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One Processor versus Many 
 

Driving the performance of an individual processor to the limits of the possible in a given 
implementation technology is never easy or efficient. The tried and true methods of faster 
clocks, deeper pipelines, and bigger caches all have silicon area and power dissipation 
costs that get well into diminishing returns to get that last 10% of performance. There are 
times when there is no alternative but to turn up the clock and upgrade the power and 
cooling subsystems; but when a workload can be split across multiple processors, the 
limits to maximum total performance are pushed back, and the design of the processing 
elements themselves can be made simpler and more efficient.  
 
While you see this approach today in PCs, servers and workstations, this is just as true in 
embedded SoC designs. In fact, many embedded SoC designs today make use of 
multiple processors, but do so in an application-specific or “loosely coupled” manner. 
Until recently, SoC design options for software-friendly multiprocessing were severely 
limited. However, with the advent of SoC design components such as the MIPS32® 
1004K™ Coherent Processing System (CPS), on-chip Symmetric Multiprocessing (SMP) 
under a single operating system has become a real design option, and system architects 
need to understand its promises and limitations.  
 

Many Paths to Parallelism  
 
Exploiting parallel processors requires parallel software, and “parallel programming” is a 
model that creates some apprehension with software engineers because not all existing 
code was written for a parallel processing platform. But there are several paradigms for 
parallel software, some of which are already very familiar to software designers, even if 
they don’t necessarily think of them as such. 
 

Data-Parallel Algorithms 
 
Data-parallel algorithms are ways of attacking a single basic computational problem by 
carving up the data set to make use of more than one processor, ideally up to a large 
number of CPUs. The textbook case of a large data set is a large input file or data array, 
but in embedded systems, it can mean high I/O and event service bandwidth. In some 
SoC architectures, multiple sources of input data, such as network interface ports, each 
of which needs to be handled the same way, can be statically assigned to multiple 
processors running the same driver/router code to make for natural data-parallelism. 
 
When the power of multiple processors must be brought to bear on a single data array or 
single input stream, data-parallel algorithms that “divide and conquer” the data are often 
used, such as the simple example shown in figure 1. Such algorithms are generally sub-
optimal on a single processor, but make up for their inefficiency with scalability to exploit 
more computational bandwidth. They “make up for it in volume.” These algorithms have 
been shown to be the most scalable approach to parallel computing, but converting a 
working sequential program to a data-parallel algorithm may be trivial, difficult, or 
impossible, depending on factors such as the dependency characteristics of the program. 
 



 

 
 

Fig 1 – Data-Parallel Programming Model 
 
 
A system designer looking for higher performance for an existing application would most 
likely look to explicitly implement data-parallel algorithms if the vast bulk of computational 
work in the application is done in a relatively small number of long runs of regular 
computational loops. 
 
The emergence of multi-core “x86” chips for PC, workstation and server processors has 
generated research and investment in a new wave of libraries and toolkits to enable, and 
more easily exploit, parallel algorithms on modest numbers of processors. Many of these 
are open-sourced and portable to embedded architectures such as MIPS. OpenMP 
extensions to gcc for data-parallel C/C++ as well as FORTRAN are becoming a part of 
the standard GNU compiler collection. 
 

Control-Parallel Programming 
 
Another paradigm, which will be referred to here as control-parallel programming, is to 
split the work of a program by task, rather than by input. If an automobile factory where 
100 workers are each given a car to build can be seen as a metaphor for a 100-way data 
parallel algorithm, the analogous metaphor for a control-parallel program would be a 
factory with a single assembly line consisting of 100 stations, each staffed by a worker 
performing a different task that is 1/100 of the assembly work. A simple example of a two 
station implementation is shown in figure 2. The assembly line approach is generally 
more efficient, but there is a limit to how far one can divide up the work of assembling a 
single car. This limitation is significant for scientific codes that one would like to scale to 
thousands of processors, but not generally an issue with modestly parallel SoC 
architectures for consumer applications. 
 



 
 

Fig 2 – Control-Parallel Programming Model 
 
 
Even without taking parallel processing into consideration, software engineers will often 
break programs up into phases. It makes for easier coding, debugging, and maintenance 
by teams of programmers, and it reduces pressure on instruction memory and caches. In 
many cases, the control-parallel decomposition of a problem has already been taken to 
the level of OS-visible tasks. The single command “cc” on a UNIX-like system invokes, 
sequentially, a C language pre-processor, a compiler, an assembler and a linker. On an 
SMP multiprocessor, several of these can be run simultaneously, with each successive 
program using the output of the previous phase as its input, using files or, better still, the 
software “pipes” that have long been a feature of UNIX-like operating systems, including 
Linux. 
 
