CONQ(4)

Stéphane Alnet

RMLL, July 2015

CCNQ was born in 2006.
That’s 9 years ago.

What happened during these 9 years?

Let’s go Historical

v0.x (2006) ssh push
(think ansible)
e System and customer configuration in a single document.

¢ Only OK when you’re doing a couple changes a day.
¢ Code was lost in the Carribeans.

v1.5 (2007) Perl (sync)
CouchDB?

o Barely better.
e Code also thankfully lost.



v2.0 (2009) Perl async, CouchDB

e CouchDB on each call-processing server

e Perl async for realtime change management
o Task management via CouchDB

o Everything: provisioning, rating, UI, ...

o Perl packages

Doing async in Perl is hard.

e No unified model for callbacks.

e Incompatibilities between modules sometimes create hard-to-resolve locking
situations.

o Never was able to get a CouchDB/AMQP /FileSystem synchronization to
work properly.

v3 (2010) Node.js, CouchDB, RabbitMQ

¢ Focus on deployable call-processing
e Node.js for async

e Debian packages

o AMQP for M2M

e Host configurations in CouchDB

¢ CouchDB-based DNS

Host configuration changes are dynamically applied (e.g. FreeSwitch XML con-
figuration files generated on the fly + reloadxml).

Debian packages are hard.

AMQP is verbose. (Also: 1ko limit per message?)

v4 (2014) Node.js, CouchDB, Docker.io, Socket.IO

e Docker.io: one app, one container.

e Apps built out of tiny components.

« package.json & git for (strong) dependency management.
¢ Socket.io for M2M & Ul



o Host configurations in git(lab)

Host configurations in git(lab) really is a workaround. Ideally should move back
to a database-centric approach to host provisioning. Lots of code to migrate
from CCNQ3, still iterating.

Let’s talk About Code

Guiding Principles

e APIs: REST/JSON and Socket.IO only
No HTML generated on servers, use templating on the client.

e Prefer changes over directives

e Same modules on the server and the client: PouchDB, Socket.io-client,
superagent, bluebird (Promises)

Promises
This isn’t 2011 anymore.
serialize cfg, 'config'

Configure using config middlewares.

.then ->
unless cfg.server_only is true
fs.writeFileAsync process.env.FSCONF, xml, 'utf-8'

Write FreeSwitch XML configuration (if needed)

.then ->
supervisor.startProcessAsync 'server'

Start the call-handler service

.then ->
unless cfg.server_only is true
supervisor.startProcessAsync 'freeswitch'

Start FreeSwitch (if needed)

.then ->
debug 'Done’

Source: thinkable-ducks/config



Fluent

SuperAgent

.get "#{Qcfg.auth_base 7 @cfg.proxy_base}/_session"
.accept 'json'

.auth user.name, user.pass

.then ({bodyl}) =>
Osession.couchdb_username = body.userCtx.name
O@session.couchdb_roles = body.userCtx.roles
O@session.couchdb_token = hex_hmac_shal Qcfg.couchdb_secret, @session.couchdb_username

Source: spicy-action/couchdb-auth Uses package superagent-as-promised
Also illustrates combining fluent interfaces with Promises.

Domain-Specifc LanguagesDSL
require('zappajs') cfg.web, ->

Qget '/', —>
Q@json
ok: true
name: pkg.name
version: pkg.version

db = new PouchDB cfg.db

Q@get '/forwarding/:number', ->
db.get @param.number
.then (doc) =>
@json forwarding: doc.forwarding

cfg = require process.env.CONFIG 7 './local/config.json'
pkg = require './package.json'

PouchDB = require 'pouchdb'

db = new PouchDB cfg.db

require('zappajs') cfg.web, ->

Q@on trace: —>
if Osession.admin
@broadcast_to 'trace-servers', 'trace', Qdata



client = require('socket.io-client') process.env.SOCKET

client.on 'trace', (doc) ->
client.emit 'trace_started', host:hostname, in_reply_to:doc
Promise.resolve()

.then ->
trace doc
.then ->

client.emit 'trace_completed', host:hostname, in_reply_to:doc
.catch (error) ->
client.emit 'trace_error',
host: hostname
in_reply_to: doc
error: error

Source: project nifty-ground. Note the trick with Promise.resolve() which
allows to start the Promise chain whether function trace returns a Promise or
not.

Domain-Specifc LanguagesVoicemail
class User

main_menu: ->
@call.get_choice "phrase:voicemail_main_menu
.then (choice) =>
switch choice

when "1"
@retrieve_new_messages()
.then (rows) =>

Onavigate_messages rows, O
.then =>
@main_menu()

when "3"
@config_menu()

Souce: project well-groomed-feast, with some renaming to simplify.



Let’s talk aboutFun

esl module
o provides client access to FreeSwitch events socket
e.g. to build a dialer

o provides server access to FreeSwitch events socket
inbound call handling

Success Story

e used in production and to build new services

Testability

e esl has both unitary tests and live tests
e live tests involve starting and stopping FreeSwitch: much easier with
Docker.io!

