MIIFPS

Core Coprocessor Interface
Specification

Document Number: M D00068
Revision 02.11
July 8, 2009

MIPS Technologies, Inc.
955 East Arques Avenue
Sunnyvale, CA 94085-4521

Copyright © 2000-2001, 2007-2009 M| PS Technologies Inc. All rightsreserved.



Copyright © 2000-2001, 2007-2009 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of Americaand other countries.

This document containsinformation that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of this
information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, thisinformation is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and al confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogies reserves the right to change the information contained in this document to improve function, design or otherwise. M| PS Technol ogies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of thisinformation, or any related documentation of any kind, including related technical data or manuals,
isan agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of thisinformation, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPSI, MIPSII, MIPSIII, MIPSIV, MIPSV, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies
logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4K S, 4K Sc, 4KSd, M4K, 5K, 5Kc, 5Kf, 24K, 24K c, 24Kf,
24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user
experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2
NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2,
SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other
countries.

All other trademarks referred to herein are the property of their respective owners.

Template: nB1.03, Built with tags: 2B

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



Tabl

e of Contents

Chapter L: INtrOAUCTION oo 7
Chapter 2: COproCeSSOr INSTIUCTIONS . .cciiiiiiiiiiiies e e e e e e e e e e e et e e e e e e e e e aarenaaeaeeeeees 9
Chapter 3: SigNal DESCIIPIIONS ....uiiiiiiiiieiiiiiie et e et e e e e e s e r e e e e e e s s anbb e neeeeesaaannes 13
Chapter 4: ConfigUIatioNsS ....ccoce i, 21
4.0 TYPES OF COPIOCESSOIS . ...teeeeteeeeeae et ettt et e e e e e e e e e e e ta ettt et e eeea e e e e e e e e s aebebeeeeeaaaaeeaesaaanssbbsbeeeaeaaeaesaaaannrsbenes 21
o I S [ [o | [ Oe] o] {0 Tot TS T o S AT PRPP PR 21

o A [ (o [N OFe] o] {0 Tt TS 1o ST PRUPP TR 22

4.1.3: SINGle COPrOCESSOr L @NT 2. .iiiiiiiiiieiiee e e ettt e e e e e e ettt et e e e e e e e e e s e nbabbeseeeeaaaeeeeaaaannnrsnenes 22

4.1.4: Dual Coprocessors using Separate INTEIfACES. .........u it 22

4.1.5: INO COPIOCESSOIS ....iiiiiiiiiiieeieietateit e e e e a4 e e e e e e e e e aateae ettt et e eeeessbebabebb e o e o e o e e e e e eeeeeaaeeeeeeeeeeensssnsnbnnnnns 22

4.2: Data TranSTer WIS ... ...ttt e et e s r e e e a bt e e s as 22
4.2.1: B4-Dit TranSTer WIOTh. ... 22

4.2.2: 32-bit Transfer Width (COP2 ONIY) ...t e e e e e e e e neeeeees 23

4.3: OUL-Of-Order DAta TIANSTEIS .......eiieiiiiiii ittt e e e e e e e st e e st e e e s annne s 23
Y 0| T B D TSI U o] oo ST OUPPEURT TR 23
o S [ [o | [ E S U SIS o] o [o ] ST PRRPP RO 24

4.4.2: LiIMIted DUAI-ISSUE SUPPOIT. ... ..eiieeiiieitete e e ettt e e e e e et e e e e e e e e e e e s e nbsbbeeeeeeaaaaeeeaeaannnrenenes 24

4.4.3: DU ANTNMETIC ISSUBS ...ttt ettt e e e et e e e e e e e e 24

4.4.4: Additional MUILi-ISSUE SUPPOIT ......eeeeeiiiieeeaie ettt e e ettt e e e e e e e e e s e sbabbeeeeeeaaaaeeeaeaannnrenenes 25

M Y [V 1T E=T=To [T aTe IS U] o] o Lo o AT PEURT TR 25
Chapter 5: INterface ProtOCOIS ......uiiiii i e e e e e e e e e e ae it e e eees 27
5.1: OVEIVIEW OF TIANSTEIS ...ttt e e et e e e e bt e e e e bb et e e e s anba e e e e e sbbreeaeaas 27
5.2: INStruction DISPALCN TIANSTEY ......ciiiiiiiii ettt ettt e e et e e e abbreea e 29
5.3: TO CoprocesSOr Dat@ TraANSTEI ......ouviiiiii ittt e et e et e e e e sbbreee e 31
5.4: From CoprocesSOr Dat@ TIANSTEIS ......cciiiiiiiiieiiiii ettt e et e e et e e e e sbbreee e 33
5.5: CoNditioN COAE ChECKING ... .uuiiieiiitiiie ettt ettt e e et e e e e b bt e e e e bb et e e e e anbe e e e e e abbreeeeaas 34
5.6: GPR Data TIaNSTEIS ...uiiiiieei ittt ettt e e ookt e e oottt e e e e h b bt e e e e e bt et e e e e enba e e e e e abbreee e 34
5.7 COPIOCESSON EXCEPLIONS. ...ttt ettt ettt et e e ookttt e e ookt e e e e e h b bt e e e e bbbt e e e e anba e e e e e abbreeaeaas 34
5.8: Instruction NUIIfICAtION TIANSTEIS .. ..ueiiiiiiiiiiie ettt e e et e e et eea e 35
5.9: INSruction KilliNG TraNSTEI ......eeeeee ettt e et e e e st e e e e bbreee e 35
5,10 TraNSTEr EXAMIPIE .ot e ekttt e oo b et e e e e h bt e e e e bt e e e e e e e e eea e 36
5.11: Miscellaneous COPrOCESSOr SIGNAIS. .. ... .uuiiiieiitiii ettt e ettt e e e st e e e st e e e e e abbreeae e 38
5.11.1: Hardware PreSent SIgNAIING ........coiiuiiiiiiiiiiiie ettt e st aenneeas 38

I A Ofe T o] o o=~ o gl [0 | L= PRSPPI 38

T R T TP PP PP PP PPPPPPPPPR 39
APPENdiX A: REVISION HISTOTIY oottt e e e e e e e e e e e s eaeee s 41
3 Core Coprocessor Interface Specification, Revision 02.11



List of Tables

Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 3.5:
Table 3.6:
Table 3.7:
Table 5.1:
Table 5.2:

Core Coprocessor Interface Specification, Revision 02.11

(o [ = BT =Tox 1 o] o TN 1A= SRS SPPPPPP 13
(o g E- LN OfeT o] (o Tot T i o] g @2 11 =To o] VPP T TP 13
[SSUE GIOUP KBY ...ttt e oot oo e ettt et ettt et ettt b e bbb s e s oo 1o o e e e e e e e e e e e eeeeeeeeeeeennnbnbnbnnes 13
SigNal ISSUE GroUP NUMDEI .......uiiiiiiii ettt e ettt e e e e e e e e bbb e e aeaeas 14
Interface Signal Descriptions (Required for both COP1 and COP2)........ccuiiiiiiiiiiiiiiiiiiiiiiieeeeee e 14
Coprocessor Interface Signal Descriptions (Required only for COPL) .......coocciiiiiiiiiiiiieeieeiiieeee 18
Coprocessor Interface Signal Descriptions (Required only for COP2) ........cccciiiiiiiiiiiiiiieeiiiieee 19
Transfers Required for EQCh DISPAtCI .........ooiiiiiiiiiiie e 28
Transfers in Above Waveform (numbers refer to Clock CYCIeS).......ooovvvviviiiiiiiiiiiiiii e, 38



List of Figures

Figure 4.1:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:

Coprocessor Interface BIOCK DIQIAM ........iiii ittt e e e e e e e s 21
General TranSTer EXAMIPIE ... ..o ettt e e e e e e st e e e e e e e e e e e a e 29
Arithmetic Coprocessor DiSPatCh WaVETOrM ..........oiiiiii et 31
To Coprocessor Data Transfer WaVETOIMS ........coooi e e e 32
To Coprocessor Data (Delayed) Transfer WavefOrmMS. ..........eee e 33
From Coprocessor Data Transfer WavefOrMS ............eeiiiiiiiiii e 33
COMPIELE COPL SEUUEINCE ...ttt ettt et e e e e e e 4o e e bbbttt e et e e e e e e e e e e b ebb bbbt e eeaeeeeeaeaannenneeees 37

Core Coprocessor Interface Specification, Revision 02.11



Core Coprocessor Interface Specification, Revision 02.11



Chapter 1

Introduction

This document describes the Coprocessor Interface standard supported by various MIPS® processor cores. The
Coprocessor Interface is designed to enable coprocessors, such as FPUs and Graphics Engines, to be tightly coupled
to an integer processor core. Such coprocessors can be internally developed by MIPS Technologies or externally
developed by customers or third party design teams.

Note: For clarity, the term integer processor core describes the MIPS processor core to which a coprocessor attaches.
Theinteger processor core can do more than integer processing, however. In fact, it can have an internal FPU (and
use the Coprocessor Interface for COP2). By the same token, the coprocessor can itself do any kind of processing,
including integer calculations.

The Coprocessor Interface has the following features:

» Theinterfaceis easy to understand. By keeping the interface as simple as possible, designers can concentrate on
the coprocessor’s functionality rather than itsinterface.

»  Performance is not compromised. The Coprocessor Interface is compatible with the high-performance features
of MIPS microprocessor cores.

* Minimal interface logic is required, which reduces area and power overhead.
* Theinterfaceishighly configurable:

32-bit or 64-bit datatransfers

— COP1 and/or COP2 supported

— From O to 7 out-of-order data transfers

— Singleissues up to eight issues supported
—  Support for multithreading

» A coprocessor built for alow-performance integer processor core can be connected to higher performance inte-
ger processor cores. Furthermore, a high-performance coprocessor can be connected to a lower-performance
integer processor core.

This document contains the following sections:

»  Chapter 2, “Coprocessor Instructions’ on page 9 describes the specific instructions supported by the Coprocessor
Interface.

e Chapter 3, “Signal Descriptions’ on page 13 describes the signals that make up the interface.

e Chapter 4, “Configurations’ on page 21 describes the configuration options available with the Coprocessor Inter-
face.

Core Coprocessor Interface Specification, Revision 02.11 7

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



e Chapter 5, “Interface Protocols’ on page 27 describes the cycle-by-cycle behavior of the signals.

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



Chapter 2

Coprocessor Instructions

The Coprocessor Interface supports all coprocessor instructions currently defined in the MIPS32®, MIPS64®, and
MIPS-3D® architecture specifications.
These coprocessor instructions are divided into three classes.

* Instructions that perform arithmetic operations (called Arithmetic COP Ops)
» Instructions that move data into the Coprocessor (called To COP Ops)
* Instructions that move data out of the Coprocessor (called From COP Ops)

The explicit classification of the opcodes is given below. For a detailed description of these instructions, refer to the
MIPS ISA definition or to the Software User's Manual of the appropriate integer processor core.

