

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.

The MIPS32® 24KE™ Core Family: High-Performance RISC

Cores with DSP Enhancements

Chinh Tran
Chijioke Anyanwu, Sanjai Balakrishnan, Anshul Bhargava,

James Jiang, Radhika Thekkath

MIPS Technologies, Inc.

The MIPS32® 24KE™ core family is the latest high-performance synthesizable microprocessor
cores from MIPS Technologies, Inc. and features DSP enhancements at a negligible cost. The
24KE core family fills an important gap in the convergence of RISC processors and digital signal
processors (DSPs). This convergence is enabled by emerging market trends, and comes with
cost advantages and technical challenges. The 24KE design meets these challenges quite
handily as shown in this paper. The 24KE cores were built by adding the new DSP enhancements
to the existing pipeline in the 24K® cores. The performance benefit for DSP applications from
these enhancements can be as much as two times compared to a 24K design. And yet the
24KEc™ core has minimal frequency degradation and increase in the die area compared to the
24Kc™ core. This paper discusses some of the novel implementation techniques used to achieve
this result.

This paper is organized as follows. The market trends promoting the convergence of RISC
processors and DSPs are described first. Then, an overview of the 24K core family is provided
since this is the foundation upon which the 24KE core family is built. This is followed by a brief
description of the MIPS32® DSP Application Specific Extension (ASE). This leads to a discussion
of the design challenges, in which we focus on the base core of each family. The design
challenges are described in the context of adding the DSP enhancements to the 24Kc core to
create the 24KEc core. The paper concludes with a discussion of the achieved results and a
summary.

The Convergence of RISC and DSP

Embedded consumer devices require both general-purpose processing such as running the
operating-system and digital signal processing such as decoding music streams. Examples of
such devices include set-top boxes, DVD players and recorders, Voice over IP phones, MP3
players, mobile phones, and personal digital assistant devices (PDAs). Add to this need for
combined processing the fact that RISC processors can already execute some DSP operations
and the trend seems natural. According to DSP Analyst Will Strauss at Forward Concepts, “at
least 30% of RISC processors are suitable for ‘real’ DSP applications [1].” Sample applications
include audio codecs, packet protocol processing, and JPEG processing. Further, as RISC
processors continue to increase their speeds, they are subsuming even more types of DSP
applications. So this trend should continue if not accelerate.

There are advantages and challenges to combining general processing and digital signal
processing on the same core. One big advantage is a more efficient hardware architecture [2].

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.

The additional die area to implement DSP enhancements in the core can be kept small compared
with the area for a programmable DSP. One reason is that the DSP enhancements can share
much of the hardware already in the core. Also, a combined architecture eliminates the external
data bus between the processor core and the DSP. This can also reduce power consumption
because data is no longer driven back and forth through such an external bus [2].

Another advantage is that software developers need to use only a single tool chain for writing
both general-purpose code and DSP code. Eliminating the need to deal with multiple tool chains
should lower development costs and accelerate development.

The advantages discussed above are significant, but three key challenges must be overcome to
permit combining general and digital signal processing onto a single core. First, the core must
deliver enough performance for real-time execution of DSP tasks. Second, the DSP
enhancements must be added to a high-performance RISC core without adversely affecting the
clock frequency, which would impact both the general-purpose as well as the DSP performance.
And, third, the die size increase of the enhanced core must be kept small. These challenges are
the focus of this paper.

Copyright (c) 2005 MIPS Technologies, Inc. All rights reserved. 5

At the core of the user experience.™

Convergence of RISC and DSP

• Caches
• TLBs
• RISC ISA
• Good compilation
• OS support

• CISC instructions• Fractional
arithmetic

• Saturation
• SIMD

RISC DSP

RISC w/ DSP

24K Cores

24KE Cores

DSP ASE

Figure 1: Features of RISC processors and DSPs are converging.

RISC processors have many benefits that enable them to achieve high performance. For
example, caches and translation look-aside buffers (TLBs) help to improve software performance.
RISC instruction sets and pipelines are usually designed for relatively high clock frequencies. And,
of course, RISC instruction sets lend themselves to good compilation [3]. A distinguishing feature
among RISC architectures is the ability to run several different operating systems which have
been ported to that architecture. MIPS processors, such as those in the 24K core family, offer the
advantage of being supported by operating systems commonly used in embedded systems.

