Chapter 4

Starting With

The Basics

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

his chapter builds upon the previous one by continuing to increase your familiarity

with the Visual HAM environment. It does so by developing several sample programs
from scratch, showing you how to compile and run them. These programs are simple in
nature and are not meant to focus on any particular subject (such as high-speed graphics,
covered in later chapters). Instead, this chapter focuses on writing quick and simple
programs using Hamlib and stock GBA code. If you are already familiar with GBA coding and
you desire to get directly into graphics programming, you may skip this chapter and move
on to the next one. The entire second part of the book, "Being One With The Pixel," is, as
the name suggests, dedicated solely to graphics programming.

This chapter shows you how to write several complete programs from start to finish, so you
will be prepared for the rest of the material in the book. The Visual HAM environment is
capable of compiling any GBA program, but the HAM distribution comes with an excellent
GBA wrapper library called Hamlib, which abstracts much of the low-level memory
addressing code with actual function calls and callbacks that are just more intuitive and
especially helpful for those who are new to console programming. The focus of this chapter
is also to provide you with some experience writing, compiling, and running programs on
either the emulator, multiboot, or flash linker and is therefore helpful for increasing your
logistical skills with the development environment.

Specifically, this chapter covers the following subjects:

o The basics of a Game Boy program
o Displaying a friendly greeting

o Drawing pixels

o Filling the screen

o Detecting button presses

o Running programs directly on the GBA

The Basics Of A Game Boy Program

Programmers are impatient people. We want to see something happen as quickly as
possible, even if it's not realistically humanly possible to do so. The motto of the
programmer is often "Make it work, then fix it." Unfortunately, most of us love to write code
but don't particularly like to design things. After all, it's far more fun to get started with
hammer and nails rather than pencil and paper, right? This chapter is not about game
design, although it is a subject that permeates the book, because design is part of the
whole development process. The Game Boy Advance is a very simple computer, in the sense
that it has a processor, has memory, and can run programs. The programs are meant for
entertainment and don't always take the form of a game. There is a printer available for
the Game Boy, for instance, and a digital camera that allows one to take photos and print
them out. This is obviously not even remotely related to playing games, but it is fun
nonetheless. Plus, you have to admit that it's cool being able to take pictures and print
them out on a small handheld video game console!

Using the tools provided with this book and the knowledge gained from reading its
contents, you have an opportunity to write any program you want for your own edification
or entertainment. Many aftermarket accessories and programs are becoming available for
GBA owners. For instance, there is an aftermarket MP3 player available for GBA! While |
would debate the usefulness of such an accessory, there are many who would enjoy using
their GBA to play music in addition to playing games. Given the versatility of the GBA
platform, it's no wonder such things are commercially viable products. For example, one
aftermarket accessory | purchased was the Afterburner backlight kit for my own personal
GBA. | had a difficult time with the dark stock screen that is prone to light glare and simply
could not deal with it while developing on it. Of course, at the present time, one can now
just purchase a GBA SP with a built-in backlight and rechargeable batteries.

What Makes It Tick?

But | digress, the subject at hand is this: What makes a Game Boy Advance program tick? In
a nutshell, a GBA program is just a binary ROM image that the hardware runs as if it were an
integral part of the system. In other words, game cartridges fool the GBA into thinking the
game was always there, because it isn't smart enough to know that you have removed the

previous game and inserted a new one. But essentially, the GBA functions by assuming that
a cartridge is a permanent piece of hardware. Let's dig into this line of thinking with more
detail in the next section. From a programming perspective, how the GBA reads a cartridge

92

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

.'Ill lt.l I II : ! o ; I —I—]

L— e

is not as important at this point as knowing how to write GBA code in the first place, so |
won't get into that extensively. You have already learned a great deal about the GBA
hardware and how the console works from the last few chapters.

In many respects, these more difficult issues are what make Hamlib so appealing. When you
consider that this library is a complete GBA framework capable of being used to produce
commercial games, there is no reason to discount it as yet another wrapper library (a
common complaint by software gurus). Hamlib is an awesome library that | will introduce to
you in this chapter. But | recognize the valid point many programmers make in that they
want to be as close to the hardware as possible—for many obvious reasons, such as knowing
exactly what is going on, writing the fastest code possible, and so on. | share those
sentiments, but | am also very encouraged by the strengths of Hamlib and the work put into
the frequent updates to the library (as well as frequent updates to the HAM distribution in
general).

So, how about if we abstract the hardware side of things from this point forward and focus
on software development? If you are a programmer first (like | am) and a hardware hobbyist
second, then the hardware is only of passing interest—which is most likely limited to
knowing how a flash linker works, and so on. Now, on to what we programmers do best—
writing source code.

A Friendly Greeting

How about a practical and easy-to-understand sample program to get things rollinling?
There's no better teacher than direct experience. You have already seen your first
aftermarket GBA program running (that is, an unlicensed GBA game), the ShowPicture
program from the previous chapter. I'm not going to open that project again, but you are
free to return to the ShowPicture source code at any time as you increase your GBA coding
skills (and you will explore bitmapped graphics extensively in Part Two). In the meantime,
let's write a simple program that displays a message on the screen.

The important thing that | want you to grasp in this chapter is not the programming
language used or the usefulness of a particular program, but rather just getting a good feel
for how the development environment works; how to write code and compile your
programs; and how to test programs using the emulator, flash linker, or multiboot cable.
Therefore, | will start with a very simple program that just displays a message on the GBA
screen. This first sample program that you will write uses the HAM library (Hamlib) to

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

display text on the screen. Normally, something as seemingly simple as displaying a
message would require a lot of work up front, because the GBA has no built-in function for
drawing text on the screen. That's right, something as simple as a message requires a lot of
work, which often involves creating a bitmap filled with font characters (or byte array of
hard-coded letters) and writing a function to display a message using the font. It's all such
an enormous amount of work for something so simple!

That is the way of things in console development—you have to do everything yourself. Even
something as simple as polling a timer in order to maintain a constant refresh rate in a
game is a very low-level activity, requiring intimate knowledge of how timers and interrupts
work (see chapter 8, "Using Interrupts And Timers"). Now let's get started on the Greeting
program.

Creating A New Project

If you haven't already, go ahead and fire up Visual HAM by double-clicking on the icon |
helped you to create on your desktop or by browsing to the HAM installation folder and
searching for VHAM.EXE. If you installed Visual HAM to the folder that | recommended, that
might be located in C:\HAM\VHAM. Next, open the File menu and select New, then New
Project, as shown in Figure 4.1.

e Figure 4.1
= Creating a new project
Save all existing files Stra+Alt+S .
= from the File menu of
Visual HAM.
B
L »l
[|

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

j

o J——

[T E Lk AT T e P i
The New Project dialog box should appear, as shown in Figure 4.2. Select the first project
type, [C] Empty, and then type "Greeting" for the project name. Select an appropriate
location for this project on your hard disk drive. Click on the OK button to create the new
project, and open the editor on the default source file.

o

New.. x|

File Project |

=
E2 [C] Empty (Commentated) |Greeting

Froject name:

52 [=] Empty with YBL {Commentated) Laocation: Figure 4.2
[[C++] Emnply .
B (e +] Empty (Commentated) [workChapterofiGreeting .. |

B (ol By i e e oo sty — The New Project dialog box is

[T Empty where you specify the name,
location, and type of project.

The source file for a new project in Visual HAM looks like the file shown in Figure 4.3. The
default skeleton source code was already added to the main.c file for you by Visual HAM.

