
8-bit
RISC
Microcontroller

Application
Note

Rev. 0943C–11/00
AVR910: In-System Programming

Features
• Complete In-System Programming

Solution for AVR Microcontrollers
• Covers All AVR Microcontrollers with

In-System Programming Support
• Reprogram Both Data Flash and

Parameter EEPROM Memories
• Complete Schematics for Low-cost

In-System Programmer
• Simple 3-wire SPI Programming

Interface

Introduction
In-System programming allows program-
ming and reprogramming of any AVR
microcontroller positioned inside the end
system. Using a simple 3-wire SPI inter-
face , the In -Sys tem programmer
communicates serially with the AVR
microcontroller, reprogramming all non-
volatile memories on the chip.

In-System programming eliminates the
physical removal of chips from the sys-
tem. This will save time, and money,
both during development in the lab, and
when updating the software or parame-
ters in the field.

This application note shows how to
design the system to support In-System
programming. It also shows how a low-
cost In-System programmer can be
made, that will allow the target AVR
microcontroller to be programmed from
any PC equipped with a regular 9-pin

serial port. Alternatively, the entire In-
System programmer can be built into the
system allowing it to reprogram itself.

The Programming
Interface
For In-System programming, the pro-
grammer is connected to the target using
as few wires as possible. To program
any AVR microcontroller in any target
system, a simple 6-wire interface is used
to connect the programmer to the target
PCB. Figure 1 below shows the connec-
tions needed.

The Serial Peripheral Interface (SPI)
consists of three wires: Serial ClocK
(SCK), Master In – Slave Out (MISO)
and Master Out – Slave In (MOSI).
When programming the AVR, the In-
System programmer always operate as
the master, and the target system
always operate as the slave.

The In-System programmer (master)
provides the clock for the communication
on the SCK line. Each pulse on the SCK
line transfers one bit from the program-
mer (master) to the target (slave) on the
Master Out – Slave In (MOSI) line.
Simultaneously, each pulse on the SCK
line transfers one bit from the target
(slave) to the programmer (master) on
the Master In – Slave Out (MISO) line.

Figure 1. 6-wire Connection between Programmer and Target System

PC 9-PIN
SERIAL PORT

IN-SYSTEM
PROGRAMMER

TARGET AVR MCU
AT90SXXXX

VCC
RESET
MISO
MOSI
SCK

VCC
RES

MISO
MOSI
SCK

GND

TXD
RXD
GND

TXD
RXD
GND
1

To assure proper communication on the three SPI lines, it
is necessary to connect ground on the programmer to
ground on the target (GND).

To enter and stay in Serial programming mode, the AVR
microcontroller reset line has to be kept active (low). Also,
to perform a Chip Erase, the Reset has to be pulsed to end
the Chip Erase cycle. To ease the programming task, it is
preferred to let the programmer take control of the target
microcontroller reset line to automate this process using a
fourth control line (Reset).

To allow programming of targets running at any allowed
voltage (2.7V - 6.0V), the programmer can draw power
from the target system (VCC). This eliminate the need for a
separate power supply for the programmer. Alternatively,
the target system can be supplied from the programmer at
programming time, eliminating the need to power the target
system through its regular power connector for the duration
of the programming cycle.

Figure 2 shows the connector used by this In-System pro-
grammer to connect to the target system. The standard
connector supplied is a 2 x 3 pin header contact, with pin
spacing of 100 mils.

Figure 2. The Recommended In-System Programming
Interface Connector Layout (Top View).

Hardware Design Considerations
To allow In-System programming of the AVR microcontrol-
ler, the In-System programmer must be able to override the
pin functionali ty during programming. This section
describes the details of each pin used for the programming
operation.

GND

The In-System programmer and target system need to
operate with the same reference voltage. This is done by
connecting ground of the target to ground of the program-
mer. No special considerations apply to this pin.

RESET

The target AVR microcontroller will enter Serial program-
ming mode only when its reset line is active (low). When
erasing the chip, the reset line has to be toggled to end the
erase cycle. To simplify this operation, it is recommended
that the target reset can be controlled by the In-System
programmer.

Immediately after Reset has gone active, the In-System
programmer will start to communicate on the three dedi-
cated SPI wires SCK, MISO and MOSI. To avoid driver
contention, a series resistor should be placed on each of
the three dedicated lines if there is a possibility that exter-
nal circuitry could be driving these lines. The connection is
shown in Figure 3. The value of the resistors should be
chosen depending on the circuitry connected to the SPI
bus. Note that the AVR microcontroller will automatically
set all its I/O pins to inputs, with pull ups disabled, when
Reset is active.

