* Host: CB fn for Event processing */
(MDIHandleT Device);

MDIInt32 (__stdcall *MDICBSync)/* Host: CB fn for Synchronizing */
(MDIHandleT Device, MDIInt32 Type,

MDIResourceT Resource);

} MDIConfigT;

/* MDIConfigT.MDICapability flag values, can be OR'ed together */

#define MDICAP_NoParser 0x00000001 /* No command parser */
#define MDICAP_NoDebugOutput 0x00000002 /* No Target I/O */
#define MDICAP_TraceOutput 0x00000004 /* Supports Trace Output */
#define MDICAP_TraceCtrl 0x00000008 /* Supports Trace Control */
#define MDICAP_TargetGroups 0x00000010 /* Supports Target Groups */
#define MDICAP_PDtrace 0x00000020 /* Supports PDtrace functions */
#define MDICAP_TraceFetchI 0x00000040 /* Supports Instr Fetch during Trace */
#define MDICAP_TC 0x00000080 /* Supports Thread Contexts */
#define MDICAP_Teams 0x00000100 /* Supports Teams */

Description:

4.3 Disconnect: Disconnect from the MDILib

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 13

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

This opens the requested connection and is also used to configure and retrieve information about supported MDI
features.

The MDIVersion input parameter is the version of the MDI specification to which this connection will adhere. It will
typically be the highest version number within the version range returned by the MDIVersion() call, that is supported by
the debugger. If MDIVersion is not within the version range returned by MDIVersion(), MDIConnect() will return
MDIErrVersion and the connection will not be made.

On input, Config->User contains a null-terminated ASCII character string identifying the debugger to the MDILib. The
Implementor string is returned by the MDILib. The User and Implementer strings are arbitrary, but it is recommended
that the strings include the name of the vendor of the debugger and MDILib. They are intended to allow the debugger
and MDILib to determine if the other is a known implementation, perhaps to enable vendor-specific extensions. (No
feature extensions may use public names beginning with the characters “MDI” or “Mdi”. These are reserved for the MDI
specification.)

The two values, Config->MDICBOutput and Config->MDICBInput are set to the addresses of the call-back functions
that the debugger must provide for I/O. If these are NULL, then the MDILib returns the MDIErrConfig error condition.
The other four callback functions (Config->MDICBEvaluate, Config->MDICBLookup, Config->MDICBPeriodic, and
Config->MDICBSync) are optional. If these are not implemented, the debugger must initialize these values to NULL.

On output, the MDILib returns an unique handle, MDIHandle for the connection. This must be used in all future
interactions of this debugger to the MDILib. Since multiple debuggers are allowed to simulateneously talk to the
MDILib, this allows the MDILib to know which debugger is making any specific request.

Zero or more of the following flag values specifying MDILib capabilities are OR'ed together into
Config->MDICapability. The intent is to allow a GUI debugger to disable user interface elements not supported by the
MDILib connection.

4.3 Disconnect: Disconnect from the MDILib

MDIInt32
MDIDisconnect(MDIHandleT MDIHandle,

 MDIUint32 Flags)

Returns:

MDICAP_NoParser MDILib has no command parser (see MDIDoCommand())

MDICAP_NoDebugOutput MDILib will not call MDICBOutput()

MDICAP_TraceOutput Capable of producing Trace Output

MDICAP_TraceCtrl Capable of controlling Trace

MDICAP_TargetGroups Capable of executing Target Group commands

MDICAP_PDtrace Capable of supporting PDtrace

MDICAP_TraceFetchI Capable of supporting Instruction Fetch during trace

MDICAP_TC Capable of supporting thread contexts

MDICAP_Teams Capable of supporting teams

MDISuccess No Error

MDIErrMDIHandle Invalid MDI Handle

MDIErrParam Invalid flags value

MDIErrWrongThread Call was not made by the connected thread.

14 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 MDI Environment Command Set

Structures:

Flags:

Description:

Disconnect from the MDILib after first closing any open Target Groups and Devices associated with this connection. It
must be possible to disconnect even when some or all of the Devices on a multi-processor core are disabled. All team
data associated with this MDILib should be retained until the final debugger disconnects from the library.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDICurrentState Close all open target groups and target devices

MDIResetState Place all open target devices in reset, then close all open target groups and target devices

5.1 Target Group Query: Retrieves the names of the defined target groups.

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 15

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5

Target Group Command Set

A collection of devices can form a target group. For example, all the processors in a multiprocessor implementation
might be a target group, while each individual processor would be one device in this target group. Or, in another
implementation the target group could comprise of the main processor core and the DSP.

The MDILib may optionally support the ability to perform certain operations on a target group. If so, it will set the
MDICAP_TargetGroups flag in Config->MDICapability. If this flag is set, then it implies not only that the MDILib
supports target group calls, but that there is at least one target group present. Hence, if this flag is set, the debugger must
use the function calls in this group to get a list of target groups and open the required group before it can query and open
a specific device within that group.

If the Config->MDICapability flag is not set, the debugger is required to bypass all the function calls in this command
set and proceed directly to the device query call, MDIDQuery(). For MDILib implementations that do not support group
operations, all Target Group functions will return MDIErrUnsupported.

5.1 Target Group Query: Retrieves the names of the defined target groups.

MDIInt32
MDITGQuery (MDIHandleT MDIHandle,

MDIInt32 *HowMany,
MDITGDataT *TGData)

Returns:

Structures:

typedef struct MDITGData_struct {
 MDITGIdT TGId;
 char TGName[81];
} MDITGDataT;

Description:

MDIHandle must be the value returned by a previous MDIConnect() call.

If the requested number of target groups (*HowMany) is 0, the function returns no error (MDISuccess) and *HowMany
is set to the number of available target groups. If *HowMany is non-zero on entry, it specifies the number of elements
in the TGData array being passed in. The function fills in the TGData array with information for up to *HowMany target
groups and sets *HowMany to the number filled in. If there is not enough room in the TGData array to hold all the

MDISuccess No Error, requested data has been returned

MDIErrMDIHandle Invalid MDI Handle

MDIErrParam Invalid parameter

MDIErrMore More target groups defined than requested

MDIErrWrongThread Call was not made by the connected thread.

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

16 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 Target Group Command Set

available target groups, MDIErrMore is returned. If the debugger then calls MDITGQuery() again before any other MDI
functions are called, information is returned for the next *HowMany target groups.

Target groups are identified by a null terminated ASCII string (TGData->TGName) and a unique target group ID
(TGData->TGId). The strings are intended to be descriptive, but they are MDILib implementation-specific and the
debugger should not interpret this or rely on this for any implementation-specific information. It is simply displayable
text that names the target group. It is intended that the debugger should show these target group names to the user for
selection of the target group to be opened. The string name may not be more than 80 characters excluding the null
terminator.

Information about groups within a multi-processor shall be returned even when a group is disabled and awaiting
initialization by another device.

The target group ID (TGData->TGId) is used in the MDITGOpen() function to select the specific target group.

5.2 Target Group Open: Opens a target group

MDIInt32
MDITGOpen (MDIHandleT MDIHandle,

MDITGIdT TGId,
MDIUint32 Flags,
MDIHandleT *TGHandle)

Returns:

Structures:

 Flags:

Description:

MDIHandle must be the value returned by the previous MDIConnect call. MDILib implementations are not required to
support shared access to a Target Group.

Flags is set to MDIExclusiveAccess if the debugger wants exclusive control over any open devices in this target group;
otherwise Flags is set to MDISharedAccess to allow other debuggers to open devices in this target group. If shared
access is not supported by the target group, an attempt to open a Target Group already opened by another debugger will
return MDIErrNoResource even if both the open calls requested shared access.

MDISuccess No Error, *TGHandle has been set to the target group handle

MDIErrFailure An unspecified error occurred, open was not successful

MDIErrParam Invalid parameter

MDIErrTGId Invalid TGId

MDIErrNoResource The TG has already been opened by another debugger either on an exclusive
basis, or the TG does not support shared access

MDIErrWrongThread Call was not made by the connected thread

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDISharedAccess Shared Access

MDIExclusiveAccess Exclusive Access

5.3 Target Group Close: Close a previously opened target group

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 17

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

The handle returned in *TGHandle is used to reference this target group. If the debugger does not support group execute
operation (MDITGExecute()) and is connected to an MDILib that does, then the debugger should open the selected
target group with exclusive access to avoid the possibility that devices opened by the current debugger could be affected
by group execute commands issued by another debugger.

It must be possible to open a target group within a multi-processor when that group is disabled and awaiting initialization
by another device.

5.3 Target Group Close: Close a previously opened target group

MDIInt32
MDITGClose (MDIHandleT TGHandle,

MDIUint32 Flags);

Returns:

Structures:

Flags:

Description:

Any open devices in the group will be first closed automatically before the target group is closed.

It must be possible to close a target group within a multi-processor even when that group is disabled and awaiting
initialization by another device.

Beware that using MDIResetState will reset all VPEs within a multi-threaded CPU, not just the connected VPE.

5.4 Target Group Execute: Place in execution mode the appropriate devices in the target group

MDIInt32
MDITGExecute (MDIHandleT TGHandle);

Returns:

MDISuccess No Error

MDIErrTGHandle Invalid Target Group handle

MDIErrParam Invalid Flags parameter

MDIErrWrongThread Call was not made by the connected thread

MDIErrTargetRunning Service cannot be performed at this time because the target program is running

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDICurrentState Leave in current state

MDIResetState Reset all target devices

MDISuccess No Error

MDIErrFailure Unable to perform group execute

MDIErrTGHandle Invalid target group handle

18 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 Target Group Command Set

Description:

Place all the devices in the specified target group that have been configured for target group control in a run state and
run them. There is no need to call this function if there is only one device in a target group, it suffices to call the device
run command (Section 6.4.1, "Execute: Place the device into its RUNNING state" on page 33).

5.5 Target Group Stop: Stop execution for all appropriate devices in the target group

MDIInt32
MDITGStop (MDIHandleT TGHandle)

Returns:

Description:

Stop the execution of all those devices in the target group that have been configured for target group control.

Issuing a stop request to a target group within a multi-processor is permitted even if that group is disabled and awaiting
initialization by another device. The stop request should be serviced as soon as the group is enabled.

MDIErrWrongThread Call was not made by the connected thread

MDIErrTargetRunning Service cannot be performed at this time because the target program is running

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDIErrDisabled Service cannot be performed because the target group is disabled

MDISuccess No Error

MDIErrFailure Unable to perform group stop

MDIErrTGHandle Invalid target group handle

MDIErrWrongThread Call was not made by the connected thread

MDIErrTargetRunning Service cannot be performed at this time because the target program is running

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

6.1 Session Control

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 19

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6

Device Command Set

The device command set is subdivided into the following sections:

• Section 6.1, "Session Control" on page 19 has commands used to identify and select the necessary device to
open, control, and support debugger event processing and multiple debugger synchronization.

• Section 6.2, "Resource Addresses" on page 23 defines device resources and how they can be accessed.

• Section 6.3, "Resource Access" on page 23 has commands that access device resources.

• Section 6.4, "Run Control" on page 33 has commands that control a device.

• Section 6.5, "Breakpoints" on page 38 has commands that establish and maintain breakpoints within a device.

6.1 Session Control

6.1.1 Device Query: Retrieves information about the devices

MDIInt32
MDIDQuery (MDIHandleT Handle,

MDIInt32 *HowMany,
MDIDDataT *DData)

Structures:
typedef struct MDIDData_Struct {
 MDIDeviceIdT Id;
 char DName[81];
 char Family[15];
 char FClass[15];
 char FPart[15];
 char FISA[15];
 char Vendor[15];
 char VFamily[15];
 char VPart[15];
 char VPartRev[15];
 char VPartData[15];
 char Endian;
} MDIDDataT;

Returns:

MDISuccess No Error

MDIErrTGHandle Invalid target group handle

MDIErrParam Invalid parameter

MDIErrMore More devices defined than requested

MDIErrWrongThread Call was not made by the connected thread.

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

20 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 Device Command Set

Description:

If the requested number of devices (*HowMany) is 0, the function returns no error (MDISuccess) and *HowMany is set
to the number of devices in the target group. If *HowMany is non-zero on entry, it specifies the number of elements in
the DData array being passed in. The function fills in the DData array with information for up to *HowMany devices
and sets *HowMany to the number filled in. If there is not enough room in the DData array to hold all the available
devices, MDIErrMore is returned. If the debugger then calls MDIDQuery again before any other MDI functions are
called, information is returned for the next *HowMany devices.

Retrieves the general configuration information about the devices in the target group, or all devices if the MDILib does
not support Target Groups.

If the MDILib implementation did not set the MDICAP_TargetGroups capability, Handle must be the MDIHandle
returned by the previous MDIConnect() call. Otherwise Handle must be the TGHandle returned by a previous
MDITGOpen call.

DData->DName is an 80 character plus null terminated ASCII string that describes and identifies a device available for
connection. Its value is determined by the MDILib and debuggers should not attempt to interpret the data. When more
than one device is available, it is intended that the debugger will display the DName strings to allow the user to select
the desired device. DData->Id is a unique device ID assigned by the MDILib, and used by the debugger to specify the
desired device to MDIOpen().

Information about devices within a multi-processor shall be returned even when a device is disabled and awaiting
initialization by another device.

Devices are also identified by family, class, generic part, vendor, vendor family, vendor part, vendor part revision and
vendor part specific fields. All of these fields are ASCII strings with a maximum length of 15 characters including null
termination. Any excess bytes in the field beyond the null termination will be set to zero to facilitate using a memory
compare function to determine if the device is supported by the debugger.

DData->Family is the type of device. Valid values for DData->Family are part of the generic MDI specification. The
only values currently specified are MDIFamilyCPU ("CPU") and MDIFamilyDSP ("DSP"). DData->FClass further
isolates the device type (E.g., MIPS, PPC, X86, etc.). DData->FPart is the industry common name for the processor.
(LR4102, NEC5440, 80486). DData->FISA is the "Instruction Set Architecture" supported by the device (MIPS I,
MIPS IV). Valid values for DData->FClass and DData->FISA are architecture-specific and are listed in the
corresponding Appendix. DData->Vendor identifies the device manufacturer or IP vendor. DData->VFamily,
DData->VPart, DData->VPartRev, and DData->VPartData are vendor specific values intended to refine the generic
part. It is intended that device vendors will publish a list of standard values for these fields for each of their devices.

Debugger and MDILib implementations may have their own mechanism for configuring the device type and are not
required to make any use of the architecture- and vendor-specific values; however, if they do make any use of these
fields, they are required to document which fields are inspected and what values they look for.

6.1.2 Open: Opens a device.

MDIInt32
MDIOpen (MDIHandleT Handle,

MDIDeviceIdT DeviceID,
MDIUint32 Flags,
MDIHandleT * DeviceHandle)

Structures:

6.1 Session Control

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 21

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Flags:

Returns:

Description:

If the MDILib implementation did not set the MDICAP_TargetGroups capability, Handle must be the MDIHandle
returned by the previous MDIConnect call; otherwise Handle must be the TGHandle returned by a previous
MDITGOpen() call.

The returned handle is used to reference this device in all other target device commands. Devices that are opened for
shared access may be opened by another debugger. Debuggers may be kept in sync via the call back function
MDICBSync. MDILib implementations are not required to support shared access to a Device. If shared access is not
supported, an attempt to open a Device already opened by another debugger will return MDIErrNoResource even if both
opens specified shared access.

It must be possible to open a device within a multi-processor when that device is disabled and awaiting initialization by
another device.

6.1.3 Close: Closes a device.

MDIInt32
MDIClose (MDIHandleT DeviceHandle,

MDIUint32 Flags)

Structures:

Flags:

Returns:

MDISharedAccess Shared Access

MDIExclusiveAccess Exclusive Access

MDISuccess No Error. Device handle is returned in DeviceHandle

MDIErrFailure An unspecified error occurred, open was not successful

MDIErrDeviceId Invalid Device ID

MDIErrParam Invalid parameter

MDIErrHandle Invalid target group or connection handle specified

MDIErrNoResource Device already opened, either exclusively or shared access is not supported

MDIErrWrongThread Call was not made by the connected thread.

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDICurrentState Leave in current state

MDIResetState Reset target device

MDISuccess No Error

MDIErrFailure Unable to close for an unspecified reason

MDIErrParam Invalid flags parameter

MDIErrDevice Invalid device handle specified

22 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 Device Command Set

Description:

It must be possible to close a target group within a multi-processor even when that group is disabled and awaiting
initialization by another device.

It must be possible to close a device within a multi-processor even when that device is disabled and awaiting
initialization by another device.

Beware that using MDIResetState will reset all VPEs within a multi-threaded CPU, not just the connected VPE.

6.1.4 Process Events: Callback function to process periodic events

MDIInt32
MDICBPeriodic (MDIHandleT DeviceHandle)

Returns:

Description:

This call-back function is optionally implemented by the debugger. Its address, or NULL if it is not implemented, is
passed to the MDILib in Config->MDICBPeriodic when MDIConnect is called. The purpose of this call-back is to give
the debugger a chance to process user events during a long-running MDI service call. If the debugger implements this
function, the MDILib is required to call it at least every 100 milliseconds. At this point the debugger may cancel the
current MDI command by calling MDIAbort, update user interfaces or do other debugger maintenance. It may not call
any MDI functions other than MDIAbort.

6.1.5 Synchronize State: Callback function to synchronize device state changes

MDIInt32
MDICBSync (MDIHandleT Device,

MDIInt32 SyncType,
MDIResourceT SyncResource)

Structures:

SyncType:

typedef MDIUint32 MDIResourceT;

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDISuccess No Error

MDIErrDevice Invalid device handle

MDISyncBP

MDISyncState

MDISyncWrite

6.2 Resource Addresses

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 23

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Returns:

Description:

This call-back function is optionally implemented by debuggers. Its address, or NULL if it is not implemented, is passed
to the MDILib in Config->MDICBSync when MDIConnect() is called. The purpose of this callback is to inform an MDI
application of device state changes caused by MDI functions performed by others when a device has been opened in
MDISharedAccess mode by multiple MDI applications, or is a member of a multi-processing team. The reported device
state changes keep the application informed of resource, break point and run state changes that have occurred in the
target.

When the MDILib receives a command that modifies the current breakpoint settings, all sharing MDI applications with
MDICBSync() call-back functions will receive an MDICBSync() call with SyncType set to MDISyncBP. The
SyncResource parameter will be set to 0.

When the MDILib receives a command that modifies the current run state of the device, all sharing MDI applications
with MDICBSync call-back functions will receive an MDICBSync() call with SyncType set to MDISyncState. The
SyncResource parameter will be set to 0.

When the MDILib receives a command that modifies a resource (MDIWrite, MDIWriteList, MDIFill, MDIMove), all
sharing MDI applications with MDICBSync() call-back functions will receive an MDICBSync() call with SyncType set
to MDISyncWrite, and SyncResource set to the resource that has been modified.

Actions to be taken by the MDI Application are application dependent, but could include querying the MDILib for
current run state, BP list, or resource values.

6.2 Resource Addresses

Device resources (e.g. memory and registers) are identified by their address. An address consists of an offset and a space
(resource number). The space is a 32-bit unsigned integer specifying the type of resource (address “space”), and the
offset is a 64-bit unsigned integer specifying the location of a specific storage unit within that space. The interpretation
of the offset is determined by the space. The list of specific resource numbers, and the corresponding interpretation of
the offset and meaning of the address, is architecture dependent; however, the MDI specification assumes that the offset
for "memory like" resources will be a byte offset while the offset for "register like" resources will be a "register number".
This distinction is important for alignment considerations.

6.3 Resource Access

The functions in this section allow target resources (memory and registers) to be inspected, set, and manipulated. The
following parameter descriptions apply to all of these functions:

MDISuccess No Error

MDIErrDevice Invalid device handle

MDIHandleT Device Device handle.

MDIResourceT SrcResource Source resource address space for data provided from the device.

MDIOffsetT SrcOffset Source resource address offset for data provided from the device.

MDIResourceT DstResource Destination resource address space for data provided from the device.

MDIOffsetT DstOffset Destination resource address offset for data provided from the device.

24 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 Device Command Set

Device data is always passed as a packed array of Count elements, with each element in device byte order (endian). The
size of each element is given by ObjectSize. For register type resources where ObjectSize is less than the actual size of
the registers being addressed, the low order ObjectSize bytes of each register is returned by read operations and each
value is either sign-extended or zero-extended to the register size by write operations; this is architecture-specific. For
register type resources where ObjectSize is greater than the actual size of the registers being addressed, each register
value is either sign-extended or zero-extended to ObjectSize bytes by read operations and the high order bytes of each
value are ignored by write operations.

For resources which are duplicated by each thread context, such as the general purpose registers, the current MDI TC
ID is used to select which TC’s registers to access. See Section 9.1.1, "Set Thread Context: Sets the current MDI thread
context ID" on page 65.

6.3.1 Read: Reads a contiguous range of data from the specified resource on the device.

MDIInt32
MDIRead (MDIHandleT Device,

MDIResourceT SrcResource,
MDIOffsetT SrcOffset,
void * Buffer,
MDIUint32 ObjectSize,
MDIUint32 Count)

Structures:

typedef MDIUint64 MDIOffsetT;

Returns:

MDIUint32 ObjectSize

Size of each object being referenced by the Src and/or Dst address.
Where applicable and possible, the device should perform the actual
read or write accesses with bus cycles having the specified size. For
memory mapped resources, the offset is required to be aligned
appropriately for the object size. Valid values for ObjectSize are:

MDIUint32 Count
The number of objects to be accessed. For memory-mapped
resources, if ObjectSize is 0 then Count is to be interpreted as a byte
count.

void * Buffer

The address of a host data buffer supplying or receiving the device
data. The buffer must be large enough to hold all the data. The buffer
pointer must remain valid until the MDILib function to which it is
passed has returned.

MDISuccess No Error, requested data has been returned or resource address validated

MDIErrFailure Unable to perform read operation. This implies a probe hardware failure or some
such fatal reason.