DSPs usually offer special features, such as fractional arithmetic, saturation, and single-
instruction multiple-data (SIMD) operations. They also often implement special complex
instructions to boost their digital processing performance. These instructions do not follow the
RISC paradigm because they perform expensive functions, such as operating directly on memory
operands. As a result, they create many critical paths that limit the clock frequencies of the DSPs
[2].

A RISC core with DSP enhancements should inherit all the benefits of the RISC architecture. If it

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.

incorporates DSP support in a RISC-like manner, it would avoid the increased cycle time required
to implement complex instructions. This will enable it to achieve a higher clock frequency and
better code compilation than a DSP. When compared to having separate RISC processor and
DSP, the combined core should have a lower die area dedicated to DSP operations due to the
hardware reuse and the elimination of the external bus discussed earlier.

The rest of this paper will focus on the creation of such a RISC core with DSP enhancements.
The 24Kc core is the base RISC core for this design. At the Fall Processor Forum in 2004, MIPS
Technologies introduced our DSP ASE, an architectural extension to enhance DSP performance
with low implementation costs. Implementing this ASE in the base design results in the MIPS32
24KEc core.

The 24K® Core Family

The 24K core family consists of the highest-performance 32-bit synthesizable cores for the
embedded market. The base core in this family, the 24Kc core, can achieve 400MHz to 625MHz
in a 130 nm CMOS process and can execute 576 to 900 Dhrystone MIPS.

The 24K core family implements the MIPS32 Release 2 architecture, which includes vectored
interrupts and shadow register sets to minimize and bound hardware interrupt response times.
These features support real-time applications. The cores also feature a single-issue pipeline, a
decoupled 32x32-bit integer multiplier, and an aggressive memory subsystem.

Copyright (c) 2005 MIPS Technologies, Inc. All rights reserved. 7

At the core of the user experience.™

IF IS RF AG EX MS ER WB

D$ Sel ERBlock Diagram

ALU

Fetch

Load Store

BIU

FPU

D$

I$uTLB

uTLB

CorExtend™
User Defined
Instructions

MMU

MIPS32 24K

� Instruction Fetch
� Instructions read from L1 cache

� Register File
� Operands read from register file

� Execution
� Fixed point pipeline
� Memory pipeline

� Write-back
� Update register file with new results

IF IS RF AG EX MS ER

D$ Sel ER

WB

I$uTLB

D$

Add

Reg FileReg File

Add

uTLB

The 24K® Core Family

MDU

Figure 2: The 24K core family features an eight-stage pipeline divided into four sections

The pipeline of the 24K core family is eight stages deep, logically divided into four sections. The
fetch unit operates autonomously from the rest of the machine, decoupled by an eight-entry
instruction buffer. The processor reads two instructions from the I-cache (instruction cache) each
cycle, allowing fetches to proceed ahead of the execution pipeline. Speculation accuracy is
improved with a branch history table, holding 512 bimodal entries, and a four-entry return-
prediction stack. A full cycle is allocated for the I-cache RAM access, with the cache hit/miss
determination and way selection occurring in the following stage.

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.

One cycle is allocated to read operands from the register file and collect other bypass sources.
Separate execution pipelines handle integer and load/store instructions. For memory operations,
address calculation occurs in the AG stage. Next, the processor reads the data cache. Like the
instruction cache, the D-cache (data cache) is four-way set-associative, may range in size from
16KB to 64KB, allows line locking, and supports optional parity protection. The MS stage
performs hit calculation, way selection, and load alignment. The processor can accommodate up
to four non-blocking load misses, allowing hits under misses. Normal ALU operations pass
through the AG stage and do their real work in the EX stage. This skewed ALU preserves the
two-clock load-to-use relationship common to many other MIPS cores. The exception-recovery
stage prioritizes any exceptions. Finally, the write-back stage updates the register file and other
instruction destinations with new results.

In the block diagram in Figure 2, blocks with dotted line borders are optional. An optional floating-
point unit is available on the 24Kf™ core. An optional CorExtend™ interface is available on the Pro
Series® versions of the cores.

Copyright (c) 2005 MIPS Technologies, Inc. All rights reserved. 8

At the core of the user experience.™

The 24K® Core Family

AG EX MS ER

D$ Sel ER

AG

B M1 M2 WBD$ SelM3 A

Multiply Execution
� Non-blocking

� Separate 5-stage pipeline

� MAC repeat rate of 1 per cycle

WB

Figure 3: The 24K core family features non-blocking multiply instructions and a repeat rate of one
multiply-accumulate instruction per cycle.