1

3

5

4

6

2 VCC

MOSI

GND

MISO

SCK

RESET

Table 1. Connections Required for In-System Programming

Pin Name Comment

SCK Serial Clock Programming clock, generated by the In-System programmer (master)

MOSI Master Out – Slave In Communication line from In-System programmer (master) to target AVR being
programmed (slave)

MISO Master In – Slave Out Communication line from target AVR (slave) to In-System programmer (master)

GND Common Ground The two systems must share the same common ground

RESET Target AVR MCU Reset To enable In-System programming, the target AVR Reset must be kept active. To
simplify this, the In-System programmer should control the target AVR Reset

VCC Target Power To allow simple programming of targets operating at any voltage, the In-System
programmer can draw power from the target. Alternatively, the target can have power
supplied through the In-System programming connector for the duration of the
programming cycle
AVR9102

AVR910
Figure 3. Connecting ISP Programming Cable to Target
SPI Bus.

To avoid problems, the In-System programmer should be
able to keep the entire Target System Reset for the dura-
tion of the programming cycle. The target system should
never attempt to drive the three SPI lines while Reset is
active.

SCK

When programming the AVR in Serial mode, the In-System
programmer supplies clock information on the SCK pin.
This pin is always driven by the programmer, and the target
system should never attempt to drive this wire when target
reset is active. Immediately after the Reset goes active, this
pin will be driven to zero by the programmer. During this
first phase of the programming cycle, keeping the SCK line
free from pulses is critical, as pulses will cause the target
AVR to loose synchronization with the programmer. When
in synchronization, the second byte ($53), will echo back
when issuing the third byte of the programming enable
instruction. If the $53 did not echo back, give Reset a posi-
t ive pulse, and issue a new Programming Enable
command. Note that all 4 bytes of the of the Programming
Enable command must be sent before starting a new
transmission.

The target AVR microcontroller will always set up its SCK
pin to be an input with no pull up whenever Reset is active.
See also the description of the Reset wire.

The minimum low and high periods for the serial clock
(SCK) input are defined in the Programming section of the
datasheet. For the AT90S1200 they are defined as follows:

Low: >1 XTAL1 clock cycle

High: >4 XTAL1 clock cycles

MOSI

When programming the AVR in Serial mode, the In-System
programmer supplies data to the target on the MOSI pin.
This pin is always driven by the programmer, and the target
system should never attempt to drive this wire when target
reset is active.

The target AVR microcontroller will always set up its MOSI
pin to be an input with no pull up whenever Reset is active.
See also the description of the Reset wire.

MISO

When Reset is applied to the target AVR microcontroller,
the MISO pin is set up to be an input with no pull up. Only
after the “Programming Enable” command has been cor-
rectly transmitted to the target wil l the target AVR
microcontroller set its MISO pin to become an output. Dur-
ing this first time, the In-System programmer will apply its
pull up to keep the MISO line stable until it is driven by the
target microcontroller.

VCC

When programming the target microcontroller, the pro-
grammer outputs need to stay within the ranges specified
in the DC Characteristics.

To easily adapt to any target voltage, the programmer can
draw all power required from the target system. This is
allowed as the In-System programmer will draw very little
power from the target system, typically no more than
20 mA. The programmer shown in this application note
operates in this mode.

As an alternative, the target system can have its power
supplied from the programmer through the same connector
used for the communication. This would allow the target to
be programmed without applying power to the target
externally.

SPI
DEVICE

AVR
uC

ISP

MISO

MOSI

SCK
3

Programming Protocol
Immediately after Reset goes active on the target AVR
microcontroller, the chip is ready to enter programming
mode. The internal Serial Peripheral Interface (SPI) is acti-
vated, and is ready to accept instructions from the
programmer. On the AT90S1200, it is very important to
keep the SCK pin stable, as one single edge will cause the
target to loose synchronization with the programmer. For
other devices use the synchronization algorithm specified
in the datasheet. After pulling Reset low, wait at least
20 ms before issuing the first command.

COMMAND FORMAT

All commands have a common format consisting of four
bytes. The first byte contains the command code, selecting
operation and target memory. The second and third byte
contain the address of the selected memory area. The
fourth byte contains the data, going in either direction.