MDIErrDevice Invalid device handle

0 Valid only for memory mapped resources.
Object size is 1. The device data can be read or
written in the most efficient manner

1 Byte (8-bit)

2 Half-word (16-bit)

4 Word (32-bit)

8 Double word (64-bit)

6.3 Resource Access

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 25

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Description:

Note that it is valid, and useful, to call MDIRead() with Count set to 0. In this case, no data is transferred and the return
value can be checked to determine whether the address is valid and access to the resource is supported. The MDILib is
required to validate the address and return MDIErrSrcResource, MDIErrInvalidSrcOffset, or
MDIErrSrcOffsetAlignment as appropriate, even when Count is 0. When there are no errors, then MDISuccess is
returned even if no data is returned.

Note that it is the responsibility of the debugger to have allocated Buffer of the appropriate size before calling
MDIRead().

6.3.2 Write: Writes a contiguous range of data to the specified resource on the device.

MDIInt32
MDIWrite (MDIHandleT Device,

MDIResourceT DstResource,
MDIOffsetT DstOffset,
void *Buffer,
MDIUint32 ObjectSize,
MDIUint32 Count)

Returns:

MDIErrSrcResource SrcResource is an invalid or unsupported resource type, for example, the device
in question might not have a secondary or tertiary cache.

MDIErrInvalidSrcOffset SrcOffset is invalid for the specified resource, that is out of range.

MDIErrSrcOffsetAlignment SrcOffset is not correctly aligned for the specified ObjectSize

MDIErrSrcCount Specified Count and SrcOffset reference space that is outside the scope for the
given resource. No objects were returned

MDIErrWrongThread Call was not made by the connected thread

MDIErrTargetRunning Service cannot be performed at this time because the target program is running

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDISuccess No Error, requested data has been written

MDIErrFailure Unable to perform write operation. This implies a probe hardware failure or
some such fatal reason.

MDIErrDevice Invalid device handle

MDIErrDstResource
DstResource is an invalid or unsupported resource type, for example, the
specified device might not have floating-point registers, if there is no floating
point unit.

MDIErrInvalidDstOffset DstOffset is invalid for the specified resource

MDIErDstOffsetAlignment DstOffset is not correctly aligned for the specified ObjectSize

MDIErrDstCount Specified Count and DstOffset reference space that is outside the scope for the
given resource. No objects were written.

MDIErrWrongThread Call was not made by the connected thread

MDIErrTargetRunning Service cannot be performed at this time because the target program is running

MDIErrDisabled Service cannot be performed because the device is disabled

26 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 Device Command Set

Description:

6.3.3 Read List: Read a set of values

MDIInt32
MDIReadList (MDIHandleT Device,

MDIUint32 ObjectSize,
MDICRangeT *SrcList,
MDIUint32 ListCount,
void *Buffer)

Structures:
typedef struct MDICRange_struct {
 MDIOffsetT Offset;
 MDIResourceT Resource;
 MDIInt32 Count;
} MDICRangeT;

Returns:

Description:

Read a set of values from a list of address ranges on the device. The list may contain different resource types, but a single
ObjectSize must apply to all objects in the list.

SrcList is an array of object descriptors, each of which includes an address (Resource and Offset) and the number of
objects to read. ListCount is the number of entries in the SrcList array.

6.3.4 Write List

MDIInt32

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDISuccess No Error, requested data has been returned

MDIErrFailure Unable to perform read operation. This implies a probe hardware failure or some
such fatal reason.

MDIErrDevice Invalid device handle

MDIErrSrcResource Invalid or unsupported resource type in SrcList

MDIErrInvalidSrcOffset Offset is invalid for the specified resource, i.e., it is out of range.

MDIErrSrcOffsetAlignment Offset is not correctly aligned for the specified ObjectSize

MDIErrSrcCount Specified Count and SrcOffset reference space that is outside the scope for the
given resource.

MDIErrWrongThread Call was not made by the connected thread

MDIErrTargetRunning Service cannot be performed at this time because the target program is running

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

6.3 Resource Access

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 27

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

MDIWriteList (MDIHandleT Device,
MDIUint32 ObjectSize,
MDICRangeT * DstList,
MDIUint32 ListCount,
void *Buffer)

Returns:

Description:

Write a set of values to a list of address ranges on the device. The list may contain different resource types, but a single
ObjectSize must apply to all objects in the list.

DstList is an array of object descriptors, each of which includes an address (Resource and Offset) and the number of
objects to write. ListCount is the number of entries in the DstList array.

6.3.5 Move: Move data from one resource to another on the device

MDIInt32
MDIMove (MDIHandleT Device,

MDIResourceT SrcResource,
MDIOffsetT SrcOffset,
MDIResourceT DstResource,
MDIOffsetT DstOffset,
MDIUint32 ObjectSize,
MDIUint32 Count,
MDIUint32 Direction);

Structures:

Direction

MDISuccess No Error, requested data has been written

MDIErrFailure Unable to perform write operation. This implies a probe hardware failure or
some such fatal reason.

MDIErrDevice Invalid device handle

MDIErrDstResource DstResource is an invalid or unsupported resource type, for example, the device
might not have floating-point registers.

MDIErrInvalidDstOffset DstOffset is invalid for the specified resource

MDIErDstOffsetAlignment DstOffset is not correctly aligned for the specified ObjectSize

MDIErrDstCount Specified Count and DstOffset reference space that is outside the scope for the
given resource. No objects were written.

MDIErrWrongThread Call was not made by the connected thread

MDIErrTargetRunning Service cannot be performed at this time because the target program is running

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDIMoveForward Start to End

MDIMoveBackward End to Start

28 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 Device Command Set

Returns:

Description:

Moves data from one resource to another resource on the device. If Direction is set to MDIMoveForward the move will
be done starting from the beginning of the range until the end is reached. If Direction is set to MDIMoveBackward, the
move will be done backwards starting from the end of the range to the beginning.

6.3.6 Fill: Fill the specified resource on the device with a pattern.

MDIInt32
MDIFill (MDIHandleT Device,

MDIResourceT DstResource,
MDIRangeT DstRange,
void *Buffer,
MDIUint32 ObjectSize,
MDIUint32 Count);

Structures:
typedef struct MDIRange_struct {
 MDIOffsetT Start;
 MDIOffsetT End;
} MDIRangeT;

Returns:

MDISuccess No Error, requested data has been moved.

MDIErrFailure Unable to perform read operation.

MDIErrDevice Invalid device handle.

MDIErrSrcResource SrcResource is an invalid or unsupported resource type.

MDIErrInvalidSrcOffset SrcOffset is invalid for the specified SrcResource.

MDIErrSrcOffsetAlignment SrcOffset is not correctly aligned for the specified ObjectSize.

MDIErrSrcCount Specified Count and SrcOffset reference space that is outside the scope for the
given SrcResource.

MDIErrDstResource DstResource is an invalid or unsupported resource type.

MDIErrInvalidDstOffset DstOffset is invalid for the specified DstResource.

MDIErDstOffsetAlignment DstOffset is not correctly aligned for the specified ObjectSize.

MDIErrDstCount Specified Count and DstOffset reference space that is outside the scope for the
given resource.

MDIErrAbort Command was aborted in response to an MDIAbort call.

MDIErrWrongThread Call was not made by the connected thread

MDIErrTargetRunning Service cannot be performed at this time because the target program is running

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDISuccess No Error, requested data has been written.

MDIErrFailure Unable to perform fill operation.

6.3 Resource Access

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 29

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Description:

The pattern is an array of Count objects of size ObjectSize. It is not required that the destination range be an exact
multiple of the pattern size. ObjectSize must be non-zero. The MDILib is required to support this function only for
memory-mapped resources, and up to a maximum Count of 256.

6.3.7 Find: Find a pattern in a resource

MDIInt32
MDIFind (MDIHandleT Device,

MDIResourceT SrcResource,
MDIRangeT SrcRange,
void *Buffer,
void *MaskBuffer,
MDIUint32 ObjectSize,
MDIUint32 Count,
MDIOffsetT *FoundOffset,
MDIUint32 Mode)

Structures:

Search mode:

Returns:

MDIErrDevice Invalid device handle.

MDIErrDstResource DstResource is an invalid or unsupported resource type.

MDIErrInvalidDstOffset DstRange is invalid for the specified resource.

MDIErDstOffsetAlignment DstOffset is not correctly aligned for the specified ObjectSize

MDIErrDstCount Specified Count and DstOffset reference space that is outside the scope for the
given resource. No objects were written.

MDIErrAbort Command was aborted in response to an MDIAbort call.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

MDIMatchForward Match specified Pattern, searching forward from the start address.

MDIMismatchForward Matches anything that is not the specified Pattern, searching forward from the
start address.

MDIMatchBackward Matches specified Pattern, searching backward from the end address.

MDIMismatchBackward Matches anything that is not the specified Pattern, searching backward from the
end address.

MDISuccess No Error, requested pattern match has been found at the address returned in
FoundOffset.

MDINotFound No Error, entire range was searched without finding a pattern match.

MDIErrFailure Unable to perform find operation

MDIErrDevice Invalid device handle.

30 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 Device Command Set

Description:

Finds an optionally masked pattern in a resource. The resource address range is searched for a match or mismatch with
a pattern consisting of Count values of size ObjectSize, possibly masked. ObjectSize must be non-zero. Buffer is an array
of Count values to compare. MaskBuffer is the array of Count mask values to apply before comparing, or NULL if no
masking is desired. The search can be forwards or backwards through the specified range. If a match is found, the
starting offset of the match is returned in *FoundOffset.

The MDILib is required to support this function only for memory-mapped resources, and up to a maximum Count of
256.

6.3.8 Query Cache: Retrieve cache attributes

MDIInt32
MDICacheQuery (MDIHandleT Device,

MDICacheInfoT CacheInfo[2]);

Structures:
typedef struct MDICacheInfo_struct {
 MDIInt32 Type;
 MDIUint32 LineSize; // Bytes of data in a cache line
 MDIUint32 LinesPerSet; // Number of lines in a set
 MDIUint32 Sets; // Number of sets
} MDICacheInfoT;

Returns:

Description:

Retrieve the attributes of the caches, if present, on the target device. MDILibs are encouraged, but not required to return
useful information.

MDIErrSrcResource Invalid Resource type.

MDIErrInvalidSrcOffset SrcRange is invalid for the specified SrcResource.

MDIErrSrcOffsetAlignment SrcOffset is not correctly aligned for the specified ObjectSize.

MDIErrAbort Command was aborted in response to an MDIAbort call.

MDIErrWrongThread Call was not made by the connected thread

MDIErrTargetRunning Service cannot be performed at this time because the target program is running

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDISuccess No Error, cache information has been returned.

MDIErrFailure Unable to perform the query operation.

MDIErrDevice Invalid device handle.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

6.3 Resource Access

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 31

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Information is returned in the CacheInfo array for up to two caches. If it exists and the information is available, the first
element will contain information about the primary unified or instruction cache and CacheInfo[0]. Type will be set to
MDICacheTypeUnified or MDICacheTypeInstruction. If it exists and the information is available, the second element
will describe a separate data cache and CacheInfo[1].Type will be set to MDICacheTypeData. If there is no such cache,
or no information is available, the CacheInfo.Type member will be set to MDICacheTypeNone.

6.3.9 Get Cache Details: Get Information about the Specified Cache

MDIInt32
MDICacheInfo (MDIHandleT Device,

MDIResourceT Resource,
MDICacheInfoT *CacheInfo)

Returns:

Description:

Retrieve the attributes of the cache specified by Resource, if present, on the target device. MDILibs are encouraged, but
not required to return useful information. CacheInfo points to a single MDICacheInfoT structure. This function is a
specialized version of the MDICacheQuery() function described above.

Note that unified caches should return information for instruction cache only, with CacheInfoT->Type set to
MDICacheTypeUnified. In this case, MDIErrNoResource is returned for a data cache (since the unified cache resources
share the same resource number as the instruction cache).

6.3.10 Cache Flush: Write back and/or invalidate the cache

MDIInt32
MDICacheFlush (MDIHandleT Device,

MDIUint32 Type,
MDIUint32 Flags);

Structures:

Returns:

MDISuccess No Error, cache information has been returned.

MDIErrFailure Unable to perform the query operation.

MDIErrDevice Invalid device handle.

MDIErrNoResource The named resource is not a cache, or the named cache does not exist.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

MDICacheWriteBack Write Back All Dirty Cache Lines if set.

MDICacheInvalidate Invalidate All Cache Lines if set.

MDISuccess No Error, cache operation is complete.

MDIErrFailure Requested cache operation cannot be performed.

MDIErrDevice Invalid device handle.

32 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 Device Command Set

Description:

Type is set to MDICacheTypeUnified, MDICacheTypeInstruction, or MDICacheTypeData to specify which cache to
operate on. Flags indicate the operations to perform with values potentially OR'ed together, If Flags specifies both a
write back and invalidate, the write back will happen before the invalidate.

6.3.11 Cache Operation: Do Specified Operation on Specified Cache

MDIInt32
MDICacheOp (MDIHandleT Device,

MDIResourceT Resource,
MDIInt32 Type,
MDIResourceT AddrResource,
MDIOffsetT Offset,
MDIUint32 Size);

Structures:

op:

Returns:

Description:

Resource specifies which cache to operate on. Type indicates the operation to perform with one of MDICacheHit or
MDICacheIndex OR'ed in. AddrResource specifies the address resource and the Offset depends on the type of operation

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

MDICacheWriteBack Write back dirty cache lines specified. 0x01

MDICacheInvalidate Invalidate cache lines specified. 0x02

MDICacheWBInval Write back and invalidate dirty cache lines specified. 0x03

MDICacheLock Lock the lines of cache specified 0x05

MDICacheHit Do one of the above 5 operations for the virtual address range specified
by offset. 0x00

MDICacheIndex Do one of the above 5 operations for the index range specified by offset. 0x80

MDISuccess No Error, cache operation is complete.

MDIErrFailure Requested cache operation cannot be performed.

MDIErrDevice Invalid device handle.

MDIErrUnsupported The specified op flag is not supported.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

6.4 Run Control

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 33

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

(a virtual address of hit operations, or a physical address of index operations). Size specifies the size of the address region
in bytes, starting at the specified offset to which to apply the operation.

6.3.12 Cache Sync: Synchronize the caches

MDIInt32
MDICacheSync (MDIHandleT Device

MDIResourceT AddrResource,
MDIOffsetT Offset,
MDIUint32 Size);

Returns:

Description:

This is a comprehensive synchronize call that for the entire cache hierarchy writes back dirty data cache lines and
invalidates instruction caches. This routine allows the software to be worry-free with respect to the details of the cache
hierarchy and the method by which the hierarchy can be brought to a known state. Some architectures provide a
convenenient instruction or some other hardware mechanism by which to achieve this synchronization. This call is
meant to invoke that architecture-specific mechanism. For example, in the MIPS32 Release 2 architecture, this routine
would invoke the "synci" instruction over the specified address range.

6.4 Run Control

The debugger requests device execution by calling MDIExecute() or MDIStep(). It must then periodically call
MDIRunState() to monitor the status of the target until execution halts. If the CPU has not started running before
MDIRunState completes, then it returns MDIStatusNotRunning. In general, the actual target execution will have begun
by the time MDIExecute() returns and the requested number of steps will have been executed by the time MDIStep()
returns, but this is not required to be the case. For example some types of target systems such as simulators may not
behave this way. The actual execution may only take place during the MDIRunState() calls. Also, it is only during
MDIRunState() calls that the MDILib is able to service I/O requests and other events that the target debug environment
may support. Debuggers that do not support user operations while the target is executing will usually tell MDIRunState()
to wait indefinitely; otherwise, the debugger should call MDIRunState() as frequently as possible with a fairly short wait
interval.

6.4.1 Execute: Place the device into its RUNNING state

MDIInt32
MDIExecute (MDIHandleT Device)

MDISuccess No Error, cache operation is complete.

MDIErrFailure Requested cache operation cannot be performed.

MDIErrDevice Invalid device handle.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

34 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 Device Command Set

Returns:

Description:

If there is a breakpoint set on the first instruction to be executed, it should not be taken. In other words, at least one
instruction should always be executed as a result of an MDIExecute() call. If there are cases where this may not happen,
the MDILib implementation must document the circumstances.

The behavior of the device and its TCs (if any) upon returning to RUNNING state is governed by any previous calls to
the MDISetRunMode() function, see Section 9.2, "Set Run Mode: Specify behavior when returning to the RUNNING
state" on page 67. Multi-processor aware debuggers may use the MDITeamExecute() function, described in Section
9.3.8, "Team Execute: Place all team members into RUNNING state" on page 72.

6.4.2 Step: Single steps the device

MDIInt32
MDIStep (MDIHandleT Device,

MDIUint32 Steps,
MDIUint32 Mode)

Structures:

Returns:

Description:

Initiates the execution of the specified number of instructions in the specified mode.

MDISuccess No Error, device is in its RUNNING state.

MDIErrFailure Device cannot be set to its RUNNING state.

MDIErrDevice Invalid device handle.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

MDIStepInto Step Into

MDIStepForward Step Forward

MDIStepOver Step Over

MDISuccess No Error, stepping is initiated.

MDIErrFailure Device refuses to single step.

MDIErrDevice Invalid device handle.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

6.4 Run Control

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 35

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

In Step Into mode, there is no special handling of procedure calls, interrupts, traps or exceptions. If an interrupt or
exception is pending when a step is initiated, and the target system supports stepping through interrupt handlers, the
actual instruction stepped may be the first instruction in the handler rather than the instruction at the PC. In environments
where interrupts are occurring faster than the time it takes to step through the interrupt handler, it may not be possible
to make any progress in the foreground application in Step Into mode.

In Step Forward mode (also known as "step over traps"), the device ensures that each step operation executes an
instruction in the foreground application. It may accomplish this by noticing when an interrupt is taken, and using
breakpoints and full-speed execution to continue until the instruction at the original PC is executed. As a minimum this
may be implemented simply by disabling interrupts while executing the target instructions.

In Step Over mode, the target system steps over procedure calls as well as interrupts and exceptions. If a procedure call
instruction is being stepped, the called procedure is executed at full speed until it returns. This counts as one step.
Support for Step Over mode is optional, since it is more usually implemented within the invoking debugger.

In any mode, if a breakpoint is encountered at any point after the first instruction is executed it is honored and execution
stops. If there is a breakpoint set on the first instruction to be executed, it should not be taken. If there are cases where
this may not happen, the MDILib implementation must document the circumstances.

The MDIStep() function is now almost redundant, and when Steps is equal to 1 is equivalent to the following sequence
of calls. See Chapter 9, “Multi-Threaded and Multi-Processor Command Set,” on page 65 for details.

MDITCIdT tcid;
if (MDIGetTC (Device, &tcid) != MDISuccess)

tcid = -1;
MDISetRunMode (Device, tcid, Mode, 0);
MDIExecute (Device);

6.4.3 Stop: Stop execution of the device

MDIInt32
MDIStop (MDIHandleT Device)

Returns:

Description:

If the device is currently running, execution is halted. If the device is running, the debugger should still call
MDIRunState to determine that it has successfully halted.

It must be possible to issue a stop to a device when it is disabled. It shall respond to the stop request as soon as it is
enabled.

6.4.4 Abort: Terminate the current MDI function

MDIInt32
MDIAbort (MDIHandleT Device)

MDISuccess No Error, device will attempt to stop.

MDIErrDevice Invalid device handle.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

36 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 Device Command Set

Returns:

Description:

Abort is used from a debugger call back function to terminate the current MDI function. MDI functions that are thus
terminated return MDIErrAbort.

6.4.5 Reset: Performs a target reset operation

MDIInt32
MDIReset (MDIHandleT Device,

MDIUint32 Mode)

Structures:

Mode:

Returns:

Description:

Depending on the type of target system and the debug tool used to control it, there are several possible types of reset
operations. The MDI specification supports the following reset concepts:

• MDIFullReset - A full reset of the entire target system. Normally, this means asserting a physical board-level
reset signal that affects all components on the target board. Only hardware debug tools (ICEs) and board-level
simulators are likely to support this reset option.

• MDIDeviceReset - A full reset of the target device (CPU/DSP and any associated on-chip peripheral circuitry).
For typical single processor devices, including microcontroller and SoC devices, this may mean asserting a
physical reset signal that is connected directly to the component rather than the entire board’s reset circuit. For
multi-processor devices where asserting a physical reset signal would reset all processors, the MDILib should
treat MDIDeviceReset as a combination of MDICPUReset plus MDIPeripheralReset. In other words, it should

MDISuccess No Error, current MDI Command is aborted.

MDIErrFailure Not called from within debugger callback routine.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

MDIFullReset Full Reset, reset entire target system if possible.

MDIDeviceReset Device Reset, if device consists of a CPU plus peripherals, reset both if possible.

MDICPUReset CPU Reset, if device consists of a CPU plus peripherals, reset just the CPU if
possible.

MDIPeripheralReset Peripheral Reset, if device consists of a CPU plus peripherals, reset just the
peripherals if possible.

MDISuccess No Error, device has been reset and RunState has changed to RESET.

MDIErrFailure Device refuses to reset.

MDIErrDevice Invalid device handle.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

6.4 Run Control

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 37

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

use other means to reset or emulate resetting the specific CPU/DSP and peripheral logic being debugged, and
assert the physical reset signal only as part of an MDIFullReset.

• MDICPUReset - Resets just the CPU/DSP being debugged. For microcontroller and SoC devices that support
separate resetting of the processor and its associated peripheral logic, the peripheral logic is not reset. A reset
issued to a VPE device within a multi-threaded CPU will reset the whole CPU, not just the specified device.

• MDIPeripheralReset - For microcontroller and SoC devices that support separate resetting of the processor and
its associated peripheral logic, only the peripheral logic is reset. If there is no peripheral logic, or it can not be
reset without also resetting the processor, nothing is done.

MDILibs are not required to implement all four modes as distinct operations. If the debugger requests an unsupported
reset mode, the closest supported subset mode is performed instead. The MDILib must clearly document the supported
modes and any mapping of unsupported modes.

Similarly, debuggers are not required to provide a user interface for all four modes. If the debugger supports only a single
type of reset, it is recommended that it map this to the MDIDeviceReset mode.

6.4.6 State: Returns the current device execution status.

MDIInt32
MDIRunState (MDIHandleT Device,

 MDIInt32 WaitTime,
 MDIRunStateT *RunState);

Structures:
typedef struct MDIRunState_struct {
 MDIUint32 Status;
 union u_info
 {
 void *ptr;
 MDIUint32 value;
 } Info;
} MDIRunStateT;

Returns:

RunState->Status RunState->Info

MDIStatusNotRunning Not used.

