Chapter 9

The Sound System

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

his chapter covers the fascinating subject of sound playback on the Game Boy Advance,

with coverage of the sound hardware, digital sound formats, and the code to play
sound samples. There are two sample programs in this chapter that show how to use the
sound hardware on the GBA, from a simple playback program to a more elaborate program
that uses button input to play several sounds. Are you ready to jump into the code and get
started? This is a pretty fast-paced chapter that gets down to the metal and shows you
exactly what you need to play sound. You will be adding sound to your own games in no
time.

Here are the main topics of this chapter:
d Introduction to sound programming
d Playing digital sound files
d The PlaySamples program

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Introduction to Sound Programming

The GBA has a very good sound system that was well designed and is perfectly suitable for
handheld games. While most gamers just use the built-in speaker, the GBA does support ste-
reo sound when using headphones. This is due to the dual digital channels in the sound chip.
Ideally, you will want to wear headphones while playing games in order to take advantage
of stereo sound, because the built-in speaker simply combines the two channels, dropping
the stereo effect. If you have not tried it with headphones, you'll be surprised by how much
better the games are in stereo.

GBA Sound Hardware

The GBA has two 8-bit digital-to-analog converters (DACs) for playing digital sound effects
and music. These two channels, which are referred to as direct sound, support 8-bit signed
samples. In addition, the GBA is backward compatible with previous Game Boy models, so it
includes the earlier four sound channels. The two channels are called Direct Sound A and
Direct Sound B and are capable of playing back 8-bit signed PCM samples. Pulse code modu-
lation (PCM) is a raw format that is supported by most sound editor programs and may be
saved as a .wav file.

FM Synthesis Support

The sound chip is backward compatible with Game Boy Color, providing four FM sound chan-
nels. Frequency modulation (FM) synthesis is a method of alternating the frequency of a
sine wave at fast intervals to produce sound effects and music. The result is not bad, but
how can | explain the output? It sounds fuzzy, like there is white noise in the sound, as in an
improperly tuned radio station or TV channel—quite different from digital sound. Since |
can't imagine any practical use for the four FM channels in the GBA, throwbacks to a previ-
ous decade, | am going to focus exclusively on the two direct sound channels. | hope you
understand my reasoning, because there is no need for FM synthesis when you have a DAC
available! That is akin to preferring an Apple Il over a Pentium 4 PC—without considering
the novelty, that is. For all practical purposes, just ignore the compatibility sound channels
on the GBA, and focus on digital sound. There is no comparison.

However, | don't want to dismiss FM sound completely, because there are cases where it can
be helpful, in some circumstances where digital sound is overkill. For instance, FM is great
for doing some kinds of sound effects, such as an airplane engine (which runs continuously),
or for the sound of wind perhaps.

Using Direct Sound for Digital Playback

Frequency modulation does work well to simulate sound mixing and does sound pretty good,
in the context of small handheld games. In comparison, though, FM is simulated sound,
rather than real sound. The reason for the poor sound quality in earlier Game Boy models
was that they did not have the luxury of a DAC (whereas the GBA has two of them). With the
GBA you can create sound effects yourself using a wave editor tool like Syntrillium's Cool
Edit 2000 (included on the CD-ROM under \Tools\Cool Edit 2000), or you can download some

333

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

.,' o i o (S

public domain wave files off the Web to use in your games. There is a tool for converting a
wave file to a C source file and then storing the wave file's bytes inside a C array, in the
same manner that bitmaps are converted. | will show you how to do it a little later in this
chapter. Take a look at Figure 9.1 for an illustration of a waveform.

/\ 1 Wavelength (Peak to Peak)
+128 | |
_.-"'fﬁh-\ \ _.-"'fﬁm\‘ \ _.ffﬁm\‘ \
o , ,
=
g, : ; ! ; :
§. ! | ' ' | ' | !
< ._ . .
127 NS NS N
\./ Frequency (Milliseconds)

Figure 9.1 - The sound produced by a waveform is

determined by frequency and amplitude.

Sound Mixing

There is one issue with the GBA's sound capabilities, and it's not a problem at all once you
understand the sound hardware. The GBA is capable of only a single digital sound at a time
(per channel), with no support for mixing. What at first seems to be a problem, however, is
really only the norm. Your PC doesn’'t have a hardware sound mixer either! Of course, a PC
sound card can output CD music along with digital sound produced by a program (such as
Windows Media Player or WinAmp), that level of hardware mixing does not translate to
games at all. Indeed, the latest fast-paced game for the PC must do sound mixing on its
own, as that is not built into the PC. Now, before you object, what | mean is that the game
engine (such as direct sound) does the sound mixing, which for all practical purposes is a
function of the game, while DirectX just happens to be installed separately.

The GBA has a very good sound chip built in that is at least on par with the early PC sound
cards, which is fantastic for a handheld—while lacking such obvious things as Dolby™ Pro-
Logic™, Dolby DTS™, Dolby Surround Sound™. | hope that earned a chuckle, because obvi-
ously such support is useless coming through the built-in speaker or headphones. The dual
digital channels on the GBA are perfect for the types of games developed for it. Fortu-
nately, HAM comes with an excellent sound-mixing library called Krawall.

Krawall is a complete sound engine for the GBA, providing everything you will need for a
complete game sound solution, with an emphasis on speed, high-quality playback, and a

Il| o T : : ! [| e | I'"I.I_I

straightforward API. Although HAM includes the free version of Krawall, | encourage you to
peruse the Krawall Web site at http://mind.riot.org/krawall and download the latest ver-
sion with documentation and learn how to use it.