The data returned from the target is usually the data sent in
the previous byte. Table 3 shows an example, where two
consecutive commands are sent to the target. Notice how
all bytes returned equal the bytes just received. Some com-
mands return one byte from the target’s memory. This byte
is always returned in the last byte (byte 4). Data is alwa‘ys
sent on MOSI and MISO lines with most significant bit
(MSB) first.

For details on available instructions, please refer to the
Serial Programming section of the datasheet.

ENABLE MEMORY ACCESS

When the Reset pin is first pulled active, the only instruc-
tion accepted by the SPI interface is “Programming
Enable”. Only this command will open for access to the
Flash and EEPROM memories, and without this access,
any other command issued will be ignored. Table 3 shows
an example where memory access is enabled in the first
command sent to the chip.

After a “Programming Enable” command has been sent to
the target, access is given to the nonvolatile memories of
the chip according to the current setting of the protecting
lock bits.

The target AVR microcontroller will not respond with an
acknowledge to the “Programming Enable” command. To
check if the command has been accepted by the target
AVR microcontroller, the Device Code could be read. The
Device Code is also known as the signature bytes.

Table 2. Recommendations when Designing Hardware Supporting In-System Programming

Pin Recommendation

GND Connect ground of the target to ground of the In-System programmer

RESET Allow the In-System programmer to reset the target system

SCK When the target AVR microcontroller reset is active, this line should be controlled by the ISP programmer. Edges
on this line after Reset is pulled low will be critical, and cause the target AVR microcontroller to loose
synchronization with the programmer. When programming, oscillations on this pin should be tolerated by the
surrounding system when the AVR Reset is active

MOSI When the target AVR microcontroller Reset is active, this line should be controlled by the ISP programmer. When
programming, oscillations on this pin should be tolerated by the surrounding system when the AVR Reset is active.

MISO When the target AVR microcontroller Reset is active, this line should be allowed to become an output. When
programming, oscillations on this pin should be tolerated by the surrounding system when the AVR Reset is active

VCC Allow the In-System programmer to draw power from the target system, to adapt to any allowed target voltage. The
maximum current needed to power the programmer will vary depending on the programmer being used.

Table 3. Example, Enabling Memory Access and Erasing
the Chip

Action
MOSI, Sent to

Target AVR
MISO, Returned
from Target AVR

Programming
Enable

$AC 53 xx yy $zz AC 53 xx

Read Device Code
$1E at Address
$00

$30 nn 00 mm $yy 30 nn 1E
AVR9104

AVR910
DEVICE CODE

After the “Programming Enable” command has been suc-
cessfully read by the SPI interface, the programmer can
read the Device Code. The Device Code will identify the
chip vendor (Atmel), the part family (AVR), Flash size in
kilobytes, and family member (i.e., AT90S1200). The
“Read Device Code” command format is found in the Serial
Programming section of the datasheet. As an example, this
command will, for the AT90S1200, be [$30, $XX, $adr,
$code]. Valid addresses are $00, $01 and $02. Table 4
shows what the expected result will be.
.

Table 5 indicates that Device Code will sometimes read as
$FF. If this happens, the part Device Code has not been
programmed into the device. This does not indicate an
error, but the part has to be manually identified to the
programmer.

Device Code $FF might also occur if there is no target
ready or if the MISO line is constantly pulled high. The pro-
grammer can detect this situation by detecting that also a
command sent to the target is returned as $FF.

If the target reports Vendor Code $00, Part Family $01, and
Part Number $02, both lock bits have been set. This pre-
vents the memory blocks from responding, and the valued
returned will be the byte just received from the program-
mer, which just happens to be the current address. To
erase the lock bits, it is necessary to perform a valid “Chip
Erase”.

Table 6 shows an example reading the Device Code from
an AT90S1200.

Table 4. Allowed Device Codes

Address Code Valid Codes

$00 Vendor Code $1E indicates manufactured by Atmel
$00 indicates the device is locked, see below

$01 Part Family and Flash Size $9n indicates AVR with 2n kB Flash memory

$02 Part Number Identifies the part, see the file avr910.asm for a complete listing of
supported devices

Table 5. Part Number Identification Examples

Part Family and Flash Size Part Number Part

$90 $01 AT90S1200

$91 $01 AT90S2313

$92 $01 AT90S4414

$93 $01 AT90S8515

$FF $FF Device Code Erased (or Target Missing)

$01 $02 Device Locked

Table 6. Example, Reading the Device Code from an AT90S1200, code $1E 90 01 expected

Action MOSI, Sent to Target AVR MISO, Returned from Target AVR

Read Vendor Code at Address $00 $30 xx 00 yy $zz 30 xx 1E

Read Part Family and Memory Size at $01 $30 nn 01 mm $yy 30 nn 90

Read Part Number at Address $02 $30 xx 02 yy $mm 30 xx 01
5

FLASH PROGRAM MEMORY ACCESS
When the part has been identified, it is time to start access-
ing the Flash memory. A Chip Erase should be performed
before programming the Flash memory. Depending on the
target device the Flash is programmed using “Byte” or
“Page” mode.

