The Definitive Guide to

Jython

Python for the Java™ Platform

Enjoy the power and flexibility
of Python on the JVM

/A
Jython

Josh Juneau, Jim Baker, Victor Ng,
Leo Soto, Frank Wierzbicki

Foreword by Ted Leung

Apress

The Definitive Guide to
Jython

Python for the Java™ Platform

Josh Juneau, Jim Baker, Victor Ng, Leo Soto, Frank
Wierzbicki

Apress’

The Definitive Guide to Jython: Python for the Java™ Platform
Copyright © 2010 by Josh Juneau, Jim Baker, Victor Ng, Leo Soto, Frank Wierzbicki

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2527-0
ISBN-13 (electronic): 978-1-4302-2528-7
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in
the US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was
written without endorsement from Sun Microsystems, Inc.

President and Publisher: Paul Manning

Lead Editors: Steve Anglin, Duncan Parkes

Technical Reviewers: Mark Ramm, Tobias Ivarsson

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,
Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editor: Mary Tobin

Copy Editor: Tracy Brown Collins

Indexer: BIM Indexers and e-Services

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

This book is available online under the Creative Commons Attribution-Share Alike license
(http://creativecommons.org/licenses/by-sa/3.0/). You can read the book at http://jythonbook.com.

Contents at a Glance

Contents at a Glance iii
Contents v
Foreword Xix
About the Authors XX
About the Technical Reviewers XXii
Acknowledgments XXxiii
Introduction XXVi
Part I: Jython Basics: Learning the Language..........couumsmmsmmmsmmsmsmmsssmssmsssmsssmsssssssssssssssssssssssssssssns 1
Chapter 1: Language and Syntax 3
Chapter 2: Data Types and Referencingccccoveeerrrrrssssssessessssssssssessessssssssssessssssssssnssessssssns 25
Chapter 3: Operators, Expressions, and Program FIOWccccvnermrssessmsssssssessessssssssssesssssssns 59
Chapter 4: Defining Functions and Using Built-ins 81
Chapter 5: Input and QURPUL.........cocececeeerrrre s s e s sn s e e s as e s e e nnnns 105
Chapter 6: Object-Oriented Jython 113
Chapter 7: Exception Handling and Debugging.........couusmssmmsmmssmssssssssssssssssssssssssssssssssssssssnsssas 133
Chapter 8: Modules and Packages for Cote REUSEcccvrrerrersersmssssessesssssssnssesssssssnssessessnsanns 151
Part II: Using the Language 163
Chapter 9: Scripting With JYthon...........ceerccrrrrrr s ses s s ssssesssssssassessessssneas 165
Chapter 10: Jython and Java Integration ... sesssssssnnas 175
Chapter 11: Using Jython in an IDE ... s ssssssssssesssssssssssssesssssssnssessnssssneas 197
Chapter 12: Databases and Jython: Object Relational Mapping and Using JDBG............c.ccee... 231
Part lll: Developing Applications with Jython 263
Chapter 13: Simple Web ApplICAtioNsccceevrmrrrerrersessssssessessssssssssessssssssssasssssssssssssesssssssasss 265
Chapter 14: Web Applications With Django..........cccccrrrinrmrnnisnnnsssssssssssssssssssssssssssssssssssnnas 281
Chapter 15: Introduction t0 PYIONSccccccerrevsmncsessessesssssssessessssssssssesssssssssssssesssssssnssessnssssasas 327
Chapter 16: GUI Applications 347

iii

CONTENTS AT A GLANCE

Chapter 17: Deployment Targets 359
Part IV: Strategy and TECHNIQUE........cccvrereersmrrrerserssssssnssessesssssssnssessssssssssnssssssssssnssesssssssnssnsssssnsasnns 377
Chapter 18: Testing and Continuous Integration ... ——————— 379
Chapler 19: CONCUITENCY.......cocveevsersrsersersesssssssasssssssssssssesssssssssssssssssssssssssssssssssssnssssssssssassassassssasss 113
Appendix A: Using Other Tools with Jython ... naenns 437
Appendix B: Jython COOKDOOKcccvrererrersessmssmsessessssssssssessssssssssassesssssssssssssessssssssssssssssssassnns 445
Appendix C: Built-in FUNCHIONS ... ssssssssssssssssssssssssssnssssssssssnssnsssssssnssnss 463

Contents

Contents at a Glance iii
Contents v
Foreword Xix
About the Authors XX
About the Technical Reviewers XXii
Acknowledgments XXxiii
Introduction XXvi
Part I: Jython Basics: Learning the Language 1
Chapter 1: Language and Syntax 3
The Difference between Jython and Python..............cooeeiiieccce e 4
Installing and Configuring JYHONc.eeeeeeieeeceee e s 4
Identifiers and Declaring Variablescccvveireirirei e 5
RESEIVEA WOITS.......c.eeeceeeeceecee et st e e ae et e e e ae e et e e e neenesee e e e nnees 6
COUING SHUCTUIE ...ttt sttt ettt st be st et e e eaesbe st e e eseebesbesennesessessensennasens 6
L]0 10 £ RN 8
EXPIBSSIONS ...ttt sttt ettt st e e et e s beeaeeaesbesbeeaeessesbeeaeeseentesbeeaeensentesreeaeeneans 8

U T3 110] LSRR 9
ClASSESveeeeeeeteeteeeeeete et et et e et st e et st et e e ae et e st et eaeeteebesa et e aeebe et et eaeebe et e e eaeereabe et eneeneeresee s ennereaes 10
STAIBMEBNTS ...ttt st b e b e e aeebe b et e e aeebesbenneneerens 11
if-€lif-ElSe STAtBMENT ... e e 12

PINE STAIBMENT......cceeeeeeeee ettt st be st st e e neebe e e e eneenens 13

LU L) (o o1 1T S 15

FAISE STATEMENT ...ttt a b 16
IMPOIE STALEMENT ... e e be e a e ne e 17
FEEIALION ...t ettt ettt e st e e bt e ae e teebeeae e st e besbeeaeensenseebeeneentenbeereeneenes 17
Wl LOOP ...ttt sttt b bt e st s e e e e b st eaenennens 19

o] 0 R 20

vi

CONTENTS

Other PYINON STAtEMENTSccueeviieeeeeee et s ne e 21
DOCUMENTING COUR.......eeeeeeeieeeee ettt e s e e e e neens 22
PYINON HEID ..ottt st et e s beere et e b e ebeenaenresbeeaeennenes 23
SUIMIMAIY ..ttt ettt st be st et e e e aeebe st e e eseebesbassenseseebesbeseseesesbessenseneasestansensasens 24
Chapter 2: Data Types and Referencing 25
PYINON DALA TYPES ...ttt ettt st s b e b st e e eseebe st et e e eneebeseenaennenas 25
Strings and SN MENOGS...........cvvcuieee e s 27
SHING FOrMAING ... e 31
Lists, Dictionaries, Sets, and TUPIES.......c.ccvceiieeeeceee ettt s ere e 33

R SRS 33

List COMPIENENSIONSccveeeueeiiiteieeeee ettt e e e e aesae s besae e e neeresseneenennens 40
TUPIES ettt ettt e et e be et et e beebeeae e teebeeae e e e beebeeaeenteteereeaeenean 41
DICHIONANIESveveieeeeeeete ettt st ae b s be e s e b s be b e e eaesbesbenaeneeaesbesteneenensens 42

GBS ettt ettt ae e a b e b et eae e ebe et be e beneeteRe st ebe e beneerenentenennas 45
RANGES ... e et b e bbbt e enenre s 48
RANGE FOMMALottt nees 49
JYthoNn-SPECIfIC COIBCHIONScveveeeeeiciictecece et aeene s 50
IS ettt ae st e Re e Re et eaeeReeReebeteaeeReeReste e eaeetestesteneenennens 52
1T L0 R 54
Referencing and COPIESccveueeriererieiiesiee ettt et e st saese e sse e saesesaenenensas 55
GArDAYE COlIECHION.........cveeeeieeiee ettt sttt be b be et sesbebesaenesnnas 57
SUMIMANY ...ttt sttt st et eebe e st e s se s e e s b ese st ese e eseseetesessese e nsenesbesesanse e nsenensenens 58
Chapter 3: Operators, Expressions, and Program FIOWc.cccvcrinninnsnsnsnsnssnsessessssssssnsens 59
TYPES OF EXPIESSIONSeuveeeeceieetecsieie ettt sttt ettt st e et se st esese s e e senessenesannan 59
Mathematical OPEIAtIONSccciieieeiee e s e s r e e e neenas 59
COMPArISON OPEIALOIScveeveeeeeetietecteeee ettt sttt st eebe st e st e e seebesbessessesesbesbensesesbesbesseneesensens 63
BitWiSE OPEIALOISceeeeeteitecieeee ettt sttt be s be st e e eaesteste e eseebesbeseenennennens 65
AUGMENTEA ASSIGNIMENTeeiiciiceeeece ettt e st e s beeae et e ebeebeeneebesbeereenean 66
BOOIBAN EXPIESSIONScvecviteieeieiietesteeee et e teste e et stesae e e besbesbeseesesbesbesaeseesesbesteseesessesbessenensensens 68
COMVEISIONSeveeiteeeetete ettt te ettt e b s e be et ese s b eseseebe s ebese st eseseebe e ebenesbenestene e ebenestens 70
Using Expressions to Control Program FIOW............cccccvreirireiinceseesee e 72
if-€lif-elSe STAtBMENTcceeceeeee e e re e 72
WHITE LOOD ettt ettt et s b e et e et e s beeae e s e sbeebeeaeentesbesaeeaeenbesbeereenean 73
CONTINUE STALEMENT.........oeeeeeeece e r e s e e re s re e 74
Dreak STAtBMENT ..o e b e b e n e enas 75

CONTENTS

L0 00 RS 76
EXAMPIE COUR.......ceeeeeecece et st e e ae e re b et e e e neene e e e eneenees 77
SUMIMANY ...ttt ettt eeae e e be e st ese s ese e etese et eseseese e ebeneetenessese e esenestenessesennns 79
Chapter 4: Defining Functions and Using Built-ins 81
FUNCtion SYNtax and BASICS.........ccoeeveeeiiteeieececte ettt st st sn e re b saeeeneenes 81
TRE GEFKBYWOIT........eeiteeeeete ettt ettt s b e st a e ae st e st e e eseebesbe b eneeaesbeseenaenennas 82
NamMINg the FUNCHION.......c.cceeeeeee e ene s 82
Function Parameters and Calling FUNCLIONScooureirceeee e 84
Recursive FUNCHON CallS..........ccoucuiiieicceceeeee ettt st 86
FUNCEION BOOY ...ttt s et sbe e e e b b e e aeeneesbeereennenes 86
Documenting FUNCHONScovoieeee e 86
RETUMING VAIUES......c.oeeeeeeeeeeeee ettt ettt et b e ae b eaeennenes 87
INtrodUCING VANIADIESeoveeeeeeeeeeee et 88
Other STAtBMENTS.......c.oiceeeeece et ae et b s 89
EMPLY FUNCHONS ... st 89
Miscellaneous Information for the Curious REATETccevecerereicec e 90
BUI-IN FUNCTIONS ...ttt ens 90
Alternative Ways 10 Defing FUNCHIONSc.cvouiiiiecc et 90
LAmBAA FUNCLIONSecveeeece ettt s a e e ne e nee e enens 91
GENEIALOr FUNCHIONS........cui ettt sttt st s e s be st e e e e eneseesbenaenenns 91
DEfiNING GENEIATOISecveeceieeee ettt sttt be bt e et e e nene e 92
GENEratOr EXPIESSIONSvcueveeiieieisieeste et et te sttt ettt a b e et e e saese e senes 95
Namespaces, Nested SCOPES, and ClOSUIESc.eeeeeeeereeeeeeeceeete ettt ettt 95
FUNCEION DBCOTALONSc.ecveiieeeeeiecie ettt et sttt et e e b seenaeneens 96
L0 (0TRSO 99
Decorators in COMOULINES.........c.cueiieeeieeece ettt st b e b b et e nns 101
COrOULING EXAMPIEcveeceecee ettt st s e et s b e e e e besbe st e e ennns 102
SUMMEAIY ..ttt ettt e s et e e s b be s et e et ese s b ebe et asesbenesaebesaebansabeneseesessetenstans 102
Chapter 5: Input and QURPUL.........coc s e e s smsnnan s 105
INput from the KEYDOAI............ooueeeee e e e ens 105
SYS.SEAIN AN FAW_INPUL......oivieeccc ettt ene 105
Obtaining Variables from Jython Environment ..o 106
FIIB 10 ettt sttt a et e et b et e et Re e te et e e tenennerenen 107
100 TSRS 110
OULPUL TECNMIQUES ...ttt ettt ettt et re st e sae e e aesbestenseseebestesseneennans 111

vii

CONTENTS

viii

SUIMIMAIY ..ottt sttt ettt et st e aeebe e b e b eseebeebesaesseseebesbenseneebeebesbenseneesesbenseneeseans 112
Chapter 6: Object-Oriented JYthon ... sas e snsanas 113
BASIC SYMIAXecviitecteece ettt s ae b et aeaeeae b b e e aeebesbeaenneneenen 113
ODbject ALIDULE LOOKUPDSoeeeeeeee ettt 117
Inheritance and OVEFIOAAING.........ccvivieeeeceeecee ettt et se et e e seebesre e e e eseanes 119
UNAErSCOrE METNOUSceeeeeeete et s bbb aennenas 121
0001 0] R 123
DEfaUIt ArQUMENTS ...ttt s a e et e e seansenes 127
Runtime Binding of METNOUSc.coiiiiecece et 128
CaChiNg ALTIDULE ACCESSeveueericieeieeeie ettt ettt ettt s be st be st e sae e sesbesbenaeseebesbeseneenis 128
RS0 = o TSR 131
Chapter 7: Exception Handling and Debugging..........cooeerrersererarsessesssssssnssessessssssssssesssssssnssnssnss 133
Exception Handling Syntax and Differences with Java ..o, 133
(021 (o] AT CT=T o] (10 TR 134
RaISING EXCEPLIONScveveeieeieiiee sttt sa et et sa et e e neens 142
Defining YOUr OWN EXCEPLIONS.cveiiieeieicteeetee ettt sttt st ne b s 143
ISSUING WAIMINGSeveitiieieise ettt st et e b e st et e e ebeseenaeneens 143
Assertions and DEDUGGING.........cvvereiriceree e neeneas 148
CONEXE IMANAGETSecveveeete ettt sttt st et e st e et e b e sbe s eseebesbesbensebesbestesseneebesbessensens 148
RS0 = o RN RR 150
Chapter 8: Modules and Packages for Code REUSEcocceersersmrsmsersessssssssssessssssssssessessessssnssnnns 151
IMPOIES TOF RBUSE ...ttt ettt sttt st st e b st e b s aennebesbesreeenis 151
IMPOIT BASICS ... ccveitiitecteete ettt ettt et ettt e re e te st e e beeaeesbesbesbeentesbesbesaeenbesbesbeennenteras 151
DIEAKIAST. DY ..o e e e e bbb s r e s pe e 151

The IMPOrt STALBMENT ...t sttt s ae st e ebesbesreseeneas 153
AN EXAMPIE PrOGIAM......veciiie ettt ettt ettt sae e e s besbesbeensesbesbesaeensesbesbeennensestens 153
Lo (=T A0 LT 7RSS 154

Lo =T=L 2L Y o) OO PRRRRRPRRR 154
OFEEL/ MBI DY ..t e e b e e aeae et s be s pe e nesresrenrenens 154

Lo =TeL A 0L o= oS 154
Trying Out the EXamMPIE COUEcocviiiiieecece et s 154
Types of IMPOrt STAIEMENTSoiiicc e e e e 155
From Import STAtEMENTSceoiiie e e bbb b 155
Relative IMport StAtBMENTS ... e s 156

Aliasing Import Statements.......................
Hiding Module Names..........cccoceovveeeennne.

Module Search Path, Compilation, and LOAdiNg...........cccoeeueeeeiiriveeeeecececeeeee e

Java Import Example ..o,
Module Search Path and Loading..............
Java Package Scanningcccoceevvveienne.

How Jython Finds the Jars and Classes t0 SCaN..........ccccoeceeierencccie s

Compilationcooeeeeeeveieceeceeeeecreen,

Python Modules and Packages versus Java PaCKages.........cccceeeveveeereserieieniesesiesee e seeseesesnennes

SYS.PaAth ..o,
Naming Python Modules and Packages.....
Proper Python Namingcc.cccccevevveenene.
Advanced Import Manipulation.......................
IMport HOOKScoeeeeeceieeeeec e
sys.path_hooks..........ccccovvvrveceieceeee,
sys.meta_path.......cccccoviviececcieieceees
SUMMANY ...
Part II: Using the Language

Chapter 9: Scripting With Jython

Getting the Arguments Passed to a Script
Searching for a Fileccooveveeveveeeeeeeene,
Manipulating Files........cccoevvrreeereereeee
Making a Script a Modulec..ccccoveunneeee.
Parsing Commandline Options
Compiling Java SOUrCe..........cccceeeeerererrennnes
Example Script: Builder.pycccoeeveveveivenene.

Chapter 10: Jython and Java Integration ..
Using Java Within Jython Applications
Using Jython Within Java Applications
Object Factories.......cccovevvvveeeeeeeceeevene,
One-to-One Jython Object Factories
Summary of One-to-One Object Factory

CONTENTS

156
157
157
157
158
158
159
160
160
160
160
161
161
161
161
162
162
163
165
165
166
167
168
169
170
170
172
173
175
175
178
179
179
182

ix

CONTENTS

Making Use of a Loosely Coupled Object FACLOrYccoooevveeeeieececeeeeececeeeeee e 182
More Efficient Version of Loosely Coupled Object Factory........ccccovveeeeeienenccciecc e 186
Returning _ dOC__ STNGSooveeteeeeece ettt e ae e 188
Applying the Design to Different ODjECt TYPES....cviveveeeeeeececceeec e 190
USR-223 ...t a e e b et et Re e be et e ne b ae st be e ebenes 192
ULilizing PYthONINTEIPIEIETcceeeeeeeeeee e e b s 193
RS0 = 195
Chapter 11: Using Jython in an IDE ... orcremrcrrserssssssssessessssssssssesssssssssssssssssssssnssessessssnnas 197
oo 1< 197
INSTAINNG PYDBY ...ttt st s b eae e e sbeereeaeesesbeeanennan 197
Minimal CoNfIQUIALIONeoviieeee et s r e e e e neenas 198
Hello PyDev!: Creating Projects and Executing MOQUIESc.covevereereeeeeereceeceeeee e 200
Passing Command-line Arguments and Customizing EXECULION...........ccccoevvverereeeninenereeine, 201
Playing With the EAITOr ..ot 202

A Bit of Structure: Packages, Modules, and Navigation.............c.cccceeeveinieievciniene e 204
=T 1R 207
Adding Java Libraries t0 the Project ... 210
<] o]0 o1 3o SRR 211
CoNCIUSION ADOUL ECIIPSEeeeveeiecteeecte ettt b et ne b srenes 213
NEIDBANS ...ttt e be st ae e be b e st e e aeebesbe e eneeaeeresrenes 213
IDE Installation and Configuration.............cooeeueeeiiiieeeee et 214
Advanced PYTNON OPLIONS........cccciiiiiccece ettt s be e bt b srns 215
GENEral PYINON USAQE ..ottt et st st ne e ne st e neeneene s re s 216
STANAAIONE JYTNON ADPS....eeitiitiieeeeece ettt st et s b s ae b b e b e e eaeebe st e e eneereee 216
Jython and Java INtegrated ADPPS ..o e e 221
Using a JAR or Java Project in Your JYTthon AP ...c.eeeeeeciceece e 221
USING JYENON IN JAVA........oeieiieeee ettt na s e 222
The Netbeans PYthon DEDUGUETcoeceriere e e e st e e nne s 223
Other Netheans PYthon FEATUMESc.oivieueieiceceeee ettt 228
RS0 7= 228
Chapter 12: Databases and Jython: Object Relational Mapping and Using JDBC..................... 231
ZxJDBC—Using Python’s DB API Vi JDBC..........c.oo oo 231
GEHING STAMEA........c.e et b e ae b st e et st e it e e enene 232
0] 1< 0 3R 233

ZXJDBCIOOKUD ... 237

CONTENTS

1 T £ TSR 237
Creating and EXECULING QUETIESc.ooerueireeeeeeee et 240
Prepared STAtBMENTSooveeeeceeeeeeee et be b a e aeenas 243
Resource Managementoocioeeireereeee ettt 243
T3 o L R 244
Data Manipulation Language and Data Definition Languageccoceevveerrecerceenienneseesene, 245
CalliNg PrOCEAUIES.......cceeeeiertecieeeeee e ste s e e ettt re st s te e e e ne s be b e e enesaesteneenesnesresens 246
Customizing ZXJDBC CallS..........ccceoeeriiriiieeeeciecreseeeee ettt re et ae b b e eneene b seens 247
3 (0] T 249
Object Relational MapPINg.......cccoveeeeeeeeeriiriceeeee ettt sttt st s sae e ebe st st eeaeebesbessenneneeresrenes 249
SOIAICNEIMY ...ttt e et b e st be e be st e e eseeaesbesbeneeneebesbeseneeaestesens 249
QT e 1] 249
USING SIAICNBIMY ...ttt et be b b aeaeebeebe st e e eneebesbenee 250
10T T 254
Entity Classes and Hibernate Configurationccceeeiiiieiecececee e 254
Jython Implementation Using the Java Entity CIaSSES.........ccccevvvirivcceniene e 256
SUIMIMEAIY ...ttt ettt et sttt et e et s e e e e beebe st e e eseebesbesaesesaesbestessesesbesbeseneetesbessensaresteseenes 261
Part lll: Developing Applications with Jython ... 263
Chapter 13: Simple Web ApplICAtionscccvcvrmrrrrsnsmnsmsessssssssssssessesssssssessesssssssssssssessssssness 265
RS T=] T[T 265
Configuring Your Web Application for Jython Serviets............cccoveveeeeceece e 266
Writing @ SIMPIE SEIVIEL. ..o e e 266
USING JSP WIth JYTNON ..o bbb s 268
CONFIGUIING TOF ISP ..ottt sr e ee 269
Coding the CONErONEI/VIBW...........cueiieeiieice ettt s e ee 269
Applets and Java WED STart ..o s 272
Coding a Simple GUI-Based Web Application............ccccccevvieicini s 272
Object Factory AppliCation DESIGNccveeeeivieeeeeeece ettt ere b e ere b s 272
Distributing via Standalong JAR ..o 276
WSGH AN MOG]Y....cveverieitcecee ettt sttt re st be e be e be e s benessenennanan 276
Running a Modjy Application in GIasSiShccceveveieiiiiicc e 277
RS0 = 280
Chapter 14: Web Applications With Django..........cccccvevrernmrrsnsessmsssessessssssessessesssssssessessessssnnss 281
GELHNG DJANGO ...ttt s b e e bbb b b e et e et re e b e bene e 281

Xi

xii

CONTENTS

A QUICK TOUF OF DJANGOveveveeieeeceeteesiete ettt sttt se s e et enesaenennas 282
Starting @ Project (and @n “APP”) «oeeeoereereeeee e 283
IMIOTEIS. ...ttt a e st e e e e st et e e e ne e R et e e e e ene e e e e e nennn 284
BONUS: THE AQMIN......cviecceceee et b e st e se b st esae e eneenas 287
Views and TEMPIATESccoiiieece e e s e e b e e nenne 292
Reusing Templates Without “include”: Template Inheritance.............ccoveveveeeceeecceece e, 297
0] 1R 300
<0 S 302
0] 0] 41T 0 304
T 0] < TP 306

J2EE Deployment and INtEQration............cccoeeeeieccece ettt 307
Deploying Your First AppliCation...........covceriiiiciere e s 308
Disabling POSIGreSQAL LOGINSccoveveerieiririiisiee ettt 308
A NOtE ADOUL WAR FilBSeeveieecece ettt st st s sne b st e e nenne s 309
Extended INSTAlIALIONccoeeeeece e e 311
Connection Pooling With JAVAEE ..o 312
Dealing With LOng-running TASKScc.ecuiiiiieeeiieeeeee ettt st sreeae e 315
TRPEAU POOIS.......cueiueiiiiieiee ettt sttt st st ae et st e e eaeebesbesaeneeaesbesteneeneenens 315
Passing Messages ACross Process BOUNANIES.........ccocceeerereererieresereee e 318

SUIMIMAIY ..ottt ettt s a e ebe b e s b e e ebeebesbesaeseebeebesbenseaeebesbeseneeseebesteneeneerenes 325

Chapter 15: Introduction to PYIONS ... s ssssssssssssnssssssssssnsas 327

A Guide for the IMPAtIENTooveiccee e 327

ANOTE DOUL PASTE ...ttt e e r e s b e neenenne s 329

PYIONS MVCoceeee ettt ettt ettt b e s b b beebe st e s eaeebeebesaeneeaeebesbeseneeneates 329

An Interlude into Java’s MemOory MOGEL............couceeeee e e 330

INVOKING the PYIONS SNEIL ..ottt sttt s be st st eneanas 331
TROUEST.GET ...ttt e b e st e e se b s b et e e e aeebesbe e eneenene 332
FERAUEST.POST ...ttt be et et ae st ebe e be et eneseebe e benesteneseesennas 332
=0 LTS 0 0 L0 P PR 332
TEQUEST.NBAGBTSo st e e bt e e e e b e e e neenees 333

Context Variables and Application GIODAISceeveeeiireeeceeecteeeeee et 333

ROULES ...ttt st e e e be st et e e e seebe st e e eneeaeebeseeneeseeaeseeseenneneanis 333

Controllers and TEMPIALESc.ecveiveeeeeeeeteeeeceee ettt et ae e st e e aeebesbesae e esesbeseennenennes 334

AAAING @ JSON APttt ettt ettt st be et e e besessebeneebenestenennas 340

Unit Testing, Functional Testing, and LOGQiNgccoeeereierereee e 341

Deployment into @ Serviet CONAINETcccvvviiieieicececeeee e
RS0 7=

Chapter 16: GUI Applications

B0 1 = SRR

DeployiNg WED STAr ... e e e
Deploying a WAR or Exploded Directory AppliCationccceeevveveveieriesieseree s seeeeeens
GIASSTISN ...ttt et e be b ae b bt neebe b sbenneaeereee
Deploying WED STAM ... e e s
WAR File and Exploded Directory Deployment..............ccooeeeeeeiececeece e
Glassfish v3 Django DePIOYMENTcoovvieiieieeeee e
Other Java APPIICALION SEIVELScveeeeecieeeeeeece ettt st ebe b st aesaesrenes
LCToTa 0 LAY o] oI = T TS
Starting With an SDK DBMOceiveuiiciicce ettt s s
Deploying 10 the ClOUM...........cccvveeieeeces e
WOrking With @ PrOJECT........coeee e
Object FactorieS With APP ENQINEccveeiiiieeeeete ettt sttt be et
Using PYServiet MapPingcccoceeveieiere et st re e ne e re st e neenesre s
Example Jython Servlet Application for App ENQINEc.covvvveeeeeeiceceeceece e
UL =TT SR
Deploy MOdjy 10 GAE..........c.o e r e r e s e e renre e
JAVA SHOTE.....ceieceecee ettt e b e bbb b e aeeae bt neeae b b e e eaeene b nee
Deploying @ SINGIE JAR ..ot a e ne s re e

Mobile..