PE Visual HAM - [G:4GBA',Current Work',Greeting',main.c] -5 x|
'Eile Edit Format Wisw Project Advanced External Tools Window Help —1&1x]

BRY B

1l #include "mygba.h"” ;I
@ i ZM'ULTIBUUT
(3 HeaderFiles 5 int main(void)
:€ ham_Tnit();
9 while(l)
10 14
g
! Figure 4.3
17 #* END QF FILE */ A neW project in
Visual HAM with
generated skeleton
source code.
B o
=l
" i

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

The source code looks like this:

#include "mygba.h"
MULTIBOOT

int main(void)
{
ham_Init ();
while (1)
{
}

return O;

/* END OF FILE */

This default code is the minimum amount of code needed for a HAM program, and it
actually will run (although it doesn't do anything useful). While the Greeting program you
are about to write is indeed a HAM program (meaning that it uses the HAM library), there
are many ways to write a GBA program, such as with straight C or C++, without any library
at all. I will show you how to write a raw GBA program in the next section of this chapter
(the next sample project, in fact). One interesting line is the MULTIBOOT statement. That is
a specific statement that the GBA compiler recognizes and is somewhat like a macro of a
define. It is needed when using the multiboot cable (more on that later in this chapter).

Writing The Greeting Program Source Code

Okay, let's modify the skeleton program that Visual HAM generated for the Greeting
project. There are two sections of code that | would like you to add to the program, as
indicated in the code listing that follows. The new code is denoted in bold font. First, a line
of code that initializes the Hamlib text system, and then three lines of code inside the
while loop to actually display a message on the screen. Go ahead and modify the listing now
as shown.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

#include "mygba.h"

MULTIBOOT

int main (void)

{

ham_Init ();

//initialize the text system

ham_InitText (0);

while (1)

{
//display a greeting message
ham_ DrawText (0, 0, "Greetings!");
ham_DrawText (0, 2, "Welcome to the world of");

ham_ DrawText (0, 4, "Game Boy Advance programming!");

return O;

/* END OF FILE */

Not bad, is it? The program is very short, and you should be able to easily understand what
the program will do. It uses the ham_DrawText function to display a text string on the
screen. Note that this function only works if you have first called ham_InitText, because
that function loads the bitmap font used by the ham_DrawText function. It displays a nice
system-type monospaced font that looks as if it were part of a built-in GBA text library,
although you now know that Hamlib actually does all the work there!

Compiling The Greeting Program

Now let's compile the program. | will also show you some shortcut keys that you can use in
Visual HAM to compile and run programs. If you look at Figure 4.4, it shows the Project

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

menu in Visual HAM. Open the Project menu now, and select the Build menu item. This will
invoke the compile process.

PE Visual HAM - [G:\GBAYCurrent Work',Chapter04'Greating\main.c] =131 x|

BB Fle Edi Format View | Project Advanced External Tools Window Help RETES|
- EE@ =R vk >|
- hddToPraject v
B HAM Wiorkspace i M =
-0 Source Files Build FS
L. Header Files Run in VBA Strg+FS
Buid + ¥BA F7
Buld +Debug Strg+F7
Stop
B2 F8 L the text system
FLA F3 fng;
FLA + MBY2 StrgFa .
Figure 4.4
R ey ¢ greeting message
o) bText(n, 0, "Greetings!"): Th P . .
pm"emesA”Pm‘e‘wai #Text(0, 2, "Uelcome to the world of"): e I’Oject menu in
17 hew_DrawText(0, 4, "Gaue Boy Advance programuming!”);
B} . .
. Visual HAM, showing
20 return 0;
21} .
22 the Build menu
23
24 /* END OF FILE +/ .
2 item.
Fies | Auta Complete Kl »
:/ham/acc-arm/bin/arm-thumb-e1T-cbjcopy.exe -v -0 binary Greeting.elT Greeting.dba = |
copy from Greeting.elf(elf32-1ittlearm) to Greeting.gba(binary)
G:/ham/tools/win32/rm —f .o ".i "1
G:/ham/tools/win32/gbafix.exe Greeting.gba
ROM fixed!
G:/ham/tools/win3z/vba.exe Greeting.gba =
4 | 3

[Ln 16, Cal 23 [Selen: 0 s |

If the program has no syntax errors or typos, you should see no error messages appear in the
output window down at the bottom of the screen in Visual HAM. When there is an error, it
will be highlighted with a red "ERROR" message, which also displays the line number where
the error occurred. | will get into debugging and error handling in later chapters. For now, if
you see any error messages, the problem is most likely a

typo, which you should be able to resolve by comparing the Press F5 to compile a
listing shown here with the source code on your screen. If project in Visual HAM.
there seems to be an error resulting from something other

than a typo, it is possible that your installation of HAM is damaged, and you may want to
refer back to the previous chapter to perform a reinstall of HAM. A common source of errors
is when there are two different versions of HAM installed on your PC at the same time. Be
sure to delete any older version before installing the latest version of HAM (which may be
updated from the version included on the CD-ROM).

Testing The Greeting Program In The Emulator

You are now ready to run the Greeting program on your PC using the emulator included with
HAM, a program called VisualBoyAdvance. If you open the Project menu once again, look for
the menu item called Build + VBA (as shown in Figure 4.5), and select it. The program

should compile and begin
running in the emulator, as
shown in Figure 4.6.

PE Yisual HAM - BA\Current Worl pter0dGreeting' ¥ =& x|
B Fie Edt Format View | Project Advanced External Tools Window Help =& x|
|- W@ 2@ makfie ,

- AddToProject r =
= (& HAM Wiorkspace @ — B El
-0 Source Files Build 5

{_Z3 Header Files Run in ¥EA StrgtFS

Build + VBA

Buid + Dsbuy StrgFr
Step

L F8 L ihe text system
FLA 1

FLA + MEVZ ShrgFy

Clean Fi0

Ty 2 gresting message

Backup Project
WText(D, 0, "Greetings!”):

Properties All Project Files

18)
18

20 return O:

21}

z2

23

24 /* END OF FILE */
z5

Files | Auto Complete |

wText(0,] 2, "Telcome to the world of");
17 ham_DrawText{0, 4, "Game oy Advance programming!™);

Gz /ham/ace —arm/Binarm Ehomb = 1F ob3 capy . exe
comy Trom Gresking, o1 F(e1192 1 1telsarmy to Greeting. gbathi mars
G :/ham/too] s /win3zfrm <f .o "1 =

G /ham/too] s/win3z/gbafix. exe
ROM fixed!
:/ham/ton]s/windzfvba.exe Greeting.gba

< |

i
Greeting.gba

=0 binary Greeting.clt Greeting.gba

T

[Ln 16, Col 23 [selen: 0 (s |

PE ¥isual HAM
W ri- B Formet

View Project

Adwanc

ed External Tools

Window Help

Press F7 to compile the project and run it in the emulator.

Figure 4.5

The Project menu,
showing the Build +
VBA menu item.

=181x]|
=181x]

(& - @ e s |

- | ca

B HAM Warkspace
|j (L1 Source Files
----- L. Header Files

Figure 4.6

The Greeting
program running in
the emulator.

1 ginclude "mygba. b

"Greetings ")
"Welcome to t
"Game Boy Adv

2

3 MULTIEOOT

4

5 int main{void)

6 {

ok ham Initi):

8

9 Arlinitialize the text system
10 ham_InitText{0);

11

1z while(l)

13 {

14 S/display 2 greeting message
15 ham_DrawText(0, 0,
16 haw DrawText(0, Z,
17 ham_DrawText(0, 4,
s

139

20 return 0;

21}

22

23

24 /* END OF FILE */

25

Files | Auto Complets KX

ualBoyAdvance-

Fle Options Cheats Tools Help

GREETINGS!

HELCOHE TO THE HORLD OF
GAHE BOY ADVANCE PROGRAHHING!

