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1.1

1.11

About This Document

This document is the authoritative and definitive reference for the external architecture of the Intel
X Scale® corel.

This document describes two variants of the Intel X Scal€® core that differ only in the performance
monitoring and the size of the JTAG instruction register. Software can detect which variant it is
running on by examining the CoreGen field of Coprocessor 15, ID Register (bits 15:13). (See
Table 7-4, “ID Register” on page 7-81 for more details.) A CoreGen value of Ox1 isreferred to as
XSC1 and avalue of 0x2 isreferred to as XSC2.

Intel Corporation assumes no responsibility for any errors which may appear in this document nor
does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice. In
particular, descriptions of features, timings, and pin-outs does not imply a commitment to
implement them.

How to Read This Document

It is necessary to be familiar with the ARM Version 5TE Architecturein order to understand some
aspects of this document.

Each chapter in this document focuses on a specific architectural feature of the Intel X Scale® core,
* Chapter 2, “Programming Model”
* Chapter 3, “Memory Management”
® Chapter 4, “Instruction Cache”
* Chapter 5, “Branch Target Buffer”
* Chapter 6, “Data Cache”
* Chapter 7, “Configuration”
* Chapter 8, “Performance Monitoring”
* Chapter 9, “ Software Debug”
* Chapter 10, “Performance Considerations’

Severa appendices are al so present:
* Appendix A, “Optimization Guide” covers instruction scheduling techniques.
* Appendix B, “Test Features’ describes the JTAG unit.

All the “buzz words’ and acronyms found throughout this document are captured in Section 1.3.2,
“Terminology and Acronyms’ on page 1-19, located at the end of this chapter.

1. ARM* architecture compliant.

Developer's Manual January, 2004 13



Intel XScale® Core Developer’s Manual =
Introduction I n e

1.1.2

14

Other Relevant Documents

* ARM Architecture Version 5TE Specification Document Number: ARM DDI 0100E
This document describes Version 5TE of the ARM Architecture which includes Thumb | SA
and ARM DSP-Enhanced ISA. (ISBN 0 201 737191)

* SrongARM SA-1100 Microprocessor Developer’s Manual, Intel Order # 278105
* SrongARM SA-110 Microprocessor Technical Reference Manual, Intel Order #278104
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High-Level Overview of the Intel XScale ® Core

The Intel XScale® coreisan ARM V5TE compliant microprocessor. It has been designed for high
performance and |ow-power; leading the industry in mW/MIPs. The core is not intended to be
delivered as a stand alone product but as a building block for an ASSP (Application Specific
Standard Product) with embedded markets such as handheld devices, networking, storage, remote
acCess Sefvers, etc.

The Intel XScale® core incorporates an extensive list of architecture features that allowsit to
achieve high performance. This rich feature set alows programmers to select the appropriate
features that obtains the best performance for their application. Many of the architectural features
added to the Intel XScale® core hel p hide memory latency which often is a serious impediment to
high performance processors. Thisincludes:

* the ability to continue instruction execution even while the data cache isretrieving data from
external memory.

* awrite buffer.
* write-back caching.
* various data cache allocation policies which can be configured different for each application.

* and cache locking.
All these features improve the efficiency of the memory bus external to the core.

The Intel XScale® core has been equipped to efficiently handle audio processing through the
support of 16-bit data typesand 16-bit operations. These audio coding enhancements center around
multiply and accumulate operations which accelerate many of the audio filter operations.

ARM Compatibility

ARM VerS| on 5 (V5) Architecture added floating point instructionsto ARM Version 4. The Intel
X Scale® core implements the integer instruction set architecture of ARM V5, but does not provide
hardware support of the floating point instructions.

The Intel XScale® core provides the Thumb instruction set (ARM V5T) and the ARM V5E DSP
extensions.

Backward compatibility with StrongARM* products is maintained for user-mode applications.
Operating systems may require modifications to match the specific hardware features of the Intel
X Scale® core and to take advantage of the performance enhancements added.
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1.2.2 Features

Figure 1-1 shows the major functional blocks of the Intel X Scale® core. The following sections
give abrief, high-level overview of these blocks.

Figure 1-1.  Architecture Features

1221 Multiply/Accumulate (MAC)

The MAC unit supports early termination of multiplies/accumulatesin two cyclesand can sustain a
throughput of a MAC operation every cycle. Several architectura enhancements were made to the
MAC to support audio coding algorithms, which include a 40-bit accumulator and support for
16-bit packed data.

See Section 2.3, “ Extensions to ARM Architecture” on page 2-23 for more details.

16 January, 2004 Developer’s Manual



intel.

1.22.2

1.2.2.3

1224

1.2.2.5

Intel XScale® Core Developer’'s Manual
Introduction

Memory Management

The Intel XScale® core implements the Memory Management Unit (MMU) Architecture specified
in the ARM Architecture Reference Manual. The MMU provides access protection and virtual to
physical address translation.

The MMU Architecture also specifies the caching policies for the instruction cache and data
memory. These palicies are specified as page attributes and include:

* identifying code as cacheable or non-cacheable

* selecting between the mini-data cache or data cache

* write-back or write-through data caching

* enabling data write allocation policy

¢ and enabling the write buffer to coalesce stores to external memory

Chapter 3, “Memory Management” discusses this in more detail.

Instruction Cache

The Intel XScale® core comes with either a16 K or 32 K byte instruction cache. The sizeiis
determined by the ASSP. The instruction cache is 32-way set associative and has aline size of

32 bytes. All requeststhat “miss’ the instruction cache generate a 32-byte read request to external
memory. A mechanism to lock critical code within the cache is also provided.

Chapter 4, “Instruction Cache” discusses thisin more detail.

Branch Target Buffer

The Intel XScale® core provides a Branch Target Buffer (BTB) to predict the outcome of branch
type instructions. It provides storage for the target address of branch type instructions and predicts
the next address to present to the instruction cache when the current instruction address is that of a
branch.

The BTB holds 128 entries. See Chapter 5, “Branch Target Buffer” for more details.

Data Cache

The Intel XScale® core comes with either a16 K or 32 K byte data cache. The sizeis determined
by the ASSP. Besides the main data cache, a mini-data cache is provided whose size is 1/161 the
main data cache. So a32 K, 16 K byte main data cache would havea 2 K, 1 K byte mini-data cache
respectively. The main data cache is 32-way set associative and the mini-data cache is 2-way set
associative. Each cache has aline size of 32 bytes, supports write-through or write-back caching.

The data/mini-data cache is controlled by page attributes defined in the MM U Architecture and by
coprocessor 15.

Chapter 6, “Data Cache” discusses al thisin more detail.

The Intel XScale® core allows applications to re-configure a portion of the data cache as data
RAM. Software may place special tables or frequently used variablesin this RAM. See

Section 6.4, “ Re-configuring the Data Cache as Data RAM” on page 6-71 for more information on
this.
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1.2.2.6 Performance Monitoring

Performance monitoring counters have been added to the Intel X Scale® core that can be configured
to monitor various events in the core. These events allow a software devel oper to measure cache
efficiency, detect system bottlenecks and reduce the overall latency of programs.

Chapter 8, “Performance Monitoring” discusses thisin more detail.

1.2.2.7 Power Management
The Intel XScale® core incorporates a power and clock management unit that can assist ASSPs in

controlling their clocking and managing their power. These features are described in Section 7.3,
“CP14 Registers’ on page 7-96.

1.2.2.8 Debug
The Intel XScale® core supports software debugging through two instruction address breakpoint
registers, one data-address breakpoint register, one data-address/mask breakpoint register, and a
trace buffer.

Chapter 9, “Software Debug” discusses this in more detail.

1.2.2.9 JTAG
Testability is supported on the Intel X Scale® core through the Test Access Port (TAP) Controller
implementation, which is based on IEEE 1149.1 (JTAG) Standard Test Access Port and
Boundary-Scan Architecture. The purpose of the TAP controller is to support test logic internal and
external to the core such as built-in self-test and boundary-scan.

Appendix B discusses thisin more detail.
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1.3 Terminology and Conventions

1.3.1 Number Representation

All numbersin this document can be assumed to be base 10 unless designated otherwise. In text and
pseudo code descriptions, hexadecimal numbers have a prefix of Ox and binary numbers have a prefix
of Ob. For example, 107 would be represented as 0x6B in hexadecimal and 0b1101011 in binary.

1.3.2 Terminology and Acronyms

ASSP
Assert
BTB

Clean

Coalescing

Deassert
Flush

XSC1

XSC2

Reserved

Developer’'s Manual

Application Specific Standard Product
Thisterm refersto the logically active value of asigna or bit.
Branch Target Buffer

A clean operation updates external memory with the contents of the specified linein
the data/mini-data cache if any of the dirty bitsare set and thelineisvalid. Thereare
two dirty bits associated with each line in the cache so only the portion that is dirty
will get written back to externa memory.

After this operation, the lineis still valid and both dirty bits are deasserted.

Coalescing means bringing together a new store operation with an existing store
operation already resident in the write buffer. The new storeis placed in the same
write buffer entry as an existing store when the address of the new store fallsin the
4 word aligned address of the existing entry. Thisincludes, in PCI terminology, write
merging, write collapsing, and write combining.

Thisterm refersto thelogically inactive value of asignal or bit.

A flush operation invalidatesthe location(s) in the cache by deasserting the valid bit.
Individual entries (lines) may be flushed or the entire cache may be flushed with one
command. Once an entry isflushed in the cache it can no longer be used by the
program.

X SC1 refersto avariant of the Intel X Scale® core denoted by a CoreGen
(Coprocessor 15, ID Register) value of Ox1. Thisvariant hasa 2 counter performance
monitor and a 5-bit JTAG instruction register. See Table 7-4, “ID Register” on

page 7-81 for more details.

X SC2 refersto avariant of the Intel XScale® core denoted by a CoreGen
(Coprocessor 15, ID Register) value of 0x2. Thisvariant hasa 4 counter performance
monitor and a 7-bit JTAG instruction register. See Table 7-4, “ID Register” on

page 7-81 for more details.

A reserved field isafield that may be used by an implementation. If the initial value
of areserved field is supplied by software, this value must be zero. Software should
not modify reserved fields or depend on any valuesin reserved fields.
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Programming Model 2

This chapter describes the programming model of the Intel X Scale® core, namely the
implementation options and extensions to the ARM Version 5TE architecture.

2.1 ARM Architecture Compatibility

The Intel XScale® core implements the integer instruction set architecture specified in ARM
V5TE. T refers to the Thumb instruction set and E refers to the DSP-Enhanced instruction set.

ARM V5TE introduces afew more architecture features over ARM V4, specifically the addition of
tiny pages (1 Kbyte), anew instruction (CL Z) that counts the leading zeroes in a data value,
enhanced ARM-Thumb transfer instructions and a modification of the system control coprocessor,
CP15.

2.2 ARM Architecture Implementation Options

2.2.1 Big Endian versus Little Endian

The Intel XScale® core supports both big and little endian data representation. The B-bit of the
Control Register (Coprocessor 15, register 1, bit 7) selects big and little endian mode. To runin big
endian mode, the B bit must be set before attempting any sub-word accesses to memaory, or
undefined results will occur. Note that this bit takes effect even if the MMU is disabled.

2.2.2 26-Bit Architecture

The Intel XScale® core does not support 26-bit architecture.

2.2.3 Thumb

The Intel XScale® core supports the Thumb instruction set.
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2.2.5
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ARM DSP-Enhanced Instruction Set

The Intel XScale® core implements the ARM DSP-enhanced instruction set which is aset of
instructions that boost the performance of signal processing applications. There are new multiply
instructions that operate on 16-bit data values and new saturation instructions. Some of the new
instructions are:

* SMLAXy 32<=16x16+32

* SMLAWY 32<=32x16+32

* SMLALXy 64<=16x16+64

* SMULXxy 32<=16x16

* SMULWy 32<=32x16

* QADD adds two registers and saturates the result if an overflow occurred

* QDADD doubles and saturates one of the input registers then add and saturate

* QSUB subtracts two registers and saturates the result if an overflow occurred

* QDSUB doubles and saturates one of the input registers then subtract and saturate

The Intel XScal€® core also implements LDRD, STRD and PL D instructions with the following
implementation notes:

* PLD isinterpreted as aread operation by the MMU and isignored by the data breakpoint unit
(i.e., PLD will never generate data breakpoint events).

* PLD to anon-cacheable page performs no action. Also, if the targeted cacheline is already
resident, this instruction has no affect.

¢ Both LDRD and STRD instructions will generate an alignment exception when the address
bits[2:0] = 0b100.

MCRR and MRRC are only supported on the Intel X Scale® core when directed to coprocessor 0
and are used to access the internal accumulator. See Section 2.3.1.2 for more information. Access
to coprocessors 15 and 14 generate an undefined instruction exception. Refer to the Intel X Scal e®
core implementation option section of the ASSP architecture specification for the behavior when
accessing al other coprocessors.

Base Register Update

If adataabort is signalled on amemory instruction that specifies writeback, the contents of the
base register will not be updated. This holds for al load and store instructions. This behavior
matches that of the first generation StrongARM processor and is referred to in the ARM V5TE
architecture as the Base Restored Abort Model.
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2.3 Extensions to ARM Architecture

The Intel XScale® core made afew extensions to the ARM Version 5TE architecture to meet the
needs of various markets and design requirements. The following isalist of the extensions which
are discussed in the next sections.

* A DSP coprocessor (CP0) has been added that contains a 40-bit accumulator and eight new
instructions.

* New page attributes were added to the page table descriptors. The C and B page attribute
encoding was extended by one more bit to allow for more encodings: write allocate and
mini-data cache. An ASSP definable attribute (P bit) was also added.

* Additional functionality has been added to coprocessor 15. Coprocessor 14 was also created.

* Enhancements were made to the Event Architecture, which include instruction cache and data
cache parity error exceptions, breakpoint events, and imprecise external data aborts.

2.3.1 DSP Coprocessor 0 (CPO0)

The Intel XScale® core adds a DSP coprocessor to the architecture for the purpose of increasing
the performance and the precision of audio processing agorithms. This coprocessor contains a
40-bit accumulator and 8 new instructions.

Note:  Products using the Intel XScale® core may extend the definition of CPO. If thisis the case, a
complete definition can be found in the Intel X Scale® core implementation option section of the
ASSP architecture specification. For this very reason, software should not rely on behavior that is
specific to the 40-bit length of the accumulator, since the length may be extended.

The 40-bit accumulator is referenced by severa new instructions that were added to the
architecture; MIA, MIAPH and M | Axy are multiply/accumulate instructions that reference the
40-bit accumulator instead of aregister specified accumulator. MAR and M RA provide the ability
to read and write the 40-bit accumulator.

Accessto CP0 isaways allowed in al processor modes when bit 0 of the Coprocessor Access

Register is set. Any accessto CPO when this bit is clear will cause an undefined exception. (See
Section 7.2.15, “Register 15: Coprocessor Access Register” on page 7-94 for more details).

Note: Only privileged software can set this bit in the Coprocessor Access Register.
The 40-bit accumulator will need to be saved on a context switch if multiple processes are using it.

Two new instruction formats were added for coprocessor 0: Multiply with Internal Accumulate
Format and Internal Accumulate Access Format. The formats and instructions are described next.
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23.1.1 Multiply With Internal Accumulate Format

A new multiply format has been created to define operations on 40-bit accumulators. Table 2-1,
“Multiply with Internal Accumulate Format” on page 2-24 shows the layout of the new format.
The opcode for this format lies within the coprocessor register transfer instruction type. These
instructions have their own syntax.

Table 2-1. Multiply with Internal Accumulate Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
cond 1(1{12|0|0 O 1|0| opcode_3 Rs oj0|0]|0 acc 1 Rm
Bits Description Notes

31:28 cond - ARM condition codes

The Intel XScale® core defines the following:
0b0000 = MIA
0b1000 = MIAPH
opcode_3 - specifies the type of multiply with 0b1100 - MIABB
internal accumulate 0b1101 = MIABT
0b1110 = MIATB
Ob1111 = MIATT
The effect of all other encodings are
unpredictable.

19:16

15:12 Rs - Multiplier

The Intel XScale® core only implements accO;
7:5 acc - select 1 of 8 accumulators access to any other acc has an unpredictable
effect.

3:0 Rm - Multiplicand

Two new fields were created for this format, acc and opcode 3. The acc field specifies 1 of 8
internal accumulators to operate on and opcode_3 defines the operation for this format. The Intel
X Scale® core defines a single 40-bit accumul ator referred to as accO; future implementations may
define multiple internal accumulators. The Intel X Scal€® core uses opcode 3 to define six
instructions, MIA, MIAPH, MIABB, MIABT, MIATB and MIATT.
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Table 2-2. MIA{<cond>} acc0O, Rm, Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

cond 1/1(1{0|{0 O 1|0(0 O 0 O Rs 0 00 0|0 0 O0f1 Rm

Operation: if ConditionPassed(<cond>) then
accO = (Rn{31:0] * Rs[31:0])[39:0] + accO[39:0]

Exceptions: none

Qualifiers Condition Code
No condition code flags are updated

Not es: Early termination is supported. Instruction timngs can be found
in Section 10.4.4, “Multiply Instruction Timngs” on page 10-168.
Specifying RL5 for register Rs or Rm has unpredictable results.
accO is defined to be 0b0O00 on the core.

The MIA instruction operates similarly to MLA except that the 40-bit accumulator isused. MIA
multiplies the signed value in register Rs (multiplier) by the signed value in register Rm
(multiplicand) and then adds the result to the 40-bit accumulator (accO).

MIA does not support unsigned multiplication; all valuesin Rsand Rm will be interpreted as
signed datavalues. M1 A is useful for operating on signed 16-bit data that was loaded into a general
purpose register by LDRSH.

The instruction is only executed if the condition specified in the instruction matches the condition
code status.

Table 2-3. MIAPH{<cond>} accO, Rm, Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

cond 1/1(1{0|{0 O 1|01 0 0 O Rs 0 00 0|0 0 O0f1 Rm

Operation: if ConditionPassed(<cond>) then
accO = sign_extend(Rn{31:16] * Rs[31:16]) +
sign_extend(Rn 15: 0] * Rs[15:0]) +
accO[ 39: 0]
Exceptions: none
Qualifiers Condition Code
S bit is always cleared; no condition code flags are updated
Not es: Instruction timngs can be found
in Section 10.4.4, “Miltiply Instruction Timngs” on page 10-168.
Specifying RL5 for register Rs or Rm has unpredictable results.
accO is defined to be 0b0O0O0 on the core

The M1 APH instruction performs two16-bit signed multiplies on packed half word data and
accumul ates these to a single 40-bit accumulator. The first signed multiplication is performed on
the lower 16 bits of the value in register Rs with the lower 16 bits of the value in register Rm. The
second signed multiplication is performed on the upper 16 bits of the value in register Rs with the
upper 16 bits of the value in register Rm. Both signed 32-bit products are sign extended and then
added to the value in the 40-bit accumulator (accO).

The instruction is only executed if the condition specified in the instruction matches the condition
code status.
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Table 2-4. MIAxy{<cond>} accO, Rm, Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1/1(1|{0|0 O 1|01 1 x vy Rs 0 00 0|0 0 O0f1 Rm

Operation: if ConditionPassed(<cond>) then
if (bit[17] == 0)
<operandl> = Rnf 15: 0]
el se
<operandl> = Rni 31:16]

if (bit[16] == 0)
<operand2> = Rs[15: 0]
el se
<operand2> = Rs[ 31: 16]

acc0[ 39: 0] = sign_extend(<operandl> * <operand2>) + accO[39:0]

Exceptions: none
Qualifiers Condition Code
S bit is always cleared; no condition code flags are updated

Not es: Instruction timngs can be found
in Section 10.4.4, “Miltiply Instruction Timngs” on page 10-168.

Specifying R15 for register Rs or Rmhas unpredictable results.
accO is defined to be Ob000 on the core.

The MIAXxy instruction performs onel6-bit signed multiply and accumulates theseto asingle
40-bit accumulator. x refersto either the upper half or lower half of register Rm (multiplicand) and
y refers to the upper or lower half of Rs (multiplier). A value of Ox1 will select bits[31:16] of the
register which is specified in the mnemonic as T (for top). A value of 0x0 will select bits[15:0] of
the register which is specified in the mnemonic as B (for bottom).

MIAXxy does not support unsigned multiplication; all valuesin Rs and Rm will be interpreted as
signed data values.

The instruction is only executed if the condition specified in the instruction matches the condition
code status.
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Internal Accumulator Access Format

The Intel XScale® core defines a new instruction format for accessing internal accumulatorsin
CPO. Table 2-5, “Internal Accumulator Access Format” on page 2-27 shows that the opcode falls
into the coprocessor register transfer space.

The RdHi and RdLo fields allow up to 64 bits of datatransfer between StrongARM registersand an
internal accumulator. The acc field specifies 1 of 8 internal accumulators to transfer data to/from.
The core implements a single 40-bit accumul ator referred to as accO; future implementations can
specify multiple internal accumulators of varying sizes, up to 64 bits.

Accessto theinterna accumulator is allowed in al processor modes (user and privileged) aslong
bit 0 of the Coprocessor Access Register is set. (See Section 7.2.15, “ Register 15: Coprocessor
Access Register” on page 7-94 for more details).

The Intel XScale® core implements two instructions MAR and MRA that move two ARM
registers to accO and move accO to two ARM registers, respectively.

Internal Accumulator Access Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

cond 1{1(0(0|0|1|0|L RdHi RdLo 0 00 0O/(0OO0O0OO|O acc

Bits Description Notes

31:28 cond - ARM condition codes -

L - move to/from internal accumulator
20 0= move to internal accumulator (MAR) -
1= move from internal accumulator (MRA)

On a read of the acc, this 8-bit high order field
RdHi - specifies the high order eight (39:32) | will be sign extended.

19:16 . . . .
bits of the internal accumulator. On a write to the acc, the lower 8 bits of this
register will be written to acc[39:32]
15:12 RdLo - specifies the low order 32 bits of the )
’ internal accumulator
This field could be used in future
implementations to specify the type of
. saturation to perform on the read of an internal
74 Should be zero accumulator. (e.g., a signed saturation to
16-bits may be useful for some filter
algorithms.)
3 Should be zero -
2:0 acc - specifies 1 of 8 internal accumulators The core only implements acc0; access to

any other acc is unpredictable

MAR has the same encoding asM CRR (to coprocessor 0) and M RA has the same encoding as
MRRC (to coprocessor 0). These instructions move 64-bits of datato/from ARM registers from/to
coprocessor registers. MCRR and MRRC are defined in ARM’s DSP instruction set.

Disassemblers not aware of M AR and MRA will produce the following syntax:

MCRR{ <cond>} pO, O0x0, RdLo, RdH, cO
MRRC{ <cond>} pO0, O0x0, RdLo, RdHi, cO
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Table 2-6.

Table 2-7.
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MAR({<cond>} accO, RdLo, RdHi

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

cond 1|j1(0|0|0f1|0|O0 RdHi RdLo 0 0O0O0|0O0OO|O0|]O0 00O

Operation: if ConditionPassed(<cond>) then
acc0[39:32] = RdHi [ 7: 0]
acc0[ 31: 0] = RdLo[31:0]
Exceptions: none
Qualifiers Condition Code
No condition code flags are updated
Not es: Instruction timngs can be found in
Section 10.4.4, “Miltiply Instruction Timngs” on page 10-168
Specifying R15 as either RdH or RdLo has unpredictable results.

The MAR instruction moves the value in register RdL o to bitg[31:0] of the 40-bit accumulator
(accO) and moves bitg[ 7:0] of the value in register RdHi into bitg 39:32] of accO.

The instruction is only executed if the condition specified in the instruction matches the condition
code status.

This instruction executes in any processor mode.

MRA{<cond>} RdLo, RdHi, accO

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

cond 1]j1(0|0|0f1|0(1 RdHi RdLo 0 0O0O0|0O0OO|O0|]O0 00O

Operation: if ConditionPassed(<cond>) then
RdHi [ 31: 0] = si gn_extend(accO[ 39: 32])
RdLo[ 31: 0] accO[ 31: 0]
Exceptions: none
Qualifiers Condition Code
No condition code flags are updated
Not es: Instruction timngs can be found in
Section 10.4.4, “Miltiply Instruction Timngs” on page 10-168
Specifying the sane register for RdH and RdLo has unpredictable
results.

Specifying R15 as either RdH or RdLo has unpredictable results.

The MRA instruction moves the 40-bit accumulator value (acc0) into two registers. Bitg31:0] of
the value in accO are moved into the register RdLo. Bitg[39:32] of the value in accO are sign
extended to 32 bits and moved into the register RdHi.

The instruction is only executed if the condition specified in the instruction matches the condition
code status.

This instruction executes in any processor mode.
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New Page Attributes

The Intel XScale® core extends the page attributes defined by the C and B bits in the page

descriptors with an additional X bit. This bit allows four more attributes to be encoded when X=1.
These new encodings include allocating data for the mini-data cache and write-allocate caching. A
full description of the encodings can be found in Section 3.2.2, “Memory Attributes’ on page 3-38.

The Intel XScale® core retains ARM definitions of the C and B encoding when X = 0, which is
different than the StrongARM products. The memory attribute for the mini-data cache has been
moved and replaced with the write-through caching attribute.

When write-allocate is enabled, a store operation that misses the data cache (cacheable data only)
will generate alinefill. If disabled, alinefill only occurs when aload operation misses the data
cache (cacheable data only).

Write-through caching causes al store operations to be written to memory, whether they are
cacheable or not cacheable. This feature is useful for maintaining data cache coherency.

The Intel XScale® core also adds a P bit in the first level descri ptorsto alow an ASSPto identify a
new memory attribute. Refer to the Intel X Scale® core implementation option section of the ASSP
architecture specification to find out how the P bit has been defined. Bit 1 in the Control Register
(coprocessor 15, register 1, opcode=1) is used to assigned the P bit memory attribute for memory
accesses made during page table walks.

These attributes are programmed in the translation table descriptors, which are highlighted in
Table 2-8, “First-level Descriptors’ on page 2-30, Table 2-9, “ Second-level Descriptors for Coarse
Page Table” on page 2-30 and Table 2-10, “ Second-level Descriptors for Fine Page Table” on
page 2-30. Two second-level descriptor formats have been defined for the core, oneis used for the
coarse page table and the other is used for the fine page table.
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Table 2-8. First-level Descriptors
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SBz 0ofo0
Coarse page table base address P | Domain SBZ 01
Section base address SBz TEX AP | P| Domain o|c{B|1]|0
Fine page table base address SBZ | P| Domain SBZ 111
Table 2-9. Second-level Descriptors for Coarse Page Table
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SBz 0ofo0
Large page base address TEX AP3 | AP2 | AP1 | APO [C|B|0 |1
Small page base address AP3 | AP2 | AP1 | APO [C|B|1]|O0
Extended small page base address SBZ TEX AP |[C|Bf1l]|1

Table 2-10.  Second-level Descriptors for Fine Page Table

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SBz 00

Large page base address TEX AP3 | AP2 | AP1 | APO |[C|B|0|1

Small page base address AP3 | AP2 | AP1 | APO |[C|B|1{0

Tiny Page Base Address TEX AP |C|B|1]|1

The TEX (Type Extension) field is present in several of the descriptor types. In the core, only the
LSB of thisfield is defined; thisis called the X bit. The remaining bits should be programmed as
zero (SBZz).