Arithmetic COP Ops:

*  COPL1 arithmetic instructions (including COP1X and MDMX instructions)

. IR[31:26] = 010001 AND IR[25] = 1
. IR[31:26] = 010011 AND IR[5:4] != 00
. IR[31:26] = 011110

*  COP2 arithmetic instructions
« IR[31:26] = 010010 AND IR[25] = 1
e COP1 branch instructions (BC1 instructions)
« IR[31:26] = 010001 AND IR[25:24] = 01
e COP2 branch instructions (BC2 instructions)
« IR[31:26] = 010010 AND IR[25:24] = 01
*  Conditional COP1 movement instructions (MOVF, MOVT instructions)
«  IR[31:26] = 000000 AND IR[5:0] = 000001

The following COP1 arithmetic instructions test coprocessor condition bits:

*+ BC1,BC2, MOVF and MOVT (as defined above)

Following COP1 arithmetic instructions test integer processor core registers:

« ALNVPS
. IR[31:26]=010011 AND IR[5:0]=011110
« ALNV.OB ALNV.QH
. IR[31:26]=011110 AND IR[5:2]=0110 AND IR[0]=1
«  MOVN.SMOVZ.SMOVN.D MOVZ.D MOVN.PSMOVZ.PS

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



«  IR[31:26]=010001 AND IR[25:21]=10000 AND IR[5:1]=01001
«  IR[31:26]=010001 AND IR[25:21]=10001 AND IR[5:1]=01001
«  IR[31:26]=010001 AND IR[25:21]=10110 AND IR[5:1]=01001

For the remainder of this document, the terms “Arithmetic COP Op” and “arithmetic instruction” are used inter-
changeably.

From COP Ops:

*  COP1 From instructions (including COP1X instructions)

. IR[31:26] = 111001

. IR[31:26] = 111101

«  IR[31:26] = 010001 AND IR[25:23] = 000

«  IR[31:26] = 010011 AND IR[5:3] = 001 AND IR[2:0] !=111

«  IR[31:26] = 010000 AND IR[25:21] = 01000 AND IR[5] = 1 AND IR[2:1] = 01

e COP2 From instructions

«  IR[31:26] = 111010

. IR[31:26] = 111110

«  IR[31:26] = 010010 AND IR[25:23] = 000

«  IR[31:26] = 010000 AND IR[25:21] = 01000 AND IR[5] = 1 AND IR[2:1] = 10

Of the above defined From COP Ops, following are 32-bit instructions

*+ MFC1, CFC1, SWC1, SWXC1

«  IR[31:26] = 010001 AND IR[25:23]=000 AND IR[21]=0
. IR[31:26]=111001
«  IR[31:26]= 010011 AND IR[5:0]=001000

«  MFHC1 (MIPS32 Release 2 only)
«  IR[31:26] = 010001 AND IR[25:21]=00011
«  MFC2, CFC2, SWC2

«  IR[31:26] = 010010 AND IR[25:23]=000 AND IR[21]=0
«  IR[31:26]=111010

*  MFHC2 (MIPS32 Release 2 only)
» IR[31:26] = 010010 AND IR[25:21]=00011
e MFTR (MT-ASE only)

«  IR[31:26] = 010000 AND IR[25:21] = 01000 AND IR[5] = 1 AND IR[2:1] = 01
«  IR[31:26] = 010000 AND IR[25:21] = 01000 AND IR[5] = 1 AND IR[2:1] = 10

Of the above defined From COP Ops, the following are 64-bit instructions

« DMFC1, SDC1, SbXC1, SUXC1

«  IR[31:26] = 010001 AND IR[25:21]=00001
. IR[31:26]=111101
«  IR[31:26]= 010011 AND IR[5:3]=001 AND IR[1:0]=01

+ DMFC2, SbC2

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

10



Coprocessor Instructions

«  IR[31:26] = 010010 AND IR[25:21]=00001
. IR[31:26]=111110

The remaining instructions are reserved opcodes.

To COP Ops:

e COP1 Toingtructions (including COP1X instructions)

. IR[31:26] = 110001
. IR[31:26] = 110101

. IR[31:26] = 010001 AND IR[25:23] = 001

«  IR[31:26] = 010011 AND IR[5:3] = 000

«  IR[31:26] = 010000 AND IR[25:21] = 01100 AND IR[5] = 1 AND IR[2:1] = 01

e COP2 Toinstructions

. IR[31:26] = 110010

. IR[31:26] = 110110

«  IR[31:26] = 010010 AND IR[25:23] = 001

«  IR[31:26] = 010000 AND IR[25:21] = 01100 AND IR[5] = 1 AND IR[2:1] = 10

Of the above defined To COP Ops, the following are 32-bit instructions

« MTC1, CTCL, LWCL, LWXC1

«  IR[31:26] = 010001 AND IR[25:23]=001 AND IR[21]=0
. IR[31:26]=110001
«  IR[31:26]= 010011 AND IR[5:0]=000000

«  MTHC1 (MIPS32 Release 2 only)
«  IR[31:26] = 010001 AND IR[25:21]=00111
«  MTC2, CTC2, LWC2

«  IR[31:26] = 010010 AND IR[25:23]=001 AND IR[21]=0
. IR[31:26]=110010

«  MTHC2 (MIPS32 Release 2 only)
«  IR[31:26] = 010010 AND IR[25:21]=00111
«  MTTR (MT-ASE only)

«  IR[31:26] = 010000 AND IR[25:21] = 01000 AND IR[5] = 1 AND IR[2:1] = 01
«  IR[31:26] = 010000 AND IR[25:21] = 01000 AND IR[5] = 1 AND IR[2:1] = 10

Of the above defined To COP Ops, the following are 64-bit instructions

« DMTCL, LDC1, LDXC1, LUXC1

. IR[31:26] = 010001 AND IR[25:21]=00101
. IR[31:26]=110101
«  IR[31:26]= 010011 AND IR[5:3]=000 AND IR[1:0]=01

« DMTC2,LDC2
+ IR[31:26] = 010010 AND IR[25:21]=00101

11 Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



. IR[31:26]=110110

The remaining instructions are reserved opcodes.

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

12



Chapter 3

Signal Descriptions

Table 3.5, Table 3.6, and Table 3.7 describe al of the Coprocessor Interface signals. Note that the signals are grouped
according to their logical function rather than alphabetically or by their expected physical location. The interactions
of signals within these functional groups are described in Chapter 5, “ Interface Protocols” on page 27.

A separate clock signal is not included in the Coprocessor Interface. All signals are synchronous to the input clock of
the integer processor core.

The following tables describe the various attributes of the signals. Table 3.1 shows the direction of the I/O signal rel-
ative to the integer processor core. Table 3.2 describes how the prefix of asignal determineswhether it isrequired for
COP1, COP2, or both. Table 3.3 and Table 3.4 describe issue group attributes. For details about the concept of issue
groups, see Section 4.4, "Multi-l1ssue Support” on page 23.

Table 3.1 Signal Direction Key

Dir Description
In Input to the integer processor core.
Out Output of the integer processor core.
Sin Static Input to the integer processor core. These signals are normally tied to either power or ground.
SOut Static Output of the integer processor core. These signals are normally tied to either power or ground.
Table 3.2 Signhal Coprocessor Category
Prefix Description
Required for both COP1 and COP2.
CP_ Note: These signals may change name to CP1_ or CP2_ when used in certain configurations, refer to
sections 4.1.1 through 4.1.4 on page 22.
CP1_ Required for only COP1.
CP2_ Required only for COP2.
Table 3.3 Issue Group Key
Issue
Group Description
Comb | Signal is part of Combined issue groups.
Arith Signal is part of Arithmetic issue groups.
TF Signal is part of To/From issue groups.
NONE | Signal isnot part of any issue groups.

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

13



Table 3.4 Signal Issue Group Number

Suffix

Description

m m determines to which issue group asignal belongs (0 < m<7).

Table 3.5 Interface Signal Descriptions (Required for both COP1 and COP2)

Issue
Signal Name Dir Group Description
Instruction Dispatch
Comb, | Coprocessor Instruction Word. This 32-bit bus contains the
CP_ir_n31:0] Out Arith, | coprocessor instruction. It isavailablein the cycle before CP1_as m,
TF CP2_as m, CP1_ts m CP2_ts m, CP1 fs m, or CP2_fs mis asserted.
Comb Coprocessor Instruction TC ID. This bus indicates which TC the
CP_tcid_m{7:0] out Arith. instruction on CP_ir_m isfor. It isavailable in the cycle before
— = TE CP1 as m, CP2_as m, CP1 ts m CP2 ts m CP1 fs m, or CP2_fs m
is asserted.
Comb Coprocessor Instruction VPE ID. This busindicates which VPE the
; . .| instruction on CP_ir_m isfor. It isavailablein the cycle before
CP_vpeid_n{3:0] Out | AMth, | CP1_as_m CP2 as m CP1_ts.m CP2_ts m CPL_fs_m, or CP2_fs_m
is asserted.
Coprocessor Instruction Target TC ID. This bus indicates which TC
Comb, | theinstructiononCP_ir_misaccessing. Thisisvaidfor MFTR/MTTR
CP_targtcid_m{ 7:0] Out Arith, | instructions which access registers of a TC different from the one
TF executing theinstruction. It is available in the cycle before CP1_as m,
CP2_as m, CP1_ts m, CP2 ts m, CP1_fs m, or CP2_fs mis asserted.
Enable Instruction Registering. When thissignal is deasserted, no
Comb, [ instruction strobes are asserted in the following cycle. When this signal
CP_irenable_m Out Arith, | isasserted, there can be an instruction strobe asserted in the following
TF cycle. Instruction strobesinclude CP1_as m, CP1_ts m, CP1 fs m,
CP2_as m, CP2_ts m, CP2 fs m.
Coprocessor Dispatch Order. Thissignal signifiesthe program order of
instructions when more than one instruction is issued in asingle cycle.
Comb, | Eachinstruction dispatched has an order value associated with it. There
CP_order_n[2:0] Out Arith, | must awaysbeoneinstruction whoseorder valueis0. Order values must
TF increment by 1 when more than oneinstruction isissued in acycle. This
signal isvalid when CP1_as m, CP2_as m, CP1 ts m, CP2_ts m,
CP1 _fs m, or CP2_fs misasserted.
Comb Inhibit Arithmetic Dispatch. When this signal is asserted, the integer
CP_adisable_m Sln Arith | Processor core is prevented from dispatching an arithmetic instruction
using thisissue group.
Comb Inhibit To/From Dispatch. When this signal is asserted, the integer
CP_tfdisable_m Sln TF | processor core is prevented from dispatching a To/From instruction
using this issue group.
MIPS32 Compatibility Mode — I nstructions. When thissignal is
Comb asserted, the dispatched instruction is restricted to the M1PS32 subset of
CP inst32 m out Arith. instructions. Pleaserefer to the MIPS54™ Architecture Specification for
- — F | 2 compl ete description of MIPS32 compatibility mode. Thissignal is
valid the cycle before CP1_as m, CP2_as m, CP1_fs m, CP2_fs m,
CP1_ts m, or CP2_ts misasserted.

