
Document Number: MD00068
Revision 02.11

July 8, 2009

MIPS Technologies, Inc.
955 East Arques Avenue

Sunnyvale, CA 94085-4521

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

Core Coprocessor Interface
Specification

Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

Template: nB1.03, Built with tags: 2B

Copyright © 2000-2001, 2007-2009 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of this
information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of this information, or any related documentation of any kind, including related technical data or manuals,
is an agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies
logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf,
24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user
experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2
NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2,
SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other
countries.

All other trademarks referred to herein are the property of their respective owners.

3 Core Coprocessor Interface Specification, Revision 02.11

Table of Contents

Chapter 1: Introduction .. 7

Chapter 2: Coprocessor Instructions ... 9

Chapter 3: Signal Descriptions ... 13

Chapter 4: Configurations ... 21
4.1: Types of Coprocessors.. 21

4.1.1: Single Coprocessor 1... 21
4.1.2: Single Coprocessor 2... 22
4.1.3: Single Coprocessor 1 and 2... 22
4.1.4: Dual Coprocessors using Separate Interfaces... 22
4.1.5: No Coprocessors ... 22

4.2: Data Transfer Widths... 22
4.2.1: 64-bit Transfer Width.. 22
4.2.2: 32-bit Transfer Width (Cop2 only) .. 23

4.3: Out-of-Order Data Transfers ... 23
4.4: Multi-Issue Support.. 23

4.4.1: Single-Issue Support.. 24
4.4.2: Limited Dual-Issue Support.. 24
4.4.3: Dual Arithmetic Issues ... 24
4.4.4: Additional Multi-Issue Support ... 25

4.5: Multithreading Support .. 25

Chapter 5: Interface Protocols .. 27
5.1: Overview of Transfers ... 27
5.2: Instruction Dispatch Transfer... 29
5.3: To Coprocessor Data Transfer .. 31
5.4: From Coprocessor Data Transfers .. 33
5.5: Condition Code Checking.. 34
5.6: GPR Data Transfers .. 34
5.7: Coprocessor Exceptions.. 34
5.8: Instruction Nullification Transfers .. 35
5.9: Instruction Killing Transfer ... 35
5.10: Transfer Example .. 36
5.11: Miscellaneous Coprocessor Signals.. 38

5.11.1: Hardware Present Signaling .. 38
5.11.2: Coprocessor Idle .. 38
5.11.3: Reset.. 39

Appendix A: Revision History ... 41

Core Coprocessor Interface Specification, Revision 02.11 4

List of Tables

Table 3.1: Signal Direction Key... 13
Table 3.2: Signal Coprocessor Category .. 13
Table 3.3: Issue Group Key .. 13
Table 3.4: Signal Issue Group Number... 14
Table 3.5: Interface Signal Descriptions (Required for both COP1 and COP2).. 14
Table 3.6: Coprocessor Interface Signal Descriptions (Required only for COP1) .. 18
Table 3.7: Coprocessor Interface Signal Descriptions (Required only for COP2) .. 19
Table 5.1: Transfers Required for Each Dispatch... 28
Table 5.2: Transfers in Above Waveform (numbers refer to clock cycles).. 38

5 Core Coprocessor Interface Specification, Revision 02.11

List of Figures

Figure 4.1: Coprocessor Interface Block Diagram .. 21
Figure 5.1: General Transfer Example.. 29
Figure 5.2: Arithmetic Coprocessor Dispatch Waveform .. 31
Figure 5.3: To Coprocessor Data Transfer Waveforms .. 32
Figure 5.4: To Coprocessor Data (Delayed) Transfer Waveforms.. 33
Figure 5.5: From Coprocessor Data Transfer Waveforms.. 33
Figure 5.6: Complete COP1 Sequence .. 37

Core Coprocessor Interface Specification, Revision 02.11 6

Chapter 1

Core Coprocessor Interface Specification, Revision 02.11 7

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

Introduction

This document describes the Coprocessor Interface standard supported by various MIPS® processor cores. The
Coprocessor Interface is designed to enable coprocessors, such as FPUs and Graphics Engines, to be tightly coupled
to an integer processor core. Such coprocessors can be internally developed by MIPS Technologies or externally
developed by customers or third party design teams.

Note: For clarity, the term integer processor core describes the MIPS processor core to which a coprocessor attaches.
The integer processor core can do more than integer processing, however. In fact, it can have an internal FPU (and
use the Coprocessor Interface for COP2). By the same token, the coprocessor can itself do any kind of processing,
including integer calculations.

The Coprocessor Interface has the following features:

• The interface is easy to understand. By keeping the interface as simple as possible, designers can concentrate on
the coprocessor’s functionality rather than its interface.

• Performance is not compromised. The Coprocessor Interface is compatible with the high-performance features
of MIPS microprocessor cores.

• Minimal interface logic is required, which reduces area and power overhead.

• The interface is highly configurable:

– 32-bit or 64-bit data transfers

– COP1 and/or COP2 supported

– From 0 to 7 out-of-order data transfers

– Single issues up to eight issues supported

– Support for multithreading

• A coprocessor built for a low-performance integer processor core can be connected to higher performance inte-
ger processor cores. Furthermore, a high-performance coprocessor can be connected to a lower-performance
integer processor core.

This document contains the following sections:

• Chapter 2, “Coprocessor Instructions” on page 9 describes the specific instructions supported by the Coprocessor
Interface.

• Chapter 3, “Signal Descriptions” on page 13 describes the signals that make up the interface.

• Chapter 4, “Configurations” on page 21 describes the configuration options available with the Coprocessor Inter-
face.

Core Coprocessor Interface Specification, Revision 02.11 8

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

• Chapter 5, “Interface Protocols” on page 27 describes the cycle-by-cycle behavior of the signals.

Chapter 2

Core Coprocessor Interface Specification, Revision 02.11 9

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

Coprocessor Instructions

The Coprocessor Interface supports all coprocessor instructions currently defined in the MIPS32®, MIPS64®, and
MIPS-3D® architecture specifications.

These coprocessor instructions are divided into three classes.

• Instructions that perform arithmetic operations (called Arithmetic COP Ops)

• Instructions that move data into the Coprocessor (called To COP Ops)

• Instructions that move data out of the Coprocessor (called From COP Ops)

The explicit classification of the opcodes is given below. For a detailed description of these instructions, refer to the
MIPS ISA definition or to the Software User’s Manual of the appropriate integer processor core.

Arithmetic COP Ops:

• COP1 arithmetic instructions (including COP1X and MDMX instructions)

• IR[31:26] = 010001 AND IR[25] = 1

• IR[31:26] = 010011 AND IR[5:4] != 00

• IR[31:26] = 011110

• COP2 arithmetic instructions

• IR[31:26] = 010010 AND IR[25] = 1

• COP1 branch instructions (BC1 instructions)

• IR[31:26] = 010001 AND IR[25:24] = 01

• COP2 branch instructions (BC2 instructions)

• IR[31:26] = 010010 AND IR[25:24] = 01

• Conditional COP1 movement instructions (MOVF, MOVT instructions)

• IR[31:26] = 000000 AND IR[5:0] = 000001

The following COP1 arithmetic instructions test coprocessor condition bits:

• BC1, BC2, MOVF and MOVT (as defined above)

Following COP1 arithmetic instructions test integer processor core registers:

• ALNV.PS

• IR[31:26]=010011 AND IR[5:0]=011110

• ALNV.OB ALNV.QH

• IR[31:26]=011110 AND IR[5:2]=0110 AND IR[0]=1

• MOVN.S MOVZ.S MOVN.D MOVZ.D MOVN.PS MOVZ.PS

Core Coprocessor Interface Specification, Revision 02.11 10

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

• IR[31:26]=010001 AND IR[25:21]=10000 AND IR[5:1]=01001

• IR[31:26]=010001 AND IR[25:21]=10001 AND IR[5:1]=01001

• IR[31:26]=010001 AND IR[25:21]=10110 AND IR[5:1]=01001

For the remainder of this document, the terms “Arithmetic COP Op” and “arithmetic instruction” are used inter-
changeably.

From COP Ops:

• COP1 From instructions (including COP1X instructions)

• IR[31:26] = 111001

• IR[31:26] = 111101

• IR[31:26] = 010001 AND IR[25:23] = 000

• IR[31:26] = 010011 AND IR[5:3] = 001 AND IR[2:0] !=111

• IR[31:26] = 010000 AND IR[25:21] = 01000 AND IR[5] = 1 AND IR[2:1] = 01

• COP2 From instructions

• IR[31:26] = 111010

• IR[31:26] = 111110

• IR[31:26] = 010010 AND IR[25:23] = 000

• IR[31:26] = 010000 AND IR[25:21] = 01000 AND IR[5] = 1 AND IR[2:1] = 10

Of the above defined From COP Ops, following are 32-bit instructions

• MFC1, CFC1, SWC1, SWXC1

• IR[31:26] = 010001 AND IR[25:23]=000 AND IR[21]=0

• IR[31:26]=111001

• IR[31:26]= 010011 AND IR[5:0]=001000

• MFHC1 (MIPS32 Release 2 only)

• IR[31:26] = 010001 AND IR[25:21]=00011

• MFC2, CFC2, SWC2

• IR[31:26] = 010010 AND IR[25:23]=000 AND IR[21]=0

• IR[31:26]=111010

• MFHC2 (MIPS32 Release 2 only)

• IR[31:26] = 010010 AND IR[25:21]=00011

• MFTR (MT-ASE only)

• IR[31:26] = 010000 AND IR[25:21] = 01000 AND IR[5] = 1 AND IR[2:1] = 01

• IR[31:26] = 010000 AND IR[25:21] = 01000 AND IR[5] = 1 AND IR[2:1] = 10

Of the above defined From COP Ops, the following are 64-bit instructions

• DMFC1, SDC1, SDXC1, SUXC1

• IR[31:26] = 010001 AND IR[25:21]=00001

• IR[31:26]=111101

• IR[31:26]= 010011 AND IR[5:3]=001 AND IR[1:0]=01

• DMFC2, SDC2

 Coprocessor Instructions

11 Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

• IR[31:26] = 010010 AND IR[25:21]=00001

• IR[31:26]=111110

The remaining instructions are reserved opcodes.

