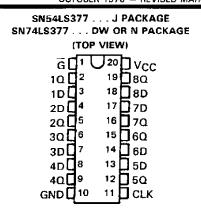
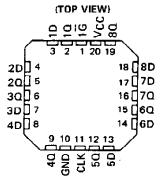
OCTAL, HEX, AND QUAD O-TYPE FLIP-FLOPS WITH ENABLE SDLS167

OCTOBER 1976 — REVISED MARCH 1988

- 'LS377 and 'LS378 Contain Eight and Six Flip-Flops, Respectively, with Single-Rail Outputs
- 'LS379 Contains Four Flip-Flops with Double-Rail Outputs
- Individual Data Input to Each Flip-Flop
- Applications Include: Buffer/Storage Registers Shift Registers Pattern Generators

description

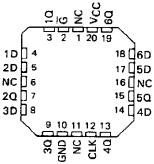

These monolithic, positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic with an enable input. The 'LS377, 'LS378, and 'LS379 devices are similar to 'LS273, 'LS174, and 'LS175, respectively, but feature a common enable instead of a common clear.


Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse if the enable input \overline{G} is low. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output. The circuits are designed to prevent false clocking by transitions at the \overline{G} input.

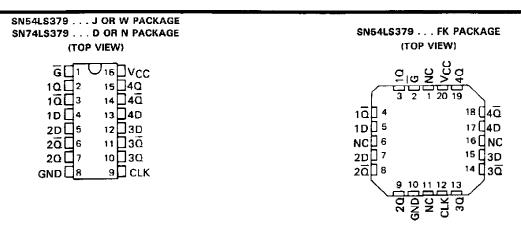
These flip-flops are guaranteed to respond to clock frequencies ranging from 0 to 30 MHz white maximum clock frequency is typically 40 megahertz. Typical power dissipation is 10 milliwatts per flip-flop.

FUNCTION TABLE (EACH FLIP-FLOP)

	INPUT	OUTI	PUTS	
G	CLOCK	DATA	a	ā
Н	х	Х	αo	αo
<u> </u> L	†	H	н	L
L	1	L	L	н
×	L	×	Q ₀	$\bar{\mathbf{Q}}_{0}$



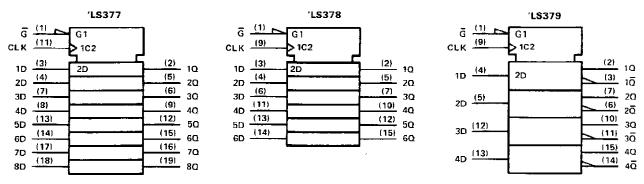
SNE4LS377 . . . FK PACKAGE


SN54LS378 . . . J OR W PACKAGE SN74LS378 . . . D OR N PACKAGE

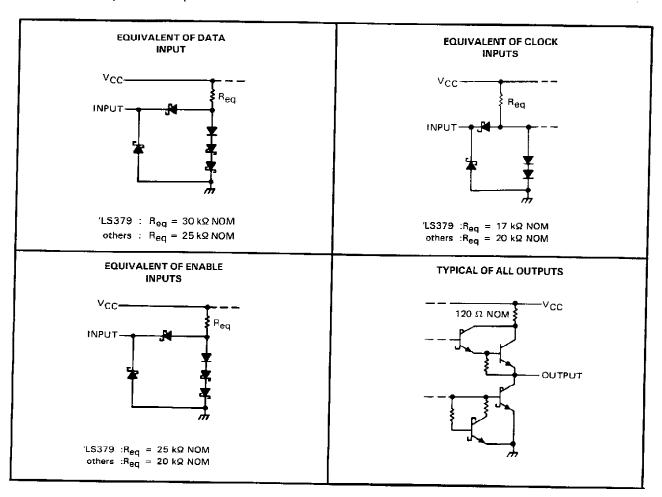
(TOP VIEW) G [1 U16 [VCC 10 Q2 15 🗆 6Q 1D □3 14 🗆 6D 2D 🗆 4 13 0 5D 20.□5 12 5Q 3D 🛮 6 11 🗌 4D 30□7 10 40 9 CLK GND∐8

SN54LS378 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection



logic diagram (positive logic)


NC - No internal connection

logic symbols†

 $^{^\}dagger$ These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for DW, J, and N packages.

schematics of inputs and outputs

absolute maximum rating over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)				-			-												. 7 V
Input voltage	SN54LS									-		•	-		•	-5	 5°C t	o 1	. 7 V 25°c
Storage temperature range	SN74LS'	-										_		_		-	0 °C	to	70°C

NOTE 1: Voitage values are with respect to network ground terminal.

SN54LS377, SN54LS378, SN54LS379, SN74LS377, SN74LS378, SN74LS379 OCTAL, HEX, AND QUAD D-TYPE FLIP-FLOPS WITH ENABLE

recommended operating conditions

			SN54L8	3′				
		MIN	NOM	MAX	MIN	NOM	MAX	רואט
Supply voltage, VCC		4.5	5	5.5	4.75	- 5	5.25	V
High-level output current, IOH				-400			-400	μA
Low-level output current, IOL				4			8	mΑ
Clock frequency, fclock		0		30	0		30	MHz
Width of clock pulse, tw		20			20			ns
	Data input	201			20↑			
Setup time, t _{SII}	Enable active-state	25↑			25↑			ns
	Enable inactive-state	101			10↑			,,,,
Hold time, th	Data and enable	5↑			5↑			ns
Operating free-air temperature, TA		-55		125	0		70	°C

 $^{^{\}dagger}$ The arrow indicates that the rising edge of the clock pulse is used for reference,

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		T .	TEST CONDITIONS†			SN54LS	3'		T		
_			or constitut		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage		······································		2			2			V
VIL	Low-level input voltage						0.7			0.8	V
VIK	input clamp voltage	VCC = MIN.	II = -18 mA				-1,5			-1.5	
V _{OH}	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -400 μ/	1	2.5	3.5		2.7	3.5		v
VOL	Low-level output voltage	V _{CC} = MIN,	V _{IH} = 2 V,	I _{OL} = 4 mA		0.25	0,4		0,25	0.4 0.5	v
i _I	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V	1			0,1			0.1	mA
Ιн	High-level input current	V _{CC} = MAX,	V _I = 2.7 V		l —		20			20	μА
ΊιL	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V				-0.4			-0.4	mA
los	Short-circuit output current§	V _{CC} = MAX			-20		-100	-20		-100	mA
	-			'LS377		17	28		17	28	mΑ
ICC	Supply current	V _{CC} = MAX,	See Note 2	'LS378		13	22		13	22	mA
				'LS379		9	15		9	15	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax	Maximum clock frequency	CL = 15 pF,	30	40		MHz
tPLH	Propagation delay time, low-to-high-level output from clock	R _L = 2 kΩ		17	27	ns
tPHL	Propagation delay time, high-to-low-level output from clock	See Note 3		18	27	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C. § Note more than one input should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: With all outputs open and ground applied to all data and enable inputs, ICC is measured after a momentary ground, then 4.5 V, is applied to clock.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated