Chapter 6

Tile-Based
Video Modes

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

his chapter explains the Game Boy Advance’s tile-based graphics modes, with coverage

of tile images, tile maps, scrolling backgrounds, and rotating backgrounds, as well as a
tutorial on creating tiles, and converting them to a C array. Two complete programs are
included in this chapter to demonstrate how to use scrolling and rotating backgrounds: the
TileModeO program and the RotateMode2 program. Here are the key topics covered:

. Introduction to tile-based video modes
o Creating a scrolling background
o Creating a rotating background

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

T - —l e " s T e (i
Introduction to Tile-Based Video Modes

The Game Boy Advance offers three tile-based (also called text-based, or character) video
modes that support a tiled screen comprising 8 x 8 tiles. A full screen is therefore made up
of 30 tiles across and 20 tiles down. The maximum size of the background tile map is 1024 x
1024 pixels (when a rotation map is being used, 512 x 512 otherwise), or rather, 128 tiles
across and 128 tiles down. As you might imagine, this provides the capability for storing a
sizable level in a single tile map. Table 6.1 shows the properties of the tile-based video
modes.

Table 6.1 Tiled Video Modes

Mode Backgrounds Rotation/Scaling
0 0,1,2,3 No

1 0,1,2 Yes (2)

2 2,3 Yes (2, 3)

For instance, six rows or six columns of tiles can be stored in the 128 x 128 tile map and
scrolled horizontally or vertically, adjusting the position of the "screen” to the next row or
column upon reaching the edge of the previous one. See Figure 6.1.

Figure 6.1
The maximum size of a

(non-rotation) tile map
is 512 x 512 pixels, or
64 x 64 tiles.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

.II|‘|| R '_".: I e [§

i e

As you can see from Figure 6.2, you can create a large tile map for a game indeed, because
the image in the upper-left corner represents one full screen of tiles!

Figure 6.2

A single screen uses only
a small portion of the
maximum number of tiles.

Backgrounds

Since the tiled "text" backgrounds (0 and 1) support hardware scrolling of the background,
you can simply plug in all the tiles you need for a game level (which would obviously not be
made up of a single picture as shown in Figure 6.2). A typical tile-based game will have
hundreds of tiles, many of which make up larger tiles (such as 16 x 16, 32 x 32, and 64 x 64
or larger). Displaying a larger "tile" really just involves displaying the smaller tiles that
make up that large tile. It all breaks down to the least common denominator, which is the 8
x 8 pixel tile.

On the other hand, there are the two scale and rotate backgrounds (2 and 3). These
backgrounds support only 8-bit color and vary in resolution from 128 to 1,024 pixels across.
The usual palette located at 0 x 5000000 contains 256 color values, each a 16-bit number
(which you learned about in the last chapter). | should also point out that the tile-based
modes support 16-color palettes, and when using 16-color palettes, there are 16 separate,
individual palettes available. Due to the smaller memory footprint of a 4-bit color (one-
fourth the size of a 16-bit color), images that use 16-color palettes are also smaller. | will
be sticking to 8-bit and 16-bit (actually, 15-bit, as you have already learned) colors for

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

simplicity. As Table 6.2 shows, backgrounds 0 and 1 are text backgrounds, while
backgrounds 2 and 3 support rotation and scaling.

Table 6.2 Backgrounds

Background Max Resolution Rotation/Scaling

0 512 x 512 No

1 512 x 512 No

2 128 to 1,024 Yes

3 128 to 1,024 Yes
Background Scrolling

The real advantage to tiled modes that | have yet to emphasize is the fact that these
backgrounds can be layered on top of each other and that there is a priority involved in the
layering, somewhat like a Z-buffer (if you lean toward the 3D realm). If you use video mode
0, with four text backgrounds (i.e., no scaling or rotation), then you can have four levels of
parallax scrolling in your game, without any extra coding on your part (as far as writing the
scrolling code or parallax layer transparency code, because that is all handled by the
hardware). Most games that feature parallax are side scrollers, because it makes more
sense to have scenery in the distance, with layers of terrain or objects closer to the player
seeming to scroll by at a faster rate.

Mode 0 is great for this because all four backgrounds are hardware rendered. You do not
need to write your own parallax scrolling routine. Now, you might be wondering, what is
parallax scrolling? It's a concept that has been around for decades and is somewhat taken
for granted today because it is so prevalent (kind of like a PC with a 3D card, something
that was once uncommon). Parallax scrolling involves multiple layers, with closer layers
scrolling faster than the distant layers. Figure 6.3 shows a fictional game scene with a
starry background scrolling by slowly and a moonscape scrolling by more rapidly, with
sprites transparently displayed on top of the two layers.