To COP Ops:

• COP1 To instructions (including COP1X instructions)

• IR[31:26] = 110001

• IR[31:26] = 110101

• IR[31:26] = 010001 AND IR[25:23] = 001

• IR[31:26] = 010011 AND IR[5:3] = 000

• IR[31:26] = 010000 AND IR[25:21] = 01100 AND IR[5] = 1 AND IR[2:1] = 01

• COP2 To instructions

• IR[31:26] = 110010

• IR[31:26] = 110110

• IR[31:26] = 010010 AND IR[25:23] = 001

• IR[31:26] = 010000 AND IR[25:21] = 01100 AND IR[5] = 1 AND IR[2:1] = 10

Of the above defined To COP Ops, the following are 32-bit instructions

• MTC1, CTC1, LWC1, LWXC1

• IR[31:26] = 010001 AND IR[25:23]=001 AND IR[21]=0

• IR[31:26]=110001

• IR[31:26]= 010011 AND IR[5:0]=000000

• MTHC1 (MIPS32 Release 2 only)

• IR[31:26] = 010001 AND IR[25:21]=00111

• MTC2, CTC2, LWC2

• IR[31:26] = 010010 AND IR[25:23]=001 AND IR[21]=0

• IR[31:26]=110010

• MTHC2 (MIPS32 Release 2 only)

• IR[31:26] = 010010 AND IR[25:21]=00111

• MTTR (MT-ASE only)

• IR[31:26] = 010000 AND IR[25:21] = 01000 AND IR[5] = 1 AND IR[2:1] = 01

• IR[31:26] = 010000 AND IR[25:21] = 01000 AND IR[5] = 1 AND IR[2:1] = 10

Of the above defined To COP Ops, the following are 64-bit instructions

• DMTC1, LDC1, LDXC1, LUXC1

• IR[31:26] = 010001 AND IR[25:21]=00101

• IR[31:26]=110101

• IR[31:26]= 010011 AND IR[5:3]=000 AND IR[1:0]=01

• DMTC2, LDC2

• IR[31:26] = 010010 AND IR[25:21]=00101

Core Coprocessor Interface Specification, Revision 02.11 12

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

• IR[31:26]=110110

The remaining instructions are reserved opcodes.

Chapter 3

Core Coprocessor Interface Specification, Revision 02.11 13

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

Signal Descriptions

Table 3.5, Table 3.6, and Table 3.7 describe all of the Coprocessor Interface signals. Note that the signals are grouped
according to their logical function rather than alphabetically or by their expected physical location. The interactions
of signals within these functional groups are described in Chapter 5, “Interface Protocols” on page 27.

A separate clock signal is not included in the Coprocessor Interface. All signals are synchronous to the input clock of
the integer processor core.

The following tables describe the various attributes of the signals. Table 3.1 shows the direction of the I/O signal rel-
ative to the integer processor core. Table 3.2 describes how the prefix of a signal determines whether it is required for
COP1, COP2, or both. Table 3.3 and Table 3.4 describe issue group attributes. For details about the concept of issue
groups, see Section 4.4, "Multi-Issue Support" on page 23.

Table 3.1 Signal Direction Key

Dir Description

In Input to the integer processor core.

Out Output of the integer processor core.

SIn Static Input to the integer processor core. These signals are normally tied to either power or ground.

SOut Static Output of the integer processor core. These signals are normally tied to either power or ground.

Table 3.2 Signal Coprocessor Category

Prefix Description

CP_
Required for both COP1 and COP2.
Note: These signals may change name to CP1_ or CP2_ when used in certain configurations, refer to
sections 4.1.1 through 4.1.4 on page 22.

CP1_ Required for only COP1.

CP2_ Required only for COP2.

Table 3.3 Issue Group Key

Issue
Group Description

Comb Signal is part of Combined issue groups.

Arith Signal is part of Arithmetic issue groups.

TF Signal is part of To/From issue groups.

NONE Signal is not part of any issue groups.

Core Coprocessor Interface Specification, Revision 02.11 14

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

Table 3.4 Signal Issue Group Number

Suffix Description

_m m determines to which issue group a signal belongs (0 ≤ m ≤ 7).

Table 3.5 Interface Signal Descriptions (Required for both COP1 and COP2)

Signal Name Dir
Issue
Group Description

Instruction Dispatch

CP_ir_m[31:0] Out
Comb,
Arith,

TF

Coprocessor Instruction Word. This 32-bit bus contains the
coprocessor instruction. It is available in the cycle before CP1_as_m,
CP2_as_m, CP1_ts_m, CP2_ts_m, CP1_fs_m, or CP2_fs_m is asserted.

CP_tcid_m[7:0] Out
Comb,
Arith,

TF

Coprocessor Instruction TC ID. This bus indicates which TC the
instruction on CP_ir_m is for. It is available in the cycle before
CP1_as_m, CP2_as_m, CP1_ts_m, CP2_ts_m, CP1_fs_m, or CP2_fs_m
is asserted.

CP_vpeid_m[3:0] Out
Comb,
Arith,

TF

Coprocessor Instruction VPE ID. This bus indicates which VPE the
instruction on CP_ir_m is for. It is available in the cycle before
CP1_as_m, CP2_as_m, CP1_ts_m, CP2_ts_m, CP1_fs_m, or CP2_fs_m
is asserted.

CP_targtcid_m[7:0] Out
Comb,
Arith,

TF

Coprocessor Instruction Target TC ID. This bus indicates which TC
the instruction on CP_ir_m is accessing. This is valid for MFTR/MTTR
instructions which access registers of a TC different from the one
executing the instruction. It is available in the cycle before CP1_as_m,
CP2_as_m, CP1_ts_m, CP2_ts_m, CP1_fs_m, or CP2_fs_m is asserted.

CP_irenable_m Out
Comb,
Arith,

TF

Enable Instruction Registering. When this signal is deasserted, no
instruction strobes are asserted in the following cycle. When this signal
is asserted, there can be an instruction strobe asserted in the following
cycle. Instruction strobes include CP1_as_m, CP1_ts_m, CP1_fs_m,
CP2_as_m, CP2_ts_m, CP2_fs_m.

CP_order_m[2:0] Out
Comb,
Arith,

TF

Coprocessor Dispatch Order. This signal signifies the program order of
instructions when more than one instruction is issued in a single cycle.
Each instruction dispatched has an order value associated with it. There
must always be one instruction whose order value is 0. Order values must
increment by 1 when more than one instruction is issued in a cycle. This
signal is valid when CP1_as_m, CP2_as_m, CP1_ts_m, CP2_ts_m,
CP1_fs_m, or CP2_fs_m is asserted.

CP_adisable_m SIn Comb,
Arith

Inhibit Arithmetic Dispatch. When this signal is asserted, the integer
processor core is prevented from dispatching an arithmetic instruction
using this issue group.

CP_tfdisable_m SIn Comb,
TF

Inhibit To/From Dispatch. When this signal is asserted, the integer
processor core is prevented from dispatching a To/From instruction
using this issue group.

CP_inst32_m Out
Comb,
Arith,

TF

MIPS32 Compatibility Mode – Instructions. When this signal is
asserted, the dispatched instruction is restricted to the MIPS32 subset of
instructions. Please refer to the MIPS64™ Architecture Specification for
a complete description of MIPS32 compatibility mode. This signal is
valid the cycle before CP1_as_m, CP2_as_m, CP1_fs_m, CP2_fs_m,
CP1_ts_m, or CP2_ts_m is asserted.

 Signal Descriptions

15 Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

CP_endian_m Out
Comb,
Arith,

TF

Byte Ordering. When this signal is asserted, the processor is using
big-endian byte ordering for the dispatched instruction. When this signal
is deasserted, the processor is using little-endian byte ordering. This
signal is valid the cycle before CP1_as_m, CP2_as_m, CP1_fs_m,
CP2_fs_m, CP1_ts_m, or CP2_ts_m is asserted.

To Coprocessor Data (For all To COP Ops)

CP_tds_m Out Comb,
TF

Coprocessor To Data Strobe. This signal is asserted when To COP Op
data is available on CP_tdata_m. This signal must not be asserted in the
same cycle CP_tdds_m is asserted.

CP_tdk_m Out Comb,
TF

Coprocessor To Data Kill. This signal is valid when CP_tds_m is
asserted. If CP_tdk_m is asserted, the To COP Op was killed and the
coprocessor should not writeback CP_tdata_m. If CP_tdk_m is
deasserted, the To COP Data transfer completes normally. When
CP_tds_m is asserted, CP_tdk_m and CP_tdd_m may not both be
asserted at the same time.

CP_tdd_m Out Comb,
TF

Coprocessor To Data Delayed. This signal is valid when CP_tds_m is
asserted. If CP_tdd_m is asserted, the To COP Op data transfer is
delayed and CP_tdata_m is invalid. Furthermore, this indicates that a
To COP Data (Delayed) transfer will happen. When CP_tds_m is
asserted, CP_tdk_m and CP_tdd_m may not both be asserted at the
same time.

CP_torder_m[2:0] Out Comb,
TF

Coprocessor To Order. This signal specifies for which outstanding To
COP Op the data is. This signal is valid only when CP_tds_m is asserted.

CP_tordlim_m[2:0] SIn Comb,
TF

To Coprocessor Data Out-of-Order Limit. This signal forces the
integer processor core to limit how much it can reorder To COP Data.
The value on this signal corresponds to the maximum allowed value to
be used on CP_torder_m[2:0].

CP_tdata_m[63:0] Out Comb,
TF

To Coprocessor Data. Data to be transferred to the coprocessor. For
single-word transfers, data is available on CP_tdata_m[31:0]. This bus
is valid when CP_tds_m is asserted, CP_tdk_m is deasserted and
CP_tdd_m is deasserted. It is also valid when CP_tdds_m is asserted
and CP_tddk_m is deasserted.

Note: In 32-bit data transfer size configurations, this bus is reduced to
CP_tdata_m[31:0].