A Small Page descriptor does not have a TEX field. For these descriptors, TEX isimplicitly zero;
that is, they operate asif the X bit had a‘0" value.

The X bit, when set, modifies the meaning of the C and B bits. Description of page attributes and
their encoding can be found in Chapter 3, “Memory Management”.
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2.3.3 Additions to CP15 Functionality

To accommodate the functionality in the Intel X Scale® core, registersin CP15 and CP14 have been
added or augmented. See Chapter 7, “ Configuration” for details.

At timesit is necessary to be able to guarantee exactly when a CP15 update takes effect. For
example, when enabling memory address translation (turning on the MMU)), it is vital to know
when the MM U isactually guaranteed to bein operation. To address this need, a processor-specific
code sequence is defined for the core. The sequence -- called CPWAIT -- is shown in Example 2-1
on page 2-31.

Example 2-1. CPWAIT: Canonical method to wait for CP15 update

;7 The followi ng nmacro should be used when software needs to be
;; assured that a CP15 update has taken effect.

It may only be used while in a privileged node, because it
;; accesses CP15.

MACRO CPWAI T
MRC P15, 0, RO, C2, €0, O ; arbitrary read of CP15
MOV RO, RO ;o owait for it
SUB PC, PC, #4 ; branch to next instruction

; At this point, any previous CP15 wites are
; guaranteed to have taken effect.
ENDM

When setting multiple CP15 registers, system software may opt to delay the assurance of their
update. Thisisaccomplished by executing CPWAIT only after the sequence of MCR instructions.

Notee The CPWAIT sequence guarantees that CP15 side-effects are complete by the time the CPWAIT is
complete. It is possible, however, that the CP15 side-effect will take place before CPWAIT
completesor is issued. Programmers should take care that this does not affect the correctness of
their code.
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Table 2-12.
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Event Architecture

Exception Summary

intel.

Table 2-11 shows all the exceptions that the core may generate, and the attributes of each.

Subsequent sections give details on each exception.

Exception Summary

Exception Description Exception Type 2 Precise? Updates FAR?
Reset Reset N N
FIQ FIQ N N
IRQ IRQ N N
External Instruction Prefetch Y N
Instruction MMU Prefetch Y N
Instruction Cache Parity Prefetch Y N
Lock Abort Data Y N
MMU Data Data Y Y
External Data Data N N
Data Cache Parity Data N N
Software Interrupt Software Interrupt Y N
Undefined Instruction Undefined Instruction Y N
Debug Events® varies varies N

a. Exception types are those described in the ARM, section 2.5.

b. Refer to Chapter 9, “Software Debug” for more details

Event Priority

The Intel X Scale® core follows the exception priority specified in the ARM Architecture Reference
Manual. The processor has additional exceptions that might be generated while debugging. For
information on these debug exceptions, see Chapter 9, “ Software Debug”.

Event Priority

Exception Priority
Reset 1 (Highest)
Data Abort (Precise & Imprecise) 2
FIQ 3
IRQ 4
Prefetch Abort 5
Undefined Instruction, SWI 6 (Lowest)
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2.34.3 Prefetch Aborts

The Intel XScale® core detects three types of prefetch aborts: Instruction MMU abort, externa
abort on an instruction access, and an instruction cache parity error. These aborts are described in
Table 2-13.

When a prefetch abort occurs, hardware reports the highest priority onein the extended Status field
of the Fault Status Register. The value placed in R14 _ABORT (the link register in abort mode) is
the address of the aborted instruction + 4.

Table 2-13.  Encoding of Fault Status for Prefetch Aborts

Priority

Sources

FS[10,3:0]2

Domain

FAR

Highest

Instruction MMU Exception

Several exceptions can generate this encoding:
- translation faults

- domain faults, and

- permission faults

It is up to software to figure out which one occurred.

0b10000

invalid

invalid

External Instruction Error Exception

This exception occurs when the external memory system
reports an error on an instruction cache fetch.

O0b10110

invalid

invalid

Lowest

Instruction Cache Parity Error Exception

Ob11000

invalid

invalid

a.  All other encodings not listed in the table are reserved.
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Table 2-14.
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Data Aborts

tel.

Two types of data aborts exist in the Intel X Scal €® core: precise and imprecise. A precise data
abort is defined as one where R14_ABORT always contains the PC (+8) of the instruction that
caused the exception. An imprecise abort is one where R14 ABORT contains the PC (+4) of the
next instruction to execute and not the address of the instruction that caused the abort. In other
words, instruction execution will have advanced beyond the instruction that caused the data abort.

On the core, precise data aborts are recoverable and impreci se data aborts are not recoverable.

Precise Data Aborts

* A lock abort is a precise data abort; the extended Status field of the Fault Status Register is set
to 0xb10100. This abort occurs when alock operation directed to the MMU (instruction or
data) or instruction cache causes an exception, due to either atrandation fault, access

permission fault or external bus fault.

The Fault Address Register is undefined and R14_ABORT is the address of the aborted
instruction + 8.

* A dataMMU abort is precise. These are due to an alignment fault, translation fault, domain
fault, permission fault or external data abort on an MMU trandlation. The statusfieldissetto a
predetermined ARM definition which is shown in Table 2-14, “Encoding of Fault Status for
Data Aborts’ on page 2-34.

The Fault Address Register is set to the effective data address of the instruction and

R14 ABORT isthe address of the aborted instruction + 8.

Encoding of Fault Status for Data Aborts

Priority Sources FS[10,3:0]2 Domain FAR
Highest | Alignment 0b000x1 invalid valid
. First level 0b01100 invalid valid
External Abort on Translation Second level 0b01110 valid | valid
: Section 0b00101 invalid valid
Translation Page 0b00111 valid valid
) Section 0b01001 valid valid
Domain Page 0b01011 valid valid
e Section 0b01101 valid valid
Permission Page 0b01111 valid | valid
Lock Abort
This data abort occurs on an MMU lock operation (data or 0b10100 invalid | invalid
instruction TLB) or on an Instruction Cache lock operation.
Imprecise External Data Abort 0b10110 invalid invalid
Lowest | Data Cache Parity Error Exception 0b11000 invalid invalid

a.  All other encodings not listed in the table are reserved.

Imprecise data aborts

* A data cache parity error isimprecise; the extended Status field of the Fault Status Register is
set to 0xb11000.

¢ All external data aborts except for those generated on adata MMU tranglation are imprecise.

The Fault Address Register for al imprecise data aborts is undefined and R14_ABORT isthe
address of the next instruction to execute + 4, which isthe same for both ARM and Thumb mode.
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Although the core guarantees the Base Restored Abort Model for precise aborts, it cannot do so in
the case of imprecise aborts. A Data Abort handler may encounter an updated base register if it is
invoked because of an imprecise abort.

Impreci se data aborts may create scenarios difficult for an abort handler to recover. Both external data
aborts and data cache parity errors may result in corrupted targeted register data. Because these faults
are imprecise, it is possble corrupted datawill have been used before the Data Abort fault handler is
invoked. Because of this, software should treat impreci se data aborts as unrecoverable. Even memory
accesses marked as “stall until complete” (see Section 3.2.2.4) can result in imprecise data aborts.
For these types of accesses, the fault is somewhat |ess imprecise than the general case: it is
guaranteed to be raised within three instructions of the instruction that caused it. In other words, if
a“stall until complete” LD or ST instruction triggers an imprecise fault, then that fault will be seen
by the program within three instructions.

With this knowledge, it is possible to write code that accesses “stall until complete” memory with

impunity. Simply place several NOP instructions after such an access. If an imprecise fault occurs,
it will do so during the NOPs; the data abort handler will see identical register and memory state as
it would with a precise exception, and so should be able to recover. An example of thisisshown in
Example 2-2 on page 2-35.

Example 2-2. Shielding Code from Potential Imprecise Aborts

2.3.4.5

Exanpl e of code that nmintains architectural state through the
;7 window where an inprecise fault m ght occur.

LD RO, [R1] ; RL points to stall-until-conplete
regi on of nenory

NOP

NOoP

NOoP

; Code beyond this point is guaranteed not to see any aborts

; fromthe LD.

If a system design precludes events that could cause external aborts, then such precautions are not
necessary.
Multiple Data Aborts

Multiple data aborts may be detected by hardware but only the highest priority one will be
reported. If the reported data abort is precise, software can correct the cause of the abort and
re-execute the aborted instruction. If the lower priority abort still exists, it will be reported.
Software can handle each abort separately until the instruction successfully executes.

If the reported data abort is imprecise, software needs to check the SPSR to see if the previous
context was executing in abort mode. If thisis the case, the link back to the current process has
been lost and the data abort is unrecoverable.

Events from Preload Instructions

A PLD instruction will never cause the Data MMU to fault for any of the following reasons:
¢ Domain Fault
* Permission Fault
* Trandation Fault

If execution of the PL D would cause one of the above faults, then the PL D causes no effect.
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This feature allows software to issue PL Ds speculatively. For example, Example 2-3 on page 2-36
places a PL D instruction early in the loop. This PL D is used to fetch data for the next loop
iteration. In this example, thelist is terminated with a node that has a null pointer. When execution
reaches the end of thelist, the PLD on address Ox0 will not cause a fault. Rather, it will be ignored
and the loop will terminate normally.

Example 2-3. Speculatively issuing PLD

2.3.4.6

36

RO points to a node in a linked list. A node has the follow ng |ayout:
O fset Contents
0 data
4 pointer to next node
This code conmputes the sumof all nodes in a list. The sumis placed into R9.

MOV R9, #0 ; Clear accunul ator
sumLi st :
LDR R1, [RO, #4] ; Rl gets pointer to next node
LDR R3, [RO] ; R3 gets data fromcurrent node
PLD [ R1] ; Specul atively start |oad of next node
ADD R9, R9, R3 ; Add into accunul ator
MOVS RO, R1 ; Advance to next node. At end of list?
BNE sunii st ; If not then |oop

Debug Events

Debug events are covered in Section 9.5, “ Debug Exceptions’ on page 9-126.
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Memory Management 3

3.1

Note:

This chapter describes the memory management unit implemented in the Intel X Scale® core.

Overview

The Intel XScale® core implements the Memory Management Unit (MM U) Architecture specified
in the ARM Architecture Reference Manual. To accelerate virtua to physical address trand ation,
the core uses both an instruction Translation L ook-aside Buffer (TLB) and adata TLB to cache the
latest trandlations. Each TLB holds 32 entries and is fully-associative. Not only do the TLBs
contain the trandated addresses, but al so the access rights for memory references.

If aninstruction or data TL B miss occurs, a hardware trandation-table-walking mechanism is
invoked to trandate the virtual addressto a physical address. Once trandated, the physical addressis
placed inthe TLB aong with the access rights and attri butes of the page or section. These translations
can also be locked down in either TLB to guarantee the performance of critical routines.

The Intel XScale® core allows system software to associate various attributes with regions of
memory:

* cacheable

¢ bufferable

¢ lineallocate policy
* write policy

* |/O

* mini Data Cache
* Codescing

* an ASSP definable attribute - P bit (Refer to the Intel X Scale® core implementation section of
the ASSP architecture specification for more information.)

See Section 3.2.2, “Memory Attributes’ on page 3-38 for adescription of page attributes and
Section 2.3.2, “New Page Attributes’ on page 2-29 to find out where these attributes have been
mapped in the MMU descriptors.

The virtual address with which the TLBs are accessed may be remapped by the PID register. See
Section 7.2.13, “Register 13: Process |D” on page 7-91 for a description of the PID register.
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3.2

3.2.1

3.2.2

3.221

3.2.2.2

3.2.2.3

38

Architecture Model

Version 4 vs. Version 5

ARM* MMU Version 5 Architecture introduces the support of tiny pages, which are 1 KBytein
size. Thereserved field in the first-level descriptor (encoding Ob11) isused as the fine page table
base address. The exact bit fields and the format of the first and second-level descriptors can be
found in Section 2.3.2, “New Page Attributes’ on page 2-29.

Memory Attributes

The attributes associated with a particular region of memory are configured in the memory
management page table and control the behavior of accessesto the instruction cache, data cache,
mini-data cache and the write buffer. These attributes are ignored when the MMU is disabled.

To allow compatibility with older system software, the new core attributes take advantage of
encoding space in the descriptors that was formerly reserved.

Page (P) Attribute Bit

The P bit allows an ASSP to assign its own page attribute to a memory region. Thisbit isonly
present in the first level descriptors. Refer to the Intel X Scale® core implementation section of the
ASSP architecture specification to find out how this has been defined. Accessesto memory for
page table walks do not use the MMU. The core provides ASSP definable memory attributes for
these accesses in the Auxiliary Control Register. See Table 7-7, “ Auxiliary Control Register” on
page 7-84.

Cacheable (C), Bufferable (B), and eXtension (X) Bits

Instruction Cache
When examining these bitsin a descriptor, the Instruction Cache only utilizes the C bit. If the C bitis

clear, the Ingtruction Cache considers a code fetch from that memory to be non-cacheable, and will not
fill a cache entry. If the C bit is set, then fetches from the associated memory region will be cached.
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3.224 Data Cache and Write Buffer
All of these descriptor bits affect the behavior of the Data Cache and the Write Buffer.
If the X bit for adescriptor is zero, the C and B bits operate as mandated by the ARM architecture.
Thisbehavior is detailed in Table 3-1.
If the X bit for a descriptor isone, the C and B bits' meaning is extended, as detailed in Table 3-2.
Table 3-1. Data Cache and Buffer Behavior when X =0
Line
CB Cacheable? Bufferable? Write Policy Allocation Notes
Policy
00 N N - - Stall until complete?
01 N Y - -
10 Y Y Write Through Read Allocate
11 Y Y Write Back Read Allocate
a. Normally, the processor will continue executing after a data access if no dependency on that access is encountered. With
this setting, the processor will stall execution until the data access completes. This guarantees to software that the data ac-
cess has taken effect by the time execution of the data access instruction completes. External data aborts from such access-
es will be imprecise (but see Section 2.3.4.4 for a method to shield code from this imprecision).
Table 3-2. Data Cache and Buffer Behavior when X = 1
Line
CB Cacheable? Bufferable? Write Policy Allocation Notes
Policy
00 - - - - Unpredictable -- do not use
Writes will not coalesce into
01 N Y ) ) buffers?
- Cache policy is determined
10 ('\gggﬁgta - - - by MD field of Auxiliary
Control register?
. Read/Write
11 Y Y Write Back Allocate
a. Normally, bufferable writes can coalesce with previously buffered data in the same address range
b. See Section 7.2.2 for a description of this register
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3.2.2.5

3.2.2.6

Table 3-3.

3.2.3

40

Details on Data Cache and Write Buffer Behavior

If the MMU is disabled all data accesseswill be non-cacheable and non-bufferable. Thisis the
same behavior as when the MMU is enabled, and a data access uses a descriptor with X, C, and B
all setto 0.

The X, C, and B bits determine when the processor should place new datainto the Data Cache. The
cache places data into the cache in lines (also called blocks). Thus, the basis for making adecision
about placing new datainto the cacheisacalled a“Line Allocation Policy”.

If the Line Allocation Policy is read-allocate, all load operations that miss the cache request a
32-byte cache line from external memory and allocate it into either the data cache or mini-data
cache (thisis assuming the cache is enabled). Store operations that miss the cache will not cause a
line to be all ocated.

If read/write-allocateisin effect, load or store operationsthat miss the cache will request a 32-byte
cache line from external memory if the cache is enabled.

The other policy determined by the X, C, and B bitsisthe Write Policy. A write-through policy
instructs the Data Cache to keep external memory coherent by performing stores to both external
memory and the cache. A write-back policy only updates external memory when alinein the cache

is cleaned or needs to be replaced with anew line. Generally, write-back provides higher
performance because it generates less data traffic to external memory.

More detail s on cache policies may be gleaned from Section 6.2.3, “ Cache Policies’ on page 6-65.

Memory Operation Ordering

A fence memory operation (memop) is one that guarantees all memops issued prior to the fence
will execute before any memop issued after the fence. Thus software may issue afence to impose a
partial ordering on memory accesses.

Table 3-3 on page 3-40 shows the circumstances in which memops act as fences.

Any swap (SWP or SWPB) to a page that would create afence on aload or storeisafence.

Memory Operations that Impose a Fence

operation X C B
load 0
store 1 0 1
load or store 0 0 0
Exceptions

The MMU may generate prefetch aborts for instruction accesses and data aborts for data memory
accesses. The types and priorities of these exceptions are described in Section 2.3.4, “Event
Architecture” on page 2-32.

Data address alignment checking is enabled by setting bit 1 of the Control Register (CP15,
register 1). Alignment faults are still reported even if the MMU is disabled. All other MMU
exceptions are disabled when the MMU is disabled.
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3.3 Interaction of the MMU, Instruction Cache, and Data
Cache

The MMU, instruction cache, and data/mini-data cache may be enabled/disabled independently.
The instruction cache can be enabled with the MM U enabled or disabled. However, the data cache
can only be enabled when the MMU is enabled. Therefore only three of the four combinations of
the MM U and data/mini-data cache enables are vaid. The invaid combination will cause
undefined results.

Table 3-4. Valid MMU & Data/mini-data Cache Combinations

MMU Data/mini-data Cache
Off Off
On Off
On On
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3.4

34.1

3.4.2

Control

Invalidate (Flush) Operation

Theentireinstruction and data TL B can be invalidated at the same time with one command or they can
beinvalidated separately. An individua entry in the dataor instruction TLB can aso beinvdidated.
See Table 7-13, “TLB Functions’ on page 7-89 for alisting of commands supported by the core.

Globally invalidating a TLB will not affect locked TLB entries. However, the invalidate-entry
operations can invalidate individual locked entries. In this case, the locked remainsin the TLB, but

will never “hit” on an address translation. Effectively, aholeisinthe TLB. This situation may be
rectified by unlocking the TLB.

Enabling/Disabling

The MMU is enabled by setting bit 0 in coprocessor 15, register 1 (Control Register).

When the MMU is disabled, accesses to the instruction cache default to cacheable and all accesses
to data memory are made non-cacheable.

A recommended code sequence for enabling the MMU is shown in Example 3-1 on page 3-42.

Example 3-1. Enabling the MMU

42

; This routine provides software with a predictable way of enabling the MV.
; After the CPWAIT, the MW is guaranteed to be enabled. Be aware
; that the MU will be enabl ed sonetine after MCR and before the instruction
; that executes after the CPWAIT.
Progranmm ng Note: This code sequence requires a one-to-one virtual to
; physical address mapping on this code since
; the MU nay be enabled part way through. This would allow the instructions
after MCR to execute properly regardless the state of the MV.

MRC P15, 0, RO, C1, C0, 0; Read CP15, register 1
ORR RO, RO, #0x1; Turn on the MW
MCR P15, 0, RO, C1, C0,0; Wite to CP15, register 1

For a description of CPWAIT, see
Section 2.3.3, “Additions to CP15 Functionality” on page 2-31

CPWAI T

; The MMJ is guaranteed to be enabled at this point; the next instruction or
data address will be translated.
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Locking Entries

Individual entries can be locked into the instruction and data TL Bs. See Table 7-14, “Cache
Lockdown Functions” on page 7-90 for the exact commands. If alock operation finds the virtual
address tranglation already resident in the TLB, the results are unpredictable. An invalidate by
entry command before the lock command will ensure proper operation. Software can also
accomplish this by invalidating all entries, as shown in Example 3-2 on page 3-43.

Locking entriesinto either theingtruction TLB or data TLB reduces the available number of entries (by
the number that was locked down) for hardware to cache other virtual to physical addresstrandations.

A procedure for locking entriesinto the instruction TLB is shown in Example 3-2 on page 3-43.
If aMMU abort is generated during an instruction or data TLB lock operation, the Fault Status

Register isupdated to indicate aLock Abort (see Section 2.3.4.4, “Data Aborts’ on page 2-34), and
the exception is reported as a data abort.

Example 3-2. Locking Entries into the Instruction TLB

Note:

R1, R2 and R3 contain the virtual addresses to translate and lock into
; the instruction TLB.

; The value in RO is ignored in the follow ng instruction.
Har dwar e guar antees that accesses to CP15 occur in program order

MCR P15,0,R0,C8,C5,0 ; Invalidate the entire instruction TLB

MCR P15, 0, R1, C10,C4,0 ; Translate virtual address (Rl) and lock into

; instruction TLB
MCR P15, 0, R2, C10,C4,0 ; Translate

; virtual address (R2) and lock into instruction TLB
MCR P15, 0, R3,C10,C4,0 ; Translate virtual address (R3) and lock into

; instruction TLB

CPVAI T

; The MMU is guaranteed to be updated at this point; the next instruction wll
; see the locked instruction TLB entries.

If exceptions are allowed to occur in the middle of this routine, the TLB may end up caching a
translation that is about to be locked. For example, if R1 isthe virtual address of an interrupt
service routine and that interrupt occurs immediately after the TLB has been invalidated, the lock
operation will be ignored when the interrupt service routine returns back to this code sequence.
Software should disable interrupts (FIQ or IRQ) in this case.

Asageneral rule, software should avoid locking in all other exception types.

Developer's Manual January, 2004 43



Intel XScale® Core Developer’s Manual =
Memory Management In €

The proper procedure for locking entries into the data TL B is shown in Example 3-3 on page 3-44.

Example 3-3. Locking Entries into the Data TLB

a4

Note:

R1, and R2 contain the virtual addresses to translate and |l ock into the data TLB

MCR P15,0,R1, C8,C6, 1 ; Invalidate the data TLB entry specified by the
; virtual address in Rl

MCR P15, 0, R1, C10, C8, 0 ; Translate virtual address (R1l) and lock into
; data TLB

Repeat sequence for virtual address in R2

MCR P15,0,R2,C8,C6, 1 ; Invalidate the data TLB entry specified by the
virtual address in R2

MCR P15, 0, R2, C10, C8, 0 ; Translate virtual address (R2) and lock into
data TLB

CPVAI T ; wait for locks to conplete

The MWJ is guaranteed to be updated at this point; the next instruction wll
see the | ocked data TLB entries.

Care must be exercised here when allowing exceptions to occur during this routine whose handlers
may have data that liesin apage that is trying to be locked into the TLB.

January, 2004 Developer’s Manual



intel.

3.4.4

Figure 3-1.

Intel XScale® Core Developer’'s Manual
Memory Management

Round-Robin Replacement Algorithm

The line replacement algorithm for the TLBs is round-robin; there is a round-robin pointer that
keepstrack of the next entry to replace. The next entry to replace is the one sequentially after the
last entry that was written. For example, if the last virtual to physical address trandation was
written into entry 5, the next entry to replaceisentry 6.

At reset, the round-robin pointer is set to entry 31. Once atrandation iswritten into entry 31, the
round-robin pointer gets set to the next available entry, beginning with entry 0 if no entries have
been locked down. Subsequent translations move the round-robin pointer to the next sequentia
entry until entry 31 is reached, where it will wrap back to entry O upon the next trand ation.

A lock pointer is used for locking entries into the TLB and is set to entry O at reset. A TLB lock
operation places the specified trandation at the entry designated by the lock pointer, movesthe
lock pointer to the next sequential entry, and resets the round-robin pointer to entry 31. Locking
entriesinto either TLB effectively reduces the available entries for updating. For example, if the
first three entries were locked down, the round-robin pointer would be entry 3 after it rolled over
from entry 31.

Only entries 0 through 30 can be locked in either TLB; entry 31can never be locked. If the lock
pointer isat entry 31, alock operation will update the TLB entry with the translation and ignore the
lock. In this case, the round-robin pointer will stay at entry 31.

Example of Locked Entries in TLB

Eight entries locked, 24 entries available for
round robin replacement

entry O
entry 1

Locked

entry 7 = -
entry 8

entry 22
entry 23

entry 30
entry 31
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Instruction Cache 4

4.1

Note:

Figure 4-1.

The Intel XScale® core instruction cache enhances performance by reducing the number of
instruction fetches from external memory. The cache provides fast execution of cached code. Code
can also be locked down when guaranteed or fast accesstimeis required.

Overview
Figure 4-1 shows the cache organization and how the instruction addressis used to access the cache.

Theinstruction cacheis available as a 32K or 16K byte, 32-way set associative cache. The size
determines the number of sets; a32K byte cache has 32 sets and the 16K byte cache has 16 sets.
Each set, irrespective of size, contains 32 ways. Each way of a set contains eight 32-bit words and
onevalid bit, which isreferred to asaline. The replacement policy is around-robin algorithm and
the cache al so supports the ability to lock code in at aline granularity.

The instruction cacheis virtually addressed and virtually tagged.

The virtual address presented to the instruction cache may be remapped by the PID register. See
Section 7.2.13, “Register 13: Process |D” on page 7-91 for a description of the PID register.

Instruction Cache Organization

) aSet 31
Example' 32K byte cache "1 _way 0 8 Words (cache line)
way 1 ) 7
Set Index ‘G‘
Setl CAM DlAlT
>| way 0 | 8 Wards (cache line)
aSet 0 I wavi1 1
way 0 8 Words (cache line)
way 1
This example
shows Set 0 being CAM DATA
selected by the
set index.
way 31
b CAM: Content
Tag Addressable Memory
Word Select ‘\ *
Instruction Word
(4 bytes)
Instruction Address (Virtual) - 32K byte cache
31 10 9 5 4 2 10
Tag Set Index Word
Instruction Address (Virtual) - 16K byte cache
31 9 8 5 4 2 10
I Tag Set Index | Word I
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4.2 Operation

4.2.1 Operation When Instruction Cache is Enabled

When the cache is enabled, it compares every instruction request address against the addresses of
instructionsthat it is currently holding. If the cache contains the requested instruction, the access
“hits” the cache, and the cache returns the requested instruction. If the cache does not contain the
requested instruction, the access “misses’ the cache, and the cache requests a fetch from externa
memory of the 8-word line (32 bytes) that contains the requested instruction using the fetch policy
described in Section 4.2.3. As the fetch returns instructions to the cache, they are placed in one of
two fetch buffers and the requested instruction is delivered to the instruction decoder.

A fetched line will be written into the cache if it is cacheable. Code is designated as cacheable
when the Memory Management Unit (MMU) is disabled or when the MMU is enable and the
cacheable (C) bitisset to 1 inits corresponding page. See Chapter 3, “Memory Management” for a
discussion on page attributes.

Note that an instruction fetch may “miss’ the cache but “hit” one of the fetch buffers. When this
happens, the requested instruction will be delivered to the instruction decoder in the same manner
as acache “hit.”