Tiles and Sprites

One of the primary advantages to using a tiled mode is that there is more memory available
for hardware sprites in these modes, whereas in bitmap modes (3, 4, and 5) only half of the

203

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

VRAM is available for sprites. How you use that memory, based on sprite size, is up to you,
and I will cover this subject in the next chapter. One thing is a given, though, that there are
a maximum of 128 sprites available. If you want to write a scrolling shoot-'em-up, for
instance, you would almost certainly want to use a tiled mode, if not for the hardware
background scrolling, then certainly for the large number of supported sprites. Of course,
you may use any combination of sizes for the sprites in your game. Although | am not
covering sprites in this chapter, | hope this has piqued your interest, because sprites are
covered in the next chapter, and it is a fun subject, building on the subjects covered in this
chapter.

Figure 6.3

The foreground and background
layers are scrolling at a different
rate of speed. The spaceship and
asteroids are sprites drawn over
the backgrounds.

The Tile Data and Tile Map

The tile map is stored in the same location as the video buffer (in the bitmap video modes),
an array of numbers that point to the tile images. In the text backgrounds (0 and 1) the tile
map comprises 16-bit numbers, while the rotation backgrounds (2 and 3) store 8-bit
numbers in the tile map. This is an important distinction that you should carefully
remember because it can be a source of frustration when writing code, particularly when
you switch to another background.

The GBA uses several registers to determine where the bitmaps are stored for the tiles
displayed on the screen, which differs for each background. As you learned, the tile modes
support two or more backgrounds each. The tile data itself can be stored anywhere in VRAM
(video memory) as long as it is on a 16 KB boundary, which starts at 0x6000000 and goes
through O0x600FFFF. When you are working with tile-based modes, video memory is divided

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

into four logical character base blocks, which are made up of 32 smaller screen base blocks,
as shown in Figure 6.4.

The tile map (which defines where the tiles are positioned) must begin at screen base
boundary 31 at the very end of video memory.

Char Base EBlock O Screen Base EBlock O Oxe000000
Screen Base Block 1 Ox 6000300
Screen Base Block 2 Ox&001000
Screen Base Block 3 Ox&001500
Screen Base EBlock 4 Oxe00z000
doreen Base Block S Ox600z500
Screen Base Block & Ox 6003000
Screen Base Block 7 Ox 6003500
Char Base Block 1 Screen Base Block S Ox&004000
Screen Base EBlock 29 Oxe00a300
Soreen Base Block 10 Ox 6005000
Screen Base Block 11 Ox 6005500
Screen Base Block 12 Oxa00a000 :
Screen Base Block 13 Ox 6006300 F’gure 6'4
Screen Ease EBlock 14 Ox&007000 3 7
Screen Base Block 15 Oxe007300 Tlle based V’deo memory
Char Ease EBlock 2 Screen Base Block 16 Oxa00s000 ’S d’v’ded ’nto [oglcal
Screen Base Block 17 Ox 6005500 :
Screen Base Block 18 Oxe009000 blOCkS at 16 KB boundar’es‘
Screen Base Elock 19 Ox 6009300
Screen Base EBlock 20 Ox 6004000
Screen Base Block 21 Ox&600AS00
Screen Base Block 22 Oxe00EQOO
Screen Base Block 23 Ox&600BS00
Char Base Block 3 SJcreen Base Block 24 Oxs00C000
Screen Base EBlock 25 O=x&00C800
Screen Base Block 26 O=x&s00Da00
Screen Base Block 27 Oxs00DsS00
Screen Base Block 28 Oxs00EQOOD
Screen Base Block 29 Oxs00ESO0
Screen Base EBlock 30 Oxs00F000
Zcreen Base Block 31 Oxs00FS00

Creating a Scrolling Background

To demonstrate a tile-based scrolling background, | will walk you through a project called
TileModeO0, which you will write from scratch. Figure 6.5 shows the program running in the
IDE.

For this program | cheated a little in order to make it easier to explain, at least for this first
program in the chapter. What | mean by cheating is that | just created a single 256 x 256
bitmap image with all the tiles positioned already. In other words, this does use a tile map
with tile images, but they are already set up, without the need for a map editor or for
manual placement. Figure 6.6 shows the bitmap image.

/roreate 4 pointer to background 0 tilemap buffer
imsigned short® bgonap = (unsigned short]ScreenBas

REG_BGOCHT = BG_COLORZS6 | TEXTBG_SIZE_256x256 |
<< SCREEN_SHIFT) | WRAPARDUND;

video m
SetMode [0 | BGO_ENABLE] ;

/rcopy the tile map into beckground 0
DMAFastCopy | (void®|test Map, (voi

Figure 6.5

The TileModeO program
demonstrates a tiled
scrolling background.

Fiam/gcc=arm/ arm-thumb-e1 7 T
rm-thumb-e1f/3.2.2/narmal -L a:/ham/gcc-arm/arm-th
gba

The bitmap file used as the |
source image for the tiles. |

Figure 6.6

Now, there are only four different tiles in this image, so it's very wasteful to duplicate them
throughout the image. The whole point of tiling is to create a single tile set and use it for
the whole map. But like | said, this is a learning experience so | wanted to make it easier to
understand. The next program, where | explain how to create a rotating background, will
use a modified version of this tile set with just four tiles referenced in the map file (as

shown in Figure 6.7).

