
Hot-Debug for Intel XScale® Core
Debug
White Paper

May 2005

Document Number: 273539-005

2 White Paper

Hot-Debug for Intel XScale® Core Debug

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel products are not intended for use in medical, life saving, life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel XScale® core may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright© Intel Corporation, 2005

AlertVIEW, i960, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, Commerce Cart, CT Connect, CT Media, Dialogic,
DM3, EtherExpress, ETOX, FlashFile, GatherRound, i386, i486, iCat, iCOMP, Insight960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740,
IntelDX2, IntelDX4, IntelSX2, Intel ChatPad, Intel Create&Share, Intel Dot.Station, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel
NetBurst, Intel NetStructure, Intel Play, Intel Play logo, Intel Pocket Concert, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation,
Intel WebOutfitter, Intel Xeon, Intel XScale, Itanium, JobAnalyst, LANDesk, LanRover, MCS, MMX, MMX logo, NetPort, NetportExpress, Optimizer
logo, OverDrive, Paragon, PC Dads, PC Parents, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, ProShare,
RemoteExpress, Screamline, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside, The Journey Inside, This Way In,
TokenExpress, Trillium, Vivonic, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

The ARM and ARM Powered logo marks (the ARM marks) are trademarks of ARM, Ltd., and Intel uses these marks under license from ARM, Ltd.

http://www.intel.com/

White Paper 3

Hot-Debug for Intel XScale® Core Debug
Contents

Contents
1.0 Introduction..5

1.1 Reference Documents ..5
1.2 Document Organization ..5

2.0 Debug Functional Overview ...6

3.0 Traditional Debug ..8

4.0 Hot-Debug .. 11

5.0 Hot-Debug Implementation ...14

6.0 Requirements and Restriction..18

6.1 Addressing..18
6.2 Application Code...22
6.3 Debugger ..23

7.0 Conclusion ...24

Figures

1 Debug Components..6
2 Traditional Xscale JTAG Connection Flow Chart..9
3 Code Download During a Cold Reset For Debug...10
4 Hot-Debug JTAG Connection Flow Chart ...12
5 Addressing Example...19

Tables

1 Summary of Debugger, Debug Handler, and Application Code Functionality7
2 DCSR.moe Encodings..14
3 Debugger and Debug Handler Actions During Download ..15

4 White Paper

Hot-Debug for Intel XScale® Core Debug
Contents

Revision History

Date Revision Description

April 2005 005 Complete Revision.

December 2002 004 Corrected typographical error on page 11.

May 2002 003 Corrected code in Section 5.0.

October 2001 002
Updated Section 5.0, “Hot-Debug Implementation”.

Revised first bullet in Section 6.0, “Requirements and
Restriction”.

May 2001 001 Initial release.

Hot-Debug for Intel XScale® Core Debug
Introduction

White Paper 5

1.0 Introduction

The purpose of this white paper is to explain the benefits of and the implementation requirements
for Hot-Debug for Intel XScale® microarchitecture I/O processors. Traditionally, when a debugger
is used through a Joint Test Action Group (JTAG) connection, the processor is reset at the
beginning of the debug session. For standalone applications, this is acceptable, but I/O processors
are mostly used for central processing unit (CPU) off load and add-in cards where there is a host
system which configures all of the devices on the bus. The start of a debug session on an add-in
card or a host bus adaptor causes a reset and consequently the bus configuration of the add-in card
is lost. Therefore, a debugger capability to connect through JTAG without causing a reset to the
device is required.

1.1 Reference Documents

• Intel® 80200 Processor based on Intel XScale® Microarchitecture Developer’s Manual (Order
Number 273411)—Intel Corporation

• Intel XScale® Core Developer’s Manual (Order Number: 273473), Intel Corporation

• ARM Architecture Reference Manual - ARM Limited. Order number: ARM DDI 0100E.

• Intel® 80231 I/O Processor Developer’s Manual (Order Number: 273517), Intel Corporation

• Intel® 80331 I/O Processor Developer’s Manual (Order Number: 273942), Intel Corporation

1.2 Document Organization

The sections of this document are in a sequence to give the reader a thorough understanding of the
concepts before detailing the requirements for implementation.

• Section 2.0, “Debug Functional Overview”, gives a general overview of the functionality of
Intel XScale® core debug through a JTAG connection. The interaction of the mini-instruction
cache, the debugger, the debug handler, and the target application are described.