4.2.2 Operation When The Instruction Cache Is Disabled

Disabling the cache prevents any lines from being written into the instruction cache. Although the
cacheisdisabled, it isstill accessed and may generate a“hit” if the datais already in the cache.

Disabling the instruction cache does not disable instruction buffering that may occur within the
instruction fetch buffers. Two 8-word instruction fetch bufferswill always be enabled in the cache
disabled mode. So long as instruction fetches continue to “hit” within either buffer (even in the
presence of forward and backward branches), no external fetches for instructions are generated. A
miss causes one or the other buffer to be filled from external memory using thefill policy described
in Section 4.2.3.
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Fetch Policy

An instruction-cache “miss’ occurs when the requested instruction is not found in the instruction
fetch buffers or instruction cache; a fetch request is then made to external memory. The instruction
cache can handle up to two “misses.” Each external fetch request uses a fetch buffer that holds
32-bytes and eight valid bits, one for each word.

A miss causes the following:
1. A fetch buffer isalocated
2. Theinstruction cache sends afetch request to the external bus. Thisrequest isfor a 32-byteline.

3. Instructions words are returned back from the external bus, at a maximum rate of 1 word per
core cycle. As each word returns, the corresponding valid bit is set for the word in the fetch
buffer.

4. Assoon asthe fetch buffer receives the requested instruction, it forwards the instruction to the
instruction decoder for execution.

5. When all words have returned, the fetched line will be written into the instruction cacheif it is
cacheable and enabled. The line chosen for update in the cache is controlled by the
round-robin replacement algorithm. This update may evict avalid line at that location.

6. Once the cache is updated, the eight valid bits of the fetch buffer are invalidated.

Round-Robin Replacement Algorithm

The line replacement algorithm for the instruction cache is round-robin. Each set in the instruction
cache has a round-robin pointer that keeps track of the next line (in that set) to replace. The next
line to replace in a set is the one &fter the last line that was written. For example, if the line for the
last external instruction fetch was written into way 5-set 2, the next line to replace for that set
would be way 6. None of the other round-robin pointers for the other sets are affected in this case.

After reset, way 31 is pointed to by the round-robin pointer for al the sets. Once alineis written
into way 31, the round-robin pointer points to the first available way of a set, beginning with way0
if no lines have been locked into that particular set. Locking lines into the instruction cache
effectively reduces the available lines for cache updating. For example, if the first three lines of a
set were locked down, the round-robin pointer would point to the line at way 3 after it rolled over
from way 31. Refer to Section 4.3.4, “Locking Instructions in the Instruction Cache” on page 4-54
for more details on cache locking.
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4.2.5

Parity Protection

The instruction cache is protected by parity to ensure dataintegrity. Each instruction cache word
has 1 parity bit. (Theinstruction cache tag isNOT parity protected.) When a parity error is detected
on an instruction cache access, a prefetch abort exception occurs if the core attempts to execute the
instruction. Before servicing the exception, hardware place a notification of the error in the Fault
Status Register (Coprocessor 15, register 5).

A software exception handler can recover from an instruction cache parity error. This can be
accomplished by invalidating the instruction cache and the branch target buffer and then returning
to the instruction that caused the prefetch abort exception. A simplified code exampleis shown in
Example 4-1 on page 4-50. A more complex handler might choose to invalidate the specific line
that caused the exception and then invalidate the BTB.

Example 4-1. Recovering from an Instruction Cache Parity Error

50

Prefetch abort handl er

MCR P15,0,R0,C7,C5,0 ; Invalidate the instruction cache and branch target
; buffer
CPVAI T ; wait for effect (see Section 2.3.3 for a

description of CPWAIT)

SUBS PC, R14, #4 ; Returns to the instruction that generated the
; parity error

; The Instruction Cache is guaranteed to be invalidated at this point

If aparity error occurs on an instruction that is locked in the cache, the software exception handler
needs to unlock the instruction cache, invalidate the cache and then re-lock the code in before it
returns to the faulting instruction.
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Instruction Fetch Latency

Theinstruction fetch latency is dependent on the core to memory frequency ratio, system bus
bandwidth, system memory, etc., which are all particular to each ASSP. So, refer to the Intel
X Scale® core implementation option section of the ASSP architecture specification for exact
details on instruction fetch latency.

Instruction Cache Coherency

Theinstruction cache does not detect modification to program memory by loads, stores or actions
of other bus masters. Several situations may require program memory modification, such as
uploading code from disk.

The application program is responsible for synchronizing code modification and invalidating the
cache. In general, software must ensure that modified code space is not accessed until modification
and invalidating are completed.

To achieve cache coherence, instruction cache contents can be invalidated after code modification
in external memory is complete. Refer to Section 4.3.3, “Invalidating the Instruction Cache” on
page 4-53 for the proper procedure in invalidating the instruction cache.

If the instruction cache is not enabled, or code is being written to a non-cacheable region, software
must still invalidate the instruction cache before using the newly-written code. This precaution
ensures that state associated with the new code is not buffered elsewhere in the processor, such as
the fetch buffers or the BTB.

Naturally, when writing code as data, care must be taken to force it completely out of the processor
into external memory before attempting to execute it. If writing into a non-cacheable region,
flushing the write buffersis sufficient precaution (see Section 7.2.8 for adescription of this
operation). If writing to a cacheable region, then the data cache should be submitted to a
Clean/Invalidate operation (see Section 6.3.3.1) to ensure coherency.
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4.3.2

Instruction Cache Control

Instruction Cache State at RESET

After reset, the instruction cacheis always disabled, unlocked, and invalidated (flushed).

Enabling/Disabling

Theinstruction cacheis enabled by setting bit 12 in coprocessor 15, register 1 (Control Register).
This processisillustrated in Example 4-2, Enabling the Instruction Cache.

Example 4-2. Enabling the Instruction Cache

52

; Enabl e the I Cache
MRC P15, 0, RO, C1, CO, O ; CGet the control register
ORR RO, RO, #0x1000 ; set bit 12 -- the | bit
MCR P15, 0, RO, Ci1, CO, O ; Set the control register
CPWAIT
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Invalidating the Instruction Cache

The entire instruction cache along with the fetch buffers are invalidated by writing to

coprocessor 15, register 7. (See Table 7-12, “Cache Functions’ on page 7-87 for the exact
command.) This command does not unlock any lines that were locked in the instruction cache nor
doesit invalidate those locked lines. To invalidate the entire cache including locked lines, the
unlock instruction cache command needs to be executed before the invalidate command. This
unlock command can also be found in Table 7-14, “Cache Lockdown Functions’ on page 7-90.

Thereis an inherent delay from the execution of the instruction cache invalidate command to
where the next instruction will see the result of the invalidate. The following routine can be used to
guarantee proper synchronization.

Example 4-3. Invalidating the Instruction Cache

MCR P15,0,R1,C7,C5,0 ; Invalidate the instruction cache and branch
; target buffer

CPVAI T

; The instruction cache is guaranteed to be invalidated at this point; the next
instruction sees the result of the invalidate command.

The Intel XScal€® core also supportsinvalidating anindividual line from theinstruction cache. See
Table 7-12, “ Cache Functions” on page 7-87 for the exact command.
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Figure 4-2.

54

Locking Instructions in the Instruction Cache

Software has the ability to lock performance critical routines into the instruction cache. Up to

28 lines in each set can be locked; hardware will ignore the lock command if software istrying to
lock @l the linesin a particular set (i.e., ways 28-31can never be locked). When this happens, the
linewill still be allocated into the cache but the lock will be ignored. The round-robin pointer will
stay at way 31 for that set.

Lines can be locked into the instruction cache by initiating a write to coprocessor 15. (See
Table 7-14, “ Cache Lockdown Functions” on page 7-90 for the exact command.) Register Rd
contains the virtual address of the line to be locked into the cache.

There are several requirements for locking down code:

7. theroutine used to lock lines down in the cache must be placed in non-cacheable memory,
which means the MMU is enabled. As a corollary: no fetches of cacheable code should occur

while locking instructions into the cache.the code being locked into the cache must be
cacheable

8. theinstruction cache must be enabled and invalidated prior to locking down lines

Failure to follow these requirements will produce unpredictable results when accessing the
instruction cache.

System programmers should ensure that the code to lock instructionsinto the cache does not reside
closer than 128 bytes to a non-cacheable/cacheable page boundary. If the processor fetches ahead
into a cacheable page, then the first requirement noted above could be violated.

Lines are locked into a set starting at way 0 and may progress up to way 27; which set aline gets
locked into depends on the set index of the virtual address. Figure 4-2 is an example (32K byte

cache) of wherelines of code may be locked into the cache al ong with how the round-robin pointer
is affected.

Locked Line Effect on Round Robin Replacement

32K Byte Cache Example
set 0: 8 ways locked, 24 ways available for round robin replacement
set 1: 23 ways locked, 9 ways available for round robin replacement
set 2: 28 ways locked, only way28-31 available for replacement
set 31: all 32 ways available for round robin replacement

set0 setl set 2 set 31
way 0 - o
way 1 9
[5]
: o
- - © ©
way 7 = - 2 o
way 8 g g
) )
Wa:y 22 B |
way 23
)4

way 30
way 31
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Software can lock down several different routines located at different memory locations. This may
cause some sets to have more locked lines than others as shown in Figure 4-2.

Example 4-4 on page 4-55 shows how aroutine, called “lockMe” in this example, might be locked
into the instruction cache. Note that it is possible to receive an exception while locking code (see
Section 2.3.4, “Event Architecture” on page 2-32).

Example 4-4. Locking Code into the Cache

4.3.5

| ockMe: ; This is the code that will be |l ocked into the cache
mov r0, #5
add r5, r1, r2

| ockMeEnd:

codelLock: ; here is the code to lock the “lockMe” routine
Idr r0, =(lockMe AND NOT 31); r0 gets a pointer to the first line we
shoul d | ock
Idr r1, =(lockMeEnd AND NOT 31); rl contains a pointer to the last line we
shoul d | ock

| ockLoop:
ncr pl5, 0, r0, c9, cl1, 0; lock next line of code into |ICache
cmpr0, rl ; are we done yet?
add r0, r0, #32 ; advance pointer to next line
bne | ockLoop ; if not done, do the next line

Unlocking Instructions in the Instruction Cache

The Intel XScale® core provides aglobal unlock command for the instruction cache. Writing to
coprocessor 15, register 9 unlocks all the locked lines in the instruction cache and leaves them
valid. These lines then become available for the round-robin replacement algorithm. (See
Table 7-14, “ Cache Lockdown Functions’ on page 7-90 for the exact command.)
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Branch Target Buffer )

5.1

Figure 5-1.

The Intel XScale® core uses dynamic branch prediction to reduce the penalties associated with
changing the flow of program execution. The core features a branch target buffer that provides the
instruction cache with the target address of branch type instructions. The branch target buffer is
implemented as a 128-entry, direct mapped cache.

This chapter is primarily for those optimizing their code for performance. An understanding of the
branch target buffer is needed in this case so that code can be scheduled to best utilize the
performance benefits of the branch target buffer.

Branch Target Buffer (BTB) Operation

The BTB stores the history of branches that have executed along with their targets. Figure 5-1
showsan entry inthe BTB, where thetag is the instruction address of a previously executed branch
and the data contains the target address of the previously executed branch along with two bits of
history information.

BTB Entry

TAG DATA

History

Branch Address[31:9,1] Target Address[31:1] Bits[1:0]

The BTB takes the current instruction address and checksto seeif this addressis a branch that was
previously seen. It uses bits [8:2] of the current address to read out the tag and then compares this
tag to bits [31:9,1] of the current instruction address. If the current instruction address matches the
tag in the cache and the history bits indicate that this branch is usualy taken in the past, the BTB
uses the data (target address) as the next instruction address to send to the instruction cache.

Bit[1] of the instruction addressisincluded in the tag comparison in order to support Thumb
execution. This organization means that two consecutive Thumb branch (B) instructions, with
instruction address bitg[8:2] the same, will contend for the same BTB entry. Thumb also requires
31 bits for the branch target address. In ARM mode, hit[1] is zero.
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Figure 5-2.

5.1.1

5.1.2

58

The history bits represent four possible prediction states for a branch entry in the BTB. Figure 5-2,
“Branch History” on page 5-58 shows these states along with the possible transitions. The initial
state for branches stored in the BTB is Weakly-Taken (WT). Every time a branch that exists in the
BTB isexecuted, the history bits are updated to reflect the latest outcome of the branch, either
taken or not-taken.

Chapter 10, “Performance Considerations’ describes which instructions are dynamically predicted
by the BTB and the performance penalty for mispredicting a branch.

The BTB does not have to be managed explicitly by software; it is disabled by default after reset
and isinvalidated when the instruction cache is invalidated.

Branch History

Taken

Taken

Not
Taken

Taken

Not Taken

Not Taken
Not Taken
SN: Strongly Not Taken ST: Strongly Taken
WN: Weakly Not Taken WT: Wesakly Taken

Reset

After Processor Reset, the BTB isdisabled and all entries are invalidated.

Update Policy

A new entry is stored into the BTB when the following conditions are met:
* the branch instruction has executed,
¢ the branch was taken
* thebranch is not currently inthe BTB

The entry is then marked valid and the history bits are set to WT. If another valid branch exists at
the same entry in the BTB, it will be evicted by the new branch.

Once abranchisstored in the BTB, the history bits are updated upon every execution of the branch
as shown in Figure 5-2.
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5.2 BTB Control

5.2.1 Disabling/Enabling

The BTB is adways disabled with Reset. Software can enable the BTB through abit in a
coprocessor register (see Section 7.2.2).

Before enabling or disabling the BTB, software must invalidate it (described in the following
section). This action will ensure correct operation in case stale dataisin the BTB. Software should
not place any branch instruction between the code that invalidates the BTB and the code that
enables/disablesit.

52.2 Invalidation

There are four ways the contents of the BTB can be invalidated.
1. Reset

2. Software can directly invaidate the BTB viaa CP15, register 7 function. Refer to
Section 7.2.8, “Register 7: Cache Functions” on page 7-87.

3. The BTB isinvalidated when the Process ID Register iswritten.

4. The BTB isinvalidated when the instruction cache is invalidated via CP15, register 7
functions.
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Data Cache 6

6.1

6.1.1

The Intel XScale® core data cache enhances performance by reducing the number of data accesses
to and from external memory. There are two data cache structuresin the core, adata cache with two
size options (32 K or 16 Kbytes) and amini-data cache that is 1/16" the size of the main data
cache. An eight entry write buffer and a four entry fill buffer are also implemented to decouple the
core instruction execution from external memory accesses, which increases overall system
performance.

Overviews

Data Cache Overview

The data cacheisavailable asa 32 K or 16 Kbyte, 32-way set associative cache. The size
determines the number of sets; a 32 Kbyte cache has 32 sets and the 16 Kbyte cache has 16 sets.
Each set, irrespective of size, contains 32 ways. Each way of a set contains 32 bytes (one cache
line) and one valid bit. There also exist two dirty bitsfor every line, one for the lower 16 bytes and
the other one for the upper 16 bytes. When a store hits the cache the dirty bit associated with it is
set. The replacement policy is around-robin algorithm and the cache al so supports the ability to
reconfigure each line as data RAM.

Figure 6-1, “Data Cache Organization” on page 6-62 shows the cache organization and how the
data address is used to access the cache.

Cache policies may be adjusted for particular regions of memory by altering page attribute bitsin
the MMU descriptor that controls that memory. See Section 3.2.2 for adescription of these bits.

The datacacheisvirtualy addressed and virtually tagged. It supports write-back and write-through
caching policies. The data cache always allocates a line in the cache when a cacheabl e read miss
occurs and will alocate aline into the cache on a cacheable write miss when write allocate is
specified by its page attribute. Page attribute bits determine whether a line gets allocated into the
data cache or mini-data cache.
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Figure 6-1. Data Cache Organization

»Set 31
Example: 32 Kbyte cache T way0 32 bytes (cache line)
il yles [ )
Set Index ‘O‘
L Set1 CAM DATA
7| _way0 | 32 hytes (cache line)
aSet 0 I wav1
way 0 32 hytes (cache line)
. way 1
This example shows
Set 0 being selected
by the set index. CAM DATA
way 31
N
Tag l l l l l l l l CAM: Content Addressable Memory
Word Select o *
Byte Alignment
I
Byte Select ”| sign Extension

Data Word .
(4 bytes to Destination Register)

Data Address (Virtual) - 32K byte cache
31 10 9 5 4 2 10
Tag Set Index Word Byte

Data Address (Virtual) - 16K byte cache
31 9 8 5 4 2 10
I Tag Set Index | Word I
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6.1.2 Mini-Data Cache Overview

The mini-data cache is 1/16™ the size of the data cache, so depending on the data cache size
selected the available sizes are 2 K or 1 Kbytes. The 2 Kbyte version has 32 sets and the 1 Kbyte
version has 16 sets; both versions are 2-way set associative. Each way of a set contains 32 bytes
(one cacheline) and one valid bit. There also exist 2 dirty bits for every line, one for the lower
16 bytes and the other one for the upper 16 bytes. When a store hits the cache the dirty bit
associated with it is set. The replacement policy is around-robin agorithm.

Figure 6-2, “Mini-Data Cache Organization” on page 6-63 shows the cache organization and how
the data address is used to access the cache.

The mini-data cache is virtually addressed and virtualy tagged and supports the same caching
policies as the data cache. However, lines can't be locked into the mini-data cache.

Figure 6-2.  Mini-Data Cache Organization

Example: 2K byte cache

aSet 31
" way0 | 32 hytes (cache line) |
[ wayl | |
Set Index . .
This example ;Iset g T : |
shgws Set0 _Set0 | ‘Max = 32 bytes (cache line)
being SeleCted by "l _way O 32 hytes (cache line) |_|
the set index. | way1l
Word Select

. | Byte Allgnment
”| sign Extension

Byte Select

Data Word
(4 bytes to Destination Register)

Data Address (Virtual) - 2K byte cache

31 10 9 5 4 2 10
Tag Set Index |Word Byt e
Data Address (Virtual) - 1K byte cache
31 9 8 5 4 2 10
Tag Set Index | Word
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Write Buffer and Fill Buffer Overview

The Intel XScale® core employs an eight entry write buffer, each entry containing 16 bytes. Stores
to external memory are first placed in the write buffer and subsequently taken out when the busis
available.

The write buffer supports the coalescing of multiple store requests to external memory. An
incoming store may coalesce with any of the eight entries.

Thefill buffer holds the external memory request information for a data cache or mini-data cache
fill or non-cacheable read request. Up to four 32-byte read request operations can be outstanding in
the fill buffer before the core needs to stall.

Thefill buffer has been augmented with a four entry pend buffer that captures data memory
requests to outstanding fill operations. Each entry in the pend buffer contains enough data storage
to hold one 32-bit word, specifically for store operations. Cacheable load or store operations that
hit an entry in the fill buffer get placed in the pend buffer and are completed when the associated
fill completes. Any entry in the pend buffer can be pended against any of the entries in the fill
buffer; multiple entries in the pend buffer can be pended against a single entry in the fill buffer.

Pended operations complete in program order.
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Data Cache and Mini-Data Cache Operation

The following discussions refer to the data cache and mini-data cache as one cache
(data/mini-data) since their behavior is the same when accessed.

Operation When Caching is Enabled

When the data/mini-data cache is enabled for an access, the data/mini-data cache compares the
address of the request against the addresses of datathat it is currently holding. If theline containing
the address of the request is resident in the cache, the access “hits' the cache. For aload operation
the cache returns the requested data to the destination register and for a store operation the datais
stored into the cache. The data associated with the store may aso be written to external memory if
write-through caching is specified for that area of memory. If the cache does not contain the
requested data, the access ‘misses’ the cache, and the sequence of eventsthat follows depends on
the configuration of the cache, the configuration of the MMU and the page attributes, which are
described in Section 6.2.3.2, “Read Miss Policy” on page 6-66 and Section 6.2.3.3, “Write Miss
Policy” on page 6-67 for aload “miss’ and store “miss” respectively.

Operation When Data Caching is Disabled

The data/mini-data cache is still accessed even though it isdisabled. If aload hits the cache it will

return the requested data to the destination register. If a store hits the cache, the data is written into
the cache. Any access that misses the cache will not allocate a line in the cache when it's disabled,
even if the MMU is enabled and the memory region’s cacheability attributeis set.

Cache Policies

Cacheability

Data at a specified address is cacheable given the following:
* the MMU isenabled
¢ the cacheable attribute is set in the descriptor for the accessed address
* and the data/mini-data cache is enabled
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Read Miss Policy

The following sequence of events occurs when a cacheable (see Section 6.2.3.1, “ Cacheability” on
page 6-65) load operation misses the cache:

1. Thefill buffer ischecked to seeif an outstanding fill request already exists for that line.

If so, the current request is placed in the pending buffer and waits until the previously
requested fill completes, after which it accesses the cache again, to obtain the request data and
returns it to the destination register.

If thereis no outstanding fill request for that line, the current load request is placed in thefill
buffer and a 32-byte external memory read request is made. If the pending buffer or fill buffer
isfull, the core will stall until an entry is available.

2. Alineisallocated in the cache to receive the 32 bytes of fill data. The line selected is
determined by the round-robin pointer (see Section 6.2.4, “ Round-Robin Replacement
Algorithm” on page 6-68). Theline chosen may contain avalid line previously alocated in the
cache. In this case both dirty bits are examined and if set, the four words associated with a
dirty bit that’s asserted will be written back to external memory as afour word burst operation.

3. When the data requested by the load isreturned from external memory, it isimmediately sent
to the destination register specified by the load. A system that returns the requested data back
first, with respect to the other bytes of the line, will obtain the best performance.

4. Asdatareturnsfrom external memory it is written into the cache in the previously allocated
line.

A load operation that misses the cache and is NOT cacheable makes a request from externa
memory for the exact data size of the original load request. For example, LDRH requests exactly
two bytes from external memory, L DR requests 4 bytes from external memory, etc. Thisrequest is
placed in the fill buffer until, the datais returned from external memory, which is then forwarded
back to the destination register(s).
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Write Miss Policy

A write operation that misses the cache will request a 32-byte cache line from external memory if
the access is cacheable and write allocation is specified in the page. In this case the following
sequence of events occur:

1. Thefill buffer is checked to seeif an outstanding fill request already exists for that line.

If s0, the current request is placed in the pending buffer and waits until the previously
requested fill completes, after which it writesits data into the recently allocated cache line.

If thereis no outstanding fill request for that line, the current store request is placed in the fill
buffer and a 32-byte external memory read request is made. If the pending buffer or fill buffer
isfull, the core will stall until an entry is available.

2. The 32 bytes of data can be returned back to the corein any word order, i.e, the eight words in
the line can be returned in any order. Note that it does not matter, for performance reasons,
which order the datais returned to the core since the store operation hasto wait until the entire
lineis written into the cache before it can compl ete.

3. When the entire 32-byte line has returned from external memory, alineis alocated in the
cache, selected by the round-robin pointer (see Section 6.2.4, “ Round-Robin Replacement
Algorithm” on page 6-68). The line to be written into the cache may replace avadid line
previously allocated in the cache. In this case both dirty bits are examined and if any are set,
the four words associated with a dirty bit that’'s asserted will be written back to external
memory as a4 word burst operation. This write operation will be placed in the write buffer.

4. Thelineiswritten into the cache along with the data associated with the store operation.

If the above condition for requesting a 32-byte cache lineis not met, awrite misswill cause awrite
request to external memory for the exact data size specified by the store operation, assuming the
write request doesn’t coalesce with another write operation in the write buffer.

Write-Back Versus Write-Through

The Intel XScale® core supports write-back caching or write-through caching, controlled through
the MMU page attributes. When write-through caching is specified, al store operations are written
to external memory even if the access hits the cache. This feature keeps the external memory
coherent with the cache, i.e., no dirty bits are set for this region of memory in the data/mini-data
cache. This however does not guarantee that the data/mini-data cache is coherent with external
memory, which is dependent on the system level configuration, specifically if the external memory
is shared by another master.

When write-back caching is specified, a store operation that hitsthe cache will not generate awrite
to external memory, thus reducing external memory traffic.
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Round-Robin Replacement Algorithm

The line replacement a gorithm for the data cache is round-robin. Each set in the data cache has a
round-robin pointer that keeps track of the next line (in that set) to replace. The next lineto replace
in aset isthe next sequential line after the last one that was just filled. For example, if the line for
the last fill waswritten into way 5-set 2, the next line to replace for that set would be way 6. None
of the other round-robin pointers for the other sets are affected in this case.

After reset, way 31 is pointed to by the round-robin pointer for all the sets. Once aline is written
into way 31, the round-robin pointer points to the first available way of aset, beginning with way 0
if no lines have been re-configured as data RAM in that particular set. Re-configuring lines as data
RAM effectively reduces the available lines for cache updating. For example, if thefirst three lines
of a set were re-configured, the round-robin pointer would point to the line at way 3 after it rolled
over from way 31. Refer to Section 6.4, “Re-configuring the Data Cache as Data RAM” on

page 6-71 for more details on data RAM.

The mini-data cache follows the same round-robin replacement algorithm as the data cache except
that there are only two lines the round-robin pointer can point to such that the round-robin pointer
always points to the least recently filled line. A least recently used replacement algorithm is not
supported because the purpose of the mini-data cache is to cache data that exhibits low temporal
locality, i.e.,datathat is placed into the mini-data cache is typically modified once and then written
back out to external memory.

Parity Protection

The data cache and mini-data cache are protected by parity to ensure data integrity; there is one
parity bit per byte of data. (Thetagsare NOT parity protected.) When a parity error is detected on a
data/mini-data cache access, a data abort exception occurs. Before servicing the exception,
hardware will set bit 10 of the Fault Status Register register.

A data/mini-data cache parity error isan imprecise data abort, meaning R14_ABORT may not
point to the instruction that caused the parity error. If the parity error occurred during aload, the
targeted register may be updated with incorrect data.

A data abort due to a data/mini-data cache parity error may not be recoverable if the data address
that caused the abort occurred on aline in the cache that has awrite-back caching policy. Prior
updatesto thisline may be lost; in this case the software exception handler should perform a*“clean
and clear” operation on the data cache, ignoring subsequent parity errors, and restart the offending
process. This operation is shown in Section 6.3.3.1.

Atomic Accesses

The SWP and SWPB instructions generate an atomic load and store operation allowing a memory
semaphore to be loaded and atered without interruption. These accesses may hit or miss the
data/mini-data cache depending on configuration of the cache, configuration of the MMU, and the
page attributes. Refer to the A SSP architecture specification for a product specific definition.
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Data Cache and Mini-Data Cache Control

Data Memory State After Reset

After processor reset, both the data cache and mini-data cache are disabled, all valid bits are set to
zero (invalid), and the round-robin bit points to way 31. Any linesin the data cache that were
configured as data RAM before reset are changed back to cacheable lines after reset, i.e., there are
32 Kbytes of data cache and zero bytes of data RAM.

