b L L FyT T "t
g i =T p & flole
S i Ell ¥ o ST
a!\' it % .r.-".'_ Y g
: N . | = x
& ik ya',:i'z :' L — Sy | [§ || -
i - Y ™ - -
E - _ml :] e I
- My T = ¥ - |]
= = = - = A —2| .1I 5 I I | N

Chapter 2

Game Boy
Architecture
In A Nutshell

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

solid understanding of the hardware specifications and capabilities of the Game Boy
Advance is necessary in order to write the most efficient code for this platform.
Programming any console is a rewarding experience because there are no layers between
you and the hardware itself. When you modify a bit here and a bit there, things happen!
There is no operating system, no game library, and in the case of the Game Boy Advance,
not even the luxury of a graphics processing unit (GPU). Despite what might seem like
limited hardware specifications, one must remember that when working directly with the
hardware, without any layers, things move along very quickly. That is truly what makes
Game Boy Advance programming so rewarding. A programmer’s most natural habitat is as
close to the hardware as possible, and consoles uniquely provide that environment.

This chapter presents an overview of the Game Boy Advance's hardware specifications,
explaining how it works, or what makes it tick, so to speak. The display screen, memory
architecture, and main processors are covered in detail. This chapter also examines
previous Game Boy models, comparing and contrasting them with the Game Boy Advance.
As a hardware reference and guide, feel free to refer back to this chapter at any time when
you need some specifics on the hardware. The pace is somewhat fast, and | don't explain
every single detail at this time, because many of these concepts are covered in later
chapters.

Here is a summary of the subjects covered in this chapter:

e Game Boy handheld systems

o Direct hardware access

e Memory architecture

e The central processor

e Graphics and sound capabilities

III : I". I. I : : : I

T Senll = _RFEE|

Game Boy Handheld Systems

The Game Boy Advance has a long and fruitful history that goes clear back to 1989 when
the original Game Boy came out. The Game Boy Advance is sort of the great-grandchild of
that first Game Boy, because it is the fourth Game Boy model. New as it may be, however,
the Game Boy Advance has now been supplanted by the Game Boy Advance SP. Granted, the
internal hardware is architecturally the same, but this new SP model has some considerable
new options, not the least of which is a backlit screen. Let's peruse all of the Game Boys
that have made their way into our hearts over the years. Table 2.1 shows an overview of the
Game Boy models and their specifications.

Table 2.1 Game Boy Specifications

Model CPU Memory Display Colors
Game Boy 8-bit Z80 4.17 MHz 64 Kbits 160 x 144 4
Game Boy Pocket 8-bit Z80 4.17 MHz 64 Kbits 160 x 144 4
Game Boy Color 8-bit Z80 8.0 MHz 384 Kbits 160 x 144 56
Game Boy Advance 32-bit ARM7 16.7 MHz 3,072 Kbits 240 x 160 32,768
Game Boy Advance SP 32-bit ARM7 16.7 MHz 3,072 Kbits 240 x 160 32,768

Game Boy, 1989

The original Nintendo Game Boy (shown in Figure 2.1) was released in 1989, only four years
after the NES came out in the United States. Operating on four AA batteries, the Game Boy
was not a revolutionary console by any means (an attribute shared with the NES), but it had
a relatively long battery life. This first Game Boy was equipped with a Zilog Z80
microprocessor—the same one used on many electronic devices in the 1980s. In fact, all of
the Game Boy models up to and including Game Boy Color featured a Z80 CPU, although
later models were faster. The Game Boy's CPU runs at 4.17 MHz, which is comparable to the
first IBM PC at 4.77 MHz. Not bad for a tiny little handheld!

The first Game Boy came with 64 Kbits of memory, which is a very limited amount!
However, due to the small display screen, with a resolution of 160 x 144 and only four-color
grayscale, very little memory was required for graphics. Four colors is really insignificant,
memory-wise; that's what you might call 2-bit color. Since two binary digits can store the
numbers 0, 1, 2, or 3, there are your four colors! Obviously, color 0 was black. That didn't

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

leave much for artists, so to state that the Game Boy had primitive graphics is exactly right
on target.