Krawall is free for personal use but does require a license for commercial use. Also, the free
version is not as powerful as the fully licensed version. If you are serious about GBA sound,
then you need to get at least a personal licensed copy for your own use and should purchase
a commercial license without a second thought if you are an officially licensed GBA devel-
oper. In addition to mixing wave samples, Krawall also features a ProTracker module player
that can play .mod, .xm, and .s3m music files flawlessly in the background while playing
sound effects in the "foreground.”

Building a sound mixer is somewhat beyond the goals of this single chapter, so | encourage
you to look into Krawall as a solution. There are other sound libraries available for the GBA,
which | have listed in Appendix B, "Recommended Books and Web Sites."

Playing Digital Sound Files

Digital playback on the GBA is somewhat involved to the uninitiated, but the actual source
code is not difficult to write and is definitely manageable in 20-30 lines of code. | will go
over the specifics of the sound system and describe the registers and defines you will need
to write a sound playback function. For starters, I'll walk you through a simple SoundTest
program, which plays a single sample and ends. After you have gained an understanding of
simple playback, I'll show you a program called PlaySamples, which plays several sounds
based on button input.

Playing Digital Sounds

The key to sound playback on the GBA is not getting the sound going, but how to make it
stop when the sample is finished. The GBA doesn't inherently know when it has reached the
end of a sample. There are two methods of controlling playback: DMA and interrupts. DMA
is the preferred method, because it doesn't require any intervention from the programmer.
Once the sample is started, the DMA controller automatically feeds the sound buffer. Inter-
rupt-driven sound, on the other hand, requires the programmer to feed the sound buffer at
each interval (which is usually during the vblank).

Wave samples for a GBA game must be converted to a C array and should be loaded consec-
utively into the direct sound memory buffer called REG_FIFO_A, which starts at address
0x40000A0. Granted, there are always other ways to solve a problem, and in the case of
GBA sound, you could convert a wave file to a binary file and link it into the program,
although it's not a great solution when you are just learning this material.

Sound playback is interesting on the GBA. The 8-bit signed sound samples (which have a
value range of only - 127 to 128) are played back by the GBA sound chip in a first-in first-
out (FIFO) process, meaning that lower address bytes are played first. While it might sound
at first that sound playback goes in reverse, that is only a matter of how you perceive mem-
ory. | perceive memory being laid out linearly, 1 byte at a time, down a very long line (per-

335

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

haps like a train).

Some imagine computer memory in a 2D or even 3D layout, but | submit that the linear
analogy more closely resembles the actual state. It is true that a memory chip is filled with
nanoscopic transistors, or gates, in a grid and is even layered, so the perception of a 2D or
3D memory chip is accurate from a hardware perspective. However, we aren't electrical
engineers—or at least, I'm not!—so it is the software standpoint that matters here. The one-
dimensional line analogy will help you to better understand how software works, if you have
never really thought about it in detail. A wave file or bitmap file converted to a C array is a
linear array of bytes, which might be thought of as pure bits. Now, a sound sample com-
prises just 1 signed byte, but it is the linear playback of many sample bytes, sent through
the DAC, that produces a digital sound.

There are two possible ways to play a sample: using either DMA or an interrupt. DMA mode
is more efficient because consecutive samples are automatically loaded without interrup-
tion to the game. The interrupt mode must briefly pause the program to load the FIFO
buffer but is possibly easier to use, and perhaps even necessary to use, in some cases.

The direct sound channels are controlled by the REG_SOUND_CNT_H register located at
memory address 0x04000082, which has the layout shown in Table 9.1.

Table 9.1 REG_SOUND_CNT_H Bits

Bits Description

0-1 Channel 1-4 volume control

2 Direct Sound A volume control

3 Direct Sound B volume control

4-7 Unused

8 Enable Direct Sound A to right speaker

9 Enable Direct Sound A to left speaker

10 Direct Sound A sampling rate timer select
11 Direct Sound A reset FIFO

12 Enable Direct Sound B to right speaker

13 Enable Direct Sound B to left speaker

14 Direct Sound B sampling rate timer select
15 Direct Sound B reset FIFO

Since you will need a list of defines in order to program the sound channels, I'll provide that
a little prematurely right now:

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

#define SND_ENABLED 0x00000080
#define SND_OUTPUT_RATIO_25 0x0000
#define SND_OUTPUT_RATIO_50 0x0001
#define SND_OUTPUT_RATIO_100 0x0002
#define DSA_OUTPUT_RATIO_50 0x0000
#define DSA_OUTPUT_RATIO_100 0x0004

#define DSA_OUTPUT_TO_RIGHT 0x0100

#define DSA_OUTPUT_TO_LEFT 0x0200
#define DSA_OUTPUT_TO_BOTH 0x0300
#define DSA_TIMERO 0x0000
#define DSA_TIMERI1 0x0400
#define DSA_FIFO_RESET 0x0800

#define DSB_OUTPUT_RATIO_50 0x0000
#define DSB_OUTPUT_RATIO_100 0x0008
#define DSB_OUTPUT_TO_RIGHT 0x1000

#define DSB_OUTPUT_TO_LEFT 0x2000
#define DSB_OUTPUT_TO_BOTH 0x3000
#define DSB_TIMERO 0x0000
#define DSB_TIMERI1 0x4000
#define DSB_FIFO_RESET 0x8000

The sound hardware is quite helpful when it comes to actually playing the sound sample. All
you have to do (after copying the sample into the appropriate memory address for play-
back) is tell Direct Sound A or B to watch a specific timer for an overflow. You learned about
timers in the previous chapter, which was kind of convenient, right? Well, it was planned
that way. <Smile.> If you skipped over Chapter 8, "Using Interrupts and Timers," | recom-

mend that you go back to it and first learn how timers and interrupts work before proceed-

ing any further into this chapter.