Enabling/Disabling

The data cache and mini-data cache are enabled by setting bit 2 in coprocessor 15, register 1
(Control Register). See Chapter 7, “ Configuration”, for a description of this register and others.

Equation 6-1 shows code that enables the data and mini-data caches. Note that the MMU must be
enabled to use the data cache.

Enabling the Data Cache

enabl eDCache:

MCR p15, 0, r0, c¢7, c¢10, 4; Drain pending data operations...
; (see Section 7.2.8, “Register 7: Cache Functions”)
MRC p15, 0, r0, c1, c0O, 0; Get current control register
ORRTrO, r0, #4 ; Enabl e DCache by setting ‘C (bit 2)
MCR p15, 0, r0, cl1, cO, 0; And update the Control register

Invalidate and Clean Operations

Individual entries can be invalidated and cleaned in the data cache and mini-data cache via
coprocessor 15, register 7. Note that a line locked into the data cache remains locked even after it
has been subjected to an invalidate-entry operation. This will leave an unusable line in the cache
until a globa unlock has occurred. For this reason, do not use these commands on locked lines.

This same register aso provides the command to invalidate the entire data cache and mini-data
cache. Refer to Table 7-12, “Cache Functions’ on page 7-87 for alisting of the commands. These
global invalidate commands have no effect on lines locked in the data cache. Locked lines must be
unlocked before they can be invalidated. Thisis accomplished by the Unlock Data Cache
command found in Table 7-14, “ Cache L ockdown Functions’ on page 7-90.
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6.3.3.1 Global Clean and Invalidate Operation

A simple software routine is used to globally clean the data cache. It takes advantage of the
line-all ocate data cache operation, which allocates aline into the data cache. This alocation evicts
any cache dirty data back to external memory. Example 6-2 shows how data cache can be cleaned.

Example 6-2. Global Clean Operation

G obal Cean/lnvalidate THE DATA CACHE

Rl contains the virtual address of a region of cacheable nenory reserved for
this clean operation

RO is the loop count; Iterate 1024 tines which is the nunber of lines in the
data cache

Macro ALLOCATE perforns the |line-allocation cache operation on the
address specified in register Rx.

MACRO ALLOCATE Rx
MCR P15, 0, Rx, C7, C2, 5
ENDM

MOV RO, #1024

LOOP1:
ALLOCATE R1 ; Allocate a line at the virtual address
; specified by RI1.
ADD R1, R1, #32 ; Increment the address in Rl to the next cache line
SUBS RO, RO, #1 ; Decrenent |oop count

BNE LOOP1

;Clean the M ni-data Cache

; Can’t use line-allocate conmmand, so cycle 2KB of unused data through.
R2 contains the virtual address of a region of cacheable nenory reserved for
cl eaning the M ni-data Cache
RO is the loop count; lterate 64 times which is the nunber of lines in the
M ni -data Cache.

MOV RO, #64

LOOP2:

LDR R3,[R2],#32 ; Load and increnent to next cache line
SUBS RO, RO, #1 ; Decrenent |oop count

BNE LOOP2

I nvalidate the data cache and m ni-data cache
MCR P15, 0, RO, C7, C6, O

The line-all ocate operation does not require physical memory to exist at the virtual address
specified by the instruction, since it does not generate aload/fill request to external memory. Also,
the line-all ocate operation does not set the 32 bytes of data associated with the line to any known
value. Reading this data will produce unpredictable results.

Theline-allocate command will not operate on the mini Data Cache, so system software must clean
this cache by reading 2 Kbytes of contiguous unused data into it. This data must be unused and
reserved for this purpose so that it will not already be in the cache. It must reside in a page that is
marked as mini Data Cache cacheable (see Section 2.3.2).

Thetimeit takesto execute a global clean operation depends on the number of dirty linesin cache.
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Re-configuring the Data Cache as Data RAM

Software has the ability to lock tags associated with 32-byte lines in the data cache, thus creating
the appearance of data RAM. Any subsequent access to this line will always hit the cache unless it
isinvalidated. Once alineislocked into the data cacheit is no longer available for cache allocation
on alinefill. Up to 28 lines in each set can be reconfigured as data RAM, such that the maximum
data RAM size is 28 Kbytes for the 32 Kbytes cache and 12 Kbytes for the 16 Kbytes cache.

Hardware does not support locking lines into the mini-data cache; any attempt to do thiswill
produce unpredictable results.

There are two methods for locking tags into the data cache; the method of choice depends on the
application. One method is used to lock data that resides in external memory into the data cache
and the other method is used to re-configure lines in the data cache as data RAM. Locking data
from external memory into the data cache is useful for lookup tables, constants, and any other data
that is frequently accessed. Re-configuring a portion of the data cache as data RAM is useful when
an application needs scratch memory (bigger than the register file can provide) for frequently used
variables. These variables may be strewn across memory, making it advantageous for software to
pack them into data RAM memory.

Code examples for these two applications are shown in Example 6-3 on page 6-72 and Example
6-4 on page 6-73. The difference between these two routines is that Example 6-3 on page 6-72
actually requests the entire line of data from external memory and Example 6-4 on page 6-73 uses
the line-allocate operation to lock the tag into the cache. No external memory request is made,
which means software can map any unallocated area of memory as data RAM. However, the
line-all ocate operation does validate the target address with the MMU, so system software must
ensure that the memory has a valid descriptor in the page table.

Another item to note in Example 6-4 on page 6-73 is that the 32 bytes of datalocated in a newly
allocated line in the cache must be initialized by software before it can be read. The line dlocate
operation does not initialize the 32 bytes and therefore reading from that line will produce
unpredictable results.

In both examples, the code drains the pending |oads before and after locking data. This step ensures
that outstanding loads do not end up in the wrong place -- either unintentionally locked into the
cache or mistakenly left out in the proverbial cold (not locked into the nice warm cache with their
brethren). Note al so that adrain operation has been placed after the operation that locksthe tag into
the cache. Thisdrains ensures predictable resultsif a programmer tries to lock more than 28 lines
in a set; the tag will get allocated in this case but not locked into the cache.
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Example 6-3. Locking Data into the Data Cache

72

Rl contains the virtual address of a region of nenory to |ock,
configured with C=1 and B=1

RO is the nunber of 32-byte lines to lock into the data cache. In this
exanple 16 lines of data are |ocked into the cache.

MW and data cache are enabled prior to this code.

MACRO DRAI N

MCR P15, 0, RO, C7, Cil0, 4 ; drain pending | oads and stores
ENDM
DRAI N

MOV R2, #0x1

MCR P15,0, R2, C9, C2,0 ; Put the data cache in |ock node

CPWAI T

MOV RO, #16

LOOP1:

MCR P15, 0, R1, C7, C10, 1 ; Wite back the line if it's dirty in the cache
MCR P15,0,R1, C7,C6,1 ; Flush/Invalidate the line fromthe cache

LDR R2, [R1], #32 ; Load and lock 32 bytes of data located at [Ri]
; into the data cache. Post-increnent the address

; in RL to the next cache line.
SUBS RO, RO, #1; Decrenent |oop count

BNE LOOP1

Turn of f data cache | ocking
MOV R2, #0x0
MCR P15,0, R2, C9, C2,0 ; Take the data cache out of |ock node.
CPWAI T
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Example 6-4. Creating Data RAM

Rl contains the virtual address of a region of nmenory to configure as data RAM
which is aligned on a 32-byte boundary.

MW is configured so that the nmenory region is cacheable.

RO is the nunber of 32-byte lines to designate as data RAM In this exanple 16
lines of the data cache are re-configured as data RAM

The inner loop is used to initialize the newy allocated |ines

MW and data cache are enabled prior to this code.

MACRO ALLOCATE Rx
MCR P15, 0, Rx, C7, C2, 5

ENDM
MACRO DRAI N
MCR P15, 0, RO, C7, C10, 4 ; drain pending | oads and stores
ENDM
DRAI N
MOV R4, #0x0
MOV R5, #0x0
MOV R2, #0x1
MCR P15, 0, R2, C9, C2, 0 ; Put the data cache in |ock npode
CPWAI T
MOV RO, #16
LOOP1:
ALLOCATE R1 ; Allocate and lock a tag into the data cache at
address [R1].
initialize 32 bytes of newy allocated |ine
DRAI N
STRD R4, [R1],#8
STRD R4, [R1],#8
STRD R4, [R1],#8
STRD R4, [R1],#8
SUBS RO, RO, #1 ; Decrenent |oop count

BNE LOOP1
Turn off data cache | ocking

DRAI N ; Finish all pending operations
MOV R2, #0x0

MCR P15, 0, R2, C9, C2, 0; Take the data cache out of |ock node.

CPWAI T
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Tags can be locked into the data cache by enabling the data cache lock mode bit located in
coprocessor 15, register 9. (See Table 7-14, “Cache Lockdown Functions’ on page 7-90 for the
exact command.) Once enabled, any new lines alocated into the data cache will be locked down.

Notethat the PL D instruction will not affect the cache contentsif it encounters an error while executing.
For this reason, system software should ensure the memory address used in the PL D is correct. If this
cannot be ascertained, replace the PLD with aL DR instruction that targets a scratch register.

Lines are locked into a set starting at way0 and may progress up to way 27; which set aline gets
locked into depends on the set index of the virtual address of the request. Figure 6-3, “Locked Line
Effect on Round Robin Replacement” on page 6-74 is an example of where lines of code may be
locked into the cache aong with how the round-robin pointer is affected.

Locked Line Effect on Round Robin Replacement

set 0: 8 ways locked, 24 ways available for round robin replacement
set 1: 23 ways locked, 9 ways available for round robin replacement
set 2: 28 ways locked, only ways 28-31 available for replacement
set 31: all 32 ways available for round robin replacement

set 0 set 1 set 2 T set 31

way0 |8 4
way 1 B

. 8 3 3
way 7 = - X <
way 8 o o

. — —
way 22 v
way 23

way 30 @
way 31

Software can lock down datalocated at different memory locations. This may cause some sets to
have more locked lines than others as shown in Figure 6-3.

Lines are unlocked in the data cache by performing an unlock operation. See Section 7.2.10,
“Register 9: Cache Lock Down” on page 7-90 for more information about locking and unlocking
the data cache.

Before locking, the programmer must ensure that no part of the target datarangeis already resident in
the cache. The core will not refetch such data, which will result in it not being locked into the cache.
If there is any doubt as to the location of the targeted memory data, the cache should be cleaned and
invalidated to prevent this scenario. If the cache contains alocked region which the programmer
wishesto lock again, then the cache must be unlocked before being cleaned and invalidated.
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Write Buffer/Fill Buffer Operation and Control

See Section 1.3.2, “Terminology and Acronyms’ on page 1-19 for a definition of coalescing.

The write buffer is always enabled which means stores to external memory will be buffered. The
K bit in the Auxiliary Control Register (CP15, register 1) is agloba enable/disable for alowing
coalescing in the write buffer. When this bit disables coa escing, no coalescing will occur
regardless the value of the page attributes. If this bit enables coalescing, the page attributes X, C,
and B are examined to see if coalescing is enabled for each region of memory.

All reads and writes to external memory occur in program order when coalescing is disabled in the
write buffer. If coalescing is enabled in the write buffer, writes may occur out of program order to
external memory. Program correctness is maintained in this case by comparing all store requests
with all the valid entriesin the fill buffer.

The write buffer and fill buffer support a drain operation, such that before the next instruction
executes, all the core data requests to external memory have completed. Note that an ASSP may
also include operations external to the core in the drain operation. (Refer to the Intel X Scale® core
implementation option section in the ASSP architecture specification for more details.) See

Table 7-12, “ Cache Functions” on page 7-87 for the exact command.

Writes to aregion marked non-cacheabl e/non-bufferable (page attributes C, B, and X all 0) will
cause execution to stall until the write completes.

If softwareisrunning in aprivileged mode, it can explicitly drain all buffered writes. For details on
this operation, see the description of Drain Write Buffer in Section 7.2.8, “Register 7: Cache
Functions’ on page 7-87.
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7.1

This chapter describes the System Control Coprocessor (CP15) and coprocessor 14 (CP14). CP15
configures the MM U, caches, buffers and other system attributes. CP14 contains the performance
monitor registers, clock and power management registers and the debug registers.

Overview

CP15 isaccessed through MRC and M CR coprocessor instructions and allowed only in privileged
mode. Any accessto CP15 in user mode or with LDC or STC coprocessor instructions will cause
an undefined instruction exception.

All CP14 registers can be accessed through MRC and M CR coprocessor instructions. LDC and
STC coprocessor instructions can only access the clock and power management registers, and the
debug registers. The performance monitoring registers can't be accessed by L DC and STC
because CRm != 0x0, which can’t be expressed by LDC or STC. Accessto al registersisalowed
only in privileged mode. Any accessto CP14 in user mode will cause an undefined instruction
exception.

Coprocessors, CP15 and CP14, on the Intel X Scale® core do not support accessviaCDP, MRRC,
or MCRR instructions. An attempt to access these coprocessors with these instructions will result
in an undefined instruction exception.

Many of the MCR commands available in CP15 modify hardware state sometime after execution.
A software sequenceis available for those wishing to determine when this update occurs and can
be found in Section 2.3.3, “Additions to CP15 Functionality” on page 2-31.

The Intel XScale® coreincludes an extralevel of virtual address translation in the form of aPID
(Process ID) register and associated logic. For a detailed description of this facility, see

Section 7.2.13, “Register 13: Process ID” on page 7-91. Privileged code needs to be aware of this
facility because, when interacting with CP15, some addresses are modified by the PID and others
are not. An address that has yet to be modified by the PID (“PIDified") is known as avirtual
address (VA). An address that has been through the PID logic, but not translated into a physical
address, is amodified virtual address (MVA).
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The format of MRC and MCR is shown in Table 7-1.

INlal.

The Intel XScale® core implements CP15, CP14 and CPO coprocessors, which is specified by
cp_num. CPO supports instructions specific for DSP and is described in Chapter 2, “Programming
Model.” Refer to the Intel X Scale® core implementation option section of the ASSP architecture
specification to find out what other coprocessors, if any, are supported in the ASSP.

Unless otherwise noted, unused bits in coprocessor registers have unpredictable values when read.
For compatibility with future implementations, software should not rely on the values in those hits.

MRC/MCR Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

cond 1|/21[1]|0|opcode_1|n CRn Rd cp_num |opcode_2 |1 CRm
Bits Description Notes
31:28 cond - ARM* condition codes -
. Should be programmed to zero for future
23:21 opcode_1 - Reserved compatibility
n - Read or write coprocessor register
20 0= MCR -
1= MRC
19:16 CRn - specifies which coprocessor register -
15:12 Rd - General Purpose Register, R0..R15 -
The Intel XScale® core defines three
COprocessors:
0b1111 = CP15
0b1110 = CP14
11:8 cp_num - coprocessor number 0x0000 = CPO
P P NOTE: Refer to the Intel XScale® core
implementation option section of the
ASSP architecture specification to see
if there are any other coprocessors
defined by the ASSP.
This field should be programmed to zero for
75 opcode_2 - Function bits future compatibility unless a value has been
specified in the command.
This field should be programmed to zero for
3:0 CRm - Function bits future compatibility unless a value has been
specified in the command.
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The format of LDC and STC for CP14 is shown in Table 7-2. LDC and STC follow the
programming notesin the ARM Architecture Reference Manual. Note that access to CP15 with
LDC and STC will cause an undefined exception and accesses to al other coprocessorsis defined
in the Intel X Scale® core implementation option section of the ASSP architecture specification.

LDC and STC transfer a single 32-bit word between a coprocessor register and memory. These
instructions do not allow the programmer to specify values for opcode_1, opcode 2, or Rm; those
fields implicitly contain zero, which means the performance monitoring registers are not

accessible.
Table 7-2. LDC/STC Format when Accessing CP14
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
cond 1(1|0|P|U|N|W|L Rn CRd cp_num 8_bit_word_offset
Bits Description Notes
31:28 cond - ARM* condition codes -
P, U, W - specifies 1 of 3 addressing modes
24:23,21 | identified by addressing mode 5 in the ARM -
Architecture Reference Manual.
29 N - should be 0 for CP14 coprocessors. Setting
this bit to 1 has will have an undefined effect.
L - Load or Store
20 0= STC -
1= LDC
19:16 Rn - specifies the base register -
15:12 CRd - specifies the coprocessor register -
The Intel XScale® core defines the following:
0b1111 = Undefined Exception
0b1110 = CP14
NOTE: Refer to the Intel XScale® core
11:8 cp_num - coprocessor number implementation option section of the
ASSP architecture specification to find
out the meaning of the other
encodings.
7:0 8-bit word offset -
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Table 7-3.
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CP15 Registers

Table 7-3 lists the CP15 registersimplemented in the Intel XScal€® core.

CP15 Registers

R(egs rtgr Opc_1 CRm Opc_2 Access Description
0 0 0 0 Read / Write-Ignored ID
0 0 0 1 Read / Write-Ignored Cache Type
1 0 0 0 Read / Write Control
1 0 0 1 Read / Write Auxiliary Control
2 0 0 0 Read / Write Translation Table Base
3 0 0 0 Read / Write Domain Access Control
4 - - - Unpredictable Reserved
5 0 0 0 Read / Write Fault Status
6 0 0 0 Read / Write Fault Address
7 0 Varies? | Varies? Read-unpredictable / Write Cache Operations
8 0 Varies? | Varies? Read-unpredictable / Write TLB Operations
9 0 Varies? | Varies? Varies? Cache Lock Down
10 0 Varies? | Varies? Read-unpredictable / Write TLB Lock Down

11-12 - - - Unpredictable Reserved

13 0 0 0 Read / Write Process ID (PID)
14 0 Varies? 0 Read / Write Breakpoint Registers
15 0 1 0 Read / Write Coprocessor Access

a. The value varies depending on the specified function. Refer to the register description for a list of values.
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7.2.1 Register 0: ID & Cache Type Registers

Register 0 houses two read-only register that are used for part identification: an ID register and a
cache type register.

The ID Register is selected when opcode_2=0. Thisregister returns the code for the ASSP, where a
portion of it is defined by the ASSP. Refer to the Intel X Scale® core implementation option section
of the ASSP architecture specification for the exact encoding.

Table 7-4. ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0110

1 001{0 00 O0O0T10

Product

1 Core Core
Revision

Gen Revision | Product Number

reset value: As Shown

Bits

Access

Description

31:24

Read / Write Ignored

Implementation trademark
(0x69 = ‘i'= Intel Corporation)

23:16

Read / Write Ignored

Architecture version = ARM* Version 5TE

15:13

Read / Write Ignored

Intel XScale® core Generation

0b001 = XSC1

0b010 = XSC2

This field reflects a specific set of architecture features
supported by the core. If new features are
added/deleted/modified this field will change. This allows
software, that is not dependent on ASSP features, to
target code at a specific core generation.

The difference between XSC1 and XSC2 is:
» the performance monitoring facility (Chapter 8,
“Performance Monitoring”)
» size of the JTAG instruction register (Appendix B,
“Test Features”)

12:10

Read / Write Ignored

Core Revision:

This field reflects revisions of core generations.
Differences may include errata that dictate different
operating conditions, software work-around, etc.

9:4

Read / Write Ignored

Product Number (Defined by the ASSP)

3:0

Read / Write Ignored

Product Revision (Defined by the ASSP)

The Cache Type Register is selected when opcode_2=1 and describes the cache configuration of

the core.
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Cache Type Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

INlal.

16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

0 00(0O 10 1{1|0 O Of Dsize |1 O 1|01 O|0O O O] Isize |12 O 1|{0|1 O
reset value: As Shown
Bits Access Description
31:29 Read-as-Zero / Write Ignored Reserved
Cache class = 0b0101
28:25 Read / Write Ignored The caches support locking, write back and round-robin
replacement. They do not support address by index.
24 Read / Write Ignored Harvard Cache
23:21 Read-as-Zero / Write Ignored Reserved
Data Cache Size (Dsize)
20:18 Read / Write Ignored 0b101 = 16 KB
0b110 =32 KB
17:15 Read / Write Ignored Data cache associativity = 0b101 = 32-way
14 Read-as-Zero / Write Ignored Reserved
13:12 Read / Write Ignored Data cache line length = 0b10 = 8 words/line
11:9 Read-as-Zero / Write Ignored Reserved
Instruction cache size (Isize)
8:6 Read / Write Ignored 0b101 = 16KB
0b110 =32 KB
5:3 Read / Write Ignored Instruction cache associativity = Ob101 = 32-way
2 Read-as-Zero / Write Ignored Reserved
1:0 Read / Write Ignored Instruction cache line length = 0b10 = 8 words/line
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7.2.2 Register 1: Control & Auxiliary Control Registers

Register 1 is made up of two registers, one that is compliant with ARM Version 5TE and referred
by opcode_2 = 0x0, and the other which is specific to the core is referred by opcode 2 = 0x1. The
latter is known as the Auxiliary Control Register.

The Exception Vector Relocation bit (bit 13 of the ARM control register) allows the vectorsto be
mapped into high memory rather than their default location at address 0. This bit is readable and
writable by software. If the MMU is enabled, the exception vectors will be accessed via the usual
tranglation method involving the PID register (see Section 7.2.13, “Register 13: Process ID” on
page 7-91) and the TLBs. To avoid automatic application of the PID to exception vector accesses,
software may relocate the exceptions to high memory.

Table 7-6. ARM?* Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Vil|Z|0O|R|S|B|1|1|1|1|C|A|M

reset value: writable bits set to 0

Bits

Access

Description

31:14

Read-Unpredictable /
Write-as-Zero

Reserved

13

Read / Write

Exception Vector Relocation (V).

0 = Base address of exception vectors is 0x0000,0000
1= Base address of exception vectors is OxFFFF,0000

12

Read / Write

Instruction Cache Enable/Disable (1)

0= Disabled
1= Enabled

11

Read / Write

Branch Target Buffer Enable (Z)
0 = Disabled
1= Enabled

10

Read-as-Zero / Write-as-Zero

Reserved

Read / Write

ROM Protection (R)

This selects the access checks performed by the memory
management unit. See the ARM Architecture Reference
Manual for more information.

Read / Write

System Protection (S)

This selects the access checks performed by the memory
management unit. See the ARM Architecture Reference
Manual for more information.

Read / Write

Big/Little Endian (B)

0 = Little-endian operation
1= Big-endian operation

6:3

Read-as-One / Write-as-One

=0bl1111

Read / Write

Data cache enable/disable (C)

0= Disabled
1= Enabled

Read / Write

Alignment fault enable/disable (A)

0= Disabled
1= Enabled

Read / Write

Memory management unit enable/disable (M)

0= Disabled
1= Enabled
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The mini-data cache attribute bits, in the Auxiliary Control Register, are used to control the
allocation policy for the mini-data cache and whether it will use write-back caching or
write-through caching.

The configuration of the mini-data cache should be setup before any data access is made that may
be cached in the mini-data cache. Once datais cached, software must ensure that the mini-data
cache has been cleaned and invalidated before the mini-data cache attributes can be changed.

Auxiliary Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

MD P|K

reset value: writable bits setto 0

Bits

Access

Description

31:6

Read-Unpredictable /
Write-as-Zero

Reserved

5:4

Read / Write

Mini Data Cache Attributes (MD)

All configurations of the Mini-data cache are cacheable,
stores are buffered in the write buffer and stores will be
coalesced in the write buffer as long as coalescing is
globally enable (bit O of this register).

0b00 = Write back, Read allocate

0b01 = Write back, Read/Write allocate
0b10 = Write through, Read allocate
0b11 = Unpredictable

3:2

Read-Unpredictable /
Write-as-Zero

Reserved

Read / Write

Page Table Memory Attribute (P) This field is defined by
the ASSP. Refer to the Intel XScale® core implementation
option section of the ASSP architecture specification for
more information.

Read / Write

Write Buffer Coalescing Disable (K)

This bit globally disables the coalescing of all stores in the
write buffer no matter what the value of the Cacheable
and Bufferable bits are in the page table descriptors.

0= Enabled

1= Disabled
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Register 2: Translation Table Base Register

Translation Table Base Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Translation Table Base

reset value: unpredictable

Bits Access Description

. . Translation Table Base - Physical address of the base of
sll14 Read / Write the first-level table
13:0 Read-unpredictable / Write-as-Zero | Reserved

Register 3: Domain Access Control Register

Domain Access Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

D15 | D14 | D13 | D12

D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO

reset value: unpredictable

Bits

Access

Description

31:0 Read / Write

Access permissions for all 16 domains - The meaning
of each field can be found in the ARM Architecture
Reference Manual.

Register 4: Reserved

Register 4 is reserved. Reading and writing this register yields unpredictable results.
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7.2.6 Register 5: Fault Status Register

The Fault Status Register (FSR) indicates which fault has occurred, which could be either a
prefetch abort or a data abort. Bit 10 extends the encoding of the status field for prefetch aborts and
data aborts. The definition of the extended status field is found in Section 2.3.4, “Event
Architecture” on page 2-32. Bit 9 indicates that a debug event occurred and the exact source of the
event isfound in the debug control and status register (CP14, register 10). When bit 9 is set, the
domain and extended status field are undefined.

Upon entry into the prefetch abort or data abort handler, hardware will update this register with the
source of the exception. Software is not required to clear these fields.

Table 7-10.  Fault Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

X|D|O Domain Status

reset value: unpredictable

Bits Access Description

31:11 Read-unpredictable / Write-as-Zero | Reserved

Status Field Extension (X)

This bit is used to extend the encoding of the Status field,
10 Read / Write when there is a prefetch abort and when there is a data
abort. The definition of this field can be found in

Section 2.3.4, “Event Architecture” on page 2-32

Debug Event (D)

9 Read / Write This flag indicates a debug event has occurred and that
the cause of the debug event is found in the MOE field of
the debug control register (CP14, register 10)

8 Read-as-zero / Write-as-Zero =0

Domain - Specifies which of the 16 domains was being

74 Read / Write accessed when a data abort occurred

3:0 Read / Write Status - Type of data access being attempted

71.2.7 Register 6: Fault address Register

Table 7-11.  Fault Address Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Fault Virtual Address

reset value: unpredictable

Bits Access Description

Fault Virtual Address - Contains the MVA of the data

310 Read /Write access that caused the memory abort
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Register 7: Cache Functions

Thisregister should be accessed as write-only. Reads from this register, as with an MRC, have an
undefined effect.

The Drain Write Buffer function not only drains the write buffer but also drains the fill buffer.The
core does not check permissions on addresses supplied for cache or TLB functions. Because only

privileged software may execute these functions, full accessihility isassumed. Cache functionswill
not generate any of the following:

* trandation faults
* domain faults
* permission faults
The invalidate instruction cache line command does not invalidate the BTB. If software invalidates

aline from the instruction cache and modifies the same location in externa memory, it needs to
invalidate the BTB also. Not invalidating the BTB in this case may cause unpredictable results.

Disabling/enabling a cache has no effect on contents of the cache: valid data stays valid, locked
items remain locked. All operations defined in Table 7-12 work regardless of whether the cache is
enabled or disabled.

