
Docker for
Sysadmins:
what's in it

for me?
1 / 76

1 / 76

Who am I?
Jérôme Petazzoni (@jpetazzo)

French software engineer living in California

Joined Docker (dotCloud) more than 4 years ago
(I was at Docker before it was cool!)

I have built and scaled the dotCloud PaaS

I learned a few things about running containers
(in production)

Started an hosting company in 2004

Sysadmin since 1999

2 / 76

https://twitter.com/jpetazzo

2 / 76

Outline
Intro / pop quizz about Docker and containers

Sysadmin point of view: VMs vs containers

Ops will be ops, devs will be devs

Composing stacks of containers

Is it safe to use it yet?

3 / 76

3 / 76

Recap
about Docker

and containers

4 / 76

4 / 76

Build, ship, and run
any app, anywhere

5 / 76

5 / 76

Take any Linux program, and put it in a container

6 / 76

6 / 76

Take any Linux program, and put it in a container
Web apps and services, workers
(Go, Java, Node, PHP, Python, Ruby...)

7 / 76

7 / 76

Take any Linux program, and put it in a container
Web apps and services, workers
(Go, Java, Node, PHP, Python, Ruby...)

Data stores: SQL, NoSQL, big data
(Cassandra, ElasticSearch, Hadoop, Mongo, MySQL, PostgreSQL, Redis...)

8 / 76

8 / 76

Take any Linux program, and put it in a container
Web apps and services, workers
(Go, Java, Node, PHP, Python, Ruby...)

Data stores: SQL, NoSQL, big data
(Cassandra, ElasticSearch, Hadoop, Mongo, MySQL, PostgreSQL, Redis...)

Other server-y things
(Consul, Etcd, Mesos, RabbitMQ, Zookeeper...)

9 / 76

9 / 76

Take any Linux program, and put it in a container
Web apps and services, workers
(Go, Java, Node, PHP, Python, Ruby...)

Data stores: SQL, NoSQL, big data
(Cassandra, ElasticSearch, Hadoop, Mongo, MySQL, PostgreSQL, Redis...)

Other server-y things
(Consul, Etcd, Mesos, RabbitMQ, Zookeeper...)

Command-line tools
(AWS CLI, Ffmpeg...)

10 / 76

10 / 76

Take any Linux program, and put it in a container
Web apps and services, workers
(Go, Java, Node, PHP, Python, Ruby...)

Data stores: SQL, NoSQL, big data
(Cassandra, ElasticSearch, Hadoop, Mongo, MySQL, PostgreSQL, Redis...)

Other server-y things
(Consul, Etcd, Mesos, RabbitMQ, Zookeeper...)

Command-line tools
(AWS CLI, Ffmpeg...)

Desktop apps
(Chrome, LibreOffice, Skype, Steam...)

11 / 76

11 / 76

What about non-Linux programs?

12 / 76

12 / 76

What about non-Linux programs?
Desktop apps with WINE
(e.g.: Spotify client)

13 / 76

13 / 76

What about non-Linux programs?
Desktop apps with WINE
(e.g.: Spotify client)

Coming soon: Docker for Windows
(run Windows apps on Windows machines)

14 / 76

14 / 76

What about non-Linux programs?
Desktop apps with WINE
(e.g.: Spotify client)

Coming soon: Docker for Windows
(run Windows apps on Windows machines)

Coming soon: Docker for FreeBSD
(port in progress)

15 / 76

15 / 76

What about non-Linux programs?
Desktop apps with WINE
(e.g.: Spotify client)

Coming soon: Docker for Windows
(run Windows apps on Windows machines)

Coming soon: Docker for FreeBSD
(port in progress)

Coming eventually: Docker for OS X
(technically possible; but is this useful?)

16 / 76

16 / 76

Ship that container easily and efficiently
Docker comes with an image distribution protocol

Distribution server can be hosted by Docker Inc.
(free for public images)

Distribution protocol is public

Open source reference implementation
(used by Docker Inc. for the public registry)

Container images are broken down into layers

When updating and distributing an image,
only ship relevant layers

17 / 76

17 / 76

Run those containers anywhere
Containers can run in VMs or in physical machines

Docker is available on all modern Linux variants

Many IAAS providers have server images with Docker

On OS X and Windows dev machines: boot2docker

There are distros dedicated to run Docker containers
(Atomic, CoreOS, RancherOS, Snappy Core...)

Other Docker implementations exist (e.g. Joyent Triton)

Docker-as-a-Service providers are blooming

18 / 76

18 / 76

Blah, blah, blah ...

19 / 76

19 / 76

We already have zones, LXC, jails!