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Figure 6.7

There are really only four
tiles needed for the tile map.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Converting the Graphics

Before you can use the test.bmp file in a tile-based scroller, you'll need to convert it toa C
array, just like you did with the sample programs in the previous chapter. This is very easy
to do using the gfx2gba utility that is included with HAM. Before you can use it, you'll need
to create a path to the program. Assuming you took my advice and installed HAM to the root
under \HAM, then you can set up a HAM path by typing the following command into the
command prompt (opened by selecting Start, Run, and typing "cmd" into the Run dialog
box):

\ham\startham.bat

This batch file is included with the HAM SDK (which includes the GCC compiler, ARM
assembler, and related tools). There is another option for starting a Command Prompt with
support for the HAM tools, and that is a menu item in the Start menu that is provided by the
HAM installer (that is, version 2.7 or later). Simply open Start, Program, HAM Development
Kit, and click the option titled "HAM shell". That will open a Command Prompt that
automatically runs startham.bat to set up the environment for running command-line tools.

Assuming you have copied the test.bmp file off the CD-ROM from
\Sources\Chapter06\TileModeO to your current project folder (where you plan to store the
upcoming TileModeO program), you can type this command:

gfx2gba —-fsrc -m -ptest.pal -t8 test.bmp

Another, probably more convenient, method is to simply include the path to the utility
when you run gfx2gba, like this (unless you used the "HAM shell" option, which |
recommend):

\ham\tools\win32\gfx2gba -fsrc -m -ptest.pal -t8 test.bmp

The -m parameter tells the program to create a map file, while the -t8 parameter specifies
a tile size of 8 x 8 pixels (the standard size supported by the GBA, which | wouldn't
recommend changing, unless you are writing your own tile engine).

If gfx2gba was able to convert the file properly, you should see output that looks like this:

(C) 2001-2002 [TRiNiTY]

Reading: test.bmp (256x256 pixel, 256 colors)
Number of tiles before optimization: 1024

Number of tiles after optimization: 0906

Saving tiled bitmap data to: test.raw.c ... ok

Saving map data to: test.map.c ... ok
Saving masterpalette to..: test.pal.c ... ok

Total files read & converted.: 1
Colors used before converting: 108
Colors used after converting.: 108

Colors saved....o.u e eeeeeneaat 0

If you pore over this output, you may notice something interesting, two lines that tell you
how many tiles were created before and after optimization:

Number of tiles before optimization: 1024

Number of tiles after optimization: 0906

Doing a little math, you can determine that there are 32 tiles across and 32 tiles down in
this map, resulting in 1,024 total tiles (at 8 x 8 pixels each), based on the source 256 x 256
pixel image. But gfx2gba is a smart program and was able to optimize the tiles somewhat—
not completely, or else it would have seen that there are a more limited number of tiles,
but it does try to help. The test.bmp file that | created has four different "large” tiles, each
of which is 32 x 32 pixels in size—meaning there are 16 of the 8 x 8 tiles in each one of my
large tiles. At most, then, there should be only 64 tiles, rather than 906 tiles, but | don't
particularly care because this is a first-time demo. I'll create an optimized tile map for the
rotation program later.

Fast Blitting with DMA

One of the things that | have employed in this program to make it as fast as possible is a
technique called DMA fast copy, which uses a special feature of the GBA to copy data from

208

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

one memory buffer to another—extremely fast. Basically, there's a custom chip on the GBA
that handles memory—copying, moving, setting, clearing portions of memory, as well as
normal accessing of data in memory by the CPU. Anytime the DMA chip is used, the CPU is
temporarily suspended (only a matter of microseconds), until the DMA process is finished.
This prevents the CPU from doing anything until a memory access is finished, otherwise
problems could occur. Not only that, but in most computer systems and consoles, there is
just one memory controller, and it can work on only one thing at a time. The newer memory
architectures such as RDRAM and DDR found on PCs use two or more DMA controllers,
meaning that memory can be accessed by two or more processes at the same time (or by
the same process to access memory twice as fast). When the DMA chip is employed to write
memory, it can't be used to read from memory at the same time, and vice versa. Therefore,
the CPU is given a wait state while DMA activities are occurring.

