CONQ(4)

Stéphane Alnet

RMLL, July 2015

CCNQ was born in 2006.
That’s 9 years ago.

What happened during these 9 years?

Let’s go Historical

v0.x (2006) ssh push
(think ansible)
e System and customer configuration in a single document.

¢ Only OK when you’re doing a couple changes a day.
¢ Code was lost in the Carribeans.

v1.5 (2007) Perl (sync)
CouchDB?

o Barely better.
e Code also thankfully lost.

v2.0 (2009) Perl async, CouchDB

e CouchDB on each call-processing server

e Perl async for realtime change management
o Task management via CouchDB

o Everything: provisioning, rating, UI, ...

o Perl packages

Doing async in Perl is hard.

e No unified model for callbacks.

e Incompatibilities between modules sometimes create hard-to-resolve locking
situations.

o Never was able to get a CouchDB/AMQP /FileSystem synchronization to
work properly.

v3 (2010) Node.js, CouchDB, RabbitMQ

¢ Focus on deployable call-processing
e Node.js for async

e Debian packages

o AMQP for M2M

e Host configurations in CouchDB

¢ CouchDB-based DNS

Host configuration changes are dynamically applied (e.g. FreeSwitch XML con-
figuration files generated on the fly + reloadxml).

Debian packages are hard.

AMQP is verbose. (Also: 1ko limit per message?)

v4 (2014) Node.js, CouchDB, Docker.io, Socket.IO

e Docker.io: one app, one container.

e Apps built out of tiny components.

« package.json & git for (strong) dependency management.
¢ Socket.io for M2M & Ul

o Host configurations in git(lab)

Host configurations in git(lab) really is a workaround. Ideally should move back
to a database-centric approach to host provisioning. Lots of code to migrate
from CCNQ3, still iterating.

Let’s talk About Code

Guiding Principles

e APIs: REST/JSON and Socket.IO only
No HTML generated on servers, use templating on the client.

e Prefer changes over directives

e Same modules on the server and the client: PouchDB, Socket.io-client,
superagent, bluebird (Promises)

Promises
This isn’t 2011 anymore.
serialize cfg, 'config'

Configure using config middlewares.

.then ->
unless cfg.server_only is true
fs.writeFileAsync process.env.FSCONF, xml, 'utf-8'

Write FreeSwitch XML configuration (if needed)

.then ->
supervisor.startProcessAsync 'server'

Start the call-handler service

.then ->
unless cfg.server_only is true
supervisor.startProcessAsync 'freeswitch'

Start FreeSwitch (if needed)

.then ->
debug 'Done’

Source: thinkable-ducks/config

Fluent

SuperAgent

.get "#{Qcfg.auth_base 7 @cfg.proxy_base}/_session"
.accept 'json'

.auth user.name, user.pass

.then ({bodyl}) =>
Osession.couchdb_username = body.userCtx.name
O@session.couchdb_roles = body.userCtx.roles
O@session.couchdb_token = hex_hmac_shal Qcfg.couchdb_secret, @session.couchdb_username

Source: spicy-action/couchdb-auth Uses package superagent-as-promised
Also illustrates combining fluent interfaces with Promises.

Domain-Specifc LanguagesDSL
require('zappajs') cfg.web, ->

Qget '/', —>
Q@json
ok: true
name: pkg.name
version: pkg.version

db = new PouchDB cfg.db

Q@get '/forwarding/:number', ->
db.get @param.number
.then (doc) =>
@json forwarding: doc.forwarding

cfg = require process.env.CONFIG 7 './local/config.json'
pkg = require './package.json'

PouchDB = require 'pouchdb'

db = new PouchDB cfg.db

require('zappajs') cfg.web, ->

Q@on trace: —>
if Osession.admin
@broadcast_to 'trace-servers', 'trace', Qdata

client = require('socket.io-client') process.env.SOCKET

client.on 'trace', (doc) ->
client.emit 'trace_started', host:hostname, in_reply_to:doc
Promise.resolve()

.then ->
trace doc
.then ->

client.emit 'trace_completed', host:hostname, in_reply_to:doc
.catch (error) ->
client.emit 'trace_error',
host: hostname
in_reply_to: doc
error: error

Source: project nifty-ground. Note the trick with Promise.resolve() which
allows to start the Promise chain whether function trace returns a Promise or
not.

Domain-Specifc LanguagesVoicemail
class User

main_menu: ->
@call.get_choice "phrase:voicemail_main_menu
.then (choice) =>
switch choice

when "1"
@retrieve_new_messages()
.then (rows) =>

Onavigate_messages rows, O
.then =>
@main_menu()

when "3"
@config_menu()

Souce: project well-groomed-feast, with some renaming to simplify.

Let’s talk aboutFun

esl module
o provides client access to FreeSwitch events socket
e.g. to build a dialer

o provides server access to FreeSwitch events socket
inbound call handling

Success Story

e used in production and to build new services

Testability

e esl has both unitary tests and live tests
e live tests involve starting and stopping FreeSwitch: much easier with
Docker.io!

Middleware useful-wind

o Take the middleware concept from Connect / Express / Zappa
o Apply it to voice calls
 Build call-processing applications by combining (npm) modules

Middleware Power thinkable-ducks

o process calls (ESL)

o access CouchDB (PouchDB)

o receive and send events (Socket.IO-client)
o serve APIs (ZappalJS)

Examples:

¢ tough-rate LCR engine used in production at K-net
o well-groomed-feast voicemail engine

Distributed Sniffer nifty-ground

Browser

e Request generated by JS on the browser
e Sent over Socket.io to dispatcher.

