Pro IronPython

Alan Harris

Apress’

Pro IronPython
Copyright © 2009 by Alan Harris

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1962-0
ISBN-13 (electronic): 978-1-4302-1963-7
Printed and bound in the United States of America9 8 7654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Mark Beckner, Jonathan Hassel

Technical Reviewer: Shawna Garver

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary Cor-
nell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann, Ben
Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Beth Christmas

Copy Editor: Elliot Simon

Associate Production Director: Kari Brooks-Copony

Production Editor: April Eddy

Compositor: Linda Weidemann, Wolf Creek Publishing Services

Proofreaders: Linda Seifert and Kim Burton

Indexer: Julie Grady

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.
apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

Contents at a Glance

Aboutthe AUTNOr. o Xiii
About the Technical ReVIBWEN i e XV
ACKNOWIBAgMENTS Xvii
IMtrOdUCHION o Xix
CHAPTER 1 Introduction to IronPython 1
CHAPTER 2 IronPython Syntax.. 15
CHAPTER 3 Advanced IronPython...................... 39
CHAPTER 4 IronPython Studio................. 63
CHAPTER 5 Mixing and Mingling withthe CLR............................... 79
CHAPTER 6 Advanced Development ...l 119
CHAPTER 7 Data Manipulation. 163
CHAPTER 8 CaughtinaWeb .. 203
CHAPTER 9 IronPython Recipes. i 239

Contents

Aboutthe AUTNOr. o Xiii
About the Technical ReVIBWEN i e XV
ACKNOWIBAgMENTS Xvii
IMtrOdUCHION o Xix
CHAPTER 1 Introduction to IronPython 1
AHumble Beginning 1

Jython: ATastefordava............... 2

[ronPython: “Import NET” 2

Why Is NET Important? 3

What Exactly Is IronPython?. 3

What Can IronPython Do for Me Today? 4

Yes, ButWill ItBlend?................ i 5

What Is a Dynamic Language? ...t 6

What This Will Book Cover...................o i, 8

Who ThisBookISFor 9

For Consenting Adults Only!.o i 9

Prerequisites. 10

PY and You. ... 12

SUMMaArY. ... 14

CHAPTER2 IronPythonSyntax ... 15
Data Types and Control Structures. 15

SHINGS . ..o 15

IEgEIS . .. 17

Conditional Statements............ 19

Input) or Raw_Input(). ... 20

Error Handling and Exceptions 21

Try-Catch-Finally. 23

vii

viii CONTENTS

CHAPTER 3

Built-In Functions. 26
DS 26
Chr 26
diCt. . 27
Air. 27
Filesviaopen 28
for (iterations) 29
help. .. 30
NX . 30
1 31
- 32
S 32
maxand min........ 32
OFd o 33
POW. et e 33
FANAOM. . . 34
randrange i 35
TOUNG .. e 36
UNITOrM L 37
But Wait, There’s More! 37
SUMMaANY. ... 38
Advanced IronPython....................................... 39
String Operations Revisited 39
A Quick Software Development Detour 43
BackonTrack 44
Floating-Point Numbersco i 46
Booleans 48
Classes and Q0Pt 48
NET Data TYpes. ..o 59
Value and Reference Types ... 60
Mixing and Matching. 61

SUMMArY. 62

CHAPTER 4

CHAPTER 5

CHAPTER 6

CONTENTS
IronPython Studio.. 63
Hopping Onto the Steamroller................. 63
So Much Typing...Is There aBetterWay? 66
Forms, fromthe Ground Up.................. ..ot 70
It's All This Substandard Wiring!.............. 72
Clean Code IsHappy Code......... ...t 74
SUMMANY. .. 78
Mixing and Mingling withthe CLR......................... 79
“CLR-ance, Clarence.”t 79
The Plan 80
The Design 81
The Implementation 82
Bad Medicine o 91
PdLiketoSeeaMenu ...t 97
Reading, Writing, Arithmetic L 99
OpPeN SBSAMEo i 101
ICan’tEven Save Myself 106
Print, Pleaset 110
ATouchof O0P 112
ExitStrategy 116
Beautification............ 116
Project Postmortem.............. 117
SUMMaANY. ... 118
Advanced Development................................. ... 119
Base Classes for Fun and Profit (aka “The LEGOs on the Bottom
Don’tReally Exist”). ... 119
Plugand Play 130
Architecting Flexibility. 131
Calling IronPython Codeo, 134
CreatingaPlug-inBaseco i 140
Choices, ChoiCeS 147

Supporting Healthy Arguments 148

ix

CONTENTS

CHAPTER 7

CHAPTER 8

“Somebody’s WatchingMe”l 151
The Plan....... ... 151
The Design 152
Writing the Basic IronPython Classes......................... 152
Creating the Parent Application.............................. 153
Wiring Things Together................... 155
Project Postmortem............. 160
SUMMAIY. ..o 161
Data Manipulation .. 163
SQL. . 163
ASampleDatabase.................. 165
Create. 169
Retrieve 171
Updateo 172
Delete. ... 173
Preventing SQL Injection Attacks 174
Parameterized Queries 175
Stored Procedures. i 176
ConnectionPoolingco i 179
XML . 180
Comma-Separated Values 184
Creating an Effective Data Layer............................. 186
Using the dataManager.........................coiiina.. 187
BusinessAsUsualc. i 189
Exceptional Handling! 191
Inserting a New Employee 193
Deletingan Employee ... 195
SUMMANY. ..o 201
CaughtinaWeb... 203
NET, IS, and the Roadto Today. 203
ASPXandYou 207

The State of the View o 213

CHAPTER 9

CONTENTS
POST .. 216
Creatinga Simple Form 217
Know Your Limitationsco i 221
Cross-Page PostBacks ... 222
Accessing Cross-PageData...................................... 225
Validation (for a Reasonable Fee) 226
Using the RequiredFieldValidator 227
Handling Errors 230
Subtle Security Flaws 234
Arbitrary Code Executionl 235
SUMMAIY. ..o 238
IronPython Recipes 239
HowtoUse ThisChapter o .. 239
Displaying the String Representation of an Object 240
Converting Between Two Base Data Types 241
Implementing Your Own .ToString() Method. 242
Inheriting fromaBase Classcociiiiiii. 243
Getting User Input from the Console 244
Concatenating Strings Efficiently with the StringBuilder 244
Creating a Set of Enumerations. 245
Retrieving Command-Line Arguments............................. 246
Listing All the FilesinaFolder 247
Conveniently Check the State of a String 248
Implementing the Singleton Design Pattern........................ 249
Opening a Connectionto a Database.............................. 251
Performing a Bubble Sort on a Set of Elements..................... 252
Using the StopWatch Class to Time Operations 253
Baking COOKIESot 254
Reading CoOKieSot 256
Deleting CooKies 257
Storing Datain SessionState 257
Adding a Web Control Programmatically........................... 258

Telling .NET to Render XHTML-Compliant Markup Using
Web.Config i, 260

Xi

Xii

CONTENTS

Custom HTML via the HtmlGenericControl 261
Passing Information via the QueryString........................... 263
Caching In. 264
Setting HTML Attributes at Runtime. 265
Using JavaScript to Determine Server-Side Operations.............. 268
SCreen SCraping. 269
Setting the Default ButtononaForm.............................. 271
Viewing Tracing Information About Pages.......................... 272
Performing SEO-Friendly 301 Redirects 273
Looping Through the Server Variables............................. 274
SUMMAIY. ..o 275

About the Author

ALAN HARRIS is a developer at the Council of Better Business Bureaus
in Arlington, Virginia, where he works feverishly on the content man-
agement systems and search engine optimization initiatives. He has
been working with the .NET framework since 2002 and has an admit-
ted preference for C#, though he wishes those VB .NET folks could get
a little more respect sent their way. In a previous life he worked for a
naval subcontractor, writing firmware in C to allow custom safety
hardware to communicate via the ORBCOMM satellite network; at a
nonprofit, migrating legacy code to .NET; and on cost-analysis tools for industry use. He
keeps his F# experience tucked away as a secret weapon.

When not parked in front of a computer of some kind, he is an avid practitioner of
Krav Maga, has been a drummer and percussionist for more than 20 years, can’t seem
to stay out of Gold’s Gym, and has a demonstrated capability to watch Akira Kurosawa’s
classic Seven Samurai more than once in a single day. He also has a longstanding bet on
the true nature of the Smoke Monster in Lost.

xiii

About the Technical Reviewer

SHAWNA GARVER started working as a professional FORTRAN
programmer for SAIC at the age of 16 while attending the University
of Maryland. On her first day, she tried to use her computer, only to
discover it would not start. Using her advanced problem-solving
skills, she began to push the power button on and off like mad. It was
then she discovered the latest technological advance in 1980s-era
computing—the power strip! Voila, problem solved! Shawna went on
to win an all-tuition-and-fees scholarship to one of the nation’s top

engineering programs and to graduate with dual degrees in engineering and architecture.

Since then she has worked as an engineer and a project manager in the maritime and
aerospace industries, with specialty in programming, data analysis, database design, and
web applications. Shawna lives near Washington, D.C., with her husband, Chris, and her
two children.

Xv

Acknowledgments

My family and friends are my lifeline to the outside world, which apparently con-
tains a mysterious glowing orb that occasionally seeks to be my undoing. I thank them
from the bottom of my heart for their support and encouragement as well as for count-
less hours of sheer entertainment. I'll win that war against the giant glowing pain orb
eventually.

To Mark Beckner, Beth Christmas, Jonathan Hassell, Elliot Simon, and Shawna and
Chris Garver, thank you so much for putting up with my ability to turn something in
precisely one day later than you asked. More specifically, thank you for the time and
effort you put in to helping me write something that fills a void on my shelf and hope-
fully the shelves of many other developers wondering what exactly this [ronPython
business is all about.

I couldn’t think of a better way to relieve a little stress than spending some time with
the folks at Krav Works in Falls Church, Virginia. Vince, you're an excellent instructor; I
now keep my hands in front of my face at inappropriate times, just in case a punch comes
out of nowhere.

Finally, George the Cat: get off my countertops. Seriously: you're the best cat ever,
but kitties are not for countertops. I looked it up.

Xvii

Introduction

I come from a background of static typing and rigid languages: C, C++, C#. I'm seeing
more than one trend at work here. For the longest time I felt something of a warm, fuzzy
sensation when it came to my programming. The data type on the left matched the data
type on the right. All was well. Then Python walked through the door.

Python’s not the only game in town to use dynamic typing (also known as duck typ-
ing, which you will learn about in due time), but it did catch my eye and challenged my
perspective as a programmer. “What is this? How does one accurately program anything
in this fashion? Five hundred lines of code and not one duck! Python’s a liar.” A little
unsettling, you can imagine.

It’s taken me some time to get really comfortable with the notions behind Python
and, by extension, IronPython. The effort was not wasted. IronPython is powerful, fast,
and a first-rate language supported fully by Microsoft, enabling developers to get their
work done better, faster, and cleaner. In the end, a good measurement of a programming
language is how elegantly you can express your intentions in code while still achieving
the functionality you desired. I think you'll be pleasantly surprised with IronPython.

I'm not asserting that you're going to be an instant convert to the ways of the
Pythonistas. I'm simply asking you to try. If you're coming from a programming back-
ground, particularly one with more rigid rules, jump into the deep end of the pool for a
bit. Try something scary. I think you’ll find that type errors really don’t crop up too often,
I might argue that it requires a somewhat more careful developer. But the freedom of flex-
ibility is perhaps not even as significant a benefit as is some added attention on your part.
The net result should be better code all around; happier developers, happier users. If you
have no programming background whatsoever, come on in anyway. I love a blank slate.

A moment ago I mentioned duck typing, a concept that comes up alot in IronPython:
if it looks like a duck and quacks like a duck, it must be a duck. This fundamental idea,
when applied to data types and objects, allows a significant amount of polymorphism to
be baked right into the language itself from the outset. Many developers take issue with
this and find the approach too loose, too error-prone. [was speaking to Pythonista and
author Michael Foord about the matter. I mentioned the argument “What if it looks like
a duck, quacks like a duck, but is really a dragon impersonating a duck? You don’t want
a dragon in your pond.” He replied, “If you code dragons, you’ve got no one to blame
but yourself if they get in your pond.” I informed him that “the only difference between
my IronPython dragons and my C# ones is that my C# dragons have ‘Hello, my name is’
nametags.” So it goes.

Xix

XX

INTRODUCTION

Is This for Me?

IronPython and the .NET framework are very approachable to new developers. The tools
are free, and there is an overabundance of both documentation and skilled developers
who are happily sharing their knowledge with the world. The barrier to entry is supremely
low these days.

If this is your first programming book, so be it! Come along for the ride. You'll see
both sides of the programming fence, for you'll find examples here in IronPython and
C# as well as an entire chapter devoted to getting the two to play happily and nicely with
one another. I also cover many basic programming fundamentals as well as the advanced
stuff. You'll get exposed to multiple languages and the .NET framework by the time we’re
through.

If you're already versed in Python but not in .NET, you might just find that you can
get your programming tasks done a lot more easily with the tested and powerful .NET
framework behind you.

If you already know both IronPython and .NET, this book should make for a good ref-
erence of various tricks and techniques, particularly in the realms of language integration
and web development.

An Overview of This Book

Being an IronPython developer can mean a lot of things. You could write software to be
run via the command line, as a Windows Forms application, or as a web application. That
means we have a lot of ground to cover. We need both to address IronPython syntax as
well as to look at how it fits into the larger .NET framework.

Chapter 1: Introduction to IronPython

The introductory chapter provides you with a little background on Python and
IronPython as well as on the .NET framework itself. We’ll look at what constitutes a
dynamic language and contrast it with a static one. Then we’ll get ourselves a copy of
IronPython and immediately try our hand at a sample and see how the language works.

Chapter 2: [ronPython Syntax

IronPython has a rich but straightforward syntax and many built-in functions that

make your life easier as a developer and ensure you don’t have to reinvent the wheel.
This chapter looks at that syntax but does not yet cover interaction with the larger .NET
framework. In fact, it will become apparent that you can actually write entire [ronPython
applications that don’t really make use of the framework at all, allowing Python develop-
ers to ease into the .NET world quite easily and gradually.

INTRODUCTION

Chapter 3: Advanced IronPython

As with most programming languages, you can use the simplest syntax to express the
most complicated ideas. In this chapter we’ll expand what we know and look at more
complex data constructs, base classes, and object-oriented design principles.

Chapter 4: I[ronPython Studio

This chapter focuses on IronPython Studio and how you can use it to speed your devel-
opment process. Up until this chapter the code has been entered entirely using the
command-line IronPython interpreter. It’s time to kick things up a notch and begin
working with the Integrated Development Environment and also to begin working with
Windows Forms applications.

Chapter 5: Mixing and Mingling with the CLR

It’s difficult to really know and understand a language until you've built something with
it, hit some walls, and learned how to take an application from design to implementation.
In this chapter we’ll begin making heavy use of the .NET framework and build the distant
cousin of a very familiar application from the ground up. We'll pay special attention to
points where the .NET framework can save us time and energy, especially when coupled
with the [ronPython Studio IDE.

Chapter 6: Advanced Development

One of the coolest things about IronPython is how easily it can be used with other .NET
languages. This chapter is all about how to employ IronPython as a scripted plug-in man-
ager in a C# application. The plug-in system is designed to be straightforward and simple,
and it should prove to be a good starting point for your own improvements and customi-
zations. It can really save you endless hours of work if the need arises for extensibility

in an existing application (or if you just want to add something neat like that at the very
beginning).

Chapter 7: Data Manipulation

This chapter covers communicating with SQL Server and how to use Structure Query
Language (SQL) to work with the database via IronPython code. I've also provided advice
on how to protect yourself and your users against malicious entities who might try to use
specially crafted SQL to circumvent your security.

XXi

XXii

INTRODUCTION

Chapter 8: Caught in a Web

If you're interested in web development, search engine optimization, and standards com-
pliance, this chapter will be of special interest because it provides insight into all these
areas and how IronPython helps you achieve the results you want. You'll find useful tips
like how to do cross-page PostBacks, how to prevent arbitrary code injection, and more.

Chapter 9: IronPython Recipes

This final chapter provides a lot of varied snippets for many aspects of console, desktop,
and web development, ranging from design patterns to search engine optimization tips,
along with a final message for readers who kindly explored IronPython with me.

Obtaining This Book’s Source Code

While I'm a believer in hands-on learning and dutifully type every line of code in the
books that I read, I know there’s at least one person out there thinking, “I do not type
nearly fast enough even to consider that a possibility.” No worries: the code examples in
this book are available as a free download from the Source Code/Download area of the
Apress website at http://www.apress.com. Look up this book by its name, Pro IronPython,
to find the appropriate downloads.

Obtaining Updates for This Book

My being blessed with terrible vision results in a simple truth: despite having four eyes,
I've likely missed something along the way. The wonderful editors do their best to keep
up with my erratic keyboard pounding, but even they are only human, and the burden of
guilt lies squarely with me. The Apress website maintains a list of errata and provides a
way to notify me of errors that might pop up after you have this book in your hands.

Contacting Me

I'm an outgoing type of guy, and I love to talk to other developers. I currently maintain
status updates of the minutiae of my life at Twitter; feel free to follow me at http://
twitter.com/Anachronistic. Alternatively, if 140 characters just isn’t enough to get those
thoughts out, you are completely welcome to contact me at dotnetalan@gmail.com. 'm a
web developer by day, Kravist by night; if I don’t get back to you immediately, I promise
I'm not deliberately blowing you off. You can always drop me a quick reminder that you
need a little attention, too.

CHAPTER 1

Introduction to IronPython

“Snakes. Why’d it have to be snakes?” — Indiana Jones

This is a great time to be a .NET developer. Software architects and engineers have a
fantastic toolkit at their disposal that allows them to produce quality code quickly. This
book is about IronPython and how you can fit it into your toolkit to solve the issues you
face as a developer.

IronPython represents a very new offering from Microsoft that works alongside
the other .NET family of languages, adding the power and flexibility that comes with a
dynamic language such as Python. To understand where IronPython fits into the scheme
of things, let’s go back to the origins of Python and see how we got to the present day. If
you're coming from a software development background from another language, such
as C# or VB.NET, this history should help clarify some of the design decisions about the
Python language, which, although very different from many other languages in use today,
results in a powerful, flexible, and rapid development tool.

A Humble Beginning

Python’s origins date back to the 1980s. A developer named Guido van Rossum created
Python to be the successor to a language called ABC. The idea was that the Python lan-
guage would be extremely readable and not cluttered with confusing syntax and markup.
Blocks of code are denoted by whitespace indentation, variables are strongly typed, and
it would not try to force developers to learn and implement any one particular program-
ming style. For example, Python developers had at their disposal the language features
necessary to move between functional, object-oriented, and structured programming,
and more. The language is quite capable of adapting to the individual developer’s needs
with an expanding array of add-ins and an active user community.

Note Guido has remained very active in the Python community over the years and has since had
bestowed on him the lofty mantle of “Benevolent Dictator for Life,” a title that is indeed well earned.

CHAPTER 1 INTRODUCTION TO IRONPYTHON

Over the years, Python has proven itself to be quite a capable language, powering
a wide variety of high-visibility web sites, including YouTube and Google. It has a repu-
tation for being easy to work with and for allowing applications to be highly available
without requiring a large team of developers to create and maintain them. As such it
represents an attractive language choice for companies looking to create an online pres-
ence quickly or for those looking to improve their existing back-end infrastructure with
the benefits of Python.

Jython: A Taste for Java

Although Python by itself is a powerful language, there have been implementations of

it in the past that aim to make use of other languages within Python, thereby blending
the best of all of these. The most notable predecessor to IronPython is Jython, created in
1997 by Jim Hugunin (who would eventually go on to create IronPython, but we’re jump-
ing ahead here!). Jython'’s strength lies in its ability to call and use Java classes natively,
thereby expanding the Python language. This is a very important point in the IronPython
story, and I'll emphasize it again: Jython can call and use Java classes natively. We'll exam-
ine this point again shortly.

IronPython: “Import .NET”

In 2004, the Microsoft .NET framework and, in particular, the Common Language Run-
time (CLR) were really starting to make waves in the software development world. The
.NET framework and CLR present developers with a way to write code in their language of
choice, so long as there exists a compiler that can translate the source code into Common
Intermediate Language (CIL) bytecode. Developers can write for the .NET framework in
any language they like. It is in this .NET-and-CLR platform environment that IronPython
was created.

After leaving the Jython project, the .NET framework and CLR caught Jim Hugunin’s
eye. He began working with the CLR with the intention of creating an article titled “Why
.NET Is a Terrible Platform for Dynamic Languages.” To his surprise, the framework
turned out to perform very well, and his focus shifted. He decided to create IronPython,
a.NET equivalent of Jython. In 2004, he joined the Microsoft CLR team to work on
IronPython full time, with the support and resources of the software giant behind him.

Let’s not mince words here: IronPython is a first-class language, supported by
Microsoft and a growing user community, built on the backs of the hardworking (and
very experienced) Python community and fueled by their continual input and refine-
ment. Releases are frequent and stable and further the capabilities of the language
and what developers can accomplish with it. Python is by no means a new language;

CHAPTER 1 INTRODUCTION TO IRONPYTHON

IronPython gains the benefit of those many years of development experience and suc-
cessful projects, which puts it quite far ahead in any programming language race.

Why Is .NET Important?

The mixing and mingling of Python and the .NET framework is powerful. The .NET
framework is a significant offering from Microsoft; it is the platform of choice for many
developers when it comes to building desktop and web software. One need look no fur-
ther than language independence as a selling point. Gone are the days when a developer
finds that he or she needs to learn a multitude of language nuances to be productive

or solve a task. A studied Visual Basic .NET developer can easily pick up C#, F#, or
IronPython; because the .NET framework unifies these languages with a common infra-
structure, language choice is down to preference and comfort, not necessity. This design
architecture is what allows something like IronPython to exist in the first place. Each lan-
guage has strengths and weaknesses, and certain languages do perform some tasks easier
or in a more straightforward manner. We will examine some of the particular strengths of
IronPython over other .NET languages throughout the book, and I will provide the occa-
sional C# sample for comparison.

Caution It's worth mentioning at this point that IronPython is designed to implement CPython 2.5.2 for
version compatibility, but not everything written in IronPython will work in CPython, and vice versa. There are
a few underlying language differences, which we will cover throughout the book, and | will flag known issues
when we encounter them. As we progress, just keep in the back of your mind the notion that IronPython is its
own separate language.

What Exactly Is IronPython?

IronPython is a dynamic language, an implementation of the Python language that is
written in C# and built to run on the Microsoft .NET 2.0 (or greater) framework. We’ll
cover dynamic versus static languages in a bit. By investing time and energy into learn-
ing how to write code in IronPython, you're expanding your skill set by a greater amount
than you might realize at a first glance. The Common Language Runtime is the under-
lying technology of .NET, combined with the Common Intermediate Language and the
Common Language Infrastructure. Since IronPython is implemented in .NET 2.0, you are
taking advantage of and learning to use this underlying set of technologies as you go. The
IronPython way of creating a Windows form programmatically happens to be very similar

CHAPTER 1 INTRODUCTION TO IRONPYTHON

to the way it would look and be done in C# or Visual Basic .NET. The reason for this is the
underlying .NET framework these languages use; you're getting more bang for your buck!
What you learn by teaching yourself IronPython gives you a leg up in learning other .NET
languages if you choose to do so, and it’s hard to argue that learning more in less time is a
poor decision!

What Can IronPython Do for Me Today?

Unless you're looking at IronPython from a strict hobbyist perspective, I would be willing
to wager that one of the biggest questions you have is what IronPython can do to make
your programming time more productive? The short answer is “a lot.” It sounds cliché,
but there really is a lot under the hood in terms of programming power and elegant code.
In fact, the Python language is considered so readable that many people refer to it as
“executable pseudocode.”

Note Pseudocode is a fancy term for code intended for human, not machine, use, and it generally looks
something like the language in which the final code will be written, but without the messy details. A good
analogy for pseudocode is scribbling out a drawing on a napkin: it doesn’t have to look perfect; rather, it
simply needs to convey the intended design to someone else. When people refer to Python code as execut-
able pseudocode, it's really a statement about how readable the Python language is. It lacks so much of the
markup that many languages have that it looks like pseudocode, but it is in fact executable code.

* Rapid prototyping: IronPython allows developers to design and test ideas quickly,
either in scripts or using the interactive interpreter. No massive compilation times
are required!

e Easy integration: It’s extremely easy to integrate IronPython code in other
applications, both of the “commercial, off-the-shelf” variety and the “I made it
myself” variety. Many commercial products use Python as a scripting language;
by learning IronPython, you can build and customize aspects of those programs
as well. We will be using IronPython to customize other .NET applications later
in the book.

CHAPTER 1 INTRODUCTION TO IRONPYTHON

¢ Extensible: The Python community is vibrant, thriving, and large. It’s extremely
easy to add new functionality to your IronPython applications with community-
driven code. Flexibility is key; IronPython is designed to make your programming
life easier!

 Style convenience: IronPython does not require you to be an object-oriented
programmer or a functional programmer or any other type you can think of.
IronPython allows a variety of programming constructs. If you're more comfort-
able with F# than C#, [ronPython will happily allow you to program in a functional
versus object-oriented manner.

Yes, But Will It Blend?

Be wary of anyone trying to sell you a language as a silver bullet to solve every one of your
development problems perfectly. No language is perfect, including [ronPython. Even
though the pros outweigh the cons, it’s not fair to list only the good bits without address-
ing potential pitfalls.

¢ Performance: IronPython is an interpreted language and loses a bit of the perfor-
mance that a compiled language will have.

* Data visibility: Everything in the Python language (and therefore IronPython) is
considered public in terms of visibility. See “For Consenting Adults Only!” later in
this chapter for some details on this point.

¢ Semantics: IronPython is a high-level language and therefore requires a bit of work
on the interpreter’s part to get it into a form the computer can use as instruction.
As aresult, some of the more complex aspects of programming are abstracted
under simpler constructs; this does not degrade performance, but can simplify
development efforts for the programmer.

Note High-level languages are considered easier for humans to read, whereas low-level languages are
closer to machine instructions. IronPython code is so easy to read because of its high level. By contrast,
if you were reading the machine code that the computer actually executes, it would be much harder to
understand what’s happening in the program. Although working with machine code is considered the most
powerful way to program, it’s also arguably the most difficult.

CHAPTER 1 INTRODUCTION TO IRONPYTHON

What Is a Dynamic Language?

I need to make an important point here before continuing: IronPython is a dynamically
typed language. In dynamically typed languages, you do not have to define the type of
a variable before you use it. The nature of IronPython variables and values may leave a
sour taste in the mouth of programmers with a background in statically typed languages.
Consider the C# snippet in Listing 1-1. After we look at a statically typed language and
compare it to [ronPython’s dynamic typing, we’ll examine exactly what makes up a
dynamically typed language.

Listing 1-1. A C# Method That Demonstrates Static Typing

public void StaticTyping()

{
// the value type on the left enforces a valid valuews
assignment on the right
int number = 5;
string name = "Alan Harris";
bool author = true;
// the next line will throw a compile-time error;w
5 is not a valid boolean value
bool yourName = 5;
}

Now compare this to an IronPython snippet that performs the same tasks (List-
ing 1-2), albeit with a slightly different result, which we will discuss afterward.

Listing 1-2. An IronPython Method That Demonstrates Dynamic Typing

def DynamicTyping():
the value type on the right dictates the variable type on the left
number = 5
name = "Alan Harris"
author = True

this does NOT throw an error; the compilerws
infers the variable type from the value
yourName = 5

CHAPTER 1 INTRODUCTION TO IRONPYTHON

See the difference? In a statically typed language such as C#, the compiler needs to
know at compilation time what the type for a variable is. Attempting to assign a value
type that does not match the variable type generates an error and the code won’t com-
pile. In the IronPython code in Listing 1-2, the variable called “yourName” is assigned
avalue of 5 because the compiler knows the desired type of the variable only by inferring
from the type of the assigned variable. It is very important to be aware of this manner of
assignment because it is in stark contrast to many other languages, but it is quite power-
ful if used correctly.

The eagle-eyed among you may have also noticed that when we started the method
in C#, we included the word “void” to indicate that we would not be returning any value
at the end of the method. If we wanted to return the value of the “name” variable, we
would need to change the word “void” to “string” to tell the C# compiler that we want to
return a value of data type string when we exit the method, and we would have to add
“return name;” to the end of the method to avoid a compiler error and return the data
type requested properly. This is not the case in IronPython; it will take care of handling
this by examining the data type of the value returned when exiting the function.

There’s something else going on here that was mentioned earlier in this chapter: you
may notice that there is very little extraneous markup to indicate program flow. Missing
are the line-ending semicolons, the method opening and closing brackets, and so on.
IronPython relies on whitespace and indentation to control program flow (Listing 1-3).

Listing 1-3. An IronPython Method That Demonstrates Program Flow via Whitespace and
Indentation

def DynamicTyping():
the value type on the right dictates thew
variable type on the left

5

name = "Alan Harris"

number

author = True

this does NOT throw an error; the compilerw
infers the variable type from the value
error = 5
DynamicTyping() # calls the method defined above and executes the assignments

We'll cover the nitty-gritty details of writing IronPython code shortly, but this should
give you an idea of how this style of programming differs from other languages you may
have used in the past. A lot of value is placed on readability in the Python (and therefore
IronPython) dialect. Sacrificed are the brackets and the semicolons and embraced are

CHAPTER 1 INTRODUCTION TO IRONPYTHON

indentation and whitespace. This is a scary world for developers coming from C#, C++, or
even VB .NET; there are no landmarks, no street signs by which to navigate. Rest assured,
the benefits will become apparent quickly as you learn to develop applications rapidly,
and as you learn how to work with IronPython these things will soon become second
nature. There are pros and cons to dynamic typing, which are summarized in Table 1-1.
As an IronPython developer you'll need to make informed choices about the trade-offs
shown. We will see throughout this book examples where these considerations come
into play.

Table 1-1. Benefits of Static vs. Dynamic Typing

Typing Style Pros Cons

Static Enforced type safety at compile time, Rigid enforcement of type assignment,
clarity of code, easier to debug, generally requires casting to change
optimized machine code output value types which hurts performance

Dynamic Easier to write, allows execution of Reduced type safety, increased potential
arbitrary code, simpler mocking for runtime errors, reduced code
during unit testing execution speed at runtime

What This Will Book Cover

Now that you've have taken the 10,000-foot tour of IronPython and its roots, this is as
good a time as any to take the 10,000-foot tour of where we are going through the course
of this book.

To encompass IronPython software development fully, we need to cover a lot of
ground. Luckily we are .NET developers making use of a .NET dynamic language, so there
is a lot of framework overlap between desktop and web applications, and what we learn
in one situation applies to the other. We’ll begin by looking at IronPython syntax and
the different programming paradigms that an [ronPython programmer can make use of.
We’ll then apply that knowledge to the creation of console applications. Console applica-
tions make a fantastic starting point for IronPython development because they allow us
to focus on syntax without the complications of user interface design and the like. We
won’t stand on ceremony for long, though, because shortly afterward we’ll delve into
Windows forms applications and be making effective use of the CLR within IronPython
code. Next we’ll move onto database access and web applications, before finally wrap-
ping things up with enterprise solution recipes, which will cover ways you can use
IronPython in large-scale projects (regardless of whether they are legacy systems or being
built from the ground up).

CHAPTER 1 INTRODUCTION TO IRONPYTHON

Although it is completely feasible that you learn solely by reading, I highly suggest
that you take the time to work through and code each of the examples in this book. I
would argue that it is more effective to learn by doing than by reading, and “real pro-
grammers” love to get their hands dirty. The projects and code are designed to be fairly
quick activities to get you used to thinking in IronPython terms as well as to create a nice
library of code for you to reference later. By the end of the book, you (ideally) will have
quite a few folders of IronPython code at your fingertips.

Note In developer jargon, “real programmers” are just developers whom you might describe as fitting in
the “hardcore” category, although the scale for measuring a real programmer seems to be a sliding one. It
would be accurate to say that “real programmers” have an in-depth knowledge of the language and systems
with which they choose to work. We’ll leave the arguments about using an IDE (interactive development envi-
ronment) and language choices by the wayside.

Who This Book Is For

This book is designed for people new to Python and IronPython who want to get up to
speed quickly and start learning the language with a minimum of fuss. I'm not going

to cover every exhaustive language detail; instead I want to get you writing code in
IronPython that can either stand by itself or work effectively with other applications

that target the Microsoft .NET framework. I don’t assume you’ve got a computer science
degree, nor do I assume this is your first time using a computer; rather I assume that I
would best serve you by integrating some software design principles in the examples as
we go so that your code is of high quality at the end. We will cover the language syntax,
build from small components to larger applications throughout each chapter, and hope-
fully have a little fun doing it.

Although the beginning of this book is heavily slanted toward console applications
(meaning boring old DOS prompts) and then Windows Forms applications, the ending of
the book does cover web development in several ways. If you happen to have experience
with XHTML and CSS, great! If not, no worries. I will give you a crash course as we go that
should keep everything clear and understandable. You don’t need to be a web design
guru to make it through those sections.

For Consenting Adults Only!

That sounds a lot scarier than it actually is, but I want to grab your attention on this one.
“For consenting adults only” is a phrase that gets trotted out sometimes when Python
is brought up in conversation, for some very good (if not tongue-in-cheek) reasons.

10

CHAPTER 1 INTRODUCTION TO IRONPYTHON

If you've already got some programming experience under your belt, you have likely
encountered the notion that objects and data can be public, private, or some variety
therein. In Python, everything is considered public, and the language won’t do a thing to
protect any objects or data you want to be private (the tongue-in-cheek humor being that
you can always touch Python’s private parts!). This is actually not the worst thing in the
world, and we will cover ways to enforce good programming decisions and implementa-
tions. Just know that the Python language on which IronPython is based will let you make
really, really boneheaded decisions “because we’re all adults here.”

If all this talk about public and private objects is alien to you, no problem! We’ll cover
everything in due time. It’s just very important to remember that Python won’t always
cover your rear end, and a developer that is hip to that notion at the beginning is the
wiser for it.

Prerequisites

There are a few requirements for installing and using IronPython, so let’s make sure your
system is set up properly. The great news is that to take advantage of everything in this
book, you don’t have to spend a cent. Every tool and component described next is free
of charge, and I've noted where and why that is the case. I am using Microsoft Windows
Vista on my machine, and my instructions and examples reflect that. But nothing in
terms of the operating system is really any more complex than moving between fold-

ers and running programs, so it should be simple enough to follow along in your OS of
choice.

* Microsoft .NET 3.5: The IronPython build relies heavily on new features available
in the .NET 3.5 framework. Since I will be using Visual Studio 2008 throughout
this book, you will need to download .NET 3.5 here: http://www.microsoft.com/
downloads/details.aspx?FamilyID=ab99342f-5d1a-413d-8319-81da479abod7&
displaylang=en.

e Microsoft Visual Studio 2008: When we reach the chapters in the book that involve
interacting with other .NET applications, you will get the most benefit by hav-
ing a copy of Visual Studio available. Microsoft has generously made available
free editions of their Visual Studio suite, and we will be using Visual C# 2008
Express Edition throughout this book. It is available at http://www.microsoft.com/
express/vcsharp/.

CHAPTER 1 INTRODUCTION TO IRONPYTHON

e Microsoft SQL Server 2008: The sections on database access assume that we are
using SQL Server 2008 as our storage system. As with Visual Studio 2008, Microsoft
has released a free edition of SQL Server 2008 that will serve us well later on. You
can download this version at http://www.microsoft.com/express/sql/default.aspx.
This installation is a bit more complex and requires a few configuration steps as
well as an application reboot.

e [ronPython 2.0: This is available as a free download; you'll need to get the latest
release and install it. I have provided instructions here for how to do so. Although
you are allowed to download the source binaries, for the purposes of this book we
will deal with the compiled binaries and not concern ourselves with building or
modifying IronPython itself.

DOWNLOADING AND INSTALLING IRONPYTHON

At the time of this book’s writing, IronPython was at version 2.0 (December 10, 2008, release) and had
a new home at CodePlex. The IronPython CodePlex site is your one-stop shop for downloads, tutorials,
samples, and forum discussions.

1. In the web browser of your choosing, go to http://www.codeplex.com/IronPython.

2. Click the Releases tab.

11

12 CHAPTER 1 INTRODUCTION TO IRONPYTHON

3. Click the IronPython.msi link, read and agree (if you do agree) to the License Agreement, and
choose Save File when the file download window appears.

4. Once the file has downloaded, open the folder containing the Installer Package and run it. Follow
the onscreen directions to install IronPython 2.0.

5. After the installation is complete, open a command prompt and go to the directory to which you
installed IronPython. Type ipy and press Enter. You should see the following screen, which indi-
cates that installation was successful.

IPY and You

What's this ipy.exe business all about? Quite simply, it’s an interactive IronPython inter-
preter. You can execute IronPython code within this interpreter and see the results. Let’s
try it, shall we?

CHAPTER 1 INTRODUCTION TO IRONPYTHON

USING THE IRONPYTHON INTERPRETER

If you have not yet done so, open a command prompt and go to your IronPython directory. Type ipy and
press Enter. The IronPython interpreter should start.

1. At the prompt (>>>), type 1 + 2 + 3 + 4 + 5 and press Enter.

2. The interpreter should return 15, followed by a new prompt.

3. Type answer = 42 and press Enter. The interpreter should immediately respond with a new
prompt.

4. Type print “The ultimate answer to everything is”, answer and press Enter.

5. Type exit() and press Enter to exit the interpreter.

13

14

CHAPTER 1 INTRODUCTION TO IRONPYTHON

The interpreter is not only for typing code in real time. It can also run IronPython
scripts, which are basically text files that contain specific instructions to make IronPython
do what you want. We’ll cover that usage immediately in Chapter 2 and continue to use
the interpreter that way for a while. However, it’s always a good idea to keep a command
prompt open with the interpreter running while you are working; it’s a quick and easy
way to test certain things without having to run an entire application, for production
applications tend to get very large.

Note If you're looking for a little splash of color in your life, type ipy —X:ColorfulConsole at the command
prompt and press Enter. You should see color-coding instead of the plain monochrome format. You can
check out the full range of interpreter command-line options by typing ipy -? at the command prompt.

Summary

IronPython is an exciting addition to the .NET language family. It is a powerful, dynamic
language that allows developers to harness the power of the CLR within the Python syntax
and to create applications that are easy to create, read, and maintain. We covered the his-
tory of Python and IronPython, discussed the benefits of using IronPython, and walked
through installation and verification of IronPython from the CodePlex site before firing
up the IronPython interpreter and solving the mysteries of the universe at the same time.

CHAPTER 2

IronPython Syntax

“High thoughts must have high language.” — Aristophanes

Now that we’ve seen where IronPython comes from, it’s time to start the fun stuff.
Specifically we’re going to start writing some IronPython code, learn how IronPython
handles various programming constructs, and build the knowledge foundation for the
rest of the book. Ready?

Data Types and Control Structures

At a very basic level, programming is all about manipulating data via instructions to the
computer, with the goal of performing whatever tasks need to be completed, usually in a
specific sequence. Since the core of this practice revolves around data, let’s start by exam-
ining how IronPython handles different data types. After we've looked at some basic data
types, we’ll look at various control structures, which alter the way a program executes
depending on various criteria (including input, raw data, and errors.)

Alot of truly fantastic programming books start off with examples of how to display
“Hello World!” to the user, and I’'m not about to break tradition.

Note Totally random trivia: the archetype of the Hello World! programs is actually “The C Programming
Language” by Brian Kernighan and Dennis Ritchie. Since the book in your hands is about IronPython, which
is based on CPython, which was written in and (in part) modeled after the C language syntax, it seems only
fitting to keep the tradition alive.

15

16

CHAPTER 2 IRONPYTHON SYNTAX

Strings

Fire up your favorite text editor, type the block of code in Listing 2-1 exactly, and save it
as HelloWorld.py in a convenient directory. For the sake of our examples in this book,
I will be keeping my source code in C:\Python.

Listing 2-1. Hello World!

def HelloWorld():
create a string variable that holds Hello World! as content
greeting = "Hello World!"
print greeting

HelloWorld()

Now, open a console window and go to the directory where you have IronPython
installed. Type ipy c:\python\HelloWorld.py and press Enter. If all goes well, you should
see results like those displayed in Figure 2-1.

Figure 2-1. Hello World, IronPython style

Let’s take a closer look at exactly what happens. We defined a method called Hel-
loWorld that accepts no parameters. We added a comment for the benefit of ourselves
and future maintenance programmers (which might be you too!) that describes why
the following code is structured a particular way. Then we assigned a string value to a
variable named greeting and proceeded to display it to the screen. The final line calls our
HelloWorld method and executes our instructions.

CHAPTER 2 IRONPYTHON SYNTAX

Integers

Having tried strings, let’s take a stab at integer values. As you probably recall from math
class, integers are whole numbers that can be expressed without fractional or decimal
components. For example, 1 is an integer, 1.1 is not. IronPython happens to function
quite well as a calculator, so let’s put it to work (Listing 2-2).

Listing 2-2. Hello Math!

def HelloMath():
#create a handful of integer variables
spam = 1
eggs = 2
print spam + eggs

HelloMath()

Run this program. Did you get 3 as output? If so, great! If not, correct any errors in
syntax so that your program matches Listing 2-2.

Let me reiterate at this point that IronPython is a dynamically typed language.
Nowhere in this code did we indicate variable types; the compiler figures that out based
on what appears to the left side of the assignment operator (the equals sign.) Don’t just
take my word for this. Let’s prove it. Listing 2-3 does just that.

Listing 2-3. Dynamic Typing at Work

def HelloDynamic():
create a string variable that holds Hello World! as content
greeting = "Hello World!"
print greeting

#fcreate a handful of integer variables
spam = 1

eggs = 2

print spam + eggs

#print our greeting, followed by the sum of spam and eggs
print greeting + spam + eggs

HelloDynamic()

17

18 CHAPTER 2 IRONPYTHON SYNTAX

Run this program. Did it print out Hello World!, then 3, and then Hello World! 3? It
didn’t? If you're playing along at home, what you probably just saw was the compiler
rudely telling you that something went wrong. The error looks something like Figure 2-2.

Figure 2-2. [ronPython complains quite loudly when it encounters a problem.

This is dynamic typing in action. We have just instructed the compiler to add Hello
World!, the number 1, and the number 2 together. It doesn’t make sense, does it? That’s
what IronPython thinks too! We need to tell IronPython that we want to concatenate
these things and to display everything to the screen. We’ll go ahead and modify the code
in Listing 2-3 and see if we can give [ronPython the instructions it needs to understand
what we want (Listing 2-4).

Note In programming terms, concatenation refers to joining two or more strings together. One easy way
to think of this would be your own name. Frequently registration forms offer fields for both your first name
and your last name separately, but when you log in the application says something like, “Welcome back,
Alan Harris!” It does this by concatenating, or joining those strings together to create one string.

Listing 2-4. Dynamic Typing at Work, Fixed!

def HelloDynamic():
create a string variable that holds Hello World! as content
greeting = "Hello World!"
print greeting

CHAPTER 2 IRONPYTHON SYNTAX

#create a handful of integer variables
spam = 1

eggs = 2

print spam + eggs

#print our greeting, followed by the sum of spam and eggs
print greeting, spam + eggs

HelloDynamic()

Hello World!
3
Hello World! 3

Success! The use of the comma instead of the plus sign tells IronPython that first
we want to display the string value of the greeting variable and then we want to display
the integer result of adding spam and eggs together. Again, if you do not see the output
I described, check your syntax against the code in Listing 2-4 and make sure everything
is correct.

Conditional Statements

Now that we have a resounding victory under our belts, we need to throw a wrench in
the works. It’s a very rare program “in the wild” that operates from top to bottom without
any change in application flow. More often than not, certain code is executed based on

a given condition and other code is not. How does IronPython allow us to handle those
situations? The answer is a conditional statement. A conditional statement allows us to
set a criterion (or condition) that alters the way a program executes. We're also going to
add a dash of user input to this program so that the user has a say in how the program
executes (Listing 2-5).

Listing 2-5. Getting User Input

def HelloConditional():
firstName = raw_input("Please enter your first name: ")
lastName = raw_input("Please enter your last name: ")
age = int(raw_input("Please enter your age: "))

19

20 CHAPTER 2 IRONPYTHON SYNTAX

change the program output based on the user's age

if age < 25:
print "You, ", firstName, lastName, ", are younger than the author.”
elif age == 25:
print "You, ", firstName, lastName, ", are the same age as the author."
else:
print "You, ", firstName, lastName, ", are older than the author."
HelloConditional()

Please enter your first name: Alan

Please enter your last name: Harris

Please enter your age: 25

You, Alan Harris , are the same age as the author.

Depending on what you entered for your age, you may see that you are younger
or older than I or perhaps that you are the same age. But the key here is that the
output of the program, indeed the entire program operation itself, changed based on
this conditional statement. You may have noticed that I slipped two new concepts in
there without telling you. You'll see that I made use of the raw_input() function and
that when I asked for the user’s age, I wrapped the entire input line in int(). Wrapping
the entire input line in int() is an operation known as casting. As I just discussed, the
raw_input() function takes a string value for input. So without the integer cast, the age
variable would contain a value like “25” instead of 25. As we’ll see in just a moment, it’s
going to be very important to have the correct data type because we need to make some
comparisons, and in the eyes of the computer the string value “25” is not equal to the
integer value 25.

Note Castingis a method of converting between two data types. In the preceding example, we were
receiving input in the form of a string, but we converted that to an integer. You could also do the reverse
and convert a string back to an integer. There are a wide variety of types to convert between, but not every
conversion works; for example, you can convert the string “1234” to an integer with a value of 1234, but you
can’t convert “My name is Fred” to an integer.

CHAPTER 2 IRONPYTHON SYNTAX

Input() or Raw_Input()

The raw_input() function is a safe method for getting input from the user because it

does not allow arbitrary execution or evaluation of user input. There is another, similar
command in IronPython called input. The input command, while useful, can also be
very dangerous; it allows the execution of IronPython commands based on user input.
This can be a tremendous security risk and should be used with caution. Allowing your
users to execute any IronPython code they see fit should always raise a red flag in your
mind. The raw_input() function is more appropriate because it accepts a string input that
cannot be executed directly. We’ll cover use of the inpuf function later, but for right now
consider it a best practice to stick to raw_input() for getting input from the user.

Note A very close relative to this concept is that of SQL injection. SQL stands for Structured Query Lan-
guage, and it’s a very common way to communicate with a database. One of the simplest and certainly
most overlooked security flaws is neglecting to secure communication to and from the database. Much like
executing arbitrary IronPython commands is a security risk, not protecting your SQL commands is a terrible
security hazard. We’ll cover SQL and protection against injection attacks in Chapter 7.