To Coprocessor Data (Delayed) (For all Delayed To COP Ops)

CP_tdds_m Out Comb,
TF

Coprocessor To Data (Delayed) Strobe. This signal is asserted when
delayed To COP Op data is available on CP_tdata_m. This signal must
not be asserted in the same cycle CP_tds_m is asserted.

Table 3.5 Interface Signal Descriptions (Required for both COP1 and COP2) (Continued)

Signal Name Dir
Issue
Group Description

CP_torder_m[2:0] Order

3’b000 Oldest outstanding To COP Op data transfer

3’b001 2nd oldest To COP Op data transfer

3’b010 3rd oldest To COP Op data transfer

3’b011 4th oldest To COP Op data transfer

3’b100 5th oldest To COP Op data transfer

3’b101 6th oldest To COP Op data transfer

3’b110 7th oldest To COP Op data transfer

3’b111 8th oldest To COP Op data transfer

Core Coprocessor Interface Specification, Revision 02.11 16

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

CP_tddk_m Out Comb,
TF

Coprocessor To Data (Delayed) Kill. This signal is valid when
CP_tdds_m is asserted. If CP_tddk_m is asserted, the To COP Op was
killed and the coprocessor should not writeback CP_tdata_m. If
CP_tddk_m is deasserted, the To COP Data transfer completes normally.

CP_tddtcid_m[7:0] Out Comb,
TF

Coprocessor To Data (Delayed) TCID. This signal specifies the TC
that the To COP Data (Delayed) transfer applies to. This signal is valid
only when CP_tdds_m is asserted.

From Coprocessor Data (For all From COP Ops)

CP_fds_m In Comb,
TF

Coprocessor From Data Strobe. This signal is asserted when From
COP Op data is available on CP_fdata_m.

CP_forder_m[2:0] In Comb,
TF

Coprocessor From Order. This signal specifies for which outstanding
From COP Op the data is. This signal is valid only when CP_fds_m is
asserted.

CP_fordlim_m[2:0] SOut Comb,
TF

From Coprocessor Data Out-of-Order Limit. This signal forces the
coprocessor to limit how much it can reorder From COP Data. The value
on this signal corresponds to the maximum allowed value to be used on
CP_forder_m[2:0].

CP_fdata_m[63:0] In Comb,
TF

From Coprocessor Data. This 64-bit bus contains data to be transferred
from coprocessor. For single-word transfers, data must be duplicated on
both CP_fdata_m[63:32] and CP_fdata_m[31:0]. This bus is valid when
CP_fds_m is asserted.

Note: In 32-bit data transfer size configurations, this bus is reduced to
CP_fdata_m[31:0].

Coprocessor Condition Code Check (Only for BC1, MOVF, MOVT, BC2 Ops)

CP_cccs_m In Comb,
Arith

Coprocessor Condition Code Check Strobe. This signal is asserted
when condition code check results are available on CP_ccc_m.

CP_ccc_m In Comb,
Arith

Coprocessor Condition Code Check. This signal is valid when
CP_cccs_m is asserted. When this signal is asserted, the instruction
checking the condition code should proceed with its execution (branch
or move data). When this signal is deasserted, the instruction should not
execute its conditional operation (do not branch and do not move data).

Coprocessor Exceptions

CP_excs_m In
Comb,
Arith,

TF

Coprocessor Exception Strobe. This signal is asserted when
coprocessor exception signalling is available on CP_exc_m.

Table 3.5 Interface Signal Descriptions (Required for both COP1 and COP2) (Continued)

Signal Name Dir
Issue
Group Description

CP_forder_m Order

3’b000 Oldest outstanding From COP Op data transfer

3’b001 2nd oldest From COP Op data transfer

3’b010 3rd oldest From COP Op data transfer

3’b011 4th oldest From COP Op data transfer

3’b100 5th oldest From COP Op data transfer

3’b101 6th oldest From COP Op data transfer

3’b110 7th oldest From COP Op data transfer

3’b111 8th oldest From COP Op data transfer

 Signal Descriptions

17 Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

CP_exc_m In
Comb,
Arith,

TF

Coprocessor Exception. When this signal is deasserted, the coprocessor
is not causing an exception. When this signal is asserted, the coprocessor
is causing an exception. The type of exception is encoded on the signal
CP_exccode_m[4:0]. This signal is valid when CP_excs_m is asserted.

CP_exccode_m[4:0] In
Comb,
Arith,

TF

Coprocessor Exception Code. This signal is valid when CP_excs_m is
asserted and CP_exc_m is asserted.

Instruction Nullification

CP_nulls_m Out
Comb,
Arith,

TF

Coprocessor Null Strobe. This signal is asserted when a nullification
signal is available on CP_null_m.

CP_null_m Out
Comb,
Arith,

TF

Nullify Coprocessor Instruction. When this signal is deasserted, the
integer processor core is signalling that the instruction is not nullified.
When this signal is asserted, the integer processor core is signalling that
the instruction is nullified. This signal is valid when CP_nulls_m is
asserted.

Instruction Killing

CP_kills_m Out
Comb,
Arith,

TF

Coprocessor Kill Strobe. This signal is asserted when kill signalling is
available on CP_kill_m.

CP_kill_m[1:0] Out
Comb,
Arith,

TF

Kill Coprocessor Instruction. This signal indicates whether or not a
coprocessor instruction is killed. It is valid when CP_kills_m is asserted.

Miscellaneous

CP_reset Out NONE
Coprocessor Reset. This signal is asserted when the integer processor
core performs a hard or soft reset. At a minimum, this signal is asserted
for two cycles.

Table 3.5 Interface Signal Descriptions (Required for both COP1 and COP2) (Continued)

Signal Name Dir
Issue
Group Description

CP_exccode_m[4:0] Exception

5’b01010 Reserved Instruction Exception

5’b01111 Floating-Point Exception

5’b10000 Available for implementation-specific use

5’b10010 COP2 Exception

other values

Reserved.

If other values are signalled, the operation of the
integer processor core is UNDEFINED.

CP_kill_m[1:0] Type of Kill

2’b00 Instruction is not killed and can commit
its results2’b01

2’b10
Instruction is killed (not due to
CP_exc_m)

2’b11 Instruction is killed (due to CP_exc_m)

Core Coprocessor Interface Specification, Revision 02.11 18

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

CP_idle In NONE

Coprocessor Idle. This signal is asserted when the coprocessor logic is
idle. It enables the integer processor core to go into sleep mode and shut
down the internal integer processor core clock. This signal is valid only
if CP1_fppresent, CP1_mdmxpresent, or CP2_present is asserted.

Table 3.6 Coprocessor Interface Signal Descriptions (Required only for COP1)

Signal Name Dir
Issue
Group Description

Instruction Dispatch

CP1_as_m Out Comb,
Arith

Coprocessor 1 Arithmetic Instruction Strobe. This signal is asserted in the
cycle after an Arithmetic COP1 Op instruction is available on CP_ir_m. If
CP1_abusy_m was asserted in the previous cycle, this signal is not asserted. In
any cycle, at most one of the following signals can be asserted at a time in a
particular issue group: CP1_as_m, CP2_as_m, CP1_ts_m, CP2_ts_m, CP1_fs_m,
CP2_fs_m.

CP1_abusy_m In Comb,
Arith

Coprocessor 1 Arithmetic Busy. When this signal is asserted, a Coprocessor 1
arithmetic instruction is not dispatched. CP1_as_m is not asserted in the cycle
after this signal is asserted.

CP1_ts_m Out Comb,
TF

Coprocessor 1 To Strobe. This signal is asserted in the cycle after a To COP1
Op instruction is available on CP_ir_m. If CP1_tbusy_m was asserted in the
previous cycle, this signal is not asserted. In any cycle, at most 1 of the following
signals can be asserted at a time in a particular issue group: CP1_as_m,
CP2_as_m, CP1_ts_m, CP2_ts_m, CP1_fs_m, CP2_fs_m.

CP1_tbusy_m In Comb,
TF

To Coprocessor 1 Busy. When this signal is asserted, a To COP1 Op is not
dispatched. CP1_ts_m is not asserted in the cycle after this signal is asserted.

CP1_fs_m Out Comb,
TF

Coprocessor 1 From Strobe. This signal is asserted in the cycle after a From
COP1 Op instruction is available on CP_ir_m. If CP1_fbusy_m was asserted in
the previous cycle, this signal is not asserted. In any cycle, at most one of the
following signals can be asserted at a time in a particular issue group:
CP1_as_m, CP2_as_m, CP1_ts_m, CP2_ts_m, CP1_fs_m, CP2_fs_m.

CP1_fbusy_m In Comb,
TF

From Coprocessor 1 Busy. When this signal is asserted, a From COP1 Op is
not dispatched. CP1_fs_m is not asserted in the cycle after this signal is asserted.

CP1_fr32_m Out
Comb,
Arith,

TF

MIPS32-Compatibility Mode – Registers. When this signal is asserted, the
dispatched instruction uses the MIPS32-compatible register file. This signal is
valid the cycle before CP1_as_m, CP1_fs_m, or CP1_ts_m is asserted.

GPR Data (Only for ALNV.PS, ALNV.fmt, MOVN.fmt, MOVZ.fmt Arithmetic COP1 Ops)

CP1_gprs_m Out Comb,
Arith

GPR Strobe. This signal is asserted when additional general-purpose register
information is available on CP1_gpr_m.

Table 3.5 Interface Signal Descriptions (Required for both COP1 and COP2) (Continued)

Signal Name Dir
Issue
Group Description

 Signal Descriptions

19 Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

CP1_gpr_m[3:0] Out Comb,
Arith

GPR Data. This bus supplies additional data from the integer general-purpose
register file. CP1_gpr_m[2:0] is valid when CP1_gprs_m is asserted and only for
ALNV.PS and ALNV.fmt instructions. CP1_gpr_m[3] is valid when
CP1_gprs_m is asserted and only for MOVN.fmt and MOVZ.fmt instructions.

Miscellaneous

CP1_fppresent SIn NONE COP1 FPU Present. This signal must be asserted when COP1 FPU hardware is
connected to the Coprocessor Interface.

CP1_mdmxpresent SIn NONE COP1 MDMX Present. This signal must be asserted when COP1 MDMX
hardware is connected to the Coprocessor Interface.