When the specified timer (0 or 1) overflows, Direct Sound A or B will send another byte from
the FIFO to the DAC for playback. The key is setting up the timers to the specific sampling
rate of the wave file so it sounds right. Remember that the timers are used to play back the
sound at the correct rate to accurately reproduce the sound. The way you can determine
how to set the timers is by calculating how often a sample should be sent to the DAC, and
this is based on the CPU cycles. At 16.7 MHz, the CPU has 16,777,216 cycles per second; this

is a fixed value that you can count on in your GBA games, because the architecture of a con-

sole is fixed. To determine the number of cycles per sample, simply divide 16,777,216 by
the sampling rate.

For example, suppose you want to play back a sample at 44.1 kHz, which is CD-quality
music. Granted, this would take an enormous amount of memory, and you wouldn't want to
do this in practice, so let's just call this a hypothetical situation. 16,777,216 / 44,100 =
380.44, so you would want to set a timer to send a sample to the DAC every 380 CPU cycles.
A sampling rate of one-fourth CD quality is more realistic for GBA sounds, so let's calculate

337

Il| o T : : ! [| e | I'"I.I_I

it. 16,777,216 / 11,025 = 1,521.74, or rather, 1,521 cycles per sample. As you can see, the
sound playback itself doesn't require much of the CPU's time, although the overhead of
using timers and copying samples into memory does take a few more cycles.

Now, how would you go about setting up a timer to send a sample to the DAC every 1,521
CPU cycles? The timers are 16-bit, meaning they have a range of up to 65,535, with a
selectable frequency of 1, 64, 256, or 1,024 CPU cycles. To program the counter, which will
return to the preset value after an overflow, simply subtract the cycles from 65,535 to set
the initial value of the timer. So, an 11 kHz sample would require a timer set to 65,535 -
1,521 = 64,014.

The SoundTest Program

Sound programming is not easy to explain as it is, and when dealing with registers and
binary numbers, it can be quite confusing. To put this all into perspective, I've written a
program called SoundTest, which simply plays a sound sample called splash, which is con-
verted from splash.wav to splash.c and included in the main.c file. The program is only
about a page in length, and the actual sound code is 20 or so lines. Figure 9.2 shows the
program, although there is nothing displayed on the screen, as this program simply outputs
the sound and then ends.

Figure 9.2

The SoundTest program plays
a digital sound sample.

i, ok 1 | Smliare Y1

Converting the Sound File

In order to play a digital sample, a wave file must be converted into the raw binary format
that the GBA can recognize and use. As explained earlier, that format is PCM and is stored in
a .wav file. You are free to use any sound editing or converting program you like, but | pre-
fer Cool Edit 2000. Some of the .wav files that | have are not all in PCM format. Here are
some of the wave formats (or rather, audio codecs) that you are likely to encounter:

338

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

® A/mu-Law Wave

¢ ACM Waveform

® DVI/IMA ADPCM
® Microsoft ADPCM
® Windows PCM

As long as your sound-editing software is able to save files in the Windows PCM format, then
the GBA will be able to play it. If it's not in the correct format, the converter program will
print out an error message and fail to convert the file.

The program | have used to convert a wave file for use on the GBA is wav2gba, written by
Rafael Vuijk (a.k.a. Dark Fader), and may be downloaded from http://darkfader.net/gba. |
have included the wav2gba.exe program in each of the project folders for this chapter
under \Sources\Chapter09 on the CD-ROM, as well as in the \Tools folder. The wav2gba pro-
gram is a command-Lline tool, just like the gfx2gba program you have used to convert graph-
ics in previous chapters. Wav2gba has this syntax:

wav2gba <input.wav> <output.bin>

If you open a Command Prompt window (Start, Programs, Accessories menu), change to the
folder for the SoundTest program (using the CD command), which is located in
\Sources\Chapter09\SoundTest on the CD-ROM. You will of course want to copy the sources
off the CD-ROM to your hard drive and then remove the read-only property from \Sources
and all subfolders and files (simply right-click on \Sources and select Properties, then
uncheck the Read Only check box).

Assuming you are in the SoundTest folder, here is the command you would type in to convert
the splash.wav file:

wav2gba splash.wav splash.bin

This will create a file called splash.bin in the current folder. Unfortunately for us, the
splash.bin file is not exactly in the most useful format. What we need instead is a splash.c
file with a byte array containing the splash.wav sample. The splash.bin file could be linked
into the program via an assembler file or converted into an .elf file and linked into the
.exe, but that is a lot more difficult than simply using a source code file (although | know
some would not agree with me on that point). So, what is needed is a program to convert a
raw binary file into a generic C source file containing an array of bytes. There is a program
that is perfect for the job, called bin2c.exe, also written by Dark Fader. The syntax of this
program is also very simple:

bin2c <input.bin> <output.c>

To convert the splash.bin file, you can simply use the bin2c program like this:
bin2c splash.bin splash.c