B

ROM fixed!
G:/hamftool s/wind2fvba. exe

4

& /ham/gcc—arm b1, arm—thumb-=1T—obcopy . exe
£oby from Gresting.e1f(elf32-Tittledrm) to Greeting. gbalbinary)
G: /ham/ton] sfwin3z/rm ~f *.o *.i *

G ham/tao] s/win3z/gbafix. exe

Gre

i
Gresting.gba

=7 -0 bimary Greeting.elf Gresting.gba

[t 20, cal 12 [Selen: 0 s |

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

In this screen shot, you can see that | have increased the default window size of
VisualBoyAdvance to two times the normal size. You can change the size of the emulator
window yourself by opening the Options menu (as shown in Figure 4.7), selecting Video, and
then choosing a screen size for the emulator, from 1x up to 4x, and even one of several full-
screen modes (which | don't recommend during development but encourage you to at least
try out).

=lelx|
Help =8l x]

El

= f03 HAM Workspace 1 #include “wygha.h”
@m0 Source Files 2
(L3 Header Files

“="¥isualBoyAdvance-107%

3 MILTIBOOT File | options Cheats Tools Help
a T Frameskp ¢ (oS

5 int main{woid)
6 { Emulatar
7 ham Inic(): Sound

4 Gameboy
Prigrity
Filter

12 while (1) i:zz::qe Full Screen (6405480}
13 { Full Screen (800x600)

] Sfinitislize the text system
10 ham_TnitTexe(0);
11

Full Sereen (320:240)

.
14 s/display a greeting message Other Full Screen. .. F g 4 7

15 haw_DrawText[0, 0, "Grestings!”) bR igure 4.

16 hau_DrauText(n, 2, “Helcome to o Disable 5F%

17 hau_DrauText (0, 4, "Gaue Boy Adv Fullsereen stretch to fit Ch . h . d
B A —— anging the window
e DDraw Lss Video Memary

20 return 0; .

) LA size of the emulator
2z Layers

23 . .

24/« 20 oF FIIS %/ using the Options

25

menu.

Files | Auto Complste |

G /ham/gec-arm/bin/arm-thumb-=TF-ob3copy.exe -v -0 binary Greeting.e1f Greeting.gba
copy from Greeting.elf(elf32-Tittlearm) to Greeting.gba(binary)

G:/hamfton] s/win3zfm -f .o .1 %.id

G:/hamfton]sewind2rgbafix.exe Greeting.gha

ROM fixed!

G:/hamfton]s/win3z vba.exe Gre

4 |

[tng, ol 32 | sellen: 0 fms |

M vl

Drawing Pixels

Now for something really fun! This program might surprise you. After all, it's a real GBA
program, and yes, it will run on an actual GBA (using a flash linker, for instance). The great
thing about this program is just how small it is. Now, | realize this doesn't do much, but it's
a 100 percent bona fide GBA program, and it does one of the most basic things that you
must learn when programming video games—drawing pixels. This is the basis for all video
games! Drawing a single pixel in video game terms is sort of like the Hello World mantra
established by Brian W. Kernighan and Dennis M. Ritchie in their famous book The C
Programming Language (the book that first introduced the world to the C language—the
language used in this book). The Greeting program you just wrote was a sort of Hello World
program, but it used Hamlib (because, as | explained, it would be too difficult to display
text without Hamlib at this point).

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Now, assuming Visual HAM is still running from the last project, what you will want to do is
create a new project. Alternatively, you may load the project from the CD-ROM
(\Sources\Chapter04\); you can do this for any of the projects in this chapter. But where's
the fun in that? This program is little, so | insist you type it in! However, for future
reference, note that Visual HAM project files have an extension of .vhw. So, anytime you
need to open a GBA project from within Windows Explorer, you can simply double-click the
.vhw file (in this case, DrawPixel.vhw). There is usually also a binary executable file with
an extension of .gba along with each project. Double-clicking the .gba file should cause the
emulator to start. If it doesn't, simply locate the VisualBoyAdvance.exe (or vba.exe)
program file on your hard drive in order to associate .gba files with the emulator.

Create a new blank project and delete whatever default code Visual HAM fills in

automatically. We're going to start from scratch here. Name the project DrawPixel and give
it a new project folder (which is created by Visual HAM). If you are having trouble creating
the project, refer to the figures from the previous sample program to refresh your memory.

Writing the DrawPixel Program Source Code

Let me first explain this code a little. | left it intentionally sparse in order to make a point,
that a GBA program can be very small, and small it is indeed! I'm not sure if it's possible to
write a smaller GBA program than this (excluding the comments, of course). It is really only
... let'ssee . .. eight lines of code, counting the curly brackets. Okay, go ahead and type
it in. I'll explain what is going on in this program after the listing.

[177
// Programming The Game Boy Advance

// Chapter 4: Starting With The Basics

// DrawPixel Project

// main.c source code file

[I1777

int main (void)
{
// create a pointer to the video buffer

unsigned short* videoBuffer = (unsigned short*)0x6000000;

// switch to video mode 3 (240x160 1l6-bit)

// by setting a memory register to a specific value

* (unsigned long*)0x4000000 = (0x3 | 0x400);

// draw a white pixel (16 bits) directly to video memory
// pixel location is centered on the screen (120,80)

videoBuffer[80 * 240 + 120] = OxFFFF;

// continuous loop

while (1) { }

// end program

return 0;

After you have finished typing in the code, the IDE should look like Figure 4.8.

PE ¥isual HAM - [G:\GEAYCURREN~1',CHAPTE~1\DRAWPI~1imain.c] [
.Elle Edt Format View Project Advanced External Tools Window Help = |

[@ e

L SASAIALI LIS AL L L SIS FE I TA SIS ELLEIA S I7 =]
2 // Prograwming The Game Doy Advance

3/ Chapter 4 - Starting With The Basics

4 s/ DrawPizel Project

5 /7 madin.c sowrce code file

[Z1 Header Files

P N o
7

8 int main{woid)

I

10 S create @ pointer to the video buffer

11 unsigned short® videoBuffer = [unsigned short®)Ox6000000;

: Figure 4.8

13 JF switch to video mode 3 (240x160 1é6-bit) ’gure .

14 7/ by setting a memory register to @ specific value

15 #{unsigned long®)0x4000000 = (0x3 | 0x400) .

I The DrawPixel
17 /7 draw @ white pivel (16 bits) directly to video memory

18 7/ pixel location is centered on the screem (120,30) . .

13 widesBuffer[50 ® 240 + 120] - DxFFFF; pro]ect as it

20

21 7/ continuous loop .

22 while{l) { } th
> appears in the
24 /¥ end program

B D Visual HAM IDE.

27
28

4 =i
=

o o

[Ln 28, Colo [SelLen: 0 s |

This program jumps ahead a bit, because graphics are really covered in Part Il, starting with
the next chapter. But | wanted to give you a taste of what is to come. This is a short

program, but it provides a basis for just about any GBA game you are likely to write in the
future.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Are you surprised to find no includes in this program? If you are an old hand with C, you are
likely wondering why there are no header files for interfacing with the GBA. That's the
beauty of the HAM distribution and the Visual HAM IDE. There are really no headers
included by default, and none are needed for the most basic programs, although the HAM
SDK includes several libraries automatically when the program is compiled and linked into
an exe file. You will face this situation throughout the book. The GBA uses memory registers
to perform basic functions. For instance, the code that sets the video mode:

* (unsigned long*)0x4000000 = (0x3 | 0x400);

is just a pointer to a memory location, and a specific numeric value is set in that memory
location. In this instance, 0x3 is video mode 3: 240 x 160, 16-bit, while 0x400 refers to
background 2, and these values are combined with a bitwise OR (the pipe symbol, |). | will
explain these things in more detail in Part Two, which is dedicated entirely to graphics
programming. For now, the point is to get a feel for what a GBA program is like, rather than
specifically how every line of code works.