Figure 2.1
Nintendo Game Boy, 1989.

To put this in perspective, the Atari 2600 had better graphics than the Game Boy, and it was
a decade older. However, a very low memory footprint for 2-bit graphics does allow for
some interesting games, even if the color support is limited, and this kept manufacturing
costs down for Nintendo. A typical 8 x 8 sprite would use up only 128 bits of memory (that's
just 16 bytes), and the 160 x 144 video buffer would have required only 5,760 bytes of
memory (although there was no "video buffer”, per se, on the Game Boy). As a side note,
the Game Boy was capable of handling only 8 x 8 and 8 x 16 pixel sprites, and only a
maximum of 40 at a time.

Game Boy Pocket, 1996

The Game Boy Pocket (shown in Figure 2.2) was a slimmed-down version of the Game Boy.
Although the hardware specifications were essentially the same, the Game Boy Pocket
required less voltage to operate (3 volts instead of 6) and thus could be powered by only
two AAA batteries, which are much smaller than AA and suited the small size of the Game
Boy Pocket.

Figure 2.2
Nintendo Game Boy Pocket, 1994.

Game Boy Color, 1998

The Game Boy Color (shown in Figure 2.3) was significantly more capable than the previous
two models and greatly aided game developers with a faster CPU and more memory, while
still retaining compatibility with the older game cartridges. The Game Boy Color only
requires two AA batteries and was therefore much lighter than the original Game Boy.

Figure 2.3
Nintendo Game Boy Color, 1998.

The Game Boy Color not only was capable of displaying 56 colors on the screen at once but
also enhanced existing Game Boy games to 32 colors, greatly improving their appearance

and playability. Grayscale games came to life on the Game Boy Color with multiple shades
of color. Obviously, backward compatibility was an important factor for Nintendo, primarily
for marketing reasons. Claiming that a just-released console (such as the Game Boy Color)

50

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

———

| = S e R =5 — L

has a game library of several hundred titles is an impressive feat! Of course, a large
percentage of those games are very low-quality Game Boy titles, due to the limited
capabilities of the GB. Many excellent titles were released for Game Boy Color, including
the phenomenally successful Super Mario Bros. Deluxe and The Legend of Zelda: Link's
Awakening DX.

Game Boy Advance, 2001

The Game Boy Advance (shown in Figure 2.4) is significantly more powerful than any
previous Game Boy model, with nearly twice the screen resolution, 10 times more memory
than the Game Boy Color, and a blazing-fast RISC CPU (more than twice as fast as Game Boy
Color). In addition, the Game Boy Advance incorporates the original Z80 CPU from the
Game Boy Color, providing for complete backward compatibility with all previous Game Boy
cartridges. | would surmise that Nintendo was primarily concerned with supporting Game
Boy Color titles rather than the older grayscale Game Boy games, although all previous
cartridges will work!

. Figure 2.4
. Nintendo Game Boy Advance, 2001.

Basically, what happens is that the Game Boy Advance detects the type of cartridge that
has been inserted and boots up on either the ARM7 or the Z80 CPU, based on the cartridge.
This ingenious architectural design allows the Game Boy Advance to run all previous games,
all the way back to 1989—a significant achievement of electronics engineering. If you think
about it, how many other consoles today are capable of running games from 1989—original
games, in their original cartridges? None! Only the Game Boy Advance is capable of this feat
(and the Game Boy Color before it).

Before getting on with the next model, the Game Boy Advance SP, | want to show you an
awesome accessory for your GBA. If you already own a GBA and are considering purchasing
a Game Boy Advance SP model only for the backlight, you have another option. Figure 2.5

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

B _—

———

o Lcrs L L - .

shows a Game Boy Advance in normal indoor lighting with an Afterburner installed. This is
an inexpensive internal flat-surface LED that is positioned in front of the LCD, providing a
remarkable improvement in screen visibility regardless of the lighting conditions.