MDIStatusRunning Not used

MDIStatusHalted Not used

MDIStatusExited value = exit code

MDIStatusBPHit value = BpID

MDIStatusUsrBPHit Not used

MDIStatusException value = exception code

MDIStatusStepsDone Not used

MDIStatusTraceFull Not used

MDIStatusDisabled Not used.

MDISuccess No Error, RunState has been loaded with the device’s current state.

38 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 Device Command Set

Description:

Returns the current device execution status in the MDIRunStateT structure pointed to by parameter, RunState. If the
device is currently running, this function will wait a specified amount of time for the status to change. WaitTime specifies
an approximate maximum amount of time to wait, in milliseconds. If WaitTime is 0 or the device is not running, the
current status is returned immediately. If it is MDIWaitForever, MDIRunState will wait indefinitely for the device to
stop running. Otherwise, WaitTime specifies an approximate time to wait before returning the status. If the device status
changes before the time period expires, MDIRunState() will return the new status immediately.

If the device status has not changed since the last call to MDIRunState, RunState->Status will be set to
MDIStatusNotRunning or MDIStatusRunning. It may take some finite time for a device to change its status from
MDIStatusNotRunning to MDIStatusRunning, and a debugger must be willing to wait and timeout this transition.

If the target has stopped execution since the last call, RunState->Status will be set to one of the other codes to indicate
the cause of the halt. MDIStatusExited means that the target program terminated itself by calling exit or a similar system
service. MDIStatusBPHit means that a breakpoint set by the debugger was taken. MDIStatusUsrBPHit means that the
target was halted by the breakpoint mechanism, but not at a breakpoint set by the debugger. MDIStatusException means
that the target program took an unexpected interrupt/trap/exception. Exception codes are architecture specific.
MDIStatusStepsDone means that the number of steps requested in the MDIStep() call have been completed.
MDIStatusTraceFull means that execution halted due to filling up the trace buffer. MDIStatusHalted is returned for all
other halt reasons, including being halted in response to an MDIStop() call.

MDIStatusDisabled means that the device can neither execute target code nor enter the halted state. In this state only
MDIReset(), MDIStop() and MDIRunState() can have any useful effect on the device. This status would occur, for
example, occur when connected to a VPE does not yet have any TCs bound to it.

There are also three flag values that can be OR'ed with the MDIStatusRunning, MDIStatusNotRunning, and
MDIStatusHalted values in RunState->Status to provide additional information. They are:

MDIStatusReset will be combined with MDIStatusRunning if the device may resume execution at any time by the
release of Reset MDIStatusReset or MDIStatusWasReset will be combined with MDIStatusNotRunning or
MDIStatusHalted if the execution was halted due to a target reset but will not be resumed until the next MDIExecute()
call.

6.5 Breakpoints

The following data structure is used to fully describe a breakpoint being set or queried:

typedef struct MDIBpData_struct {
MDIBpIdT Id; // Unique ID assigned by MDISetBp()
MDIBpT Type; // Breakpoint type
MDIUint32 Enabled; // 0 if currently disabled, else 1
MDIResourceT Resource;
MDIRangeT Range; // Range.End may be an end addr or mask

MDIErrDevice Invalid device handle.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

MDIStatusReset currently held reset; this should typically be reported by the debugger

MDIStatusWasReset reset was asserted & released

MDIStatusDescription RunState->Info.ptr points to a descriptive string

6.5 Breakpoints

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 39

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

MDIUint64 Data; // valid only for data read/write breaks
MDIUint64 DataMask; // valid only for data read/write breaks
MDIUint32 PassCount;// Pass count reloaded when hit
MDIUint32 PassesToGo;// Passes to go until next hit

} MDIBpDataT;

Id is a unique ID assigned by MDISetBp or MDISetSWBp and used to specify a particular breakpoint for the other calls.
The reserved value MDIAllBpID (-1) may not be used as a breakpoint ID. Type is the breakpoint type. The debugger
can specify one of the following breakpoint types to MDISetBp:

Type:

All three Hardware breakpoint types may have one or more of the following flag bits OR'ed in to specify additional
qualifications:

MDIBPT_SWInstruction Is an instruction execution breakpoint. Execution stops when control
reaches the instruction at the address specified. The address is specified
by the combination of the Resource field and the Range.Start field. The
PassCount value specifies the number of times to pass by the break
condition before actually halting. The values that make the most sense
for an architecture and MDILib implementation can be found in the
architecture addendum as well as in the documentation for the specific
MDILib. This breakpoint type is usually implemented by inserting a
special instruction in memory.

MDIBPT_SWOneShot A temporary Instruction execution breakpoint. Like
MDIBPT_SWInstruction, except that PassCount is not applicable
and the breakpoint is deleted automatically once execution stops for
any reason. This breakpoint type is useful for the common "run to
cursor" debugger function.

MDIBPT_HWInstruction A Hardware Instruction breakpoint. Target devices that provide
hardware breakpoint capabilities may allow execution to be halted
when an instruction or range of instructions is fetched or executed.

MDIBPT_HWData A Hardware Data access breakpoint. Target devices that provide
hardware breakpoint capabilities may allow execution to be halted
when a datum is loaded or stored at a particular address or range of
addresses.

MDIBPT_HWBus A Hardware Data bus breakpoint. Target devices that provide hardware
breakpoint capabilities may allow execution to be halted when certain
bus transactions are detected.

MDIBPT_HWFlg_AddrMask The break address in Range.Start and the actual address are masked by
the value in Range.End before being compared.

MDIBPT_HWFlg_AddrRange Any address in the range from Range.Start to Range.End will trigger
the break.

MDIBPT_HWFlg_Trigger If the target device supports it, matching the break condition should
cause a "trigger" signal to be generated. This is intended to be used with
probes and emulators that provide an external trigger signal for
connection to other devices, such as logic analyzers (or vice-versa).

MDIBPT_HWFlg_TriggerOnly Like MDIBPT_HWFlg_Trigger, except that device execution
should not actually stop when the break condition is met. If this flag is
set, the MDIBPT_HWFlg_Trigger flag is also implied and its actual
value is ignored.

40 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 Device Command Set

The Data and Bus Hardware breakpoint types may also have one or more of the following flag bits OR'ed in to specify
additional qualifications:

If neither MDIBPT_HWFlg_DataRead nor MDIBPT_HWFlg_DataWrite is specified, the effect is the same as if
both are specified - the break will occur on any access type, read or write.

PassCount specifies the number of times the break condition must be satisfied before device execution is stopped and
the halted status reported back to the debugger. For example, a software breakpoint with PassCount set to one will be
taken every time the breakpoint condition is met, but if it is set to ten, then the break will be taken every tenth time the
break condition is met. If PassCount is set to zero, then MDISetBp() will assume a pass count value of one.

All MDILib implementations are required to support the two software breakpoint types. Support for the hardware
breakpoint types depends on the capabilities of the target device and is therefore optional. If an unsupported type of
hardware breakpoint is requested, MDISetBp will return MDIErrUnsupported.

The maximum number of breakpoints of a particular type that can be set also depends on the underlying capabilities of
the target device. With some devices the limit, if any, may not even be known to the MDILib implementation; therefore
MDI does not specify a minimum number of breakpoints that MDILib implementations must support. If an attempt to
set a breakpoint exceeds a capacity limit, MDISetBp and MDISetSWBp will return MDIErrNoResource.

6.5.1 Set Full Breakpoint

MDIInt32
MDISetBp (MDIHandleT Device,

MDIBpDataT *BpData)

Structures:
typedef struct MDIBpData_struct {
 MDIBpIdT Id;
 MDIBpT Type;
 MDIUint32 Enabled; /* 0 if currently disabled, else 1 */
 MDIResourceT Resource;
 MDIRangeT Range; /* Range.End may be an end addr or mask */
 MDIUint64 Data; /* valid only for data write breaks */
 MDIUint64 DataMask; /* valid only for data write breaks */
 MDIUint32 PassCount; /* Pass count reloaded when hit */
 MDIUint32 PassesToGo; /* Passes to go until next hit */
} MDIBpDataT;

MDIBPT_HWFlg_TCMatch If the target device is multi-threaded, then by default a Hardware break
will occur when accessed by any thread context (TC). But when this
flag is set the break will occur only when accessed by the TC which was
"current" when MDISetBp() was called.

MDIBPT_HWFlg_DataValue The break will occur only if the data value specified in Data is read
from and/or written to the break address.

MDIBPT_HWFlg_DataMask The mask value specified in DataMask is applied to the data value
before comparison.

MDIBPT_HWFlg_DataRead The break will occur on read accesses.

MDIBPT_HWFlg_DataWrite The break will occur on write accesses.

6.5 Breakpoints

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 41

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Returns:

Description:

Setup a breakpoint from a full specification, return a unique breakpoint ID that will be used to refer to the breakpoint in
other calls. On entry, BpData members Type, Enabled, Resource, and Range.Start must be initialized for all breakpoint
types. PassCount must be initialized for all breakpoint types except MDIBPT_SWOneShot. For hardware breakpoints
with the MDIBPT_HWFlg_AddrMask or MDIBPT_HWFlg_AddrRange attribute, Range.End must be initialized.
For data breakpoints with the MDIBPT_HWFlg_DataWrite and MDIBPT_HWFlg_DataValue attributes, Data
must be initialized. PassesToGo is ignored by MDISetBp. If MDIBPT_HWFlg_DataMask is also set, DataMask
must be initialized.

If the breakpoint is set successfully, MDISetBp will set BpData->Id to the breakpoint ID it assigned. No other members
of *BpData will be modified by MDISetBp.

6.5.2 Set Software Breakpoint

MDIInt32
MDISetSWBp (MDIHandleT Device,

MDIResourceT Resource,
MDIOffsetT Offset,
MDIBpIdT *BpId)

Returns:

MDISuccess No Error, BpData->Id has been set to the handle needed to reference this specific
breakpoint.

MDIErrDevice Invalid device handle.

MDIErrBPType Invalid breakpoint type. Must be one of the basic 5 types defined.

MDIErrDstResource Invalid Resource type.

MDIErrUnsupported The device doesn't support the type of breakpoint requested.

MDIErrRange Specified range is outside the scope for the given resource.

MDIErrNoResource The resources needed to implement the request are not available.

MDIErrDuplicateBP A similar breakpoint has already been defined.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

MDISuccess No Error, *BpId has been set to the handle needed to reference this specific
breakpoint. The breakpoint is set to the enabled state, with PassCount set to 1.

MDIErrDevice Invalid device handle.

MDIErrDstResource Invalid Resource type.

MDIErrRange Specified range is outside the scope for the given resource.

MDIErrNoResource The resources needed to implement the request are not available.

MDIErrDuplicateBP A similar breakpoint has already been defined.

MDIErrNoResource The resources needed to implement the request are not available.

42 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 Device Command Set

Description:

Set up an enabled breakpoint of type MDIBPT_SWInstruction with a pass count of one. Since this is expected to
be the most common operation, this simpler form of MDISetBp is provided as "syntactic sugar" for the debugger.

If the breakpoint is set successfully, MDISetSWBp will set *BpId to the breakpoint ID it assigned.

6.5.3 Clear Breakpoint

MDIInt32
MDIClearBp (MDIHandleT Device,

MDIBpIdT BpId)

Returns:

Description:

Clears a specified breakpoint, or clear all breakpoints using a BpId value of MDIAllBpID.

6.5.4 Enable Breakpoint

MDIInt32
MDIEnableBp (MDIHandleT Device,

MDIBpIdT BpId)

Returns:

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

MDISuccess No Error, all breakpoints or breakpoint BpId has been removed.

MDIErrDevice Invalid device handle.

MDIErrBPId Invalid Breakpoint ID.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

MDISuccess No Error, breakpoint BpId has been enabled.

MDIErrDevice Invalid device handle.

MDIErrBPId Invalid Breakpoint ID.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

6.5 Breakpoints

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 43

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Description:

Enables a breakpoint. Enabling a previously disabled breakpoint does not affect its PassesToGo value. A BpId value of
MDIAllBpID will enable all breakpoints.

6.5.5 Disable Breakpoint

MDIInt32
MDIDisableBp (MDIHandleT Device,

MDIBpIdT BpId)

Returns:

Description:

Disables a breakpoint. A disabled breakpoint will not affect target execution and its PassesToGo value will not be
decremented, until it is re-enabled. Its current PassesToGo value will remain in effect when it is re-enabled. A BpId value
of MDIAllBpID will disable all breakpoints.

6.5.6 Query Breakpoints

MDIInt32
MDIBpQuery (MDIHandleT Device,

MDIInt32 *HowMany,
MDIBpDataT BpData)

Returns:

Description:

Queries the set of defined breakpoints.

MDISuccess No Error, breakpoint BpId has been disabled.

MDIErrDevice Invalid device handle.

MDIErrBPId Invalid Breakpoint ID.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

MDISuccess No Error, information for a single breakpoint or all breakpoints is returned.

MDIErrDevice Invalid device handle.

MDIErrBPId Invalid Breakpoint ID.

MDIErrMore More breakpoints defined then requested.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

44 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 Device Command Set

If the requested number of breakpoints (*HowMany) is 0, then the function returns no error (MDISuccess) and
*HowMany is set to the number of defined breakpoints. If *HowMany is set to fewer breakpoints than there are set, then
the *HowMany value is modified upon return to indicate the number of returned breakpoints. If more breakpoints are
set than the value specified in *HowMany, then MDIErrMore is returned. In this situation, if another MDIBpQuery()
call is made before any other calls to the MDILib, more breakpoints are returned as requested by the *HowMany value.

6.5.7 Hardware Breakpoint Query: Retrieve a list of supported hardware breakpoint types

MDIInt32
MDIHwBpQuery (MDIHandleT Device,

MDIInt32 *HowMany,
MDIBpInfoT *BpInfo)

Structures:
typedef struct MDIBpData_struct {
 MDIInt32 Num;
 MDIBpT Type;
} MDIBpInfoT

Type is a bitmap composed of some of these new values:

#define MDIBPT_HWType_Exec 0x00000001 // bpt on execute supported
#define MDIBPT_HWType_Data 0x00000002 // bpt on data access supported
#define MDIBPT_HWType_Bus 0x00000004 // bpt on ext h/w access supported
#define MDIBPT_HWType_AlignMask 0x000000F0 // min addr alignment (2^n)
#define MDIBPT_HWType_AlignShift 4
#define MDIBPT_HWType_MaxSMask 0x00003F00 // max size (2^n)
#define MDIBPT_HWType_MaxSShift 9
#define MDIBPT_HWType_VirtAddr 0x00004000 // matches on virtual address
#define MDIBPT_HWType_ASID 0x00008000 // ASID included in virtual address

Some breakpoint defines that already exist in MDI are:

#define MDIBPT_HWFlg_AddrMask 0x00010000 // address mask supported
#define MDIBPT_HWFlg_AddrRange 0x00020000 // address range supported
#define MDIBPT_HWFlg_DataValue 0x00040000 // data value match supported
#define MDIBPT_HWFlg_DataMask 0x00080000 // data masking supported
#define MDIBPT_HWFlg_DataRead 0x00100000 // bpt on data read supported
#define MDIBPT_HWFlg_DataWrite 0x00200000 // bpt on data write supported
#define MDIBPT_HWFlg_Trigger 0x00400000 // ext trigger output supported
#define MDIBPT_HWFlg_TriggerOnly 0x00800000 // ext trigger only supported
#define MDIBPT_HWFlg_TCMatch 0x01000000 // Set bpt for specified TC

Returns:

MDISuccess No Error, information for a single breakpoint or all breakpoints is returned.

MDIErrDevice Invalid device handle.

MDIErrParam Invalid parameter, *HowMany may not be negative

MDIErrMore More breakpoints defined then requested.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

6.5 Breakpoints

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 45

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Description:

Queries the available hardware breakpoint resources of the target device.

If the requested number of breakpoint resource (*HowMany) is 0, the function returns no error (MDISuccess) and
*HowMany is set to the number of types. If *HowMany is non-zero on entry, it specifies the number of elements in the
BPInfo array being passed in. The function fills in the BPInfo array with the information for up to *HowMany breakpoint
resources and sets *HowMany to the number filled in. If there is not enough room in the BPInfo array to hold all the
available resource, MDIErrMore is returned. If the debugger then calls this function again before any other MDI
functions are called, information is returned for the next *HowMany breakpoint resources.

MDIBpInfoT->Type is a bitmap that specifies the exact type of hardware breakpoint supported, and MDIBpInfo->.Num
is the number of breakpoints that support this combination of features. If MDIBpInfoT->Num has a value of -1, then it
supports an infinite number of such breakpoints (as might easily be the case for a simulator).

For hardware breakpoints that support only address masking and not address ranges, the MDILib is encouraged to
virtualize support for an address range. In other words, it should generate the smallest mask which surrounds a given
address range, and then check the address which causes a data breakpoint and only return control to the debugger if the
address is indeed in the originally requested range. This may involve disassembling the faulting instruction to determine
the data address.

Example 1: A MIPS 4Kc core with 2 coprocessor 0 data/instruction watchpoints would return:

*HowMany =1;

BpInfo[0].Num = 2;
BpInfo[0].Type =(MDIBPT_HWType_Exec |

MDIBPT_HWType_Data |
(3 << MDIBPT_HWType_AlignShift) |
(12 << MDIBPT_HWType_MaxSShift) |
MDIBPT_HWType_VirtAddr |
MDIBPT_HWType_ASID |
MDIBPT_HWFlg_AddrMask |
MDIBPT_HWFlg_DataRead |
MDIBPT_HWFlg_DataWrite);

Example 2: A MIPS 4Kc core with 2 data and 4 instruction EJTAG hardware breakpoints would return:

*HowMany =2;

BpInfo[0].Num = 2;
BpInfo[0].Type =(MDIBPT_HWType_Data |

(0 << MDIBPT_HWType_AlignShift) |
(31 << MDIBPT_HWType_MaxSShift) |
MDIBPT_HWType_VirtAddr |
MDIBPT_HWType_ASID |
MDIBPT_HWFlg_AddrMask |
MDIBPT_HWFlg_DataValue |
MDIBPT_HWFlg_DataMask |
MDIBPT_HWFlg_DataRead |
MDIBPT_HWFlg_DataWrite |
MDIBPT_HWFlg_Trigger |
MDIBPT_HWFlg_TriggerOnly);

BpInfo[1].Num = 4;
BpInfo[1].Type =(MDIBPT_HWType_Exec |

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback.

46 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 Device Command Set

(1 << MDIBPT_HWType_AlignShift) |
(31 << MDIBPT_HWType_MaxSShift) |
MDIBPT_HWType_VirtAddr |
MDIBPT_HWType_ASID |
MDIBPT_HWFlg_AddrMask |
MDIBPT_HWFlg_Trigger |
MDIBPT_HWFlg_TriggerOnly);

Example 3: A simulator that supports an "unlimited" number of hardware breakpoints, with unrestricted address range
would return:

*HowMany =1;

BpInfo[0].Num = -1;
BpInfo[0].Type =(MDIBPT_HWType_Exec |

MDIBPT_HWType_Data |
(0 << MDIBPT_HWType_AlignShift) |
(63 << MDIBPT_HWType_MaxSShift) |
MDIBPT_HWType_VirtAddr |
MDIBPT_HWType_ASID |
MDIBPT_HWFlg_AddrRange |
MDIBPT_HWFlg_DataValue |
MDIBPT_HWFlg_DataMask |
MDIBPT_HWFlg_DataRead |
MDIBPT_HWFlg_DataWrite |
MDIBPT_HWFlg_TCMatch);

7.1 Execute Command: Do the command specified

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 47

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 7

MDILib and Target I/O Command Set

The goal of MDI is to allow interoperability between any debugger written in conformance with this specification and
any conforming MDILib implementation; however, no generic API specification can envision and abstract all possible
device behavior. There are many possible types of devices (simulators, device resident debug kernels, JTAG/BDM
probes, ICE's, etc.) with a wide range of possible capabilities and configuration requirements. To allow for non-standard
services and responses in a standard way, MDI provides mechanisms for MDILib specific commands to be executed,
and requires the debugger to provide character input and output services to the MDILib. To further support MDILib
command parsing and output formatting, the debugger is strongly encouraged to provide expression evaluation and
symbolic lookup services to the MDILib.

The required input and output services also serve as a communication channel between the user and the program running
on the target device.

7.1 Execute Command: Do the command specified

MDIInt32
MDIDoCommand (MDIHandleT Device,

char *Buffer)

Returns:

Description:

A single command string is passed to the MDILib for parsing and execution. If an MDILib has no command parser, then
it will set the MDICap_NoParser flag in Config->MDICapability and this function will do nothing; otherwise, the
debugger is required to provide a mechanism for the user to provide command lines to be passed to the MDILib via this
function without interpretation by the debugger.

Device will be MDINoHandle if the command is not associated with a particular device connection. This would be the
case for calls to MDIDoCommand() made before MDIOpen() has been called.

7.2 Display Output: Display the MDILib supplied text to the user

MDIInt32
MDICBOutput (MDIHandleT Device,

MDIInt32 Type,
char *Buffer,
MDIInt32 Count)

MDISuccess No Error, command has been executed.

MDIErrDevice Invalid device handle.

MDIErrUnsupported MDILib has no command parser.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

48 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 7 MDILib and Target I/O Command Set

Returns:

Structures:

Type:

Description:

This callback function is implemented by the debugger. Its address is passed to the MDILib in Config->MDICBOutput
when MDIConnect() is called. The debugger must display the MDILib-supplied text to the user. The debugger may
choose to display the various types of output in different ways, for example putting MDILib output and program output
in separate windows, or displaying MDILib error output in a pop-up dialog.

This function can be called only when the MDILib is servicing a debugger request; in other words, it cannot be called
asynchronously, it is only called recursively after the debugger has made any one of the MDILib calls.

Device will be MDINoHandle if the output is not associated with a particular device connection. Type specifies the type
of output. Count is the number of characters in Buffer. There is no specific limit to the length of the character data. The
data may include LF characters to signal desired line breaks, but no other non-printable ASCII characters are allowed.
The data might not end with an LF, for example the MDILib might be displaying a prompt to be followed by a request
for input. While the debugger is encouraged to honor line breaks it is not required.