DMA is a powerful aid to a GBA program, because it essentially replaces much source code
with a single DMA call (or rather, three calls, as you will see shortly). Let's not forget also
that DMA is a hardware process, where a software blitter is compiled and run by the CPU as
machine instructions. You can't begin to compare a hardware process with a software
process, because anything that is hard-coded into the silicon will blow away a series of
machine instructions. For instance, the ARM7 CPU is a reduced instruction set computer
(RISC) architecture, meaning that it has a small set of multipurpose instructions built in.
More complex instructions must be built using what might be called building block
instructions. Without getting into assembler language at this point (which is reserved for
Chapter 12, "Optimizing Code with Assembly Language”), you could write a fast memory
copy routine in assembler, and it would be much faster than a C routine. However, DMA will
blow them both away when it comes to memory copies—and that is essentially what you
need with a full-screen blitter. In fact, you don't even have to accommodate transparency
in your code, because the GBA treats palette entry 0 as the transparent color. This could be
useful for doing multilayer parallax backgrounds.

There are four DMA registers that you can use—or rather three, as the first one (# 0) is
reserved. I'm just going to use the last register, although you could use DMA register 1, 2, or
3 just as well. Following is a list of the defines that you will need to use DMA fast copy for a
background, as you will see in the upcoming TileMode0O program. The important defines
here are the last two: DMA_32NOW and DMA_16NOW. These include options for copying 16-
bit memory (such as external work RAM) and 32-bit memory (such as internal work RAM).
For instance, the palette for a background is stored in a 16-bit memory address, while the
tiles are stored in 32-bit memory.

#define

#define
#define
#define
#define
#define
#define
#define

#define

In order to perform a DMA fast copy, you simply set the three DMA registers to a value, and

REG_DMA3SAD * (volatile unsigned int*)0x40000D4
REG_DMA3DAD * (volatile unsigned int*)0x40000D8
REG_DMA3CNT * (volatile unsigned int*)0x40000DC
DMA_ENABLE 0x80000000

DMA_TIMING_IMMEDIATE 0x00000000

DMA_16 0x00000000

DMA_32 0x04000000

DMA_32NOW (DMA_ENABLE | DMA_TIMING_IMMEDIATE |

DMA_16NOW (DMA_ENABLE | DMA_TIMING_IMMEDIATE |

DMA_32)

DMA_16)

that triggers the process to start. Here is the DMAFastCopy function:

void DMAFastCopy (void* source,void* dest,unsigned int count,unsigned int mode)

{
if

{

Note how the function first makes sure that the two standard copy modes have been passed
to it. Although there are other options that you could use, | am simply adding in this small
level of error checking to keep the function from overwriting memory somewhere if an
invalid option is passed to it. There are other time options, for instance, other than
immediate. For instance, you can have DMA start the copy after a specified number of CPU
clocks. | personally don't find utility in such features, because a fast copy should run

(mode == DMA_16NOW || mode == DMA_32NOW)

REG_DMA3SAD (unsigned int)source;

REG_DMA3DAD (unsigned int)dest;

REG_DMA3CNT = count | mode;

immediately.

TileModeO Source Code

This program has a lot of defines due to the various background mode and DMA settings
used, but after you get past all the defines, the source code for the program is extremely
short. It literally takes just a single line of code each to set up the palette, tiles, and map.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

The most surprising thing about using backgrounds on the GBA is that you don't actually
have to do any blitting code yourself; it is all done in the hardware, which is really bizarre
if you are used to doing everything the hard way on a PC (for instance, using DirectX). On
the GBA, once you have set the values into the appropriate locations in memory for the
background settings, tile images, and tile map, the GBA handles the rest, including
scrolling. In fact, to scroll the background, all you have to do is plug an X and Y value into
the appropriate registers and—presto!—instant scrolling.

Now fire up Visual HAM and create a new project called TileModeO, or you may load this
project off the CD-ROM from \Sources\Chapter06\TileModeO. You will need to have the
test.map.c, test.pal.c, and test.raw.c files handy. If you skipped over the previous section
on converting the tile graphics, you may want to go over that topic now, or simply copy the
files off the CD-ROM. It's an invaluable lesson in creating tile maps, so | encourage you to go
through process of converting the graphics rather than just using my premade files. Simply
copy those files into the same folder where you created the new TileMode0 program,
because this program includes those files. Since | spent so much time explaining how DMA
works and how to initialize the background, and so on, I'm going to glaze over some of the
other essentials for a scrolling background demo at this point and defer those explanations
for the rotation example in the next section. Here is the source code for the TileMode0
program:

L1107 77777777777 77
// Programming The Game Boy Advance

// Chapter 6: Tile-Based Video Modes

// TileMode0O Project

// main.c source code file

L1077

#define MULTIBOOT int _ gba_multiboot;

MULTIBOOT

//include the sample tileset/map
#include "test.pal.c"
#include "test.raw.c"

#include "test.map.c"

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

//function prototype

void DMAFastCopy (void*, void*, unsigned int, unsigned int);

//defines needed by DMAFastCopy

#define REG_DMA3SAD * (volatile unsigned int*)0x40000D4
#define REG_DMA3DAD * (volatile unsigned int*)0x40000D8
#define REG_DMA3CNT * (volatile unsigned int*)0x40000DC
#define DMA_ENABLE 0x80000000

