Rounding

Up Sprites

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

his chapter is an extension of the previous two chapters, which introduced the concept

of bitmapped and tiled backgrounds and provided an overview of the six video modes
available on the GBA. This chapter takes it a significant step further by building upon the
concepts presented in those two chapters and adding additional material, most notably of
which is coverage of sprites. Until now, all the graphics programming you have been doing
has been directly on backgrounds in one or another of the six video modes. Some of the
video modes were rather easy to draw upon, while others were significantly more difficult

to get a pixel lit.

The point of this chapter is to refine that base knowledge and develop a sprite handler that
incorporates all the code needed to deal with all the video modes and backgrounds built
into the GBA, while at the same time providing significant coverage of the hardware sprite
blitter. By the time you have finished this chapter, you will have a solid understanding of the
most important aspect of Game Boy Advance programming: sprites.

Ready? Okay, let's go! This is the first "real-world" chapter that is more than a deluge of
information—it actually gets into some of the fun factor involved in writing GBA programs.
Until now, there was so much prerequisite information needed that it wasn't possible to
write even a simple game—well, at least not a sprite-based game, which is the point after
all. Here are the major topics presented in this chapter:

o Let's get serious: programming sprites
o Drawing a single sprite

o Creating a sprite handler

J Sprite special effects

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

e] . ™ J N
Let's Get Serious: Programming Sprites

What is a sprite, you ask? A sprite is a small, easily moved object that has a defined shape
(usually withing a rectangular image), and is the focus of the action in a 2D game (of which
there is a majority on the GBA). A sprite can be the player's space ship, role-playing
character, baseball player, as well as a baseball, bird, missile, explosion, alien creature, or
even a vigilante's car. On most PC games, the game code itself must draw these sprites pixel
by pixel; left to right, top to bottom. This is known as a software sprite. Console hardware,
on the other hand, has traditionally provided hardware that can draw entire sprite bitmaps
in a single call or instruction. We call these hardware sprites.

Sprites have been a part of video games since the earliest days. Indeed, you can consider
the ball and paddles of Pong to be sprites. Not all video game machines have had hardware
support for sprites. The term software sprite has become common on systems like the PC
where bitmaps reign supreme. The GBA has significant hardware support for sprites. In this
chapter you will learn about object attribute memory (OAM) and examine a sprite handler
to make sprites more manageable. Look at the definition of a sprite. We need to be able to
specify a position and image for each of the sprites we want to display. The GBA also gives
us a number of options that can be applied to the sprites. Setting these properties is the
purpose of the OAM.

The GBA has built-in hardware support for up to 128 sprites. Each of the 128 sprites has the
following attributes:

Tile Index. This specifies the image tile (or tiles) that holds the image of the sprite.

Size. Sprites can be several different sizes using from one to 64 "tiles” for the image.
We'll talk more about tiles and how they relate to sprites in the next section.

Position. This specifies the horizontal and vertical position of the sprite on the screen.

Priority. This defines in which of four layers the sprite will drawn, allowing the sprite
to show in front of or behind other graphics.

Palette Information. The tile graphics can use either 4 or 8 bits per pixel. One of 16
palettes must be chosen for 4 bit-per-pixel graphics.

Mosaic Effect. Sprites can have a mosaic effect applied.

Flip. Sprites can be flipped horizontally, vertically, or both.

Rotation and Scaling. Sprites can be rotated and scaled. Attributes specify which of 32
rotation and scaling parameters will be used.

These attributes are packed into 6 bytes of memory per sprite, but these structures are
spaced 8 bytes apart. The extra 2 bytes of each chunk of memory are used for defining the
sprite rotation and scaling parameters.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Moving Images the Simple Way

It is very easy to create moving objects on the screen using sprites, so let's look at each of
these steps in detail.. The basic steps are as follows:

Create the sprite graphics.

Initialize the OAM.

Enable sprites in REG.DISPCNT.

Set the sprite attributes in OAM during VBlank for each sprite you want to display.
Any time an object moves or changes graphics, update the attributes in the OAM.

A e

Creating Sprite Graphics

The image for a sprite is made up of one or more tiles. Each tile is an 8 x 8 bitmap of either
4 or 8 bits per pixel. The typical sprite is often larger than this and is seldom a solid
rectangle.

Software sprites—moving objects drawn into a bitmap by software—handle the issue of
transparency in a couple different ways.

One way to encode transparency is to have a mask—typically a 1 bit-per-pixel bitmap
showing where there is solid sprite and where there is transparency. This is exactly like a
crude alpha channel (where a color is made up of three channels (red, green, and blue)
along with the alpha or transparency channel). One can then use this mask to erase what
was in the bitmap and to combine the new graphics into the picture. This can be quite
expensive in software.

Another way to encode transparency is to have a specific color that represents transparent
pixels. This keeps one from wasting space on a separate mask bitmap but still requires a
comparison for every pixel—again very expensive.

The GBA sprite hardware uses a variant of this second method. Since sprites always use
color palettes (of either 16 or 256 colors), color index zero is set aside for transparency.
This is true for every graphics mode on the GBA that uses palettes—the first color entry in
the palette specifies the transparent pixels of the image. Therefore, when you are creating
game graphics in a graphic editor, be sure to modify the palette so that the transparent
color is in the first position.

Creating Tiles

The easiest way to create the data for tiles is to draw the images in a larger bitmap and
then use a utility program to chop the bitmap up into the tile data. We'll use the same

graphics converter we used before, gfx2gba for this purpose, along with another tool called
pcx2sprite that is particularly suitable for single sprites. There is an ideal width to use for

S S ',rl-] | . R

o — 5 BEE] | === i R S
creating sprite tiles. This width is different depending on the color depth you are using.
We'll see why this is important in a little bit.

For This Color Depth Use This Width
16 colors 256 pixels
256 colors 128 pixels

| find it easiest to work on these graphics by zooming in on them. A zoom factor of 4 x to 6
x works really well for me. Turn on the Grid option and set the grid to 8 pixels for width and
height. Each square of the grid shows the boundaries of one tile. Using the ideal bitmap

widths you will have 32 tiles per row for 16-color tiles or 16 tiles per row for 256-color tiles

Converting Tiles

The pcx2sprite program has no parameters, and it is convenient because you can just drag a
.pcx file over the program file in Windows Explorer to convert the file (note that only 256
colors are supported). The other tool that is still needed for backgrounds is gfx2gba. The
parameters most commonly used with gfx2gba are as follows:

-t8 Sets the size of a tile to 8 x 8 pixels.

-c32k Use hicolor for mode 3 (not needed for tiled modes). The default is 256 even if
the source files are 16 color files.

-pFilename Sets the name for the palette file.

-fsrc Output will be in source code format.

Bitmap graphics modes 3, 4, and 5 use the first half of the Sprite Tile VRAM
for part of their buffers. This limits the sprite tiles to the last 16 KB of
VRAM—512 16-color tiles or 256 256-color tiles. In both of these cases the first
usable sprite tile is index 512.

Using Sprites

The mechanics of using sprites are fairly simple but can cause some annoying problems.
Some examples: The data stored in the OAM is packed with various single and multibit
quantities. The OAM needs to be updated during the vertical refresh period. Sprites of the
same display priority are sorted by OAM position (lowest sprite number has priority).

Because of these issues, most games use a separate buffer typically known as shadow
memory. The shadow has the identical bit layout as the OAM but is located in RAM where it
can be modified without affecting the display. The sprite attribute array is then copied into

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

.,J‘ o T Iid e ——
the OAM at the start of the vertical refresh. Note that you don't need to bother with the
sprite images after having initially copied them to the data portion of OAM..

i e

Larger Sprites

Let's face it. Sprites that are 8 x 8 pixels just aren't very large. To make recognizable
characters and animations, you'll want to use multiple tiles per sprite. Here's where the
natural size of the source bitmaps comes into play. As noted before, the natural size is
different for 16- and 256-color sprites. That's because the 256-color tiles use twice as much
memory as the 16-color tiles.

The 256-color tiles each take 64 bytes of memory. The first 256-color tile uses the memory
from 0x06010000 to 0x0601003f. This is the same memory that tiles 0 and 1 take up in 16-
color tiles. The second 256-color tile starts at 0x06010040—the same address as tile index 2
of 16-color tiles. Any guesses what index value we use for this second 256-color tile? Right,
index 2. The formula for converting a tile index to memory addresses remains the same in
the two modes, but the 256-color tiles only use the even indexes. This also means that
there are only 512 tiles in this mode.

Linear Tile Layouts

The tile arrangements that you've seen so far are the default and are known as the 2D tile
arrangement. This layout is very convenient for the tile artists since they can simply draw
the larger sprites in a bitmap and the conversion tools directly give us usable sprite
orderings. For many games this is fine because 1,024 (or 512) tiles are often enough for all
the sprites in one level of a game.

There are many times when this is not the case. Games with a lot of large characters or long
animation sequences will not be able to fit all their graphics for a level in the 32 KB
provided for the sprite tiles. This means you need to dynamically load graphics data from
your game ROM (or EWRAM) during gameplay.

Dealing with the 2D tile layout while dynamically loading sprite tiles is inefficient and likely
to cause severe brain damage to the programmer.

You can flip one bit in REG.DISPCNT and change the layout of tiles for all sprites.