Table 3.7 Coprocessor Interface Signal Descriptions (Required only for COP2)

Signal Name Dir
Issue
Group Description

Arithmetic Dispatch

CP2_as_m Out Comb,
Arith

Coprocessor 2 Arithmetic Instruction Strobe. This signal is asserted in the
cycle after an Arithmetic COP2 Op instruction is available on CP_ir_m. If
CP2_abusy_mwas asserted in the previous cycle, this signal is not asserted. In any
cycle, at most one of the following signals can be asserted at a time in a particular
issue group: CP1_as_m, CP2_as_m, CP1_ts_m, CP2_ts_m, CP1_fs_m, CP2_fs_m.

CP2_abusy_m In Comb,
Arith

Coprocessor 2 Arithmetic Busy. When this signal is asserted, a Coprocessor 2
arithmetic instruction is not dispatched. CP2_as_m is not asserted in the cycle after
this signal is asserted.

CP2_ts_m Out Comb,
TF

Coprocessor 2 To Strobe. This signal is asserted in the cycle after a To COP2 Op
instruction is available on CP_ir_m. If CP2_tbusy_mwas asserted in the previous
cycle, this signal is not asserted. In any cycle, at most one of the following signals
can be asserted at a time in a particular issue group: CP1_as_m, CP2_as_m,
CP1_ts_m, CP2_ts_m, CP1_fs_m, CP2_fs_m.

CP2_tbusy_m In Comb,
TF

To Coprocessor 2 Busy. When this signal is asserted, a To COP2 Op is not
dispatched. CP2_ts_m is not asserted in the cycle after this signal is asserted.

CP2_fs_m Out Comb,
TF

Coprocessor 2 From Strobe. This signal is asserted in the cycle after a From
COP2 Op instruction is available on CP_ir_m. If CP2_fbusy_mwas asserted in the
previous cycle, this signal is not asserted. In any cycle, at most 1 of the following
signals can be asserted at a time in a particular issue group: CP1_as_m, CP2_as_m,
CP1_ts_m, CP2_ts_m, CP1_fs_m, CP2_fs_m.

CP2_fbusy_m In Comb,
TF

From Coprocessor 2 Busy. When this signal is asserted, a From COP2 Op is not
dispatched. CP2_fs_m is not asserted in the cycle after this signal is asserted.

Table 3.6 Coprocessor Interface Signal Descriptions (Required only for COP1) (Continued)

Signal Name Dir
Issue
Group Description

CP1_gpr_m[2:0] RS
(Valid only for ALNV.PS, ALNV.fmt)

Binary encoded Lower 3 bits of RS register contents

CP1_gpr_m[3] RT Zero Check
(Valid only for MOVN.fmt, MOVZ.fmt)

0 RT!= 0

1 RT==0

Core Coprocessor Interface Specification, Revision 02.11 20

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

CP2_kd_mode_m Out
Comb,
Arith,

TF

Kernel/Debug Mode Indication. When this signal is asserted the dispatched
instruction is executed in either Kernel or Debug mode. This signal is valid the
cycle before CP2_as_m, CP2_fs_m, or CP2_ts_m is asserted.

Miscellaneous

CP2_present SIn NONE COP2 Present. This signal must be asserted when COP2 hardware is connected
to the Coprocessor Interface.

CP2_tx32 SIn NONE
COP2 32-bit Transfers. When this signal is asserted, the integer unit must cause
an RI exception for 64-bit COP2 TF instructions. This static input must always be
valid.

Table 3.7 Coprocessor Interface Signal Descriptions (Required only for COP2) (Continued)

Signal Name Dir
Issue
Group Description

Chapter 4

Core Coprocessor Interface Specification, Revision 02.11 21

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

Configurations

The Coprocessor Interface allows a coprocessor to be connected to a MIPS integer processor core. An integer proces-
sor core can implement various options of the Coprocessor Interface as described in this section. These configuration
options impact the Coprocessor Interface in two ways: the signals required to be implemented and the width of the
bus signals.

Figure 4.1 shows a simple block diagram of how the Coprocessor Interface connects a single coprocessor to an inte-
ger processor core.

Figure 4.1 Coprocessor Interface Block Diagram

4.1 Types of Coprocessors

This section lists the different kinds of coprocessors that can be supported by an integer processor core. The integer
processor core supports one or more of these options.

Each configuration option described below includes a description of which of the three signal categories is required.
The signals of the Coprocessor Interface are divided into three categories:

• Signals that are required for both COP1 and COP2 implementations are named “CP_*”.

• Signals that are required only for COP1 implementations are named “CP1_*”.

• Signals that are required only for COP2 implementations are named “CP2_*”.

Note: Depending on the implementation of this interface on the integer processor core and the coprocessor, some sig-
nals while present are unused. Unused input signals on a particular implementation must be connected to their inac-
tive states.

4.1.1 Single Coprocessor 1

COP1 is reserved for a floating-point coprocessor in the MIPS architecture. The Coprocessor Interface supports all
COP1, COP1X, MDMX, and MIPS-3D instructions as defined by the MIPS ISA.

• Signals named “CP_*” are required to be implemented and must be renamed “CP1_*”.

• Signals named “CP1_*” are required to be implemented.

Integer
Processor

Core Coprocessor

Coprocessor
Interface

4.2 Data Transfer Widths

Core Coprocessor Interface Specification, Revision 02.11 22

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

• 64-bit data transfers are required to be implemented.

Signals not included in the implemented interface can be ignored in the signal descriptions. For instance, CP_idle is
renamed to CP1_idle. CP1_idle is valid only when CP1_fppresent or CP1_mdmxpresent is asserted.

4.1.2 Single Coprocessor 2

The function of Coprocessor 2 is user-definable and is intended to allow special-purpose engines, such as graphics
accelerators, to be integrated into the architecture.

• Signals named “CP_*” are required to be implemented and must be renamed “CP2_*”.

• Signals named “CP2_*” are required to be implemented.

Signals not included in the implemented interface can be ignored in the signal descriptions. For instance, CP_idle is
renamed to CP2_idle. CP2_idle is valid only when CP2_present is asserted.

4.1.3 Single Coprocessor 1 and 2

A user-defined coprocessor can be designed that implements functionality from both COP1 and COP2.

• All signals are required to be implemented. No renaming will take place as “CP_*” signals are shared for COP1
and COP2 functionality.

• 64-bit data transfers are required to be implemented.

4.1.4 Dual Coprocessors using Separate Interfaces

An integer processor core can feature two independent Coprocessor Interfaces: one for COP1 and one for COP2. In
this case, each interface is functionally independent of the other. Each requires a full set of I/O signals as described in
Section 4.1.1, "Single Coprocessor 1" and Section 4.1.2, "Single Coprocessor 2".

4.1.5 No Coprocessors

If a Coprocessor Interface is unused then all inputs must be tied to their inactive state, which is logic zero.

4.2 Data Transfer Widths

An integer processor core can support 64-bit or 32-bit data transfer sizes.

4.2.1 64-bit Transfer Width

An integer processor core that implements COP1 must support 64-bit data transfers. A processor that supports COP2
can optionally support 64-bit data transfers. For the remainder of this document, this configuration option is assumed.

An integer processor core that supports 64-bit data transfers can be connected to COP2 coprocessors designed for 32-
bit transfers. The coprocessor must assert CP2_tx32. Furthermore the CP_fdata_m[31:0] output from the coprocessor
must be connected to CP_fdata_m[31:0] and CP_fdata_m[63:32] of the integer processor core.

Note: When CP2_tx32 is asserted, instructions that transfer 64 bits of data cause the integer processor core to signal a
reserved instruction exception. These instructions include DMFC2, DMTC2, LDC2, and SDC2.

 Configurations

23 Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

4.2.2 32-bit Transfer Width (Cop2 only)

An integer processor core that supports only COP2 can optionally support only 32-bit transfers. In this configuration,
the use of instructions that transfer 64 bits of data causes a reserved instruction exception from the integer processor
core.

With this configuration, the following restrictions apply:

• The integer processor core must signal Reserved Instruction exception for DMFC2 (MIPS64), DMTC2
(MIPS64), LDC2 (MIPS32), and SDC2 (MIPS32) instructions.

• CP2_tx32 cannot be implemented. A 32-bit integer processor core always works as if CP2_tx32 is asserted, thus
the signal is not needed.

• 32-bit buses are required to be implemented:

– CP_tdata_m[63:0] is reduced to CP_tdata_m[31:0].

– CP_fdata_m[63:0] is reduced to CP_fdata_m[31:0].

4.3 Out-of-Order Data Transfers

An integer processor core can support a configurable degree of out-of-order data transfers on both the To COP Data
and From COP Data transfer interfaces. The Coprocessor Interface includes handshake signals that allow any integer
processor core to work with any coprocessor.

For To COP Data, an integer processor core can reorder data for up to eight instructions. However, it must limit this
out of order data transfer according to CP_tordlim_m[2:0]. This signal allows the coprocessor to limit reordering to
only as much as it can handle.

Similarly for From COP Data, a coprocessor can return data for up to eight instructions out of order. The integer pro-
cessor core can limit this reordering using the CP_fordlim_m[2:0] static output. This signal works the same way as
CP_tordlim_m.

4.4 Multi-Issue Support

The Coprocessor Interface is extensible to support single-issue to multi-issue integer processor cores and coproces-
sors. Furthermore, it enables compatibility between any integer processor core and any coprocessor without glue
logic.

Multi-issue support is easily achieved by duplicating certain signals of the Coprocessor Interface. This section speci-
fies in detail exactly what needs to be duplicated for the different configuration options. In general, the following
rules apply:

• Signals are grouped together to form an “issue group”.

• There are three types of issue groups: Combined, Arithmetic, and To/From.

– The Combined issue group includes all signals used for both arithmetic and To/From instructions.

– The To/From issue group includes all signals used for To/From instructions.

– The Arithmetic issue group includes all signals used for arithmetic instructions.

4.4 Multi-Issue Support

Core Coprocessor Interface Specification, Revision 02.11 24

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

• A particular issue group is delineated by a unique suffix of the form “_m” where m is an integer that signifies the
“issue group” for those signals. The value of m must be between 0 and 7, inclusive. Because CP_order_m has
only three bits, there cannot be more than eight issue groups.