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

14



Signal Descriptions

15

Table 3.5 Interface Signal Descriptions (Required for both COP1 and COP2) (Continued)

Issue
Signal Name Dir Group Description
Byte Ordering. When this signal is asserted, the processor is using
Comb, | big-endian byte ordering for the dispatched instruction. When thissignal
CP_endian_m Out Arith, | isdeasserted, the processor isusing little-endian byte ordering. This
TF signa isvalid the cycle before CP1_as m, CP2_as m, CP1 fs_m,

CP2_fs m, CP1 ts m, or CP2_ts mis asserted.

To Coprocessor Data (For

all To COP Ops)

CP_tds m

Out

Comb,
TF

Coprocessor To Data Strobe. Thissignal is asserted when To COP Op
dataisavailable on CP_tdata_m. Thissignal must not be asserted in the
same cycle CP_tdds_m is asserted.

CP_tdk_m

Out

Comb,
TF

Coprocessor To Data Kill. Thissignal isvalid when CP_tds mis
asserted. If CP_tdk_mis asserted, the To COP Op was killed and the
coprocessor should not writeback CP_tdata m. If CP_tdk_mis
deasserted, the To COP Data transfer completes normally. When
CP_tds_m isasserted, CP_tdk_m and CP_tdd_m may not both be
asserted at the same time.

CP_tdd_m

Out

Comb,
TF

Coprocessor To Data Delayed. Thissignal isvalid when CP_tds mis
asserted. If CP_tdd_mis asserted, the To COP Op data transfer is
delayed and CP_tdata_m isinvalid. Furthermore, thisindicates that a
To COP Data (Delayed) transfer will happen. When CP_tds_m is
asserted, CP_tdk_m and CP_tdd_m may not both be asserted at the
sametime.

CP_torder_m[2:0]

Out

Comb,
TF

Coprocessor To Order. Thissignal specifies for which outstanding To
COP Opthedatais. Thissignal isvalid only when CP_tds _misasserted.

CP_torder_m[2:0] Order
3'b000 Oldest outstanding To COP Op data transfer
3'b001 2nd oldest To COP Op data transfer
3'b010 3rd oldest To COP Op data transfer
3'b011 4th oldest To COP Op data transfer
3'b100 5th oldest To COP Op data transfer
3'b101 6th oldest To COP Op data transfer
3'b110 7th oldest To COP Op data transfer
3bl1l 8th oldest To COP Op data transfer

CP_tordlim_m[2:0]

SIn

Comb,
TF

To Coprocessor Data Out-of-Order Limit. Thissignal forcesthe
integer processor core to limit how much it can reorder To COP Data.
The value on this signal corresponds to the maximum allowed value to
be used on CP_torder_m[2:0].

CP_tdata_m[63:0]

Out

Comb,
TF

To Coprocessor Data. Datato be transferred to the coprocessor. For
single-word transfers, datais available on CP_tdata_n{ 31:0]. This bus
isvalid when CP_tds_misasserted, CP_tdk_m is deasserted and
CP_tdd_m is deasserted. It isalso valid when CP_tdds_m is asserted
and CP_tddk_m is deasserted.

Note: In 32-bit data transfer size configurations, this busis reduced to
CP_tdata m{31:0].

To Coprocessor Data (Delayed) (For all Delayed To COP Ops)

CP_tdds m

Out

Comb,
TF

Coprocessor To Data (Delayed) Strobe. This signal is asserted when
delayed To COP Op datais available on CP_tdata_m. This signal must
not be asserted in the same cycle CP_tds_m is asserted.

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.




Table 3.5 Interface Signal Descriptions (Required for both COP1 and COP2) (Continued)

Issue
Signal Name Dir Group Description
Coprocessor To Data (Delayed) Kill. Thissignal isvalid when
CP tddk m out Comb, | CP_tdds misasserted. If CP_tddk_mis asserted, the To COP Op was
— TF killed and the coprocessor should not writeback CP_tdata_m. If
CP_tddk_misdeasserted, the To COP Datatransfer completesnormally.
Comb Coprocessor To Data (Delayed) TCID. Thissignal specifiesthe TC
CP_tddtcid_n{ 7:0] Out TF that the To COP Data (Delayed) transfer appliesto. Thissignd isvalid

only when CP_tdds _mis asserted.

From Coprocessor Data (For all From COP Ops)

CP fds m n Comb, | Coprocessor From Data Strobe. Thissignal is asserted when From
— TF COP Op datais available on CP_fdata_m.
Coprocessor From Order. Thissignal specifies for which outstanding
From COP Op the dataiis. Thissigna isvalid only when CP_fds mis
asserted.
CP_forder_m Order
3'b000 Oldest outstanding From COP Op data transfer
Comb 3'b001 2nd oldest From COP Op data transfer
. omb,
CP_forder_m{ 2:0] In TE 3'b010 3rd oldest From COP Op data transfer
3'b011 4th oldest From COP Op data transfer
3'b100 5th oldest From COP Op data transfer
3'b101 6th oldest From COP Op data transfer
3'bl10 7th oldest From COP Op data transfer
3'bl1l 8th oldest From COP Op data transfer
From Coprocessor Data Out-of-Order Limit. Thissignal forcesthe
. . Comb, | coprocessor tolimit how muchit can reorder From COP Data. Thevalue
CP_fordlim_r{2:0] SOut TF on thissignal corresponds to the maximum allowed value to be used on
CP_forder_n{2:Q].
From Coprocessor Data. This64-bit bus contains datato be transferred
from coprocessor. For single-word transfers, datamust be duplicated on
Comb. | PothCP_fdata_n{63:32] and CP_fdata_m[31:0]. Thisbusisvalid when
CP_fdata_m[63:0] In TE | CP_fds_misasserted.

Note: In 32-bit data transfer size configurations, this busis reduced to
CP_fdata_nm{31:0].

Coprocessor Condition Code Chec

k (Only for BC1, MOVF, MOVT, BC2 Ops)

CP cccs n Comb, | Coprocessor Condition Code Check Strobe. Thissignal is asserted
_am Arith when condition code check results are available on CP_ccc_m.
Coprocessor Condition Code Check. This signal isvalid when
Comb CP_ccecs_mis asserted. When this signal is asserted, the instruction
CP_ccc_m In Arith checking the condition code should proceed with its execution (branch
or move data). When this signal is deasserted, the instruction should not
execute its conditional operation (do not branch and do not move data).
Coprocessor Exceptions
comb, | o Excepti be. Thissignal i ed wh
CP excs m n Arith oprocessor Exception Strobe. Thissignal is asserted when
= TE | coprocessor exception signalling isavailable on CP_exc_m.

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

16



Signal Descriptions

17

Table 3.5 Interface Signal Descriptions (Required for both COP1 and COP2) (Continued)

Issue
Signal Name Dir Group Description
Comb Coprocessor Exception. Whenthissignal isdeasserted, the coprocessor
CP exc m n Arith. isnot causing an exception. When thissignal is asserted, the coprocessor
= TE is causing an exception. The type of exception is encoded on the signal
CP_exccode_n[4:0Q]. Thissignal isvalid when CP_excs_mis asserted.
Coprocessor Exception Code. Thissignal isvalid when CP_excs_mis
asserted and CP_exc_mis asserted.
CP_exccode_m[4:0] Exception
5'b01010 Reserved Instruction Exception
Comb, 5'b01111 Floating-Point Exception
CP_exccode_m[4:0] In Arith, 510000 Available for implementation-specific use
TF 5'b10010 COP2 Exception
Reserved.
other values If other values are signalled, the operation of the
integer processor core is UNDEFINED.
Instruction Nullification
CP nulls m out c/_:\c;m? Coprocessor Null Strobe. Thissignal is asserted when a nullification
— TE signal is available on CP_null_m.
Nullify Coprocessor Instruction. When this signa is deasserted, the
Comb, [ integer processor coreis signalling that the instruction is not nullified.
CP_null_m Out Arith, | Whenthissignal isasserted, theinteger processor coreis signalling that
TF the instruction is nullified. Thissignal isvalid when CP_nulls mis
asserted.
Instruction Killing
CP Kills m out CA?T?V? Coprocessor Kill Strobe. Thissignal is asserted when kill signallingis
— TF’ available on CP_kill_m.
Kill Coprocessor Instruction. This signal indicates whether or not a
coprocessor instruction iskilled. It isvalid when CP_kills_mis asserted.
CP_kill_m[1:0] Type of Kill
_ Comb, 2'b00 Instruction is not killed and can commit
CP_k| I |_IT{ 1 O] Out Al’lth, 2'b01 itsresults
TF
, Instruction is killed (not due to
2b10 CP_exc_m)
2'b11 Instruction iskilled (due to CP_exc_m)
Miscellaneous
Coprocessor Reset. Thissignal is asserted when the integer processor
CP_reset Out NONE | core performsahard or soft reset. At aminimum, thissignal is asserted

for two cycles.

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.




Table 3.5 Interface Signal Descriptions (Required for both COP1 and COP2) (Continued)

Signal Name

Issue

Dir Group Description

CP idle

Coprocessor |dle. Thissignal is asserted when the coprocessor logicis

n NONE idle. It enables the integer processor core to go into sleep mode and shut

down the internal integer processor core clock. Thissignal isvalid only
if CP1_fppresent, CP1_mdmxpresent, or CP2_present is asserted.