20 / 76

20 / 76

We already have zones, LXC, jails!
Give me a one-liner to start an Ubuntu 12.04 LTS
with zones/LXC/jails

21 / 76

21 / 76

We already have zones, LXC, jails!
Give me a one-liner to start an Ubuntu 12.04 LTS
with zones/LXC/jails

You know how to do this, but your developers don't
(and they don't want to learn, that's not their job)

22 / 76

22 / 76

We already have zones, LXC, jails!
Give me a one-liner to start an Ubuntu 12.04 LTS
with zones/LXC/jails

You know how to do this, but your developers don't
(and they don't want to learn, that's not their job)

docker run -ti ubuntu:12.04 bash

23 / 76

23 / 76

We already have zones, LXC, jails!
Give me a one-liner to start an Ubuntu 12.04 LTS
with zones/LXC/jails

You know how to do this, but your developers don't
(and they don't want to learn, that's not their job)

docker run -ti ubuntu:12.04 bash

Why do you use dpkg/rpm/apt/yum instead of
ftp+configure+make install?

24 / 76

24 / 76

We already have zones, LXC, jails!
Give me a one-liner to start an Ubuntu 12.04 LTS
with zones/LXC/jails

You know how to do this, but your developers don't
(and they don't want to learn, that's not their job)

docker run -ti ubuntu:12.04 bash

Why do you use dpkg/rpm/apt/yum instead of
ftp+configure+make install?

Because you're not paid to compile things by hand

25 / 76

25 / 76

We already have zones, LXC, jails!
Give me a one-liner to start an Ubuntu 12.04 LTS
with zones/LXC/jails

You know how to do this, but your developers don't
(and they don't want to learn, that's not their job)

docker run -ti ubuntu:12.04 bash

Why do you use dpkg/rpm/apt/yum instead of
ftp+configure+make install?

Because you're not paid to compile things by hand

Guess what:
you're not paid to provision environments by hand

26 / 76

26 / 76

"Give a man a fish,
you feed him for a day;
teach a man to fish..."

27 / 76

27 / 76

VMs vs
containers

28 / 76

28 / 76

Portability
Containers can run on top of public cloud
(run the same container image everywhere)

Nested hypervisors (VMs in VMs) exist, but still rare

Containers are easy to move
(thanks to layers, distribution protocol, registry...)

VM images have to be converted and transferred
(both are slow operations)

29 / 76

29 / 76

Format & environment
VM

executes machine code
environment = something that looks like a computer

JVM

executes JVM bytecode
environment = Java APIs

Container

executes machine code
environment = Linux kernel system calls interface

30 / 76

30 / 76

Containers have low overhead
Normal* process(es) running on top of normal kernel

No device emulation (no extra code path involved in I/O)

Context switch between containers
= context switch between processes

Benchmarks show no difference at all
between containers and bare metal
(after adequate tuning and options have been selected)

Containers have higher density

* There are extra "labels" denoting membership to given
namespaces and control groups. Similar to regular UID.

31 / 76

31 / 76

VMs have stronger isolation
Inter-VM communication must happen over the network
(Some hypervisors have custom paths, but non-standard)

VMs can run as non-privileged processes on the host
(Breaking out of a VM will have ~zero security impact)

Containers run on top of a single kernel
(Kernel vulnerability can lead to full scale compromise)

Containers can share files, sockets, FIFOs, memory areas...
(They can communicate with standard UNIX mechanisms)

32 / 76

32 / 76

Analogy: brick walls vs. room dividers
Brick walls

sturdy

slow to build

messy to move

Room dividers

fragile

deployed in seconds

moved easily

33 / 76

33 / 76

Blurring lines
Intel Clear Containers; Clever Cloud
(stripped down VMs, boot super fast, tiny footprint)

Joyent Triton
(Solaris "branded zones," running Linux binaries securely,
exposing the Docker API)

Ongoing efforts to harden containers
(GRSEC, SELinux, AppArmor)

34 / 76

34 / 76

VMs vs
containers

(hoster/ops
perspective)

35 / 76

35 / 76

Inside
VMs need a full OS and associated tools
(Backups, logging, periodic job execution, remote access...)

Containers can go both ways:

machine container
(runs init, cron, ssh, syslog ... and the app)

application container
(runs the app and nothing else;
relies on external mechanisms)

36 / 76

36 / 76

VM lifecycle
Option 1: long lifecycle
(provisioning→update→update→…→update→disposal)

easily leads to configuration drift
(subtle differences that add up over time)

requires tight configuration management

Option 2: golden images
(phoenix servers, immutable infrastructure ...)

create new image for each modification

deploy by replacing old servers with new servers

nice and clean, but heavy and complex to setup

37 / 76

37 / 76

Container lifecycle
Containers are created from an image

Image creation is easy

Image upgrade is fast

Immutable infrastructure is easy to implement

Why? Because container snapshots are extremely fast and cheap.