REG.DISPCNT |= DC_SPRITESEQ;

This bit sets the sprite’'s tiles to a sequential layout. This means that instead of adding 32 to
get the index of the first tile on the next row, this tile immediately follows the last tile on
the previous row. This mode keeps all the graphics data for a single sprite image in
contiguous memory allowing a single DMA transfer to move an entire image. There are tools
that will convert a bitmaps into tiles arranged in this manner. The gfx2gba utility will do this
for you using its "tiling” option. Another tool that comes with the HAM SDK, called the
“Bitmap ReSizer" (see Start, Programs, HAM Development Kit, Tools, Bitmap ReOrganizer),

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

- % | - I
e d b . . L —

i ety o 5 I-I o = T e
that will convert a tiled bitmap into a linear format, and is a windowed program, rather
than a command-line program. Of course, this program works only with bitmaps, and does
not convert them. You still need to use gfx2gba to convert the image.

Drawing a Single Sprite

Now that you've had a little theory, how about delving into some real code for drawing
sprites on the screen? The first sample program in this chapter is called SimpleSprite and is
shown in Figure 7.1. As you can see from the figure, the SimpleSprite program draws a
spaceship sprite and moves it across the screen, warping to the left when it hits the right
side of the screen.

This program has just enough code to get you going, without a lot of complicated
extraneous stuff because | want you to first grasp how to convert a sprite file and then
display it on the screen. In later sections, I'll get into special effects like rotation, scaling,
and transparency, as well as how to handle multiple sprites. In fact, you will be writing a
sprite handler before this chapter is over.

Converting the Sprite

The first thing you need in a sprite-based program is an image of a sprite, which can be
anything: a spaceship, car, soldier, lemming, ghost, hero, monster. Basically, this is the key
to the game, your graphics! Figure 7.2 shows an image of a spaceship stored in ship.pcx. You
can find this file in \Sources\Chapter07\SimpleSprite, along with the source files for this
project.

F’..’.‘_'!L"L"'E‘.T:':"..'Z"' T il
@-ug]

[EEE ety -
i B Pl

Figure 7.1

The SimpleSprite program
moves a single sprite across
the screen.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Figure 7.2

The ship.pcx file used as the sprite
in the SimpleSprite program.

Also included in the folder for this project is a program called pcx2sprite.exe. This program
is really handy for quick conversion of sprites because it doesn't require a command-line
interface. You simply drag a .pcx file over the program file in Windows Explorer, and it
converts it to a C source code file—which is similar to the files produced by gfx2gba, but
pcx2sprite puts the palette and bitmap inside the same file.

You can download pcx2sprite, pcx2gba, and many other utilities, from the
Pern Project Web site at http://www.thepernproject.com, operated by
Jason Rogers (a.k.a. Dovoto).

Open Windows Explorer, browse to \Sources\Chapter07\SimpleSprite, and locate ship.pcx.
Now drag this file over the pcx2sprite.exe file to convert it. The file must be a 256-color
.pcx image, otherwise pcx2sprite will output an error message. The output is shown in
Figure 7.3.

Figure 7.3

Output from the
pcx2sprite program.

After that is done, you'll have a file called ship.h. If you open the file, you'll see something
like this:

/***********‘k‘k*‘k*‘k‘k‘k‘k*‘k‘k‘k‘k*********************\
* ship.h *
* by dovotos pcx—->gba program *
/**/

#define ship_WIDTH 64

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

#define ship_ HEIGHT 64

const ul6 shipDatal[] = {

0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0OxO000O0, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, OxO0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, OxO000O0, 0x0000, 0x1301, 0x0000, 0x0000, 0x0000, OxFB50, 0x0000, 0x0000,
0x1900, OxE9AD, 0x0000, 0x0000,

Only the top few lines are shown from a file that is a few hundred lines long, but this gives
you an idea of what the ship.h file looks like after conversion. Since the compiler complains
about Dovoto's funky header at the top, | always just delete the header.

The SimpleSprite Source Code

The SimpleSprite program has just a single source listing with all the defines and stuff you
need to compile the program in one place. Create a new project in Visual HAM, name it
SimpleSprite, and delete the default code in main.c, replaced with the following code
listing:

L1777 77 777777777777 77

// Programming The Game Boy Advance

// Chapter 7: Rounding Up Sprites

// SimpleSprite Project

// main.c source code file

[0

#define MULTIBOOT int _ gba_multiboot;

MULTIBOOT
typedef unsigned short ulo6;
#include "ship.h"

//macro to change the video mode

#define SetMode (mode) REG_DISPCNT = (mode)

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

//define some video addresses

#define REG_DISPCNT * (volatile unsigned short*)0x4000000
#define BGPaletteMem ((unsigned short*)0x5000000)
#define REG_VCOUNT * (volatile unsigned short*)0x4000006

#define REG_DISPSTAT * (volatile unsigned short *)0x4000004

//define object attribute memory state address

#define SpriteMem ((unsigned short*)0x7000000)

//define object attribute memory image address

#define SpriteData ((unsigned short*)0x6010000)

//define object attribute memory palette address

#define SpritePal ((unsigned short*)0x5000200)

//misc sprite constants

#define OBJ_MAP_2D 0x0
#define OBJ_MAP_1D 0x40
#define OBJ_ENABLE 0x1000

//attribute0 stuff

#define ROTATION_FLAG 0x100
#define SIZE_DOUBLE 0x200
#define MODE_NORMAL 0x0

#define MODE_TRANSPARENT 0x400

#define MODE_WINDOWED 0x800
#define MOSAIC 0x1000
#define COLOR_16 0x0000
#define COLOR_256 0x2000
#define SQUARE 0x0

#define TALL 0x4000
#define WIDE 0x8000

//attributel stuff

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

#define ROTDATA (n) ((n) << 9)

#define HORIZONTAL_FLIP 0x1000
#define VERTICAL_FLIP 0x2000
#define SIZE_S8 0x0

#define SIZE_16 0x4000
#define SIZE_32 0x8000
#define SIZE_64 0xC000

//attribute2 stuff
#define PRIORITY (n) ((n) << 10)

#define PALETTE (n) ((n) << 12)

//sprite structs

typedef struct tagSprite

{
unsigned short attributeO;
unsigned short attributel;
unsigned short attribute2;
unsigned short attribute3;

}Sprite, *pSprite;

//create an array of 128 sprites equal to OAM

Sprite sprites[128];

//function prototypes
void WaitForVsync (void);

void UpdateSpriteMemory (void) ;

I111T177 7777777777777 7777777777777 7777777777777777777777777
// Function: main ()

// Entry point for the program

L1707 0 0777777770777 77777777777777
int main(void) {

signed short x = 10, y = 40;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

signed short xdir = 1, ydir = 1;

int char_number = 0;

int n;

//set the video mode--mode 2 with sprites

SetMode (2 | OBJ_ENABLE | OBJ_MAP_1D);

//move all sprites offscreen to hide them
for(n = 0; n < 128; n++)

{

sprites[n].attributel0 = 160;
sprites[n].attributel = 240;

}

//set the sprite palette

for(n = 0; n < 256; n++)
SpritePal[n] = shipPalette[n];

//copy the sprite image into memory
for(n = 0; n < 256*8; n++) {

SpriteDatal[n] = shipDatalnl];

//setup the first sprite

sprites[0] .attributel COLOR_256 | y;

sprites[0].attributel SIZE_64 | x;

sprites([0].attribute2 = char_number;

while (1)

//update sprite x position

X += xdir;

if (x > 239 - ship_WIDTH) x = 0;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

//update sprite y position

y += ydir;
if (y > 159 - ship_HEIGHT)
{

y = 159 - ship_HEIGHT;

ydir = -1;
}
if (y < 1)
{
y = 1;
ydir = 1;

//update sprite attributes with new x,y position
sprites[0].attribute0 = COLOR_256 | y;

sprites[0].attributel = SIZE_64 | x;

//wait for vertical retrace

WaitForVsync () ;

//display the sprite

UpdateSpriteMemory () ;

L1707 0077777770077 7777777777777 7777777777777777777
// Function: WaitForVsync

// Waits for the vertical retrace

I1117707 7777777777777 77777777 7777777777777777777777777777777
void WaitForVsync (void)

{

while ((REG_DISPSTAT & 1));

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

'él.:: : ::;'m' : : - - m-:j "] i ek -
L1107 777777777777 777
// Function: UpdateSpriteMemory
// Copies the sprite array into OAM memory
L1110 1777
void UpdateSpriteMemory (void)

{
int n;
unsigned short* temp;

temp = (unsigned short*)sprites;

for(n = 0; n < 128*4; n++)
SpriteMem[n] = temp[n];

}

I am basically going to follow a learn-by-doing philosophy in this chapter (and others)
because a brief glance at a snippet of code often explains more than a dozen pages of
commentary.

Creating a Sprite Handler

Now that you've seen what might be called crude sprite code running, I'd like to show you a
few tricks that will make sprite handling more manageable. Writing a game entirely with
GBA sprite code is possible, and there's nothing wrong with doing it that way. Many have
done that without any trouble. But | prefer to keep track of sprites with a handler, which is
basically a struct with basic sprite values stored inside, such as x, vy, size, xdir, ydir, and so
on. Over the next few sections I'll improve the basic sprite handler so it incorporates more
features in time (such as rotation, scaling, and transparency).

What Does the Sprite Handler Do?