Table 3.6 Coprocessor Interface Signal Descriptions (Required only for COP1)

Issue
Signal Name Dir | Group Description
Instruction Dispatch
Coprocessor 1 Arithmetic Instruction Strobe. Thissignal is asserted in the
cycle after an Arithmetic COP1 Op instruction is available on CP_ir_m. If
CP1 as m out Comb, | CP1_abusy mwas asserted in the previous cycle, thissignal is not asserted. In
T Arith | any cycle, at most one of the following signals can be asserted at atimein a
particular issuegroup: CP1_as m, CP2_as m CP1 ts m CP2_ts m CP1 fs m,
CP2 _fs m.
Comb Coprocessor 1 Arithmetic Busy. When thissignal is asserted, a Coprocessor 1
CP1_abusy_m In Arith’ arithmetic instruction is not dispatched. CP1_as mis not asserted in the cycle
after thissignal is asserted.
Coprocessor 1 To Strobe. Thissignal is asserted in the cycle after a To COP1
Comb Op instruction is available on CP_ir_m. If CP1_tbusy_mwas asserted in the
CP1 ts m Out TE previouscycle, thissignal isnot asserted. In any cycle, at most 1 of thefollowing
signals can be asserted at atimein aparticular issue group: CP1_as m,
CP2_as m, CP1 ts m CP2 ts m CP1 fs m CP2 fs m.
CP1 thusy m In Comb, | To Coprocessor 1 Busy. When thissignal is asserted, a To COP1 Op is not
tousy_ TF dispatched. CP1_ts misnot asserted in the cycle after this signal is asserted.
Coprocessor 1 From Strobe. Thissignal is asserted in the cycle after aFrom
Comb COP1 Op instruction is available on CP_ir_m. If CP1_fbusy_mwas asserted in
CP1 fs m Out TE the previous cycle, this signal is not asserted. In any cycle, at most one of the
following signals can be asserted at atime in a particular issue group:
CP1_as m CP2_as m, CP1_ts m CP2 ts m CP1 fs m CP2 fs m.
CP1 fbusy m n Comb, | From Coprocessor 1 Busy. When thissignal is asserted, a From COP1 Opis
ThUSy_ TF not dispatched. CP1_fs_misnot asserted in the cycle after thissignal is asserted.
Comb, | MIPS32-Compatibility Mode — Registers. When this signd is asserted, the
CP1 fr32_m Out Arith, | dispatched instruction uses the MIPS32-compatible register file. Thissignal is
TF valid the cycle before CP1_as m, CP1_fs m, or CP1_ts mis asserted.
GPR Data (Only for ALNV.PS, ALNV.fmt, MOVN.fmt, MOVZ.fmt Arithmetic COP1 Ops)
Comb, | GPR Strobe. Thissignal is asserted when additional general-purpose register
CP1_gprs_m Out Arith information is available on CP1_gpr_m.

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

18



Signal Descriptions

19

Table 3.6 Coprocessor Interface Signal Descriptions (Required only for COP1) (Continued)

Issue
Signal Name Dir | Group Description
GPR Data. This bus supplies additional datafrom the integer general-purpose
register file. CP1_gpr_m[2:0] isvalidwhen CP1_gprs_misasserted and only for
ALNV.PS and ALNV.fmt instructions. CP1_gpr_n{ 3] isvalid when
CP1_gprs_misasserted and only for MOV N.fmt and MOV Z.fmt instructions.
CP1_gpr_m[2:0] RS
(Valid only for ALNV.PS, ALNV.fmt)
CP1_gpr_n[3:0] Out %?rrl?ﬁ ’ Binary encoded Lower 3 bits of RS register contents
CP1_gpr_m[3] RT Zero Check
(Valid only for MOVN.fmt, MOV Z.fmt)
0 RT!=0
RT==0
Miscellaneous
COP1 FPU Present. Thissignal must be asserted when COP1 FPU hardwareis
CP1_fppresent Sin | NONE connected to the Coprocessor Interface.
COP1 MDMX Present. Thissignal must be asserted when COP1 MDMX
CP1_mdmxpresent Sin | NONE hardware is connected to the Coprocessor Interface.

Table 3.7 Coprocessor Interface Signal Descriptions (Required only for COP2)

Issue
Signhal Name Dir | Group Description
Arithmetic Dispatch
Coprocessor 2 Arithmetic Instruction Strobe. Thissignal is asserted in the
Comb cycle after an Arithmetic COP2 Op instruction is available on CP_ir_m. If
CP2_as m Out Arith CP2_abusy_mwas asserted in the previous cycle, thissignal isnot asserted. In any
cycle, at most one of the following signals can be asserted at atimein aparticular
issue group: CP1_as m, CP2_as m, CP1 ts m CP2_ts m, CP1 fs m CP2_fs m.
Comb Coprocessor 2 Arithmetic Busy. When this signal is asserted, a Coprocessor 2
CP2_abusy_m In Arith’ arithmeticinstructionisnot dispatched. CP2_as_misnot asserted in the cycle after
thissignal is asserted.
Coprocessor 2 To Strobe. Thissignal isasserted in the cycle after aTo COP2 Op
Comb instruction is available on CP_ir_m. If CP2_tbusy_mwas asserted in the previous
CP2_ts m Out F cycle, thissignal isnot asserted. In any cycle, at most one of the following signals
can be asserted at atimein a particular issue group: CP1_as m, CP2_as m,
CP1_ts m CP2_ts m CPl_fs m CP2 fs m
CP2_thusy_m n Comb, | To Coprocessor 2 Busy. When this signal is asserted, a To COP2 Op is not
— — TF dispatched. CP2_ts mis not asserted in the cycle after this signal is asserted.
Coprocessor 2 From Strobe. Thissignal is asserted in the cycle after a From
Comb COP2 Opingtructionisavailableon CP_ir_m. If CP2_fbusy_mwas asserted inthe
CP2_fs m Out F previous cycle, thissignal is not asserted. In any cycle, at most 1 of the following
signalscan be asserted at atimein aparticular issuegroup: CP1_as m, CP2_as m,
CP1 ts m CP2_ts _m, CP1 fs m CP2_fs m.
CP2_fbousy_m n Comb, | From Coprocessor 2 Busy. When thissignal is asserted, aFrom COP2 Op isnot
— — TF dispatched. CP2_fs mis not asserted in the cycle after thissignal is asserted.

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.




Table 3.7 Coprocessor Interface Signal Descriptions (Required only for COP2) (Continued)

Issue
Signal Name Dir | Group Description
Comb, | Kernel/Debug M ode Indication. When this signal is asserted the dispatched
CP2_kd_mode_m | Out Arith, | instruction is executed in either Kernel or Debug mode. Thissigna isvalid the
TF cycle before CP2_as m, CP2_fs m, or CP2_ts _mis asserted.
Miscellaneous
COP2 Present. This signal must be asserted when COP2 hardware is connected
CP2_present Sin | NONE to the Coprocessor Interface.
COP2 32-bit Transfers. When this signal is asserted, the integer unit must cause
CP2_tx32 Sin | NONE | anRI exception for 64-bit COP2 TF instructions. This static input must always be

valid.

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

20



Chapter 4

Configurations

The Coprocessor | nterface allows a coprocessor to be connected to a MIPS integer processor core. An integer proces-
sor core can implement various options of the Coprocessor Interface as described in this section. These configuration

options impact the Coprocessor |nterface in two ways: the signals required to be implemented and the width of the
bus signals.

Figure 4.1 shows a simple block diagram of how the Coprocessor Interface connects a single coprocessor to an inte-
ger processor core.

Coprocessor
Integer Interface
Processor Coprocessor
Core H P

Figure 4.1 Coprocessor Interface Block Diagram

4.1 Types of Coprocessors

This section lists the different kinds of coprocessors that can be supported by an integer processor core. The integer
processor core supports one or more of these options.

Each configuration option described bel ow includes a description of which of the three signal categories is required.
The signals of the Coprocessor Interface are divided into three categories:

» Signasthat are required for both COP1 and COP2 implementations are named “CP_*".
» Signasthat are required only for COP1 implementations are named “CP1_*".
e Signasthat are required only for COP2 implementations are named “CP2_*".

Note: Depending on the implementation of this interface on the integer processor core and the coprocessor, some sig-
nals while present are unused. Unused input signals on a particular implementation must be connected to their inac-
tive states.

4.1.1 Single Coprocessor 1

COPL isreserved for afloating-point coprocessor in the MIPS architecture. The Coprocessor I nterface supports all
COPL, COP1X, MDMX, and MIPS-3D instructions as defined by the MIPS | SA.

e Signasnamed“CP_*" arerequired to be implemented and must be renamed “CP1_*".

e Signasnamed“CP1_*" arerequired to be implemented.

Core Coprocessor Interface Specification, Revision 02.11 21

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



4.2 Data Transfer Widths

*  64-bit datatransfers are required to be implemented.

Signals not included in the implemented interface can be ignored in the signal descriptions. For instance, CP_idleis
renamed to CP1 idle. CP1 idleisvalid only when CP1 fppresent or CP1_mdmxpresent is asserted.

4.1.2 Single Coprocessor 2

The function of Coprocessor 2 is user-definable and is intended to allow special-purpose engines, such as graphics
accelerators, to be integrated into the architecture.

* Signasnamed“CP_*" arerequired to be implemented and must be renamed “CP2_*".

e Signasnamed“CP2_*" arerequired to be implemented.

Signals not included in the implemented interface can be ignored in the signal descriptions. For instance, CP_idleis
renamed to CP2_idle. CP2_idleisvalid only when CP2_present is asserted.

4.1.3 Single Coprocessor 1 and 2

A user-defined coprocessor can be designed that implements functionality from both COP1 and COP2.

* All signalsarerequired to be implemented. No renaming will take place as*“CP_*" signals are shared for COP1
and COP2 functionality.

*  64-bit datatransfers are required to be implemented.

4.1.4 Dual Coprocessors using Separate Interfaces

An integer processor core can feature two independent Coprocessor Interfaces: one for COP1 and one for COP2. In
this case, each interface is functionally independent of the other. Each requires afull set of 1/0 signals as described in
Section 4.1.1, "Single Coprocessor 1" and Section 4.1.2, "Single Coprocessor 2".

4.1.5 No Coprocessors

If a Coprocessor Interface is unused then all inputs must be tied to their inactive state, which islogic zero.

4.2 Data Transfer Widths

An integer processor core can support 64-bit or 32-bit data transfer sizes.

4.2.1 64-bit Transfer Width

An integer processor core that implements COP1 must support 64-bit data transfers. A processor that supports COP2
can optionally support 64-bit data transfers. For the remainder of this document, this configuration option is assumed.

An integer processor core that supports 64-bit data transfers can be connected to COP2 coprocessors designed for 32-
bit transfers. The coprocessor must assert CP2_tx32. Furthermorethe CP_fdata_n{ 31:0] output from the coprocessor
must be connected to CP_fdata_m[31:0] and CP_fdata | 63:32] of the integer processor core.

Note: When CP2_tx32 is asserted, instructions that transfer 64 bits of data cause the integer processor coreto signal a
reserved instruction exception. These instructions include DMFC2, DMTC2, LDC2, and SDC2.

Core Coprocessor Interface Specification, Revision 02.11 22

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



Configurations

4.2.2 32-bit Transfer Width (Cop2 only)

An integer processor core that supports only COP2 can optionally support only 32-bit transfers. In this configuration,
the use of instructions that transfer 64 bits of data causes a reserved instruction exception from the integer processor
core.

With this configuration, the following restrictions apply:

* Theinteger processor core must signal Reserved Instruction exception for DMFC2 (M1PS64), DMTC2
(MIPS64), LDC2 (MIPS32), and SDC2 (MIPS32) instructions.

*  CP2_tx32 cannot beimplemented. A 32-bit integer processor core alwaysworks asif CP2_tx32 is asserted, thus
the signal is not needed.

*  32-bit buses are required to be implemented:

— CP_tdata_n{63:0] isreduced to CP_tdata_n{31:0].
— CP_fdata_m63:0] isreduced to CP_fdata_m{31:0].