For devices with “Byte Programming mode” each Flash
location is dressed and programmed individually. In Page
programming mode, a temporary Page buffer is first filled,
and then programmed in one single write cycle. This mode
reduces the total Flash programming time. A device will
only have one of these modes available. A device with
“Byte Programming mode” do not have the “Page” pro-
gramming option. A device with “Page” programming mode
of the Flash will, however, use byte programming for the
EEPROM memory.

Regardless if the device uses “Byte Programming mode” or
“Page Programming mode” the Flash will be read one byte
at the time using the “Read Flash Program Memory” com-
mand. The command sends a memory address ($aa bb) to
select a 16-bit word, and selects low or high byte with the H
bit in the command byte (0 is low, 1 is high byte). The byte
stored at this address is then returned from the target AVR
microcontroller in byte 4.

Usually, each 16-bit word in Flash contains one AVR
instruction. Assuming the instruction stored at address
$104 is “add r16,r17”, the op-code for this instruction would
be stored as $0F01. Reading address $104 serially, the
expected result returned in byte 4 will be $0F from the high
byte, and $01 from the low byte. The data on the MISO and
MOSI lines will look like shown in Table 7.

Writing to the Flash memory will, however, differ depending
on the available programming mode.

For devices using “Byte Programming mode” bytes are
written with the “Write Program Flash Memory” command.
This command sends a memory address ($aa bb) to select
a 16-bit word, and selects low or high byte with the H bit (0
is low, 1 is high byte). The byte to be stored is then sent to
the target AVR microcontroller in byte 4.

For devices using “Page Programming mode” the Flash is
programmed in two steps. First a temporary Page buffer is
filled using the “Load Program Memory Page” command.
Each byte in this buffer can be directly accessed. Once the
entire Page buffer is filled, it can be written to the Flash
Memory using the “Write Program Memory Page”
command.

In some devices, there is no method to detect when the
Flash write cycle has ended. For this reason, the program-
mer presented in this application note waits N ms before
attempting to send another command to the interface (the
delay N will depend on target device, and can be found in
the Programming section of the datasheet). For some
devices it is possible to use polling. When a byte is being
programmed into the Flash or EEPROM, reading the
addressed location being programmed will give a value M
(often $FF). At the time the device is ready for a new byte,
the programmed value will read correctly. This can be used
to determine when the next byte can be written. When pro-
gramming the value M polling will not work, and a delay N
should be used before writing the next value. Polled mode
will decrease the time required to program a device.

Table 7. Example, Reading “add r16,r17” as $0F01 from Flash Memory location $104

Action MOSI, Sent to Target AVR MISO, Returned from Target AVR

Read $01 at address $104, low byte $20 01 04 xx $zz 20 01 01

Read $0F at address $104, high byte $28 01 04 yy $xx 28 01 0F

Table 8. Example, Writing “add r17,r18” as $0F12 to Flash Memory location $10C (Byte Programming Mode)

Action MOSI, Sent to Target AVR MISO, Returned from Target AVR

Write $12 at address $10C, low byte $60 01 0C 12 $zz 60 01 0C

Wait N ms

Write $0F at address $10C, high byte $68 01 0C 0F $xx 68 01 0C

Wait N ms
AVR9106

AVR910
EEPROM DATA MEMORY ACCESS

Using the “Read EEPROM Data Memory” command,
EEPROM contents can be read one byte at a time. The
command sends a memory address ($aa bb) to select a
byte location in the EEPROM.

EEPROM is written one byte at a time, with the “Write
EEPROM Memory” command. This command selects the
byte to write just like “Read EEPROM Memory”, and trans-
fers the data to be written in the last byte sent to the target.
For some devices there is no method to detect when the
write cycle has ended. The programmer should simply wait
N ms before attempting to send another command to the
interface (the delay N will depend on target device, and can
be found in the programming section of the datasheet). For
increased programming speed, polling can be used as
described in the “Flash Program Memory Access” section.
An example of an EEPROM Write is shown in Table 10.