The resulting file looks like this (truncated for space):

const unsigned char splashl[] =

{

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7D, 0x00, 0x00, 0x00, 0x00, 0x00,
0x18, 0x2D, 0x00,0x00, OxFA, 0x00, OxFD, OxFD, 0x03, 0x00, OxFD, 0x03,
0xFD, 0x03,0x00, OxFA, OxFD, OxFD, OxFA, OxFD, 0x03, 0x00, 0x00, 0x03,
0x03,0x0C, 0x00, 0x06, 0x00, 0x03, 0x03, 0x00, 0x00, OxFD, OxFA, OxFD,

0OxFA, OxFD, 0x00, OxFA, 0x06, 0x00, OxFD, OxFD, OxFD, OxF7, 0x00, OXFD,
0xFD, 0x03, OxFD, OxFA, 0x03, OxFA, 0x03, 0x00, OxFD, 0x03, 0x09, OXFD,
0x00,0x00, OxFA, 0x00,0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
bi

Since | use these two programs to convert waves so often, | wrote a short batch file, called
wav.bat, that will convert a wave file to a C file, like this. You can use Notepad to write this
short batch program:

@echo off
wav2gba %$l.wav %$1.bin

if exist %1.bin bin2c %1.bin %1l.c

Now, instead of calling on two programs with a total of four parameters (which is a lot of
typing when you need to convert a bunch of waves!), | simply type this:

wav splash

The batch file calls on wav2gba and bin2c to convert the wave to a C file. Simple!

| should mention something about conversion errors you are likely to encounter, some of
which are obscure. There is one error that reads like this:

'data' not found

Another error message looks like this:

8 bit required

Both error messages are related to an unsupported wave file format. The files must be
saved in a PCM wave format, so just load up a wave you are having trouble with into Cool
Edit 2000 or a similar sound-editing tool, and then do a Save As to convert it to a PCM wave.
That should take care of the problem. In some cases, you may also need to downsample the
wave from 16 bits to 8 bits, because the wav2gba program is smart enough to know that
only 8-bit samples will work on the GBA and will refuse to convert 16-bit samples. You will
need to downsample those files. In Cool Edit 2000, you can do this from the Edit menu by
selecting Convert Sample Type, or by simply pressing F11 to convert the wave.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Once you have converted a wave file, you need to keep the intermediate splash.bin file
handy because it is a raw binary file, and you'll need to know the exact file size in bytes in
order to plug that value into the SoundTest program. If you are still in the Command Prompt
window from converting the file, you can get a list of files by typing "DIR" and taking note of
the size of splash.bin. Otherwise, you'll have to right-click on splash.bin in Windows
Explorer and click on Properties to get the exact file size in bytes. Just look at the Size, not
the Size On Disk. Take a look at Figure 9.3. For reference, | noted that the file length is
11,568 bytes.

1

ﬁMd|SM| Surmary |

E |=.a.+ tr

Typeof e BIN Fis

SR e Figure 9.3 -

e i e The splash.bin file is 11,568 bytes
T in length, which is the exact length
i o sk 1200K8 12208 bytes] of the sound sample needed for the

T SoundTest program.

Hodifted Vesterday, Apd 06, 03 10:31:24 FH
Apcessed Today Apnl OF, 2003 10:06:43 A4

Amiuter: [Feadonly [Hidden Agvarced .

[o] cwed || cen |

The SoundTest Header File

If you have successfully converted the splash.wav file (or if you merely looked in the
SoundTest folder and found that it has already been converted!), then you are ready for the
source code to SoundTest. This program is fairly short, so | recommend that you type it into
Visual HAM—this is akin to getting your hands greasy by working on an engine, as opposed to
hiring someone else to repair your car. You learn a great deal by doing it yourself!

If you are writing this program yourself, you will need to create a new project in Visual HAM
called SoundTest. Add a new file by selecting File, New, New File. Be sure to select the
radio button Add To Project and click on the C Header icon on the left. | have called the file
main.h, but you may call it whatever you like, as long as you include this file in the main.c
file. The dialog box is shown in Figure 9.4.

b X
Filirdived |

[manH
C Sauree [BrcBaSaurea s\ hapte ritSandTest,

Path:

© add To Fies Ta Compile FigUI'e 9.4
bl - The New File dialog box

Empty C Header document in Visual HAM.

= Eingls
& add Ta Project

Tarplste | T I Laresl |

Now type the following code into the new main.h file. This code includes all the definitions
needed to program the sound system on the GBA, including access to the DMA, timers, and
interrupts needed to control sample playback.

L1177 7777777770777 77777777777777777777777777777777
// Programming The Game Boy Advance

// Chapter 9: The Sound System

// SoundTest Project

// main.h header file

[I77

typedef unsigned char u8;
typedef unsigned short ulé6;
typedef unsigned long u32;

//define some video registers/values
#define REG_DISPCNT * (u32*)0x4000000
#define BG2_ENABLE 0x400

#define SetMode (mode) REG_DISPCNT = (mode)

//define some interrupt registers

#define REG_IME *(ul6e*)0x4000208
#define REG_IE *(ul6e*)0x4000200
#define REG_IF *(ul6*)0x4000202

#define REG_INTERRUPT * (u32*)0x3007FFC
#define REG_DISPSTAT *(ul6*)0x4000004
#define INT_VBLANK 0x0001

//define some timer and DMA registers/values

#define REG_TMOD *(volatile ul6*)0x4000100
#define REG_TMOCNT *(volatile ul6*)0x4000102
#define REG_DMAI1SAD *(volatile u32*)0x40000BC
#define REG_DMAI1DAD *(volatile u32*)0x40000C0