The sprite handler basically keeps track of the sprites in the program so you don't have too
many global variables floating around. Here's what the struct looks like at first revision:

typedef struct tagSpriteHandler
{

int alive;

int x, y;

int dirx, diry;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

int size;

}SpriteHandler;

Actually using the struct involves creating an array of structs:

SpriteHandler mysprites[128];

Now, with this code in place, you have much more control over the sprites in your program,
and you can manage them in large quantity without an exponential increase in the amount
of code. In fact, you can simply process all the sprites in a for loop.

The BounceSprite Source Code

Let's put the sprite handler to use, shall we? This section includes a program called
BounceSprite, which draws a background image and displays several sprites on the screen,
bouncing them around inside the dimensions of the screen. The output is shown in Figure
7.4.

FERENR SR EEEEE RN SEERURGREE -

Figure 7.4

The BounceSprite program
bounces 10 ball sprites
around on the screen.

5EE

H]

[———

oot e T e L I 2mop gz e -
B i et Lo w11, 3 e L LU Lt R R P
& perrir . e s b e ‘J

P e B R -

u] Al
i £l B | Sk 8

| have divided this program into two separate source files to make it easier to follow. While
the SimpleSprite program was somewhat short, the BounceSprite program is a little more
involved because of the new handler code. It also does quite a bit more than the
SimpleSprite program, as there are now 10 sprites on the screen, moving independently.

Go ahead and create a new project in Visual HAM called BounceSprite, or you may copy the
project off the CD-ROM, located in \Sources\Chapter07\BounceSprite. If you are typing in

the program, you'll want to add a new file to the project. Select File, New, New File to bring
up the New File dialog box, as shown in Figure 7.5.

X

Filename:
Imnin.h
Path:
[5:\GBA\CUrTent Work\BounceSprite!, | Figure 7.5
[~ Add To Files To Compil . .
s s The New File dialog box
C Header Description: n is used to add new source
; C Header - . .
Empty C Header document files to the project.
C++ Source ;I
Eﬂ C Single
Copd HEa.:E;r-n & add To Project
| Template QK I iancel I

Select the C Header file type at the left, then type "main.h" for the new file name, and be
sure to select the option Add To Project before closing the dialog box. The new main.h file
should now be in your BounceSprite project.

The Header File

Type the following code into the main.h file:

L1177 7777 707777777777 777777777777777777777777777777777777777
// Programming The Game Boy Advance

// Chapter 7: Rounding Up Sprites

// BounceSprite Project

// main.h header file

L1177 7777777777777 T

#ifndef _MAIN_H

#define _MAIN_H

typedef unsigned short ul6;
#include <stdlib.h>
#include "ball.h"

#include "bg.raw.c"

//macro to change the video mode

#define SetMode (mode) REG_DISPCNT = (mode)

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

//create a pointer to the video buffer

unsigned short* videoBuffer = (unsigned short*)0x6000000;

//define some video addresses
#define REG_DISPCNT * (volatile unsigned short*)0x4000000

#define BGPaletteMem ((unsigned short*)0x5000000)

//declare scanline counter for vertical blank
volatile unsigned short* ScanlineCounter =

(volatile unsigned short*)0x4000006;

//define object attribute memory state address

#define SpriteMem ((unsigned short*)0x7000000)

//define object attribute memory image address

#define SpriteData ((unsigned short*)0x6010000)

//video modes 3-5, OAMData starts at 0x6010000 + 8192

unsigned short* SpriteData3 = SpriteData + 8192;

//define object attribute memory palette address

#define SpritePal ((unsigned short*)0x5000200)

//misc sprite constants
#define OBJ_MAP_2D 0x0
#define OBJ_MAP_1D 0x40
#define OBJ_ENABLE 0x1000

#define BG2_ENABLE0x400

//attribute0 stuff

#define ROTATION_FLAG 0x100
#define SIZE_DOUBLE 0x200
#define MODE_NORMAL 0x0

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

#define MODE_TRANSPARENT 0x400

#define MODE_WINDOWED 0x800
#define MOSAIC 0x1000
#define COLOR_256 0x2000
#define SQUARE 0x0

#define TALL 0x4000
#define WIDE 0x8000

//attributel stuff

#define SIZE_S 0x0

#define SIZE_16 0x4000
#define SIZE_32 0x8000
#define SIZE_64 0xC000

//an entry for object attribute memory (OAM)
typedef struct tagSprite
{

unsigned short attributeO;

unsigned short attributel;

unsigned short attribute2;

unsigned short attribute3;

}Sprite, *pSprite;

//create an array of 128 sprites equal to OAM

Sprite sprites[128];

typedef struct tagSpriteHandler
{

int alive;

int x, y;

int dirx, diry;

int size;

}SpriteHandler;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

SpriteHandler mysprites[128];

#endif

The Main Source File

The main source code file for BounceSprite is listed next. Since most of the building blocks
are now stored in main.h, this code listing is much more manageable than it would have
otherwise been. Note the #define NUMBALLS 10 definition. You may change that to
another number if you wish, to see how the program performs with differing numbers of
sprites. Take care, however, because this program is using large sprites, so there are not a
full 128 slots available in memory.

L1107 0077777770077 7777777777777777
// Programming The Game Boy Advance

// Chapter 7: Rounding Up Sprites

// BounceSprite Project

// main.c source code file

[0 77777777777

#define MULTIBOOT int _ gba_multiboot;

MULTIBOOT

#include "main.h"

#define NUMBALLS 10

[11777
// Function: HideSprites
// Moves all sprites off the screen
[11777177
void HideSprites ()
{

int nj;

for (n = 0; n < 128; n++)

{

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

sprites[n].attributel0 = 160;

sprites[n].attributel = 240;

[T 77777777777777777777777

// Function: MoveSprite

// Changes sprite attributes for x,y positions

L1000 0707077777777 777777777777777777777777

void MoveSprite (int num)
{
//clear the old x value
sprites[num] .attributel = sprites[num]

sprites[num] .attributel = sprites[num]

//clear the old y value

sprites[num].attribute0 = sprites[num]

sprites[num] .attribute0 = sprites[num].

.attributel

.attributel

.attributel

attributel

O0xFEQOQ;

mysprites[num].x;

O0xFF00;

mysprites|[num].y;

[T 0077777777777 7777 777777777777777777777777

// Function: UpdateSpriteMemory

// Copies the sprite array into OAM memory

[0

void UpdateSpriteMemory (void)
{

int n;

unsigned short* temp;

temp = (unsigned short*)sprites;

for(n = 0; n < 128 * 4; n++)

SpriteMem[n] = temp[n];

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

// Function: InitSprite

// Initializes a sprite within the sprite handler array

] - # | ..':;_':j._"
L1170 0770770777700 77777777777

LI 0 P00 777777777777777777777777777

void InitSprite(int num, int x, int y, int size, int color,

{

unsigned int sprite_size

mysprites[num] .alive = 1;

4

0;

mysprites[num].size = size;

mysprites[num] .x = X;

mysprites[num].y = y;

//in modes 3-5, tiles start at 512, modes 0-2 start at O

sprites[num] .attribute2

//initialize

sprites|[num] .attributel

switch (size)

{
case 8: sprite_size
case 16: sprite_size
case 32: sprite_size

case 64: sprite_size

sprites|[num] .attributel

tileIndex;

color | vy;

SIZE_8; break;

SIZE_16;
SIZE_32;

SIZE_64;

break;
break;

break;

sprite_size | x;

int tileIndex)

LTI P 0P 777777777777777777777777

// Function: WaitVBlank

// Checks the scanline counter for the vertical blank period

LI 0 P00 777777777777777777777

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

void WaitVBlank (void)

{

while (*ScanlineCounter < 160);

I11171077 777777777777 777777777777777777777777777777777777777
// Function: main ()

// Entry point for the program

I1117777 7777777777777 77777777 7777777777777777777777777777777
int main ()

{

int n;

//set the video mode--mode 3, bg 2, with sprite support

SetMode (3 | OBJ_ENABLE | OBJ _MAP_1D | BG2_ENABLE);

//draw the background
for(n=0; n < 38400; n++)

videoBuffer[n] = bg_Bitmap[n];

//set the sprite palette
for(n = 0; n < 256; n++)

SpritePal[n] = ballPalette[n];

//load ball sprite
for(n = 0; n < 512; n++)

SpriteData3[n] = ballDataln];

//move all sprites off the screen

HideSprites();

//initialize the balls—--note all sprites use the same image
for (n = 0; n < NUMBALLS; n++)

{

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

(512)

T (i
InitSprite(n, rand() % 230, rand() % 150, ball_ WIDTH,

COLOR_256, 512);

while (mysprites[n].dirx == 0)
mysprites([n].dirx = rand() % 6 - 3;
while (mysprites[n].diry == 0)

Q

mysprites([n].diry = rand() % 6 - 3;

//main loop
while (1)
{
//keep the screen civil

WaitVBlank () ;

for (n = 0; n < NUMBALLS; n++)
{
//update sprite x position
mysprites([n].x += mysprites[n].dirx;
if (mysprites[n].x > 239 - mysprites[n].size)
{
mysprites[n].x = 239 - mysprites[n].size;
mysprites([n].dirx *= -1;
}
if (mysprites([n].x < 1)
{
mysprites([n].x = 1;

mysprites[n].dirx *= -1;

//update sprite y position

mysprites([n].y += mysprites[n].diry;

if (mysprites[n].y > 159 - mysprites[n].size)
{

mysprites[n].y = 159 - mysprites[n].size;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

] T i B ! r_T """ v 'I ;
| T ey ey U

mysprites[n].diry *= -1;
if (mysprites[n].y < 1)
mysprites[n].y = 1;

mysprites[n].diry *= -1;

//update the sprite properties

MoveSprite (n);

}

//copy all sprites into object attribute memory

UpdateSpriteMemory () ;

}

Resizing the Ball Sprite

This sprite handler is not fully featured, but it does allow you to change the sprite size on
the fly without modifying the source code in any way. The reason this is possible is because
the pcx2sprite program supplies the image width and height in the converted source file
(such as ball.h). The InitSprite function has a parameter that specifies the dimensions of the
sprite. For all practical purposes, you will be using square sprites, with the same width and
height, so it makes sense to use a single parameter, size, for the dimensions. If your
particular situation calls for rectangular sprite images, then you may modify the program to
use a width and height. This is but a stepping stone on the way to delivering sprites to the
screen, however.