Error Handling and Exceptions

From the heading of this section, some of you may have already guessed about one
glaring omission from this program. I'll spoil it for the rest of you: error handling.

This program works great if you provide it exactly what it needs in exactly the format it
expects. But run it again; this time enter -1 as your age. It should output something like
the following.

Please enter your first name: Alan

Please enter your last name: Harris

Please enter your age: -1

You, Alan Harris , are younger than the author.

Now technically, that is correct; someone who is -1 years old is definitely younger
than I am. But when is the last time you met someone who was younger than 0 years?
This is an example of a logical error, that is, an error that does not stop the program from
continuing execution but that results in flawed or inaccurate data or output. Logical

21

22

CHAPTER 2 IRONPYTHON SYNTAX

errors are generally far harder to identify and correct than syntax errors, which are errors
in the source code instructions themselves. We need to write some validation rules that
ensure that the input we’re getting from the user meets the criteria we need to guarantee
proper program operation. Rules like the ones we’re about to create typically exist in the
business layer of an application. But we’re not quite that far along yet, so for right now
we’ll place it alongside the input code.

Note You may hear developers talking in feverish terms about presentation, business, and data layers in
their programs. Typically this refers to the traditional three-tier application design. Tier ordinarily denotes a
physical separation of components, whereas /ayer is more of an abstract concept, but the terms tend to be
interchangeable in conversation. The presentation layer is generally the user interface, the business layer
handles all rules related to the business or application domain (as well as input validation and providing the
presentation layer with content to display), and the data layer takes care of speaking to and retrieving data
from your database. We’ll discuss these concepts in depth later; | just wanted them on your radar for now
and to get you thinking about ways to improve our growing application design.

How can we best ensure that we have handled this particular error gracefully? It
makes sense to compare the user’s input to some known sanity checks, such as “a user
cannot have a negative age” or “a user cannot be more than 150 years old.” Always be
very careful when designing rules like these; guaranteed you'll choose 150 as the maxi-
mum age for a user to input, only to find that somebody out there is not only 151 years
old, but 151 years old and not happy that he can’t use your program.

That said, let’s modify our program to use the two rules we on which we just decided .
Note that this is not a comprehensive rule set that covers every possible error. We need to
start small and then identify trouble spots and how to fix them. Listing 2-6 adds a touch of
error handling to the application.

Listing 2-6. Gerting User Input with Error Handling

def HelloConditional():
get a few data values from the user
firstName = raw _input("Please enter your first name: ")
lastName = raw_input("Please enter your last name: ")
age = int(raw_input("Please enter your age: "))

CHAPTER 2 IRONPYTHON SYNTAX

if age < o:
print "You, ", firstName, lastName, ", need to input a valid agews
before continuing!"
HelloConditional()
elif age > 150:
print "You, ", firstName, lastName, ", need to input a valid agews
before continuing!"
HelloConditional()
elif age < 25:
print "You, ", firstName, lastName, ", are younger than the author."
elif age == 25:
print "You, ", firstName, lastName, ", are the same age as the author."
else:
print "You, ", firstName, lastName, ", are older than the author."”

HelloConditional()

Please enter your first name: Alan

Please enter your last name: Harris

Please enter your age: -1

You, Alan Harris , need to input a valid age before continuing!
Please enter your first name:

That’s great! Now our program has some knowledge about what constitutes a valid
range of inputs. But it can still be tripped up. Run the program again and provide some
decimal value (such as 25.1) for your age. You will see something like the following.

Please enter your first name: Alan

Please enter your last name: Harris

Please enter your age: 25.1

Trackback (most recent call last):

File 'c:\python\HelloConditional.py', line 20, in c:\python\HelloConditional.py
File 'c:\python\HelloConditional.py', line 4, in HelloConditional

ValueError: invalid integer number literal

Yikes! We didn’t even get asked for our name and age again. It just crashed and
burned! This is an example of an exception. An exception occurs when program execu-
tion strays far off course. A pretty common example would be dividing by 0. Many

23

24

CHAPTER 2 IRONPYTHON SYNTAX

languages (C#, for example) even have built-in DivideByZero exceptions to handle those
types of cases. In fact, IronPython just told you what type of exception it threw when it
encountered the error: a ValueError exception. We can check for those types of excep-
tions and handle them accordingly.

Try-Catch-Finally

Wouldn't it be nice if we could just wrap potentially unsafe operations in some sort of
code block that could notify us if things go terribly awry? IronPython provides a construct
that will suit this purpose perfectly, but with a few caveats, which we will address after
looking at an example (Listing 2-7).

Listing 2-7. Getting User Input with Error Handling and Exception Handling

def HelloConditional():
get a few data values from the user
firstName = raw_input("Please enter your first name: ")
lastName = raw_input("Please enter your last name: ")
try:
age = int(raw_input("Please enter your age: "))
except ValueError:

print "You, ", firstName, lastName, " need to input a valid agew

before continuing!"

HelloConditional()
if age < o:
print "You, ", firstName, lastName, ", need to input a valid agew

before continuing!"
HelloConditional()
elif age > 150:

print "You, ", firstName, lastName, ", need to input a valid agew
before continuing!"
HelloConditional()
elif age < 25:

print "You, ", firstName, lastName, ", are younger than the author.”

elif age == 25:

print "You, ", firstName, lastName, ", are the same age as the author.”
else:

print "You, ", firstName, lastName, ", are older than the author."

HelloConditional()

CHAPTER 2 IRONPYTHON SYNTAX

Please enter your first name: Alan

Please enter your last name: Harris

Please enter your age: 25.1

You, Alan Harris , need to input a valid age before continuing!
Please enter your first name:

Now that’s a lot more user-friendly. We have wrapped the potentially offending
code in what is known as a try-catch block. In a try-catch block, we first “try” to execute
the code within the fry section. If an exception is “thrown,” we catch it and perform
some action. There may be situations in which you want a block of code to execute at
the end of the block, regardless of whether or not an exception is raised. For those situ-
ations, there is an additional step, making what is termed a try-catch-finally block. If
you add a finally section, the code within is guaranteed to execute immediately upon
exiting the fry block. Later, when we delve into more advanced concepts, we’ll learn
that the try-catch-finally block is critical to releasing valuable system resources that
otherwise may become bogged down with unhandled exceptions, leading to memory
leaks and other nastiness. Listing 2-8 adds a finally block to the exception handlers.

Listing 2-8. Exception Handling with a Finally Block

def HelloConditional():
get a few data values from the user
firstName = raw_input("Please enter your first name: ")
lastName = raw_input("Please enter your last name: ")
try:
age = int(raw_input("Please enter your age: "))
except ValueError:
print "You, ", firstName, lastName, ", need to input a valid agew=
before continuing!"
HelloConditional()
finally:
print "This code is executed in the finally block."

if age < o:
print "You, ", firstName, lastName,

n

, need to input a valid agew
before continuing!"
HelloConditional()
elif age > 150:
print "You, ", firstName, lastName, ", need to input a valid agews
before continuing!"

25

26

CHAPTER 2 IRONPYTHON SYNTAX

HelloConditional()
elif age < 25:
print "You, ", firstName, lastName,

n

, are younger than the author."
elif age == 25:
print "You, ", firstName, lastName,

n

, are the same age as the author."
else:

n

print "You, ", firstName, lastName, ", are older than the author."

HelloConditional()

I should stress the importance of not structuring your program execution solely
around exceptions. There is a difference between handling exceptions and validating data
entry. We have conditional statements in Listing 2-8 to handle direction of the program
under normal circumstances. A user’s entering the string “twenty-five” for his or her age
is not a normal circumstance by our definition, so we have an exception to handle it.
Exceptions are “heavier” than conditional statements and have a slightly larger impact
on performance. By definition, they should be exceptional cases, not the way you control
program flow. Bear that in mind as you develop your code.

Built-In Functions

Occasionally throughout this chapter I've made references to built-in IronPython
functions, such as raw_input(), but I haven’t really broken down what these functions
are or how to find them. IronPython includes quite a few built-in functions (current

to version 2.5.2 of CPython as of the time of this writing), which I will list next. Then

we will walk through some of the more frequently used ones and see some examples.
You can learn more about the other functions at http://www.python.org/doc/2.5.2/1ib/
built-in-funcs.html. For the remaining portions of this chapter, I will assume that you
have an IronPython interpreter open. But you don’t need to make any .py files; we’ll just
use the built-in interpreter for now.

abs

For various reasons, you may need the absolute value of a number. You could do
something like sign checking and then multiplying by -1 to flip that sign, but that’s
unnecessary! [ronPython gives you the abs() function for convenience.

>>> print abs(-5)
5

CHAPTER 2 IRONPYTHON SYNTAX

chr

If you are working with a bit of code where the individual letters in a string of characters
have been converted to their ASCII values, you may need to convert them back. The chr()
function is meant to do that. It is something of a sister function to the ord() function,
which we will take a look at shortly. Feel free to flip forward to the ord() function descrip-
tion and example and to return here.

>>> print chr(65), chr(108), chr(97), chr(110)
Alan

Note ASCIl values refer to a range of integer values, from 0 to 255, that can be used to represent a vari-
ety of characters, including letters, numbers, symbols, and so on. Luckily, you don’t have to remember them
all. There are quite a few handy tables out there that list the ASCII values from 0 to 255 as well as various
conversions (hexadecimal, octal, etc.). | use http://www.asciitable.com frequently for that purpose.

dict

We’re going to look at sets and dictionaries in more depth in the next chapter. The dict()
function allows you to specify a dictionary, which is a collection of data that is enumer-
ated in key-value pairs. Note that each key must be unique but that values can repeat. In
the following example, the keys are the names of the colors and the values are the num-
bers assigned to them. You will notice that red and yellow are assigned the same value.

>>> dict(red=1, blue=2, green=3, yellow=1)
{'red" : 1, 'blue' : 2, 'green’ : 3, 'yellow' : 1}

In this code output we can clearly see IronPython showing us the key-value pair
configuration.

Now let’s see what happens if we try to duplicate key names in the same
dictionary.

>>> dict(red=1, blue=2, green=3, red=2)
File "<stdin>", line 1
dict(red=1, blue=2, green=3, red=2)

N

SyntaxError: duplicate keyword argument

27

28

CHAPTER 2 IRONPYTHON SYNTAX

IronPython didn’t care for that at all. The error tells us there was a problem with a dupli-
cate key in line 1 of stdin, which means “standard input,” in this case the keyboard. In
short, we messed up! Remember to keep keys unique in your dictionaries. Later in this
chapter we discuss the list() function, which has some very important differences from
the dict() function. When you learn more about lists, refer back to this for the sake of
comparison.

dir
When we cover importing modules, in the next chapter, you may find it useful to enumer-
ate the names of modules available in the symbols table. One of the first modules we

import is the sys module, so let’s compare the output of the dir() function before and
after running an import.

Note Importing .NET code modules in IronPython is handled very similarly to how it's handled in tradi-
tional Python, with the notable exception of needing the ¢/r module to access the .NET namespaces. From a
programming standpoint, the effect is the same.

>>> dir()

[' builtins ', ' doc_ ', ' name_ ']
>>> import sys

>>> dir()

[' builtins ", ' doc_ ', ' name_ ', "sys']

So we can see that before we imported an additional module, the __ builtins__,
__doc__,and __name__modules were available to us. These provide basic IronPython
functionality. We imported the sys module and it became enumerated in our list. We
can drill down further to see what functions the sys module provides by running the
dir() function and providing the module name as a parameter.

Note Enumeration is the act of assigning a unique numerical value to an object in a list. A Social Security
number is a type of enumeration; it establishes a unique identity for a specific entity. We’ll cover enumera-
tions a bit more in Chapter 6 when we build a plug-in system using C# and IronPython.

CHAPTER 2 IRONPYTHON SYNTAX

>>> dir(sys)
[' name ', ' stderr ',

stdin ", ' stdout ', ' getframe', 'api version'

, ‘argv', 'builtin module names', 'byteorder', 'copyright', 'displayhook', 'exc_
clear', 'exc_info', 'exc_traceback', 'exc_type', 'exc_value', 'excepthook', 'exe
c_prefix', 'executable', 'exit', 'getcheckinterval', 'getdefaultencoding', 'getf
ilesystemencoding', 'getrecursionlimit', 'hexversion', 'maxint', 'maxunicode’, '
meta_path', 'modules', 'path', 'path_hooks', 'path_importer cache', 'platform’',

'prefix', 'psi', 'ps2', 'setcheckinterval', 'setrecursionlimit', 'settrace', 'st

derr', 'stdin', 'stdout', 'version', 'version info', 'warnoptions', 'winver']

These are the various functions that sys exposes to you as a developer. The dir() func-
tion is very useful for listing classes in a module

Files via open

Files I/0 operations are used when you want to interact with physical files on the com-
puter. Perhaps you are running a web crawler that you created and you want to save a list
of all the URLs on a website to a file on your drive. Files can be opened using the open()
command, with the location of the file on disk provided as a parameter. In the following
example, the response from the interpreter tells you that the file you asked for exists and
has been opened in “read” mode.

>>> open("c:\python\HelloWorld.py")
<open file 'c:\python\HelloWorld.py', mode 'r' at OxOOE441DF>

File operations are very, very expensive compared to operations in memory. For
example, adding two integers is considerably slower when you have to open two text files
from disk to get those integers in the first place. You may not perceive much of a differ-
ence when opening one or two files on your own machine, but trust me when I say that
under load it’s a very heavy type of operation to complete.

Note If ever a family of operations deserved to be wrapped in fry-catch-finally blocks, file operations
are those. Beside the fact that any sort of communication to and from the drive is very costly in terms of
performance, a critical failure that leaves disk resources open is one of the fastest ways to leak resources
on a system.

29

30

CHAPTER 2 IRONPYTHON SYNTAX

for (iterations)

Suppose for a moment that you had a list of students in an elementary school class and
that you wanted to produce a list of names for the teacher to take attendance. How
would you do that? In IronPython, you can iterate over a list of items using what is
called a for loop.

Note There are many types of looping structures in programming, such as while, do while, do until, for,
and so on.

When you iterate over a list, what you're telling IronPython to do is go step-by-step
through a list of items and allow you to perform some task on the item or data. In the fol-
lowing example, we’re going to create a list of students, and then we are going to iterate
over the list and display each student on a separate line of output for the user.

Note Alist of items in IronPython is expressed as an array. Arrays are in the format variableName =
['value1’, ‘value2’, ‘value3’] and so on.

>>> students = ['Susie', 'Bobbie', 'Tommy', 'James', 'Harry', 'Sally', 'Larry',w
'Moe"', 'Curly']

>>> for student in students: print student
.. [Press 'Enter' key]

Susie

Bobbie

Tommy

James

Harry

Sally

Larry

Moe

Curly

The forloop is constructed in such a way that we need to provide an object for each
individual item to live in so that we can do some work on it. When we created the for loop
we told it to create an object called “student” for each item in the list. Our instruction

CHAPTER 2 IRONPYTHON SYNTAX

could be read, “for each element in the list students, take that element and place it in a
student object, then execute any code following the colon symbol.” So for each element
in the students list, the value of the student object (in this case it will be the student’s
name) is printed to the screen. Control flow returns to the loop to iterate to the next item
in the list, if there are any. If not, the loop exits.

help

Sometimes you get stuck! IronPython is there to help. Similar to the dir() function, you
can ask for help either with or without a function in mind.

Note For the sake of brevity | have not included the entire output of the help() function, only examples of
the command itself.

>>> help()

>>> help('print")

hex

As developers, we may have to interact with a variety of numerical systems. Most of us
are quite used to dealing with decimal numbers, which are base-10 numbers (i.e., 0, 1,
2,3,...,10,11,12,13, ..., etc.). Computer and software systems often use hexadecimal
numbers, which are in base-16. Calling these hexadecimal numbers seems a bit of a
misnomer, because they actually involve letters as well. For example, whereas the deci-
mal representation of thirteen is 13, in hexadecimal it would be D. How is that possible?
It seems silly, but think of the fingers on your hands. Assuming you have all 10 of your
fingers, you could start at the far left, with your pinky as 0, and count all the way to your
other pinky and end up at 9 (0 through 9 being a total of 10 numbers.) That’s base-10.
What if you were to add six fingers to the end of your right hand? Besides looking a bit
odd, you’d have to have some way of referring to them numerically. Mathematicians
chose letters, so those next fingers would be A, B, C, D, E and F.

IronPython makes converting from decimal to hex very simple. Take a look.

>>> hex(13)
'oxd'

>>> hex(123)
'0x7b’

31

32

CHAPTER 2 IRONPYTHON SYNTAX

What's with the 0x before the hex values? It’s just a way of representing hex values
that has been carried over from C, which is the language in which CPython was created.
Since IronPython is built with CPython at its core, the convention continues.

Note Remember the ASCII values we described earlier that ranged from 0 to 255? There are hexadecimal
conversions of each of those numbers, ranging from 0 to FF. Without cheating (I'm looking at you, Google!),
see if you can work out how 255 equals FF.

int
Similar to hex, we may need to extract the integer value from a decimal number. You can
pass a number to the inf() function, and the integer portion of the value will be returned.

>>> int(123.456)
123

>>> int(9018724.8971230987)
9018724

len

If you need to count the number of items in an object or sequence quickly, the len() func-
tion is your best bet. With it you can count the number of objects in a dictionary, a list, or
an array, the number of characters in a string, and so on.

>>> len("'spam_and_eggs') # note that the quote marks arews
not counted as part of the string length
13

>>> colors = dict(red=1, blue=2, green=3)
>>> len(colors)
3

list

Earlier in this chapter we looked at dictionary objects, which are key-value pairs where
the key must be unique. Lists are similar to dictionaries, except they are not key-value

CHAPTER 2 IRONPYTHON SYNTAX

based and are therefore free of the restriction that keys must be unique. Lists can also be
expressed without a function keyword.

>>> colors = ["red", "blue", "green", "red", "blue", "green"]
>>> list(colors)

['red', 'blue', 'green', 'red', 'blue', 'green']

>>> list('The quick brown fox jumped over the lazy dog')
['TI) Ihl) Ie') ' IJ 'ql) Iul) Ii') lcl) 'kl) I '
.‘FIJ IO'J IX.) ' I

Tt []
)b)rJO)W)n) J.

LI Y B N ORI RR N R E B | [
)J)qu) p)eJdJ)O)VJeJI))

> Id') IO': 'gl]

'tl, Ih', 'e', ' ', '1', 'a', IZ", 'y', Y

It’s important to understand the difference between dictionaries and lists, and
choosing the correct one for the type of operation you're doing is critical. It’s hard to say
that one will work better for you in all or most cases; neither is truly superior to the other.
There are situations where a dictionary is the way to go and situations where a list would
be a better choice. In general, if you need something in the collection of items to be
guaranteed unique, choose a dictionary. If you have a collection of items where nothing
needs to be unique and items can be repeated without any problems, a list would be an
appropriate solution.

max and min

In any set or list, you may have an interest in finding the largest or smallest element
quickly. In some cases, you may choose to create your own functions to perform these
tasks for performance or other reasons, but in most cases you can rely on the built-in
max () and min() functions. These functions work on strings, numbers, dictionaries, and
other types of objects.

>>> max('spam_and_eggs")
-
>>> min('abcdefghijklmnopgrstuvwxyz')

a

ord

The ord() function is the counterpart to the chr() function we discussed earlier. Where
you would use chr(to get the character equivalent from a numeric ASCII value, you
would use ord()to get the numeric ASCII value from a character.

>>> print ord('A'), ord('l'), ord('a'), ord('n")
65 108 97 110

33

34

CHAPTER 2 IRONPYTHON SYNTAX

Note The ord() function will work only on single characters, not strings. You cannot pass (‘Alan’) as the
parameter; you can only pass one character at a time or you will receive an error telling you something to
that effect (“expected a character, but a string of length n was found.”)

pow

Remember the quadratic formula from elementary and high school? (It’s ax® + bx + ¢ =0,
for those who need the refresher!) The first term of the polynomial, ax?, is read as “vari-
able a multiplied by x raised to the second power.” It’s that word power we’re interested
in here. The pow() function is used to raise a number n by power p, or n multiplied by
itself p times. It is used in a format of pow(n, p), where n and p are numeric values, such
as integers or floats.

Note We haven’t yet covered working with floating-point values; for right now the short explanation is
that they are numbers that need to be expressed with a decimal component. The number 10 is an integer
and does not need the decimal or any additional values after the decimal to express its complete value; the
number 10.12345 is a floating-point number and needs the decimal and additional values to be expressed
properly.

>>> pow(1, 2)

1

>>> pow(2, 2)

4

>>> pow(3, 3)

27

>>> pow(3.14159, 2)
9.869587728099999

This function is great for stuff like finding the area of a circle, which is equal to the
value of pi times the radius of the circle squared (A = @r?). You can compute the area of a
circle with code such as the following.

>>> import math

>>> radius = 5

>>> area = math.pi * pow(radius, 2)
>>> print area

78.5398163397

CHAPTER 2 IRONPYTHON SYNTAX

Note We made use of the built-in math module, which we haven’t covered yet. The math module has a
wide variety of mathematical operations included so that you don’t have to take the time to implement them
yourself. For this example we used the math.pi function to get an approximation of the value for pi, which
in IronPython is equal to 3.141592653589793. If you don’t want to use the math module, you can use that
approximation to get the same results.

random

I'm going to take a little liberty as the author at this point and employ a function that is
technically built in but that requires you to import a module to use it.

As a programmer you'll find plenty of situations where you want to generate random
numbers. You may need them for logic decisions in a computer game, to create dummy
data for testing code or algorithms, and so on. Generating totally random numbers
is difficult. Technically, most random number generators are not truly random; they
are termed pseudo-random. The random number generator in IronPython is indeed a
pseudo-random generator, but it will suffice for many applications. To use it, you'll need
to import the aptly named random module first, as in the following example.

>>> import random

>>> print random.random()
0.686993518233

>>> print random.random()
0.004263442943

>>> print random.random()
0.872601615671

>>> print random.random()
0.501539671096

>>> print random.random()
0.113435200468

Note Discussing random numbers and the many ways one can derive random numbers for a given system is
both beyond the scope of this book and a rabbit hole | have no desire to travel down at the moment! It is important
that | mention at this point that the random number generator in IronPython is NOT suitable for cryptography, which
covers areas such as encryption. The random number generator is deterministic; if you were to observe a little
more than 600 random numbers generated in IronPython, you would be able to determine all future outputs from
those values alone. So if cryptography or security is in your development future, you will need to find alternative
solutions. If you're interested in learning more about how IronPython generates random numbers, the algorithm it
uses, called Mersenne Twister, is very effective at quickly generating pseudo-random numbers.

35

36

CHAPTER 2 IRONPYTHON SYNTAX

randrange

This function is almost identical in purpose to the random() function in IronPython,
except it lets you be a bit more specific about the range and type of values you need.
You may find yourself in a situation where you need a random integer between 1 and

52 (for a card game, perhaps.) The randrange() function will return an integer between
values n and m. There is a comparable function that returns floating-point values called
uniform(), which is discussed later in this chapter. Please note that random(), uniform(),
and randrange() are defined in the random module, so you need to import the random
module before using any of these functions.

>>> import random

>>> print random.randrange(1, 52)
21

>>> print random.randrange(1, 10)

>>> print random.randrange(-57, 3)
_15

round

Certain mathematical operations require you to round numbers. For example, in round-
ing to zero decimal places, 1.2 would round down to 1.0, and 45.9 would round up to 46.0.
Note that although the answer returned from the round() function is a floating-point
value, the number itself can be expressed without any digits following the decimal point
(1.0 is equivalent to 1).

>>> round(1.2)

1.0

>>> round(45.9)

46.0

>>> round(75198.098123750)
75198.0

You can also provide a second parameter to the round() function that dictates how
many digits after the decimal point you want to consider when rounding. By default, this
is zero, but it can be whatever you like. Note that if you perform rounding with additional
decimal points specified, the resulting answers may not be expressible as integers. See
the following example for an illustration of this point.

CHAPTER 2 IRONPYTHON SYNTAX

>>> round(75198.098123750) # the answer can be expressedws

as an integer with no loss of precision (75198)

75198.0

>>> round(75198.098123750, 1) # this cannot; converting to anws
integer would lose the decimal values

75198.1

>>> round(75198.098123750, 5) # we have specified 5 digitsw
after the decimal point (.09812)

75198.09812

I can hear someone out there now saying, “Aha! But how is .5 rounded? What hap-
pens if you're exactly halfway between one number and another?” Well, there’s a simple
answer for that. In IronPython, the rounding answer will always move away from 0
toward the next-largest number. This is very important to understand. A variety of round-
ing methods are in use today, and if you are not aware of how numbers are rounded in
different systems you may encounter unusual behavior or results and not have any idea
of where the fault lies (this is particularly true in e-commerce and banking software).

>>> round(0.5)

1.0

>>> round (-11029835019243.5)
-11029835019244.0

>>> round (592873.5)

592874.0

uniform

This function is almost identical in purpose to the randrange() function discussed earlier
in the chapter, except whereas randrange() will return an integer value between values

n and m, the uniform() function will return a floating-point value between values n and
m. Please note that, like random() and randrange(), uniform() requires you to import the
random module before using it.

>>> import random

>>> print random.uniform(1, 100)
81.2660990526

>>> print random.uniform(-10, 10)
0.907017286358

>>> print random.uniform(-200, 80)
-137.981091038

37

38

CHAPTER 2 IRONPYTHON SYNTAX

But Wait, There’s More!

This is not an exhaustive description of every command and control structure in
IronPython, just a general overview to get you comfortable with the general way IronPython
code is structured and to beat you about the head and shoulders with the coding implica-
tions of working in a dynamically typed language. In an ideal world, coding would be
simple and we’d be working with straightforward code such as what we’ve worked with so
far. Unfortunately the world is far from ideal, and business problems sometimes require
very complicated solutions.

Note You can find the complete list of built-in commands at http: //www. python.org/doc/2.5.2/
lib/built-in-funcs.html. In general, what’s been listed in this chapter will allow you to get the job
done and solve most programming problems, but it’s always nice to have a complete, consistently updated
resource. The underlying Python language is always evolving, and IronPython with it.

As we add more and more aspects of the IronPython language to your toolkit, we’ll
look at ways to keep applications easy to code and maintain so that even when they are
thousands of lines long you’ll be able to work efficiently with them. Always keep in mind
that you may not be the person who maintains your code in the future. And even if you
are, your memory may play tricks on you. A poorly implemented program is a nightmare
to maintain—for anyone.

Summary

IronPython (and Python in general) is designed to be a very easy-to-read, easy-to-write
language. In this chapter we explored the basics of IronPython syntax, including string
and integer manipulation, error handling, and exception handling. We took a very simple
Hello World application and added user input, string concatenation, and error checking
to it. This is really the basic context in which a developer works: get input , work with that
input to produce a desired output, and handle any errors encountered gracefully. We
then took a closer look at the various built-in functions that IronPython provides to make
your development life simpler and to prevent you from having to reinvent the wheel. By
now you should have a pretty good grasp of how IronPython code is structured, and you
should be comfortable with basic programming operations.

CHAPTER 3

Advanced IronPython

“Mathematics may be defined as the subject in which we never know what we are
talking about, nor whether what we are saying is true.” — Bertrand Russell

At this point we’ve already written some basic IronPython code. We’ve gotten input
from the user, done some processing of that input, handled errors and exceptions
gracefully, and provided output back to the user in a structured fashion. But we have
only scratched the surface of working with IronPython. In this chapter we will expand
our knowledge of strings, integers, floats, and other data types. We will also be intro-
duced to object-oriented programming, and in the end we will build an object-oriented
IronPython business solution. Welcome to Advanced IronPython!

String Operations Revisited

The output we have displayed to the user so far has been fairly simplistic. It has consisted
of a few words put together into a line or two with no real concern for formatting or special
characters. But certain very common situations require more complex output formats. For
instance, suppose we want to create an application that takes the user’s name as input and
prints it back to the screen. Sample code to do this is presented in Listing 3-1.

Listing 3-1. Returning User Input to the Screen

def MyName():
firstName = raw_input("Please enter your first name: ")
lastName = raw_input("Please enter your last name: ")

print "Hello,
MyName ()

', firstName, lastName,

This is an acceptable solution. But suppose we decide to get fancy with our output.
For example, if we want to put the user’s name in quotation marks, we need a way to tell
IronPython that we do not want to end the current string. This requires us to escape the

39

CHAPTER 3 ADVANCED IRONPYTHON

quotation mark. In IronPython we “escape” the quotation mark with a backslash, to indi-
cate that it is a literal character (Listing 3-2).

Note In programming lingo, escaping a string can have multiple meanings. In this case, what we’re
doing is informing IronPython that we want to insert a specific character that the compiler normally interprets
as being special. The term also comes up in web development when certain HTML characters need to be
escaped to be interpreted properly, and it comes up as well in database development, where user-provided
data is escaped for security purposes.

Listing 3-2. Returning the User’s Name with Quotation Marks Included

def MyName():
firstName = raw_input("Please enter your first name: ")
lastName = raw_input("Please enter your last name: ")

print "Hello,", "\"", firstName, lastName, "\"."

MyName ()

Please enter your first name: Alan
Please enter your last name: Harris

Hello, " Alan Harris

The escape method has a variety of uses that are not limited to getting quotation
marks where we need them. It can also function to introduce newlines if you need to
move output down to a different line (Listing 3-3).

Listing 3-3. Returning the User’s Name with Quotation Marks Included and a Newline
Character

def MyName():
firstName = raw_input("Please enter your first name: ")
lastName = raw_input("Please enter your last name: ")

print "Hello,", "\"", firstName, lastName, "\".\nIt is nice to see you again!"

MyName ()

CHAPTER 3 ADVANCED IRONPYTHON

Please enter your first name: Alan
Please enter your last name: Harris

Hello, " Alan Harris
It is nice to see you again!

IronPython is also quite adept at pulling one or more characters out of a string using
very little code. Remember that IronPython is meant to be compatible with CPython,
which is itself based on the C programming language. Like C and CPython, IronPython
arrays (be they character arrays or any other type) are zero-based, meaning that the first
element in an array of n elements is the number 0. This is demonstrated in Listing 3-4.

Listing 3-4. Demonstrating IronPython’s Zero-Based Arrays

def MyName():
firstName = raw_input("Please enter your first name: ")
lastName = raw_input("Please enter your last name: ")

print "The first character in your first name is", firstName[0]
print "The first character in your last name is", lastName[O]

MyName ()

Please enter your first name: Alan
Please enter your last name: Harris
The first character in your first name is A
The first character in your last name is H

You can also modify the previous code quite easily to extract ranges of characters
from a given string. This can be of particular use when handling form inputs. For exam-
ple, database fields you plan to fill with user input have a given length that you may need
to enforce. Extracting only the appropriate number of characters ensures that you are
able to fill that field correctly.

41

42

CHAPTER 3 ADVANCED IRONPYTHON

Listing 3-5. Extracting a Range of Characters from a String Input

def MyName():
firstName = raw_input("Please enter your first name: ")
lastName = raw_input("Please enter your last name: ")

print "The first 3 characters in your first name are", firstName[0:3]

MyName ()

Please enter your first name: Alan
Please enter your last name: Harris
The first 3 characters in your first name are Ala

Before we move on to numerical operations, let’s look at one more particularly useful
string operation: the built-in len function. The len function returns an integer value that
equals the total number of characters in a string (Listing 3-6).

Listing 3-6. Determining the Length of a String

def MyName():
firstName = raw_input("Please enter your first name: ")
lastName = raw_input("Please enter your last name: ")

print "Your name is", len(firstName) + len(lastName), "characters long."

MyName ()

Please enter your first name: Alan
Please enter your last name: Harris
Your name is 10 characters long.

CHAPTER 3 ADVANCED IRONPYTHON

A Quick Software Development Detour

Up to this point, all of our code has involved a single method. That is fine for small exam-
ples, but we're going to change things a bit moving forward now that we have established
some comfort with IronPython. We’re going to separate our code further into granular
methods. This will make development and maintenance much easier down the road.

If you look at Listing 3-6 again, you'll see that we are violating a few software design
principles there. The one I want to draw attention to first is separation of concerns. Spe-
cifically we have a catch-all method called MyName that performs multiple operations: it
gets user input in addition to displaying the output. As developers we have a responsibil-
ity to write clean code that is easy to maintain. One way to accomplish this is to make
sure that each method in our code is responsible for only one task at a time. Let’s take the
time right now to modify that program (Listing 3-7), and we’ll continue this line of think-
ing as the book continues.

Listing 3-7. Separation of Code into Methods

def GetFirstName():
firstName = raw_input("Please enter your first name: ")
return firstName

def GetLastName():
lastName = raw_input("Please enter your last name: ")
return lastName

def DisplayResult(firstName, lastName):
print "Your name is", len(firstName) + len(lastName), "characters long."

DisplayResult(GetFirstName(), GetLastName())

Please enter your first name: Alan
Please enter your last name: Harris
Your name is 10 characters long.

Now we have a method that gets the first name from the user, a method that gets the
last name from the user, and a method that displays the desired results back to the user.
We have begun using the return keyword to send values back to the calling method, and
this is important to understand. If we call a method and need to extract a value from it,

43

44

CHAPTER 3 ADVANCED IRONPYTHON

we use the return keyword to tell the method what values to return. Thereby, when one
method calls a second method, the second method can return a value back to the first
method. This is how we allow each method to have its own distinct task to complete with-
out necessarily coupling it to other methods in the program.

Note Coupling and cohesion are two software development terms you will frequently hear together in
the same sentence, usually phrased something like “loose coupling, high cohesion.” Coupling refers to the
degree a method in your code relies on other methods to do its job. You want methods to be loosely coupled.
My code to display content to the screen should not rely on the input method,; it should be concerned only
with the task of displaying content. In fact, the code in Listing 3-7 could stand to have the code that com-
putes the length of the first name and last name variables decoupled and placed in their own methods.
Cohesion refers to the degree that the methods in a particular area of code are related to one another in
terms of purpose and functionality. You don’t want a lot of code related to, say, file operations in the same
class as your user login code. This makes it hard to understand what a unit of code is trying to accomplish.
Loosely coupled, highly cohesive!

The DisplayResult method now has two parameters, which happen to be the
GetFirstName and GetLastName methods. When the IronPython interpreter hits the
DisplayResult line, it reads the two parameters and goes, “I need to execute these two
methods and return any values within them.” Those values get passed along to the
DisplayResult method.

Back on Track

Now that we have a little experience with separation of concerns, we can begin to create
more complex [ronPython applications. We will create a more complex application using
our new skills and exploring the other data types available to us. For our complex applica-
tion, we're going to make a word-finding tool. We will provide a word to the program that
we want to flag; then we’ll provide a block of text that we want to search. If the word is in
that text, the program will tell us at what numerical position it was found (Listing 3-8).

Listing 3-8. Finding a Word in a Block of Text

def GetWord():
word = raw_input("Please enter the word you want to find: ")
return word
def GetText():
text = raw_input("Please enter the text block: ")
return text

CHAPTER 3 ADVANCED IRONPYTHON

def DisplayResult(word, text):
position = text.find(word)
if position > -1:
print "The word", word, "was found at position", position, "."
else:

print "The word", word, "was not found in this string."

DisplayResult(GetWord(), GetText())

Please enter the word you want to find: dog
Please enter the text block: The quick brown fox jumps over the lazy dog.
The word dog was found at position 40 .

We accomplished the word-finding task by using the built-in method find. This is a
very useful method for determining the presence of a piece of data in another piece of
data or group of data points. The find method is case-sensitive; if you try to find “D” in
the preceding example, you won’t get any results.

Note Bearing in mind that IronPython is built around CPython, we recognize that it shares those under-
lying characteristics. Arrays are always zero-based, meaning that the first value in an array is always at
position 0.

IronPython fully supports the concept of dictionaries. Dictionaries, in the program-
ming sense, are composed of key-value pairs that allow a developer to look up quickly a
value for a given piece of data, much like a real-world dictionary (Listing 3-9). Where an
array like the types we’ve seen before use integers (starting with 0) to index elements in
the set, a dictionary is indexed by its keys and can use any immutable data type for a key.
Keep your keys unique; keep your values however you like!

Note Key-value pairs are very important concepts in software development. You can find them all over;
they are used in configuration files, the querystring values in a web page URI (Uniform Resource Identifier),
and so on. Different languages support them in different ways, including generics and hash tables.

45

CHAPTER 3 ADVANCED IRONPYTHON

Listing 3-9. Using a Dictionary to Store Employees

def CreateDictionary():
dict = {"Jane":"CEQ", "Tom":"CIO", "Susie":"VP", "Bob":"VP"}
return dict

def GetName():
name = raw_input("Please enter an employee\'s name: ")
return name

def DisplayResult(dict, name):
if dict.has_key(name):
print name, "is a", dict[name], "in this company."
else:
print name, "does not work for this company."

DisplayResult(CreateDictionary(), GetName())

Please enter an employee's name: Susie
Tom is a VP in this company.

Now we have the ability to find items in collections, be they single words in a string
or items in a list. Being able quickly to index, sort, and parse data is often critical in any
given application. Later, when we look at web development, we will build a rudimentary
web crawler, and dictionaries will quickly become the backbone for the entire applica-
tion. Look out, Google!

Floating-Point Numbers

We addressed integer operations in Chapter 2. You may recall that the integer value is a
whole number expressed without fractional or decimal notations. In contrast, floating-
point numbers are expressed using fractional or decimal notation. Where a group of
integers looks like {1, 2, 3, 4}, the same numbers expressed in floating-point form would
be {1.0, 2.0, 3.0, 4.0}. The word floating is applied because the decimal point position is
not fixed. A set of floating-point numbers might look like {131.0005, 9.154, 2.511, 3.14} and
can have a variable number of digits. Fixed-point numbers are a subset of floating-point
numbers. Fixed-point numbers can have only a specific number of digits to the right of
the most significant digits. So a set of fixed-point numbers at five-digit precision might
look like {8000.1, 4302.2, 5115.3, 1098.3}.

CHAPTER 3 ADVANCED IRONPYTHON

Note Floating-point numbers are an absolutely critical aspect of software development. They show up in
fuzzy logic and neural network programming and in all manner of mathematical software. If math isn’t your
strong suit, don’t worry. We’re not going to be doing anything more difficult than addition, subtraction, multi-
plication, and division, and IronPython is great at doing all those operations.

IronPython handles big numbers—very big (Listing 3-10). It’s quite adept at work-
ing quickly with these numbers, and that’s important because in computationally heavy
systems every bit of performance counts. Stability in dealing with large numbers can also
be critical; your application isn’t of much use if it goes up in flames every time it gets a
number that’s pretty large! This is where dynamic typing comes in handy. IronPython will
make your variable a floating point as needed, thereby preventing many of the arithmetic
overflow problems that can plague statically typed languages.

Listing 3-10. Big numbers!

def AddBigIntegers():

bigInteger = 123456789098712390847 + 23456789109182743087=
+ 345678912091873 + 567891230987230987

return biglInteger

def AddBigFloats():

bigFloat = 90871234.12341324 + 8917623.987124=
+ 1987345.987247 + 43793873.9871234

return bigFloat

def DisplayResult(bigInteger, bigFloat):
print bigInteger

print bigFloat

DisplayResult(AddBigIntegers(), AddBigFloats())

147481815117794456794
145570078.085

47

48

CHAPTER 3 ADVANCED IRONPYTHON

Booleans

Is the following statement true or false? Boolean values are pure logic. How much simpler
can you get than true or false? That’s exactly what a Boolean value is, true or false. It does
sound very simple, but it’s an extraordinarily critical notion. At the most basic level, the
software running on a computer system is nothing more than a series of ones (true) and
zeroes (false). There’s a lot of power in the Boolean values. A typical use of Boolean values
is checking whether or not a specific flag is enabled (for example, is there gasoline in your
car or not?). See Listing 3-11.

Listing 3-11. Using a Boolean Value for a Flag

def SetFlag():
flagEnabled = True
return flagEnabled

def DisplayFlag(flagEnabled):
if flagEnabled == True:
print "The flag is set to true.”
else:

print "The flag is set to false.'

DisplayFlag(SetFlag())

The flag is set to true.

Classes and O0P

If what we took earlier was a software development detour, this next part is the major
construction on the highway. The difference here is that this will make your life easier
immediately! At our last detour we introduced the notion of separating code into different
methods and modules so that there would be a proper division of concerns in our code
and to make development and future development easier to manage. We're going to take
that concept a step further and separate our code into classes, because we’re about to get
knee deep into object-oriented programming (OOP).

Object-oriented programming is a method of writing software where the emphasis
of design is on creating objects, which are essentially the virtual representations of either

CHAPTER 3 ADVANCED IRONPYTHON

abstract or tangible items. These objects may contain attributes, behaviors, data, or any
combination of these. Certain design principles must be adhered to for a developer writ-
ing OOP code, so let’s break these principles down.

e [nheritance: Objects can inherit traits from other objects, which essentially creates
a parent—child relationship between objects. For example, a CEO can inherit the
traits of an employee, who inherits the traits of a human being. The human being
object is the generic parent object, and employees and CEOs are subobjects that
are increasingly specific and customized.

¢ Encapsulation: Objects can wrap up behaviors and data specific to that object,
hiding the implementation details from other objects. For example, a CEO needs
to have code specific to the particular job of being a CEO, but the human being
class doesn’t need to know that information. The specifics of being a CEO would
be encapsulated in the CEO object because that is where they are most relevant.

e Polymorphism: An object can have a method that performs the same operation
on different data types. For example, you may need to create code that examines
lists of data. For a fictional business it may be lists of employees, salaries, days off,
or any other type of data. Your business object could use one method to process
those lists, without needing a separate method for every type of list under the sun.
This can be achieved by overriding methods, inheriting from other classes, and so
on. See Chapter 6 for specific examples of polymorphism as well as how to apply
these principles to interacting with a statically typed language.

We are not going to spend a lot of time on theory; we’re going to move right into
code. Time is money! For this example we will work through the code step-by-step to
see how and why we are applying object-oriented principles. This is going to be a big
exercise, our first big leap into developing real software with IronPython. The end result
will actually be a bit simplistic, but this is a play-by-play of writing classes in an object-
oriented fashion and is essential for you to learn as a developer.

CLASSES AHOY!

For this exercise, we’re going to implement the human being, employee, and CEO classes described
earlier, in the OOP discussion. This is going to be screenshot-heavy and highly detailed because a lot is
going on and there’s much to discuss as we go, so please excuse any hand-holding!

1. Open up the text browser of your choosing and create a file called humanBeing.py.

2. Type the code in Listing 3-12 exactly as it appears into humanBeing.py and save the file.

49

50 CHAPTER 3 ADVANCED IRONPYTHON

Listing 3-12. humanBeing.py Implementation

class Human:
some data about our human, with default values for convenience

age = 25
name = 'Alan Harris'
weight = 190

methods for setting attributes about our human
def setAge(self, age):
self.age = age
def setName(self, name):
self.name = name
def setWeight(self, weight):
self.weight = weight

methods for getting attributes about our human
def getAge(self):
return self.age
def getName(self):
return self.name
def getWeight(self):
return self.weight
def getInfo(self):
print "Human being", self.name, "is", self.age, "years oldw
and weighs", self.weight, "pounds."

Note Wnhat’s this “self” business we see scattered about Listing 3-12? Simply put, selfis how an
instance of the object you're using can refer to its own data and methods. When we cover instantiation
a few steps from now, you’ll see what | mean more clearly.

3. Type ipy c:\python\humanBeing.py and press Enter. You should see a result like the following
screenshot, which indicates that the interpreter has completed successfully. If the interpreter
finds errors in your code, verify that everything matches Listing 3-12 and perform this step again.
Be aware that this does not ensure that your code works properly! This only helps catch syntax
errors at this initial step.

CHAPTER 3 ADVANCED IRONPYTHON 51

4. Type ipy and press Enter. This should open the IronPython interpreter.

5. Atthe >>> prompt, type import sys and press Enter. You should immediately be presented with
another prompt (as in the next screenshot). The import command serves to make additional code
and functionality available for use. IronPython has a lot of features, and we don’t always need
them all. In the next steps, you’ll see how to use it to provide access to the code you created for
the Human class.

6. Now type sys.path.append(‘c:\python’) and press Enter. This is the path | recommended earlier
in the book for storing your IronPython code. If you have placed your code elsewhere, substitute
the correct location. You should immediately see another prompt.

52 CHAPTER 3 ADVANCED IRONPYTHON

Note What have we just done? The step just performed tells the IronPython interpreter that we
would like to include the location C:\Python as a valid place from which to import modules. If we
didn’t do that, the interpreter wouldn’t know we had code in that location and we’d get an error in the
next step.

7. Type import humanBeing and press Enter. What this tells the IronPython interpreter is that you
want to add all the code in a file called humanBeing.py to your current environment so that you
can use it. The .py extension is assumed, so you don’t need to add it. After you type this and
press Enter, your screen should look like the following screenshot.

8. Having successfully imported the humanBeing.py file to the environment, let’s take it for a spin
and see what it can do for us. The file name humanBeing is used to set up automatically a
namespace for our code to live in, so we will need to employ that namespace as a prefix when
working with classes we’ve created.

Note A namespaceis nothing more than a grouping that allows you to keep naming collisions down
to a minimum. Say you created a handful of classes that have names identical to someone else’s class
names. If you were to try to reference one of yours in your code, the interpreter would have no way of
knowing which one you wanted! Computers are powerful but dumb; they need your explicit instruction to
realize what you’re trying to accomplish. Providing a namespace lets you prefix your classes with a mean-
ingful name that allows the interpreter to say, “Oh, | get it, you want this particular thing to happen.”

CHAPTER 3 ADVANCED IRONPYTHON

9. Now that we have told the interpreter where to find our class and successfully imported it, let’s try
it out.

>>> neighbor = humanBeing.Human()

10. When we have a class, it does not yet refer to any particular object. We have a class called
Human, but which human are we talking about? So for this example we made a neighbor object
and instantiated it as a Human, meaning the neighbor object is now one instance of the Human
class. We can instantiate as many Humans as we like, and we’ll do just that shortly, but first we
should try to use one of the methods that a Human class provides.

Note Remember how | said you’d see the self parameter used more clearly? If you look at what we
just did and at the underlying Human() method of the humanBeing class in your humanBeing.py file,
you will see what the use of self just allowed. We instantiated a class of Human as an object called
neighbor, and neighbor is passed into the methods to fulfill the se/f parameter and to tell the interpreter
which Human we’re dealing with. You don’t actually have to use the word self; you could call it what-
ever you like. | use selfbecause it’s convenient and because | am aware that many other developers
and authors use it, so | would like to maintain some convention as you read other people’s code.