#define DMA_TIMING_IMMEDIATE 0x00000000

#define DMA_16 0x00000000

#define DMA_32 0x04000000

#define DMA_32NOW (DMA_ENABLE | DMA_TIMING_IMMEDIATE | DMA_32)

#define DMA_16NOW (DMA_ENABLE | DMA_TIMING_IMMEDIATE | DMA_16)

//scrolling registers for background 0
#define REG_BGOHOFS * (volatile unsigned short*)0x4000010

#define REG_BGOVOFS * (volatile unsigned short*)0x4000012

//background setup registers and data

#define REG_BGOCNT * (volatile unsigned short*)0x4000008
#define REG_BGICNT * (volatile unsigned short*)0x400000A
#define REG_BG2CNT * (volatile unsigned short*)0x400000C
#define REG_BG3CNT * (volatile unsigned short*)0x400000E
#define BG_COLOR256 0x80

#define CHAR_SHIFT 2

#define SCREEN_SHIFT 8

#define WRAPAROUND Oxl1

//background tile bitmap sizes
#define TEXTBG_SIZE_256x256 0x0
#define TEXTBG_SIZE_256x512 0x8000
#define TEXTBG_SIZE_512x256 0x4000

#define TEXTBG_SIZE_512x512 0xC000

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

//background memory offset macros

#define CharBaseBlock (n) (((n)*0x4000)+0x6000000)

#define ScreenBaseBlock(n) (((n)*0x800)+0x6000000)

//background mode identifiers
#define BGO_ENABLE 0x100
#define BG1_ENABLE 0x200
#define BG2_ENABLE 0x400

#define BG3_ENABLE 0x800

//video identifiers
#define REG_DISPCNT * (unsigned int*)0x4000000
#define BGPaletteMem ((unsigned short*)0x5000000)

#define SetMode (mode) REG_DISPCNT = (mode)

//vertical refresh register

#define REG_DISPSTAT *(volatile unsigned short*)0x4000004

//button identifiers

#define BUTTON_RIGHT 16
#define BUTTON_LEFT 32
#define BUTTON_UP 64

#define BUTTON_DOWN 128

#define BUTTONS (* (volatile unsigned int*)0x04000130)

//wait for vertical refresh
void WaitVBlank (void)

{

while ((REG_DISPSTAT & 1));

[T

// Function: main ()

// Entry point for the program

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

[0

int main (void)

{
int x = 0, yv = 0;

int n;

//create a pointer to background 0 tilemap buffer

unsigned short* bgOmap =(unsigned short*)ScreenBaseBlock (31);

//set up background 0
REG_BGOCNT = BG_COLOR256 | TEXTBG_SIZE_256x256 |

(31 << SCREEN_SHIFT) | WRAPAROUND;

//set video mode 0 with background 0

SetMode (0 | BGO_ENABLE) ;

//copy the palette into the background palette memory
DMAFastCopy ((void*)test_Palette, (void*)BGPaletteMem,

256, DMA_16NOW) ;
//copy the tile images into the tile memory
DMAFastCopy ((void*)test_Tiles, (void*)CharBaseBlock(0),

57984/4, DMA_32NOW) ;

//copy the tile map into background 0

DMAFastCopy ((void*)test_Map, (void*)bgOmap, 512, DMA_32NOW) ;

//main game loop
while (1)
{
//wait for vertical refresh

WaitVBlank () ;

//D-pad moves background

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

if (! (BUTTONS & BUTTON_LEFT)) x——;

if (! (BUTTONS & BUTTON_RIGHT)) x++;
if (! (BUTTONS & BUTTON_UP)) y-—-—;

if (! (BUTTONS & BUTTON_DOWN)) y++;

//use hardware background scrolling

REG_BGOVOFS v

REG_BGOHOF'S X
//wait for vertical refresh

WaitVBlank () ;

for(n = 0; n < 4000; n++);

}

return 0;

L1777 7777777777777
// Function: DMAFastCopy

// Fast memory copy function built into hardware

I111T7077 777777777777 777777 777777777 777777777777777777777777
void DMAFastCopy (void* source, void* dest, unsigned int count,

unsigned int mode)

if (mode == DMA_16NOW || mode == DMA_32NOW)

{

REG_DMA3SAD = (unsigned int)source;
REG_DMA3DAD = (unsigned int)dest;

REG_DMA3CNT count | mode;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Creating a Rotating Background

Rotation backgrounds (2 and 3) are similar to text backgrounds in that they are made up of
tiles in video modes 0, 1, or 2 (and behave differently in video modes 3, 4, or 5). But the so-
called rotation backgrounds (obviously) support special features, such as rotation and
scaling. | have written a sample program called RotateMode2 to demonstrate how to work
with backgrounds 2 and 3. This program in particular uses background 2 and also runs in
video mode 2—which, as you'll recall, supports the two rotation backgrounds, 2 and 3. For
starters, let's create a new project in Visual HAM called RotateMode2. As usual, delete the
default code that is inserted into main.c. I'll get into the source code as soon as | have
finished explaining the tiles and map used in this program. The RotateMode2 program is
shown in Figure 6.8.