As Figure 7.6 shows, we're on the right track, but these GBA sprites are capable of
animation, not to mention special effects like scaling and rotation. This minor change is also
a demonstration of sprite performance, as the BounceSprite2 program increases the
NUMBALLS to 128 but is otherwise identical to the BounceSprite program. There is an
additional need to grab frames out of an image to use for individual sprites, so what we
need is a function for loading sprites, in the traditional sense. Let's get into some special
effects now, and I'll cover tiled sprite images at the same time.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Figure 7.6

Resizing the ball image to

16 x 16 requires absolutely
no change in the source code,
because image dimensions are
stored in the converted file
by pcx2sprite.

EEEHSESEESCELSwn an

EEENIXOE

1SExyEl

Sprite Special Effects

The GBA is a highly optimized sprite-blitting machine and provides some extra features in
addition to transparency—which, in case you didn't notice, was in use with the BounceSprite
program, and this was all done automatically by the GBA hardware. The traditional use of
transparency is to show only solid pixels in the sprite, thus allowing transparent pixels to
show what is behind the sprite (on the background, for instance). The GBA takes care of this
for you—something that requires quite a heaping of theory and code in other platforms!
There is another form of transparency—or rather, translucency—and that is called alpha
blending.

Implementing Alpha Blending

Alpha blending is a technique whereby one image is translucent, allowing the images behind
it to show through, while still remaining visible itself. The effect is extremely useful not
only for sprite special effects but also for displaying dialogs or other images over the game
screen while still showing the game in the background. One such example is an options
screen that might appear when you press the Start button, providing options such as restart,
save, load, and quit. Displaying a menu in a translucent dialog has a very nice effect on the
screen, with the appearance of being less invasive.

There are really only a few things that you must do to enable alpha blending of foreground
sprites. First, you'll need two new registers, REG_BLDMOD and REG_COLEYV:

//transparency registers

#define REG_BLDMOD * (unsigned short*)0x4000050

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

#define REG_COLEV * (unsigned short*)0x4000052

As usual, these are pointers to memory addresses where the hardware defines these
features. Put into use, translucency (alpha blending) can be turned on with the following
code:

//set transparency level
REG_BLDMOD = (1 << 4) | (1 << 10);

REG_COLEV = (8) + (8 << 8);

When you set these two registers as shown, any sprites that have transparency enabled will
appear so, while those without the option will be displayed normally. Here are the two
definitions of the options used to set up a sprite for transparency:

#define MODE_NORMAL 0x0

#define MODE_TRANSPARENT 0x400

Where do you use these definitions? The object attribute memory (OAM) sprite struct has
four attributes that are used to specify various options for each sprite. One such attribute is
attribute0, which takes care of the color mode, rotation factor, the vertical (y) position, as
well as the transparency of the sprite. It is unfortunate that so much is crammed into each
attribute; perhaps you will figure out a way to rewrite the struct with individual attributes
for each setting? It would require a lot of tinkering to figure out all the bits but may be
worth the attempt. | will stick with the standard way of modifying sprites. | realize it is
confusing that transparent is used to mean alpha blending, as well as a transparent sprite
color. But | think we can get away with the terminology when dealing with the GBA because
the traditional use of transparency is handled by the GBA hardware already, so you really
aren't going to be dealing with that aspect at all (I was tempted to say "very often,” but
really, the GBA does this entirely for you). Here is how you would set up attribute0 to
enable transparency:

sprites[num] .attribute0 = COLOR_256 | MODE_TRANSPARENT | vy;

Blitting Transparent Sprites

I've written a sample program called TransSprite, which I'd like to walk you through. It's a
short program, like all the other sample programs in this chapter, so it takes but a few
minutes to type it in. As usual, create a new project in Visual HAM. Name the new project
TransSprite. The program is located on the CD-ROM under \Sources\ChapterO7\TransSprite.
Figure 7.7 shows the TransSprite program running. In this particular screen shot, the sprites
are all transparent (or rather, translucent, or alpha blended).

If you watch the TransSprite program run for a few seconds, you'll see the sprites alternate
from solid to transparent. Figure 7.8 shows the two variations of the program side by side.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

T £ e SN = . Y] .
e — e R Fe = 1, | ey B

In this case, the VisualBoyAdvance screen is shown actual size (whereas | normally run it at
2Xx).

Well, it seems as if you have enough to go on already to implement alpha blending of
sprites. How about a sample program, just to put into good use what you have learned? It's
great being able to get instant feedback on some new technology—one of the joys of
programming (and the reason why there is a field called computer science).

Figure 7.7

The TransSprite program

_ | demonstrates how to turn
LI L I on alpha blending, which
allows sprites to be drawn
transparently.

MODE_NORMAL MODE_TRANSPARENT
Figure 7.8

The TransSprite program
alternates the sprites
from MODE_NORMAL to
MODE_TRANSPARENT.

Now let's create a project for this program. In Visual HAM, open the File menu and select
New, New Project. Name the project TransSprite. As you did earlier with the previous
project, add a new header file called main.h.

The TransSprite Header File

The header file for the TransSprite program is called main.h and contains all the includes,
defines, arrays, variables, and GBA registers needed by the main program and is extremely
welcome because none of these statements ever change while the program is running, so it's

better to hide them away. As long as you know what all of these statements are for, and how
they were derived, that's the whole point of the lesson. So let's hide them away in main.h.

[0 777777777

// Programming The Game Boy Advance
// Chapter 7: Rounding Up Sprites
// TransSprite Project

// main.h header file

[T 7 77777777 777777777777777777777777

#ifndef _MAIN_H

#define _MAIN_H

typedef unsigned short ulé6;

#include <stdlib.h>
#include "ball.h"

#include "bg.raw.c"

//macro to change the video mode

#define SetMode (mode) REG_DISPCNT = (mode)

//create a pointer to the video buffer

unsigned short* videoBuffer = (unsigned short*)0x6000000;

//define some video addresses
#define REG_DISPCNT * (volatile unsigned short*)0x4000000

#define BGPaletteMem ((unsigned short*)0x5000000)

//declare scanline counter for vertical blank
volatile unsigned short* ScanlineCounter =

(volatile unsigned short*)0x4000006;

//define object attribute memory state address

#define SpriteMem ((unsigned short*)0x7000000)

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

//define object attribute memory image address

#define SpriteData ((unsigned short*)0x6010000)

//video

unsigned short* SpriteData3

//define object attribute memory palette address

#define

modes 3-5, OAMData starts at 0x6010000 + 8192

SpritePal ((unsigned short*)0x5000200)

//transparency stuff

#define

#define

REG_BLDMOD * (unsigned short*)0x4000050

REG_COLEV * (unsigned short*)0x4000052

//misc sprite constants

#define
#define
#define

#define

OBJ_MAP_2D
OBJ_MAP_1D
OBJ_ENABLE

BG2_ENABLE

//attribute0 stuff

#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

ROTATION_FLAG
SIZE_DOUBLE
MODE_NORMAL
MODE_TRANSPARENT
MODE_WINDOWED
MOSAIC

COLOR_256

SQUARE

TALL

WIDE

//attributel stuff

#define

SIZE_8

SpriteData + 8192;

0x0
0x40
0x1000

0x400

0x100
0x200
0x0
0x400
0x800
0x1000
0x2000
0x0
0x4000

0x8000

0x0

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

#define

#define

#define

SIZE_16 0x4000
SIZE_32 0x8000
SIZE_64 0xC000

//an entry for object attribute memory (OAM)

typedef
{

struct tagSprite

unsigned short attributeO;

unsigned short attributel;

unsigned short attribute2;

unsigned short attribute3;

}Sprite, *pSprite;

//create an array of 128 sprites equal to OAM

Sprite sprites[128];

typedef
{
int
int
int
int
int

int

struct tagSpriteHandler

alive;

X, ¥Yi

dirx, diry;
size;
colormode;

trans;

}SpriteHandler;

SpriteHandler mysprites[128];

#endif

Did you notice the two new elements in the SpriteHandler struct that | snuck in? The new
elements are colormode and trans and are provided to allow each sprite to have separate

and distinct properties from all others. You'll be adding more items to the struct in later
projects as well, so don't get too comfortable with the sprite handler just yet.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