Multiply instructions are non-blocking in the pipeline of the 24Kc core; subsequent instructions
that do not depend on the result of the multiply can proceed without delay. Depending on the
multiply instruction, its result is written into either the HI and LO accumulator or a general-purpose
register (GPR).

Multiply instructions execute in a separate five-stage pipeline. Execution starts in the Booth
recoding (B) stage [4,5] which corresponds to the EX stage of the normal integer pipeline. Then,
the operation propagates through the multiplier array during the M1, M2, and part of the M3 stage.
The multiplier array produces a number in carry-save format [5,6]. A final addition to convert this
number to two’s complement format is performed in the latter part of the M3 stage. The result is
available at the beginning of the A stage, which is used to select between the multiply data path
and other sources for the accumulator value. The processor writes the new result into the
accumulator at the clock edge between the A and WB stages.

The Multiply/Divide Unit, or MDU, achieves a repeat rate of 1 multiply-accumulate instruction

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.

(MAC) every cycle. (More details about multiplication will follow later in this paper).

The MIPS32® DSP ASE

The MIPS32 DSP ASE consists mainly of new instructions that execute in the integer and multiply
pipes of the processor. The ASE includes all the typical DSP features such as register-based
SIMD instructions that can add, subtract, shift, or multiply. The SIMD instructions operate on as
many as four operands simultaneously and support operands of eight, 16, and 32 bits. The ASE
also provides fractional arithmetic with saturation and rounding. There are several flavors of
multiply-accumulate, including dot-product-accumulate. Precision expansions and reductions
enable scaling operations. Absolute, bit-reverse, and other instructions enable common DSP
operations to be performed efficiently. The ASE adds three new accumulators to the architecture
for a total of four.

In addition to all the commonly found operations, the ASE also adds some advanced features that
attain extra performance without requiring a complex implementation. An example is a variable bit
extract method that efficiently extracts bits from an incoming stream. Another feature efficiently
processes complex numbers. The ASE also includes a novel and efficient way to support virtual
circular buffers.

To minimize implementation cost, new state elements are limited to a DSP control register and
the mentioned three new accumulators.

Design Challenges

Implementing the DSP ASE with negligible cost is the goal of the 24KE core family, which
includes the 24KEc, 24KEf, 24KEc Pro, and 24KEf Pro cores. A customer can choose the
appropriate core depending on whether an optional FPU and/or an optional CorExtend interface
is needed. In describing the design challenges for this core family, we will focus on the 24KEc
core.

Specifically, the goal is to implement the DSP enhancements without significantly impacting the
speed or die area of the core. There are two major challenges. First, the single-cycle ALU
execution path already has critical timing. Inserting any additional logic level in the data path
would increase the cycle time. Second, many additional features are required in the multiply data
path. Support for these features must be added without increasing the cycle time in any of the
multiply pipeline stages. It is preferable to do this without adding another stage to the multiply
pipeline. Also, with the wider data path in the MDU, it is even more important to minimize the area
impact.

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.

 Copyright (c) 2005 MIPS Technologies, Inc. All rights reserved. 13

At the core of the user experience.™

Design Challenges: ALU
Execution stage data path

Saturation
&

Rounding

. . .

Adder Shifter DSP

Figure 4: The execution stage data path has critical timing in 24KEc core.

The single-cycle execution of the ALU makes the timing of its data path critical. The most critical
paths are through the 32-bit adder and shifter. In Figure 4, yellow blocks indicate existing logic in
the 24Kc core. Red blocks indicate new DSP logic. The DSP enhancements require saturating
the output of the adder and rounding the output of the shifter. Furthermore, the results from these
and other DSP instructions require selecting from new sources so we need to add more mux
levels. However, the additional saturation and rounding logic plus the additional mux levels would
significantly increase the cycle time.

 Copyright (c) 2005 MIPS Technologies, Inc. All rights reserved. 14

At the core of the user experience.™

Design Challenges: ALU
Second cycle for result forwarding of DSP instructions

Saturation
&

Rounding

. . .

Adder Shifter DSP

Figure 5: A second cycle is used to forward GPR result of DSP instructions.

To avoid significantly increasing the cycle time, we added a second cycle to select between the

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.

existing ALU results and new DSP sources. Note that existing ALU operations are not affected;
their results are still forwarded to a dependent instruction for execution the next cycle. Therefore,
if the first instruction of a back-to-back sequence is not a DSP instruction, result forwarding can
still take place.