4.3 Out-of-Order Data Transfers

An integer processor core can support a configurable degree of out-of-order data transfers on both the To COP Data
and From COP Data transfer interfaces. The Coprocessor Interface includes handshake signals that allow any integer
processor core to work with any coprocessor.

For To COP Data, an integer processor core can reorder data for up to eight instructions. However, it must limit this
out of order data transfer according to CP_tordlim_n{2:0]. This signal alows the coprocessor to limit reordering to
only as much asit can handle.

Similarly for From COP Data, a coprocessor can return data for up to eight instructions out of order. The integer pro-
cessor core can limit this reordering using the CP_fordlim_m[2:0] static output. This signal works the same way as
CP_tordlim_m.

4.4 Multi-lssue Support

The Coprocessor Interface is extensible to support single-issue to multi-issue integer processor cores and coproces-
sors. Furthermore, it enables compatibility between any integer processor core and any coprocessor without glue
logic.

Multi-issue support is easily achieved by duplicating certain signals of the Coprocessor Interface. This section speci-
fiesin detail exactly what needs to be duplicated for the different configuration options. In general, the following

rules apply:

e  Signasare grouped together to form an “issue group”.

»  Therearethreetypes of issue groups: Combined, Arithmetic, and To/From.
— The Combined issue group includes all signals used for both arithmetic and To/From instructions.
— The To/From issue group includes all signals used for To/From instructions.

— The Arithmetic issue group includes all signals used for arithmetic instructions.

23 Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



4.4 Multi-lssue Support

* A particular issue group is delineated by a unique suffix of the form “_m" where mis an integer that signifies the
“issue group” for those signals. The value of m must be between 0 and 7, inclusive. Because CP_order_m has
only three bits, there cannot be more than eight issue groups.

e Signasthat are not associated with an issue group do not have the “_ni" suffix.

* Aninteger processor core must have at least one Combined issue group. This group must be assigned as issue
group 0 (m = 0). Theinteger processor core can have up to seven additional issue groups of any type.

Note: Depending on the implementation of this interface on the integer processor core and the coprocessor, some sig-
nals while present are unused. Unused input signals on a particular implementation must be connected to their inac-
tive states.

4.4.1 Single-Issue Support

An integer processor core that supports only single issues will implement a single Combined issue group as follows:

e Thisgroup islssue Group 0 (m=0).

» CP_adisable 0 and CP_tfdisable 0 cannot be implemented. Because this is the only issue group, these instruc-
tions can never be disabled.

e CP_order_0[2:0] cannot be implemented. Because there is only one issue group, dispatch order is not needed.

An integer processor core with this configuration can be used with a coprocessor with moreissue groups. In this case,
the Combined issue group of the coprocessor is connected to the integer processor core and the other issue groups of
the coprocessor are tied inactive.

4.4.2 Limited Dual-Issue Support

An integer processor core that supports limited dual issues supports dual issuing of instructions only, where oneisan
arithmetic coprocessor instruction and the other is a To/From coprocessor instruction. With this option, two issue
groups are implemented - one combined (Issue Group 0) and one arithmetic (Issue Group 1).

» |If CP_adisable 1 isasserted, the integer processor core must dispatch arithmetic instructions using 1ssue Group
0.1f CP_adisable 1is deasserted the integer processor core must dispatch arithmetic instructions using Issue
Group 1.

 CP_adisable 0and CP_tfdisable O cannot be implemented. CP_tfdisable 0 isnot needed because thisisthe
only issue group for To/From instructions; these instructions cannot be disabled. CP_adisable 0 is not needed
because the integer processor core only uses the combined interface for arithmetic instructionsif the coprocessor
isalready asserting CP_adisable 1 for the Arithmetic I ssue group.

The aboverules allow a single-issue coprocessor to be used with alimited dual-issue integer processor core by simply
connecting the combined issue groups together and asserting CP_adisable 1.

Coprocessors with more multi-issue support can be connected to alimited dual-issue integer processor core by tying
off unused issue groups on the coprocessor.

4.4.3 Dual Arithmetic Issues
An integer processor core that supports full dual issues supports all the cases of limited dual issues, plusit can issue

two arithmetic instructions or two To/From instructions. With this option, two combined issue groups are imple-
mented.

Core Coprocessor Interface Specification, Revision 02.11 24

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



Configurations

A single-issue coprocessor can be used with a dual-issue integer processor core by simply connecting the combined
issue groups together and asserting CP_adisable_mand CP_tfdisable_mfor the second combined issue group of the
integer processor core.

A limited dual-issue coprocessor can be used with a dual-issue integer processor core by connecting the coprocessor
combined issue group to one of the integer processor core’s combined issue groups and asserting CP_adisable_mfor
that issue group. Then connect the coprocessor’s arithmetic issue group to the remaining combined issue group of the
integer processor core and assert CP_tfdisable_mfor that issue group.

4.4.4 Additional Multi-Issue Support

Therules explained in the previous section can be easily extrapolated for up to eight simultaneously dispatched
instructions from the integer processor core.

4.5 Multithreading Support

25

Support for multithreading is supplied by three instruction dispatch signals and the To COP Data (Delayed) transfer.
At instruction dispatch, CP_tcid_m, CP_vpeid_m and CP_targtcid_m indicate the additional TC and V PE infor-
mation needed by a coprocessor to execute instructions.

The To COP Data (Delayed) transfer is required to enable blocking loads to remain outstanding while instructions
from other TCs continue to execute. When a To COP Data (Delayed) transfer is pending, no other coprocessor
instructions for that TC will be completed.

In anon-multithreaded coprocessor, a Kill transfer kills the instruction and all instructions behind it that have been
dispatched. In a multithreaded coprocessor, a Kill transfer still kills the instruction, but it also only kills subsegquent
instructions from the same TC. Instructions from other TCs are not killed. This rule enables a pipelined coprocessor
to work efficiently because data dependent instructions will be killed if the source instruction of the dependency is
killed.

Note: Because instructions from different TCs are not always killed together, it is recommended that coprocessor
instructions that access other TCs registers not be pipelined together. Data bypassed from an instruction that was sub-
sequently killed is not valid and the recipient instruction must be restarted or otherwise get the original data

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



4.5 Multithreading Support

Core Coprocessor Interface Specification, Revision 02.11 26

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



Chapter 5

Interface Protocols

This section describes the different types of transfers that occur over the Coprocessor Interface. It also describes the
function of specific signals including hardware and idle indicators and reset.

5.1 Overview of Transfers

The Coprocessor Interface is composed of several simple transfers:

Instruction Dispatch - Starts coprocessor instructions.

To COP Data - Transfers data to the coprocessor.

To COP Data (Delayed) - Transfers data to the coprocessor for blocking loads.
From COP Data - Transfers data from the coprocessor.

Coprocessor Condition Code Checking - Transfers the coprocessor condition check result to the integer pro-
Cessor core.

GPR Data - Transfers additional datafrom the integer processor core’s general-purpose register file to the
COproCcessor.

Coprocessor Exceptions - Notifies the integer processor core if any coprocessor exceptions happened for an
instruction.

Instruction Nullification - Notifies the coprocessor whether instructions are nullified or not.

Instruction Killing - Notifies the coprocessor when instructions can commit state or not.

All transfers use the following protocol:

1

5.

All transfers are synchronously strobed; that is, atransfer isonly valid for one cycle (when the strobe signal is
asserted). The strobe signal is a synchronous signal. Do not use it to clock registers.

No handshake confirmation of transfer.
No flow control except for instruction dispatches.

Out-of-order transfers are not allowed except for To/From COP data transfers. All transfers of a given type,
except To/From COP data transfers, in the same issue group must be in dispatch order.

Ordering of different types of transfers for the same instruction is not restricted.

After an instruction is dispatched, additional information about that instruction must be later transferred between the
coprocessor and the integer processor core. The additional information and the transfers required are summarized in
Table5.1.

Core Coprocessor Interface Specification, Revision 02.11 27

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



5.1 Overview of Transfers

Note: For each dispatch type given in the table, all listed transfers are required to be done. No transfers are optional.
However, after aninstructioniskilled or nullified, any transfersthat have not aready happened will not happen. In other
words, once an instruction is killed or nullified, no further transfers for that instruction can happen.

Table 5.1 Transfers Required for Each Dispatch

Direction
Dispatch Type Required Transfers Core <—> COP
« Instruction nullification —>
¢ To Coprocessor data transfer —>
To COP Op
« Coprocessor exceptions <—
* Instruction killing —>
e Instruction nullification —>
* From Coprocessor data transfer <—
From COP Op )
» Coprocessor exceptions <
« Instruction killing —>
« Instruction nullification —>
Arithmetic COP Op « Coprocessor exceptions <—

« Instruction killing —_>

Additionally for <

BC1!

BC2! « Condition code check results

MOVF!

MoV T?!

Additiona IY for >

MOVZ.fmt

MOVN.fmt! + GPR Data

ALNV.Pst

ALNV.fmt!

1. For adescription of thisinstruction, refer to the MIPS ISA definition.

Each transfer can occur as early as one cycle after dispatch, and there is no maximum limit on how late the transfer can
occur. Only the dispatch interfaces have flow control. Thus, once dispatched, all transfers can occur immediately.

The Coprocessor I nterface operates with coprocessors of any pipeline structure and latency. If the integer processor core
requires a specific transfer by a certain cycle, the integer processor core must stall until the transfer has compl eted.
However, if an exceptional instruction (CpU, MDM X, RI) was dispatched then the integer processor core cannot expect
that the coprocessor is able to return any transfers. In that case the integer processor core must release any stalls on the
instruction and send an instruction kill transfer.

All transfers are strobed. The dataiis not buffered and istransferred in the cycle that the strobe signal is asserted—if the
strobe signal is asserted for two cycles, then two transfers occur. For instruction dispatches, the strobe signal is asserted
in the cycle after the instruction is dispatched in order to insulate the signals from poor timing.

Figure 5.1 shows examples of the transfer of nullification information. However, al non-dispatch transfers follow the
same protocol.

Core Coprocessor Interface Specification, Revision 02.11 28

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



Interface Protocols

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Clock ["_| L L L
CP1 _as_ m
CP_ir_m[31:0] T X & B)(%(ZX
CP_nulls_m / \ / T\
CP_null_m ‘ \ / ‘ ‘ / '\ ‘

Figure 5.1 General Transfer Example

On edge 4, CP_nulls_misasserted, signifying the null transfer for Instruction A. Since CP_null_mis deasserted on edge
4, Instruction A is not nullified. Instruction B is dispatched on edge 4 and it receives the null transfer in the next cycle
at edge 5. Becauseit isthe cycle after digpatch, thisisthe earliest possibletime any transfer for Instruction B can happen.
Instruction C is dispatched at edge 5. However, the nullification transfer is delayed for some reason until edge 10.

For all transfers except To COP Data and From COP Data, the ordering of the transfersis simple: al transfers of a
specific type (for example, nullification transfers) in a specific issue group must be in the same order asthe order in
which the instructions were dispatched. However, other kinds of transfers can be interspersed—for example, if four
arithmetic instructions were dispatched, there could be two nullification transfers, followed by four exception transfers,
followed by two nullification transfers.