>>> neighbor.getInfo()
Human being Alan Harris is 25 years old and weighs 190 pounds.

11. The Human class has a method called getinfo that displays information about the particular instance
of Human that we have. In this case, we have not provided any details that override the default val-
ues we provided, so it returns those defaults. Methods are called in the format object. methodName.

12. Now let’s use our Human class to make another instance of a Human, one with different traits.

>>> friend = humanBeing.Human()
>>> friend.setAge(55)

>>> friend.setName('Tom Smith")
>>> friend.setWeight(160)

13. We’ve created two Humans now, one called neighbor and one called friend. They are both Humans,
but they are specific instances of Humans with unique data in them. Let’s prove that point.

>>> neighbor.getInfo()

Human being Alan Harris is 25 years old and weighs 190 pounds.
>>> friend.getInfo()

Human being Tom Smith is 55 years old and weighs 160 pounds.

53

54 CHAPTER 3 ADVANCED IRONPYTHON

14. Now, that’s pretty cool. If you’ve been following along on your computer, your screen should look
something like the following.

15. Let’s make things more specific. We are going to modify our code to make a class called
Employee that will be more specific than a Human. Employee will inherit traits from Human (since
this clearly doesn’t work in reverse!). By creating an Employee, we will be creating an Employee
instance that is by default also an instance of a Human. Quit the interpreter by typing exit() and
pressing Enter. Open your humanBeing.py file and add to the bottom of the file the code in List-
ing 3-13; then save it.

Listing 3-13. humanBeing.py Continued

class Employee(Human):
some basic data about our employee
payrate = 10
hours = 40

methods to set that data

def setPayRate(self, payrate):
self.payrate = payrate

def setHours(self, hours):
self.hours = hours

CHAPTER 3 ADVANCED IRONPYTHON

methods to retrieve that data

def

def

def

getPayRate(self):

return self.payrate
getHours (self):

return self.hours
getEmployeeInfo(self):

print "Current pay rate is", self.payrate, "dollars perws

hour at", self.hours," hours per week, which totals $",=

self.hours * self.payrate, " weekly."

16. Now we have an Employee class that inherits traits from the Human class. Note that in the defini-
tion for Employee we have (Human) at the end. This is how inheritance is specified; we’re telling
the interpreter that Employee inherits from Human. In a moment we’ll prove that point. Similar
to the Human class, we’ve got a few data values and ways to display them. So let’s create some
employees and try this out. Open the interpreter again, import sys, add your Python directory, and

import the

humanBeing file.

Note IronPython, like CPython, supports multiple inheritance. That is, a class can inherit from more
than one base class. You will find this is not the case in other .NET languages, such as VB .NET and C#;
they support only single inheritance. Multiple inheritances can be a maintenance nightmare! It's an oft-
criticized feature of certain languages, and you won’t see me making use of it in this book.

Technically speaking, although other .NET languages tend to support only single inheritance, you
can generally implement multiple interfaces. Interfaces define a contract, specifying the methods and
properties that a class must completely implement to meet the criteria of the interface.

>>> tom

>>> tom.
>>> tom.
>>> tom.
>>> tom.
>>> tom.

>>> tom

= humanBeing.Employee()
setName('Tom Smith")
setAge(55)
sethWeight(160)
setPayRate(10)

setHours (40)

.getInfo()

Human being Tom Smith is 55 years old and weighs 160 pounds.

>>> tom

.getEmployeeInfo()

Current pay rate is 10 dollars per hour at 40 hours per week,w
which totals $ 400 weekly.

55

56 CHAPTER 3 ADVANCED IRONPYTHON

17. If all went well, you should see something like the following screenshot. Our Employee class is
derived from our Human class. Whereas the behavior specific to an Employee is hidden from a
Human, an Employee needs to know how to be a Human. This is an example of an is a relation-

ship, in object-oriented terms. An Employee “is a” Human, but a Human is not necessarily an
Employee.

Note Relationships in object-oriented terms are generally broken down into “is @” and “has a” vari-
eties. For example, a dog “is an” animal and “has a” heart. “Has a” relationships describe traits that an
object possesses, and “is a” relationships describe what an object is. We'll see more of this as the book

progresses. In our example here, Tom “is an” Employee, which “is a” Human, and he “has a” pay rate
of 10 dollars an hour. It's really nothing more complex than that.

18. We’re almost done! All we need to complete our exercise is to add the CEO class to this code and

then to make use of it. Close the interpreter and open humanBeing.py again, add to the bottom of
the file the code in Listing 3-14, and then save it.

19.

20.

CHAPTER 3 ADVANCED IRONPYTHON

Listing 3-14. humanBeing.py Continued

class CEO(Employee):
some data about the CEO
bonus = 5000
annualGrowth = 2.3

methods to set that data
def setBonus(self, bonus):
self.bonus = bonus
def setAnnualGrowth(self, annualGrowth):
self.annualGrowth = annualGrowth
methods to get that data
def getCEOInfo(self):
print "The CEQ's end-of-year bonus is $", self.bonus,w=
" * ", self.annualGrowth, "% annual growth, totaling $",=
self.bonus * self.annualGrowth, "."
Open the interpreter again, import everything you need from the preceding, and try the following
code.

>>> tom = humanBeing.CEO()

>>> tom.setName('Tom Smith')

>>> tom.setAge(55)

>>> tom.setWeight(160)

>>> tom.setPayRate(70)

>>> tom.setHours(40)

>>> tom.setBonus(5000)

>>> tom.setAnnualGrowth(2.3)

>>> tom.getInfo()

Human being Tom Smith is 55 years old and weighs 160 pounds.
>>> tom.getEmployeeInfo()

Current pay rate is 70 dollars per hour at 40 hours per week,=
which totals $ 2800 weekly.

>>> tom.getCEOInfo()

The CEO's end-of-year bonus is $ 5000 * 2.3 % annual growth, totaling
$11500.0 .

Type exit() and press Enter to exit the interpreter. You're done! The entire listing of
humanBeing.py is provided on the following pages.

57

58 CHAPTER 3 ADVANCED IRONPYTHON

Listing 3-15. Complete Listing of humanBeing.py

class Human:
some data about our human, with default values for convenience

age = 25
name = 'Alan Harris'
weight = 190

methods for setting attributes about our human
def setAge(self, age):
self.age = age
def setName(self, name):
self.name = name
def setWeight(self, weight):
self.weight = weight

methods for getting attributes about our human
def getAge(self):
return self.age
def getName(self):
return self.name
def getWeight(self):
return self.weight
def getInfo(self):
print "Human being", self.name, "is", self.age,=
"years old and weighs", self.weight, "pounds."

class Employee(Human):
some basic data about our employee
payrate = 10
hours = 40

methods to set that data

def setPayRate(self, payrate):
self.payrate = payrate

def setHours(self, hours):
self.hours = hours

CHAPTER 3 ADVANCED IRONPYTHON

methods to retrieve that data
def getPayRate(self):
return self.payrate
def getHours(self):
return self.hours
def getEmployeeInfo(self):
print "Current pay rate is", self.payrate,=
"dollars per hour at",=
self.hours," hours per week, which totals $",w=

self.hours * self.payrate, " weekly."
class CEO(Employee):

some data about the CEO

bonus = 5000

annualGrowth = 2.3

methods to set that data
def setBonus(self, bonus):
self.bonus = bonus
def setAnnualGrowth(self, annualGrowth):
self.annualGrowth = annualGrowth
methods to get that data
def getCEOInfo(self):
print "The CEQ's end-of-year bonus is $", self.bonus,w=
" k" self.annualGrowth, "% annual growth, totaling $",=

self.bonus * self.annualGrowth,

That’s not a bad raise for Tom! Tom has gone from being a mere human, to being
an employee, to being a wealthy CEO in a few short pages. By now you should have
a pretty good grasp of the fundamentals of classes in [ronPython, as well as some
understanding of object-oriented principles and how they apply to business solutions.
Granted, the human-to-employee-to-CEO example is rather simple when compared
to the modeling of enterprise solutions, but it is very effective at demonstrating how
an OOP developer thinks when approaching a problem. Breaking problems down into
simpler pieces and separating concerns into small, easy-to-maintain components
will make you a better developer. And when you return to do maintenance on a piece
of code you haven’t touched in six months or a year, you’ll thank yourself for making
things easy at the beginning.

59

60

CHAPTER 3 ADVANCED IRONPYTHON

.NET Data Types

In the .NET world, most of what we’ve covered still rings true. Developers are still working
with strings and numbers and so on. The .NET framework takes a different route to the
destination, however; regardless of whether you're dealing with a value or reference type,
everything in .NET is an object.

Note Object is the superclass that all types inherit from in .NET. It doesn’t matter if you’re working
with a primitive integer or some fancy GetTerrificProgramFactory class—the foundation on which it’s con-
structed is object.

What does it mean to have every type derive from object? Essentially it creates a
unified type system, allowing any class or data type to be treated as an object. This is a
construction of a statically typed language; [ronPython by itself does not care for or need
this information. When working with other .NET classes and code, it is important to
understand this concept and its implications. We can also take advantage of its benefits.

Value and Reference Types

In .NET, a value type is a variable whose data is stored directly within the memory
assigned to that particular variable. Integers, Booleans, and strings are all examples of
value types. Classes are reference types; when a reference type is created, space is allo-
cated in memory for an object, and then instances of that object are created. The code in
Listing 3-16 shows the implementation differences between the two types.

Listing 3-16. Value Types vs. Reference Types

these are value types; they are not instances of objects
speed = 55

driving = true

driver = "Speedy"

these are reference types; they are instances of objects
vehicle = vehicleTypes.GetCar()
road = roadmaps.GetHighway ()

CHAPTER 3 ADVANCED IRONPYTHON

Mixing and Matching

The wonderful thing about IronPython development is that if you're a seasoned Python
developer, you can use all the same syntax you're comfortable with and simply take
advantage of .NET framework classes when you like. If you're a seasoned developer in
another .NET language, you can freely take advantage of traditional Python code and
constructs to use in your code.

MIXING .NET WITH PYTHON

Open up the IronPython interpreter. For this exercise, we’ll create a few types using the traditional
Python syntax and perform various operations on them using classes from .NET.

>>> import clr

>>> clr.AddReference('System")

>>> from System import *

>>> foo = "bar"

>>> if (String.IsNullOrEmpty(foo)): print "Foo has no value."
.. (press Enter at this prompt. Nothing should be displayed.)
>>> if not (String.IsNullOrEmpty(foo)): print "Foo has a value."
.. (press Enter at this prompt.)

Foo has a value.

>>> Int32.Parse("12345")

12345

>>> number = 7

>>> print number.ToString()

7

>>> dummy = "the/quick/brown/fox"

>>> print dummy.Split('/")

Array[str](('the', 'quick', 'brown', 'fox'))

>>> print dummy.Split('q")

Array[str](('the/", 'quick/brown/fox"))

>>> sentence = "The only thing we have to fear is fear itself."
>>> print sentence.Substring(o, 30)

The only thing we have to fear

61

62

CHAPTER 3 ADVANCED IRONPYTHON

Summary

We’ve covered the basic Python data types and how to perform common operations on
them. We have learned how to store data in a few different types of structures and how
we can retrieve that information in a straightforward fashion. We have covered very
large numerical data types in IronPython and dealt with Boolean values. Finally we cre-
ated a variety of classes to demonstrate object-oriented software development and how
IronPython supports development of advanced systems, and we discussed how we can
mix and match IronPython types with the .NET framework.

CHAPTER 4

IronPython Studio

“Once a new technology starts rolling, if you're not part of the steamroller, you're
part of the road.” — Stewart Brand

One of the best resources that programmers have is an integrated development
environment, or IDE. Up until now, we’ve been doing all our programming using the
IronPython console interpreter, which is a viable way to program but not the easiest or
fastest. Luckily for us, Microsoft has an IDE solution integrated with Visual Studio 2008
that makes developing and managing IronPython applications downright enjoyable. This
IDE, called IronPython Studio, is a free download from Microsoft that facilitates develop-
ment of IronPython console and Forms applications. Before we get started installing and
working with the IDE, let’s take a look at where we’re going regarding application devel-
opment and why an IDE is such a useful tool in a programmer’s arsenal.

Hopping Onto the Steamroller

So far, you should be pretty well versed in building a console application; that’s all we’ve
really done so far. Such applications are a terrific way to begin learning a programming
language because you don’t have to concern yourself with the shiny veneer of a typi-

cal Windows application and the programming tasks that come along with developing
software in that type of environment. Console applications are great for trying out ideas
or algorithms quickly, and they make wonderful test beds for code libraries and snippets
you will write throughout your programming career.

Note A test bedis a platform or environment where you can test software in a repeatable way. An exam-
ple from my real-life development is an ASP .NET project | created at work called Sandbox. The Sandbox
project is set up in such a way that I can reference code I've written elsewhere and measure performance,
perform automated testing to make sure I'm getting the results | expect, and so on. For smaller situations,
I'll frequently make a console application and run my code in it to see how things are working. We’ll cover
these types of development situations in detail a bit later and work through some examples firsthand.

63

64

CHAPTER 4 IRONPYTHON STUDIO

Forms applications are the typical style of software you're probably used to working
with in a Windows environment. They generally use the standard Windows menus and
controls to maintain a consistent look and feel when possible, although you can get very
creative with the interface (sometimes too creative!). In the context of Windows, they
use what is called an event-driven programming model, meaning that the application is
capable of responding to and acting on a variety of events that could be initiated by the
operating system, the user, or another program entirely.

An event-driven programming model is a bit different than the type of programming
we’ve done so far in this book, although there are a few similarities. Responding to events
requires that the program operate in a continual loop, checking for inputs, processing them if
available, and then updating the user interface so that the end user knows things are happen-
ing. In a very limited sense, we have done that ourselves in previous examples. The problem
is that in those examples we did not implement a true event-driven system. We have been
generally operating in a very linear, one-way style: the program asks the user for input and
quietly twiddles its thumbs until that input is provided. Assuming that the system always has
power and never crashes, if a user never provides that input, the system will be stuck in that
state indefinitely, unable to perform any other tasks until it has gotten past that one particular
roadblock. Our poor programs are waiting at a perpetual red light with their blinkers on.

We’re going to put all of these things in perspective with some IronPython code that
builds a basic Forms application by hand. We’ll see what happens when an event loop is
set up and why our lives will be so much easier throughout the rest of the book, because
we’ll be using IronPython Studio to handle some of the heavy lifting. With the text editor
of your choice (for me, it's Notepad—I feel so low-tech sometimes), enter the code from
Listing 4-1 exactly as it appears and save it as form.py.

Listing 4-1. An Implementation of a Forms Application

import sys
import clr

clr.AddReference("System.Windows.Forms")
from System.Windows.Forms import Application, Form
class IronPythonForm(Form):
def _init (self):
self.Text = 'IronPython Forms Application’

self.Name = 'FormApp'

form = IronPythonForm()
Application.Run(form)

CHAPTER 4 IRONPYTHON STUDIO

Whoal! This whole IronPython thing just got real. In the immortal words of Douglas
Adams, “Don’t panic.” Go ahead and run this script. You should see something along the
lines of what’s displayed in Figure 4-1.

Figure 4-1. It’s not terribly interesting, but it does run!

You have to admit, that’s pretty cool for so little effort. Now, some of the code syntax
is going to look familiar, and some of it looks just plain cryptic. Let’s go line by line and
really examine what’s happening here, for this is the foundation on which our applica-
tions will be built.

Import sys and import clr allow us to use functionality that is contained in other
modules or assemblies. We’ve used this command before, but not in terms of the CLR
assembly. Importing the CLR assembly lets us tap into the vast functionality of the .NET
framework and is really the starting point for the rest of this book. The CLR assembly
exposes a large number of namespaces and methods that let you write code to target the
.NET framework as well as saving you the pain (or pleasure) of implementing a lot of this
functionality from scratch by yourself.

Note In .NET lingo, an assembly is the smallest unit of code available for deployment. It is a versioned
file and can be made up of one or more code files. Basically, it’s the building block of .NET software
development.

The line clr.AddReference("System.Windows.Forms") is where the rubber meets
the road, as it were. What we're telling [ronPython is: In that clr assembly we
imported a moment ago, I want to be able to access the methods available to me in
the System.Windows.Forms namespace. Immediately afterward we told IronPython
from System.Windows.Forms import Application, Form, which indicates to the compiler
some specifics about the names we want to use in our code that can be found in System.

65

66

CHAPTER 4 IRONPYTHON STUDIO

Windows.Forms. Then we created a class, class IronPythonForm(Form), which takes a
Form object as its parameter.

A form exposes a variety of properties and methods to the outside world. By changing
the properties self. Text and self.Name, we modified the text that appears in the title bar of
the application as well as the name of the form.

Next we created an instance of the form by writing form = IronPythonForm(), and
finally we got everything moving with Application.Run(form), which set up the event
loop for us. That’s not too bad for 10 lines of code! Although the program isn’t terribly
useful at the moment, it does exhibit some very important traits: it is a true Windows
application, it was created by hand in a dynamic language, and it has a basic event loop
for us to use.

You'll notice that although the program isn’t doing much, it’s also not really sitting
around waiting for us to do something either. You can minimize or maximize it, resize
it, close it, or leave it sitting quietly while you go about your business. It doesn’t care.
Underneath the hood, the event loop is running, waiting for incoming messages and
input. We'll provide that sort of useful information to it in a bit. Right now we’re going
to teach you a shortcut.

So Much Typing...Is There a Better Way?

Knowing what’s happening at a low level is very, very useful in programming. The more
you understand the system with which you’re working, the better use you can make of
it. However, I don’t imagine you want to type that code every time you create a form; it’s
boilerplate, and we should be able to automate the whole routine. Let’s take a moment to
install IronPython Studio and see what benefits we can make use of. I'm going to assume
that you have installed Visual Studio; it’s one of the prerequisites I mentioned in Chap-
ter 1. If you haven't, flip back and do so.

Now you’ll need to proceed with the installation of [ronPython Studio.

CHAPTER 4 IRONPYTHON STUDIO

DOWNLOADING AND INSTALLING IRONPYTHON STUDIO

IronPython Studio is available as a free download from the CodePlex web site, and free is always the right
price when it comes to a piece of software you want. As | write this chapter, the current version is 1.0.

1. In the web browser of your choosing, go to http://www.codeplex.com/IronPythonStudio.

2. Click the /ronPythonStudio 1.0 release link; then on the next screen click the
IronPythonStudiolntegratedSetup link.

3. Download the zip file, open it, and run the lronPythonStudiolntegrated file to install IronPython Studio.

4. Once the installation is complete, open your copy of Visual Studio and select New and then
Project. You should see something similar to the image that follows.

67

68

CHAPTER 4 IRONPYTHON STUDIO

The second illustration in the sidebar shows the default project types that IronPython
Studio provides. Click the Windows Application template; then, for a Name type, select
form2 and click OK. After the program chugs and works for a few moments, you'll see
something like Figure 4-2.

Figure 4-2. Looks pretty familiar, no? The IDE can reduce your development times
significantly.

Here we see the first major benefit of using the IronPython Studio IDE: the environ-
ment does some of the work for you. Again, for the sake of learning or understanding, it
is always a good idea to experiment and try things the manual way where possible. But
it’s not a good use of your time continually to reinvent the wheel. Letting the IDE handle
some of the setup tasks means less code for you to write by hand.

That doesn’t mean that IronPython Studio generated the exact same code we used
earlier, however. On the right-hand side of the screen, in the Solution Explorer window,
right-click on Form1.py and select View Code (Figure 4-3).

CHAPTER 4 IRONPYTHON STUDIO

Figure 4-3. On second thought, maybe it’s not entirely familiar.

Although the code doesn’t look quite the same as what we wrote, some of its ele-
ments are recognizable. Modify the line self.Name = 'Forml' to self.Name="FormApp'. Next,
modify the line self.Text = 'Form1' to self.Text = 'IronPython Forms Application'.

Note Always save your work. It’s just a good practice to get into and has the additional benefit of stop-
ping the IDE from complaining to you every time you run the application.

Go ahead and press F5 to build and run this program, or select Start Debugging from
the Debug drop-down menu. Compare the way the program looks in Figure 4-4 to the
program in Figure 4-1.

69

70

CHAPTER 4 IRONPYTHON STUDIO

Figure 4-4. The end result looks the same.

They say all roads lead to Rome, and in IronPython development there is an element
of truth to that. You can take a variety of ways to get to the same destination. You can
implement a lot of features or just the bare minimum to achieve functionality. It depends
on the situation and the requirements of the application.

Note Anyone out there who’s a fan of “Office Space” should know what happens to people who just do
the bare minimum.

Forms, from the Ground Up

It’s all well and good to have a basic form on the screen, but we're developers. We
demand action. It’s not good enough to sit there and stare back at me; the application
needs to do something. Having touched on the event-driven model in Forms application
programming, let’s try it for ourselves.

First, select the design view of the application by either clicking the Form1.py
[design] tab or right-clicking on FormI.py in the Solution Explorer and selecting View
Designer. With the designer on screen, you will see small white squares on the bottom-
right corner of the form, halfway down the right-hand side of the form, and halfway
across the bottom of the form. Click and hold down the left mouse button on the white
square halfway down the right-hand side of the form, and drag it to the right to resize the
form. See Figure 4-5 for a rough idea of the size we’re looking for. It doesn’t have to be
precise, just larger than what we started with.

CHAPTER 4 IRONPYTHON STUDIO i

Figure 4-5. Our form expanded!

On the left-hand side of the screen, you will see the toolbox, which has expandable
tabs that contain objects you can drag and drop onto your form. Many of these elements
are standard to .NET, meaning that you can access identical objects if you were building
this application in C# or VB.NET. This is a second benefit of the IDE: common objects and
components can easily be added to an application via the toolbox. For right now, left-click
on the Common Controls tab in the toolbox so that it is opened up, and then left-click
and drag a Label object and a Button object to the form (Figure 4-6).

Figure 4-6. We've added two controls to the form.

Note One last reminder to save! The compiler will pop up a well-intentioned, if not slightly annoying,
message if you haven’t saved before trying to run your code.

72

CHAPTER 4 IRONPYTHON STUDIO

Once you've got both the label and the button on the form, press F5 to run the
application again. Click the button. What happened? Well, a big fat nothing happened.
But why?

It’s All This Substandard Wiring!

Nothing happened because we didn’t tell the application what to do if we click the but-
ton. Specifically, we didn’t wire the button to anything. Don’t mistake the application’s
not doing anything for the application’s not knowing we clicked the button. The message
was received loud and clear. Unfortunately, that message was “I was clicked, but you
don’t need to do anything about it.”

Note When a developer wires a control, he or she is borrowing a term from the electrical engineer-
ing world. A button by itself is useless. If the power switch on your computer weren’t wired to anything, it
wouldn’t do anything. You could flip it all day and get no result. The same is true in programming. Until we
wire our button to the application by providing some instructions on what to do when it’s clicked, it does
precisely zilch.

Before we start working heavily with these controls, we really need to give them
meaningful names.

Tip | can’t stress how awful a habit it is to leave controls with the default names the IDE provides. When
you add a control, the IDE will generally use the name of the control followed by a number that is 1 greater
than the previous number of that control on the form. For instance, if you had added five Label controls to the
form, the next one would be called Label5. When you’re dealing with one or two controls on a form, this isn’t
too bad. However, once you’ve got 50 or 100 controls on a form, you’ll want to tear your hair out trying to
figure out the functional difference between Label39 and Label17. Get into good naming habits early!

Left-click on the Label control on your form. You will see the Properties window on
the bottom right of the IDE change to reflect the properties of the object you've clicked.
Scroll the list of properties until you see one called (Name), which should be third on the
list. Change the name from Labell to IblUpdateText. Next, left-click on the Button control
on your form and scroll the properties list to the (Name) property and change it from
Buttonl to btnUpdate.

CHAPTER 4 IRONPYTHON STUDIO

Tip For controls on either a web page or a Forms application, | tend to prefix the control name with a
three-letter abbreviation, to let me know what type of control I'm dealing with. This comes in really handy;
at a quick glance in my code | can easily identify the buttons, labels, text boxes, or any other control without
occupying a lot of space. To me, LabelUpdateText s a bit verbose, whereas IblUpdateText conveys the mean-
ing just fine. This a personal preference. If you find you don’t want or need those prefixes or you prefer some
alternative naming convention, by all means do what works best for you. With that said, always keep future
maintenance in the back of your mind. That button you made called PDmc2 to update the sales reports might
make total sense now, but | bet a few months from now things might not be so clear.

Now that you've given some more meaningful names to your controls, it’s time to do
a little wiring. Double-click on the Button control on your form; this should bring up the
code window (Listing 4-2). Note that the IDE has inserted a bit of code on your behalf.

Listing 4-2. A Snippet of the Button-Handling Code the IDE Produced

@accepts(Self(), System.Object, System.EventArgs)
@returns(None)
def btnUpdate Click(self, sender, e):

pass

This method signature says that you've defined a method called _btnUpdate_Click
that accepts self, a sender object, and a list of event arguments as parameters. The line
pass can be removed; it’s a placeholder in IronPython that does nothing. In place of the
pass line, add the code shown in Listing 4-3.

Listing 4-3. Telling the Button to Update the Label Control

self. lblUpdateText.Text = "The button was clicked, so this text has beenws
updated accordingly."

Let’s try running the application again; once it’s loaded, click the button. You should
see the text change from its initial state to the text you just entered (Figure 4-7).

73

74 CHAPTER 4 IRONPYTHON STUDIO

Figure 4-7. The button was successfully wired and the label updated.

Clean Code Is Happy Code

Now that we’ve gotten our button wired up, we should clean up our code a bit. Currently
the form has intimate knowledge of the behavior of the button when it’s clicked. What we
should do is create an IronPython class file and move the code that actually changes the
text to it. Right-click on the form2 project title in the Solution Explorer, select Add, and
then click New Item (Figure 4-8).

Figure 4-8. [ronPython Studio provides some ready-made code templates as well as project
templates.

CHAPTER 4 IRONPYTHON STUDIO

Select Class, and name the new class file utility.py. When ready, click Add.
IronPython Studio will add the file to your current project and automatically open it.
It should look like Figure 9-10.

Figure 4-9. Generated class templates are very sparse initially.

The desired result is that we will be updating a label with different text than it had ini-
tially. Let’s go ahead and make a method called UpdateText to fulfill this purpose. Enter
the code exactly as it appears in Listing 4-4, and save the class file.

Listing 4-4. Filling in the Functionality of the UpdateText Method

class utility:
"Some basic IronPython utility methods"

def UpdateText(self):
return "The button was clicked, so this text has been updated w
accordingly from utility.py."

With our UpdateText method complete, we should turn our attention back to
the button on our form. We need to create an instance of our utility class and call
the UpdateText method when the button has been clicked. Change the code in the
_btnUpdate_Click method so that it matches what appears in Listing 4-5, and press F5 to
run the application.

75

76

CHAPTER 4 IRONPYTHON STUDIO

Listing 4-5. Updating the Button to Call Our Utility Class

def btnUpdate Click(self, sender, e):
util = utility.utility()
self. lblUpdateText.Text = util.UpdateText

The application should start up fairly quickly and you'll be presented with the same
form you've gotten so used to. Click the button. Did the label control update? No? What
happened? We were taken back to IronPython Studio where the IDE had flagged an error
in my code; see Figure 4-10.

Figure 4-10. The IDE has pointed us to an error in our code.

Before we address what this error means and why it’s there, we should highlight one
of the three major benefits of an IDE over the console interpreter. If we were running
this code via the IPY interpreter, then once an error occurred the interpreter would tell
us what happened and where, but we would be unable to pause program operation to
examine the current state and see precisely what had caused the error. In IronPython
Studio, when we run the application and an error occurs, operation pauses and we can
get information on the condition of the program, make edits, and so on. Wahoo!

CHAPTER 4 IRONPYTHON STUDIO

Note You don’t only get access to this sort of information when something goes terribly wrong. You can
set things called breakpoints in your code. When a breakpoint is set on a line of code, program execution
pauses and control is returned to IronPython Studio. You can examine variable values using watches and do
a variety of other debugging tasks to nip problems in the bud. We’ll cover these debugging techniques and
more in the next chapter.

This is also a terrific demonstration of the nature of a dynamic language versus
a static one like C# or VB.NET. The reason the code has failed to run is that we did not
import our utility module into our form, so the code we wrote to update the text is
inaccessible from our current location. In C# or VB.NET, if we attempt to call code that
we have not made accessible via the using or Imports statement, then the IDE will tell
us immediately and prevent us from even running the code. In IronPython Studio, the
interpreter won’t know there’s a problem until it hits that line in the script and finds no
matching method available to call, and it lets us know about it at runtime instead. It’s
something to be aware of; in IronPython the IDE is less of a crutch in terms of ensuring
that you've done everything correctly before you hit F5 and try it out for yourself.

Note In C#, you can access code in another module or assembly with the using keyword. In VB.NET, you
would say Imports. They both do essentially the same job that import does in IronPython.

Let’s correct the error in our application and try this again. You can stop the debug-
ging session either by closing the application, by pressing Shift+F5, or by pressing the
Stop button on the toolbar. At the top of the code in Form1.py you will see numerous
import statements above the beginning of the class declaration. We need to add a state-
ment importing our ufility class for everything to function properly. Modify the code so
that it matches what appears in Listing 4-6; then press F5.

Listing 4-6. Importing the Utility Class with the Relevant Line Boldfaced

import System
from System.Windows.Forms import *
from System.ComponentModel import *
from System.Drawing import *
from clr import *
import utility

class form2:

77

78 CHAPTER 4 IRONPYTHON STUDIO

Tip These namespaces are case sensitive; if you named your class Utility instead of utility, you'll need to
call it accordingly.

As before, the application should build and execute fairly quickly, and you’ll see the
form pop up on screen. Click the button and see if your result matches Figure 4-11.

Figure 4-11. Now that we have fixed the error, our utility class is used properly.

Summary

Now that you've had the introductory tour to IronPython Studio, I'm sure you see the
benefits in working with an IDE over working with the console interpreter. It’s perfectly
fine if you choose to do your work via the command line, but do so knowing that you sac-
rifice some of the benefits the IDE provides, such as templates and efficient debugging.
We've only touched the surface of what IronPython Studio can do for you. As we move
forward we’ll cover more advanced debugging techniques and multiple language solu-
tions and expand our Forms applications significantly.

CHAPTER 5

Mixing and Mingling
with the CLR

“Let us change our traditional attitude to the construction of programs. Instead of
imagining that our main task is to instruct a computer what to do, let us concen-
trate rather on explaining to human beings what we want a computer to do.”

— Donald Knuth

So far, we’ve skipped along the surface of the Common Language Runtime and the .NET
framework, making use of features and functions without really examining the tools at
hand to understand what’s happening behind the scenes. This is the point where Iron-
Python really begins to separate from the crowd and show off a bit, mixing the best of the
Python language with the power and stability of the .NET framework.

“CLR-ance, Clarence.”

What exactly is the Common Language Runtime? The CLR is a core component of the
.NET framework, responsible for taking intermediate bytecode from the CIL, or Common
Intermediate Language, and translating it to native code that can be run on the target
platform. In plain English, you write your program source code in IronPython. Then this
code is compiled to a standardized intermediate language (CIL). But this code isn’t yet
native code, that is, at a point where it can be executed by the operating system. The CLR
takes care of that remaining step, converting the intermediate code to a final product that
the operating system can interpret and execute.

In the previous chapter we saw how IronPython connects in code to the CLR, and we
have already gotten some experience with standard .NET controls and events. What we
need to do now is to take that knowledge a step further and build a completely functional,
real-world application from the ground up. This lets us cover most of the phases of the
software development life cycle and provide some concrete examples of how to work
with the .NET framework.

79

80

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Note The software development lifecycle, or SDLC, is a series of steps that developers go through while
working on software. There is no precise definition of these steps. Rather, you can consider five key areas
involved in development: planning a project, gathering application requirements, designing the application,
implementing that design, and, finally, maintaining that design. By definition this process tends to repeat,
and some design methodologies break down individual steps into smaller, more discrete steps. But for the
purpose of this discussion, these five are sufficient.

Cliché though it may be, I have a process for learning a new language that I'm going
to share with you here, because it has served me well in the past. I find that it’s easier to
learn a language when I have something in mind to build; aimlessly toying with a method
here or a pattern there doesn’t really tie things together the way I'd like. Normally I build
a small application from start to finish. It has to be an application that covers a variety of
operations so that I can examine common (and occasionally not-so-common) aspects
of the language. It has to be small enough that the project is manageable and not overly
time-consuming. And finally, it has to have a small enough operational footprint that
I don’t have to implement a massive number of features or understand a complex prob-
lem domain to build it.

For our small application, we’re going to build Notepad, and the CLR is going to help
us do it.

Note | hope the developer or developers at Microsoft who created Notepad don’t get the impression that
I’'m marginalizing their work. If Notepad were poorly written, nobody would use it. You guys did great work,
but I'd rather build Notepad from scratch in IronPython than build Windows Media Player, thank you very
much! Oh, and if the *nix “vi” users could stop snickering we’d all appreciate it.

The Plan

Like any great bank heist (or piece of software, if crime isn’t your thing), we have to for-
mulate a plan. We already described some basic requirements for the application design
itself, but we haven’t addressed the functional requirements.

1. The application should consist of a single form.
2. The application should be capable of CRUD operations to the file system.

3. The application should operate on plain text documents.

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

4. The application should be written in pure IronPython; no other languages are
allowed!

5. The application should be capable of printing documents.

6. The application should behave as much like Notepad as possible, wherever pos-
sible, although it need not implement every single aspect of the original program.

Note CRUD, an abbreviation stolen from the database world, stands for “create, read, update, and
delete.” Notepad does not support any functions that delete files from the file system, so we won’t be imple-
menting any here. Within reason we want our application to look and act as close to Notepad as possible.

The Design

If at all possible, it helps to pin down the design of an application early, with the under-
standing that virtually nothing is ever carved in stone. Indeed, many development
teams find that a little design flexibility goes a long way, particularly when software
maintenance comes up; an inflexible architecture is a difficult-to-maintain architecture.
We’ll see examples throughout the construction of our applications where changes are
made significantly easier by anticipating, not the changes themselves, but the very fact
that change is a constant in software engineering. That said, our text editing application
should be fairly straightforward, but let’s assume that it might evolve one day into a
multimillion-dollar application and hedge our bets now.

In terms of the user interface, our application will be pretty straightforward. We’'ll
have the primary form that houses all our controls, and we’ll have a text box that essen-
tially covers that entire form, except for the menu bar. The menu bar will be at the very
top of the form to facilitate the file and print operations the user will need.

On the coding side, we’ll have our main project that contains the form and necessary
startup code. We will create a business logic folder and put all our code relating to pro-
gram operation in there. As your applications grow, they can have as many layers as you
consider appropriate, based on the needs of the application you're developing.

Note As you probably remember from Chapter 3, code that is tightly coupled is highly dependent on other
code to do its job. We don’t want that. Step 1 in the process of decoupling code (or, rather, ensuring it is
never coupled in the first place) is making sure you don’t throw everything into the code of the form itself. It
makes maintenance a nightmare and induces a form of “code rigor-mortis.”

81

82

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

The Implementation

The first thing we should do is set up a proper location for our development efforts. In
Chapter 2 we set up C:\Python as the home for our IronPython code, so we’ll stick with
that. Open up IronPython Studio; we’re going to create a new Forms application called
NotQuitePad in the C:\Python\NotQuitePad directory, which we’ll let IronPython Studio
create for us (Figure 5-1). Make sure the “Create directory for solution” box is checked
before you click the OK button; if it is not selected, then all the code will live at C:\Python
instead of in a convenient subfolder.

Figure 5-1. Creating the NotQuitePad project

When we created out project, IronPython Studio was gracious enough to generate
automatically a form called Form1, which saves us from having to do it. Recall that earlier
I mentioned that we should almost always change the names of controls we’re going to
be referencing in code because the default naming convention isn’t the most meaningful
scheme for a developer to interact with. Double-click on Form1 in the Solution Explorer
on the right; you should see the Properties window below it update with a variety of
properties related to our form. Scroll to the top and change the property called (Name)
to NotQuitePad. Do the same to the Text property.

In addition to the control names’ not being particularly meaningful, Form1 isn’t
exactly a terrific description of our form either. Right-click on the Form1.py listing in the
Solution Explorer and select Rename. Change the name to NotQuitePad.py and press
Enter. Once you've done these steps, your screen should look similar to Figure 5-2.

CHAPTER 5 MIXING AND MINGLING WITH THE CLR 83

Figure 5-2. NotQuitePad with a few settings tweaked

Press F5 to build and debug the application. You should find that it doesn’t execute
the way you intended; the IDE should throw a fit about some code in Program.py
(Figure 5-3).

Figure 5-3. Who were we calling again?

I purposely didn’t correct this error before having you run the application, to high-
light a little “gotcha”: the IDE won’t update those code references automatically if you
rename a form. Right now that’s not a huge issue because we’ve only got one form in the

84

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

application and it’s referenced in only one place. But you should definitely keep that in
mind, because those types of errors can be insidious in large applications where certain
forms are hit infrequently. Correct the code in Program.py so that it looks like Listing 5-1
(I have put the relevant changes in boldface, for convenience). Then try running it again
(Figure 5-4).

Listing 5-1. Fixing the Program.py Code

from System import *
from System.Windows.Forms import *
from NotQuitePad import *

class NotQuitePado: # namespace

@staticmethod

def RealEntryPoint():
Application.EnableVisualStyles()
Application.Run(NotQuitePad.NotQuitePad())

if _name_ == "Program":
NotQuitePado.RealEntryPoint();

Figure 5-4. It’s alive!

Now that our application is starting to take shape, we have to add to the form the
controls needed to operate the program. First up, we should drag to the form a text
box control from the toolbox (Figure 5-5). Having done so, we rename the control to
txtUserText. Scroll the Properties window until you see the property called Multiline; set

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

it to True. If you do not set the Multiline property to True, you will be able to resize only
the control’s width, and text cannot move down to a new line.

Figure 5-5. Not quite Notepad size, but a start

One of our application requirements is that the text box take up the entire form. We
can do that through the properties, but let’s do it through code instead. Double-click on
the form at any location that is outside the boundaries of the text box. Immediately you
should be taken to the source code for NotQuitePad.py. What you'll notice is that the IDE
created a bit of code for you (Listing 5-2).

Listing 5-2. The IDE Created a _NotQuitePad_Load Method for You Automatically

@accepts(Self(), System.Object, System.EventArgs)
@returns(None)
def NotQuitePad Load(self, sender, e):

pass

The IDE also wired an event for you that executes (or, in programmer lingo, fires) the
_NotQuitePad_Load method when the form is loaded (Listing 5-3).

Listing 5-3. The IDE Also Wired an Event to Fire When the Form Is Loaded

self.Load += self. NotQuitePad Load

85

86

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Note There’s something really interesting at work here. Notice the usage of += to fire the
_NotQuitePad_Load event when the form is loaded. If the IDE has just written an equals sign, the only thing
to execute would be the method to the right of the equals sign. But since the IDE used a plus sign and an
equals sign, our _NotQuitePad_Load method is part of a list of methods that can be run when the event is
fired. This is incredibly powerful and will soon become very important to our application.

When the form loads, we can programmatically set the height and width of the
txtUserText control to be equal to the height and width of the window. Remove the pass
line of code and replace it with the code in Listing 5-4.

Listing 5-4. Forcing the txtUserText Control to Be a Given Height and Width
self. txtUserText.Size = self.Size

If you run the application again by pressing F5, you'll see that the txtUserText control
is now the same size as the NorQuitePad form itself (Figure 5-6). However, things are not
quite perfect yet.

Figure 5-6. Well, it did exactly what we told it to.

A good first attempt at fixing this problem might come in the form of modifying the
method that fires when the application is loaded to, say, “Hey, put this TextBox as far to
the top and left as you can get it!” This should put things in the right location. Let’s do
that right now. Modify your code to add the location definition shown in Listing 5-5 right
after the size definition and rerun the application (Figure 5-7).

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Listing 5-5. Forcing the txtUserText Control to Move to the Top Left of the Form

self. txtUserText.lLocation = Point(0, 0)

Note A Pointin .NET refers to an X-and- Y point in two-dimensional space, in that order, measured in
pixels and starting from the top left of the containing object. As you probably recall from math classes, this
is identical to the system used for plotting data, with one important distinction: in programming terms, the
Y-value increases as it goes down the screen, not up as you might be used to. If we had set the location of
the text box to be Point(10, 20), the text box would start 10 pixels to the right and 20 pixels down from the
top left of the form. If that’s a little confusing, feel free to play with the numbers and come back once you
see how the coordinate space works; the bottom line is that X increases to the right on the screen and Y
increases going down the screen.

Figure 5-7. Better! But looks can be deceiving.

It looks like things are starting to take shape. But there’s a problem. What happens
when we resize the form? With the program running, drag the bottom right corner of the
form down and to the right (Figure 5-8).

87

88

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Figure 5-8. Notepad would SO not do that.

What exactly can we do about that? Clearly it’s a deal-breaker to have the form be
resized while the text box sits quietly at whatever size it was when the program was
launched. Luckily the .NET programming model exposes a variety of events we can tap
into. We've already seen this in action when the IDE added our _NotQuitePad_Load
method to the list of events that fires when the form loads. We need to fire some code
when the form is resized, so we will add an event to self.Resize.

We don’t want to call the _NotQuitePad_Load method in our resize event; techni-
cally, it would work, but from a design and implementation standpoint it absolutely
stinks. So instead, we’ll make a method called _ResizelnputBox to handle the resizing
and positioning of our text box when the user changes the size of the form. We should
remove that resizing code from _NotQuitePad_Load and replace it with a call to our
resizing method. It’s a cardinal sin to duplicate code; it’s always a best practice to
implement a piece of code only once and to call it when needed.

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Tip Here’s one of these little “please don’t shoot yourself in the foot” architecture moments where you
can save yourself a terrible headache down the road. Consider this: Why is it better to write a single method
that prints “Hello!” (let’s refer to it as SayHello) and to call that method anywhere we need it, instead of
adding a line of code that prints “Hello!” at each and every point we need it? If your boss comes to you six
months from now and tells you, “Hey, we have to change the program so that it also prints the user’s name
in the greeting,” you’ll be Kicking yourself for not making a simple method and using that instead. Hunting
down code is no fun at all, and it is a particularly painful task when you’re working under a deadline.

There are quite a few changes to the NotQuitePad.py file that can make this happen,
so I'm going to provide the entire listing because it’s easier when viewed in this fashion.
Make sure your code matches what I've provided in Listing 5-6 before running the appli-
cation again (Figure 5-9).

Listing 5-6. The Complete Listing of NotQuitePad.py at This Time

import System

from System.Windows.Forms import *
from System.ComponentModel import *
from System.Drawing import *

from clr import *

class NotQuitePad: # namespace

class NotQuitePad(System.Windows.Forms.Form):
"""type(_txtUserText) == System.Windows.Forms.TextBox"""

_slots = [' txtUserText']

def _init (self):

self.InitializeComponent()
@accepts(Self(), bool)
@returns(None)

def Dispose(self, disposing):

super(type(self), self).Dispose(disposing)

89

90 CHAPTER 5 MIXING AND MINGLING WITH THE CLR

@returns (None)

def InitializeComponent(self):
self. txtUserText = System.Windows.Forms.TextBox()
self.SuspendLayout()
#
txtUserText
#
self. txtUserText.Location = System.Drawing.Point(65, 115)
self. txtUserText.Multiline = True
self. txtUserText.Name = 'txtUserText'
self. txtUserText.Size = System.Drawing.Size(100, 20)
self. txtUserText.TabIndex = O
#
NotQuitePad
#
self.ClientSize = System.Drawing.Size(284, 264)
self.Controls.Add(self. txtUserText)
self.Name = "NotQuitePad'
self.Text = 'NotQuitePad'
self.Load += self._NotQuitePad_Load
self.Resize += self._ResizeInputBox
self.ResumeLayout(False)
self.PerformLayout()

@accepts(Self(), System.Object, System.EventArgs)
@returns(None)
def NotQuitePad Load(self, sender, e):

self. ResizeInputBox(sender, e)

def _ResizeInputBox(self, sender, e):
self. txtUserText.Size = self.Size
self. txtUserText.Location = Point(0,0)

Caution If you've got eagle eyes, you may have noticed two things: (1) we haven’t left room for the
menu, and (2) when we call _ResizelnputBox in the _NotQuitePad_Load method, we aren’t passing self like
the signature seems to say we should be. On the first point, it’s not important that we haven’t left space for
this element because we don’t yet know how large it will be, and adjusting our starting Point values is a triv-
ial matter. In terms of the method signature (point 2), remember that selfis implied and added automatically.
To prove this, add self before sender in the call to _ResizelnputBox and run the application. IronPython will
tell you that you’ve provided one parameter too many.

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Figure 5-9. This is the behavior we specified for the application.

Bad Medicine

Although the application is behaving properly, we’ve broken one of the rules we set for
ourselves: we're dumping code into the form itself. If you hadn’t noticed that we’re doing
that, then you'll have plenty of company; it’s very easy for these bad habits to creep in
when you’re moving quickly or working on something unfamiliar and your focus is not on
the overall organization of the code. If you did notice it, I hope you took the initiative to
straighten things out! The rest of us will clean up the mess before moving on.

In the IDE, right-click on the NotQuitePad project, which appears as the first element
in the NotQuitePad solution, and click Add and then New folder. Name this folder busi-
ness and press Enter. Right-click on the business folder and click Add and then New Item.
We want to add a class to our project that contains the code that resizes the form; we
don’t yet know what sort of future development the application will see, so we’ll call this
class Interface.py to indicate that code relating to the user interface is contained within.
Press Enter, and IronPython will create the file containing the code in Listing 5-7.

Listing 5-7. Our Interface.py Class, Brand-New to the World

class interface:
"Description of class"”

Modity the Interface.py file so that your code looks like Listing 5-8. Feel free to rewrite
the docstring if you choose; I would recommend doing so.

91

92

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Listing 5-8. Interface.py Updated

from System import *
from System.Windows.Forms import *
from System.Drawing import *

class interface:
"Code related to the user interface logic of NotQuitePad"

def MoveInputBox(self, box):
"Changes the location of an object to the origin (point 0, 0)"
box.Location = Point(0, 0)

def ResizeInputBox(self, box, windowSize):
"Resizes an object to equal the size of another object"
box.Size = windowSize

Note Docstrings are essentially a type of code documentation. Earlier in the book we covered the help
function in IronPython, which you can employ to retrieve information about how to use a piece of code; any
block of code that provides a docstring will have that string presented to the user when he or she pulls up the
help information for it.