Since the Clean DCache Line function reads from the data cache, it is capable of generating a
parity fault. The other operations will not generate parity faults.

Cache Functions

Function opcode_2 CRm Data Instruction
Invalidate 1&D cache & BTB 0b000 0b0111 | Ignored MCR p15, 0, Rd, c7, c7,0
Invalidate | cache & BTB 0b000 0b0101 | Ignored MCR p15, 0, Rd, c7, c5, 0
Invalidate | cache line 0b001 0b0101 | MVA MCR p15, 0, Rd, c7, c5, 1
Invalidate D cache 0b000 0b0110 | Ignored MCR p15, 0, Rd, c7, c6, 0
Invalidate D cache line 0b001 0b0110 | MVA MCR p15, 0, Rd, c7, c6, 1
Clean D cache line 0b001 0b1010 | MVA MCR p15, 0, Rd, c7, c10, 1
Drain Write (& Fill) Buffer 0b100 0b1010 | Ignored MCR p15, 0, Rd, c7, c10, 4
Invalidate Branch Target Buffer 0b110 0b0101 | Ignored MCR p15, 0, Rd, c7, c5, 6
Allocate Line in the Data Cache Ob101 0b0010 | MVA MCR p15, 0, Rd, c7, c2, 5

The line-allocate command all ocates a tag into the data cache specified by bits[31:5] of Rd. If a
valid dirty line (with adifferent MVVA) aready existsat thislocation it will be evicted. The 32 bytes
of data associated with the newly allocated line are not initialized and therefore will generate
unpredictable resultsif read.

This command may be used for cleaning the entire data cache on a context switch and also when
re-configuring portions of the data cache as data RAM. In both cases, Rd isavirtual address that
maps to some non-existent physical memory. When creating data RAM, software must initialize
the data RAM before read accesses can occur. Specific uses of these commands can be found in
Chapter 6, “Data Cache”.
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Other items to note about the line-allocate command are:

It forces all pending memory operations to complete.

Bits[31:5] of Rd is used to specific the virtual address of the lineto alocated into the data
cache.

If the targeted cache line is already resident, this command has no effect.
This command cannot be used to allocate aline in the mini Data Cache.

The newly allocated line is not marked as “dirty” so it will never get evicted. However, if a
valid store is made to that lineit will be marked as“dirty” and will get written back to external
memory if another line is allocated to the same cache location. This eviction will produce
unpredictable results.

To avoid this situation, the line-allocate operation should only be used if one of the following
can be guaranteed:

— Thevirtual address associated with this command is not one that will be generated during
normal program execution. Thisis the case when line-allocate is used to clean/invalidate
the entire cache.

— Theline-allocate operation is used only on a cache region destined to be locked. When the
region is unlocked, it must be invalidated before making another data access.
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Disabling/enabling the MMU has no effect on the contents of either TLB: valid entries stay valid,
locked items remain locked. All operations defined in Table 7-13 work regardless of whether the

TLB isenabled or disabled.

Thisregister should be accessed as write-only. Reads from this register, as with an MRC, have an

undefined effect.

Table 7-13. TLB Functions

Function opcode_2 CRm Data Instruction
Invalidate 1&D TLB 0b000 0b0111 | Ignored MCR p15, 0, Rd, ¢8, c7, 0
Invalidate | TLB 0b000 0b0101 | Ignored MCR p15, 0, Rd, ¢8, c5, 0
Invalidate | TLB entry 0b001 0b0101 | MVA MCR p15, 0, Rd, c8, c5, 1
Invalidate D TLB 0b000 0b0110 | Ignored MCR p15, 0, Rd, ¢8, c6, 0
Invalidate D TLB entry 0b001 0b0110 | MVA MCR p15, 0, Rd, c8, c6, 1
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Table 7-15.
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Register 9: Cache Lock Down

Register 9 is used for locking down entries into the instruction cache and data cache. (The protocol
for locking down entries can be found in Chapter 6, “Data Cache”.)

Table 7-14 shows the command for locking down entries in the instruction and data cache. The
entry to lock in the instruction cacheis specified by the virtual addressin Rd. The data cache
locking mechanism follows a different procedure than the instruction cache. The data cache is
placed in lock down mode such that all subsequent fills to the data cache result in that line being
locked in, as controlled by Table 7-15.

Lock/unlock operations on a disabled cache have an undefined effect.

Read and write access is allowed to the data cache lock register bit[0]. All other accessesto register
9 should be write-only; reads, as with an MRC, have an undefined effect.

Cache Lockdown Functions

Function opcode_2 CRm Data Instruction
Fetch and Lock | cache line 0b000 0b0001 | MVA MCR p15, 0, Rd, ¢9, c1,0
Unlock Instruction cache 0b001 0b0001 | Ignored MCR p15, 0, Rd, ¢9, c1, 1
Read data cache lock register 0b000 | 0b0010 \Ff:ﬁg lockmode | \12c 15, 0, Rd, €9, c2, 0
Write data cache lock register 0b000 | 0b0010 i%g'ear lock- | \icr p15, 0, Rd, ¢9, ¢2, 0
Unlock Data Cache 0b001 0b0010 | Ignored MCR p15, 0, Rd, ¢9, c2, 1

Data Cache Lock Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

L
reset value: writable bits set to 0
Bits Access Description
311 Read-unpredictable / Write-as-Zero | Reserved
Data Cache Lock Mode (L)
0 Read / Write 0 = No locking occurs
1= Any fill into the data cache while this bit is set gets
locked in
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Register 10: TLB Lock Down

Register 10 is used for locking down entriesinto the instruction TLB, and data TLB. (The protocol
for locking down entries can be found in Chapter 3, “Memory Management”.) Lock/unlock
operations on a TLB when the MMU is disabled have an undefined effect.

Thisregister should be accessed as write-only. Reads from this register, as with an MRC, have an
undefined effect.

Table 7-16 shows the command for locking down entriesin the instruction TLB, and data TLB.
The entry to lock is specified by the virtual addressin Rd.

TLB Lockdown Functions

Function opcode_2 CRm Data Instruction
Translate and Lock | TLB entry 0b000 0b0100 | MVA MCR p15, 0, Rd, c10, c4, 0
Translate and Lock D TLB entry 0b000 0b1000 | MVA MCR p15, 0, Rd, c10, c8, 0
Unlock | TLB 0b001 0b0100 | Ignored MCR p15, 0, Rd, c10, ¢4, 1
Unlock D TLB 0b001 0b1000 | Ignored MCR p15, 0, Rd, c10, c8, 1

Register 11-12: Reserved

These registers are reserved. Reading and writing them yields unpredictable results.

Register 13: Process ID

The Intel XScale® core supports remapping of virtual addresses through a Process ID (PID) register.
This remapping occurs before the instruction cache, instruction TLB, data cache and data TLB are
accessed. The PID register controls when virtual addresses are remapped and to what value.

The PID register isa 7-bit value that replaces bits 31:25 of the virtual addresswhen they are zero.
This effectively remaps the address to one of 128 “dlots” in the 4 Gbytes of address space. If

bits 31:25 are not zero, no remapping occurs. This feature is useful for operating system
management of processes that may map to the same virtual address space. In those cases, the
virtually mapped caches on the core would not require invalidating on a process switch.

Accessing Process ID

Function opcode_2 CRm Instruction
Read Process ID Register 0b000 0b0000 MRC p15, 0, Rd, ¢13, c0, 0
Write Process ID Register 0b000 0b0000 MCR p15, 0, Rd, ¢c13, c0, 0

Process ID Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Process ID

reset value: 0x0000,0000

Bits Access Description

Process ID - This field is used for remapping the virtual

8125 Read / Write address when bits 31-25 of the virtual address are zero.

Reserved - Should be programmed to zero for future

24:0 Read-as-Zero / Write-as-Zero compatibility
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7.2.13.1  The PID Register Affect On Addresses

All addresses generated and used by User Mode code are eligible for being “ PIDified” as described
in the previous section. Privileged code, however, must be aware of certain special cases in which
address generation does not follow the usual flow.

The PID register is not used to remap the virtual address when accessing the Branch Target Buffer
(BTB). Any writesto the PID register invalidate the BTB, which prevents any virtual addresses
from being double mapped between two processes.

* A breakpoint address (see Section 7.2.14, “ Register 14: Breakpoint Registers’ on page 7-93)
must be expressed as an MVA when written to the breakpoint register. This meansthe value of the
PID must be combined appropriately with the address beforeit iswritten to the breakpoint
register. All virtual addresses in translation descriptors (see Chapter 3, “Memory Management”)
aeMVAs,
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7.2.14 Register 14: Breakpoint Registers

The Intel X Scale® core contains two instruction breakpoint address registers (IBCRO and IBCR1),
one data breakpoint address register (DBRO), one configurable data mask/address register (DBR1),
and one data breakpoint control register (DBCON).

Refer to Chapter 9, “Software Debug” for more information on these features of the Intel X Scale®
core.

Table 7-19.  Accessing the Debug Registers

Function opcode_2 CRm Instruction
Arespemcionmemon | oo | omooo  [MECES 0l ca 0irend
frespecionmetton | oo | omooy | MECES DR el ca Oirend
e SmagrsaoonAddess [ o0 [ onono | NECPIS 8 R 016 00 1
A S es moo | oo | VECHS O R cll 50 read
oo SmaBeonconel [ o0 [ onono | NECPIS 8 R o1t o 1l
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7.2.15

Register 15: Coprocessor Access Register

Thisregister is selected when opcode 2 =0and CRm= 1.

Thisregister controls access rightsto all the coprocessorsin the system except for CP15 and CP14.
Both CP15 and CP14 can only be accessed in privilege mode. Thisregister is accessed with an
MCR or MRC with the CRm field set to 1.

This register controls access to CP0 and other coprocessors (CP1 through CP13) that may exist in
an ASSP. (Seethe Intel X Scale® core implementation option section of the ASSP architecture
specification for alist of coprocessors that may have been implemented.) A typical use for this
register is for an operating system to control resource sharing among applications. Initialy, all
applications are denied access to shared resources by clearing the appropriate coprocessor bit in the
Coprocessor Access Register. An application may request the use of a shared resource (e.g., the
accumulator in CP0) by issuing an access to the resource, which will result in an undefined
exception. The operating system may grant access to this coprocessor by setting the appropriate bit
in the Coprocessor Access Register and return to the application where the accessisretried.

Sharing resources among different applications requires a state saving mechanism. Two
possibilities are:

* The operating system, during a context switch, could save the state of the coprocessor if the
last executing process had access rights to the coprocessor.

* Theoperating system, during arequest for access, saves off the old coprocessor state and saves
it with last process to have access to it.

Under both scenarios, the OS needs to restore state when arequest for access is made. This means
the OS hasto maintain alist of what processes are modifying CPO and their associated state.

Example 7-1. Disallowing access to CPO

94

;; The following code clears bit 0 of the CPAR
;7 This will cause the processor to fault if software
;, attenpts to access CPO.

LDR RO, =0x3FFE ; bit 0is clear
MCR P15, 0, RO, Cl15, C1, O ; move to CPAR
CPWAI T ; wait for effect
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Table 7-20.  Coprocessor Access Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

Intel XScale® Core Developer’'s Manua

Configuration
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reset value: 0x0000,0000

Bits

Access

Description

31:16

Read-unpredictable / Write-as-Zero

Reserved - Should be programmed to zero for future
compatibility

15:14

Read-as-Zero/Write-as-Zero

Reserved - Should be programmed to zero for future
compatibility

131

Read / Write

Coprocessor Access Rights -

Each bit in this field corresponds to the access rights for
each coprocessor. Refer to the Intel XScale® core
implementation option section of the ASSP architecture
specification to find out which, if any, coprocessors exist
and for the definition of these bits.

Read / Write

Coprocessor Access Rights -
This bit corresponds to the access rights for CPO.

0 = Access denied. Any attempt to access the
corresponding coprocessor will generate an
undefined exception.

1= Access allowed. Includes read and write accesses.
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7.3
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Table 7-21.
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CP14 Registers

CP14 contains software debug registers, clock and power management registers and the
performance monitor registers.

All other registers are reserved in CP14. Reading and writing them yields unpredictable results.

Performance Monitoring Registers

There are two variants of the performance monitoring facility; the number, location and definition
of the registers are different between them. Software can determine which variant it is running on
by examining the CoreGen field of Coprocessor 15, ID Register (bits 15:13). (See Table 7-4, “I1D
Register” on page 7-81 for more details.) A CoreGen value of Ox1 isreferred to as XSC1 and a
value of 0x2 isreferred to as X SC2. The main difference between the two is that XSC1 has two
32-bit performance counters while X SC2 has four 32-bit performance counters.

XSC1 Performance Monitoring Registers

The performance monitoring unit in XSC1 contains a control register (PMNC), a clock counter
(CCNT) and two event counters (PMNO and PMN1).The format of these registers can be found in
Chapter 8, “Performance Monitoring”, along with a description on how to use the performance
monitoring facility.

Opcode 2 and CRm should be zero.

Accessing the XSC1 Performance Monitoring Registers

- CRn CRm .
Description Register# | Register# Instruction

(PMNC) Performance Monitor Control Read: MRC p14, 0, Rd, c0, c0, 0
Register 0b0000 | 0b0000 | \yjite: MCR p14, 0, Rd, cO, cO, O
. Read: MRC p14, 0, Rd, c1, c0, 0

(CCNT) Clock Counter Register 0b0001 0b0000 Write: MCR p14, 0, Rd, c1. c0, 0
. Read: MRC p14, 0, Rd, c2, c0, 0

(PMNO) Performance Count Register 0 0b0010 0b0000 Write: MCR p14, 0, Rd, c2. ¢0, 0
. Read: MRC p14, 0, Rd, c3, c0, 0

(PMN1) Performance Count Register 1 0b0011 0b0000 Write: MCR p14, 0, Rd, c3. ¢0, 0
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XSC2 Performance Monitoring Registers

Accessing the XSC2 Performance Monitoring Registers

The performance monitoring unit in XSC2 contains a control register (PMNC), a clock counter
(CCNT), interrupt enableregister (INTEN), overflow flag register (FLAG), event selection register
(EVTSEL) and four event counters (PMNO through PMN3). The format of these registers can be
found in Chapter 8, “Performance Monitoring”, a ong with a description on how to use the
performance monitoring facility.

These registers can’t be accessed by L DC and ST C coprocessor instructions.

e CRn CRm .

Description Register# | Register# Instruction
(PMNC) Performance Monitor Control Read: MRC p14, 0, Rd, c0, c1, 0
Register 0b0000 0b0001 Write: MCR p14, 0, Rd, c0, c1, 0
. Read: MRC p14, 0, Rd, c1, c1, 0
(CCNT) Clock Counter Register 0b0001 0b0001 Write: MCR p14. 0, Rd, c1. c1. 0
. Read: MRC p14, 0, Rd, ¢4, c1, 0
(INTEN) Interrupt Enable Register 0b0100 0b0001 Write: MCR p14. 0, Rd, ¢4, c1. 0
. Read: MRC p14, 0, Rd, ¢5, c1, 0
(FLAG) Overflow Flag Register 0b0101 0b0001 Write: MCR p14. 0, Rd, ¢5. c1. 0
. . Read: MRC p14, 0, Rd, 8, c1, 0
(EVTSEL) Event Selection Register O0b1000 0b0001 Write: MCR p14. 0, Rd, ¢8, c1. 0
. Read: MRC p14, 0, Rd, c0, c2, 0
(PMNO) Performance Count Register 0 0b0000 0b0010 Write: MCR p14. 0, Rd, c0, ¢2. 0
. Read: MRC p14, 0, Rd, c1, c2, 0
(PMN1) Performance Count Register 1 0b0001 0b0010 Write: MCR p14. 0, Rd, c1. ¢2. 0
. Read: MRC p14, 0, Rd, c2,c2, 0
(PMNZ2) Performance Count Register 2 0b0010 0b0010 Write: MCR p14. 0, Rd, ¢2. ¢2. 0
. Read: MRC p14, 0, Rd, ¢3, c2, 0
(PMNS3) Performance Count Register 3 0b0011 0b0010 Write: MCR p14. 0, Rd, 3. ¢2. 0
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Clock and Power Management Registers

These registers contain functions for managing the core clock and power.

Power management modes are supported through the PWRMODE Register (CRn = 0x7, CRm =
0x0). The function and definition of these modesis defined by the ASSP. The user should refer to
the Intel X Scale® core implementation option section of the ASSP architecture specification for
specifics on the use of these registers.

To enter any of these modes, write the appropriate data to the PWRM ODE register. Software may
read this register, but since software only runs during ACTIVE mode, it will always read zeroes
from the M field.

PWRMODE Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

M

reset value: writable bits set to 0

Bits Access Description
314 Read-unpredictable / Write-as-Zero | Reserved

Mode (M)
3:0 Read / Write 0 =ACTIVE

All other values are defined by the ASSP

Software can change core clock frequency by writing to the CCLK CFG register (CRn = 0x6, CRm
= 0x0). Thisfunction informs the clocking unit (located external to the core) to change core clock
frequency. Software can read CCLKCFG to determine current operating frequency. Exact
definition of this register can be found in the Intel X Scale® core implementation option section of
the ASSP architecture specification.

Clock and Power Management

Function Data Instruction

Power Mode Function

(Defined by ASSP) Defined by ASSP

MCR p14, 0, Rd, ¢7, c0, 0

Read CCLKCFG ignored MRC p14, 0, Rd, c6, c0, 0

Write CCLKCFG CCLKCFG value MCR p14, 0, Rd, c6, c0, 0

CCLKCFG Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

CCLKCFG

reset value: unpredictable

Bits Access Description

314 Read-unpredictable / Write-as-Zero | Reserved
Core Clock Configuration (CCLKCFG)

3:0 Read / Write This field is used to configure the core clock frequency
and is defined by the ASSP.
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7.3.3 Software Debug Registers

Software debug is supported by address breakpoint registers (Coprocessor 15, register 14), seria
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communication over the JTAG interface and a trace buffer. Registers 8, 9 and 14 are used for the

serial interface, register 10 isfor general control and registers 11 through 13 support a 256 entry

trace buffer. These registers are explained in more detail in Chapter 9, “ Software Debug”.

Opcode 2 and CRm should be zero.

Table 7-26.  Accessing the Debug Registers

Function CRn (Register #) Instruction

Transmit Debug Register (TX) 0b1000 MCR p14, 0, Rd, ¢8, c0, 0
Receive Debug Register (RX) 0b1001 MRC p14, 0, Rd, c9, c0, 0
Debug Control and Status Register (DBGCSR) 0b1010 mgg Eii 8 Sg gig gg 8
Trace Buffer Register (TBREG) 0b1011 MRC p14, 0, Rd, c11, c0, 0

. : MCR p14, 0, Rd, c12, c0, 0
Checkpoint 0 Register (CHKPTO) 0b1100 MRC p14. 0, Rd. ¢12. c0, 0

. : MCR p14, 0, Rd, ¢c13, c0, 0
Checkpoint 1 Register (CHKPT1) 0b1101 MRC p14. 0, Rd. c13, c0, 0
Transmit and Receive Debug Control Register 0b1110 MCR p14, 0, Rd, c14, ¢0, 0

MRC p14, 0, Rd, c14, c0, 0
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Performance Monitoring 8

8.1

This chapter describes the performance monitoring facility of the Intel X Scale® core. The events
that are monitored can provide performance information for compiler writers, system application
developers and software programmers.

There are two variants of the performance monitoring facility; the number, location and definition
of the registers are different between them. Software can determine which variant it is running on
by examining the CoreGen field of Coprocessor 15, ID Register (bits 15:13). (See Table 7-4, “1D
Register” on page 7-81 for more details.) A CoreGen value of Ox1 is referred to as XSC1 and a
value of 0x2 isreferred to as XSC2. The main difference between the two isthat XSC1 hastwo
32-bit performance counters while X SC2 has four 32-bit performance counters.

Overview

The Intel XScale® core hardware provides two or four 32-bit performance counters that allow
unique events to be monitored simultaneously. In addition, the Intel X Scale® core implements a
32-bit clock counter that can be used in conjunction with the performance counters; its main
purpose isto count the number of core clock cycleswhich is useful in measuring total execution
time.

The Intel XScale® core can monitor either occurrence events or duration events. When counting
occurrence events, a counter is incremented each time a specified event takes place and when
measuring duration, a counter counts the number of processor clocks that occur while a specified
condition is true. If any of the counters overflow, an interrupt request will occur if it's enabled.
(What happens to the interrupt request is definable by the ASSP, which typically contains an
interrupt controller that handles priority, masking, steering to FIQ or IRQ, etc. Refer to the Intel
XScale® core implementation option section of the ASSP architecture specification for more
details.) Each counter hasits own interrupt request enable. The counters continue to monitor events
even after an overflow occurs, until disabled by software.

Each of these counters can be programmed to monitor any one of various events.

To further augment performance monitoring, the Intel X Scale® core clock counter can be used to
measure the executing time of an application. Thisinformation combined with aduration event can
feedback a percentage of time the event occurred with respect to overall execution time.

All of the performance monitoring registers are accessible through Coprocessor 14 (CP14). Access
isallowed in privileged mode only. Note that these registers can’t be accessed with LDC or STC
Coprocessor instructions.
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XSC1 Register Description (2 counter variant)

Table 8-1 contains details on accessing these registers with M RC and M CR coprocessor

instructions.

XSC1 Performance Monitoring Registers

Description RegiZtgr# Reggtrzr# Instruction
gjel\ggt?r Performance Monitor Control 0b0000 0b0000 \Ffviﬁgf '\l\/lllgg gllzl (()) sg lg(()) gg 8
(CCNT) Clock Counter Register 0b0001 | 0b000O \Ffverft‘gf ,\'\,’I'Eg glli* 8: FF;S,’ Ccll gg: 8
(PMNO) Performance Count Register 0 0b0010 | 0b000O \Ffverft‘gf ,\'\,’I'Eg glli* 8: FF;S,’ ch gg: 8
(PMN1) Performance Count Register 1 0b0011 | 0b000O \Ffverft‘gf ,\'\,’I'Eg glli* 8: FF;S,’ ch gg: 8

Clock Counter (CCNT; CP14 - Register 1)

The format of CCNT is shown in Table 8-6. The clock counter isreset to ‘0’ by Performance
Monitor Control Register (PMNC) or can be set to a predetermined value by directly writing to it.
It counts core clock cycles. When CCNT reaches its maximum value OxFFFF,FFFF, the next clock
cyclewill causeit to roll over to zero and set the overflow flag (bit 6) in PMNC. An IRQ or FIQ
will be reported if it isenabled viabit 6 in the PMNC register.

Clock Count Register (CCNT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Clock Counter

reset value: unpredictable

Bits Access Description
32-bit clock counter - Reset to ‘0’ by PMNC register.
31:0 Read / Write When the clock counter reaches its maximum value

OxFFFF,FFFF, the next cycle will cause it to roll over to
zero and generate an IRQ or FIQ if enabled.
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Performance Count Registers (PMNO - PMN1; CP14 -
Register 2 and 3, Respectively)

There are two 32-bit event counters; their format is shown in Table 8-7. The event counters are
reset to ‘0’ by the PMNC register or can be set to a predetermined value by directly writing to
them. When an event counter reaches its maximum value OxFFFF,FFFF, the next event it needs to
count will causeit to roll over to zero and set the overflow flag (bit 8 or 9) in PMNC. An IRQ or
FIQ interrupt will be reported if it is enabled viabit 4 or 5in the PMNC register.

Performance Monitor Count Register (PMNO and PMN1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Event Counter

reset value: unpredictable

Bits Access Description

32-bit event counter - Reset to ‘0’ by PMNC register.
When an event counter reaches its maximum value
31:.0 Read / Write OxFFFF,FFFF, the next event it needs to count will cause
it to roll over to zero and generate an IRQ interrupt if
enabled.

Extending Count Duration Beyond 32 Bits

To increase the monitoring duration, software can extend the count duration beyond 32 bits by
counting the number of overflow interrupts each 32-bit counter generates. This can be done in the
interrupt service routine (ISR) where an increment to some memory location every time the
interrupt occurs will enable longer durations of performance monitoring. This does intrude upon
program execution but is negligible, since the ISR execution time isin the order of tens of cycles
compared to the number of cycles it took to generate an overflow interrupt (2°2).

Performance Monitor Control Register (PMNC)

The performance monitor control register (PMNC) is a coprocessor register that:
¢ controls which events PMNO and PM N1 will monitor
* detects which counter overflowed
* enablegdisables interrupt reporting
* extends CCNT counting by six more bits (cycles between counter rollover = 238
* resetsall countersto zero
¢ and enables the entire mechanism

Table 8-8 shows the format of the PMNC register.
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Table 8-4.

In

Performance Monitor Control Register (CP14, register 0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

evtCountl

evtCount0

flag inten D|C

P

E

reset value:

E and inten are 0, others unpredictable

Bits

Access

Description

31:28

Read-unpredictable / Write-as-0

Reserved

27:20

Read / Write

Event Countl - identifies the source of events that

PMNL1 counts. See Table 8-12 for a description of the

values this field may contain.

19:12

Read / Write

Event CountO - identifies the source of events that

PMNO counts. See Table 8-12 for a description of the

values this field may contain.

11

Read-unpredictable / Write-as-0

Reserved

10:8

Read / Write

Overflow/Interrupt Flag - identifies which counter
overflowed

Bit 10 = clock counter overflow flag
Bit 9 = performance counter 1 overflow flag
Bit 8 = performance counter 0 overflow flag

Read Values:

0 = no overflow
1= overflow has occurred

Write Values:

0 = no change
1= clear this bit

Read-unpredictable / Write-as-0

Reserved

6:4

Read / Write

Interrupt Enable - used to enable/disable interrupt
reporting for each counter

Bit 6 = clock counter interrupt enable

0 = disable interrupt
1= enable interrupt

Bit 5 = performance counter 1 interrupt enable

0 = disable interrupt
1= enable interrupt

Bit 4 = performance counter 0 interrupt enable

0 = disable interrupt
1= enable interrupt

Read / Write

Clock Counter Divider (D) -

0 = CCNT counts every processor clock cycle
1= CCNT counts every gath processor clock cycle

Read-unpredictable / Write

Clock Counter Reset (C) -

0 = no action
1 = reset the clock counter to ‘0x0’

Read-unpredictable / Write

Performance Counter Reset (P) -

0 = no action
1 = reset both performance counters to ‘Ox0’

Read / Write

Enable (E) -

0 = all 3 counters are disabled
1= all 3 counters are enabled

104
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8.24.1 Managing PMNC

The following are afew notes about controlling the performance monitoring mechanism:

* Aninterrupt will be reported when a counter’s overflow flag is set and its associated interrupt
enable bit is set in the PMNC register. The interrupt will remain asserted until software clears
the overflow flag by writing aone to the flag that is set. Note that the product specific interrupt
unit and the CPSR must have enabled the interrupt in order for software to receiveit.

* The counters continue to record events even after they overflow.
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Table 8-5.