• Section 3.0, “Traditional Debug”, provides a description of traditional Intel XScale® core
debug.

• Section 4.0, “Hot-Debug”, provides a description of Hot-Debug.

• Section 5.0, “Hot-Debug Implementation”, details the requirements for a successful
implementation of Hot-Debug. Code sections are included and explained. The location for
downloading example code is also provided.

• Section 6.0, “Requirements and Restriction”, provides details on aspects that will cause
problems with Hot-Debug implementation.

Hot-Debug for Intel XScale® Core Debug
Debug Functional Overview

6 White Paper

2.0 Debug Functional Overview

This functional overview pertains to the following Intel® processors:

The components of software debug through a JTAG connection are illustrated in Figure 1. The
debugger is a software application that runs on a separate computer and communicates with the
target processor through a JTAG connection on the circuit board. For this family of Intel XScale®
core processors, the debugger downloads a debug handler into the mini-instruction cache of the
target processor. The debug handler is code that runs on the target processor and communicates
with the debugger through a set of JTAG registers. Normally the target code for debug, the
application code for the target processor is typically stored in the Flash of the target circuit board,
but since Flash access is slower than RAM access, the application code normally decompresses
itself into RAM and then runs from there. The mini-instruction cache is only used by the debug
handler and cannot be accessed by the application code running on the circuit board. The debugger,
the debug handler, and the application code have distinct roles that are illustrated in Table 1,
“Summary of Debugger, Debug Handler, and Application Code Functionality” on page 7. For more
information on software debug and test features, refer to the Intel® 80200 Processor based on Intel
XScale® Microarchitecture Developer’s Manual, Chapter 13 and appendix C respectively.

• 80200 • 8033X • IXP425

• 80310 (80200 core) • IXP2400 • PXA800F

• 80315 (80200 core) • IXP2800 • PXA800EF

• 80321 • IXP420 • PXA26X

• 80219 • IXP421 • PXA255

• 80331 • IXP422

Figure 1. Debug Components

Debugger Software
on a separate computer

Application Code
in Flash

Intel XScale® core
processor

Mini-instruction
Cache

Hot-Debug for Intel XScale® Core Debug
Debug Functional Overview

White Paper 7

Table 1. Summary of Debugger, Debug Handler, and Application Code Functionality

Debugger Debug Handler Application

Located on a separate computer. Located in the mini-instruction
cache.

Normally resides in the Flash at
start up. Can run out of memory
after initialization.

Selects Halt or Monitor mode in the
Debug Control and Status Register
(DCSR).

Performs commands issued from
the debugger.

Initializes the processor and circuit
board.

Performs an external debug break
to connect to the target processor.

The code in the debug handler
uses exception traps and
breakpoints to stop application
code at desired locations.

The code that is being debugged.

Downloads the debug handler.

Issues commands to the debug
handler.

Hot-Debug for Intel XScale® Core Debug
Traditional Debug

8 White Paper

3.0 Traditional Debug

When the processor is reset, it goes to address 0x0 to find the pointer to the beginning of the reset
and initialization code. When halt mode is active, the processor uses the reset vector as the debug
vector.

Addresses 0x0 through 0x1C contain the exception vector table. The debugger scans the vector
table at address 0x0 in Flash and scans it into the first cache line of the mini-instruction cache
which is also addressed to 0x0. The vector table in the mini-instruction cache is the override vector
table and will be used by the processor even when there is another vector table at the same address
in Flash or RAM. To keep the vector table in the mini-instruction cache current, the debugger must
periodically scan the vector table in the application code for changes and scan any changes into the
vector table in the mini-instruction cache.

Hot-Debug for Intel XScale® Core Debug
Traditional Debug

White Paper 9

At connection with a traditional debug session, the debugger holds the processor in reset until the
debug handler is loaded into the mini-instruction cache. On releasing reset, the debugger takes
initial control of the system. Figure 2 and Figure 3, “Code Download During a Cold Reset For
Debug” on page 10 illustrate the traditional JTAG connection flow.