External Tooks Window Help =18 x|

o

is
[K

B

SR 77 int main(void) =l
78 {
79 It n; File Options Cheats Tools Help
8z
:
a7 {charbase << CHAR_SHIFT) | (screenbase << 3CREEN_3
i
a0 SetMode (2 | BG2_ENABLE); F g 6 8
» igure 6.
93 DMAFastCopy((void*)tiles Palette, (void*)BGPaletteMem,
7
- The RotateMode?2
>
a6 f/copy the tile map into background O de o St ates
) cosemmseas) program demonstr
101 while(l)
K how t tate a
ow to rota
104 while{!(REG_DISPSTAT &« 1)),
B e acmsee background.
108 A£(! (BUTTONS & BUTTON_RIGHT]) 2
108 AE(! (BUTTONS s BUTTON_UP)) v : ;
110 if(! (BUTTONS ¢ BUTTON_DOWN))
111 A£(! (BUTTONS & BUTTON_A})
] if(! (BUTTONS « BUTTON_Ej)

p— b i Ll _.,_I

g:/ham/g: -e[f-gcc. exe < 5 = clude -1 g:/ham/gcc-arm/arm-thumb-eTf/AncTude -I g:/ham/include -1 g:/ham/system -< -DHAM_HAM ‘d

gi/ham/g: - 5 /acc-11b/arm-thumb-e1f/3.2.2/normal -L gi/ham/gcc-arm/arm-thumb-e1f/Tib/normal -L gi/ham/gcc-arm,

e —v - es.elf tiles.gba
| |

[Ln 124, Col 28 [selLen: 0 [s |

Converting the Tile Image

This program uses a simple bitmap file to hold the five tiles used in the RotateMode2
program and is shown in Figure 6.9.

Figure 6.9
The simple tiles used in the RotateModeZ2 program.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

To convert this program to a C array, like you did with the previous program in this chapter,
you'll run gfx2gba with the following options:

\ham\tools\win32\gfx2gba -fsrc -m -t8 -rs -ptiles.pal tiles.bmp

These options specify a map file (-m), a tile size of 8 x 8 (-t8), and output for rotate/scale
backgrounds (-rs).

Creating the Tile Map

Following is a listing of the tile map used in the RotateMode2 program. | scrapped the map
generated by gfx2gba and created this one manually. First, this map is easier to read
because it's not in hexadecimal, but rather it just shows simple decimal numbers. Second,
this is a small map, so it's easy to see what the map looks like before actually running the
program. You can also edit this map to see how your changes look when run. This map is
stored in a file called tilemap.h and is included by the main program.

//16x16 tile map

const unsigned char tiles_Map[256] = {

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

RotateMode2 Source Code

The source code for RotateMode2 follows. There are some new defines that you have not
seen yet, notably the values and memory addresses needed by the rotation backgrounds,
such as the following:

#define REG_BG2X *(volatile unsigned int*)0x4000028
#define REG_BG2Y *(volatile unsigned int*)0x400002C
#define REG_BG2PA *(volatile unsigned short *)0x4000020
#define REG_BG2PB *(volatile unsigned short *)0x4000022
#define REG_BG2PC *(volatile unsigned short *)0x4000024
#define REG_BG2PD *(volatile unsigned short *)0x4000026

which are used when rotating, scaling, and translating the background. The new rotation
background defines are also needed:

#define ROTBG_SIZE_128x128 0x0
#define ROTBG_SIZE_256x256 0x4000
#define ROTBG_SIZE_512x512 0x8000

#define ROTBG_SIZE_1024x1024 0xC000

We'll be using the roTec_s1zE_128x128 define to set up the background. The key to this
program, and to rotating backgrounds, is the RotateBackground function:

void RotateBackground (int ang, int c¢x, int cy, int zoom)

{

center_y = (cy * zoom) >> §;
center_x = (cx * zoom) >> 8§8;
DX = (x_scroll - center_y * SIN[ang] - center_x * COS[ang]);
DY = (y_scroll - center_y * COS[ang] + center_x * SIN[ang]l);
PA = (COS[ang] * zoom) >> §;
PB = (SIN[ang] * zoom) >> 8;
PC = (-SIN[ang] * zoom) >> 8;
PD = (COS[ang] * zoom) >> 8;

Unfortunately, as you can see from this function, the GBA doesn't support hardware
translation of the background in order to rotate it, as you must perform the rotation with
your own code. The GBA does have registers set aside to actually do the pixel-by-pixel
rotation, so at least that more difficult aspect is handled by the hardware.