8.3.1

Table 8-6.
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In

XSC2 Register Description (4 counter variant)

Table 8-5 contains details on accessing these registers with M RC and M CR coprocessor

instructions.

Performance Monitoring Registers

Description RegiZtgr# Reggtrzr# Instruction
gjel\ggt?r Performance Monitor Control 0b0000 060001 \Ffviﬁgf '\l\/lllgg gllzl (()) sg lg(()) :::118
(CCNT) Clock Counter Register 0b0001 | Obooo1 | Read: MRC gili* 8: FF;S,’ Cci S o
(INTEN) Interrupt Enable Register 0b0100 | 0b00OL \Ffverft‘gf s glli* 8: FF;S,’ Cci* gll 5
(FLAG) Overflow Flag Register 0b0101 | 0b00OL \Ffverft‘gf s glli* 8: sg: C°55 511:8
(EVTSEL) Event Selection Register 0b1000 | 0b00OL \Ffverft‘gf s glli* 8: FF;S,’ chﬁ* gll 5
(PMNO) Performance Count Register 0 0b0000 | 0b0010 \Ffverft‘gf s glli* 8: FF;S,’ gg: gg 5
(PMN1) Performance Count Register 1 0b0001 | 0b0010 \Ffverft‘gf s glli* 8: FF;S,’ Ccll gg 5
(PMN2) Performance Count Register 2 0b0010 | 0b0010 \Ffverft‘gf s glli* 8: FF;S,’ ch gg 5
(PMN3) Performance Count Register 3 0b0011 | 0b0010 \Ffverft‘gf s glli* 8: sg: ch gg 5

Clock Counter (CCNT)

The format of CCNT is shown in Table 8-6. The clock counter isreset to ‘0’ by setting bit 2 in the
Performance Monitor Control Register (PMNC) or can be set to a predetermined value by directly

writing to it. It counts core clock cycles. When CCNT reaches its maximum value OxFFFF,FFFF,

the next clock cycle will causeit to roll over to zero and set the overflow flag (bit 0) in FLAG. An
interrupt request will occur if it is enabled viabit 0 in INTEN.

Clock Count Register (CCNT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clock Counter

reset value: unpredictable

Bits Access Description
32-bit clock counter - Reset to ‘0’ by PMNC register.
31:0 Read / Write When the clock counter reaches its maximum value

OxFFFF,FFFF, the next cycle will cause it to roll over to
zero and generate an interrupt request if enabled.
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8.3.2 Performance Count Registers (PMNO - PMN3)

There are four 32-bit event counters; their format is shown in Table 8-7. The event counters are

reset to ‘0’ by setting bit 1 in the PMNC register or can be set to a predetermined value by directly
writing to them. When an event counter reaches its maximum val ue OxFFFF,FFFF, the next event it
needs to count will cause it to roll over to zero and set its corresponding overflow flag
(bit 1,2,3 or 4) in FLAG. Aninterrupt request will be generated if its corresponding interrupt enable
(bit 1,2,3 0or 4) issetin INTEN.

Table 8-7. Performance Monitor Count Register (PMNO - PMN3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Event Counter

reset value: unpredictable

Bits Access Description
32-bit event counter - Reset to ‘0’ by PMNC register.
When an event counter reaches its maximum value
31:0 Read / Write OxFFFF,FFFF, the next event it needs to count will cause

enabled.

it to roll over to zero and generate an interrupt request if
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8.3.3
Table 8-8.
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Performance Monitor Control Register (PMNC)

The performance monitor control register (PMNC) is a coprocessor register that:

* containsthe PMU ID

¢ extends CCNT counting by six more bits (cycles between counter rollover = 238)

* resetsal countersto zero
¢ and enables the entire mechanism

Table 8-8 shows the format of the PMNC register.

Performance Monitor Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID

D|C|P|E

reset value: E =0, ID = 0x14, others unpredictable

Bits Access

Description

31:24 Read / Write Ignored

Performance Monitor Identification (ID) -
XSC2 = 0x14

23:4 Read-unpredictable / Write-as-0

Reserved

3 Read / Write

Clock Counter Divider (D) -

0 = CCNT counts every processor clock cycle
1= CCNT counts every gath processor clock cycle

2 Read-unpredictable / Write

Clock Counter Reset (C) -

0 = no action
1= reset the clock counter to ‘0x0’

1 Read-unpredictable / Write

Performance Counter Reset (P) -

0 = no action
1 = reset all performance counters to ‘0x0’

0 Read / Write

Enable (E) -

0 = all counters are disabled
1= all counters are enabled
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8.3.4 Interrupt Enable Register (INTEN)

Each counter can generate an interrupt request when it overflows. INTEN enables interrupt

requesting for each counter.

Table 8-9. Interrupt Enable Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C
reset value: [4:0] = 0b00000, others unpredictable
Bits Access Description
315 Read-unpredictable / Write-as-0 Reserved
PMN3 Interrupt Enable (P3) -
4 Read / Write 0 = disable interrupt
1 = enable interrupt
PMN2 Interrupt Enable (P2) -
3 Read / Write 0 = disable interrupt
1 = enable interrupt
PMNL1 Interrupt Enable (P1) -
2 Read / Write 0 = disable interrupt
1= enable interrupt
PMNO Interrupt Enable (PO) -
1 Read / Write 0 = disable interrupt
1= enable interrupt
CCNT Interrupt Enable (C) -
0 Read / Write 0 = disable interrupt
1= enable interrupt
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8.3.5

Overflow Flag Status Register (FLAG)

INlal.

FLAG identifieswhich counter has overflowed and al so indicates an interrupt has been requested if
the overflowing counter’s corresponding interrupt enable bit (contained within INTEN) is asserted.
An overflow is cleared by writing a‘1’ to the overflow bit.

Table 8-10.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

Overflow Flag Status Register

16 15 14 13 12 11 10 9 8 7

6 5 4 3 2 1 0

c

reset value:

[4:0] = Ob0000O, others unpredictable

Bits

Access

Description

31:5

Read-unpredictable / Write-as-0

Reserved

Read / Write

PMN3 Overflow Flag (P3) -
Read Values:

0 = no overflow
1= overflow has occurred

Write Values:

0 = no change
1= clear this bit

Read / Write

PMN2 Overflow Flag (P2) -
Read Values:

0 = no overflow
1= overflow has occurred

Write Values:

0 = no change
1= clear this bit

Read / Write

PMN1 Overflow Flag (P1) -
Read Values:

0 = no overflow
1= overflow has occurred

Write Values:

0 = no change
1= clear this bit

Read / Write

PMNO Overflow Flag (PO) -
Read Values:

0 = no overflow
1= overflow has occurred

Write Values:

0 = no change
1= clear this bit

Read / Write

CCNT Overflow Flag (C) -
Read Values:

0 = no overflow
1= overflow has occurred

Write Values:

0 = no change
1= clear this bit
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8.3.6 Event Select Register (EVTSEL)

EVTSEL is used to select eventsfor PMNO, PMN1, PMN2 and PMN3. Refer to Table 8-12,
“Performance Monitoring Events’ on page 8-113 for alist of possible events.

Table 8-11.  Event Select Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

evtCount3 evtCount2 evtCountl evtCountO

reset value: unpredictable

Bits Access Description

Event Count 3 (evtCount3) -

31:24 Read / Write Identifies the source of events that PMN3 counts. See
Table 8-12 for a description of the values this field may
contain.

Event Count 2 (evtCount2) -

2316 Read / Write Identifies the source of events that PMN2 counts. See
Table 8-12 for a description of the values this field may
contain.

Event Count 1 (evtCountl) -

15:8 Read / Write Identifies the source qf events that PMN1 counts. See
Table 8-12 for a description of the values this field may
contain.

Event Count 0 (evtCount0) -

7:0 Read / Write Identifies the source of events that PMNO counts. See
Table 8-12 for a description of the values this field may
contain.
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8.3.7
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Managing the Performance Monitor

The following are a few notes about controlling the performance monitoring mechanism:

Aninterrupt request will be generated when a counter’s overflow flag is set and its associated
interrupt enable bit isset in INTEN. The interrupt request will remain asserted until software
clearsthe overflow flag by writing a one to the flag that is set. (Note that the product specific
interrupt unit and the CPSR must have enabled the interrupt in order for softwareto receiveit.)
Theinterrupt request can al so be deasserted by clearing the corresponding interrupt enable bit.
Disabling the facility (PMNC.E) doesn’t deassert the interrupt regquest.

The counters continue to record events even after they overflow.

To change an event for a performance counter, first disable the facility (PMNC.E) and then
modify EVTSEL. Not doing so will cause unpredictable results.

Simultaneously resetting and disabling the counter will cause unpredictable results. To disable
an event for a performance counter and reset the event counter, first disable the facility
(PMNC.E) and then reset the counter.

To increase the monitoring duration, software can extend the count duration beyond 32 bits by
counting the number of overflow interrupts each 32-bit counter generates. This can bedonein
the interrupt service routine (ISR) where an increment to some memory location every time
the interrupt occurs will enable longer durations of performance monitoring. This does intrude
upon program execution but is negligible, since the ISR execution time is in the order of tens
of cycles compared to the number of cyclesit took to generate an overflow interrupt (252).

Power can be saved by selecting event OxFF for any unused event counter. This only applies
when other event counters are in use. When the performance monitor is not used at all
(PMNC.E = 0x0), hardware ensures minimal power consumption.
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8.4 Performance Monitoring Events

Table 8-12 lists events that may be monitored. Each of the Performance Monitor Count Registers
can count any listed event. Software selects which event is counted by each PMNX register by
programming the evtCountx fields.

Table 8-12.  Performance Monitoring Events

Event Number
(evtCountx)

Event Definition

0x0

Instruction cache miss requires fetch from external memory.

0x1

Instruction cache cannot deliver an instruction. This could indicate an ICache miss or an
ITLB miss. This event will occur every cycle in which the condition is present.

0x2

Stall due to a data dependency. This event will occur every cycle in which the condition is
present.

0x3

Instruction TLB miss.

0x4

Data TLB miss.

0x5

Branch instruction executed, branch may or may not have changed program flow. (Counts
only B and BL instructions, in both ARM and Thumb mode.)

0x6

Branch mispredicted. (Counts only B and BL instructions, in both ARM and Thumb mode.)

0ox7

Instruction executed.

0x8

Stall because the data cache buffers are full. This event will occur every cycle in which the
condition is present.

0x9

Stall because the data cache buffers are full. This event will occur once for each contiguous
sequence of this type of stall.

OxA

Data cache access, not including Cache Operations (defined in Section 7.2.8)

0xB

Data cache miss, not including Cache Operations (defined in Section 7.2.8)

0xC

Data cache write-back. This event occurs once for each 1/2 line (four words) that are
written back from the cache.

0xD

Software changed the PC. All ‘b’, ‘bI’, ‘bIx’, ‘mov[s] pc, Rm’, ‘ldm Rn, {Rx, pc}, ‘Idr pc, [Rm]’,
pop {pc} will be counted. An ‘mcr p<cp>, 0,pc, ...", will not. The count also does not
increment when an event occurs and the PC changes to the event address, e.g., IRQ, FIQ,
SWI, etc.

0x10 through
0x17

Defined by ASSP. See the Intel XScale® core implementation option section of the ASSP
architecture specification for more details.

OxFF

Power saving event. This event deactivates the corresponding PMU event counter

all others

Reserved, unpredictable results
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Some typical combinations of counted events are listed in this section and summarized in
Table 8-13. In this section, we call such an event combination a mode.

Table 8-13. Some Common Uses of the PMU

Mode evtCount0 evtCountl
Instruction Cache Efficiency 0x7 (instruction count) 0x0 (ICache miss)
Data Cache Efficiency OxA (Dcache access) 0xB (DCache miss)
Instruction Fetch Latency 0x1 (ICache cannot deliver) 0x0 (ICache miss)
Data/Bus Request Buffer Full 0x8 (DBuffer stall duration) 0x9 (DBuffer stall)
Stall/Writeback Statistics 0x2 (data stall) 0xC (DCache writeback)
Instruction TLB Efficiency 0x7 (instruction count) 0x3 (ITLB miss)
Data TLB Efficiency OxA (Dcache access) 0x4 (DTLB miss)

Note: PMNO and PMNZ1 were used for illustration purposes only. Given there are four event counters,
more elaborate combination of events could be constructed. For example, one performance run
could select OxA, 0xB, 0xC, 0x9 events from which data cache performance statistics could be
gathered (like hit rates, number of writebacks per data cache miss, and number of timesthe data
cache buffersfill up per request).
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Instruction Cache Efficiency Mode

PMNO totals the number of instructions that were executed, which does not include instructions
fetched from the instruction cache that were never executed. This can happen if abranch
instruction changes the program flow; the instruction cache may retrieve the next sequential
instructions after the branch, before it receives the target address of the branch.

PMN1 counts the number of instruction fetch requests to external memory. Each of these requests
loads 32 bytes at atime.
Statistics derived from these two events:

* Instruction cache miss-rate. Thisisderived by dividing PMN1 by PMNO.

* The average number of cycles it took to execute an instruction or commonly referred to as
cycles-per-instruction (CPI). CPI can be derived by dividing CCNT by PMNO, where CCNT
was used to measure total execution time.

Data Cache Efficiency Mode

PMNO totals the number of data cache accesses, which includes cacheable and non-cacheable
accesses, mini-data cache access and accesses made to locations configured as data RAM.

Note that STM and L DM will each count as severa accesses to the data cache depending on the
number of registers specified in the register list. LDRD will register two accesses.

PMN1 counts the number of data cache and mini-data cache misses. Cache operations do not
contribute to this count. See Section 7.2.8 for a description of these operations.
The statistic derived from these two eventsis:

* Data cache miss-rate. Thisisderived by dividing PMN1 by PMNO.

Instruction Fetch Latency Mode

PMNO accumulates the number of cycles when the instruction-cache is not able to deliver an
instruction to the core due to an instruction-cache miss or instruction-TLB miss. This event means
that the processor core is stalled.

PMN1 counts the number of instruction fetch requests to external memory. Each of these requests
loads 32 bytes at atime. Thisisthe same event as measured in instruction cache efficiency mode.

Statistics derived from these two events:

* The average number of cycles the processor stalled waiting for an instruction fetch from
external memory to return. Thisis calculated by dividing PMNO by PMNL. If the averageis
high then the core may be starved of the external bus.

* The percentage of total execution cycles the processor stalled waiting on an instruction fetch
from external memory to return. Thisis calculated by dividing PMNO by CCNT, which was
used to measure total execution time.
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8.4.5
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Data/Bus Request Buffer Full Mode

The Data Cache has buffers available to service cache misses or uncachable accesses. For every
memory request that the Data Cache receives from the processor core a buffer is specul atively
allocated in case an external memory request is required or temporary storage isneeded for an
unaligned access. If no buffers are available, the Data Cache will stall the processor core. How
often the Data Cache stalls depends on the performance of the bus external to the core and what the
memory access latency isfor Data Cache miss requests to external memory. If the core memory
access latency is high, possibly due to starvation, these Data Cache buffers will become full. This
performance monitoring mode is provided to see if the core isbeing starved of the externa bus,
which will effect the performance of the application running on the core.

PMNO accumulates the number of clock cycles the processor is being stalled due to this condition
and PMN1 monitors the number of times this condition occurs.

Statistics derived from these two events:

* Theaverage number of cycles the processor stalled on a data-cache access that may overflow
the data-cache buffers. Thisis calculated by dividing PMNO by PMN1. This statistic lets you
know if the duration event cycles are due to many requests or are attributed to just afew
requests. If the average is high then the Intel X Scale® core may be starved of the external bus.

* The percentage of total execution cycles the processor stalled because a Data Cache request
buffer was not available. Thisis calculated by dividing PMNO by CCNT, which was used to
measure total execution time.

Stall/Writeback Statistics

When an instruction requires the result of a previous instruction and that result is not yet available,
the Intel X Scale® core stallsin order to preserve the correct data dependencies. PMNO counts the
number of stall cycles due to data-dependencies. Not all data-dependencies cause a stall; only the
following dependencies cause such a stall penalty:

* | oad-use penalty: attempting to use the result of aload before the load completes. To avoid the
penalty, software should delay using theresult of aload until it's available. This penalty shows
the latency effect of data-cache access.

* Multiply/Accumul ate-use penalty: attempting to use the result of a multiply or
multiply-accumul ate operation before the operation completes. Again, to avoid the penalty,
software should delay using the result until it's available.

* ALU use penalty: there are afew isolated cases where back to back ALU operations may
result in one cycle delay in the execution. These cases are defined in Chapter 10,
“Performance Considerations’.

PMN1 counts the number of writeback operations emitted by the data cache. These writebacks
occur when the data cache evicts a dirty line of data to make room for a newly requested line or as
the result of clean operation (CP15, register 7).

Statistics derived from these two events:

* The percentage of total execution cyclesthe processor stalled because of a data dependency.
Thisiscalculated by dividing PMNO by CCNT, which was used to measure total execution
time. Often a compiler can reschedule code to avoid these penalties when given the right
optimization switches.

* Total number of datawriteback requeststo external memory can be derived solely with PMN1.
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Instruction TLB Efficiency Mode

PMNO totals the number of instructions that were executed, which does not include instructions
that were trand ated by the instruction TLB and never executed. This can happen if a branch
instruction changes the program flow; the instruction TLB may translate the next sequential
instructions after the branch, before it receives the target address of the branch.

PM N1 counts the number of instruction TLB table-walks, which occurs when thereisa TLB miss.
If the instruction TLB is disabled PMN1 will not increment.

Statistics derived from these two events:
* Instruction TLB miss-rate. Thisis derived by dividing PMN1 by PMNO.

* The average number of cycles it took to execute an instruction or commonly referred to as
cycles-per-instruction (CPI). CPI can be derived by dividing CCNT by PMNO, where CCNT
was used to measure total execution time.

Data TLB Efficiency Mode

PMNO totals the number of data cache accesses, which includes cacheable and non-cacheable
accesses, mini-data cache access and accesses made to locations configured as data RAM.

Note that STM and L DM will each count as severa accessesto the data TLB depending on the
number of registers specified in the register list. LDRD will register two accesses.

PMN1 counts the number of data TLB table-walks, which occurs when thereisa TLB miss. If the
data TLB is disabled PMN1 will not increment.

The statistic derived from these two eventsis:
* DataTLB miss-rate. Thisisderived by dividing PMN1 by PMNO.
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8.5 Multiple Performance Monitoring Run Statistics

There may be times when the number of events to be monitored exceed the number of counters. In
this case, multiple performance monitoring runs can be done, capturing different events from each
run. For example, the first run could monitor the events associated with instruction cache
performance and the second run could monitor the events associated with data cache performance.
By combining the results, statistics like total number of memory requests could be derived.
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Examples

The same example is shown below for both variants (XSC1 and X SC2).

XSC1 Example (2 counter variant)

In this example, the events selected with the Instruction Cache Efficiency mode are monitored and
CCNT is used to measure total execution time. Sampling time ends when PMNO overflows which

will generate an IRQ interrupt.

Configuring the Performance Monitor

Configure PMNC with the follow ng val ues:
evtCount0 = 7, evtCountl = Oinstruction cache efficiency
inten = Ox7set all counters to trigger an interrupt on
overfl ow
C =1 reset CCNT register
P =1 reset PO and PWNL registers
; E =1 enable counting
MOV RO, #0x7777
MCR P14, 0, R0, C0,c0,0; wite RO to PMNC
Counting begins

Counter overflow can be dealt with in the IRQ interrupt service routine as shown below:

Interrupt Handling

| RQ_I NTERRUPT_SERVI CE_ROUTI NE:
Assume that performance counting interrupts are the only IRQin the system
MRC P14,0,R1, CO, c0, 0; read the PMN\C register
BIC R2,R1,#1 ; clear the enable bit
MCR P14,0,R2,C0,c0,0; clear interrupt flag and di sable counting
MRC P14,0,R3,C1,c0,0; read CCNT register
MRC P14,0,R4,C2,c0,0; read PVNO register
MRC P14,0, R5,C3,c0,0; read PW1 register

<process the results>
SUBS PC, R14, #4 ; return frominterrupt

As an example, assume the following valuesin CCNT, PMNO, PMN1 and PMNC:

Computing the Results

Assume CCNT overfl owed

CCNT = 0x0000, 0020 ; Overfl owed and continued counting

Nunmber of instructions executed = PMNO = Ox6AAA, AAAA

Nunmber of instruction cache m ss requests = PMN1 = 0x0555, 5555

Instructi on Cache miss-rate = 100 * PWMN1/ PMNO = 5%

CPI = (CCNT + 2732)/Nunber of instructions executed = 2.4 cycles/instruction

In the contrived example above, the instruction cache had a miss-rate of 5% and CPI was 2.4.
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8.6.2

XSC2 Example (4 counter variant)

In this example, the events selected with the Instruction Cache Efficiency mode are monitored and
CCNT isused to measure total execution time. Sampling time ends when PMNO overflows which

will generate an IRQ interrupt.

Example 8-4. Configuring the Performance Monitor

Configure the performance nonitor with the follow ng val ues:
EVTSEL. evt Count0 = 7, EVTSEL.evtCountl = 0 instruction cache efficiency
INTEN. i nten = Ox7 set all counters to trigger an interrupt on overflow
PWC.C = 1 reset CCNT register
PWC.P = 1 reset PVMNO and PWN1 registers
; PWC.E = 1 enable counting
MOV RO, #0x700
MCR P14,0,R0,C8,cl1,0 ; setup EVTSEL
MOV RO, #0x7
MCR P14,0,R0,C4,¢1,0 ; setup | NTEN
MCR P14,0,R0,C0,c1,0 ; setup PMNC, reset counters & enable
Counting begins

Example 8-5. |

Counter overflow can be dealt with in the IRQ interrupt service routine as shown below:

nterrupt Handling

| RQ_I NTERRUPT_SERVI CE_ROUTI NE:

Assume that performance counting interrupts are the only IRQin the system
MRC P14,0,R1,C0,c1,0 ; read the PMNC register
BIC R2,R1, #1 ; clear the enable bit, preserve other bits in PWC
MCR P14,0,R2,00,c1,0 ; disable counting
MRC P14,0,R3,C1,¢c1,0 ; read CCNT register
MRC P14,0,R4,C0,c2,0 ; read PMNO register
MRC P14,0,R5,C1,¢c2,0 ; read PWMNL register

<process the results>

SUBS PC, R14, #4 ; return frominterrupt

As an example, assume the following valuesin CCNT, PMNO, PMN1 and PMNC:

Example 8-6. Computing the Results

Assume CCNT overfl owed

CCNT = 0x0000, 0020 ; Overfl owed and continued counting

Nunmber of instructions executed = PMNO = Ox6AAA, AAAA

Nunmber of instruction cache mss requests = PMN1 = 0x0555, 5555

Instructi on Cache miss-rate = 100 * PMN1/ PMNO = 5%

CPI = (CCNT + 2732)/Nunber of instructions executed = 2.4 cycles/instruction
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9.1

9.2

This chapter describes the software debug and related features implemented in Elkhart, namely:
¢ debug modes, registers and exceptions.
* aseria debug communication link viathe JTAG interface.
* atrace buffer.

* amechanism and process for loading the instruction cache through JTAG.

Definitions

debug handler:  Debug handler is the event handler that runs on Elkhart, when a debug event
occurs.

debugger: The debugger is software that runs on a host system outside of Elkhart.

Debug Registers

CP15 Registers

CRn = 14; CRm = 8: instruction breakpoint register 0 (IBCRO)
CRn = 14; CRm = 9: instruction breakpoint register 1 (IBCR1)
CRn = 14; CRm = 0: data breakpoint register 0 (DBRO)

CRn = 14; CRm = 3: data breakpoint register 1 (DBR1)

CRn = 14; CRm = 4: data breakpoint control register (DBCON)

CP15 registers are accessible using MRC and MCR. CRn and CRm specify the register to access.
The opcode_1 and opcode 2 fields are not used and should be set to 0.

CP14 Registers

CRn = 8; CRm = 0: TX Register (TX)

CRn = 9; CRm = 0: RX Register (RX)

CRn = 10; CRm = 0: Debug Control and Status Register (DCSR)
CRn = 11; CRm = 0: Trace Buffer Register (TBREG)

CRn = 12; CRm = 0: Checkpoint Register 0 (CHKPTO)

CRn = 13; CRm = 0: Checkpoint Register 1 (CHKPT1)

CRn = 14; CRm = 0: TXRX Control Register (TXRXCTRL)

CP14 registers are accessible using MRC, MCR, LDC and STC (CDP to any CP14 registers will
cause an undefined instruction trap). CRn and CRm specify the register to access. The opcode_1
and opcode 2 fields are not used and should be set to 0.

Software accessto all debug registers must be done from a privileged mode. User mode access will
generate an undefined instruction exception. Specifying registers which do not exist has
unpredictable results.

The TX and RX registers, certain bitsin the TXRXCTRL register, and certain bitsin the DCSR can
be accessed by a debugger through the JTAG interface.
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9.3

9.3.1

9.3.2

122

Introduction

The Elkhart debug unit, when used with a debugger application, alows software running on an
Elkhart target to be debugged. The debug unit allows the debugger to stop program execution and
re-direct execution to adebug handling routine. Once program execution has stopped, the debugger
can examine or modify processor state, co-processor state, or memory. The debugger can then
restart execution of the application.

On Elkhart, one of two debug modes can be used:
* Halt Mode
* Monitor Mode

Halt Mode

When the debug unit is configured for Halt Mode, the reset vector is overloaded to serve as the
debug vector. A new processor mode, DEBUG mode (CPSR[4:0] = 0x15), isadded to allow debug
exceptions to be handled similarly to other types of ARM* exceptions.

When a debug exception occurs, the processor switchesto debug mode and redirects execution to a
debug handler, via the reset vector. After the debug handler begins execution, the debugger can
communicate with the debug handler to examine or alter processor state or memory through the
JTAG interface.

The debug handler can be downloaded and locked directly into the instruction cache through JTAG
so external memory is not required to contain debug handler code.

Monitor Mode

In Monitor Mode, debug exceptions are handled like ARM prefetch aborts or ARM data aborts,
depending on the cause of the exception.