<7 § q . = i | -2 ' .
o et~ =3 L | & i 2
| q ; e gl | 5
= i i T Fare L T] L Sy -
o | e MR , L &

The TransSprite Source File

The main source code file for TransSprite may be the most lengthy code listing of the
chapter so far, but it is not inefficient by any means. Given what this program does, it is
quite small compared to the amount of code needed to implement alpha blending on
another platform. Now here is the code listing for the main source code file:

L1177 7007777777777 7777777777 77777777777777777777777777777
// Programming The Game Boy Advance

// Chapter 7: Rounding Up Sprites

// TransSprite Project

// main.c source code file

[0 7777777777

#define MULTIBOOT int _ gba_multiboot;

MULTIBOOT
#include "main.h"
#define NUMBALLS 5

L1177 707777777777 777 77777777777 7777777777777777777777777777
// Function: HideSprites
// Moves all sprites off the screen
L1777 0077777770077 777777777777777
void HideSprites ()
{

int n;

for (n = 0; n < 128; n++)

{

sprites[n].attributel0 = 160;

sprites([n].attributel 240;

LI

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

// Function: MoveSprite

// Changes sprite attributes for x,y positions
L1107 0077777770077 7777777777777777777
void MoveSprite (int num)
{
//clear the old x value
sprites[num] .attributel = sprites[num].attributel & OxFEO0O;

sprites[num] .attributel = sprites[num].attributel | mysprites[num].x;

//clear the old y value
sprites[num] .attributel0 = sprites[num].attributel0 & OxFFO0O0;

sprites[num] .attributel0 = sprites[num].attributel0 | mysprites[num].y;

L1177 7077777777 77777 77777777777 7777777777777777777777777777
// Function: UpdateSpriteMemory
// Copies the sprite array into OAM memory
L1777 7 7777007777777 7777777777777 7777 777777777777
void UpdateSpriteMemory (void)
{

int nj;

unsigned short* temp;

temp = (unsigned short*)sprites;

for(n = 0; n < 128 * 4; n++)
SpriteMem[n] = temp[n];

}

The InitSprite () function that follows is where the sprite attribute is modified to enable
alpha blending of the sprite. | have highlighted the key line in bold text.

[177077077077
// Function: InitSprite

// Initializes a sprite within the sprite handler array
JI11T77 7777777777777 7777777 77777777777777777777777777777777

void InitSprite(int num, int x, int y, int size, int tileIndex)

unsigned int sprite_size = 0;

mysprites[num] .alive = 1;
mysprites[num].size = size;
mysprites[num] .x = X;

mysprites[num].y = y;
mysprites[num].colormode = COLOR_256;

mysprites[num] .trans = MODE_TRANSPARENT;

(@}

//in modes 3-5, tiles start at 512, modes 0-2 start at

sprites[num] .attribute2 tileIndex;

//initialize

sprites[num] .attribute0 = COLOR_256 | MODE_TRANSPARENT | y;

switch (size)

{

case 8: sprite_size SIZE_8; break;

case 16: sprite_size SIZE_16; break;
case 32: sprite_size = SIZE_32; break;

case 64: sprite_size = SIZE_64; break;

sprites[num].attributel = sprite_size | x;

Another new function that is used in this program is SetTrans. This function allows you to
selectively toggle the transparency flag of any sprite at runtime.

L1170 0077077777777 777777777777777
// Function: SetTransparency

// Changes the transparency of a sprite,

// MODE_NORMAL or MODE_TRANSPARENT

Y,

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

void SetTrans (int num, int trans)

{
mysprites[num] .trans = trans;
sprites[num].attribute0 = mysprites[num].colormode |

mysprites[num] .trans | mysprites|[num].y;

L1707 777 7777777777777
// Function: SetColorMode
// Changes the color mode of the sprite
// COLOR_16 or COLOR_256
L1170 0770777707777 777777777777777
void SetColorMode (int num, int colormode)
{
mysprites[num].colormode = colormode;
sprites[num].attribute0 = mysprites[num].colormode |

mysprites[num] .trans | mysprites|[num].y;

L1717 7 0777777777777 7777777777777 77777 777777777777 77
// Function: WaitVBlank

// Checks the scanline counter for the vertical blank period
L1177 777 0777777777777 777777777 777777777777777777777777777777
void WaitVBlank (void)

{

while (*ScanlineCounter < 160);

}

The main function follows. Most of this code should look familiar to you after going through
the previous sample programs, but there is some new code here that is needed to support
alpha blending. In addition to the code for bouncing the sprites around on the screen is a
section that toggles transparency on and off every so often.

L1770 770777777777 7777777777777 77/777777777/7777777777777777777
// Function: main ()

// Entry point for the program

int main ()

{

int n;
int counter = 0;
int change = 0;

//set the video mode--mode 3, bg 2,

SetMode (3 | OBJ_ENABLE | OBJ_MAP_1D |
//draw the background

for(n=0; n < 38400; n++)

videoBuffer[n] = bg_Bitmap[n];
//set the sprite palette

for(n = 0; n < 256; n++)

SpritePal[n] = ballPalette[n];
//load ball sprite

for(n = 0; n < ball_WIDTH * ball_HEIGHT / 2;
SpriteData3[n] = ballDataln];

//move all sprites off the screen

HideSprites();

//initialize the balls—--note all sprites use the same image

for

{

(n = 0; n < NUMBALLS; n++)

InitSprite(n, rand() % 230, rand() % 150,

while (mysprites[n].dirx == 0)
mysprites[n].dirx = rand() % 6 - 3;

while (mysprites[n].diry == 0)
mysprites([n].diry = rand() % 6 - 3;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

with sprite support

BG2_ENABLE) ;

n++)

(512)

ball WIDTH, 512);

//set transparency level

REG_BLDMOD = (1 << 4) | (1 << 10);

REG_COLEV = (8) + (8 << 8);

//main loop
while (1)
{
//keep the screen civil

WaitVBlank () ;

//toggle transparency after an interval
if (counter++ > 1000)
{

counter = 0;

if (change)

{

change 0;
for (n = 0; n < NUMBALLS; n++)

SetTrans (n, MODE_NORMAL) ;

else

change 1;
for (n = 0; n < NUMBALLS; n++)

SetTrans (n, MODE_TRANSPARENT) ;

for (n = 0; n < NUMBALLS; n++)

//update sprite x position
mysprites[n].x += mysprites[n].dirx;

if (mysprites([n].x > 239 - mysprites|[n]

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

.size)

mysprites[n].x = 239 - mysprites[n].size;

mysprites([n].dirx *= -1;
}
if (mysprites([n].x < 1)
{

mysprites([n].x = 1;

mysprites([n].dirx *= -1;

//update sprite y position
mysprites([n].y += mysprites[n].diry;
if (mysprites[n].y > 159 - mysprites[n].size)
{
mysprites[n].y = 159 - mysprites[n].size;
mysprites([n].diry *= -1;
}
if (mysprites([n].y < 1)
{
mysprites([n].y = 1;

mysprites[n].diry *= -1;

//update the sprite properties
MoveSprite (n);
}
//copy all sprites into object attribute memory
UpdateSpriteMemory () ;

}

Well, that's the end of TransSprite. Go ahead and run the program, and I'm sure you will
agree it is fascinating to watch the sprites moving around with alpha blending enabled.
There are so many things you can do with this—you are but limited by your imagination!

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

x 5 = = =
—— PR K] | g ||
A T S
x

|
—

Rotation and Scaling

Another fascinating special effect that really makes sprites fun is the ability to rotate and
scale them in real time. Is there really any need to draw prerotated sprites anymore when
support for rotating a sprite is built into the GBA hardware? The process isn't perfect,
because the GBA doesn't have a floating-point processor, so all rotation must be done with
fixed-point math. But that can be solved easily enough with a precalculated array of sine
and cosine values. This is a refinement over the SIN and COS arrays that you saw in the
previous chapter, as there is no longer any need for a source file containing these radian
values since they're just computed at the start of the program. This does cause a slight
delay at the start of the program, but you could deal with that by displaying a splash screen
and using the calculations as a sort of delay, so the player doesn't notice that an actual
computational delay is taking place (and I'm talking about only a few short seconds).
However, if your game sprites need to display shadows, or if you want more precision in the
game's graphics, you will want to pre-rotate all sprite images. Some objects, however,
where precision is not as important, such as with an asteroid or a missile, rotating in the
game should work fine.

In order to use rotation and scaling, you must define a new struct that fills in the missing
rotational elements of the OAM struct used previously. The new struct, RotData, points to
the same address in OAM and might be thought of as a union struct. However, note the use
of filler elements in the struct, followed by pa, pb, pc, and pd. These are new attributes
that describe the sprite’'s behavior and are used for rotation and scaling.

typedef struct tagRotData
{

ulée fillerl;

ulé pa;

ulée filler2;

ulé pb; ule filler3;
ul6 pc; ule filler4;
ulé pd;

}RotData, *pRotData;

The declaration of a new pointer is needed to use this struct, and as you'll note, it points to
the sprites struct array (defined earlier in the program).

pRotData rotData = (pRotData)sprites;

The only thing that needs explanation is the use of sine and cosine to actually rotate the
sprites on the screen. As | mentioned in the previous chapter regarding background
rotation, the GBA supports the rendering of a rotated sprite, but you must provide the

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

o ® A o = R o - 5)
S ri | [} '._-:i i J g .I | I 1
P ity ﬂ_ [t 1 I_F — I - I L 1

i P e — B e SidnEem . Se—
trigonometry for the actual rotation. That is accomplished with fixed-point (integer) math,
which is a type of virtual floating-point emulation that is extremely fast. Calculations must

be done with radians, so the usual 360 degrees must be converted to radians.