RS0 1 = RS
Part IV: Strategy and TECHNIQUE.........cceeerrersmrerrersersmssssessessesssssssessesssssssassesssssssssssssesssssssnssnssnssssassnns
Chapter 18: Testing and Continuous Integrationccccrrrrsrrrrrnsssssssss s ssessesnens
PYLhon TESHING TOOISeeee ettt e e st st be b eaeenesreenis
U TR
D0 - SR

CONTENTS

346
346
347
357
359
359
360
360
360
361
361
362
362
362
362
363
363
364
365
365
366
369
370
370
371
375
375
377
379
379
379
384
388
395

Xiii

Xiv

CONTENTS

INtEgration With JAVA?..........ooiieeeece et st b e s 400
ContinUOUS INTEGIALIONeceeeeec et r e st eaeneenas 401
1T TS 401
GEEHING HUASON ...ttt e e ne e 401
Installing the JYThon PIUG-iN.......cccce i 402
Creating a Hudson Job for @ Jython ProjeCt..........cocveeiieeieiese e 403
USING NOSE 0N HUASON ...ttt st b e s ne e 407
SUMIMAIY ..ottt ettt ettt st et s be s b et eseebesbesaenseseebesbebensebeebesbenseneesesbeseneeseans 410
Chapter 19: Concurrency 413
JAVA OF PYENON APIS?.......eeceeeteeeeee ettt st bbb b s be s neebe st e neneenens 414
WOrking With TRIBAUS ..ot 414
B 1721 0o 1SR 416
NO GIODEI INTEIPIELEE LOCK.......c.eiveeeeieticieeee ettt bbb e enas 417
MOUIE IMPOIE LOCK ...ttt et p e e e st e na e ens 417
WOTKING Wt TASKScviviieeeiisie et sttt st sttt st na e 418
THFEAU SATELYecveeeece e e st et b e e e e e ne e e e e e e nnns 422
SYNCRAFONIZALION ...ttt et s bbb bt 423
D210 0T RN 426
Other Synchronization ODJECEScvoveeeeeee ettt sttt st e e 427
ALOMIC OPEIALIONSocviiieiceee ettt sttt s be b e e be s besre e ebesbesrenaenens 431
Thread CONfINEMENT ..ottt ae b s 432
Python Memory MOGELcoviieieee et 433
01T 10 0] (10] SR 433
SUIMIMEAIY ...ttt ettt et b e s b e be st e s b e e ese et e sbe st eseebesbesbeneesesbesbesessabesbesbensesesbesbansenis 436
Appendix A: Using Other Tools with Jython ... 437
THE JYTNON REGISIIY ..ottt s be bbb b e re e 437
REQISIIY PrOPEITIES.e ettt st e st s b et e et e s be s b e s etesreseeeens 437
PYINON.CACNEAINeveceeeiecie ettt ettt be b tesbesbeeaeerenas 437
PYENONVEIDOSE ...ttt st ae st s b e st se et e st e b e e eneebesbenpeneans 437
python.security.respectJavaAcCesSibility.........ccocovrieiircici s 438
PYENON.JYENONC.COMPIIET.......eveeeeeisiisiee e 438
PYthoNJYthoNC.ClASSPALNc.ecuiiiecec e e s 438
PYthon.jythoNC.COMPILEIOPTScveveieee ettt nas 438
PYENON.CONSOIE ..ottt a et st e st e et e b e see e eneebesreseennans 438
python.console.readlingliDoeoeeeeieieceee e 438

CONTENTS

Finding the RegiStry File.......ooueeeeeee e e s 438

RS (010000) 438
VIFEUBIBNV. ...ttt st et et e e e e e neese st e e e e eneereseeneenennens 442
Appendix B: Jython Cookbook 445
LOGGING. ..ttt et ettt ettt ettt e b e e ae e e e beebeeae et e beebeeaeebeebeeae et enteebeeheenseteereeneennan 445
Using log4j with Jython, JOSH JUNEAUcc.cevieuiicieisieeeees e 445
Setting Up YOUr ENVIFONMENTc.ooveuiiice et s 445
Using log4j in @ Jython ApplICALION...........coveieiiiree e 446
Working With SPreadsheets...........coe i 447
Creating and Reading Spreadsheets Using APpache POi.............cccceveeiievcieniene e 447
Create SPreatSNEELcc.cceei et s ae e e e ne 447
Read @n EXCEI File..........ooueeeeeeceseeee et s 449
JYENON ANA XML ...ttt be st a e e bbb seeneebe b e e eneenens 450
Writing and Parsing RSS with ROME, JOSHh JUNBAUc.coeeeereieceeeeeeecteeeeeee et 450
Setting Up the CLASSPATH........oeeeeeee et 450
ParSiNG FEEASeveeeeeieeeee et nenn 450
CrEatiNg FEBAS.....c.eeviitiiteeeeee ettt sttt et sb e besbe st e e eneeaeebesbeneeneerens 451
SUIMIMAIY ...ttt e e st sbe st eseebeebe st e e eaeebesteneesessesteseenensesseseenennensens 454
WOrking With CLASSPATHoeeieeeese ettt st ne e 454
Using the CLASSPATH, STEVE LANGET ..ottt 454
L] U (0 I SR 454

1123 (T RS RRS 454
SUIMIMAIY ...ttt st e e e s re s te st eseeseebe e e e eseeseseeneesessesteeenennesseseenennensens 456

L) TSRS 456
Writing Ant Tasks with Jython, Ed TaKEMA.............ceeueiriiiicciccccees e 456
Writing CUSTOM ANT TASKSceeieicteeeece ettt ettt ae s aeenas 457
Setup Development ENVIFONMENToooiiiiiceeee ettt s 457
SImPIETask JYthON ClASSccooveuiiieeiecce et s 457
Compiling Jython COE 10 @ JaT.........cccvvueiicieeeeseere e 458
BUild. XML File t0 USE the TaSK.......cccceeeeeieriecere ettt e 458

A Task CONtAINET TASKcccveuiiieriieieiseeste ettt 458
Build. XML File to Use the TasKCONTAINEccccvieeieceeeceseeees et 459
TRINGS 10 LOOK QUL FOT......veeeeeeeee ettt sttt st sae b s neenas 460
SUMMAIY ...ttt st s b et e seebe st e st eneeseebesbesseneesesbeseneesestesseneenessens 461
Developing Django WED ADPS......ccci e sesieeses e ee e et e e e s e e see e e e enennas 461

CONTENTS

Using Django in Netheans, JOSh JUNBAU.............c.cceeeeiieciicecece e 461
Appendix C: Built-in Functions 463
CONSTIUCTON FUNCHIONSveveeieeteee ettt sttt a e nnens 463

0100} 1 TSV 463

o 11 () TR 463

COMPIEX([real], IMAG]]) ..vvveereerererrererieerieeresrees e et se e te e ae e saesesense e sesesaesesensenensenes 464

0 1o =T ()RR 464

file(filename[, MOde[, DUTSIZE]]).....ceovrreerieriririee e 464

FIOAL([X]) +.veneerereeee ettt st ae bbbt ae st ae e b et ne e ne e renees 464

frOZENSEL([IHErADIE])cvecveeeereeticeeeece ettt be bbb e neeaeeresre e 464

L =101 S 464

TEEI(O[, SENMTINEI])....ecveeeeeere ettt ettt ettt et e b st ebeeaeesbesbeeaeenaesbesbeeseensesaeeneas 465

S (] = o] | S 465

0] 0] o)RR 465

open(filename[, mode[, DUFSIZE]])veerveeeeerei et 465

range([Start,] STOP[, STEPI). ... eereeereeeeeriee ettt 466

SEI([ITErADIE]) . eeveeeeceeceeee e e e e b b resre e 466

Slice([Start,] STOP[, SLEP]) .-veovereereeerieereree ettt ettt ne s 466

YU ([0 0] [=Te |) OO 467

LU0 L=T{ =] 0] T 467

type(name, DASES, ICT)........cceviieecce e e e 467

1010 0) TSR 467

unicode([object], encoding [, ErTOrS]1]). . e eeeererrerieererereriee e een e 467

xrange([start,] STOP[, STEP])...cceiieieei e e e b 468
Math BUilt-in FUNCHIONSccoeeii ettt st n e e r e s 468

1 01S]) TR TSR RTTRTRN 468

(01101 0] T TSRS 468

011771100 = T) T 468

POW(X, Y[, Z]) ceveverrereeereriesiesieesiese e esie st se et st sae b st be e s bbb eseebesbesbe e esenbesbe e eneereneeneenes 468

00T R) TS 469
FUNCTIONS 0N HEIADIESceeeeeeee e e nn e seenes 469

][] = o] - TSRS 469

ANY(IEEIADIR)e.veeee ettt ettt eae et e st e ebeeae e besbeeaeeneesbeebeeaeenrenre e 469

enumerate(SequenCel, STAME=0]).........ccccererererrrrrrerreeree e 469

filter(function, IHEraDIE)..........ccv e e e 469

CONTENTS

MAaP(fUNCLION, HEIADIE, ...) ..c.eiviceeeeeeetecteeee et s ae b e aeenas 470
max(iterable[, keyl)or max([, arg, ...J[, KEY]) .. eorerreereeeee e 470
min(iterable[, key]) or min([, arg, ...J[KEYI) cveeeerereeeeee et 470
reduce(function, iterable[, iNtANZEI])ceoveeeee e 470
LS 6T (-) 470
sorted(iterable[, cmp[, KEY[, FEVEISE]]]).....cerrurrerureririerieirisiesiesesresresesee e s e s see e ssesre e e seenens 470
sum(iterable], Start=0])cccccririirierccr e e ene 471
ZIP([TEEIADIR, ...])ueeeeteetieeee ettt st st b e b e ae e e a e s heeaeeaenreeaeennenes 471
CONVETSION FUNCHIONS.......ccueiieeei ettt st st a e ae st et e e e nesaeseenaenennas 472
IBX(X). vt eveeeeete ettt ettt ettt et e b e e he et ebeeheeae e b e beeheeaeeaebeeaeeaeeteebeeaeensereereeaeennas 472
Lo R =101 472
00 (RN 472
0] (0 (o) PPN 472
Functions for Working With COTE...........c.ccueeeiieieeee e 472
ClasSSMETNOUA(FUNCLION)cvireeeeecte ettt s sa e be s be st neeneenens 472
compile(source, filename, mode[, flags[, dont_inherit]])cccceovreerreinereer e 473
eval(expression[, globals], 10CalS]]).......cceiiiirieiiceeece e 474
execfile(filename[, globals[, [0CAIS]])covrveerreirireireiree et 474
property([fget[, fset[, fdel[, dOC]I]]) ..erererrerrmrmrerrererereree e e r e ene e 475
StaticmethOd(fUNCLION)cieeeeeee e 476
super(type[, 0DJECE-0r-TYPE]) ..c.eeeereicece e e nne 476
INPUE FUNCHIONS ...ttt st be s be e e e e st e ebeeneeeesbeeneennan 477
o0 001 01 477
FAW _INPUE([PIOMPI]) oottt et e be s ae b b neesreereeaeenns 477
Functions for Working with Modules and ODJECTScccceereeeereircereeer s 478
Lot 11 0] =T (0 o =Tt 4N 478
Aelattr(ODJECT, NAME).....c.eeveiieeeee e ene s 478
01 (0 o)=L) R 478
getattr(object, name[, default])........c.cooveeeeiiiiecc e 479
00T 02T 479
haSattr(ODJECT, NAME)iiviceeeeee et ettt e be b reebeeaeenes 479
1215111 (0] 0] <o TR 480
1T 0 0] 0 T o 480
I(ODJECT). .ottt ettt et et b e b ae et b et et e et ene et ebe st bene b eneneene 480
iSinStance(0hject, ClaSSINTD)coovureree e 480

xvii

CONTENTS

ISSUDCIASS(CIASS, ClASSINTD)cveeeeeeriiieieiee ettt s ae b ae e neenas 480
T T 480
JOCAIS() vt ee ettt ettt ettt et et e e beeae et e e beeaeeae e besbeeae et e beeheeaeenbenbeereeaeenreereeaeennan 481
L0 T0 {040 ST 481
L0510 £ (00§ 482
setattr(object, NAME, VAIUB)........ccv i 482
L0 0L (0] 0] 1< o NS 482
AV LT (0])T) TSR TRSRPERRRSRR 482
__import__(name[, globals], locals[, fromlist[, IVel]]]).......ceeeerererrirnerereereereeee e 483
1T =) 485

Xviii

Foreword

I started using Python in 2003, and I fell in love with the language for a variety of reasons. The elegance
of Python’s whitespace based syntax, the well conceived built in data types, and a beautiful set of library
functions. Since that time, many other people have discovered or rediscovered Python. At the time of
this writing, the software industry is well into a resurgence of dynamically typed languages: Ruby, PHP,
and Python.

It wasn’t until I attended my first PyCon in 2004 that I became aware of Jython. People were glad of
the ability to run Python programs on the Java Virtual Machine (JVM), but were wistful because at the
time Jython was lagging behind the native C Python (CPython) interpreter in terms of supporting recent
versions of the language. Jython was maintained by a series of individual developers, but the task of
staying current with CPython was really too much for any single person. In December 2005, Frank
Wierzbicki took over as the lead developer for Jython, and over the next few years managed to foster a
community of developers for Jython. The authors of this book are some of the members of that
community. In June of 2009, the Jython community released Jython 2.5, which implemented the same
language as CPython 2.5. This was a major leap forward, bringing Jython much closer to feature parity
with CPython, and laying a foundation for catching up the rest of the way with CPython. Jython 2.5 is
able to run many of the most popular Python packages, including Django, Pylons, and SQLAlchemy.

Jython makes for a best of both worlds bridge between the elegant, expressive code of the Python
world and the “enterprise ready” Java world. Developers who work in organizations where Java is
already in use can now take advantage of the expressiveness and conciseness of Python by running their
Python programs on Jython. Jython provides easy integration and interoperability between Python code
and existing Java code.

Jython also has something to offer existing Python programmers, namely access to the very rich
ecosystem of the Java Virtual Machine. There is an enormous amount of Java code out in the world.
There are libraries for every task imaginable, and more. Jython gives Python programmers a way to tap
into these libraries, saving both development and testing time. Web applications running on Jython can
also take advantage of the scalability benefits of Java web containers such as Tomcat or GlassFish.

Things are looking very bright for Jython, and this book is a timely resource for people interested in
taking advantage of the benefits that Jython has to offer.

Ted Leung

Xix

About the Authors

Josh Juneau has been a software developer since the mid-1990s. He graduated
from Northern Illinois University with a degree in Computer Science. His career
began as an Oracle database administrator which later led into PL/SQL
development and database programming. Josh began to use Java along with
PL/SQL for developing web applications, and later shifted to Java as a primary
base for application development. Josh has worked with Java in the form of web,
GUI, and command-line programming for several years. During his tenure as a
Java developer, he has worked with many frameworks including JSP, JSF, EJB, and
JBoss Seam. At the same time, Josh expanded his usage of the JVM by developing

s applications with other JVM languages such as Jython and Groovy. Since 2006,
Josh has been the editor and publisher of the Jython Monthly newsletter. In late 2008, he began a podcast
dedicated to the Jython programming language. More modern releases of Jython have enabled Josh to
begin using it as one of the primary languages for his professional development. Currently, Josh spends
his days developing Java and Jython applications, and working with Oracle databases. When he is not
working, he enjoys spending time with his family. Josh also sneaks in enough time to maintain the
jython.org website, hack on the Jython language, and work on other such projects. He can be contacted
via his blog at http://www.jj-blogger.blogspot.com.

Jim Baker has over 15 years of software development experience, focusing on
business intelligence, enterprise application integration, and high-performance
web applications. He is a member of the Python Software Foundation and a
- committer on Jython. Jim has presented at Devoxx, EuroPython, JavaOne, and the

Python Conference, as well as at numerous user groups. He is a graduate of both
.- Harvard and Brown.

Victor Ng has been slinging Python code in enterprises for 10 years and has worked in the banking,
adventure travel, and telecommunications industries. Victor attended the University of Waterloo where
he was busy learning to cook and didn’t attend too many classes. He lives just outside of Toronto,
Ontario, in Canada.

Leonardo Soto has been part of the Jython development team since the middle
of 2008, after he successfully completed a Google Summer of Code Project that
aimed to run and integrate the Django web framework with Jython. He is also
finishing his thesis to get the Informatics Engineering title from the Universidad
de Santiago de Chile and works on Continuum, a Chilean software boutique.

Leo has developed several software systems in the past seven years, most of
which are web applications, and based on the JavaEE (formerly J2EE) platform.
However, he has been spoiled by Python since the start of his professional
developer career, and he has missed its power and clarity countless times, which
inexorably turned him toward the Jython project.

ABOUT THE AUTHORS

Frank Wierzbicki is the head of the Jython project and a lead software
developer at Sauce Labs. He has been programming since the Commodore 64 was
the king of home computers (look it up, kids!) and can’t imagine why anyone
would do anything else for a living. Frank’s most enduring hobby is picking up
new programming languages, but he has yet to find one that is more fun to work
with than Python.

xxii

About the Technical Reviewers

Mark Ramm is project leader of TurboGears 2, and has written myriad
articles, and a book about TurboGears. He is a web developer at GeekNet
(geek.net) and is the founder of Compound Thinking (compoundthinking.com),
a consulting and development company focused on Python training, and web
application development.

Tobias Ivarsson is a software developer at Neo Technology, the commercial
backer of the open source graph database Neo4j (http://neo4j.org/). Tobias is
also a developer on the Jython project, with focus on the compiler.

Acknowledgments

First and foremost, I would like to thank my wife Angela for standing beside me throughout my career
and writing this book. She has been my inspiration and motivation for continuing to improve my
knowledge and move my career forward. She is my rock, and I dedicate this book to her. I also thank my
wonderful children: Katie, Jake, Matt, and our new addition Zachary, for always making me smile and for
understanding on those weekend mornings when I was writing this book instead of playing games. I
hope that one day they can read this book and understand why I spent so much time in front of my
computer.

I'd like to thank my parents and grandparents for allowing me to follow my ambitions throughout my
childhood. My family, including my in-laws, have always supported me throughout my career and
authoring this book and I really appreciate it. I look forward to discussing this book with my family at
future gatherings as I'm sure they will all read it soon.

My co-workers, especially Roger Slisz, Necota Smith, and Matt Arena, who showed me the ropes in
IT. Without that knowledge I wouldn’t have ventured into learning about Oracle and PL/SQL, which
ultimately led to this! I'd like to especially thank Roger Slisz and Kent Collins for trusting me to guide and
develop the applications for our department, and for allowing me the freedom to manage my projects
and provide the necessary time and resource toward our applications and databases.

I'd really like to thank Jim Baker for providing me with the opportunity to become the lead author for
this book. I appreciate that he believed in me to provide the leadership and knowledge to make this book
areality. Jim Baker is a great person and a scholar; without him, this book may not have been written.

Jim and I collaborated to find the other great authors that helped us write this book. In the end, I
believe that the team of authors that was chosen provides the perfect blend of knowledge and skills that
went into authoring this book. I thank each of the authors for devoting their time and effort towards this
book; I think that it will be a great asset to the community! Thanks for everything, I look forward to
writing the second edition soon!

I owe a huge thanks to Duncan Parkes of Apress for providing excellent support and advice. I also
wish to thank all of our technical reviewers and our Apress project coordinator, Mary Tobin. All of their
efforts helped to make this book complete and we couldn’t have done it without you.

Last, but definitely not least, I'd like to thank the Jython developers and the community as a whole.
The developers work hard to provide us with this great technology allowing us to write Python on the
JVM. Frank Wierzbicki has done an excellent job in leading the core of Jython developers to produce
2.5.1, and I know that he’ll continue to do a great job leading into the future. Thanks to the community
for using Jython and providing great ideas and support via the mailing lists; without this help I could not
provide the newsletter and podcast.

Josh]. Juneau

This book is dedicated to my kids, Zack and Zoe, who are just about the best children a dad could hope
for: happy, loving, and fun to be with. Fundamentally, what I love to do is create, so it’s wonderful
watching you grow!

Three years ago, we had this audacious idea of reviving Jython. We would jump to supporting the 2.5
version of the Python language. And we would focus on making it a suitable platform for running the
increasingly large apps that are being developed. This meant a renewed focus on compatibility for
Jython. Fortunately, we could leverage the new reality that developers of Python applications,

xxiii

ACKNOWLEDGMENTS

Xxiv

frameworks, and libraries increasingly have a commitment to strong testing. Our problem was tractable
because we could use this testing to converge on a robust implementation.

This book documents how we, in fact, achieved this goal, while still preserving the ability to
interactively explore and script the Java platform. In other words, Jython has grown up, but it hasn’t
forgotten what made it both useful and fun in the first place.

To my good friend Frank Wierzbicki, we made it happen; Charlie Nutter, for his commitment to
collaboration; Albert Wenger and Bruce Eckel, who both convinced me that working on Jython was
important; Leslie Hawthorn of the Google Open Source Programs Office; Dorene Beaver; Brian Goetz,
John Rose, and Ted Leung at Sun, for their support of alternative languages on the JVM; Chris Perkins,
Glyph Lefkowitz, Jacob Kaplan-Moss, Mark Ramm, and Raymond Hettinger for their support of a robust
Python ecosystem; my fellow Jython developers, Alan Kennedy, Charlie Groves, Josh Juneau, Nicholas
Riley, Oti Humbel, and Phil Jenvey, not to mention many other contributors. And especially to my
Google Summer of Code students, now also Jython committers, Leo Soto and Tobias Ivarsson: it's been
wonderful watching you grow as both developers and individuals.

Jim Baker

Thanks to Liz and Rosie for putting up with far too many side projects this year. Special thanks to
everyone in the Jython and Python developer community for making life as a programmer much less
painful than it could be.

Victor Ng

First, thanks to my family for having patience with me when I took on yet another challenge which
decreases the amount of time I can spend with them. Especially Eliana, my mother, who has endured a
large part of that sacrifice, and also Nicolds, my brother, who gives encouragement in his own particular
way. They and Leocadio, my father, who rests in peace, forged my personality and share credit on every
goal I achieve.

Thanks to all my friends for sharing my happiness when starting this project and following with
encouragement when it seemed too difficult to be completed. I would have probably given up without
their support and example on what to do when you really want something.

Speaking of encouragement, I must mention that Jim Baker was responsible for having me on the
team who wrote this book: first by mentoring me on Jython and later by insisting that I should share part
of what I have learned on this book. He is a great person and I can only be grateful to have met him.

Thanks to Josh Juneau, our lead author. He coordinated our numerous team members and made
sure we all were on the right track. He did that while also working on a lot of chapters and also handling
the paperwork. I have no idea how he managed to do it. All know is that he rocks.

Thanks to Duncan Parkes, our editor, and all the technical reviewers who worked on this book. Not
only by catching mistakes but also by suggesting those additions that can seem obvious in hindsight but
that would never have occurred to you.

On the first half of the Django chapter, I received a lot of help from Jacob Fenwick who discovered
some problems on specific platforms and offered valuable suggestions to overcome them. Thanks to
him, many readers won'’t experience the frustration caused when the code shown on the book doesn’t
work on their environment. By the way, while working on Django integration with Jython, I've met a lot
of nice people in the Django community. Special thanks to Jacob Kaplan-Moss for his outstanding
support when I was working on that area.

And thanks to the Jython community! Starting with our leader, Frank Wierzbicki, who has played a
crucial role to move Jython forward in recent years. The core Jython developers are also really awesome
people and I'm immensely happy to work with them on the project. And every person of the Jython
community I've talked to has been nice and even when criticizing they know how to be constructive. I'm
grateful to work with this community and hope their members will find this book useful!

Leo Soto

ACKNOWLEDGMENTS

First and foremost, I want to thank my wife, Jill Fitzgibbons, for all of the support she has given through
all of these years of Jython work. Most of that work occurred on weekends, nights, while on vacation, and
other times inconvenient to my family. My daughter, Lily, who is five at the time of writing, has also
needed to show patience when her dad was working on Jython and on this book. I want to thank my
parents, who brought a Commodore 64 into the house when I was still impressionable enough to get
sucked into a life of programming. I also want to thank all of the contributors and users of Jython. They
make my work on Jython and this book worth doing.

Frank Wierzbicki

XXVi

Introduction

Jython brings the power of the Python language to the JVM. It provides Java developers the ability to write
productive and dynamic code using an elegant syntax. Likewise, it allows Python developers to harness the
plethora of useful Java libraries and APIs that the JVM has to offer. We wrote this bookin an effort to provide a
complete guide for developers from both parties. Whether you are a seasoned Java developer looking to add a
mature dynamic language to your arsenal, or a connoisseur of the Python language, this book provides useful
information in an easy-to-read fashion, which will help you become a professional Jython developer.

This book is organized so that each chapter is encapsulated as its own entity and can be read
separately from the others. This provides the ability to jump around the book if you'd like, or read it from
start to finish. Some chapters contain references to other parts of the book and this book builds upon
itself to guide a novice or a seasoned developer into becoming an expert Jython programmer. Since this
is a multi-author book, each of the chapters was written by an individual author or a pair of authors, and
because of this you may find that the chapters each contain a unique touch, but they are orchestrated in
such a way that they work very well together.

Part I of this book will take a look at the Python language and provide a tutorial to guide you through
learning the language from the ground up. It contains Python language basics, as well as Jython-specific
portions for those who already know Python. Until now, using Jython in Java applications has not been
very well documented. Part IT addresses this topic, teaches you how to use Python and Java techniques
for working with databases, and even shows how to develop Jython using both the Eclipse and Netbeans
IDEs. The second part of the book is all about making use of Jython. Part III delves into developing full
applications with Jython, deploying them in different environments, and also testing them to ensure
stability. In this part, you’'ll learn how to use the Django and Pylons web frameworks to develop
sophisticated web applications, and you'll also learn how to develop robust desktop applications using
the Java Swing API along with Jython. Lastly, Part IV covers some concepts for making your application
development more productive, and ensuring that your Jython code is efficient. You'll learn how to run
tests against your Jython code and set up continuous integration using Hudson. Advanced threading and
concurrency concepts are covered in Part IV to ensure that you have the knowledge to build Jython code
that performs well and runs efficiently. In the end, this book is great to read from start to finish, but also
very useful as a reference guide to using Jython with different technologies.

This book is available online under the Creative Commons Attribution Share-Alike license
(http://creativecommons.org/licenses/by-sa/3.0/). You can read the open source book at
http://jythonbook.com. I’d like to personally thank James Gardner, author of the Definitive Guide to
Pylons from Apress, for assisting us in transforming our book into restructured text format, which is used
to generate the Open Source online version.

Throughout the book, you will find a number of code examples. Many of the examples are Python
code; however, there are also plenty of Java examples as well as those working with web markup
languages. All code examples will be in the code font. The examples are available on the Apress website
at http://www.apress.com as well as at the Open Source site http://jythonbook.com.

This book will continue to evolve and we will continually update both the online version and the
printed copy. We’d like to thank members of the Jython community for contributing to the book,
especially Andrea Aime and others who wrote to the mailing lists providing comments and feedback for
book content. We would like to advocate that the community continues to stay involved with the book. If
you would like to post comments or suggestions for the book or if you find errors, please submit them
via apress.com.

INTRODUCTION

Thanks for reading this book, and for developing with the Jython language. We had a great time
working on this book and hope that you enjoy reading it just as much. We look forward to continually
updating this book, and seeing what the future will hold for Jython. Surely if Jython remains as active as
it is today, we will all enjoy it long into the future.

XxXVvii

PART 1

Jython Basics:
Learning the Language

CHAPTER 1

Language and Syntax

Elegant is an adjective that is often used to describe the Python language. The word elegant is defined as
“pleasingly graceful and stylish in appearance or manner.” Uncomplicated and powerful could also be
great words to assist in the description of this language. It is a fact that Python is an elegant language
that lets one create powerful applications in an uncomplicated manner. The ability to make reading and
writing complex software easier is the objective of all programming languages, and Python does just
that.

While we’ve easily defined the goal of programming languages in a broad sense in paragraph one,
we have left out one main advantage of learning the Python programming language: Python has been
extended to run on the Java platform, and so it can run anywhere with a JVM. There are also C and .NET
versions of Python with multiplatform support. So, Python can run nearly everywhere. In this book, we
focus on Jython, the language implementation that takes the elegance, power, and ease of Python and
runs it on the JVM.

The Java platform is an asset to the Jython language much like the C libraries are for Python. Jython
is able to run just about everywhere, which gives lots of flexibility when deciding how to implement an
application. Not only does the Java platform allow for flexibility with regards to application deployment,
but it also offers a vast library containing thousands of APIs that are available for use by Jython. Add in
the maturity of the Java platform and it becomes easy to see why Jython is such an attractive
programming language. The goal, if you will, of any programming language is to grant its developers the
same experience that Jython does. Simply put, learning Jython will be an asset to any developer.

As I've mentioned, the Jython language implementation takes Python and runs it on the JVM, but it
does much more than that. Once you have experienced the power of programming on the Java platform,
it will be difficult to move away from it. Learning Jython not only allows you to run on the JVM, but it
also allows you to learn a new way to harness the power of the platform. The language increases
productivity as it has an easily understood syntax that reads almost as if it were pseudocode. It also adds
dynamic abilities that are not available in the Java language itself.

In this chapter you will learn how to install and configure your environment, and you will also get an
overview of those features that the Python language has to offer. This chapter is not intended to delve so
deep into the concepts of syntax as to bore you, but rather to give you a quick and informative
introduction to the syntax so that you will know the basics and learn the language as you move on
through the book. It will also allow you the chance to compare some Java examples with those which are
written in Python so you can see some of the advantages this language has to offer.

By the time you have completed this chapter, you should know the basic structure and organization
that Python code should follow. You'll know how to use basic language concepts such as defining
variables, using reserved words, and performing basic tasks. It will give you a taste of using statements
and expressions. As every great program contains comments, you’ll learn how to document single lines
of code as well as entire code blocks. As you move through the book, you will use this chapter as a
reference to the basics. This chapter will not cover each feature in completion, but it will give you
enough basic knowledge to start using the Python language.

CHAPTER 1 1] LANGUAGE AND SYNTAX

The Difference between Jython and Python

Jython is an implementation of the Python language for the Java platform. Throughout this book, you
will be learning how to use the Python language, and along the way we will show you where the Jython
implementation differs from CPython, which is the canonical implementation of Python written in the C
language. It is important to note that the Python language syntax remains consistent throughout the
different implementations. At the time of this writing, there are three mainstream implementations of
Python. These implementations are: CPython, Jython for the Java platform, and IronPython for the .NET
platform. At the time of this writing, CPython is the most prevalent of the implementations. Therefore if
you see the word Python somewhere, it could well be referring to that implementation.

This book will reference the Python language in sections regarding the language syntax or
functionality that is inherent to the language itself. However, the book will reference the name Jython
when discussing functionality and techniques that are specific to the Java platform implementation. No
doubt about it, this book will go in-depth to cover the key features of Jython and you'll learn concepts
that only adhere the Jython implementation. Along the way, you will learn how to program in Python
and advanced techniques.