When decomposition into independently run tasks hasn’t already been done, some 
software engineering must be done to make the phases of an application visible to the 
operating system and the underlying hardware, and to explicitly pass data from one task 
to another when its “ownership” passes from one phase to another. But there should be 
no need to rethink or rework the algorithms of the constituent phases, as is generally 
required for a data-parallel decomposition. Coarse-grain task decomposition can be done 
in terms of processes communicating via files, sockets, or pipes. For finer-grained 
control, the POSIX thread API, pthreads, is widely used, and is supported by a broad 
range of operating systems, including Linux, Microsoft Windows, and many real-time 
operating systems.  
 

The more there is to do, the more there is to do concurrently. 
 
Complex, modular, multitasking embedded software systems will often exhibit 
“serendipitous” concurrency, such as that illustrated in figure 3, even if it was not a design 
objective. The overall mission of the system may involve the operation of multiple tasks, 
each of which has a distinct responsibility, responding to a distinct set of inputs. Without a 
time-sharing operating system, these tasks would each have to run on a separate 
processor. On a time-sharing uniprocessor, they run in alternating time-slices. On a 
multiprocessor with an SMP operating system, they can run concurrently across as many 
processors as are available. 



 
 

Fig 3 – Concurrent Multitasking 
 
 

Distributed Processing 
 
Another form of parallel processing that has become so commonplace that it is 
sometimes not even thought of as “parallel” is distributed computing, of which network 
client/server models are by far the most common paradigm. Client-server programming is 
basically a form of control-flow decomposition. Rather than performing all of a 
computation itself, a program task connects and sends work requests to one or more 
specialized tasks in a system which are designated to perform specific jobs. While 
client/server programming is most commonly done across LANs and WANs, 
communications between tasks within an SMP SoC follow the same paradigm. One can 
use unmodified client/server binaries communicating by TCP/IP via on-chip or null 
“loopback” network interfaces, or more efficiently by using local communications 
protocols that pass data buffers in memory.  
 
In practice, any of the above techniques may be used alone, or in combination, to 
leverage the power of an SMP-based platform for a given application. One could even 
construct a data-parallel array of distributed SMP servers, each of which implements a 
control-flow pipeline. But for such a scheme to be efficient, there would need to be a very 
large workload and data set. 
 

System Software Support is Critical 
 
In SoC systems where parallelism by static physical decomposition of tasks onto 
processors is possible (e.g. one processor core per input port), the assignment of parallel 
tasks to processors can be done in hardware. This reduces software overhead and 
footprint, but provides no flexibility.  
 
Similarly, if an embedded application can be statically decomposed into clients and 
servers communicating across an on-chip interconnect, the only system software 
required to tie the system together would be message-passing code that implements a 
common protocol between processors. The message passing protocol provides some 
level of abstraction that can enable configurations with more or fewer processors to run a 
common base of application code, but for any given configuration, the load balancing 
between processors is as static as the hardware partitioning. For more flexible parallel 
system programming, software distribution of tasks across a multiprocessor system with 
shared resources is needed. 
 



Flexibility and Adaptability of SMP Systems 
 
As the name implies, SMP operating systems have a “symmetric” view of the system. All 
processors see the same memory, the same I/O devices and the same global operating 
system state. This makes migration of programs from one processor to another extremely 
simple and efficient, as shown in the simple example in figure 4, and makes load 
balancing easy. With no additional programming or system administration, a set of 
programs that multi-tasks on a single CPU using time-slicing will run concurrently on the 
available CPUs of an SMP system. An SMP scheduler, such as that of Linux, will switch 
programs on and off of processors so that all make progress in a fair manner. 
 
 

 
 

Fig 4 – SMP Task Distribution Across Multiprocessor Resources 
 
 
A Linux application that runs as multiple processes needs no modification to take 
advantage of SMP parallelism. In most cases, no recompilation is required; the exception 
being binaries that were statically linked with non-thread-safe libraries. 
 
An SMP Linux environment provides a number of tools that allow a system designer to 
tune the way tasks share the available processors. Tasks can have their priorities raised 
and lowered, and can be restricted to run on arbitrary subsets of processors. With 
appropriate kernel support, they can request the use of different real-time scheduling 
regimes. 
 
UNIX-like operating systems have always allowed applications to have some control over 
the relative scheduling priority of tasks, even in uniprocessor time-sharing systems. The 
traditional nice shell command and system call have been augmented in Linux with more 
elaborate mechanisms to manipulate the priority of tasks, groups of tasks, or specific 
users of a system, should it be necessary to second-guess the OS. 
 
Additionally, in multiprocessor configurations, every Linux task has a parameter that 
specifies what set of processors may schedule the task. By default, that parameter is the 
full set of processors in the system, but, like priority, this CPU affinity can be controlled 
either by the taskset shell command, or by explicit system calls to manipulate the “CPU 
affinity” of tasks. 
 



Enabling SMP 
 
An SMP system paradigm requires that all processors see all of memory at the same 
addresses. For simple, low performance processors, this isn’t too difficult to accomplish. 
One simply puts the instruction fetch and load/store traffic of all processors on a common 
memory and I/O bus. This simplistic model breaks down pretty quickly with increasing 
numbers of processors however, as the bus quickly becomes a performance bottleneck. 
And even in uniprocessor systems, the bandwidth requirements for instructions and data 
of high-performance embedded cores dictate that cache memories be used between 
main memory and the processor. 
 