//math values needed for rotation
#define PI 3.14159265

#define RADIAN (n) (((float)n) / (float)1l80 * PI)

Here are the two SIN and COS arrays used to hold the precomputed angle of rotation values:
//precomputed sine and cosine arrays
signed int SIN[360];

signed int COS[360];

And here is the loop that creates the SIN and COS arrays of precomputed values. This is a
somewhat time-consuming process that ties up the CPU for a few seconds, so | suggest
displaying a splash or title screen before running this code.

for(n = 0; n < 360; n++)
{

SIN[n]

(signed int) (sin (RADIAN(n)) * 256);

COS [n]

(signed int) (cos (RADIAN (n)) * 256);

}

The RotateSprite Program

Now that you have some of the basics down for rotating sprites, it's time to write a sample
program to demonstrate how it all works. | realize that | have skimmed over the material
and that you may be wondering how it all works. Without listing the actual code beforehand
and then explaining it, | think it makes more sense to just type in the actual program and
see how it works firsthand. Figure 7.9 shows the output from the RotateSprite program.

The RotateSprite program clears out a lot of the code from the previous program in order to
help you understand exactly what is going on just with the rotation and scaling of the
sprite. Therefore, there is no background image. What | have done differently with this
program is provide a means to control the sprite using the GBA's buttons. The LEFT, RIGHT,
UP, and DOWN buttons will move the sprite on the screen; the A and B buttons rotate the
sprite; while the L and R buttons change the scale of the sprite.

Create a new project in Visual HAM and call it RotateSprite. You may also load the project
off the CD-ROM, located in \Sources\ChapterO7\RotateSprite. The RotateSprite.gba file is

the binary that you may run directly in VisualBoyAdvance (or another GBA emulator, if you
wish).

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Figure 7.9

The RotateSprite program
demonstrates how to rotate
and scale a sprite from player
| input.

The RotateSprite Header File

The header file takes care of all the defines, includes, and so on and is to be typed into a
new file called main.h. If you need help adding a new file to the project, refer to one of the
previous projects in this chapter for a summary.

L1107 77777777777 77
// Programming The Game Boy Advance

// Chapter 7: Rounding Up Sprites

// RotateSprite Project

// main.h header file

L1777 7777777777777 T

#ifndef _MAIN_H

#define _MAIN_H

typedef unsigned short ulé6;

#include <stdlib.h>
#include <math.h>
#include "spot.h"

#include "bg.raw.c"

//macro to change the video mode

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

#define SetMode (mode) REG_DISPCNT = (mode)

//create a pointer to the video buffer

unsigned short* videoBuffer = (unsigned short*)0x6000000;

//define some video addresses
#define REG_DISPCNT * (volatile unsigned short*)0x4000000

#define BGPaletteMem ((unsigned short*)0x5000000)

//declare scanline counter for vertical blank
volatile unsigned short* ScanlineCounter =

(volatile unsigned short*)0x4000006;

//define object attribute memory state address

#define SpriteMem ((unsigned short*)0x7000000)

//define object attribute memory image address

#define SpriteData ((unsigned short*)0x6010000)

//video modes 3-5, OAMData starts at 0x6010000 + 8192

unsigned short* SpriteData3 = SpriteData + 8192;

//define object attribute memory palette address

#define SpritePal ((unsigned short*)0x5000200)
//transparency stuff
#define REG_BLDMOD * (unsigned short*)0x4000050

#define REG_COLEV * (unsigned short*)0x4000052

//misc sprite constants

#define OBJ_MAP_2D 0x0
#define OBJ_MAP_1D 0x40
#define OBJ_ENABLE 0x1000
#define BG2_ENABLE 0x400

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

//attribute0 stuff

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

ROTATION_FLAG
SIZE_DOUBLE
MODE_NORMAL
MODE_TRANSPARENT
MODE_WINDOWED
MOSAIC

COLOR_16
COLOR_256

SQUARE

TALL

WIDE

//attributel stuff

#define
#define
#define
#define
#define
#define

#define

ROTDATA (n)
HORIZONTAL_FLIP
VERTICAL_FLIP
SIZE_8

SIZE_16

SIZE_32

SIZE_64

//Attribute? stuff

#define

#define

//an entry for object attribute memory (OAM)

typedef
{

unsigned short attributeO;
unsigned short attributel;
unsigned short attribute2;

unsigned short attribute3;

PRIORITY (n)

PALETTE (n)

struct tagSprite

0x100
0x200
0x0
0x400
0x800
0x1000
0x0000
0x2000
0x0
0x4000

0x8000

((n) << 9)
0x1000
0x2000

0x0

0x4000
0x8000

0xC000

((n) << 10)

((n) << 12)

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

}Sprite, *pSprite;

typedef

{
ulé
ulé
ulé
ulé
ulé
ulé
ulé

ulo6

struct tagRotData

fillerl;

paj;
filler2;
pb;
filler3;
pc;
filler4;

pd;

}RotData, *pRotData;

//create an array of 128 sprites equal to OAM

Sprite sprites[128];

pRotData rotData = (pRotData)sprites;

typedef
{
int
int
int
int
int

int

struct tagSpriteHandler

alive;
X, ¥Yi
dirx, diry;
size;
colormode;

trans;

signed int rotate;

signed int scale;

}SpriteHandler;

SpriteHandler mysprites[128];

//define the buttons

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

#define BUTTON_A 1

#define BUTTON_B 2
#define BUTTON_SELECT 4
#define BUTTON_START 8
#define BUTTON_RIGHT 16
#define BUTTON_LEFT 32
#define BUTTON_UP 64
#define BUTTON_DOWN 128
#define BUTTON_R 256

#define BUTTON_L 512

//create pointer to the button interface in memory

volatile unsigned int *BUTTONS = (volatile unsigned int *)0x04000130;

//keep track of the status of each button

int buttons[10];

//math values needed for rotation
#define PI 3.14159265

#define RADIAN (n) (((float)n)/(float)1l80 * PI)

//precomputed sine and cosine arrays
signed int SIN[360];

signed int COS[360];

#endif

The RotateSprite Source File

Here is the code listing for the main.c file of RotateSprite.

L1170 77 0777777777777 7777777777777 77777777777777777777777777
// Programming The Game Boy Advance
// Chapter 7: Rounding Up Sprites

// RotateSprite Project

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

// main.c source code file

[T 77777777777777777777777

#define MULTIBOOT int _ gba_multiboot;

MULTIBOOT

#include "main.h"

N,

// Function: HideSprites

// Moves all sprites off the screen

[0

void HideSprites /()

{

int n;

for (n = 0; n < 128; n++)

{

sprites[n].attributel

sprites[n].attributel

= 160;

240;

LTI 0 PP 777777777777777777777777

// Function: MoveSprite

// Changes sprite attributes for x,y positions

[0

void MoveSprite (int num)

{
//clear the old x value
sprites[num] .attributel

sprites[num] .attributel

//clear the old y value

sprites[num] .attributel

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

sprites[num] .attributel & OxFEO0O;

sprites[num].attributel | mysprites[num].x;

sprites[num] .attribute0 & OxFFO0O0;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

sprites[num] .attribute0 = sprites[num].attributel0 | mysprites[num].y;

I11777777 777777777777 777777 777777777 777777777777777777777777
// Function: UpdateSpriteMemory
// Copies the sprite array into OAM memory
L1107 0077777770077 77777777777777
void UpdateSpriteMemory (void)
{

int n;

unsigned short* temp;

temp = (unsigned short*)sprites;

for(n = 0; n < 128 * 4; n++)
SpriteMem[n] = temp[n];

}

The InitSprite function has been changed again, this time providing support for rotation and
scaling. | have highlighted key lines in bold text.

L1717 777 777777777777
// Function: InitSprite

// Initializes a sprite within the sprite handler array
I111T777 7777777777777 77777777 77777777777777777777777777777777
void InitSprite(int num, int x, int y, int size, int tileIndex)

{

unsigned int sprite_size = 0;
mysprites[num] .alive = 1;
mysprites[num].size = size;
mysprites[num] .x = X;

mysprites[num].y = y;
mysprites[num].rotate = ROTATION_FLAG;
mysprites[num] .scale = 1 << 8;

mysprites[num] .angle = 0;

sprites[num] .attribute2 = tilelIndex;

//initialize

sprites[num] .attributel

]
<

COLOR_256 |

ROTATION_FLAG;

switch (size)

{

case 8: sprite_size = SIZE_8; break;

case 16: sprite_size SIZE_16; break;

case 32: sprite_size SIZE_32; Dbreak;

case 64: sprite_size SIZE_64; break;

sprites[num].attributel = x |
sprite_size |

ROTDATA (tilelIndex) ;

L1177 77 7777077777777 7777777777777 777777777777 777777777777777
// Function: WaitVBlank
// Checks the scanline counter for the vertical blank period

L1000 0077777777777 777777777777777777777

void WaitVBlank (void)

{

while (*ScanlineCounter < 160);

Here is the CalcAngles function, which generates the precomputed sine and cosine values
for rotation:

[0 777777777

// Function: CalcAngles

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

// Pre-calculates the sine and cosine tables
L1777 7777777777 777
void CalcAngles (void)
{
int n;

for(n = 0; n < 360; n++)

SIN[n] = (signed int) (sin(RADIAN(n)) * 256);

COS[n] = (signed int) (cos (RADIAN(n)) * 256);

| didn't go over the RotateSprite function earlier, so now a short summary is called for. This
function uses the precomputed SIN and COS arrays as if they were sin() and cos() functions,
with the usual rotation algorithm. Since the SIN and COS arrays are filled with fixed-point
integer values, with the decimal fixed between bits 8 and 9 (where the first 8 bits represent
the whole number, and the second 8 bits the fractional number), this code runs quite fast
compared to floating-point code. After the new values have been calculated, they are
plugged into the rotData structure for that particular sprite.