If aninstruction iskilled or nullified, no remaining transfers for that instruction occur. In the cycle that the instruction
isbeing killed or nullified, transfers can occur, but they are ignored.

The integer processor coreistypically pipelined internally. This may imply bindings on what transfers the integer
processor core requires before returning other transfers. For instance, an integer processor core implementation may
requirethat the coprocessor returns From databefore thekill transfer can happen. Such reguirements should be described
in the documentation for the integer processor core.

5.2 Instruction Dispatch Transfer

29

Theinstruction dispatch transfer signals the coprocessor to start executing coprocessor instructions. Data transfer
instructions include those that move data to the coprocessor from the integer processor core (To COP Ops), and those
that move data from the coprocessor to the integer processor core (From COP Ops).

Because data transfers for To COP and From COP instructions occur later than the dispatch of the instructions, the
coprocessor itself must keep track of data hazards and stall its pipeline accordingly. The integer processor core does not
track coprocessor data hazards.

CP1 as m CP2 as m, CP1 ts m, CP2 ts m CPl fs m and CP2 fs mare asserted in the cycle after theinstruction is
driven. These signals are delayed strobe signals; although this delay complicates the functional interface, it enablesthe
processor to achieve very good timing on these signal s—without this delay, these signals would be timing-critical.

Because the above instruction strobes are delayed, the coprocessor is normally required to register CP_ir_min every
cycle and conditionally useit in the following cycle depending on the instruction strobes. This protocol has the side
effect of registering non-coprocessor instructions and partially processing them, thus potentially increasing power
consumption. The CP_irenable_m signal compensates for this effect by enabling the coprocessor to avoid registering
instructions that will never be dispatched to it.

Only one of the instruction strobes in an issue group can ever be asserted at the sasmetime: CP1_as m, CP2_as m,
CP1 ts m CP2 ts m CP1 fs m, and CP2 fs m However, if multiple enabled issue groups exist, more than one

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



5.2 Instruction Dispatch Transfer

instruction can be dispatched per cycle. When two instructions are dispatched at the same time, the coprocessor must
know their program order to properly calculate dependencies. Thisinformation is output on CP_order_m[ 2:0]. For the
first instruction, CP_order_mis 0. For the next instruction CP_order_mis 1, and so on.

By asserting CP_adisable_mor CP_tfdisable_m appropriately, coprocessors that do not support superscalar operation
can disableit.

Theinteger processor coreis allowed to dispatch an instruction within the To/From/Arithmetic groups even though the
instruction is exceptional dueto RI, MDMX and CpU exceptions. If such an instruction is dispatched, the integer
processor core must subsequently kill the instruction (refer to Section 5.9, "Instruction Killing Transfer") without
expecting that the coprocessor returns any transactions. Note that Rl on Arithmetic instructions must be signalled by the
coprocessor whereas Rl on To/From instructions must be signalled by the integer processor core.

However, it is not allowed to dispatch instructions to not present hardware when using the configuration described in
Section 4.1.3, "Single Coprocessor 1 and 2". Thisrestriction does not apply to the other proposed configurations.

The above two paragraphs imply that a coprocessor that does not support all instructions must be able to recognize all
possibleinstructionsfor the purpose of theinterface transfers. For instance, if MDMX or paired singleisunimplemented
in a COP1 the coprocessor should not by mistake use a GPR transfer for the ALNV.fmt/ALNV.PS instructions for the
COP1 MOVN.fmt/MOVZ.fmt instructions.

When the processor is operating in M1PS32-compatibility mode according to the User/Supervisor/Kernel/Debug mode
(PX, SX, and UX bits of the CPO Satus register), the CP_inst32_msignal is asserted during dispatch. The coprocessor
must signal a Reserved Instruction exception for any arithmetic instruction that is not M1PS32 compatible. Refer to the
MIPS ISA documentation for more details on M1PS32-compatibility modes in integer processor cores.

CP1 _fr32_mcan be asserted during dispatch to notify the coprocessor that M1PS32-compatible floating-point registers
are enabled. Normally, the coprocessor would then change the behavior of some instructions to correctly operate using
the MIPS32-compatible register file. CP1_fr32_mis asserted according to the FR bit in the CPO Status register.

The CP_endian_msignal is asserted during dispatch to notify the coprocessor of the proper byte-ordering mode to use.
Thisindication is needed for the ALNV.fmt and ALNV.PS instructions.

The CP2_kd_mode_msignal is asserted during dispatch to notify the coprocessor that the instruction is executed in
Kernel or Debug mode. This allows for implementation of COP2 coprocessor instructions which cannot be executed
outside Kernel or Debug mode.

Figure 5.2 showswaveformsfor an example Coprocessor 1 dispatch. Dispatch of Coprocessor 2 instructionsisthe same,
with different signal names.

Core Coprocessor Interface Specification, Revision 02.11 30

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



Interface Protocols

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1¢

Clock []_| L L L
CP_irenable_1 / \ / T\
CP1 as 1 /T\ / T\ / T\ / T\
CP_ir_1[31:0] B X C X D X
CP1_abusy 1
CP_endian_1,CP1_fr32_1,CP_inst32_1 X X X
[ [ (T 1T 71 717 T T [T [ [ T
CP_tcid_1,CP1_vpeid_1,CP_targtcid_1 X:;D:X X__ X X X___X
CP_order 1[2:0] \ @\ \ 0\ N [ [ ] 0\ N [ 1‘ \ [ [ ]
CP_irenable_0 /\ /\ /T\
CP1_ts O /\ /T\
CP1 fs 0
CP_ir_0[31:0] X K X L X M X
CP1_tbusy 0 / \ / T\
CP1_fbusy 0 / \
CP_endian_0,CP1_fr32_0,CP_inst32_0 ‘ ‘X ‘ X‘ ‘X ‘ X‘ I ‘X ‘X I
CP_order_0[2:0] X 0 X X 0 X X 0 X

Figure 5.2 Arithmetic Coprocessor Dispatch Waveform

On edge 2, Instruction A is dispatched. On edge 3, CP1_as 1 isasserted, validating the previous cycle's dispatch.
CP1 as 1isawaysasserted in the cycle after the instruction word is driven. On edge 3, Instruction K is dispatched.
CP1 fs Oisasserted on edge 4.

Onedge5, Instruction B isdispatched. On edge 6, Instruction Cisdriven onto CP_ir_1, and Instruction L isdriven onto
CP_ir_0. Instruction C is not dispatched because CP1 _abusy 1 was asserted. But Instruction L was dispatched. For
Instruction C, the integer processor core does not assert CP1_as 1 until the coprocessor can accept it (when

CP1 abusy 1 isdeasserted). Instruction C isfinaly dispatched on edge 9.

On edge 12, both Instructions D and M are dispatched at the sametime. CP_order_0and CP_order_1 arevalid on edge
13 and indicate that Instruction M was functionally before Instruction D.

5.3 To Coprocessor Data Transfer

The Coprocessor I nterface transfers data to the coprocessor after a To COP Op has been dispatched. Only To COP Ops
utilize thistransfer. The coprocessor must have a buffer available for this data after the To COP Op has been dispatched.
If no buffers are available, the coprocessor must assert CP1_tbusy_mor CP2_tbusy_m, as appropriate, to prevent
dispatch.

In some processors, a To COP Op can be killed after the instruction has passed the point in the integer pipeline where
both the nullification and killing transfers would normally occur. To enable subsequent non-dependent instructions to
continue on the COP interface, the CP_tdk_m signal is available to allow the processor to kill the To COP Op &fter the
nullification and killing transfers have been completed. When the coprocessor sees CP_tds_m asserted, if CP_tdk_m
is asserted, thisindicatesthat CP_tdata_m should be dropped and not affect the state of the coprocessor.

In order to exploit parallelism in amultithreaded system, delaying To COP Data is sometimes needed. By delaying the
data transfer, the interface enables an in-order coprocessor to have a pending transfer for one TC while continuing to

31 Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



5.3 To Coprocessor Data Transfer

transfer To COP Datafor other TCs. A given TC can have at most 1 To COP Datatransfer delayed at atime. Integer
cores are expected to use this transfer for blocking load data. A delayed transfer is indicated by the assertion of
CP_tdd_m during the normal To COP Data transfer. When this signal is asserted, the coprocessor should ignore
CP_tdata_m and instead expect a subsequent To COP Data (Delayed) transfer.

A delayed kill signal (CP_tddk_m) is aso supplied for delayed To COP Data transfers. Integer cores are expected to
use this kill when blocking loads are killed dueto a TC being halted. When the coprocessor sees CP_tddk_m asserted,
thisindicatesthat CP_tdata_m should be dropped and not affect the state of the coprocessor. A late kill is possible
because no subsequent dependent instructions will have been started. Thus, no state has been committed and it is still
possible to precisely kill the instruction.

The Coprocessor Interface allows out-of-order data transfers; that is, data can be sent to the coprocessor in a different
order from the order in which the instructions were dispatched. When datais sent to the coprocessor, the
CP_torder_m[ 2:0] signal isalso sent. Thissignal tellsthe coprocessor whether the dataword isfor the oldest outstanding
To COP datatransfer, the second oldest, or the third oldest, etc. The Coprocessor Interface allows up to eight transfers
to be outstanding while returning data for the next transfer. The coprocessor can limit the extent of this reordering to
match what its hardware supports using the CP_tordlim_n{ 2:0] signal.

The type of instruction dispatched determines which bits on the bus are valid:

e 32-bit transfer: The 32-bit dataword is driven on CP_tdata_n{ 31:0].
*  64-bit transfer: The 64-bit data word is driven on CP_tdata_n{63:0].

Figure 5.3 shows waveforms for an example To Coprocessor data transfer. Three instructions are dispatched: A, B, C
and D on edges 2, 4, 6 and 8, respectively. Datafor Instruction A is sent on edge 6. At that time, it isthe oldest
outstanding transfer, so CP_torder_misset to 0. On edge 10, datafor Instruction C issent. Becauseit isthe second ol dest
outstanding transfer, CP_torder_mis set to 1. In the following cycle, datafor Instruction B isfinally transferred. That
instruction is now the oldest outstanding instruction, so CP_torder_mis again set to 0. On edge 13, the data transfer for
Instruction D is completed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Clock [ | L L L
CP1 ts_m
CP_ir_m31:0] [ Xai Bi Ci Di X
CP_tds_m A
CP_tdd_m
CP_tdata_n[63:0] X 2d X ‘)( ‘d Bd d
CP_torder_n{2:0] X 0 X ‘X } (0 XX 0 )

L
N

Q

Figure 5.3 To Coprocessor Data Transfer Waveforms

Figure 5.4 shows waveforms for an example To Coprocessor data (Delayed) transfer. Three instructions are dispatched:
A, B, and C on edges 2, 4, and 6, respectively. At edge 6, the To COP Datafor Instruction A isdelayed since CP_tds_m
and CP_tdd_m areasserted. CP_tdata_m isthereforeinvalid at this edge. Note however, that CP_torder_m does till
indicate the relative ordering for this To COP Data transfer. Data for Instruction C and D is transferred out of order on
edges 10 and 11 similar to the example given above. Note here that the To COP Data transfer is completed as far as
CP_torder_m isconcerned. At edge 13, the delayed data for Instruction A isfinally transferred. In this example, the
dataisvalid because CP_tddk _m was deasserted. However, the transfer could have been killed if CP_tddk_m were
asserted at edge 13.