It’s worth pointing out that, by definition, we’ve made some implicit design decisions
about our code, and we need to walk through them. First off, because we’ll be using some
of the features provided by the .NET framework, we’ve begun by importing the relevant
modules. How do we know which modules we’ll need? The best source for information
is the Microsoft Developer Network website at http://msdn.microsoft.com/en-us/, which
provides in precise detail every method, namespace, and parameter in the framework.
Bookmark it and consider it your lifeline to the deeper parts of the framework.

We have created two methods: MovelnputBox and ResizelnputBox. Note that these
are good, descriptive names that make it pretty clear what function each serves. But
by their naming convention, we’re tying them to a specific purpose (that is, resizing a
specific type of object.) Optionally, we could have named them something more general,
such as MoveBox or ResizeBox. It’s worth noting that decisions like this can be very subtle
until you're used to building and working with application programming interfaces, or
APIs. As you become more experienced you'll develop a sense of when to make methods
specific and when to keep them more generalized.

The MovelnputBox method takes an object called box as a parameter. The only
purpose of this method is to set the Location parameter of the object. In IronPython,

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

every object is passed by reference, not by value, so this change is reflected back in the
calling method, and the text box is immediately placed at the origin, which is point 0,0
in the form.

Note In programming terms, objects can be passed by reference or by value. So if | pass an object by ref-
erence, when program execution returns to me, the initial object will potentially have been modified. If | pass
an object by value, the original object is left completely unchanged.

Likewise the ResizelnputBox takes an object called box as a parameter, but addition-
ally it takes a parameter called windowSize. This parameter will hold the value of the Size
parameter of the form itself; the single purpose of this method is to set the size of the text
box to that Size value. If you remember that IronPython passes objects by reference, it
should be obvious that this change in size will immediately be reflected back on our form.

Tip Now is a good time to mention a very important concept in application development: refactor-
ing. Refactoring is the practice of cleaning up the underlying structure of a program without changing the
functionality or appearance of the program; if you’re refactoring an application, you shouldn’t be adding a
whiz-bang new feature. It's a bit like cleaning up a room, with the intention of buying new furniture. The
cleaner the room, the easier it is to add that swanky sofa you’ve been looking at for so long.

Technically, we could refactor our code and perform a little under-the-hood cleanup; the single
responsibility principle says that a class should have one and only one reason to change. Our interface class
technically has two reasons to change: (1) setting the location of the text box and (2) resizing it. We could
refactor this one class into two classes, one with the responsibility for moving objects on a form and one
responsible for resizing objects.

Now that we have designed the code, it’s time to wire the interface so that our code
can be called correctly during the program’s event loop. The first thing we should do is
delete any existing resizing code, restoring the application to the state of Listing 5-9. We
want to eliminate the existing resizing code to reduce the potential for errors, plus in a
moment it’s going to be obsolete anyway because we’ve decided on a better method for
achieving the same result.

Note It’s not always necessary to “clean sweep” your code like this; in fact, many times it will be imprac-
tical. However, we haven’t done much to this particular file, so it’s a pretty easy revision to make.

93

94

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Listing 5-9. NotQuitePad.py Restored to the Initial State

import System

from System.Windows.Forms import *
from System.ComponentModel import *
from System.Drawing import *

from clr import *

class NotQuitePad: # namespace

class NotQuitePad(System.Windows.Forms.Form):
"""type(_txtUserText) == System.Windows.Forms.TextBox
__slots = [' txtUserText']
def _init (self):
self.InitializeComponent()

@accepts(Self(), bool)
@returns(None)
def Dispose(self, disposing):

super(type(self), self).Dispose(disposing)

@returns(None)
def InitializeComponent(self):
self. txtUserText = System.Windows.Forms.TextBox()
self.SuspendLayout()
#
txtUserText
#
self. txtUserText.Location = System.Drawing.Point(65, 115)
self. txtUserText.Multiline = True
self. txtUserText.Name = 'txtUserText'
self. txtUserText.Size = System.Drawing.Size(100, 20)
self. txtUserText.TabIndex = 0
#
NotQuitePad
#
self.ClientSize = System.Drawing.Size(284, 264)
self.Controls.Add(self. txtUserText)
self.Name = 'NotQuitePad'
self.Text = "NotQuitePad'
self.ResumeLayout(False)
self.PerformLayout()

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

@accepts(Self(), System.Object, System.EventArgs)
@returns(None)
def NotQuitePad Load(self, sender, e):

pass

We know that duplicating code encourages code rot (and believe me, code does rot),
and furthermore we know that the code in our interface class needs to execute at least
once but likely n times: once when the application loads so that the text box is at the ori-
gin and resized to meet the window, and then an unknown number of times afterward as
the form is maximized, minimized, and generally shuffled about the screen. The best way
to handle a situation like this is not to copy and paste code all over the place, but to hand
the responsibility for calling your interface class over to an intermediate method so that
changes are limited to one area. That idea might sound a little confusing, but I think once
you've seen it applied it will be clearer why we should always strive for this sort of design.
We'll revise our application to Listing 5-10.

Listing 5-10. NotQuitePad.py Revised to Minimize Future Maintenance

import System

from System.Windows.Forms import *
from System.ComponentModel import *
from System.Drawing import *

from clr import *

from Interface import *

class NotQuitePad: # namespace

class NotQuitePad(System.Windows.Forms.Foxrm):

"""type(txtUserText) == System.Windows.Forms.TextBox"""
__slots = [' txtUserText']
def _init (self):

self.InitializeComponent()
@accepts(Self(), bool)
@returns(None)

def Dispose(self, disposing):

super(type(self), self).Dispose(disposing)

95

96 CHAPTER 5 MIXING AND MINGLING WITH THE CLR

@returns (None)
def InitializeComponent(self):
self. txtUserText = System.Windows.Forms.TextBox()
self.SuspendLayout()
#
txtUserText
#
self. txtUserText.Location = System.Drawing.Point(65, 115)
self. txtUserText.Multiline = True
self. txtUserText.Name = 'txtUserText'
self. txtUserText.Size = System.Drawing.Size(100, 20)
self. txtUserText.TabIndex = O
#
NotQuitePad
#
self.ClientSize = System.Drawing.Size(284, 264)
self.Controls.Add(self. txtUserText)
self.Name = "NotQuitePad'
self.Text = 'NotQuitePad'
self.Load += self._NotQuitePad_Load
self.Resize += self._ResizeFormEvent
self.ResumeLayout(False)
self.PerformLayout()

@accepts(Self(), System.Object, System.EventArgs)
@returns(None)
def NotQuitePad Load(self, sender, e):

self. HandleResizing()

def ResizeFormEvent(self, sender, e):
self. HandleResizing()

def _HandleResizing(self):
newDimensions = interface()
newDimensions.MoveInputBox(self. txtUserText)
newDimensions.ResizeInputBox(self. txtUserText, self.Size)

Caution IronPython cares about the little space between parameters. If they’re not separated by a space,
it’ll complain.

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

If you run the NotQuitePad application now, you should see something like Fig-
ure 5-10. If you resize the window, you should see that the text box not only remains
anchored to the top left of the form, but also resizes to become the entire size of the form.
If not, ensure your code matches what we’ve created so far and run the application again.

Figure 5-10. Our refactoring effort was successful; we cleaned the code without changing
behavior.

I’d Like to See a Menu

The next step in our implementation is creating the menu bar. We don’t need to have all
the functionality at one time; we can start simply by getting the menu bar on the screen.
With the main form open in Visual Studio, scroll down the toolbar options in the left-
hand pane and expand Menus and Toolbars; then double-click MenuStrip. The menu
will automatically appear on the top of the form in the typical location in which a menu
normally appears in Windows. The menu will be blank except for a box that says, “Type
here.” Click that box and type &File. The ampersand (&) prefix allows the user to press
Alt+F to open the File menu.

Tip It's important when designing menus to bear in mind which keys you have set as keyboard shortcuts
so that you can avoid conflicts between hotkey settings. It's also a best practice to use shortcuts that are
common and familiar to users of a given system. For instance, Windows users are typically quite accustomed
to opening the File menu with Alt+F and to opening the Print dialog box with Ctrl+P. Don’t fight the mental
schema with which the average user is comfortable.

Below the File heading, go ahead and make a few more menu options; add “New”,
“Open...”, “Save As...”, and “Exit”, which should leave you with a menu that looks like
Figure 5-11.

97

98 CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Figure 5-11. Placing some basic menu options

Earlier I noted that when we wrote our code in the interface class to position the
text box control at the origin (point 0,0 on the form), we didn’t leave room for the menu
because we didn’t know how large it would be. If you run NotQuitePad now, you will
see that although we’ve created a menu, it’s not visible; the application still looks like it
has just the one text box control on it. We need to find out how tall the menu is and then
adjust our interface method.

Click the menu in the Visual Studio design window; then scroll through the Proper-
ties window in the bottom right until you see the Size property. The size of the menu is
284, 24 on my screen, which means we need to adjust our positioning code to start the
text box 25 pixels down from the origin. Before you do so, let’s change the Name property
of the menu from menuStripl to mainMenu so that we can identify it easily.

Note Why 25 pixels instead of 24? The reason is that the menu strip itself is 24 pixels tall; if we move 24
pixels down the form, we’ll actually cut off one horizontal row of pixels with our text box. It's a tiny issue that
a lot of people actually miss.

Open Interface.py and change the MovelnputBox method to set the initial location to
be Point(0, 25). If you've been including docstrings, make sure to update the content of it
so that the description matches the implementation.

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Listing 5-11. Interface.py with the MovelnputBox Method Updated

from System import *
from System.Windows.Forms import *
from System.Drawing import *

class interface:
"Code related to the user interface logic of NotQuitePad"

def MoveInputBox(self, box):
"Changes the location of an object to the origin, leaving room for a =
menu(point 0, 25)"
box.Location = Point(0,25)

def ResizeInputBox(self, box, windowSize):
"Resizes an object to equal the size of another object"
box.Size = windowSize

Run the program again and check out your snazzy new menu (Figure 5-12). Remem-
ber to resize it a few times, and do a quick quality assurance test that everything is
working as intended.

Figure 5-12. The menué is in place and the text box is leaving room for it.

Reading, Writing, Arithmetic

We’ve got a pretty good interface going. We’ve succeeded in building something that
meets our requirements and bears more than a passing resemblance to its built-in Win-
dows cousin. While there are more interface bells and whistles we could be adding right

99

100

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

now, we should take some time to wire back-end functionality together with the front
end; as with any structure, the foundation needs to be strong before we concern ourselves
with the aesthetics. We’ll begin this task by creating a new class file in our business folder
called fileOperations.py.

At the beginning of this chapter, we laid out our requirements for the application.
The most critical one clearly is the Create, Read, and Update operations in the file system.
Before we lay out the methods our class will need, it would be prudent to decide what our
naming convention will be. We need to decide whether to stick with the names of this
triad of methods or whether we should opt for method names that relate more closely
to file operations. For right now, I'm going to opt for the standard file operation naming
convention: New, Open, Save. Take a look at Listing 5-12 for an example of what [mean.

Listing 5-12. The Initial Design of fileOperations.py

from System import *
from System.IO import *

class fileOperations:
"Contains file system operations for NotQuitePad."

def New(self):
"Creates a new file within NotQuitePad."
pass

def Open(self):
"Handles the Open dialog window."
pass

def OpenFileFromDisk(self, fileName):
"Opens a connection to the file system for opening a file."
Pass

def Save(self):
"Handles the Save dialog window."
pass

def WriteFileToDisk(self, fileName, fileContents):
"After executing the Save method, write the file and contents to thew
desired location."”
pass

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

There’s an interesting point to make here: we have method signatures that start with
an underscore character. This is to indicate that we want this method to be “private.”
What we want to have happen is that when the user clicks “Save As” in the menu, it will
execute the Save method, which should open that familiar Windows dialog box for sav-
ing a file. Once the file name and location have been chosen, we want that Save method
to call an internal method called _WriteFileToDisk; we don’t want code accessing this
method in an incorrect order. Furthermore we may want additional steps in this process
at a later date. If we allow Save to call a deeper, private method, then we add a layer of
abstraction to the entire process and provide flexibility for unforeseen design changes.
We’re instructing ourselves and others not to call WriteFileToDisk directly. The same
scenario applies to the Open and _OpenFileFromDisk methods as well.

Open Sesame

The task of displaying a functional dialog box that is suitable for opening or saving files
is essentially boilerplate code. One of the great things about .NET is that it provides a
huge library of boilerplate code snippets to do all of the basic Windows tasks. So not only
is it simple to display Open and Close dialog windows, but they’re also standardized in
appearance so that users have little if any learning curve with our application’s basic
operations.

Let’s start to use these code snippets, by learning how to open a file from disk.
The dialog windows facilitate a common user experience and allow us easy access to a
particular file the user has selected. This is best demonstrated with an example. Open
fileOperations.py and modify it to look like Listing 5-13.

Listing 5-13. FileOperations.py with a Basic Open File Dialog Window

from System import *

from System.Windows.Forms import *
from System.Windows import *

from System.IO import *

class fileOperations:
"Contains file system operations for NotQuitePad."

def New(self):
"Creates a new file within NotQuitePad."
pass

101

102

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

def Open(self):
"Handles the Open dialog window."
dialog = OpenFileDialog()
dialog.Title = "Load File"
if dialog.ShowDialog() == DialogResult.OK:
pass

def OpenFileFromDisk(self, fileName):
"Opens a connection to the file system."
pass

def Save(self):
"Handles the Save dialog window."
pass

def WriteFileToDisk(self, fileName, fileContents):
"After executing the Save method, write the file and contents to thew
desired location.”
pass

What’s happening here is pretty straightforward. We are creating an instance of an
OpenFileDialog object, setting the title to be Load File, and checking what button the user
pressed. If the user pressed “OK,” we’ll eventually have code here to actually open the file
and read its contents from disk. It may seem counterintuitive, but in .NET the file open
and file save dialogs are a bit separated from the physical files themselves. They provide
amethod of interacting with the disk; developers need to make use of streams to actually
write to or read from the disk. The word stream means there is one-way communication.
If we are reading a stream of data from the disk, we start at the beginning and read an
arbitrary number of bytes, in order.

Before we go mucking about in the stream, let’s try out this dialog window. Go back
to NotQuitePad.py, click File in your menu, and then double-click the Open menu option.
IronPython Studio will automatically create a method called _openToolStripMenultem_
Click that fires when the Open menu option is clicked. Add to that method the code in
Listing 5-14. Next, import the fileOperations class at the top of the file so that IronPython
has a reference to the code you created. Now run the application (Figure 5-13).

Listing 5-14. Calling Our Dialog Method from the Interface

def openToolStripMenuItem Click(self, sender, e):
openDialog = fileOperations()
openDialog.Open()

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Figure 5-13. Our dialog menu displays, but it does not automatically do anything with a
selected file.

Although the dialog window does display and we can select a file, when we open it
nothing happens. The reason for this is twofold: (1) we have not wired our file-opening
code to the interface code so that the file contents are displayed, and (2) we have not
yet actually read the file contents from the disk. The first modification to make is in the
_openToolStripMenultem_Click method. Change the method to look like Listing 5-15.

Listing 5-15. Populating the Text Box with Data, When Available

def openToolStripMenuItem Click(self, sender, e):
openDialog = fileOperations()
self. txtUserText.Text = openDialog.Open()

Now we have provided a way to update the user interface with the contents of the
file read from disk; the next step is to open a stream and read the contents of a given file

that the user selects from the dialog box. Open fileOperations.py and moditfy it to look like

Listing 5-16.

103

104

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Listing 5-16. Handling the Physical Read from the Disk

from System import *

from System.Windows.Forms import *
from System.Windows import *

from System.IO import *

class fileOperations:
"Contains file system operations for NotQuitePad."

def New(self):
"Creates a new file within NotQuitePad."
pass

def Open(self):
"Handles the Open dialog window."
dialog = OpenFileDialog()
dialog.Title = "Open"
if dialog.ShowDialog() == DialogResult.OK:
contents = self._OpenFileFromDisk(dialog.FileName)
return contents

def OpenFileFromDisk(self, fileName):
"Opens a connection to the file system."
file = File.OpenText(fileName)
data = file.ReadToEnd().ToString()
file.Close()
return data

def Save(self):
"Handles the Save dialog window."
pass

def WriteFileToDisk(self, fileName, fileContents):
"After executing the Save method, write the file and contents to thew
desired location.”
pass

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Tip If you have any prior Python programming experience, you have probably noticed how strikingly
similar the .NET method of opening a file is to Python’s. You could substitute the following Python code in the
_ OpenFileFromDisk method and get the exact same result. Technically .NET will apply some formatting for
you based on any nonprintable characters in the contents (such as line breaks), but the net result of access-
ing a file’s contents is the same for a comparable amount of code.

file = open(fileName)
data = file.read()
file.close()

return data

If desired you can employ traditional Python methods anywhere you like in IronPython to do just about any
task. But you may find that in doing so you have to write more code to perform basic boilerplate operations
(think of creating a form on the screen, making a functional menu bar, and so on).

This is the proof in the pudding from earlier about separating the file-opening
code from the dialog code. Now the workload is divided properly and cleanly; the Open
method handles the dialog window itself and makes a call to _OpenFileFromDisk to do
the heavy lifting and send the contents of the desired file back for return to the user inter-
face code. If everything had been smashed together in the interface form code, you can
imagine how quickly things would get bloated, even with the limited functionality we’ve
introduced to a program designed at the Notepad level. Hopefully you're already seeing
things in terms of ease of maintenance.

This section of code is our first low-level exposure to the System.IO namespace in
.NET. This namespace exposes a lot of functionality for dealing with the file system in
particular. The File.OpenText() method in this namespace is responsible for opening a
connection to the file on the disk, and .ReadToEnd() reads the entire contents of that file
until the EOF (end of file) marker, in a one-way fashion. The File class also exposes other
methods that are used for reading individual lines or bytes from a file. We are calling the
.ToString() method to convert the Stream contents to a data type that the text box can
properly display.

Note Connections to the file system are expensive resources. If you open them, make sure you close
them! The same applies to resources such as database connections. Nothing kills database performance
(and application performance as a result) faster than not closing connections when you’re through with them.
We’ll cover proper close and dispose patterns throughout the book, but the best advice is what my parents
used to tell me: “Close the door! We’re not heating the whole neighborhood here.”

105

106

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

If you run the application now, click File, then Open, and then select a text file from
your drive (an IronPython source code file works great in this case). I opened the source
code to this particular file, and my screen looks like Figure 5-14.

Figure 5-14. With the file stream code in place, the Open function works.

| Can’t Even Save Myself

Having written IronPython code to open a text file from disk and to do a little work with
streams, we now know enough to write code to save text back to the disk. But we have
some additional considerations to take into account; a good example would be answering
the question “If the destination file already exists, do we cancel or overwrite the desti-
nation file?” What we will do is ask the user if she or he wants to overwrite the existing

file (if one does in fact exist); if so, we’ll wipe out what'’s there and replace it with new
content. If the user chooses not to overwrite, we will not append any content; we’ll simply
remain at the dialog window.

Note The only two choices we really have based on user input here are (1) to do nothing if the user can-
cels and (2) to overwrite the entire file with the new contents if the user chooses to save. You can always
append to the file, meaning you could add additional text to the end of the existing file. But this behavior
wouldn’t gel with the way Notepad operates and would be contrary to what the typical end user expects of
this type of operation, so we’ll move forward with our two primary choices only.

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Thankfully the .NET framework developers were nice enough to stick with a common
naming convention; where we used OpenFileDialog to browse the file system and select
a file, now we will use a SaveFileDialog to do the opposite and save a file back to the disk.
On our end, we will stick to our own convention and separate the physical task of writing
to disk from the interaction task of finding that location.

Note | think you'll love how terribly simple this next bit is. This is one of those moments when a decent
design at the beginning pays off big dividends down the line.

First, let’s open fileOperations.py and add the code in Listing 5-17 to the Save
method. It should look pretty familiar; it’s essentially identical to what we did in the
Open method, just modified a bit to save a file instead of open one.

Listing 5-17. Setting Up a Save File Dialog in fileOperations.py

def Save(self, fileContents):
"Handles the Save dialog window."
dialog = SaveFileDialog()
dialog.Title = "Save As"
if dialog.ShowDialog() == DialogResult.OK:
pass

Now return to NotQuitePad.py's Design View, click on the File menu option, and
then double-click Save As. As with the Open option, IronPython Studio creates a method
signature to handle the option being clicked. We need to make an instance of our
fileOperations class and call the Save method, passing the contents of the text box as
a parameter (Listing 5-18).

Listing 5-18. Calling the Save File Dialog from the User Interface

def saveAsToolStripMenuIltem Click(self, sender, e):
saveDialog = fileOperations()
saveDialog.Save(self. txtUserText.Text)

Run the application and give the Save As menu option a spin. As with the Open menu
option, at this point in the process we haven’t wired everything together, so, although the
dialog menu will display, it won’t yet save the file (Figure 5-15). Feel free to type some text
and to try to save it to disk; you'll find that there are no errors but that the file doesn’t get
saved. We'll tackle that now.

107

108 CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Figure 5-15. History repeats; until we wire the Ul to the business layer, this is for show only.

Open fileOperations.py and modify it to look like Listing 5-19. The code for saving is
again almost identical to what we did for opening the file.

Listing 5-19. fileOperations.py with Save As Implemented

from System import *

from System.Windows.Forms import *
from System.Windows import *

from System.IO import *

class fileOperations:
"Contains file system operations for NotQuitePad."

def New(self):
"Creates a new file within NotQuitePad."
pass

def

def

def

def

desired

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Open(self):

"Handles the Open dialog window."

dialog = OpenFileDialog()

dialog.Title = "Open"

if dialog.ShowDialog() == DialogResult.OK:
contents = self. OpenFileFromDisk(dialog.FileName)
return contents

_OpenFileFromDisk(self, fileName):
"Opens a connection to the file system."
file = File.OpenText(fileName)

data = file.ReadToEnd().ToString()
file.Close()

return data

Save(self, fileContents):
"Handles the Save dialog window."
dialog = SaveFileDialog()
dialog.Title = "Save As"
if dialog.ShowDialog() == DialogResult.OK:
self. WriteFileToDisk(dialog.FileName, fileContents)

_WriteFileToDisk(self, fileName, fileContents):

"After executing the Save method, write the file and contents to thew
location."”

file = File.CreateText(fileName)

file.Write(fileContents)

file.Close()

So what’s happening is that we're using a StreamWriter object named file to write the
contents of our text box back to the file system, making sure to call the .Close() method at
the end to clean up our resources. Press F5 to run the application again, create a docu-
ment, and then verify that the Save As and Open features work as expected (Figure 5-16).

109

110 CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Figure 5-16. The Save As functionality works; I have opened a file I created with
NotQuitePad.

Print, Please

Our users are spoiled; they actually like to print the documents they create. I suppose we
can indulge them this one time. First things first. Let’s head to the Design View for the
main NotQuitePad form and add a Print option to the drop-down menu.

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Click on the File option to open the menu, and you will see a blank box with the text
“Type Here” below the Exit option. In that box, type Print, then press Enter. The Print
option will be added to the menu, but it’s at the bottom, which is not the location a user
expects to find such. So left-click and drag it between Save As and Exit. Next, double-click
that Print option so that we can wire some functionality to it.

The IDE will dutifully create a snippet of code for you to start with, which we have
modified in Listing 5-20 to call our fileOperations class and to use a .Print() method we
will create shortly that accepts our text box text as a parameter.

Listing 5-20. The Code for the Print Option Menu Click

@accepts(Self(), System.Object, System.EventArgs)

@returns(None)

def printToolStripMenuItem Click(self, sender, e):
printDialog = fileOperations()
printDialog.Print(self. txtUserText.Text)

Open up the fileOperations class. For the purposes of printing documents, we’re
going to use another type of dialog that .NET provides called the PrintDialog. It works in a
very similar fashion to the dialogs we’ve used so far. Let’s look at a complete implementa-
tion and break the code down (Listing 5-21).

Listing 5-21. Calling the Print Dialog

def Print(self, fileContents):
"Handles the Print dialog window."
dialog = PrintDialog()
if dialog.ShowDialog() == DialogResult.OK:
doc = PrintDocument()
dialog.Document = doc
self. PrintDocument(doc, fileContents)

def PrintDocument(self, printDocument, fileContents):
"Sends a document to the selected printing device."
printDocument.Print()

The PrintDialog expects a PrintDocument object to be passed to it, which we define
as doc. The document is passed to our private _PrintDocument handler, which is respon-
sible for any tasks related to the actual printing of the document (Figure 5-17).

111

112

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Figure 5-17. The Print Dialog in Action

A Touch of 00P

There’s one menu option we haven’t touched yet, the New option, which creates a new
document. We can do this in variety of ways, including just blindly deleting any text in
the main text box, which is really not the most elegant way to do things. A better, more
flexible approach would be to create a class that represents our document, with methods
exposed, that lets the calling code know the status of the document’s workflow.

In the business folder of your project, create a new class called document.py. To track
whether or not a document has been modified since saving (if it has been saved at all),
we’re going to create two methods: IsDirty() and SetDirty(). These methods will allow us
quickly to check the state of a document when needed to make decisions about what to
display to the user (Listing 5-22).

Listing 5-22. The Document Class Implementation

from System import *

class document:
"Represents a document in NotQuitePad."

properties of the document
_isDirty = False
_contents = String.Empty

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

def IsDirty(self):
"Gets whether or not a document has been saved since modification."
return self. isDirty

def SetDirty(self, value):
"Sets whether or not a document has been saved since modification."
self. isDirty = value

Note For right now, we’re going to wire the document state-checking code to the New menu option only.

Open the main NotQuitePad form again in Design View, and double-click on the
New menu option to create the click stub as we have done before. In the interest of appli-
cation design, we should keep to the design patterns we’ve followed so far and leave as
much code out of the interface as possible so that the user interface (UI) is not burdened
with excessive decisions. Modify the click method as shown in Listing 5-23.

Listing 5-23. Handling the New Menu Option

@accepts(Self(), System.Object, System.EventArgs)
@returns (None)
def _newToolStripMenuItem Click(self, sender, e):
newDocument = fileOperations()
if newDocument.New() == True:
self. txtUserText.Text = String.Empty
else:
newDocument.Save(self. txtUserText.Text)
self. txtUserText.Text = String.Empty

By calling down into the fileOperations class, the Ul doesn’t ever need to know (nor
will it) whether a document’s _isDirty flag is set to True or not. It only knows how to
handle content based on abstract decision trees further in. What we’ve done here is say
that if the . New() method returns True, we should clear the text box completely. This indi-
cates that the file was not marked dirty and did not need to be saved. Otherwise, we need
to display the .Save() dialog and give the user the option to save her work.

We need to establish a document object in the fileOperations class so that we can
maintain the document workflow state throughout the application. At the top of the
fileOperations class, add the line shown in Listing 5-24 immediately below the . New()
method.

113

114

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Listing 5-24. Creating a Document Object for the Class to Use
doc = document()

The next step is to fill out the . New() method we created so long ago in fileOperations.
py. The implementation of it is shown in Listing 5-25.

Listing 5-25. Fleshing Out the New Command in fileOperations.py

def New(self):
"Creates a new file within NotQuitePad."
if self. CheckIfFileIsDirty() == True:
msg = MessageBox.Show("Do you want to save the changes w
to your file?", "NotQuitePad", MessageBoxButtons.YesNo)
if msg == DialogResult.Yes:
return False
else:
return True
else:
return True

def CheckIfFileIsDirty(self):

"Call the document class to find out if a document has been marked dirtyw
and needs to be saved."

return self.doc.IsDirty()

The first thing worth noticing is the private method _ChecklIfFilelsDirty(), which
calls down into the document class to find out if a document is marked dirty. We specifi-
cally want to keep that sort of functionality out of the . New() method; it’s best that any
functionality related to the document workflow checking be kept separate, in case it
changes in the future. The .New() method is called when the New menu option is clicked.
It immediately checks whether a document has been marked dirty, and if so it creates a
MessageBox object that asks the user if he wants to save changes to the file. If so, the code
returns False back to the Ul to indicate that the method determined the file was not ready
to be saved and the user wishes to save it. If the file wasn’t dirty in the first place, the
method returns True to indicate that the text box contents can be cleared.

Note The MessageBox.Show() method has several different overloads that expose different options. In this
case, we’re using the overload with parameters (String, String, MessageBoxButtons). For more information,
see http://msdn.microsoft.com/en-us/library/system.windows.forms.messagebox.show.aspx.

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Next, we need a way to tell the document class that our document should be marked
dirty. To do so, open the main form in Design View and double-click on the text box. This
should create a stub called _txtUserText_TextChanged(). This event is fired every time the
contents of the text box change; we will make a call to our fileOperations.py class so that
the Ul remains ignorant of document code (Listing 5-26).

Listing 5-26. The TextChanged Event Makes a Call to the fileOperations Class

@accepts(Self(), System.Object, System.EventArgs)

@returns(None)

def txtUserText TextChanged(self, sender, e):
file.SetDirty(True)

Next, we need to implement the .SetDirty() method in fileOperations.py (Listing 5-27).

Listing 5-27. SetDirty Implementation in fileOperations.py

def SetDirty(self, value):
"Call the document class to set the dirty property of a document."
self.doc.SetDirty(value)

The last step in this process is modifying the UI code so that the fileOperations
class knows to set the Dirty flag to False after a successful creation of a new document
(Listing 5-28).

Listing 5-28. Letting the UI Know to Pass Along That a Document Is No Longer Dirty

@accepts(Self(), System.Object, System.EventArgs)
@returns(None)
def newToolStripMenuItem Click(self, sender, e):
newDocument = fileOperations()
if newDocument.New() == True:
self. txtUserText.Text = String.Empty
else:
newDocument.Save(self. txtUserText.Text)
self. txtUserText.Text = String.Empty
newDocument.SetDirty(false)

115

116

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Exit Strategy

You've done all the hard work of getting a basic version of Notepad running; luckily,
getting it to shut down is much simpler. Although it’s tempting to drop the code for exit-
ing the application into the Ul because it is terribly short, we should stick to our design
patterns and move it to an abstracted location. The best home for this code is in the
Interface.py file with the other UI code we created earlier in the chapter. Add the method
shown in Listing 5-29 to that file.

Listing 5-29. Exiting an Application

def AppExit(self):
"Exits the current application”
Application.Exit()

Now we can call this method from the Exit command in the drop-down menu in the
main form (Listing 5-30).
Listing 5-30. Calling the Custom Exit Code in the interface Class

def AppExit(self):
ui = interface()
ui.AppExit()

Note This application exit code is a prime candidate for adding an ./sDirty() check as a user convenience.

Beautification

One of the last steps in our NotQuitePad wrap-up is to provide a prettier typeface. Open
the main form in Design View and click on the text box. Set the Font to be Lucinda Con-
sole size 10, if you have that font on your machine; if not, pick one of your preferences.
Next, we need to set the vertical scrollbars to appear when the text gets too large for the
display window, so scroll to the Scrollbars property to Vertical.

Recall that in our interface code, we had set the text box width and height to be the
same as those of the form. The problem with that now is that we can’t see the scrollbar
(feel free to run the application yourself real quick). Let’s open the Interface.py file and
make some adjustments to the resizing code to accommodate the scrollbar (Listing 5-31,
Figure 5-18).

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Listing 5-31. Leaving Room for the Scrollbars

def R

esizeInputBox(self, box, windowSize):
"Resizes an object to equal the size of another object"

windowSize.Height = windowSize.Height - 60
windowSize.Width = windowSize.Width - 15

box.Size = windowSize

Figure 5-18. Side-by-side comparison

Project Postmortem

Well,

hopefully that wasn’t too painful! Developing IronPython applications is actually

straightforward and logical. Now that we’ve got a functional application, we should
review the plan requirements from earlier in the chapter and see how we did.

1.

2,

The application should consist of a single form. DONE.
The application should be capable of CRUD operations to the file system. DONE.
The application should operate on plain text documents. DONE.

The application should be written in pure IronPython; no other languages allowed!
DONE.

The application should be capable of printing documents. DONE.

The application should behave as much like Notepad as possible, wherever pos-
sible, although it need not implement every single aspect of the original program.
DONE.

117

118

CHAPTER 5 MIXING AND MINGLING WITH THE CLR

Although we did not implement every single feature of Notepad, we did succeed in
fulfilling the requirements we set for ourselves at the beginning of the chapter, and the
application is stable enough for some initial testing.

Summary

From design patterns to concrete implementations, in one chapter we went from empty
project to basic text editor. We looked at object-oriented programming concepts, wrote
code that we could easily extend in the future, and saw how IronPython hooks into the
.NET framework to extend the functionality of both Python and .NET itself.

CHAPTER 6

Advanced Development

“The cost of adding a feature isn’t just the time it takes to code it. The cost also
includes the addition of an obstacle to future expansion. The trick is to pick the
features that don’t fight each other.”

— John Carmack

Up to this point, we’ve built fairly linear applications that are not truly component-
based. Although we designed with future maintenance in mind, we haven’t built with the
idea that we may want to reuse parts of our application later in related (or totally differ-
ent) applications. We would be doing ourselves a disservice if we didn’t take a look at how
to do this sort of development in IronPython.

Note The primary focus of this chapter is going to be interacting with C#, another language in the .NET
family. We’ll be looking at how to extend an application using IronPython as a plug-in architecture, and some
of the C# syntax is fairly advanced. Don’t get too hung up about the C#; follow the directions and enter the
code exactly as it appears. The important thing here is to examine how a statically typed language like C#
can interact with a dynamically typed one like IronPython. On the other hand, if you’re familiar with C# (or
you want to learn about it), then hopefully this will introduce you to some concepts that (I think) are pretty
darn cool.

Base Classes for Fun and Profit (aka
“The LEGOs on the Bottom Don’t Really Exist”)

One of the conveniences of object-oriented software development is polymorphism,
which we briefly covered much earlier in the book. Polymorphism, in simplest terms, is
the ability of an object of one type to be substituted seamlessly for an object of another
type. In IronPython this sort of functionality is easily achieved; indeed, most modern lan-
guages actually support this. However, the difference between a dynamic language and

119

120

CHAPTER 6 ADVANCED DEVELOPMENT

a static one is in how this is actually implemented. A dynamic language performs poly-
morphic operations implicitly based on which methods are present in a class, whereas
a static language requires explicit typing information and either an abstract-base-class
implementation or interface implementation.

Whew! That hits you like reading stereo instructions, doesn’t it? A little code might
help clarify matters a bit. Let’s start with C# so that we can see how a statically typed
language handles polymorphism (I promise the detour to C# is temporary but useful;
we’ll get back to pure IronPython in the next chapter). Assume for a moment that for our
current application we’re going to need to implement some basic object that represents
a human being (we could go deeper and start with “living thing,” but this is sufficient for
our purposes). In C#, we have a few choices on how to do this. One way is via an abstract
base class. Any subclasses, to compile properly, have to inherit and implement fully the
members of the base class.

Note An abstract base class is a class that cannot be instantiated but is only used for other classes to
inherit from, hence the term abstract. It generally serves as a starting point for a variety of subclasses that
need to implement some common methods.

Let’s open up Visual Studio or the free Microsoft Visual C# 2008 Express Edition.
We're going to create a console application, but using C# (Figure 6-1). Under File » New
Project, select the console application. Call this application. I'm placing this in my C:\
Python directory for the sake of keeping our projects together. You could put it in another
location, if you prefer; it won’t hurt anything to do so. Save the project before continuing.

Once you've created the project, you'll be presented with a screen similar to the one
in Figure 6-2. Although I don’t expect you to know C#, what should stand out is that both
the application file structure and the code itself bear a close similarity to the structure
of programs we’ve written in IronPython. The initial C# file that’s created adds a few
references to .NET namespaces and defines a class and a method with some parameters.
Syntactically there are differences, but the underlying tasks are the same.

CHAPTER 6 ADVANCED DEVELOPMENT 121

Figure 6-1. Creating a C# console application

Figure 6-2. Visual Studio created a basic structure for us.

122

CHAPTER 6 ADVANCED DEVELOPMENT

Even though Visual Studio was kind enough to create some code for us, we're going
to start by creating a new file. Right-click on the AbstractBase project in the Solution
Explorer, click Add, and then click Class. This will bring up a window for adding a new
class file to the project. Call it humanBeing.cs and click Add (Figure 6-3).

Figure 6-3. Adding the humanBeing.cs file to the project

As always, Visual Studio does a little legwork and provides some skeleton code in the
file. You can clear that code entirely and replace it with Listing 6-1.

Tip C# is picky, picky, picky when it comes to syntax. This is not a bad thing; it’s just a requirement that
your language be very explicit. If you find errors after entering this code, make sure you’ve got all the semi-
colons in the right place relative to the brackets, that the correct things are capitalized, and so on. What it
does not care about is indentation, however.

CHAPTER 6 ADVANCED DEVELOPMENT

Listing 6-1. A Sample humanBeing.cs C# Abstract Base Class for a Human Being
using System;

namespace AbstractBase

{
abstract class humanBeing
{
public string name { get; private set; }
public DateTime? dateOfBirth { get; private set; }
public void SetName(string name)
{
if (String.IsNullOrEmpty(name)) { throw new Exception(“Name cannotes
be null."); }
name = _name;
}

public void SetDateOfBirth(DateTime? _dateOfBirth)
{
if (! dateOfBirth.HasValue) { throw new Exception("Date of birthws
cannot be null."); }
dateOfBirth = dateOfBirth;

public abstract void Initialize();
public abstract void CleanUp();
public new abstract string ToString();

}

That is a lot more typing than we’re used to seeing. Indeed, as a statically typed lan-
guage C# does require quite a bit of exposition to run properly. Some people swear by
it, some absolutely hate it. What will be interesting to see in a few pages is how C#, with
all its explicit typing, manages to interact pretty deftly with IronPython’s freewheeling
nature.

123

124

CHAPTER 6 ADVANCED DEVELOPMENT

Note Why capitalize the project names when the variables and classes have a different style? It’s
really just what I’'m comfortable with. The variables and classes use what’s called camel casing, so
named because the first letter is not capitalized, creating a word that looks like it has one or more humps.
An example would be calculateSalesTax. | think project names that use this style look kind of funny, so
| capitalize the first letter.

As far as putting things in context, the humanBeing base class we wrote defines a few
properties for the entity: name and date of birth. We’ve set the dateOfBirth to be nullable
so that we can check whether a valid value has been provided, a new feature in .NET.

We marked the mutator as private so that the properties can be modified only by going
through our public methods. If we allowed calling code to set the parameters directly, it
prevents us from doing validity checks and other useful tasks.

Note Mutator is one-half of the geeky programming terms mutator and accessor, whose names are
admittedly too cool for them. Mutators allow you to change the value of a property, and accessors allow
you to retrieve those values. In our case, our accessors (“get”) are public because we want code to access
those variables easily, but the mutators (“set”) are private, so calling code has to go through channels we’ve
defined, allowing us a bit of control.

We defined a few abstract methods that handle the initialization and cleanup of the
class. The last thing we did was to override the .ToString() method so that subclasses are
required to implement their own version; we had to use the “new” keyword to identify
that we want to override the basic version that .NET provides.

Tip If you take only one piece of development advice from this entire book, please take this one:
Always include a . ToString() override method in your custom classes. Nothing is worse than using some-
one else’s component, calling . ToString() on it, only to get something like “MyClass.MethodName” instead
of useful output. Plus it can be very helpful for debugging purposes, as we’ll see in a bit. The MSDN
documentation has the following to say on the subject: “When you create a custom class or struct, you
should override the ToString method in order to provide information about your type to client code.” See
http://msdn.microsoft.com/en-us/library/ms173154(VS.80).aspx for more details on this.

With a base class under our belt, we can create a class to implement that base class in
a very similar fashion to what we did earlier in the book with IronPython. Add a new class

CHAPTER 6 ADVANCED DEVELOPMENT

file called person.cs to the project and enter the code in Listing 6-2. Make sure to delete
the code Visual Studio provided for you initially.
Listing 6-2. A Sample person.cs C# Class That Implements the Human Being Base Class

using System;
using System.Reflection;
using System.Text;

namespace AbstractBase

{
class person : humanBeing
{
public override void Initialize()
{
SetName("Alan Harris");
SetDateOfBirth(Convert.ToDateTime("1/1/2009"));
}
public override string ToString()
{
PropertyInfo[] p = GetType().GetProperties();
StringBuilder sb = new StringBuilder();
foreach (PropertyInfo pi in p)
{
sb.Append(pi.Name);
sb.Append(": ");
sb.Append(pi.GetValue(this, null));
sb.Append("\r\n");
}
return sb.ToString();
}
public override void CleanUp()
{
// perform any cleanup tasks here...
}
}

125

126

CHAPTER 6 ADVANCED DEVELOPMENT

The final step is actually to call an instance of the person class and see what output
we get. We can modify the Program.cs file in the project to look like Listing 6-3. Once you
have done so, press F5 to run the application (Figure 6-4).

Listing 6-3. Using the Base Class in Program.cs

using System;

namespace AbstractBase

{
class Program
{
static void Main(string[] args)
{
person p = new person();
p.Initialize();
Console.WriteLine(p.ToString());
Console.Readline();
p.CleanUp();
}
}
}

Tip Note in Figure 6-4 that we changed the namespace of this file to CSharpTestbed, which matches the
class files we’d created earlier. If you don’t change the namespace, you'll find that G# complains about not
being able to find the person class. If for whatever reason you don’t want to change the namespace, you can
add using CSharpTestbed; to the top of the Program.cs file and leave the namespace alone. Much like the
IronPython import keyword, this tells C# to look for code in a specific place.

Figure 6-4. Our calling class implements the base class.

CHAPTER 6 ADVANCED DEVELOPMENT

Don’t worry about the syntax or implementation in C#. What's important here is the
idea that the person object can be substituted for the base class it implements. The bit
of code in Listing 6-4 is completely valid in C#. Make a new class file called accepts.cs, and
add to it the code in Listing 6-4.

Listing 6-4. A Demonstration of the Polymorphic Nature of the Base Class in accepts.cs

using System;

class accepts

{
public string AcceptsTypes(humanBeing h)
{
return h.name;
}
}

This code expects an object of type humanBeing to be passed to it. What happens
if we provide a person instead? Modify the Programa.cs file to look like the code in List-
ing 6-5, and press F5 to try it out.

Listing 6-5. Passing a Person to the accepts Class

person p = new person();
p.Initialize();
Console.WriteLine(p.ToString());
p.CleanUp();

accepts a = new accepts();
Console.WriteLine(a.AcceptsTypes(p));
Console.ReadlLine();

Although the accepts class is looking for an object of type humanBeing, we were able
to substitute one of person type, which is a more specific subclass. Executing the code in
Listing 6-5 presents the output in Figure 6-5.

127

128

CHAPTER 6 ADVANCED DEVELOPMENT

Figure 6-5. The name is printed via the “a” object, which accepts humanBeing.

Notice how much information we had to pass back and forth and how tightly that
information is regulated and checked. It’s all very explicit. IronPython takes a different
approach. Let’s look at a similar skeleton structure and see how IronPython handles it.
You don’t need to create a new project or the IronPython class files in Listing 6-6; they
are simply illustrational with an end result that will be very similar to what you just did
in C#. It is sufficient just to follow along and compare to the C# way of doing things.

Listing 6-6. A Bare-Bones IronPython Base Class

from System import *

class humanBeing(object):
"Human being base class."

def SetName(self, name):
self. name = name

def GetName(self):
return self. name

def SetDateOfBirth(self, dateOfBirth):
self. dateOfBirth = dateOfBirth

def GetDateOfBirth(self):
return self. dateOfBirth

def Initialize(self):
pass

def CleanUp(self):
pass

CHAPTER 6 ADVANCED DEVELOPMENT

def ToString(self):
pass

name = property(GetName, SetName)
dateOfBirth = property(GetDateOfBirth, SetDateOfBirth)

Now, you can substitute any class that inherits from humanBeing in place of
humanBeing in any code that operates on it. First, let’s look at a simple implementation
of a person (Listing 6-7).

Listing 6-7. An Implementation of a Person

from System import *
from humanBeing import *

class person(humanBeing):
"A person that inherits from humanBeing"

def Initialize(self):
SetName("Alan Harris")
SetDateOfBirth(Convert.ToDateTime("1/1/2009"))

def ToString(self, p):
perform any display tasks here
pass

def CleanUp(self):
perform any cleanup tasks here
pass

Listing 6-8 proves that we can substitute one class for another; so long as any
methods called are implemented in both classes, the parent and child classes are totally
interchangeable.

Listing 6-8. The Polymorphic Nature of the Classes Allows Us to Substitute One for Another.

p = person()
p.SetName('Alan Harris')
p.SetDateOfBirth(Convert.ToDateTime('1/1/2009"))

129

130

CHAPTER 6 ADVANCED DEVELOPMENT

h = humanBeing()
h.SetName('Tom Smith")
h.SetDateOfBirth(Convert.ToDateTime('2/2/2009"))

objects = []
objects.append(p)
objects.append(h)

for o in objects: print o.GetName()

You could argue that our example is a bit contrived. Technically, any class that
implemented a .GetName() method would work in Listing 6-8, and therein lies the entire
point. IronPython relies extensively on what is called duck typing. It’s a powerful feature,
although mildly terrifying to developers used to statically typed languages.

Note Duck typing: If it looks like a duck and quacks like a duck, it must be a duck. This means that as
a dynamic language IronPython will loosely allow one class to be substituted for another, enabling code to
operate on differing object types and methods as though they were the same.

In IronPython, if two classes implement the same methods being used, then for all
intents and purposes they are interchangeable. This presents some unique opportuni-
ties and really opens the development doors, although a careful eye is required to make
sure things don’t get out of control. Until you're used to that style of object handling, it’s
a little tricky to keep track of what’s happening structurally behind the scenes, and you
can encounter the occasional hard-to-squash bug. The flip side is that we’re permitted to
make some truly useful, reusable components without requiring our users to implement
complex interfaces.

Plug and Play

In my opinion, one of the cooler uses for IronPython is as a plug-in, or scripting engine
for applications written in other languages. As a C# developer by day, I find that using the
IronPython libraries in my applications helps to lower the maintenance requirements of
whatever project I'm currently working on—or allows rapid prototyping of new features.
As such, I've come to rely on some simple design patterns that shorten even those tasks by
quite a bit. The inheritance and polymorphism aspects of object-oriented programming
are critical in this respect, as we’ll quickly come to see.