When a debug exception occurs, the processor switches to abort mode and branches to a debug

handler using the pre-fetch abort vector or data abort vector. The debugger then communicates with
the debug handler to access processor state or memory contents.
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9.4 Debug Control and Status Register (DCSR)
The DCSR register is the main control register for the debug unit. Table 9-1 shows the format of
theregister. The DCSR register can be accessed in privileged modes by software running on the
core or by a debugger through the JTAG interface. Refer to Section 9.11.1, “SELDCSR JTAG
Register” for details about accessing DCSR through JTAG.
Table 9-1. Debug Control and Status Register (DCSR) (Sheet 1 of 2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0
GE|H |B TF|TI TD|TA|TS|TU|TR SA| MOE M| E
Bits Access Description Reset Value TRST Value
SW Read / Write Global Enable (GE)
31 ) 0: disables all debug functionality 0 unchanged
JTAG Read-Only ) .
1: enables all debug functionality
SW Read Onl Halt Mode (H)
30 | JTAG Read / Wiite 0: Monitor Mode unchanged 0
1: Halt Mode
SW Read-Only SOC Break (B) ] ]
2 defined defined
° JTAG Read-Only Value of SOC break core input undefine unaetine
28:24 Read-undefined / Write-As-Zero Reserved undefined undefined
SW Read Only
23 JTAG Read / Write Trap FIQ (TF) unchanged 0
SW Read Only
22 JTAG Read / Write Trap IRQ (TI) unchanged 0
21 Read-undefined / Write-As-Zero Reserved undefined undefined
SW Read Only
20 JTAG Read / Write Trap Data Abort (TD) unchanged 0
SW Read Onl
19 ITAG ellje ad r/]\BIlVrit e Trap Prefetch Abort (TA) unchanged 0
SW Read Only
18 JTAG Read / Write Trap Software Interrupt (TS) unchanged 0
17 ;SIT\'/Xg?gaS?I\}IlVrite Trap Undefined Instruction (TU) unchanged 0
SW Read Only
16 JTAG Read / Write Trap Reset (TR) unchanged 0
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Table 9-1. Debug Control and Status Register (DCSR) (Sheet 2 of 2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 3 2 1 0
GE/H |B TF|TI TD|TA|TS|TU|TR SA| MOE M| E
Bits Access Description Reset Value  TRST Value

15:6 Read-undefined / Write-As-Zero Reserved undefined undefined
SW Read / Write )
5 JTAG Read-Only Sticky Abort (SA) 0 unchanged
Method Of Entry (MOE)
000: Processor Reset
001: Instruction Breakpoint Hit
d/ 010: Data Breakpoint Hit
. SW Read / Write 011: BKPT Instruction Executed
4:2 0b000 h d
JTAG Read-Only 100: External Debug Event (JTAG Debug tnchange
Break or SOC Debug Break)
101: Vector Trap Occurred
110: Trace Buffer Full Break
111: Reserved
SW Read / Write Trace Buffer Mode (M)
1 JTAG Read-Only 0: wrap-around mode 0 unchanged
1: fill-once mode
SW Read / Write Trace Buffer Enable (E)
0 0: Disabled 0 unchanged
TAG R -Onl
JTAG Read-Only 1: Enabled
94.1 Global Enable Bit (GE)
The Global Enable hit disables and enables all debug functionality (except the reset vector trap).
Following a processor reset, this bit is clear so al debug functionality is disabled. When debug
functionality is disabled, the BKPT instruction becomes a noop and external debug breaks,
hardware breakpoints, and non-reset vector traps are ignored.
9.4.2 Halt Mode Bit (H)
The Halt Mode bit configures the debug unit for either Halt Mode or Monitor Mode.
9.4.3 SOC Break (B)

Reading the SOC Break bit returns the value of the SOC break input into the Intel XScale® core’.

1. Use of the SOC break input to the core (used to generate SOC debug breaks) is product specific and is targeted towards chips that need
system-on-a-chip debug capabilities. Refer to the ASSP architecture specification for more information.

124
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Vector Trap Bits (TF,TI,TD,TA, TS, TU,TR)

The Vector Trap bits allow instruction breakpoints to be set on exception vectors without using up
any of the breakpoint registers. When a bit is set, it acts as if an instruction breakpoint was set up
on the corresponding exception vector. A debug exception is generated before the instruction in the
exception vector executes.

Software running on Elkhart must set the Global Enable bit and the debugger must set the Halt
Mode bit and the appropriate vector trap bit through JTAG to set up a non-reset vector trap.

To set up areset vector trap, the debugger sets the Halt Mode bit and reset vector trap bit through
JTAG. The Global Enable bit does not effect the reset vector trap. A reset vector trap can be set up
before or during a processor reset. When processor reset is de-asserted, a debug exception occurs
before the instruction in the reset vector executes.

Sticky Abort Bit (SA)

The Sticky Abort bitisonly valid in Halt Mode. It indicates a data abort occurred within the
Special Debug State (see Section 9.5.1, “Halt Mode"). Since Special Debug State disables all
exceptions, a data abort exception does not occur. However, the processor sets the Sticky Abort bit
to indicate a data abort was detected. The debugger can use thisbit to determine if a data abort was
detected during the Special Debug State. The sticky abort bit must be cleared by the debug handler
before exiting the debug handler.

Method of Entry Bits (MOE)

The Method of Entry bits specify the cause of the most recent debug exception. When multiple
exceptions occur in parallel, the processor places the highest priority exception (based on the
priorities in Table 9-2) in the MOE field.

Trace Buffer Mode Bit (M)

The Trace Buffer Mode bit selects one of two trace buffer modes:
* Wrap-around mode - Trace buffer fills up and wraps around until a debug exception occurs.

* Fill-once mode - The trace buffer automatically generates a debug exception (trace buffer full
break) when it becomes full.

Trace Buffer Enable Bit (E)

The Trace Buffer Enable bit enables and disables the trace buffer. Both DCSR.e and DCSR.ge must
be set to enable the trace buffer. The processor automatically clears this bit to disable the trace
buffer when a debug exception occurs. For more details on the trace buffer refer to Section 9.12,
“Trace Buffer”.
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9.5

Table 9-2.
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Debug Exceptions

intel.

A debug exception causes the processor to re-direct execution to a debug event handling routine.
The Elkhart debug architecture defines the following debug exceptions:

* instruction breakpoint
* databreakpoint

* software breakpoint

* externa debug break
* exception vector trap
* trace-buffer full break
* SOC debug break

When a debug exception occurs, the processor’s actions depend on whether the debug unit is

configured for Halt Mode or Mon

itor Mode.

Table 9-2 shows the priority of debug exceptions relative to other processor exceptions.

Event Priority

Event Priority
Reset 1 (highest)
Vector Trap 2
data abort (precise) 3
data bkpt 4
data abort (imprecise) 5
external debug break, trace-buffer full, 6
SOC debug break
FIQ
IRQ
instruction breakpoint
pre-fetch abort 10
undef, SWI, software Bkpt 11
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Halt Mode

The debugger turns on Halt Mode through the JTAG interface by scanning in avalue that sets the
bit in DCSR. The debugger turns off Halt Mode through JTAG, either by scanning in anew DCSR
value or by a TRST. Processor reset does not effect the value of the Halt Mode bit.

When Halt Mode is active, the processor uses the reset vector as the debug vector. The debug
handler and exception vectors can be downloaded directly into the instruction cache, to intercept
the default vectors and reset handler, or they can beresident in external memory. Downloading into
the instruction cache allows a system with memory problems, or no external memory, to be
debugged. Refer top Section 9.14, “Downloading Code in the Instruction Cache” on page 9-154 for
details about downloading code into the instruction cache.

During Halt Mode, software running on Elkhart cannot access DCSR, or any of hardware
breakpoint registers, unless the processor isin Specia Debug State (SDS), described below.

When a debug exception occurs during Halt Mode, or an SOC debug break occurs in Monitor
Mode, the processor takes the following actions:

¢ disablesthe trace buffer

* sets DCSR.moe encoding

* processor enters a Special Debug State (SDS)

* R14 DBG isupdated asfollows:

Halt Mode R14_DBG Updating

Debug Exception Type

DBG_r14 Value

ARM Mode Thumb Mode

Data Breakpoint

PC of breakpointed memory instruction + 8 | PC of breakpointed memory instruction + 6

Instruction Breakpoint,

SW Breakpoint PC of breakpointed instruction + 4 PC of breakpointed instruction + 4
Vector Trap PC of trapped exception vector + 4 NA

Trace Buffer Full Break,

SOC Debug Break, PC of next instruction to execute + 4 PC of next instruction to execute + 4

External Debug Break

* SPSR_dbg = CPSR
e CPSR[4:0] = 0b10101 (DEBUG mode)

* CPSR[5] =0
* CPSR[6] = 1
e CPSR[7] =1

* PC = 0x0 or OxFFFF0000

The FSR.D bit, whichis set for al Monitor Mode debug exceptions (including SOC debug breaks),
is unaffected by debug exceptions during Halt Mode.
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Following a debug exception, the processor switches to debug mode and enters SDS, which allows
the following special functionality:

¢ All events are disabled. SWI or undefined instructions have unpredictable results. The
processor ignores pre-fetch aborts, FIQ and IRQ (SDS disables FIQ and IRQ regardless of the
enable values in the CPSR). The processor reports data aborts detected during SDS by setting
the Sticky Abort bit in the DCSR, but does not generate an exception (processor also sets up
FSR and FAR as it normally would for a data abort).

* Normally, during Halt Mode, software cannot write the hardware breakpoint registers or the
DCSR. However, during the SDS, software has write access to the breakpoint registers (see
Section 9.6, “HW Breakpoint Resources”) and the DCSR (see Table 9-1, “Debug Control and
Status Register (DCSR)” on page 9-123).

* ThelMMU isdisabled. In Halt Mode, since the debug handler would typically be downloaded
directly into the I C, it would not be appropriate to do TLB accesses or translation walks, since
there may not be any external memory or if thereis, the translation table or TLB may not
contain a valid mapping for the debug handler code. To avoid these problems, the processor
internally disablesthe IMMU during SDS.

* ThePID isdisabled for instruction fetches. This prevents fetches of the debug handler code
from being remapped to a different address than where the code was downl oaded.

The SDS remains in effect regardless of the processor mode. This allows the debug handler to
switch to other modes, maintaining SDS functionality. Entering user mode may cause
unpredictable behavior. The processor exits SDS following a CPSR restore operation.

When exiting, the debug handler should use:
subs pc, Ir, #4

Thisrestores CPSR, turns off all of SDS functionality, and branches to the target instruction.
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Monitor Mode

In Monitor Mode, the processor handles debug exceptions like normal ARM exceptions, except for
SOC debug breaks, which are handled like Halt Mode exceptions. |f debug functionality is enabled
and the processor isin Monitor M ode, debug exceptions cause either a dataabort or a pre-fetch abort.

The following debug exceptions cause data aborts:
* data breakpoint
¢ external debug break
¢ trace-buffer full break
The following debug exceptions cause pre-fetch aborts:
* instruction breakpoint
* BKPT instruction
The processor ignores vector traps during Monitor Mode.
When an exception occursin Monitor Mode, the processor takes the following actions:
¢ disables the trace buffer
* sets DCSR.moe encoding
* setsFSR[9]
* R14 DBG isupdated asfollows:

Monitor Mode R14_DBG Updating

Debug Exception Type

DBG_r14 Value

ARM mode Thumb mode

Data Breakpoint

PC of breakpointed memory instruction + 8 | PC of breakpointed memory instruction + 6

Instruction Breakpoint,
SW Breakpoint

PC of breakpointed instruction + 4 PC of breakpointed instruction + 4

Trace Buffer Full Break,
External Debug Break

PC of next instruction to execute + 4 PC of next instruction to execute + 4

* SPSR_abt = CPSR
 CPSR[4:0] = 0b10111 (ABORT mode)

* CPSR[5] =0
* CPSR[6] = unchanged
e CPSR[7]=1

* PC = 0xC or OxFFFFO00C (for Prefetch Aborts),
PC = 0x10 or OXFFFF0010 (for Data Aborts)

During abort mode, external debug breaks and trace buffer full breaks are internally pended. When
the processor exits abort mode, either through a CPSR restore or awrite directly to the CPSR, the
pended debug breaks will immediately generate a debug exception. Any pending debug breaks are
cleared out when any type of debug exception occurs. Note that SOC debug breaks are not pended
during abort mode; they are handled immediately when detected.

When exiting, the debug handler should do a CPSR restore operation that branches to the next
instruction to be executed in the program under debug.
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Table 9-5.

130

HW Breakpoint Resources

The Elkhart debug architecture defines two instruction and two data breakpoint registers, denoted
IBCRO, IBCR1, DBRO, and DBR1.

Theinstruction and data address breakpoint registers are 32-bit registers. The instruction
breakpoint causes a break before execution of the target instruction. The data breakpoint causes a
break after the memory access has been issued.

In this section Modified Virtual Address (MVA) refersto the virtual address ORed with the PID.
Refer to Section 7.2.13, “Register 13: Process ID” on page 7-91 for more details on the PID. The
processor does not OR the PID with the specified breakpoint address prior to doing address
comparison. This must be done by the programmer and written to the breakpoint register as the
MVA. This appliesto data and instruction breakpoints.

Instruction Breakpoints

The Debug architecture defines two instruction breakpoint registers (IBCRO and IBCR1). The
format of these registersis shown in Table 9-5, “Instruction Breakpoint Address and Control
Register (IBCRx)”. In ARM mode, the upper 30 bits contain aword aligned MVA to break on. In
Thumb mode, the upper 31 bits contain a half-word aigned MVA to break on. In both modes, bit 0
enables and disables that instruction breakpoint register. Enabling instruction breakpoints while
debug is globally disabled (DCSR.ge=0) may result in unpredictable behavior.

Instruction Breakpoint Address and Control Register (IBCRX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

IBCRx E

reset value: unpredictable address, disabled

Bits Access Description

Instruction Breakpoint MVA

311 Read / Write . o
in ARM* mode, IBCRx[1] is ignored

IBCRx Enable (E) -

0 Read / Write 0 = Breakpoint disabled
1 = Breakpoint enabled

An instruction breakpoint will generate a debug exception before the instruction at the address
specified in the ICBR executes. When an instruction breakpoint occurs, the processor sets the
DBCR.moe hitsto 0b0O01.

Software must disable the breakpoint before exiting the handler. This allows the breakpointed
instruction to execute after the exception is handled.

Single step execution is accomplished using the instruction breakpoint registers and must be
completely handled in software (either on the host or by the debug handler).
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Data Breakpoints

The Elkhart debug architecture defines two data breakpoint registers (DBRO, DBR1). The format
of the registersis shown in Table 9-6.

Data Breakpoint Register (DBRX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

DBRx

reset value: unpredictable

Bits Access Description

DBRO: Data Breakpoint MVA

31:0 Read / Write DBR1:
Data Address Mask OR

Data Breakpoint MVA

DBRO is a dedicated data address breakpoint register. DBR1 can be programmed for 1 of 2
operations:

* data address mask
* second data address breakpoint

The DBCON register controls the functionality of DBR1, aswell asthe enables for both DBRs.
DBCON also controls what type of memory access to break on.

Data Breakpoint Controls Register (DBCON)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

M E1l EO
reset value: 0x00000000
Bits Access Description
31:9 Read-as-Zero / Write-ignored Reserved
DBR1 Mode (M) -
8 Read / Write 0: DBR1 = Data Address Breakpoint

1: DBR1 = Data Address Mask

7:4 Read-as-Zero / Write-ignored Reserved

DBR1 Enable (E1) -

When DBR1 = Data Address Breakpoint

0b00: DBR1 disabled

3:2 Read / Write Ob01: DBR1 enabled, Store only

0b10: DBR1 enabled, Any data access, load or store
Ob11: DBR1 enabled, Load only

When DBR1 = Data Address Mask this field has no effect

DBRO Enable (EQ) -

0b00: DBRO disabled

1:0 Read / Write 0b01: DBRO enabled, Store only

0b10: DBRO enabled, Any data access, load or store
Ob11: DBRO enabled, Load only
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When DBR1 is programmed as a data address mask, it isused in conjunction with the addressin
DBRO. The bits set in DBR1 are ignored by the processor when comparing the address of a
memory access with the addressin DBRO. Using DBR1 as a data address mask allows a range of
addresses to generate a data breakpoint. When DBR1 is selected as a data address mask, it is
unaffected by the E1 field of DBCON. The mask is used only when DBRO is enabled.

When DBR1 is programmed as a second data address breakpoint, it functions independently of
DBRO. In this case, the DBCON.E1 controls DBRL1.

A databreakpoint istriggered if the memory access matches the access type and the address of any
byte within the memory access matches the addressin DBRX. For example, LDR triggers a
breakpoint if DBCON.EO is 0b10 or Ob11, and the address of any of the 4 bytes accessed by the
load matches the addressin DBRO.

The processor does not trigger data breakpoints for the PLD instruction or any CP15, register
7,8,9,0r 10 functions. Any other type of memory access can trigger a data breakpoint. For data
breakpoint purposes the SWP and SWPB instructions are treated as stores - they will not cause a
data breakpoint if the breakpoint is set up to break on loads only and an address match occurs.

On unaligned memory accesses, breakpoint address comparison is done on aword-aligned address
(aligned down to word boundary).

When a memory access triggers a data breakpoint, the breakpoint is reported after the access is
issued. The memory access will not be aborted by the processor. The actua timing of when the
access completes with respect to the start of the debug handler depends on the memory
configuration.

On adata breakpoint, the processor generates a debug exception and re-directs execution to the
debug handler before the next instruction executes. The processor reports the data breakpoint by
setting the DCSR.MOE to 0b010. Thelink register of a data breakpoint is always PC (of the next
instruction to execute) + 4, regardless of whether the processor is configured for Monitor Mode or
Halt Mode.

When setting a data breakpoint, the DBR registers should only be programmed while that data

breakpoint register is disabled. Programming the DBR registers while they are enabled, may result
in unpredictable behavior.
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9.7 Software Breakpoints

Mnemonics: BKPT (See ARM Architecture Reference Manual, ARMV5T)

Operation:  If DCSR[31] = 0, BKPT isanop;
If DCSR[31] =1, BKPT causes a debug exception

The processor handles the software breakpoint as described in Section 9.5, “ Debug Exceptions’ on
page 9-126.
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Transmit/Receive Control Register (TXRXCTRL)

Communications between the debug handler and debugger are controlled through handshaking bits
that ensures the debugger and debug handler make synchronized accesses to TX and RX. The
debugger side of the handshaking is accessed through the DBGTX (Section 9.11.2, “DBGTX JTAG
Register”) and DBGRX (Section 9.11.3, “DBGRX JTAG Register”) JTAG Data Registers,
depending on the direction of the datatransfer. The debug handler uses separate handshaking bitsin
TXRXCTRL register for accessing TX and RX.

The TXRXCTRL register also contains two other bits that support high-speed download. One bit
indicates an overflow condition that occurs when the debugger attempts to write the RX register
before the debug handler has read the previous data written to RX. The other bit is used by the
debug handler as a branch flag during high-speed download.

All of the bitsin the TXRXCTRL register are placed such that they can be read directly into the CC
flags in the CPSR with an MRC (with Rd = PC). The subsequent instruction can then conditional ly
execute based on the updated CC value

TX RX Control Register (TXRXCTRL)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

R|O T
D
RV R
. - Reset TRST
Bits Access Description value value
a1 SW Read-only / Write-ignored RR 0 0
JTAG Write-only RX Register Ready
) ov 0 unchanged
30 SW Read / Write .
RX overflow sticky flag
29 SW Read-only/ Write-ignored D unchanged 0
JTAG Write-only High-speed download flag
28 SW Read-only/ Write-ignored TR 0 unchanged
JTAG Write-only TX Register Ready
27:0 Read-as-Zero / Write-ignored Reserved undefined | undefined
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RX Register Ready Bit (RR)

The debugger and debug handler use the RR bit to synchronize accesses to RX. Normally, the
debugger and debug handler use a handshaking scheme that requires both sides to poll the RR bit.
To support higher download performance for large amounts of data, a high-speed download
handshaking scheme can be used in which only the debug handler pollsthe RR bit before accessing
the RX register, while the debugger continuously downloads data.

Table 9-9 shows the normal handshaking used to access the RX register.

Normal RX Handshaking

Debugger Actions

Debugger wants to send data to debug handler.
Before writing new data to the RX register, the debugger polls RR through JTAG until the bit is cleared.

After the debugger reads a ‘0’ from the RR bit, it scans data into JTAG to write to the RX register and sets the
valid bit. The write to the RX register automatically sets the RR bit.

Debug Handler Actions

Debug handler is expecting data from the debugger.
The debug handler polls the RR bit until it is set, indicating data in the RX register is valid.

Once the RR bit is set, the debug handler reads the new data from the RX register. The read operation
automatically clears the RR bit.

When data is being downloaded by the debugger, part of the normal handshaking can be bypassed
to allow the download rate to be increased. Table 9-10 shows the handshaking used when the
debugger is doing a high-speed download. Note that before the high-speed download can start,
both the debugger and debug handler must be synchronized, such that the debug handler is
executing a routine that supports the high-speed downl oad.

Although it is similar to the normal handshaking, the debugger polling of RR is bypassed with the
assumption that the debug handler can read the previous data from RX before the debugger can
scan in the new data.

High-Speed Download Handshaking States

Debugger Actions

Debugger wants to transfer code into the Elkhart system memory.

Prior to starting download, the debugger must polls RR bit until it is clear. Once the RR bit is clear, indicating
the debug handler is ready, the debugger starts the download.

The debugger scans data into JTAG to write to the RX register with the download bit and the valid bit set.
Following the write to RX, the RR bit and D bit are automatically set in TXRXCTRL.

Without polling of RR to see whether the debug handler has read the data just scanned in, the debugger
continues scanning in new data into JTAG for RX, with the download bit and the valid bit set.

An overflow condition occurs if the debug handler does not read the previous data before the debugger
completes scanning in the new data, (see Section 9.8.2, “Overflow Flag (OV)” for more details on the overflow
condition).

After completing the download, the debugger clears the D bit allowing the debug handler to exit the download
loop.

Debug Handler Actions

Debug is handler in a routine waiting to write data out to memory. The routine loops based on the D bit in
TXRXCTRL.

The debug handler polls the RR bit until it is set. It then reads the Rx register, and writes it out to memory. The
handler loops, repeating these operations until the debugger clears the D bit.
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Overflow Flag (OV)

The Overflow flag isasticky flag that is set when the debugger writes to the RX register while the
RR bit is set.

The flag is used during high-speed download to indicate that some data was lost. The assumption
during high-speed download is that the time it takes for the debugger to shift in the next data word
is greater than the time necessary for the debug handler to process the previous data word. So,
before the debugger shiftsin the next data word, the handler will be polling for that data.

However, if the handler incurs stalls that are long enough such that the handler is still processing
the previous data when the debugger completes shifting in the next data word, an overflow
condition occurs and the OV bit is set.

Once set, the overflow flag will remain set, until cleared by awrite to TXRXCTRL with an MCR.
After the debugger compl etes the download, it can examine the OV bit to determine if an overflow
occurred. The debug handler software is responsible for saving the address of the last valid store
before the overflow occurred.

Download Flag (D)

The value of the download flag is set by the debugger through JTAG. This flag is used during
high-speed download to replace aloop counter.

The download flag becomes especially useful when an overflow occurs. If aloop counter is used,
and an overflow occurs, the debug handler cannot determine how many data words overflowed.
Therefore the debug handler counter may get out of sync with the debugger - the debugger may
finish downloading the data, but the debug handler counter may indicate there is more data to be
downloaded - this may result in unpredictable behavior of the debug handler.

Using the download flag, the debug handler loops until the debugger clears the flag. Therefore,

when doing a high-speed download, for each dataword downloaded, the debugger should set the D
bit.
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9.84 TX Register Ready Bit (TR)

The debugger and debug handler use the TR bit to synchronize accesses to the TX register. The
debugger and debug handler must poll the TR bit before accessing the TX register. Table 9-11
shows the handshaking used to access the TX register.

Table 9-11.  TX Handshaking

Debugger Actions

Debugger is expecting data from the debug handler.

Before reading data from the TX register, the debugger polls the TR bit through JTAG until the bit is set. NOTE:
while polling TR, the debugger must scan out the TR bit and the TX register data.

Reading a ‘1’ from the TR bit, indicates that the TX data scanned out is valid
The action of scanning out data when the TR bit is set, automatically clears TR.

Debug Handler Actions

Debug handler wants to send data to the debugger (in response to a previous request).

The debug handler polls the TR bit to determine when the TX register is empty (any previous data has been
read out by the debugger). The handler polls the TR bit until it is clear.

Once the TR bit is clear, the debug handler writes new data to the TX register. The write operation
automatically sets the TR bit.

9.8.5 Conditional Execution Using TXRXCTRL

All of the bitsin TXRXCTRL are placed such that they can be read directly into the CC flags using
an MCR instruction. To simplify the debug handler, the TXRXCTRL register should be read using
the following instruction:

nrc pl4, 0, rl15, Cl4, Co, O

Thisinstruction will directly update the condition codes in the CPSR. The debug handler can then
conditionally execute based on each CC bit. Table 9-12 shows the mnemonic extension to
conditionally execute based on whether the TXRXCTRL bit is set or clear.

Table 9-12. TXRXCTRL Mnemonic Extensions

TXRXCTRL bit | mnemonic extension to execute if bit set mnemonic extension to execute if bit clear
31 (to N flag) Mi PL
30 (to Z flag) EQ NE
29 (to C flag) Cs CcC
28 (to V flag) VS VC

The following example is a code sequence in which the debug handler pollsthe TXRXCTRL
handshaking bit to determine when the debugger has completed its write to RX and the data is
ready for the debug handler to read.
| oop: nrc pl4, 0, r15, c14, cO0, O# read the handshaking bit in TXRXCTRL
nr cmi pl4, 0, r0, c9, cO0, 0 #if RXis valid, read it
bpl | oop #if RXis not valid, |oop
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Transmit Register (TX)

The TX register is the debug handler transmit buffer. The debug handler sends datato the debugger
through thisregister.

TX Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TX
reset value: unpredictable TRST value: unchanged
Bits Access Description

SW Read / Write
31:0 Debug handler writes data to send to debugger

JTAG Read-only

Since the TX register is accessed by the debug handler (using MCR/MRC) and the debugger
(through JTAG), handshaking is required to prevent the debug handler from writing new data
before the debugger reads the previous data.

The TX register handshaking is described in Table 9-11, “TX Handshaking” on page 9-137.

Receive Register (RX)

The RX register is the receive buffer used by the debug handler to get data sent by the debugger
through the JTAG interface.

RX Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RX
reset value: unpredictable TRST value: unpredictable
Bits Access Description
31:0 SW Read-only Software reads to receives data/commands from
JTAG Write-only debugger

Since the RX register is accessed by the debug handler (using MRC) and the debugger (through
JTAG), handshaking is required to prevent the debugger from writing new data to the register
before the debug handler reads the previous data out. The handshaking is described in

Section 9.8.1, “RX Register Ready Bit (RR)”.
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Debug JTAG Access

There are four JTAG instructions used by the debugger during software debug: LDIC, SELDCSR,
DBGTX and DBGRX. LDIC is described in Section 9.14, “Downloading Code in the Instruction
Cache’. The other three JTAG instructions are described in this section. SELDCSR, DBGTX and
DBGRX each use a 36-bit shift register to scan in new data and scan out captured data.

SELDCSR JTAG Register

The ‘SELDCSR’ JTAG instruction selects the DCSR JTAG data register. The JTAG opcode is
‘0b0001001’'. When the SELDCSR JTAG instruction isin the JTAG instruction register, the
debugger can directly access the Debug Control and Status Register (DCSR). The debugger can
only modify certain bits through JTAG, but can read the entire register.