If the first instruction is a DSP instruction, an additional cycle is required before forwarding the
result. This one-cycle delay can usually be masked because of the vectorized nature of DSP
code. Often, an instruction, such as a data load, can fill this delay slot between the two dependent
instructions.

 Copyright (c) 2005 MIPS Technologies, Inc. All rights reserved. 15

At the core of the user experience.™

Design Challenges: ALU
Result forwarding to next instruction enabled for useful sequences

Adder Shifter DSP

Saturation
&

Rounding

CMPU.LT.QB r10, r11

. . .

Figure 6: A DSP compare instruction sets condition code bits.

However, there are some DSP instruction sequences in which it would be useful to forward the
result to the next instruction. A compare followed immediately by a pick is such an example. In
Figure 6, the first instruction is shown in green. It compares the corresponding bytes in register 10
and register 11. Based on the result of the comparison, it sets condition code bits in the DSP
control register.

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.

 Copyright (c) 2005 MIPS Technologies, Inc. All rights reserved. 16

At the core of the user experience.™

Design Challenges: ALU
Result forwarding to next instruction enabled for useful sequences

Saturation
&

Rounding

CMPU.LT.QB r10, r11

. . .

Adder Shifter DSP
PICK.QB r12, r10, r11

Figure 7: Result forwarding to the next instruction without a delay is possible for useful DSP
sequences. .

In the next cycle, the second instruction advances to the execution stage. The instruction shown
in Figure 7 picks each byte from GPR 10 or GPR 11 based on the corresponding condition-code
bit. The result is four bytes, some of which may be from GPR 10 and some from GPR 11.

The pick instruction is dependent only on the condition-code bits, which can be forwarded from
the previous cycle. Unlike DSP results in a GPR, the condition-code bits need not pass through
the mux levels in the extra cycle. By using dedicated bits, useful sequences such as compare and
pick can be executed back to back without delay.

By using such techniques, we were able to maintain a high clock frequency for the 24KEc core.
We also minimized additional die area by reusing the ALU’s 32-bit adder and shifter. We did so
without affecting the existing ALU instructions while enabling result forwarding for useful back-to-
back DSP instruction sequences.

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.

 Copyright (c) 2005 MIPS Technologies, Inc. All rights reserved. 17

At the core of the user experience.™

Design Challenges: MDU

Add DSP multiply instructions such as dot-product-accumulate

A1 A2

B1

x x

+

+

Accumulator

•Multiple data types

•Saturation

•Maximum repeat rate

B2

acc = acc + (A1 x B1) + (A2 x B2)

Figure 8: The dot-product-accumulate instruction performs two multiplications and two additions.

Another design challenge was implementing the dot-product-accumulate instruction in the MDU.
For this instruction, each half of a source GPR contains one Q15 operand. (Q15 is a 16-bit
representation of a fractional number.)
This instruction performs two simultaneous multiplications of the corresponding halves from the
two source registers. The two products are added to complete the dot-product operation. Then,
that result is added to the content of the chosen accumulator. As illustrated in Figure 8, this
instruction performs two multiplications and two additions.

Moreover, this instruction and other multiplies in the DSP ASE must support multiple data types
and perform saturation. For optimal performance, it is desirable to maximize the repeat rate for as
many types of MACs as possible.

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.

 Copyright (c) 2005 MIPS Technologies, Inc. All rights reserved. 19

At the core of the user experience.™

Design Challenges: MDU
CSACSA CSA

CSACSA

CSA

CSA

CSA

CSA

CSA

CSA

CSACSA CSA

CSACSA

CSA

CSA

CSACSA CSA

CSACSA

CSA

CSA

CSACSA CSA

CSACSA

CSA

CSA

MAC repeat rate of 1 each cycle

Structure multiplier array as two halves for dual-multiply
• Sub-products generated by left and right sub-arrays

Adder

A1 x B1 A2 x B2

Figure 9: The multiplier data path supports dual-multiply operations and a repeat rate of one MAC
per cycle.

The multiplier array and adder make up most of the multiply data path. The multiplier array
consists of rows of carry-save adders (CSAs). These rows of CSA blocks add the partial products
of the multiplication. Each CSA adds three bits to produce two bits, a carry and a save. In Figure
9, each CSA block represents enough individual CSAs to operate on its input partial products.
The final row produces two carry-save numbers, which must be combined using a 64-bit adder to
convert them into the final two’s complement result [5,6]. Not all staging registers are shown in
the figure.