• Signals that are not associated with an issue group do not have the “_m” suffix.

• An integer processor core must have at least one Combined issue group. This group must be assigned as issue
group 0 (m = 0). The integer processor core can have up to seven additional issue groups of any type.

Note: Depending on the implementation of this interface on the integer processor core and the coprocessor, some sig-
nals while present are unused. Unused input signals on a particular implementation must be connected to their inac-
tive states.

4.4.1 Single-Issue Support

An integer processor core that supports only single issues will implement a single Combined issue group as follows:

• This group is Issue Group 0 (m = 0).

• CP_adisable_0 and CP_tfdisable_0 cannot be implemented. Because this is the only issue group, these instruc-
tions can never be disabled.

• CP_order_0[2:0] cannot be implemented. Because there is only one issue group, dispatch order is not needed.

An integer processor core with this configuration can be used with a coprocessor with more issue groups. In this case,
the Combined issue group of the coprocessor is connected to the integer processor core and the other issue groups of
the coprocessor are tied inactive.

4.4.2 Limited Dual-Issue Support

An integer processor core that supports limited dual issues supports dual issuing of instructions only, where one is an
arithmetic coprocessor instruction and the other is a To/From coprocessor instruction. With this option, two issue
groups are implemented - one combined (Issue Group 0) and one arithmetic (Issue Group 1).

• If CP_adisable_1 is asserted, the integer processor core must dispatch arithmetic instructions using Issue Group
0. If CP_adisable_1 is deasserted, the integer processor core must dispatch arithmetic instructions using Issue
Group 1.

• CP_adisable_0 and CP_tfdisable_0 cannot be implemented. CP_tfdisable_0 is not needed because this is the
only issue group for To/From instructions; these instructions cannot be disabled. CP_adisable_0 is not needed
because the integer processor core only uses the combined interface for arithmetic instructions if the coprocessor
is already asserting CP_adisable_1 for the Arithmetic Issue group.

The above rules allow a single-issue coprocessor to be used with a limited dual-issue integer processor core by simply
connecting the combined issue groups together and asserting CP_adisable_1.

Coprocessors with more multi-issue support can be connected to a limited dual-issue integer processor core by tying
off unused issue groups on the coprocessor.

4.4.3 Dual Arithmetic Issues

An integer processor core that supports full dual issues supports all the cases of limited dual issues, plus it can issue
two arithmetic instructions or two To/From instructions. With this option, two combined issue groups are imple-
mented.

 Configurations

25 Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

A single-issue coprocessor can be used with a dual-issue integer processor core by simply connecting the combined
issue groups together and asserting CP_adisable_m and CP_tfdisable_m for the second combined issue group of the
integer processor core.

A limited dual-issue coprocessor can be used with a dual-issue integer processor core by connecting the coprocessor
combined issue group to one of the integer processor core’s combined issue groups and asserting CP_adisable_m for
that issue group. Then connect the coprocessor’s arithmetic issue group to the remaining combined issue group of the
integer processor core and assert CP_tfdisable_m for that issue group.

4.4.4 Additional Multi-Issue Support

The rules explained in the previous section can be easily extrapolated for up to eight simultaneously dispatched
instructions from the integer processor core.

4.5 Multithreading Support

Support for multithreading is supplied by three instruction dispatch signals and the To COP Data (Delayed) transfer.
At instruction dispatch, CP_tcid_m, CP_vpeid_m and CP_targtcid_m indicate the additional TC and VPE infor-
mation needed by a coprocessor to execute instructions.

The To COP Data (Delayed) transfer is required to enable blocking loads to remain outstanding while instructions
from other TCs continue to execute. When a To COP Data (Delayed) transfer is pending, no other coprocessor
instructions for that TC will be completed.

In a non-multithreaded coprocessor, a Kill transfer kills the instruction and all instructions behind it that have been
dispatched. In a multithreaded coprocessor, a Kill transfer still kills the instruction, but it also only kills subsequent
instructions from the same TC. Instructions from other TCs are not killed. This rule enables a pipelined coprocessor
to work efficiently because data dependent instructions will be killed if the source instruction of the dependency is
killed.

Note: Because instructions from different TCs are not always killed together, it is recommended that coprocessor
instructions that access other TCs registers not be pipelined together. Data bypassed from an instruction that was sub-
sequently killed is not valid and the recipient instruction must be restarted or otherwise get the original data.

4.5 Multithreading Support

Core Coprocessor Interface Specification, Revision 02.11 26

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

Chapter 5

Core Coprocessor Interface Specification, Revision 02.11 27

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

Interface Protocols

This section describes the different types of transfers that occur over the Coprocessor Interface. It also describes the
function of specific signals including hardware and idle indicators and reset.

5.1 Overview of Transfers

The Coprocessor Interface is composed of several simple transfers:

• Instruction Dispatch - Starts coprocessor instructions.

• To COP Data - Transfers data to the coprocessor.

• To COP Data (Delayed) - Transfers data to the coprocessor for blocking loads.

• From COP Data - Transfers data from the coprocessor.

• Coprocessor Condition Code Checking - Transfers the coprocessor condition check result to the integer pro-
cessor core.

• GPR Data - Transfers additional data from the integer processor core’s general-purpose register file to the
coprocessor.

• Coprocessor Exceptions - Notifies the integer processor core if any coprocessor exceptions happened for an
instruction.

• Instruction Nullification - Notifies the coprocessor whether instructions are nullified or not.

• Instruction Killing - Notifies the coprocessor when instructions can commit state or not.

All transfers use the following protocol:

1. All transfers are synchronously strobed; that is, a transfer is only valid for one cycle (when the strobe signal is
asserted). The strobe signal is a synchronous signal. Do not use it to clock registers.

2. No handshake confirmation of transfer.

3. No flow control except for instruction dispatches.

4. Out-of-order transfers are not allowed except for To/From COP data transfers. All transfers of a given type,
except To/From COP data transfers, in the same issue group must be in dispatch order.

5. Ordering of different types of transfers for the same instruction is not restricted.

After an instruction is dispatched, additional information about that instruction must be later transferred between the
coprocessor and the integer processor core. The additional information and the transfers required are summarized in
Table 5.1.

5.1 Overview of Transfers

Core Coprocessor Interface Specification, Revision 02.11 28

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

Note: For each dispatch type given in the table, all listed transfers are required to be done. No transfers are optional.
However, after an instruction is killed or nullified, any transfers that have not already happened will not happen. In other
words, once an instruction is killed or nullified, no further transfers for that instruction can happen.

Each transfer can occur as early as one cycle after dispatch, and there is no maximum limit on how late the transfer can
occur. Only the dispatch interfaces have flow control. Thus, once dispatched, all transfers can occur immediately.

The Coprocessor Interface operates with coprocessors of any pipeline structure and latency. If the integer processor core
requires a specific transfer by a certain cycle, the integer processor core must stall until the transfer has completed.
However, if an exceptional instruction (CpU, MDMX, RI) was dispatched then the integer processor core cannot expect
that the coprocessor is able to return any transfers. In that case the integer processor core must release any stalls on the
instruction and send an instruction kill transfer.

All transfers are strobed. The data is not buffered and is transferred in the cycle that the strobe signal is asserted—if the
strobe signal is asserted for two cycles, then two transfers occur. For instruction dispatches, the strobe signal is asserted
in the cycle after the instruction is dispatched in order to insulate the signals from poor timing.

Figure 5.1 shows examples of the transfer of nullification information. However, all non-dispatch transfers follow the
same protocol.

Table 5.1 Transfers Required for Each Dispatch

Dispatch Type Required Transfers
Direction

Core <—> COP

To COP Op

• Instruction nullification

• To Coprocessor data transfer

• Coprocessor exceptions

• Instruction killing

—>

—>

<—

—>

From COP Op

• Instruction nullification

• From Coprocessor data transfer

• Coprocessor exceptions

• Instruction killing

—>

<—

<—

—>

Arithmetic COP Op

• Instruction nullification

• Coprocessor exceptions

• Instruction killing

—>

<—

—>

Additionally for
BC11

BC21

MOVF1

MOVT1

• Condition code check results

<—

Additionally for
MOVZ.fmt1

MOVN.fmt1

ALNV.PS1

ALNV.fmt1

1. For a description of this instruction, refer to the MIPS ISA definition.

• GPR Data

—>

 Interface Protocols

29 Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

Figure 5.1 General Transfer Example

On edge 4, CP_nulls_m is asserted, signifying the null transfer for Instruction A. Since CP_null_m is deasserted on edge
4, Instruction A is not nullified. Instruction B is dispatched on edge 4 and it receives the null transfer in the next cycle
at edge 5. Because it is the cycle after dispatch, this is the earliest possible time any transfer for Instruction B can happen.
Instruction C is dispatched at edge 5. However, the nullification transfer is delayed for some reason until edge 10.

For all transfers except To COP Data and From COP Data, the ordering of the transfers is simple: all transfers of a
specific type (for example, nullification transfers) in a specific issue group must be in the same order as the order in
which the instructions were dispatched. However, other kinds of transfers can be interspersed—for example, if four
arithmetic instructions were dispatched, there could be two nullification transfers, followed by four exception transfers,
followed by two nullification transfers.

If an instruction is killed or nullified, no remaining transfers for that instruction occur. In the cycle that the instruction
is being killed or nullified, transfers can occur, but they are ignored.

The integer processor core is typically pipelined internally. This may imply bindings on what transfers the integer
processor core requires before returning other transfers. For instance, an integer processor core implementation may
require that the coprocessor returns From data before the kill transfer can happen. Such requirements should be described
in the documentation for the integer processor core.

5.2 Instruction Dispatch Transfer

The instruction dispatch transfer signals the coprocessor to start executing coprocessor instructions. Data transfer
instructions include those that move data to the coprocessor from the integer processor core (To COP Ops), and those
that move data from the coprocessor to the integer processor core (From COP Ops).

Because data transfers for To COP and From COP instructions occur later than the dispatch of the instructions, the
coprocessor itself must keep track of data hazards and stall its pipeline accordingly. The integer processor core does not
track coprocessor data hazards.