The SELDCSR instruction also allows the debugger to generate an external debug break and set
the hold_reset signal, which is used when downloading code into the mini instruction cache during
reset.

SELDCSR
0 l 010 Capture_DR
1 YYY
TD | sl =i TDO
35(34 3|2|1|0|DBG_SR
1
L Tek ignored Update_DR
N Il BN BN BN I BN BN B BE BE B B B . I N BN O =
_ I corecLk
hold_reset
] ext_dbg_break
DCSR
31 0
L 1

software read/write

A Capture DR loads the current DCSR value into DBG_SR[34:3]. The other bitsin DBG_SR are
loaded as shown in Figure 9-1.

A new DCSR value can be scanned into DBG_SR, and the previous value out, during the Shift DR
state. When scanning in anew DCSR vaue into the DBG_SR, care must be taken to also set up
DBG_SR[2:1] to prevent undesirable behavior.

Update DR parallel loads the new DCSR value into the DCSR. All bits defined as JTAG writable
in Table 9-1, “Debug Control and Status Register (DCSR)” on page 9-123 are updated.

A debugger and the debug handler running on Elkhart must synchronize access the DCSR. If one
side writes the DCSR at the same side the other side reads the DCSR, the results are unpredictable.
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hold_reset

The debugger uses hold_reset when loading code into the instruction cache during a processor
reset. Details about |oading code into the instruction cache are in Section 9.14, “ Downloading
Codein the Instruction Cache”.

The debugger must set hold_reset before or during assertion of the reset pin. Once hold_reset is set,
the reset pin can be de-asserted, and the processor will internally remain in reset. The debugger can
then load debug handler code into the instruction cache before the processor begins executing any
code.

Once the code download is complete, the debugger must clear hold_reset. This takes the processor
out of reset, and execution begins at the reset vector.

A debugger can set hold_reset in one of 2 ways:

* FEither by taking the JTAG state machine into the Capture DR state, which automatically loads
DBG_SR[1] with ‘1’, then the Exit2 state, followed by the Update Dr state. Thiswill set the
hold_reset, clear ext_dbg_break, and leave the DCSR unchanged (the DCSR bits captured in
DBG_SR[34:3] are written back to the DCSR on the Update DR).

¢ Alternatively, a‘1’ can be scanned into DBG_SR[ 1], with the appropriate value scanned in for
the DCSR and ext_dbg_break.

The hold_reset bit can only be cleared by scanning ina ‘0’ to DBG_SR[1] and scanning in the
appropriate values for the DCSR and ext_dbg_break.

ext_dbg_break

The ext_dbg_break alows the debugger to asynchronously re-direct execution on the coreto a
debug handling routine.

A debugger sets an external debug break by scanninga ‘1’ into DBG_SR[2] (and scanning in the
desired value for the DCSR JTAG writable bitsin DBG_SR[34:3]).

Once ext_dbg_break is set, it remains set internally until a debug exception occurs. In Monitor
Mode, external debug breaks detected during abort mode are pended until the processor exits abort
mode. In Halt Mode, external debug breaks detected during SDS are pended until the processor
exits SDS. When an external debug break is detected outside of these two cases, the processor
ceases executing instructions as quickly as possible, clears the internal ext_dbg_break bit, and
branches to the debug handler (Halt Mode) or abort handler (Monitor Mode).

DCSR (DBG_SR[34:3])

The JTAG writable bits in the DCSR are updated with the value loaded into DBG_SR[34:3]
following an Update DR.
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9.11.2 DBGTX JTAG Register

The ‘'DBGT X’ JTAG instruction selectsthe DBGT X JTAG dataregister. The JTAG opcode for this
ingtruction is *0b0010000’ . The debug handler usesthe DBGTX data register to send datato the
debugger. A protocol can be setup between the debugger and debug handler to alow the debug handler
to signal an entry into debug mode, and once in debug mode to transmit data requested by the debugger.

Figure 9-2. DBGTX

software write set by SW write to TX software read-only
™ 31 o TXRXCTRL
L 1
[ 1 CoreCLK
Capture_DR _ [l TCLK
0 01
# Y ¢ # cleared by Debugger read
! 1
TD| mii === TDO
i 3]2|1|0|DBG_SR
L
Update_DR ¢
Ignored

A Capture DR loads the TX register value into DBG_SR[34:3] and TXRXCTRL.TR into
DBG_SR[0]. The other bitsin DBG_SR are loaded as shown in Figure 9-1.

The captured TX valueis scanned out during the Shift DR tate. Transitioning from Shift DR
immediately to Capture DR after capturinga‘1’ in DBG_SR[0] automatically clears TXRXCTRL.TR.

Data scanned in isignored on an Update DR.

9.11.2.1  DBG_SRJ[0]
DBG_SR[0] is used for part of the synchronization that occurs between the debugger and debug
handler for accessing TX. The debugger polls DBG_SR[0] to determine when the TX register
contains valid data from the debug handler.
A ‘1’ captured in DBG_SR[0] indicatesthe captured TX dataisvaid. After capturing valid data, the

debugger must place the JTAG state machine in the Shift_ DR gtate to guarantee that a debugger read
clearsTXRXCTRL.TR. A ‘0" indicates there isno new data from the debug handler in the TX regigter.

9.11.2.2 TX (DBG_SR[34:3))
DBG_SR[34:3] is updated with the contents of the TX register following an Update DR.

Note If DBG_SR[0] is‘0’ following an Update DR, the contents of DBG_SR[34:3] are unpredictable.
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DBGRX JTAG Register

The ‘DBGRX’ JTAG instruction selects the DBGRX JTAG data register. The JTAG opcode for
thisinstruction is ‘Ob0000010’. The debug handler uses the DBGRX data register to receive
information from the debugger. A protocol can be setup between the debugger and debug handler
to allow the handler to identify data values and commands.

The DBGRX data register also contain bits to support high-speed download and to “invalidate” the
contents of the RX register.

DBGRX
software read/write 1 undefined
! !
| I 0 01 l Capture_DR
TXRXCTRL | *. ﬁ *
31(30( 29 I TDl* . TDO
14 | 35j34 s|2|1|0|DBG_SR

[ ' -

] Update_DR
cleared py SW read of RX 1 L Tek
set by De)ugger Write h os on on o oe o e Ee e Ee B B (E e B Em
cleared py flush_rr | | _CorecCLK

flush_rr
rx valid ¥ hs_download
set overflow v
RX
T
i RX

set TXRXCTRL.RR = Write | enable™i 0

Logic : ,

TXRXCTRL.RR—= ¢

software read

A Capture DR loads the value of TXRXCTRL.RR into DBG_SR[0]. The other bitsin DBG_SR
are loaded as shown in Figure 9-3.

The captured data is scanned out during the Shift DR state. Care must be taken while scanning in
data. While polling TXRXCTRL.RR, incorrectly setting rx_valid or flush_rr may cause
unpredictable behavior following an Update DR.

Following an Update DR the scanned in data takes effect.
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RX Write Logic

The RX write logic (Figure 9-3) serves the following functions:

1) RX Write Enable: The RX register only gets updated when rx_valid is set and is unaffected
if rx_valid isclear or an overflow occurs. In particular, when the debugger is polling
DBG_SR[0], aslong asrx_valid is 0, Update DR does not modify RX.

2) Set TXRXCTRL.RR: When the debugger writes new datato RX, TXRXCTRL.RRis
automatically set signalling to the debug handler that the RX register contains valid data.

3) Set TXRXCTRL.OV: When the debugger scansin avalue with rx_valid set and
TXRXCTRL.RR isalready set, the TXRXCTRL.OV isautomatically set. For instance, during
high-speed download, the debugger does not poll to see if the handler has read the previous
data. If the debug handler stallslong enough, the debugger may try to write a new datato RX
before the handler has read the previous data. When this condition is occurs, the RX write
logic sets TXRXCTRL.OV and blocks the write to the RX register.

DBG_SR[0]

DBG_SR[0] is used for part of the synchronization that occurs between the debugger and debug
handler for accessing RX. The debugger polls DBG_SR[0] to determine when the handler has read
the previous data from RX, and it is safe to write new data.

A ‘1’ read in DBG_SRJ[0] indicates that the RX register contains valid data which has not yet been
read by the debug handler. A ‘0" indicatesit is safe for the debugger to write new data to the RX
register.

flush_rr

The flush_rr bit allows the debugger to flush any previous data written to RX. Setting flush_rr
clears TXRXCTRL.RR.

hs_download

The hs_download bit is provided for use during high speed download. This bit iswritten directly to
TXRXCTRL.D. The debugger can use this bit to improve performance when downloading a block
of code or data to the Elkhart system memory.

A protocol can be setup between the debugger and debug handler using thisbit. For example, while
this bit is set, the debugger can continuously download new data without polling TXRXCTRL.RR.
The debug handler uses TXRXCTRL.D as a branch flag to loop while there is more data to come.
The debugger clears thisbit to indicate the end of the block and allow the debug handler to exit its
loop.

Using hs_download as a branch flags eliminates the need for aloop counter in the debug handler

code. Thisavoids the problem were the debugger’s loop counter is out of synchronization with the
debug handler’s counter because of overflow conditions that may have occurred.

RX (DBG_SR[34:3])

DBG_SR[34:3] iswritten to RX following an Update_DR when the RX Write Logic enables the
RX register to be updated.
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9.11.3.6 rx_valid

The debugger setstherx_valid bit to indicate the data scanned into DBG_SR[34:3] isvalid datato
be written to RX. When this bit is set, the data scanned into the DBG_SR will be written to RX
following an Update DR. If rx_valid is not set Update DR does not affect RX.

This bit does not affect the actions of the flush_rr or hs_download bits.
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Trace Buffer

The 256 entry trace buffer provides the ability to capture control flow information to be used for
debugging an application. Two modes are supported:

1. The buffer fills up completely and generates a debug exception. Then SW empties the buffer.
2. The buffer fills up and wraps around until it is disabled. Then SW empties the buffer.

Trace Buffer Registers

CP14 contains three registers (see Table 9-15) for use with the trace buffer. These CP14 registers
are accessible using MRC, MCR, LDC and STC (CDP to any CP14 registers will cause an
undefined instruction trap). The CRn and CRm fields specify the register to access. The opcode 1
and opcode 2 fields are not used and should be set to 0.

CP 14 Trace Buffer Register Summary

CRn CRm Register Name
11 0 Trace Buffer Register (TBREG)
12 0 Checkpoint 0 Register (CHKPTO)
13 0 Checkpoint 1 Register (CHKPT1)

Any accessto the trace buffer registersin User mode will cause an undefined instruction exception.
Specifying registers which do not exist has unpredictable results.
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Checkpoint Registers

When the debugger reconstructs atrace history, it isrequired to start at the oldest trace buffer entry
and construct atrace going forward. In fill-once mode and wrap-around mode when the buffer does
not wrap around, the trace can be reconstructed by starting from the point in the code where the
trace buffer was first enabled.

Thedifficulty occursin wrap-around mode when the trace buffer wraps around at least once. In this
case the debugger gets a snapshot of the last N control flow changes in the program, where N <=
size of buffer. The debugger does not know the starting address of the oldest entry read from the
trace buffer. The checkpoint registers provide reference addresses to help reduce this problem.

Checkpoint Register (CHKPTX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

CHKPTX
reset value: Unpredictable
Bits Access Description
. CHKPTX:
31:.0 Read/Write . .
target address for corresponding entry in trace buffer

The two checkpoint registers (CHKPTO, CHKPT 1) on Elkhart provide the debugger with two
reference addresses to use for re-constructing the trace history.

When the trace buffer is enabled, reading and writing to either checkpoint register has
unpredictable results. When the trace buffer is disabled, writing to a checkpoint register sets the
register to the value written. Reading the checkpoint registers returns the value of the register.

In normal usage, the checkpoint registers are used to hold target addresses of specific entriesin the
trace buffer. Only direct and indirect entries get checkpointed. Exception and roll-over messages
are never checkpointed. When an entry is checkpointed, the processor sets bit 6 of the message
byte to indicate this (refer to Table 9-18, “Message Byte Formats”)

When the trace buffer contains only one checkpointed entry, the corresponding checkpoint register
is CHKPTO. When the trace buffer wraps around, two entries will typically be checkpointed,

usually about half abufferslength apart. In this case, thefirst (oldest) checkpointed entry read from
the trace buffer correspondsto CHKPT1, the second checkpointed entry corresponds to CHKPTO.

Although the checkpoint registers are provided for wrap-around mode, they are till vaid in
fill-once mode.
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Trace Buffer Register (TBREG)

Software Debug

The trace buffer is read through TBREG, using MRC and MCR. Software should only read the
trace buffer when it is disabled. Reading the trace buffer while it is enabled, may cause
unpredictable behavior of the trace buffer. Writes to the trace buffer have unpredictable results.
Reading the trace buffer returns the oldest byte in the trace buffer in the least significant byte of
TBREG. The byteis either a message byte or one byte of the 32 bit address associated with an

indirect branch message. Table 9-17 shows the format of the trace buffer register.

TBREG Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

6

reset value: unpredictable

Bits Access Description
31:8 Read-as-Zero/Write-ignored Reserved
7:0 Read / Write-unpredictable Message Byte or Address Byte
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9.13 Trace Buffer Entries

Trace buffer entries consist of either one or five bytes. Most entries are one byte messages
indicating the type of control flow change. The target address of the control flow change
represented by the message byte is either encoded in the message byte (like for exceptions) or can
be determined by looking at the instruction word (like for direct branches). Indirect branches
require five bytes per entry. One byte is the message byte identifying it as an indirect branch. The
other four bytes make up the target address of the indirect branch. The following sections describe
the trace buffer entriesin detail.

9.13.1 Message Byte

There are two message formats, (exception and non-exception) as shown in Figure 9-4.

Figure 9-4. Message Byte Formats

M[V([V|V C|C|C|C M[M[M[ M C|C|C|C

7 0 7 0

M = Message Type Bit MMMM = Message Type Bits

VVV = exception vector[4:2] CCCC = Incremental Word Coun t

CCCC = Incremental Word Count

Exception Format Non-exception Format

Table 9-18 shows all of the possible trace messages.

Table 9-18. Message Byte Formats

Message Name Message Byte Type Message Byte format # address bytes
Exception exception 0bOVVV CCCC 0
Direct Branch? non-exception 0b1000 CCCC 0
Checkpointed Direct Branch?® non-exception 0b1100 CCCC 0
Indirect Branch? non-exception 0b1001 CCCC 4
Checkpointed Indirect Branch? non-exception 0b1101 CCCC 4
Roll-over non-exception 0b1111 1111 0

a. Direct branches include ARM and THUMB bl, b
b. Indirect branches include ARM Idm, Idr, and dproc to PC; ARM and THUMB bx, bIx(1) and blx(2); and THUMB pop.

148 January, 2004 Developer’'s Manual




In

9.13.1.1

Intel XScale® Core Developer’'s Manual
Software Debug

Exception Message Byte

When any kind of exception occurs, an exception message is placed in the trace buffer. In an
exception message byte, the message type bit (M) is aways 0.

The vector exception (VVV) field is used to specify bitg[4:2] of the vector address (offset from the
base of default or relocated vector table). The vector allows the debugger to identify which
exception occurred.

The incremental word count (CCCC) istheinstruction count since the last control flow change (not
including the current instruction for undef, SWI, and pre-fetch abort). The instruction count
includes instructions that were executed and conditional instructions that were not executed due to
the condition of the instruction not matching the CC flags.

A count value of 0 indicates that 0 instructions executed since the last control flow change and the
current exception. For example, if abranch isimmediate followed by a SWI, adirect branch
exception message (for the branch) is followed by an exception message (for the SWI) in the trace
buffer. The count value in the exception message will be 0, meaning that 0 instructions executed
after the last control flow change (the branch) and before the current control flow change (the
SWI). Instead of the SWI, if an IRQ was handled immediately after the branch (before any other
instructions executed), the count would still be 0, since no instructions executed after the branch
and before the interrupt was handled.

A count of Ob1111 indicates that 15 instructions executed between the last branch and the
exception. In this case, an exception was either caused by the 16th instruction (if it is an undefined
instruction exception, pre-fetch abort, or SWI) or handled before the 16th instruction executed (for
FIQ, IRQ, or data abort).

Note: thereis a special case for the count field related to precise data aborts. For a precise data
abort on aload to the PC (LDR or LDM), the count is consistent with the above description (i.e.
aborting instruction is not counted). For all other precise data aborts, the instruction that causes the
data abort isincluded in the count value of the exception message.
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Non-exception Message Byte
Non-exception message bytes are used for direct branches, indirect branches, and rollovers.

In a non-exception message byte, the 4-bit message type field (MMMM) specifies the type of
message (refer to Table 9-18).

The incremental word count (CCCC) istheinstruction count since the last control flow change
(excluding the current branch). The instruction count includes instructions that were executed and
conditional instructions that were not executed due to the condition of the instruction not matching
the CC flags. In the case of back-to-back branches the word count would be O indicating that no
instructions executed after the last branch and before the current one.

A rollover message is used to keep track of long traces of code that do not have control flow
changes. The rollover message means that 16 instructions have executed since the last message
byte was written to the trace buffer.

If the incremental counter reaches its maximum value of 15, arollover message is written to the
trace buffer following the next instruction (which will be the 16th instruction to execute). Thisis
shown in Example 9-1. The count in the rollover message is Ob1111, indicating that 15 instructions
have executed after the last branch and before the current non-branch instruction that caused the
rollover message.

Example 9-1. Rollover Messages Examples

150

count=5

BL labell branch message placed in trace buffer after branch executes
count =0 < count = 0b0101

MOV

count =1

MOV

count = 2

MOV

count = 14
MOV

count = 15
MOV rollover message placed in trace buffer after 16th instruction executes

count=0 count = 0b1111

If the 16th instruction is a branch (direct or indirect), the appropriate branch message is placed in
the trace buffer instead of theroll-over message. The incremental counter is still set to Ob1111,
meaning 15 instructions executed between the last branch and the current branch.
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9.13.1.3  Address Bytes

Only indirect branch entries contain address bytes in addition to the message byte. Indirect branch
entries always have four address bytes indicating the target of that indirect branch. When reading
the trace buffer the MSB of the target addressis read out first; the LSB is the fourth byte read out;
and the indirect branch message byteisthefifth byteread out. The byte organization of theindirect
branch message is shown in Figure 9-5.

Figure 9-5.  Indirect Branch Entry Address Byte Organization

target[31:24]

Trace buffer is read by

software in this target[23:16]
direction. The message

byte is always the last of target[15:8]
the 5 bytes in the entry target[7:0]
to be read.

Y indirect br msg
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9.13.2

Figure 9-6.
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Trace Buffer Usage

The Elkhart trace buffer is 256 bytes in length. The first byte read from the buffer represents the
oldest trace history information in the buffer. The last (256th) byte read represents the most recent
entry in the buffer. The last byte read from the buffer will always be a message byte. This provides
the debugger with a starting point for parsing the entries out of the buffer. Because the debugger
needs the last byte as a starting point when parsing the buffer, the entire trace buffer must be read
(256 bytes on Elkhart) before the buffer can be parsed. Figure 9-6 isa high level view of the trace
buffer.

High Level View of Trace Buffer

first byte read — | target[7:0]
(oldest entry)

1001 CCCC (indirect)
1000 CCCC (direct)

1100 CCCC (direct)
CHKPTL |l4— |

CHKPTO

1111 1111 (roll-over)

target[31:24]
target[23:16]
target[15:8]

target[7:0]
1101 CCCC (indirect)

1000 CCCC (direct)
1111 1111 (roll-over)

last byte read -
(most recent entry) —» | 1000 CCCC (direct)

The trace buffer must be initialized prior to itsinitial usage, then again prior to each subsequent
usage. Initialization is done be reading the entire trace buffer. The process of reading the trace
buffer also clearsit out (all entries are set to 0b0O000 0000), so when the trace buffer has been used
to capture atrace, the process of reading the captured trace data also re-initializes the trace buffer
for its next usage.

The trace buffer can be used to capture atrace up to a processor reset. A processor reset disables
the trace buffer, but the contents are unaffected. The trace buffer captures a trace up to the
processor reset.

The trace buffer does not capture reset events or debug exceptions.
Since the trace buffer is cleared out before it is used, al entriesare initially 0b0000 0000. In
fill-once mode, these 0's can be used to identify the first valid entry in the trace buffer. In wrap

around mode, in addition to identifying the first valid entry, these O entries can be used to
determine whether awrap around occurred.
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Asthetrace buffer is read, the oldest entries are read first. Reading a series of 5 (or more)
consecutive “0b0000 0000” entriesin the oldest entries indicates that the trace buffer has not
wrapped around and the first valid entry will be the first non-zero entry read out.

Reading 4 or less consecutive “ 0b0000 0000” entries requires a bit more intelligencein the
debugger. The debugger must determine whether these 0's are part of the address of an indirect
branch message, or whether they are part of the “0b0000 0000” that the trace buffer was initialized
with. If the first non-zero message byteis an indirect branch message, then these 0's are part of the
address since the address is always read before the indirect branch message (see Section 9.13.1.3,
“Address Bytes'). If the first non-zero entry is any other type of message byte, then these 0's
indicate that the trace buffer has not wrapped around and that first non-zero entry isthe start of the
trace.

If the oldest entry from the trace buffer is non-zero, then the trace buffer has either wrapped around
or just filled up.

Once the trace buffer has been read and parsed, the debugger should re-create the trace history
from oldest trace buffer entry to latest. Trying to re-create the trace going backwards from the latest
trace buffer entry may not work in most cases, because once a branch message is encountered, it
may not be possible to determine the source of the branch.

In fill-once mode, the return from the debug handler to the application should generate an indirect
branch message. The address placed in the trace buffer will be that of the target application
instruction. Using this as a starting point, re-creating a trace going forward in time should be
straightforward.

In wrap around mode, the debugger should use the checkpoint registers and address bytes from
indirect branch entriesto re-create the trace going forward. The drawback isthat some of the oldest
entriesin the trace buffer may be untraceable, depending on where the earliest checkpoint (or
indirect branch entry) islocated. The best case iswhen the oldest entry in the trace buffer was
checkpointed, so the entire trace buffer can be used to re-create the trace. The worst case iswhen
thefirst checkpoint isin the middle of the trace buffer and no indirect branch messages exist before
this checkpoint. In this case, the debugger would have to start at its known address (the first
checkpoint) which is half way through the buffer and work forward from there.
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9.14

9.14.1

Downloading Code in the Instruction Cache

On Elkhart, amini instruction cache, physically separate! from the main instruction cache can be
used as an on-chip instruction RAM. A debugger can download code directly into either instruction
cache through JTAG. In addition to downloading code, several cache functions are supported.

Elkhart supports loading the instruction cache during reset and dynamically (without resetting the
core). Loading the instruction cache during normal program execution requires a strict
handshaking protocol between software running on Elkhart and the debugger.

In the remainder of this section the term ‘instruction cache’ appliesto either main or mini
instruction cache.

Mini Instruction Cache Overview

The mini instruction cache is asmaller version of the main instruction cache. The size of the mini
instruction cache is proportional to that of the main instruction cache:

A version of the core with a 32KB main instruction cache will have a 2KB mini instruction cache.
A version of the core with a 16KB main instruction cache will have a 1KB mini instruction cache.

Refer to the Intel X Scale® coreimplementation option section of the Application Specific Standard
Product (A SSP) architecture specification for more details the cache size supported by the ASSP.

The mini instruction cache is a 2-way set associative cache. The 2KB version has 32 sets, the 1IKB
version has 16 sets. The line sizeis 8 words. The cache uses the round-robin replacement policy.

The mini instruction cache is virtually addressed and addresses may be remapped by the PID.
However, since the debug handler executes in Special Debug State, address translation and PID
remapping are turned off. For application code, accesses to the mini instruction cache use the
normal address trandlation and PID mechanisms.

Normal application code is never cached in the mini instruction cache on an instruction fetch. The
only way to get code into the mini instruction cache is through the JTAG LDIC function. Code
downloaded into the mini instruction cache is essentially locked - it cannot be overwritten by
application code running on Elkhart. However, it is not locked against code downloaded through
the JTAG LDIC functions.

Application code can invadidate alinein the mini instruction cache using a CP15 Invaidate IC line
function to an address that hits in the mini instruction cache. However, a CP15 global invalidate IC
function does not affect the mini instruction cache.

The mini instruction cache can be globally invalidated through JTAG by the LDIC Invalidate IC
function or by a processor reset when the processor isnot in HALT or LDIC mode. A singlelinein
the mini instruction cache can be invalidated through JTAG by the LDIC Invalidate IC-line
function.

1. A cachelinefill from external memory will never be written into the mini-instruction cache. The only way to load a code into the
mini-instruction cache is through JTAG
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9.14.2 LDIC JTAG Command

The LDIC JTAG instruction selects the JTAG data register for loading code into the instruction
cache. The JTAG opcode for thisinstructionis ‘00111'. The LDIC instruction must be in the JTAG
instruction register in order to load code directly into the instruction cache through JTAG.

9.14.3 LDIC JTAG Data Register

The LDIC JTAG Data Register is selected when the LDIC JTAG instruction isin the JTAG IR. An
external host can load and invalidate lines in the instruction cache through this data register.

Figure 9-7.  LDIC JTAG Data Register Hardware

unpredictable
# Capture_DR
TD | i e TDO
LDIC_SR1 [*2 32|10
l Update_ DR
LDIC_REG |a2 2| 1|0 TCK
l _|_|_ Core CLK
—
LDIC_SR2 |z 2[1]0
? To Instruction Cache
LDIC »
State Machine

The data loaded into LDIC_SR1 during a Capture_DR is unpredictable.

All LDIC functions and data consists of 33 bit packets which are scanned into LDIC_SR1 during
the Shift_ DR state.

Update DR parallel loads LDIC_SR1 into LDIC_REG which isthen synchronized with the
Elkhart clock and loaded into the LDIC_SR2. Once dataisloaded into LDIC_SR2, the LDIC State
Machine turns on and serialy shifts the contents if LDIC_SR2 to the instruction cache.

Note that there is a delay from the time of the Update DR to the time the entire contents of
LDIC_SR2 have been shifted to the instruction cache. Removing the LDIC JTAG instruction from
the JTAG IR before the entire contents of LDIC_SR2 are sent to the instruction cache, will result in
unpredictable behavior. Therefore, following the Update DR for the last LDIC packet, the LDIC
instruction must remain in the JTAG IR for aminimum of 15 TCKs. This ensures the last packet is
correctly sent to the instruction cache.
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9.14.4

Table 9-19.

LDIC Cache Functions

Elkhart supports four cache functions that can be executed through JTAG. Two functions allow an
external host to download code into the main instruction cache or the mini instruction cache
through JTAG. Two additional functions are supported to allow lines to be invalidated in the
instruction cache. T