The only prerequisite for this program is an external file called rotation.h, which must be in
the same folder as the main program file. | won't list the file here because it's too long, and
the listing is filled with long hexadecimal numbers. This file is necessary in order to
perform the background rotation, as it contains the precalculated values for every one of
the 360 degrees of rotation for both sine and cosine! Simply grab this file off the CD-ROM
and put it in the RotateMode2 project folder. | have a different solution to sine and cosine
in the next chapter that pre-calculates the sine and cosine at the start of the program, but
this adds a short delay to the program’s startup. For this reason, | leave you with these two
solutions and let you decide which it better for your purposes.

Now let's get on with the full source code for this bad boy.

L1107 7777777777777 77
// Programming The Game Boy Advance

// Chapter 6: Tile-Based Video Modes

// RotateMode2 Project

// main.c source code file

L1177 7777777777777 7777777777777 T

#define MULTIBOOT int _ gba_multiboot;

MULTIBOOT

#include "rotation.h"
#include "tiles.pal.c"
#include "tiles.raw.c"

#include "tilemap.h"

//prototypes
void DMAFastCopy (void*, void*, unsigned int, unsigned int);

void RotateBackground (int, int, int, int);

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

//defines needed by DMAFastCopy

#define REG_DMA3SAD * (volatile unsigned int*)0x40000D4
#define REG_DMA3DAD * (volatile unsigned int*)0x40000D8
#define REG_DMA3CNT * (volatile unsigned int*)0x40000DC
#define DMA_ENABLE 0x80000000

#define DMA_TIMING_IMMEDIATE 0x00000000

#define DMA_16 0x00000000

#define DMA_32 0x04000000

#define DMA_32NOW (DMA_ENABLE | DMA_TIMING_IMMEDIATE | DMA_32)

#define DMA_16NOW (DMA_ENABLE | DMA_TIMING_IMMEDIATE | DMA_16)

//background movement/rotation registers

#define REG_BG2X *(volatile unsigned int*)0x4000028
#define REG_BG2Y *(volatile unsigned int*)0x400002C
#define REG_BG2PA *(volatile unsigned short *)0x4000020
#define REG_BG2PB *(volatile unsigned short *)0x4000022
#define REG_BG2PC *(volatile unsigned short *)0x4000024
#define REG_BG2PD *(volatile unsigned short *)0x4000026

//background 2 stuff

#define REG_BG2CNT *(volatile unsigned short *)0x400000C
#define BG2_ENABLE 0x400
#define BG_COLOR256 0x80

//background constants

#define ROTBG_SIZE_128x128 0x0
#define ROTBG_SIZE_256x256 0x4000
#define ROTBG_SIZE_512x512 0x8000

#define ROTBG_SIZE_1024x1024 0xC000

#define CHAR_SHIFT 2
#define SCREEN_SHIFT 8
#define WRAPAROUND 0x1
#define BG_MOSAIC_ENABLE 0x40

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

//video-related memory

#define REG_DISPCNT *(volatile unsigned int*)0x4000000
#define BGPaletteMem ((unsigned short *)0x5000000)

#define REG_DISPSTAT *(volatile unsigned short *)0x4000004

#define BUTTON_A 1
#define BUTTON_B 2

#define BUTTON_RIGHT 16

#define BUTTON_LEFT 32
#define BUTTON_UP 64
#define BUTTON_DOWN 128
#define BUTTON_R 256
#define BUTTON_L 512

#define BUTTONS (* (volatile unsigned int*)0x04000130)

#define CharBaseBlock (n) (((n)*0x4000)+0x6000000)
#define ScreenBaseBlock (n) (((n)*0x800)+0x6000000)

#define SetMode (mode) REG_DISPCNT = (mode)

//some variables needed to rotate the background
int x_scroll=0,y_scroll=0;

int DX=0,DY=0;

int PA,PB,PC,PD;

int zoom = 2;

int angle = 0;

int center_y,center_x;

I11777717 7777777777777 77777777 7777777777777777777777777777777
// Function: main ()

// Entry point for the program
L1707 777777 7777777777777
int main(void)

{

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

int n;

int charbase = 0;

int screenbase = 31;

unsigned short * bg2map = (unsigned short *)ScreenBaseBlock (screenbase);

//set up background 0

REG_BG2CNT = BG_COLOR256 | ROTBG_SIZE_128x128

(charbase << CHAR_SHIFT) | (screenbase << SCREEN_SHIFT);

//set video mode 0 with background 0

SetMode (2 | BG2_ENABLE) ;

//set the palette

DMAFastCopy ((void*)tiles_Palette, (void*)BGPaletteMem, 256, DMA_16NOW) ;

//set the tile images

DMAFastCopy ((void*)tiles_Tiles, (void*)CharBaseBlock(0), 256/4, DMA_32NOW) ;

//copy the tile map into background 0

DMAFastCopy ((void*)tiles_Map, (void*)bgZmap,

while (1)

while (! (REG_DISPSTAT & 1));