Figure 2. Traditional Xscale JTAG Connection Flow Chart

Set hold_rst signal
set Halt Mode bit

Instruction cache
download and
overwrite reset

vector with
address of debug

handler

Clear hold_rst
signal

Keep Halt Mode
bit set

Set Reset Trap
DCSR bit-16

JTAG

Debug Handler
Sets Global

Enable

0x0 Reset Vector
or 0xFFFF0000 if

high vectors
enabled

Debug Exception
in Halt Mode

Reset Handler

Initialization Code

Application

Special Debug State

Read & write to
registers, memory,

etc.
Set breakpoints as

appropriate

De-assert
nRESET

1st time
 through

After
1st time
 through

1st time
 through

After
1st time
 throughDebugger

releases the
application

nRESET asserted
TRST toggles

Run Debug Handler
(mini-Instruction
Cache and main

instruction cache for
overflow)

Hot-Debug for Intel XScale® Core Debug
Traditional Debug

10 White Paper

Figure 3. Code Download During a Cold Reset For Debug

B1310-01

RESET# pin assert until hold_rst signal is set

TRST# resets JTAG IR to IDCODE

RESET invalidates IC

RESET#

TRST#

hold_rst

JTAG IR

Internal
RESET

RESET does not affect IC

hold_rst keeps internal
reset asserted

wait 2030 tcks after
RESET# asserted

Set hold_rst signal
Set Halt Mode bit

Processor branches
to address 0

clock 15 tcks after
last update_dr in LDIC mode

SELDCSRSELDCSR LDICIDCODE

Enter LDIC mode
Download code

Clear hold_rst signal
Keep Halt Mode bit set

Hot-Debug for Intel XScale® Core Debug
Hot-Debug

White Paper 11

4.0 Hot-Debug

Due to the Intel XScale® core debug architecture, a traditional debug session resets the processor
when the debugger connects. Hot-Debug is a software solution that allows a debugger to connect
without resetting the processor. To connect in Hot-Debug, additional code at the beginning of the
reset code determines whether a reset occurred or a Hot-Debug session was initiated. When a reset
occurred, the reset and initialization code continues. When a Hot-Debug session was initiated, the
reset code does not run, the processor is polled for the appropriate point to download the debug
handler into the mini-instruction cache and then control is redirected to the debug handler.
Figure 4, “Hot-Debug JTAG Connection Flow Chart” on page 12 illustrates the Hot-Debug
connection flow.

Hot-Debug for Intel XScale® Core Debug
Hot-Debug

12 White Paper

Figure 4. Hot-Debug JTAG Connection Flow Chart

First or
subsequent
connection

CPSR[4:0]=0b10101
Debug Mode

CPSR[4:0]=0b10011
SVC Mode

Debug Handler
Stub (a code

branch from the
reset handler)

Determine when it
is safe to

download to the
mini-instruction

cache.

Run Debug
Handler

Application

Initialization Code
Set MOE to 0b111
Set Global Enable

Reset Handler

0x0 Reset Vector
or 0xFFFF0000 if

high vectors
enabled

Debug Handler
(mini-Instruction
Cache and main
instruction cache

for overflow)

Special Debug State

Read & write to
registers, memory,

etc.

Instruction cache
download and
overwrite reset

vector with
address of debug

handler

Debug Exception
in Halt Mode

Send Debug
Handler start

address

Read & write to
registers, memory,

etc.
Set breakpoints as

appropriate

Debugger
releases the
application

External Debug Break
Set Halt Mode Bit

Reset

Special Debug State

0x0 Reset Vector
or 0xFFFF0000 if

high vectors
enabled

Reset Handler
Hot-Debug Stub

Hot-Debug for Intel XScale® Core Debug
Hot-Debug

White Paper 13

When Hot-Debug is supported, the debugger uses an external debug break through JTAG to cause
a debug exception in the core. The core redirects the execution to a debug handler stub that is
linked into the application reset handler. The stub sends a message to the debugger through JTAG
indicating when it is safe to download the debug handler code into the mini-instruction cache. After
the debugger completes the download, it sends the starting address of the downloaded debug
handler to the stub. The stub then branches to the beginning of the debug handler and the debug
session begins.

When Hot-Debug is supported, the debugger can initiate a Hot-Debug session at any time provided
that physical vector at address 0x00000000 points to the beginning of the reset code that contains
the debug handler stub. The debugger can connect, disconnect, and reconnect multiple times when
needed.

Hot-Debug for Intel XScale® Core Debug
Hot-Debug Implementation

14 White Paper

5.0 Hot-Debug Implementation

Hot-Debug code must be added to the application code. The code with comments is provided at the
end of this section.