7.3 Get Input

MDIInt32
MDICBInput (MDIHandleT Device,

MDIInt32 Type,
MDIInt32 Mode,
char **Buffer,
MDIInt32 *Count)

Returns:

Structures:

Type:

MDISuccess No Error, output has been displayed.

MDIErrDevice Invalid device handle.

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDIIOTypeMDIOut "stdout" from the MDILib

MDIIOTypeMDIErr "stderr" from the MDILib

MDIIOTypeTgtOut "stdout" from the running target program

MDIIOTypeTgtErr "stderr" from the running target program

MDISuccess No Error, input has been obtained.

MDIErrDevice Invalid device handle.

MDIErrUnsupported Debugger does not support non-blocking and/or unbuffered input.

MDIIOTypeMDIIn "stdin" for the MDILib

MDIIOTypeTgtIn "stdin" for the running target program

7.4 Evaluate Expression

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 49

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Mode:

Description:

This callback function is implemented by the debugger. and its address is passed to the MDILib in
Config->MDICBInput when MDIConnect() is called. The debugger must get up to a line of character input from the user
and deliver it to the MDILib. The characters entered by the user are not to be interpreted or modified by the debugger,
except for the end-of-line.

This function can be called only when the MDILib is servicing a debugger request. In other words, it can not be called
asynchronously, it is only called recursively after the debugger has made an MDILib call.

Device will be MDINoHandle if the input request is not associated with a particular device connection. The debugger
supplies the buffer holding the data, and returns its address to the MDILib in *Buffer, and returns the number of
characters it contains in *Count. Type specifies the type of input. Mode specifies the mode of the input. In buffered mode,
only a single line is returned per call on MDICBInput, but there is no specific limit to the length of the line. In
non-blocking unbuffered mode, the data available at the time of the call is returned. In blocking unbuffered mode, the
debugger will return as soon as any input is available (typically one character, but possibly more due to a "paste" event
for example).

The debugger is encouraged to support all three modes, but is only required to support MDIIOModeNormal.

7.4 Evaluate Expression

MDIInt32
MDICBEvaluate (MDIHandleT Device,

char *Buffer,
MDIInt32 *ResultType,
MDIResourceT *SrcResource,
MDIOffsetT *SrcOffset,
MDIInt32 *Size,
void **Value)

Returns:

Structures:

ResultType:

MDIIOModeNormal blocking, line buffered

MDIIOTypeRawBlock blocking unbuffered

MDIIOTypeRawNoBlock non-blocking unbuffered (can return *Count == 0)

MDISuccess No Error, expression result has been returned.

MDIErrDevice Invalid device handle.

MDIErrFailure Expression could not be evaluated.

MDIEvalTypeResource Address is returned in *SrcResource,*SrcOffset.

MDIEvalTypeChar Result is a single character.

MDIEvalTypeInt Result is a signed int of size *Size.

MDIEvalTypeUInt Result is an unsigned int of size *Size.

50 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 7 MDILib and Target I/O Command Set

Description:

This callback function is optionally implemented by the debugger. Its address, or NULL if it is not implemented, is
passed to the MDILib in Config->MDICBEvaluate when MDIConnect() is called. The purpose of this callback is to
allow the MDILib command parser to support expressions which will be evaluated according to the debugger's rules.
The debugger is encouraged but not required to provide this service.

This function can be called only when the MDILib is executing a transparent mode command. In other words, it can not
be called asynchronously, it is only called recursively after the debugger has called MDIDoCommand(). During the
course of evaluating the expression, the debugger may need to access device resources so it may recursively call other
MDI functions before returning.

The expression may evaluate to a scalar value, or it may evaluate to an addressable resource. The debugger indicates
which by returning the appropriate value in *ResultType.

If the result is a scalar value, then the debugger stores the value in host byte order in a buffer whose address and size is
returned in *Buffer and *Size.

7.5 Lookup Resource

MDIInt32
MDICBLookup (MDIHandleT Device,

MDIInt32 Type,
MDIResourceT SrcResource,
MDIOffsetT SrcOffset,
char **Buffer)

Returns:

Structures:

Type:

Description:

MDIEvalTypeFloat Result is a floating point value of size *Size.

MDIEvalTypeNone Result of size *Size has no type, or the debugger does not support types.

MDISuccess No Error, string has been returned.

MDIErrDevice Invalid device handle.

MDIErrLookupNone Address did not match a symbol or source line.

MDIErrLookupError Invalid address for look up.

MDILookupNearest
Debugger - returns "sym" on exact match, or "sym+delta", where sym is
the nearest symbol with a lower address and delta is the offset from the
symbol's address to the requested address, in hex.

MDILookupExact Debugger - returns "sym" on exact match only.

MDILookupSource

Debugger - returns the source line associated with the resource address,
if any. This is intended to be an “exact match” lookup. The debugger
should return a source line only for the first of a group of instructions
generated by the source line. Support for this lookup is optional.

7.5 Lookup Resource

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 51

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

This callback function is optionally implemented by the debugger. Its address, or NULL if it is not implemented, is
passed to the MDILib in Config->MDICBLookup when MDIConnect() is called. The purpose of this callback is to allow
the MDILib command parser to decorate command output with symbolic information. The MDILib passes a request type
and an address. The debugger generates the requested type of ASCII string into a static buffer, and returns the address
of the buffer to the MDILib. The debugger is encouraged but not required to provide this service.

This function can be called only when the MDILib is executing a transparent mode command. In other words, it can not
be called asynchronously; only called recursively after the debugger has called MDIDoCommand. It is not expected that
the debugger would need to access target resources to perform the lookup, but it is allowed to do so; thus it may
recursively call other MDI functions before returning.

The MDILib requests a particular type of symbolic information by passing one of the values for Type specified above.

If the lookup is successful, then the debugger returns the address of a buffer containing the resulting NULL terminated
ASCII string in *Buffer. The pointer must remain valid and the contents of the buffer must remain unchanged only until
the MDILib calls another callback function or returns from MDIDoCommand(), whichever comes first. The MDILib
must not make any further use of the returned pointer after that time.

52 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 7 MDILib and Target I/O Command Set

8.1 Enable Tracing

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 53

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8

Trace Command Set

It is often the case that a device provides some type of trace output reporting on the status of the code being executed.
For example, the MIPS EJTAG specification includes the ability to shift out execution status and PC address information
as the processor runs. An Instruction Set Simulator could obviously record execution activity, and bus tracing is
supported by many ICE vendors.

Since it would be desirable to allow a debugger to display trace information in a well-integrated way, MDI includes an
abstraction for tracing services; however, the actual capabilities and features of any particular device that supports
tracing will vary widely. It is not possible to create a standard API that will provide full access to all possible tracing
systems; therefore, MDI only provides a binary abstraction for the lowest common denominator: a sequence of PC and
possibly data addresses and optionally the associated instructions/values. An MDILib can provide its own user interface
for extended functions.

Since not all devices will be capable of generating trace information, support for the Trace Data command set is optional
in the MDILib. The MDILib will set the MDICap_TraceOutput flag in Config->MDICapability if it supports the
MDITraceClear, MDITraceStatus, MDITraceCount, and MDITraceRead functions. The MDILib will set the
MDICap_TraceCtrl flag in Config->MDICapability if it supports the MDITraceEnable, and MDITraceDisable
functions.

If the underlying hardware implements the MIPS PDtraceTM interface, then the MDI library has the option to support
the interface required to access this capability. This is indicated by the MDICap_PDtrace flag in
Config->MDICapability. The interface primarily consists of a set of three new trace-related calls that are described at
the end of this chapter, from Section 8.7, "Read PDtrace Data" to Section 8.9, "Set PDtrace Mode". In addition to the
new subroutine calls, a new include file is needed, mdi_pdtrace.h, which is specified in the Appendix.

Finally, to support the Trace Control Block (TCB) that would attach to one end of a PDtrace interface, two functions
that set and get the trigger conditions are provided. The mdi_tcb.h file is provided in the Appendix of this document.

8.1 Enable Tracing

MDIInt32
MDITraceEnable (MDIHandleT Device)

Returns:

Description:

MDISuccess No Error, tracing has been enabled.

MDIErrDevice Invalid device handle.

MDIErrUnsupported Device does not support tracing.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

54 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 Trace Command Set

This function enables the tracing capabilities of the device. MDI assumes that when tracing is enabled, trace data is
captured only when the device is executing code. Thus, it is not necessary for the debugger to explicitly disable tracing
after execution stops in order to avoid capturing unwanted data. It is valid for the debugger to enable tracing at the start
of the session, and leave it enabled from then on. This means that for devices whose actual tracing capabilities are not
tied to execution (e.g. a logic analyzer), must be managed by the MDILib to emulate this "execution tracing".

It is unspecified whether enabling tracing causes any previously captured trace data to be cleared from the device's trace
buffer. Further, it is unspecified whether captured trace data is automatically cleared each time device execution begins.

8.2 Disable Tracing

MDIInt32
MDITraceDisable (MDIHandleT Device)

Returns:

Description:

This function disables the tracing capabilities of the device. If the device is currently executing code, tracing will be
halted immediately, and depending on the capabilities of the tracing system, it may be necessary for the MDILib to
temporarily halt execution in order to disable trace capture.

8.3 Clear Trace Data

MDIInt32
MDITraceClear (MDIHandleT Device)

Returns:

Description:

MDISuccess No Error, tracing has been disabled.

MDIErrDevice Invalid device handle.

MDIErrUnsupported Device does not support tracing.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDISuccess No Error, the trace buffer has been cleared.

MDIErrDevice Invalid device handle.

MDIErrTracing Device is currently tracing.

MDIErrUnsupported Device does not support tracing.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

8.4 Query Trace Status

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 55

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

This function causes any previously captured trace data to be cleared from the device's trace buffer. If tracing is enabled
and the device is currently executing code, then the debugger must call MDITraceDisable before this function can be
called.

8.4 Query Trace Status

MDIInt32
MDITraceStatus (MDIHandleT Device,

MDIUint32 *Status)

Returns:

Description:

This function returns the current state of the tracing system. Many devices will support mechanisms to qualify tracing,
such as beginning or ending capture when a trigger event is detected, or ending capture when the trace buffer becomes
full. While MDI can not abstract an interface for configuring such trace capabilities, the debugger should recognize that
they may exist. If the debugger supports fetching and displaying trace data while the device is executing, then it should
use this function to determine when it is appropriate to do so.

On return, *Status will contain one of the following values:

If no trace conditions are configured, or the device does not support triggered/conditional tracing, then MDITraceStatus
will return MDITraceStatusTracing if MDITraceEnable has been called and the device is executing; otherwise it will
return MDITraceStatusNone. MDITraceStatusWaiting will be returned when a conditional trigger event has been
configured that causes trace capture to begin, and the event has not yet occurred. MDITraceStatusFilling is returned if
trace capture has begun, and a conditional trigger event has been configured that can terminate trace capture before the
device stops executing. Finally, MDITraceStatusStopped is returned after such a condition has occurred and no more
trace data will be captured.

8.5 Query Trace Data

MDIInt32
MDITraceCount (MDIHandleT Device,

MDIUint32 *FrameCount)

MDISuccess No Error, the current trace status has been returned.

MDIErrDevice Invalid device handle.

MDIErrUnsupported Device does not support tracing.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDITraceStatusNone Tracing is not enabled, or the device is not executing.

MDITraceStatusTracing Tracing underway, with no termination condition.

MDITraceStatusWaiting Conditional trace capture has not yet begun.

MDITraceStatusFilling Tracing, with conditional completion expected.

MDITraceStatusStopped Conditional trace capture has completed.

56 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 Trace Command Set

Returns:

Description:

This function returns the number of "frames" of trace data currently captured by the device. Although it may be called
at any time when the device is not executing, and when tracing is disabled if the device is executing. If tracing is enabled
and the device is currently executing code, then the debugger must call MDITraceDisable before this function can be
called. A "frame" of trace data describes a single instruction or data access performed by the target. A "frame" of trace
data in the PDtrace context is the number of words of trace data. The debugger must call this function before calling
MDITraceRead() or MDIPDtraceRead() to transfer actual trace data.

8.6 Read Trace Data

MDIInt32
MDITraceRead (MDIHandleT Device,

MDIUint32 FirstFrame,
MDIUint32 FrameCount,
MDIUint32 IncludeInstructions,
MDITrcFrameT *Frames)

Structures:
typedef struct MDITrcFrame_Struct {

MDIUint32 Type;
MDIResourceT Resource;
MDIOffsetT Offset;
MDIUint64 Value;

} MDITrcFrameT;

Type:

MDISuccess No Error, the frame count has been returned.

MDIErrDevice Invalid device handle.

MDIErrTracing Device is currently tracing.

MDIErrUnsupported Device does not support tracing.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDITTypePC Resource and Offset give the address of a fetched or executed instruction.

MDITTypeInst Value contains the instruction whose address is given by Resource and
Offset.

MDITTypeRead Resource and Offset give the address of a loaded data value.

MDITTypeWrite Resource and Offset give the address of a stored data value.

MDITTypeAccess Resource and Offset give the address of a loaded or stored data value.

MDITTypeRData_8 Value contains the 8-bit data value read from the address given by
Resource and Offset.

MDITTypeWData_8 Value contains the 8-bit data value written to the address given by
Resource and Offset.

8.6 Read Trace Data

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 57

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Returns:

Description:

This function returns the requested range of "frames" of trace data. Although it may be called any number of times after
MDITraceCount() has been called, until the next time MDITraceEnable() is called (if MDITraceDisable() had
previously been called) or device execution is resumed (if tracing remained enabled). The debugger must call
MDITraceCount() before this function can be called after new trace data has been captured. A "frame" of trace data
describes a single instruction or data access performed by the target. Type specifies how to interpret the rest of the frame
data.

Depending on the capabilities of the device, data accesses may not be captured by the tracing system at all, or the values
loaded and stored by data accesses may not be available. If the data values are available, they will always be included
with the trace data since they would not otherwise be available to the debugger. If the debugger requests instruction
values, and the underlying tracing system does not capture them, then the MDILib is required to fetch the instructions
from device memory so they can be included in the trace data, if the MDILib is capable of doing so. This is indicated by
a capability flag MDICAP_TraceFetchI.

FirstFrame is the frame number of the oldest frame to be returned in this call. Frames are numbered from 1 to N, where
N is the total number of frames returned by MDITraceCount() and frame 1 is the oldest frame. FrameCount is the
number of frames to be returned in *Frames.

For instruction frames, it may be more efficient for the debugger to read the instruction values from the executable file
rather than have the MDILib fetch them over what may be a remote communications link. In that case, the debugger will
set IncludeInstructions to 0. If IncludeInstructions is set 1, then the MDILib will include the instruction values in the
trace frame data.

MDITTypeRData_16 Value contains the 16-bit data value read from the address given by
Resource and Offset.

MDITTypeWData_16 Value contains the 16-bit data value written to the address given by
Resource and Offset.

MDITTypeRData_32 Value contains the 32-bit data value read from the address given by
Resource and Offset.

MDITTypeWData_32 Value contains the 32-bit data value written to the address given by
Resource and Offset.

MDITTypeRData_64 Value contains the 64-bit data value read from the address given by
Resource and Offset.

MDITTypeWData_64 Value contains the 64-bit data value written to the address given by
Resource and Offset.

MDISuccess No Error, FrameCount frames have been returned.

MDIErrDevice Invalid device handle.

MDIErrInvalidFrames Requested frame range is invalid.

MDIErrTracing Device is currently tracing.

MDIErrUnsupported Device does not support tracing.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

58 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 Trace Command Set

8.7 Read PDtrace Data

MDIInt32
MDIPDtraceRead (MDIHandleT Device,

MDITraceFrameNumberT FrameNumber,
MDITraceFrameCountT Count,
MDIUint32 Instructions,
MDITraceFrameT *Data)

Structures:
typedef struct {

MDIUint32 Word; // address of beginning of trace frame in trace memory
MDIUint32 Bit; // bit number of beginning of trace frame within trace word.

} MDITraceFrameNumberT;

typedef struct MDITraceFrame_Struct {
MDITraceFrameNumberT FrameNumber;
MDIUint32 Type;
MDIResourceT Resource;
MDIOffsetT Offset;
MDIUint64 Value;

} MDITraceFrameT;

#define MDIType_TYPE_MASK 0x00000fff
#define MDIType_MOD_MASK 0xfffff000

/* Expanded trace types obtained using MDIType_TYPE_MASK */

#define MDITTypeOverflow 64 // trace fifo overflowed, information lost
#define MDITTypeTriggerStart 65 // value=trigger cause
#define MDITTypeTriggerEnd 66 // value=trigger cause
#define MDITTypeTriggerAbout 67 // value=trigger cause
#define MDITTypeTriggerInfo 68 // value=trigger cause
#define MDITTypeNotraceCycles 69 // value=number of notrace cycles
#define MDITTypeBackstallCycles 70 // value=number of backstall cycles
#define MDITTypeIdleCyclces 71 // value=number of idle cycles
#define MDITTypeTcbMessage 72 // addr=TCBcode, value=TCBinfo field
#define MDITTypeModeInit 73 // value = new mode from following table
#define MDITTypeModeChange 74 // value = new mode from following table
 // 12:11 ISAM 00 = MIPS32
 // 01 = MIPS64
 // 10 = MIPS16
 // 11 = reserved
 // 10:8 MODE 000 = kernel, EXL=0, ERL=0
 // 001 = kernel, EXL=1, ERL=0
 // 010 = kernel, ERL=1
 // 011 = debug mode
 // 100 = supervisor mode
 // 101 = user mode
 // other = reserved
 // 7:0 ASID
#define MDITypeUTM 75 // addr=1(TU1)or 2(TU2) value=user value

/* Expanded trace types obtained using MDIType_MOD_MASK */
#define MDITType_MOD_IM 0x00001000 // instruction cache miss signal
#define MDITType_MOD_LSM 0x00002000 // data cache miss signal
#define MDITType_MOD_FCR 0x00004000 // function call/return instruction
#define MDITType_MOD_CPU 0x00F00000 // which CPU this message applies to
#define MDITType_MOD_TC 0xFF000000 // which TC this message applies to

8.8 Get PDtrace Mode

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 59

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

/* Extended flags for MDISetBp() */
#define MDIBPT_HWFlg_TraceOnOnly 0x80000000
#define MDIBPT_HWFlg_TraceOffOnly 0x40000000

/* Values for Instructions parameter to MDITrcRead(): */

#define MDITraceReadNoInstructions 0
#define MDITraceReadInstructions 1

Returns:

Description:

This function returns the requested range of trace frames from the hardware. Again, since a frame is not easily identified,
a numbering scheme is used that rather than being an integer is a composite frame number. This composite consists of
the trace word address combined with the bit number of the start of the message. For example, if trace word 12345 has
the last part of a trace message that started in 12344, then a complete message, then part of a message that is continued
in 12346, then there would be two trace frames 12345.16 and 12345.52.

When requesting trace data, the FrameNumber parameter would be this composite with 0 being the oldest trace word
being collected and the number returned in Count (minus one) being the youngest. The return structure includes the
frame number Data->FrameNumber since these are no longer sequential.

It is important to note that the caller must allocate *Count+1 for the size of Data since one extra frame can be returned
under certain circumstances.

8.8 Get PDtrace Mode

MDIInt32
MDIGetPDtraceMode (MDIHandleT Device,

MDITraceModeT *TraceMode)

Structures:

typedef struct {
MDIUint32 Mode; // trace mode (see definitions below)
MDIUint32 Knob; // other trace mode knobs (see definitions below)
MDIUint32 Knob2 // some more trace mode knobs (see defines below)

} MDITraceModeT;

Mode is a bitmap composed of values:

MDISuccess No Error, FrameCount frames have been returned.

MDIErrDevice Invalid device handle.

MDIErrInvalidFrames Requested frame range is invalid.

MDIErrTracing Device is currently tracing.

MDIErrUnsupported Device does not support tracing.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

60 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 Trace Command Set

#define PDtraceMODE_PC 0x00000001 // trace the PC
#define PDtraceMODE_LA 0x00000002 // trace the load address
#define PDtraceMODE_SA 0x00000004 // trace the store address
#define PDtraceMODE_LD 0x00000008 // trace the load data
#define PDtraceMODE_SD 0x00000010 // trace the store data

Knob is a bitmap composed of values:

#define PDtraceKNOB_Dbg 0x00000001 // trace in debug mode
#define PDtraceKNOB_Exc 0x00000002 // trace in exception and error modes
(EXL or ERL set)
#define PDtraceKNOB_Sup 0x00000004 // trace in supervisor mode
#define PDtraceKNOB_Ker 0x00000008 // trace in kernel mode
#define PDtraceKNOB_Usr 0x00000010 // trace in user mode
#define PDtraceKNOB_ASIDMask 0x00001F70 // if G=0, trace in this process only
#define PDtraceKNOB_ASIDShift 5
#define PDtraceKNOB_G 0x00002000 // trace in all processes
#define PDtraceKNOB_SyPMask 0x0001C000 // Synchronization period
#define PDtraceKNOB_SyPShift 14
#define PDtraceKNOB_TMMask 0x00060000 // On-chip trace 00=traceto,
01=tracefrom
#define PDtraceKNOB_TMShift 17
#define PDtraceKNOB_OfC 0x00080000 // Trace sent to off-chip memory
#define PDtraceKNOB_CA 0x00100000 // cycle-accurate (include idle cycle
records)
#define PDtraceKNOB_IO 0x00200000 // inhibit overflow (stall CPU to
prevent overflow)
#define PDtraceKNOB_AB 0x00400000 // Send PC info for all branches,
predictable or not
#define PDtraceKNOB_CRMask 0x03800000 // Trace clock ratio
#define PDtraceKNOB_CRShift 23
#define PDtraceKNOB_Cal 0x04000000 // 1=calibration mode (test pattern)
#define PDtraceKNOB_EN 0x08000000 // 1=Enable trace initially. 0=don't
generate trace until trace-on event.
#define PDtraceKNOB_debug 0x10000000 // 1=set trace hardware to debug (not
for customer use)

Knob2 is a bitmap composed of values:

#define PDtraceKNOB2_im 0x00000001; // trace instr fetch cache miss bit
#define PDtraceKNOB2_lsm 0x00000002; // trace load/store cache miss bit
#define PDtraceKNOB2_fcr 0x00000004; // trace instr func. call/return bit
#define PDtraceKNOB2_tlsif 0x00000008; // record im, lsm, and fcr in trace
#define PDtraceKNOB2_id 0x000000F0; // processor id to record when trace
is shared among processors
#define PDtraceKNOB2_cpuG 0x00000100; // enable trace for all CPU's
#define PDtraceKNOB2_cpufilter 0x0001FE00; // If cpuG=0, trace only this CPU id
#define PDtraceKNOB2_tcG 0x00020000; // enable trace for all TC's
#define PDtraceKNOB2_tcfilter 0x03FC0000; // If tcG=0, trace only this TC id
#define PDtraceKNOB2_tracetc 0x04000000; // record TC info in trace

Returns:

MDISuccess No Error, tracing mode has been obtained.

