

HT3020A/B/C/D One Rhythm Generator

Features

- Operating Voltage: 2.4V~5.0V
- · Directly drive an external transistor
- Low stand-by current
- One percussion instrument

- · One demo song
- End-pulse output
- 16 pin dual-in-line package

Applications

Toys

· Sound effect generators

General Description

The HT3020A/B/C/D are all single-chip rhythm generator LSIs implemented in the CMOS technology. These ICs provide a percussion instrument sound and a demo-rhythm. Various types

of timbre and demo rhythm can be generated by coding the internal ROM. The IC is offered in either a dice form or 16 pin dual-in-line package.

Pin Assignment

Block Diagram

Pad Coordinates Unit: μm

						KEY2	ÆY1
						8	7
		HT3020	A/B/C/D				
			· • · •				
1	2			3	4	5	6
VDD	AUD			0000	osci	FLAG	VSS

Pad No.	X	Y
1	-949.75	-746.5
2	-764.75	-746.5
3	380.25	-746.5
4	565.25	-746.5
5	750.25	-746.5
6	944.25	-746.5
7	939.75	727
8	754.75	727

Chip size: $2160\times1860~(\mu\text{m})^2$

Pin Description

	Pin Name	I/O	Internal	Description		
I III NO.	I III Ivaille	1/0	Connection	Description		
1	OSCI	I	_	Oscillator input pin		
2	FLAG	О	NMOS Open Drain	End pulse output, open drain, low active output		
3	VSS	I	_	Negative power supply (GND)		
4	NC	_	_	No connection.		
5	KEY1	I	Pull-High	Trigger input for playing demo rhythm Low active, retriggerable		
6	KEY2	I	Pull-High	Trigger input for playing percussion instrument Low active, retriggerable		
7~13	NC	_	_	No connection		
14	VDD	I	_	Positive power supply		
15	AUD	0	PMOS Output	Voice output for driving an external transistor		
16	osco	О	_	Oscillator output pin		

 $[\]ensuremath{^{*}}$ The substrate should be connected to VSS in the PCB layout artwork.

Absolute Maximum Ratings

Supply Voltage0.3V to 6.0V	Storage Temperature50°C to 125°C
Input Voltage V _{SS} -0.3V to V _{DD} +0.3V	Operating Temperature0°C to 70°C

Electric Characteristics

 $(Ta=25^{\circ}C)$

Same had	Parameter	Test Condition		Min.	Tem	Max.	Unit
Symbol	Parameter	V_{DD}	Condition	WIIII.	Тур.	Max.	Omt
V_{DD}	Operating Voltage		_	2.4	_	5.0	V
I_{DD}	Operation Current		No load	_	200	400	μΑ
I _{STB}	Stand-by Current	3V	_	_	1	5	μΑ
I _{AUD}	Max. AUD Output Current	3V	$V_{OH}=0.6V$	-1.5	-2	_	mA
I_{OL}	FLAG Sink Current	3V	$V_{OL}=0.3V$	1.5	3.0	_	mA
V _{IL}	"L" Input Voltage	_	_	_	_	$0.2V_{ m DD}$	V
V _{IH}	"H" Input Voltage	_	_	0.7V _{DD}	_	_	V
Fosc	System Frequency	3V	R _{OSC} =320K	_	96	_	KHz

Functional Description

KEY2

When KEY2 is triggered, the built-in percussion instrument comes into play. KEY2 is an internal pull-high, low active, and retriggerable input.

KEY1

When KEY1 is triggered, a section of the demorhythm plays with the built-in percussion instrument. KEY1 is an internal pull-high, low active, and retriggerable input.

KEY priority

KEY1 > KEY2

KEY features

Pull-high resistance: $100k\Omega$ Key-in debounce time: $700~\mu s$

FLAG

FLAG outputs an end pulse at the end of any playing. It is active low, and is an NMOS open drain output.

Selection table

Part No.	Percussion Instrument	Demo-Rhythm
HT3020A	Snare Drum	March
HT3020B	Conga	Latin
HT3020C	Cymbal	Big-Band
HT3020D	High-Hat	Dance

Timing Diagram

Retriggerable

The key priority: Key 1 > Key 2

Application Circuit

Chip form

* The IC Substrate should be connected to VSS in the PCB layout artwork.

Package form

 $RX \cong 1K\Omega$ for VDD= 4V ~ 5V

Rosc: HT3020A \cong 240K Ω KEY1: HT3020A, March KEY2: HT3020A, Snare Drum HT3020B \cong 270K Ω HT3020B, Latin HT3020C, Big–Band HT3020C, Cymbal HT3020D \cong 110K Ω HT3020D, Dance HT3020D, High–Hat

5 25th June '96