Figure 2.5

This Game Boy Advance is equipped
with an Afterburner to brighten the
screen.

Some soldering is required, but the work is relatively easy to do (that is, if you have any
experience with a soldering iron—if not, you should ask a friend who is experienced with
one to help you). For development work, the Afterburner is an essential add-on. It is very
inexpensive (under $30) and may be ordered from online Game Boy Advance retailers, such
as Lik-Sang (http://www.lik-sang.com). | suggest this alternative because | prefer the
original Game Boy Advance design.

Game Boy Advance SP, 2003

The Game Boy Advance SP (shown in Figure 2.6) is a variation of the Game Boy Advance
with an internally lighted screen, long-lasting rechargeable battery (built in), and folding
clamshell design. In all other respects, the SP has the same internal components as the
Game Boy Advance, and the changes are cosmetic. While the rechargeable battery is
internal (and therefore not replaceable without disassembly), it does promise longer life
than the AA batteries used in a Game Boy Advance (and there are rechargeable battery
packs for Game Boy Advance as well). One interesting aspect of the SP is that, when the
screen is opened, it resembles the original Game Boy!

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Figure 2.6
Nintendo Game Boy Advance SP, 2003.

Direct Hardware Access

The Game Boy Advance is a video game console, and yet it is similar to a PC in many ways.
Both have one or more processors, random-access memory (RAM), a display screen (or
monitor) with many different video modes, a digital signal processor (DSP) for sound, and
some form of intuitive user input. Both the Game Boy Advance and a PC have a
motherboard with a power supply and a basic input/output system (BIOS) chip that causes
the hardware to boot up.

A PC provides access to the hardware primarily through the operating system, while a
console primarily operates by storing all system functions inside the executable program
(the game). The Game Boy Advance has no operating system. Game Boy Advance games
have complete control over the hardware, at the lowest level. This gives the programmer a
great deal of control over the console, but also great responsibility. Many software
engineers specialize in applications, operating systems, network communications, or device
drivers. As a Game Boy Advance programmer, you will touch on all of these areas and more,
each time you write a game, because no one has paved the way, so to speak. Each new
program you write for the Game Boy Advance must incorporate all the code necessary to
display things on the screen, play sound effects and music, and detect button presses. Most
of these features are programmed using direct memory address functionality.

On the PC, there are interrupts provided by the operating system that you can use to make
things happen. On a GBA, however, you make things happen by reading or writing a number

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

to a specific portion of memory (called a hardware register). The Game Boy Advance
changes instantly when you make such a change, because those memory addresses are
directly tied to the hardware. If you turn on a bit somewhere in video memory, the screen
will change to another video mode or perhaps even display a pixel.

As is usually the case when charting new territory, it is useful to draw a map along the way.

Fortunately, someone has already provided all the memory addresses for us, so we don't
need to fire numbers into random memory locations to see what happens—in fact, that
would likely have an adverse effect on the Game Boy; who knows, it could even be

damaged by it. Let's look at the general features of the Game Boy Advance to get an idea of

the terrain ahead.

Memory Architecture

You may be aware that your PC has three distinct types of memory. You have your main

RAM, which holds all the programs and data you're actively working with (ignore virtual
memory for now since this looks to your programs like lots of main RAM). There is the hard
disk, which stores information for long periods. And there is display memory on your video

card.