A system with independent per-processor caches is no longer naturally SMP. When one 
processor’s cache contains the only copy of the most recent value of a location in 
memory, there’s a basic—and dangerous—asymmetry. Cache coherence protocols must 
be added to the system to restore that symmetry. In very simple systems, where all 
processors are connected to a common bus, it is sufficient for all cache controllers to 
monitor the bus to see which cache owns the latest version of a given memory location. 
In more advanced systems, such as the MIPS32 1004K CPS, processors are connected 
to memory using point-to-point connections to a switching fabric rather than a bus. Cache 
coherence thus requires more sophisticated support. The 1004K coherence manager 
imposes a global order on memory transactions and generates the necessary 
intervention signals to maintain cache coherence among multiple 1004K processor cores. 
 
The 1004K processors thus see a symmetric view of memory. An SMP operating system 
such as Linux can freely migrate tasks and dynamically balance processor loads. 
 
In an embedded SoC, a substantial portion of overall computation can be spent in 
interrupt service. This implies that good load balancing and performance tuning requires 
control, not only of where program tasks are allowed to run, but also where interrupt 
service is to be performed. The Linux operating system has an “IRQ affinity” control 
interface that allows users and programs to specify which processors are to be used to 
service a given interrupt. To be usable, this interface requires that the underlying system 
hardware provide a means to selectively route interrupts to processors. The 1004K global 
interrupt controller provides this capability for the 1004K CPS. 
 
Cache coherence infrastructure is useful, not only between processors for symmetric 
multiprocessing, but between processors and I/O DMA channels. While RISC 
architectures such as MIPS32 have features to support software-based I/O coherence, 
this requires that DMA buffers be processed by the CPU before or after each I/O DMA 
operation. This processing has a measurable performance impact on I/O-intensive 
applications. In the 1004K CPS, connecting I/O DMA to memory via an I/O coherence 
unit allows DMA traffic to be ordered and integrated with the coherent load/store flow, 
eliminating the software overhead. 
 

Paying the Piper – And Getting a Rebate 
 
In SoC design, as elsewhere in life, there’s no such thing as a free lunch. The 1004K 
coherence manager imposes order and sanity on memory traffic between processors, 
I/O, and memory, but in doing so, it adds cycles to the memory access time experienced 
by the processor. Ordinarily, this would always result in additional lost processor cycles 
when the pipeline stalls, waiting for the cache to be filled with instructions or necessary 
data. But the 1004K platform implements the MIPS multi-threading architecture first 
pioneered in the MIPS32® 34K® core family, which allows a single core to execute 
multiple concurrent instruction streams. 
 



Each individual core within the 1004K CPS includes support for two hardware threads via 
“VPEs,” virtual processing elements that look just like a CPU to operating system 
software. The two virtual processors share the same cache and functional units, and 
interleave their execution on the pipeline. If one VPE is stalled waiting for a cache fill from 
memory, the other can execute to keep the pipeline busy. In effect, the 1004K 
processor’s multi-threading capability allows it to take back cycles otherwise lost to the 
latency of the coherent memory subsystem. 
 
Since the 1004K processor VPEs look like full-blown processors to software, up to and 
including having independent interrupt inputs, the same SMP operating system logic that 
manages multiple cores can be exploited to manage their constituent VPEs. At the 
highest level of system administration, a dual-core 1004K system with all VPEs active 
looks to be a 4-way SMP system. Software that has been written or configured to exploit 
SMP can naturally exploit multi-threading, and vice versa. 
 
While the view of system resources remains symmetric, it is true that two threads 
competing for the use of a single processor pipeline will achieve lower performance than 
two threads running on independent cores. This situation has existed for years in server 
systems, where coherent clusters of multi-threaded CPUs are not unusual, and the SMP 
Linux kernel for the 1004K is equipped to do the necessary load-balancing optimizations. 
If optimizing for power consumption, the scheduler can load work onto the virtual 
processors of one core at a time, so that the others can remain in a low-power state. If 
optimizing for performance, it can spread work across distinct cores first, only loading up 
multiple VPEs per core once all cores have an active task to run. 
 

Conclusions 
 
On-chip multiprocessing can be exploited in a number of ways to achieve high SoC 
performance. Static decomposition of work, by input data or processing function, can be 
very efficient, but is also very inflexible. SMP platforms and software provide a very 
flexible high-performance computing platform that can deliver significant speedup relative 
to single processors, often with little or no modification to application code. Multi-
threading is highly complementary to SMP parallelism and allows for the highest possible 
utilization of pipeline resources in each processor. The MIPS32 1004K Coherent 
Processing System brings together MIPS multi-threading and coherent SMP in a single 
IP block to provide scalable, high-density embedded computing power. 
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