MDIErrDevice Invalid device handle.

MDIErrUnsupported Device does not support tracing.

8.9 Set PDtrace Mode

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 61

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Description:

This function gets the current tracing mode that is set for the PDtrace functionality.

8.9 Set PDtrace Mode

MDIInt32
MDISetPDtraceMode (MDIHandleT Device,

MDITraceModeT TraceMode)

Returns:

Description:

This function sets the current tracing mode to that in the TraceMode parameter.

8.10 Get TCB Trigger Information

MDIInt32
MDIGetTcbTrigger (MDIHandleT Device,

MDIUint32 TriggerId,
MDITcbTriggerT *Trigger)

Structures:
typedef struct {

MDIUint32 DebugMode; // Fire at Debug Mode rising edge
MDIUint32 ChipTrigIn; // Fire at Chip Trigger In rising edge
MDIUint32 ProbeTrigIn; // Fire at Probe Trigger In rising edge

} MDITcbConditionT;

typedef struct {
MDIUint32 ChipTrigOut; // Generate Chip Trigger Out pulse
MDIUint32 ProbeTrigOut; // Generate Probe Trigger Out pulse
MDIUint32 TraceMessage; // Insert Message in Trace
MDIUint8 TraceMessageInfo; // 8-bit info for trace message

} MDITcbActionT;

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDISuccess No Error, tracing mode has been set.

MDIErrDevice Invalid device handle.

MDIErrUnsupported Device does not support tracing.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

62 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 Trace Command Set

typedef struct {
MDITcbConditionT Condition; // Conditions for firing trigger
MDIUint32 Type; // Type of trigger
MDIUint32 FireOnce; // Fire once only
MDITcbActionT Action; // Actions to be executed when trigger fires

} MDITcbTriggerT;

/* Action selections for hardware breakpoints */
typedef enum {
TRIGACTION_TRC, // Single event trace
TRIGACTION_ARM, // Set ARM condition
TRIGACTION_TON_IF_ARMED,
TRIGACTION_TOFF_IF_ARMED,
TRIGACTION_TRC_IF_ARMED,
TRIGACTION_DISARM // Clear ARM condition
} MDITcbActionT;

Returns:

Description:

This function gets the current trigger state that is set in the TCB.

8.11 Set TCB Trigger Information

MDIInt32
MDISetTcbTrigger (MDIHandleT Device,

MDIUint32 TriggerId,
MDITcbTriggerT *Trigger)

Returns:

Description:

This function sets the current TCB trigger state to that in the parameter Trigger.

MDISuccess No Error, trigger information has been obtained.

MDIErrDevice Invalid device handle.

MDIErrUnsupported Device does not support tracing.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDISuccess No Error, trigger information has been set.

MDIErrDevice Invalid device handle.

MDIErrUnsupported Device does not support tracing.

MDIErrWrongThread Call was not made by the connected thread.

MDIErrTargetRunning Service cannot be performed at this time because the target program is running.

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

8.11 Set TCB Trigger Information

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 63

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

64 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 Trace Command Set

9.1 Multi-Thread Control

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 65

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 9

Multi-Threaded and Multi-Processor Command Set

The functions in this command set augment other MDI functions described elsewhere in this document to provide
support for multi-thread and multi-processor debugging.

Since not all devices will be capable of supporting multi-threading, support for these functions is optional in an MDILib.
An MDILib will only set the MDICap_TC in Config->MDICapability if it supports the functions which relate to thread
context control. Similarly an MDILib will set the MDICap_Teams flag in Config->MDICapability if it supports
multi-processor teams.

9.1 Multi-Thread Control

9.1.1 Set Thread Context: Sets the current MDI thread context ID

MDIInt32
MDISetTC (MDIHandleT Device,

MDITCIdT TCId)

Returns:

Structures:
typedef MDIInt32 MDITCIdT;

Description:

This call sets the current MDI Thread Context (TC) ID to TCId, which must be a valid TC number bound to this device.
Note that TCs assigned to a device need not be contiguous. Upon entering debug mode due to a breakpoint or single-step
exception, the MDILib shall automatically set the current MDI TC ID to that of the TC which caused the exception.
When entering debug mode asynchronously because of a call MDIStop(), the current TC ID may be set to that of any
TC within the device, including a halted or free TC if the device contains no runnable TCs, or has not yet been activated.

The current MDI TC ID selects the thread context to be used when servicing other MDI functions, in particular those in
Section 6.3, "Resource Access" on page 23. For hardware breakpoints it specifies the TC to match if the
MDIBPT_HWFlg_TCMatch flag is used, see Section 6.5.1, "Set Full Breakpoint" on page 40 and Section 6.5.7,
"Hardware Breakpoint Query: Retrieve a list of supported hardware breakpoint types" on page 44. Software breakpoints
which are implemented by writing a breakpoint instruction at the breakpoint address are by definition global, and will
be taken by any TC or device which executes the breakpoint instruction.

MDISuccess No Error, current TC ID has been set

MDIErrDevice Invalid device handle.

MDIErrUnsupported Device does not support multiple TCs

MDIErrTCId The specified TC ID is not a valid for this device

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

66 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 9 Multi-Threaded and Multi-Processor Command Set

9.1.2 Get Thread Context: Returns the current MDI thread context ID

MDIInt32
MDIGetTC (MDIHandleT Device,

MDITCIdT *TCId)

Returns:

Description:

This call returns the current MDI Thread Context ID.

9.1.3 Thread Context Query: Retrieves a list of active TCs

MDIInt32
MDITCQuery (MDIHandleT Device,

MDIInt32 *HowMany,
MDITCDataT *TCData)

Returns:

Structures:
typedef struct MDITCData_struct {

MDITCIdT TCId;
 MDIUInt32 Status;
} MDITCDataT;

#define MDITCStatusHalted 0
#define MDITCStatusFree 1
#define MDITCStatusRunning 2
#define MDITCStatusBlockedOnWait 3
#define MDITCStatusBlockedOnYield 4
#define MDITCStatusBlockonGS 5

Description:

If the requested number of Thread Contexts (*HowMany) is 0, the function returns no error (MDISuccess) and
*HowMany is set to the number of TCs in the processor. If *HowMany is greater than zero on the call, then this positive

MDISuccess No Error, current TC ID has been returned

MDIErrDevice Invalid device handle.

MDIErrUnsupported Device does not support multiple TCs

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDISuccess No Error

MDIErrDevice Invalid device handle

MDIErrUnsupported Device does not support multiple TCs

MDIErrParam Invalid parameter, *HowMany should not be negative

MDIErrMore More Thread Contexts exist in the processor than requested

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

9.2 Set Run Mode: Specify behavior when returning to the RUNNING state

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 67

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

value indicates the number of elements in the TCData array. The function will then fill in the array with information
about the Thread Contexts in the current VPE, ensuring that the first TCData entry filled in is the current MDI TC. The
*HowMany return value is set to the number of TC status returned. If the TCData array is not large enough to hold all
the TCs in the current device, then MDIErrMore is returned along with a filled array. If the debugger then calls
MDIQueryTC again before any other MDI function is called, then the TCData for the next *HowMany TCs is returned.

To only retrieve information about the current TC, *HowMany should be set to 1, and TCData should point to a single
MDITCDataT structure. The current TC may be a halted or free TC if the device contains no runnable TCs, or has not
yet been activated.

9.2 Set Run Mode: Specify behavior when returning to the RUNNING state

MDIInt32
MDISetRunMode (MDIHandleT Device,

MDITCIdT TCId,
MDIUint32 StepMode,
MDIUint32 SuspendMode)

Returns:

Structures:

Description:

This call specifies how a thread context (TC) within a device, or the whole device, should behave after the next call to
MDIExecute() or MDITeamExecute(). Each device, and each TC within a multi-threaded device, can be independently
programmed to:

1. Remain suspended: The MDI library should "offline" the device or TC before leaving debug mode.

2. Single step: Execute one instruction from the device or TC and take a single-step exception once completed. If
more than one TC is selected for single-step, then the first TC to complete an instruction will cause a debug
exception and the other TCs may or may not have made any forward progress.

3. Run freely: no single-step or suspension.

When any TC causes a debug exception (breakpoint, single-step, etc.), then all TCs within that device are suspended and
may be examined by the debugger until MDIExecute() or MDITeamExecute() is called again.

MDISuccess No Error, mode has been set.

MDIErrDevice Invalid device handle.

MDIErrTCId The specified TC ID value is not a valid for this device

MDIErrTargetRunning Trying to change execution mode of the thread when it is running

MDIErrUnsupported Device does not support multiple TCs

MDIErrParam Invalid values of SSCtl and SuspendCtl

MDIErrDisabled Service cannot be performed because the device is disabled

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDINoStep Run normally - no single step

MDIStepInto Step Into

MDIStepForward Step Forward

MDIStepOver Step Over

68 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 9 Multi-Threaded and Multi-Processor Command Set

The TCid value specifies a particular TC within a multi-threaded device, or -1 to indicate all TCs within the device. If
the device is not multi-threaded then a TCid value of -1 defines the execution behavior of the device. After being set by
this call, each device or TC’s execution mode is sticky until changed by another call to this function naming the same
TCid, or a TCid of -1. Upon re-entering debug mode all single-step and suspend modes shall be reset (switched off).

To indicate that a TC or device should take a single-step exception, use a SSMode value other than MDINoStep - a value
of MDINoStep means that a single-step exception shall not be enabled for the specified TC or device. For a description
of the various values of SSMode, see Section 6.4.2, "Step: Single steps the device" on page 34.

To indicate that a TC or device should be suspended while the other TCs or devices are running, use a SuspendMode
value of 1. Using a value of 0 implies that this TC or device will not be suspended, i.e. it will be considered by the
processor’s policy manager for normal or single-step execution upon leaving debug mode.

An MDILib may return an error of MDIErrParam if the debugger requests a set of single-step and suspend modes which
are not compatible with each other (e.g. it may not be possible to support a combination of MDIStepInto and
MDIStepForward on different TCs).

The examples below illustrate some commonly desired functionality:

• All TCs to run normally:
MDISetTCRunMode (TCid=-1, SSMode=MDINoStep, SuspendMode=0)

• Single-step all TCs in Step Forward mode:
MDISetTCRunMode (TCid=-1, SSMode=MDIStepForward, SuspendMode=0)

• Single-step TC 4 in Step Into mode, all other TCs to run freely:
MDISetTCRunMode (TCid=-1, SSMode=MDINoStep, SuspendMode=0)
MDISetTCRunMode (TCid=4, SSMode=MDIStepInto, SuspendMode=0)

• Single-step TC 2 and TC3 in Step Forward mode, while suspending all other TCs :
MDISetTCRunMode (TCid=-1, SSMode=MDINoStep, SuspendMode=1)
MDISetTCRunMode (TCid=2, SSMode=MDIStepForward, SuspendMode=0)
MDISetTCRunMode (TCid=3, SSMode=MDIStepForward, SuspendMode=0)

9.3 Multi-processor Team Control

The functions in this section can be used to affiliate a number of devices into a multi-processor debugging team, so that
they stop and start execution together in a synchronized manner. The devices, or team members, may be single-threaded
CPU cores within a multi-core system, VPEs within a multi-threaded CPU, or some combination of these.

A team is persistent, in that will not be deleted, or have members removed from it, just because a device is closed. The
team will vanish only when MDIDestroyTeam() is called, or the last debugger disconnects from the MDILib or group
of MDILibs which are maintaining the team.

For a more detailed discussion see Section 3.2, "Multi-processor Debugging" on page 6.

9.3.1 Create Team: Create a new multi-processor debugging team

MDIInt32
MDICreateTeam (MDIHandleT MDIHandle,

MDITeamIdT *TeamId);

Structures:
typedef MDIInt32 MDITeamIdT;

9.3 Multi-processor Team Control

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 69

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Returns:

Description:

MDIHandle must be the value returned by a previous MDIConnect() call.

Creates a new empty team and returns its ID in *TeamId. It is acceptable for an MDILib to limit the number of teams
which it can support, including to zero or one, and return MDIErrTooManyTeams when this limit is exceeded.

9.3.2 Team Query: Retrieves a list of active teams

MDIInt32
MDIQueryTeams (MDIHandleT MDIHandle,

MDIInt32 *HowMany,
MDITeamIdT *TeamIds)

Returns:

Description:

MDIHandle must be the value returned by a previous MDIConnect() call.

If the requested number of teams (*HowMany) is 0, the function returns no error (MDISuccess) and *HowMany is set
to the number of active teams. If *HowMany is non-zero on entry, it specifies the number of elements in the TeamID
array being passed in. The function fills in the TeamIds array with the IDs for up to *HowMany teams and sets
*HowMany to the number filled in. If there is not enough room in the TeamIds array to hold all the available teams,
MDIErrMore is returned. If the debugger then calls this function again before any other MDI functions are called,
information is returned for the next *HowMany teams.

9.3.3 Clear Team: Removes all members from a multi-processor team

MDIInt32
MDIClearTeam (MDIHandleT MDIHandle,

MDITeamIdT TeamId)

Returns:

MDISuccess No Error, new empty team created

MDIErrMDIHandle Invalid MDI Handle

MDIErrUnsupported MDI library does not support teams

MDIErrTooManyTeams The MDILib cannot create another team

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDISuccess No Error

MDIErrMDIHandle Invalid MDI Handle

MDIErrUnsupported MDI library does not support teams

MDIErrParam Invalid parameter, *HowMany should not be negative

MDIErrMore More teams defined than requested

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDISuccess No Error, team deleted

70 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 9 Multi-Threaded and Multi-Processor Command Set

Description:

TeamId specifies the id of the team to be cleared - that is all members are removed from the team. All team members
currently in FROZEN state must be switched to the RUNNING state; team members in any other state remain
unaffected. The team id and associated state remain active however, and new members may be added to the team.

9.3.4 Destroy Team: Destroys a multi-processor team

MDIInt32
MDIDestroyTeam (MDIHandleT MDIHandle,

MDITeamIdT TeamId)

Returns:

Description:

TeamId specifies the id of the team to be destroyed. All team members currently in FROZEN state must be switched to
the RUNNING state; team members in any other state remain unaffected. The team ID and associated state can then be
released and recycled by the MDILib.

9.3.5 Attach Team Member: Add a new member to a team

MDIInt32
MDIAttachTM (MDIHandleT MDIHandle,

MDITeamIdT TeamId,
MDITMDataT *TMData)

Returns:

MDIErrMDIHandle Invalid MDI Handle

MDIErrUnsupported MDI library does not support teams

MDIErrTeamId Invalid team ID

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDISuccess No Error, team deleted

MDIErrMDIHandle Invalid MDI Handle

MDIErrUnsupported MDI library does not support teams

MDIErrTeamId Invalid team ID

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDISuccess No Error

MDIErrMDIHandle Invalid MDI Handle

MDIErrUnsupported MDI library does not support teams

MDIErrTeamId Invalid team ID

MDIErrTGId Invalid Target Group ID in *TMData

MDIErrDeviceId Invalid Device ID in *TMData

MDIErrAlreadyMember The device is already a team member

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

9.3 Multi-processor Team Control

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 71

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Structures:
typedef struct MDITMData_struct {

MDIHandleT MDIHandle;
MDITGIDT TGId;
MDIDeviceIDT DevId;

} MDITMDataT;

Description:

MDIHandle must be the value returned by a previous MDIConnect() call. TeamId must be a team id returned by a call
to MDICreateTeam() or MDIQueryTeams().

This call adds a single device to an existing team. A device may be a member of only one team at a time, so if it is already
a member of this or any other team, then MDIErrAlreadyMember shall be returned.

The ids TMData->TGId and TMData->DevId specify a device managed by the library whose handle is in
TMData->MDIHandle, a value returned by a previous call to MDIConnect(). An MDILib is permitted to return
MDIErrMDIHandle if TMData->MDIHandle is not the same as the MDIHandle argument, but may optionally permit
the creation of teams which cross library and probe boundaries. It is not necessary for the new device to have already
been opened by this debugger or any other.

Refer to Section 3.2.1, "Multi-processor Teams" on page 7 for a description of the various states associated with devices
in a team. If the new device is currently in RUNNING state, and if any existing member of the team is currently
HALTED, then the new device must be placed immediately in the FROZEN state. It is permissible to add a currently
disabled device to a team, in which case if any existing team member is HALTED, then the new device must be placed
in a "pending" FROZEN state, in anticipation of it being enabled. If the new device is currently HALTED, then any
existing team members which are RUNNING or disabled must be immediately switched to FROZEN (or pending
FROZEN) state. In all other cases the states of the new device and existing team members remain unchanged.

9.3.6 Detach Team Member: Remove a single member from a team

MDIInt32
MDIDetachTM (MDIHandleT MDIHandle,

MDITeamIdT TeamId,
MDITMDataT *TMData)

Returns:

Description:

MDIHandle must be the value returned by a previous MDIConnect() call. TeamId must be a team ID returned by a call
to MDICreateTeam() or MDIQueryTeams().

MDISuccess No Error, new empty team created

MDIErrMDIHandle Invalid MDI Handle

MDIErrUnsupported MDI library does not support teams

MDIErrTeamId Invalid team ID

MDIErrTGId Invalid target group id in *TMData

MDIErrDeviceId Invalid device id in *TMData

MDIErrNotMember The device is not a member of this team

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

72 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 9 Multi-Threaded and Multi-Processor Command Set

This call removes a single device from the specified team. If the device is not in the team then MDIErrNotAffiliated is
returned.

The device is described by the *TMData which includes the handle of the MDI library module which controls it (usually
the same as the MDIModule argument), and its Target Group ID and Device ID within that library. It is not necessary
for the device to already be opened by this debugger or any other debugger.

Refer to Section 3.2.2, "Disabled Multi-processor Devices" on page 9 for a description of the states associated with
devices in a team. If the removed device is currently in HALTED state, then any other team member which is in FROZEN
state must be placed immediately in the RUNNING state if they are enabled. If the removed device is in the FROZEN
state, then it should immediately be restarted and placed in the RUNNING state. In all other cases the states of the new
device and existing team members remain unchanged.

9.3.7 Team Member Query: Retrieves a list of team members

MDIInt32
MDITMQuery (MDIHandleT MDIHandle,

MDITeamIdT TeamId,
MDIInt32 *HowMany,
MDITMDataT *TMData)

Returns:

Description:

MDIHandle must be the value returned by a previous MDIConnect() call. TeamId must be a team ID returned by a call
to MDICreateTeam() or MDIQueryTeams().

If the requested number of team members (*HowMany) is 0, the function returns no error (MDISuccess) and *HowMany
is set to the number of team members in TeamId. If *HowMany is non-zero on entry, it specifies the number of elements
in the TMData array being passed in. The function fills in the TMData array with the information for up to *HowMany
team members and sets *HowMany to the number filled in. If there is not enough room in the TMData array to hold all
the available members, MDIErrMore is returned. If the debugger then calls this function again before any other MDI
functions are called, information is returned for the next *HowMany team members.

9.3.8 Team Execute: Place all team members into RUNNING state

MDIInt32
MDITeamExecute (MDIHandleT MDIHandle,

MDITeamIdT TeamId)

Returns:

MDISuccess No Error

MDIErrMDIHandle Invalid MDI Handle

MDIErrUnsupported MDI library does not support teams

MDIErrTeamId Invalid team ID

MDIErrParam Invalid parameter, *HowMany should not be negative

MDIErrMore More team members exist than requested

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

MDISuccess No Error

9.3 Multi-processor Team Control

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 73

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Description:

Places all team members "simultaneously" into the RUNNING state, irrespective of their current state. This call will
normally be used only by a multi-processor aware debugger which is controlling all of the team members, for example
an SMP operating system kernel debugger. The behavior of each TC and device after returning to RUNNING state is
governed by any previous calls to the MDISetRunMode() function, see Section 9.2, "Set Run Mode: Specify behavior
when returning to the RUNNING state" on page 67.