#define REG_DMAICNT_H *(volatile ulé6*)0x40000C6
#define TIMER_ENABLE 0x80
#define DMA_DEST_FIXED 64

#define DMA_REPEAT 512
#define DMA_32 1024
#define DMA_ENABLE 32768

#define DMA_TIMING_SYNC_TO_DISPLAY 4096 | 8192

//define some sound hardware registers/values

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

#define REG_SGCNTO_H * (volatile ul6*)0x4000082

#define REG_SGCNT1 * (volatile ul6*)0x4000084
#define DSOUND_A_RIGHT_CHANNEL 256
#define DSOUND_A_LEFT_CHANNEL 512
#define DSOUND_A_FIFO_RESET 2048
#define SOUND_MASTER_ENABLE 128

The SoundTest Source File

Now for the main source code file of SoundTest. This code should be typed into the main.c
file (replacing the default code added by Visual HAM when the project was created).

L1177 77 07777777777 7777 777777777777 777777777777777
// Programming The Game Boy Advance

// Chapter 9: The Sound System

// SoundTest Project

// main.c source code file

[I777

#define MULTIBOOT int _ gba_multiboot;
MULTIBOOT

#include "main.h"

#include "splash.c"

//global variables
ule len = 0;

L1717 0000777777077 7777777777777
// Function: MyHandler
// Custom interrupt callback function
L1177 70077 7777777777 77777777777777777777777777777
void MyHandler (void)
{

//disable/store interrupts

REG_IME = 0x00;

ul6é Int_Flag = REG_IF;

//look for vertical refresh
1f ((REG_IF & INT_VBLANK) == INT_VBLANK)

{
if (!len—-)

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

//stop playback: disable the timer and DMA

REG_TMOCNT = 0;
REG_DMAICNT_H = 0;

//restore/enable interrupts
REG_IF = Int_Flag;
REG_IME = 0x01;

L1070 77777777777
// Function: main()
// Entry point for the program
II11T77 7777777707777 7777777 7777777777777777777777
int main (void)
{

ulé samplerate = 8000;

ul6 samplelen = 11568;

ul6 samples;

SetMode (3 | BG2_ENABLE) ;

//create custom interrupt handler for vblank (chapter 8)

REG_IME = 0x00;

REG_INTERRUPT = (u32)MyHandler;
REG_IE |= INT_VBLANK;
REG_DISPSTAT |= 0x08;

REG_IME = 0x01;

//output to both channels and reset the FIFO
REG_SGCNTO_H = DSOUND_A_ RIGHT_CHANNEL |
DSOUND_A_LEFT_CHANNEL | DSOUND_A_FIFO_RESET;

//enable all sound
REG_SGCNT1 = SOUND_MASTER_ENABLE;

//DMA1l source address
REG_DMA1SAD = (u32)splash;

//DMA1l destination address

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

REG_DMA1DAD = 0x40000A0;

//write 32 bits into destination every vblank

REG_DMAICNT_H = DMA_DEST_FIXED | DMA_REPEAT | DMA_32

DMA_ TIMING_SYNC_TO_DISPLAY | DMA_ENABLE;

//set the sample rate
samples = 16777216 / samplerate;

REG_TMOD = 65536 - samples;

//determine length of playback in vblanks
len = samplelen / samples * 15.57;

//enable the timer
REG_TMOCNT = TIMER_ENABLE;

//run forever
while (1) ;
return 0;

}

Now that you have managed to get a sound to play through VisualBoyAdvance, | encourage
you to create your own wave file and try to get it to play in the SoundTest program. The
experience will be a valuable lesson in the process of converting a sound file, something you
will end up doing often while working on a real game. Just remember, if you get any errors
while trying to convert a wave file, you'll need to load it into a sound-editing program to
downsample it to 8 bits, and you may also need to convert the wave to PCM. Make sure you
are able to do this before moving on in the chapter.

The PlaySamples Program

The PlaySamples program is an interesting program that demonstrates how to handle multi-
ple sounds on the GBA. While | would love to get into mixing, as | mentioned before, it is
too difficult of a subject to cover here. Even if | were to develop a sound mixer with you in
this chapter, it would not be optimized. There are prebuilt sound libraries for the GBA, most
of which are written entirely in ARM7 assembly language, that are extremely efficient. Sev-
eral open source and freeware libraries are available, as are professional ones like Krawall.
Again, you can select a library that is suitable for your needs by perusing the Web sites
listed in Appendix B.

The PlaySamples program is shown in Figure 9.5. This program demonstrates not only how
to handle multiple sounds but also how to keep track of the current position within the sam-
ple as it is being played. The numbers shown in the figure are not bytes but rather are the
number of samples played per vblank period.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

E = THUNDER

Figure 9.5

The PlaySamples program
demonstrates how to keep
track of several sounds in

a program, as well as how to
! s track the current playback

gl il position_

Tracking Sample Playback

The key to keeping track of the current playback position are two global variables, Sample-
Length and SamplePosition. | am one of the first programmers to worry about using global
variables in this manner, but as | have mentioned several times in the past, it is sometimes
better to go with the brute force approach in console development. While SamplePosition is
just set to 0, SampleLength is a bit more than just the byte count. It is actually the number
of sample groups processed by the DAC at a timed interval specified by a timer. The calcu-
lation | used, which compensates for the CPU cycles per second, works out to two lines of
code:

samples = 16777216 / samplerate;
SampleLength = samplelength / samples * 15.57;

The 15.57 simply compensates for the timer and would have been better without the deci-
mal, but this is just setup code, so speed isn't critical.