Server

e Process on each server waits for request from dispatcher

e Send notification — browser builds list of expected responses
e Queries captures files

e Send notification (with data)

o Store PCAP file (last 500 packets) in CouchDB

More Fun

PouchDB

Browser:

db = new PouchDB 'users'

db.put _id:'shimaore', name:'Stéphane Alnet'
.then ->
db.get 'shimaore'
.then (doc) ->
assert doc.name is 'Stéphane Alnet'
.catch (error) ->
cuddly.csr "Could not retrieve shimaore: #{errorl}"

All accesses are local to the browser. Database is persisted.

Browser: Access CouchDB

db = new PouchDB 'https://couchdb.example.net:6984/users'’

Sync Browser «+—— CouchDB
PouchDB.sync 'users', 'https://couchdb.example.net:6984/users'

Two-way replication. Also exist as one-way replication with replicate. Offline-
first made easy. Also check out Hoodie.hq!

Server: Use local database

db = new PouchDB 'users'

Docker.io

e In production we use -—network=host
Although it would help greatly document things if we were using the Docker
connection thingies. But we do a lot of UDP and kernel-level stuff for
speed.

e Lessons learned: need to consider containers as read-only images
Otherwise they grow larger and larger in production due to AUFS. Use
mountpoint for logs, live data.

o It’s hard to use independent UIDs inside containers.

When mounting logs etc the UIDs are kept identical, often resulting in
access issues.

o docker-ccng module (private) to ensure proper start of containers.
Essentially git pull at install + for dir in ~docker/start/[0-9]*; do
cd $dir && ./init start; done

e Large amount of disk vs compression.

Docker.io uses large amounts of disk because the intermediary (build) steps
of a Dockerfile are part of the final image. Compression (=keep only data
that is still present) is a hotly debated topic.

¢ Avoid using latest tags.

Same as when dealing with dependencies without Semantic Versioning:
you don’t know what you are actually deploying when you deploy latest.

Here’s a typical deployment init script like the ones we currently use in pro-
duction:

#!/bin/bash
CONFIG=/opt/thinkable-ducks/config. json
REGISTRY=(redacted)

VERSION=3.6.5

REPO=shimaore/tough-rate: ${VERSION}

case "$1" in
pull)
docker pull "${REGISTRY}/${REPO}"

)

start)

{ echo -n "#### Start $DOCKER_NAME $REPO ####"; date; git show; } >> $HOME/version.log

Remove any lingering container.

docker rm ${DOCKER_NAME} || echo '(ignored)'

Create log directory if it doesn't exist.

mkdir -p log

Start the image.

docker run -d --net host \
--restart=always \
--name ${DOCKER_NAME} \
--env-file=./env \
-v ${PWD}/config.json:${CONFIG} -e CONFIG=${CONFIG} \
-v ${PWD}/log:/opt/tough-rate/log \
"${REGISTRY}/${REPO}"

LI

stop)
{ echo -n "#### Stop $DOCKER_NAME $REPQO ####"; date; } >> $HOME/version.log
docker kill ${DOCKER_NAME} || echo '(ignored)'
docker rm ${DOCKER_NAME} || echo '(ignored)'
true

0

JSON Swiss Army KnifeJQ

rest -G \
-d startkey='\"rule:16171\"' \
-d endkey='\"rule:1617999\""' \
https://couchdb.example.net/ruleset/_all_docs | \

jq '{docs: (.rows | map({ _id: .id, _rev: .value.rev, _deleted:true })) }' \

rest -X POST --data-binary @- \

https://couchdb.example.net/ruleset/_bulk_docs

The command-line is alive and well!

rest is:

curl -n \
-H 'Accept: application/json' \
-H 'Content-Type: application/json' \
n $@ n

And more fun

e Project Metadata - package. json
applies to npm, but I also use it in the Makefile that builds Docker images
to figure out the version (tag) to apply to the docker build

o Semantic Versioning - http://semver.org/

o Dependency locking
applies to npm and others, e.g. tshark in nifty-ground’s Dockerfile

e Dependencies management: npm, Dockerfile; Gemnasium

Thank you | Merci

CCNQ4 https://github.com/shimaore/ccngd

Code https://github.com/shimaore/

o Presentation: http://shimaore.github.io/2015-rmll-dev
Contact http://stephane.shimaore.net/

10

	Let's go Historical
	v0.x (2006) ssh push
	(think ansible)

	v1.5 (2007) Perl (sync)
	CouchDB?

	v2.0 (2009) Perl async, CouchDB
	v3 (2010) Node.js, CouchDB, RabbitMQ
	v4 (2014) Node.js, CouchDB, Docker.io, Socket.IO

	Let's talk About Code
	Guiding Principles
	Promises
	Fluent
	Domain-Specifc LanguagesDSL
	Domain-Specifc LanguagesVoicemail

	Let's talk aboutFun
	esl module
	Middleware useful-wind
	Middleware Power thinkable-ducks
	Distributed Sniffer nifty-ground

	More Fun
	PouchDB
	Docker.io
	JSON Swiss Army KnifeJQ
	And more fun
	Thank you | Merci