//use the hardware to scroll around some
if (! (BUTTONS & BUTTON_LEFT)) x_scroll—-—;
if (! (BUTTONS & BUTTON_RIGHT)) x_scroll++;
if (! (BUTTONS & BUTTON_UP)) y_scroll-—;

if (! (BUTTONS & BUTTON_DOWN)) y_scroll++;
if (! (BUTTONS & BUTTON_A)) zoom——;

if (! (BUTTONS & BUTTON_B)) zoom++;

if (! (BUTTONS & BUTTON_L)) angle——;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

256/4, DMA_32NOW) ;

if (! (BUTTONS & BUTTON_R)) angle++;

if (angle > 359)
angle = 0;
if (angle < 0)

angle = 359;

//rotate the background

RotateBackground (angle, 64, 64, zoom) ;

while ((REG_DISPSTAT & 1));

//update the background

REG_BG2X = DX;
REG_BG2Y = DY;

REG_BG2PA = PA;

REG_BG2PB = PB;
REG_BG2PC = PC;
REG_BG2PD = PD;

while ((REG_DISPSTAT & 1));

for(n = 0; n < 100000; n++);

I111T777 7777777777777 7777777777777 7777777777777777777777777
// Function: RotateBackground
// Helper function to rotate a background
[11777
void RotateBackground(int ang, int cx, int cy, int zoom)
{

center_y = (cy * zoom) >> 8;

center_x = (cx * zoom) >> 8;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

DX = (x_scroll

DY = (y_scroll

PA = (COS[ang]
PB = (SIN[ang]
PC = (-SIN[ang]
PD = (COS[ang]

*

center_y * SIN[ang] - center_x * COS[ang]);

center_y * COS[ang] + center_x * SIN[ang]);

zoom) >> 8;
zoom) >> 8;

zoom) >> 8;

* zoom) >> 8;

[0 7777777777777 T

// Function: DMAFastCopy

// Fast memory copy function built into hardware

[T

void DMAFastCopy (void* source, void* dest, unsigned int count,

unsigned int mode)

if (mode == DMA_16NOW || mode == DMA_32NOW)

{
REG_DMA3SAD
REG_DMA3DAD

REG_DMA3CNT

Summary

(unsigned int)source;
(unsigned int)dest;

count | mode;

This has been one of the most challenging chapters of the book so far and was much more
involved than the relatively simple video modes covered in the last chapter. However, now
that you have conquered this difficult subject, you are on the downhill stretch of mastering
the GBA, because you have now overcome the two most difficult subjects: bitmap and tile
video modes. Get ready for even more graphics, as the next chapter finally covers the

fascinating subject of sprite programming. Chapter 7 will involve even more of the subjects

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

covered in Chapters 5 and 6, giving you plenty of opportunity to practice using scrolling
backgrounds and the like.

Challenges

The following challenges will help to reinforce the material you have learned in this
chapter.

Challenge 1: The TileModeO program used a 256 x 256 tile map and also tiled image. Modify
the tiles and the source code, changing the tile map to 512 x 512, and note the differences
in how fast the program runs.

Challenge 2: The RotateMode2 program uses a 128 x 128 tile map and corresponding tile
image. However, the GBA supports rotation backgrounds of up to 1,024 x 1,024 in size!
Modify the program to make use of this greater resolution.

Chapter Quiz

The following quiz will help to further reinforce the information covered in this chapter.
The quiz consists of 10 multiple-choice questions with up to four possible answers. The key
to the quiz may be found in the appendix.

1. What are the three video modes 0, 1, and 2 called?
A. Tiled backgrounds
B. Bitmap backgrounds
C. Cascading backgrounds
D. Provocative backgrounds

2. How many backgrounds are available on the GBA, regardless of the video mode?
A3
B. 2
C.4
D. 1

3. Which video mode features four tiled backgrounds?
A. Mode 4
B. Mode 0

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

C. Mode 7
D. Mode 2

4. Which backgrounds are supported by video mode 2?
A. 1and 2
B.1,2,and 3
C.4,5,and 6
D.2and3

5. Which video mode uses the two rotation backgrounds?
A. Mode 0
B. Mode 2
C. Mode 3
D. Mode 1

6. What three backgrounds are supported by video mode 1?
A.0,1,and 2
B.1,2,and 3
C.2and3
D. 3,4,and 5

7. Which of the three mode 1 backgrounds is considered a rotation background?
A.3
B. 1
C.2
D.0

8. What are the following registers used for: REG_BG2PA, REG_BG2PB, REG_BG2PC, and
REG_BG2PD?

A. Background scrolling

B. Background transparency

C. Background hosiery

D. Background rotation

9. How many registers are required to perform a DMA fast memory copy?
A. 4
B.2

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

C.3
D. 1

10. True/False: Does the GBA support hardware scrolling of the background?
A. True
B. False

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