The final two carry-save numbers are forwarded through staging registers to the next instruction
so that MACs can have a repeat rate of one per cycle. The data path forwards the accumulated
value in carry-save format before it propagates through the 64-bit adder.

To support dual-multiply operations in the DSP ASE, the multiplier array is configured as two
halves. For a single 32-bit multiplication, both halves function part of a common array. For dual-
multiply operations, the left and right sub-arrays each yield a product in carry-save format. The
dot-product-accumulate instruction requires these products to be added then accumulated.
However, other dual-multiply instructions in the ASE simply require these products as results. For
those instructions, the products are available at the point indicated by the red ovals on Figure 9.
Not shown are the two 16-bit adders required to convert these carry-save values into two’s
complement numbers. These adders are small relative to the rest of the multiply data path and
have no timing impact. They are omitted from the figure since they are not part of the multiplier
array.

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.

 Copyright (c) 2005 MIPS Technologies, Inc. All rights reserved. 19

At the core of the user experience.™

Design Challenges: MDU
CSACSA CSA

CSACSA

CSA

CSA

CSA

CSA

CSA

CSA

CSACSA CSA

CSACSA

CSA

CSA

CSACSA CSA

CSACSA

CSA

CSA

CSACSA CSA

CSACSA

CSA

CSA

MAC repeat rate of 1 each cycle

Structure multiplier array as two halves for dual-multiply
Sub-products generated by left and right sub-arrays

Add muxes to support accumulating dual-multiplies

Add saturation based on inputs (for -1 x -1)

Add saturation after accumulation

Repartition multiply pipeline stages

>>

Saturation (-1 x -1)

Adder

Saturation

Figure 10: Minimal additional logic was added to support DSP multiply instructions..

A row of muxes added to the left sub-array supports the dot-product-accumulate instruction
described earlier. These muxes can shift the bits from the left sub-array so that they have the
same significance as the bits in the right sub-array. This effectively aligns the two products so
they can be added. The elegance of this approach is that we extensively reuse the existing logic.
We use the left sub-array for the second multiply since it is not needed for 16-bit multiplication.
Also, later stages of the multiplier array are used to perform the two additions for the dot-product-
accumulate instruction. Therefore, the additional cost for this second addition is limited to a single
level of muxes.

Saturation for the special case when both multiplier and multiplicand are –1 is performed in
parallel with the multiplier array. Another level of muxes is required to substitute the products with
the maximum fractional value. Additional logic after the 64-bit adder handles saturation after
accumulation. Multiply instructions which saturate after accumulation have a repeat rate of one
every two cycles. This is because final saturation occurs after the accumulated value would have
been forwarded to the next instruction. All other MACs have the best repeat rate possible — one
per cycle.

Note our high reuse of existing hardware as indicated by the large ratio of existing (yellow) logic
to new (red) logic in Figure 10. We avoided adding any additional CSA level, and the added logic
was small and introduced little delay. In the dot-product-accumulate instruction example,
performing a dual-multiply, aligning the products, and adding them together required only one
additional level of muxes in the multiplier array.

Our approach to redesigning the MDU allowed us to maintain a high clock frequency on the
24KEc core. We minimized additional die area by reusing the multiply data path to implement
most of the DSP multiply logic, and we did so without affecting existing multiply instructions.
Furthermore, the implementation includes DSP MACs which can be executed back-to-back for an
optimal repeat rate.

Results Achieved

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.

 Copyright (c) 2005 MIPS Technologies, Inc. All rights reserved. 21

At the core of the user experience.™

Results Achieved With the 24KEc™ Core

9%

377K gates

347K gates

Gates
Core logic only

(NAND2 equivalent)

1%

400 MHz

400+ MHz

Speed
(MHz)

2.7%

7.5mm2

7.3mm2

Die Area
Full floor plan with
32KB/32KB caches

(mm2)

Diff %

24KEc Core

24Kc Core

Note: Estimates only. 24Kc and 24KEc cores include 32KB instruction and 32KB data caches, 16 dual-entry TLB, one
GPR set, and clock gating. Speed may be slightly lower for maximum configurations with 64KB/64KB caches.

Results on TSMC 130nm G

Figure 11: The DSP enhancements were added with negligible effect on clock frequency and die
area..