MDIErrMDIHandle Invalid MDI Handle

MDIErrUnsupported MDI library does not support teams

MDIErrTeamId Invalid team ID

MDIErrWrongThread Call was not made by the connected thread

MDIErrRecursive Recursive call was made during an MDICBPeriodic() callback

74 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Chapter 9 Multi-Threaded and Multi-Processor Command Set

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 75

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix A

MDI.h Header File

The user should verify the compiler’s syntax for a 64-bit signed and unsigned entity, using Microsoft’s Visual C++
version 6.0’s 64 bit specifiers. The following portion of the specification may be used as a C header file to implement
the specification:

/* Start of header file for MDI (mdi.h) */
#ifndef MDI_Specification_Definitions
#define MDI_Specification_Definitions

/**
 * To build MDILib:
 * Define MDI_LIB before #include "mdi.h"
 * Include mdi.def in the link on Windows hosts.
 *
 * When building an MDI application (debugger):
 * In one source file only, define MDILOAD_DEFINE before
 * #include "mdi.h" to define pointer variables for the API
 * functions.
 */

typedef unsigned int MDIUint32;
typedef int MDIInt32;

#ifdef _MSC_VER
 typedef unsigned __int64 MDIUint64;
 typedef __int64 MDIInt64;

 #ifndef __stdcall
 #define __stdcall __stdcall
 #endif

#else
 typedef unsigned long long MDIUint64;
 typedef long long MDIInt64;

 #ifndef __stdcall
 #define __stdcall
 #endif

 #ifndef __declspec
 #define __declspec(e)
 #endif

#endif

typedef MDIUint32 MDIVersionT;
typedef struct MDIVersionRange_struct
{
 MDIVersionT oldest;
 MDIVersionT newest;
} MDIVersionRangeT;

/*
 * Define various revision fields

76 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix A MDI.h Header File

 */
#define MDIMajor 2
#define MDIMinor 11
#define MDIOldMajor 1
#define MDIOldMinor 0
#define MDICurrentRevision ((MDIMajor << 16) | MDIMinor)
#define MDIOldestRevision ((MDIOldMajor << 16) | MDIOldMinor)

typedef MDIUint32 MDIHandleT;
#define MDINoHandle ((MDIHandleT)-1)

typedef MDIUint32 MDITGIdT;

typedef struct MDITGData_struct
{
 MDITGIdT TGId; /* MDI ID to reference this Target Group */
 char TGName[81]; /* Descriptive string identifying this TG */
} MDITGDataT;

typedef MDIUint32 MDIDeviceIdT;

typedef struct MDIDData_Struct
{
 MDIDeviceIdT Id; /* MDI ID to reference this device */
 char DName[81]; /* Descriptive string identifying this device */
 char Family[15]; /* Device's Family (CPU, DSP) */
 char FClass[15]; /* Device's Class (MIPS, X86, PPC) */
 char FPart[15]; /* Generic Part Name */
 char FISA[15]; /* Instruction Set Architecture */
 char Vendor[15]; /* Vendor of Part */
 char VFamily[15]; /* Vendor Family name */
 char VPart[15]; /* Vendor Part Number */
 char VPartRev[15]; /* Vendor Part Revision Number */
 char VPartData[15]; /* Used for Part Specific Data */
 char Endian; /* 0 Big Endian, 1 Little Endian */
} MDIDDataT;

/* Valid values for MDIDDataT.Family: */
#define MDIFamilyCPU "CPU"
#define MDIFamilyDSP "DSP"

/* Valid values for MDIDDataT.Endian: */
#define MDIEndianBig 0
#define MDIEndianLittle 1

/* MDI Resources */
typedef MDIUint32 MDIResourceT;

typedef MDIUint64 MDIOffsetT;

typedef struct MDIRange_struct
{
 MDIOffsetT Start;
 MDIOffsetT End;
} MDIRangeT;

typedef struct MDICRange_struct
{
 MDIOffsetT Offset;
 MDIResourceT Resource;

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 77

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

 MDIInt32 Count;
} MDICRangeT;

typedef struct MDIConfig_struct
{
 /* Provided By: Other Comments */
 char User[80]; /* Host: ID of caller of MDI */

 char Implementer[80]; /* MDI ID of who implemented MDI */
 MDIUint32 MDICapability; /* MDI: Flags for optional capabilities */

 /* Host: CB fn for MDI output */
 MDIInt32 (__stdcall *MDICBOutput) (MDIHandleT Device,
 MDIInt32 Type,
 char *Buffer,
 MDIInt32 Count);

 /* Host: CB fn for MDI input */
 MDIInt32 (__stdcall *MDICBInput) (MDIHandleT Device,
 MDIInt32 Type,
 MDIInt32 Mode,
 char **Buffer,
 MDIInt32 *Count);

 /* Host: CB fn for expression eval */
 MDIInt32 (__stdcall *MDICBEvaluate) (MDIHandleT Device,
 char *Buffer,
 MDIInt32 *ResultType,
 MDIResourceT *Resource,
 MDIOffsetT *Offset,
 MDIInt32 *Size,
 void **Value);

 /* Host: CB fn for sym/src lookup */
 MDIInt32 (__stdcall *MDICBLookup) (MDIHandleT Device,
 MDIInt32 Type,
 MDIResourceT Resource,
 MDIOffsetT Offset,
 char **Buffer);

 /* Host: CB fn for Event processing */
 MDIInt32 (__stdcall *MDICBPeriodic)(MDIHandleT Device);

 /* Host: CB fn for Synchronizing */
 MDIInt32 (__stdcall *MDICBSync)(MDIHandleT Device,
 MDIInt32 Type,
 MDIResourceT Resource);

} MDIConfigT;

/* MDIConfigT.MDICapability flag values, can be OR'ed together */
#define MDICAP_NoParser 1 /* No command parser */
#define MDICAP_NoDebugOutput 2 /* No Target I/O */
#define MDICAP_TraceOutput 4 /* Supports Trace Output */
#define MDICAP_TraceCtrl 8 /* Supports Trace Control */
#define MDICAP_TargetGroups 0x10 /* Supports Target Groups */
#define MDICAP_PDtrace 0x20 /* Supports PDtrace functions */
#define MDICAP_TraceFetchI 0x40 /* Supports Instruction Fetch during Trace */
#define MDICAP_TC 0x80 /* Supports Thread Contexts */
#define MDICAP_Teams 0x100 /* Supports Teams */

78 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix A MDI.h Header File

typedef struct MDIRunState_struct
{
 MDIUint32 Status;
 union u_info
 {
 void *ptr;
 MDIUint32 value;
 } Info;
} MDIRunStateT;

/* Status values: Info interpretation: */
#define MDIStatusNotRunning 1 /* none */
#define MDIStatusRunning 2 /* none */
#define MDIStatusHalted 3 /* none */
#define MDIStatusStepsDone 4 /* none */
#define MDIStatusExited 5 /* Info.value = exit value */
#define MDIStatusBPHit 6 /* Info.value = BpID */
#define MDIStatusUsrBPHit 7 /* none */
#define MDIStatusException 8 /* Info.value = which exception */
#define MDIStatusTraceFull 9 /* none */
#define MDIStatusVPENoTCs 0xa /* no TCs have bee set up as yet on this VPE */
#define MDIStatusVPEDisabled 0xb /* VPE is not in execution mode */

#define MDIStatusMask 0xff /* Status values are in lowest byte */

/* These can be OR'ed in with MDIStatusRunning and MDIStatusNotRunning
 */
#define MDIStatusReset 0x100 /* currently held reset */
#define MDIStatusWasReset 0x200 /* reset asserted & released */
#define MDIStatusResetMask 0x300 /* reset state mask */

/* This can also be OR'ed in with MDIStatusHalted */
#define MDIStatusDescription 0x0400 /* Info.ptr = Descriptive string */

typedef struct MDICacheInfo_struct
{
 MDIInt32 Type;
 MDIUint32 LineSize; /* Bytes of data in a cache line */
 MDIUint32 LinesPerSet; /* Number of lines in a set */
 MDIUint32 Sets; /* Number of sets */
} MDICacheInfoT;

/* Values for MDICacheInfoT.Type (Cache types): */
#define MDICacheTypeNone 0
#define MDICacheTypeUnified 1
#define MDICacheTypeInstruction 2
#define MDICacheTypeData 3

typedef MDIUint32 MDIBpT;
#define MDIBPT_SWInstruction 1
#define MDIBPT_SWOneShot 2
#define MDIBPT_HWInstruction 3
#define MDIBPT_HWData 4
#define MDIBPT_HWBus 5

/* Hardware breakpoint types may have one or more of the following */
/* flag bits OR'ed in to specify additional qualifications. */
#define MDIBPT_HWFlg_AddrMask 0x10000
#define MDIBPT_HWFlg_AddrRange 0x20000

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 79

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

#define MDIBPT_HWFlg_DataValue 0x40000
#define MDIBPT_HWFlg_DataMask 0x80000
#define MDIBPT_HWFlg_DataRead 0x100000
#define MDIBPT_HWFlg_DataWrite 0x200000
#define MDIBPT_HWFlg_Trigger 0x400000
#define MDIBPT_HWFlg_TriggerOnly 0x800000
#define MDIBPT_HWFlg_TCMatch 0x1000000

#define MDIBPT_TypeMax MDIBPT_HWBus
#define MDIBPT_TypeMask 0xffff
#define MDIBPT_TypeQualMask 0xffff0000

typedef MDIUint32 MDIBpIdT;

#define MDIAllBpID (~(MDIBpIdT)0)

typedef struct MDIBpData_struct
{
 MDIBpIdT Id;
 MDIBpT Type;

 MDIUint32 Enabled; /* 0 if currently disabled, else 1 */
 MDIResourceT Resource;
 MDIRangeT Range; /* Range.End may be an end addr or mask */
 MDIUint64 Data; /* valid only for data write breaks */
 MDIUint64 DataMask; /* valid only for data write breaks */
 MDIUint32 PassCount; /* Pass count reloaded when hit */
 MDIUint32 PassesToGo; /* Passes to go until next hit */
} MDIBpDataT;

#define MDIBPT_HWType_Exec 1
#define MDIBPT_HWType_Data 2
#define MDIBPT_HWType_Bus 4
#define MDIBPT_HWTYpe_AlignMask 0xf0
#define MDIBPT_HWType_AlignShift 4
#define MDIBPT_HWType_MaxSMask 0x3f00
#define MDIBPT_HWType_MaxSShift 9
#define MDIBPT_HWType_VirtAddr 0x4000
#define MDIBPT_HWType_ASID 0x8000

typedef struct MDIBpInfo_struct
{
 MDIInt32 Num;
 MDIBpT Type;
} MDIBpInfoT;

/* MDI Trace data type */
typedef struct MDITrcFrame_Struct
{
 MDIUint32 Type;
 MDIResourceT Resource;
 MDIOffsetT Offset;
 MDIUint64 Value;
} MDITrcFrameT;

#define MDITTypePC 1 /* Instruction address only */
#define MDITTypeInst 2 /* Instruction address and value */
#define MDITTypeRead 3 /* Data Load address only */
#define MDITTypeWrite 4 /* Data Store address only */
#define MDITTypeAccess 5 /* Data Access (Load/Store) address only */

80 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix A MDI.h Header File

#define MDITTypeRData_8 6 /* Data Load address and 8-bit value */
#define MDITTypeWData_8 7 /* Data Store address and 8-bit value */
#define MDITTypeRData_16 8 /* Data Load address and 16-bit value */
#define MDITTypeWData_16 9 /* Data Store address and 16-bit value */
#define MDITTypeRData_32 10 /* Data Load address and 32-bit value */
#define MDITTypeWData_32 11 /* Data Store address and 32-bit value */
#define MDITTypeRData_64 12 /* Data Load address and 64-bit value */
#define MDITTypeWData_64 13 /* Data Store address and 64-bit value */

/* Values for Flags parameter to MDITGOpen() and MDIOpen(): */
#define MDISharedAccess 0
#define MDIExclusiveAccess 1

/* Values for Flags parameter to MDITGClose() and MDIClose(): */
#define MDICurrentState 0
#define MDIResetState 1

/* Values for SyncType parameter to MDICBSync(): */
#define MDISyncBP 0
#define MDISyncState 1
#define MDISyncWrite 2

/* Values for Direction parameter to MDIMove(): */
#define MDIMoveForward 0
#define MDIMoveBackward 1

/* Values for Mode parameter to MDIFind(): */
#define MDIMatchForward 0
#define MDIMismatchForward 1
#define MDIMatchBackward 2
#define MDIMismatchBackward 3

/* Values for Mode parameter to MDIStep() and MDISetRunMode(): */
#define MDIStepInto 0
#define MDIStepForward 1
#define MDIStepOver 2
#define MDINoStep ~0

/* "Wait Forever" value for WaitTime parameter to MDIRunState(): */
#define MDIWaitForever -1

/* Values for Mode parameter to MDIReset(): */
#define MDIFullReset 0
#define MDIDeviceReset 1
#define MDICPUReset 2
#define MDIPeripheralReset 3

/* Values for Flags parameter to MDICacheFlush(): */
#define MDICacheWriteBack 1
#define MDICacheInvalidate 2

/* Values for Status parameter from MDITraceStatus(): */
#define MDITraceStatusNone 1
#define MDITraceStatusTracing 2
#define MDITraceStatusWaiting 3
#define MDITraceStatusFilling 4
#define MDITraceStatusStopped 5

/* Values for Type parameter to MDICBOutput() and MDICBInput(): */
#define MDIIOTypeMDIIn 1

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 81

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

#define MDIIOTypeMDIOut 2
#define MDIIOTypeMDIErr 3
#define MDIIOTypeTgtIn 4
#define MDIIOTypeTgtOut 5
#define MDIIOTypeTgtErr 6

/* Values for Mode parameter to MDICBInput(): */
#define MDIIOModeNormal 1
#define MDIIORawBlock 2
#define MDIIORawNoBlock 3

/* Values for Type parameter to MDICBEvaluate(): */
#define MDIEvalTypeResource 1
#define MDIEvalTypeChar 2
#define MDIEvalTypeInt 3
#define MDIEvalTypeUInt 4
#define MDIEvalTypeFloat 5
#define MDIEvalTypeNone 6

/* Values for Type parameter to MDICBLookup(): */
#define MDILookupNearest 1
#define MDILookupExact 2
#define MDILookupSource 3

/* MDI function return values: */
#define MDISuccess 0 /* Success */
#define MDINotFound 1 /* MDIFind() did not find a match */
#define MDIErrFailure -1 /* Unable to perform operation. */
#define MDIErrDevice -2 /* Invalid Device handle. */
#define MDIErrSrcResource -3 /* Invalid Resource type. */
#define MDIErrDstResource -4 /* 2nd Resource has invalid type. */
#define MDIErrInvalidSrcOffset -5 /* Offset is invalid for the specified
 resource. */
#define MDIErrInvalidDstOffset -6 /* 2nd Offset is invalid for the 2nd
 resource. */
#define MDIErrSrcOffsetAlignment -7 /* Offset is not correctly aligned. */
#define MDIErrDstOffsetAlignment -8 /* 2nd Offset is not correctly aligned
 for the specified ObjectSize */
#define MDIErrSrcCount -9 /* Count causes reference outside of
 the resources space */
#define MDIErrDstCount -10 /* Count causes reference outside of
 2nd resources space */
#define MDIErrBPType -13 /* Invalid breakpoint type. */
#define MDIErrRange -14 /* Specified range is outside of the
 scope for the resource */
#define MDIErrNoResource -15 /* Hardware resources not available */
#define MDIErrBPId -16 /* Invalid Breakpoint ID. */
#define MDIErrMore -17 /* More data is available than was
 requested */
#define MDIErrParam -18 /* A parameter is in error (See
 specific instructions) */
#define MDIErrTGHandle -19 /* Invalid Target Group Handle */
#define MDIErrMDIHandle -20 /* Invalid MDI Environment Handle */
#define MDIErrVersion -21 /* Version not supported */
#define MDIErrLoadLib -22 /* MDIInit(): Error loading library */
#define MDIErrModule -23 /* MDIInit(): Unable to link required
 MDI functions from library */
#define MDIErrConfig -24 /* Required callback functions not
 present */
#define MDIErrDeviceId -25 /* Invalid device ID */

82 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix A MDI.h Header File

#define MDIErrAbort -26 /* Command has been aborted */
#define MDIErrUnsupported -27 /* Unsupported feature */
#define MDIErrLookupNone -28 /* Address did not match a symbol or
 source line. */
#define MDIErrLookupError -29 /* Invalid address for look up. */
#define MDIErrTracing -30 /* Can't clear trace buffer while
 capturing is in progress */
#define MDIErrInvalidFunction -31 /* Function pointer is invalid */
#define MDIErrAlreadyConnected -32 /* MDI Connection has already been made
 for this thread */
#define MDIErrTGId -33 /* Invalid Target Group ID */
#define MDIErrDeviceHandle -34
#define MDIErrDevicesOpen -35
#define MDIErrInvalidData -36
#define MDIErrDuplicateBP -37
#define MDIErrInvalidFrames -38 /* Range of requested trace frames is
 invalid */
#define MDIErrWrongThread -39
#define MDIErrTargetRunning -40
#define MDIErrRecursive -41 /* Illegal recursive call from from
 MDICDPeriodic */
#define MDIErrObjectSize -42 /* Invalid Object Size for Resource */
#define MDIErrTCId -43 /* TC is not valid for device */
#define MDIErrTooManyTeams -44 /* Too many teams for MDILib */
#define MDIErrTeamId -45 /* Invalid team ID */
#define MDIErrDisabled -46 /* Device is disabled */
#define MDIErrAlreadyMember -47 /* Device is already a team member */
#define MDIErrNotMember -48 /* Device is not a team member */

typedef MDIInt32 MDITCIdT;

typedef struct MDITCData_struct {
 MDITCIdT TCId;
 MDIUint32 Status;
} MDITCDataT;

#define MDITCStatusHalted 0
#define MDITCStatusFree 1
#define MDITCStatusRunning 2
#define MDITCStatusBlockedOnWait 3
#define MDITCStatusBlockedOnYield 4
#define MDITCStatusBlockedOnGS 5

typedef MDIInt32 MDITeamIdT;

typedef struct MDITMData_struct {
 MDIHandleT TGHandle;
 MDIHandleT DevHandle;
} MDITMDataT;

/* Function Prototypes */
#ifdef __cplusplus
extern "C" {
#endif

#if defined(MDI_LIB) /* MDILib, do extern function declarations */
 #define yf(str) extern int __declspec(dllexport) __stdcall str

#elif defined(MDILOAD_DEFINE) /* debugger, do function pointer definitions */
 #define yf(str) int (__stdcall *str)

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 83

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

#else /* debugger, do extern function pointer
 declarations */
 #define yf(str) extern int (__stdcall *str)
#endif

 /* 0 */
 yf(MDIVersion) (MDIVersionRangeT *);
 yf(MDIConnect) (MDIVersionT, MDIHandleT*, MDIConfigT*);
 yf(MDIDisconnect)(MDIHandleT, MDIUint32);
 yf(MDITGQuery) (MDIHandleT, MDIInt32*, MDITGDataT*);
 yf(MDITGOpen) (MDIHandleT, MDITGIdT, MDIUint32, MDIHandleT *);

 /* 5 */
 yf(MDITGClose) (MDIHandleT, MDIUint32);
 yf(MDITGExecute)(MDIHandleT);
 yf(MDITGStop) (MDIHandleT);
 yf(MDIDQuery) (MDIHandleT, MDIInt32*, MDIDDataT *);
 yf(MDIOpen) (MDIHandleT, MDIDeviceIdT, MDIUint32, MDIHandleT *);

 /* 10 */
 yf(MDIClose) (MDIHandleT, MDIUint32);
 yf(MDIRead) (MDIHandleT, MDIResourceT, MDIOffsetT, void*, MDIUint32,

 MDIUint32);
 yf(MDIWrite) (MDIHandleT, MDIResourceT, MDIOffsetT, void*, MDIUint32,

 MDIUint32);
 yf(MDIReadList) (MDIHandleT, MDIUint32, MDICRangeT*, MDIUint32, void*);
 yf(MDIWriteList)(MDIHandleT, MDIUint32, MDICRangeT*, MDIUint32, void*);

 /* 15 */
 yf(MDIMove) (MDIHandleT, MDIResourceT, MDIOffsetT, MDIResourceT,
 MDIOffsetT, MDIUint32, MDIUint32, MDIUint32);
 yf(MDIFill) (MDIHandleT, MDIResourceT, MDIRangeT, void*, MDIUint32,

 MDIUint32);
 yf(MDIFind) (MDIHandleT, MDIResourceT, MDIRangeT, void*, void*,
 MDIUint32, MDIUint32, MDIOffsetT*, MDIUint32);
 yf(MDIExecute)(MDIHandleT);
 yf(MDIStep) (MDIHandleT, MDIUint32, MDIUint32);

 /* 20 */
 yf(MDIStop) (MDIHandleT);
 yf(MDIReset) (MDIHandleT, MDIUint32);
 yf(MDICacheQuery)(MDIHandleT, MDICacheInfoT*);
 yf(MDICacheFlush)(MDIHandleT, MDIUint32, MDIUint32);
 yf(MDIRunState) (MDIHandleT, MDIInt32, MDIRunStateT *);

 /* 25 */
 yf(MDISetBp) (MDIHandleT, MDIBpDataT*);
 yf(MDISetSWBp) (MDIHandleT, MDIResourceT , MDIOffsetT , MDIBpIdT*);
 yf(MDIClearBp) (MDIHandleT, MDIBpIdT);
 yf(MDIEnableBp) (MDIHandleT, MDIBpIdT);
 yf(MDIDisableBp)(MDIHandleT, MDIBpIdT);

 /* 30 */
 yf(MDIBpQuery) (MDIHandleT, MDIInt32*, MDIBpDataT*);
 yf(MDIDoCommand) (MDIHandleT, char*);
 yf(MDIAbort) (MDIHandleT);
 yf(MDITraceEnable) (MDIHandleT);
 yf(MDITraceDisable)(MDIHandleT);

84 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix A MDI.h Header File

 /* 35 */
 yf(MDITraceClear) (MDIHandleT);
 yf(MDITraceStatus)(MDIHandleT, MDIUint32 *);
 yf(MDITraceCount) (MDIHandleT, MDIUint32 *);
 yf(MDITraceRead) (MDIHandleT, MDIUint32, MDIUint32, MDIUint32,

 MDITrcFrameT *);
 yf(MDISetTC) (MDIHandleT, MDITCIdT);

 /* 40 */
 yf(MDIGetTC) (MDIHandleT, MDITCIdT*);
 yf(MDITCQuery) (MDIHandleT, MDIInt32*, MDITCDataT*);
 yf(MDISetRunMode) (MDIHandleT, MDITCIdT, MDIUint32, MDIUint32);
 yf(MDICreateTeam) (MDIHandleT, MDITeamIdT*);
 yf(MDIClearTeam) (MDIHandleT, MDITeamIdT);

 /* 45 */
 yf(MDIDestroyTeam) (MDIHandleT, MDITeamIdT);
 yf(MDIQueryTeam) (MDIHandleT, MDIInt32*, MDITeamIdT*);
 yf(MDIAttachTM) (MDIHandleT, MDITeamIdT, MDITMDataT*);
 yf(MDIDetachTM) (MDIHandleT, MDITeamIdT, MDITMDataT*)’
 yf(MDITMQuery) (MDIHandleT, MDITeamIdT, MDIInt32*, MDITMDataT*);

 /* 50 */
 yf(MDITeamExecute) (MDIHandleT, MDITeamIdT);
 yf(MDIHwBpQuery) (MDIHandleT, MDIInt32*, MDIBpInfoT*);
#undef yf

#ifdef __cplusplus
}
#endif

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 85

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix B

Example Code to Setup an MDILib Connection

/**
This may serve as a starting point to connect to MDI.dll
The mdiinit.c is used to find and link the MDI.dll
***/

#if defined(_WIN32) || defined(__CYGWIN32__)
#include <windows.h>
#else
typedef void *HMODULE;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MDI_ALLOCATE
#include <mdi.h>
#include <mdimips.h>
#include <mdiinit.h>

MDIHandleT MDIhandle;
MDIHandleT TGhandle;
MDIHandleT Devhandle;

MDIDDataT DeviceData;

MDIConfigT config;

#define ec(str) {str, #str}

struct errorcodes_struct {
 int errorcode;
 char *str;
 } errorcodes[] = {
 ec(MDIErrFailure),
 ec(MDIErrDevice),
 ec(MDIErrSrcResource),
 ec(MDIErrDstResource),
 ec(MDIErrInvalidSrcOffset),
 ec(MDIErrInvalidDstOffset),
 ec(MDIErrSrcOffsetAlignment),
 ec(MDIErrDstOffsetAlignment),
 ec(MDIErrSrcCount),
 ec(MDIErrDstCount),
 ec(MDIErrBPType),
 ec(MDIErrRange),
 ec(MDIErrNoResource),
 ec(MDIErrBPId),
 ec(MDIErrMore),
 ec(MDIErrParam),
 ec(MDIErrTGHandle),
 ec(MDIErrMDIHandle),
 ec(MDIErrVersion),

86 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix B Example Code to Setup an MDILib Connection

 ec(MDIErrLoadLib),
 ec(MDIErrModule),
 ec(MDIErrConfig),
 ec(MDIErrDeviceId),
 ec(MDIErrAbort),
 ec(MDIErrUnsupported),
 ec(MDIErrLookupNone),
 ec(MDIErrLookupError),
 ec(MDIErrTracing),
 ec(MDIErrInvalidFunction),
 ec(MDIErrAlreadyConnected),
 ec(MDIErrTGId),
 ec(MDIErrDeviceHandle),
 ec(MDIErrDevicesOpen),
 ec(MDIErrInvalidData),
 ec(MDIErrDuplicateBP),
 ec(MDIErrInvalidFrames),
 ec(MDIErrWrongThread),
 ec(MDIErrTargetRunning),
 ec(MDIErrRecursive),
 ec(MDIErrObjectSize),
 { 0, "Undefined" },
 };

/**
ChkMDIerr If errno is != 0, Display the MDI error on the console
Returns 0 if errno is MDISuccess, otherwise -1.