Core Coprocessor Interface Specification, Revision 02.11 32

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



Interface Protocols

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Clock | r%mmmmmmmm_

CP1_ts m
CP_ir_m[31:0] T TXai Bi ciX
CP_tds m

CP_tdd_m

CP_tdata_m[63:0] ‘ ‘ ‘ ‘ X C‘d Bd Ad
CP_torder_m[2:0] X _0 X X 1 io;ﬁ
CP_tdds_m /N

CP_tddk_m
CP_tddtcid_m([7:0] X__ X

Figure 5.4 To Coprocessor Data (Delayed) Transfer Waveforms

5.4 From Coprocessor Data Transfers

The Coprocessor Interface transfers data from the coprocessor to the integer processor core after a From COP Op has
been dispatched. Only From COP Ops utilize this transfer. Note that the integer processor core must have buffers for
this data that enable the transfer to occur in the cycle after dispatch.

The Coprocessor Interface allows out-of-order transfer of data; that is, data can be sent from the coprocessor in a
different order from the order in which the instructions were dispatched. When datais sent from the coprocessor, the
CP_forder_m[2:0] signal isalso sent. Thissignal tellsthe integer processor core whether the dataword isfor the oldest
outstanding From COP data transfer, the second oldest, or the third oldest, etc. The Coprocessor Interface allows up to
eight transfers to be outstanding while returning the data for the next transfer. The integer processor core can limit the
extent of this reordering to match what its hardware supports using the CP_fordlim_m[2:0] signal.

For single-word transfers, the coprocessor must drive the 32-bit value on both CP_fdata_n{ 31:0] and
CP_fdata_n 63:32], making the transfer independent of the byte ordering (big or little endian).

Note: For integer processor cores that only support 32-bit COP2, From COP Datais aways 32 bitswide and is only
driven on CP_fdata_n{ 31:0].

Figure 5.5 showswaveformsfor an example From Coprocessor datatransfer. The A, B, and C instructions are dispatched
on edges 2, 3, and 4, respectively. The coprocessor returns the data for Instruction A on edge 4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Clock [ | piglgigh gEgplplnlinl
CP1_fs_m | N\
CP_ir_m[31:0] [ XaixXBiXCi X Di X
CP_fds_m
CP_fdata_r{63.0] I I I A A\d &d I I I A B\d d I I |
CP_forder_r{2:0] \ \ \ A ? \ \ \ A ? % \ \ \

Figure 5.5 From Coprocessor Data Transfer Waveforms

33 Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



5.5 Condition Code Checking

On edge5, thedatafor Instruction C isreturned. Note that I nstruction C’'sdatais returned before the datafor Instruction
B and is thus out-of-order (indicated on CP_forder_m= 3'bl).

Instruction D isdispatched on edge 9. At the sametime, the datafor Instruction B is sent. On edge 10, datafor Instruction
D is sent one cycle after dispatch, which is the fastest data return possible.

5.5 Condition Code Checking

The Coprocessor Interface provides signalsfor transferring the result of acondition code check from the coprocessor to
the integer processor core. Only BC1, BC2, MOVF and MOVT instructions utilize this transfer. These instructions are
dispatched to both the integer processor core and the coprocessor.

For each instruction dispatched, aresult is sent back to theinteger processor core that sayswhether or not to execute that
instruction. For branches, the coprocessor tells the integer processor core whether or not to branch. For conditional
moves, the coprocessor tells the integer processor core whether or not to do the move. For this reason, the coprocessor
must interpret the type of instruction to decide whether or not to execute it. Customer-defined BC1, BC2, MOVF and
MOVT instructions are thus possible.

Condition code check transfersfollow the generic examplegivenin Figure5.1 on page 29. Thesignals CP_cccs mand
CP_ccc_mare used instead of CP_nulls_mand CP_null_m as shown in the figure.

5.6 GPR Data Transfers

The integer processor core transfers the results of a check that RT == 64’ b0 for the two special arithmetic Coprocessor
linstructions, MOV N.fmt and MOV Z.fmt. It also transfers the lower three bits of the RS operand for the ALNV.PS and
ALNV.fmt Coprocessor 1 instructions. When these instructions are dispatched to the coprocessor, they are also
dispatched to the integer pipeline. In this way, the integer processor core can properly bypass RS as well as check the
RT value against zero.

GPR datatransfers follow the generic example given in Figure 5.1. The signals CP1_gprs mand CP1_gpr_n{3:0] are
used instead of CP_nulls_mand CP_null_m as shown in the figure.

5.7 Coprocessor Exceptions

All instructions dispatched utilize this transfer. It isused to signal if an instruction caused an exception in the
coprocessor. This transfer must happen even if the instruction did not cause an exception in the coprocessor.

When a coprocessor instruction causes an exception, the coprocessor must signal thisto the integer processor core so it
can start execution from the exception vector. The coprocessor can signal a Reserved Instruction exception for any
instruction dispatched to it. However, the coprocessor should only signal FPE exceptions for COP1 and C2E exceptions
for COP2. The coprocessor can also signal one of two implementati on-specific exception codes. These exception codes
can be used to trigger special software exception handling routines.

Note: A coprocessor can signal an exception for To/From COP Ops. Except for CTC1 and CTC2 instructions, this
exception cannot depend on the associated data, implying that the integer processor core must transfer the CTCx data
before it requires the exception information to prevent a deadlock condition.

Note: An integer processor core cannot expect that a coprocessor will return any additional transfersif it has signalled
that an instruction is exceptional. The integer processor core must thus release stalls for that instructions and not wait
for e.g. From COP Data or CCC transfers.

Core Coprocessor Interface Specification, Revision 02.11 34

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



Interface Protocols

Signalling for Reserved Instruction exceptions are divided between the integer processor core and the coprocessor as
follows:

» Theinteger processor core signals Reserved I nstruction exceptions for non-arithmetic coprocessor instructions
that are not valid To COP Ops or From COP Ops.

e The coprocessor hardware must signal Reserved Instruction exceptions for al arithmetic coprocessor instruc-
tions.

Theinteger processor core detects Coprocessor Unusable exceptions and MDM X Unusable exceptions for all
coprocessor instructions.

If imprecise coprocessor exceptions are allowed, the coprocessor can use the “No exception” signal immediately after
dispatch to prevent stalling in the integer pipeline while waiting for precise results. If an exception does occur for that
instruction, a subsequent coprocessor instruction can be flagged as exceptional (although imprecise) or else an interrupt
could be signalled through the normal integer processor core interrupt inputs.

Exception transfers follow the generic example given in Figure 5.1. The signals CP_excs_m, CP_exc_m, and
CP_exccode_m[4:0] are used instead of CP_nulls_mand CP_null_m as shown in the figure.

5.8 Instruction Nullification Transfers

All instructions dispatched utilize thistransfer. It isused to signal if aninstruction was nullified in the integer processor
core. Thistransfer must happen even if an instruction was not nullified so that the coprocessor knows when it can begin
operation of subsequent operations that depend on the result of the current instruction.

Normally, an instruction is killed only when the pipeline is being flushed because an exception occurred. In this case,
all subsequent instructionsin the pipeline are also killed. An instruction can also be killed becauseit isin the delay slot
of abranch-likely instruction that did not branch. Thistype of killing is called instruction nullification. In this case,
subsequent instructions in the pipeline are unaffected by the nullification.

Nullification must be performed in an early stage of the pipeline to ensure that subsequent instructions can begin with
the correct operands.

In the cyclethat aninstruction is nullified, other transfers for that instruction can still occur, but no further transfers for
that instruction can occur in subsequent cycles. Exceptions caused by a nullified instruction are masked by the integer
processor core.

Nullification transfers follow the generic example given in Figure 5.1.

5.9 Instruction Killing Transfer

35

All instructions dispatched utilize this transfer. It is used to signal whether or not an instruction can commit state. This
transfer must happen even if an instruction is not being killed so that the coprocessor knows when it can write back
results for the instruction.

Dueto various exceptional conditions, any instruction might need to bekilled. Theinteger processor core containslogic
which tells the coprocessor when to kill coprocessor instructions.

When acoprocessor instruction isbeing killed because of acoprocessor-signalled exception, the coprocessor might need
to perform special operations. For example, if afloating-point instruction iskilled because of a Floating-point exception,
the coprocessor must update exception status bitsin the coprocessor’s FCSR register. On the other hand, if that same

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



5.10 Transfer Example

instruction was killed because of a higher-priority exception, those status bits must not be updated. For this reason, as
part of the kill transfer, the integer processor core tells the coprocessor if the instruction is killed due to a coprocessor-
signalled exception.

When a coprocessor instruction is killed, all subsequent coprocessor arithmetic instructions and To/From COP Opsin
the same issue group that have been dispatched from the same TC are also killed. This is necessary because the killed
instruction(s) might affect the operation of subsequent instructions (for example, because of bypassing). Inthe cyclein
which aninstructioniskilled, other transfers can occur, but after that cycle, no further transfers occur for any of thekilled
instructions. A side-effect is that the other instructions that are killed do not have akill transfer of their own. In effect,
they areimmediately killed and thustheir remaining transfers cannot be sent, including their ownkill transfer. Previously
nullified instructions do not have akill transfer either, because once nullified, no further transfers can occur.

Note: If the integer processor core dispatches a coprocessor instruction in the same cyclethat akill isbeing signalled to
the coprocessor, then the same kill signalskillsthat instruction as well.

Note: Because instructions from different TCs are not always killed together, it is recommended that coprocessor
instructions that access other TCs registers not be pipelined together. Data bypassed from an instruction that was
subsequently killed is not valid and the recipient instruction must be restarted or otherwise get the original data.

Killing transfers follow the generic example given in Figure 5.1. The signals CP_kills_mand CP_kill_m[1:0] are used
instead of CP_nulls_mand CP_null_m as shown in the figure.

5.10 Transfer Example

Figure 5.6 shows an example of a complete transfer sequence on a COP1 coprocessor interface generated by the various
types of instructions listed in Table 5.2.

Note that the example does not cover all possible scenarios.