The application code determines whether the reset handler was entered due to a reset or a debug
exception. When the processor is in Supervisor (SVC) mode where the Current Program Status
Register bits 4:0 equal 0x13 (CPSR[4:0] =0x13), then a normal reset occurred. When the processor
is in debug (DBG) mode (CPSR[4:0]=0x15), then a debug exception occurred. In this case, the
reset handler branches to the linked debug handler stub, which allows the debugger to download
the debug handler into the mini-instruction cache. Once the download is complete, the stub
branches to the downloaded debug handler.

The application code must enable debug in the DCSR following every hardware reset. At reset, the
processor clears the debug enable bit (DCSR[31]) and the Method of Entry (MOE) bits
(DCSR[4:2]) in the DCSR. To support Hot-Debug, software must set the debug enable bit to enable
debug exceptions and set the MOE bits with 111b. Table 2 details the meaning of the Method of
Entry bits. Though these bits will normally change during the debug session, the debug handler
must set them to 111 binary (Hot-Debug mode) on exit.

Table 2. DCSR.moe Encodings

Bit Encoding Description

000b Indicates Hot-Debug is not supported. The processor must be held in reset while
downloading the debug handler into the mini-instruction cache.

001b - 110b
Indicates a monitor is actively running. Hot-Debug may or may not be supported. The
debugger must wait for the debug monitor to exit to determine whether Hot-Debug is
supported.

111b Indicates Hot-Debug is supported, and a debug monitor is not actively running.

Hot-Debug for Intel XScale® Core Debug
Hot-Debug Implementation

White Paper 15

The debugger initiates a debug session with an external debug break via the DCSR JTAG data
register. (For details, refer to the Intel XScale® Core Developer’s Manual, Chapter 9, Section 9.11.)
The processor redirects execution to the debug/reset vector and enters the reset handler. At this
point, the reset handler checks the mode in the CPSR and detects that the processor is in DBG
mode, and branches to the debug handler stub. Table 3 shows the actions taken by the debug
handler stub and the debugger to ensure that the debug handler is correctly downloaded into the
mini-instruction cache. Subsequent debug breaks during the current debug session are intercepted
by the debug/reset vector. The processor then branches directly to the downloaded debug handler.
When there are subsequent debug sessions, the debug vector and the debug handler should be
downloaded every time at the beginning of the new debug session.

The external debug break should be generated as follows:

1. Scan a value into the DCSR JTAG data register to set the Halt mode bit.

2. Scan a value into the DCSR JTAG data register to set the external debug break bit (and
keeping the Halt mode bit set).

Refer to the Intel XScale® Core Developer’s Manual, Chapter 9, Section 9.11.

Table 3. Debugger and Debug Handler Actions During Download

Debug Handler Stub Actions Debugger Actions

Executes synchronization routine to ensure all
outstanding instruction fetches have completed.
Invalidate the BTB. Polls the DBG_TX JTAG data register for a

'ready-for-download' message indicating it is safe to
begin the download.Following sync routine, writes the

'ready-for-download' message to the TX register.
'ready for download' = 0x00B00000

Spins in a loop, polling RX register, waiting for
debugger to indicate the download is complete.

Detects the write to TX and reads the value through
the DBG_TX JTAG data register. Sees the
'ready-for-download' message and begins the
download.

Downloads vector table and debug handler code into
mini-instruction cache through the LDIC JTAG data
register1. After completion of the download, waits ~50
TCKs w/ LDIC JTAG instruction in the JTAG IR before
continuing.

Writes the debug handler start address to the
DBG_RX JTAG data register. This signals the
download is complete and also provides the debug
handler stub with the start address of for the full
debug handler.

Detects valid data in RX and comes out of its polling
loop. Reads start address from RX and branches to
the debug handler.

Polls DGB_TX for debug handler entry message.

NOTE: Each cache line written to must first be invalidated through JTAG.

Hot-Debug for Intel XScale® Core Debug
Hot-Debug Implementation

16 White Paper

The following code must be added to the application code:

reset_handler_start:

reset handler should first check whether this is a debug exception

or a real RESET event.

NOTE: r13 is only safe register to use.