CHAPTER 6 ADVANCED DEVELOPMENT

Note A plug-inis an extension to a parent application. For example, if you’re a Firefox user, you’re prob-
ably familiar with the various user-created add-ins that add or modify the functionality of the browser itself.
I’'m a big fan of the Web Developer Toolbar, Firebug, and ShowlP, among others. There are also plug-ins to
switch between IE and Firefox tabs, which can save you a lot of time in web development.

Luckily, calling IronPython code from C# or VB is a straightforward task, but this has
a few caveats. The relationship between IronPython classes and traditional .NET classes
isn’t 1-to-1. Consequently, you'll find one or two hoops to jump through. But if you create
a small plug-in framework for reuse in other projects, even that workload can be signifi-
cantly reduced.

The most notable hoop is the first one you'll hit: How exactly do you call IronPython
from other .NET code? Microsoft has provided a ScriptEngine class that allows you
to hook the IronPython engine in and communicate back and forth between your
IronPython code and hosting code. Over the remainder of this chapter, we’ll look at a way
to set up the ScriptEngine in a reusable way; we don’t want to have to create ScriptEngines
all over the place. More to the point, we may want to reuse this plug-in architecture else-
where. Reusability is going to be a running theme.

So where can you find this ScriptEngine class? When you install IronPython, sev-
eral libraries are included for use in your .NET applications. The four we’ll be using
are IronPython.dll, IronPython.Modules.dll, Microsoft.Scripting.dll, and Microsoft.
Scripting.Core.dll. These expose a variety of functions that facilitate the use of IronPython
as well as provide ways to modify and retrieve information from IronPython class files.
Before we dig into a full plug-in architecture, we will build a simple application using those
libraries and look at how to call our classes from C#.

Architecting Flexibility

Create a new Visual Studio project; select the Empty Project type, which will create an
empty solution file for us. Call the project Plugin. Click OK to create the empty project
solution (Figure 6-6).

Tip For most projects, | find it best to create a parent solution that houses all subprojects. For example, if
| were building an application for the accounting department, | could create an empty parent solution that has
Ul, Data, and Business projects underneath. This helps to enforce good separation of concerns and ideally
promotes future code reuse.

131

132 CHAPTER 6 ADVANCED DEVELOPMENT

Figure 6-6. Creating an empty parent solution called Plugin

Next we'll add a C# project to our solution. Right-click on the empty solution and
click Add » New project. Add a new Console Application called ConsoleUI and click OK
(Figure 6-7).

Figure 6-7. Adding the ConsoleUl project to the Plugin solution

CHAPTER 6 ADVANCED DEVELOPMENT 133

Finally, we should add a class library to our project. Right-click on the solution and
click Add » New project. Add a new class library called IPEngine to the solution by click-
ing OK (Figure 6-8).

Figure 6-8. Adding the IPEngine class library to the Plugin solution

Note Class libraries are individual code components that can be added as references to other applica-
tions. They contain one or more classes and can expose methods and properties to calling code. They’re
extremely effective development tools for creating reusable code. The catch is that they are not directly
executable like a typical application; their file extension is .dll (dynamically linked library), and they can only
be used by a calling executable.

If your Visual Studio solution looks like Figure 6-9, then we’re ready to get started!

134

CHAPTER 6 ADVANCED DEVELOPMENT

Figure 6-9. The solution is set up.

Calling IronPython Code

Before we can use IronPython code in our application, we need to add references to

the libraries I mentioned earlier in the chapter. Right-click on the IPEngine project and
click Add Reference. Click the Browse tab; you'll need to locate the directory on which
IronPython is installed on your hard drive. For me, that’s C:\Program Files\IronPython
2.0. Once you've browsed to the correct folder, you'll see a variety of files listed in the
folder. Hold down the Ctrl key and left-click on IronPython.dll, IronPython.Modules.dll,
Microsoft.Scripting.dll, and Microsoft.Scripting.Core.dll. Click OK to add them to the
IPEngine project (Figure 6-10).

Caution Unlike some of our earlier applications, this one is of an increased difficulty and requires a bit
more coding on our part. As a result, compiling it at various early stages will produce errors. This is totally
fine. The application has a lot of wiring in it and I'm covering things in a specific order. If things aren’t
compiling but you haven’t finished the section yet, it’s likely that something’s about to be added but needs
explanation to put it in context first.

The IPEngine project will contain a class file called Class1.cs. Rename that to Engine-
Manager.cs. At the top of the file, we need to import the code from our libraries that we
want to use in our file (Listing 6-9).

CHAPTER 6 ADVANCED DEVELOPMENT 135

Figure 6-10. We need to add the IronPython libraries to our project.

Listing 6-9. The Beginning of the EngineManager Class

using IronPython.Hosting;
using Microsoft.Scripting.Hosting;

namespace IPEngine

{
public class EngineManager
{
}

}

Our communication with IronPython code will be handled by an object called the
ScriptEngine. It relies on ScriptSource, ScriptScope, and ObjectOperations objects to pass
data between IronPython and calling classes. Let’s add private variables to the class that
set up each of these (Listing 6-10).

136 CHAPTER 6 ADVANCED DEVELOPMENT

Listing 6-10. Setting Up the Necessary Objects for [ronPython Communication in
EngineManager.cs

using IronPython.Hosting;
using Microsoft.Scripting.Hosting;

namespace IPEngine

{
public class EngineManager
{
private ScriptEngine engine;
private ScriptSource source;
private ScriptScope scope;
private ObjectOperations operations;
}
}

Remember that we always want to hide as much information as possible behind
abstractions. Therefore, let’s create an Initialize method to handle the setup workload for
us so that the details are invisible to calling code (Listing 6-11).

Listing 6-11. Creating an Initialize Method to Handle Setup Within EngineManager.cs

using IronPython.Hosting;
using Microsoft.Scripting.Hosting;

namespace IPEngine
{
public class EngineManager
{
private ScriptEngine engine;
private ScriptSource source;
private ScriptScope scope;
private ObjectOperations operations;

/// <summary>

/// Sets up the IPEngine for use by calling code.

/// </summary>

/// <param name="file">The name of the IronPython source file tows
execute.</param>

CHAPTER 6 ADVANCED DEVELOPMENT

public void Initialize(string file)

{
engine = Python.CreateEngine();
source = engine.CreateScriptSourceFromFile(file);
scope = engine.CreateScope();
operations = engine.Operations;
}

Note The /// comments at the top of the method are XML documentation. This is similar to the use of
docstring in Python, in that it describes the method for use in helpful instructions elsewhere. They are totally
optional, but | find them to be quite useful. When you call these methods in the ConsoleUl application later,
you’ll see this information appear in the IntelliSense that shows up as you type, so a mix of clarity and brevity
is best. In general, “what” and “why” make for better comments than “how”; I'll read your code to see how
you accomplished something; I'll read your comments if | need to figure out why.

Next we need to provide a mechanism by which a class can be referenced and a
method called. We'll create an Execute method to handle this (Listing 6-12).

Listing 6-12. The First Version of the EngineManager Class Completed

using IronPython.Hosting;
using Microsoft.Scripting.Hosting;

namespace IPEngine
{
public class EngineManager
{
private ScriptEngine engine;
private ScriptSource source;
private ScriptScope scope;
private ObjectOperations operations;

/// <summary>

/// Sets up the IPEngine for use by calling code.

/// </summary>

/// <param name="file">The name of the IronPython source file tows
execute.</param>

137

138

CHAPTER 6 ADVANCED DEVELOPMENT

public void Initialize(string file)

{
engine = Python.CreateEngine();
source = engine.CreateScriptSourceFromFile(file);
scope = engine.CreateScope();
operations = engine.Operations;
}

/// <summary>
/// Gets the results of an IronPython file after execution.
/// </summary>
/// <typeparam name="EngineResults">Generic result from IronPythonws
class.</typeparam>
/// <param name="className">The name of the class to reference.</param>
/// <param name="methodName">The name of the method to execute.</param>
/// <returns>The results of IronPython execution.</returns>
public EngineResults Execute<EngineResults>(string className,ws
string methodName)
{
source.Execute(scope);
var classObj = scope.GetVariable(className);
var classInstance = operations.Call(classObj);
var classMethod = operations.GetMember(classInstance, methodName);
var results = (EngineResults) operations.Call(classMethod);
return results;

Tip The Execute method has some unique syntax to it. The <EngineResults> bit implies that we are
returning some generic information back to the calling class. We're telling C# that we don’t know if it’s going
to be a string, an int, or some type of object. It will be up to the calling code to sort out those details.

That’s it—seriously. We can use this simple class to execute any [ronPython code
we want. But we should start small; the more complexity we introduce, the greater the
chance for things to get messy. You’ll have to go outside Visual Studio for this next step:
navigate to the folder on your drive where the Plugin solution lives and create a new
folder in it called Scripts. Now open your text editor of choice and create in that folder a

CHAPTER 6 ADVANCED DEVELOPMENT

file called pluginTest.py. We’ll house our IronPython scripts in this folder to keep things
nice and neat.
In the pluginTest file, enter the code shown in Listing 6-13 and save it.

Listing 6-13. A Very Basic IronPython Class for Testing the Plug-in Library

class pluginTest:
def HelloPlugin(self):
message = 'Hello via the plugin!'
return message

Note This whole file and folder creation is expedited significantly in the commercial version of Visual Stu-
dio, where you can add “Solution Folders” and so on directly in the IDE.

Now select Build » Build Solution and correct any errors that appear (hopefully,
none!). Once the build is successful, right-click on the ConsoleUI project and select Add
reference. Navigate to the folder that contains the IPEngine project; inside you’ll see sev-
eral folders. You’'ll want to navigate to bin and then to Debug. In the Debug folder you'll
see several dlls. Select IPEngine.dll and click OK to add it to the ConsoleUI project.

Having added it, let’s try it out. Open the Program.cs file; modify it to look like the
code in Listing 6-14. You'll need to modify the path for the IronPython script file to match
where you've created the project.

Listing 6-14. Calling the Plug-in Library to Run Our pluginTest Code

using System;
using IPEngine;

namespace ConsoleUI

{
class Program
{
static void Main(string[] args)
{
var e = new EngineManager();
e.Initialize(@"C:\Python\Plugin\Scripts\pluginTest.py");
Console.WritelLine(e.Execute<string>("pluginTest", "HelloPlugin"));
Console.Read();
}

139

140

CHAPTER 6 ADVANCED DEVELOPMENT

Tip Here’s the follow-up to the generic method defined in the library. Our calling code tells the library
that we expect the return type of the Execute method to be of type string. This is a classic example of the
differences between static and dynamically typed languages: in pure Python we wouldn’t need to be so very
explicit, nor would we make accommodations specifically with the intention of allowing generic access.

Now, if you run this application by pressing F5, you should find that your IronPython
script is executed (Figure 6-11).

Figure 6-11. [ronPython via C#

Tip Frequently in solutions where you have class libraries (particularly multiple class libraries), one
library may be dependent on another one in your solution. If the build order is not correct, you’ll continually
get errors and it may not be clear why. Right-click on the solution and select Project Build Order. Here you
can adjust the order in which projects are compiled when you build or run the solution; in our case, make
sure IPEngine is listed before ConsoleUl. You can also set dependencies in the aptly named tab; ConsoleU/
depends on IPEngine. In general, if you've built with an n-tier architecture in mind, the Ul will be the last
thing to get compiled and will depend directly on any business-tier libraries, which themselves will depend
on data-tier libraries.

Creating a Plug-in Base

Although what we have is quite successful in terms of executing our IronPython code, it
would benefit us as developers to standardize our plug-ins with a base class from which
to inherit so that any plug-in object we want to use is guaranteed to have some basic
features.

A useful base class for a plug-in would have the following properties:

CHAPTER 6 ADVANCED DEVELOPMENT

¢ A unique ID for the plug-in instance

¢ A useful display name

¢ The location of the plug-in on disk

* An enumeration that describes the current status of the plug-in
e The name of the class to use

¢ The name of the method to execute
In terms of our enumeration for plug-in status, we can start with the following:

1. Unavailable
2. Loaded

3. Failed

Right click on the IPEngine project and click Add New Item. Add to the project a class
called BasePlugin.cs. Modify the code in BasePlugin to look like the code in Listing 6-15.

Listing 6-15. The Abstract Base Class for Our Plug-ins in BasePlugin.cs

using System;

namespace IPEngine

{
public abstract class BasePlugin
{
public enum pluginStatus
{
Unavailable,
Loaded,
Failed
}

public string id { get; private set; }
public string displayName { get; private set; }
public string className { get; private set; }
public string methodName { get; private set; }
public string filelocation { get; private set; }
public pluginStatus status { get; private set; }

141

142 CHAPTER 6 ADVANCED DEVELOPMENT

/// <summary>
/// Initializes a unique ID for a plugin.
/// </summary>
public void SetPluginID()
{
if (!String.IsNullOrEmpty(id)) { throw new Exception("Plugin idws
has already been defined."); }
id = Guid.NewGuid().ToString().TolLower();

/// <summary>
/// Sets the friendly display name for a plugin.
/// </summary>
/// <param name="_displayName">The string to display.</param>
public void SetDisplayName(string _displayName)
{
if (String.IsNullOrEmpty(displayName)) { throwes
new Exception("Display name cannot be null."); }
displayName = _displayName;

/// <summary>
/// Sets the name of the IronPython class to use.
/// </summary>
/// <param name="_className">The name of the class.</param>
public void SetClassName(string className)
{
if (String.IsNullOrEmpty(className)) { throwe
new Exception("Class name cannot be null."); }
className = className;

/// <summary>
/// Sets the name of the IronPython method to execute.
/// </summary>
/// <param name="_methodName">The name of the method.</param>
public void SetMethodName(string methodName)
{
if (String.IsNullOrEmpty(_methodName)) { throwws
new Exception("Method name cannot be null."); }
methodName = methodName;

CHAPTER 6 ADVANCED DEVELOPMENT

/// <summary>
/// Sets the location of the plugin on disk.
/// </summary>
/// <param name="_filelocation">The path of the file on disk.</param>
public void SetFilelocation(string filelocation)
{
if (String.IsNullOrEmpty(filelocation)) { throw=s
new Exception("File location cannot be null."); }
filelocation = filelocation;

/// <summary>
/// Sets the current status of the plugin.
/// </summary>

/// <param name="_status">The status as defined by the pluginStatusws
enumeration.</param>

public void SetStatus(pluginStatus _status)

{

if (status == status) return;
status = _status;

// classes that inherit from this base must implement the following methods
public abstract void ConfigurePlugin(string _displayName,w=
string className, string methodName, string filelocation);
public abstract ExecuteResults ExecutePlugin<ExecuteResults>();
public abstract new string ToString();

Although Listing 6-15 looks a bit long, it actually serves a few very straightforward
purposes. Its primary functions are to define the status types for a plug-in and to handle
setting the properties of the plug-in. Classes that inherit from this base class have access
to all these properties and the enumeration defined within. It also defines two methods,
ConfigurePlugin and ExecutePlugin, that inheriting classes have to implement. Let’s cre-
ate in the IPEngine project a new class file called TestPlugin.cs (Listing 6-16).

143

144 CHAPTER 6 ADVANCED DEVELOPMENT

Listing 6-16. A Test Plug-in That Needs an ExecutePlugin Method Implemented

using System;
using System.Text;

namespace IPEngine
{
public class TestPlugin : BasePlugin

{

private EngineManager em;

public override void ConfigurePlugin(string displayName,=
string _className, string methodName, string filelocation)
{
try
{
// set up the plugin properties
SetPluginID();
SetDisplayName(_displayName);
SetClassName(_className);
SetMethodName (_methodName);
SetFilelocation(filelocation);
SetStatus(pluginStatus.Lloaded);

// set up the instance of the plugin engine
em = new EngineManager();
em.Initialize(filelocation);

}
catch
{
SetStatus(pluginStatus.Failed);
}

public override ExecuteResults ExecutePlugin<ExecuteResults>()

{
// to do: implement this method

throw new Exception("I have to do something to compile..");

CHAPTER 6 ADVANCED DEVELOPMENT

public override string ToString()
{
var s = new StringBuilder();
s.Append(displayName);
s.Append(": ");
s.Append(className);
s.Append(" calling method ");
s.Append(methodName) ;
return s.ToString();

Note Please note that | practice what | preach! We have overridden a ToString method here that dis-
plays a string in the form “dlisplay name : class calling method method.” Again, it’s not a requirement, but
it does make debugging easier. Now if | need to do a quick sanity check on the state of the object, | can call
pluginName.ToString() and get a quick view at the object’s contents.

The reason we haven’t implemented the ExecutePlugin method yet is simple: we
don’t have anything in our EngineManager to handle our plug-in! Let’s remedy that.
Open the EngineManager class and add below the existing Execute method shown in
Listing 6-17.

Listing 6-17. Overriding the Execute Method in EngineManager to Accommodate Plug-ins

/// <summary>

/// Gets the results of an IronPython plugin after execution.

/// </summary>

/// <typeparam name="EngineResults">Generic result fromws

IronPython class.</typeparam>

/// <param name="plugin">A plugin that implements BasePlugin.</param>
/// <returns>The results of IronPython execution.</returns>

public EngineResults Execute<EngineResults>(BasePlugin plugin)

145

146

CHAPTER 6 ADVANCED DEVELOPMENT

source.Execute(scope);

var classObj = scope.GetVariable(plugin.className);

var classInstance = operations.Call(classObj);

var classMethod = operations.GetMember(classInstance, plugin.methodName);
var results = (EngineResults)operations.Call(classMethod);

return results;

It’s pretty similar to the existing Execute method. The only real differences are that
it accepts any object that inherits from BasePlugin and that it uses properties of that
plug-in (such as plugin.className) instead of specific strings. Now let’s jump back to our
TestPlugin class and implement that ExecutePlugin method we left hanging (Listing 6-18).

Listing 6-18. Overriding the Execute Method in EngineManager to Accommodate Plug-ins

public override ExecuteResults ExecutePlugin<ExecuteResults>()
{
switch (status)
{
case pluginStatus.Loaded:
return em.Execute<ExecuteResults>(this);

case pluginStatus.Failed:
throw new Exception("EngineManager failed to initialize plugin.");

case pluginStatus.Unavailable:
throw new Exception("Plugin is unavailable; please initializews

properly.");

default:
throw new Exception("Unable to verify plugin status; pleasew
initialize properly.");

}

This ExecutePlugin method now evaluates the current value of the pluginStatus prop-
erty to find out whether to execute the [ronPython method or throw an exception back to
the calling class to indicate some type of failure has occurred. Now that we have a more
robust plug-in system, let’s modify the main Ul program to use it (Listing 6-19), and we’ll
compare the direct EngineManager to the more abstract plug-in class and see how the
terrain looks in a new light (Figure 6-12).

CHAPTER 6 ADVANCED DEVELOPMENT

Listing 6-19. A Modified Program.cs in the ConsoleUI Application

using System;
using IPEngine;

namespace ConsoleUI

{

class Program
{
static void Main(string[] args)
{
var p = new TestPlugin();
p.ConfigurePlugin("test", "pluginTest", "HelloPlugin",ws
@"C:\Python\Plugin\Scripts\pluginTest.py");
Console.WriteLine(p.ExecutePlugin<string>());

var e = new EngineManager();
e.Initialize(@"C:\Python\Plugin\Scripts\pluginTest.py");

Console.WritelLine(e.Execute<string>("pluginTest", "HelloPlugin"));

Console.Read();

Figure 6-12. The basic plug-in architecture is working.

Choices, Choices

Is it better to use a direct call to the EngineManager or better to go through the plug-in
architecture? I would recommend using the plug-in architecture; although both classes
provide a standardized way to access IronPython code, you can easily extend the

147

148

CHAPTER 6 ADVANCED DEVELOPMENT

BasePlugin class to other types, and my personal experience is that a layer of abstraction
generally fixes everything. As I've mentioned on a few occasions throughout this book,
you're doing yourself a service if you introduce a little flexibility as you go rather than
trying to tack something on later. Don’t take my word though; there are no hard-and-fast
rules. For some applications, developing a plug-in system like the one we’ve created so
far is, frankly, overkill. For other applications, we would need to take this system and
expand on it greatly. It’s all relative.

There’s another, more subtle benefit happening here. The user interface code has no
clue what’s happening behind the scenes. All it knows is that there’s a TestPlugin class
with a handful of methods; it doesn’t know anything about the IronPython ScriptEngine
or any of that business. That’s the way things should be. Granted, the EngineManager
hides those specific implementation details too, but it still has the slight scent of “low-
level” code. Code with that aroma seems like it should be tucked in the background
somewhere, used when needed, and otherwise not seen. For that reason alone, my vote’s
on the plug-in architecture. You can always make calls to the EngineManager directly if
you need to.

Supporting Healthy Arguments

The last expansion to the plug-in system will be an overloaded method that supports the
passing of one or more arguments to an IronPython class. First, open the BasePlugin.cs
file and add immediately after the existing ExecutePlugin method the overload method
shown in Listing 6-20.

Listing 6-20. Overloading ExecutePlugin to Accept Parameters
public abstract ExecuteResults ExecutePlugin<ExecuteResults>(string[] parameters);

Next we need to overload the ExecutePlugin method in the TestPlugin class so that
our parameters can be passed to the EngineManager properly. Add after the existing
ExecutePlugin method in TestPlugin.cs the code shown in Listing 6-21.

Listing 6-21. Overloading ExecutePlugin in the TestPlugin to Accept Parameters

public override ExecuteResults ExecutePlugin<ExecuteResults>(string[] parameters)

{
switch (status)

{
case pluginStatus.Loaded:
return em.Execute<ExecuteResults>(this, parameters);

CHAPTER 6 ADVANCED DEVELOPMENT

case pluginStatus.Failed:
throw new Exception("EngineManager failed to initializew

plugin.");

case pluginStatus.Unavailable:
throw new Exception("Plugin is unavailable; please initializews

properly.");

default:
throw new Exception("Unable to verify plugin status; pleasew
initialize properly.");
}
}

The method signature now indicates that the method is willing to accept an alternate
call that accepts an array of strings as parameters to use in the method. Compare the
code in Listing 6-21 to the code in Listing 6-18 and you can see how the method has been
overridden to accept an array of strings. Note that we’re also passing these parameters
down to the EngineManager.Execute method, which as of now does not accept an array
of parameters. To fix this, we’ll overload the Execute method in the EngineManager class
to accept parameters as well. Place the code in Listing 6-22 immediately after the existing
Execute method.

Listing 6-22. Overloading Execute to Accept Parameters in EngineManager.css

/// <summary>
/// Gets the results of an IronPython plugin after execution.
/// </summary>
/// <typeparam name="EngineResults">Generic result fromws
IronPython class.</typeparam>
/// <param name="plugin">A plugin that implements BasePlugin.</param>
/// <param name="parameters">An array of string parameters.</param>
/// <returns>The results of IronPython execution.</returns>
public EngineResults Execute<EngineResults>(BasePlugin plugin, string[] parameters)
{
source.Execute(scope);
var classObj = scope.GetVariable(plugin.className);
var classInstance = operations.Call(classObj);
var classMethod = operations.GetMember(classInstance, plugin.methodName);
var results = (EngineResults)operations.Call(classMethod, parameters);
return results;

149

150

CHAPTER 6 ADVANCED DEVELOPMENT

Now let’s write a little [ronPython code that tests this out. Add a new script to the
Scripts folder called pluginParameters.py (Listing 6-23).

Listing 6-23. pluginParameters.py, A Quick IronPython Script to Test Our Parameter
Methods

class pluginParameters:
def tryParams(self, name, age):
return "Hello, " + name + ", you are " + age + " years old."
The last step is to try calling our overloaded plug-in methods to see if everything
works as intended. In the ConsoleUI project, open the Program.cs file and modify it to
look like Listing 6-24; then run the solution (Figure 6-13).

Listing 6-24. A Test of the New Plug-in Overloads in Program.cs

using System;
using IPEngine;

namespace ConsoleUI

{

class Program
{
static void Main(string[] args)
{
var t = new TestPlugin();
t.ConfigurePlugin("test", "pluginTest", "HelloPlugin",ws
@"C:\Python\Plugin\Scripts\pluginTest.py");
Console.WritelLine(t.ExecutePlugin<string>());

var p = new TestPlugin();

p.ConfigurePlugin("params", "pluginParameters", "tryParams",ws
@"C:\Python\Plugin\Scripts\pluginParameters.py");

string[] parameters = {"Alan", "24"};

Console.WritelLine(p.ExecutePlugin<string>(parameters));

CHAPTER 6 ADVANCED DEVELOPMENT

var e = new EngineManager();
e.Initialize(@"C:\Python\Plugin\Scripts\pluginTest.py");
Console.WriteLine(e.Execute<string>("pluginTest", "HelloPlugin"));
Console.Read();

Figure 6-13. The plug-in overloads now accept an array of parameters.

“Somebody’s Watching Me”

We should put our plug-in system to the test in a real-life example. Much like
NotQuitePad in Chapter 5, we’ll lay out a set of design requirements, plan the application,
and implement it step by step. For this application, what we’re going to build is a small
Forms application that uses plug-ins to watch the file system and take various actions
depending on what sort of activities have occurred. We’ll use a mix of C# and IronPython:
the C# side will be the form itself, and the IronPython side will handle all of the applica-
tion’s desired file system activities.

The Plan

As always, it’s a good idea to start off with a basic plan so that we know where we’re
heading. We'll leave a little wiggle room for future development as well as for unforeseen
problems or changes along the way.

1. The application should consist of a single form.
2. The application should monitor the file system for various changes.

3. The application should handle all actions based on file system changes via
IronPython plug-ins.

151

152

CHAPTER 6 ADVANCED DEVELOPMENT

The Design

What I envision for this application is a single form that has a text box control on it as well
as two check box controls. The purpose of the text box is to display to the user any output
or feedback based on file system changes; IronPython code will provide that feedback.
The check boxes will activate or deactivate individual plug-ins. We'll test this at each step
of the way by performing the task a given plug-in should be watching for. If the given
check box is checked, we should see the task performed; otherwise it should be ignored.

First we’ll create a new project in the Plugin solution. We don’t necessarily have to do
it in this solution; it’s just convenient for the moment in case we want to debug or modify
code in the IPEngine library. Right-click on the solution and click Add » New Project.
Select Visual C# » Windows » Windows Forms Application, and name it FSWatcher.
Click OK to add it to the solution.

Next, right-click on the FSWatcher project and click Add Reference. Add to the proj-
ect a reference to IPEngine.dll and click OK. Now rebuild the entire solution by clicking
Build » Rebuild Solution from the menu bar; everything should rebuild with no errors or
warnings.

To accomplish the task of monitoring the file system, we’re going to use an object
.NET provides called the FileSystemWatcher. This object allows us to monitor a variety
of actions in the file system, such as adding or deleting a file and watching for only
specific types of files. It’s actually quite a powerful tool. Our program will monitor
C:\Python for the presence of .p1 and .p2 files. The tasks will be as follows:

1. .pl—inform the calling application that the file has been deleted from the folder

2. .p2—inform the calling application that the file has been added to the folder

Note You can find more information on the FileSystemWatcher at
http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher.aspx.

Writing the Basic IronPython Classes

For now, we’ll keep the IronPython classes simple. I find development tasks are easier
when I start with a simple, easily tested foundation. The first class we’ll create in the
Scripts folder is called pIHandler.py (Listing 6-25).

CHAPTER 6 ADVANCED DEVELOPMENT

Listing 6-25. p1Handler Will Return Information to the Calling Application

class piHandler:
"Informs the calling application that a file is deleted."
def NotifyCaller(self, fileName):

return fileName + " was deleted."

This first handler informs the calling application that a file has been deleted from the
folder we're watching. The next handler, p2Handler.py, will inform the calling application
that a file has been added to the folder we're watching (Listing 6-26).

Listing 6-26. p2Handler Will Also Return Information to the Calling Application

class p2Handler:
"Informs the calling application that a file has been added."
def NotifyCaller(self, fileName):

return fileName + " was added."

Creating the Parent Application

In the FSWatcher application, we have to set up the main form with the controls we need
and make sure everything is named something useful. First, open the form in Design
View and double-click on GroupBox in the toolbox. Resize it until it’s nicely centered in
the form, and change the Text property to File System Watcher (Figure 6-14).

Figure 6-14. The GroupBox is a nice container for our controls.

153

154 CHAPTER 6 ADVANCED DEVELOPMENT

Next we'll add the text box control to the GroupBox. Double-click on the TextBox
control in the toolbox and set the Multiline property to True, Scrollbars to Vertical, and
the name to txtUpdates. Resize it to approximately two-thirds the size of the GroupBox.
You should also set the ReadOnly property to True; this will prevent users from typing in
the updates box and disrupting the results (Figure 6-15).

Figure 6-15. The updates text box once all the properties have been set

Now we need to add two check box controls off to the right. Name them p1Watch-
erEnabled and p2WatcherEnabled, respectively. Set the Text properties to Watch .p1 files
and Watch .p2 files (Figure 6-16).

Figure 6-16. The FSWatcher Ul is complete.

CHAPTER 6 ADVANCED DEVELOPMENT

Wiring Things Together

With the Ul set up, we can start wiring our code together. The first thing we’ll do is run a
quick test to make sure that our IPEngine reference is correct and that things are gener-
ally the way we expect them to be.

Open Form1.cs and modify the code to look like Listing 6-27. Then we’ll run it
(Figure 6-17).
Listing 6-27. The Main Form with a Basic Plug-in Test Added

using System;
using System.Windows.Forms;
using IPEngine;

namespace FSWatcher

{
public partial class Forml : Form
{
public Formi()
{
InitializeComponent();
}

private void Formi Load(object sender, EventArgs e)

{
var p = new TestPlugin();
p.ConfigurePlugin("test", "piHandler", "NotifyCaller",ws
@"C:\Python\Plugin\Scripts\piHandler.py");
string[] parameters = {@"C:\Python\test.p1"};
txtUpdates.Text = p.ExecutePlugin<string>(parameters);

Note | created a dummy file called test.p7 in my C:\Python folder. It doesn’t matter what’s in there—this
is just a test at this point.

155

156

CHAPTER 6 ADVANCED DEVELOPMENT

Figure 6-17. A first run of the Ul shows that our IronPython class is called.

With the knowledge that our plug-in architecture is working, let’s take a look at the
FileSystemWatcher object and see how it can help us out.

First, on the main form, add a new Timer control and set the Interval property to 250
(which is expressed in milliseconds.) We'll use the Timer to fire every 250ms and update
the txtUpdates control with anything that has happened; make sure that Timer property
Enabled is set to True.

With the Timer in place, open the FormI code and moditfy it to look like Listing 6-28.
We'll discuss it afterwards.

Listing 6-28. The Main Form with FileSystemWatcher Added

using System;

using System.IO;

using System.Windows.Forms;
using IPEngine;

namespace FSWatcher

{

public partial class Forml : Form

{
private static string updateText = String.Empty;
private FileSystemWatcher fp1;
private FileSystemWatcher fp2;

CHAPTER 6 ADVANCED DEVELOPMENT

public Formi()

{
InitializeComponent();
}
private void Formi Load(object sender, EventArgs e)
{
fp1l = InitializePiWatcher(@"C:\Python", "*.p1");
fp2 = InitializeP2Watcher(@"C:\Python", "*.p2");
}

public FileSystemWatcher InitializePiWatcher(string path, string filter)
{
var f = new FileSystemWatcher { Path = path, Filter = filter,w
EnableRaisingEvents = true };
f.Deleted += OnP1Deleted;
return f;

public FileSystemWatcher InitializeP2Watcher(string path, string filter)
{
var f = new FileSystemWatcher { Path = path, Filter = filter,w
EnableRaisingEvents = true };
f.Created += OnP2Created;
return f;

private static void OnPiDeleted(object sender, FileSystemEventArgs e)
{

var p = new TestPlugin();

p.ConfigurePlugin("test", "piHandler", "NotifyCaller",ws

@"C:\Python\Plugin\Scripts\piHandler.py");

string[] parameters = { e.FullPath };

updateText += p.ExecutePlugin<string>(parameters);

updateText += "\r\n";

157

158

CHAPTER 6 ADVANCED DEVELOPMENT

private static void OnP2Created(object sender, FileSystemEventArgs e)
{

var p = new TestPlugin();

p.ConfigurePlugin("test", "piHandler", "NotifyCaller",ws

@"C:\Python\Plugin\Scripts\p2Handler.py");

string[] parameters = { e.FullPath };

updateText += p.ExecutePlugin<string>(parameters);

updateText += "\r\n";

}
private void timer1l Tick(object sender, EventArgs e)
{
txtUpdates.Text = updateText;
}

Note 1 really, really do not like the Timer control. It does have its uses, but | try to avoid it. 'm using
it here to keep things simple. The point is the use of IronPython code via C#, not how to wire a variety of
EventHandlers together.

Once we've created the form, we set up two FileSystemWatcher objects. One of them
monitors the file system for the deletion of .p1 files, and the other monitors for the cre-
ation of .p2 files. After running the application and adding and deleting a few files of the
appropriate types, I get the results shown in Figure 6-18.

CHAPTER 6 ADVANCED DEVELOPMENT

Figure 6-18. The FSWatcher is using the IronPython plug-in code and monitoring the
file system.

So far so good. Now all we need to do is to check the state of the check boxes and

make the correct processing decision based on their value (Listing 6-29).

Listing 6-29. The Main Form with FileSystemWatcher Added

private void timer1l Tick(object sender, EventArgs e)

{

txtUpdates.Text = updateText;
switch (piWatcherEnabled.Checked)
{
case false:
fp1.Deleted -= OnPiDeleted;
break;
default:
fp1.Deleted += OnP1iDeleted;
break;
}
switch (p2WatcherEnabled.Checked)
{
case false:
fp2.Created -= OnP2Created;
break;

159

160 CHAPTER 6 ADVANCED DEVELOPMENT

default:
fp2.Created += OnP2Created;
break;

Now, if one or both of the check boxes are unchecked, the FSWatcher will not update
the txtUpdates box with relevant file system data. The events are removed from the File-
SystemWatcher and added back in when the boxes are checked (Figure 6-19).

Figure 6-19. The FSWatcher with adjusted settings

Project Postmortem

Looking back, how did we do based on our design requirements?

1. The application should consist of a single Form. DONE.
2. The application should monitor the file system for various changes. DONE.

3. The application should handle all actions on file system changes via [ronPython
plug-ins. DONE.

Given that this application is technically simple, we did a pretty good job of putting
our IronPython plug-in system through its paces. Hopefully you see there’s a lot of poten-
tial for growth here. I purposefully kept the plug-ins simple, just returning some basic
information. What we have accomplished is to create a functional plug-in system that
can adapt to a variety of situations. We can pass and retrieve data from it, we’ve created
a common format for plug-ins that permits some very consistent implementations, and
your IronPython scripts can grow from there.

CHAPTER 6 ADVANCED DEVELOPMENT

Summary

With the plug-in architecture in place, you've seen firsthand how quickly you can imple-
ment IronPython code in another .NET language. In fact, you can use the IPEngine library
in any .NET language. Just add it as a reference, instantiate, and use it given the syntax

of the language of your choice. That means you can drop your own IronPython code

into any .NET application you write that makes use of IPEngine. We've looked at the
constructions IronPython provides for integration (such as the ScriptEngine) and built a
few applications that use IronPython plug-ins, including console and Forms applications.
Although we took a brief detour into a land heavy with C# code, we’re moving back to
pure IronPython and we’ll look at accessing various data sources.

161

CHAPTER 7

Data Manipulation

“Complexity kills. It sucks the life out of developers, it makes products difficult to
plan, build and test, it introduces security challenges and it causes end-user and
administrator frustration.”

— Ray Ozzie

You will not get far in development before you realize the need to store information that
you are generating or collecting. Modern software applications typically store, or persist,
their data somewhere for modification or retrieval later. There are a variety of ways to
handle this task; databases, XML files, comma-separated value files, and flat text files

are just some of the viable options, depending on the requirements of the application or
organization. In this chapter we’ll look at some of the various ways to store and retrieve
data, beginning with one of the most common methods, the database. After covering a
bit about each underlying data storage method, we’ll look at how IronPython allows us to
communicate with it to get our jobs done more easily.

SOL

When it comes to the task of data storage and retrieval, a relational database man-
agement system (RDBMS) such as Microsoft SQL Server is excellent at efficient data
management. A database comprises one or more tables, with each table defining how to
store information using columns of various data types. Data is stored as records, or rows
in the tables, following the column specifications. Relating data in one table to that in
another gives developers a powerful and versatile way to express data.

Note It's a common misconception that the word refational refers to the relationship between two or
more tables. Actually, each individual table in the database is called a relation. The reason for this is that
every row of data in the table conforms to the same constraints and data types; you can’t have one row of
n columns and another row with a different number of columns or data types. Knowing this won’t make or
break your database success, but it might serve to clarify certain aspects.

163

164

CHAPTER 7 DATA MANIPULATION

Consider that your employer has asked you to build an application to manage the
employees in the company. Your boss wants an easily maintainable list of employees in
a given department, along with some basic information, such as each employee’s name,
date of birth, and the date of hiring. A relational database design for this type of system
might look something like Figure 7-1.

Figure 7-1. A sample database design for the employees

Figure 7-1 presents two tables: one called Employee and the other called Depart-
ment. The Employee table has five columns, the Department table has two. Why are two
of the columns in boldface? Those columns indicate keys. In the case of the Employee
table, the employeelD column is what’s called the primary key, which is a value used to
identify uniquely each row in the table. The departmentID column in the Department
table is a foreign key. The Department table defines the unique IDs for each depart-
ment, and a relationship is established between the two tables. Basically, a foreign
key is a stored reference to the primary key in another table. It is termed a foreign key
because it references another table.

Tip Why didn’t we just store the name of the department in the employee record? If we had, not only
would it duplicate data unnecessarily, but it would make maintenance a nightmare. Where one user might
enter “IT,” another might enter “Information Technology,” and, worse, yet another might enter “Developers.”
What happens when your boss asks for a list of everyone in the IT department?

By separating data in this manner, we have normalized it. Normalized data is designed to strengthen
the integrity of the data in your system. And normalized data can take multiple forms. The table design for
Employee and Department has been normalized to a point, but it could be normalized further. This is not
always desirable, however. Most situations don’t require normalization past what is called 3rd Normal Form,
and there are situations in which you’d actually like your data to be denormalized for performance reasons.

Where normalized data is very granular and generally requires several steps to assemble as a finished
entity in an application, denormalized data could go so far as to have all the data you need stored in one row,
making retrieval incredibly fast. Like many aspects of development, this is one of those trade-offs that often
comes down to testing to find out what works best for the current problem.

CHAPTER 7 DATA MANIPULATION

Assuming that we have a few data points already filled in for both tables, Figure 7-2
demonstrates the contents and relationships in our sample company.

Figure 7-2. Some sample data for our small company

Note that the departmentID column has an integer value in it representing the
department in which an employee works. Now, while it’s all well and good that we can
open these tables, it’s not terribly efficient, because we have to look through the records
manually and figure out who works where. Luckily, modern database systems provide a
custom language for communicating with the system and working with data: Structured
Query Language, or SQL (pronounced “sequel”).

Although complete coverage of SQL is beyond the scope of this book, we're in luck
because the language itself is built on very basic concepts, including some we have
already covered. After setting up a basic design, we’ll break down these four core opera-
tions and how to execute them via the IronPython console.

Note The .NET framework exposes a variety of providers and boilerplate code to make database con-
nectivity simpler and to relieve you, as a developer, of the burden of creating data access code for MS SQL,
Oracle, and other databases. Most of this functionality lives under System.Data and related namespaces
that are specific to particular databases. For our purposes, we’ll focus on System.Data and System.Data.
SqlClient.

A Sample Database

First, we need to set up a sample database with some dummy data. We’ll create the
Employee and Department tables from earlier and fill them in with the data we’ve seen so
far. Open up the Microsoft SQL Server Management Studio you installed in Chapter 1 and
log in to the default instance (Figure 7-3).

165

166 CHAPTER 7 DATA MANIPULATION

Figure 7-3. Logging in to SQL Server

On the left side you'll see the server to which you're currently connected; on my
machine it’s the SQLEXPRESS instance. Right-click on the Databases folder and click
New Database. Name this new database IronPython, and leave the remaining options
set to their defaults. Click OK to add the database (Figure 7-4).

CHAPTER 7 DATA MANIPULATION 167

Figure 7-4. Creating the IronPython database

Next, we'll create the Department table. Right-click on the IronPython database and
click New Query. Enter the query shown in Listing 7-1 in the Query Editor window on the
right; press F5 to run it.

Listing 7-1. SQL Code to Create the Department Table

USE [IronPython]

GO

SET ANSI NULLS ON

GO

SET QUOTED IDENTIFIER ON
GO

168

CHAPTER 7 DATA MANIPULATION

SET ANSI _PADDING ON
GO
CREATE TABLE [dbo].[Department](
[departmentID] [int] IDENTITY(1,1) NOT NULL,
[title] [varchar](100) COLLATE SQL Latini General CP1 CI AS NOT NULL,
CONSTRAINT [PK Department] PRIMARY KEY CLUSTERED
([departmentID] ASC)
WITH (PAD_INDEX = OFF, IGNORE DUP KEY = OFF) ON [PRIMARY]) ON [PRIMARY]
GO
SET ANSI PADDING OFF

Note The SQL statements for creating and modifying a table’s structure, keys, indexes, and relationships
can be complex, so don’t spend too much time trying to understand these statements at the moment. They
fall into a category of SQL statements called data definition language, or DDL, whereas most of our time will
be spent with data modification language, called DML. The DML statements can get very, very complex as
well, but we won’t dive into the deep end.

Now we’ll create the Employee table; then we can start populating everything with
data. Replace the previous script with the one in Listing 7-2 and execute it by pressing the
F5 key.

Listing 7-2. SQL Code to Create the Employee Table

USE [IronPython]

GO

SET ANSI NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI PADDING ON

GO

CREATE TABLE [dbo].[Employee](
[employeeID] [int] IDENTITY(1,1) NOT NULL,
[departmentID] [int] NOT NULL,
[name] [varchar](150) COLLATE SQL Latini General CP1 CI AS NOT NULL,
[dateOfBirth] [datetime] NOT NULL,
[dateHired] [datetime] NOT NULL,

CHAPTER 7 DATA MANIPULATION

CONSTRAINT [PK _Employee] PRIMARY KEY CLUSTERED
([employeeID] ASC)
WITH (PAD_INDEX = OFF, IGNORE DUP KEY = OFF) ON [PRIMARY]) ON [PRIMARY]
GO
SET ANSI PADDING OFF
GO
ALTER TABLE [dbo].[Employee] WITH CHECK ADD CONSTRAINT [FK Employee Employee]ws
FOREIGN KEY([departmentID])
REFERENCES [dbo].[Department] ([departmentID])
GO
ALTER TABLE [dbo].[Employee] CHECK CONSTRAINT [FK Employee Employee]

Finally, replace that SQL script with the one in Listing 7-3 and execute it to populate
the tables with a little bit of data.

Listing 7-3. SQL Code to Fill the Tables with Default Values

INSERT INTO Department (title) VALUES
INSERT INTO Department (title) VALUES
INSERT INTO Department (title) VALUES
INSERT INTO Department (title) VALUES

"Human Resources")
IITI)
'Marketing")

~ o~ o~ o~

"Accounting")

INSERT INTO Employee VALUES (2, 'Alan Harris', '1/1/2009', '2/2/2009")
INSERT INTO Employee VALUES (1, 'Ted Smith', '1/1/2009', '2/2/2009")
INSERT INTO Employee VALUES (2, 'Jane Doe', '1/1/2009', '2/2/2009")

Create

Adding new records (or rows) to a SQL table from your program can be accomplished
with the INSERT INTO command. Let’s try adding a record to the Department table from
IronPython. Open the [ronPython interpreter and enter the code in Listing 7-4—replacing
the ALAN-DEVPC\SQLEXPRESS name in the sqlConnection with the name of your SQL instance.

Listing 7-4. Adding a Department to the Department Table

>>> import clr

>>> clr.AddReference("System.Data")

>>> from System.Data import *

>>> from System.Data.SqlClient import *

169

170

CHAPTER 7 DATA MANIPULATION

>>> conn = SqlConnection("Data Source=ALAN-DEVPC\SQLEXPRESS;w=>

Integrated Security=True;Initial Catalog=IronPython;User Instance=false")

>>> comm = SglCommand("INSERT INTO Department VALUES ('IPY Department')", conn)
>>> conn.Open()

>>> comm. ExecuteNonQuery ()

1

>>> conn.Close()

Note Immediately after typing the ExecuteNonQuery () command, you should see the number 1
returned from the IronPython interpreter. This is SQL Server informing you of how many rows were modified
by the last statement. In this case, you inserted one record, so the return value says that you modified one
row in that statement.

The INSERT INTO command needs to know which table to insert data to, as well as
what data to insert. Note that in SQL commands, strings are denoted by single quotes,
so if you want to insert a single quote into a field (for example, a department called Joe’s
Department), you would provide a value of Joe”s Department. Also note that the fields in
the INSERT statement are in the order in which they appear in the table; the first column
is left off in our case because SQL Server will fill it in automatically, since it’s set to be an
auto-incremented primary key.

Let’s add an entry to the Employee table that demonstrates this (Listing 7-5).
Remember to change the SqlConnection to specify your database.

Listing 7-5. Adding a Department to the Employee Table

>>> import clr

>>> clr.AddReference("System.Data")

>>> from System.Data import *

>>> from System.Data.SqlClient import *

>>> conn = SqlConnection("Data Source=ALAN-DEVPC\SQLEXPRESS;w=>

Integrated Security=True;Initial Catalog=IronPython;User Instance=false")
>>> comm = SqlCommand("INSERT INTO Employee VALUES (1, 'Sally''s Employee',w=
'1/1/2009', '2/2/2009')", conn)

>>> conn.Open()

>>> comm. ExecuteNonQuery ()

1

>>> conn.Close()

CHAPTER 7 DATA MANIPULATION

Here we’'ve added an employee to the Employee table who is a member of the
Human Resources Department (department ID 1) and who is named Sally’s Employee.
She was born on January 1, 2009, and hired on February 2, 2009 (which has to violate a
law somewhere).

Retrieve

If we want to retrieve data from a SQL table, we can use the SELECT command. There
are multiple ways to use the SELECT command. You can specify the columns you
want to retrieve, as in Listing 7-6, or you can select all the columns in the schema, as in
Listing 7-7.