***/

int ChkMDIerr(int errno)
{
 int i;

 if (errno)
 {
 for (i = 0;
 errorcodes[i].errorcode && errorcodes[i].errorcode != errno;
 i++)
 {
 }
 fprintf(stderr,
 "\nMDI Error (%d) %s\n", errno, errorcodes[i].str);
 return -1;
 }

 return 0;
}

/**
SelectDevice
Returns -1 if no devices are present otherwise, index of selected device in device
array.
***/

int
SelectDevice(MDIDDataT *base, int number)
{
 int i;
 char buffer[81];

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 87

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

 int value;

 if (!number)
 {
 return (-1);
 }
 if (number == 1)
 {
 return (0);
 }
 do
 {
 fprintf(stdout, "Select Device:\n");
 for (i = 0; i < number ; i++)
 {
 fprintf(stdout, " %02d) %s\n", i + 1, base[i].DName);
 }
 fprintf(stdout, "Enter Number (1-%d) >", number);
 fgets(buffer, sizeof (buffer), stdin);
 value = atoi(buffer);
 }
 while (value < 1 || value > number);

 return (value - 1);
}

/**
SelectTarget
Returns -1 if no Target groups are present otherwise, index of selected target
group in target group array.
***/

int
SelectTarget(MDITGDataT *base, int number)
{
 int i;
 char buffer[81];
 int value;

 if (!number)
 {
 return (-1);
 }
 if (number == 1)
 {
 return (0);
 }
 do
 {
 fprintf(stdout, "Select Target Group:\n");
 for (i = 0; i < number ; i++)
 {
 fprintf(stdout, " %02d) %s\n", i + 1, base[i].TGName);
 }
 fprintf(stdout, "Enter Number (1-%d) >", number);
 fgets(buffer, sizeof (buffer), stdin);
 value = atoi(buffer);
 }
 while (value < 1 || value > number);

88 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix B Example Code to Setup an MDILib Connection

 return (value - 1);
}

/**
OpenDev
Creates an array of the available devices in the target group, but if more than 1,
it queries the user as to which device it wants to connect.
Returns

If successful on device open, then DevHandle is set and 0 is
returned
If error, then a number < 0 is returned to indicate the error
***/
int
openDev(void)
{
 MDIDDataT temp;
 MDIDDataT *tempbase;
 int NumDevices;
 int retval;
 int SelectedDevice;

 NumDevices = 0;
 retval = MDIDQuery(TGhandle, &NumDevices, &temp);
 if (ChkMDIerr(retval))
 {
 return retval;
 }

 tempbase = (MDIDDataT *)malloc(NumDevices * sizeof (MDIDDataT));
 retval = MDIDQuery(TGhandle, &NumDevices, tempbase);
 if (ChkMDIerr(retval))
 {
 free (tempbase);
 return retval;
 }

 SelectedDevice = SelectDevice(tempbase, NumDevices);

 if (SelectedDevice < 0)
 {
 free (tempbase);
 return (-5000);
 }

 memmove(&DeviceData, &tempbase[SelectedDevice], sizeof (MDIDDataT));

 free (tempbase);

 retval = MDIOpen(TGhandle, DeviceData.Id, MDIExclusiveAccess, &Devhandle);

 ChkMDIerr(retval);

 return retval;
}

/**
openTG
If the MDI DLL does not support target groups, then set the TGhandel to the
MDIhandle and return 0; otherwise, create an array of the available target groups

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 89

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

If more than 1, query the user as to which target group it wants to connect.
Returns
If successful on target group open, then TGhandle is set and 0is returned
If error, then a number < 0 is returned to indicate the error

***/
int
openTG(void)
{
 int retval;
 MDITGDataT temp;
 MDITGDataT *tempbase;
 int SelectedTarget;
 int NumTargets;

 /* If the MDI DLL we're connecting to, does not do target groups,
 then just use the MDIhandle for the TGhandle */

 if (!(config.MDICapability & MDICAP_TargetGroups))
 {
 TGhandle = MDIhandle;
 return 0;
 }

 NumTargets = 0;
 retval = MDITGQuery(MDIhandle, &NumTargets, &temp);
 if (ChkMDIerr(retval))
 {
 return retval;
 }

 tempbase = (MDITGDataT *)malloc(NumTargets * sizeof (MDITGDataT));
 if (!tempbase)
 {
 return -5000;
 }
 retval = MDITGQuery(MDIhandle, &NumTargets, tempbase);
 if (ChkMDIerr(retval))
 {
 free(tempbase);
 return retval;
 }
 if (NumTargets > 1)
 {
 SelectedTarget = SelectTarget(tempbase, NumTargets);
 }
 else
 {
 SelectedTarget = 0;
 }

 if (SelectedTarget < 0)
 {
 free(tempbase);
 return -5001;
 }

 retval = MDITGOpen(MDIhandle, tempbase[SelectedTarget].TGId,
 MDIExclusiveAccess, &TGhandle);
 free(tempbase);

90 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix B Example Code to Setup an MDILib Connection

 ChkMDIerr(retval);

 return retval;
}
/**
MDIDbgOutput
Required MDI output routine. Just send buffers along to stderr and stdout
Returns MDISuccess
***/
int __stdcall
MDIDbgOutput(MDIHandleT handle, MDIInt32 Type, char *Buffer, MDIInt32 Count)
{

if (Type == MDIIOTypeMDIErr || Type == MDIIOTypeTgtErr)
fwrite(Buffer, Count, 1, stderr);

else
fwrite(Buffer, Count, 1, stdout);

return(MDISuccess);
}
/**
MDIDbgInput
Required MDI input routine. Just get a line from the console and send it in.
Returns MDISuccess

***/
int __stdcall
MDIDbgInput(MDIHandleT handle, MDIInt32 Type, MDIInt32 Mode,

char **Buffer, MDIInt32 *Count)
{

static charlinebuf[1024];

*Buffer = fgets(linebuf, sizeof (linebuf), stdin);
*Count = strlen(linebuf);
return(MDISuccess);

}
/**
opendevice
Load MDI dll through MDIInit.
Connect to MDI dll through MDIConnect.
Open a Target Group
Open the device we want to drive.
Returns MDISuccess if succesful number < 0 if error
***/
int
opendevice(void)
{
 int retval;
 MDIVersionT version;
 HMODULE h;

 retval = MDIInit(0, &h);

 if (ChkMDIerr(retval))
 {
 return retval;
 }

 version = MDICurrentRevision;

 memset(&config, 0, sizeof (config));

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 91

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

 config.MDICBOutput = MDIDbgOutput;
 config.MDICBInput = MDIDbgInput;

 retval = MDIConnect(version, &MDIhandle, &config);
 if (ChkMDIerr(retval))
 {
 return retval;
 }

 if (openTG())
 {
 retval = MDIDisconnect(MDIhandle, 0);
 ChkMDIerr(retval);
 return -5000;
 }

 if (openDev())
 {
 retval = MDITGClose(TGhandle, 0);
 ChkMDIerr(retval);
 retval = MDIDisconnect(MDIhandle, 0);
 ChkMDIerr(retval);
 return -5001;
 }
 return 0;
}
/**
closedevice
Close down the resources that were used in opendevice
Returns MDISuccess if succesful number < 0 if error
***/
int
closedevice(void)
{
 int closeerror;
 int retval;

 retval = MDIClose(Devhandle, 0);
 closeerror = retval;
 ChkMDIerr(retval);
 retval = MDITGClose(TGhandle, 0);
 closeerror |= retval;
 ChkMDIerr(retval);
 retval = MDIDisconnect(MDIhandle, 0);
 closeerror |= retval;
 ChkMDIerr(retval);
 return closeerror;
}

int
main(int argc, char *argv[])
{

 if (opendevice())
 {
 return (-1);
 }

 /* Application Code */

92 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix B Example Code to Setup an MDILib Connection

 if (closedevice())
 {
 return (-1);
 }
 return (0);
}

C.1 Abstract

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 93

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix C

An MDI Addendum for MIPS32® and MIPS64® Architectures

C.1 Abstract

The MIPS architecture-specific resource objects of the MIPS Debug Interface (MDI) are described in this appendix.

C.2 MIPS MDIDDataT Fields

Valid values for the MDIDDataT.FFamily and MDIDDataT.FISA fields returned by MDIDQuery() are architecture
specific. For MIPS, MDIDDataT.FFamily must be set to MDIMIP_FClass ("MIPS"). Valid values for
MDIDDataT.FISA are:

C.3 MIPS Exception Codes

When MDIRunState() returns a RunState.Status value of MDIStatusException, the meaning of RunState.Info.value is
architecture-specific. For MIPS processors, the value returned are the contents of the ExcCode field of the CP0 Cause
register.

C.4 MIPS16e Instructions

For MIPS processors, it is necessary for the MDILib to know if a software breakpoint is being set via the MDIBpSet and
MDISWBpSet (functions are on a normal 32-bit instruction or a MIPS16e instruction). Also, it is necessary for the
debugger to know whether an instruction trace frame returned by MDITraceRead() is a MIPS16e instruction or not. For
both cases, MIPS16e instructions are signaled by setting the low order bit in the corresponding address offset to 1.
mdimips.h defines the name MDIMIP_Flg_MIPS16 for this purpose.

C.5 MIPS Resources

The "Programming Mnemonic" is the macro name defined in the header file mdimips.h, made available with this
MDI addendum. As a minimum, all MIPS MDILib implementations are required to support the following encodings:
MDIMIPCPU, MDIMIPPC, MDIMIPHILO, MDIMIPCP0, MDIMIPPHYSICAL, and MDIMIPGVIRTUAL.
MDIMIPGVIRTUAL support may be limited to the physically mapped segments. If the target processor includes

MDIMIP_FISA_M1 "MIPSI"

MDIMIP_FISA_M2 "MIPSII"

MDIMIP_FISA_M3 "MIPSIII"

MDIMIP_FISA_M4 "MIPSIV"

MDIMIP_FISA_M5 "MIPSV"

MDIMIP_FISA_M32 "MIPS32"

MDIMIP_FISA_M64 "MIPS64"

94 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix C An MDI Addendum for MIPS32® and MIPS64® Architectures

floating point hardware, the MDILib implementation is also required to support MDIMIPCP1, MDIMIPCP1C,
MDIMIPFP, MDIMIPFPR, and MDIMIPDFP (if double precision is available).

For register type resources, if the size of the object being written to that register is smaller than the width of the register,
then the register is written into the low-order bits and sign-extended. If the size is smaller and the register is being read,
then the low-order bits of the register supply the value. When the size of the object being read is larger than the register
width, then the register value is sign-extended to the desired width. If the size is larger than the register being written,
then the high-order bits are ignored.

It is strongly recommended that MIPS MDILib implementations support all encodings for resources that the target
system actually provides. Table C-1 lists the specific resource encodings (address spaces) defined for the MIPS
architecture:

Table C-1 : MIPS32/MIPS64 Resource Definition

MIPS Resource MDI Mnemonic Offset Definition

CPU General Registers MDIMIPCPU Offset is the register number, 0-31

PC Pseudo Register MDIMIPPC Offset will be 0. If it is a MIPS16e instruction, then bit
0 is set to value one.

HI/LO Registers MDIMIPHILO
Offset is 0 for register HI, 1 for register LO, 2 for ACX,
3 for HI1, 4 for LO1, 5 for ACX1, 6 for HI2, 7 for LO2,
8 for ACX2, 9 for HI3, 10 for LO3, and 11 for ACX3.

Coprocessor General Registers
MDIMIPCPx

x = 0, 1, 2, or 3

Each CPx general register set consists of up to 256
banks of 32 registers. Offset(bits 12:5) select the bank.
Offset(bits 4:0) select the register. Progamatically,
((bank << 5) + register = Offset). CPx general registers
are those accessed by the MTCx/MFCx instructions.

Coprocessor Control Registers
MDIMIPCPxC

x = 0, 1, 2, or 3

Each CPx control register set consists of up to 256 banks
of 32 registers. Offset(bits 12:5) select the bank.
Offset(bits 4:0) select the register. Progamatically,
((bank << 5) + register = Offset). CPx control registers
are those accessed by the CTCx/CFCx instructions.

CPU Single-precision FP Pseudo
Registers MDIMIPFP

Offset is 0 to n-1, where n is the number of
single-precision registers available:

16 MIPS I, MIPS II.

32 MIPS III, MIPS IV, MIPS V, MIPS32, MIPS64.

These are the single precision (32-bit) floating-point
values implemented in floating-point general purpose
registers (FGRs). Offsets 0-15 map to FGRs[0,2,4,…]
in MIPS I and MIPS II processors, since the odd
numbered FGRs can not hold a single-precision value.

CPU Double-precision FP
Pseudo Registers MDIMIPDFP

Offset is 0 to n-1, where n is the number of
double-precision registers available:

16 MIPS I, MIPS II, MIPS32.

32 MIPS III, MIPS IV, MIPS V, MIPS64.

These are the double precision (64-bit) floating-point
values implemented in floating-point general purpose
registers (FGRs). Offsets 0-15 map to FGRs[0,2,4,…] in
MIPS I, MIPS II and MIPS32 processors, since it takes
two 32-bit FGRs to hold each double precision value.

C.5 MIPS Resources

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 95

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

FP registers access via software
model MDIMIPFPR

If implemented, this resource provides a software model
of the FP register without the debugger requiring a
detailed knowledge of how the hardware is
implemented. In essense, it provides the abstraction of
the ValueFPR() and StoreFPR() pseudo-code defined in
the second volume of the MIPS64 Architecture
Programming Manual.

The details for how this resource works is shown in
Table C-2, Table C-3, and Table C-4.

192 bit Accumulator MDIMIP192ACC
The 192-bit accumulator register is addressed as three
64-bit registers. Offset is 0 for the high 64 bits, 1 for the
middle 64 bits, and 2 for the low-order 64 bits.

Primary Instruction and Unified
Cache Tags

MDIMIPPICACHET

MDIMIPPUCACHET

This space is organized as an array of cache tag entries.
Each cache tag entry consists of two registers, cache tag
followed by cache parity. For processors that do not
support cache parity bits, writes to the cache parity
registers are ignored and reads return zero.

Offset is 0 through n-1, where n is twice the total
number of cache tag entries. For multi-set caches, all of
the cache tag entries for set 0 are followed by all of the
cache tag entries for set 1, etc.

Primary Data Cache Tags MDIMIPPDCACHET See Primary Instruction and Unified Cache Tags’ offset
definition above.

Secondary Instruction and
Unified Cache Tags

MDIMIPSICACHET

MDIMIPSUCACHET

See Primary Instruction and Unified Cache Tags’ offset
definition above.

Secondary Data Cache Tags MDIMIPSDCACHET See Primary Instruction and Unified Cache Tags’ offset
definition above.

Tertiary Instruction and Unified
Cache Tags

MDIMIPTICACHET

MDIMIPTUCACHET See Primary Instruction and Unified Cache Tags’ offset
definition above.

Tertiary Data Cache Tags MDIMIPTDCACHET See Primary Instruction and Unified Cache Tags’ offset
definition above.

Primary Instruction and Unified
Cache Data

MDIMIPPICACHE

MDIMIPPUCACHE

Offset is the byte offset within the cache. For multi-set
caches, set 0 comes first in the address space,
immediately followed by set 1, etc.

Primary Data Cache Data MDIMIPPDCACHE See Primary Instruction and Unified Cache offset
definition above.

Secondary Instruction and
Unified Cache Data

MDIMIPSICACHE

MDIMIPSUCACHE

See Primary Instruction and Unified Cache offset
definition above.

Secondary Data Cache Data MDIMIPSDCACHE See Primary Instruction and Unified Cache offset
definition above.

Tertiary Instruction and Unified
Cache Data

MDIMIPTICACHE

MDIMIPTUCACHE

See Primary Instruction and Unified Cache offset
definition above.

Tertiary Data Cache Data MDIMIPTDCACHE See Primary Instruction and Unified Cache offset
definition above.

Table C-1 : MIPS32/MIPS64 Resource Definition

96 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix C An MDI Addendum for MIPS32® and MIPS64® Architectures

Translate Lookaside Buffers MDIMIPTLB

This space is organized as an array of TLB entries.
Offset is 0 through n-1 where n is two or four times the
number of TLB entries available in the MMU,
depending on type:

For MIPS1 style single entry MMUs, a TLB entry
consists of two registers, EntryLo followed by EntryHi.

For MIPS3 style double entry MMUs, a TLB entry
consists of four registers, EntryLo0, EntryLo1, EntryHi,
and PageMask.

Physical Memory MDIMIPPHYSICAL Offset is the physical byte address.

Global Virtual Memory MDIMIPGVIRTUAL Offset is the virtual byte address.

ASID Virtual Memory MDIMIPVIRTUAL +
asid

Offset is the byte address within the virtual address
space specified by the given ASID value. The
MDIMIPVIRTUAL equate is set to 0x1000. Specific
ASID spaces can then be referenced as
MDIMIPVIRTUAL + asid.

EJTAG Memory MDIMIPEJTAG

For processors that implement the MIPS EJTAG
specification, this resource refers to the
memory-mapped EJTAG registers. Offset is the byte
offset from the beginning of register bank, as specified
in the EJTAG specification.

Release 2 Shadow Register Set MDIMIPSRS

For processors that implement Release 2 of the MIPS32
or MIPS64 architecture and include shadow register
sets. The architectural maximum limit for n is 16. The
number of the shadow register set is specified by the
offset field. The SRS bank number and register number
are combined using (set*32)+regno.

DSPControl register (used by the
MIPS DSP ASE) MDIMIPDSP For processors that implement the MIPS DSP ASE

ITC Memory MDIMIPITC
For processors that implement the MIPS MT ASE, this
defines the ITC memory. Offset is the byte offset from
the start of the ITC region.

Release 2 Hardware registers MDIMIPHWR Registers accesssed using the RDHWR Release 2
instruction. This is a read-only resource.

Table C-2 : MDIMIPFPR Resource Details for MIPS III, IV, & MIPS64, or MIPS32 with 64-bit FP

Data
Size

FP32
Registers
Mode

Offset Read Write

4 n/a Even & Odd VALUE <- FPR[OFFSET]31..0 FPR[OFFSET] <- VALUE31..0

8 FR=1 Even & Odd VALUE <- FPR[OFFSET]63..0 FPR[OFFSET] <- VALUE63..0

8 FR=0 Even

VALUE <-

(FPR[OFFSET+1]31..0 << 32)

|| FPR[OFFSET]31..0

FPR[OFFSET] <- VALUE31..0

FPR[OFFSET+1] <- VALUE63..32

8 FR=0 Odd MDIErrSrcOffsetAlignment MDIErrDstOffsetAlignment

Table C-1 : MIPS32/MIPS64 Resource Definition

C.6 MIPS-Specific Breakpoint Implementation

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 97

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

C.6 MIPS-Specific Breakpoint Implementation

C.6.1 MDISetBP() and MDISetSWBp() Function Calls

With respect to the MDISetBP() function call, when initializing the Range parameter in the MDIBpDataT data structure,
if the instruction is MIPS16e, then bit 0 of range.start should have a value of 1.

For the MDISetSWBp() function call, the offset must be odd if it is a MIPS16e instruction.

C.6.2 Implementation of MDISetSWBp()

MDIBPT_SWInstruction is implemented in the MIPS architecture using the BREAK or SDBBP instruction. The
hardware breakpoints, for example MDIBPT_HWInstruction, is implemented using either the coprocessor 0 Watch
registers, or the EJTAG hardware breakpoint registers.