CP1_as_m, CP2_as_m, CP1_ts_m, CP2_ts_m, CP1_fs_m, and CP2_fs_m are asserted in the cycle after the instruction is
driven. These signals are delayed strobe signals; although this delay complicates the functional interface, it enables the
processor to achieve very good timing on these signals—without this delay, these signals would be timing-critical.

Because the above instruction strobes are delayed, the coprocessor is normally required to register CP_ir_m in every
cycle and conditionally use it in the following cycle depending on the instruction strobes. This protocol has the side
effect of registering non-coprocessor instructions and partially processing them, thus potentially increasing power
consumption. The CP_irenable_m signal compensates for this effect by enabling the coprocessor to avoid registering
instructions that will never be dispatched to it.

Only one of the instruction strobes in an issue group can ever be asserted at the same time: CP1_as_m, CP2_as_m,
CP1_ts_m, CP2_ts_m, CP1_fs_m, and CP2_fs_m. However, if multiple enabled issue groups exist, more than one

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CP1_as_m

CP_ir_m[31:0] BA C

CP_nulls_m

CP_null_m

Clock

5.2 Instruction Dispatch Transfer

Core Coprocessor Interface Specification, Revision 02.11 30

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

instruction can be dispatched per cycle. When two instructions are dispatched at the same time, the coprocessor must
know their program order to properly calculate dependencies. This information is output on CP_order_m[2:0]. For the
first instruction, CP_order_m is 0. For the next instruction CP_order_m is 1, and so on.

By asserting CP_adisable_m or CP_tfdisable_m appropriately, coprocessors that do not support superscalar operation
can disable it.

The integer processor core is allowed to dispatch an instruction within the To/From/Arithmetic groups even though the
instruction is exceptional due to RI, MDMX and CpU exceptions. If such an instruction is dispatched, the integer
processor core must subsequently kill the instruction (refer to Section 5.9, "Instruction Killing Transfer") without
expecting that the coprocessor returns any transactions. Note that RI on Arithmetic instructions must be signalled by the
coprocessor whereas RI on To/From instructions must be signalled by the integer processor core.

However, it is not allowed to dispatch instructions to not present hardware when using the configuration described in
Section 4.1.3, "Single Coprocessor 1 and 2". This restriction does not apply to the other proposed configurations.

The above two paragraphs imply that a coprocessor that does not support all instructions must be able to recognize all
possible instructions for the purpose of the interface transfers. For instance, if MDMX or paired single is unimplemented
in a COP1 the coprocessor should not by mistake use a GPR transfer for the ALNV.fmt/ALNV.PS instructions for the
COP1 MOVN.fmt/MOVZ.fmt instructions.

When the processor is operating in MIPS32-compatibility mode according to the User/Supervisor/Kernel/Debug mode
(PX, SX, and UX bits of the CP0 Status register), the CP_inst32_m signal is asserted during dispatch. The coprocessor
must signal a Reserved Instruction exception for any arithmetic instruction that is not MIPS32 compatible. Refer to the
MIPS ISA documentation for more details on MIPS32-compatibility modes in integer processor cores.

CP1_fr32_m can be asserted during dispatch to notify the coprocessor that MIPS32-compatible floating-point registers
are enabled. Normally, the coprocessor would then change the behavior of some instructions to correctly operate using
the MIPS32-compatible register file. CP1_fr32_m is asserted according to the FR bit in the CP0 Status register.

The CP_endian_m signal is asserted during dispatch to notify the coprocessor of the proper byte-ordering mode to use.
This indication is needed for the ALNV.fmt and ALNV.PS instructions.

The CP2_kd_mode_m signal is asserted during dispatch to notify the coprocessor that the instruction is executed in
Kernel or Debug mode. This allows for implementation of COP2 coprocessor instructions which cannot be executed
outside Kernel or Debug mode.

Figure 5.2 shows waveforms for an example Coprocessor 1 dispatch. Dispatch of Coprocessor 2 instructions is the same,
with different signal names.

 Interface Protocols

31 Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

Figure 5.2 Arithmetic Coprocessor Dispatch Waveform

On edge 2, Instruction A is dispatched. On edge 3, CP1_as_1 is asserted, validating the previous cycle’s dispatch.
CP1_as_1 is always asserted in the cycle after the instruction word is driven. On edge 3, Instruction K is dispatched.
CP1_fs_0 is asserted on edge 4.

On edge 5, Instruction B is dispatched. On edge 6, Instruction C is driven onto CP_ir_1, and Instruction L is driven onto
CP_ir_0. Instruction C is not dispatched because CP1_abusy_1 was asserted. But Instruction L was dispatched. For
Instruction C, the integer processor core does not assert CP1_as_1 until the coprocessor can accept it (when
CP1_abusy_1 is deasserted). Instruction C is finally dispatched on edge 9.

On edge 12, both Instructions D and M are dispatched at the same time. CP_order_0 and CP_order_1 are valid on edge
13 and indicate that Instruction M was functionally before Instruction D.

5.3 To Coprocessor Data Transfer

The Coprocessor Interface transfers data to the coprocessor after a To COP Op has been dispatched. Only To COP Ops
utilize this transfer. The coprocessor must have a buffer available for this data after the To COP Op has been dispatched.
If no buffers are available, the coprocessor must assert CP1_tbusy_m or CP2_tbusy_m, as appropriate, to prevent
dispatch.

In some processors, a To COP Op can be killed after the instruction has passed the point in the integer pipeline where
both the nullification and killing transfers would normally occur. To enable subsequent non-dependent instructions to
continue on the COP interface, the CP_tdk_m signal is available to allow the processor to kill the To COP Op after the
nullification and killing transfers have been completed. When the coprocessor sees CP_tds_m asserted, if CP_tdk_m
is asserted, this indicates that CP_tdata_m should be dropped and not affect the state of the coprocessor.

In order to exploit parallelism in a multithreaded system, delaying To COP Data is sometimes needed. By delaying the
data transfer, the interface enables an in-order coprocessor to have a pending transfer for one TC while continuing to

CP1_as_1

CP_ir_1[31:0]

CP1_abusy_1

C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A B

16

CP1_fs_0

CP_ir_0[31:0]

CP1_tbusy_0
LK

CP1_ts_0

D

M

CP_endian_0,CP1_fr32_0,CP_inst32_0
CP_order_0[2:0]

CP1_fbusy_0

CP_endian_1,CP1_fr32_1,CP_inst32_1

0 00

CP_order_1[2:0] 0 10

CP_irenable_1

CP_irenable_0

Clock

0

CP_tcid_1,CP1_vpeid_1,CP_targtcid_1

5.3 To Coprocessor Data Transfer

Core Coprocessor Interface Specification, Revision 02.11 32

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

transfer To COP Data for other TCs. A given TC can have at most 1 To COP Data transfer delayed at a time. Integer
cores are expected to use this transfer for blocking load data. A delayed transfer is indicated by the assertion of
CP_tdd_m during the normal To COP Data transfer. When this signal is asserted, the coprocessor should ignore
CP_tdata_m and instead expect a subsequent To COP Data (Delayed) transfer.

A delayed kill signal (CP_tddk_m) is also supplied for delayed To COP Data transfers. Integer cores are expected to
use this kill when blocking loads are killed due to a TC being halted. When the coprocessor sees CP_tddk_m asserted,
this indicates that CP_tdata_m should be dropped and not affect the state of the coprocessor. A late kill is possible
because no subsequent dependent instructions will have been started. Thus, no state has been committed and it is still
possible to precisely kill the instruction.

The Coprocessor Interface allows out-of-order data transfers; that is, data can be sent to the coprocessor in a different
order from the order in which the instructions were dispatched. When data is sent to the coprocessor, the
CP_torder_m[2:0] signal is also sent. This signal tells the coprocessor whether the data word is for the oldest outstanding
To COP data transfer, the second oldest, or the third oldest, etc. The Coprocessor Interface allows up to eight transfers
to be outstanding while returning data for the next transfer. The coprocessor can limit the extent of this reordering to
match what its hardware supports using the CP_tordlim_m[2:0] signal.

The type of instruction dispatched determines which bits on the bus are valid:

• 32-bit transfer: The 32-bit data word is driven on CP_tdata_m[31:0].

• 64-bit transfer: The 64-bit data word is driven on CP_tdata_m[63:0].

Figure 5.3 shows waveforms for an example To Coprocessor data transfer. Three instructions are dispatched: A, B, C
and D on edges 2, 4, 6 and 8, respectively. Data for Instruction A is sent on edge 6. At that time, it is the oldest
outstanding transfer, so CP_torder_m is set to 0. On edge 10, data for Instruction C is sent. Because it is the second oldest
outstanding transfer, CP_torder_m is set to 1. In the following cycle, data for Instruction B is finally transferred. That
instruction is now the oldest outstanding instruction, so CP_torder_m is again set to 0. On edge 13, the data transfer for
Instruction D is completed.

Figure 5.3 To Coprocessor Data Transfer Waveforms

Figure 5.4 shows waveforms for an example To Coprocessor data (Delayed) transfer. Three instructions are dispatched:
A, B, and C on edges 2, 4, and 6, respectively. At edge 6, the To COP Data for Instruction A is delayed since CP_tds_m
and CP_tdd_m are asserted. CP_tdata_m is therefore invalid at this edge. Note however, that CP_torder_m does still
indicate the relative ordering for this To COP Data transfer. Data for Instruction C and D is transferred out of order on
edges 10 and 11 similar to the example given above. Note here that the To COP Data transfer is completed as far as
CP_torder_m is concerned. At edge 13, the delayed data for Instruction A is finally transferred. In this example, the
data is valid because CP_tddk_m was deasserted. However, the transfer could have been killed if CP_tddk_m were
asserted at edge 13.