Listing 7-6. Selecting Specific Columns from the Employee Table

>>> import clr
>>> clr.AddReference("System.Data")
>>> from System.Data import *
>>> from System.Data.SqlClient import *
>>> conn = SqlConnection("Data Source=ALAN-DEVPC\SQLEXPRESS;w=>
Integrated Security=True;Initial Catalog=IronPython;User Instance=false")
>>> comm = SqlCommand("SELECT name FROM Employee", conn)
>>> conn.Open()
>>> reader = comm.ExecuteReader()
>>> if (reader.Read()):
print (reader.CetString(0))

(press Enter here)
Alan Harris
>>> reader.Close()
>>> conn.Close()

Tip There are a variety of typed methods for the SqlDataReader, such as GetString, GetChar, and GetBool-
ean. These are the fastest methods of retrieving data from the database, but they require your code to have
an intimate knowledge of the underlying data types of the table. Depending on your situation, this may or
may not matter. For the sake of performance, this is the manner of data retrieval we’ll use.

17

172

CHAPTER 7 DATA MANIPULATION

Listing 7-7. Selecting All Records from the Employee Table

>>> import clr
>>> clr.AddReference("System.Data")
>>> from System.Data import *
>>> from System.Data.SqlClient import *
>>> conn = SqlConnection("Data Source=ALAN-DEVPC\SQLEXPRESS;w=>
Integrated Security=True;Initial Catalog=IronPython;User Instance=false")
>>> comm = SqlCommand("SELECT * FROM Employee", conn)
>>> conn.Open()
>>> reader = comm.ExecuteReader()
>>> if (reader.Read()):
print (reader.GetString(2))

(press Enter here)
Alan Harris
>>> reader.Close()
>>> conn.Close()

Tip Although it can be tempting, don’t rely on SELECT * in any real-world code you plan to use. It is
wasteful because it can potentially return unnecessary columns in the result set, it requires the retrieval of
the schema of the database to map columns in place of the wildcard, and it makes maintenance a potential
pain if something breaks in the schema. Generally speaking you are safest if you are explicit about each of
the column names in your query. Also note that we had to move to a different column in the result set the
second time because all of the columns had been returned to us. Tacky!

The SqlDataReader we used to read the data from the table is a forward-only stream
of data; it’s not possible to move backward in the stream. The SqlDataReader is a very fast
method of data retrieval, though, and it is used very commonly.

Update

Modifying existing data in a SQL table is done via the UPDATE command. To use the
UPDATE command, one or more rows in the table must already exist to be updated,
or the command will fail. Let’s update the record for “Sally’s Employee,” as shown in
Listing 7-8.

CHAPTER 7 DATA MANIPULATION

Listing 7-8. Updating the Record for “Sally’s Employee” in the Employee Table

>>> import clr

>>> clr.AddReference("System.Data")

>>> from System.Data import *

>>> from System.Data.SqlClient import *

>>> conn = SqlConnection("Data Source=ALAN-DEVPC\SQLEXPRESS;w=>
Integrated Security=True;Initial Catalog=IronPython;User Instance=false")
>>> comm = SqlCommand("UPDATE Employee SET name='Sally Employee'ws
WHERE name='Sally''s Employee'", conn)

>>> conn.Open()

>>> comm. ExecuteNonQuery ()

1

>>> conn.Close()

When executing statements that modify or delete data, it’s particularly important
to make sure you've applied the WHERE clause properly, otherwise you’ll modify every
row in the table! I can think of a few cases where this is the intended behavior, but not
many. You can also use the WHERE clause to limit the results you get back in SELECT
statements.

Note If there is no data to update that matches the WHERE clause filter (if any), you'll just get O rows
returned. Technically, the command has failed, but it’s not a catastrophic failure, just a logical one.

Delete

Deleting data from a SQL table is reserved for the aptly named DELETE command. Hav-
ing had both a short and tumultuous career in our small company, it’s time to delete the
name-changing “Sally Employee” (Listing 7-9).

Listing 7-9. Updating the Record for “Sally’s Employee” in the Employee Table

>>> import clr

>>> clr.AddReference("System.Data")

>>> from System.Data import *

>>> from System.Data.SqlClient import *

173

174

CHAPTER 7 DATA MANIPULATION

>>> conn = SqlConnection("Data Source=ALAN-DEVPC\SQLEXPRESS;w=>

Integrated Security=True;Initial Catalog=IronPython;User Instance=false")

>>> comm = SqlCommand("DELETE FROM Employee WHERE name='Sally Employee'", conn)
>>> conn.Open()

>>> comm. ExecuteNonQuery ()

1

>>> conn.Close()

Note If you want to delete everything in a table and reset any incremental keys back to 0 in one step,
you can use the broader command TRUNCATE TABLE. However, this does not allow you to delete individual
rows; it will eradicate all the data in the table. If you wanted to clear out the Employee table, you could
use TRUNCATE TABLE Employee. Don’t execute that command unless you want to obliterate all the data in
your table!

Preventing SQL Injection Attacks

So far we’ve operated in a very safe, sterile data environment with SQL. There has been
no user-supplied input to sanitize. This is generally not representative of the world we
live in as developers. I want you to pause for a moment and digest this next sentence
carefully and deliberately. It's important. Consider it the most important quote of this
chapter.

“All input should be considered dangerous and never trusted. No exceptions.”

This sounds like a terribly pessimistic view of the world, but it’s better to treat all input
as dangerous than to get caught with your security lacking. There are developers who
believe that SQL injection attempts are not common or are not as easy to perform as
some would have you think; this is absolutely untrue. Burying your head in the sand does
not relieve you of the threat.

Listing 7-10 is an example of code that’s very susceptible to injection; I've made the
dangerous input bold for clarity.

Caution Listing 7-10 is for example purposes ONLY! Don’t run this code directly unless you’re comfort-
able with losing the data in the Employee table. Everything we currently have is testing data only and can
easily be recreated, but | want you to know what you're in for before you execute dangerous code.

CHAPTER 7 DATA MANIPULATION

Listing 7-10. A 5cc Injection of SQL Insecurity

>>> import clr

>>> clr.AddReference("System.Data")

>>> from System.Data import *

>>> from System.Data.SqlClient import *

>>> conn = SqlConnection("Data Source=ALAN-DEVPC\SQLEXPRESS;w=>

Integrated Security=True;Initial Catalog=IronPython;User Instance=false")
>>> empName = raw_input('Enter the employee name to delete: ')

Enter the employee name to delete: foo' OR name IS NOT NULL;

>>> comm = SglCommand("DELETE FROM Employee WHERE name='" + empName + "'", conn)
>>> conn.Open()

>>> comm. ExecuteNonQuery ()

3

>>> conn.Close()

We didn’t perform any steps to sanitize the user input. By not doing so, we allowed
the execution of arbitrary SQL commands and left our database exposed.
The final statement we issued to SQL Server looks like Listing 7-11.

Listing 7-11. What We Really Told the Database to Do
DELETE FROM Employee WHERE name='foo' OR NAME IS NOT NULL;

You can see that we told SQL Server to delete everything in the Employee table where
the name was set to foo or the name was not null (thus basically every employee with a
name!). SQL injection attacks can be particularly insidious, and they tend to hide in the
nooks and crannies of legacy code.

What's a .NET developer to do? You can opt to try to clean all your SQL inputs your-
self by hand (which many developers have done over the years, to varying degrees of
success), or you can use the tried-and-tested parameterized SQL statements that .NET
provides.

Parameterized Queries

Using parameterized queries means letting go of assembling SQL statements involving
string concatenation. If you're new to development, then you've nothing to worry about
because you've got no bad habits to break. If you're used to building SQL statements this
way, watch how easily you gain some security over your statements, with minimal work
(Listing 7-12).

175

176

CHAPTER 7 DATA MANIPULATION

Listing 7-12. With Parameterized Queries, We Add a Nice Layer of Security to Our Code

>>> import clr

>>> clr.AddReference("System.Data")

>>> from System.Data import *

>>> from System.Data.SqlClient import *

>>> conn = SqlConnection("Data Source=ALAN-DEVPC\SQLEXPRESS;w=>

Integrated Security=True;Initial Catalog=IronPython;User Instance=false")
>>> empName = raw_input('Enter the employee name to delete: ')

Enter the employee name to delete: foo' OR name IS NOT NULL;

>>> comm = SqlCommand("DELETE FROM Employee WHERE name=@name", conn)

>>> conn.Open()

>>> comm.Parameters.AddWithValue("@name", empName)
<System.Data.SqlClient.SqlParameter object at 0x000000000000002B [@name]>
>>> comm. ExecuteNonQuery ()

0

>>> conn.Close()

Instead of using concatenation, we added to the statement a parameter called @name.
Then we supplied a value for the parameter. Behind the scenes, .NET did some work
to escape various characters and patterns in the statement so that everything would be
treated as string literals and not as interpreted commands. As a result, instead of deleting
all the rows in the table, none of them were deleted. It’s a small price to pay for security,
wouldn’t you agree?

Caution Don't fall into the trap of assuming that because you’ve followed basic guidelines for security
that you’re immune to all attacks. You're definitely better off for using the resources .NET provides, but secu-
rity should be one of your primary concerns at all times during application development. Any minor flaw can
be exploited with disastrous results.

Stored Procedures

In terms of performance and security, it’s hard to argue against stored procedures. The
SQL commands we’ve run so far have been inline SQL; that is, they have been complete
sets of SQL instruction contained entirely within the IronPython source code itself. Some
developers swear by this, others swear against it. It’s a holy war in and of itself. Let’s
weigh the pros and cons before looking at how it’s actually done.

CHAPTER 7 DATA MANIPULATION

When SQL Server executes queries, a lot of work is going on behind the scenes to
optimize the result set and to cache the execution plan. By placing your code in a stored
procedure, you help SQL Server perform those optimization steps and reduce the load on
the database. Maintenance of your code is generally easier because SQL code modifica-
tions can be made server-side without requiring recompilation or deployment of updated
code modules; any client code that uses the stored procedures will automatically use the
updated SQL code on the next connection. Finally, you can perform more steps on the
server itself, reducing the traffic to and from your program and the server and allowing
the database to do its job.

On the other side of the coin, keeping smaller bits of SQL code in your source code
can help to keep the database from getting cluttered, which becomes important if you're
working on an enterprise application where the number of stored procedures can be in
the hundreds. From a design standpoint, it keeps potential business domain code in the
business layer and not out at the database itself. Frankly, it can be easier to keep your SQL
in your source code because it means you don’t have to switch back and forth between
SQL Server and your code IDE. When a deadline looms, sometimes every second counts
and you don’t want to waste that time moving between applications.

My personal preference is for stored procedures in most cases and for inline SQL
in limited other cases. In general, if you've got complex code or code that is going to be
executed very frequently, place it in a stored procedure and let SQL Server manage it
as it sees fit. If you've got a small bit of infrequently hit code that isn’t likely to change
in the near future, it won'’t kill you to have it in your source code. I will say that making
these distinctions is mainly a judgment call based on experience. If you're not sure or the
answer isn't crystal clear, place your SQL in a stored procedure, because this is the safer
choice. Be aware, however, that when rolling code out to production, you have to ensure
you get those stored procedures to your production database first! With inline SQL, this is
not a concern.

Tip For a long time, the recommended naming convention for stored procedures was that they begin
with sp. So if you were to make a stored procedure that logged in a user, you would likely name it
spLoginUser. This is a bad practice to get into; SQL Server will check the system procedures first based
on that prefix and you’ll incur a negligible performance penalty for it. It’s nothing major, but if you're
blessed with millions of happy, active users connecting to your data storage, every little bit counts and
that’s a silly one to waste any resources on.

| would recommend prefixing your stored procedures based on the area of your program to which
they’re related or on the function they provide. For example, for a login stored procedure, | might
call it securityLoginUser or authenticationLoginUser. The trick really is to be consistent. Don’t have
securityLoginUser and authenticationLogoutUser if you can help it. It's just a recipe for confusion at
that point.

177

178 CHAPTER 7 DATA MANIPULATION

Let’s create a simple stored procedure to retrieve an employee’s name; then we’ll
see how to use it from IronPython. Create a new query in SQL Server and enter the code
shown in Listing 7-13.

Listing 7-13. A Simple Stored Procedure to Retrieve an Employee’s Name

SET ANSI_NULLS ON

Go

SET QUOTED_IDENTIFIER ON

GO

CREATE PROCEDURE GetEmployeeNameByID
@employeeID INT

AS
BEGIN
SET NOCOUNT ON;
SELECT [name] FROM Employee
WHERE employeeID = @employeeID
END
GO

We can try it out in SQL Server before calling it from our IronPython code with the
line of code in Listing 7-14.

Listing 7-14. Calling the Stored Procedure with a Sample ID
EXEC GetEmployeeNameByID 1

You should get a single result; for me it was my name, Alan Harris.
Now let’s call this stored procedure from IronPython (Listing 7-15).

Listing 7-15. Selecting Records from the Employee Table with a Stored Procedure

>>> import clr

>>> clr.AddReference("System.Data")

>>> from System.Data import *

>>> from System.Data.SqlClient import *

>>> conn = SglConnection("Data Source=ALAN-DEVPC\SQLEXPRESS;w

Integrated Security=True;Initial Catalog=IronPython;User Instance=false")
>>> comm = SqlCommand("GetEmployeeNameByID", conn)

>>> comm.CommandType = CommandType.StoredProcedure

CHAPTER 7 DATA MANIPULATION

>>> conn.Open()
>>> comm.Parameters.AddWithValue("@employeeID", 1)
<System.Data.SqlClient.SqlParameter object at 0x000000000000002C [@employeeID]>
>>> reader = comm.ExecuteReader()
>>> if (reader.Read()):
print (reader.GetString(0))

(press Enter here)
Alan Harris
>>> reader.Close()
>>> conn.Close()

Tip Earlier in the book | mentioned that certain resources were expensive and needed to be freed prop-
erly. Database connections and resources can be very expensive and are prone to leaks due to easily missed
coding flaws. Always make sure to close your SqlDataReaders and Sq/Connections, or you’ll see things grind
to a halt very quickly. It’s easy to overlook and can cost you plenty in hard-to-diagnose performance prob-
lems and dropped connections.

Connection Pooling

The act of creating and destroying connections to the database is very costly, from a
performance perspective. It takes a heavy toll on response times and, if performed too
frequently, can completely disable a database or application as SQL Server struggles to
keep up with resource demands. To counteract this problem, connection pooling was
created.

When you create a connection to SQL Server with connection pooling enabled, then
if there are any existing connections in the pool, one will be retrieved and reused. This is
a very quick procedure. SQL Server maintains a cache of these connections, so the over-
head of creating a connection object is not incurred.

Tip Connection pooling is on by default if you do not specify otherwise, but it never hurts to be explicit. |
find that fewer errors occur if you take the time to specify what you want outright. A wasted day of work is
one spent troubleshooting a poor SQL connection that is flaking out because of connection pooling issues.

The trick to connection pooling is that the pooling works only if the connection string
is the same every time you communicate with the database. If even a single character is

179

180

CHAPTER 7 DATA MANIPULATION

different, then the connection string is not identical and a new connection will be cre-
ated. For that reason, I highly recommend that, in your data access code, you create a
variable to hold the connection string (Listing 7-16) and that you reuse that variable when
you need it. That will help prevent typographical errors and ensure that your database
connections run smoothly.

Listing 7-16. A Sample Connection String Variable
>>> connString = "Data Source=ALAN-DEVPC\SQLEXPRESS ;s

Integrated Security=True;Initial Catalog=IronPython;User Instance=false;ws
Max Pool Size=100;Min Pool Size=5;Pooling=true"

>>> conn = SglConnection(connString)

Tip A maximum pool size of 100 and a minimum pool size of 5 are also default values in .NET and per-
fectly reasonable values to use in production.

XML

As an alternative to databases for the storage and retrieval of data, developers can opt to
use XML, short for Extensible Markup Language, as their weapon of choice. The inter-
esting thing about XML is that its technical purpose is to facilitate the creation of other
markup languages. Before we dive into working with XML, let’s take a look at what some
XML markup looks like (Listing 7-17).

Listing 7-17. A Sample XML Document

<?xml version="1.0" ?>
<documents>
<document type="book">
<author>Alan Harris</author>
<title>Pro IronPython</title>
<pubYear>2009</pubYear>
</document>

CHAPTER 7 DATA MANIPULATION

<document type="paper">
<author>King Kong</author>
<title>How to Climb a Building</title>
<pubYear>1933</pubYear>
</document>
</documents>

It’s actually rather simple. However, there are some rules to properly formatted XML
that are important to follow.

e Tags must be well formed. That means opening and closing brackets, < and >, as
well as opening and closing tags. If you open an element <dog>, there must be a
matching </dog> to close that element.

» Tags are case sensitive; <dog> cannot be properly closed by a tag of </Dog>.

¢ Tags must not overlap, meaning that the tree hierarchy must be preserved.
<dog><cat></cat></dog> is valid, but <dog><cat></dog></cat> is not. Tags
opened within other tags must be closed within that same tag.

As with stored procedures, there is some debate over the pros and cons of XML.
Proponents of XML say that it’s a terrific, well-structured way to convey metadata. It
lends itself to standards and can easily be validated because of its fairly strict rule set. On
the other side of the fence, there are those who view XML as a failed experiment. They
consider it a tremendously verbose way to describe data and feel it is prone to errors
during transmission. Regardless of which side you're on, it remains an oft-used method
of communication and storage. In fact, in the next chapter, in which we work with web
development, we’ll see that not only does the .NET framework whole-heartedly embrace
XML for its configuration data, but the basic construction of a web page can be expressed
in a way that is very similar to XML.

Note Metadatais, quite literally, data that describes other data. In Listing 7-17, the XML that describes
documents is a good example of metadata; the XML describes data points about other objects.

To see a real-world example of working with XML, let’s use the RSS feed from
USA Today. At the time of this writing, the feed was available at http://rssfeeds.
usatoday.com/usatoday-NewsTopStories. The first step is to write a little IronPython
code to retrieve this feed (Listing 7-18).

181

182 CHAPTER 7 DATA MANIPULATION

Listing 7-18. Retrieving an RSS Feed

>>> import clr

>>> clr.AddReference("System")

>>> clr.AddReference("System.Net")

>>> from System import *

>>> from System.Net import *

>>> from System.IO import *

>>> request =w»
WebRequest.Create("http://rssfeeds.usatoday.com/usatoday-NewsTopStories")
>>> response = request.GetResponse()

>>> reader = StreamReader(response.GetResponseStream())
>>> result = reader.ReadToEnd()

The variable called result now contains the entire XML markup of the RSS feed. You
can verify this for yourself. Note that I did not display the entire contents here, for the
sake of brevity; you will see significantly more output from printing the result variable
(Listing 7-19).

Listing 7-19. Retrieving an RSS Feed (cont.)

>>> print result.ToString()
<?xml version="1.0" encoding="UTF-8"?>
<rss xmlns:feedburner="http://rssnamespace.org/feedburner/ext/1.0"=
xmlns:cf="http://www.microsoft.com/schemas/rss/core/2005" version="2.0">
<channel>
<cf:treatAs>list</cf:treatAs>
<title>USATODAY.com News - Top Stories</title>
<link>http://www.usatoday.com/news/default.htm</link>
<description>USATODAY.com News - Top Stories (USA TODAY)</description>
<language>en-us</language>
<copyright>Copyright 2009, USATODAY.com, USA TODAY</copyright>
<lastBuildDate>Mon, 09 Mar 2009 22:07:00 GMT</lastBuildDate>
<image>
<title>USATODAY.com News - Top Stories</title>

Now we have the XML, but it is in string format, which isn’t terribly useful for
navigating; it’s a rather flat, meaningless structure. We could use some string parsing
methods to try and extract the data we want, but that would be a clunky, unnecessary
step. We should treat it as proper XML and use the navigation methods .NET provides
(Listing 7-20).

CHAPTER 7 DATA MANIPULATION

Listing 7-20. Retrieving an RSS Feed (cont.)

>>> clr.AddReference("System.Xml")
>>> from System.Xml import *
>>> xmlReader = w=»
XmlTextReader ("http://rssfeeds.usatoday.com/usatoday-NewsTopStories")
>>> while (xmlReader.Read()):

print xmlReader.NodeType.ToString() +

+ xmlReader.Name
(press Enter here)

The XmlTextReader is the XML equivalent of the SqlDataReader. 1t is a forward-
only reader that is very fast but that does not allow modification of the underlying
data. It is only for efficient retrieval. What if we want to write an XML document to disk
(Listing 7-21)?

Listing 7-21. Writing an XML File to Disk

>>> import clr

>>> clr.AddReference("System")

>>> clr.AddReference("System.Xml")

>>> from System import *

>>> from System.Xml import *

>>> from System.IO import *

>>> xmlWriter = XmlTextWriter("C:\Python\IPXml.xml", Text.Encoding.UTF8)
>>> xmlWriter.WriteProcessingInstruction("xml", "version='1.0" encoding='UTF-8'")
>>> xmlWriter.WriteStartElement("dog")

>>> xmlWriter.WriteStartElement("cat")

>>> xmlWriter.WriteEndElement()

>>> xmlWriter.WriteEndElement()

>>> xmlWriter.Close()

Opening this file in Notepad shows the result in Figure 7-5, indicating that we were
successful in storing data to the drive.

183

184

CHAPTER 7 DATA MANIPULATION

Figure 7-5. The XML file was created successfully.

Comma-Separated Values

Comma-separated values (CSV) are a very simple way of storing data. In a way they are
very similar to databases; that is, they can be thought of in terms of rows and columns.
Each row of text is expressed as one line; the columns are separated by a comma.

Note Technically speaking, it doesn’t have to be a comma that separates values. It could be any charac-
ter you want to parse out. But obviously if someone is expecting you to work with traditional CSV data, that
person is going to expect the C to stand for comma.

I created a simple text file that contains some CSV data and saved it to my desktop
(Figure 7-6). You'll see that consuming this information in IronPython is extremely trivial
(Listing 7-22).

CHAPTER 7 DATA MANIPULATION 185

Figure 7-6. A simple CSV file

Listing 7-22. Reading and Displaying the Contents of a CSV File

>>> import clr
>>> clr.AddReference("System")
>>> from System.IO import *
>>> lines = File.ReadAlllLines("C:\Python\data.csv")
>>> for line in lines:
fields = line.Split(',")
for field in fields:
print field
(press Enter here)
the
quick
brown
fox
Jumped
over
the
lazy
dog

186

CHAPTER 7 DATA MANIPULATION

Creating an Effective Data Layer

As I've mentioned all along, it’s important when building applications that you separate
concerns and keep code divided into easily maintainable layers. Before now this has been
limited exclusively to the presentation and business layers, but the third component

to the three-tier architecture is the data layer. Building an effective, easily maintained
data layer doesn’t have to be a nightmare; in fact it can be downright simple, if you plan
carefully.

The first concern is weighing the likelihood that the underlying data storage platform
will change. .NET has a variety of providers for different data sources, but so far we’ve tied
ourselves to a particular one (MS SQL Server.) That’s okay if it’s not likely that our data
storage will change. I myself have no plans to shift from SQL Server on my local machine,
so I'm not building a data layer to accommodate that. However, you may find that you
need to, particularly if you plan to build public components where you don’t know
exactly what platform someone is going to be working with.

You also need to make the design decision of where to store your SQL code. Earlier
we weighed the pros and cons about whether or not it was better to create stored pro-
cedures or to go with inline SQL. Again, I would recommend stored procedures where
possible. But if you have infrequently hit small bits of code, the world won’t come crash-
ing down if you leave them in your code.

So what makes an effective data layer? In my mind, an effective data layer does its
job when it facilitates easy, straightforward access to the underlying data storage without
revealing an unnecessary amount of implementation details to any calling layers.

What this means is simply that the business logic shouldn’t know that we’re using
SQL Server. That information is none of its business. Think of your layers like noisy
neighbors; you should be instructing them to mind their own business and to perform
their own individual tasks. The data layer should handle all the implementation details
of speaking to the data storage application and just quietly pass the end result of that
work to the business layer for appropriate processing. For comparison, we will examine
some methods that use stored procedures and some that use inline SQL so that you can
make an informed choice.

Note This is where the data layer holy war grumbling begins. Should the application-stored procedures
do a minimalistic, straightforward data retrieval and leave all processing to the business layer, even if it
means retrieving and returning unnecessary data? What exactly constitutes business logic, and does it have
any place in stored procedures? These are not easy questions to answer. In my mind, the decision comes
down to maintainability. If code is obviously difficult to maintain in a particular location, it’s a likely candidate
for being moved elsewhere. You may find that moving it to another layer is a bad idea or does not improve
the maintainability of the application, but never be afraid to bend the rules a bit to find what works best for
your particular application.

CHAPTER 7 DATA MANIPULATION

Let’s try designing a data layer from scratch. We’'ll create a new Windows Forms
project called IPData; make sure the Create directory for solution box is checked, as usual.
Once the project is created, right-click on the project and add a folder called Data. Next,
add a new class file to this Data folder. We'll call this file dataManager.py. The code for
this class is given in Listing 7-23.

Listing 7-23. The dataManager.py Class

import clr
clr.AddReference("System")
clr.AddReference("System.Data")
from System import *

from System.Data import *

from System.Data.SqlClient import *

class dataManager:
"The data layer manager for our IronPython test application”

def GetConnection(self):
"Gets a new SqlConnection object"
conn = SqlConnection("Data Source=ALAN-DEVPC\SQLEXPRESS;w=
Integrated Security=True;Initial Catalog=IronPython;User Instance=False;ws
Max Pool Size=100;Min Pool Size=5;Pooling=True")
return conn

def GetCommand(self, commandString, connection):
"Gets a new SglCommand object"
comm = SqlCommand(commandString, connection)
return comm

Note that this also fulfills the connection pooling requirements we had from earlier.
By defining a GetConnection method that returns the same connection string each time,
we should have no problems with connection pooling (and if the settings here should
ever change in the future, we only have to change them in this one place, which will make
maintenance simpler).

Using the dataManager

Now we can create an employeeData class in the Data folder that makes use of the data-
Manager class to handle the connectivity aspects of data access (Listing 7-24).

187

188

CHAPTER 7 DATA MANIPULATION

Listing 7-24. The employeeData.py Class

import clr
clr.AddReference("System")
clr.AddReference("System.Data")
from System import *

from System.Data import *

from System.Data.SqlClient import *
from dataManager import *

class employeeData:
"The data class for the Employee table."

def GetEmployeeNameByID(self, employeeID):

result = String.Empty
dm = dataManager()
conn = dm.GetConnection()
comm = dm.GetCommand("GetEmployeeNameByID", conn)
comm.CommandType = CommandType.StoredProcedure
conn.Open()
comm.Parameters.AddWithValue("@employeeID", employeeID)
reader = comm.ExecuteReader()
if (reader.Read()):

result = reader.GetString(0)

reader.Close()

conn.Close()

return result

So let’s look at what’s happening in the GetEmployeeNameByID method. First, we
created a variable called result that will hold the output of the method, if any. Next,
we instantiated a dataManager class. Next we created a connection, followed by a com-
mand. Notice that we're passing a SQL statement (either a series of commands or the
name of a stored procedure) and the connection itself to the GetCommand method. Next,
we explicitly told the command object that what we provided should be found as a stored
procedure. If you have a stored procedure but do not perform this step, the procedure
will not be executed.

Note The reverse is not true: if you supply a SQL statement (such as SELECT * FROM Employee), you
don’t need to specify anything in particular for the CommandType parameter. Only if you’re instructing SQL
Server that the command text is the name of a stored procedure do you need to take that extra step.

CHAPTER 7 DATA MANIPULATION

Next we added the necessary parameters to the command object and provided the
appropriate value. We retrieved the result from the table and returned it via the result
string. Now we can call our employeeData class—can’t we? Technically, yes. But devel-
oper to developer, no, we can’t. We can’t call it because the only place from which we
could call it is the user interface directly, and we’ve established that as a no-no.

Business As Usual

Add a folder to the application called Business, and inside create an employeeBusiness
class (Listing 7-25).

Listing 7-25. The employeeBusiness.py Class

from employeeData import *

class employeeBusiness:
"The business class for the Employee table."

def GetEmployeeNameByID(self, employeeID):
emData = employeeData()
return emData.GetEmployeeNameByID(employeelD)

Admittedly, the GetEmployeeNameByID method in the business class doesn’t do
much other than act as a pass-through. That’s not a bad thing. I've heard people argue
against this, but what I find is that having this type of setup gives you options. Sure,
it’s not functioning as anything other than a pass-through at this point. But if that
requirement changes down the line, you already have hooks in your code on which to
hang additional code. If you choose a simpler, more direct route, you'll have to restruc-
ture multiple locations to make even basic changes (maybe you need to validate the
employeelD value here to ensure it’s an integer and not a string).

Now we can modify the main form to accept some user input so that we can
retrieve these fields dynamically. Add a text box and a button to the form. Name the
text box txtEmployeelD and the button btnSubmit. Set the button’s text to be Get Name.
Double-click on the button and add the code in Listing 7-26.

189

190 CHAPTER 7 DATA MANIPULATION

Listing 7-26. The Submit Button with Code Wired In

@accepts(Self(), System.Object, System.EventArgs)
@returns(None)
def _btnSubmit Click(self, sender, e):

employee = employeeBusiness()

self. txtEmployeeID.Text =w»

employee.GetEmployeeNameByID(self. txtEmployeeID.Text)

You'll also need to import the employeeBusiness class at the top of the form. Now if
you run the application, you can enter an employee ID in the text box, and when you click
the button, the text will be swapped with the employee name (Figure 7-7).

Figure 7-7. The data layer is accurately returning our fields based on user input.

All is not entirely well, however. Watch what happens when you click the Get Name
button again without entering a number instead of the employee name (Figure 7-8).

CHAPTER 7 DATA MANIPULATION 191

Figure 7-8. Whoops! This is how connections leak. Notice that we're not hitting the Close
methods.

Exceptional Handling!

We have several options for places to step in and do a little data validation. But, regard-
less of what we do, one step has to be ensuring that connections get closed and resources
released in the event of an exception. So let’s modify that employeeData class with some
exception-handling blocks (Listing 7-27, Figure 7-9).

Listing 7-27. Modifying the employeeData Class with Exception Handling

import clr
clr.AddReference("System")
clr.AddReference("System.Data")
from System import *

from System.Data import *

from System.Data.SqlClient import *
from dataManager import *

192 CHAPTER 7 DATA MANIPULATION

class employeeData:
"The data class for the Employee table."

def GetEmployeeNameByID(self, employeeID):
result = String.Empty
dm = dataManager()
conn = dm.GetConnection()
dm.GetCommand ("GetEmployeeNameByID", conn)

comm
comm.CommandType = CommandType.StoredProcedure
try:
conn.0Open()
comm.Parameters.AddWithvalue("@employeeID", employeeID)
reader = comm.ExecuteReader ()
if (reader.Read()):
result = reader.GetString(0)
reader.Close()
conn.Close()
return result
except:
conn.Close()
if (conn.State == ConnectionState.Open):
conn.Close()
return result

Tip What's the deal with calling conn.Close () so many times? Well, the simple answer is that there’s
no penalty or risk in calling it multiple times. The Close method won’t throw an exception if it is called after
the connection has been closed; it just quietly passes along. Technically speaking it should never be called
more than twice in this code anyway, because the final Close is wrapped in a check against the current state
of the connection.

If you run the application again, feel free to try submitting anything you like. The
database will return a valid result only for employee IDs that exist in the table. Anything
that doesn’t match that criterion will result in a blank value in the text box.

CHAPTER 7 DATA MANIPULATION

Figure 7-9. With exception handling in place, the program no longer fails catastrophically.

Tip Exceptions, by definition, are meant to handle exceptional, fringe cases. You shouldn’t leave operation
of the program up to the exceptions you’ve created. They’re fairly costly operations, despite being very fast
in .NET. A simple check in an earlier layer would prevent the overhead of setting up the SQL connection and
parameters, handling the exception, cleaning up, and so on.

Inserting a New Employee

Now let’s try adding a new employee to the table. We’re going to hard-code the depart-
ment for simplicity’s sake, but at this point adding one additional parameter should be
fairly straightforward. In the employeeData class, add the method shown in Listing 7-28.

Listing 7-28. Modifying the employeeData Class with Insertion Code

def InsertNewEmployee(self, employeeName):
dm = dataManager()
conn = dm.GetConnection()
comm = dm.GetCommand("INSERT INTO Employee VALUES=»
(1, @name, @birthDate, @hireDate)", conn)
try:
conn.0Open()
comm.Parameters.AddWithValue("@name", employeeName)
comm.Parameters.AddWithvalue("@birthDate", DateTime.Now.ToString())

193

194 CHAPTER 7 DATA MANIPULATION

comm.Parameters.AddWithvalue("@hireDate", DateTime.Now.ToString())
comm. ExecuteNonQuery ()
conn.Close()
except:
conn.Close()
if (conn.State == ConnectionState.Open):
conn.Close()

Again, it’s best practice not to call this directly from the user interface, so open the
employeeBusiness class and add to it the method shown in Listing 7-29.

Listing 7-29. Modifying the employeeBusiness Class with Insertion Code

def InsertNewEmployee(self, employeeName):
emData = employeeData()
emData.InsertNewEmployee(employeeName)

Now we can add an additional text box and button to the form. This set will be for
adding an employee to the table. Name the text box txtNewEmployee and the button
btnAdd, with the text label of Add Name (Figure 7-10). When you run the application, you
should be able to add an employee to the table.

Figure 7-10. A set of Ul controls to add an employee

Tip The Ulis admittedly quite bland. The key here is the underlying structure, not spending a lot of time on a
test Ul that you know will not see the light of day. There are times in development when you’ll be creating rather
sparse Uls for the purpose of quickly testing (sometimes known as mocking up) an idea, so don’t get too caught
up in always trying to make a whiz-bang Ul, unless you plan to demo it to customers or your boss.

CHAPTER 7 DATA MANIPULATION

Deleting an Employee

Lastly, let’s wire some code to delete an employee from the table. Add to the employee-
Data class the code in Listing 7-30.

Listing 7-30. Adding Deletion Code to the employeeBusiness Class

def DeleteEmployee(self, employeeID):

dm = dataManager()

conn = dm.GetConnection()
dm.GetCommand ("DELETE FROM Employee WHEREws
employeeID = @employeeID", conn)

comm

try:
conn.0Open()
comm.Parameters.AddWithValue("@employeeID", employeeName)
comm. ExecuteNonQuery ()
conn.Close()
except:
conn.Close()
if (conn.State == ConnectionState.Open):
conn.Close()

Now we can call that code from the business layer (Listing 7-31).

Listing 7-31. Calling the Deletion Code from the Business Layer

def DeleteEmployee(self, employeelD):
emData = employeeData()
emData.DeleteEmployee (employeelID)

The final step is to create some Ul controls and then to run the application to try it
out. For your convenience, Listing 7-32 shows the entire UT code file, Listing 7-33 shows
the entire business layer code file, Listing 7-34 shows the entire data manager code file,
and Listing 7-35 shows the entire employee data code file.

195

196 CHAPTER 7 DATA MANIPULATION

Listing 7-32. The Entire UI Code File

import System

from System.Windows.Forms import *
from System.ComponentModel import *
from System.Drawing import *

from clr import *

from employeeBusiness import *
class IPData: # namespace

class Formi(System.Windows.Forms.Form):
"""type(_txtEmployeeID) == System.Windows.Forms.TextBox, typews
(txtNewEmployee) == System.Windows.Forms.TextBox, type(_btnAdd) ==
System.Windows.Forms.Button, type(txtDelEmployee) == System.Windows.Forms.TextBox,w
type(_btnDelete) == System.Windows.Forms.Button, type(btnSubmit) ==

nonn

System.Windows.Forms.Button
slots = ['_txtEmployeeID', '_txtNewEmployee', ' btnAdd',=

' txtDelEmployee', ' btnDelete', ' btnSubmit']
def _init (self):

self.InitializeComponent()

@accepts(Self(), bool)

@returns(None)

def Dispose(self, disposing):
super(type(self), self).Dispose(disposing)

@returns(None)
def InitializeComponent(self):

self. txtEmployeeID = System.Windows.Forms.TextBox()

self. btnSubmit = System.Windows.Forms.Button()

self. txtNewEmployee = System.Windows.Forms.TextBox()

self. btnAdd = System.Windows.Forms.Button()

self. txtDelEmployee = System.Windows.Forms.TextBox()

self. btnDelete = System.Windows.Forms.Button()

self.SuspendLayout()

#

txtEmployeeID

#

self. txtEmployeeID.Location = System.Drawing.Point(12, 12)

self. txtEmployeeID.Name

"txtEmployeeID'
self. txtEmployeeID.Size = System.Drawing.Size(260, 20)
self. txtEmployeeID.TabIndex = O

#
btnSubmit
#

self. btnSubmit.
self. btnSubmit.
self. btnSubmit.
self. btnSubmit.
self. btnSubmit.
self. btnSubmit.
self. btnSubmit.

#

CHAPTER 7 DATA MANIPULATION

Location = System.Drawing.Point(108, 38)
Name = 'btnSubmit'

Size = System.Drawing.Size(75, 23)
TabIndex = 1

Text = 'Get Name'
UseVisualStyleBackColor = True

Click += self. btnSubmit Click

txtNewEmployee

#

self. txtNewEmployee.location = System.Drawing.Point(12, 67)

self. txtNewEmployee.Name = 'txtNewEmployee'

self. txtNewEmployee.Size = System.Drawing.Size(260, 20)

self. txtNewEmployee.TabIndex = 2

#
btnAdd
#

self. btnAdd.Location = System.Drawing.Point (108, 93)
self. btnAdd.Name = 'btnAdd’

self. btnAdd.Size = System.Drawing.Size(75, 23)

self. btnAdd.TabIndex = 3

self. btnAdd.Text = 'Add Name'

self. btnAdd.UseVisualStyleBackColor = True

self. btnAdd.Click += self. btnAdd Click

#

txtDelEmployee

#

self. txtDelEmployee.location = System.Drawing.Point(12, 122)
self. txtDelEmployee.Name = 'txtDelEmployee'

self. txtDelEmployee.Size = System.Drawing.Size(260, 20)
self. txtDelEmployee.TabIndex = 4

#

btnDelete

#

self. btnDelete
self. btnDelete
self. btnDelete
self. btnDelete
self. btnDelete

.Location = System.Drawing.Point(99, 148)
.Name = 'btnDelete’

.Size = System.Drawing.Size(93, 23)
.TabIndex = 5

.Text = 'Delete Name'

197

198

CHAPTER 7 DATA MANIPULATION

self. btnDelete.UseVisualStyleBackColor = True
self. btnDelete.Click += self. btnDelete Click
#

Formi

#

self.ClientSize = System.Drawing.Size(284, 264)
self.Controls.Add(self. btnDelete)
self.Controls.Add(self. txtDelEmployee)
self.Controls.Add(self. btnAdd)
self.Controls.Add(self. txtNewEmployee)
self.Controls.Add(self. btnSubmit)
self.Controls.Add(self. txtEmployeeID)
self.Name = 'Form1'

self.Text = 'Form1'

self.Load += self. Formi_Load
self.ResumeLayout(False)

self.PerformLayout()

@accepts(Self(), System.Object, System.EventArgs)
@returns(None)
def Formi Load(self, sender, e):

pass

@accepts(Self(), System.Object, System.EventArgs)
@returns(None)
def btnSubmit Click(self, sender, e):

employee = employeeBusiness()

self. txtEmployeeID.Text =w»

employee.GetEmployeeNameByID(self. txtEmployeeID.Text)

@accepts(Self(), System.Object, System.EventArgs)
@returns(None)
def btnAdd Click(self, sender, e):
employee = employeeBusiness()
employee.InsertNewEmployee(self. txtNewEmployee.Text)

@accepts(Self(), System.Object, System.EventArgs)
@returns(None)
def btnDelete Click(self, sender, e):
employee = employeeBusiness()
employee.DeleteEmployee(self. txtDelEmployee.Text)

CHAPTER 7

Listing 7-33. The Entire Business Layer Code File

from employeeData import *

class employeeBusiness:
"The business class for the Employee table."

def GetEmployeeNameByID(self, employeeID):
emData = employeeData()
return emData.GetEmployeeNameByID(employeeID)

def InsertNewEmployee(self, employeeName):
emData = employeeData()
emData. InsertNewEmployee(employeeName)

def DeleteEmployee(self, employeeID):
emData = employeeData()
emData.DeleteEmployee(employeelID)

Listing 7-34. The Entire Data Manager Code File

import clr
clr.AddReference("System")
clr.AddReference("System.Data")
from System import *

from System.Data import *

from System.Data.SqlClient import *

class dataManager:
"The data layer manager for our IronPython test application”

def GetConnection(self):
"CGets a new SqlConnection object"
conn = SglConnection("Data Source=ALAN-DEVPC\SQLEXPRESS;w=

DATA MANIPULATION

Integrated Security=True;Initial Catalog=IronPython;User Instance=False;ws

Max Pool Size=100;Min Pool Size=5;Pooling=True")
return conn

def GetCommand(self, commandString, connection):
"CGets a new SqlCommand object"
comm = SqlCommand(commandString, connection)
return comm

199

200 CHAPTER 7 DATA MANIPULATION

Listing 7-35. The Entire Employee Data Code File

import clr
clr.AddReference("System")
clr.AddReference("System.Data")
from System import *

from System.Data import *

from System.Data.SqlClient import *
from dataManager import *

class employeeData:
"The data class for the Employee table."

def GetEmployeeNameByID(self, employeeID):
result = String.Empty
dm = dataManager()
conn = dm.GetConnection()
comm = dm.GetCommand("GetEmployeeNameByID", conn)
comm.CommandType = CommandType.StoredProcedure
try:
conn.0Open()
comm.Parameters.AddWithValue("@employeeID", employeeID)
reader = comm.ExecuteReader ()
if (reader.Read()):
result = reader.GetString(0)
reader.Close()
conn.Close()
return result
except:
conn.Close()
if (conn.State == ConnectionState.Open):
conn.Close()
return result

def InsertNewEmployee(self, employeeName):
dm = dataManager()
conn = dm.GetConnection()
comm = dm.GetCommand("INSERT INTO Employee VALUES (1, @name, @birthDate,w=
@hireDate)", conn)
try:
conn.0Open()

comm.
comm.
comm.

comm

conn.

except:

conn.
if (conn.
conn.

CHAPTER 7 DATA MANIPULATION

Parameters.AddwithValue("@name", employeeName)
Parameters.AddwithValue("@birthDate", DateTime.Now.ToString())
Parameters.AddwithValue("@hireDate", DateTime.Now.ToString())

.ExecuteNonQuery ()

Close()

Close()

State == ConnectionState.Open):
Close()

def DeleteEmployee(self, employeelID):

dm = dataManager()

conn = dm.GetConnection()
comm = dm.GetCommand("DELETE FROM Employeews

WHERE employeeID
try:
conn

conmm.
.Close()

conn
except:

conn.
if (conn.
.Close()

conn

Summary

= @employeeID", conn)

.Open()
comm.

Parameters.AddwithValue("@employeeID", employeeName)
ExecuteNonQuery ()

Close()
State == ConnectionState.Open):

We’ve covered basic SQL operations and how to connect to SQL Server with IronPython
code, we've worked with XML via RSS feeds and created a document from scratch, and
we consumed a comma-separated value file. We also looked at what makes a data layer
effective and built a simple IronPython data layer to keep our presentation, business, and
data code cleanly divided.

201

CHAPTER 8

Caught in a Web

“I calculated the total time that humans have waited for web pages to load. It can-
cels out all the productivity gains of the information age. Sometimes I think the web
is a big plot to keep people like me away from normal society.”

— Scott Adams

It’s hard to argue that the invention and spread of the Internet has been anything other
than monumental and certainly one of the most important technology developments
ever, one that has allowed people to communicate, perform business transactions,

and share information faster than anyone could have predicted at its inception. Entire
economic cultures have been created and destroyed in the life cycle of the Internet. We’ll
look at how IronPython lets us build web sites quickly and easily, and along the way you
will see how everything we’ve learned so far applies as effectively to web development as
to desktop development.

.NET, 1IS, and the Road to Today

In the good old days (if you prefer to wear rose-colored glasses) web pages used to be
very static entities. They didn’t change much, they offered a terribly limited amount of
interaction for the end user, and were essentially, well, ugly. Web pages then and now
are created primarily using HTML, which stands for HyperText Markup Language. It’s
visually very similar to the XML we explored in the last chapter, in that tags are used to
describe elements on the page; the difference is that your browser will handle just about
any garbage you throw at it, whereas strict XML is much less forgiving. HTML, without
any styling applied to it, is also terribly plain (see Figure 8-1, Listing 8-1).

203

204

CHAPTER 8 CAUGHT IN A WEB

Figure 8-1. A sample web page, created in HTML and viewed in Firefox

Listing 8-1. HTML That Creates the Page in Figure 8-1

<html>
<head>
<title>A sample HTML page</title>
</head>
<body>
<h1>This is the title of my page!</h1>
<h2>It's not terribly interesting.</h2>
<p>This is the language that is used to construct web pages.</p>
<!-- This is a comment. You won't see it on the page. -->
</body>
</html>

In those same good old days, styling had been applied to the markup directly, in the
same file. Although this does allow for some control over the appearance of a page, it cre-
ates a maintenance nightmare. Certainly you could create some unique and innovating
styles, but even a simple change to the size of a single font on your page would require
you to modify the style on each and every page that used it. Like a broken record, I've
mentioned many times the importance of keeping code separate; the advent of CSS
(Cascading Style Sheets), despite the problems associated with it, is significant in the web
development story. CSS allows web developers to separate their markup from their style,
allowing them to make site-wide updates to single style sheet files and see the results
across all pages that use that style sheet (see Figure 8-2, Listings 8-2 and 8-3).

CHAPTER 8 CAUGHT IN A WEB 205

Tip If for some reason you do not have Internet Information Services (IIS) installed on your computer,
| recommend visiting Microsoft’s IIS site at http://www.1iis.net for downloads and installation instruc-
tions. It will allow you to work with web pages outside of .NET; otherwise you won’t see certain behaviors if
you try to browse via the filesystem.

Figure 8-2. The same web page with a small amount of CSS applied

Listing 8-2. HTML Modified with a Link to the Style Sheet

<html>
<head>
<title>A sample HTML page</title>
<link href="styles.css" rel="stylesheet" type="text/css" />
</head>
<body>
<h1>This is the title of my page!</h1>
<h2>It's not terribly interesting.</h2>
<p>This is the language that is used to construct web pages.</p>
<!-- This is a comment. You won't see it on the page. -->
</body>
</html>

206

CHAPTER 8 CAUGHT IN A WEB

Listing 8-3. The CSS for the Web Page We Created

/* styles.css */

body { font-family: calibri; }

h1 { text-decoration: underline; font-style: italic; }

h2 { float: right; font-family: verdana; }

p { margin-left: 35px; border: 1px solid #000; width: 380px; }

Note What problems exist with CSS? For the longest time, Microsoft and Netscape were engaged in
a browser war. Each provider tried to offer features the other didn’t, and as a result proprietary methods and
code were produced that worked in one but not in the other. To boil down 10+ years of history, CSS is one of
the casualties of this war. As of this writing, no browser on the market currently supports the CSS standard
precisely, Internet Explorer (IE) has Microsoft-supported conditional markup statements so that you can write
(CSS that displays in IE but not in Firefox or Opera, and so on.