- For RESET, don’t really care about which register is used

- For debug exception, r13=DBG_r13, prevents application registers

- from being corrupted, before debug handler can save.

mrs r13, cpsr

and r13, r13, #0x1f

cmp r13, #0x15 # are we in DBG mode?

beq dbg_handler_stub # if so, go to the dbg handler stub

mov r13, #0x8000001c # otherwise, enable debug, set MOE bits

mcr p14, 0, r13, c10, c0, 0 # and continue with the reset handler

normal reset handler initialization follows code here,

or branch to the reset handler.

.align 5 ## align code to a cache line boundary.

dbg_handler_stub:

First save the state of the IC enable/disable bit in DBG_LR[0].

mrc p15, 0, r13, c1, c0, 0

and r13, r13, #0x1000

orr r14, r14, r13, lsr #12

Next, enable the IC.

mrc p15, 0, r13, c1, c0, 0

orr r13, r13, #0x1000

mcr p15, 0, r13, c1, c0, 0

do a sync operation to ensure all outstanding instr fetches have

completed before continuing. The invalidate cache line function

serves as a synchronization operation, that’s why it is used

here. The target line is some scratch address in memory.

adr r13, line2

mcr p15, 0, r13, c7, c5, 1

invalidate BTB. make sure downloaded vector table does not hit one of

the application’s branches cached in the BTB, branch to the wrong place

mcr p15, 0, r13, c7, c5, 6

Now, send ‘ready for download’ message to debugger, indicating debugger

can begin the download. ‘ready for download’ = 0x00B00000.

TXloop:

mrc p14, 0, r15, c14, c0, 0 # first make sure TX reg. is available

bvs TXloop

mov r13, #0x00B00000

mcr p14, 0, r13, c8, c0, 0 # now write to TX

Wait for debugger to indicate that the download is complete.

RXloop:

mrc p14, 0, r15, c14, c0, 0 # spin in loop waiting for data from the

bpl RXloop # debugger in RX.

before reading the RX register to get the address to branch to, restore

the state of the IC (saved in DBG_r14[0]) to the value it have at the

start of the debug handler stub. Also, note it must be restored before

Hot-Debug for Intel XScale® Core Debug
Hot-Debug Implementation

White Paper 17

reading the RX register because of limited scratch registers (r13)

mrc p15, 0, r13, c1, c0, 0

First, check DBG_LR[0] to see if the IC was enabled or disabled

tst r14, #0x1

Then, if it was previously disabled, then disable it now, otherwise,

there’s no need to change the state, because its already enabled.

biceq r13, r13, #0x1000

mcr p15, 0, r13, c1, c0, 0

Restore the link register value

bic r14, r14, #0x1

Now r13 can be used to read RX and get the target address to branch to.

mrc p14, 0, r13, c9, c0, 0 # Read RX and

mov pc, r13 # branch to downloaded address.

scratch memory space used by the invalidate IC line function above.

.align 5 # make sure it starts at a cache line

boundary, so nothing else is affected

line2:

.word 0

.word 0

.word 0

.word 0

.word 0

.word 0

.word 0

.word 0

Hot-Debug for Intel XScale® Core Debug
Requirements and Restriction

18 White Paper

6.0 Requirements and Restriction

6.1 Addressing

The Hot-Debug code must be placed in one-to-one virtual to physical memory space as defined by
the memory management unit (MMU) descriptor tables. When Hot-Debug is entered, the processor
enters Special Debug State (SDS) and the instruction memory management unit is disabled. This
turns off instruction virtual addressing. When addressing for virtual and physical instructions is not
the same, then the instruction pointer will be pointing to an incorrect location as soon as SDS is
entered. Many Intel XScale® microarchitecture applications relocate the startup code in Flash to a
different physical address and RAM is virtually addressed to address 0x0 as illustrated in Figure 5.
To make this work in Hot-Debug, place the Hot-Debug code in Flash and have the moved Flash
located in one-to-one virtual to physical memory space.

Hot-Debug for Intel XScale® Core Debug
Requirements and Restriction

White Paper 19

When the processor enters Special Debug State and virtual addressing for instructions is disabled,
the vector table must be located at physical address 0x0 (or 0xffff0000 when high vectors are
enabled) when the table is located in Flash or RAM, or the vector table must be located at virtual
address 0x0 (or 0xffff0000 when high vectors are enabled) when the table is locked in cache. When
RAM is virtually addressed to 0x0, then the vector table at virtual address 0x0 must be loaded into
the instruction cache by the application before the Hot-Debug JTAG connection is made. The
cache line at address 0x0 must be loaded and locked into the main instruction cache. When the
Hot-Debug code is relocated in RAM then that code must also be lock in cache.