CP1_ts_m

CP_ir_m[31:0] Ai

CP_tds_m

CP_tdata_m[63:0]

Bi

Ad

Ci

Cd

CP_torder_m[2:0]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

00 1

Bd

Clock

CP_tdd_m

Di

0

Dd

 Interface Protocols

33 Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

Figure 5.4 To Coprocessor Data (Delayed) Transfer Waveforms

5.4 From Coprocessor Data Transfers

The Coprocessor Interface transfers data from the coprocessor to the integer processor core after a From COP Op has
been dispatched. Only From COP Ops utilize this transfer. Note that the integer processor core must have buffers for
this data that enable the transfer to occur in the cycle after dispatch.

The Coprocessor Interface allows out-of-order transfer of data; that is, data can be sent from the coprocessor in a
different order from the order in which the instructions were dispatched. When data is sent from the coprocessor, the
CP_forder_m[2:0] signal is also sent. This signal tells the integer processor core whether the data word is for the oldest
outstanding From COP data transfer, the second oldest, or the third oldest, etc. The Coprocessor Interface allows up to
eight transfers to be outstanding while returning the data for the next transfer. The integer processor core can limit the
extent of this reordering to match what its hardware supports using the CP_fordlim_m[2:0] signal.

For single-word transfers, the coprocessor must drive the 32-bit value on both CP_fdata_m[31:0] and
CP_fdata_m[63:32], making the transfer independent of the byte ordering (big or little endian).

Note: For integer processor cores that only support 32-bit COP2, From COP Data is always 32 bits wide and is only
driven on CP_fdata_m[31:0].

Figure 5.5 shows waveforms for an example From Coprocessor data transfer. The A, B, and C instructions are dispatched
on edges 2, 3, and 4, respectively. The coprocessor returns the data for Instruction A on edge 4.

Figure 5.5 From Coprocessor Data Transfer Waveforms

CP1_ts_m

CP_ir_m[31:0] Ai

CP_tds_m

CP_tdata_m[63:0]

Bi Ci

Cd

CP_torder_m[2:0]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

00 1

Bd

Clock

CP_tdd_m

CP_tddtcid_m[7:0]

Ad

CP_tdds_m

CP_tddk_m

CP1_fs_m

CP_ir_m[31:0] Ai

CP_fds_m

CP_fdata_m[63:0] BdAd

Bi Di

Dd

Ci

Cd

CP_forder_m[2:0]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

00 01

Clock

5.5 Condition Code Checking

Core Coprocessor Interface Specification, Revision 02.11 34

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

On edge 5, the data for Instruction C is returned. Note that Instruction C’s data is returned before the data for Instruction
B and is thus out-of-order (indicated on CP_forder_m = 3’b1).

Instruction D is dispatched on edge 9. At the same time, the data for Instruction B is sent. On edge 10, data for Instruction
D is sent one cycle after dispatch, which is the fastest data return possible.

5.5 Condition Code Checking

The Coprocessor Interface provides signals for transferring the result of a condition code check from the coprocessor to
the integer processor core. Only BC1, BC2, MOVF and MOVT instructions utilize this transfer. These instructions are
dispatched to both the integer processor core and the coprocessor.

For each instruction dispatched, a result is sent back to the integer processor core that says whether or not to execute that
instruction. For branches, the coprocessor tells the integer processor core whether or not to branch. For conditional
moves, the coprocessor tells the integer processor core whether or not to do the move. For this reason, the coprocessor
must interpret the type of instruction to decide whether or not to execute it. Customer-defined BC1, BC2, MOVF and
MOVT instructions are thus possible.

Condition code check transfers follow the generic example given in Figure 5.1 on page 29. The signals CP_cccs_m and
CP_ccc_m are used instead of CP_nulls_m and CP_null_m as shown in the figure.

5.6 GPR Data Transfers

The integer processor core transfers the results of a check that RT == 64’b0 for the two special arithmetic Coprocessor
1 instructions, MOVN.fmt and MOVZ.fmt. It also transfers the lower three bits of the RS operand for the ALNV.PS and
ALNV.fmt Coprocessor 1 instructions. When these instructions are dispatched to the coprocessor, they are also
dispatched to the integer pipeline. In this way, the integer processor core can properly bypass RS as well as check the
RT value against zero.

GPR data transfers follow the generic example given in Figure 5.1. The signals CP1_gprs_m and CP1_gpr_m[3:0] are
used instead of CP_nulls_m and CP_null_m as shown in the figure.

5.7 Coprocessor Exceptions

All instructions dispatched utilize this transfer. It is used to signal if an instruction caused an exception in the
coprocessor. This transfer must happen even if the instruction did not cause an exception in the coprocessor.

When a coprocessor instruction causes an exception, the coprocessor must signal this to the integer processor core so it
can start execution from the exception vector. The coprocessor can signal a Reserved Instruction exception for any
instruction dispatched to it. However, the coprocessor should only signal FPE exceptions for COP1 and C2E exceptions
for COP2. The coprocessor can also signal one of two implementation-specific exception codes. These exception codes
can be used to trigger special software exception handling routines.

Note: A coprocessor can signal an exception for To/From COP Ops. Except for CTC1 and CTC2 instructions, this
exception cannot depend on the associated data, implying that the integer processor core must transfer the CTCx data
before it requires the exception information to prevent a deadlock condition.

Note: An integer processor core cannot expect that a coprocessor will return any additional transfers if it has signalled
that an instruction is exceptional. The integer processor core must thus release stalls for that instructions and not wait
for e.g. From COP Data or CCC transfers.

 Interface Protocols

35 Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

Signalling for Reserved Instruction exceptions are divided between the integer processor core and the coprocessor as
follows:

• The integer processor core signals Reserved Instruction exceptions for non-arithmetic coprocessor instructions
that are not valid To COP Ops or From COP Ops.

• The coprocessor hardware must signal Reserved Instruction exceptions for all arithmetic coprocessor instruc-
tions.

The integer processor core detects Coprocessor Unusable exceptions and MDMX Unusable exceptions for all
coprocessor instructions.

If imprecise coprocessor exceptions are allowed, the coprocessor can use the “No exception” signal immediately after
dispatch to prevent stalling in the integer pipeline while waiting for precise results. If an exception does occur for that
instruction, a subsequent coprocessor instruction can be flagged as exceptional (although imprecise) or else an interrupt
could be signalled through the normal integer processor core interrupt inputs.

Exception transfers follow the generic example given in Figure 5.1. The signals CP_excs_m, CP_exc_m, and
CP_exccode_m[4:0] are used instead of CP_nulls_m and CP_null_m as shown in the figure.

5.8 Instruction Nullification Transfers

All instructions dispatched utilize this transfer. It is used to signal if an instruction was nullified in the integer processor
core. This transfer must happen even if an instruction was not nullified so that the coprocessor knows when it can begin
operation of subsequent operations that depend on the result of the current instruction.

Normally, an instruction is killed only when the pipeline is being flushed because an exception occurred. In this case,
all subsequent instructions in the pipeline are also killed. An instruction can also be killed because it is in the delay slot
of a branch-likely instruction that did not branch. This type of killing is called instruction nullification. In this case,
subsequent instructions in the pipeline are unaffected by the nullification.

Nullification must be performed in an early stage of the pipeline to ensure that subsequent instructions can begin with
the correct operands.

In the cycle that an instruction is nullified, other transfers for that instruction can still occur, but no further transfers for
that instruction can occur in subsequent cycles. Exceptions caused by a nullified instruction are masked by the integer
processor core.

Nullification transfers follow the generic example given in Figure 5.1.

5.9 Instruction Killing Transfer

All instructions dispatched utilize this transfer. It is used to signal whether or not an instruction can commit state. This
transfer must happen even if an instruction is not being killed so that the coprocessor knows when it can write back
results for the instruction.

Due to various exceptional conditions, any instruction might need to be killed. The integer processor core contains logic
which tells the coprocessor when to kill coprocessor instructions.

When a coprocessor instruction is being killed because of a coprocessor-signalled exception, the coprocessor might need
to perform special operations. For example, if a floating-point instruction is killed because of a Floating-point exception,
the coprocessor must update exception status bits in the coprocessor’s FCSR register. On the other hand, if that same

5.10 Transfer Example

Core Coprocessor Interface Specification, Revision 02.11 36

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

instruction was killed because of a higher-priority exception, those status bits must not be updated. For this reason, as
part of the kill transfer, the integer processor core tells the coprocessor if the instruction is killed due to a coprocessor-
signalled exception.

When a coprocessor instruction is killed, all subsequent coprocessor arithmetic instructions and To/From COP Ops in
the same issue group that have been dispatched from the same TC are also killed. This is necessary because the killed
instruction(s) might affect the operation of subsequent instructions (for example, because of bypassing). In the cycle in
which an instruction is killed, other transfers can occur, but after that cycle, no further transfers occur for any of the killed
instructions. A side-effect is that the other instructions that are killed do not have a kill transfer of their own. In effect,
they are immediately killed and thus their remaining transfers cannot be sent, including their own kill transfer. Previously
nullified instructions do not have a kill transfer either, because once nullified, no further transfers can occur.

Note: If the integer processor core dispatches a coprocessor instruction in the same cycle that a kill is being signalled to
the coprocessor, then the same kill signals kills that instruction as well.

Note: Because instructions from different TCs are not always killed together, it is recommended that coprocessor
instructions that access other TCs registers not be pipelined together. Data bypassed from an instruction that was
subsequently killed is not valid and the recipient instruction must be restarted or otherwise get the original data.

Killing transfers follow the generic example given in Figure 5.1. The signals CP_kills_m and CP_kill_m[1:0] are used
instead of CP_nulls_m and CP_null_m as shown in the figure.

5.10 Transfer Example

Figure 5.6 shows an example of a complete transfer sequence on a COP1 coprocessor interface generated by the various
types of instructions listed in Table 5.2.

Note that the example does not cover all possible scenarios.