The PlaySound Function

To facilitate the handling of multiple sound samples, | have converted the playback code
from SoundTest into a reusable PlaySound function. Here is the complete function (which
should look familiar to you after typing in the SoundTest program):

void PlaySound (sound *theSound)
{

ulé samples;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

//output to both channels and reset the FIFO

REG_SGCNTO_H = DSOUND_A_RIGHT_CHANNEL |
DSOUND_A_LEFT_CHANNEL | DSOUND_A_FIFO_RESET;

//enable all sound
REG_SGCNT1 = SOUND_MASTER_ENABLE;

//DMA1l source address
REG_DMA1SAD = (u32)theSound->pBuffer;

//DMA1l destination address
REG_DMAIDAD = 0x40000A0;

//write 32 bits into destination every vblank
REG_DMAICNT_H = DMA_DEST_FIXED | DMA_REPEAT | DMA_32 |
DMA_TIMING_SYNC_TO_DISPLAY | DMA_ENABLE;

//set the sample rate
samples = 16777216 / theSound->samplerate; //2097
REG_TMOD = 65536 - samples;

//keep track of the playback position and length
SampleLength = theSound->length / samples * 15.57;

SamplePosition = 0;

//enable the timer
REG_TMOCNT = TIMER_ENABLE;

Keeping Track of Sounds

You might have noticed that the PlaySound function had a sound parameter instead of a
void* pointer to a sound buffer. The sound struct helps to keep track of samples used in the
program, so there aren't just a bunch of arrays or global variables (or at least, there are as

few as possible). Here is what the sound struct looks like:

typedef struct tagSound
{

void *pBuffer;

ul6 samplerate;

u32 length;

}sound;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

- Tl

| i | i Tl et
Now I'm skipping over the #include statements that load the actual sounds into the pro-

gram. The sample arrays used in the PlaySamples program are called panther, thunder, door,

and birds. Here is how | created the structs to keep track of these sounds. Note that each
initialization also includes the sample's rate and length (which you must specify yourself,

since the bin2c program didn't provide these values).

sound s_panther = {&panther, 8000, 16288};
sound s_thunder = {&thunder, 8000, 37952};
sound s_door = {&door, 8000, 16752};

sound s_birds = {&birds, 8000, 29280};

Simply calling PlaySound with one of these sound variables (s_panther, s_thunder, s_door, or
s_birds) will start playback of that particular sample. The sample length value helps to
determine when the sound output should be halted; this is done inside the interrupt handler
for vblank. Without listing the entire interrupt callback function, here's the key code that
takes care of shutting down the sound output when playback has reached the end of the
sample:

SamplePosition++;
if (SamplePosition > Samplelength)
{
REG_TMOCNT = O0;
REG_DMAICNT_H = 0;
SamplelLength = 0;
}

Each time through the vblank interrupt, a check is made to determine if SamplePosition is
greater than SampleLength. The sound is actually halted by turning off the timer and also
the DMA controller, both of which are responsible for providing new bytes to the DAC. Obvi-
ously, SamplePosition and SampleLength are globals, so this code can handle just one sam-
ple at a time. There is no means to stop a sample during playback and then resume, but if
you wanted to just stop playback of a sample—for instance, to play a different sample—then
you could set both of these registers to 0 in a generic StopSound function. | elected to just
set the values inside the interrupt, but a StopSound function would be useful in an actual
game.

The PlaySamples Header File

Now that the theory is behind you, are you ready to get started on the source code for the
PlaySamples program? It really is a simple program now that PlaySound has taken care of
the details of setting up the sound registers and so on. So as in most cases, once the nitty-
gritty is stuffed away in a reusable function, you can get down to business with the core
program.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Okay, let's fire up Visual HAM and create a new project called PlaySamples. This program
requires the font.h file, which you may copy from an earlier project, such as the Framerate
program in the previous chapter. Add a new file to the PlaySamples project called main.h,
and type in the following code:

L1177 7777770777777 777777777777 7777777777777777777
// Programming The Game Boy Advance

// Chapter 9: The Sound System

// PlaySamples Project

// main.h header file

[I1177

typedef unsigned char u8;
typedef unsigned short ulé6;
typedef unsigned long u32;
typedef signed char s8;
typedef signed short sl6;
typedef signed long s32;

#include "font.h"
#include <stdlib.h>

#include <string.h>

//function prototypes
void Print (int left, int top, char *str, unsigned short color);
void DrawChar (int left, int top, char letter, unsigned short color);

void DrawPixel3 (int x, int y, unsigned short color);

//define some video registers/values

unsigned short* videoBuffer = (unsigned short*)0x6000000;
#define REG_DISPCNT * (u32*)0x4000000

#define BG2_ENABLE 0x400

#define SetMode (mode) REG_DISPCNT = (mode)

//define some interrupt registers

#define REG_IME *(ul6e*)0x4000208
#define REG_IE *(ul6e*)0x4000200
#define REG_IF *(ul6*)0x4000202

#define REG_INTERRUPT * (u32*)0x3007FFC
#define REG_DISPSTAT *(ul6*)0x4000004
#define INT_VBLANK 0x0001