L1177 70777077
// Function: RotateSprite
// Rotates and scales a hardware sprite

L1177 77 7777077777777 7777777777777 77777777 7777777777777777777
void RotateSprite (int rotDatalndex, int angle,
signed int xscale, signed int yscale)

signed int pa, pb,pc, pd;

//use the pre-calculated fixed-point arrays

pa = ((xscale) * COS[angle])>>8; pb = ((yscale) * SIN[angle])>>8;
pc = ((xscale) * -SIN[angle])>>8;
pd = ((yscale) * COS[angle])>>8;

//update the rotation array entry

rotData[rotDatalIndex] .pa = pa; rotData[rotDatalIndex] .pb = pb;

rotData[rotDatalIndex].pc = pc;

rotData[rotDatalIndex] .pd = pd;

[117777077077
// Function: CheckButtons

// Polls the status of all the buttons
[110777177
void CheckButtons ()

{

//store the status of the buttons in an array

buttons[0] = ! ((*BUTTONS) & BUTTON_A) ;
buttons = ! ((*BUTTONS) & BUTTON_B) ;

buttons = ! ((*BUTTONS) & BUTTON_LEFT);
buttons = ! ((*BUTTONS) & BUTTON_RIGHT);
buttons = ! ((*BUTTONS) & BUTTON_UP) ;
buttons[5] = ! ((*BUTTONS) & BUTTON_DOWN) ;
buttons([6] = ! ((*BUTTONS) & BUTTON_START) ;
buttons[7] = ! ((*BUTTONS) & BUTTON_SELECT) ;
buttons([8] = ! ((*BUTTONS) & BUTTON_L);
buttons[9] = ! ((*BUTTONS) & BUTTON_R) ;

L1717 0 0077777770777 77777777777 7777777777777
// Function: Pressed
// Returns the status of a button
I111T7777 7777777077777 7777777 77777777777777777777777777777777
int Pressed(int button)
{
switch (button)
{
case BUTTON_A: return buttons[0];
case BUTTON_B: return buttons;

case BUTTON_LEFT: return buttons;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

case
case
case
case
case
case
case
}

return 0

The main function of the RotateSprite program is shown next. This function handles setting
up the screen, calling the CalcAngles function to generate the SIN and COS lookup tables,
and loads the sprite into OAM. After initialization, the program goes into a loop to handle

BUTTON_RIGHT: return buttons;

BUTTON_UP: return buttons;
BUTTON_DOWN: return buttons[5];
BUTTON_START: return buttons[6];
BUTTON_SELECT: return buttons[7];
BUTTON_L: return buttons[8];

BUTTON_R: return buttons[9];

4

button input and move the sprites on the screen.

L1707 7777777777777 T

// Function:

// Entry poi

[0

int main ()

{

int n;
//pre—calculate the SIN and COS tables
CalcAngles () ;
//set the video mode--mode 3, bg 2, with sprite support
SetMode (2 | OBJ_ENABLE | OBJ_MAP_1D);
//set the sprite palette
for(n = 0; n < 256; n++)
SpritePal[n] = spotPalette[n];
//load ball sprite
for(n = 0; n < spot_WIDTH * spot_HEIGHT / 2; n++)

Programming The Nintendo Game

main ()

nt for the program

Boy Advance: The Unofficial Guide

Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

SpriteData[n] = spotDataln];

//move all sprites off the screen

HideSprites();

//initialize the sprite at the center of the screen

InitSprite (0, 120-spot_WIDTH/2, 80-spot_HEIGHT/2, spot_WIDTH,

//main loop

while (1)

{
//comment out when running on real hardware
for (n=0; n<1000; n++);
//grab the button status

CheckButtons () ;

//control sprite using buttons
if (Pressed (BUTTON_LEFT))
if (——mysprites[0].x < 1)

mysprites[0].x = 1;

if (Pressed (BUTTON_RIGHT))
if (++mysprites[0].x > 239-spot_WIDTH)

mysprites[0].x = 239-spot_WIDTH;

if (Pressed (BUTTON_UP))
if (——mysprites[0].y < 1)

mysprites([0].y = 1;
if (Pressed (BUTTON_DOWN))
if (++mysprites[0].y > 159-spot_HEIGHT)

mysprites[0].y = 159-spot_HEIGHT;

//buttons A and B change the angle

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

0);

if (Pressed (BUTTON_A))
if (——mysprites[0].angle < 0)

mysprites[0].angle = 359;

if (Pressed (BUTTON_B))
if (++mysprites[0].angle > 359)

mysprites[0].angle = 0;

//buttons L and R change the scale
if (Pressed (BUTTON_L))

mysprites[0] .scale——;

if (Pressed (BUTTON_R))

mysprites|[0].scale++;

//update sprite position

MoveSprite (0);

//rotate and scale the sprite
RotateSprite (0, mysprites[0].angle,

mysprites[0] .scale, mysprites[0].scale);

//wait for vertical refresh before updating sprites

WaitVBlank () ;

//copy all sprites into object attribute memory
//this is only possible during vertical refresh

UpdateSpriteMemory () ;

Animated Sprites

The only other special effect (or feature) of note aside from scaling, rotation, and alpha
blending, would have to be animation. Many games on the GBA use rather static sprites, but

279

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

the graphically rich games always include animated sprites. From a programming
perspective, animated sprites require a lot more memory than static sprites, because every
frame of animation is another small bitmap image that must be kept in memory. The easiest
way to animate a sprite is to copy a particular frame of an animation sequence into OAM so
that it is rendered during the next screen refresh. From the perspective of OAM, there is
just one sprite image, but your program copies a new version of the sprite bitmap into
sprite display memory.

The AnimSprite Program

The AnimSprite program (shown in Figure 7.10) is very similar to the BounceSprite program,
and even uses the same sphere image, only this version of the sphere includes many frames
of animation so that it appears to be rotating in 3D.

The AnimSprite Header

Here is the header for the AnimSprite program, which should be typed into a file called
main.h. If you haven't created the AnimSprite project yet, go ahead and create the project
now, and add a new file, as you have done with other sample programs in this chapter.

Fm!::]‘m.‘:?:‘:_ i
Ly P
wrad B ol

e SRRSO -

=

B e

1
& e

: = Figure 7.10

R - The AnimSprite program

F aEm—— demonstrates how to draw
i animated sprites.

L1170 77777 7077777777777 777777777777777777777/77777777777777777
// Programming The Game Boy Advance

// Chapter 7: Rounding Up Sprites

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

// AnimSprite Project

// main.h header file

[0

#ifndef _MAIN_H

#define _MAIN_H

typedef unsigned short ulé6;

#include <stdlib.h>
#include "bg.raw.c"

#include "ball2.h"

//macro to change the video mode

#define SetMode (mode) REG_DISPCNT = (mode)

//create a pointer to the video buffer

unsigned short* videoBuffer = (unsigned short*)0x6000000;

//define some video addresses
#define REG_DISPCNT * (volatile unsigned short*)0x4000000

#define BGPaletteMem ((unsigned short*)0x5000000)

//declare scanline counter for vertical blank
volatile unsigned short* ScanlineCounter =

(volatile unsigned short*)0x4000006;

//define object attribute memory state address

#define SpriteMem ((unsigned short*)0x7000000)

//define object attribute memory image address

#define SpriteData ((unsigned short*)0x6010000)

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

=
//video modes 3-5, OAMData starts at 0x6010000 + 8192

unsigned short* SpriteData3 = SpriteData + 8192;

//define object attribute memory palette address

#define SpritePal ((unsigned short*)0x5000200)

//misc sprite constants

#define OBJ_MAP_2D 0x0
#define OBJ_MAP_1D 0x40
#define OBJ_ENABLE 0x1000
#define BG2_ENABLE 0x400

//attribute0 stuff

#define ROTATION_FLAG 0x100
#define SIZE_DOUBLE 0x200
#define MODE_NORMAL 0x0

#define MODE_TRANSPARENT 0x400
#define MODE_WINDOWED 0x800
#define MOSAIC 0x1000
#define COLOR_256 0x2000
#define SQUARE 0x0

#define TALL 0x4000
#define WIDE 0x8000

//attributel stuff

#define SIZE_S 0x0

#define SIZE_16 0x4000
#define SIZE_32 0x8000
#define SIZE_ 64 0xC000

//an entry for object attribute memory (OAM)
typedef struct tagSprite
{

unsigned short attributeO;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

unsigned short attributel;

unsigned short attribute2;
unsigned short attribute3;

}Sprite, *pSprite;

//create an array of 128 sprites equal to OAM

Sprite sprites[128];

typedef struct tagSpriteHandler
{

int alive;

int x, y;

int dirx, diry;

int size;
}SpriteHandler;
SpriteHandler mysprites[128];

#endif

The AnimSprite Source Code

Okay, now for the last source code listing of the chapter, the code for the main AnimSprite
program. The code is similar to the BounceSprite program, so it should be familiar to you.
Assuming you have already created the AnimSprite project, replace the default code in the
main.c file with the following code listing.