Developers from all languages and backgrounds will benefit from this book. Whether you are
interested in learning Python for the first time or discovering Jython techniques and advanced concepts,
this book is a good fit. Java developers and those who are new to the Python language will find specific
interest in reading through Part I of this book as it will teach the Python language from the basics to
more advanced concepts. Seasoned Python developers will probably find more interest in Part IT and
Part III as they focus more on the Jython implementation specifics. Often in this reference, you will see
Java code compared with Python code.

Installing and Configuring Jython

Before we delve into the basics of the language, we’ll learn how to obtain Jython and configure it for your
environment. To get started, you will need to obtain a copy of Jython from the official website
www.jython.org. Because this book focuses on release 2.5.x, it would be best to visit the site now and
download the most recent version of that release. You will see that there are previous releases that are
available to you, but they do not contain many of the features which have been included in the 2.5.x
series.

Jython implementation maintains consistent features which match those in the Python language for
each version. For example, if you download the Jython 2.2.1 release, it will include all of the features that
the Python 2.2 release contains. Similarly, when using the 2.5 release you will have access to the same
features which are included in Python 2.5. There are also some extra pieces included with the 2.5 release
which are specific to Jython. We’ll discuss more about these extra features throughout the book.

Please grab a copy of the most recent version of the Jython 2.5 release. You will see that the release is
packaged as a cross-platform executable JAR file. Right away, you can see the obvious advantage of
running on the Java platform. . .one installer that works for various platforms. It doesn’t get much easier
than that! In order to install the Jython language, you will need to have Java 5 or greater installed on your
machine. If you do not have Java 5 or greater then you’d better go and grab that from www.java.com and
install it before trying to initiate the Jython installer.

You can initiate the Jython installer by simply double-clicking on the JAR file. It will run you through
a series of standard installation questions. At one point you will need to determine which features you'd
like to install. If you are interested in looking through the source code for Jython, or possibly developing
code for the project then you should choose the “All” option to install everything. . .including source.
However, for most Jython developers and especially for those who are just beginning to learn the
language, I would recommend choosing the “Standard” installation option. Once you’ve chosen your
options and supplied an installation path then you will be off to the races.

In order to run Jython, you will need to invoke the jython.bat executable file on Windows or the
jython.sh file on *NIX machines and Mac OS X. That being said, you’ll have to traverse into the directory

CHAPTER 1 1 LANGUAGE AND SYNTAX

that you've installed Jython where you will find the file. It would be best to place this directory within
your PATH environment variable on either Windows, *NIX, or OS X machines so that you can fire up
Jython from within any directory on your machine. Once you’ve done this then you should be able to
open up a terminal or command prompt and type “jython” then hit enter to invoke the interactive
interpreter. This is where our journey begins! The Jython interactive interpreter is a great place to
evaluate code and learn the language. It is a real-time testing environment that allows you to type code
and instantly see the result. As you are reading through this chapter, I reccommend you open up the
Jython interpreter and follow along with the code examples.

Identifiers and Declaring Variables

Every programming language needs to contain the ability to capture or calculate values and store them.
Python is no exception, and doing so is quite easy. Defining variables in Python is very similar to other
languages such as Java, but there are a few differences that you need to note.

To define a variable in the Python language, you simply name it using an identifier. An identifier is a
name that is used to identify an object. The language treats the variable name as a label that points to a
value. It does not give any type for the value. Therefore, this allows any variable to hold any type of data.
It also allows the ability of having one variable contain of different data types throughout the life cycle of
a program. So a variable that is originally assigned with an integer, can later contain a String. Identifiers
in Python can consist of any ordering of letters, numbers, or underscores. However, an identifier must
always begin with a non-numeric character value. We can use identifiers to name any type of variable,
block, or object in Python. As with most other programming languages, once an identifier is defined, it
can be referenced elsewhere in the program.

Once declared, a variable is untyped and can take any value. This is one difference between using a
statically typed language such as Java, and using dynamic languages like Python. In Java, you need to
declare the type of variable which you are creating, and you do not in Python. It may not sound like very
much at first, but this ability can lead to some extraordinary results. Consider the following two listings,
lets define a value x’ below and we’ll give it a value of zero.

Listing 1-1. Java — Declare Variable

int x = 0;

Listing 1-2. Python — Declare Variable

X =0

As you see, we did not have to give a type to this variable. We simply choose a name and assign it a
value. Since we do not need to declare a type for the variable, we can change it to a different value and
type later in the program.

Listing 1-3.

x = 'Hello Jython'

We’ve just changed the value of the variable ‘x’ from a numeric value to a String without any
consequences. What really occurred is that we created a new variable ‘Hello Jython’ and assigned it to
the identifier ‘x’, which in turn lost its reference to 0. This is a key to the dynamic language philosophy. .
.change should not be difficult.

CHAPTER 1 1] LANGUAGE AND SYNTAX

Let us take what we know so far and apply it to some simple calculations. Based upon the definition
of a variable in Python, we can assign an integer value to a variable, and change it to a float at a later
point. For instance:

Listing 1-4.
>>> X =6
»>y =3.14
»> x=x*y
>>> print x
18.84

In the previous example, we’'ve demonstrated that we can dynamically change the type of any given
variable by simply performing a calculation upon it. In other languages such as Java, we would have had
to begin by assigning a float type to the ‘x’ variable so that we could later change its value to a float. Not
here, Python allows us to bypass type constriction and gives us an easy way to do it.

Reserved Words

There are a few more rules to creating identifiers that we must follow in order to adhere to the Python
language standard. Certain words are not to be used as identifiers as the Python language reserves them
for performing a specific role within our programs. These words which cannot be used are known as
reserved words. If we try to use one of these reserved words as an identifier, we will see a SyntaxError
thrown as Python wants these reserved words as its own.

There are no symbols allowed in identifiers. Yes, that means the Perl developers will have to get used
to defining variables without the $.

Table 1-1 lists all of the Python language reserved words:

Table 1-1. Reserved Words

and | assert | break | class | continue

def | del elif else | except
exec | finally | for from | global
or pass print | raise | return

try | while | with | yield

It is important to take care when naming variables so that you do not choose a name that matches
one of the module names from the standard library.

Coding Structure

Another key factor in which Python differs from other languages is its coding structure. Back in the day,
we had to develop programs based upon a very strict structure such that certain pieces must begin and

CHAPTER 1 1 LANGUAGE AND SYNTAX

end within certain punctuations. Python uses indentation rather than punctuation to define the
structure of code. Unlike languages such as Java that use brackets to open or close a code block, Python
uses spacing as to make code easier to read and also limit unnecessary symbols in your code. It strictly
enforces ordered and organized code but it lets the programmer define the rules for indentation,
although a standard of four characters exists.

For instance, let’s jump ahead and look at a simple ‘if’ statement. Although you may not yet be
familiar with this construct, I think you will agree that it is easy to determine the outcome. Take a look at
the following block of code written in Java first, and then we’ll compare it to the Python equivalent.

Listing 1-5. Java if-statement

X = 100,
if(x > 0){
System.out.println("Wow, this is Java");
} else {
System.out.println("Java likes curly braces");
}

Now, let’s look at a similar block of code written in Python.

Listing 1-6. Python if-statement

X = 100
if x > o:

print 'Wow, this is elegant'
else:

print 'Organization is the key'

Okay, this is cheesy but we will go through it nonetheless as it is demonstrating a couple of key
points to the Python language. As you see, the Python program evaluates if the value of the variable ‘X’ is
greater than zero. If so, it will print ‘Wow, this is elegant.” Otherwise, it will print ‘Organization is the
key.” Look at the indentation which is used within the ‘if’ block. This particular block of code uses four
spaces to indent the ‘print’ statement from the initial line of the block. Likewise, the ‘else’ jumps back to
the first space of the line and its corresponding implementation is also indented by four spaces. This
technique must be adhered to throughout an entire Python application. By doing so, we gain a couple of
major benefits: easy-to-read code and no need to use curly braces. Most other programming languages
such as Java use a bracket “[” or curly brace “{” to open and close a block of code. There is no need to do
so when using Python as the spacing takes care of this for you. Less code = easier to read and maintain. It
is also worth noting that the Java code in the example could have been written on one line, or worse, but
we chose to format it nicely.

Python ensures that each block of code adheres to its defined spacing strategy in a consistent
manner. What is the defined spacing strategy? You decide. As long as the first line of a code block is out-
dented by at least one space, the rest of the block can maintain a consistent indentation, which makes
code easy to read. Many argue that it is the structuring technique that Python adheres to which makes
them so easy to read. No doubt, adhering to a standard spacing throughout an application makes for
organization. As mentioned previously, the Python standard spacing technique is to use four characters
for indentation. If you adhere to these standards then your code will be easy to read and maintain in the
future. Your brain seems hard-wired to adhering to some form of indentation, so Python and your brain
are wired up the same way.

CHAPTER 1 1] LANGUAGE AND SYNTAX

Operators

The operators that are used by Python are very similar to those used in other languages...straightforward
and easy to use. As with any other language, you have your normal operators such as +, -, *, and /, which
are available for performing calculations. As you can see from the following examples, there is no special
trick to using any of these operators.

Listing 1-7. Performing Integer-based Operations

+
< < N

>>> X
>y
>>> X
11
3> X -
7

> x ¥y
18

»>x /'y

4

Perhaps the most important thing to note with calculations is that if you are performing calculations
based on integer values then you will receive a rounded result. If you are performing calculations based
upon floats then you will receive float results, and so on.

Listing 1-8. Performing Float-based Operations

>>> X
>y
>>> X
11.0
> X -
7.0

> X ¥
18.0

> x /

4.5

.0
.0

+

< < < < N

It is important to note this distinction because as you can see from the differences in the results of
the division (/) operations in Listings 1-7 and 1-8, we have rounding on the integer values and not on the
float. A good rule of thumb is that if your application requires precise calculations to be defined, then it
is best to use float values for all of your numeric variables, or else you will run into a rounding issue. In
Python 2.5 and earlier, integer division always rounds down, producing the floor as the result. In Python
2.2, the // operator was introduced which is another way to obtain the floor result when dividing
integers or floats. This operator was introduced as a segue way for changing integer division in future
releases so that the result would be a frue division. In Chapter 3, we’ll discuss division using a technique
that always performs true division.

Expressions

Expressions are just what they sound like. They are a piece of Python code that can be evaluated and
produces a value. Expressions are not instructions to the interpreter, but rather a combination of values

CHAPTER 1 1 LANGUAGE AND SYNTAX

and operators that are evaluated. If we wish to perform a calculation based upon two variables or
numeric values then we are producing an expression.

Listing 1-9. Examples of Expressions

> X + Yy
> X -y
>»> x *y
»>x/y

The examples of expressions that are shown above are very simplistic. Expressions can be made to
be very complex and perform powerful computations. They can be combined together to produce
complex results.

Functions

Oftentimes it is nice to take suites of code that perform specific tasks and extract them into their own
unit of functionality so that the code can be reused in numerous places without retyping each time. A
common way to define a reusable piece of code is to create a function. Functions are named portions of
code that perform that usually perform one or more tasks and return a value. In order to define a
function we use the def statement.

The def statement will become second nature for usage throughout any Python programmer’s life.
The def statement is used to define a function. Here is a simple piece of pseudocode that shows how to
use it.

Listing 1-10.

def my function name(parameter list):
implementation

The pseudocode above demonstrates how one would use the def statement, and how to construct a
simple function. As you can see, def precedes the function name and parameter list when defining a
function.

Listing 1-11.

>>> def my_simple_function():
print 'This is a really basic function'

55> my_simple function()
This is a really basic function

This example is about the most basic form of function that can be created. As you can see, the
function contains one line of code which is a print statement. We will discuss the print statement in
more detail later in this chapter; however, all you need to know now is that it is used to print some text to
the screen. In this case, we print a simple message whenever the function is called.

Functions can accept parameters, or other program variables, that can be used within the context of
the function to perform some task and return a value.

CHAPTER 1 1] LANGUAGE AND SYNTAX

10

Listing 1-12.

>>> def multiply nums(x, y):
return x * y

>>> multiply nums(25, 7)
175

As seen above, parameters are simply variables that are assigned when the function is called.
Specifically, we assign 25 to x and 7 to y in the example. The function then takes x and y, performs a
calculation and returns the result.

Functions in Python are just like other variables and they be passed around as parameters to other
functions if needed. Here we show a basic example of passing one function to another function. We’ll
pass the multiply_nums function into the function below and then use it to perform some calculations.

Listing 1-13.

>>> def perform math(oper):
return oper(5, 6)

55> perform_math(multiply_nums)
30

Although this example is very basic, you can see that another function can be passed as a parameter
and then used within another function. For more detail on using def and functions, please take a look at
Chapter 4, which is all about functions.

Classes

Python is an object-oriented programming language. which means that everything in the language is an
object of some type. Much like building blocks are used for constructing buildings, each object in Python
can be put together to build pieces of programs or entire programs. This section will give you a brief
introduction to Python classes, which are one of the keys to object orientation in this language.

Classes are defined using the class keyword. Classes can contain functions, methods, and variables.
Methods are just like functions in that the defkeyword is used to create them, and they accept
parameters. The only difference is that methods take a parameter known as self that refers to the object
to which the method belongs. Classes contain what is known as an initializer method, and it is called
automatically when a class is instantiated. Let’s take a look at a simple example and then explain it.

CHAPTER 1 1 LANGUAGE AND SYNTAX

Listing 1-14. Simple Python Class

>>> class my_object:
def _init_ (self, x, y):
self.x = x
self.y = y

def mult(self):
print self.x * self.y

def add(self):
print self.x + self.y

>>> objl = my_object(7, 8)
>>> objl.mult()

56

>>> obj1.add()

15

In this class example, we define a class named my_object. The class accepts two parameters, x and y.
A class initializer method is named __initz__(), and it is used to initialize any values that may be used in
the class. An initializer also defines what values can be passed to a class in order to create an object. You
can see that each method and function within the class accepts the self argument. The self argument is
used to refer to the object itself, this is how the class shares variables and such. The selfkeyword is
similar to this in Java code. The x and y variables in the example are named self.x and self.y in the
initializer, that means that they will be available for use throughout the entire class. While working with
code within the object, you can refer to these variables as self.x and self.y. If you create the object and
assign a name to it such as obj1, then you can refer to these same variables as obj1.x and obj1.y.

As you can see, the class is called by passing the values 7 and 8 to it. These values are then assigned
to x and y within the class initializer method. We assign the class object to an identifier that we call obj1.
The obj1 identifier now holds a reference to my_object() with the values we’ve passed it. The obj1
identifier can now be used to call methods and functions that are defined within the class.

For more information on classes, please see Chapter 6, which covers object orientation in Python.
Classes are very powerful and the fundamental building blocks for making larger programs.

Statements

When we refer to statements, we are really referring to a line of code that contains an instruction that
does something. A statement tells the Python interpreter to perform a task. Ultimately, programs are
made up of a combination of expressions and statements. In this section, we will take a tour of statement
keywords and learn how they can be used.

Let’s start out by listing each of these different statement keywords, and then we will go into more
detail about how to use each of them with different examples. I will not cover every statement keyword
in this section as some of them are better left for later in the chapter or the book, but you should have a
good idea of how to code an action which performs a task after reading through this section. While this
section will provide implementation details about the different statements, you should refer to later
chapters to find advanced uses of these features.

11

CHAPTER 1 1] LANGUAGE AND SYNTAX

12

Table 1-2. Statement Keywords

if-elif-else | for

while continue

break try-except-finally
assert def

print del

raise import

Now that we’ve taken a look at each of these keywords, it is time to look at each of them in detail. It
is important to remember that you cannot use any of these keywords for variable names.

if-elif-else Statement
The if statement simply performs an evaluation on an expression and does different things depending
on whether it is True or False. If the expression evaluates to True then one set of statements will be
executed, and if it evaluates to False a different set of statements will be executed. If statements are quite
often used for branching code into one direction or another based upon certain values which have been
calculated or provided in the code.

Pseudocode would be as follows:

Listing 1-15.

if <an expression to test>:
perform an action
else:

perform a different action

Any number of if/else statements can be linked together in order to create a logical code branch.
When there are multiple expressions to be evaluated in the same statement, then the elif statement can
be used to link these expressions together. Note that each set of statements within an if-elif-else
statement must be indented with the conditional statement out-dented and the resulting set of
statements indented. Remember, a consistent indentation must be followed throughout the course of
the program. The if statement is a good example of how well the consistent use of indention helps
readability of a program. If you are coding in Java for example, you can space the code however you'd
like as long as you use the curly braces to enclose the statement. This can lead to code that is very hard to
read...the indentation which Python requires really shines through here.

CHAPTER 1 1 LANGUAGE AND SYNTAX

Listing 1-16. Example of if statement

>>> X
>y
>> if x == y:
.. print 'x is equal to y'
.elif x >y
. print 'x is greater than y'
. else:
print 'x is less than y'

3
2

x is greater than y

While the code is simple, it demonstrates that using an if statement can result in branching code
logic.

print Statement

The print statement is used to display program output onto the screen (you've already seen it in action
several times). It can be used for displaying messages, which are printed from within a program, and also
for printing values, which may have been calculated. In order to display variable values within a print
statement, we need to learn how to use some of the formatting options that are available to Python. This
section will cover the basics of using the print statement along with how to display values by formatting
your strings of text.

In the Java language, we need to make a call to the System library in order to print something to the
command line. In Python, this can be done with the use of the print statement. The most basic use of the
print statement is to display a line of text. In order to do so, you simply enclose the text that you want to
display within single or double quotes. Take a look at the following example written in Java, and
compare it to the example immediately following which is rewritten in Python. I think you’ll see why the
print statement in Python makes life a bit easier.

Listing 1-17. Java Print Output Example

System.out.println("This text will be printed to the command line");

Listing 1-18. Python Print Output Example

print 'This text will be printed to the command line'

Asyou can see from this example, printing a line of text in Python is very straightforward. We can
also print variable values to the screen using the print statement.

Listing 1-19.

>>> my_value = 'I love programming in Jython'
>>> print my_value
I love programming in Jython

13

CHAPTER 1 1] LANGUAGE AND SYNTAX

14

Once again, very straightforward in terms of printing values of variables. Simply place the variable
within a print statement. We can also use this technique in order to append the values of variables to a
line of text. In order to do so, just place the concatenation operator (+) in between the String of text
which you would like to append to, and the variable you’d like to append.

Listing 1-20.

>>> print 'I like programming in Java, but ' + my_value
I like programming in Java, but I love programming in Jython

This is great and all, but really not useful if you'd like to properly format your text or work with int
values. After all, the Python parser is treating the (+) operator as a concatenation operator in this
case...not as an addition operator. Python bases the result of the (+) operator on the type of the first
operand. If you try to append a numeric value to a String you will end up with an error.

Listing 1-21.

>> z = 10
>>> print 'I am a fan of the number: ' + z
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: cannot concatenate 'str' and 'int' objects

As you can see from this example, Python does not like this trick very much. So in order to perform
this task correctly we will need to use some of the aforementioned Python formatting options. This is
easy and powerful to do, and it allows one to place any content or value into a print statement. Before
you see an example, let’s take a look at some of the formatting operators and how to choose the one that
you need.

* %s - String
e %d - Decimal

* %f- Float
If you wish to include the contents of a variable or the result of an expression in your print
statement, you'll use the following syntax:

Listing 1-22.

print 'String of text goes here %d %s %f' % (decimalValue, stringValue, floatValue)

In the pseudocode above (if we can really have pseudocode for print statements), we wish to print
the string of text, which is contained within the single quotes, but also have the values of the variables
contained where the formatting operators are located. Each of the formatting operators, which are
included in the string of text, will be replaced with the corresponding values from those variables at the
end of the print statement. The % symbol between the line of text and the list of variables tells Python
that it should expect the variables to follow, and that the value of these variables should be placed within
the string of text in their corresponding positions.

CHAPTER 1 1 LANGUAGE AND SYNTAX

Listing 1-23.

>>> string value = 'hello world'

>>> float_value = 3.998

>>> decimal_value = 5

>>> print 'Here is a test of the print statement using the values: %d, %s, and %f' %
(decimal value, string value, float value)

Here is a test of the print statement using the values: 5, hello world, and 3.998000

As you can see this is quite easy to use and very flexible. The next example shows that we also have
the option of using expressions as opposed to variables within our statement.

Listing 1-24.

»> x =1

»>y =2

>>> print 'The value of x +y is: %d' % (x +y)
The value of x +y is: 3

The formatting operator that is used determines how the output looks, it does not matter what type
of input is passed to the operator. For instance, we could pass an integer or float to %s and it would print
just fine, but it will in effect be turned into a string in its exact format. If we pass an integer or float to %d
or %f, it will be formatted properly to represent a decimal or float respectively. Take a look at the
following example to see the output for each of the different formatting operators.

Listing 1-25.

>>> X = 2.3456
>>> print '%s' % x

2.3456

>>> print '%d' % x
2

>>> print '%f" % x
2.345600

Another useful feature of the print statement is that it can be used for debugging purposes. If we
simply need to find out the value of a variable during processing then it is easy to display using the print
statement. Using this technique can often really assist in debugging and writing your code.

try-except-finally

The try-except-finally is the supported method for performing error handling within a Python
application. The idea is that we try to run a piece of code and if it fails then it is caught and the error is
handled in a proper fashion. We all know that if someone is using a program that displays an ugly long
error message, it is not usually appreciated. Using the try-except-finally statement to properly catch and
handle our errors can mitigate an ugly program dump.

This approach is the same concept that is used within many languages, including Java. There are a
number of defined error types within the Python programming language and we can leverage these error
types in order to facilitate the try-except-finally process. When one of the defined error types is caught,
then a suite of code can be coded for handling the error, or can simply be logged, ignored, and so on.

15

CHAPTER 1 1] LANGUAGE AND SYNTAX

16

The main idea is to avoid those ugly error messages and handle them neatly by displaying a formatted
error message or performing another process.

Listing 1-26.

>>> # Suppose we've calculated a value and assigned it to x
> X
8.97
>»>y =0
>>> try:
. print 'The rocket trajectory is: %f' % (x/y)
. except:
print 'Houston, we have a problem.

Houston, we have a problem.

If there is an exception that is caught within the block of code and we need a way to perform some
cleanup tasks, we would place the cleanup code within the finally clause of the block. All code within the
finally clause is always invoked before the exception is raised. The details of this topic can be read about
more in Chapter 7. In the next section, we’ll take a look at the raise statement, which we can use to raise
exceptions at any point in our program.

raise Statement

As mentioned in the previous section, the raise statement is used to throw or “raise” an exception in
Python. We know that a try-except clause is needed if Python decides to raise an exception, but what if
you’d like to raise an exception of your own? You can place a raise statement anywhere that you wish to
raise a specified exception. There are a number of defined exceptions within the language which can be
raised. For instance, NameError is raised when a specific piece of code is undefined or has no name. For
a complete list of exceptions in Python, please visit Chapter 7.

Listing 1-27.

>>> raise NameError
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError

If you wish to specify your own message within a raise then you can do so by raising a generic
Exception, and then specifying your message on the statement as follows.

Listing 1-28.

>>> raise Exception('Custom Exception')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
Exception: Custom Exception

CHAPTER 1 1 LANGUAGE AND SYNTAX

import Statement

A program can be made up of one or more suites of code. In order to save a program so that it can be
used later, we place the code into files on our computer. Files that contain Python code should contain a
.py suffix such as my_code.py and so forth. These files are known as modules in the Python world. The
import statement is used much like it is in other languages, it brings external modules or code into a
program so that it can be used. This statement is ultimately responsible for reuse of code in multiple
locations. The import statement allows us to save code into a flat file or script, and then use it in an
application at a later time.

If a class is stored in an external module that is named the same as the class itself, the import
statement can be used to explicitly bring that class into an application. Similarly, if you wish to import
only a specific identifier from another module into your current module, then the specific code can be
named within using the syntax from <<module>> import <<specific code>>. Time to see some examples.

Listing 1-29.

Import a module named TipCalculator
import TipCalculator

Import a function tipCalculator from within a module called ExternalModule.py

from ExternalModule import tipCalculator

When importing modules into your program, you must ensure that the module being imported does
not conflict with another name in your current program. To import a module that is named the same as
another identifier in your current program, you can use the as syntax. In the following example, let’s
assume that we have defined an external module with the name of tipCalculator.py and we want to use
it’s functionality in our current program. However, we already have a function named tipCalculator()
within the current program. Therefore, we use the as syntax to refer to the tipCalculator module.

Listing 1-30.

import tipCalculator as tip

This section just touches the surface of importing and working with external modules. For a more
detailed discussion, please visit Chapter 7 which covers this topic specifically.

Iteration

The Python language has several iteration structures which are used to traverse through a series of items
in a list, database records, or any other type of collection. A list in Python is a container that holds
objects or values and can be indexed. For instance, we create a list of numbers in the following example.
We then obtain the second element in the list by using the index value of 1 (indexing starts at zero, so the
first element of the list is my_numbers[0]).

17

CHAPTER 1 1] LANGUAGE AND SYNTAX

18

Listing 1-31.

>>> my numbers = [1, 2, 3, 4, 5]
>>> my_numbers
[1) 2) 3) 4) 5]
>>> my_numbers[1]
2
For more information on lists, please see Chapter 2 that goes into detail about lists and other
containers that can be used in Python.
The most commonly used iteration structure within the language is probably the for loop, which is
known for its easy syntax and practical usage.

Listing 1-32.

>>> for value in my_numbers:
print value

Ul W N R
.

However, the while loop still plays an important role in iteration, especially when you are not
dealing with collections of data, but rather working with conditional expressions. In this simple example,
we use a while loop to iterate over the contents of my_numbers. Note that the len() function just returns
the number of elements that are contained in the list.

Listing 1-33.

>»>x =0

>>> while x < len(my_numbers):
print my_numbers[x]
X=x+1

U BWN R
.

This section will take you though each of these two iteration structures and touch upon the basics of
using them. The while loop is relatively basic in usage, whereas there are many different
implementations and choices when using the for loop. I will only touch upon the forloop from a high-
level perspective in this introductory chapter, but if you wish to go more in-depth then please visit
Chapter 3.

CHAPTER 1 1 LANGUAGE AND SYNTAX

While Loop

The whileloop construct is used in order to iterate through code based upon a provided conditional
statement. As long as the condition is true, then the loop will continue to process. Once the condition
evaluates to false, the looping ends. The pseudocode for while loop logic reads as follows:

while True
perform operation

The loop begins with the declaration of the while and conditional expression, and it ends once the
conditional has been met and the expression is True. The expression is checked at the beginning of each
looping sequence, so normally some value that is contained within the expression is changed within the
suite of statements inside the loop. Eventually the value is changed in such a way that it makes the
expression evaluate to False, otherwise an infinite loop would occur. Keep in mind that we need to
indent each of the lines of code that exist within the while loop. This not only helps the code to maintain
readability, but it also allows Python to do away with the curly braces!

Listing 1-34. Example of a Java While Loop

int x

int y

intz=x-y;

while (y < x){
System.out.println("y is
y = Y+

9;
2;

+z + " less than x");

Now, let’s see the same code written in Python.

Listing 1-35. Example of a Python While Loop

>>> X =9

>y =2

>>> while y < x:

print 'y is %d less than x' % (x-y)

. y +=1

y is 7 less than x
y is 6 less than x
y is 5 less than x
y is 4 less than x
y is 3 less than x
y is 2 less than x
y is 1 less than x

In this example, you can see that the conditional y < x is evaluated each time the loop passes. Along
the way, we increment the value of y by one each time we iterate, so that eventually y is no longer less
than x and the loop ends.

19

CHAPTER 1 1] LANGUAGE AND SYNTAX

20

For Loop
We will lightly touch upon forloops in this chapter, but you can delve deeper into the topic in chapter
two or three when lists, dictionaries, tuples, and ranges are discussed. For now, you should know that a
forloop is used to iterate through a defined set of values. The for loop is very useful for performing
iteration through values because this is a concept which is used in just about any application. For
instance, if you retrieve a list of database values, you can use a for loop to iterate through them and print
each one out.

The pseudocode to for loop logic is as follows:

for each value in this defined set:
perform suite of operations

As you can see with the pseudocode, I've indented in a similar fashion to the way in which the other
expression constructs are indented. This uniform indentation practice is consistent throughout the
Python programming language. We’ll compare the for loop in Java to the Python syntax below so that
you can see how the latter makes code more concise.

Listing 1-36. Example of Java For Loop

for (x = 0; x <= 10; x++){
System.out.println(x);

}

Now, the same code implemented in Python:

Listing 1-37. Example of Python For Loop

>>> for x in range(10):
print x

© O~NOUVIPRRWNERERO-. -
.

In this example, we use a construct which has not yet been discussed. A range is a built-in function
for Python which simply provides a range from one particular value to another. In the example, we pass
the value 10 into the range which gives us all values between 0 and 10, inclusive of the zero at the front
and exclusive at the end. We see this in the resulting print out after the expression.

Basic Keyboard Input

The Python language has a couple of built-in functions to take input from the keyboard as to facilitate
the process of writing applications that allow user input. Namely, raw_input(), and input() can be used

CHAPTER 1 1 LANGUAGE AND SYNTAX

to prompt and accept user input from the command-line. Not only is this useful for creating command-
line applications and scripts, but it also comes in handy for writing small tests into your applications.