The Game Boy Advance has similar
kinds of memory. Like the PC, each
address refers to a single 8-bit byte
(which means that it is byte
addressable). Also like the PC, the ARM
("Advanced RISC Machine") processor in
the Game Boy Advance can access 8,
16, or 32 bits at a time. Things are a
little more complicated, though, and
you need to understand a little more
about how the different parts are used.
Table 2.2 lists the types of memory
accesses the memory allows and the
wait states each access incurs.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

The CPU reads memory by sending an address to
the memory at the start of a cycle and then
reading the data at the end of that cycle.
Ideally, the memory is fast enough to provide the
data that quickly. Slower memory tells the CPU
to wait for one or more additional cycles before
reading the data. These extra cycles are called
wait states. The fastest memories, such as
IWRAM and VRAM, have no wait states
(abbreviated OWS) and therefore return data in a
single cycle. EWRAM is 2ZWS memory, returning
data in three cycles—one normal cycle plus two
wait states.

- Tl

Table 2.2 Game Boy Memory Access

Memory Type Access Widths ~ Comments

IWRAM 8, 16, 32 32 KB "internal" working RAM. Typically used for fast
scratchpad RAM and for time-critical code.

EWRAM 8, 16 256 KB "external" working RAM. Typically used for
main data storage and multiboot code.

VRAM 8,16 96 KB video RAM. Stores all graphics data. Can only
write 16 bits at a time.

ROM 8,16 ROMs can be read in either slow (4/2) or fast (3/1) mode.

See chapter text for more details.

Game Save RAM 8, 16 The game save RAM is part of the cartridge. See chapter
text for more details.

Internal Working RAM

Internal working RAM (IWRAM) is the only memory directly accessible on the 32-bit internal
data bus of the CPU core, because it is actually built into the CPU itself. This is why it's
called internal WRAM as opposed to external WRAM (covered

next). IWRAM is the fastest memory in the Game Boy Advance As far as the ARM processor
and is also the only memory that can be accessed 32 bits at a ;)S’. tcs?rx;;geg,hglmrz ".i 52
time. The speed and width of this memory makes it ideal for pjts and a byte is 8 bits.
running ARM code at full speed. Unfortunately, there are only

256 Kbits of this memory.

External Working RAM

One might think something named external working RAM (EWRAM) would on a cartridge or
something. However, it is built into the GBA. It's called external because it sits outside the
CPU's core on the 16-bit data bus. We've got 2,048 Kbits of this to play with. This RAM, with
each access taking three cycles, is slower than IWRAM.

EWRAM is where you will store large data items. You may cache graphics here before
transferring them to VRAM for display. You can also place programs here using the multiboot

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

.,J\ : .' o '__ r I | s i
protocol. Programs will run a The amount of memory that can be addressed by a
little faster here than in fast particular number of address bits is always a power of
ROM and quite a bit faster than two. You can address 27 (or 65,536) locations by using 16

in slow ROM. address bits. The closest power of two to 1,000 is 29 (or

1,024). This has become the usual meaning for 1 KB in

Cartridge Memory measuring memory. Therefore, 32 KB = 32 x 1,024 =

32,768 bytes. Similarly, 1 MB = 1,024 K = 1,048,576.
The game cartridge contains

the game's program and data

stored in ROM. This is much like a CD-ROM for your PC in that it cannot be changed and is
typically larger than the RAM you have available. Some cartridges also contain memory for
saving games. Special cartridges, such as those made by Visoly, have memory called flash
cartridges. These devices look to the Game Boy Advance like normal game cartridges and
yet can be programmed with your own data much like a hard disk in your PC, using a flash
linker device (which is covered in the next chapter).

Game ROM

Like EWRAM, the ROM is accessible via the 16-bit data bus. There are two speeds at which
ROMs can operate and two modes in which they can be accessed. Speeds for the ROMs are
given as a pair of wait-state values, such as 3/1. The overriding factor is whether each
access to the ROM can be classified as sequential or nonsequential.

A nonsequential access occurs whenever a new area of the ROM is read. Sending the
memory address to the ROM takes extra time, and these accesses take the number of wait
states indicated by the first number. In this example, the nonsequential access will take
four cycles (three wait states plus the normal cycle).