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

//define some timer and DMA registers/values

#define REG_TMOD *(volatile ul6*)0x4000100
#define REG_TMOCNT *(volatile ul6*)0x4000102
#define REG_DMA1SAD *(volatile u32*)0x40000BC
#define REG_DMAI1DAD *(volatile u32*)0x40000CO

#define REG_DMAICNT_H * (volatile ul6*)0x40000C6
#define TIMER_ENABLE 0x80
#define DMA_DEST_FIXED 64

#define DMA_REPEAT 512
#define DMA_32 1024
#define DMA_ENABLE 32768

#define DMA_TIMING_SYNC_TO_DISPLAY 4096 | 8192

//define some sound hardware registers/values
#define REG_SGCNTO_H * (volatile ul6*)0x4000082
#define REG_SGCNT1 * (volatile ulé6*)0x4000084
#define DSOUND_A_RIGHT_CHANNEL 256

#define DSOUND_A_LEFT_CHANNEL 512

#define DSOUND_A_FIFO_RESET 2048

#define SOUND_MASTER_ENABLE 128

//define button hardware register/values

volatile unsigned int *BUTTONS = (volatile unsigned int *)0x04000130;
#define BUTTON_A 1

#define BUTTON_B 2

#define BUTTON_R 256

#define BUTTON_L 512

L1177 7007777770077 7777777777777 777777777777 77
// Function: Print
// Prints a string using the hard-coded font
II11T777 7777777707777 77777777777777777777777777777
void Print (int left, int top, char *str, unsigned short color)
{
int pos = 0;
while (*str)
{

DrawChar (left + pos, top, *str++, color);

LI TTTI TP 7 777777 7777777777777777

// Function: DrawChar

// Draws a character one pixel at a time
L1170 7 777777777777 7777 777777777777 777777777777777

void DrawChar (int left, int top, char letter, unsigned short color)
{
int x, y;

int draw;

for(y = 0; y < 8; y++)
for (x = 0; x < 8; x++)
{
// grab a pixel from the font char
draw = font[(letter-32) * 64 + y * 8 + x];
// 1f pixel = 1, then draw it
if (draw)

DrawPixel3 (left + x, top + y, color);

}

II11T777 7777777777777 77777777 777777777777777777777
// Function: DrawPixel3

// Draws a pixel in mode 3

L1177 0700777777777 7777777777777 777777777777 77
void DrawPixel3 (int x, int y, unsigned short color)
{

videoBuffer[y * 240 + x] = color;

}

J111T77 7777777777777 77777777 77777777777777777777777777777777
// Function: DrawBox3

// Draws a filled box

L1170 0077077770777 777777777777777
void DrawBox3 (int left, int top, int right, int bottom,

unsigned short color)

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

int x, y;

for(y = top; y < bottom; y++)
for(x = left; x < right; x++)

DrawPixel3(x, vy, color);

The PlaySamples Source File

The main source code for the PlaySamples program should be typed into the main.c file
(and as usual, be sure to first delete the skeleton code added to the file by Visual HAM).
Now here is the main code for the program:

L1177 7777777770777 77777777777777777777777777777777
// Programming The Game Boy Advance

// Chapter 9: The Sound System

// PlaySamples Project

// main.c source code file

[I1777

#define MULTIBOOT int _ gba_multiboot;
MULTIBOOT

#include "main.h"
#include "panther.c"
#include "thunder.c"
#include "door.c"

#include "birds.c"

//create a struct to keep track of sound data
typedef struct tagSound
{

void *pBuffer;

ul6 samplerate;

u32 length;

}sound;

//create variables that describe the sounds
sound s_panther = {&panther, 8000, 16288};
sound s_thunder = {&thunder, 8000, 37952};
sound s_door = {&door, 8000, 16752};

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

sound s_birds = {&birds, 8000, 29280};

//global variables

ul6 SamplePosition = 0;
ul6 SamplelLength = 0;
char temp[20];

LI TT0 7007777777077 77777777777
// Function: PlaySound

// Plays a sound sample using DMA

L1107 7 7770777777777 7777777777777 7777777777
void PlaySound (sound *theSound)

{

ul6 samples;

//output to both channels and reset the FIFO
REG_SGCNTO_H = DSOUND_A_RIGHT_CHANNEL |
DSOUND_A_LEFT_CHANNEL | DSOUND_A_FIFO_RESET;

//enable all sound
REG_SGCNT1 = SOUND_MASTER_ENABLE;

//DMA1l source address

REG_DMA1SAD = (u32)theSound->pBuffer;

//DMA1l destination address
REG_DMAIDAD = 0x40000A0;

//write 32 bits into destination every vblank
REG_DMAICNT_H = DMA_DEST_FIXED | DMA_REPEAT | DMA_32
DMA_TIMING_SYNC_TO_DISPLAY | DMA_ENABLE;

//set the sample rate
samples = 16777216 / theSound->samplerate; //2097
REG_TMOD = 65536 - samples;

//keep track of the playback position and length
SampleLength = theSound->length / samples * 15.57;

SamplePosition = 0;

//enable the timer

REG_TMOCNT = TIMER_ENABLE;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

L1177 7 707777777777 7777 777777777777 777777777777777
// Function: MyHandler

// Custom interrupt callback function
(777077777777 7777777777777777777777777777777777777
void MyHandler (void)

{
ulé Int_Flag;

//disable interrupts
REG_IME = 0x00;

//backup the interrupt flags
Int_Flag = REG_IF;