LOCK BITS ACCESS

To protect memory contents from being accidentally over-
written, or from unauthorized reading, the lock bits can be
set to protect the memory contents. As shown on Table 11,
the memories can be either protected from further writing,
or you may completely disable both reading and writing of
memories on the chip.

In some devices the lock bits can not be read, and setting
lock bits can not be verified by the programmer. To check
that the lock bits have been set properly in these devices,
one should attempt to alter a location in EEPROM. When
Lock Bit 1 is set, memory locations are not altered. When
both lock bits 1 and 2 are both set, no location can be read,
and the result returned will be the low byte of the address
passed in the command. Setting only Lock Bit 2 will have
no protective effect. Before the chip is protected from read-
ing, it has to be successfully protected from writing.

The lock bits will only prevent the programming interface
from altering memory contents. The core can read the
Flash program memory and access the EEPROM as usual,
independent of the lock bit setting.

The only method to regain access to the memory after set-
ting the lock bits, is by erasing the entire chip with a “Chip
Erase” command. The lock bits will be cleared to 1, dis-
abling the protection, only following a successful clearing of
all memory locations.

On Chip Erase, the lock bits obtain the value 1, indicating
the bit is cleared. Although the operation of enabling the
protection is referred to as “setting” the lock bit, a zero
value should be written to the bit to enable protection.

CHIP ERASE OPERATION

Before new contents can be written to the Flash Program
Memory, the memory has to be erased. Without erasing, it
is only possible to program bits in Flash Memory to zero,
not selectively setting a bit to one. Erasing the memory is
performed with the “Chip Erase” command. This command
will erase all memory contents, both Flash Program Mem-
ory and EEPROM.

Only after a successful erase of the memory, the lock bits
will be erased. This method ensures that data in the memo-
ries are kept secured until all data have been completely
erased.

Table 9. Example, Reading $ab from EEPROM Location
$3F

Action
MOSI, Sent to

Target AVR
MISO, Returned
from Target AVR

Read $ab at
address $3F

$A0 00 3F xx $zz A0 00 AB

Table 10. Example, Writing $0F to EEPROM Location $11

Action
MOSI, Sent to

Target AVR
MISO, Returned
from Target AVR

Write $0F at
address $11

$C0 00 11 0F $zz C0 00 11

Wait N ms

Table 11. Lock Bits Protection Modes

Lock Bit 1 Lock Bit 2 Protection Type

1 1 No Memory Lock

0 1 Further Programming of both Flash
and EEPROM Disabled

0 0 Further Programming and
Verification of both Flash and
EEPROM Disabled

Table 12. Example, Setting Lock Bit 1 to Disable Further
Programming

Action
MOSI, Sent to

Target AVR
MISO, Returned
from Target AVR

Set Lock Bit 1,
Disable
Programming

$AC FD xx yy $zz AC FD xx

Wait N ms
7

After a Chip Erase, all memory contents will be read as
$FF.

The only way to end a Chip Erase cycle is by temporarily
releasing the Reset line.

A Simple Low-cost In-System Programmer
This application note will not discuss all aspects of an In-
System programmer. Instead, it will show how a simple
low-cost programmer can be made, using only an
AT90S1200 and a few discrete components.

The programmer will plug into any serial port of any PC.
The AT90S1200 doesn’t come with a hardware UART, but
the software will run a half duplex UART by using the
Timer/Counter 0 to clock data. The AT90S1200 also takes
care of programming the target AVR by running the master
SPI entirely in software.

The schematics to the programmer can be seen in Figure
4. Power to the AT90S1200 is taken from the target sys-
tem. The negative voltage needed to communicate serially
with the PC is stored in C100 when receiving a logical one
(negative line voltage).

The transmit line is fed with this negative voltage from
C100, when transistor Q100 is closed. This sends a logical
one on the transmit line. Logical zeros (positive voltage) is
sent by opening Q100, connecting VCC (actually VCC -
0.2V) to the transmit line.

Some older PC systems might have serial port not accept-
ing voltages below +10 volts as logical zero. This, however,
is not a problem with the majority of existing PCs.

The f i le avr910.asm contains the f i rmware for the
AT90S1200.