The raw_input() function accepts keyboard entry and converts it to a string, stripping the trailing
newline character. Similarly, the input(function accepts keyboard entry as raw_input(), but it then
evaluates it as an expression. The input() function should be used with caution as it expects a valid
Python expression to be entered. It will raise a SyntaxError if this is not the case. Using input() could
result in a security concern as it basically allows your user to run arbitrary Python code at will. It is best
to steer clear of using input() in most cases and just stick to using raw_input. Let’s take a look at using
each of these functions in some basic examples.

Listing 1-38. Using raw_input() and input()

The text within the function is optional, and it is used as a prompt to the user
>>> name = raw_input("Enter Your Name:")

Enter Your Name:Josh

>>> print name

Josh

Use the input function to evaluate an expression entered in by the user
>>> val = input ('Please provide an expression: ')

Please provide an expression: 9 * 3

>>> val

27

The input function raises an error if an expression is not provided
>>> val = input ('Please provide an expression: ')
Please provide an expression: My Name is Josh
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<string>", line 1

My Name is Josh
N

SyntaxError: invalid syntax

There will be examples provided later in the book for different ways of using the raw_input()
function. Now let’s take a look at some of the other Python statements that have not yet been covered in
this chapter.

Other Python Statements

There are some other Python statements that can be used within applications as well, but they are
probably better meant to be discussed within a later chapter as they provide more advanced
functionality. The following is a listing of other Python statements which you will read more about later
on:

exec—Execute Python code in a dynamic fashion
global—References a variable a global (Chapter 4)
with—New feature in 2.5 using __future__
class—Create or define a new class object (Chapter 6)

yield—Used with generators, returns a value (Chapter 4)

21

CHAPTER 1 1] LANGUAGE AND SYNTAX

22

Documenting Code

Code documentation: an annoyingly important part of every application developer’s life. Although many
of us despise code documentation, it must exist for any application that is going to be used for
production purposes. Not only is proper code documentation a must for manageability and long-term
understanding of Python code fragments, but it also plays an important role in debugging some code as
we will see in some examples below.

Sometimes we wish to document an entire function or class, and other times we wish to document
only a line or two. Whatever the case, Python provides a way to do it in a rather unobtrusive manner.
Much like many of the other programming languages that exist today, we can begin a comment on any
part of any code line. We can also comment spanning multiple lines if we wish. Just on a personal note,
we rather like the Python documentation symbol (#) or hash, as it provides for clear-cut readability.
There are not many places in code that you will use the (#) symbol unless you are trying to perform some
documentation. Many other languages use symbols such as (/) which can make code harder to read as
those symbols are evident in many other non-documenting pieces of code. Okay, it is time to get off my
soap box on Python and get down to business.

In order to document a line of code, you simply start the document or comment with a (#) symbol.
This symbol can be placed anywhere on the line and whatever follows it is ignored by the Python
compiler and treated as a comment or documentation. Whatever precedes the symbol will be parsed as
expected.

Listing 1-39.

>>> # This is a line of documentation
>>> X = 0 # This is also documentation

>»>y =20
>>> print x +y
20

As you can see, the Python parser ignores everything after the #, so we can easily document or
comment as needed.

One can easily document multiple lines of code using the # symbol as well by placing the hash at the
start of each line. It nicely marks a particular block as documentation. However, Python also provides a
multi-line comment using the triple-quote (‘) designation at the beginning and end of a comment. This
type of multi-line comment is also referred to as a doc string and it is only to be used at the start of a
module, class, or function. While string literals can be placed elsewhere in code, they will not be treated
as docstrings unless used at the start of the code. Let’s take a look at these two instances of multi-line
documentation in the examples that follow.

Listing 1-40. Multiple Lines of Documentation Beginning With #

This function is used in order to provide the square
of any value which is passed in. The result will be
passed back to the calling code.
def square val(value):

return value * value

>>> print square val(3)
9

CHAPTER 1 1 LANGUAGE AND SYNTAX

Listing 1-41. Multiple Lines of Documentation Enclosed in Triple Quotes (")

def tip_calc(value, pct):
""" This function is used as a tip calculator based on a percentage
which is passed in as well as the value of the total amount. 1In
this function, the first parameter is to be the total amount of a
bill for which we will calculate the tip based upon the second
parameter as a percentage '''
return value * (pct * .01)

>>> print tip_calc(75,15)
11.25

Okay, as we can see, both of these documentation methods can be used to get the task of
documenting or comment code done. In Listing 1-40, we used multiple lines of documentation
beginning with the # symbol in order to document the square_val function. In Listing 1-41, we use the
triple-quote method in order to span multiple lines of documentation. Both of them appear to work as
defined. However, the second option provides a greater purpose as it allows one to document specific
named code blocks and retrieve that documentation by calling the help(function) function. For instance,
if we wish to find out what the square_val code does, we need to visit the code and either read the multi-
line comment or simply parse the code. However, if we wish to find out what the tip_calc function does,
we can call the help(tip_calc) function and the multi-line comment will be returned to us. This provides
a great tool to use for finding out what code does without actually visiting the code itself.

Listing 1-42. Printing the Documentation for the tip_calc Function

>>> help(tip_calc)
Help on function tip _calc in module _main_ :

tip calc(value, pct)
This function is used as a tip calculator based on a percentage
which is passed in as well as the value of the total amount. 1In
this function, the first parameter is to be the total amount of a
bill for which we will calculate the tip based upon the second

parameter as a percentage

These examples and short explanations should give you a pretty good feel for the power of
documentation that is provided by the Python language. As you can see, using the multi-line triple-
quote method is very suitable for documenting classes or functions. Commenting with the # symbol
provides a great way to organize comments within source and also for documenting those lines of code
which may be “not so easy” to understand.

Python Help

Getting help when using the Jython interpreter is quite easy. Built into the interactive interpreter is an
excellent help() option which provides information on any module, keyword, or topic available to the
Python language. By calling the help() function without passing in the name of a function, the Python
help system is invoked. While making use of the help() system, you can either use the interactive help
which is invoked within the interpreter by simply typing kelp(), or as we have seen previously you can
obtain the docstring for a specific object by typing help(object).

23

CHAPTER 1 1] LANGUAGE AND SYNTAX

24

It should be noted that while using the help system in the interactive mode, there is a plethora of
information available at your fingertips. If you would like to see for yourself, simply start the Jython
interactive interpreter and type help(). After you are inside the interactive help, you can exit at any time
by typing quit. In order to obtain a listing of modules, keywords, or topics you just type either “modules,”
“keywords,” or “topics”, and you will be provided with a complete listing. You will also receive help for
using the interactive help system. . .or maybe this should be referred to as meta-help!

Although the Jython interactive help system is great, you may still need further assistance. There are
a large number of books published on the Python language that will be sure to help you out. Make sure
that you are referencing a book that provides you with information for the specific Python release that
you are using as each version contains some differences. As mentioned previously in the chapter, the
Jython version number contains is consistent with its CPython counterpart. Therefore, each feature that
is available within CPython 2.5, for instance, should be available within Jython 2.5 and so on.

Summary

This chapter has covered lots of basic Python programming material. It should have provided a basic
foundation for the fundamentals of programming in Python. This chapter shall be used to reflect upon
while delving deeper into the language throughout the remainder of this book.

We began by discussing some of the differences between CPython and Jython. There are many good
reasons to run Python on the JVM, including the availability of great Java libraries and excellent
deployment targets. Once we learned how to install and configure Jython, we dove into the Python
language. We learned about the declaration of variables and explained the dynamic tendencies of the
language. We then went on to present the reserved words of the language and then discussed the coding
structure which must be adhered to when developing a Python application. After that, we discussed
operators and expressions. We learned that expressions are generally pieces of code that are evaluated to
produce a value. We took a brief tour of Python functions as to cover their basic syntax and usage.
Functions are a fundamental part of the language and most Python developers use functions in every
program. A short section introducing classes followed, it is important to know the basics of classes early
even though there is much more to learn in Chapter 6. We took a look at statements and learned that
they consist of instructions that allow us to perform different tasks within our applications. Each of the
Python statements were discussed and examples were given. Iteration constructs were then discussed so
that we could begin to use our statements and program looping tasks.

Following the language overview, we took a brief look at using keyboard input. This is a feature for
many programs, and it is important to know for building basic programs. We then learned a bit about
documentation, it is an important part of any application and Python makes it easy to do. Not only did
we learn how to document lines of code, but also documenting entire modules, functions and classes.
We touched briefly on the Python help() system as it can be a handy feature to use while learning the
language. It can also be useful for advanced programmers who need to look up a topic that they may be
a bit rusty on.

Throughout the rest of the book, you will learn more in-depth and advanced uses of the topics that
we’ve discussed in this chapter. You will also learn concepts and techniques that you’ll be able to utilize
in your own programs to make them more powerful and easy to maintain.

CHAPTER 2

Data Types and Referencing

Programming languages and applications need data. We define applications to work with data, and we
need to have containers that can be used to hold it. This chapter is all about defining containers and
using them to work with application data. Whether the data we are using is coming from a keyboard
entry or if we are working with a database, there needs to be a way to temporarily store it in our
programs so that it can be manipulated and used. Once we're done working with the data then these
temporary containers can be destroyed in order to make room for new constructs.

We'll start by taking a look at the different data types that are offered by the Python language, and
then we'll follow by discussing how to use that data once it has been collected and stored. We will
compare and contrast the different types of structures that we have in our arsenal, and we’ll give some
examples of which structures to use for working with different types of data. There are a multitude of
tasks that can be accomplished through the use of lists, dictionaries, and tuples and we will try to cover
many of them. Once you learn how to define and use these structures, then we’ll talk a bit about what
happens to them once they are no longer needed by our application.

Let’s begin our journey into exploring data types and structures within the Python programming
language. . .these are skills that you will use in each and every practical Jython program.

Python Data Types

As we’ve discussed, there is a need to store and manipulate data within programs. In order to do so then
we must also have the ability to create containers used to hold that data so that the program can use it.
The language needs to know how to handle data once it is stored, and we can do that by assigning data
type to our containers in Java. However, in Python it is not a requirement to do so because the
interpreter is able to determine which type of data we are storing in a dynamic fashion.

Table 2-1 lists each data type and gives a brief description of the characteristics that define each of
them.

Table 2-1. Python Data Types

Data Type Characteristics

None NULL value object

int Plain integer (e.g., 32)

long Long integer. Integer literal with an 'L’ suffix, too long to be a plain integer

25

CHAPTER 2 1 DATA TYPES AND REFERNCING

26

Table 2-1. Python Data Types (continued)

Data Type Characteristics

float Floating-point number. Numeric literal containing decimal or exponent sign

complex Complex number. Expressed as a sum of a numeric literal with a real and imaginary part
Boolean True or False value (also characterized as numeric values of 1 and 0 respectively)
Sequence Includes the following types: string, unicode string, basestring, list, tuple

Mapping Includes the dictionary type

Set Unordered collection of distinct objects; includes the following types: set, frozenset
File Used to make use of file system objects
Iterator Allows for iteration over a container. See section on Iterators for more details

Given all of that information and the example above, we should officially discuss how to declare a
variable in the Python language. Let’s take a look at some examples of defining variables in the following
lines of code.

Listing 2-1. Defining Variables in Jython

Defining a String

x = 'Hello World'

x = "Hello World Two"
Defining an integer
y = 10

Float

z = 8.75

Complex
i=1+8.07j

An important point to note is that there really are no types in Jython. Every object is an instance of a
class. In order to find the type of an object, simply use the fype() function.

Listing 2-2.

Return the type of an object using the type function
>>> 1 =1+ 8.07j

>>> type(i)

<type 'complex'>

CHAPTER 2 11 DATA TYPES AND REFERNCING

>>> a = 'Hello'
>>> type(a)
<type ‘str'>

A nice feature to note is multiple assignment. Quite often it is necessary to assign a number of
values to different variables. Using multiple assignment in Python, it is possible to do this in one line.

Listing 2-3. Multiple Assignment

> X, ¥, z2=1, 2, 3
>>> print x

1

>>> print z

3

>

Strings and String Methods

Strings are a special type within most programming languages because they are often used to
manipulate data. A string in Python is a sequence of characters, which is immutable. An immutable
object is one that cannot be changed after it is created. The opposite would be a mutable object, which
can be altered after creation. This is very important to know as it has a large impact on the overall
understanding of strings. However, there are quite a few string methods that can be used to manipulate
the contents of a particular string. We never actually manipulate the contents though, these methods
return a manipulated copy of the string. The original string is left unchanged.

Prior to the release of Jython 2.5.0, CPython and Jython treated strings a bit differently. There are
two types of string objects in CPython, these are known as Standard strings and Unicode strings. There is
a lot of documentation available that specifically focuses on the differences between the two types of
strings, this reference will only cover the basics. It is worth noting that Python contains an abstract string
type known as basestring so that it is possible to check any type of string to ensure that it is a string
instance.

Prior to the release of Jython 2.5.0 there was only one string type. The string type in Jython
supported full two-byte Unicode characters and all functions contained in the string module were
Unicode-aware. If the u'"' string modifier is specified, it is ignored by Jython. Since the release of 2.5.0,
strings in Jython are treated just like those in CPython, so the same rules will apply to both
implementations. If you are interested in learning more about String encoding, there are many great
references available on the topic. It is also worth noting that Jython uses character methods from the
Java platform. Therefore properties such as isupper and islower, which we will discuss later in the
section, are based upon the Java methods, although they actually work the same way as their CPython
counterparts

In the remainder of this section, we will go through each of the many string functions that are at our
disposal. These functions will work on both Standard and Unicode strings. As with many of the other
features in Python and other programming languages, at times there is more than one way to
accomplish a task. In the case of strings and string manipulation, this holds true. However, you will find
that in most cases, although there are more than one way to do things, Python experts have added
functions which allow us to achieve better performing and easier to read code.

Table 2-2 lists all of the string methods that have been built into the Python language as of the 2.5
release. Because Python is an evolving language, this list is sure to change in future releases. Most often,
additions to the language will be made, or existing features are enhanced. Following the table, we will
give numerous examples of the methods and how they are used. Although we cannot provide an
example of how each of these methods work (that would be a book in itself), they all function in the
same manner so it should be rather easy to pick up.

27

CHAPTER 2 1 DATA TYPES AND REFERNCING

28

Table 2-2. String Methods

Method

Description of Functionality

capitalize()

Returns a capitalized copy of string

center (width[,fill])

Returns a repositioned string with specified width and provide
optional padding filler character

count(subl,start[,end]])

Count the number of distinct times the substring occurs within the
string

decode([encoding],errors]])

Decodes and returns Unicode string

encode([encoding],errors]])

Returns an encoded version of a string

endswith (suffix[,start[,end]])

Returns a boolean to state whether the string ends in a given pattern

expandtabs([tabsize])

Converts tabs within a string into spaces

find(sub[,start[,end]])

Returns the index of the position where the first occurrence of the
given substring begins

index(subl,start[,end])

Returns the index of the position where the first occurrence of the
given substring begins. Raises a ValueError with the substring is not
found.

isalnum() Returns a boolean to state whether the string contain only alphabetic
and numeric characters

isalpha() Returns a boolean to state whether the string contains all alphabetic
characters

isdigit() Returns a boolean to state whether the string contains all numeric
characters

islower() Returns a boolean to state whether a string contains all lowercase
characters

isspacel() Returns a boolean to state whether the string consists of all whitespace

istitle() Returns a boolean to state whether the first character of each word in
the string is capitalized

isupper() Returns a boolean to state whether all characters within the string are

uppercase

CHAPTER 2

Table 2-2. String Methods (continued)

DATA TYPES AND REFERNCING

Method

Description of Functionality

join(sequence)

Returns a copy of sequence joined together with the original string
placed between each element

ljust(width[,fillchar])

Returns a string of the specified width along with a copy of the
original string at the leftmost bit. (Optionally padding empty space
with fillchar)

lower()

Returns a copy of the original string with all characters in the string
converted to lowercase

Istrip([chars])

Removes the first found characters in the string from the left that
match the given characters. Also removes whitespace from the left.
Whitespace removal is default when specified with no arguments.

partition(separator)

Returns a partitioned string starting from the left using the provided
separator

replace(old,new[,count])

Returns a copy of the original string replacing the portion of string
given in old with the portion given in new

rfind(sub[,start[,end]])

Searches string from right to left and finds the first occurrence of the
given string and returns highest index where sub is found

rindex(sub|,start[,end]])

Searches string from right to left and finds the first occurrence of the
given string and either returns highest index where sub is found or
raises an exception

rjust(width[,fillchar])

Returns copy of string Aligned to the right by width

rpartition(separator)

Returns a copy of stringPartitioned starting from the right using the
provided separator object

rsplit([separator[,maxsplit]])

Returns list of words in string and splits the string from the right side
and uses the given separator as a delimiter. If maxsplit is specified
then at most maxsplit splits are done (from the right).

rstrip([chars])

Returns copy of string removing the first found characters in the string
from the right that match those given. Also removes whitespace from
the right when no argument is specified.

split([separator[,maxsplit]])

Returns a list of words in string and splits the string from the left side
and uses the given separator as a delimiter.

29

CHAPTER 2 1 DATA TYPES AND REFERNCING

30

Table 2-2. String Methods (continued)

Method

Description of Functionality

splitlines([keepends])

Splits the string into a list of lines. Keepends denotes if newline
delimiters are removed. Returns the list of lines in the string.

startswith (prefix[,start[,end]])

Returns a boolean to state whether the string starts with the given
prefix

strip([chars])

Returns a copy of string with the given characters removed from the
string. If no argument is specified then whitespace is removed.

swapcase() Returns a copy of the string the case of each character in the string
converted.
title() Returns a copy of the string with the first character in each word

uppercase.

translate(table[,deletechars])

Returns a copy of the string using the given character translation table
to translate the string. All characters occurring in optional deletechars
argument are removed.

upper() Returns a copy of string with all of the characters in the string
converted to uppercase
zfill(width) Returns a numeric string padded from the left with zeros for the

specified width.

Now let’s take a look at some examples so that you get an idea of how to use the string methods. As
stated previously, most of them work in a similar manner.

Listing 2-4. Using String Methods

our_string="python is the best language ever'
Capitalize first character of a String

>>> our_string.capitalize()

'Python is the best language ever'

Center string
>>> our_string.center(50)

>>> our_string.center(50,'-")

python is the best language ever

————————— python is the best language ever---------

Count substring within a string

>>> our_string.count('a")

CHAPTER 2 11 DATA TYPES AND REFERNCING

2

Count occurrences of substrings
>>> state = 'Mississippi’

>>> state.count('ss")

2

Partition a string returning a 3-tuple including the portion of string
prior to separator, the separator

and the portion of string after the separator

>>> x = "Hello, my name is Josh"

>>> X.partition('n")

('Hello, my ', 'n', 'ame is Josh')

Assuming the same x as above, split the string using 'l' as the separator

>>> x.split('1l")
['He', '', "o, my name is Josh']

As you can see, the tuple returned does not contain the separator value

Now if we add maxsplits value of 1, you can see that the right-most split is

taken. If we specify maxsplits value of 2, the two right-most splits are taken
>>> x.split('1l',1)

['He', 'lo, my name is Josh']

>>> x.split('1l',2)

['He', '', "o, my name is Josh']

String Formatting

You have many options when printing strings using the print statement. Much like the C programming
language, Python string formatting allows you to make use of a number of different conversion types
when printing.

Listing 2-5. Using String Formatting

The two syntaxes below work the same
>>> x = "Josh"

>>> print "My name is %s" % (x)

My name is Josh

>>> print "My name is %s" % x

My name is Josh

An example using more than one argument

>>> name = 'Josh’

>>> language = 'Python’

>>> print "My name is %s and I speak %s" % (name, language)
My name is Josh and I speak Python

And now for some fun, here's a different conversion type

Mind you, I'm not sure where in the world the temperature would
fluctuate so much!

>>> dayl_temp = 65

>>> day2_temp = 68

31

CHAPTER 2 1 DATA TYPES AND REFERNCING

>>> day3_temp = 84

>>> print "Given the temparatures %d, %d, and %d, the average would be %f" % (dayl_temp,
day2_temp, day3_temp, (dayil temp + day2 temp + day3_temp)/3)

Given the temperatures 65, 68, and 83, the average would be 72.333333

Table 2-3 lists the conversion types.

Table 2-3. Conversion Types

Type | Description

d signed integer decimal

i signed integer

o unsigned octal

u unsigned decimal

X unsigned hexidecimal (lowercase)

X unsigned hexidecimal (uppercase letters)

E floating point exponential format (uppercase 'E')

e floating point exponential format (lowercase 'e")

f floating point decimal format (lowercase)

F floating point decimal format (same as 'f')

g floating point exponential format if exponent < -4, otherwise float
G floating point exponential format (uppercase) if exponent < -4, otherwise float
c single character

r string (converts any python object using repr())

S string (converts any python object using str())

% no conversion, results in a percent (%) character if specified twice

32

CHAPTER 2 11 DATA TYPES AND REFERNCING

Listing 2-6.
>> X = 10
>>>y = 5.75

>>> print 'The expression %d * %f results in %f' % (x, y, x*y)
The expression 10 * 5.750000 results in 57.500000

Example of using percentage

>>> test1l = 87
>>> test2 = 89
>>> test3 = 92

>>> "The gradepoint average of three students is %d%%" % (avg)
'The gradepoint average of three students is 89%'

Lists, Dictionaries, Sets, and Tuples
Lists, dictionaries, sets, and tuples all offer similar functionality and usability, but they each have their
own niche in the language. We’ll go through several examples of each since they all play an important
role under certain circumstances. Unlike strings, all of the containers discussed in this section (except
tuples) are mutable objects, so they can be manipulated after they have been created.

Because these containers are so important, we’ll go through an exercise at the end of this chapter,
which will give you a chance to try them out for yourself.

Lists

Perhaps one of the most used constructs within the Python programming language is the list. Most other
programming languages provide similar containers for storing and manipulating data within an
application. The Python list provides an advantage over those similar constructs that are available in
statically typed languages. The dynamic tendencies of the Python language help the list construct to
harness the great feature of having the ability to contain values of different types. This means that a list
can be used to store any Python data type, and these types can be mixed within a single list. In other
languages, this type of construct is often defined as a typed object, which locks the construct to using
only one data type.

The creation and usage of Python lists is just the same as the rest of the language. . .very simple and
easy to use. Simply assigning a set of empty square brackets to a variable creates an empty list. We can
also use the built-in list() function to create a list. The list can be constructed and modified as the
application runs, they are not declared with a static length. They are easy to traverse through the usage
of loops, and indexes can also be used for positional placement or removal of particular items in the list.
We'll start out by showing some examples of defining lists, and then go through each of the different
avenues which the Python language provides us for working with lists.

Listing 2-7. Defining Lists

Define an empty list
my list
my list

list() # rarely used

Single Item List

>>> my_list = [1]

>>> my_list # note that there is no need to use print to display a variable in the
>>> # interpreter

33

CHAPTER 2 1 DATA TYPES AND REFERNCING

34

[1]

Define a list of string values
my string list = ['Hello', 'Jython' ,'Lists']

Define a list containing mulitple data types
multi 1ist = [1, 2, 'three', 4, 'five', 'six']

Define a list containing a list
combo_list = [1, my string list, multi list]

Define a list containing a list inline

>>> my new list = ['new _item1', 'new_item2', [1, 2, 3, 4], 'new_item3']
>>> print my_new_list

['new item1', 'new_item2', [1, 2, 3, 4], 'new item3']

As stated previously, in order to obtain the values from a list we can make use of indexes. Much like
the Array in the Java language, using the list/index] notation will allow us to access an item. If we wish to
obtain a range or set of values from a list, we can provide a starting index, and/or an ending index. This
technique is also known as slicing. What's more, we can also return a set of values from the list along
with a stepping pattern by providing a step index as well. One key to remember is that while accessing a
list via indexing, the first element in the list is contained within the 0 index. Note that when slicing a list,
anew list is always returned. One way to create a shallow copy of a list is to use slice notation without
specifying an upper or lower bound. The lower bound defaults to zero, and the upper bound defaults to
the length of the list.

Note that a shallow copy constructs a new compound object (list or other object containing objects)
and then inserts references into it to the original objects. A deep copy constructs a new compound
object and then inserts copies into it based upon the objects found in the original.

Listing 2-8. Accessing a List

Obtain elements in the list
>>> my_string list[0]
'Hello'

>>> my_string list[2]
"Lists'

Negative indexes start with the last element in the list and work back towards the first
item

>>> my_string list[-1]

"Lists'

>>> my_string list[-2]

"Jython'

Using slicing (Note that slice includes element at starting index and excludes the end)
>>> my_string list[0:2]
['Hello', 'Jython']

Create a shallow copy of a list using slice
>>> my_string list copy = my string list[:]
>>> my_string list copy

['Hello', 'Jython', 'Lists']

CHAPTER 2 11 DATA TYPES AND REFERNCING

Return every other element in a list

>>> new_list=[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Using a third parameter in the slice will cause a stepping action to take place
In this example we step by one

>>> new_list[0:10:1]

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

And here we step by two
>>> new_list[0:10:2]
[2, 6, 10, 14, 18]

Leaving a positional index blank will also work as the default is 0 for the start, and the
length of the string for the end.

>>> new_list[::2]

[2, 6, 10, 14, 18]

Modifying a list is much the same, you can use the index in order to insert or remove items from a
particular position. There are also many other ways that you can insert or remove elements from the list.
Python provides each of these different options as they provide different functionality for your
operations.

Listing 2-9.

Modify an element in a list. In this case we'll modify the element in the 9*" position
>>> new_list[9] = 25

>>> new_list

[2, 4, 6, 8, 10, 12, 14, 16, 18, 25]

You can make use of the append() method in order to add an item to the end of a list. The extend()
method allows you to add copy of an entire list or sequence to the end of a list. Lastly, the insert()
method allows you to place an item or another list into a particular position of an existing list by utilizing
positional indexes. If another list is inserted into an existing list then it is not combined with the original
list, but rather it acts as a separate item contained within the original list. You will find examples of each
method below.

Similarly, we have plenty of options for removing items from a list. The del statement, as explained
in Chapter 1, can be used to remove or delete an entire list or values from a list using the index notation.
You can also use the pop() or remove() method to remove single values from a list. The pop() method will
remove a single value from the end of the list, and it will also return that value at the same time. If an
index is provided to the pop() function, then it will remove and return the value at that index. The
remove() method can be used to find and remove a particular value in the list. In other words, remove()
will delete the first matching element from the list. If more than one value in the list matches the value
passed into the remove() function, the first one will be removed. Another note about the remove()
function is that the value removed is not returned. Let’s take a look at these examples of modifying a list.

35

CHAPTER 2 1 DATA TYPES AND REFERNCING

36

Listing 2-10. Modifying a List

Adding values to a list using the append method
>>> new_list=['a','b",'c','d","e",'f',"g"]

>>> new_list.append('h")

>>> print new_list

[laI, lbl’ ‘C', ldl, leI, l_‘Fl’ Igl, lhl]

Add another list to the existing list

>>> new—list2=[lhl’Iil,Ijl’Ikl,lll’lml,lnl’lol,lpl]

>>> new_list.extend(new_list2)

>>> print new_list

[la|, Ibl’ |Cl’ ldl’ le|, I_Fl’ |gl’ {h)’lhl, lil, Ijl’ |kl’ lll’ lm|, Inl’ |0l’ lpl]
Insert a value into a particular location via the index.

In this example, we add a 'c' into the third position in the list

(Remember that list indicies start with 0, so the second index is actually the third
position)

>>> new_list.insert(2,'c")

>>> print new_list

['alJ 'bl: lclx lcl,v d', 'el: lf': lg',v h', ‘h,:'i‘: lj': lkl) 1, 'ml: ln': lol,v 'P']

Insert a list into a particular postion via the index
>>> another list = ['a", 'b', 'c']

>>> another_list.insert(2, new_list)

>>> another_list

['a', 'b', [2, 4, 8, 10, 12, 14, 16, 18, 25], 'c']

Use the slice notation to overwrite part of a list or sequence
>>> new_listA=[100,200,300,400]

>>> new_listB=[500,600,700,800]

>>> new_listA[0:2]=new_listB

>>> print new_listA

[500, 600, 700, 800, 300, 400]

Assign a list to another list using the empty slice notation

>>> one = ['a', 'b", 'c', 'd']
>>> two = ['e', "f']

>>> one

['al) 'bl) 'c" Id']

>>> two

(e, ']

Obtain an empty slice from a list by using the same start and end position.

Any start and end position will work, as long as they are the same number.