The next non-comment line of code:

videoBuffer[80 * 240 + 120] = OxFFFF;

actually draws the pixel at the center of the screen. Video mode 3 has a resolution of 240 x
160, so the center of the screen is at 120 x 80. The formula for accessing a linear memory
array using two-dimensional coordinates (in this case, the pixel's X,Y location) is this:

Memory Location = Y * Screen Width + X

By filling in this memory location formula for the location in the video buffer, you are able
to then set that memory location to a specific value—the color of the pixel, which was set
to OXFFFF in this case. OXFFFF is a hexadecimal number, where each character after the 0x
is 4 bits in size (with possible values of 0-9 and A-F, for a total of 16 bits). Therefore,
OxFFFF is a 16-bit number, which is exactly what is needed for mode 3, because it uses 16-
bit pixels. In the graphics chapters of Part Il, | will explain how to set the pixel color using
the usual (Red,Green,Blue) components—which is somewhat beyond the scope of this short
example.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Compiling the DrawPixel Program

Now, I'm sure you have already jumped ahead and run the program, per the instructions
provided in the previous sample program. If you have not already done so, go ahead and
compile (or rather, build) the program by pressing F5. If all goes well and there are no
syntax errors in your program, then it is ready to be run in the emulator.

Testing the DrawPixel Program in the Emulator

At this point, you may open the Project menu and select Build + VBA to run the program (or
simply press F7 to perform this step with a single keystroke). The running DrawPixel
program is shown in Figure 4.9. Do you see the small pixel in the center of the emulator
window?

\CHAPTE~1" 1= %]
anced External Tools Window Help -8 x|
B B
o [0 HAM Workepace L7 F L L L 1T I AL 1 F 1A e ——m— =

2 /7 Programming The Geme Boy Advance
3 s/ Chapter 4 - Starting With The Basics Fie Options Cheats Tools Help
[4 // Drawbixel Project

(3 Header Files 5 4/ main.o source code file
A A
o

524 Source Files
[& main.c

§ int main(woid)
IR

10 // create & pointer to the video buf
11 unsigned short® wideoBuffer = (unsig
1z
13 /7 switch to video mode 3 (2408160 1
14 /7 by setting a memory register to a
15 *(imsigned long™)0x4000000 = (03 |
18

Figure 4.9

bt The DrawPixel program
e oy draws a single pixel in
B e the center of the GBA
2 screen.

Fies | Auto Complete 14
= ar

Texe v 0 binary Drawbixel.elT DrawPixel.gba
ttlearm) to DrawPixel.gba(binary)

B w5

ROM ixed! ’
G :/ham/tools/windzfvba. exe Dra
4] |

[tn2s, colo | selen: o s |

dhstart ||| 17 & B) & N 2 B || Bysice...| lmbox.. | & naine. .| @cean...| M1ascr.. | EPevs... [@visual.. [$5Y MIAFFHE s0em

Filling The Screen

Now, after seeing just one pixel on the screen, | can't resist the temptation to take it a step
further and fill the entire screen with pixels! This code is just starting to become fun to
write, so let's go for it and write another graphics program. | know, this is all covered in
Part Two, as | have explained already, but it couldn't hurt to take a peek a bit early, right?

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Writing the FillScreen Program Source Code

You should be pretty good at creating a new project in Visual HAM after the last two sample
programs, so | won't go over that again right now (although | will go through the process at
least once in each chapter, lest you get lost at any point). This program, which is called
FillScreen, uses some defines and one function, simply because it's too hard to remember
the special memory addresses of the GBA from memory (how's that for a tongue twister?).
Advanced GBA projects use an include file with all of the memory addresses and registers in
the GBA (see Appendix C, "Game Boy Advance Hardware Reference”), so | might as well give
you a sneak peek at what some of those things look like. This program creates a define for
the memory register for changing video modes, which you saw in the previous sample
program. The register is actually called REG_DISPCNT, and the define looks like this:

#define REG_DISPCNT * (unsigned long*)0x4000000

In case you aren't a C guru (and I'm not expecting you to be, although | know some folks out
there are old hands with C), the #define statement allows you to create a macro that the
compiler fills in at compile time. What this means is that anytime the compiler finds
REG_DISPCNT in the source code, it fills in *(unsigned long*)0x4000000 in its place! There's
no denying that this little feature will preserve your sanity, because there are many, many
memory registers in the GBA architecture that resemble this particular one. What happens,
specifically, is that when the GBA detects a change at that memory address, it knows that it
should change video modes to the number specified. This is very much like a function call,
as if there is a sort of SetMode function built into the GBA. While it isn't called SetMode, the
memory register is essentially the same thing. When you set the memory register to a
specific value, such as 0x3, you are actually passing a parameter to the "function”, so to
speak. Are you following me? If not, that's okay, because I'll explain each new memory
register as needed in later chapters, so you'll get the hang of it in time. | will admit, this is
a new and foreign way to write code, especially for those of us who are used to procedural
or object-oriented programming. But that is what makes console coding so rewarding—you
are closer to the hardware and actually manipulating physical parts of the memory built
into the GBA, in order to do things.

There are three more defines in this program as well. The next one:

#define MODE_3 0x3

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

you may recognize from the DrawPixel program. This is the video mode that the program
uses, mode 3, with a resolution of 240 x 160 and 16-bit color depth. By defining it to
MODE_3, it's easier to remember exactly what mode the program is using. | realize that 0x3
is easy to spot as well, so if you prefer that, go ahead and use the literal instead of the
define (that is what | do in later chapters).

The next define:

#define BG2_ENABLE 0x400

is also related to the video mode. As you may recall, the DrawPixel program set the video
mode by OR'ing 0x3 with 0x400, in order to specify that the program should use background
2. This is something that | will cover, again, in Part Two, so don't worry about it at this
point.

The last define:

#define RGB(r,g,b) (unsigned short) (r + (g << 5) + (b << 10))

creates a macro for packing an RGB color into a 16-bit value. This allows you to pass
parameters to the define, as if it were a function. In fact, this could be written as a
function instead of as a define, but the define is simpler.

Finally, the DrawPixel3 function:

void DrawPixel3 (int x, int y, unsigned short c)

{

videoBuffer[y * 240 + x] = c;

This function, as the name implies, draws a pixel on the mode 3 screen. The single line of
code in this function also resembles the code in the DrawPixel program, but this version
now allows you to pass the X,Y values as parameters. It is, therefore, more useful as a
function. Now here is the complete source code listing:

L1777 777770777777777777777777777777777777777777777
// Programming The Game Boy Advance
// Chapter 4 - Starting With The Basics

// FillScreen Project

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

// main.c source code file

LI TTTT TP P77 777777 777777777777777777

//define register for changing the video mode

#define REG_DISPCNT * (unsigned long*)0x4000000

//video mode 3 = 240x160 16-bit

#define MODE_3 0x3

//use background 2

#define BG2_ENABLE 0x400

//macro to pack an RGB color into 16 bits

#define RGB(r,g,b) (unsigned short) (r + (g << 5) + (b << 10))

//create a pointer to the video buffer

unsigned short* videoBuffer = (unsigned short*)0x6000000;

//draw a pixel on the mode 3 video buffer
void DrawPixel3 (int x, int y, unsigned short c)

{

videoBuffer[y * 240 + x] = c;

I11177177 7777777777777 7777777777777 777777777777777
// Function: main ()

// Entry point for the program

L1107 7 7777707777777 77777777777777
int main(void)

{

int x, y;

//switch to video mode 3 (240x160 16-bit)

REG_DISPCNT = (MODE_3 | BG2_ENABLE);

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

//fi1i1l the screen

for (x = 0; x < 239; x++)

{
for (y = 0; y < 159; y++)
{

DrawPixel3 (x, vy, RGB (0, (255-y),x));

// continuous loop
while (1)
{

// do nothing

// end program

return 0;

The key to this program is the section of code denoted by the comment "fill the screen”.
Here are two for loops: the first for the X values, the second for the Y values. Inside the
loops is a call to DrawPixel3 with the X and Y variables. A creative use of the Y value
provides the color, thus filling in the screen with an interesting fill effect.