[11777177
// Programming The Game Boy Advance

// Chapter 7: Rounding Up Sprites

// BnimSprite Project

// main.c source code file

L1777 7777777777777 T

#define MULTIBOOT int _ gba_multiboot;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

MULTIBOOT

#include "main.h"

#define NUMBALLS 10

[11077
// Function: HideSprites
// Moves all sprites off the screen
[11777
void HideSprites ()
{

int n;

for (n = 0; n < 128; n++)

{

sprites[n].attributel0 = 160;

sprites[n].attributel 240;

I1117777 7777777777777 77777777 7777777777777777777777777777777
// Function: MoveSprite
// Changes sprite attributes for x,y positions
L1707 7 7777007777777 7777777777777777
void MoveSprite (int num)
{
//clear the old x value
sprites[num] .attributel = sprites[num].attributel & O0xFEO0O;

sprites[num] .attributel = sprites[num].attributel | mysprites[num].x;

//clear the old y value
sprites[num] .attribute0 = sprites[num].attributel0 & O0xFFO00;

sprites[num].attribute0 = sprites|[num].attributel | mysprites[num].y;

[T 0077000077777 777777777777777777777777

// Function: UpdateSpriteMemory
// Copies the sprite array into OAM memory
L1777 0077777707777 77777777777777
void UpdateSpriteMemory (void)
{
int n;
unsigned short* temp;

temp = (unsigned short*)sprites;

for(n = 0; n < 128 * 4; n++)

SpriteMem[n] = temp[n];

L1707 7777777777 777777777777 77

// Function: InitSprite

// Initializes a sprite within the sprite handler array

J111T77 7777777777777 777777 777777777777777777777777777777777

void InitSprite(int num, int x, int y, int size, int color, int tileIndex)

{

unsigned int sprite_size = 0;
mysprites[num].alive = 1;
mysprites[num].size = size;

mysprites[num] .x = x;

mysprites[num] .y = y;

//in modes 3-5, tiles start at 512, modes 0-2 start at 0

sprites[num] .attribute2 = tilelIndex;
//initialize
sprites[num].attribute0 = color | y;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

switch (size)

{

case 8: sprite_size = SIZE_8; break;

case 16: sprite_size SIZE_16; Dbreak;

case 32: sprite_size SIZE_32; break;

case 64: sprite_size SIZE_64; Dbreak;

sprites[num].attributel = sprite_size | x;

L1707 777 7777777 7777777777777
// Function: WaitVBlank
// Checks the scanline counter for the vertical blank period
J117T777 7777777707777 7777777 777777777777777777777777777777777
void WaitVBlank (void)
{

while (! (*ScanlineCounter));

while ((*ScanlineCounter));

void UpdateBall (index)

{

ul6 nj;

//load ball sprite
for(n = 0; n < 512; n++)

SpriteData3[n] = ballDatal (512*index)+n];

I11777777 777777777777 777777777777777777777777777777777777777
// Function: main ()

// Entry point for the program

I111T777 7777777777777 77777777 7777777777777777777777777777777

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

int main ()

{

int n;

//set the video mode--mode 3, bg 2, with sprite support

SetMode (3 | OBJ_ENABLE | OBJ _MAP_1D | BG2_ENABLE);

//draw the background
for(n=0; n < 38400; n++)

videoBuffer[n] = bg_Bitmap[n];

//set the sprite palette
for(n = 0; n < 256; n++)

SpritePal[n] = ballPalettel[n];

//move all sprites off the screen

HideSprites();

//initialize the balls--note all sprites use the same image
for (n = 0; n < NUMBALLS; n++)
{

InitSprite(n, rand() % 230, rand() % 150, ball_WIDTH,

COLOR_256, 512);

while (mysprites[n].dirx == 0)
mysprites([n].dirx = rand() % 6 - 3;

while (mysprites[n].diry == 0)
mysprites([n].diry = rand() % 6 - 3;

int ball_index=0;

//main loop

while (1)

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

if (++ball_index > 31) ball_index=0;

UpdateBall (ball_index);

for (n = 0; n < NUMBALLS; n++)
{
//update sprite x position
mysprites([n].x += mysprites[n].dirx;
if (mysprites[n].x > 239 - mysprites|[n]
{
mysprites[n].x = 239 - mysprites[n]
mysprites([n].dirx *= -1;
}
if (mysprites([n].x < 1)
{
mysprites([n].x = 1;

mysprites[n].dirx *= -1;

//update sprite y position
mysprites([n].y += mysprites[n].diry;
if (mysprites[n].y > 159 - mysprites|[n]
{
mysprites[n].y = 159 - mysprites|[n]
mysprites[n].diry *= -1;
}
if (mysprites[n].y < 1)
{
mysprites[n].y = 1;

mysprites([n].diry *= -1;

//update the sprite properties

MoveSprite (n);

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

.size)

.size;

.size)

.size;

//keep the screen civil

WaitVBlank () ;

//copy all sprites into object attribute memory

UpdateSpriteMemory () ;
}
}

Well, that sums up sprite rotation and animation! The only thing you need to worry about
regarding the different video modes and backgrounds is that some backgrounds are not
capable of being rotated or scaled, so if you come to a dead end and your own rotation code
doesn't seem to be working, you might want to check the capabilities of the video mode and
background you are using as a first attempt to get the program working. Another thing to
remember is that the tile index for the sprite data is different for bitmap-based video
modes (3-5) than for the tile-based modes (0-2). The reason for this is that bitmapped
backgrounds require more video memory, and that encroaches on the sprite memory, so you
must copy your sprite images and data into a higher position in sprite memory, depending on
the video mode. Refer to the sample programs in this chapter for details on how to program
the different modes when working with sprites.

Summary

Sprites are, without exception, the most important aspect of programming games on the
GBA. This chapter has provided not only an overview and sample code for using hardware
sprites, including how to convert source artwork into source code format, but this chapter
has also delved into special effects. You have learned how to display and move sprites
around on the screen using tile-based and bitmap-based video modes, as well as how to
rotate and scale sprites in real time. This chapter also provided an explanation of sprite
translucency using a process called alpha blending, as well as an example program that
shows how to draw animated sprites on the screen.

Challenges

The following challenges will help to reinforce the material you have learned in this
chapter.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

g, o ' .5"*:-'_1" o e z e i T U
Challenge 1: Two of the programs in this chapter featured no backgrounds, in order to make

the programs easier to understand. Modify either the SimpleSprite or RotateSprite program,
giving it a tile-based background.

Challenge 2: Test the BounceSprite2 program with various sprite sizes (8 x 8, 16 x 16, 32 x
32, and 64 x 64) to see how many sprites are available when using each of these sizes.
Simply reduce NUMBALLS until all the balls are moving to find the value in each case.

Challenge 3: The TransSprite program looks pretty neat, don't you think? Well, you can do
better, I'm sure! Modify the program so it uses two different types of sprites, and make each
sprite animated. You can do this by simply loading two frames for each sprite and storing
them consecutively in OAM. Simply determine how large each sprite is and index that far
into OAM for each new sprite.

Chapter Quiz

The following quiz will help to further reinforce the information covered in this chapter.
The quiz consists of 10 multiple-choice questions with up to four possible answers. The key
to the quiz may be found in Appendix D.

1. How many hardware sprites does the GBA support as an upper limit, regardless of video
mode?

A. 64

B. 128

C. 256

D. 384

2. What is the maximum sprite size supported by the GBA?
A. 16 x 16
B. 32 x 32
C. 64 x 64
D. 128 x 128

3. What video modes support sprite rotation and scaling?
A. Mode 2
B. Mode 3
C. Mode 4
D. Any mode

4. What is the name of the define used to enable transparency in a sprite?
A. MODE_TRANSPARENT
B. MODE_ALPHABLEND
C. MODE_TRANSLUCENT
D. MODE_WINDOWED

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

5. What trigonometric functions are used to calculate degrees of rotation?
A. cos and arctan
B. sin and tan
C. cosine and tangent
D. sin and cos

6. True/False: Does the ARM7 processor have built-in support for floating-point numbers?
A. True
B. False

7. What special effects in all does the GBA provide for hardware sprites?
A. Rotation and scaling
B. Blitting, rotation, scaling, and alpha blending
C. Blitting and scaling
D. Blitting, rotation, and transparency

8. Where is the object attribute memory (OAM) image address located, where the actual
sprites are stored?

A. 0x6000000

B. 0x7000000

C. 0x6010000

D. 0x4000052

9. What two programs were used in this chapter to convert sprite images into C source
listings?

A. gfx2gba and pcx2sprite

B. bmp2gba and gif2gba

C. pcx2gba and jpg2sprite

D. pdf2sprite and doc2pdf

10. Which sprite attribute is used to control special effects, such as rotation, scaling, and
transparency?

A. Attribute0

B. Attribute1

C. Attribute2

D. Attribute3

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