38 / 76

38 / 76

Development process (VMs)
Best practice in production = 1 VM per component

Not realistic to have 1 VM per component in dev

Also: prod has additional/different components
(e.g.: logging, monitoring, service discovery...)

Result: very different environment for dev & prod

39 / 76

39 / 76

Development process (containers)
Run tons of containers on dev machines

Build the same container for dev & prod

How do we provide container variants?

40 / 76

40 / 76

Bloated containers
Containers have all the software required for production

In dev mode, only essential processes are started

In prod mode, additional processes run as well

Problems:

bigger containers

behavior can differ (because of extra processes)

extra processes duplicated between containers

hard to test those extra processes in isolation

41 / 76

41 / 76

Separation of
concerns

(let ops do ops,
and devs do dev)

42 / 76

42 / 76

Principle
"Do one thing, do it well"

One container for the component itself

One container for logging

One container for monitoring

One container for backups

One container for debugging (when needed)

etc.

43 / 76

43 / 76

Implementation (general principles)
Containers can share almost anything, selectively

files
(logs, data at rest, audit)

network stack
(traffic routing and analysis, monitoring)

process space, memory
(process tracing and debugging)

44 / 76

44 / 76

Let's dive
into the details

45 / 76

45 / 76

Logging (option 1: Docker logging drivers)
Containers write to standard output

Docker has different logging drivers:

writes to local JSON files by default

can send to syslog

Imperfect solution for now, but will be improved.
Preferred in the long run.

46 / 76

46 / 76

Logging (option 2: shared log directory)
Containers write regular files to a directory

That directory is shared with another container

docker run -d --name myapp1 -v /var/log myapp:v1.0

In development setup:

docker run --volumes-from myapp1 ubuntu \
 sh -c 'tail -F /var/log/*'

In production:

docker run -d --volumes-from myapp1 logcollector

47 / 76

47 / 76

Logging takeaways
Application can be "dumb" about logging

Log collection and shipping happens in Docker,
or in separate(s) container(s)

Run custom log analyzer without changing app container
(e.g. apachetop)

Migrate logging system without changing app container

48 / 76

48 / 76

"Yes, but..."
"What about performance overhead?"

no performance overhead

both containers access files directly
(just like processes running on the same machine)

"What about synchronization issues?"

same as previous answer!

49 / 76

49 / 76

Backups (file-based)
Store mutable data on Docker volumes
(same mechanism as for logs)

Share volumes with special-purpose backup containers

Put backup tools in the backup container
(boto, rsync, s3cmd, unison...)

docker run --volumes-from mydb1 ubuntu \
 rsync -av /var/lib/ backup@remotehost:mydb1/

The whole setup doesn't touch the app (or DB) container

50 / 76

50 / 76

Backups (network-based)
Run the backup job (pg_dump, mysqldump, etc.)
from a separate container

Advantages (vs. running in the same container):

nothing to install in the app (or DB) container

if the backup job runs amok, it remains contained (!)

another team can maintain backup jobs
(and be responsible for them)

51 / 76

51 / 76

Network analysis
Packet capture (tcpdump, ngrep, ntop, etc.)

Low-level metrics (netstat, ss, etc.)

Install required tools in a separate container image

Run a container in the same network namespace

docker run -d --name web1 nginx
docker run -ti --net container:web1 tcpdump -pni eth0
docker run -ti --net container:web1 ubuntu ss -n --tcp

52 / 76

52 / 76

Service discovery
Docker can do linking and generic DNS injection

Your code connects to e.g. redis
(pretending that redis resolves to something)

Docker adds a DNS alias* so that redis resolves
to the right container, or to some external service

In dev, Docker Compose manages service dependencies

In prod, you abstract service discovery from the container

* Really, an entry in the container's /etc/hosts.

53 / 76

53 / 76

Service discovery in practice
When service A needs to talk to service B...

1. Start container B on a Docker host

54 / 76

54 / 76

Service discovery in practice
When service A needs to talk to service B...

1. Start container B on a Docker host

2. Retrieve host+port allocated for B

55 / 76

55 / 76

Service discovery in practice
When service A needs to talk to service B...

1. Start container B on a Docker host

2. Retrieve host+port allocated for B

3. Start ambassador (relaying to this host+port)

56 / 76

56 / 76

Service discovery in practice
When service A needs to talk to service B...