Figure 4. A Low Cost In-System Programmer

Table 13. Example, Erasing all Flash Program Memory
and EEPROM Contents

Action
MOSI, Sent to

Target AVR
MISO, Returned
from Target AVR

Erase Chip $AC 8x yy nn $zz AC 8x yy

Wait N ms

Release RESET to
end the erase

U100

AT90S1200

GND
AIN0/PB0
AIN1/PB1

PB2
PB3
PB4
PB5
PB6
PB7

XTAL2

VCC
RESET
PD0
PD1
PD2/INT0
PD3
PD4
PD5
PD6
XTAL1

10
12
13
14
15
16
17
18
19
4

20
1
2
3
6
7
8
9

11
5

1M0
R106

XC1004 MHZ

VCC

MOSI

GND

J101

2

4

6

1

3

5

MISO

SCK

RESET

CONNECTOR AS
SEEN FROM BELOW

GND

C101 100N

R
10

3
4K

7

R
10

2
4K

7

4K7

4K7

PAD

RXD
TXD

R
10

1
4K

7

R
10

0
4K

7

BC847C
Q101

R105

D101
BAS16

BAS16

D100

20V

1.0uF
+
C100

RECEIVE

TRANSMIT

1

2

3

6

7

5

4
8

9

9-PIN D-SUB
FEMALE

R104J100
BC857C

Q100
AVR9108

AVR910
Part List
QTY Position Value Device Tolerance Vendor Comment

 1 C100 1U0/20V CE1U020V 20% PHILIPS +++ TANTAL CAPACITOR, SMD,
(EIA3216)

 1 C101 100N/50V C08B100N 10%_X7R MURATA +++ CERAMIC CAPACITOR, 0805,
X7R

 2 D100,D101 75V/100MA BAS16 PHILIPS +++ SWITCH DIODE, SO-23
PACKAGE

 1 J100 9 PIN DSUB-9FSOL HARTING +++ 9 PIN D-SUB, FEMALE,
SOLDER, 1.6 MM ROW
SPACING, 2.54 MM PIN

 1 JCABLE 6 PIN HEADER6FC HARTING +++ 6 PIN HEADER (IDC), FEMALE,
CABLE MOUNT

 1 Q100 45V/100MA BC857C PHILIPS +++ SMD NPN TRANSISTOR, SO-23
PACKAGE

 1 Q101 45V/100MA BC847C PHILIPS +++ SMD PNP TRANSISTOR, SO-23
PACKAGE

 6 R100-105 4K7 R08_4K7 1% KOA +++ RESISTOR, 0.125W, 1%, 0805

 1 R106 1M0 NOT_USED 1% KOA +++ RESISTOR, 0.125W, 1%, 0805

 1 U100 SOIC-20 AT90S1200-4SC ATMEL AVR MICROCONTROLLER, 20
PIN SOIC

 1 XC100 4.0MHZ CSTCC4.00MG 0.5% MURATA/AVX +++ CERAMIC RESONATOR, 4.00
MHZ, SMD (AVX: PRBC-4.0 B R)

 1 HOUSING 9 PIN D-SUB HOUSE 0.5% AMP +++ 9 PIN D-SUB PLASTIC
HOUSING

 1 CABLE 6 LEAD FLATCABLE HARTING +++ FLATCABLE, 6 LEAD, 300 MM

 1 PCB FR4/1.6MM A9702.3.1000.A ATMEL PRINTED CIRCUIT BOARD NO.
A9702.3.1000.A
9

© Atmel Corporation 2000.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard war-
ranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-
erty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are
not authorized for use as critical components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex
France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Atmel Smart Card ICs
Scottish Enterprise Technology Park
East Kilbride, Scotland G75 0QR
TEL (44) 1355-803-000
FAX (44) 1355-242-743

Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex
France
TEL (33) 4-7658-3000
FAX (33) 4-7658-3480

Fax-on-Demand
North America:
1-(800) 292-8635

International:
1-(408) 441-0732

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

 Printed on recycled paper.

0943C–11/00/xM

Marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

	Features
	Introduction
	The Programming Interface
	Hardware Design Considerations
	GND
	RESET
	SCK
	The minimum low and high periods for the serial clock (SCK) input are defined in the Programming ...
	MOSI
	MISO
	VCC

	Programming Protocol
	COMMAND FORMAT
	ENABLE MEMORY ACCESS
	DEVICE CODE
	FLASH PROGRAM MEMORY ACCESS
	EEPROM DATA MEMORY ACCESS
	LOCK BITS ACCESS
	CHIP ERASE OPERATION
	A Simple Low-cost In-System Programmer

	Part List