Compiling the FillScreen Program

Now, go ahead and compile the program by pressing F5. This is the most complicated
program you have written so far, so don't be surprised if there are a few syntax errors. The
most common errors involve a missing semicolon at the end of a line or a missing closing
curly brace at the end of a block of code (such as with a for loop). If there are any errors,
closely examine the source code on your screen and compare it with the printed listing to
locate errors. Another potential source of errors is the case of variable names. Remember
that in C, everything is case sensitive, so that X is recognized as a different variable than x.
This can be very confusing at times, so take care to watch the case when naming variables.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

] g : -

I] — ! 1

: |--“:H-_--———-—-—-—' ln.— = L e

Testing the FillScreen Program in the Emulator

Now, one of the reasons why | include the compile step separately from the testing, or
running, step here is to make sure the program works first. Obviously, after you are more
experienced with Visual HAM and have been working on a program for hours, you will likely
just skip the compile step and go directly to the Build + VBA step by pressing F7. This is
what | usually do after the first few times. | often first compile a program when loading up
someone else's game (because there are a lot of public domain GBA games available
online—see Appendix B for a list of good Web sites featuring fan-written GBA games). HAM
is capable of running programs not even created under Visual HAM, because it uses the
same GCC compiler that the other GBA development kits use. However, that may not always
be the case, as new development kits are appearing all the time; such is the case in the
open source community. Usually, though, most programmers use the top one or two
development kits, and HAM is definitely one of those.

Go ahead and run the program now. If all goes well, you should see the emulator window
appear with a colorful pattern filling the simulated GBA screen, as shown in Figure 4.10.

PE Yisual HAM - [G:\GBA}CURREN~1%CHAPTE~1',GRAPHI~ 1 main.c] . =12 x|
W ©i= Fot Format View Project Advanced ExternalTooks Window Help _l&] x|
|- @2 [B-|o o
L LTI EET ARSI TAE RO P A F OO Pl irr i in - -
523 Sourss Files 2 // Prograwming The Game Boy Advance 7=! visualBoyAdvance- 97%
T 3 /4 Chapter 4 — Starting With The Basics File Options Cheats Tools Help
“o[d mainc
4 ¢/ FillScrssn Project
~ Header Files 5 // main.c source code File
B SIS LELIIISELE LTI EIIR LI L AL 777
7
8 //define register for changing the videc
9 #define REG DISFCNT *{unsigned long®)0xs
10
11 //video mode 3 = 2408160 16-bit
12 #define NODE_3 0x3
; Figure 4.10
14 //use background 2 ’gure .
15 #define BGZ_EMABLE 0x400
18
17 /f/macro to pack an RGB color into 16 bit Th F [[S
18 #define RGB(r,q,b) (unsigmed short)(r + eri creen
19
20 sscreate a pointer to the video buffer '[[th
i mee e program fills the
22
23 //draw @ pixel on the mode 3 video burfd .
24 woid DrawPixel3{int x, int ¥, unsigned GBA Screen W]th a
25 {
26 videoBuffer[y % 240 + x] = o: .
& tt l
L pattern oj pixets.
T i
30 /7 Function: main()
31 ¢/ Entry point for the program
T i
33 int main{woid) -
Auto Complete |« »
7ﬁ goc-arm/Bi N/ arm-thumb—e 1T -ob] copy . exe 0 binary Moded.elf Modes.gba 5|
CDIJY fmm MDdE3 EWf(e]FEZ 11tt]aar"m) to Mode3. gba(bmar‘y)
Gi/ham/tools/winiz/rm —f *.0 *.1
G /ham/t 015 /win 32/ghaF e W gba
ROM Fixed!
G:/ham/tools/windz/vba.exe Mod -
4] | »

[tn47, col 5 | SelLen: 0 [ms |

You know, with the source code for FillScreen, you have everything you need to write a
rudimentary GBA game at this point. That is amazing considering that you were only
drawing your first pixel a short while ago. But the fact remains that once you are able to
draw a pixel, it follows that you are able to write a game with only a little more effort.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

.I_I1" [ERIE | L =

Such a game might not have advanced, high-speed blitting (a fast method of drawing
graphic images) or transparency, but it is still a significant possibility.

But wait, something is missing. First, you need to be able to capture button presses! At
present, all you can really do is write a demo—something interesting graphically, but with
no possibility for input. <Sigh>. Okay, there’s still a lot of ground to cover before writing
your first game, but | don't want to discourage you. Therefore, let's take a quick tutorial on
reading button presses on the GBA.

If you are at all excited about these basics, wait until you get to Chapter 7, "Rounding Up
Sprites,” where you'll learn how to use hardware-accelerated sprites with built-in
transparency, alpha-blending, rotation, and scaling capabilities! Not only that, in Chapter
6, "Tile-Based Video Modes" will teach you how to create scrolling backgrounds. By the time
you have finished those chapters, you will have no need for pixels at all. But it's nice to
start with the basics, because that helps ones to appreciate what the GBA can do.

Detecting Button Presses

This section includes a program called ButtonTest that—surprise!—detects the GBA buttons.
Because this is such a significant part of gameplay, and the subject isn't covered fully until
Chapter 10, "Interfacing With the Buttons,” | wanted to give you a little exposure to button
programming at this point. | know you will have some fun with the code presented in this

program! The ButtonTest program uses the ham_DrawText function to display text messages
on the screen in order to update the status of each button, which appears by name on the

screen (with a small "x"). The button presses are detected by a series of if . . . else
statements and button macros such as F_CTRLINPUT_UP_PRESSED (which is specific to
Hamlib).

Writing the ButtonTest Program Source Code

The source code for the ButtonTest program is about a page and a half in length, and some
of it comprises comments (which you may leave out, if you wish). Basically, this program is
a simple loop with a continuous conditional check of the buttons on the GBA using a series
of if . . . else statements. First, the program initializes HAM by calling ham_Init, which must
be called before using any of the features of the HAM library. Next, ham_InitText(0) is

called to initialize the text mode of Hamlib using a specified background number (I will talk

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

more about backgrounds in Part Two). After these two initializing functions have been
called, the program uses ham_DrawText to display the status of each button on the screen.

First, you need to create a new project called ButtonTest, using the same procedure you
have followed for the last three sample programs. Fire up Visual HAM, open the File menu,
and select New, and then New Project to open the New Project dialog box, as shown in
Figure 4.11. Select the [C] Empty project type. For the project name, type in "ButtonTest",
and then type in the folder where you would like the project to be created. Note that
Visual HAM will create the folder if it doesn't already exist.

New.. x|

File Project |

Project hame:

[C] Empty (Commentated) |Eluttu:|nTest
[C] Empty with VBL {Commentated) et

L [C++] Em
L ! Pty |nrm0hapterD4IEluttnnTest |

B [C ++] Ermply (Commentated) Figure 4.11
FE2 [++] Empty with WBL (Commentated) Selection: .
The New Project
f[c1 Ermpty _ J
dialog box.