Ei> one[2:2]

In itself, this is not very interesting - you could have made an empty list

very easily. The useful thing about this is that you can assign to this empty slice
Now, assign the 'two' list to an empty slice for the 'one' list which essentially

inserts the 'two' list into the 'one' list

>>> one[2:2] = two # the empty list between elements 1 and 2 of list 'one' is
>>> # replaced by the list 'two'

CHAPTER 2 11 DATA TYPES AND REFERNCING

>>> one
[lal, lbl’ ‘C', Idl, lel, I_FI]

Use the del statement to remove a value or range of values from a list
Note that all other elements are shifted to fill the empty space

>>> new_list3=['a','b",'c','d",'e","f']

>>> del new list3[2]

>>> new_list3

[la|, Ibl, |dl, lel’ l_Fl]

>>> del new list3[1:3]

>>> new_list3

[la|, Iel, |_Fl]

Use the del statement to delete a list
>>> new_list3=[1,2,3,4,5]
>>> print new_list3
[1, 2, 3, 4, 5]
>>> del new_list3
>>> print new_list3
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'new_list3' is not defined

Remove values from a list using pop and remove functions

>>> print new_list

['alJ 'blx lclx ¢, 'd', 'elx lflx lg') h',’h’, 'ilx lj’) k', 1Y, 'mlx ln'J ‘o', 'P']
pop the element at index 2

>>> new_list.pop(2)

o

>>> print new_list

['al) 'bl) lcl) ‘d'J 'el) 'fl) '8', lh')’h,J 'il) 'jl) lk') lllx 'ml) 'nl) |0.’ 'P']

Remove the first occurrence of the letter 'h' from the list

>>> new_list.remove('h")

>>> print new_list

['al) 'bl) lcl) ld') 'el) 'fl) '8'; lh') 'il) 'j

) lk') ll') 'ml) 'n" lo) p']
Useful example of using pop() function
> X =5
>>> times list = [1,2,3,4,5]
>>> while times_list:
print x * times list.pop(0)

5

10
15
20

25

Now that we know how to add and remove items from a list, it is time to learn how to manipulate
the data within them. Python provides a number of different methods that can be used to help us
manage our lists. See Table 2-4 for a list of these functions and what they can do.

37

CHAPTER 2 1 DATA TYPES AND REFERNCING

Table 2-4. Python List Methods

Method | Tasks Performed

index Returns the index of the first value in the list which matches a given value.

count | Returns the number of items in the list which equal a given value.

sort Sorts the items contained within the list and returns the list

reverse | Reverses the order of the items contained within the list, and returns the list

Let’s take a look at some examples of how these functions can be used on lists.

Listing 2-11. Utilizing List Functions

Returning the index for any given value
>>> new_list=[1,2,3,4,5,6,7,8,9,10]

>>> new_list.index(4)

3

Change the value of the element at index 4
>>> new_list[4] = 30

>>> new_list

[1J 2) 3) 4) 30) 6) 7) 8) 9) 10]

Ok, let's change it back

>>> new list[4] = 5

>>> new_list

[1) 2) 3) 4) 5) 6) 7) 8) 9) 10]

Add a duplicate value into the list and then return the index

Note that index returns the index of the first matching value it encounters
>>> new_list.append(6)

>>> new_list

[1) 2, 3, 4,5, 6) 7, 8) 9, 10, 6]

>>> new_list.index(6)

5

Using count() function to return the number of items which equal a given value
>>> new_list.count(2)

1

>>> new_list.count(6)

2

Sort the values in the list

>>> new_list.sort()

>>> new_list

[1) 2) 3) 4) 5) 6) 6) 7) 8) 9) 10]

Reverse the order of the value in the list

38

CHAPTER 2 11 DATA TYPES AND REFERNCING

>>> new_list.reverse()
>>> new_list
[10) 9) 8) 7) 6) 6) 5) 4) 3) 2) 1]

Traversing and Searching Lists
Moving around within a list is quite simple. Once a list is populated, often times we wish to traverse
through it and perform some action against each element contained within it. You can use any of the
Python looping constructs to traverse through each element within a list. While there are plenty of
options available, the for loop works especially well. This is because of the simple syntax that the Python
forloop uses. This section will show you how to traverse a list using each of the different Python looping
constructs. You will see that each of them has advantages and disadvantages.

Let’s first take a look at the syntax that is used to traverse a list using a for loop. This is by far one of
the easiest modes of going through each of the values contained within a list. The for loop traverses the
list one element at a time, allowing the developer to perform some action on each element if so desired.

Listing 2-12. Traversing a List Using a ‘for’ Loop

>>> ourlist=[1,2,3,4,5,6,7,8,9,10]
>>> for elem in ourlist:
print elem

W oOoONOUVITEEWNERE .
.

=
o

As you can see from this simple example, it is quite easy to go through a list and work with each item
individually. The for loop syntax requires a variable to which each element in the list will be assigned for
each pass of the loop.

It is also possible to combine slicing with the use of the for loop. In this case, we’ll simply use a list
slice to retrieve the exact elements we want to see. For instance, take a look a the following code which
traverses through the first 5 elements in our list.

Listing 2-13.

>>> for elem in ourlist[:5]:
print elem

Ui WN R
.

As you can see, doing so is quite easy by simply making use of the built-in features that Python
offers.

39

CHAPTER 2 1 DATA TYPES AND REFERNCING

40

List Comprehensions

As we've seen in the previous section, we can create a copy of a list using the slicing. Another more
powerful way to do so is via the list comprehension. There are some advanced features for lists that can
help to make a developer’s life easier. One such feature is known as a list comprehension. While this
concept may be daunting at first, it offers a good alternative to creating many separate lists manually.
List comprehensions take a given list, and then iterate through it and apply a given expression against
each of the objects in the list.

Listing 2-14. Simple List Comprehension

Multiply each number in a list by 2 using a list comprehension
Note that list comprehension returns a new list

>>> num_list = [1, 2, 3, 4]

>>> [num * 2 for num in num_list]

[ZJ 4) 6) 8]

We could assign a list comprehension to a variable

>>> num_list2 = [num * 2 for num in num_list]

>>> num_list2

[2) 4) 6) 8]

As you can see, this allows one to quickly take a list and alter it via the use of the provided
expression. Of course, as with many other Python methods the list comprehension returns an altered
copy of the list. The list comprehension produces a new list and the original list is left untouched.

Let’s take a look at the syntax for a list comprehension. They are basically comprised of an expression of
some kind followed by a for statement and then optionally more for or if statements. The basic
functionality of a list comprehension is to iterate over the items of a list, and then apply some expression
against each of the list's members. Syntactically, a list comprehension reads as follows:

Iterate through a list and optionally perform an expression on each element, then either
return a new list containing the resulting elements or evaluate each element given an
optional clause.

[list-element (optional expression) for list-element in list (optional clause)]

Listing 2-15. Using an If Clause in a List Comprehension

The following example returns each element

in the list that is greater than the number 4
>>> nums = [2, 4, 6, 8]

>>> [num for num in nums if num > 4]

(6, 8]

Let’s take a look at some more examples. Once you’ve seen list comprehensions in action you are
sure to understand them and see how useful they can be.

Listing 2-16. Python List Comprehensions

Create a list of ages and add one to each of those ages using a list comprehension
>>> ages=[20,25,28,30]

>>> [age+1 for age in ages]

[21, 26, 29, 31]

CHAPTER 2 11 DATA TYPES AND REFERNCING

Create a list of names and convert the first letter of each name to uppercase as it should
be

>>> names=["'jim','frank','vic','leo", 'josh']

>>> [name.title() for name in names]

['Jim', 'Frank', 'Vic', 'Leo', 'Josh']

Create a list of numbers and return the square of each EVEN number
>>> numList=[1,2,3,4,5,6,7,8,9,10,11,12]

>>> [num*num for num in numList if num % 2 == 0]

[4, 16, 36, 64, 100, 144]

Use a list comprehension with a range
>>> [x*5 for x in range(1,20)]
[5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]

Use a for clause to perform calculations against elements of two different lists
>>> list1 = [5, 10, 15]

>>> list2 = [2, 4, 6]

>>> [e1 + e2 for el in list1 for e2 in list2]

[7, 9, 11, 12, 14, 16, 17, 19, 21]

List comprehensions can make code much more concise and allows one to apply expressions or
functions to list elements quite easily. Let’s take a quick look at an example written in Java for
performing the same type of work as an list comprehension. It is plain to see that list comprehensions
are much more concise.

Listing 2-17. Java Code to Take a List of Ages and Add One Year to Each Age

int[] ages = {20, 25, 28, 30};

int[] ages2 = new int[ages.length];

// Use a Java for loop to go through each element in the array
for (int x = 0; x <= ages.length; x++){

égesz[x] = ages[x]+1;

Tuples
Tuples are much like lists; however, they are immutable. Once a tuple has been defined, it cannot be
changed. They contain indexes just like lists, but again, they cannot be altered once defined. Therefore,
the index in a tuple may be used to retrieve a particular value and not to assign or modify. While tuples
may appear similar to lists, they are quite different in that tuples usually contain heterogeneous
elements, whereas lists oftentimes contain elements that are related in some way. For instance, a
common use case for tuples is to pass parameters to a function, method, and so on.

Since tuples are a member of the sequence type, they can use the same set of methods an
operations available to all sequence types.

41

CHAPTER 2 1 DATA TYPES AND REFERNCING

42

Listing 2-18. Examples of Tuples

Creating an empty tuple
>>> myTuple = ()

Creating tuples and using them
>>> myTuple2 = (1, 'two',3, 'four')
>>> myTuple2

(1, 'two', 3, 'four')

To create a single-item tuple, include a trailing comma
>>> myteam = 'Bears’,
>>> myteam

('Bears',)

As mentioned previously, tuples can be quite useful for passing to functions, methods, classes, and
so on. Oftentimes, it is nice to have an immutable object for passing multiple values. One such case
would be using a tuple to pass coordinates in a geographical information system or another application
of the kind. They are also nice to use in situations where an immutable object is warranted. Because they
are immutable, their size does not grow once they have been defined, so tuples can also play an
important role when memory allocation is a concern.

Dictionaries

A Python dictionary is a key-value store container. A dictionary is quite different than a typical list in
Python as there is no automatically populated index for any given element within the dictionary. When
you use a list, you need not worry about assigning an index to any value that is placed within it. A
dictionary allows the developer to assign an index or “key” for every element that is placed into the
construct. Therefore, each entry into a dictionary requires two values, the key and the element.

The beauty of the dictionary is that it allows the developer to choose the data type of the key value.
Therefore, if one wishes to use a string or any other hashable object such as an int or float value as a key
then it is entirely possible. Dictionaries also have a multitude of methods and operations that can be
applied to them to make them easier to work with. Table 2-5 lists dictionary methods and functions.

Listing 2-19. Basic Dictionary Examples

Create an empty dictionary and a populated dictionary
>>> myDict={}

>>> myDict.values()

[]

Assign key-value pairs to dictionary

>>> myDict['one'] = 'first’

>>> myDict['two'] = 'second’

>>> myDict

{"two': 'second', 'one': 'first'}

CHAPTER 2

Table 2-5. Dictionary Methods and Functions

Method or Function

Description

len(dictionary)

Function that returns number of items within the given dictionary.

dictionary [key]

Returns the item from the dictionary that is associated with the given
key.

dictionary[key] = value

Sets the associated item in the dictionary to the given value.

del dictionary[key]

Deletes the given key/value pair from the dictionary.

dictionary.clear()

Method that removes all items from the dictionary.

dictionary.copy()

Method that creates a shallow copy of the dictionary.

has_key(key)

Function that returns a boolean stating whether the dictionary contains
the given key. (Deprecated in favor of using in')

keyind Returns a boolean stating whether the given key is found in the
dictionary

keynotind Returns a boolean stating whether the given key is not found in the
dictionary

items() Returns a list of tuples including a copy of the key/value pairs within the
dictionary.

keys() Returns the a list of keys within the dictionary.

update([dictionary2])

Updates dictionary with the key/value pairs from the given dictionary.
Existing keys will be overwritten.

fromkeys(sequencel,value])

Creates a new dictionary with keys from the given sequence. The values
will be set to the value given.

values()

Returns the values within the dictionary as a list.

get(keyl, b])

Returns the value associated with the given key. If the key does not exist,
then returns b.

setdefault(keyl, b])

Returns the value associated with the given key. If the key does not exist,
then the key value is set to b (mydict(key] = b)

pop(keyl, b])

Returns and removes the key/value pair associated with the given key. If
the key does not exist then returns b.

DATA TYPES AND REFERNCING

43

CHAPTER 2 1 DATA TYPES AND REFERNCING

44

Table 2-5. Dictionary Methods and Functions (continued)

Method or Function Description

popltem() An arbitrary key/value pair is popped from the dictionary
iteritems() Returns an iterator over the key/value pairs in the dictionary.
iterkeys() Returns an iterator over the keys in the dictionary.
itervalues() Returns an iterator over the values in the dictionary.

Now we will take a look at some dictionary examples. This reference will not show you an example
of using each of the dictionary methods and functions, but it should provide you with a good enough
base understanding of how they work.

Listing 2-20. Working with Python Dictionaries
Create an empty dictionary and a populated dictionary

>>> mydict = {}

Try to find a key in the dictionary
>>> 'firstkey' in mydict

False

Add key/value pair to dictionary
>>> mydict['firstkey'] = 'firstval’
>>> 'firstkey' in mydict

True

List the values in the dictionary
>>> mydict.values()
['firstval']

List the keys in the dictionary
>>> mydict.keys()
['firstkey']

Display the length of the dictionary (how many key/value pairs are in it)
>>> len(mydict)

1

Print the contents of the dictionary
>>> mydict

{'firstkey': "firstval'}

>>>

Replace the original dictionary with a dictionary containing string-based keys
The following dictionary represents a hockey team line

CHAPTER 2 11 DATA TYPES AND REFERNCING

>>> myDict =

{'r_wing':'Josh','l wing':'Frank', 'center':'Jim',']l defense':'Leo', 'r defense':'Vic'}
>>> myDict.values()

['Josh', 'Vvic', 'Jim', 'Frank', 'Leo']

>>> myDict.get('r_wing")

'Josh'

>>> myDict['r_wing']

'Josh’

Try to obtain the value for a key that does not exist
>>> myDict['goalie']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'goalie’

Try to obtain a value for a key that does not exist using get()
>>> myDict.get('goalie")

Now use a default message that will be displayed if the key does not exist
>>> myDict.get('goalie’, 'Invalid Position')
'Invalid Position’

Iterate over the items in the dictionary

>>> for player in myDict.iterItems():
print player

('r_wing', 'Josh")

('r_defense', 'Vic')

('center', 'Jim")

("1 wing', 'Frank")

('1_defense', 'Leo")

Assign keys and values to separate objects and then print
>>> for key,value in myDict.iteritems():
print key, value

r_wing Josh
r_defense Vic
center Jim
1 wing Frank
1 defense Leo

Sets

Sets are unordered collections of unique elements. What makes sets different than other sequence types
is that they contain no indexing or duplicates. They are also unlike dictionaries because there are no key
values associated with the elements. They are an arbitrary collection of unique elements. Sets cannot
contain mutable objects, but sets themselves can be mutable. Another thing to note is that sets are note
available to use by default, you must import set from the Sets module before using.

45

CHAPTER 2 1 DATA TYPES AND REFERNCING

46

Listing 2-21. Examples of Sets

In order to use a Set, we must first import it

>>> from sets import Set

To create a set use the following syntax

>>> myset = Set([1,2,3,4,5])
>>> myset
set([5, 3, 2, 1, 4])

Add a value to the set - See Table 2-7 for more details

>>> myset.add(6)

>>> myset

set([6, 5, 3, 2, 1, 4])
Try to add a duplicate
>>> myset.add(4)

>>> myset

Set([6, 5, 3, 2, 1, 4])

There are two different types of sets, namely set and frozenset. The difference between the two is
quite easily conveyed from the name itself. A regular set is a mutable collection object, whereas a frozen
set is immutable. Remember, immutable objects cannot be altered once they have been created whereas
mutable objects can be altered after creation. Much like sequences and mapping types, sets have an
assortment of methods and operations that can be used on them. Many of the operations and methods
work on both mutable and immutable sets. However, there are a number of them that only work on the
mutable set types. In Tables 2-6 and 2-7, we’ll take a look at the different methods and operations.

Table 2-6. Set Type Methods and Functions

Method or Operation Description

len(set) Returns the number of elements in a given set

copy() Returns a new shallow copy of the set

difference(set2) Returns a new set that contains all elements that are in the calling set,
but not in set2

intersection(set2) Returns a new set that contains all elements that the calling set and set2
have in common

issubbset(set2) Returns a Boolean stating whether all elements in calling set are also in
set2

issuperset(set2) Returns a Boolean stating whether all elements in set2 are contained in
calling set

symmetric_difference(set2) | Returns a new set containing elements either from the calling set or set2
but not from both (setl # set2)

CHAPTER 2 11 DATA TYPES AND REFERNCING

Table 2-6. Set Type Methods and Functions (continued)

Method or Operation Description

xin set Tests whether x is contained in the set, returns boolean

X not in set Tests whether x is not contained in the set, returns boolean

union(set2) Returns a new set containing elements that are contained in both the calling
set and set2

Listing 2-22. Using Set Type Methods and Functions

Create two sets

>>> s1 = Set(['jython','cpython','ironpython'])
>>> s2 = Set(['jython', "ironpython', 'pypy'])

Make a copy of a set

>>> s3 = si.copy()

>>> s3

Set(['cpython', 'jython', 'ironpython'])

Obtain a new set containing all elements that are in s1 but not s2

>>> si.difference(s2)

Set(['cpython'])

Obtain a new set containing all elements from each set

>>> sil.union(s2)

Set(['cpython', 'pypy', 'jython', 'ironpython'])

Obtain a new set containing elements from either set that are not contained in both
>>> s1.symmetric_difference(s2)

Set(['cpython', "pypy'])

Table 2-7. Mutable Set Type Methods

Method or Operation Description

add(item) Adds an item to a set if it is not already in the set

clear() Removes all items in a set

difference_update(set2) Returns the set with all elements contained in set2 removed
discard(element) Removes designated element from set if present

intersection_update(set2) | Returns the set keeping only those elements that are also in set2

pop() Return an arbitrary element from the set

remove(element) Remove element from set if present, if not then KeyError is raised

47

CHAPTER 2 1 DATA TYPES AND REFERNCING

Table 2-7. Mutable Set Type Methods (continued)

Method or Operation Description

symmetric_difference_update(set2) | Replace the calling set with a set containing elements from
either the calling set or set2 but not both, and return it

update(set2) Returns set including all elements from set2

Listing 2-23. More Using Sets

Create three sets

>»> sl = Set([l, 2, 3, 4, 5; 6) 7) 8) 9J 10])
>>> s2 = Set([5, 10, 15, 20])
>>> s3 = Set([2, 4, 6, 8, 10])

Remove arbitrary element from s2
>>> s2.pop()
20

>>> S2
Set([5, 15, 10])

Discard the element that equals 3 from si (if exists)
>>> sl.discard(3)

>>> s1

Set([6) 5) 7) 8) 2) 9) 10) 1) 4])

Update s1 to include only those elements contained in both si and s2
>>> sl.intersection_update(s2)

>>> si

set([5, 10])

>>> s2

set([5, 15, 10])

Remove all elements in s2
>>> s2.clear()
>>> S2

set([])

Updates set s1 to include all elements in s3
>>> sl.update(s3)

>>> s1

set([6, 5, 8, 2, 10, 4])

Ranges

The range is a special function that allows one to iterate between a range of numbers or list a specific
range of numbers. It is especially helpful for performing mathematical iterations, but it can also be used
for simple iterations.

The format for using the range function includes an optional starting number, an ending number,
and an optional stepping number. If specified, the starting number tells the range where to begin,

48

CHAPTER 2 11 DATA TYPES AND REFERNCING

whereas the ending number specifies where the range should end. The starting index is inclusive
whereas the ending index is not. The optional step number tells the range how many numbers should be
placed between each number contained within the range output. The step number is added to the
previous number and if that number exceeds the end point then the range stops.

Range Format
range([start], stop, [step])

Listing 2-24. Using the Range Function

#Simple range starting with zero, note that the end point is not included in the range
>>>range(0,10)

[0, 1, 2, 3, 4, 5, 6) 7, 8) 9]

>>> range(50, 65)

[50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64]

>>>range(10)

[0) 1, 2, 3, 4, 5, 6) 7, 8) 9]

Include a step of two in the range

>>>range(0,10,2)

[OJ 2, 4, 6) 8]

Including a negative step performs the same functionality...the step is added to the
previously

number in the range

>>> range(100,0,-10)

[100, 90, 80, 70, 60, 50, 40, 30, 20, 10]

One of the most common uses for this function is in a for loop. The following example displays a
couple ways of using the range function within a for loop context.

Listing 2-25. Using the Range Function Within a For Loop

>>> for i in range(10):
print i

OLCooONOTUVIR_RWNEO:

Multiplication Example

»> x =1

>>> for i in range(2, 10, 2):
x=x+ (i*x)
print x

49

CHAPTER 2 1 DATA TYPES AND REFERNCING

50

3
15
105
945

As you can see, a range can be used to iterate through just about any number set. . .be it going up or
down, positive or negative in step. Ranges are also a good way to create a list of numbers. In order to do
so, simply pass a range to list() as shown in the following example.

Listing 2-26. Create a List from a Range

>>> my_number list = list(range(10))
>>> my_number list
[OJ 1) 2) 3J 4) 5) 6) 7J 8) 9]

As you can see, not only are ranges useful for iterative purposes but they are also a good way to
create numeric lists.

Jython-specific Collections

There are a number of Jython-specific collection objects that are available for use. Most of these
collection objects are used to pass data into Java classes and so forth, but they add additional
functionality into the Jython implementation that will assist Python newcomers that are coming from
the Java world. Nonetheless, many of these additional collection objects can be quite useful under
certain situations.

In the Jython 2.2 release, Java collection integration was introduced. This enables a bidirectional
interaction between Jython and Java collection types. For instance, a Java ArrayList can be imported in
Jython and then used as if it were part of the language. Prior to 2.2, Java collection objects could act as a
Jython object, but Jython objects could not act as Java objects. For instance, it is possible to use a Java
ArrayList in Jython and use methods such as add(), remove(), and get(). You will see in the example below
that using the add() method of an ArrayList will add an element to the list and return a boolean to signify
the success or failure of the addition. The remove() method acts similarly, except that it removes an
element rather than adding it.

Listing 2-27. Example of Using Java Oriented Collection in Jython

Import and use a Java Arraylist

>>> import java.util.Arraylist as Arraylist

>>> arr = Arraylist()

Add method will add an element to the list and return a boolean to signify successsful
addition

>>> arr.add(1)

True

>>> arr.add(2)

True

>>> print arr

[1, 2]

Ahead of the integration of Java collections, Jython also had implemented the jarray object which
basically allows for the construction of a Java array in Jython. In order to work with a jarray, simply
define a sequence type in Jython and pass it to the jarray object along with the type of object contained

CHAPTER 2

DATA TYPES AND REFERNCING

within the sequence. The jarray is definitely useful for creating Java arrays and then passing them into
java objects, but it is not very useful for working in Jython objects. Moreover, all values within a jarray
must be the same type. If you try to pass a sequence containing multiple types to a jarray then you’ll be
given a TypeError of one kind or another. See Table 2-8 for a listing of character typecodes used with

jarray.

Table 2-8. Character Typecodes for Use With Jarray

Character | Java Equivalent
Z boolean

b byte

c char

d Double

f Float

h Short

i Int

1 Long

Listing 2-28. Jarray Usage

>>> my_seq = (1,2,3,4,5)

>>> from jarray import array

>>> array(my_seq,'i")

array('i', [1, 2, 3, 4, 5])

>>> myStr = "Hello Jython"
>>> array(myStr,'c")
array('c', 'Hello Jython')

Another useful feature of the jarray is that we can create empty arrays if we wish by using the zeros()
method. The zeros() method works in a similar fashion to the array() method which we’ve already
demonstrated. In order to create an array that is empty, simply pass the length of the array along with

the type to the zeros() method. Let’s take a quick look at an example.

51

CHAPTER 2 1 DATA TYPES AND REFERNCING

52

Listing 2-29. Create an Empty Boolean Array

>>> arr = zeros(10,'z")
>>> arr
array('z', [False, False, False, False, False, False, False, False, False, False])

Listing 2-30. Create an Empty Integer Array

>>> arr2 = zeros(6, 'i')
>>> arr2
array('i', [o, 0, 0, 0, 0, 0])

In some circumstances when working with Java objects, you will need to call a Java method that
requires a Java array as an argument. Using the jarray object allows for a simple way of creating Java
arrays when needed.

Files

File objects are used to read and write data to a file on disk. The file object is used to obtain a reference
to the file on disk and open it for reading, writing, appending, or a number of different tasks. If we simply
use the open(filename[, mode]) function, we can return a file object and assign it to a variable for
processing. If the file does not yet exist on disk, then it will automatically be created. The mode argument
is used to tell what type of processing we wish to perform on the file. This argument is optional and if
omitted then the file is opened in read-only mode. See Table 2-9.

Table 2-9. Modes of Operations for File Types

Mode | Description

T read only

‘W write (Note: This overwrites anything else in the file, so use with caution)
‘a’ append

T+ read and write

‘b’ binary file read

‘wb’ | binary file write

‘r+b’ | binary file read and write

CHAPTER 2 11 DATA TYPES AND REFERNCING

Listing 2-31.

Open a file and assign it to variable f
>>> f = open('newfile.txt','w")

There are plenty of methods that can be used on file objects for manipulation of the file content. We
can call read([size]) on a file in order to read its content. Size is an optional argument here and it is used
to tell how much content to read from the file. If it is omitted then the entire file content is read. The
readline() method can be used to read a single line from a file. readlines([size]) is used to return a list
containing all of the lines of data that are contained within a file. Again, there is an optional size
parameter that can be used to tell how many bytes from the file to read. If we wish to place content into
the file, the write(string) method does just that. The write() method writes a string to the file.

When writing to a file it is oftentimes important to know exactly what position in the file you are
going to write to. There are a group of methods to help us out with positioning within a file using
integers to represent bytes in the file. The fell() method can be called on a file to give the file object’s
current position. The integer returned is in a number of bytes and is an offset from the beginning of the
file. The seek(offset, from) method can be used to change position in a file. The offset is the number in
bytes of the position you’d like to go, and from represents the place in the file where you’d like to
calculate the offset from. If from equals 0, then the offset will be calculated from the beginning of the file.
Likewise, if it equals 1 then it is calculated from the current file position, and 2 will be from the end of the
file. The default is 0 if from is omitted.

Lastly, it is important to allocate and de-allocate resources efficiently in our programs or we will
incur a memory overhead and leaks. Resources are usually handled a bit differently between CPython
and Jython because garbage collection acts differently. In CPython, it is not as important to worry about
de-allocating resources as they are automatically de-allocated when they go out of scope. The JVM does
note immediately garbage collect, so proper de-allocation of resources is more important. The close()
method should be called on a file when we are through working with it. The proper methodology to use
when working with a file is to open, process, and then close each time. However, there are more efficient
ways of performing such tasks. In Chapter 7 we will discuss the use of context managers to perform the
same functionality in a more efficient manner.

Listing 2-32. File Manipulation in Python
Create a file, write to it, and then read its content

>>> f = open('newfile.txt', 'r+")

>>> f.write('This is some new text for our file\n')

>>> f.write('This should be another line in our file\n')

No lines will be read because we are at the end of the written content
>>> f.read()

>>> f.readlines()

>>> f.tell()

75L

Move our position back to the beginning of the file

>>> f.seek(0)

>>> f.read()

'This is some new text for our file\nThis should be another line in our file\n'

>>> f.seek(0)

>>> f.readlines()

['This is some new text for our file\n', 'This should be another line in our file\n']

53

CHAPTER 2 1 DATA TYPES AND REFERNCING

54

Closing the file to de-allocate
>>> f.close()

Iterators

The iterator was introduced into Python back in version 2.2. It allows for iteration over Python
containers. All iterable containers have built-in support for the iterator type. For instance, sequence
objects are iterable as they allow for iteration over each element within the sequence. If you try to return
an iterator on an object that does not support iteration, you will most likely receive an AttributeError
which tells you that __iter__has not been defined as an attribute for that object. It is important to note
that Python method names using double-underscores are special methods. For instance, in Python a
class can be initialized using the __init__() method. . .much like a Java constructor. For more details on
classes and special class methods, please refer to Chapter 7.

Iterators allow for easy access to sequences and other iterable containers. Some containers such as
dictionaries have specialized iteration methods built into them as you have seen in previous sections.
Iterator objects are required to support two main methods that form the iterator protocol. Those
methods are defined below in Table 2-10.

Table 2-10. Iterator Protocol

Method Description

iterator.__iter__() | Returns the iterator object on a container. Required to allow use with for and in
statements

iterator.next() Returns the next item from a container.

To return an iterator on a container, just assign container.__iter__() to some variable. That variable
will become the iterator for the object. This affords one the ability to pass iterators around, into
functions and the like. The iterator is then itself like a changing variable that maintains its state. We can
use work with the iterator without affecting the original object. If using the next() call, it will continue to
return the next item within the list until all items have been retrieved. Once this occurs, a Stoplteration
exception is issued. The important thing to note here is that we are actually creating a copy of the list
when we return the iterator and assign it to a variable. That variable returns and removes an item from
that copy each time the next() method is called on it. If we continue to call next() on the iterator variable
until the Stoplteration error is issued, the variable will no longer contain any items and is empty. For
instance, if we created an iterator from a list then called the next() method on it until it had retrieved all
values then the iterator would be empty and the original list would be left untouched.

Listing 2-33. Create an Iterator from a List and Use It

>>> hockey roster = ['Josh', 'Leo', 'Frank', 'Jim', 'Vic']
>>> hockey itr = hockey roster. iter ()
>>> hockey itr = hockey roster. iter ()
>>> hockey itr.next()
'Josh'
>>> for x in hockey itr:
print x

CHAPTER 2 11 DATA TYPES AND REFERNCING

Leo
Frank
Jim
Vic
Try to call next() on iterator after it has already used all of its elements
>>> hockey itr.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

Listing 2-34. Iteration Over Sequence and List

Iterate over a string and a list
>>> str a = 'Hello'

>>> list b = ['Hello', "World"']

>>> for x in str a:

print x

H

e

1

1

o

>>> for y in list b:
. print y + '!"
Hello!