A sequential access occurs when the very next access to the ROM is at the next address. In
this case the ROM already has the next address available and only takes the smaller number
of wait states. This use of sequential accesses means that a consecutive sequence of
instructions that have no other data accesses can run with only 1 wait state for faster
ROMs. Even slower ROMs (running with 4/2 wait states) can equal EWRAM speed for these
short bursts, while fast ROMs can outpace EWRAM during such a run. What this means,
basically, is that a game cartridge is capable of slow-mode and fast-mode access.

On average, however, even fast ROMs will fall behind EWRAM because long runs of
sequential accesses are not the norm.There is a prefetch buffer in the memory controller

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

| o P

that allows some sequential accesses have no wait states. Unfortunately, this speed comes

at a cost in power usage.

Bytes, Words, and Halfwords

The ARM processor uses some terminology

for memory sizes differently than in the PC
world. To understand why, let's look at the
history of some of the terms.

Most of us are used to a byte being 8 bits,
and indeed the ARM doesn't change this.
Looking back in history, however, we find
that a byte actually refers to the size of a
native character for the computer's output
device.

Just as the byte has had different sizes, a
computer word is commonly defined as the
normal amount of memory the computer
processes at one time. In the early 1980s,
IBM designed the IBM PC around the Intel
8086 and Apple built the Macintosh with the
Motorola 68000. Both of these machines
processed 16 bits at a time and used 8-bit
ASCII character sets. These two machines
have cemented the terms byte, word, and
double-word as meaning 8, 16, and 32 bits,
respectively, for most of personal
computerdom.

For more than a decade, Intel and Motorola
microprocessors have processed 32 bits at a
time in their normal operations, and new

64-bit processors are now available for PCs

(such as the AMD Opteron and Athlon 64).
The word size of 32-bit computers is
therefore 32 bits, while a word on a 64-bit
processor is 64 bits. The terminology
surrounding software for them, however,
has maintained the older terms because the
operating system APIs and data structures
have evolved using the terms rooted in their
16-bit ancestors. But the important factor
to remember is that a word usually
comprises the same number of bits that are
handled by the processor natively, and the
byte has remained to this day a fixed 8-bit
value.

The ARM has no 16-bit predecessor and
need not retain backward compatibility
with any overriding architecture (as is the
case with the x86), although the Game Boy
Advance does include the Z80 for backward
compatibility. Imagine a modern PC with an
old 80486 chip included along with a newer
processor! ARM terminology follows the
normal definitions for byte and word: an
ARM byte is 8 bits, while an ARM word is 32
bits, while a 16-bit number is called a
halfword. Throughout this book, | avoid the
confusion by simply calling memory
addresses and variables by their bit depth.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Game Save Memory

Some cartridges (including the Visoly flash cartridges) have nonvolatile memory for storing
saved games on the cartridge. There are currently three different kinds of memory used for
this: battery-backed static RAM (SRAM), Flash ROM, and serial EEPROM. Each type has
unique methods of access. Some of the Visoly cartridges support all three types of game
save memory, while some support only SRAM and Flash ROM (because of the special writer
needed for an EEPROM).

Graphics Memory

There are three sections of memory that deal exclusively with video memory and the
display screen: video memory, palette memory, and object attribute memory (OAM, for
handling sprites).

Video Memory

Video memory is where all graphics data must be stored for display on the screen. VRAM is
zero wait-state memory like IWRAM but sits on the 16-bit data bus, so you can only move
data half as fast as in IWRAM. How VRAM is used depends greatly upon the video mode and
other features that your program selects. One property of this RAM that | will point out
many times is that it can only be written 16 bits at a time (while the bus is capable of a full
32 bits). Trying to write a byte will actually write 2 bytes of the same value. This seeming
flaw can actually be useful in certain circumstances, such as the ability to quickly redraw
the screen.