Middleware useful-wind

o Take the middleware concept from Connect / Express / Zappa
o Apply it to voice calls
 Build call-processing applications by combining (npm) modules

Middleware Power thinkable-ducks

o process calls (ESL)

o access CouchDB (PouchDB)

o receive and send events (Socket.IO-client)
o serve APIs (ZappalJS)

Examples:

¢ tough-rate LCR engine used in production at K-net
o well-groomed-feast voicemail engine



Distributed Sniffer nifty-ground

Browser

e Request generated by JS on the browser
e Sent over Socket.io to dispatcher.

Server

e Process on each server waits for request from dispatcher

e Send notification — browser builds list of expected responses
e Queries captures files

e Send notification (with data)

o Store PCAP file (last 500 packets) in CouchDB

More Fun

PouchDB

Browser:

db = new PouchDB 'users'

db.put _id:'shimaore', name:'Stéphane Alnet'
.then ->
db.get 'shimaore'
.then (doc) ->
assert doc.name is 'Stéphane Alnet'
.catch (error) ->
cuddly.csr "Could not retrieve shimaore: #{errorl}"

All accesses are local to the browser. Database is persisted.

Browser: Access CouchDB



db = new PouchDB 'https://couchdb.example.net:6984/users'’

Sync Browser «+—— CouchDB
PouchDB.sync 'users', 'https://couchdb.example.net:6984/users'

Two-way replication. Also exist as one-way replication with replicate. Offline-
first made easy. Also check out Hoodie.hq!

Server: Use local database

db = new PouchDB 'users'

Docker.io

e In production we use -—network=host
Although it would help greatly document things if we were using the Docker
connection thingies. But we do a lot of UDP and kernel-level stuff for
speed.

e Lessons learned: need to consider containers as read-only images
Otherwise they grow larger and larger in production due to AUFS. Use
mountpoint for logs, live data.

o It’s hard to use independent UIDs inside containers.

When mounting logs etc the UIDs are kept identical, often resulting in
access issues.

o docker-ccng module (private) to ensure proper start of containers.
Essentially git pull at install + for dir in ~docker/start/[0-9]*; do
cd $dir && ./init start; done

e Large amount of disk vs compression.

Docker.io uses large amounts of disk because the intermediary (build) steps
of a Dockerfile are part of the final image. Compression (=keep only data
that is still present) is a hotly debated topic.

¢ Avoid using latest tags.

Same as when dealing with dependencies without Semantic Versioning:
you don’t know what you are actually deploying when you deploy latest.

Here’s a typical deployment init script like the ones we currently use in pro-
duction:



#!/bin/bash
CONFIG=/opt/thinkable-ducks/config. json
REGISTRY=(redacted)

VERSION=3.6.5

REPO=shimaore/tough-rate: ${VERSION}

case "$1" in
pull)
docker pull "${REGISTRY}/${REPO}"

)

start)

{ echo -n "#### Start $DOCKER_NAME $REPO ####"; date; git show; } >> $HOME/version.log

# Remove any lingering container.

docker rm ${DOCKER_NAME} || echo '(ignored)'

# Create log directory if it doesn't exist.

mkdir -p log

# Start the image.

docker run -d --net host \
--restart=always \
--name ${DOCKER_NAME} \
--env-file=./env \
-v ${PWD}/config.json:${CONFIG} -e CONFIG=${CONFIG} \
-v ${PWD}/log:/opt/tough-rate/log \
"${REGISTRY}/${REPO}"

LI

stop)
{ echo -n "#### Stop $DOCKER_NAME $REPQO ####"; date; } >> $HOME/version.log
docker kill ${DOCKER_NAME} || echo '(ignored)'
docker rm  ${DOCKER_NAME} || echo '(ignored)'
true

0

JSON Swiss Army KnifeJQ

rest -G \
-d startkey='\"rule:16171\"' \
-d endkey='\"rule:1617999\""' \
https://couchdb.example.net/ruleset/_all_docs | \

jq '{docs: (.rows | map({ _id: .id, _rev: .value.rev, _deleted:true })) }' \

rest -X POST --data-binary @- \



https://couchdb.example.net/ruleset/_bulk_docs

The command-line is alive and well!

rest is:

curl -n \
-H 'Accept: application/json' \
-H 'Content-Type: application/json' \
n $@ n

And more fun

e Project Metadata - package. json
applies to npm, but I also use it in the Makefile that builds Docker images
to figure out the version (tag) to apply to the docker build

o Semantic Versioning - http://semver.org/

o Dependency locking
applies to npm and others, e.g. tshark in nifty-ground’s Dockerfile

e Dependencies management: npm, Dockerfile; Gemnasium

Thank you | Merci

CCNQ4 https://github.com/shimaore/ccngd

Code https://github.com/shimaore/

o Presentation: http://shimaore.github.io/2015-rmll-dev
Contact http://stephane.shimaore.net/
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