(0]:4 I Cancel |

Next, just delete the skeleton code Visual HAM generated for you, and type in the following
code listing for the ButtonTest program. Or, if you are good at filling in the details, you may
simply type this program into the skeleton code, filling in where necessary, because the
generated code is included in this listing. Just be sure not to leave out anything, as it's easy
to lose your place while filling in code (just as it's easy to lose your place when typing in an
entire code listing from scratch).

| emphasize typing because there truly is no better way to familiarize yourself with a new
programming language or SDK. If you simply load up each of the sample programs from the
CD-ROM, you may run them and see what the programs look like. However, you lose that
critical step—typing in the code makes you intimately familiar with the function calls and
gives you deeper insight into how the program works.

Here is the complete listing for the ButtonTest program:

[I77
//
//
//
//
LI TTTT TP 77777777 7777777777777777

//

Programming The Game Boy Advance
Chapter 4: Starting With The Basics
ButtonTest Project

main.c source code file

include the main ham library

#include "mygba.h"

//

enable multi-boot support

MULTIBOOT

[I777

//
//

LI TTTT TP P77 77777777 7777777777777777

Function: main ()

Entry point for the program

int main ()

{

// initialize hamlib

ham_Init ();

// initialize ham for text output

ham_InitText (0);

// display the button names
ham_DrawText (0,0, "BUTTON INPUT TEST");
ham_DrawText (3,2, "UP");
ham_DrawText (3, 3, "DOWN") ;
ham_DrawText (3,4, "LEFT") ;
ham_DrawText (3,5, "RIGHT") ;
ham_DrawText (3,6, "A");
ham_DrawText (3,7, "B") ;

ham_DrawText (3,8, "L");

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

ham_DrawText (3,9, "R");

ham_DrawText (3,10, "START") ;

ham_DrawText (3,11, "SELECT") ;

// continuous loop
while (1)
{
// check UP button
if (F_CTRLINPUT_UP_PRESSED)
ham_DrawText (0,2, "X");
else

ham_DrawText (0,2," ");

// check DOWN button

if (F_CTRLINPUT_DOWN_PRESSED)
ham_DrawText (0, 3, "X");

else

ham_DrawText (0,3," ");

// check LEFT button

if (F_CTRLINPUT_LEFT_PRESSED)
ham_DrawText (0,4, "X");

else

ham_DrawText (0,4," ");

// check RIGHT button

if (F_CTRLINPUT_RIGHT_PRESSED)
ham_DrawText (0,5, "X");

else

ham_DrawText (0,5," ");

// check A button
if (F_CTRLINPUT_A PRESSED)

ham_DrawText (0, 6, "X");

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

else

ham_DrawText (0,6," ");

// check B button

if (F_CTRLINPUT_B_PRESSED)
ham_DrawText (0,7, "X");

else

ham_DrawText (0,7," ™);

// check L button

if (F_CTRLINPUT_L_PRESSED)
ham_DrawText (0, 8, "X");

else

ham_DrawText (0,8," ");

// check R button

if (F_CTRLINPUT_R_PRESSED)
ham_DrawText (0, 9, "X");

else

ham_DrawText (0,9," ");

// check START button

if (F_CTRLINPUT_START_PRESSED)
ham_DrawText (0,10, "X");

else

ham_DrawText (0,10," ");

// check SELECT button

if (F_CTRLINPUT_SELECT_PRESSED)
ham_DrawText (0,11, "X");

else

ham_DrawText (0,11," ");

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

// end program

return 0;

After you have finished typing in the source code for the ButtonTest program, the editor
should look something like Figure 4.12.

PE Yisual HAM - [G:\GBA'Sources\CHAPTE~1\BUTTON~1'main.c] - (=1 x|
B ole Edt Fomet View Frojsct Advanced Esternal Tools Window Help _1@ x|
(@ - W@ BB B -]

(S R atkapace ||| L AT SIS A S LA LB P SIS A -
2 /v Programming The Game Boy Advance

Source Files

B maine 3 // Chapter 4: Starting With The Basics

4 /f main.c

----- (3 Heade Files 5 /¢ ButtonTest sourcs code file

B LSS LSS TELL LSS ETTE ST
%

8 /¢ include the main haw 1ibrary

3 ginclude "nyha.h”

10

LI JESSEETETEL T ET LTI TS LTSS
12 /7 Functiom: main()

13 // Extry point for the program N
T P P I o F]gu re 4. 12

15 int maini}

16 ¢

17 /¢ imiticlize haamlib Th B T

- W e ButtonTest

19

20 /# initialize ham for text output d -

2l ben InrcTexsio): program aemon

22

23 /7 display the button names h b

24 hau_DrawText (0,0, “BUTTON INPUT TEST); StI’GtE’S t e Utton
25 hau_DrawText (3,2, U2 ;

26 hawm DrawText (3,3, DOV} ; 5 7
e g handler built into
28 hau_DrawText(3,5, RIGHT") ;

28 ham_DrawText(3,6,74") ; ;

f et Hamlib.

a1 hau_DrawText|3,6,"1");

3z hau_DrawText|3,3,"R");

EE] hau_DrawText|3,10,"5TART™) ;

34 ham DrawText(3,11,"SELECT) ;

ag
Files | Auto Complets |

T

|

[Ln 10, Calo [elten: 0 s |

Compiling the ButtonTest Program

Now let's compile the ButtonTest program. Just for reference, because it's been a while, I'll
go through the steps with you again. First, open the Project menu and select Build, as
shown in Figure 4.13.

Now for a little more detail as to what is happening. The build command invokes the make
utility to run the makefile that is generated by Visual HAM when you created the project.
After invoking a build, the IDE looks like Figure 4.14. Note the compiler messages at the
bottom of the screen.

w | Project Adwanced External Took ‘Window Help =8 il
B Makefle »
— Add To Py t »
DI AN WoTkepats e IR 18 -
@ IR Run In YBA Strg+FS tarting With The Basics
{0 Header Files e 7 lource code file
LI 2y SUGHET b f 11 /1P 11 I SRS S IE 110057
Stop
main ham library
MBYZ Fg b
FLA F9
FLA +HEY2 R 0
T kin)
S FI0 | for the prograz F' 4 13
e SIEFEEPEPEI PP PSPPI TIPS 1 gU re 4.
Properties All Project Files

| Lnn e Use the Project, Build

19
20 4/ initialize ham for text omtput .
i menu to compile a
23 # display the button names . .
24 ham_DrawText (0,0, "BUTTON INFUT TEST™); v [HAM
5 membrerertia.z, i program in visua .
26 haw_DrawText (3,3, DOV) ;
27 haw_DrawText (3,4, LEFT")
28 B DrawTest (3,5, ‘RIGHT" ;
5 ham_DrawText (3,6,
30 haw_DrawText(3,7,"”
31 ham_DrawText(3,8,"
32 ham_DrawText (3,8, %)
33 hew_DrawTexe (3,10, "START") ;
34 ham DrawText(3,11,"SELECT")
as
Files | Auto Complete L]

L

[Ln 15, col 10 [Selten: 0 [ins |

PE Visual HAM - [G:\GBA} Sources',CHAPTE~ 1\ BUTTON- in. =181 x|
% Fl= Edi Format Yiew Project Advanced Extemal Tool i He =181 x|
|- | W[ERR (B]o o

= B0 HAM Workspace L /772 FA PP LTI AT I F PP PP OAIIEE PP EEE S0P -

2 4/ Programming The Game Boy Advance

Bt 3 // Chapter 4: Starting With The Basics
; 4 ¢/ main.c

-0 Header Files 5 4/ ButtonTest source code file

Fi ure 4 14 A T e
g . 7

8 // include the main haw Library
9 ginclude "uydha. b

ofe 10
After Comp’l’ng the B P P T T P P

12 // Fumction: main(}
13 ¢/ Entry point for the prograw

p roj ec t , t h es t a tu S L8 7SI I LEEIERE TP I I L LER R IR AP A S

15 int main()

