FOSS crypto

JP Aumasson (@veorq)

This talk:
Get you to know common FOSS crypto libs
What they can do for you

Not a howto

Role of crypto libraries and APls:

Allow you to use third-party code
for crypto protocols and algorithms

“Don’t roll your own crypto implementations”

crypto-js

vaScript implementations of standard and secure cryptographic algorithms

Many more...

Choosing the right lib is difficult

Define your requirements
\

N\
e
4

Differentiators:

_anguage
_icense
-unctionality

Algorithms and protocols
API level

Security
Performance

Language:

Most libs written in C(++)

C# and Java for Bouncy Castle
JavaScript libs, pure JS or Emscripten’d

Popular libs already have bindings for most
common languages; you may write your own

License:

Often permissive

OpenSSL: Apache 1.0 and 4-clause BSD

both permissive, no copyleft, not GPL-compatible

mbed TLS: GPLv2 with possible exceptions

NaCl: “Public domain”

LibTomCrypt: WTFPL (Do What the Fuck You Want to PL)

BouncyCastle: MIT (permissive, no copyleft, OSI, GPL compatible)
Crypto++: Boost 1.0 (MIT-like)

Functionality:

Do you need a whole TLS or just an AES?

Or a more specific protocol, like OTR chat?

Algorithms and protocols:

Established standards vs. state-of-the-art

Single algorithm vs. a collection of algorithms

Crypto++: AES, Blowfish, Camellia, CAST-256, DES,
DESX, 3DES, GOST, IDEA, MARS, Panama, RC2, RC4,
RC5, Salsa20, SEED, Serpent, SHACAL-2, Skipjack,
Sosemanuk, Square, TEA, XTEA

iIn modes CBC, CCM, CFB, CTR, CTS, EAX, GCM, OFB

NaCl: Salsa20, AES-128-CTR

Secure session = key agreement followed by
authenticated encryption

OpenSSL implements most TLS standards,
cipher suites, features and options, etc.

NaCl only implements its custom algorithms,
without all the session establishment

API level:

The fewer choices/freedom/options, the fewer
chances to get it wrong

REACTIONS TO INCREASING CHOICE

POSITIVE EMOTIONS POSITIVE EMOTIONS

Good feelings

Net feelings

NUMBER OF NUMBER OF
CHOICES) 0 CHOICES

Bad
feelings

NEGATIVE EMOTIONS NEGATIVE EMOTIONS

Example of a high-level API: NaCl

/* key generation */
pk = crypto box_ keypair(&sk)

/* authenticated encryption */
c = crypto _box(m, n, pk, sk)

/* decryption and verification */
m = crypto box open(c, n, pk, sk)

Example of a low-level APl: OpenSSL

/* RSA key generation */
EVP_PKEY CTX set rsa keygen bits(kctx, 2048);
EVP_PKEY keygen(kctx, &key);

/* omitting generation of a symmetric key... */

/* encrypting one message with AES-256-CBC */

EVP_EncryptInit(&ctx, EVP_aes 256 cbc(), key,
iv); EVP_EncryptUpdate(&ctx, out, &outlenl, in,
sizeof(in)); EVP_EncryptFinal(&ctx, out +
outlenl, &outlen2);

/* (...) */

Security:

Most important criteria: if crypto doesn’t do its
job, why bother?

“Usual” software bugs: logical bugs, memory
corruptions, memory leaks, etc.

Crypto bugs: incorrect implementations,
oracles, timing leaks, fault attacks, etc.

Most of the popular libraries sport complex and non-
intuitive APIs that present the developer with numerous
choices, many of of which are insecure. The result is that
even experienced developers routinely select dangerous
combinations. The visible consequence is a
superabundance of security vulnerabilities in recent
cryptographic software (...)

Matthew Green

https://www.usenix.org/conference/hotsec13/crypto-apis

https://www.usenix.org/conference/hotsec13/crypto-apis
https://www.usenix.org/conference/hotsec13/crypto-apis

OpenSSL.:

Many LoCs => more bugs (not good)

Many eyeballs => more bug reports (good)
Often prioritized speed and functionality
Fragile against cache-timing and oracle attacks

NaCl:

Few LoCs, DJB-quality code => fewer bugs
No major bug reported

Only inherently safe primitives
Time-constant, no secret branchings, etc.

Performance (speed):
Sometimes crucial, sometimes unimportant

OpenSSL.: fast implementations of algorithms,
CPU-specific, using assembly optimizations

NaCl: choice of fast algorithms, suited for fast
Implementations

A closer look at popular and unique libs...

OpenSSL
Obviously
libcrypto, EVP APl + command-line toolkit

More than 460,000 lines of code

https://openssl.org https://wiki.openssl.org

https://openssl.org
https://openssl.org
https://openssl.org
https://wiki.openssl.org
https://openssl.org

ASN.1 parsing, CA/CRL management

crypto: RSA, DSA, DH*, ECDH*; AES,
CAMELLIA, CAST, DES, IDEA, RC2, RC4,
RC5; MD2, MD5, RIPEMD160, SHA*; SRP,
CCM, GCM, HMAC, GOST*, PKCS*,

PRNG, password hashing, S/MIME
X.509 certificate management, timestamping

some crypto accelerators, hardware tokens

clients and servers for SSL2, SSL3, TLS1.0,
TLS1.1, TLS1.2, DTLS1.0, DTLS1.2

SNI, session tickets, etc. etc.

*nix

BeOS

DION

HP-UX

Mac OS Classic

NetWare

OpenVMS

ULTRIX

VxWorks

Win* (including 16-bit, CE)

OpenSSL is the space shuttle of crypto
libraries. It will get you to space, provided you
have a team of people to push the ten
thousand buttons required to do so.