//look for vertical refresh
if ((REG_IF & INT_VBLANK) == INT_VBLANK)
{
//1s a sample currently playing?
if (Samplelength)
{
//display the current playback position
DrawBox3 (80, 80, 120, 100, 0x0000);
sprintf (temp, "%i", SamplePosition);
Print (80, 80, temp, OxDFFD);
sprintf (temp, "%i", Samplelength);
Print (80, 90, temp, OxDFFD);

//increment the position, check if complete
SamplePosition++;
if (SamplePosition > SampleLength)
{
//stop playback: disable the timer and DMA
REG_TMOCNT = 0;
REG_DMAICNT_H = 0;
//reset length

SampleLength = 0;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

//restore the interrupt flags

REG_IF = Int_Flag;

//enable interrupts

REG_IME = 0x01;

L1170 7 7777707777777 77777777777777
// Function: main ()
// Entry point for the program
I11177777 777777777777 77777777777777777777777777777
int main (void)
{

SetMode (3 | BGZ_ENABLE) ;

Print (0, 0, "PLAYSAMPLES DEMO", OxFFFF);

Print (0, 20, "A

THUNDER", 0x0FF0);
Print (0, 30, "B - BIRDS", OxFOOF);
Print (0, 40, "L - PANTHER", 0x00FF);
Print (0, 50, "R - DOOR", OxFFO00);
Print (0, 80, "POSITION: ", OxCFFC);
Print (0, 90, "LENGTH : ", OxCFFC);

//create custom interrupt handler for vblank (chapter 8)
REG_IME = 0x00;

REG_INTERRUPT = (u32)MyHandler;

REG_IE |= INT_VBLANK;

REG_DISPSTAT |= 0x08;

REG_IME = 0x01;

//run forever
while (1)
{
if (!Samplelength)
{
if (! (*BUTTONS & BUTTON_A))

PlaySound (&s_thunder) ;
if (! (*BUTTONS & BUTTON_B))

PlaySound(&s_birds);

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

| Exs) I
J i [= | e
if (! (*BUTTONS & BUTTON_L))
PlaySound (&s_panther) ;
if (! (*BUTTONS & BUTTON_R))

PlaySound (&s_door) ;

return 0;

}

If all goes well, you should now have a simple but useful sound engine for your next game
project. Sound effects are at least as important as the graphics in a game, so don't put
sound on the side while working on the "more important” aspects of your next game. A well-
designed game uses sound to greatly enhance the gaming experience.

Summary

This chapter has been an overview of the sound hardware on the GBA. You learned about
the Direct Sound A and Direct Sound B channels and how to create, convert, and play sam-
ples. This chapter provided a simple demonstration of playing a single sound, followed by a
more useful program that was able to play one of several sound effects based on button
presses. There is obviously more to sound programming than has been covered in this single
chapter, but you now have enough information to add sound support to your GBA programs.
For more advanced sound capabilities, including the ability to play modules as music tracks
in addition to sound mixing, | recommended going with a sound library such as Krawall,
since it is rare even among commercial GBA developers to write a custom sound library
when excellent prebuilt solutions are already available for a small licensing fee.

Challenges

The following challenges will help to reinforce the material you have learned in this chap-
ter. The solution to each challenge is provided on the CD-ROM inside the folder for this
chapter.

Challenge 1: The SoundTest program is a simple and easy way to test converted wave files.
See if you can convert your own wave files with wav2gba and bin2c, as explained in this
chapter, to gain some experience converting and playing sound files.

Challenge 2: The PlaySamples program displays the playback position in sample blocks per
vblank. Modify the program so it shows both the position and length of the sample in actual
bytes.

Challenge 3: The PlaySamples program supports just four sounds, using the A, B, L, and R
buttons. Enhance the program by adding more sounds and make use of the other buttons:
Up, Down, Left, Right, Start, and Select.

s i

Chapter Quiz

The following quiz will help to further reinforce the information covered in this chapter.
The quiz consists of 10 multiple-choice questions with up to four possible answers. The key
to the quiz may be found in Appendix D.

1. How many total sound channels are built into the GBA sound system?
A.2
B. 4
C.6
D. 8

2. True or False: The GBA sound system supports stereo sound.
A. True
B. False

3. What are the two digital sound channels called?
A. Frequency and Modulation
B. Digital Sound 1 and Digital Sound 2
C. Direct Sound A and Direct Sound B
D. FM Synthesis and Wave Table

4. What utility program is used in this chapter to convert a wave file?
A. wav2c
B. wav2bin
C. bin2long
D. wav2gba
5. What sampling resolution is supported by the GBA's sound system?
A. 8-bit
B. 12-bit
C. 16-bit
D. 24-bit

6. What does it mean if a sound sample has a frequency of 44.1 kHz?
A. The sample will be played back quickly.
B. The sound has been undersampled.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

C. The sample was recorded from a radio station.

D. The sample contains 44,100 samples per second.

7. What is the name of the direct sound control register at memory address 0x04000082?
A. REG_SNDCNT
B. REG_SOUND_CNT_L
C. REG_SOUND_CNT_H
D. REG_DS_CNT

8. How many CPU cycles does the GBA execute per second?
A. 32,768
B. 16,777,216
C. 1,024
D. 65,535

9. What wave file format does the GBA sound system support exclusively?
A. PCM
B. A/mu-Law Wave
C. ACM Waveform
D. DVI/IMA ADPCM

10. What is the name of the sound mixing and ProTracker music playback library mentioned
in this chapter?

A. Tidal Wave
B. Cool Tunes
C. Kurzweil
D. Krawall

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