Table C-3 : MDIMIPFPR Resource Details for MIPS32 (32-bit FP)

Data
Size

Offset Read Write

4 Even & Odd VALUE <- FPR[OFFSET]31..0 FPR[OFFSET] <- VALUE31..0

8 Even VALUE <- (FPR[OFFSET+1]31..0 << 32) || FPR[OFFSET]31..0

FPR[OFFSET] <- VALUE31..0

FPR[OFFSET+1] <- VALUE63..32

8 Odd MDIErrSrcOffsetAlignment MDIErrDstOffsetAlignment

Table C-4 : MDIMIPFPR Resource Details for MIPS I & II

Data
Size

Offset Read Write

4 Even VALUE <- FPR[OFFSET/2]31..0 FPR[OFFSET/2]31..0 <- VALUE31..0

4 Odd VALUE <- FPR[OFFSET/2]63..32 FPR[OFFSET/2]63..32 <- VALUE31..0

8 Even VALUE <- FPR[OFFSET]63..0 FPR[OFFSET] <- VALUE63..0

8 Odd MDIErrSrcOffsetAlignment MDIErrDstOffsetAlignement

98 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix C An MDI Addendum for MIPS32® and MIPS64® Architectures

C.7 MIPS Specific Header File

The following header file, mdimips.h, may be used as a C header file to implement the specification for MIPS
architectures:

/* Start of header file for MIPS Specific MDI (MDImips.h) */

#ifndef MDI_MIPS_Specification_Definitions
#define MDI_MIPS_Specification_Definitions

/* Valid values for MDIDDataT.FClass: */
#define MDIMIP_FClass "MIPS"
/* Valid values for MDIDDataT.FISA: */
#define MDIMIP_FISA_M1 "MIPSI"
#define MDIMIP_FISA_M2 "MIPSII"
#define MDIMIP_FISA_M3 "MIPSIII"
#define MDIMIP_FISA_M4 "MIPSIV"
#define MDIMIP_FISA_M5 "MIPSV"
#define MDIMIP_FISA_M32 "MIPS32"
#define MDIMIP_FISA_M64 "MIPS64"

/* Valid values for Resource */
#define MDIMIPCPU 1
#define MDIMIPPC 2
#define MDIMIPHILO 3
#define MDIMIPTLB 4
#define MDIMIPPICACHET 5
#define MDIMIPPUCACHET 5
#define MDIMIPPDCACHET 6
#define MDIMIPSICACHET 7
#define MDIMIPSUCACHET 7
#define MDIMIPSDCACHET 8
#define MDIMIP192ACC 9
#define MDIMIPCP0 10
#define MDIMIPCP0C 11
#define MDIMIPCP1 12
#define MDIMIPCP1C 13
#define MDIMIPCP2 14
#define MDIMIPCP2C 15
#define MDIMIPCP3 16
#define MDIMIPCP3C 17
#define MDIMIPFP 18
#define MDIMIPDFP 19
#define MDIMIPPICACHE 20
#define MDIMIPPUCACHE 20
#define MDIMIPPDCACHE 21
#define MDIMIPSICACHE 22
#define MDIMIPSUCACHE 22
#define MDIMIPSDCACHE 23
#define MDIMIPPHYSICAL 24
#define MDIMIPGVIRTUAL 25
#define MDIMIPEJTAG 26
#define MDIMIPSRS 27
#define MDIMIPFPR 28
#define MDIMIPDSP 29
#define MDIMIPTICACHET 30
#define MDIMIPTUCACHET 31
#define MDIMIPTDCACHET 32
#define MDIMIPTICACHE 33

C.7 MIPS Specific Header File

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 99

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

#define MDIMIPTUCACHE 34
#define MDIMIPTDCACHE 35
#define MDIMIPITCVIRTUAL 36
#define MDIMIPHWR 37

#define MDIMIPVIRTUAL 0x00001000 /* 0x10xx: 0x1000+ASID value */

/*
** For MDISetBp(),MDISetSWBp(),and MDITraceRead(), for MDIMIPPC
** resource, setting the low order address bit to 1 means that
** the addressed instruction is a MIPS16e instruction.
*/
#define MDIMIP_Flg_MIPS16 1

#endif

/* End of header file for MIPS Specific MDI (MDImips.h) */

100 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix C An MDI Addendum for MIPS32® and MIPS64® Architectures

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 101

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix D

MDI_PDtrace.h Header File

/* Start of header file for PDtrace (mdi_PDtrace.h) */

#ifndef MDITRACE_Specification_Definitions
#define MDITRACE_Specification_Definitions

/*
This is the trace extensions for the MDI specification. Upon approval,
this header file will be merged into mdi.h.

*/

/*
From mdi.h:

 To build MDILib:
 Define MDI_LIB before #include "mdi.h"
 Include mdi.def in the link on Windows hosts.

 To build an MDI application (debugger):
 Compile mdiinit.c and include it in your link
 Make a call to
 int MDIInit(char *MDIdllpathandname, HMODULE *handle)
 to explicitly load the specified MDILib before making any other MDI calls.
*/

#include "mdi.h" //need standard defines

/* Trace Resources */

typedef MDIUint32 MDITraceFrameCountT;

/* MDI Trace data type */

typedef struct {
MDIUint32 Word; // address of beginning of trace frame in trace memory
MDIUint32 Bit; // bit number of beginning of trace frame within trace word.

} MDITraceFrameNumberT;

typedef struct MDITraceFrame_Struct {
MDITraceFrameNumberT FrameNumber;
MDIUint32 Type;
MDIResourceT Resource;
MDIOffsetT Offset;
MDIUint64 Value;

} MDITraceFrameT;

typedef struct {
MDIUint32 Mode; // trace mode (see definitions above)
MDIUint32 Knob; // other trace mode knobs (see definitions below)
MDIUint32 Knob2; // more trace mode knobs (see defines below)

} MDITraceModeT;

/* Values for Mode member of MDITraceMode: */

102 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix D MDI_PDtrace.h Header File

#define PDtraceMODE_PC 0x00000001 // trace the PC
#define PDtraceMODE_LA 0x00000002 // trace the load address
#define PDtraceMODE_SA 0x00000004 // trace the store address
#define PDtraceMODE_LD 0x00000008 // trace the load data
#define PDtraceMODE_SD 0x00000010 // trace the store data

/* Values for Knob member of MDITraceMode: */

#define PDtraceKNOB_Dbg 0x00000001 // trace in debug mode
#define PDtraceKNOB_Exc 0x00000002 // trace in exception and error modes
(EXL or ERL set)
#define PDtraceKNOB_Sup 0x00000004 // trace in supervisor mode
#define PDtraceKNOB_Ker 0x00000008 // trace in kernel mode
#define PDtraceKNOB_Usr 0x00000010 // trace in user mode
#define PDtraceKNOB_ASIDMask 0x00001F70 // if G=0, trace in this process only
#define PDtraceKNOB_ASIDShift 5
#define PDtraceKNOB_G 0x00002000 // trace in all processes
#define PDtraceKNOB_SyPMask 0x0001C000 // Synchronization period
#define PDtraceKNOB_SyPShift 14
#define PDtraceKNOB_TMMask 0x00060000 // On-chip trace 00=traceto,
01=tracefrom
#define PDtraceKNOB_TMShift 17
#define PDtraceKNOB_OfC 0x00080000 // Trace sent to off-chip memory
#define PDtraceKNOB_CA 0x00100000 // cycle-accurate (include idle cycle
records)
#define PDtraceKNOB_IO 0x00200000 // inhibit overflow (stall CPU to
prevent overflow)
#define PDtraceKNOB_AB 0x00400000 // Send PC info for all branches,
predictable or not
#define PDtraceKNOB_CRMask 0x03800000 // Trace clock ratio
#define PDtraceKNOB_CRShift 23
#define PDtraceKNOB_Cal 0x04000000 // 1=calibration mode (test pattern)
#define PDtraceKNOB_EN 0x08000000 // 1=Enable trace initially. 0=don't
generate trace until trace-on event.
#define PDtraceKNOB_debug 0x10000000 // 1=set trace hardware to debug (not
for customer use)

/* Values for Knob2 member of MDITraceMode: */
#define PDtraceKNOB2_im 0x00000001; // trace instr fetch cache miss bit
#define PDtraceKNOB2_lsm 0x00000002; // trace load/store cache miss bit
#define PDtraceKNOB2_fcr 0x00000004; // trace instr func. call/return bit
#define PDtraceKNOB2_tlsif 0x00000008; // record im, lsm, and fcr in trace
#define PDtraceKNOB2_id 0x000000F0; // processor id to record when trace
is shared among processors
#define PDtraceKNOB2_cpuG 0x00000100; // enable trace for all CPU's
#define PDtraceKNOB2_cpufilter 0x0001FE00; // If cpuG=0, trace only this CPU id
#define PDtraceKNOB2_tcG 0x00020000; // enable trace for all TC's
#define PDtraceKNOB2_tcfilter 0x03FC0000; // If tcG=0, trace only this TC id
#define PDtraceKNOB2_tracetc 0x04000000; // record TC info in trace

#define MDIType_TYPE_MASK 0x00000fff
#define MDIType_MOD_MASK 0xfffff000

/* Expanded trace types */

#define MDITTypeOverflow 64 // trace fifo overflowed, information lost
#define MDITTypeTriggerStart 65 // value=trigger cause
#define MDITTypeTriggerEnd 66 // value=trigger cause
#define MDITTypeTriggerAbout 67 // value=trigger cause

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 103

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

#define MDITTypeTriggerInfo 68 // value=trigger cause
#define MDITTypeNotraceCycles 69 // value=number of notrace cycles
#define MDITTypeBackstallCycles 70 // value=number of backstall cycles
#define MDITTypeIdleCyclces 71 // value=number of idle cycles
#define MDITTypeTcbMessage 72 // addr=TCBcode, value=TCBinfo field
#define MDITTypeModeInit 73 // value = new mode from following table
#define MDITTypeModeChange 74 // value = new mode from following table
 // 12:11 ISAM 00 = MIPS32
 // 01 = MIPS64
 // 10 = MIPS16
 // 11 = reserved
 // 10:8 MODE 000 = kernel, EXL=0, ERL=0
 // 001 = kernel, EXL=1, ERL=0
 // 010 = kernel, ERL=1
 // 011 = debug mode
 // 100 = supervisor mode
 // 101 = user mode
 // other = reserved
 // 7:0 ASID
#define MDITypeUTM 75 // addr=1(TU1) or 2(TU2) value=user value

/* Expanded trace types obtained using MDIType_MOD_MASK */
#define MDITType_MOD_IM 0x00001000 // instruction cache miss signal
#define MDITType_MOD_LSM 0x00002000 // data cache miss signal
#define MDITType_MOD_FCR 0x00004000 // function call/return instruction
#define MDITType_MOD_CPU 0x00F00000 // which CPU this message applies to
#define MDITType_MOD_TC 0xFF000000 // which TC this message applies to

/* Extended flags for MDISetBp() */
#define MDIBPT_HWFlg_TraceOnOnly 0x80000000
#define MDIBPT_HWFlg_TraceOffOnly 0x40000000

/* Values for Instructions parameter to MDITrcRead(): */

#define MDITraceReadNoInstructions 0
#define MDITraceReadInstructions 1

/* Function Prototypes */

#ifdef __cplusplus
extern "C" {
#endif

#if defined(MDI_LIB)
/* MDILib, do extern function declarations */
#define yf(str) extern int __stdcall str
#elif defined(MDILOAD_DEFINE)
/* mdiinit.c, do function pointer defintions */
#define yf(str) int (__stdcall *str)
#else
/* debugger, do extern function pointer declarations */
#define yf(str) extern int (__stdcall *str)
#endif

/* MDIPDtraceRead: caller must allocate '*Count+1' for 'Data' since one extra frame
is returned
 under certain circumstances. */
yf(MDIPDtraceRead)(MDIHandleT Device, MDITraceFrameNumberT FrameNumber,
MDITraceFrameCountT *Count, MDIUint32 Instructions, MDITraceFrameT *Data);

104 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix D MDI_PDtrace.h Header File

yf(MDIGetPDtraceMode)(MDIHandleT Device, MDITraceModeT *TraceMode);
yf(MDISetPDtraceMode)(MDIHandleT Device, MDITraceModeT TraceMode);

#undef yf

#ifdef __cplusplus
}
#endif

#endif

/* End of header file for MDITRACE (mditrace.h) */

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 105

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix E

mdi_tcb.h Header File

/* Start of header file for Win32 MDI (mdi.h) */

#ifndef MDITCB_Specification_Definitions
#define MDITCB_Specification_Definitions

/*
This is the FS2 specific TCB extensions. These are not supported by
MDI but are made available to implementers if useful.

*/

/*
From mdi.h:

 To build MDILib:
 Define MDI_LIB before #include "mdi.h"
 Include mdi.def in the link on Windows hosts.

 To build an MDI application (debugger):
 Compile mdiinit.c and include it in your link
 Make a call to
 int MDIInit(char *MDIdllpathandname, HMODULE *handle)
 to explicitly load the specified MDILib before making any other MDI calls.
*/

#include "mdi.h"//need standard defines

typedef unsigned int MDIUint8;

/* Values for DebugMode member of MDITcbConditionT: */

#define MDIDebugModeRisingEdge 0
#define MDINoDebugModeRisingEdge 1

/* Values for ChipTrigIn member of MDITcbConditionT: */

#define MDIChipTrigInRisingEdge 0
#define MDINoChipTrigInRisingEdge 1

/* Values for ProbeTrigIn member of MDITcbConditionT: */

#define MDIProbeTrigInRisingEdge 0
#define MDINoProbeTrigInRisingEdge 1

/* Values for ChipTrigOut member of MDITcbActionT: */

#define MDIChipTrigOutPulse 0
#define MDINoChipTrigOutPulse 1

/* Values for ProbeTrigOut member of MDITcbActionT: */

#define MDIProbeTrigOutPulse 0
#define MDINoProbeTrigOutPulse 1

106 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix E mdi_tcb.h Header File

/* Values for TraceMessage member of MDITcbActionT: */

#define MDIInsertTraceMessage 0
#define MDIDontInsertTraceMessage 1

/* Values for Type member of MDITcbTriggerT: */
#define MDITcbTypeInfo 0 // Do nothing or Generate Trace
message only
#define MDITcbTypeStart 1 // Start Trace
#define MDITcbTypeStop 2 // Stop Trace
#define MDITcbTypeAbout 3 // Stop Trace delayed

/* Values for FireOnce member of MDITcbTriggerT: */
#define MDIFireOnce 0
#define MDIDontFireOnce 1

typedef struct {
MDIUint32 DebugMode; // Fire at Debug Mode rising edge
MDIUint32 ChipTrigIn; // Fire at Chip Trigger In rising edge
MDIUint32 ProbeTrigIn; // Fire at Probe Trigger In rising edge

} MDITcbConditionT;

typedef struct {
MDIUint32 ChipTrigOut; // Generate Chip Trigger Out pulse
MDIUint32 ProbeTrigOut; // Generate Probe Trigger Out pulse
MDIUint32 TraceMessage; // Insert Message in Trace
MDIUint8 TraceMessageInfo; // 8-bit info for trace message

} MDITcbActionT;

typedef struct {
MDITcbConditionT condition; // Conditions for firing trigger
MDIUint32 Type; // Type of trigger
MDIUint32 FireOnce; // Fire once only
MDITcbActionT Action; // Actions to be executed when trigger fires

} MDITcbTriggerT;

/* Action selections for hardware breakpoints */
typedef enum {
TRIGACTION_TRC, // Single event trace
TRIGACTION_ARM, // Set ARM condition
TRIGACTION_TON_IF_ARMED,
TRIGACTION_TOFF_IF_ARMED,
TRIGACTION_TRC_IF_ARMED,
TRIGACTION_DISARM // Clear ARM condition
} MDITcbActionT;

#define MAX_TCBTRIG 8

#if defined(MDI_LIB)
/* MDILib, do extern function declarations */
#define yf(str) extern int __stdcall str
#elif defined(MDILOAD_DEFINE)
/* mdiinit.c, do function pointer defintions */
#define yf(str) int (__stdcall *str)
#else
/* debugger, do extern function pointer declarations */
#define yf(str) extern int (__stdcall *str)
#endif

Microprocessor Debug Interface (MDI) Specification, Revision 02.12 107

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

yf(MDIGetTcbTrigger)(MDIHandleT Device, MDIUint32 TriggerId, MDITcbTriggerT
*Trigger);
yf(MDISetTcbTrigger)(MDIHandleT Device, MDIUint32 TriggerId, MDITcbTriggerT
*Trigger);

#endif

/* End of header file for MDITCB (mditcb.h) */

108 Microprocessor Debug Interface (MDI) Specification, Revision 02.12

Copyright © 2001-2005 MIPS Technologies Inc. All rights reserved.

Appendix F Revision History

Appendix F

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change bars
on figure titles are used to denote a potential change in the figure itself.

Version Date Comments

1.00 15 October 2001 Initial release

2.00 15 July 2003

Revisions include:

• Syntax, typos, grammar

• Additions for PDtrace/TCB tracing methodology

2.10 30 December 2004 Additional cleanup, additions to support MT ASE, DSP ASE, and multi-core
debug.

2.11 24 January 2005 Resolved some open issues and incorporated Ernie and Nigel’s comments

2.12 19 July 2005 Additional cleanups

	Microprocessor Debug Interface (MDI) Specification
	Table of Contents
	Overview
	1.1 Abstract
	1.2 MDI Organization

	Terms
	Principles of Operation
	3.1 Multi-thread Debugging
	3.2 Multi-processor Debugging
	3.2.1 Multi-processor Teams
	3.2.1.1 Legacy Team Debugging
	3.2.1.2 MP-Aware Team Debugging

	3.2.2 Disabled Multi-processor Devices

	MDI Environment Command Set
	4.1 Version: Obtain the supported MDI versions for this MDILib implementation
	4.2 Connect: Establish a connnection to the MDILib
	4.3 Disconnect: Disconnect from the MDILib

	Target Group Command Set
	5.1 Target Group Query: Retrieves the names of the defined target groups.
	5.2 Target Group Open: Opens a target group
	5.3 Target Group Close: Close a previously opened target group
	5.4 Target Group Execute: Place in execution mode the appropriate devices in the target group
	5.5 Target Group Stop: Stop execution for all appropriate devices in the target group

	Device Command Set
	6.1 Session Control
	6.1.1 Device Query: Retrieves information about the devices
	6.1.2 Open: Opens a device.
	6.1.3 Close: Closes a device.
	6.1.4 Process Events: Callback function to process periodic events
	6.1.5 Synchronize State: Callback function to synchronize device state changes

	6.2 Resource Addresses
	6.3 Resource Access
	6.3.1 Read: Reads a contiguous range of data from the specified resource on the device.
	6.3.2 Write: Writes a contiguous range of data to the specified resource on the device.
	6.3.3 Read List: Read a set of values
	6.3.4 Write List
	6.3.5 Move: Move data from one resource to another on the device
	6.3.6 Fill: Fill the specified resource on the device with a pattern.
	6.3.7 Find: Find a pattern in a resource
	6.3.8 Query Cache: Retrieve cache attributes
	6.3.9 Get Cache Details: Get Information about the Specified Cache
	6.3.10 Cache Flush: Write back and/or invalidate the cache
	6.3.11 Cache Operation: Do Specified Operation on Specified Cache
	6.3.12 Cache Sync: Synchronize the caches

	6.4 Run Control
	6.4.1 Execute: Place the device into its RUNNING state
	6.4.2 Step: Single steps the device
	6.4.3 Stop: Stop execution of the device
	6.4.4 Abort: Terminate the current MDI function
	6.4.5 Reset: Performs a target reset operation
	6.4.6 State: Returns the current device execution status.

	6.5 Breakpoints
	6.5.1 Set Full Breakpoint
	6.5.2 Set Software Breakpoint
	6.5.3 Clear Breakpoint
	6.5.4 Enable Breakpoint
	6.5.5 Disable Breakpoint
	6.5.6 Query Breakpoints
	6.5.7 Hardware Breakpoint Query: Retrieve a list of supported hardware breakpoint types

	MDILib and Target I/O Command Set
	7.1 Execute Command: Do the command specified
	7.2 Display Output: Display the MDILib supplied text to the user
	7.3 Get Input
	7.4 Evaluate Expression
	7.5 Lookup Resource

	Trace Command Set
	8.1 Enable Tracing
	8.2 Disable Tracing
	8.3 Clear Trace Data
	8.4 Query Trace Status
	8.5 Query Trace Data
	8.6 Read Trace Data
	8.7 Read PDtrace Data
	8.8 Get PDtrace Mode
	8.9 Set PDtrace Mode
	8.10 Get TCB Trigger Information
	8.11 Set TCB Trigger Information

	Multi-Threaded and Multi-Processor Command Set
	9.1 Multi-Thread Control
	9.1.1 Set Thread Context: Sets the current MDI thread context ID
	9.1.2 Get Thread Context: Returns the current MDI thread context ID
	9.1.3 Thread Context Query: Retrieves a list of active TCs

	9.2 Set Run Mode: Specify behavior when returning to the RUNNING state
	9.3 Multi-processor Team Control
	9.3.1 Create Team: Create a new multi-processor debugging team
	9.3.2 Team Query: Retrieves a list of active teams
	9.3.3 Clear Team: Removes all members from a multi-processor team
	9.3.4 Destroy Team: Destroys a multi-processor team
	9.3.5 Attach Team Member: Add a new member to a team
	9.3.6 Detach Team Member: Remove a single member from a team
	9.3.7 Team Member Query: Retrieves a list of team members
	9.3.8 Team Execute: Place all team members into RUNNING state

	MDI.h Header File
	Example Code to Setup an MDILib Connection
	An MDI Addendum for MIPS32® and MIPS64® Architectures
	C.1 Abstract
	C.2 MIPS MDIDDataT Fields
	C.3 MIPS Exception Codes
	C.4 MIPS16e Instructions
	C.5 MIPS Resources
	C.6 MIPS-Specific Breakpoint Implementation
	C.6.1 MDISetBP() and MDISetSWBp() Function Calls
	C.6.2 Implementation of MDISetSWBp()

	C.7 MIPS Specific Header File

	MDI_PDtrace.h Header File
	mdi_tcb.h Header File
	Revision History