Care must be taken when writing to VRAM during the time when the screen is being drawn.
Attempting to change memory that is being used to draw the screen can result in graphics
glitches and image tearing (and event where the image is being drawn while the screen is
also being refreshed, resulting in an uneven image). Furthermore, VRAM accesses during
screen time can be delayed while the CPU waits for the video hardware to perform its
accesses.

Palette Memory

Most of the Game Boy Advance's video modes use palettes to specify the colors being used.
The Game Boy Advance has two separate 256-color palettes: one for background images

and one for sprites. Each of these palettes is further divided into 16 palettes of 16 colors in
some modes, allowing graphics data to be compacted even more. Color 0 of any palette is

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

L

defined to be transparent no matter what value is actually stored in the palette memory.
Palettes are usually updated during the vertical blanking (VBlank) period, during which time
the screen is not being drawn. There is also one video mode that doesn't use a palette but
directly addresses colors in each pixel (mode 4).

Object Attribute Memory

Object attribute memory (OAM) is where you store the attributes, or descriptions, of what
a sprite is to display, how, and where. The actual graphics data comes from VRAM, but the
sprite’s position, size, and other information come from the OAM. OAM is commonly
updated during VBlank, and one often mirrors this data set in main memory for improved
speed.

The Central Processor

The processor in the Game Boy Advance is an ARM7TDMI chip. This is a 32-bit RISC processor
with a three-stage pipeline, a hardware multiplier, and lots of registers—it is quite
versatile. | can recommend two reference books for more detail about the ARM, if you are
looking to get into some serious low-level programming, or if you are just curious.

e ARM Architecture Reference Manual, edited by David Seal, Addison-Wesley,
ISBN 0-201-73719-1. Also known as the ARM ARM, this is a detailed description of
the many ARM processors in use today. This book is invaluable when working in
assembly language.

e ARM System-on-Chip Architecture (2000), by Steve Furber, Addison-Wesley,
ISBN 9-201-67519-6. This book gives more of the how and why about using the
ARM. Whereas the ARM ARM is the definitive reference book, Furber gives a more
readable text and fills in some of the details about why things were done the way
they were.

Two Instruction Sets

The ARM is a RISC (reduced instruction set computer) processor design. As with most RISC
processors the instruction set is very regular, meaning that there are few ways to encode an
instruction. RISC design makes it very easy to build a fast and inexpensive CPU. It does not,
however, lead to very compact code. In general, code density—the number of instructions
per unit of memory—is lower in RISC designs than it is in CISC (complex instruction set

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

IJ". I-c.l - |I - ._" o ;

L— e

computer) designs. While the ability to understand assembly language is a valuable skill
when writing console code, | don't use it very much in this book, aside from a primer in
chapter 11, "ARM7 Assembly Language Primer." | have only included this chapter to help you
interface with assembly, not to teach you full-blown assembly language programming,
because this book focuses on the C language. Knowing how to interface with assembly
routines can be helpful, so that is the focus of that chapter.

The designers of the ARM decided that they could create a denser instruction set—which
they dubbed the Thumb instruction set—by cutting out some features and making the
instruction encoding a little less regular. They did this in a way that allows the two
instruction sets to work together. The CPU essentially converts Thumb instructions into
their equivalent ARM instructions on the fly. Each Thumb instruction is 16 bits, whereas the
ARM instructions are 32 bits. There is a performance benefit to using 16-bit instructions in a
computer with 16-bit memory, although | don't get into Thumb mode at all in this book, as it
is an advanced topic. True, there may be cases for using Thumb instructions to speed up
parts of a game, but there are also cases for using regular ARM instructions as well.

CPU Registers

The ARM has 16 registers accessible at any time. A register is a physical component of the
processor, and may be thought of as part of the "thinking” component. One of these
registers, called R15, is the program counter, which keeps track of the current instruction
being executed. A couple of the other registers have defined uses for some instructions. All
the registers hold 32 bits each.

There are also some additional registers that are only used under certain conditions. There
are, for example, registers that replace R13 and R14 (usually the stack pointer and link
register) when interrupts occur. There are exceptions to most of these, but knowing this list
will help you when looking at compiled code or reading through assembly language
examples.