=143 Gource Files

16 {
window at the bottom l e
19
. . 2an /4 ipitialize ham for text ouwtput
of Visual HAM displays U
22
25 /7 display the button nawes
24 hem_DrewText(0,0,"EUTTON INPUT TEST"):
messages from the ey
26 ham_DrawText (3,3, 'DOWN™);
. 27 ham_DrawText(3,4,"LEFT");
comp;[er, B o
29 ham_DrawText.(3,6,"47) ;
30 han_DrawText(3,7 ;

31 han_DrawText (3,8
3z han_DrawText (3,9

AR ham DrawText (310, ‘iTAD'T‘ J2e =
Files | &uto Complete L‘ »

G:/ham/gcc-arm/bin/arm-thumb-elf-as. exe -mthumb-interwork G ﬁam?system cr'to 5 -ocrtd.o

& i /ham/gcc-arm/b1n/arm-thumb-elf-gcc. exe -1 a:/hamfgcc-arm/include = Sce-ammyarm-thunb-£1£ /inc lude -1 i/haninclude - G: Jhamy/syst—
5 /ham/gec-arm/b1n/arm-thumb-e1-1d, exe SLE /ham/gt(armyarm-thumb- E]F/hh/nm‘m.ﬂ -L G:/ham/gec-armTib L G:/hamfgcc-arm/Tib/gcc-11b/arm-
G :/ham/gcc-arm/bin/arm-thumb-21f -abjcopy . e 0 binary buttons.elf buttons.gba

copy from buttons elf (1F32-1 15t earm) to battons. gba(binary)
@ :/ham/tools,/win3 2/rm

—f Yoo %3 e
< | i

[Ln 11, Cal 38 | SelLen: o [ms |

Testing the ButtonTest Program in the Emulator

One last time, I'll go over the run process, just to make sure you've got it down.
VisualBoyAdvance is the GBA emulator that comes with HAM and may be invoked from the
IDE by opening the Project menu and selecting Build + VBA, as shown in Figure 4.15, or by
simply pressing the F7 key.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

PE visual HAM - [G:\GBA\Sources\CHAPTE~1\BUTTON~1\main.c] =1=1 x|
M Fi= Edi Format View | roject Advanced FExternalTook Window Help _l&®] x|
T s v
e Add Ta Pr t 4

EE=1TT] s T T T -
5 23 Sourse Filss Build Fs [he Game Boy Aavance
LB mainc Run in VBA AR)|t T ting With The Basics
(13 HeaderFiles BRI GRS wrce code file
BUId0ebUD S SUGHRE v s £ 100 P12 EF TIPS IO A0
Stop
feain hem library

MBY2 3 "
FLA F9
FLA + MBYZ SUGHED |yt /A ST PP 140007

— 4d#
Clean Fi0

lfor the program .
T e SEASASIIES SIS EIII TIPS ST IIS ST F 1 g ure 4 . 1 5

Properties All Project Files

N e The Build + VBA menu

13

20 FE: tial h Fd text Epnat . . .

Bl L item will compile a

22

23 // display the button names . .

24 ham_D: X g d h
| e e program and run it in the
26 ham DrawText (3,3, "DOUN") 2

i ham_D: +4,"LEFT") ;

R e emulator.

29 ham_DrawText (3,6,

30 ham_DrawText(3,7,

il ham DrawText(3,8,

3z ham DrawText(3,s,

el hom MrasTavr(® 10 TETITTT - —
] =
G :/ham/acc—arm/bingarm—thumb—e 11 -as. exe wrtﬁumE Tnterwork G:/ham, system (r‘tO 5 —ocrtQ.o
G ¢ /hamy/gcc-arm/bing arm-thumb-e1f-gce . exe Gt /ham/gcc-arm/nc lude ace-armgarm-thumb-elffinclude - G:/hamfinclude ~T G:/ham/syst—
G :/ham/gcc-arm/bin/arm-thumb-e1f-Td. exe fL G /ham/gcc armyarm-thumb- e'\f/'Hb/ﬂor'ma'\ -L G:/hamdgce-arm/Tib -L G:/ham/goc-arm/1ib/ace-Tib/arm-
G 1 /ham/gec-arm/bin/arm-thumb-e1f-obJcopy . & binary buttons.elf buttons.gba

£opy Trom buttons. ef(e[32-11¢t camm) to Tttans. ghacinary)
2 fhamy/too] 5/wi n32/rm —F -

S0 e
41 | 3

[Ln 11, Col 39 [Sellen: 0 [Nz |

When you do this, Visual HAM will start the compile process. If the program compiles
without errors, the program is run in the emulator, which then appears on the screen, as
shown in Figure 4.16.

PE Visual HAM - [G:\GBA! AN TE~1} —
MK Fe Edi Fomat view Project Advanced Extornal Tools. Window Help —|—|_ 5
|- @B s B o
I -

2 // Progremming The Gape Boy Advance

3 // Chapter 4: Starting With The Basics
4 /7 ButtonTest Project

5 // main.c source code file

-1 Source Files
1] HeaderFiles

8 // include the main ham library
9 finclude "mygba.h”

; 10
F’gure 4- 16 11 // enable multi-boot support

12 MULTIB0OT

13

The ButtonTeSt A P P
15 /7 Function: main(}

16 // Entry point for the program

LT | S TA LTS LA ESTEA LTSS
program has been |

18 {
> . 20 /7 initialize hemlib
compiled and is N e
22
. . 23 /7 initialize ham for text cutput
shown running in i
25
26 s/ display the button names
the emula tor. 27 haw_DrawText (0,0, BEUTTON INPUT TEST');

28 hem_DrauText.(5,2,"UP");
29 hem_DrawText(3,3, DO
30 hau_DrawText (3,4, LEFT"
il hau_DrawText (3,5, RIGHT")
32 hem_DrauText(3,6,"L");
33 hem_DrauText.(5,7,"5")

Fils L]

[G:/ham/gce—arm/Bin/arm—thumb—e 1T -objcopy . e —0 binary Buttonlest.elf ButtonTest.gba

copy from ButtonTest. a1f(e'h=32 'htﬂear-mj tn EuttnhTEst gha(binary)
5 :/ham/ton]sAwin3z/rm =F *.o *.1

2 L ham oo oyt n3 3/ gbat 1x. exe | ButtorTest.gba

ROM fixed!

G:/ham/tonls/windz/vbasexe But

4 |

[Ln 12, Col g | SelLen: 0 s |

TR L

Running Programs Directly on the GBA

The Game Boy Advance is a portable video game machine, so sooner or later you will want
to take your games and demos with you or at least be able to run the programs on the

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

actual GBA—to see how well it plays on the real hardware. There are two ways to do this.
First, there is the Multi Boot Version 2 (MBV2) device, which connects the GBA to your PC
using a parallel port adapter. Then there is the Flash Advance Linker (of which there are
many different models and types), which can read and write to flash cartridges. If you end
up purchasing one of these hardware devices, you will get instructions on how to use it.

Since there are so many devices available, | won't go into detail about specifically what
steps to take to install the driver (if there is one) or how to use the software. When you
connect either your MBV2 or Flash Advance Linker to your PC and are able to successfully
use it as described in the product's enclosed instructions (which may be printed or may be
in electronic form on an enclosed floppy disk or CD-ROM), then you will be able to use it
with Visual HAM. The process is fairly easy from that point forward. The initial installation
and testing require more effort than actually using one of these devices, but the reward—of
being able to see your programs running on a real GBA—are definitely worth the cost and
effort of acquiring and installing one.