These are not fringe problems you’ll never encounter as a developer. These are everyday, “in the
trenches” problems about which people have written entire books. If you need proof that the effects still
linger, then head to http://www.htaccesstools.com/browser-check/ and see what information your
browser is sending to web servers. A perfect example is Internet Explorer 7; if you browse this page with IE7,
you’ll see that the user-agent is reported as “Mozilla/4.0 (compatible; MSIE 7.0;)” along with some other data
unique to your system configuration. This is a direct result of the browser wars, when one browser would
represent itself as another. It’s indeed a tangled web out there.

Web pages are delivered to a user after being served up by web servers; the user’s
browser makes a specially formed request to the server for a specific piece of content,
and the server renders that content and sends the response back to the user. Micro-
soft’s flagship web server technology is the Internet Information Services platform, or
IIS. Consequently, Microsoft has made a significant effort to integrate the .NET frame-
work with IIS, which has resulted in quite the powerful entity for developers. Because
Microsoft has applied their .NET technology to their IIS server, you don’t have to throw
your desktop knowledge out the window; desktop and web development have become
not-so-distant cousins.

In recent years, there has been a significant push to make web applications look and
feel more like desktop applications. Google Mail, MapQuest, YouTube, MySpace, and
Facebook are just a few examples of advanced web applications that provide functional-
ity that is leaps and bounds above the Internet of just a few years ago. They are a mix of
server-side and client-side code and effectively blur the line between desktop and web
software. The .NET framework, in combination with IronPython and IIS, can be used to
create powerful and advanced web applications that behave like desktop ones, and in
some cases accomplish tasks that would be much more difficult for a desktop application
to perform. They also have some unique benefits over traditional desktop applications
that make maintenance a breeze.

CHAPTER 8 CAUGHT IN A WEB

Note Server-side codeis code that is executed entirely on the server itself. The IronPython code you
write will be executed on the server by IIS; the results of that execution are what is sent back to the user.
Client-side code is the opposite; it is code that is executed entirely by the client. JavaScript is the most
well-known client-side code. JavaScript is executed by the user’s browser and actually suffers from some of
the browser war effects that plague CSS, namely, different browsers supporting custom methods or pieces of
the JavaScript language.

If you've spent any time in the Windows environment, no doubt you've seen the
Automatic Updates that pop up from time to time. What’s happening is that Microsoft
developers are patching code for the Windows operating system, but the only way for
you to benefit from those patches is to get the code on your machine and to apply it to
the files you already have. Nowadays things are pretty advanced and this all generally
happens in the background for you. The issue still remains that when the developers
at Microsoft want to fix an issue or provide some new feature, additional steps must be
taken for end users to benefit from them. This is where web development can truly shine:
if I make a change to the code or markup of files in my web application, those changes are
immediately visible to the end user and don’t require additional work on their part. This
should stand out as a big deal.

Note If you count yourself among the “grizzled ancient” developers, no doubt you’ve encountered the
dreaded DLL Hell. To the lucky ones who aren’t familiar with this concept, it happens when libraries are
incompatible with one another, resulting in error messages, unpredictable behavior, or a complete lack of
functionality for your end users once things are out of sync. It can be a truly awful situation to diagnose when
things get complicated. Web development can skirt around that issue entirely, because the only thing users
can browse to is what you’ve provided them, so everyone should be on the same page at all times. In fact,
this problem was a big motivator for the creation of .NET assemblies.

ASPX and You

Web pages have generally had the file extension of .htm or .html; you may also have seen
.php, .asp, .aspx, or a variety of other extensions. In the .NET world, pages with .NET code
running behind them generally have the extension of .aspx, which is a nod to the older
style of Microsoft web page called ASP, or Active Server Pages.

When creating web sites in Visual Studio, the process is very similar to creating Forms
applications. You will still have a solution that can contain multiple projects, you will still
have .py source code files, and so on. Most of your knowledge transfers smoothly right
into web development, but with some additional tidbits added on. Probably the best way

207

208 CHAPTER 8 CAUGHT IN A WEB

to jump into this is at the deep end, so the first thing we’ll do is acquire the sample project
from Microsoft and build from there.

Note At the time of my writing this, there was no set of project templates for IronPython that can be used
in Visual Studio 2008. The CodePlex site indicates that these templates are forthcoming with future releases.
But for the time being we’ll have to take a few steps manually. For the sake of simplicity, we’ll use the
sample IronPython for ASP .NET project Microsoft provides; it’s a fine starting point for web development in
IronPython.

You can download the sample project from http://aspnet.codeplex.com/Release/
ProjectReleases.aspx?Releaseld=17613. You'll want to download and unzip the “ASP
.NET WebForms IronPython Sample” to your desktop or any convenient location. Open
Visual Studio, and then click File, Open, and Web Site. Navigate to the folder where
you unzipped the project files and open the “ironpython-webform-sample” site (see
Figure 8-3).

Figure 8-3. Opening a web site in Visual Studio

CHAPTER 8 CAUGHT IN A WEB

After opening the project, you'll be presented with a screen similar to the one in
Figure 8-4. In the Solution Explorer on the right, notice that a variety of folders and files
are already present. Double-click on Default.aspx to open the file. Compare the markup
in this file to the markup in the HTML file we created earlier in the chapter. What sorts of
things do you notice that are different?

Figure 8-4. The project as it initially appears, with Default.aspx opened

The two things I'd like to point out in particular are the <%@ Page .. %> line at the
beginning of the file and the <asp:Literal /> line that appears in between the <div> tags.
These lines are specific to .NET and reveal a bit about what’s happening behind the
scenes. The exact text of the Page directive at the top of the file is as shown in Listing 8-4.

Listing 8-4. The Page Directive from Default.aspx
<%@ Page Language="IronPython" CodeFile="Default.aspx.py" %>

You won't see this line of text in the source code of the page once it’s rendered, nor
will you see it physically on the page. This is a bit of “inline” code that is solely for the
server to know about and operate on. It tells the server two things: (1) that any server-side
code in this page should be processed as IronPython (as opposed to C#, VB .NET, or other
.NET languages) and (2) that the IronPython code for this file can be found in Default.

aspx.py.

209

210

CHAPTER 8 CAUGHT IN A WEB

Note Code-behind files are the method of developing code that | will tout to you. You can actually write
all your IronPython code using what’s called the inline method, meaning the IronPython code and the markup
are stored in the same file, with the IronPython code stored in between specially structured <script> tags.
Personally, | hate this method of development for most situations. | prefer to keep my markup and my code
separate. Be aware that there is another way, but | wouldn’t consider it the better way and I'll be using the
code-behind style. It’s also worth noting that Microsoft chose to structure their example this way as well.

Every .aspx page will have at least one line in <% %> brackets, and that line defines the Page element,
the language, and so on. Without that, you can’t have a functional .aspx page. When | refer to code-behind
versus inline, | am referring to the act of writing your IronPython code directly in the page versus in a sepa-
rate .py file on the server. You can mix and match, and in some cases this is an appropriate methodology,
but | would highly recommend the code-behind model wherever possible.

The line with the Literal control is shown in Listing 8-5. This has some special syntax
parameters based on the type of object that it is, which we’ll cover next.

Listing 8-5. The Markup That Declares the Literal Control
<asp:Literal ID="messageliteral" runat="server" />

The tag looks something like a regular HTML tag, but with some extra information.
First, it’s prefixed with asp. This denotes an ASP .NET server control, which is distinct
from an HTML tag; it provides additional functionality behind the scenes, in addition to
hooks for style information and other features. Note that for this to work properly, you
must include runat="server" in the tag. If this property is not set correctly, then the code
will not even run.

We’ve also defined an ID property and set it to "messageLiteral”. This uniquely iden-
tifies the control on the page, to avoid conflict with any other control. Thus, if you have
a control with its ID property set to foo, you cannot have another control on the same
page with an ID of foo.

Now is a fine time to introduce you to an aspect of .NET web development that can
trip people up at the outset. Press F5 to run the web site. If you see a notification that
debugging is not enabled, feel free to select the option that allows Visual Studio to enable
debugging in the web.configfile. The output of the page should look like Figure 8-5).

CHAPTER 8 CAUGHT IN A WEB

Figure 8-5. The output from the IronPython web site application

Note Il be using Mozilla Firefox as my browser of choice in my examples. Unless otherwise noted, it
won’t matter if you're using Internet Explorer, Opera, or some other browser. You will just see a slightly dif-
ferent browser interface than in my example figures.

This text was not in the markup of the page. We were just looking at it, and the only
things present were some structural tags (such as divs) and a Literal control. How is
the text “Hello Dynamic World!” now present? View the source to this page. In Firefox
you can press Ctrl+U; in Internet Explorer you can right-click on the page and click
View Source. Regardless of your browser, you should see markup very similar to that in
Listing 8-6.

Listing 8-6. The Markup the Browser Is Rendering

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//ENws
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head><title>

Untitled Page
</title></head>

211

212

CHAPTER 8 CAUGHT IN A WEB

<body>

<form name="form1" method="post" action="default.aspx" id="form1">
<div>
<input type="hidden" name="__ VIEWSTATE" id="_ VIEWSTATE" value=ws
" /wEPDWUBMA9KFgICAw9kFgICAQ8WAh4EVGVAdAUUSGYsbG8gRH1UYW1pYyBXb3JsZCFuws
kZC6yi9dXNE5UaiAWKD OWCQXdRW]" />
</div>

<div>
Hello Dynamic World!
</div>
</form>
</body>
</html>

Note Your ViewState likely can and will be different from mine. This is no cause for concern.

This is actually quite a bit different! The Literal control has been replaced with the
text “Hello Dynamic World!”, there’s a hidden input tag called " VIEWSTATE" that has
a bunch of crazy stuff in it, and the form tag now has a method and an action property.
What happened?

Here’s where the server is stepping in and working its magic. Before we delve into the
ViewState business, let’s end our debugging session by closing the browser and returning
to Visual Studio. Open Default.aspx.py; the code should look like Listing 8-7.

Listing 8-7. The Code from Default.aspx.py

def Page_Load(sender, e):
messageliteral.Text = "Hello Dynamic World!"
pass

Aha! Some IronPython code is running back here. The ASP .NET page life cycle
defines a variety of events that happen at different times; there is some code being
executed during the Page Load event that changes the Text property of the messageLiteral
control to say “Hello Dynamic World!”. This is processed by the server. The server renders
the appropriate text to the end user, and the markup is therefore totally different for the
end user than for the developer. This makes sense, but we need to point it out explicitly:
the markup of an ASP .NET web page frequently comprises controls that technically
function as placeholder elements. The IronPython code you write can dramatically and
completely change what the end user sees to provide the functionality you need.

CHAPTER 8 CAUGHT IN A WEB

Let’s modify the messageLiteral. Text property with our own text and see what hap-
pens. Once you've changed the code to match Listing 8-8, run the application again
(Figure 8-6).

Listing 8-8. The Code from Default.aspx.py Updated

def Page Load(sender, e):

messageliteral.Text = "We made some changes to the code-behind file; nowws
this output is TOTALLY DIFFERENT!"

pass

Figure 8-6. The code-behind file has been modified.

The State of the View

Web pages are, by definition, stateless. This means that no information is stored between
requests to the server. ViewState is designed to get around that issue and to preserve the
state of the page between requests. Listing 8-9 shows what my ViewState looks like from
the page we rendered.

Listing 8-9. The ViewState Tag from the Page in Figure 8-5

<input type="hidden" name="_VIEWSTATE" id="_ VIEWSTATE" value=ws
" /wEPDWUBMA9kFgICAw9k FgICAQ8WAN4EVGV4dAUUSGYsbG8gRHIUYW1pYyBXb3JsZCFes
kZC6y19dXNE5UaiAWKDFOWCQXdRWG" />

213

214

CHAPTER 8 CAUGHT IN A WEB

This tag is generated automatically by .NET and is a hidden input on the page itself.
You won'’t see it while looking at the page, but you can view it in the page source. You are
also permitted to store and retrieve information from the ViewState if you need to persist
information between requests.

Caution Although the state of the page controls looks to be encrypted, it is not; it is merely encoded.
That means anyone can actually decode this information by using a surprisingly small amount of custom
code or one of a variety of tools that already exist for decoding ViewState and reading its contents. DO NOT
STORE SENSITIVE OR PRIVATE INFORMATION IN VIEWSTATE. | cannot emphasize this enough. If you wouldn’t
want it displayed on the page in gigantic, blinking red letters for the whole world to write down and remem-
ber forever, don’t store it in ViewState. It's not a secured method of storing information.

Let’s try storing a little text in the ViewState and see what happens to the page
markup (Listing 8-10, Figure 8-7, Listing 8-11).

Listing 8-10. Modifying the Page_Load Event to Store Text in the ViewState

def Page Load(sender, e):
messageliteral.Text = "We made some changes to the code-behind file; now thisws
output is TOTALLY DIFFERENT!"
if (ViewState["test"] == None):
ViewState["test"] = "Adding to ViewState!"
pass

Figure 8-7. The output is the same, but with additional information in the ViewState tag.

CHAPTER 8 CAUGHT IN A WEB

Listing 8-11. Comparing the Old ViewState to the New One

Original ViewState:

<input type="hidden" name="_VIEWSTATE" id="_ VIEWSTATE" value=ws

" /wEPDWUBMA9kFgICAw9k FgICAQ8WAN4EVGY4dAUUSGYsbG8gRHIUYW1pYyBXb3JSZCFes
kZC6yi9dXNE5UaiAWKDFOWCOXARW]" />

New ViewState:

<input type="hidden" name="__ VIEWSTATE" id="_ VIEWSTATE" value='=

" /wEPDWUBMABWAh4EdGVzdAUUQWRkaWSnIHRVIFZpZXdTdGFOZSEWAgIDD2QWAg IBDX =
YCHgRUZXhOBVNXZSBtYWR1IHNvbWUgY2hhbmdlcyBobyBoaGUgY29kzZS1iZWhpbmQgZmlws
sZTsgbm93IHRoaXMgbh3VOcHVOIG1zIFRPVEFMTFkgRELIGRKVSRUSUIWRk505vdUOWS IXXT 7w
JLm7qYvLfariA=" />

The ViewState is now a bit larger due to the encoding of the characters that we added.
How can we retrieve that information and use it? Luckily, getting at the data is a trivial
matter. We'll get the data from ViewState and append it to the Literal tag (Listing 8-12,
Figure 8-8).

Listing 8-12. Retrieving Data from the ViewState Tag

def Page Load(sender, e):
messagelLiteral.Text = "We made some changes to the code-behind file; now thisws
output is TOTALLY DIFFERENT!"
if (ViewState["test"] == None):
ViewState["test"] = "Adding to ViewState!"

messageliteral.Text += >
ViewState["test"]

pass

" - The ViewState additionally contains

Tip Storing information in ViewState is an exercise in restraint and judgment. In addition to the fact that
encoded ViewState data increases the page size for the end user (and therefore incurs an additional band-
width increase), if you store more complex business objects in the ViewState you will find a performance cost
in storage and retrieval as the object is encoded and decoded. Use it sparingly and only when necessary,
with a preference toward simpler objects when possible.

215

216

CHAPTER 8 CAUGHT IN A WEB

Figure 8-8. The data we store in the ViewState tag is easily retrieved.

POST

One of the bits of code that .NET added to the page was the additional set of parameters
in the form tag (Listing 8-13). These parameters serve two functions: the first is dictating
the type of request that will be made to the server, and the second is defining which page
we are sending the request to. You can see this by viewing the source of the web page in
your browser.

Listing 8-13. The Modlified form Tag

<form name="form1" method="post" action="default.aspx" id="form1">

The act of sending the request back to the current page is known as the PostBack. In
the PostBack, an HTTP request using the verb POST is made. This process is the back-
bone of NET web development, as we’ll see shortly.

Note There are a variety of HTTP verbs, including POST, GET, PUT, HEAD, and many more. They serve
a variety of different purposes; the two you’ll deal with most frequently are GET and POST. The most obvi-
ous difference between GET and POST is that a GET request has all the form data encoded into the address
bar URL, whereas a POST contains all form data in the message body and is theoretically the more secure
method. Also note that POSTs frequently cannot be cached, whereas GETs can, which can influence perfor-
mance considerations.

CHAPTER 8 CAUGHT IN A WEB

Creating a Simple Form

We can create a basic form very simply in IronPython and ASP .NET. We’'ll create a simple
form that takes some information from the user; then we’ll submit that information via

a POST request and discuss some of the benefits and limitations of this development
model.

Our form will serve as a way for users to create accounts for a fake online application.
We’ll create some basic introductory text and markup and see what happens during the
ASP .NET page life cycle. Modify the Default.aspx markup so that it looks like Listing 8-14.
We’ll also need to remove some of the existing code from Default.aspx.py so that every-
thing runs (Listing 8-15).

Listing 8-14. The Create Account Page Markup for Default.aspx

<%@ Page Language="IronPython" CodeFile="Default.aspx.py" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"ws
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>Create an Account</title>
</head>
<body>
<form id="form1" runat="server">
<div id="intro">
<h1>Create an Account</h1>
<p>To create an account for this fictional system, please fill out the fieldsw
below and click Submit.</p>
</div>
<div id="userInputForm">
<table>
<tr>
<td>
Username
</td>
<td>
<asp:TextBox ID="txtName" runat="server"></asp:TextBox>
</td>
</tr>

217

218

CHAPTER 8 CAUGHT IN A WEB

<tr>
<td>
Password
</td>
<td>
<asp:TextBox ID="txtPassword" runat="server"w
TextMode="Password"></asp:TextBox>
</td>
</tr>
</table>
<asp:Button ID="btnSubmit" runat="server" Text="Submit" />

<asp:lLiteral ID="litFeedback" runat="server" />
</div>
</form>
</body>
</html>

Listing 8-15. The Modified Default.aspx.py File

def Page Load(sender, e):
pass

Running the application should produce a page that looks something like Figure 8-9.
You can fill in the fields with some sample data; then click the Submit button. You should
see the page “flash”; then it will return to the same location. This is the PostBack in action.
The browser is sending information to the server; the server processes and executes any
server-side code and then sends the response back. In our case, we haven'’t created any
code to execute on PostBack, so it looks like nothing happened (although it’s likely that the
password field is blank now, which is a by-design security feature of modern browsers, to
prevent people from copying and pasting).

So what exactly is happening when the browser POSTs to the server? The terrific Fire-
fox add-on called Firebug can help developers examine what’s happening at a low level
during web development. The screenshot in Figure 8-10 shows what is transmitted to the
server during the PostBack.

Tip If you're interested in acquiring Firebug for your own development purposes, you can find it at
http://getfirebug.com/. It's a totally free add-on to Firefox and contains a variety of useful features for
web developers.

CHAPTER 8 CAUGHT IN A WEB 219

Figure 8-9. The sample Create Account page

Figure 8-10. The contents of the POST to the server

220

CHAPTER 8 CAUGHT IN A WEB

Tip Got those eagle eyes on? You may notice the X-DLR-Version server variable in Figure 8-10. That's
new to IronPython for ASP .NET; it holds the version of the current Dynamic Language Runtime that’s being
used. In my case, I'm using a Community Technology Preview (CTP) of version 1.0.

It’s plainly visible that the request is being made to our Default.aspx page. Now we
can perform a task based on the results of that POST. Open the Default.aspx.py file and
modify it to look like Listing 8-16.

Listing 8-16. The Modified Default.aspx.py File

def Page Load(sender, e):
if (Page.IsPostBack):
litFeedback.Text = "You POSTed back: " + txtName.Text + " - " +=
txtPassword. Text
pass

Now we can run the application again, fill in some sample data (Figure 8-11), and
click the Submit button.

Figure 8-11. We submitted “dog” and “boots” as our POST data.

CHAPTER 8 CAUGHT IN A WEB

Know Your Limitations

Though effective, this development model is not without its limitations. A perfect
example of this can be demonstrated with the form we’ve created. What happens if we
want our form submission to end with our arriving at a Thank You page, which is very
common on the web (a little courtesy goes a long way, after all). First, let’s add a file called
thankYou.htm to the project by right-clicking on the solution and clicking Add new file.
Modify it so that its markup looks like Listing 8-17.

Listing 8-17. The Markup for the thankYou.htm Page

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"ws
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title></title>
</head>
<body>
<h1>Thank You!</h1>
<p>We have created your account; you may now log in using the information youws
supplied during account creation.</p>
</body>
</html>

Now we can modify the Default.aspx.py file to use this page after submission
(Listing 8-18).

Listing 8-18. Modifying Default.aspx.py to Use the New thankYou.htm Page

def Page Load(sender, e):
if (Page.IsPostBack):
Response.Redirect("~/thankYou.htm")
pass

Note Response.Redirectis a very common method that developers employ to send users along to a par-
ticular page, but it’s not really perfect for all occasions, as we'll see in just a moment.

221

222 CHAPTER 8 CAUGHT IN A WEB

If you run the application again, fill out the form, and then click the Submit button,
you should find yourself taken to the thankYou.htm page (Figure 8-12). In theory, this is
great. We filled out the form and got a pleasant thank you for the effort. But how did we
get there?

Figure 8-12. The code successfully redirected us to the thankYou.htm page, but perhaps
there’s a better way.

Opening Firebug and examining the request reveals the story (Figure 8-13).

Figure 8-13. We submitted our request to Default.aspx before hitting the
thankYou.htm page.

Cross-Page PostBacks

There’s a method for performing what is known as cross-page PostBacks in .NET 2.0 and
up. Older versions, such as 1.0 and 1.1, don’t allow these operations to be performed, but
we’re living in luxurious times. However, this luxurious method has a limitation of its
own, which we’ll discover shortly.

Telling .NET that you want to perform a PostBack to a different URL is very easy.
Open Default.aspx and modify the button markup to look like Listing 8-19.

CHAPTER 8 CAUGHT IN A WEB

Listing 8-19. Modifying Default.aspx to Use a Different PostBack URL on Submission

<asp:Button ID="btnSubmit" runat="server" Text="Submit"ws
PostBackUrl="~/thankYou.html" />

The PostBackUrl property tells the server the location we want to POST to instead of
the current page, which is the default. Run the application again, fill in the form, and click
Submit (Figure 8-14). What happened?

223

Figure 8-14. The limitation of cross-page PostBacks revealed

Here’s the wall, although admittedly a minor one. If we want to perform a cross-page
PostBack, we have to do it to an ASP .NET page. We can easily modify our thankYou page
to allow a PostBack. First, rename the file from thankYou.htm to thankYou.aspx. Visual
Studio will inform you that by changing the extension of the file, the file may become
unusable. Go ahead and proceed with renaming it. Now modify the markup of thankYou.
aspx to look like Listing 8-20.

Listing 8-20. Modifying thankYou.aspx to Accept PostBacks

<%@ Page Language="IronPython" CodeFile="thankYou.aspx.py" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"ws
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<title>Thank Youl!</title>
</head>

224

CHAPTER 8 CAUGHT IN A WEB

<body>

<h1>Thank Youl</h1>

<p>We have created your account; you may now log in using the information youws
supplied during account creation.</p>

</body>

</html>

The last step is to create the thankYou.aspx.py file and supply the necessary code,
which you'll find in Listing 8-21.
Listing 8-21. The Code for thankYou.aspx.py

def Page_Load(sender, e):
pass

Note Don't forget to update the PostBackUr! in Default.aspx as well; we’re not POSTing to ~/thankYou.
htm anymore. Now it will be ~/thankYou.aspx.

You should now be able to run the application, fill out the form, and submit to
thankYou.aspx. You've created an .aspx page from scratch as well as the code-behind
file. We're having to take more manual steps than normal because there are no
Microsoft-supplied project templates at the moment, but rest assured that those tem-
plates are coming (possibly even by the time this book reaches you) and the task will
become much simpler.

Let’s confirm with Firebug that our work was successful (Figure 8-15).

We’ve now been able to POST to a different page than the one we’re currently on,
which eliminates an unnecessary call and reduces the chattiness of our application. So,
with that in mind, how do we access data from the previous page? Perhaps we want to
display it the way we did before. Is it as simple as that?

Tip These are critical issues in the realm of search engine optimization (SE0). Search engines see your
pages in a much different way than you do, and they place emphasis on things that aren’t so obvious to the
end user. Although a full discussion of SEQ and how to apply those principles to .NET is a topic that could
occupy a complete book by itself, it’s worth mentioning that by providing the most direct, logical route, we
are improving the way a search engine views and indexes our pages. It’s never a bad idea to remove need-
less redirects. Keep it simple!

CHAPTER 8 CAUGHT IN A WEB

Figure 8-15. This is much cleaner, from a traffic perspective.

Accessing Cross-Page Data

Unfortunately, the answer to our preceding question is no, it’s not as simple to display
data from the previous page as it was before, because we are now on a different page.
The good news is that although it’s not as simple, it’s also not terribly complex. First, we
can add a Literal control to the thankYou.aspx page to hold the results of our cross-page
PostBack (Listing 8-22).

Listing 8-22. The New Markup for thankYou.aspx

<%@ Page Language="IronPython" CodeFile="thankYou.aspx.py" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"ws
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<title>Thank You!</title>
</head>
<body>
<h1>Thank Youl</h1>
<p>We have created your account; you may now log in using the information youws
supplied during account creation.</p>
<asp:Literal ID="litFeedback" runat="server" />
</body>
</html>

225

226

CHAPTER 8 CAUGHT IN A WEB

Now we can use the PreviousPage method to gain access to a control from the page
that’s submitting a request (Listing 8-23).

Listing 8-23. Accessing Data from the Previous Page in thankYou.aspx.py

def Page Load(sender, e):
prevTxtName = PreviousPage.FindControl("txtName")
prevTxtPassword = PreviousPage.FindControl("txtPassword")
litFeedback.Text = prevTxtName.Text + prevTxtPassword.Text
pass

Right-click on Default.aspx in the Solution Explorer and select “Set as start page.”
When you press F5, that page will be the one that appears in your browser. If you run
the application now and proceed through submission, you should be presented with
a thankYou.aspx page that looks something like Figure 8-16.

Figure 8-16. My values made the trip across pages.

Validation (for a Reasonable Fee)

You may have caught on to the dirty little secret of this application. It’s a terrible offense
that more applications commit than you may realize. The offense is one of not validat-
ing user input; the application won’t fail to function as is if the user doesn’t provide any

CHAPTER 8 CAUGHT IN A WEB

input, but that doesn’t mean that validation of some type is not required. Validation typi-
cally includes at least the following tasks.

1. Did the user enter data in all of the required fields?

2. Does the data for each field match any requirements we have for it? (This is a san-
ity check. For example, did the user enter a phone number for her name, or an
e-mail address for a ZIP code?)

3. Have we ensured that the data is safe? What happens if we display it to the screen
or save it to the database? Have we protected ourselves against security flaws?

We ourselves can write custom code to perform each of these tasks. Unfortunately,
some of them are actually quite complicated, despite how simple they seem. The .NET
framework does come with some built-in security features; let’s apply a few of them to
our application and see how things shape up.

Using the RequiredFieldValidator

One of the easiest-to-use validators that .NET provides is the RequiredFieldValidator. You
can add this control to your page and connect it to a specific control; if, when the user
attempts to POST the page, there is no input in the control the RequiredFieldValidator is
monitoring, the page will not POST. An error message of your choosing will then display,
and the user will remain on the current page.

Open the Default.aspx file and add the bold blocks of markup where indicated in
Listing 8-24; then run the application.

Listing 8-24. An Improved Default.aspx page with Some RequiredFieldValidators Added

<%@ Page Language="IronPython" CodeFile="Default.aspx.py" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"ws
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">

<title>Create an Account</title>
</head>

227

228 CHAPTER 8 CAUGHT IN A WEB

<body>
<form id="form1" runat="server">
<div id="intro">
<h1>
Create an Account</h1>
<p>
To create an account for this fictional system, please fill out thews
fields below
and click Submit.</p>

</div>
<div id="userInputForm">
<table>
<tr>
<td>
Username
</td>
<td>
<asp:TextBox ID="txtName" runat="server"></asp:TextBox>
</td>
<td>

<asp:RequiredFieldValidator ID="txtNameRequired"w
runat="server" ControlToValidate="txtName"
ErrorMessage="You must provide a =
username."></asp:RequiredFieldValidator>
</td>
</tr>
<tr>
<td>
Password
</td>
<td>
<asp:TextBox ID="txtPassword" runat="server"w
TextMode="Password"></asp:TextBox>
</td>
<td>
<asp:RequiredFieldValidator ID="txtPasswordRequired"w=
runat="server" ControlToValidate="txtPassword"
ErrorMessage="You must provide aw=
password."></asp:RequiredFieldValidator>
</td>
</tr>
</table>

CHAPTER 8 CAUGHT IN A WEB 229

<asp:Button ID="btnSubmit" runat="server" Text="Submit"ws
PostBackUrl="~/thankYou.aspx" />

<asp:Literal ID="litFeedback" runat="server" />
</div>
</form>
</body>
</html>

Try to click the Submit button without entering any text for the username or pass-
word boxes. You should immediately see the error messages appear to the right of the
boxes (Figure 8-17); note that the page did not PostBack to itself. The submission process
was entirely interrupted by the validators.

Figure 8-17. The RequiredFieldValidators have been triggered.

To use the RequiredFieldValidator, you must supply the name of a control to validate;
you must also use one RequiredFieldValidator per field you wish to validate. You cannot
apply one RequiredFieldValidator across multiple controls.

230

CHAPTER 8 CAUGHT IN A WEB

Tip You may have noticed that the page doesn’t “flash” when you click the Submit button; the error mes-
sage appears immediately. This is accomplished through some client-side JavaScript that .NET injects into
the page for you when the markup is created and sent to the user. What happens if the user has not enabled
JavaScript or is using a browser that doesn’t support JavaScript? When the user clicks Submit, the page will
appear to PostBack but will refresh to show the error messages. This is a great example of the .NET frame-
work saving you a little legwork.

Handling Errors

So far, our application has been simple enough that we haven’t encountered much in the
way of errors. Even before we put RequiredFieldValidators on the page, the lack of any
user input still didn’t really disrupt the flow of the application. We can artificially induce
an error and see what the user would see, and this alone should prove sufficient evidence
of the need for judicious error handling and reporting.

Open thankYou.aspx.py and modity it to look like Listing 8-25.

Listing 8-25. Artificially Causing the Page to Fail—Division by Zero Triggers an Error Auto-
matically.

def Page Load(sender, e):
prevTxtName = PreviousPage.FindControl("txtName")
prevTxtPassword = PreviousPage.FindControl("txtPassword")
litFeedback.Text = previxtName.Text + prevIxtPassword.Text
impossibleValue = 1 / 0
pass

Note Why does 1 / o trigger an error? The short answer: because of the mathematical axiom
X(y/x) = y, for example, 2(3/2) = 3. However, this equation doesn’t work with 0. It would yield 0(1/0) =1,
which is not true. Therefore, the answer is undefined and triggers an exception. There is no value for x
such that x* 0 = 1.

Run the application and submit some values to the Default.aspx page. When
it redirects to the Thank You page, you will be returned to Visual Studio and the
impossibleValue = 1 / 0line will be highlighted. The IDE will inform you that you can-
not perform that operation. Close that box by clicking the X in the upper right corner.

CHAPTER 8 CAUGHT IN A WEB

Press F5 to continue running the application and take a look at what appears in the
browser (Figure 8-18). This is what your end user would see if this were a live, production
application.

Figure 8-18. Besides being a tacky user experience, we've opened ourselves to security risks by
revealing a lot about the current process.

We have a variety of options for handling errors. We could, for example, wrap the
offending line in a Try/Catch block and perform some task when the exception is trig-
gered. It's always good practice to wrap potentially sensitive code in Try/Catch blocks.
However, we don’t always have the luxury of knowing with such certainty when and how
an error can be triggered. We can tell .NET that we have a custom error page we’d like to
use when unhandled exceptions occur.

First, create a new file in the project called Error.aspx; add to the page the markup
shown in Listing 8-26.

Listing 8-26. The Error.aspx page Markup

<%@ Page Language="IronPython" CodeFile="Error.aspx.py" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"ws
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">

231

232

CHAPTER 8 CAUGHT IN A WEB

<head>
<title>An error has occurred.</title>
</head>
<body>
<h1>
Oops!</h1>
<h2>
Something totally unexpected happened; don't worry, we don't think it wasws
your fault.</h2>
<p>
An error happened that the application couldn't resolve automatically.we
Please hit the Back button on your browser to try again, orws
contact technical support if the problem persists. We're sorry for thews
inconvenience.</p>
</body>
</html>

Tip It's always good to encourage your users at each step. If an error occurs, it doesn’t hurt to reassure
them that they didn’t ruin everything or break the Internet. (You’d be surprised what people think they can do
on a computer.) Always provide them with an action to take, preferably one that is simple and easy, and give
them some way to communicate with an actual human being (if at all possible) to resolve the problem they’re
having. A little courtesy and reassurance goes a long way toward encouraging customer loyalty and repeat
users, even in the face of errors. In an ideal world you’ll be learning about the problem immediately via an
automated e-mail that informs you of the problem when it happens; never underestimate the importance of
an error log.

Now we need to create a bare-bones Error.aspx.py file that contains the code shown
in Listing 8-27.

Listing 8-27. The Beginning of Error.aspx.py

def Page Load(sender, e):
pass

With a basic error page in hand, it’s time to look into a project file we've overlooked
so far: the almighty web.config file. This file contains a wide variety of configuration set-
tings for your application. It is in an XML format (everything seems to come back to XML,
does it not?), and, honestly, you won’t modify many of its sections too often. Some of it is
really boilerplate that doesn’t need modification; by modifying it, your program wouldn’t

CHAPTER 8 CAUGHT IN A WEB

run! Don’t worry though, learning your way around isn’t too difficult, and setting up error
handling is simple.

Open the web.config file. You should see quite a bit of configuration information.
Scroll down until you find the block of text shown in Listing 8-28.

Listing 8-28. The <customErrors> Tag in web.config

NEE
The <customErrors> section enables configuration
of what to do if/when an unhandled error occurs
during the execution of a request. Specifically,
it enables you to configure HTML error pages
to be displayed in place of an error stack trace.

<customErrors mode="RemoteOnly" defaultRedirect="GenericErrorPage.htm">
<error statusCode="403" redirect="NoAccess.htm" />
<error statusCode="404" redirect="FileNotFound.htm" />
</customErrors>
-->

Visual Studio has kindly added a few comments to explain what the customErrors tag
does, but they’ve also commented out the customErrors section entirely! Let’s adjust this
section to look like Listing 8-29.

Listing 8-29. The <customErrors> Tag in web.config, Configured to Use Our Page

<l--
The <customErrors> section enables configuration
of what to do if/when an unhandled error occurs
during the execution of a request. Specifically,
it enables you to configure HTML error pages
to be displayed in place of an error stack trace.

<customErrors mode="On" defaultRedirect="Error.aspx">
</customErrors>

Note What happened to the other error codes, like 403 and 404? There are a variety of error codes in the
HTTP standard; 404, for example, indicates that a file could not be found. Right now, we don’t have pages to
support a variety of error codes, so it is better just to send all errors and exceptions to the Error.aspx page.
You can go back at any time and add page-specific error handling to this section.

233

234

CHAPTER 8 CAUGHT IN A WEB

That’s it! You can run the application again and submit some information. The IDE
will likely interrupt you to inform you of the exception, but close that window and con-
tinue execution of the program by pressing F5. You should be presented with the custom
error page we created before (Figure 8-19). This is a friendlier user experience. Also, we
have not exposed any specific details about the underlying code or implementation,
which leaves us in a better security position.

Figure 8-19. Now the user doesn’t get slapped in the face with technical mumbo-jumbo.

Tip The difference between mode="0n" and mode="RemoteOnly" in the customErrors tag is that if the
mode is set to RemoteOnly, then logging onto the server where the code is hosted and browsing the page
will show you the ugly yellow error page, but users browsing your site from their own machines will see the
friendly error page. Setting it to On means that everyone will see the friendly error page, regardless of where
they’re located. Normally you’ll want customErrors set to RemoteOnly in production so that you can conve-
niently hop onto the server and reproduce the error message yourself.

Subtle Security Flaws

One of the most important things to remember about security and error handling is that
just because things seem to be operating properly doesn’t necessarily indicate that things
are perfect. Security is often an ongoing task, and certainly neither you nor your users

CHAPTER 8 CAUGHT IN A WEB

benefit from the mentality that you've got things locked down. It’s better to assume there
is a tiny flaw somewhere and to continue trying to improve the situation when things are
calm than when that flaw has already been exposed.

In my experience, one of the most difficult security flaws to identify is the cross-site
scripting (XSS) attack. This type of attack can take a variety of forms, some of them simple
and some extremely complicated (and, dare I say, ingenious). The absolute simplest
attack is that of session stealing. In a session stealing attack:

1. User A logs onto a site with his or her credentials.

2. User A browses a page that contains some form of malicious code created by
User B.

3. When User A browses the page with malicious code, it is executed and User A’s
security information is sent to User B without User A’s knowledge.

4. User B is now able to operate on the site as User A.

If User A reaches step 4, then he has little way of defending himself and stopping
User B from wreaking havoc with his personal information. This attack is more common
than you’d think, in part because it is easy to overlook these types of security issues, par-
ticularly as web applications become increasingly complex. How easy is it, really?

Note You could argue that we’re manufacturing these situations ourselves and that if we hadn’t gone out
of our way to create these problems, they wouldn’t exist. Up to a point, that is true; that is, we are creating
security flaws for demonstration purposes. It is very simple to make some of these mistakes while working
on your applications. | would prefer to create them artificially in a safe environment and show you ways to
mitigate these problems before you've launched code to production and have your users (and most likely
your boss) up in arms when things go sour.

Arbitrary Code Execution

We can run a quick example that proves how easy this sort of attack is. Let’s open
thankYou.aspx.py again and modify it so that it looks like Listing 8-30.

235

236

CHAPTER 8 CAUGHT IN A WEB

Listing 8-30. Adding Some Insecure Code to Be Displayed to the User in thankYou.aspx.py

def Page Load(sender, e):

prevTxtName = PreviousPage.FindControl("txtName")

prevTxtPassword = PreviousPage.FindControl("txtPassword")

litFeedback.Text = prevTxtName.Text + prevTxtPassword.Text

Response.Write("<script type=\"text/javascript\">var O0x3774=w=
[\"\x48\x65\x6C\x6 e
\X6F\X20\X69\X6E\x73\x65\X63\X75\X72\X65\X20\X77\X6F\X72\X6C\X64\x21\"] ;=>
alert(_0x3774[0x0]);</script>");

pass

If you run the application and submit information to the Default page, then after you
click the Submit button you should see what is shown in Figure 8-20.

Figure 8-20. We executed some unsafe code!

Note You can use Response.Write to write directly to the output stream. If you were to Response. Write
some plain text instead of the JavaScript we supplied, you’d see it immediately at the top of the page, before
all other content. | find it’s frequently a useful method for debugging; in particular it'’s convenient for display-
ing values to the page for testing purposes.

If a user had gotten that particular string onto one of your pages or in a database, for
example, it would get executed every time a user browsed that page. In our example, we
definitely alerted the user to the existence of the code: a big alert box shows up to notify

CHAPTER 8 CAUGHT IN A WEB

the user that something has happened (we’re even rubbing it in!). Normally, things aren’t
so obvious; in fact, most attacks are designed so that things appear to be operating nor-
mally and the user is none the wiser that anything is up. We developers are not powerless
in the fight. Truth be told, taking the wind out of the attack’s sails is pretty easy.

Open thankYou.aspx.py again and make the modification shown in Listing 8-31.
Then run the application again (Figure 8-21).

Listing 8-31. Adding Some Insecure Code to Be Displayed to the User

def Page Load(sender, e):
prevTxtName = PreviousPage.FindControl("txtName")
prevTxtPassword = PreviousPage.FindControl("txtPassword")
litFeedback.Text = prevTxtName.Text + prevTxtPassword.Text
Response.Write(Server.HtmlEncode("<script type=w=>
\"text/javascript\">var _0x3774=[=
\"\x48\x65\X6C\X6C\X6F \x20\X69\X6E\X73\x65\x63\Xx75\x72\X65\x20\X77\X6F \x72\x6
\x64\x21\"];alert(_0x3774[0x0]);</script>"));
pass

Figure 8-21. Server.HtmlEncode can offer a pretty good degree of protection.

Now, not only does the alert box not pop up, but we’re actually presented with the
text of the Response.Write call on the page itself. We can also see that the Server. HtmlEn-
code method has taken the previously obfuscated values and substituted the end result
“Hello insecure world!” A quick look at the source code (Listing 8-32) reveals what'’s
happened.

237

238

CHAPTER 8 CAUGHT IN A WEB

Tip As with most operations, there is a cleverly named method that does the exact opposite. Server.Html-
Decode will take an HTML-encoded string and revert it to executable markup. In some instances you’d want
this behavior, but in not too many. It’s just nice to know it exists.

Listing 8-32. Many of the Characters Have Been HTML Encoded, Preventing Them from
Being Executed as Client-Side Code.

81t;script type="text/javascript"8gt;var 0x3774=["Hello insecurew
world!"];alert(ox3774[0x0]);81t;/scriptdgt;

We established in Chapter 7 that an extremely good rule of thumb is to assume
that all user input is unsafe. Hopefully what we just did reinforces that; our code was
a nuisance, displaying an obnoxious message to the user. Malicious code could (and fre-
quently does) have disastrous results.

Summary

Developing web pages in IronPython is not only easy, but powerful. Although develop-
ing applications for the web requires a different approach and set of considerations,
IronPython benefits from the underlying .NET framework and the consistency therein,
meaning that web development is a distant cousin to desktop development, and your
IronPython experience transfers readily between the two. We created a simple web
application, learned about ViewState and how to use it to store and retrieve data, showed
the limitations of the PostBack model and how to overcome them, learned about data
validation and custom error pages, and finally covered how to protect ourselves against
displaying unsafe content to our users.

CHAPTER 9

IronPython Recipes

“Without requirements or design, programming is the art of adding bugs to an
empty text file.”

— Louis Srygley

Many times in your development career, you'll find yourself in a position where it
seems like someone just had to have solved a particular problem; in a lot of cases you'd
be right. There’s no need to reinvent the wheel when you could simply make use of it.
This chapter is all about those recipes for code reuse as well as useful code nuggets in
general. Hopefully, as you become more experienced as an IronPython developer, you’ll
find some useful at-a-glance tips that make your life a bit easier.

How to Use This Chapter

This chapter is all about small, easy-to-digest bits of IronPython code. The idea is that
you should be able to take any of these snippets and use them quickly, with little to no
up-front work on your end. You can use many of the snippets in multiple places; for
instance, converting between data types is done identically whether you're working on

a console application or a web application. There are specific bits of code for web and
desktop applications that won'’t translate from one to another, but I've tried to keep
things distinct and provide helpful road markers so that you can get the information you
want quickly. With that in mind, let’s jump in the deep end!

Note I should also mention that occasionally you'll see some repeated code; for example, adding the CLR
and System namespaces to applications. These required boilerplate tasks need to be performed in many
cases, and | would prefer that the code snippets are “fire and forget” so that you don’t have to worry about
what namespaces need to be imported where. So forgive a little repetition, but it should make it easier to flip
to any page and make use of the code examples. If | don’t include a line you might have seen elsewhere, you
don’t need it to use the snippet; in short, batteries included!

239

240

CHAPTER 9 IRONPYTHON RECIPES

Until otherwise noted, the following examples can all be run directly from the IronPy-
thon interpreter. If you need a reminder, you can find it under the IronPython installation
directory (for me this is C:\Program Files\IronPython 2.0); the interpreter application
is called ipy.eye. Some examples may include the words (press Enter), placed at points
where the interpreter is waiting for your continued input, such as when defining classes
and methods. I included it so that you and the interpreter wouldn’t have an unnecessary
staring contest. I've found that, despite the fact I have four eyes, the interpreter continues
to win that particular fight.

Displaying the String Representation of an Object

Frequently, it is useful to display the string representation of an object (Listing 9-1).
Earlier in the book we looked at adding custom methods to our classes so that we could
easily call one method and get a string value back regarding the state of the value. In
.NET, objects by default inherit the ability to call the . ToString() method and get a string
representation of that object back. Since object is the base class for all .NET data types,
that functionality is exposed across those more specific types.

Listing 9-1. Displaying the String Representation of an Object

>>> import clr
>>> clr.AddReference("System")
>>> myAge = 25
>>> print myAge.ToString()
25
>>> class Human:
age = 25
name = "Alan Harris"
. (press Enter)
>>> me = Human()
>>> print me
<_main__.Human instance at 0x000000000000002B>
>>> print me.ToString()
<__main__.Human instance at 0x000000000000002B>

Tip Earlier in the book | mentioned how useful it is to provide your own . ToString() method for conve-
nience. This is the proof; using . ToString() on a class returns the instance of the class but little other useful
information. See the discussion later in this chapter on “Implementing Your Own . ToString() Method.”

CHAPTER 9 IRONPYTHON RECIPES

Converting Between Two Base Data Types

Besides displaying the string representation of a value, sometimes it may be necessary
to convert a value of one type to another (Listing 9-2). The Convert class in the System
namespace provides a variety of conversion types that are easily accessible. There are
a few caveats, however.

A conversion method exists for each base data type: Boolean, Char, SByte, Byte,
Int16, Int32, Int64, UInt16, UInt32, Ulnt64, Single, Double, Decimal, DateTime,
and String.

Every base type can be converted to every other base type, but these conversions
can throw exceptions. The act of converting does not mean the conversion is going
to be successful.

Conversions will fail if the data types are incompatible, such as converting a Char
to a DateTime object.

Conversions will fail if the final data type results in a loss of data. For example, the
maximum value for an Int32 is larger than the maximum value for a Byte. Con-
verting from an Int32 with a value of 2,147,483,647 to a Byte will fail, because the
Byte’s maximum value is 255.