World!

Referencing and Copies

Creating copies and referencing items in the Python language is fairly straightforward. The only thing
you'll need to keep in mind is that the techniques used to copy mutable and immutable objects differ a
bit.

In order to create a copy of an immutable object, you simply assign it to a different variable. The
new variable is an exact copy of the object. If you attempt to do the same with a mutable object, you will
actually just create a reference to the original object. Therefore, if you perform operations on the “copy”
of the original then the same operation will actually be performed on the original. This occurs because
the new assignment references the same mutable object in memory as the original. It is kind of like
someone calling you by a different name. One person may call you by your birth name and another may
call you by your nickname, but both names will reference you of course.

Listing 2-35. Working with Copies

Strings are immutable, so when you assign a string to another variable, it creates a real
copy

>>> mystring = "I am a string, and I am an immutable object"

>>> my_copy = mystring

>>> my_copy

'T am a string, and I am an immutable object’

>>> mystring

'T am a string, and I am an immutable object’

55

CHAPTER 2 1 DATA TYPES AND REFERNCING

56

>>> my_copy = "Changing the copy of mystring"
>>> my_copy

'Changing the copy of mystring'

>>> mystring

'TI am a string, and I am an immutable object'

Lists are mutable objects, so assigning a list to a variable
creates a reference to that list. Changing one of these variables will also
change the other one - they are just references to the same object.

>>> listA = [1,2,3,4,5,6]

>>> print listA

[1, 2, 3, 4, 5, 6]

>>> listB = listA

>>> print 1listB

[1, 2, 3, 4, 5, 6]

>>> del listB[2]

Oops, we’ve altered the original list!
>>> print 1listA

[1, 2, 4, 5, 6]

If you want a new list which contains the same things, but isn't just a reference
to your original list, you need the copy module
>>> import copy

>>> a = [[]]
>>> b = copy.copy(a)
>> b

b is not the same list as a, just a copy
>>> b is a
False

But the list b[0] is the same the same list as the list a[0], and changing one will
also change the other. This is what is known as a shallow copy - a and b are

different at the top level, but if you go one level down, you have references to

to the same things - if you go deep enough, it's not a copy,

it's the same object.

>>> b[0].append('test")

>>> a

[['test']]

>> b

[['test']]

To effectively create a copy of a mutable object, you have two choices. You can either create what is
known as a shallow copy or a deep copy of the original object. The difference is that a shallow copy of an
object will create a new object and then populate it with references to the items that are contained in the
original object. Hence, if you modify any of those items then each object will be affected since they both
reference the same items.

A deep copy creates a new object and then recursively copies the contents of the original object into
the new copy. Once you perform a deep copy of an object then you can perform operations on any
object contained in the copy without affecting the original. You can use the deepcopy function in the
copy module of the Python standard library to create such a copy. Let’s look at some more examples of
creating copies in order to give you a better idea of how this works.

CHAPTER 2 11 DATA TYPES AND REFERNCING

Listing 2-36.

Create an integer variable, copy it, and modify the copy
>»>a=5

>»>b =a

>>> print b

5

>»>b=a*5

>»> b

25

>>> a

5

Create a deep copy of the list and modify it
>>> import copy

>>> listA = [1,2,3,4,5,6]

>>> listB = copy.deepcopy(listA)

>>> print 1istB
[1, 2, 3, 4, 5, 6]
>>> del 1listB[2]
>>> print 1istB
[1, 2, 4, 5, 6]
>>> print 1listA
[1, 2, 3, 4, 5, 6]

Garbage Collection

This is one of those major differences between CPython and Jython. In CPython, an object is garbage
collected when it goes out of scope or is no longer needed. This occurs automatically and rarely needs to
be tracked by the developer. Behind the scenes, CPython uses a reference counting technique to
maintain a count on each object which effectively determines if the object is still in use. Unlike CPython,
Jython does not implement a reference counting technique for aging out or garbage collection unused
objects. Instead, Jython makes use of the garbage collection mechanisms that the Java platform
provides. When a Jython object becomes stale or unreachable, the JVM may or may not reclaim it. One
of the main aspects of the JVM that made developers so happy in the early days is that there was no
longer a need to worry about cleaning up after your code. In the C programming language, one must
maintain an awareness of which objects are currently being used so that when they are no longer needed
the program would perform some clean up. Not in the Java world, the gc thread on the JVM takes care of
all garbage collection and cleanup for you.

Even though we haven’t spoken about classes in detail yet, you saw a short example of how them in
Chapter 1. It is a good time to mention that Python provides a mechanism for object cleanup. A finalizer
method can be defined in any class in order to ensure that the garbage collector performs specific tasks.
Any cleanup code that needs to be performed when an object goes out of scope can be placed within this
finalizer method. It is important to note that the finalizer method cannot be counted on as a method
which will always be invoked when an object is stale. This is the case because the finalizer method is
invoked by the Java garbage collection thread, and there is no way to be sure when and if the garbage
collector will be called on an object. Another issue of note with the finalizer is that they incur a
performance penalty. If you're coding an application that already performs poorly then it may not be a
good idea to throw lots of finalizers into it.

57

CHAPTER 2 1 DATA TYPES AND REFERNCING

58

The following is an example of a Python finalizer. It is an instance method that must be named
__del__.

Listing 2-37. Python Finalizer Example

class MyClass:
def del (self):
pass # Perform some cleanup here

The downside to using the JVM garbage collection mechanisms is that there is really no guarantee as
to when and if an object will be reclaimed. Therefore, when working with performance intensive objects
itis best to not rely on a finalizer to be called. It is always important to ensure that proper coding
techniques are used in such cases when working with objects like files and databases. Never code the
close() method for a file into a finalizer because it may cause an issue if the finalizer is not invoked. Best
practice is to ensure that all mandatory cleanup activities are performed before a finalizer would be
invoked.

Summary

A lot of material was covered in this chapter. You should be feeling better acquainted with Python after
reading through this material. We began the chapter by covering the basics of assignment an assigning
data to particular objects or data types. You learned that working with each type of data object opens
different doors as the way we work with each type of data object differs. Our journey into data objects
began with numbers and strings, and we discussed the many methods available to the string object. We
learned that strings are part of the sequence family of Python collection objects along with lists and
tuples. We covered how to create and work with lists, and the variety of options available to us when
using lists. You discovered that list comprehensions can help create copies of a given list and manipulate
their elements according to an expression or function. After discussing lists, we went on to discuss
dictionaries, sets and tuples.

After discussing the collection types, we learned that Jython has its own set of collection objects that
differ from those in Python. We can leverage the advantage of having the Java platform at our fingertips
and use Java collection types from within Jython. We finished up by discussing referencing, copies, and
garbage collection. Creating different copies of objects does not always give you what you’d expect, and
that Jython garbage collection differs quite a bit from that of Python.

The next chapter will help you to combine some of the topics you've learned about in this chapter as
you will learn how to define expressions and work with control flow.

CHAPTER 3

Operators, Expressions, and
Program Flow

The focus of this chapter is an in-depth look at each of the ways that we can evaluate code, and write
meaningful blocks of conditional logic. We'll cover the details of many operators that can be used in
Python expressions. This chapter will also cover some topics that have already been discussed in more
meaningful detail such as the looping constructs, and some basic program flow.

We'll begin by discussing details of expressions. If you'll remember from Chapter 1, an expression is
a piece of code that evaluates to produce a value. We have already seen some expressions in use while
reading through the previous chapters. In this chapter, we’ll focus more on the internals of operators
used to create expressions, and also different types of expressions that we can use. This chapter will go
into further detail on how we can define blocks of code for looping and conditionals.

This chapter will also go into detail on how you write and evaluate mathematical expressions, and
Boolean expressions. And last but not least, we'll discuss how you can use augmented assignment
operations to combine two or more operations into one.

Types of Expressions

An expression in Python is a piece of code that produces a result or value. Most often, we think of
expressions that are used to perform mathematical operations within our code. However, there are a
multitude of expressions used for other purposes as well. In Chapter 2, we covered the details of String
manipulation, sequence and dictionary operations, and touched upon working with sets. All of the
operations performed on these objects are forms of expressions in Python. Other examples of
expressions could be pieces of code that call methods or functions, and also working with lists using
slicing and indexing.

Mathematical Operations

The Python contains all of your basic mathematical operations. This section will briefly touch upon each
operator and how it functions. You will also learn about a few built-in functions which can be used to
assist in your mathematical expressions.

Assuming that this is not the first programming language you are learning, there is no doubt that
you are at least somewhat familiar with performing mathematical operations within your programs.
Python is no different than the rest when it comes to mathematics, as with most programming
languages, performing mathematical computations and working with numeric expressions is
straightforward. Table 3-1 lists the numeric operators.

59

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

60

Table 3-1. Numeric Operators

Operator | Description

+ Addition

- Subtraction

* Multiplication

/ Division

/1 Truncating Division

% Modulo (Remainder of Division)
o Power Operator

+var Unary Plus

-var Unary Minus

Most of the operators in Table 3-1 work exactly as you would expect, so for example:

Listing 3-1. Mathematical Operator

Performing basic mathematical computations
>>> 10 - 6

4

»> 9 *7

63

However, division, truncating division, modulo, power, and the unary operators could use some
explanation. Truncating division will automatically truncate a division result into an integer by rounding
down, and modulo will return the remainder of a truncated division operation. The power operator does
just what you’d expect as it returns the result of the number to the left of the operator multiplied by itself
n times, where n represents the number to the right of the operator.

Listing 3-2. Truncating Division and Powers

>> 36 // 5

7

Modulo returns the remainder

>>> 36 %5

1

Using powers, in this case 5 to the power of 2
>>> 5¥*¥2

25

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

100 to the power of 2
>>> 100%*2
10000

Division itself is an interesting subject as its current implementation is somewhat controversial in
some situations. The problem 10/5 = 2 definitely holds true. However, in its current implementation,
division rounds numbers in such a way that sometimes yields unexpected results. There is a new means
of division available in Jython 2.5 by importing from __future__. In a standard division for 2.5 and
previous releases, the quotient returned is the floor (nearest integer after rounding down) of the quotient
when arguments are ints or longs. However, a reasonable approximation of the division is returned if the
arguments are floats or complex. Often times this solution is not what was expected as the quotient
should be the reasonable approximation or “true division” in any case. When we import division from
the _ future_ module then we alter the return value of division by causing true division when using the
/ operator, and floor division only when using the , // operator. In an effort to not break backward
compatibility, the developers have placed the repaired division implementation in a module known as
_ future__. The _ future_ module actually contains code that is meant to be included as a part of the
standard language in some future revision. In order to use the new repaired version of division, it is
important that you always import from __future__ prior to working with division. Take a look at the
following piece of code.

Listing 3-3. Division Rounding Issues

Works as expected

>>> 14/2

7

>>> 10/5

2

>>> 27/3

9

Now divide some numbers that should result in decimals
Here we would expect 1.5

>>> 3/2

1
The following should give us 1.4
>>> 7/5
1
In the following case, we'd expect 2.3333
>>> 14/6
2
As you can see, when we’d expect to see a decimal value we are actually receiving an integer value.
The developers of this original division implementation have acknowledged this issue and repaired it
using the new __future__ implementation.

Listing 3-4. Working With __future__ Division

We first import division from _ future
from _ future_ import division

We then work with division as usual and see the expected results
>>> 14/2

7.0

>>> 10/5

61

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

62

>>> 27/3

>>> 3/2

1.5

>>> 7/5

1.4

>>> 14/6
2.3333333333333335

It is important to note that the Jython implementation differs somewhat from CPython in that Java
provides extra rounding in some cases. The differences are in display of the rounding only as both
Jython and CPython use the same IEEE float for storage. Let’s take a look at one such case.

Listing 3-5. Subtle Differences Between Jython and CPython Division

CPython 2.5 Rounding
>>> 5.1/1
5.0999999999999996

Jython 2.5
>>> 5.1/1
5.1
Unary operators can be used to evaluate positive or negative numbers. The unary plus operator

multiplies a number by positive 1 (which generally doesn’t change it at all), and a unary minus operator
multiplies a number by negative 1.

Listing 3-6. Unary Operators

Unary minus

>»> -10 + 5
-5

>>> +5 -5
0

>>> -(1 + 2)
-3

As stated at the beginning of the section, there are a number of built-in mathematical functions that
are at your disposal. Table 3-2 lists the built-in mathematical functions.

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

Table 3-2. Mathematical Built-in Functions

Function Description
abs(var) Absolute value
pow(x, y) Can be used in place of ** operator

pow(x,y,modulo) | Ternary power-modulo (x **y) % modulo

round(var[, n]) Returns a value rounded to the nearest 10™ or (10**™), where n defaults to 0)

divmod(x, y) Returns a tuple of the quotient and the remainder of division

Listing 3-7. Mathematical Built-ins

The following code provides some examples for using mathematical built-ins
Absolute value of 9

>>> abs(9)

9

Absolute value of -9

>>> abs(-9)

9

Divide 8 by 4 and return quotient, remainder tuple

>>> divmod(8,4)

(2, 0)

Do the same, but this time returning a remainder (modulo)
>>> divmod(8,3)

(2, 2)

Obtain 8 to the power of 2
>>> pow(8,2)
64

Obtain 8 to the power of 2 modulo 3 ((8 **2) % 3)
>>> pow(8,2,3)
1

Perform rounding
>>> round(5.67,1)
5.7

>>> round(5.67)
6.00

Comparison Operators

Comparison operators can be used for comparison of two or more expressions or variables. As with the
mathematical operators described above, these operators have no significant difference to that of Java.
See Table 3-3.

63

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

64

Table 3-3. Comparison Operators

Operator | Description

> Greater than

< Less than

>= Greater than or equal
<= Less than or equal

1= Not equal

== Equal

Listing 3-8. Examples of Comparison Operators

Simple comparisons
>>> 8 > 10

False

>>> 256 < 725

True

>>> 10 == 10

True

Use comparisons in an expression
>>> x = 2*%8
>y =2
>>> while x I=y:
print 'Doing some work...'
y=y+2

Doing some work...
Doing some work...
Doing some work...
Doing some work...
Doing some work...
Doing some work...
Doing some work...

Combining comparisons
>>> 3<2<3

False

>>> 3<4<8

True

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

Bitwise Operators

Bitwise operators in Python are a set of operators that are used to work on numbers in a two’s
complement binary fashion. That is, when working with bitwise operators numbers are treated as a
string of bits consisting of 0s and 1s. If you are unfamiliar with the concept of two's complement, a good
place to start would be at the Wikipedia page discussing the topic:
(http://en.wikipedia.org/wiki/Two's_complement). It is important to know that bitwise operators can
only be applied to integers and long integers. Let’s take a look at the different bitwise operators that are
available to us (Table 3-4), and then we’ll go through a few examples.

Table 3-4. Bitwise Operators

Operator | Description

& Bitwise and operator copies a bit to the result if a bit appears in both operands

| Bitwise or operator copies a bit to the result if it exists in either of the operands

A Bitwise xor operator copies a bit to the result if it exists in only one operand

~ Bitwise negation operator flips the bits, and returns the exact opposite of each bit

Suppose we have a couple of numbers in binary format and we would like to work with them using
the bitwise operators. Let’s work with the numbers 14 and 27. The binary (two's complement)
representation of the number 14 is 00001110, and for 27 it is 00011011. The bitwise operators look at
each 1 and 0 in the binary format of the number and perform their respective operations, and then
return a result. Python does not return the bits, but rather the integer value of the resulting bits. In the
following examples, we take the numbers 14 and 27 and work with them using the bitwise operators.

Listing 3-9. Bitwise Operator Examples

>>> 14 & 27
10

>>> 14 | 27
31

>>> 14 27
21

>>> ~14

-15

>>> ~27

-28

To summarize the examples above, let’s work through the operations using the binary
representations for each of the numbers.

14 &27=00001110 and 00011011 = 00001010 (The integer 10)

14127=00001110 0r 000110011 =00011111 (The integer 31)

14 A 27=00001110 xor 000110011 = 00010101 (The integer 21)

~14=00001110= 11110001 (The integer -15)

The shift operators (see Table 3-5) are similar in that they work with the binary bit representation of
a number. The left shift operator moves the left operand’s value to the left by the number of bits

65

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

66

specified by the right operand. The right shift operator does the exact opposite as it shifts the left
operand's value to the right by the number of bits specified by the right operand. Essentially this
translates to the left shift operator multiplying the operand on the left by the number two as many times
as specified by the right operand. The opposite holds true for the right shift operator that divides the
operand on the left by the number two as many times as specified by the right operand.

Table 3-5. Shift Operators

X<<n

Shift left (The equivalent of multiplying the number x by 2, n times)

xX>>n

Shift right (The equivalent of dividing the number x by 2, n times)

More specifically, the left shift operator (<<) will multiply a number by two n times, n being the
number that is to the right of the shift operator. The right shift operator will divide a number by two n
times, n being the number to the right of the shift operator. The _ future__division import does not

make a difference in the outcome of such operations.

Listing 3-10. Shift Operator Examples

Shift left, in this case 3*2
>>> 3«1

6

Equivalent of 3*2%*2
>>> 3¢<2

12

Equivalent of 3*2%2%2%2%2
>>> 345

96

Shift right
Equivalent of 3/2
>>> 331

1
Equivalent of 9/2
>>> 951

4

Equivalent of 10/2
>>> 105>>1

5

Equivalent of 10/2/2
>>> 10>>2

2

While bitwise operators are not the most commonly used operators, they are good to have on hand.

They are especially important if you are working in mathematical situations.

Augmented Assignment

Augmented assignment operators (see Table 3-6) combine an operation with an assignment. They can
be used to do things like assign a variable to the value it previously held, modified in some way. While

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

augmented assignment can assist in coding concisely, some say that too many such operators can make
code more difficult to read.

Listing 3-11. Augmented Assignment Code Examples

>»> X =5

>>> X

5

Add one to the value of x and then assign that value to x
>>> Xx+=1

>>> X

6

Multiply the value of x by 5 and then assign that value to x
>>> x*=5

>>> X

30

Table 3-6. Augmented Assignment Operators

Operator | Equivalent

a+=b |a=a+b

a-=b a=a-b

a*=b a=a*b

al/=b a=al/b

a%=b |a=a%b

al/l=b |a=al/lb

a**=b |a=a*b

a&=b |a=a&b

al=b a=a|b

ar=b a=a’b

a>>=b |a=a>>Db

a<<=b |a=za<<b

67

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

68

Boolean Expressions

Evaluating two or more values or expressions also uses a similar syntax to that of other languages, and
the logic is quite the same. Note that in Python, True and False are very similar to constants in the Java
language. True actually represents the number 1, and False represents the number 0. One could just as
easily code using 0 and 1 to represent the Boolean values, but for readability and maintenance the True
and False “constants” are preferred. Java developers, make sure that you capitalize the first letter of these
two words as you will receive an ugly NameError if you do not.

Boolean properties are not limited to working with int and bool values, but they also work with
other values and objects. For instance, simply passing any non-empty object into a Boolean expression
will evaluate to True in a Boolean context. This is a good way to determine whether a string contains
anything. See Table 3-7.

Listing 3-12. Testing a String

>>> mystr = "'

>>> if mystr:

.. "Now I contain the following: %s' % (mystr)

... else:
'I do not contain anything'

'I do not contain anything'

>>> mystr = 'Now I have a value'

>>> if mystr:

.. "Now I contain the following: %s' % (mystr)

... else:
'I do not contain anything'

'Now I contain the following: Now I have a value'

Table 3-7. Boolean Conditionals

Conditional | Logic

and In an x and y evaluation, if x evaluates to false then its value is returned, otherwise y is
evaluated and the resulting value is returned

or In an x or y evaluation, if x evaluates to true then its value is returned, otherwise y is
evaluated and the resulting value is returned

not In a not x evaluation, if not x, we mean the opposite of x

As with all programming languages, there is an order of operations for deciding what operators are
evaluated first. For instance, if we have an expression a + b *c, then which operation would take place
first? The order of operations for Python is shown in Table 3-8 with those operators that receive the
highest precedence shown first, and those with the lowest shown last. Repeats of the same operator are
grouped from left to the right with the exception of the power (**) operator.

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

Table 3-8. Python Order of Operations

Operator Precedence from Highest to Lowest | Name

+var, -var, ~var Unary Operations

o Power Operations

1L % Multiplication, Division, Floor Division, Modulo

+, - Addition, Subtraction

<<, >> Left and Right Shift

& Bitwise And

A Bitwise Exclusive Or
Bitwise Or

<, >, <=0>=, <> Comparison Operators

==, !=,is, is not, in, not in Equality and Membership

and, or, not Boolean Conditionals

An important note is that when working with Boolean conditionals, 'and’and 'or' group from the left
to the right. Let’s take a look at a few examples.

Listing 3-13. Order of Operations Examples

Define a few variables

>> X = 10
>>y = 12
>>> z = 14

(y*z) is evaluated first, then x is added
> x+y ¥z
178

(x * y) is evaluated first, then z is subtracted from the result
» x ¥y -z
106

When chaining comparisons, a logical 'and' is implied. In this
case, x < yandy <=z and z > x

> X< Yy<=2Z>X

True

69

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

70

(2 * 0) is evaluated first and since it is False or zero, it is returned

>»> 2 *0and 5+ 1

0

(2 * 1) is evaluated first, and since it is True or not zero, the (5 + 1) is evaluated and
returned

>>>2 %1 and 5+ 1

6

x is returned if it is True, otherwise y is returned if it is False. If neither
of those two conditions occur, then z is returned.
>>> x or (y and z)

10

In this example, the (7 - 2) is evaluated and returned because of the 'and' 'or'
logic

>>> 2 * 0 or ((6+ 8) and (7 - 2))

5

In this case, the power operation is evaluated first, and then the addition
>>> 2 ¥ 2 + 8
12

Conversions

There are a number of conversion functions built into the language in order to help conversion of one
data type to another (see Table 3-9). While every data type in Jython is actually a class object, these
conversion functions will really convert one class type into another. For the most part, the built-in
conversion functions are easy to remember because they are primarily named after the type to which
you are trying to convert.

Table 3-9. Conversion Functions

Function Description

chr(value) Converts integer to a character

complex(real Produces a complex number

[imag])

dict(sequence) Produces a dictionary from a given sequence of (key, value) tuples

eval(string) Evaluates a string to return an object...useful for mathematical computations. Note:
This function should be used with extreme caution as it can pose a security hazard if
not used properly.

float(value) Converts number to float

CHAPTER 3

Table 3-9. Conversion Functions (continued)

OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

frozenset(set)

Converts a set into a frozen set

hex(value)

Converts an integer into a string representing that number in hex

int(value [, base])

Converts to an integer using a base if a string is given

list(sequence) Converts a given sequence into a list

long(value [, Converts to along using a base if a string is given

base])

oct(value) Converts an integer to a string representing that number as an octal

ord(value) Converts a character into its integer value

repr(value) Converts object into an expression string. Same as enclosing expression in reverse
quotes (“x +y’). Returns a string containing a printable and evaluable
representation of the object

set(sequence) Converts a sequence into a set

str(value) Converts an object into a string Returns a string containing a printable
representation of the value, but not an evaluable string

tuple(sequence) | Converts a given sequence to a tuple

unichr(value) Converts integer to a Unicode character

Listing 3-14. Conversion Function Examples

Return the character representation of the integers

>>> chr(4)
"\x04'

>>> chr(10)
l\nl

Convert intger to float

>>> float(8)
8.0

Convert character to its integer value

>>> ord('A")
65
>>> ord('C")
67

71

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

72

>>> ord('z")
122

Use repr() with any object
>>> repr(3.14)

|3.14|
>>> X =40 * 5
>>> y = 2**8

>>> repr((x, y, ('one', 'two', 'three')))
"(200, 256, ('one', 'two', 'three'))"

The following is an example of using the eval() functionality as it is perhaps the one conversion
function for which an example helps to understand. Again, please note that using the eval() function can
be dangerous and impose a security threat if used incorrectly. If using the eval() function to accept text
from a user, standard security precautions should be set into place to ensure that the string being
evaluated is not going to compromise security.

Listing 3-15. Example of eval()

Suppose keyboard input contains an expression in string format (x * y)

>»> X =5

>»>y = 12

>>> keyboardInput = 'x * y'

We should provide some security checks on the keyboard input here to

ensure that the string is safe for evaluation. Such a task is out of scope
for this chapter, but it is good to note that comparisons on the keyboard
input to check for possibly dangerous code should be performed prior to

evaluation.

>>> eval(keyboardInput)

60

Using Expressions to Control Program Flow

As you've learned in previous references in this book, the statements that make up programs in Python
are structured with attention to spacing, order, and technique. Each section of code must be consistently
spaced as to set each control structure apart from others. One of the great advantages to Python’s syntax
is that the consistent spacing allows for delimiters such as the curly braces {} to go away. For instance, in
Java one must use curly braces around a for loop to signify a start and an end point. Simply spacing a for
loop in Python correctly takes place of the braces. Convention and good practice adhere to using four
spaces of indentation per statement throughout the entire program. For more information on
convention, please see PEP 8, Style Guide for Python Code (www.python.org/dev/peps/pep-0008/).
Follow this convention along with some control flow and you're sure to develop some easily
maintainable software.

if-elif-else Statement

The standard Python if-elif-else conditional statement is used in order to evaluate expressions and
branch program logic based upon the outcome. An if-elif-else statement can consist of any expressions
we’ve discussed previously. The objective is to write and compare expressions in order to evaluate to a
True or False outcome. As shown in Chapter 1, the logic for an if-elif-else statement follows one path if an
expression evaluates to True, or a different path if it evaluates to False.

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

You can chain as many if-else expressions together as needed. The combining if-else keyword is elif,
which is used for every expression in between the first and the last expressions within a conditional
statement.

The elif portion of the statement helps to ensure better readability of program logic. Too many if
statements nested within each other can lead to programs that are difficult to maintain. The initial if
expression is evaluated, and if it evaluates to False, the next elif expression is evaluated, and if it
evaluates to False then the process continues. If any of the if or elif expressions evaluate to True then the
statements within that portion of the if statement are processed. Eventually if all of the expressions
evaluate to False then the final else expression is evaluated.

These next examples show a few ways for making use of a standard if-elif-else statement. Note that
any expression can be evaluated in an if-elif-else construct. These are only some simplistic examples, but
the logic inside the expressions could become as complex as needed.

Listing 3-16. Standard if-elif-else

terminal symbols are left out of this example so that you can see the precise indentation
pi =3.14
X = 2.7 ¥ 1.45
if x == pi:
print 'The number is pi’
elif x > pi:
print 'The number is greater than pi'
else:
print 'The number is less than pi'

Empty lists or strings will evaluate to False as well, making it easy to use them for comparison
purposes in an if-elif-else statement.

Listing 3-17. Evaluate Empty List

Use an if-statement to determine whether a list is empty

Suppose mylist is going to be a list of names

>>> mylist = []

>>> if mylist:
for person in mylist:

- print person

. else:

print 'The list is empty'

The list is empty

while Loop

Another construct that we touched upon in Chapter 1 was the loop. Every programming language
provides looping implementations, and Python is no different. To recap, the Python language provides
two main types of loops known as the while and the for loop.

The whileloop logic follows the same semantics as the whileloop in Java. The while loop evaluates a
given expression and continues to loop through its statements until the results of the expression no
longer hold true and evaluate to False. Most while loops contain a comparison expression such as x <=y
or the like, in this case the expression would evaluate to False when x becomes greater than y. The loop
will continue processing until the expression evaluates to False. At this time the looping ends and that

73

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

would be it for the Java implementation. Python on the other hand allows an else clause which is
executed when the loop is completed.

Listing 3-18. Python while Statement

>»> X =0
>»>y =10
>>> while x <= y:
print 'The current value of x is: %d' % (x)
. X += 1
. else:
print 'Processing Complete...'

The current value of

x is: 0
The current value of x is: 1
The current value of x is: 2
The current value of x is: 3
The current value of x is: 4
The current value of x is: 5
The current value of x is: 6
The current value of x is: 7
The current value of x is: 8
The current value of x is: 9
The current value of x is: 10

Processing Complete...

This else clause can come in handy while performing intensive processing so that we can inform the
user of the completion of such tasks. It can also be handy when debugging code, or when some sort of
cleanup is required after the loop completes

Listing 3-19. Resetting Counter Using with-else

>>> total = 0

> X =0

>>>y =20

>>> while x <= y:
total += x

.o X +=1

... else:
print total
total = 0

210

continue Statement

The continue statement is to be used when you are within a looping construct, and you have the
requirement to tell Python to continue processing past the rest of the statements in the current loop.
Once the Python interpreter sees a continue statement, it ends the current iteration of the loop and goes
on to continue processing the next iteration. The continue statement can be used with any for or while
loop.