The ARM Procedure Call Standard (APCS) defines a convention for compilers to use when
calling functions. This is the way the C compiler calls functions (except under certain
optimizing conditions). You don't have to follow this convention when you write your own
assembly functions, but you can't call those functions from C if you don't. Table 2.3 details
the register uses for APCS. When one procedure calls another there is an assumption that

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

= wr s e = ==

— r= i Sl T e |

some of the registers will not be changed by the called procedure. The called procedure
must save and restore these values if it needs to change one of these registers.

Table 2.3 ARM Procedure Call Standard

Registers

RO-R3

R4-R10

R11

R12

R13

R14

R15

Usage

These registers are used for passing parameters to functions. Any
parameters that don't fit here get passed on the stack.

These registers are used primarily for register variables. Registers 9
and 10 are also used for stack manipulation when switching modules,
but you'll seldom, if ever, have to worry about this.

This is the frame pointer. This register is typically set and restored
during the prologue or epilogue code since it is the pointer through
which all local variables are accessed.

This is the interlink pointer. For most Game Boy Advance code this is a
scratch register.

This is the stack pointer. This points to the last item pushed on the
stack. The stack is a "full descending” stack meaning that the stack
grows downward (toward lower addresses) in memory and the pointer
always points to the next item to pop from the stack.

This is the link register. This register holds the return address for the
subroutine. This register is often pushed on the stack and then
popped directly into the program counter for the return.

This is the program counter. You only directly change it to execute a
jump.

The Graphics System

Truly the most important aspect of a console is the graphics system and its capabilities. The
Game Boy Advance has an intriguing selection of possible video modes from which to
choose. There are three tile-based modes that resemble the previous Game Boy graphics
systems. In addition, there are three new bitmap-based modes that provide more creative
freedom with a game.

It is important to note some specific numbers that don't change and thus may be relied
upon from one Game Boy Advance unit to the next. The refresh rate equates to 280,896
clock cycles per frame (the time it takes to display the entire video buffer), and this
provides a refresh rate of 59.73 hertz (Hz). Therefore, the maximum frame rate on the

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

61

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Game Boy Advance is ~60 FPS. Any game or demo that claims to achieve more than 60 FPS
is simply subframing the display, which may have practical uses for special effects, but in
general this is an upper limit on the frame rate of the screen. Most consoles aspire to such
a frame rate, so don't take this number by any means to reflect poorly on the GBA. It is, in
fact, a significant refresh rate.

Tile-Based Modes (0-2)

There are three tile-based modes, as mentioned previously. A "tile" is a small 8 x 8 section
of the screen, and this is how the first Game Boy handled all backgrounds. Of course, you
may still use sprites that move over the tiled background. | will summarize each of these
video modes in the following subsections.

Mode 0

In this mode four text background layers can be shown. In this mode backgrounds 0-3 all
count as "text” backgrounds and cannot be scaled or rotated. Check out the section on text
backgrounds for details on this.

Mode 1

This mode is similar in most respects to mode 0, the main difference being that only three
backgrounds are accessible—0, 1, and 2. Backgrounds 0 and 1 are text backgrounds, while
background 2 is a rotation/scaling background.

Mode 2

Like modes 0 and 1, mode 2 uses tiled backgrounds. It uses backgrounds 2 and 3, both of
which are rotate/scale backgrounds.

Bitmap-Based Modes (3-5)

There are three bitmap-based modes, also mentioned previously. These are the more
familiar video modes that resemble those found on a PC, with a given resolution and a
video buffer. | will summarize each of these video modes in the following subsections. You
don't need to remember all of this information right now. It will become second nature to
you in time, as you actually use these memory addresses and so forth in actual code.