1. Start container B on a Docker host

2. Retrieve host+port allocated for B

3. Start ambassador (relaying to this host+port)

4. Start container A linked to ambassador

57 / 76

57 / 76

Service discovery in practice
When service A needs to talk to service B...

1. Start container B on a Docker host

2. Retrieve host+port allocated for B

3. Start ambassador (relaying to this host+port)

4. Start container A linked to ambassador

5. Profit!

58 / 76

58 / 76

General pattern
Your code runs in the same container in dev and prod

Add "sidekick*" containers for additional tasks

Developers don't have to be bothered about ops

Ops can do their job without messing with devs' code

* Kubernetes sometimes calls them "sidecars."

59 / 76

59 / 76

Composing
stacks of

containers

60 / 76

60 / 76

Docker Compose

61 / 76

61 / 76

docker-compose.yml
rng:
 build: rng

hasher:
 build: hasher

webui:
 build: webui
 links:
 - redis
 ports:
 - "80:80"
 volumes:
 - "webui/files/:/files/"

redis:
 image: redis

worker:
 build: worker
 links:
 - rng
 - hasher
 - redis

62 / 76

62 / 76

Docker Compose
Start whole stack with docker-compose up

Start individual containers (and their dependencies)
with docker-compose up xyz

Takes care of container lifecycle
(creation, update, data persistence, scaling up/down...)

Doesn't automatically solve networking and discovery (yet)

63 / 76

63 / 76

Docker Compose
Start whole stack with docker-compose up

Start individual containers (and their dependencies)
with docker-compose up xyz

Takes care of container lifecycle
(creation, update, data persistence, scaling up/down...)

Doesn't automatically solve networking and discovery (yet)

... However ...

64 / 76

64 / 76

docker-compose.yml, reloaded

hasher:
 build: hasher

worker:
 build: worker
 links:
 - rng
 - hasherproxy:hasher
 - redis

hasherproxy:
 image: jpetazzo/hamba
 links:
 - hasher
 command: 80 hasher 80

(This was automatically generated by a tiny Python script.)

65 / 76

65 / 76

Heads up!
Docker networking is evolving quickly

Docker 1.7 has hooks to support:

"networks" as first class objects

multiple networks

overlay driver allowing to span networks across
multiple hosts

networking plugins from ecosystem partners

66 / 76

66 / 76

Conclusions

67 / 76

67 / 76

Conclusions
Containers can share more context than VMs

We can use this to decouple complexity
(think "microservices" but for ops/devs separation)

All tasks typically requiring VM access
can be done in separate containers

As a result, deployments are broken down
in smaller, simpler pieces

Complex stacks are expressed with simple YAML files

Docker isn't a "silver bullet" to solve all problems,
but it gives us tools that make our jobs easier

68 / 76

68 / 76

"But it's not
production ready!"

69 / 76

69 / 76

Docker is just two years old

70 / 76

70 / 76

Docker is just two years old
And yet ...

71 / 76

71 / 76

Docker is just two years old
And yet ...

Activision, Baidu, BBC News, Booz Allen Hamilton, Capital
One, Disney, Dramafever, Dreamworks, General Electrics,
Gilt, Grub Hub, Heroku, Iron.io, Lyft, Netflix, New York
Times, New Relic, Orbitz, Paypal, Rackspace, Riot Games,
Shippable, Shopify, Spotify, Stack Exchange, Uber,
VMware, Yandex, Yelp, ...

72 / 76

72 / 76

Docker is just two years old
And yet ...

Activision, Baidu, BBC News, Booz Allen Hamilton, Capital
One, Disney, Dramafever, Dreamworks, General Electrics,
Gilt, Grub Hub, Heroku, Iron.io, Lyft, Netflix, New York
Times, New Relic, Orbitz, Paypal, Rackspace, Riot Games,
Shippable, Shopify, Spotify, Stack Exchange, Uber,
VMware, Yandex, Yelp, ...

Reminder: it took 3 years for Linux to get to 1.0
(1991 to 1994) and 7 years to get support for big vendors

73 / 76

73 / 76

What are they using Docker for?
Serving production traffic

Rapid onboarding of new developers

CI/CD

Packaging applications for their customers

etc.

74 / 76

74 / 76

What are they using Docker for?
Serving production traffic

Rapid onboarding of new developers

CI/CD

Packaging applications for their customers

etc.

When you have generic questions about Docker,
try to s/docker/virtualization/ and ask again...

75 / 76

75 / 76

Thanks!
Questions?

@jpetazzo
@docker

76 / 76

https://twitter.com/jpetazzo
https://twitter.com/docker