74

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

Listing 3-20. Continue Statement

Iterate over range and print out only the positive numbers
>> x =0

>>> while x < 10:
X +=1
ifx%2!=o0:
continue

print x

8
10

In this example, whenever x is odd, the 'continue' causes execution to move on to the next iteration
of the loop. When x is even, it is printed out.

break Statement

Much like the continue statement, the break statement can be used inside of a loop. We use the break
statement in order to stop the loop completely so that a program can move on to its next task. This
differs from continue because the continue statement only stops the current iteration of the loop and
moves onto the next iteration. Let’s check it out:

Listing 3-21. Break Statement

>> X = 10
>>> while True:
if x == o0:
print 'x is now equal to zero!'
break
if x %2 ==o0:
print x
X -=1
10
8
6
4

75

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

76

2
x 1s now equal to zero!

In the previous example, the loop termination condition is always True, so execution only leaves the
loop when a break is encountered. If we are working with a break statement that resides within a loop
that is contained in another loop (nested loop construct), then only the inner loop will be terminated.

for Loop

The forloop can be used on any iterable object. It will simply iterate through the object and perform
some processing during each pass. Both the break and continue statements can also be used within the
forloop. The for statement in Python also differs from the same statement in Java because in Python we
also have the else clause with this construct. Once again, the else clause is executed when the for loop
processes to completion without any break intervention or raised exceptions. Also, if you are familiar
with pre-Java 5 for loops then you will love the Python syntax. In Java 5, the syntax of the for statement
was adjusted a bit to make it more in line with syntactically easy languages such as Python.

Listing 3-22. Comparing Java and Python for-loop

Example of Java for-loop (pre Java 5)

for(x = 0; x <= myList.size(); x++){
// processing statements iterating through mylist
System.out.println("The current index is: " + x);

Listing 3-23. Example of Python for-loop

my_liSt = [112)314)5]

>>> for value in my list:
processing statements using value as the current item in my list
print 'The current value is %s' % (value)

The current value is
The current value is
The current value is
The current value is
The current value is

uh WwWN R

As you can see, the Python syntax is a little easier to understand, but it doesn’t really save too many
keystrokes at this point. We still have to manage the index (x in this case) by ourselves by incrementing it
with each iteration of the loop. However, Python does provide a built-in function that can save us some
keystrokes and provides a similar functionality to that of Java with the automatically incrementing index
on the forloop. The enumerate(sequence) function does just that. It will provide an index for our use and
automatically manage it for us.

Listing 3-24. Enumerate() Functionality

>>> mylList = ['jython','java', 'python','jruby’, 'groovy']
>>> for index, value in enumerate(myList):

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

print index, value

0 jython
1 java

2 python
3 jruby
4 groovy

If we do not require the use of an index, it can be removed and the syntax can be cleaned up a bit.

>>> myList = ['jython', 'java', 'python', 'jruby', 'groovy']
>>> for item in mylist:
print item
jython
Jjava
python
jruby
groovy

Now we have covered the program flow for conditionals and looping constructs in the Python
language. However, good programming practice will tell you to keep it as simple as possible or the logic
will become too hard to follow. In practicing proper coding techniques, it is also good to know that lists,
dictionaries, and other containers can be iterated over just like other objects. Iteration over containers
using the forloop is a very useful strategy. Here is an example of iterating over a dictionary object.

Listing 3-25. Iteration Over Containers

Define a dictionary and then iterate over it to print each value
>>> my _dict = {'Jython':'Java’, 'CPython':'C', 'IronPython':'.NET', 'PyPy':'Python'}
>>> for key in my_dict:

print key

Jython
IronPython
CPython
PyPy

It is useful to know that we can also obtain the values of a dictionary object via each iteration by
calling my_dict.values(.

Example Code

Let’s take a look at an example program that uses some of the program flow which was discussed in this
chapter. The example program simply makes use of an external text file to manage a list of players on a
sports team. You will see how to follow proper program structure and use spacing effectively in this
example. You will also see file utilization in action, along with utilization of the raw_input() function.

Listing 3-26. # import os module

import os

77

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

Create empty dictionary
player dict = {}
Create an empty string
enter player = "'

Enter a loop to enter inforation from keyboard
while enter player.upper() != 'X':

print 'Sports Team Administration App'

If the file exists, then allow us to manage it, otherwise force creation.
if os.path.isfile('players.txt'):
enter_player = raw_input("Would you like to create a team or manage an existing
team?\n (Enter 'C' for create, 'M' for manage, 'X' to exit) ")
else:
Force creation of file if it does not yet exist.
enter player = 'C'

Check to determine which action to take. C = create, M = manage, X = Exit and Save
if enter player.upper() == 'C':

Enter a player for the team
print 'Enter a list of players on our team along with their position'
enter cont = 'Y’

While continuing to enter new player's, perform the following
while enter cont.upper() == 'Y':
Capture keyboard entry into name variable
name = raw_input('Enter players first name: ')
Capture keyboard entry into position variable
position = raw_input('Enter players position: ')
Assign position to a dictionary key of the player name
player dict[name] = position
enter cont = raw_input("Enter another player? (Press 'N' to exit or 'Y' to
continue)")
else:
enter_player = 'X'

Manage player.txt entries
elif enter_player.upper() == 'M':

Read values from the external file into a dictionary object
print
print 'Manage the Team'
Open file and assign to playerfile
playerfile = open('players.txt','r")
Use the for-loop to iterate over the entries in the file
for player in playerfile:
Split entries into key/value pairs and add to list
playerList = player.split(':")
Build dictionary using list values from file
player dict[playerList[o0]] = playerList[1]
Close the file
playerfile.close()

78

CHAPTER 3 11 OPERATORS, EXPRESSIONS, AND PROGRAM FLOW

print 'Team Listing'
print '+ttt

Iterate over dictionary values and print key/value pairs
for i, player in enumerate(player dict):
print 'Player %s Name: %s -- Position: %s' %(i, player, player dict[player])

else:
Save the external file and close resources
if player dict:

print 'Saving Team Data...'
Open the file
playerfile = open('players.txt','w")
Write each dictionary element to the file
for player in player dict:
playerfile.write('%s:%s\n' % (player.strip(),player dict[player].strip()))
Close file
playerfile.close()

This example is packed full of concepts that have been discussed throughout the first three chapters
of the book. As stated previously, the concept is to create and manage a list of sport players and their
relative positions. The example starts by entering a while() loop that runs the program until the user
enters the exit command. Next, the program checks to see if the 'players.txt' file exists. If it does, then the
program prompts the user to enter a code to determine the next action to be taken. However, if the file
does not exist then the user is forced to create at least one player/position pair in the file.

Continuing on, the program allows the user to enter as many player/position pairs as needed, or exit
the program at any time. If the user chooses to manage the player/position list, the program simply
opens the 'players.txt' file, uses a for() loop to iterate over each entry within the file. A dictionary is
populated with the current player in each iteration of the loop. Once the loop has completed, the file is
closed and the dictionary is iterated and printed. Exiting the program forces the else() clause to be
invoked, which iterates over each player in the dictionary and writes them to the file.

Unfortunately, this program is quite simplistic and some features could not be implemented
without knowledge of functions (Chapter 4) or classes (Chapter 6). A good practice would be to revisit
this program once those topics have been covered and simplify as well as add additional functionality.

Summary

All programs are constructed out of statements and expressions. In this chapter we covered details of
creating expressions and using them. Expressions can be composed of any number of mathematical
operators and comparisons. In this chapter we discussed the basics of using mathematical operators in
our programs. The _ future__ division topic introduced us to using features from the __future__. We
then delved into comparisons and comparison operators.

We ended this short chapter by discussing proper program flow and properly learned about the if
statement as well as how to construct different types of loops in Python. In the next chapter you will
learn how to write functions, and the use of many built-in functions will be discussed.

79

CHAPTER 4

Defining Functions and
Using Built-ins

Functions are the fundamental unit of work in Python. A function in Python performs a task and returns
aresult. In this chapter, we will start with the basics of functions. Then we look at using the built-in
functions. These are the core functions that are always available, meaning they don’t require an explicit
import into your namespace. Next we will look at some alternative ways of defining functions, such as
lambdas and classes. We will also look at more advanced types of functions, namely closures and
generator functions.

As you will see, functions are very easy to define and use. Python encourages an incremental style of
development that you can leverage when writing functions. So how does this work out in practice? Often
when writing a function it may make sense to start with a sequence of statements and just try it outin a
console. Or maybe just write a short script in an editor. The idea is to just to prove a path and answer
such questions as, “Does this API work in the way I expect?” Because top-level code in a console or script
works just like it does in a function, it’s easy to later isolate this code in a function body and then
package it as a function, maybe in a library, or as a method as part of a class. The ease of doing this style
of development is one aspect that makes Python such a joy use. And of course in the Jython
implementation, it’s easy to use this technique within the context of any Java library.

An important thing to keep in mind is that functions are first-class objects in Python. They can be
passed around just like any other variable, resulting in some very powerful solutions. We’ll see some
examples of using functions in such a way later in this chapter.

Function Syntax and Basics

Functions are usually defined by using the ‘def keyword, the name of the function, its parameters (if
any), and the body of code. We will start by looking at this example function:

Listing 4-1.

def times2(n):
return n * 2

In this example, the function name is times2 and it accepts a parameter zn. The body of the function
is only one line, but the work being done is the multiplication of the parameter by the number 2. Instead
of storing the result in a variable, this function simply returns it to the calling code. An example of using
this function would be as follows.

81

CHAPTER 4 1| DEFINING FUNCTIONS AND USING BUILT-INS

82

Listing 4-2.

>>> times2(8)

16

>>> x = times2(5)
>>> X

10

Normal usage can treat function definitions as being very simple. But there’s subtle power in every
piece of the function definition, due to the fact that Python is a dynamic language. We’ll look at these
pieces from both a simple (the more typical case) and a more advanced perspective. We will also look at
some alternative ways of creating functions in a later section.

The def Keyword

Using ‘def for define seems simple enough, and this keyword certainly can be used to declare a function
just like you would in a static language. You should write most code that way in fact.

However, a function definition can occur at any level in your code and be introduced at any time.
Unlike the case in a language like C or Java, function definitions are not declarations. Instead they are
executable statements. You can nest functions, and we’ll describe that more when we talk about nested
scopes. And you can do things like conditionally define them.

This means it’s perfectly valid to write code like the following:

Listing 4-3.

if variant:
def £():
print "One way"
else:
def f():
print "or another"

Please note, regardless of when and where the definition occurs, including its variants as above, the
function definition will be compiled into a function object at the same time as the rest of the module or
script that the function is defined in.

Naming the Function

We will describe this more in a later section, but the dir built-in function will tell us about the names
defined in a given namespace, defaulting to the module, script, or console environment we are working
in. With this new times2 function defined above, we now see the following (at least) in the console
namespace:

Listing 4-4.

>>> dir()
[' doc_ ', ' name_ "', 'times2']

We can also just look at what is bound to that name:

CHAPTER 4 1 DEFINING FUNCTIONS AND USING BUILT-INS

Listing 4-5.

>>> times2
<function times2 at ox1>

(This object is further introspectable. Try dir(times2) and go from there.) We can reference the
function by supplying the function name such as we did in the example above. However, in order to call
the function and make it perform some work, we need to supply the () to the end of the name.

We can also redefine a function at any time:

Listing 4-6.
>>> def f(): print "Hello, world"
>>> def f(): print "Hi, world"
>>> ()
Hi, world

This is true not just of running it from the console, but any module or script. The original version of
the function object will persist until it’s no longer referenced, at which point it will be ultimately be
garbage collected. In this case, the only reference was the name f, so it became available for GC
immediately upon rebind.

What'’s important here is that we simply rebound the name. First it pointed to one function object,

then another. We can see that in action by simply setting another name (equivalently, a variable) to
times2.

Listing 4-7.

>>> t2 = times2
>>> t2(5)
10

This makes passing a function as a parameter very easy, for a callback for example. A callback is a
function that can be invoked by a function to perform a task and then turn around and invoke the calling
function, thus the callback. Let’s take a look at function parameters in more detail.

FUNCTION METAPROGRAMMING

A given name can only be associated with one function at a time, so can’t overload a function with multiple
definitions. If you were to define two or more functions with the same name, the last one defined is used,
as we saw.

However, it is possible to overload a function, or otherwise genericize it. You simply need to create a
dispatcher function that then dispatches to your set of corresponding functions. Another way to genericize
a function is to make use of the simplegeneric module which lets you define simple single-dispatch
generic functions. For more information, please see the simplegeneric package in the Python Package
Index.

83

CHAPTER 4 1| DEFINING FUNCTIONS AND USING BUILT-INS

84

Function Parameters and Calling Functions

When defining a function, you specify the parameters it takes. Typically you will see something like the
following. The syntax is familiar:

def tip_calc(amt, pct)

As mentioned previously, calling functions is also done by placing parentheses after the function
name. For example, for the function x with parameters a, b, c that would be x(a,b,c). Unlike some other
dynamic languages like Ruby and Perl, the use of parentheses is required syntax (due the function name
being just like any other name).

Objects are strongly typed, as we have seen. But function parameters, like names in general in
Python, are not typed. This means that any parameter can refer to any type of object.

We see this play out in the times2 function. The * operator not only means multiply for numbers, it
also means repeat for sequences (like strings and lists). So you can use the times2 function as follows:

Listing 4-8.
>>> times2(4)
8

>>> times2('abc")
"abcabc’

>>> times2([1,2,3])
[1, 2, 3, 1, 2, 3]

All parameters in Python are passed by reference. This is identical to how Java does it with object
parameters. However, while Java does support passing unboxed primitive types by value, there are no
such entities in Python. Everything is an object in Python. It is important to remember that immutable
objects cannot be changed, and therefore, if we pass a string to a function and alter it, a copy of the
string is made and the changes are applied to the copy.

Listing 4-9.

The following function changes the text of a string by making a copy
of the string and then altering it. The original string is left
untouched as it is immutable.
>>> def changestr(mystr):
mystr = mystr + '_changed'
print 'The string inside the function: ', mystr
return
>>> mystr = 'hello’
>>> changestr(mystr)
The string inside the function: hello_changed
>>> mystr
"hello’

Functions are objects too, and they can be passed as parameters:
Listing 4-10.
Define a function that takes two values and a mathematical function

>>> def perform calc(valuel, value2, func):
return func(valuel, value2)

CHAPTER 4 1 DEFINING FUNCTIONS AND USING BUILT-INS

Define a mathematical function to pass
>>> def mult values(valuel, value2):
return valuel * value2

>>> perform calc(2, 4, mult values)
8

Define another mathematical function to pass
>>> def add values(valuel, value2):
return valuel + value2

>>> perform calc(2, 4, add values)
6
>>>

If you have more than two or so arguments, it often makes more sense to call a function by named
values, rather than by the positional parameters. This tends to create more robust code. So if you have a
function draw_point(x,y), you might want to call it as draw_point(x=10,y=20).

Defaults further simplify calling a function. You use the form of param=default_value when defining
the function. For instance, you might take our times2 function and generalize it.

Listing 4-11.

def times_by(n, by=2):
return n * by

This function is equivalent to times2 when called with just one argument—it uses the default value
for the second argument by.

There’s one point to remember that often trips up developers. The default value is initialized exactly
once, when the function is defined. That’s certainly fine for immutable values like numbers, strings,
tuples, frozensets, and similar objects. But you need to ensure that if the default value is mutable, that
it’s being used correctly. So a dictionary for a shared cache makes sense. But this mechanism won’t work
for a list where we expect it is initialized to an empty list upon invocation. If you're doing that, you need
to write that explicitly in your code. As a best practice, use None as the default value rather than a
mutable object, and check at the start of the body of your function for the case value = None and set the
variable to your mutable object there.

Lastly, a function can take an unspecified number of ordered arguments, through *args, and
keyword args, through **kwargs. These parameter names (args and kwargs) are conventional, so you can
use whatever name makes sense for your function. The markers * and ** are used to determine that this
functionality should be used. The single * argument allows for passing a sequence of values, and a
double ** argument allows for passing a dictionary of names and values. If either of these types of
arguments is specified, they must follow any single arguments in the function declaration. Furthermore,
the double ** must follow the single *.

Definition of a function that takes a sequence of numbers:

Listing 4-12.
def sum_args(*nums):

return sum(nums)
Calling the function using a sequence of numbers:

85

CHAPTER 4 1| DEFINING FUNCTIONS AND USING BUILT-INS

86

>>> seq = [615:413]

>>> sum_args(*seq)

18

we can also call the function without using the *
>>> sum_args(1,2,3,4)

10

Recursive Function Calls

It is also quite common to see cases in which a function calls itself from inside the function body. This
type of function call is known as a recursive function call. Let’s take a look at a function that computes
the factorial of a given argument. This function calls itself passing in the provided argument
decremented by 1 until the argument reaches the value of 0 or 1.

Listing 4-13.

def fact(n):
if n in (0, 1):
return 1
else:
return n * fact(n - 1)

It is important to note that Jython is like CPython in that it is ultimately stack based. Stacks are
regions of memory where data is added and removed in a last-in first-out manner. If a recursive function
calls itself too many times then it is possible to exhaust the stack, which results in an OutOfMemoryError.
Therefore, be cautious when developing software using deep recursion.

Function Body

This section will break down the different components that comprise the body of a function. The body of
a function is the part that performs the work. Throughout the next couple of sub-sections, you will see
that a function body can be comprised of many different parts.

Documenting Functions

First, you should specify a document string for the function. The docstring, if it exists, is a string that
occurs as the first value of the function body.

Listing 4-14.

def times2(n):

"""Given n, returns n * 2

return n * 2

As mentioned in Chapter 1, by convention we use triple-quoted strings, even if your docstring is not
multiline. If it is multiline, this is how we recommend you format it. For more information, please take a
look at PEP 257 (www.python.org/dev/peps/pep-0257).

CHAPTER 4 1 DEFINING FUNCTIONS AND USING BUILT-INS

Listing 4-15.

def fact(n):
"""Returns the factorial of n

Computes the factorial of n recursively. Does not check its
arguments if nonnegative integer or if would stack
overflow. Use with care!

if n in (0, 1):
return 1
else:
return n * fact(n - 1)

Any such docstring, but with leading indentation stripped, becomes the _doc__ attribute of that
function object. Incidentally, docstrings are also used for modules and classes, and they work exactly the
same way.

You can now use the help built-in function to get the docstring, or see them from various IDEs like
PyDev for Eclipse and nbPython for NetBeans as part of the auto-complete.

Listing 4-16.

>>> help(fact)
Help on function fact in module _ main__:

fact(n)
Returns the factorial of n

>>>

Returning Values

All functions return some value. In times2, we use the return statement to exit the function with that
value. Functions can easily return multiple values at once by returning a tuple or other structure. The
following is a simple example of a function that returns more than one value. In this case, the tip
calculator returns the result of a tip based upon two percentage values.

Listing 4-17.

>>> def calc_tips(amount):
return (amount * .18), (amount * .20)

>>> calc_tips(25.25)
(4.545, 5.050000000000001)

A function can return at any time, and it can also return any object as its value. So you can have a
function that looks like the following:

87

CHAPTER 4 1| DEFINING FUNCTIONS AND USING BUILT-INS

88

Listing 4-18.

>>> def check pos perform calc(numi, num2, func):
if num1 > 0 and num2 > O:
return func(numi, num2)
else:
return 'Only positive numbers can be used with this function!'

>>> def mult values(valuel, value2):
return valuel * value2

55> check_pos_perform calc(3, 4, mult_values)

12

>>> check_pos_perform calc(3, -44, mult_values)

'Only positive numbers can be used with this function!'

If a return statement is not used, the value None is returned. There is no equivalent to a void method
in Java, because every function in Python returns a value. However, the Python console will not show the
return value when it’s None, so you need to explicitly print it to see what is returned.

Listing 4-19.

>>> do_nothing()
>>> print do_nothing()
None

Introducing Variables

A function introduces a scope for new names, such as variables. Any names that are created in the
function are only visible within that scope. In the following example, the sq variable is defined within the
scope of the function definition itself. If we try to use it outside of the function then we’ll receive an
error.

Listing 4-20.

>>> def square_num(num):
""" Return the square of a number
sq = num * num
return sq

>>> square_num(35)

1225

>>> sq

Traceback (most recent call last):
File "<stdin»", line 1, in <module>

NameError: name 'sq' is not defined

CHAPTER 4 1 DEFINING FUNCTIONS AND USING BUILT-INS

GLOBAL VARIABLES

The global keyword is used to declare that a variable name is from the module scope (or script) containing
this function. Using global is rarely necessary in practice, since it is not necessary if the name is called as
a function or an attribute is accessed (through dotted notation).

This is a good example of where Python is providing a complex balancing between a complex idea—the
lexical scoping of names, and the operations on them—and the fact that in practice it is doing the right
thing.

Here is an example of using a global variable in the same square_num() function.

Listing 4-21.

>>>sq =0

>>> def square_num(n):
global sq
sq=n*n
return sq

>>> square_num(10)
100

>>> sq

100

Other Statements

What can go in a function body? Pretty much any statement, including material that we will cover later
in this book. So you can define functions or classes or use even import, within the scope of that function.
In particular, performing a potentially expensive operation like import as least as possible, can
reduce the startup time of your app. It’s even possible it will be never needed too.
There are a couple of exceptions to this rule. In both cases, these statements must go at the
beginning of a module, similar to what we see in a static language like Java:

* Compiler directives. Python supports a limited set of compiler directives that have
the provocative syntax of from _ future__ import X; see PEP 236. These are
features that will eventually be made available, generally in the next minor
revision (such as 2.5 to 2.6). In addition, it’s a popular place to put Easter eggs,
such as from __ future__ import braces. (Tryitin the console, which also relaxes
what it means to be performed at the beginning.)

* Source encoding declaration. Although technically not a statement—it’s in a
specially parsed comment—this must go in the first or second line.

Empty Functions

It is also possible to define an empty function. Why have a function that does nothing? As in math, it’s
useful to have an operation that stands for doing nothing, like “add zero” or “multiply by one.” These
identity functions eliminate special cases. Likewise, as see with empty callback, we may need to specify
a callback function when calling an API, but nothing actually needs to be done. By passing in an empty

89

CHAPTER 4 1| DEFINING FUNCTIONS AND USING BUILT-INS

90

function—or having this be the default—we can simplify the API. An empty function still needs
something in its body. You can use the pass statement.

Listing 4-22.

def do_nothing():
pass # here's how to specify an empty body of code

Or you can just have a docstring for the function body as in the following example.

def empty callback(*args, **kwargs):
"""Use this function where we need to supply a callback,
but have nothing further to do.

Miscellaneous Information for the Curious Reader

As you already know, Jython is an interpreted language. That is, the Python code that we write for a
Jython application is ultimately compiled down into Java bytecode when our program is run. So
oftentimes it is useful for Jython developers to understand what is going on when this code is interpreted
into Java bytecode.

What do functions look like from Java? They are instances of an object named PyObject, supporting
the call method.

Additional introspection is available. If a function object is just a standard function written in
Python, it will be of class PyFunction. A built-in function will be of class PyBuiltinFunction. But don’t
assume that in your code, because many other objects support the function interface (__call), and
these potentially could be proxying, perhaps several layers deep, a given function. You can only assume
it’s a PyObject.

Much more information is available by going to the Jython wiki. You can also send questions to the
jython-dev mailing list for more specifics.

Built-in Functions

Built-in functions are those functions that are always in the Python namespace. In other words, these
functions—and built-in exceptions, boolean values, and some other objects—are the only truly globally
defined names. If you are familiar with Java, they are somewhat like the classes from java.lang.

Built-ins are rarely sufficient, however; even a simple command line script generally needs to parse
its arguments or read in from its standard input. So for this case you would need to import sys.And in
the context of Jython, you will need to import the relevant Java classes you are using, perhaps with
import java. But the built-in functions are really the core function that almost all Python code uses.

The documentation for covering all of the built-in functions that are available is extensive. However,
it has been included in this book as Appendix C. It should be easy to use Appendix C as a reference when
using a built-in function, or for choosing which built-in function to use.

Alternative Ways to Define Functions

The ‘def keyword is not the only way to define a function. Here are some alternatives:

e Lambda Functions: lambda’ functions. The ‘lambda’ keyword creates an
unnamed function. Some people like this because it requires minimal space,
especially when used in a callback.

CHAPTER 4 1 DEFINING FUNCTIONS AND USING BUILT-INS

e C(lasses: In addition, we can also create objects with classes whose instance
objects look like ordinary functions. Objects supporting the _ call__ protocol. For
Java developers, this is familiar. Classes implement such single-method interfaces
as Callable or Runnable.

* Bound Methods: Instead of calling x.a(), I can pass x.a as a parameter or bind to
another name. Then I can invoke this name. The first parameter of the method
will be passed the bound object, which in OO terms is the receiver of the method.
This is a simple way of creating callbacks. (In Java you would have just passed the
object of course, then having the callback invoke the appropriate method such as
call or run.)

Lambda Functions
As stated in the introduction, a lambda function is an anonymous function. In other words, a lambda
function is not required to be bound to any name. This can be useful when you are trying to create
compact code or when it does not make sense to declare a named function because it will only be used
once.

A lambda function is usually written inline with other code, and most often the body of a lambda
function is very short in nature. A lambda function is comprised of the following segments:
lambda <<argument(s)>> : <<function body>>

A lambda function accepts arguments just like any other function, and it uses those arguments
within its function body. Also, just like other functions in Python a value is always returned. Let’s take a
look at a simple lambda function to get a better understanding of how they work.

Listing 4-23. Example of using a lambda function to combine two strings. In this case, a first and last
name

>>> name_combo = lambda first,last: first + ' ' + last
>>> name_combo('Jim", 'Baker")

'Jim Baker'

In the example above, we assigned the function to a name. However, alambda function can also be
defined in-line with other code. Oftentimes a lambda function is used within the context of other
functions, namely built-ins.

Generator Functions

Generators are special functions that are an example of iterators, which will be discussed in Chapter 6.
Generators advance to the next point by calling the special method next. Usually that’s done implicitly,
typically through a loop or a consuming function that accepts iterators, including generators. They
return values by using the yield statement. Each time a yield statement is encountered then the current
iteration halts and a value is returned. Generators have the ability to remember where they left off. Each
time next() is called, the generator resumes where it had left off. A StoplIteration error will be raised once
the generator has been terminated.

Over the next couple of sections, we will take a closer look at generators and how they work. Along
the way, you will see many examples for creating and using generators.

91

CHAPTER 4 1| DEFINING FUNCTIONS AND USING BUILT-INS

92

[)(Bfllllllgg Generators

A generator function is written so that it consists of one or more yield points, which are marked through
the use of the yield statement. As mentioned previously, each time the yield statement is encountered, a
value is returned.

Listing 4-24.

def g():
print "before yield point 1"
The generator will return a value once it encounters the yield statement
yield 1
print "after 1, before 2"
yield 2
yield 3

In the previous example, the generator function g0 will halt and return a value once the first yield
statement is encountered. In this case, a 1 will be returned. The next time g.next() is called, the generator
will continue until it encounters the next yield statement. At that point it will return another value, the 2
in this case. Let’s see this generator in action. Note that calling the generator function simply creates
your generator, it does not cause any yields. In order to get the value from the first yield, we must call
next().

Listing 4-25.

Call the function to create the generator
>> x = g()

Call next() to get the value from the yield
>>> x.next()

before the yield point 1

1

>>> x.next()

after 1, before 2

2

>>> x.next()

>>> x.next()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

Let’s take a look at another more useful example of a generator. In the following example, the
step_to() function is a generator that increments based upon a given factor. The generator starts at zero
and increments each time next() is called. It will stop working once it reaches the value that is provided
by the stop argument.

Listing 4-26.

>>> def step_to(factor, stop):
step = factor
start = 0

CHAPTER 4 1 DEFINING FUNCTIONS AND USING BUILT-INS

while start <= stop:
yield start
start += step

>>> for x in step to(1, 10):

print x

0

1

2

3

4

5

6

7

8

9

10

>>> for x in step_to(2, 10):

print x

0

2

4

6

8

10

>>>

If the yield statement is seen in the scope of a function, then that function is compiled as if it’s a
generator function. Unlike other functions, you use the return statement only to say, “I'm done,” that is,
to exit the generator, and not to return any values. You can think of return as acting like a break in a for-
loop or while-loop. Let’s change the step_to function just a bit to check and ensure that the factor is less
than the stopping point. We’ll add a return statement to exit the generator if the factor is greater or equal
to the stop.

Listing 4-27

>>> def step_return(factor, stop):
step = factor
start = 0
if factor >= stop:
return
while start <= stop:
yield start
start += step

>>> for x in step_return(1,10):
print x

[y

93

CHAPTER 4 1| DEFINING FUNCTIONS AND USING BUILT-INS

94

RrOoo~NOUVTI W

0
>>> for x in step_return(3,10):
print x

0
3
6
9
>>> for x in step return(3,3):

print x

If you attempt to return an argument then a syntax error will be raised.
Listing 4-28.

def g():
yield 1
yield 2
return None

for i in g():
print i

SyntaxError: 'return' with argument inside generator
Many useful generators actually will have an infinite loop around their yield expression, instead of

ever exiting, explicitly or not. The generator will essentially work each time nexz() is called throughout
the life of the program.

Listing 4-29. Pseudocode for generator using infinite loop

while True:
yield stuff

This works because a generator object can be garbage collected as soon as the last reference to the

generator is used. The fact that it uses the machinery of function objects to implement itself doesn’t
matter.