Mode 3

This is a standard 16-bit bitmapped (nonpaletted) 240 x 160 mode. The map starts at 0 x
06000000 and is 76,800 bytes long. See the color format table above for the format of these
bytes. This allows the full color range to be displayed at once. Unfortunately, the frame
buffer in this mode is too large for page flipping (a method of reducing flicker on the
screen—covered in Part Two) to be possible. One option to get around this would be to copy
a frame buffer from work RAM into VRAM during the retrace.

Mode 4

This is an 8-bit bitmapped (paletted) mode at a resolution of 240 x 160. The bitmap starts
at either 0x06000000 or 0x0600A000, depending on bit 4 of the REG_DISPCNT register.
Swapping the map by flipping bit 4 and drawing in the one that isn't displayed allows for
page-flipping techniques to be used. The palette is at 0x5000000 and contains 256 16-bit
color entries.

Mode 5

This is another 16-bit bitmapped mode, but at a smaller resolution of 160 x 128. The display
starts at the upper-left corner of the screen but can be shifted using the rotation and
scaling registers for background 2. The advantage of using this mode is presumably that
there are two frame buffers available, and this can be used to perform page-flipping
effects that cannot be done in mode 3 due to the smaller memory requirements of mode 5.
Bit 4 of the REG_DISPCNT register sets the start of the frame buffer to 0 x 06000000 when it
is zero, and O0x600A000 when it is one.

The Sound System

The sound system in the Game Boy Advance comprises four FM synthesis channels for
generating sound effects and music, primarily for backward compatibility. The Game Boy
Advance also features two new 16-bit stereo digital sound channels capable of outputting
sampled sound effects and music tracks. There is no built-in sound mixer for synchronous
sound playback, so programmers must write their own sound mixers or use a third-party
library. A sound mixer allows multiple sounds to be played at the same time. Conceptually,
it does this by "mixing” them together, which is where the name comes from.Without a
sound mixer, it is only possible to play one sound at a time, which is called asynchronous
playback. | will cover the sound system in more detail in Chapter 9, "The Sound System."

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Summary

The Game Boy Advance is truly an advanced handheld video game system that is worthy of
the accolades it has received in the development community and by gamers themselves.
Many of the best games of all time are being ported to Game Boy Advance because it has
the processing power to handle high-end games that are either 2D or 3D. By understanding
at least the high-level view of the Game Boy Advance architecture, you are able to better
judge the type of game that is or is not possible—and then challenge those possibilities!

Chapter Quiz

The following quiz will help to further reinforce the information covered in this chapter.
The quiz consists of 10 multiple-choice questions with up to four possible answers. The
answers may be found in Appendix D, "Answers To The Chapter Quizzes."

1. What is the name of the new Game Boy model released in 2003?
A. Game Boy Advance SP
B. Game Boy SP
C. Super Game Boy
D. Game Boy Advance Pro

2. What processor was used in the Game Boy Color?
A. 6802
B. 8086
C. Z80
D. 68000

3. How much memory does the Game Boy Advance have?
A. 8 KB
B. 64 KB
C. 128 KB
D. 384 KB

4. When was the first Game Boy released in the United States?
A. 1879
B. 1983
C. 1989
D. 1991

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

5. What is the full name of the main processor inside the Game Boy Advance?
A. 80386 DX4-100
B. ARM7TDMI
C. 68002
D. 6501

6. What is the designation for the memory that is built into the processor?
A. EWRAM
B. VRAM
C. IWRAM
D. CRAM

7. What is the maximum frame rate of the Game Boy Advance as limited by the hardware
refresh?

A. 120

B. 30

C. 80

D. 60

8. What are video modes 0, 1, and 2 called?
A. Tile-based modes
B. Bitmap-based modes
C. Sprite-based modes
D. Background modes

9. What are video modes 3, 4, and 5 called?
A. Tile-based modes
B. Bitmap-based modes
C. Sprite-based modes
D. Background modes

10. How many sound channels, overall, does the Game Boy Advance have?
A. 2
B. 4
C.6
D. 8