Core Coprocessor Interface Specification, Revision 02.11 36

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



Interface Protocols

1 2 3 4 5 6 7 9 10 11 12 13 14 15 16

8
Clock mmmmmmmmmmmﬂ_hﬂﬂ_ﬁ
/] /]

CP1_irenable_0 [/ T\ /T\ VAR ™\
CP1 ts O
CP1 fs_0O /T\
CP1_as 0 /]
CP1_ir 0 X 2 XXX B X X_C XC
CP1_tbusy 0
CP1 fousy 0 / \

CP1_abusy 0 \
CP1_endian_0,CP1_fr32_0,CP1_inst32_0 A B X X _C D E X
CP1_order 0 =4 x)CoD()C)( ) xX:o;X)C) YO 0 XT
CP1_nulls_0 / \ a
CP1_null_0 ya
CP1_tds_0O
CP1_tdd_O
CP1_torder_0
CP1_tdata_O
CP1 fds 0
CP1_forder_O
CP1_fdata_0 X B X
CP1_cccs_0
CP1 _ccc O
CP1_gprs_O /T\

CP1_gpr_0 X__X
CP1_excs O

CP1_exc O
CP1_exccode 0 X X
CP1_kills_0 /T\ /T\ /T\ ya
CP1_kill_0 X 0 X X 0 >(:;)< 0 X X 3%
I \ \

=
o
O
><
3]
><

N
S
N
S

r Y
o

N
/

S

>
o
><

><
hd
><

>
o

Figure 5.6 Complete COP1 Sequence

37 Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



5.11 Miscellaneous Coprocessor Signals

Table 5.2 Transfers in Above Waveform (numbers refer to clock cycles)

To From
Inst Opcode Dispatch Null | Data | Data | CCC | GPR | Exc Kill
A MTC1/LWC1 1 4 4 - - - 4 4
B MFC1/SWC1 3 5 - 8 - - 6 7
C ADD.s 6 9 - - - - 9 9
D BC1 8 11t - - 1 - - -
E MOVZ.s 10 13 - - - 13 14 15

1. Thistransfer nullsinstruction D and inhibits further transfers for this instruction.

5.11 Miscellaneous Coprocessor Signals

This section describes the function of the hardware and coprocessor indicators. It also describes the operation of the
coprocessor reset signal.

5.11.1 Hardware Present Signaling

Three Coprocessor Interface static inputs (CP1_fppresent, CP1_mdmxpresent, and CP2_present) enable the integer
processor core to know what type of hardware is connected to the Coprocessor Interface. If one of these signalsis
asserted and the respective hardware is not available to handle the instructions, the operation is UNDEFINED, and the
integer processor core might hang.

The three signals drive the FP, MD and C2 bits of the CPO Configl register, respectively. If either FP or MD is set, the
CU1 bit in the CPO Satus register can be set by software. If C2 is set, the CU2 bit in the CP0O Satus register can be set
by software.

If the CU1 bit in the CPO Status register is cleared the execution of a COP1 instruction will cause the integer processor
core to signal a Coprocessor Unusable exception. Likewise, a cleared CU2 bit in the Status register will cause a
Coprocessor Unusabl e exception when executing a COP2 instruction.

If CP1_mdmxpresent is deasserted, the execution of an MDM X instruction will causetheinteger processor coreto signal
aReserved Instruction exception. If CUL isdeasserted (but the MDMX hardwareis present) an MDM X instruction will
cause a Coprocessor Unusable exception. Likewise, if the MDMX hardware is present, but the MX bit in CPO Status
register is deasserted, then an MDM X Unusable exception will be signalled.

5.11.2 Coprocessor Idle

The Coprocessor Interface includes an idle indication from the coprocessor, CP_idle. The coprocessor deasserts this
signal whenever it is performing a calculation, and asserts this signal when it has no instructions in progress. When
asserted, CP_idle allows the integer processor core to enter alow-power mode, potentially shutting down the internal
integer processor core clock. CP_idleisignored if no coprocessor is using the Coprocessor Interface (when

CP1 _fppresent, CP1_mdmxpresent, and CP2_present are all deasserted).

Since the coprocessor will deassert CP_idle when any instruction isin-progress, the integer processor core design must
take into account instructions that will not complete before entering power-down mode. If an instruction is dispatched

Core Coprocessor Interface Specification, Revision 02.11 38

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



Interface Protocols

39

to the coprocessor, the coprocessor will not assert CP_idle until that instruction is completed. In the MIPS architecture,
the WAIT instruction enables|ow-power mode and normally stallsthe integer processor pipeline. The integer processor
core can solve this problem in severa ways:

» Do not dispatch instructions after aWAIT instruction.
* Nullify al instructions that are dispatched after a WAIT instruction.
* Kill al instructions that are dispatched after a WAIT instruction.

» Ignore CP_idle after a certain number of cycles.

Unless one of the above solutions or something similar is used, the coprocessor holds CP_idle deasserted because
dispatched instructions cannot complete due to the WAIT instruction being stalled in the pipeline. Theinteger processor
core will never enter low-power mode due to the fact that CP_idle is deasserted.

5.11.3 Reset

When the integer processor coreisreset, it asserts CP_reset. On reset, the coprocessor must stop all in-progress
operations and reset all control state machinesto their idle states. When CP_reset is asserted, any in-progress protocols
are broken, and all transfers immediately stop. All signals must reset to their inactive states by the cycle CP_reset is
deasserted.

Note: CP_reset can be asserted for asfew as two cycles, although longer assertions arelegal . Thus the coprocessor must
properly reset even when CP_reset is asserted for only two cycles.

After CP_reset is deasserted, transactions are not started on the Coprocessor Interface for at least four cycles, giving the
coprocessor extratime to reset its state machines before a new instruction is dispatched. However, all Coprocessor
Interface signals must still be deasserted by the cycle CP_reset is deasserted so that both the integer processor core and
the coprocessor start transfers cleanly after reset.

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



5.11 Miscellaneous Coprocessor Signals

Core Coprocessor Interface Specification, Revision 02.11 40

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



Appendix A

Revision History

Change bars (vertical lines) in the margins of this document indicate significant changes in the document sinceitslast
release. Change bars are removed for changes that are more than one revision old.

This document may refer to Architecture specifications (for example, instruction set descriptions and EJTAG register
definitions), and change bars in these sections indicate changes since the previous version of the relevant Architecture

document.
Revision Date Description
0.1 May 31, 2000 Initial version.
0.2 June 1, 2000 Added Open issues.
0.3 June 5, 2000 Updated after review.
32-bit dynamic mode - removed CP_tduw, changed definitions for
04 June 15, 2000 single-word transfers.
0.5 June 20, 2000 Updated post-review.
1.0 July 10, 2000 Final post-review edits.
11 July 27, 2000 Results from Vidya review.
12 October 23, 2000 Added notes of clarification that unused inputs must be connected
inactive.
« Clarified description of which instructions are killed by akill signal.
13 Nov 17, 2000 « Clarified the fact that coprocessor conditional instructions and
instructions that test integer processor core registers are dispatched as
arithmetic instructions.
14 Nov 29, 2000 Added a note about the term “integer processor core” to Section 1.
« Split section 5.9 into three subsections.
15 Dec 4, 2000
* Added new section 5.9.3 describing reset behavior.
16 Dec 5, 2000 Changed minimum reset length from 1 cycleto 2 cycles.
17 Jan 8. 2001 Added anote of clarification about instruction strobes—they can be
: ’ asserted for additional instructionsaslong asthoseinstructions arekilled.
Added section 4.1.5 describing a processor with two Coprocessor
18 Feb 8, 2001 Interfaces.
19 Feb 13, 2001 Added note to section 5.6 clarifying stalls for exceptional instructions.
e Changed CP_tx32 -> CP2_tx32.
e Changed CP_fr32_m-> CP1_fr32_m.
1.10 Feb 16, 2001
* Added description for CP_idle relating to integer processor core
design and a potential lock-out condition where low-power mode
would never be entered.
111 March 30, 2001 Converted to new template.
Core Coprocessor Interface Specification, Revision 02.11 41

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.



Revision Date Description
Explicitly listed all To/From COP Opsin Section 2.
Changed CP_* signal names for all configurations except the shared
112 June 12, 2001 COP1/COP2 option.
Clarified how dispatch works around CpU/RI/MDMX exceptions.
Corrected section 5.10.1.
1.13 August 31, 2001 Document template updated.
Added MIPS32 Release 2 M{ F[T} HC{ 1|2} instructions (section 2)
Added CP2_kd_mode_m signal.
114 March 22, 2002
Minor clarifications (sections 4.1.4, 5.1, 5.2)
Complete transfer example (section 5.10)
Added opcodes for all listed instructions (section 2)
1.15 September 25, 2002
Minor clarifications and typos (sections 2, 5.3, Revision History)
Removed Implementation Specific 2 exception code
1.16 August 20, 2004
Updated templates
Added CP_tdk_msignal
2.00 November 1, 2007 Updated templates
Enhanced for Multithreading, Thisincludes new dispatch signals
CP_tcid_m[7:0], CP_vpeid_m[3:0], and CP_targtcid_m[7:0].
Multithreading also required the addition of To COP Data (Delayed)
210 December 19, 2008y angfers. Thisincludes new signals CP_tdds m, CP_tddtcid_m[7:0],
and CP_tddata_m[63:0]. Furthermore, CP_tdk_m was renamed to
CP_tddk_m.
Clarified that aKill transfer on amultithreaded coprocessor only affects
instructions from that TC.
211 July 8, 2009 Removed CP_tddata_m. Delayed To COP Data transfers now utilize

CP_tdata_m instead.
Reinstated CP_tdk_m.

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

42



	Core Coprocessor Interface Specification
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Coprocessor Instructions
	Signal Descriptions
	Configurations
	4.1 Types of Coprocessors
	4.1.1 Single Coprocessor 1
	4.1.2 Single Coprocessor 2
	4.1.3 Single Coprocessor 1 and 2
	4.1.4 Dual Coprocessors using Separate Interfaces
	4.1.5 No Coprocessors

	4.2 Data Transfer Widths
	4.2.1 64-bit Transfer Width
	4.2.2 32-bit Transfer Width (Cop2 only)

	4.3 Out-of-Order Data Transfers
	4.4 Multi-Issue Support
	4.4.1 Single-Issue Support
	4.4.2 Limited Dual-Issue Support
	4.4.3 Dual Arithmetic Issues
	4.4.4 Additional Multi-Issue Support

	4.5 Multithreading Support

	Interface Protocols
	5.1 Overview of Transfers
	5.2 Instruction Dispatch Transfer
	5.3 To Coprocessor Data Transfer
	5.4 From Coprocessor Data Transfers
	5.5 Condition Code Checking
	5.6 GPR Data Transfers
	5.7 Coprocessor Exceptions
	5.8 Instruction Nullification Transfers
	5.9 Instruction Killing Transfer
	5.10 Transfer Example
	5.11 Miscellaneous Coprocessor Signals
	5.11.1 Hardware Present Signaling
	5.11.2 Coprocessor Idle
	5.11.3 Reset


	Revision History