HOW IT ACTUALLY WORKS

Generators are actually compiled differently from other functions. Each yield point saves the state of
unnamed local variables (Java temporaries) into the frame object, then returns the value to the function

CHAPTER 4 1 DEFINING FUNCTIONS AND USING BUILT-INS

that had called next (or send in the case of a coroutine which will be discussed later in this chapter). The
generator is then indefinitely suspended, just like any other iterator. Upon calling next again, the generator
is resumed by restoring these local variables, then executing the next bytecode instruction following the
yield point. This process continues until the generator is either garbage collected or it exits.

Generators can also be resumed from any thread, although some care is necessary to ensure that
underlying system state is shared (or compatible).

Generator EXpressmns

Generator expressions are an alternative way to create the generator object. Please note that this is not
the same as a generator function! It’s the equivalent to what a generator function yields when called.
Generator expressions basically create an unnamed generator.

Listing 4-30.

>>> x = (2 * x for x in [1,2,3,4])
>>> X
<generator object at ox1>
>>> x()
Traceback (most recent call last):
File "<stdin»", line 1, in <module>
TypeError: 'generator' object is not callable
Let’s see this generator expression in action:
>>> for v in x:
print v

vV oo N .
.

Typically generator expressions tend to be more compact but less versatile than generator
functions. They are useful for getting things done in a concise manner.

Namespaces, Nested Scopes, and Closures

Note that you can introduce other namespaces into your function definition. It is possible to include
import statements directly within the body of a function. This allows such imports to be valid only
within the context of the function. For instance, in the following function definition the imports of A and
B are only valid within the context of f().

Listing 4-31.

def ():
from NS import A, B

At first glance, including import statements within your function definitions may seem unnecessary.

However, if you think of a function as an object then it makes much more sense. We can pass functions

95

CHAPTER 4 1| DEFINING FUNCTIONS AND USING BUILT-INS

96

around just like other objects in Python such as variables. As mentioned previously, functions can even
be passed to other functions as arguments. Function namespaces provide the ability to treat functions as
their own separate piece of code. Oftentimes, functions that are used in several different places
throughout an application are stored in a separate module. The module is then imported into the
program where needed.

Functions can also be nested within each other to create useful solutions. Since functions have their
own namespace, any function that is defined within another function is only valid within the parent
function. Let’s take a look at a simple example of this before we go any further.

Listing 4-32.

>>> def parent function():

x = [0]
def child function():
x[o] += 1

return x[0]
return child function
> p = parent_function()
>>> p()

>>> p()
>>> p()
>>> p()

While this example is not extremely useful, it allows you to understand a few of the concepts for
nesting functions. As you can see, the parent_function contains a function named child_function. The
parent_function in this example returns the child_function. What we have created in this example is a
simple Closure function. Each time the function is called, it executes the inner function and increments
the variable x which is only available within the scope of this closure.

In the context of Jython, using closures such as the one defined previously can be useful for
integrating Java concepts as well. It is possible to import Java classes into the scope of your function just
as it is possible to work with other Python modules. It is sometimes useful to import in a function call in
order to avoid circular imports, which is the case when function A imports function B, which in turn
contains an import to function A. By specifying an import in a function call you are only using the
import where it is needed. You will learn more about using Java within Jython in Chapter 10.

Function Decorators

Decorators are a convenient syntax that describes a way to transform a function. They are essentially a
metaprogramming technique that enhances the action of the function that they decorate. To program a
function decorator, a function that has already been defined can be used to decorate another function,
which basically allows the decorated function to be passed into the function that is named in the
decorator. Let’s look at a simple example.

CHAPTER 4 1 DEFINING FUNCTIONS AND USING BUILT-INS

Listing 4-33.

def plus_five(func):
x = func()
return x + 5

@plus_five
def add nums():
return 1 + 2

In this example, the add_nums() function is decorated with the plus_five() function. This has the
same effect as passing the add_nums function into the plus_five function. In other words, this decorator
is syntactic sugar that makes this technique easier to use. The decorator above has the same
functionality as the following code.

Listing 4-34.
add_nums = plus_five(add nums)

In actuality, add_nums is now no longer a function, but rather an integer. After decorating with
plus_five you can no longer call add_nums(), we can only reference it as if it were an integer. As you can
see, add_nums is being passed to plus_five at import time. Normally, we’d want to have add_nums finish
up as a function so that it is still callable. In order to make this example more useful, we’ll want to make
add_nums callable again and we will also want the ability to change the numbers that are added. To do
so, we need to rewrite the decorator function a bit so that it includes an inner function that accepts
arguments from the decorated function.

Listing 4-35.

def plus_five(func):
def inner(*args, **kwargs):
x = func(*args, **kwargs) + 5
return x
return inner

@plus_five
def add_nums(num1, num2):
return numl + num2

Now we can call the add_nums() function once again and we can also pass two arguments to it.
Because it is decorated with the plus_five function it will be passed to it and then the two arguments will
be added together and the number five will be added to that sum. The result will then be returned.

Listing 4-36.

>>> add_nums(2,3)
10
>>> add_nums(2,6)
13

97

CHAPTER 4 1| DEFINING FUNCTIONS AND USING BUILT-INS

98

Now that we’ve covered the basics of function decorators it is time to take a look at a more in-depth
example of the concept. In the following decorator function example, we are taking a twist on the old
tip_calculator function and adding a sales tax calculation. As you see, the original calc_bill function takes
a sequence of amounts, namely the amounts for each item on the bill. The calc_bill function then simply
sums the amounts and returns the value. In the given example, we apply the sales_tax decorator to the
function which then transforms the function so that it not only calculates and returns the sum of all
amounts on the bill, but it also applies a standard sales tax to the bill and returns the tax amount and
total amounts as well.

Listing 4-37.

def sales_tax(func):
""" Applies a sales tax to a given bill calculator
def calc_tax(*args, **kwargs):
f = func(*args, **kwargs)
tax = f * .18
print "Total before tax: $ %.2f" % (f)
print "Tax Amount: $ %.2f" % (tax)
print "Total bill: $ %.2f" % (f + tax)
return calc_tax

@sales_tax

def calc _bill(amounts):
""" Takes a sequence of amounts and returns sum
return sum(amounts)

The decorator function contains an inner function that accepts two arguments, a sequence of
arguments and a dictionary of keyword args. We must pass these arguments to our original function
when calling from the decorator to ensure that the arguments that we passed to the original function are
applied within the decorator function as well. In this case, we want to pass a sequence of amounts to
calc_bill, so passing the *args, and **kwargs arguments to the function ensures that our amounts
sequence is passed within the decorator. The decorator function then performs simple calculations for
the tax and total dollar amounts and prints the results. Let’s see this in action:

Listing 4-38.

>>> amounts = [12.95,14.57,9.96]
>>> calc_bill(amounts)

Total before tax: $ 37.48

Tax Amount: $ 6.75

Total bill: $ 44.23

It is also possible to pass arguments to decorator functions when doing the decorating. In order to
do so, we must nest another function within our decorator function. The outer function will accept the
arguments to be passed into the decorator function, the inner function will accept the decorated
function, and the inner most function will perform the work. We’ll take another spin on the tip
calculator example and create a decorator that will apply the tip calculation to the calc_bill function.

Listing 4-39.

def tip_amount(tip pct):
def calc_tip wrapper(func):

CHAPTER 4 1 DEFINING FUNCTIONS AND USING BUILT-INS

def calc_tip impl(*args, **kwargs):
f = func(*args, **kwargs)
print "Total bill before tip: $ %.2f" % (f)
print "Tip amount: $ %.2f" % (f * tip_pct)
print "Total with tip: § %.2f" % (f + (f * tip_pct))
return calc_tip impl
return calc_tip wrapper

Now let’s see this decorator function in action. As you’ll notice, we pass a percentage amount to the
decorator itself and it is applied to the decorator function.

Listing 4-40.

>>> @tip_amount(.18)

... def calc_bill(amounts):

cee """ Takes a sequence of amounts and returns sum
return sum(amounts)

>>> amounts = [20.95, 3.25, 10.75]
>>> calc_bill(amounts)

Total bill before tip: $ 34.95
Tip amount: $ 6.29

Total with tip: $ 41.24

Asyou can see, we have a similar result as was produced with the sales tax calculator, except that
with this decorator solution we can now vary the tip percentage. All of the amounts in the sequence of
amounts are summed up and then the tip is applied. Let’s take a quick look at what is actually going on if
we do not use the decorator @ syntax.

Listing 4-41.
calc bill = tip amount(.18)(calc_bill)

At import time, the tip_amount() function takes both the tip percentage and the calc_bill function as
arguments, and the result becomes the new calc_bill function. By including the decorator, we're
actually decorating calc_bill with the function which is returned by tip_amount(.18). In the larger scale
of the things, if we applied this decorator solution to a complete application then we could accept the tip
percentage from the keyboard and pass it into the decorator as we’ve shown in the example. The tip
amount would then become a variable that can fluctuate based upon a different situation. Lastly, if we
were dealing with a more complex decorator function, we have the ability to change the inner-working
of the function without adjusting the original decorated function at all. Decorators are an easy way to
make our code more versatile and manageable.

Coroutines

Coroutines are often compared to generator functions in that they also make use of the yield statement.
However, a coroutine is exactly the opposite of a generator in terms of functionality. A coroutine actually
treats a yield statement as an expression, and it accepts data instead of returning it. Coroutines are
oftentimes overlooked as they may at first seem like a daunting topic. However, once it is understood
that coroutines and generators are not the same thing then the concept of how they work is a bit easier
to grasp.

99

CHAPTER 4 1| DEFINING FUNCTIONS AND USING BUILT-INS

100

A coroutine is a function that receives data and does something with it. We will take a look at a
simple coroutine example and then break it down to study the functionality.

Listing 4-42.

def co_example(name):
print 'Entering coroutine %s' % (name)
my text = []
while True:
txt = (yield)
my text.append(txt)
print my text

Here we have a very simplistic coroutine example. It accepts a value as the “name” of the coroutine.
It then accepts strings of text, and each time a string of text is sent to the coroutine, it is appended to a
list. The yield statement is the point where text is being entered by the user. It is assigned to the #xt
variable and then processing continues. It is important to note that the my_text list is held in memory
throughout the life of the coroutine. This allows us to append values to the list with each yield. Let’s take
alook at how to actually use the coroutine.

Listing 4-43.

>>> ex = co_example("example1l")
>>> ex.next()
Entering coroutine example1

In this code, we assign the name “examplel” to this coroutine. We could actually accept any type of
argument for the coroutine and do whatever we want with it. We’ll see a better example after we
understand how this works. Moreover, we could assign this coroutine to multiple variables of different
names and each would then be its own coroutine object that would function independently of the
others. The next line of code calls next() on the function. The next() must be called once to initialize the
coroutine. Once this has been done, the function is ready to accept values.

Listing 4-44.

>>> ex.send("test1")
['test1']

>>> ex.send("test2")
['test1', 'test2']

>>> ex.send("test3")
['test1', 'test2', 'test3']

As you can see, we use the send() method to actually send data values into the coroutine. In the
function itself, the text we send is inserted where the (yield) expression is placed. We can really continue
to use the coroutine forever, or until our JVM is out of memory. However, it is a best practice to close()
the coroutine once it is no longer needed. The close() call will cause the coroutine to be garbage
collected.

CHAPTER 4 1 DEFINING FUNCTIONS AND USING BUILT-INS

Listing 4-45.

>>> ex.close()

>>> ex.send("test1")

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

If we try to send more data to the function once it has been closed then a Stoplteration error is
raised. Coroutines can be very helpful in a number of situations. While the previous example doesn’t do
much, there are a number of great applications to which we can apply the use of coroutines and we will
see a more useful example in a later section.

Decorators in Coroutines

While the initialization of a coroutine by calling the next() method is not difficult to do, we can eliminate
this step to help make things even easier. By applying a decorator function to our coroutine, we can
automatically initialize it so it is ready to receive data.

Let’s define a decorator that we can apply to the coroutine in order to make the call to next().

Listing 4-46.

def coroutine next(f):
def initialize(*args,**kwargs):
coroutine = f(*args,**kwargs)
coroutine.next()
return coroutine
return initialize

Now we will apply our decorator to the coroutine function and then make use of it.

>>> @coroutine_next
... def co_example(name):
. print 'Entering coroutine %s' % (name)
my text = []
while True:
txt = (yield)
my text.append(txt)
print my_text

>>> ex2 = co_example("example2")
Entering coroutine example2

>>> ex2.send("one"

['one']

>>> ex2.send("two")

['one', "two']

>>> ex2.close()

As you can see, while it is not necessary to use a decorator for performing such tasks, it definitely
makes things easier to use. If we chose not to use the syntactic sugar of the @ syntax, we could do the
following to initialize our coroutine with the coroutine_next() function.

101

CHAPTER 4 1| DEFINING FUNCTIONS AND USING BUILT-INS

Listing 4-47.

co_example = coroutine_next(co_example)

Coroutine Example

Now that we understand how coroutines are used, let’s take a look at a more in-depth example.
Hopefully after reviewing this example you will understand how useful such functionality can be.

In this example, we will pass the name of a file to the coroutine on initialization. After that, we will
send strings of text to the function and it will open the text file that we sent to it (given that the file
resides in the correct location), and search for the number of matches per a given word. The numeric
result for the number of matches will be returned to the user.

Listing 4-48.

def search file(filename):

print 'Searching file %s' % (filename)

my file = open(filename, 'r')

file content = my file.read()

my file.close()

while True:
search_text = (yield)
search result = file content.count(search_text)
print 'Number of matches: %d' % (search result)

The coroutine above opens the given file, reads its content, and then searches and returns the
number of matches for any given send call.

Listing 4-49.

>>> search = search_file("example4 3.txt")
>>> search.next()

Searching file example4 3.txt
>>> search.send('python")
Number of matches: 0

>>> search.send('Jython")
Number of matches: 1

>>> search.send('the")

Number of matches: 4

>>> search.send('This")
Number of matches: 2

>>> search.close();

Summary

In this chapter, we have covered the use of functions in the Python language. There are many different
use-cases for functions and we have learned techniques that will allow us to apply the functions to many
situations. Functions are first-class objects in Python, and they can be treated as any other object. We
started this chapter by learning the basics of how to define a function. After learning about the basics, we

102

CHAPTER 4 1 DEFINING FUNCTIONS AND USING BUILT-INS

began to evolve our knowledge of functions by learning how to use parameters and make recursive
function calls.

There are a wide variety of built-in functions available for use. If you take a look at Appendix C of
this book you can see a listing of these built-ins. It is a good idea to become familiar with what built-ins
are available. After all, it doesn’t make much sense to rewrite something that has already been written.

This chapter also discussed some alternative ways to define functions including the lambda
notation, as well as some alternative types of functions including decorators, generators and coroutines.
Wrapping up this chapter, you should now be familiar with Python functions and how to create and use
them. You should also be familiar with some of the advanced techniques that can be applied to
functions.

In the next chapter, you will learn a bit about input and output with Jython and the basics of Python
I/0. Later in this book, we will build upon object-orientation and learn how to use classes in Python.

103

CHAPTER S5

Input and Output

A program means very little if it does not take input of some kind from the program user. Likewise, if
there is no form of output from a program then one may ask why we have a program at all. Input and
output operations can define the user experience and usability of any program. This chapter is all about
how to put information or data into a program, and then how to display it or save it to a file. This chapter
does not discuss working with databases, but rather, working at a more rudimentary level with files.
Throughout this chapter you will learn such techniques as how to input data for a program via a
terminal or command line, likewise, you will learn how to read input from a file and write to a file. After
reading this chapter, you should know how to persist Python objects to disk using the pickle module and
also how to retrieve objects from disk and use them.

Input from the Keyboard

As stated, almost every program takes input from a user in one form or another. Most basic applications
allow for keyboard entry via a terminal or command line environment. Python makes keyboard input
easy, and as with many other techniques in Python there are more than one way to enable keyboard
input. In this section, we’ll cover each of those different ways to perform this task, along with a couple of
use-cases. In the end you should be able to identify the most suitable method of performing input and
output for your needs.

sys.stdin and raw_input

Making use of std.stdin is by far the most widely used method to read input from the command line or

terminal. This procedure consists of importing the sys package, then writing a message prompting the

user for some input, and lastly reading the input by making a call to sys.stdin.readln() and assigning the
returned value to a variable. The process looks like the code that is displayed in Listing 5-1.

Listing 5-1. Using sys.stdin
Obtain a value from the command line and store it into a variable

>>> import sys

>>> fav_team = sys.stdin.readline()

Cubs

>>> sys.stdout.write("My favorite team is: %s" % fav_team)
My favorite team is: Cubs

You can see that the usage of sys modules is quite easy. However, another approach to performing this
same task is to make use of the raw_input function. This function uses a more simplistic syntax in order

105

CHAPTER 5 11 INPUT AND OUTPUT

106

to perform the same procedure. It basically generates some text on the command line or terminal,
accepts user input, and assigns it to a variable. Let’s take a look at the same example from above using
the raw_input syntax. Note that there is another function that performs a similar task named the input
function. However, the input function needs to be used with great care as it could be a potential security
risk. The raw_input function always returns content passed in as a string whereas the input function
returns content and evaluates it as an expression. It is safest to stay away from using input whenever
possible.

Listing 5-2. Using raw_input

Obtain a value using raw_input and store it into a variable
>>> fav_team = raw_input("Enter your favorite team: ")
Enter your favorite team: Cubs

Obtaining Variables from Jython Environment

It is possible to retrieve values directly from the Jython environment for use within your applications.
For instance, we can obtain system environment variables or the strings that have been passed into the
command line or terminal when running the program.

To use environment variable values within your Jython application, simply import the os module and
use it’s environ dictionary to access them. Since this is a dictionary object, you can obtain a listing of all
environment variables by simply typing os.environ.

Listing 5-3. Obtaining and Altering System Environment Variables

>>> import os
>>> os.environ["HOME"]

'/Users/juneau’

Change home directory for the Python session
>>> os.environ["HOME"] = "/newhome"

>>> os.environ["HOME"]

/newhome’

When you are executing a Jython module from the command prompt or terminal, you can make use
of the sys.argv list that takes values from the command prompt or terminal after invoking the Jython
module. For instance, if we are interested in having our program user enter some arguments to be used
by the module, they can simply invoke the module and then type all of the text entries followed by
spaces, using quotes if you wish to pass an argument that contains a space. The number of arguments
can be any size (I've never hit an upper bound anyways), so the possibilities are endless.

Listing 5-4. Using sys.argv

sysargv_print.py - Prints all of the arguments provided at the command line
import sys
for sysargs in sys.argv:

print sysargs

Usage

>>> jython sysargv print.py test test2 "test three"
sysargv_print.py

test

test2

test three

CHAPTER 5

As you can see, the first entry in sys.argv is the script name, and then each additional argument
provided after the module name is then added to the sys.argv list. This is quite useful for creating scripts
to use for automating tasks, etc.

File 170

You learned a bit about the File data type in Chapter 2. In that chapter, we briefly discussed a few of the
operations that can be performed using this type. In this section, we will go into detail on what we can
do with a File object. We'll start with the basics, and move into more detail. To begin, you should take a
look at Table 5-1 that lists all of the methods available to a File object and what they do.

Table 5-1. File Object Methods

Method Description

close() Close file

fileno() Returns integer file descriptor

flush() Used to flush or clear the output buffers and write content to the file

isatty() If the file is an interactive terminal, returns 1

next() This allovys the file to bq iterated over. Returns the next line in the file. If no line is
found, raises Stoplteration

read(x) Reads x bytes

readline(x) Reads single line up to x characters, or entire line if x is omitted

readlines(size) | Reads all lines in file into a list. If size > 0, reads that number of characters

seek() Moves cursor to a new position in the file

tell() Returns the current position of the cursor

truncate(size) | Truncates file’s size. Size defaults to current position unless specified

write(string) Writes a string to the file object

writelines(seq) | Writes all strings contained in a sequence with no separator

We'll start by creating a file for use. As discussed in Chapter 2, the open(filename[, mode]) built-in
function creates and opens a specified file in a particular manner. The mode specifies what mode we will
open the file into, be it read, read-write, and so on.

INPUT AND OUTPUT

107

CHAPTER 5 11 INPUT AND OUTPUT

108

Listing 5-5. Creating, Opening, and Writing to a File

>>> my_file = open('mynewfile.txt','w")

>>> first _string = "This is the first line of text."
>>> my_file.write(first_string)

>>> my_file.close()

In this example, the file “mynewfile.txt” did not exist until the open function was called. If it did exist
already, the previous version is overwritten by the new version and it is now empty. The file was created
in write mode and then we do just that, write a string to the file. Now, it is important to make mention
that the first_string is not actually written to the file until it is closed or flush() is performed. It is also
worth mentioning that if we were to close the file, reopen it, and perform a subsequent write() operation
on the file then the previous contents of the file would be overwritten by content of the new write.

Now we’ll step through each of the file functions in an example. The main focus of this example is to
provide you with a place to look for actual working file I/0 code.

Listing 5-6.

Write lines to file, flush, and close

>>> my_file = open('mynewfile.txt','w")

>>> my_file.write('This is the first line of text.\n')

>>> my_file.write('This is the second line of text.\n')

>>> my file.write('This is the last line of text.\n")

>>> my_file.flush() # Optional, really unneccesary if closing the file but useful to clear
>>> #buffer

>>> my_file.close()

Open file in read mode

>>> my_file = open('mynewfile.txt','r")

>>> my_file.read()

'This is the first line of text.\nThis is the second line of text.\nThis is the last line of
text.\n'

If we read again, we get a because cursor is at the end of text

>>> my_file.read()

Seek back to the beginning of file and perform read again

>>> my_file.seek(0)

>>> my_file.read()

'This is the first line of text.This is the second line of text.This is the last line of
text.'

Seek back to beginning of file and perform readline()
>>> my_file.seek(0)

>>> my_file.readline()

'This is the first line of text.\n'

>>> my_file.readline()

'This is the second line of text.\n'

>>> my_file.readline()

'This is the last line of text.\n'

>>> my_file.readline()

Use tell() to display current cursor position

>>> my_file.tell()
93L

>>> my_file.seek(0)
>>> my_file.tell()
oL

Loop through lines of file
>>> for line in my file:
print line

ThlS is the first line of text.

This is the second line of text.

This is the last line of text.

CHAPTER 5

INPUT AND OUTPUT

There are a handful of read-only attributes that we can use to find out more information about file
objects. For instance, if we are working with a file and want to see if it is still open or if it has been closed,

we could view the closed attribute on the file to return a boolean stating whether the file is closed. Table
5-2 lists each of these attributes and what they tell us about a file object.

Table 5-2. File Attributes

Attribute | Description

closed Returns a boolean to indicate if the file is closed

encoding | Returns a string indicating encoding on file

mode Returns the I/O mode for a file(i.e., ‘r’, ‘W, ‘r+,’rb’, etc.)

name Returns the name of the file

newlines | Returns the newline representation in the file. This keeps track of the types of newlines
encountered while reading the file. Allows for universal newline support.

Listing 5-7. File Attribute Usage

>>> my_file.closed

False

>>> my_file.mode

r

>>> my_file.name
"mynewfile.txt'

109

CHAPTER 5 11 INPUT AND OUTPUT

110

Pickle

One of the most popular modules in the Python language is the pickle module. The goal of this module is
basically to allow for the serialization and persistence of Python objects to disk in file format. A pickled
object can be written to disk using this module, and it can also be read back in and utilized in object
format. Just about any Python object can be persisted using pickle.

To write an object to disk, we call the pickle() function. The object will be written to file in a format
that may be unusable by anything else, but we can then read that file back into our program and use the
object as it was prior to writing it out. In the following example, we’ll create a Player object and then
persist it to file using pickle. Later, we will read it back into a program and make use of it. We will make
use of the File object when working with the pickle module.

Listing 5-8. Write an Object to Disk Using Pickle

>>> import pickle
>>> class Player(object):
def init (self, first, last, position):
self.first = first
self.last = last
self.position = position

>>> player = Player('Josh','Juneau’,'Forward")
>>> pickle_file = open('myPlayer','wb")

>>> pickle.dump(player, pickle file)

>>> pickle_file.close()

In the example above, we’ve persisted a Player object to disk using the dump(object, file) method in
the pickle module. Now let’s read the object back into our program and print it out.

Listing 5-9. Read and Use a Pickled Object

>>> pickle_file = open('myPlayer','rb")
>>> player1 = pickle.load(pickle file)
>>> pickle_file.close()

>>> playeri.first

'Josh'

>>> playeri.last, playeri.position
('Juneau’, 'Forward')

Similarly, we read the pickled file back into our program using the load(file) method. Once read and
stored into a variable, we can close the file and work with the object. If we had to perform a sequence of
dump or load tasks, we could do so one after the other without issue. You should also be aware that
there are different pickle protocols that can be used in order to make pickle work in different Python
environments. The default protocol is 0, but protocols 1 and 2 are also available for use. It is best to stick
with the default as it works well in most situations, but if you run into any trouble using pickle with
binary formats then please give the others a try.

If we had to store objects to disk and reference them at a later time, it may make sense to use the
shelve module which acts like a dictionary for pickled objects. With the shelve technique, you basically
pickle an object and store it using a string-based key value. You can later retrieve the object by passing
the key to the opened file object. This technique is very similar to a filing cabinet for our objects in that
we can always reference our objects by key value. Let’s take a look at this technique and see how it
works.

CHAPTER 5 11 INPUT AND OUTPUT

Listing 5-10. Using the Shelve Technique

Store different player objects

>>> import shelve

>>> player1 = Player('Josh','Juneau’,'forward"')

>>> player2 = Player('Jim', 'Baker','defense"')

>>> player3 = Player('Frank','Wierzbicki','forward")
>>> player4 = Player('Leo','Soto', 'defense’)

>>> player5 = Player('Vic','Ng','center"')

>>> data = shelve.open("players")

>>> data['player1'] = playeri
>>> data['player2'] = player2
>>> data['player3'] = player3
>>> data['playerd'] = players
>>> data['player5'] = players

>>> player temp = data['player3']

>>> player temp.first, player temp.last, player temp.position
('Frank', 'Wierzbicki', 'forward')

>>> data.close()

In the scenario above, we used the same Player object that was defined in the previous examples.

We then opened a new shelve and named it “players”, this shelve actually consists of a set of three files
that are written to disk. These three files can be found on disk named “players.bak”, “players.dat”, and
“players.dir” once the objects were persisted into the shelve and when close() was called on the object.
As you can see, all of the Player objects we’ve instantiated have all been stored into this shelve unit, but
they exist under different keys. We could have named the keys however we wished, as long as they were
each unique. In the example, we persist five objects and then, at the end, one of the objects is retrieved
and displayed. This is quite a nice technique to make a small data store.

Output Techniques

We basically covered the print statement in Chapter 2 very briefly when discussing string formatting.
The print statement is by far the most utilized form of output in most Python programs. Although we
covered some basics such as conversion types and how to format a line of output in Chapter 2, here we
will go into a bit more depth on some different variations of the print statement as well as other
techniques for generating output. There are basically two formats that can be used with the print
statement. We covered the first in Chapter 2, and it makes use of a string and some conversion types
embedded within the string and preceded by a percent (%) symbol. After the string, we use another
percent(%) symbol followed by a parenthesized list of arguments that will be substituted in place of the
embedded conversion types in our string in order. Check out the examples of each depicted in the
example below.

Listing 5-11. Output With the Print Statement

Using the % symbol

>»> X =5

>>y =10

>>> print 'The sum of %d and %d is %d' % (x, y, (x +y))
The sum of 5 and 10 is 15

>>> adjective = "awesome"
>>> print 'Jython programming is %s' % (adjective)

111

CHAPTER 5 11 INPUT AND OUTPUT

112

Jython programming is awesome

You can also format floating-point output using the conversion types that are embedded in your
string. You may specify a number of decimal places you’d like to print by using a “.# of places” syntax in
the embedded conversion type.

Listing 5-12. Formatting Floating-Point Arithmetic

>>> pi = 3.14

>>> print 'Here is some formatted floating point arithmetic: %.2f' % (pi + y)
Here is some formatted floating point arithmetic: 13.14

>>> print 'Here is some formatted floating point arithmetic: %.3f' % (pi + y)
Here is some formatted floating point arithmetic: 13.140

Summary

It goes without saying that Python has its share of input and output strategies. This chapter covered
most of those techniques starting with basic terminal or command line I/O and then onto file
manipulation. We learned how to make use of the open function for creating, reading, or writing a file.
The command line sys.argv arguments are another way that we can grab input, and environment
variables can also be used from within our programs. Following those topics, we took a brief look at the
pickle module and how it can be used to persist Python objects to disk. The shelve module is another
twist on using pickle that allows for multiple objects to be indexed and stored within the same file.
Finally, we discussed a couple of techniques for performing output in our programs.

Although there are some details that were left out as I/0 could consume an entire book, this chapter
was a solid starting point into the broad topic of I/0 in Python. As with much of the Python language
specifics discussed in this book, there are many resources available on the web and in book format that
will help you delve deeper into the topics if you wish. A good resource is Beginning Python: From Novice
to Professional by: Magnus Lie Hetland. You may also wish to look at the Python documentation which
can be found at www.python.org/doc/.

CHAPTER 6

Object-Oriented Jython

This chapter is going to cover the basics of object-oriented programming. We’ll start with covering the
basic reasons why you would want to write object-oriented code i