 Interface Protocols

37 Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

Figure 5.6 Complete COP1 Sequence

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CP1_fs_0

CP1_tbusy_0

CP1_ts_0

CP1_endian_0,CP1_fr32_0,CP1_inst32_0
CP1_order_0

CP1_fbusy_0

CP1_irenable_0

Clock

CP1_as_0

CP1_abusy_0

A B C D ECP1_ir_0

A B C D E

0 0 0 0 0

CP1_nulls_0

CP1_null_0

CP1_tds_0

CP1_torder_0 0

ACP1_tdata_0

CP1_fds_0

CP1_forder_0 0

BCP1_fdata_0
CP1_cccs_0

CP1_ccc_0

CP1_gprs_0

CP1_gpr_0
CP1_excs_0

CP1_exc_0

CP1_exccode_0
CP1_kills_0

CP1_kill_0 0 0 0 3

CP1_tdd_0

5.11 Miscellaneous Coprocessor Signals

Core Coprocessor Interface Specification, Revision 02.11 38

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

5.11 Miscellaneous Coprocessor Signals

This section describes the function of the hardware and coprocessor indicators. It also describes the operation of the
coprocessor reset signal.

5.11.1 Hardware Present Signaling

Three Coprocessor Interface static inputs (CP1_fppresent, CP1_mdmxpresent, and CP2_present) enable the integer
processor core to know what type of hardware is connected to the Coprocessor Interface. If one of these signals is
asserted and the respective hardware is not available to handle the instructions, the operation is UNDEFINED, and the
integer processor core might hang.

The three signals drive the FP, MD and C2 bits of the CP0 Config1 register, respectively. If either FP or MD is set, the
CU1 bit in the CP0 Status register can be set by software. If C2 is set, the CU2 bit in the CP0 Status register can be set
by software.

If the CU1 bit in the CP0 Status register is cleared the execution of a COP1 instruction will cause the integer processor
core to signal a Coprocessor Unusable exception. Likewise, a cleared CU2 bit in the Status register will cause a
Coprocessor Unusable exception when executing a COP2 instruction.

If CP1_mdmxpresent is deasserted, the execution of an MDMX instruction will cause the integer processor core to signal
a Reserved Instruction exception. If CU1 is deasserted (but the MDMX hardware is present) an MDMX instruction will
cause a Coprocessor Unusable exception. Likewise, if the MDMX hardware is present, but the MX bit in CP0 Status
register is deasserted, then an MDMX Unusable exception will be signalled.

5.11.2 Coprocessor Idle

The Coprocessor Interface includes an idle indication from the coprocessor, CP_idle. The coprocessor deasserts this
signal whenever it is performing a calculation, and asserts this signal when it has no instructions in progress. When
asserted, CP_idle allows the integer processor core to enter a low-power mode, potentially shutting down the internal
integer processor core clock. CP_idle is ignored if no coprocessor is using the Coprocessor Interface (when
CP1_fppresent, CP1_mdmxpresent, and CP2_present are all deasserted).

Since the coprocessor will deassert CP_idle when any instruction is in-progress, the integer processor core design must
take into account instructions that will not complete before entering power-down mode. If an instruction is dispatched

Table 5.2 Transfers in Above Waveform (numbers refer to clock cycles)

Inst Opcode Dispatch Null
To

Data
From
Data CCC GPR Exc Kill

A MTC1 / LWC1 1 4 4 - - - 4 4

B MFC1 / SWC1 3 5 - 8 - - 6 7

C ADD.s 6 9 - - - - 9 9

D BC1 8 111

1. This transfer nulls instruction D and inhibits further transfers for this instruction.

- - 11 - - -

E MOVZ.s 10 13 - - - 13 14 15

 Interface Protocols

39 Core Coprocessor Interface Specification, Revision 02.11

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

to the coprocessor, the coprocessor will not assert CP_idle until that instruction is completed. In the MIPS architecture,
the WAIT instruction enables low-power mode and normally stalls the integer processor pipeline. The integer processor
core can solve this problem in several ways:

• Do not dispatch instructions after a WAIT instruction.

• Nullify all instructions that are dispatched after a WAIT instruction.

• Kill all instructions that are dispatched after a WAIT instruction.

• Ignore CP_idle after a certain number of cycles.

Unless one of the above solutions or something similar is used, the coprocessor holds CP_idle deasserted because
dispatched instructions cannot complete due to the WAIT instruction being stalled in the pipeline. The integer processor
core will never enter low-power mode due to the fact that CP_idle is deasserted.

5.11.3 Reset

When the integer processor core is reset, it asserts CP_reset. On reset, the coprocessor must stop all in-progress
operations and reset all control state machines to their idle states. When CP_reset is asserted, any in-progress protocols
are broken, and all transfers immediately stop. All signals must reset to their inactive states by the cycle CP_reset is
deasserted.

Note: CP_reset can be asserted for as few as two cycles, although longer assertions are legal. Thus the coprocessor must
properly reset even when CP_reset is asserted for only two cycles.

After CP_reset is deasserted, transactions are not started on the Coprocessor Interface for at least four cycles, giving the
coprocessor extra time to reset its state machines before a new instruction is dispatched. However, all Coprocessor
Interface signals must still be deasserted by the cycle CP_reset is deasserted so that both the integer processor core and
the coprocessor start transfers cleanly after reset.

5.11 Miscellaneous Coprocessor Signals

Core Coprocessor Interface Specification, Revision 02.11 40

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

Appendix A

Core Coprocessor Interface Specification, Revision 02.11 41

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

Revision History

Change bars (vertical lines) in the margins of this document indicate significant changes in the document since its last
release. Change bars are removed for changes that are more than one revision old.

This document may refer to Architecture specifications (for example, instruction set descriptions and EJTAG register
definitions), and change bars in these sections indicate changes since the previous version of the relevant Architecture
document.

 Revision Date Description

0.1 May 31, 2000 Initial version.

0.2 June 1, 2000 Added Open issues.

0.3 June 5, 2000 Updated after review.

0.4 June 15, 2000 32-bit dynamic mode - removed CP_tduw, changed definitions for
single-word transfers.

0.5 June 20, 2000 Updated post-review.

1.0 July 10, 2000 Final post-review edits.

1.1 July 27, 2000 Results from Vidya review.

1.2 October 23, 2000 Added notes of clarification that unused inputs must be connected
inactive.

1.3 Nov 17, 2000

• Clarified description of which instructions are killed by a kill signal.

• Clarified the fact that coprocessor conditional instructions and
instructions that test integer processor core registers are dispatched as
arithmetic instructions.

1.4 Nov 29, 2000 Added a note about the term “integer processor core” to Section 1.

1.5 Dec 4, 2000
• Split section 5.9 into three subsections.

• Added new section 5.9.3 describing reset behavior.

1.6 Dec 5, 2000 Changed minimum reset length from 1 cycle to 2 cycles.

1.7 Jan 8, 2001 Added a note of clarification about instruction strobes—they can be
asserted for additional instructions as long as those instructions are killed.

1.8 Feb 8, 2001 Added section 4.1.5 describing a processor with two Coprocessor
Interfaces.

1.9 Feb 13, 2001 Added note to section 5.6 clarifying stalls for exceptional instructions.

1.10 Feb 16, 2001

• Changed CP_tx32 -> CP2_tx32.

• Changed CP_fr32_m -> CP1_fr32_m.

• Added description for CP_idle relating to integer processor core
design and a potential lock-out condition where low-power mode
would never be entered.

1.11 March 30, 2001 Converted to new template.

Core Coprocessor Interface Specification, Revision 02.11 42

Copyright © 2000-2001, 2007-2009 MIPS Technologies Inc. All rights reserved.

1.12 June 12, 2001

Explicitly listed all To/From COP Ops in Section 2.

Changed CP_* signal names for all configurations except the shared
COP1/COP2 option.

Clarified how dispatch works around CpU/RI/MDMX exceptions.

Corrected section 5.10.1.

1.13 August 31, 2001 Document template updated.

1.14 March 22, 2002

Added MIPS32 Release 2 M{F|T}HC{1|2} instructions (section 2)

Added CP2_kd_mode_m signal.

Minor clarifications (sections 4.1.4, 5.1, 5.2)

Complete transfer example (section 5.10)

1.15 September 25, 2002
Added opcodes for all listed instructions (section 2)

Minor clarifications and typos (sections 2, 5.3, Revision History)

1.16 August 20, 2004
Removed Implementation Specific 2 exception code

Updated templates

2.00 November 1, 2007 Added CP_tdk_m signal
Updated templates

2.10 December 19, 2008

Enhanced for Multithreading, This includes new dispatch signals
CP_tcid_m[7:0], CP_vpeid_m[3:0], and CP_targtcid_m[7:0].
Multithreading also required the addition of To COP Data (Delayed)
transfers. This includes new signals CP_tdds_m, CP_tddtcid_m[7:0],
and CP_tddata_m[63:0]. Furthermore, CP_tdk_m was renamed to
CP_tddk_m.

2.11 July 8, 2009

Clarified that a Kill transfer on a multithreaded coprocessor only affects
instructions from that TC.
Removed CP_tddata_m. Delayed To COP Data transfers now utilize
CP_tdata_m instead.
Reinstated CP_tdk_m.

 Revision Date Description

	Core Coprocessor Interface Specification
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Coprocessor Instructions
	Signal Descriptions
	Configurations
	4.1 Types of Coprocessors
	4.1.1 Single Coprocessor 1
	4.1.2 Single Coprocessor 2
	4.1.3 Single Coprocessor 1 and 2
	4.1.4 Dual Coprocessors using Separate Interfaces
	4.1.5 No Coprocessors

	4.2 Data Transfer Widths
	4.2.1 64-bit Transfer Width
	4.2.2 32-bit Transfer Width (Cop2 only)

	4.3 Out-of-Order Data Transfers
	4.4 Multi-Issue Support
	4.4.1 Single-Issue Support
	4.4.2 Limited Dual-Issue Support
	4.4.3 Dual Arithmetic Issues
	4.4.4 Additional Multi-Issue Support

	4.5 Multithreading Support

	Interface Protocols
	5.1 Overview of Transfers
	5.2 Instruction Dispatch Transfer
	5.3 To Coprocessor Data Transfer
	5.4 From Coprocessor Data Transfers
	5.5 Condition Code Checking
	5.6 GPR Data Transfers
	5.7 Coprocessor Exceptions
	5.8 Instruction Nullification Transfers
	5.9 Instruction Killing Transfer
	5.10 Transfer Example
	5.11 Miscellaneous Coprocessor Signals
	5.11.1 Hardware Present Signaling
	5.11.2 Coprocessor Idle
	5.11.3 Reset

	Revision History