Figure 5. Addressing Example

Flash

At reset, before
initialization code runs.
Addr: 0x00000000

Vector table

After initialization
Code has run.
Addr: 0x00000000

RAM

Vector table

After initialization
Code has run.
Addr: 0x00000000

RAM location is
undefined, must
be initialized by
code.

Vector table
Flash

Addr: 0xFFFFFFFF Addr: 0xFFFFFFFF Addr: 0xFFFFFFFF

Physical Addressing Physical Addressing Virtual Addressing

RAM

Vector table

Flash

Vector table

Addr: 0xA0000000

Addr: 0xF0000000 Addr: 0xF0000000

RAM

Hot-Debug for Intel XScale® Core Debug
Requirements and Restriction

20 White Paper

Code to lock the vector table into the main instruction cache at address 0x0 should be similar to the
following:

@ clean, drain, flush the main Dcache

ldr r1, =DCACHE_FLUSH_AREA @ use a CACHEABLE area of memory

mov r0, #1024 @ number of lines in the Dcache

Loop_1:

mcr p15, 0, r1, c7, c2, 5 @ allocate a Dcache line

add r1, r1, #32 @ increment to the next cache line

subs r0, r0, #1 @ decrement the loop count

bne Loop_1

@ Prepare to lock vector table into icache line.

@ The icache lock function requires that instruction caching be disabled.

@ When the MMU is on, this is accomplished by setting the descriptor C bit to 0

mrc p15, 0, r8, c2, c0, 0 @ Translation Table Base address

ldr r10, =0x0FFFFFFF @

and r8, r8, r10 @ Convert to virtual

mov r9, pc, lsr #20 @ get current address

add r8, r8, r9 @ pointer to current memory descriptor

ldr r9, [r8] @ get descriptor and preserve value

ldr r10, =0xFFFFFFF7 @ Mask C bit to disable instruction cache.

and r10, r9, r10

str r10, [r8]

mov r1, #0

mcr p15, 0, r0, c7, c10, 4 @ drain the write and fill buffers

mcr p15, 0, r0, c7, c7, 0 @ invalidate Icache, Dcache and BTB

mcr p15, 0, r0, c8, c7, 0 @ invalidate instruction and data TLBs

mcr p15, 0, r0, c7, c10, 4 @ drain the write and fill buffers

CPWAIT r1

mcr p15, 0, r0, c9, c1, 0; @ Lock Vector table into icache

CPWAIT r1

str r9, [r8] @ restore descriptor table value

mcr p15, 0, r8, c7, c10,1 @ clean Dcache so that descriptor is in RAM

mcr p15, 0, r0, c7, c10,4 @ drain the write and fill buffers

mcr p15, 0, r0, c7, c7, 0 @ invalidate Icache, Dcache and BTB

mcr p15, 0, r0, c8, c7, 0 @ invalidate instruction and data TLBs

CPWAIT r1

Hot-Debug for Intel XScale® Core Debug
Requirements and Restriction

White Paper 21

When the debugger connects to the target in halt mode and halts application program execution, the
processor enters Special Debug State and it remains in Special Debug State until the debugger lets
the application program run again. When the application is running to the next breakpoint, to a halt,
or to the next instruction in a step, it is not in Special Debug State and virtual addressing for data
and instructions is valid. When the breakpoint occurs, the processor interrupts the application code
again and the processor re-enters Special Debug State.

In Special Debug State, all events (interrupts, aborts, etc.) are disabled and instruction virtual
addressing is turned off. When the processor returns to the application, virtual addressing is valid
again and any pending exceptions (interrupts, aborts, etc.) are also valid and the application code
will need to service them. Special Debug State is described in detail in Section 13.5.1 of the Intel®
80200 Processor based on Intel XScale® Microarchitecture Developer’s Manual or in Section 9.5.1
of the Intel XScale® Core Developer’s Manual.