The Multiboot Cable

The multiboot device (formally known as the Multi Boot Version 2, or MBV2) allows you to
run programs directly on the GBA without a flash linker by taking advantage of the GBA's
multiplayer capabilities. When a GBA detects a multiplayer cable inserted into the Ext port,
it will attempt to download a small binary program into memory from the host GBA (which
is running the host game—for instance, Mario Kart Super Circuit). See Figure 4.17 for a
picture of an MBV2 device. Games with multiboot capability allow up to four players to
participate in a game where only one of the players is using the actual game cartridge.

Figure 4.17

The Multi Boot Version

2 is a cable that connects
a GBA to a PC using a
parallel port adapter.

The great thing about the MBV2 is that it is a low-cost development device that
complements Visual HAM wonderfully. HAM even includes built-in support for MBV2, as the
transfer software is installed with HAM. In order to use the MBV2, you need to plug it into
the parallel (printer) port on your PC, and then connect the blue cable to the link port on
your GBA. Remove any cartridge from the GBA, so the cartridge slot is empty. Then turn on
the GBA. Now, from within Visual HAM, you can choose to compile and run the program
directly on the GBA.

Take a look at Figure 4.18, which shows the Project menu in Visual HAM, with the MBV2
menu item highlighted. Just be sure to compile the program first by pressing F5, and then
you can send the program to the MBV2 device by pressing F8 (which causes the program to
run on your GBA, so be sure to have your GBA power turned on before starting an MBV2

session).

PE Visual HAM - [G:\GBACURREN~11CHAPTE~11FILLSC~1\main.c] I
W Fle Edit Format View | Project Advanced External Took Window Help _|_|_ =
|- | W@ | =@ Meefie Y
e —— Add To Project »

B P repace r
(1 saurce Files Build FS [Me Game Boy Advance
L[] HeaderFiles Runin YEA Strg4F5 Staxting' With The Basics
ojec
Build + vBa F7 s
B SUGHRT e 1 PP F I AT T AT EA I

Stop
for changing the video mode
CHT *{unsigned long®)0x4000000

LA F3

FLA + MBY2 Strg+FS |- 240x160 16-bit
- =3
Clean F10

e P Figure 4.18

Prapetties All Project Files

17 //uacro to pack an EGB color into 16 bits
18 #define RGB(r,q,b) (wnsigmed short) {r + (g << 5] + (b << 10)) Start an MBVZ
13

20 /screate 2 pointer to the video burrer

£, d short™ deoBuffi = d short#®)0x6000000 @ [
2l unoiomed shoct videoButter = (umsigued short*)Os session in vlsua

23 //draw 2 pixel on the mode J video burfer

;: Tm:l DrawPixel3{int x, int y, unsigned short c) HAM by Selecting

26 videoBuffer(y * 240 + x] = c7

za Project, MBV2.

29 SIS SIS SIS SIS
30 // Function: main()

31 /7 Entry point for the program

2 SIS SIS

33 int main(void) -
Auto Complete |« >

7F ‘goc-arm/bn/arm-thumb-e17-as. exe -WMEAUMB-1NCerwork G :/Nam/system/cred. 5 -o0crtd., =
R it e e G /ham/gcc arm/m.:mue -I_Gi/ham/gee- ar'm/ar'm thumb- e1f/1nc1ude “I Gi/han/include -1 /ham/syst
G 1 #ham/acc-arm/bi Y arm-thumb-. 1.1 e “arm/arm_thumb-e1f,/1ib/normal -L G:/ham/gc "L G:/Mam/gcc-arm/Tib gc
G : /ham/gec-arm/bi ¥ arm-thumb- T nary ET1 Sveen MR
e e e ST o ™5 Fi175creen. apadb naryy
G :/ham/tool s/winzirm -f F.o0 %L1 Fad -
»

4 |
[I i

Figure 4.19 shows the complete MBV2 retail kit, which comes with a disk containing the
MBV2 driver and transfer software. Although aftermarket development accessories like the
MBV2 are not available through retail channels, you may order the MBV2 kit on the Web,
from sources such as http://www.lik-sang.com. You may also find other sources for this kit
by going to a search engine and typing in "game boy advance multi-boot", which should
return a list of sites selling this device (and others like it).

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Figure 4.19

The MBV2 kit, showing the
included software disk and
retail packaging.

The Flash Advance Linker

The Flash Advance Linker (shown in Figure 4.20) is a parallel port device capable of reading
and writing GBA cartridges. This device is used to copy your compiled GBA programs to a
blank flash cartridge that is compatible with the GBA game cartridge slot. After writing the
binary ROM for your program to the cartridge, you then remove it and insert it into your
GBA, at which point it functions like any regular game cartridge.

Figure 4.20

The Flash Advance Linker
connects to a PC using a
t parallel port cable.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

The flash cartridges used with the Flash Advance Linker come in varying sizes, including 64,
128, 256, 512, and even 1,024 Mbits. The standard 64M cartridge, shown in Figure 4.21, is
one of the options available when you purchase your own Flash Advance Linker.

Figure 4.21

A rewritable flash cartridge comes
with the Flash Advance Linker and is
compatible with the GBA cartridge slot.

Unlike the MBV2, which connects directly to the parallel port and provides a link cable to
your GBA, the Flash Advance Linker is a bulkier device, requiring a parallel cable to connect
to your PC, and there is no direct connection to a GBA. Figure 4.22 shows the device with a
parallel cable connected to it.

Figure 4.22

The Flash Advance Linker device
with a flash cartridge inserted
and a parallel cable attached.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Summary

Although the material in this chapter has been introductory in nature, providing the first
working code samples for the book, you now have all the tools needed to write a
rudimentary game by drawing simple shapes on the screen and detecting button input. In
addition to providing a first glimpse into GBA programming, this chapter also provided an
overview of the hardware accessories that allow you to develop and run programs directly
on a GBA.

Challenges

The following challenges will help to reinforce the material you have learned in this
chapter. The solution to each challenge is provided on the CD-ROM inside the folder for this
chapter.

Challenge 1: Modify the Greeting program so that it displays a different message on the
screen depending on which button has been pressed.

Challenge 2: Modify the DrawPixel program so that it moves the pixel around the screen
and causes the pixel to bounce off the edges of the screen.

Challenge 3: Modify the FillScreen program by moving the for loops into a function called
FillScreen that fills the screen with a specified RGB color.

Chapter Quiz
The key to the quiz may be found in Appendix D.

1. What language is featured in this book for writing Game Boy Advance programs?
A. C++
B. Basic
C.C
D. Prolog

2. What is the Hamlib function for displaying text on the screen?
A. ham_DisplayText
B. ham_DrawText

C. ham_PrintText
D. ham_SetText

3. What is the name of the GBA emulator used in this book (and distributed with HAM)?
A. VisualBoyAdvance
B. Visual Game Emulator
C. GBA-EMU
D. WinGBA

4. True or False: The HAM distribution comes with flash linker and multiboot software.
A. True
B. False

5. What is the display resolution of video mode 3?
A. 320 x 240
B. 260 x 180
C. 120 x 80
D. 240 x 160

6. What is the name of the software development kit distribution used in this book?
A. Visual HAM
B. HAM
C. Hamlib
D. DevKit-Advance

7. What is the color depth of the screen in video mode 3?
A. 8 bits
B. 16 bits
C. 24 bits
D. 32 bits

8. What is the name of the memory register used to change the video mode?
A. REG_CHGMOD
B. REG_MODECH
C. REG_DISPCNT
D. REG_DMAO1

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

9. What is the name of the Hamlib function that initializes the text display system?
A. ham_StartText

B. ham_LoadText
C. ham_BeginText
D. ham_InitText

10. What parallel port device connects to the Ext port on the GBA in order to run programs
directly on the GBA?

A. Multi Boot Version 2 (MBV2)
B. VisualBoyAdvance (VBA)

C. Flash Advance Linker (FLA)
D. Major League Baseball (MLB)

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