Matthew Green

| promise nothing complete; because any
human thing supposed to be complete, must
not for that very reason infallibly be faulty.

Herman Melville, in Moby Dick

buffer = OPENSSL malloc(1l + 2 + payload + padding);

bp = buffer;

*bp++ = TLS1 HB_RESPONSE;

s2n(payload, bp);

memcpy(bp, pl, payload);

r = ssl3 write bytes(s, TLS1l RT HEARTBEAT, buffer, \
3 + payload + padding);

buffer = OPENSSL malloc(1l + 2 + + padding);
bp = buffer;

*bp++ = TLS1 HB RESPONSE;

s2n(» bp);

memcpy (bp, pl,)5

r = ssl3 write bytes(s, TLS1l RT HEARTBEAT, buffer, \
3 + + padding);

is not the payload but its length (pl is the payload)

Easy to criticize OpenSSL'’s code...
Source code and API complex, often confusing
Large codebase, many contributors

Few quality- and security-control processes

Recent effort: niws/mwwo

OpenSSL Security Policy
Last modified 7th September 2014

Introduction

Recent flaws have captured the attention of the media and highlighted how much of the internet infrastructure 1s based
on OpenSSL. We've never published our policy on how we internally handle security 1ssues; that process being based
on experience and has evolved over the years.

Reporting security issues

We have an email address which can be used to notify us of possible security vulnerabilities. A subset of OpenSSL
team members receive this mail, and messages can be sent using PGP encryption. Full details are at
https://www.openssl.org/news/vulnerabilities.html

tise it.

Internal handling of security issues ith

This leads us to our policy for security issues notified to us or found by our team which are not yet public.

Prenotification policy

Where we are planning an update that fixes security 1ssues we will notify the openssl-ar
home page to give our scheduled update release date and time and the severity of 1ssues

https://www.openssl.org/about/secpolicy.html

LibreSSL 3

What did we do? We gutted the junk. We started rewriting lots of functions.
We added some cool new crypto support, for things like ChaCha20.

Initiative of the OpenBSD community
Big progress in little time
Portable version and OpenBSD version

libtls library for simpler TLS clients and servers

NaCl (“salt”)

The anti-OpenSSL

High-security and high-speed {primitives, code}
About 15,000 lines of code

http://nacl.cr.yp.to

http://nacl.cr.yp.to
http://nacl.cr.yp.to

TweetNaCil:
a crypto library in 100 tweets

introduction || INtroduction

Software

Papers TweetNaCl is the world's first auditable high-security

—___ cryptographic library. TweetNaCl fits into just 100 tweets while
supporting all 25 of the C NaCl functions used by applications.
TweetNaCl is a self-contained public-domain C library, so it can
easily be integrated into applications.

975 lines of code!

NaCl is more like an elevator — you just press
a button and it takes you there. No frills or
options.

Matthew Green

The other side of the coin:

Restricted set of algorithms and functionalities
_imited portability, non-standard build system
rregularly updated (some bugs remain unfixed)

"llibsodium

“a portable, cross-compilable, installable, packageable fork
of NaCl, with a compatible API, and an extended API to

improve usability even further.” https://download.libsodium.org/doc/

Builds on Windows, OS X, i0S, Android, etc.

Bindings for all common languages

Compiled to pure JavaScript: libsodium.js

https://download.libsodium.org/doc/

prompt_input("a key", (char*)key, sizeof key, 0);

message len = prompt_input("a message", (char*)message,
sizeof message, 1);

printf("Generating %s authentication...\n",
crypto_auth _primitive());

crypto_auth(mac, message, message len, key);

printf("Authentication tag: ");
print_hex(mac, sizeof mac);

puts("Verifying authentication tag...");
ret = crypto_auth_verify(mac, message, message len, key);

print_verification(ret);

sodium_memzero(key, sizeof key); /* wipe sensitive data */

An even more specific library...

libotr
Implements the off-the-record (OTR) protocol

Runs on top of instant messaging systems

https://github.com/off-the-record/libotr https://otr.cypherpunks.ca/

https://github.com/off-the-record/libotr
https://github.com/off-the-record/libotr
https://github.com/off-the-record/libotr
https://github.com/off-the-record/libotr

libotr is not a travesty of confusion and neglect
like openssl. In fact, it shows encouraging signs
of being competently written.

Joseph Birr-Pixton
http://jbp.i0/2014/08/28/libotr-code-review/

http://jbp.io/2014/08/28/libotr-code-review/
http://jbp.io/2014/08/28/libotr-code-review/

libotr
Quality code, consistent, commented
Does one thing and does it well

Good security track record

* “" f_” Matthew Green

So @tgbf and | have a bet. If any severe

vulnerability is found in libotr before
11/4/2015 he gives @EFF $1000. Get
cracking people!

X

Conclusions

There’s probably a crypto library matching your
needs, no need to write your own

ldentify your requirements and search for the
lib that best matches

Prefer high-level to low-level APls, reduces the
risk of error and the code on your side

EEVOLUTION Of

SOFTWARE ARCHITECTURE
Will we move towards 1990's
crypto microservices? e

2000's
Multiple high-level libs for s e
specific applications, rather =

. 2010’
than one low-level lib B

ARCHITECTURE

misused by developers?

WHAT'S NEXT?
PROBABLY PIZZA-ORIENTED ARCHITECTURE

Merci!

List of crypto libs: htip://tinyurl.com/cryptolibs

http://tinyurl.com/cryptolibs