Hot-Debug for Intel XScale® Core Debug
Requirements and Restriction

22 White Paper

6.2 Application Code

The following restrictions apply to the Hot-Debug code that is added to the application code and
must be met to ensure proper Hot-Debug functionality:

The code must be in a cacheable region of memory. The debug handler stub will temporarily enable
the instruction cache allowing the polling loops used to communicate with the debugger to get
cached. When the code is non-cacheable, the polling loop is small enough such that it can execute
out of the fill buffers; however, since these same fill buffers are used when loading code into the
mini-instruction cache through JTAG, there is a conflict for these resources.

Use of R13 in DBG mode is very restrictive and must be handled carefully. The code provided
above has been tested for correct behavior. Any changes to the code may cause improper
Hot-Debug behavior.

When the vector table is in RAM or Flash and it is virtually addressed, the application code must
lock the vector table into the main instruction cache prior to the first Hot-Debug connection. Before
locking, the application code must do a global invalidate to ensure that the target address is not
already resident in the instruction cache. When the vector table is locked into cache, the address of
the vector table will be the same whether the processor is in Special Debug State or not.

Hot-Debug for Intel XScale® Core Debug
Requirements and Restriction

White Paper 23

6.3 Debugger

The following restrictions apply to the debugger and must be met to ensure proper Hot-Debug
functionality:

When the debug handler is downloaded into the mini-instruction cache, each line must first be
invalidated through JTAG. Then the code for that cache line can be downloaded. This ensures that
an address is not valid in multiple places in the instruction cache (main or mini).

After the complete debug handler and vector table is downloaded into the mini-instruction cache,
the debugger must wait 50 TCKs before removing the LDIC JTAG instruction from the JTAG IR.
This ensures that the last line of the debug handler is correctly updated in the mini-instruction
cache. Refer to the Intel XScale® Core Developer’s Manual, Chapter 9.

The debugger must leave the system in the proper state before exiting. Before ending the debug
session, the debugger must do the following:

Clear the Halt Mode bit. The problem occurs when the processor is reset and there is no debug
session in progress. The reset clears the global debug enable bit in the DCSR. However, when the
Halt

Mode bit is set, application software cannot write to the DCSR (unless the processor is in Special
Debug State). So the global debug enable bit does not really get set by the reset handler, and the
debugger is then not able to use the external debug break to initiate a debug session.

Invalidate the Branch Target Buffer (BTB). This can only be done via the debug handler.
Invalidating the BTB ensures that the BTB does not contain cached branch targets that were there
for debug but now are no longer valid. This mainly applies to the vector table since this is probably
the only debug code that overlaps the applications code.

Do not invalidate the mini-instruction cache by line or in entirety through JTAG. Invalidating the
mini-instruction cache also invalidates the instruction fill buffers and when done when the
processor attempts to refill the buffers it incorrectly uses the invalidated address instead of the
current instruction address which interferes with the target application that is running. It is not
necessary to invalidate the debug handler code because this is placed in a location where the
application does not have any code. Even through the debugger leaves the handler there, it should
not rely on it remaining intact. On the next Hot-Debug connection, the debug handler should be
downloaded again.

Set the DCSR.moe bits to 111b. This allows a debugger to detect that Hot-Debug is supported
when attempting a subsequent debug sessions.

At the end of the debug session, the debug handler code must invalidate address 0x0 and
0xffff0000 using the MCR commands. Address 0x0 and 0xffff0000 are the two locations where the
processor looks for the vector tables.

Hot-Debug for Intel XScale® Core Debug
Conclusion

24 White Paper

7.0 Conclusion

Hot-Debug enables debugging in configurations where a system reset is not appropriate and it is
achieved entirely with software.

	Hot-Debug for Intel XScale® Core Debug
	1.0 Introduction
	1.1 Reference Documents
	1.2 Document Organization

	2.0 Debug Functional Overview
	Figure 1. Debug Components
	Table 1. Summary of Debugger, Debug Handler, and Application Code Functionality

	3.0 Traditional Debug
	Figure 2. Traditional Xscale JTAG Connection Flow Chart
	Figure 3. Code Download During a Cold Reset For Debug

	4.0 Hot-Debug
	Figure 4. Hot-Debug JTAG Connection Flow Chart

	5.0 Hot-Debug Implementation
	Table 2. DCSR.moe Encodings
	Table 3. Debugger and Debug Handler Actions During Download

	6.0 Requirements and Restriction
	6.1 Addressing
	Figure 5. Addressing Example

	6.2 Application Code
	6.3 Debugger

	7.0 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