The key characteristics of the 24KEc core in the TSMC 130 nm G technology is shown in Figure
11. The 24Kc core numbers are also included for comparison. Both cores are capable of 400 MHz,
worst case, using a high-speed library. The 24Kc core can achieve a slightly higher speed, but we
target our synthesis runs at 400MHz. The additional DSP logic is about 9% of the core logic. This
corresponds to an increase of only 2.7% of the total core die area with 32KB caches. Therefore,
the DSP logic has negligible effects on processor core speed and total area.

At 400 MHz, the 24KEc core can reach 800 million multiply-accumulate operations per second, or
MMACS, on 16-bit data. A wide range of DSP performance measurements are shown in Figure
12.

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.

 Copyright (c) 2005 MIPS Technologies, Inc. All rights reserved. 24

At the core of the user experience.™

Results Achieved on the 24KEc™ Core

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
S

pe
ed

 U
p

V ector max abs

V ector add

V ector dot-product

8x8 DCT

Complex F F T (1024-
point)
B lock F IR filter (128-tap)

Complex F IR filter (128-
tap)
Huffman Decode Loop

Speedup compared to hand-optimized MIPS32
assembly implementation on a 24Kc core

Figure 12: The 24KEc core achieves DSP function code speedups of up to three times the
performance of the 24Kc core.

To illustrate the enhancements of the 24KEc core, Figure 12 shows a range of DSP functions and
their speedups using the new DSP instructions and state. These measurements are mostly for
inner loops of functions so the overall application speedup will depend on the percentage of time
these loops account for in the application. Of course, the MIPS architecture can execute general-
purpose code in the rest of the application with inherently good performance. As Figure 12
indicates, the speedup ranges from a factor of 1.3 to 3. Note that the speedup numbers are
comparing hand-optimized MIPS32 assembly code on 24Kc core (without using DSP instructions)
and 24KEc core (using DSP instructions). These experiments were run on 24Kc and 24KEc core
simulators.

Summary

The 24KE core family delivers accelerated DSP performance at a negligible cost. Simulation
results show that the 24KEc core significantly improves DSP performance over the 24Kc core.
The 24KEc core demonstrates that such meaningful DSP enhancements can be made to a RISC
processor core with negligible effects on clock speed and die area. The success in overcoming
the design challenges of implementing the 24KEc core further confirms the viability of moving
digital signal processing onto the main processor core.

Merging digital signal processing onto the main processor also offers other benefits. The
combined processing on a single processor creates a more efficient system architecture and
results in lower area and power. The common tool chain for general and DSP code lowers
software development costs and shortens software development time. All these factors make the
24KE core family ideal for embedded applications requiring a high-performance low-cost
synthesizable microprocessor with accelerated DSP performance.

The 24KE core family is already available for licensing to early adopters and will become
generally available later this summer. Processor cores from MIPS Technologies Inc. have
traditionally been used as the host processor in embedded devices. But MIPS cores, specifically
the 24KE core family, can run digital signal processing applications very efficiently and hence are
well-suited to meet the convergence of RISC processors and DSPs to yield System-on-Chip
integration benefits.

Results Achieved on the 24KEc™ Core

0

0.5

1

1.5

2

2.5

3

S
pe

ed
 U

p
8x8 DCT

Vector add

Vector dot-product

Complex F F T (1024-
point)
B lock F IR filter (100-tap)

Huffman Decode Loop

Complex F IR filter (100-
tap)

Copyright © 2005 MIPS Technologies, Inc. All rights reserved. Page 13

References

[1] W. Strauss, from correspondence.
[2] W. P. Hays, “DSPs: Back to the Future,” ACM Queue, pp. 42-51, Mar. 2004.
[3] J. L. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach. Morgan Kaufman,
San Francisco, CA, 1996.
[4] A. D. Booth, “A Signed Binary Multiplication Technique,” Quart. J. Mech. Appl. Math., vol. 4, pt. 2, pp.
236-240, 1951.
[5] V. C. Hamacher, Z. G. Vranesic, and S. G. Zaky, Computer Organization, McGraw-Hill Book Company,
San Francisco, CA, 1984.
[6] C. G. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Trans. On Electronics Computers, vol.
EC-13, Feb. 1964, pp. 14-17.

MIPS, MIPS16e, MIPS32, CorExtend, Pro Series, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEc Pro, 24KEf, and 24KEf Pro are
trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other countries.