Listing 9-2. Converting Between Two Base Data Types

>>>
>>>
>>>
>>>
>>>
1

>>>

True

import clr

clr.AddReference("System")

import System

myFloat = 1.23456789

print System.Convert.ToInt32(myFloat)

print System.Convert.ToBoolean(myFloat)

>>> print System.Convert.ToString(myFloat)
1.23456789

>>> myFloat2 = 0.0

>>> print System.Convert.ToBoolean(myFloat2)

False

241

242

CHAPTER 9 IRONPYTHON RECIPES

Note Two things worth noting from this example are that calling System.Convert. ToString() on a data
type is functionally equivalent to calling the . ToString() method on the data type itself. The shorthand version
is simply more convenient in most cases. Also note that . ToBoolean() will return False only when the value
of the data type is precisely 0. Nonzero values, even negative ones, will return True. | don’t expect you’ll be
making that sort of conversion often, but the behavior can be surprising if you’re not aware of it beforehand.

Implementing Your Own .ToString() Method

As we saw in an earlier example, the default implementation of . ToString() is not terribly
useful when applied to classes we’ve created. As a convenience to yourself and other
developers, it’s generally a good idea to provide your own . ToString() method with your
classes (Listing 9-3). It makes debugging easier; you can simply call . ToString() on an
instance of a class and get back any relevant data in one line, and it conforms to a coding
standard that other .NET developers are used to.

Listing 9-3. Implementing Your Own .ToString() Method

>>> import clr
>>> clr.AddReference("System")
>>> import System
>>> class Foo:
age = 30
name = "Joe Plumber"
def ToString(self):
return "age: " + age.ToString() + " - name: " + name
. (press Enter)
>>> bar = Foo()
>>> print bar.ToString()
age: 30 - name: Joe Plumber

Note that when we called . ToString() on the age variable, the default implementation
for an integer was used. This is why providing your own in a custom class is almost never
a bad idea; it will only apply to the instance of the class itself, leaving all other classes and
variables alone. This is a simple method to implement on most classes, and it will pay for
itself quickly.

CHAPTER 9 IRONPYTHON RECIPES

Inheriting from a Base Class

By design, one of the intrinsic strengths of object-oriented design is the ability for one
class to inherit from another and to take on the attributes of that class through “is a” and
“has a” relationships (e.g., a car “is a” vehicle and “has” wheels). Establishing a base class
for other classes to inherit from is exceedingly simple in IronPython (Listing 9-4).

Listing 9-4. Inheriting from a Base Class

>>> class Vehicle:
weight = 100
def SetWeight(self, value):
. self.weight = value
... (press Enter)
>>> class Car(Vehicle):
wheels = 4
def SetWheels(self, value):
self.wheels = value
. (press Enter)
>>> auto = Car()
>>> print auto.weight
100
>>> print auto.wheels

>>> auto.SetWeight(150)
>>> auto.SetWheels(6)
>>> print auto.weight
150

>>> print auto.wheels

The Car class inherits from the Vehicle class and gets access to both the properties
and methods that the Vehicle class provides. We didn’t have to implement either the
weight property or the SetWeight method; they were pulled in automatically. Used prop-
erly, this can be an incredibly effective software design technique because an effective
design allows you to use parent and child classes interchangeably in many cases, which
proves to be a terrific foundation for component-based development.

243

244

CHAPTER 9 IRONPYTHON RECIPES

Getting User Input from the Console

Retrieving user input from the console is a frequent task of console applications. The safe
way to perform this task is via the raw_input() method (Listing 9-5). Note that in display-
ing the results back to the user, we will also call the . ToString() method as demonstrated
in Listing 9-1 so that the interpreter understands that we want to treat the age variable as
a string and to concatenate it, not add it to some other value.

Listing 9-5. Getting User Input from the Console

>>> firstName = raw_input("What is your first name? ")
What is your first name? Alan

>>> lastName = raw_input("What is your last name? ")
What is your last name? Harris

>>> age = raw_input("What is your age? ")

What is your age? 25

non "o n

+ lastName + " is " + age.ToString() +
Alan Harris is 25 years old.

>>> print firstName + ' years old."

Concatenating Strings Efficiently
with the StringBuilder

In general, working with strings is a pretty slow set of operations. It can also be fairly
costly, because strings in .NET are immutable. When you concatenate strings, what'’s
really happening is that multiple strings are created in the background, and the final
result is a brand new string. This can be very wasteful, particularly if it’s performed in
some type of loop. A better method that .NET provides is the StringBuilder class, which
you can use to concatenate strings together without creating multiple strings that exist
only to be deleted (Listing 9-6). Generally the last step in applying the StringBuilder is
converting the final value to a string to be used elsewhere in your code.

Listing 9-6. Concatenating Strings Efficiently with the StringBuilder

>>> import clr

>>> clr.AddReference("System")

>>> import System

>>> import System.Text

>>> sb = System.Text.StringBuilder()
>>> sb.Append("This")

CHAPTER 9 IRONPYTHON RECIPES

<System.Text.StringBuilder object at 0x000000000000002B [This]>

>>> sb.Append(" ")

<System.Text.StringBuilder object at 0x000000000000002B [This]>

>>> sb.Append("appends")

<System.Text.StringBuilder object at 0x000000000000002B [This appends]>
>>> sb.Append(" ")

<System.Text.StringBuilder object at 0x000000000000002B [This appends]>
>>> sb.Append("without additional strings.")

<System.Text.StringBuilder object at 0x000000000000002Bw=

[This appends without additional strings.]>

>>> print sb.ToString()

This appends without additional strings.

Tip This isn’t going to make or break your application performance in 99.99% of your coding life. If string
concatenation is bringing your application’s performance down, it’s likely that the entire design needs to be
examined. However, using the StringBuilder is not a bad practice to get into; it doesn’t cost you anything
other than a bit more typing, and it keeps your underlying memory usage cleaner. Concatenating strings
together with the + symbol always allocates new memory, but the StringBuilder will allocate new memory
only if the existing object buffer hasn’t enough space left for what you’re adding. Note that the address of
the object is always the same for the StringBuilder (in my case, the location was 2B).

I have heard it argued that the CLR will frequently make a more intelligent decision and occasion-
ally, behind the scenes, convert string concatenation code to a StringBuilder style of concatenation for
you. Though it’s not a great idea to think you’re smarter than the compiler, it is generally a good practice
to try and help it along where possible with smart design decisions. A good rule of thumb is that if you
know precisely how many strings you're concatenating, it's probably safe to use the regular old string way,
because the CLR will often translate that into a more efficient structure automatically. If you are combin-
ing some arbitrary number, stick with the StringBuilder. For more information on the topic, visit the MSDN
documentation for the StringBuilder class, which is currently located at http://msdn.microsoft.com/
en-us/library/system.text.stringbuilder.aspx.

Creating a Set of Enumerations

One thing that modern developers shy away from when possible is the concept of magic
numbers. Magic numbers are values that appear in source code as hard-coded constants.
The numerical value by itself is meaningless. The enumerated value allows you to use

a variable name instead of the specific value itself (Listing 9-7). In addition to providing
clarity in your code, it makes maintenance easier if the value needs to change at a future
date; you will have to change only the value of the enumeration in the single location in
which it was defined, not throughout the entire application.

245

246

CHAPTER 9 IRONPYTHON RECIPES

Listing 9-7. Creating a Set of Enumerations

>>> class Enumerations:

foo = 0
bar = 1
Xyzzy = 2

. (press Enter)
>>> enumValue = Enumerations.foo
>>> print enumValue
0
>>> enumValue = Enumerations.xyzzy
>>> print enumValue
2

Note Random trivia: If you ever played the old text-based game Colossal Cave Adventure, you may recall
Xyzzy as the magic word that allows the player to teleport between two specific locations. Otherwise it pro-
duces the dry response “nothing happens.” It’s been a long-running joke among developers. Case in point:
The Minesweeper game bundled with Windows has used it as a cheat code for quite some time.

Retrieving Command-Line Arguments

Many (I would even venture to say most) console applications accept one or more argu-
ments passed via the command line. The IronPython interpreter is a perfect example;
you can run ipy.exe by itself to start the interpreter, or you can run a specific script, as
we will do in this example. You can access command-line arguments via the System.
Environment.GetCommandLineArgs() method. Create a file called
CommandLineTest.py in the C:\Python folder and add to it the code in Listing 9-8.

Listing 9-8. Retrieving Command-Line Arguments

import clr
clr.AddReference("System")
import System

CHAPTER 9 IRONPYTHON RECIPES

class CommandLineTest:
cmds = System.Environment.GetCommandLineArgs()
print cmds
print cmds.Length
if cmds.Length < 3:
print "You did not specify an argument for this program.”
else:
print cmds[2]

CommandLineTest()

The code will get a list of command-line arguments, display those arguments back
to the user, display the number of arguments in the list, and display different output,
depending on whether there are fewer than three arguments provided. Why three? Let’s
run the example two different ways to examine the output.

C:\Program Files\IronPython 2.0>ipy c:\python\CommandLineTest.py 1234
Array[str](('ipy', 'c:\\python\\CommandLineTest.py', '1234"'))

3

1234

C:\Program Files\IronPython 2.0>ipy c:\python\CommandLineTest.py
Array[str](('ipy', 'c:\\python\\CommandLineTest.py"))

2

You did not specify an argument for this program.

Aha! The GetCommandLineArgs() method includes in the array of arguments the
name of the executable, the script being called, and your parameters. Therefore, when
checking command-line arguments in this fashion, start your counting at array element
2 (bearing in mind that arrays in IronPython, as in C, begin at 0 instead of 1). Depending
on whether you’re working with console, desktop, or web applications, you may find you
have a greater or lesser number of elements in the command line.

Listing All the Files in a Folder

There are many circumstances in which you might want to list all the files in a particular
folder. One that immediately springs to mind is one in which I found myself not long ago:
I used IronPython as a scripting language for an existing application as a sort of plug-in

247

248

CHAPTER 9 IRONPYTHON RECIPES

system (see Chapter 6 for some implementation ideas and examples), and I wanted to list
all the custom IronPython plug-ins in a particular set of folders. Listing 9-9 shows how
easy it is to access this information in IronPython.

Listing 9-9. List All the Files in a Folder

>>> import clr
>>> clr.AddReference("System")
>>> import System
>>> import System.IO
>>> di = System.IO0.DirectoryInfo("c:\python")
>>> files = di.GetFiles("*.*")
>>> for file in files:

print file.Name
... (press Enter)
CommandLineTest.py
form.py
helloConditional.py
helloDynamic.py
helloWorld.py
humanBeing.py
humanBeingTest.py
static.py
test - Copy.p2
test.py

The .GetFiles() method accepts a string for a parameter; this parameter represents the
filter you wish to apply to the folder. You can search for all files, files with a specific exten-
sion, files with a certain character in the title, and so on.

Conveniently Check the State of a String

A lot of data validation effort goes into checking whether strings (1) have been initialized
to any value (meaning a non-null value) and (2) have an actual value. Note that there is
a difference between a string that is null and a string with a value of “". Although they
seem similar, the string set to null has not been initialized with any value whatsoever; the
string with a value of “" is simply blank (aka empty).

.NET provides a convenient method called String.IsNullOrEmpty() that performs
both checks for you, saving you a bit of typing and allowing you to perform this type of
check consistently across all your application code (Listing 9-10).

CHAPTER 9 IRONPYTHON RECIPES

Listing 9-10. Conveniently Check the State of a String

>>> import clr

>>> clr.AddReference("System")

>>> import System

>>> myString = ""

>>> if (System.String.IsNullOrEmpty(myString)):
print "myString is null or empty."

. else:

print myString

... (press Enter)

myString is null or empty.

Tip There used to be a pretty nasty bug in .NET where under certain conditions the ./sNullOrEmpty()
method would actually trigger a NullReferenceException. If you think about that for a few seconds, you’ll
realize how annoying it would be to get a NullReferenceException when you’re performing a check for null
values that is provided by .NET itself. Luckily, that bug was corrected as of .NET 2.0 Service Pack 1. If you're
using any version of .NET that is 2.0 SP1 or higher, you shouldn’t encounter this issue. For more informa-
tion on the bug and its fix, take a look at Microsoft Help and Support’s article on the topic, which is currently
located at http://support.microsoft.com/kb/940900/.

If you are (at some point) using a version of .NET that is 2.0 or earlier, you probably won’t encounter
this one, unless you’re running ./sNullOrEmpty() inside of a loop. It’s good to know anyway, in case you ever
do come across it.

Implementing the Singleton Design Pattern

Sometimes in your applications you will have objects that by their very nature should
exist at most one time and one time only; a global application object would be one exam-
ple. (Indeed, Singletons occasionally get a bad rap for being glorified global variables,
which developers frown on because it’s more of a hassle to ensure that the state of that
variable is correct everywhere.)
In IronPython, we’ll store an instance of a class in a variable for reference; if that
instance variable is null, we know we haven’t yet created an instance of the singleton.
If it’s not null, we should reuse the existing reference instead of creating a new one.
Create a new file in your C:\Python folder called singleton.py, and enter the code in
Listing 9-11.

249

250 CHAPTER 9 IRONPYTHON RECIPES

Listing 9-11. Implement the Singleton Design Pattern

class SpecialResource:
class Singleton:
def identifyMyself(self):
return id(self)

_ singletonInstance = None

def _init (self):
if SpecialResource. singletonInstance is None:
SpecialResource. singletonInstance = SpecialResource.Singleton()

def _getattr (self, attr):
return getattr(self. singletonInstance, attr)

resourceOne = SpecialResource()
print resourceOne.identifyMyself()

resourceTwo = SpecialResource()
print resourceTwo.identifyMyself()

resourceThree = SpecialResource()
print resourceThree.identifyMyself()

c:\Program Files\IronPython 2.0>ipy c:\python\singleton.py
43
43
43

You can see that despite having created three different objects, the Singleton class
permits only one true instance to be created; as a result, the output of all three objects is
identical. The specific number you see may differ from mine. The important point is that
the numbers match one another in your output. If they were different, it would indicate
that there was a unique ID for each object, and therefore the objects would not be Single-
tons. Also remember that the value displayed is not a value contained by an object itself;
rather, it is the ID for the object itself.

CHAPTER 9 IRONPYTHON RECIPES

Tip As you become more advanced as an IronPython developer, you may find your attention turning to
multithreaded software development (particularly since multicore processors are becoming the norm, even
on lower-end machines); the code for the Singleton implementation is not “thread safe.” Although a proper
discussion of multithreaded development is a topic worthy of a (very large) book by itself, it is sufficient to
say that if you apply this code across multiple threads, you may encounter situations where two threads are
creating instances of the Singleton at almost the same time. This condition can actually violate the design
rules of the Singleton pattern and allow fwo different instances to be created. You can achieve a simple solu-
tion by locking code that modifies the private __singletoninstance variable, thereby restricting access to the
current thread alone; the second thread to attempt to create an instance will see the correct result. These
types of threading conditions can be very difficult to diagnose because by definition they are random and not
easily reproducible.

Opening a Connection to a Database

Databases such as SQL Server and Oracle serve as repositories of data; as such, they are
exceedingly effective at both fast and powerful data access. Communicating with these
databases and performing data-related tasks is initiated via database connection objects
(Listing 9-12). .NET already contains a variety of data providers for various database
systems; it also offers generic data providers if you're communicating with a system that
does not already have built-in .NET support. In general, you should use the data provider
specific to the system with which you're communicating because the various tools in
.NET are configured to be as quick as possible for those particular systems. Thus, you
should absolutely take advantage of that performance effort.

Throughout the book we’ve been using SQL Server, in part because it’s a very solid
database system and also because Microsoft has free versions available for developers,
which creates a low barrier to entry.

Listing 9-12. Open a Connection to a Database

>>> import clr

>>> clr.AddReference("System.Data")

>>> from System.Data import *

>>> from System.Data.SqlClient import *

>>> conn = SqlConnection("Data Source=ALAN-DEVPC\SQLEXPRESS;w

Integrated Security=True;Initial Catalog=IronPython;User Instance=false")
>>> comm = SglCommand("SELECT name FROM Employee", conn)

>>> conn.Open()

251

252

CHAPTER 9 IRONPYTHON RECIPES

>>> reader = comm.ExecuteReader()
>>> if (reader.Read()):

print (reader.GetString(0))
.. (press Enter here)
Alan Harris
>>> reader.Close()
>>> conn.Close()

Note Listing 9-12 is based on a table and data set that we created in Chapter 7. If you have not created
this table or populated it with any data, then flip back to that chapter and do so. It only takes a few minutes
and it’s nice to have some dummy data with which to work.

Performing a Bubble Sort on a Set of Elements

There are many, many ways to sort a set of elements, with varied results in terms of
performance. In computer science courses, the bubble sort is frequently introduced
first among sort algorithms because it is an easy sort to explain and implement. Unfor-
tunately, as the number of elements in your input set increases, performance decreases
significantly. Also, the initial sorting of the elements plays a role; if the elements are
positioned very far from where they will be when in their final order, then performance
will be slower because more computations have to be performed.

Even so, a bubble sort is still a valid sorting methodology and a good algorithm to
explore. Essentially, you are looping through a set of elements, comparing the current
element to the next one in the set. If the next one has a value less than the current one,
you swap the two positions. You continue this process until the elements are in order
from left to right (Listing 9-13).

Listing 9-13. Perform a Bubble Sort on a Set of Elements

>>> def bubbleSort(elementlList):

get the number of elements (REMEMBER: zero-based array,w=
so it is length - 1)

maxIndex = len(elementlList) - 1

a flag to set whether the sorting is complete

unsorted = False

while not unsorted:

CHAPTER 9 IRONPYTHON RECIPES

unsorted = True
for each element in the array, we need to do a comparison
for index in range(maxIndex):
.. # if the next element is less thanw
or equal to the current one...
if elementlList[index + 1] <= elementlList[index]:
- # ...reverse them and set the flag so that=
the procedure continues.
elementList[index], elementList[index + 1] =w»
elementList[index + 1], elementlList[index]
unsorted = False
return elementlist
. (press Enter)
>>> mylist = [1, 10, 394, 812, 9, 54]
>>> print bubbleSort(mylList)
[1, 9, 10, 54, 394, 812]

Using the StopWatch Class to Time Operations

In terms of application performance, there are many considerations to account for.
Performance might refer to the amount of resources consumed, the speed at which
a particular operation completes, and so on. A simple way to evaluate, with reasonably
high precision, the duration of time that an operation took is with the StopWatch class.
The StopWatch class exposes some fairly intuitive methods: Start and Stop, which
are used for controlling operation of the StopWatch. The time is measured using a value
of type System.TimeSpan, which lets you see precisely how long something took to
complete.
Create a new file in your C:\Python folder and call it stopWatchTest.py. Enter the
code shown in Listing 9-14.

Listing 9-14. Use the StopWatch Class to Time Operations

import clr
clr.AddReference("System")
import System

import System.Diagnostics

253

254 CHAPTER 9 IRONPYTHON RECIPES

def stopWatchTest():
stopWatch = System.Diagnostics.Stopwatch()
stophatch.Start()
print "This takes place during the timing period."
stopWatch.Stop()
print stopWatch.ElapsedMilliseconds.ToString() +

milliseconds tows
perform the previous operation."
print stopWatch.Elapsed.ToString() + " total time elapsed."

stopWatchTest()

c:\Program Files\IronPython 2.0>ipy c:\python\stopWatch.py
This takes place during the timing period.

12 milliseconds to perform the previous operation.
00:00:00.0121341 total time elapsed.

Note The number of milliseconds it took for your operation to complete will likely be different than it took
for mine. In fact, repeated runs will produce different results, depending on how busy your system is at the
time of measurement. This variance is totally normal.

Baking Cookies

Cookies have gotten a bad rap for a long time on the Internet, for some reasons justified
and some unjustified. Cookies themselves are perfectly useful and safe; it’s really the
manner in which they’re used that some find troublesome. Essentially a cookie is a small
text file that a web application can employ to store and retrieve a bit of data from the
user’s hard drive (Listing 9-15). Used properly, they can offer some very beneficial func-
tionality to modern web applications; used improperly, they open security holes and put
your users’ data and systems as risk.

Tip I've harped on this a few times, but, at the risk of sounding like a broken record, do not store sensi-
tive information in cookies. Treat cookies like objects that you wouldn’t mind exposing to the whole world.
Do you want the whole world seeing your credit card number? No? Then don’t store it in a cookie. This is
a great rule of thumb.

CHAPTER 9 IRONPYTHON RECIPES

Listing 9-15. Baking Cookies

import System

def Page_Load(sender, e):
Response.Cookies["ironPythonCookie"]["dateTimeValue"] =w>

System.DateTime.Now.ToString()

A good practice with cookies is to set an expiration date; after the date you select, the
cookie will automatically be dropped by the user’s browser. The date of expiration obvi-
ously varies, depending on the needs of your application; for this example, we’ll set the
expiration date to be one year in the future (Listing 9-16).

Listing 9-16. Baking Cookies with an Expiration Date (cont.)

import System

def Page_Load(sender, e):

Response.Cookies["ironPythonCookie"]["dateTimeValue"] =w>
System.DateTime.Now.ToString()

Response.Cookies["ironPythonCookie"].Expires = System.DateTime.Now.AddDays(365)

Now we can take a look at the contents of the cookie and see if we were successful
(Figure 9-1).

Figure 9-1. Adding cookies to the current session was successful. Note the 2010
expiration date.

255

256

CHAPTER 9 IRONPYTHON RECIPES

Tip How did | produce the output in Figure 9-1? | used the Web Developer Toolbar add-on for Firefox,
available from https://addons.mozilla.org/en-US/firefox/addon/60 (version 1.1.6) at the time
of this writing. It's an extremely popular and powerful tool for use within Firefox that can save you a lot of
development time; the best part is the price: totally free.

Reading Cookies

Storing information in a cookie is only half the battle (well, one-third if you consider
deleting cookies, which we’ll cover next). If you want to retrieve the value of a cookie, you
should always check for whether that cookie exists before attempting to do so; if a user
has disabled cookies, it won’t exist and an exception will be thrown (Listing 9-17).

Listing 9-17. Reading Cookies

import System

def Page Load(sender, e):
Response.Cookies["ironPythonCookie"]["dateTimeValue"] =w»
System.DateTime.Now.ToString()

check for the existence of the cookie first

if (Response.Cookies["ironPythonCookie"] == None):
pass

else:
Response.Write(Response.Cookies["ironPythonCookie"]["dateTimeValue"])

Tip Why not just wrap the call to read the cookie in a Try-Catch-Finally block? When we covered excep-
tions earlier in the book, | mentioned that it’s generally not a good idea to structure your code around
exceptions. A simple test for None (null) in this case works just fine. Exceptions, by definition, should exist for
exceptional situations. A cookie that doesn’t exist is not an exception situation; it’s just a normal possibility
that we should test for.

CHAPTER 9 IRONPYTHON RECIPES

Deleting Cookies

It’s all well and good to store cookies on a user’s machine. But what happens if you want
to delete that cookie for good?

Surprise—you can’t! Actually, that’s only half true. You cannot delete a cookie from
the user’s machine directly. What you can do is set the expiration date for that cookie
to be in the past, which will trigger the user’s browser to delete the cookie for you
(Listing 9-18).

Listing 9-18. Deleting Cookies

import System

def Page Load(sender, e):
Response.Cookies["ironPythonCookie"].Expires = System.DateTime.Now.AddDays(-1)

Storing Data in Session State

HTTP, by definition, is a stateless protocol. This is why, for the longest time, web pages
were static (and, frankly, pretty bland). We've come a long way, and server technology
is such that we have options for persisting data between requests. In .NET, one of those
ways is the Session state.

The Session state is a temporary repository in memory where you can store objects
and data for use between multiple pages. It is best suited for small objects and data.
Also, by default the session does have an expiration (usually about 20 minutes), so don’t
assume that information in the session is there.

Listing 9-19. Store Data in Session State

import System

def Page Load(sender, e):
Session["myName"] = "Alan Harris"
Response.Write(Session["myName"])

Is the Session state the perfect solution in all cases? Not quite. Let’s say you've created
a three-page signup form for your snazzy new application, and you're storing all the data
at each step in Session state. A user in the middle of filling out your awesome new signup
form who walks away for 30 minutes will have to start from scratch if the session expires
while the user is away.

257

258

CHAPTER 9 IRONPYTHON RECIPES

Don’t let this discourage you from using the Session state. It’s more secure than cook-
ies because the information contained within is never transmitted to the client (it’s stored
in server-side memory), and it can solve a good number of problems.

Tip Depending on your configuration and environment, you can actually persist session data to a data-
base and essentially make it permanent, or you can store it in memory on a totally different server than the
one your application is running on. Because of the additional configuration and software requirements, I've
opted here to cover the simplest (and most common) session configuration. For more information on the
ways Session can be configured, see the MSDN article on the topic at http://msdn.microsoft.com/
en-us/library/ms972429.aspx

Adding a Web Control Programmatically

In .NET, you can define pages dynamically at runtime; you don’t necessarily have to
construct the entire page in advance. The framework has a control called the PlaceHolder
that serves as a container for the easy population of controls during runtime. The Place-
Holder control by itself has no appearance; when you add it to a page, precisely zero new
markup will be sent to the user. It’s purely an abstract container.

To use it, we first need to add it to the HTML markup of a page (Listing 9-20).

Listing 9-20. Add a Web Control Programmatically Within Default.aspx

<%@ Page Language="IronPython" CodeFile="Default.aspx.py" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"ws
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>Programmatic Controls</title>
</head>
<body>
<form id="form1" runat="server">
<asp:PlaceHolder ID="plc1" runat="server"></asp:PlaceHolder>
</form>
</body>
</html>

CHAPTER 9 IRONPYTHON RECIPES 259

In the code-behind file, we can now add controls to this PlaceHolder (Listing 9-21),
and they will be rendered for the client.

Listing 9-21. Add a Web Control Programmatically (cont.)

import System

def Page_Load(sender, e):
1blHello = System.Web.UI.WebControls.Label()
1blHello.Text = "Hello World!"
plci.Controls.Add(1blHello)

When a user views the page, the Label control is rendered as a child of the Place-
Holder control with whatever properties applied that you set in code (Figure 9-2). You can
add a variety of objects at runtime, ranging from simple to complex. This functionality
(and the consequent ability to refer to these objects elsewhere in your code) permits
extremely powerful page-creation options.

Figure 9-2. The label is rendered, but notice that there’s no markup for the PlaceHolder.

260 CHAPTER 9 IRONPYTHON RECIPES

Note Did you notice the label rendered as a tag? A span is an inline element with some specific
behavior in terms of HTML and CSS control. You may not want spans in certain situations. The framework
has a control called HtmiGenericControl, which we’ll look at shortly, that permits more flexibility about exactly
what gets output to the screen. Labels, however, will always render as spans.

Telling .NET to Render XHTML-Compliant Markup
Using Web.Config

By default, NET will send markup to the client that is somewhat “lowest common
denominator.” For various reasons you may want the markup to validate as XHTML
Strict. Control over this is set in the web.config file in an element called <xhtmlConfor-
mance> (Listing 9-22). Place the tag anywhere inside the <system.web> element of your
web.config file.

Listing 9-22. Tell .NET to Render XHTML-Compliant Markup Using web.config

<xhtmlConformance mode="Strict" />

Tip You can also specify Transitional or Legacy, although my understanding is that there is some funni-
ness with Legacy if you try to use ASP .NET AJAX. Check out Scott Guthrie’s blog posting on the subject at
http://weblogs.asp.net/scottgu/archive/2006/12/10/gotcha-don-t-use-xhtmlconformance-
mode-legacy-with-asp-net-ajax.aspx.

How do we know that it worked? I added the tag to the web.config file for the project
in the previous snippet, “Adding a Control Programmatically.” If you look at the output
markup for that snippet, you'll see that the Form tag has both a name and an id attribute;
this is not valid for XHTML 1.0 Strict. Compare the results in Figure 9-3, where you will
see that the name attribute is no longer in the Form tag. The output is now specified as
being Strict compliant. Many times these changes are relatively minor, but sometimes
they can be dramatic. If you plan to target XHTML 1.0 Strict, I recommend that you
set that attribute in web.config as soon as you create your project. If you don’t and you
construct CSS to style your pages, you may find that CSS no longer works after applying
that attribute, resulting in more work for you. Set it early and save yourself a headache
(although you are by no means required to set it at all).

CHAPTER 9 IRONPYTHON RECIPES

Figure 9-3. The markup has been changed to be standards compliant.

Custom HTML via the HtmlGenericControl

Earlier we looked at how to add a control to a web page programmatically; specifically
we added a label, which was rendered between span tags. If you need a little more
control over what markup is produced, you can use the HtmlGenericControl to output
specific tags.

As before, we need to have a PlaceHolder on the page to contain the controls that
we’ll add (Listing 9-23).

Listing 9-23. Custom HTML via the HtmlGenericControl

<%@ Page Language="IronPython" CodeFile="Default.aspx.py" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"ws
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>Programmatic Controls</title>
</head>
<body>
<form id="form1" runat="server">
<asp:PlaceHolder ID="plc1" runat="server"></asp:PlaceHolder>
</form>
</body>
</html>

261

262 CHAPTER 9 IRONPYTHON RECIPES

With a PlaceHolder added, the syntax for adding an HtmlGenericControl is very
similar to the method for adding any other control programmatically. Note that we
can optionally specify the type of tag to render; in this case we’ll render an h1 tag
(Listing 9-24, Figure 9-4).

Note If you don’t specify the type of tag to render, it will be a span by default.

Listing 9-24. Custom HTML via the HtmlGenericControl (cont.)

import System

def Page Load(sender, e):
1blHello = System.Web.UI.HtmlControls.HtmlGenericControl("h1")
1blHello.InnerHtml = "Hello World!"
plci.Controls.Add(1blHello)

Figure 9-4. The HtmlGenericControl renders as the type we specified as a parameter.

CHAPTER 9 IRONPYTHON RECIPES

Passing Information via the QueryString

The QueryString portion of a URL is the segment past the file extension, if one exists. In
a URL such as http://www.domain.com/default.aspx?id=1&dummy=2, the QueryString param-
eters are id and dummy. We can pass information between pages using the QueryString
(Listing 9-25, Figure 9-5).

It’s always a good idea to check whether a QueryString parameter is null before
attempting to perform operations on it. Also, since the QueryString is publicly visible both
when a user hovers over alink and in the address bar once the user has browsed to that
link, it is not at all suitable for sensitive information.

Listing 9-25. Pass Information via the QueryString

import System

def Page Load(sender, e):
if (Request.QueryString["id"] <> None):
Response.Write("The QueryString value for the id parameterw
is " + Request.QueryString["id"])
else:

pass

Figure 9-5. You can use the QueryString to pass information between pages.

263

264

CHAPTER 9 IRONPYTHON RECIPES

Caching In

Arguably, web performance these days is bolstered in large part by intelligent caching.
Data and pages that are cached are stored in memory or on a physical drive for faster
retrieval so as to not be reconstructed on every request. You might consider storing
aresult set from a search in the cache so that users paging through the results don’t
constantly need to query the database on each page. It can greatly reduce the load on
your servers, and in high-traffic situations will make or break your site. Educated (but
judicious) use of caching can be a performance lifesaver. Luckily, in .NET it’s exceedingly
easy (Listing 9-26).

The cache, like Session state, has an expiration that you can adjust (but certainly
don’t disable it or set it to some extraordinarily long lifespan; that’s a quick way to
exhaust your resources and to leave you worse off than when you started).

Listing 9-26. Caching In

import System

def Page Load(sender, e):
if (Cache["id"] <> None):
Response.Write("The cache currently has a value of "=
+ Cache["id"].ToString() + " for the id variable.")
else:
Cache["id"] = 12345
Response.Write("The cache has had a value inserted.")

Tip Here’s one of those times when checking for null values is really important. If you call . ToString() on
the Cache[“id”] element without any value present, .NET will throw an exception and you'll get the really ugly
yellow screen of death.

The first time you run the code in Listing 9-26, nothing in the cache will be called id,
so you will see the output displayed in Figure 9-6.

CHAPTER 9 IRONPYTHON RECIPES 265

Figure 9-6. Caching a value on the first run

If you refresh your screen, you should see instead the output displayed in Figure 9-7,
indicating that the code is retrieving the appropriate information from the cache.

Figure 9-7. Retrieving data from the cache

Tip The .NET cache is stored in the running ASP .NET worker process. When you are running a web appli-
cation that operates on one box only, the cache works fine. If you are scaling out to operate across many
web servers, a distributed cache solution is a better bet. With the .NET cache, your cache hit ratio in that
situation will likely be too low to even consider using.

266

CHAPTER 9 IRONPYTHON RECIPES

Setting HTML Attributes at Runtime

In certain situations, as a developer you’d like to perform tasks at runtime on a specific
control; perhaps you like to attach a little JavaScript to a button or to change the CSS class
of a text box, and so on. .NET exposes this ability through the use of attributes.

You can modify a variety of attributes in the HTML of an element. For this example,
we’ll attach a bit of JavaScript to a button so that a message box pops up when the user
clicks the button. First we need to create a page with a button control on it (Listing 9-27).

Listing 9-27. Ser HTML Attributes at Runtime

<%@ Page Language="IronPython" CodeFile="Default.aspx.py" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"w»
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>Programmatic Controls</title>
</head>
<body>
<form id="form1" runat="server">
<asp:Button ID="btnSubmit" runat="server" Text="Click Me!" />
</form>
</body>
</html>

If you run this code, you'll see output like the page in Figure 9-8. Clicking the button
will simply cause the page to PostBack, but you won’t see anything specific happen other
than a quick flash.

CHAPTER 9 IRONPYTHON RECIPES 267

Figure 9-8. Aside from PostBack, the button has little functionality.

Now, in the code-behind file, we can modify the control to add a bit of JavaScript so
that a message pops up when the button is clicked (Listing 9-28).
Listing 9-28. Ser HTML Attributes at Runtime (cont.)

import System

def Page Load(sender, e):
btnSubmit.Attributes.Add("onclick", "javascript:alert('Addedws
dynamically!");return false;")

Run the code again, and when the button is clicked, the message “Added dynami-
cally!” will appear for the user to click (Figure 9-9).

268

CHAPTER 9 IRONPYTHON RECIPES

Figure 9-9. Artaching JavaScript enhances the client-side behavior of the button.

Tip Even if JavaScript seems like Latin to you, the function of the alerf() method is probably pretty
straightforward. But what’s the deal with return false; at the end? If you remove this bit, you’ll notice,
the page will PostBack. Feel free to try it; we’ll be using this functionality in the next snippet.

Using JavaScript to Determine Server-Side
Operations

JavaScript isn’t just for sending data to the client; we can also use it to get information
back. One of the most straightforward methods is via the JavaScript confirm() method,
which presents an OK and Cancel window for the user to make a decision.

We can use the same HTML markup from the previous example, but we’ll modify the
code-behind file to adjust the behavior of the button (Listing 9-29, Figure 9-10).

Listing 9-29. Ser HTML Attributes at Runtime

import System

def Page Load(sender, e):
btnSubmit.Attributes.Add("onclick", "javascript:return confirm('Do you wantws
to confirm this operation?');")

CHAPTER 9 IRONPYTHON RECIPES 269

if (IsPostBack):
Response.Write("You confirmed the operation!")

else:
pass

Figure 9-10. The results of the confirmation are reflected in the code-behind operation.

Screen Scraping

Screen scraping is the process of writing code to read markup from a web page by load-
ing that page itself. It has a variety of uses, some legitimate, some not. One of the most
well-known (and incredibly beneficial) uses is in search engines. Search engines read the

270

CHAPTER 9 IRONPYTHON RECIPES

content of an HTML page, employ a variety of filtering techniques to extract keywords,
and make logical decisions about how content is related.

Screen scraping in .NET is very simple. You only need to open a connection to the
page, get the markup, and perform whatever processing you need to do. Let’s open
Google’s home page and paste the content into a control on our page. First, we need to
set up a page to hold that content (Listing 9-30).

Listing 9-30. Screen Scrape

<%@ Page Language="IronPython" CodeFile="Default.aspx.py" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"ws
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>Programmatic Controls</title>
</head>
<body>
<form id="form1" runat="server">
<asp:Literal ID="litContent" runat="server" />
</form>
</body>
</html>

Now we can open Google’s home page and render it on our page (Listing 9-31,
Figure 9-11).

Listing 9-31. Screen Scrape (cont.)

import System
import System.Net
import System.IO

def Page Load(sender, e):
request = System.Net.HttpWebRequest.Create("http://www.google.com")
response = request.GetResponse()
st = System.I0.StreamReader(response.GetResponseStream())
litContent.Text = sr.ReadToEnd()
sr.Close()

CHAPTER 9 IRONPYTHON RECIPES

Figure 9-11. Google’s home page content scraped and displayed in our page

Caution Why are the images missing? Google’s home page is looking for them in the correct location
relative to their document, which means the links won’t work on our local machine. Screen scraping is an
imperfect art! In general, it’s not likely you'd be scraping in this manner; more often, it’s to find links or con-
tent within a page and harvest that information for use elsewhere.

Setting the Default Button on a Form

One frequent task during application development is setting the default button on a form
so that when the user presses the Enter key, a specific button event is fired. You can
easily accomplish this by setting the DefaultButton attribute of the form on your page
(Listing 9-32).

Listing 9-32. Set the Default Button on a Form

<%@ Page Language="IronPython" CodeFile="Default.aspx.py" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"ws
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">

<title>Programmatic Controls</title>
</head>

27

272 CHAPTER 9 IRONPYTHON RECIPES

<body>
<form id="form1" runat="server" defaultbutton="btnLogin">
Username: <asp:TextBox ID="txtName" runat="server"></asp:TextBox>
Password: <asp:TextBox ID="txtPassword" runat="server"ws
TextMode="Password"></asp:TextBox>
<asp:Button ID="btnlLogin" runat="server" Text="Login" />
<asp:Button ID="btnCancel" runat="server" Text="Cancel" />
</form>
</body>
</html>

Note You don’t need anything fancy in the code-behind file for this example; “pass” in the Form_Load
method will work just fine.

Viewing Tracing Information About Pages

When debugging .NET applications, it can be very useful to view the trace informa-
tion about your requests. This property can be set at the very top of an .aspx page
(Listing 9-33, Figure 9-12).

Listing 9-33. View Tracing Information About Pages

<%@ Page Language="IronPython" CodeFile="Default.aspx.py" Trace="true" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"ws
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>Programmatic Controls</title>
</head>
<body>
<form id="form1" runat="server">
</form>
</body>
</html>

CHAPTER 9 IRONPYTHON RECIPES

273

Figure 9-12. Tracing information for recent requests

Tip Although tracing can prove to be very useful in performance tuning and debugging, it’s not something
to use indiscriminately. Having this information assembled on every request brings with it a performance
overhead cost, and | would advise staying away from its use in production applications.

Performing SEO-Friendly 301 Redirects

By default, the Response.Redirect() method in .NET is a temporary redirection from one
resource to another. Used improperly, this can have a negative effect on the ranking that
search engines assign to your pages; in general, a higher score is assigned to pages with
many inbound links that have a fairly long history of being located at one spot. Many
temporary redirections to a resource can indicate to the search engine that the content
won’t live there long, and your ranking suffers for it. A better choice is to opt for 301 redi-
rects, which indicate that a resource has moved permanently (Listing 9-34).

Note This assumes of course that the resource should in fact have a permanent redirection; if it is con-
tent located temporarily at one location or is not to be indexed by search engines, then a temporary redirect
won’t do any harm. This is again a judgment call based on the particular situation.

274

CHAPTER 9 IRONPYTHON RECIPES

Listing 9-34. Perform SEO-friendly 301 Redirects

newPath = "http://www.mydomain.com/someNewPage.aspx"

Response.Status = "301 Moved Permanently"
Response.AddHeader("Location", newPath)

Looping Through the Server Variables

Alot of information is hidden away in requests to and from the server. Some of this infor-
mation is specific to your machine, some specific to the server itself, and a lot dedicated
to the specific request at hand.

The ServerVariables collection in .NET stores all of this information in a format that
makes retrieval straightforward and quick. For our example, we’ll just loop through all the
server variables and display their names to the screen (Listing 9-35, Figure 9-13).

Listing 9-35. Loop Through the Server Variables

import System

def Page Load(sender, e):
for i in Request.ServerVariables:
Response.Write(i + "
")

Figure 9-13. The full list of server variables for this system

CHAPTER 9 IRONPYTHON RECIPES

Tip There are quite a few server variables, and some are unique to the server type, the hosting service
(e.g., IS, Apache), and the code running on that service. If you’re wondering when you might ever use them,
a good example might be logging who is visiting your web pages. You can use Request.ServerVariables
[“HTTP_REFERER”]to find out the referring page, letting you know if users are coming from a search engine,
a competitor’s site, etc.

You may have noticed that the _ REFERER part is spelled wrong. It should be _ REFERRER, but this is
such a common misspelling that it actually made it into the HTTP specification ages ago. You'll see it used
quite frequently, because the developers behind browsers are trying harder and harder to stick to the HTTP
specification documents.

Summary

That’s it! We are officially done. Hopefully in this chapter [was able to provide you with
a good number of reusable IronPython building blocks that you can easily drop into your
applications and use as is or as starting points for more complex operations and designs.
We covered console, desktop, and web application development tasks and specific tips
and tricks within each type of development. I'd sincerely like to thank you for taking

this journey down the dynamic language rabbit hole with me; IronPython is an exciting
addition to .NET and one that is growing by leaps and bounds. For set-in-their-ways
static-language developers like me, IronPython has been a real learning experience and
a personal challenge to set the old ways aside for a bit and try something new. I hope it
opens as many doors for you as it has for me.

275

Index

Numbers and symbols
3rd Normal Form, 164
301 redirects, 273
\ (backslash) character, 56
+ (plus sign), 86
_ (underscore) character, 101

A

abs() function, 26
absolute value, 26
abstract base classes, 120-125, 140-147
accessors, 124
Active Server Pages (ASP), 207
applications
adding file operations, 100-101
adding menu bar to, 97-99
advanced development, 119-161
code design, 91-93
console, 63, 244
creating complex, 44-46
design of, 81
desktop, 206
development of, 82-117
dialog windows for, 101-102
exit code, 116
planning, 80-81
refactoring, 93-97
web. See web development
application tiers, 22
arguments
command-line, 246-247
passing, 148-151
arrays, 30, 41, 45
ASCII values, 27, 32
ASP .NET server control, 210
ASP .NET web pages
development of, 207-213
form creation, 217-224
.aspx file extension, 207-213

assemblies, 65
attributes, setting at runtime, 266-268
Automatic Updates, 207

B
base classes
abstract, 120-125, 140-147
for plug-ins, 140-147
inheritance from, 243
in IronPython, 128-130
polymorphism and, 119-130
Booleans, 48
breakpoints, 77
browser wars, 206
bubble sorts, 252
built-in comma, 37
built-in functions, 26-37
business layer, 21-22
business logic, 186
Button controls
naming, 72-73
setting default, on form, 271-272
wiring, 73

C
C#,3-4,119
calling IronPython code from, 130-131,
134-140
polymorphism in, 119-128
syntax, 122
caching in, 264-265
camel casing, 124
Cascading Style Sheets (CSS), 204-206
case sensitivity, 78
casting, 20
characters
escaping, 39-41
extracting from strings, 41-42
returning number of, in string, 42
_ChecklfFileIsDirty() method, 114

277

278

INDEX

chr() function, 27
CIL. See Common Intermediate Language
classes
inheritance, 243
instantiation of, 53
multiple inheritance, 55
names for, 52
OOP and, 48-59
class files, creating, 74
class libraries, 133
adding references to, 134-140
dependencies among, 140
class templates, 74-75
client-side code, 206
.Close() method, 109
CLR. See Common Language Runtime
CLR assembly, importing, 65
clr module, 28
code
breakpoints in, 77
calling IronPython from C#, 130-131,
134-140
cleaning up, 74-78
client-side, 206
cohesion, 44
coupling, 43-44
decoupling, 81
designing, for applications, 91-93
duplicating, 95
errors in, 50, 76
inline method of writing, 210
separation of, into methods, 43-44
server-side, 206
code-behind files, 210
code comments, 137
CodePlex web site, 11, 67, 208
code snippets, 239-240
cohesion, 44
columns, 163
command-line arguments, retrieving,
246-247
CommandType parameter, 188
comma-separated values (CSV), 184-186
comments, 137
Common Controls tab, 71
Common Intermediate Language (CIL),
2-4,79

Common Language Infrastructure, 3-4
Common Language Runtime (CLR), 24,
79-80

components, common, 71
concatenation, 18, 244-245
conditional statements, 19-20, 26
confirm() method, 268
connection pooling, 179-180, 187
connections. See database connections
connection string variable, 179-180
console applications, 63, 244
controls

naming, 72-73, 82

positioning, 86

resizing, 85-88

wiring, 72-73
control structures, 15
conversions, between data types, 241-242
Convert class, 241-242
cookies

creating, 254-256

deleting, 257

expiration dates with, 255, 257

reading, 256
coupling, 43-44
CPython, 3, 41, 45
cross-page data, accessing, 225-226
cross-page PostBacks, 222-224
cross-site scripting (XSS) attacks, 235-238
CRU operations, 80
cryptography, 35
CSS (Cascading Style Sheets), 204-206
customErrors tag, 233, 234
custom HTML, via HtmlGenericControl,

261

D

data
accessing cross-page, 225-226
adding, 193-194
caching in, 264-265
deleting, 173-174, 195
inserting into tables, 169-171
modifying existing, 172-173
normalized, 164
retrieving from tables, 171-172
storing in cookies, 254-256

storing in Session state, 257-258
storing in ViewState, 214-215
validation, 191
visibility, 5
database connections, 105, 179, 251-252
databases
accessing data, 187-190
connection pooling, 179-180, 187
creating, 167
design of, 164-165
opening connection to, 251-252
parameterized queries, 175-176
sample, 165-169
SQL, 163-180
database tables. See tables
data definition language (DDL), 168
data layer
creating, 186-201
function of, 22
dataManager class, 187-189
data modification language (DML), 168
data providers, 251
data storage, 163, 184-186
data streams, 102
data types, 15
converting between, 241-242
immutable, 45
.NET, 60
debugging, 77
decimal numbers, 31
decoupling code, 81
DefaultButton attribute, 271-272
DELETE command, 173-174
desktop applications, 206
dialog windows, 101-102, 105
dict() function, 27-28
dictionaries, 27-28, 32-33, 45
dir() function, 28-29
disk
reading from, 103-105
saving to, 106-109
DLL Hell, 207
DML. See data modification language
docstrings, 91, 92
document objects, creating, 113-114

INDEX

documents
creating new, 112-115
printing, 110-111
duck typing, 130
duplicate code, 95
dynamically typed languages, 6-7, 77,
119-120
dynamic typing, 17-19

E

elements, performing bubble sort on, 252

encapsulation, 49

EngineManager class, 135, 137-138,
145-146

enumeration, 28, 245-246

error codes, 233

error handling, 21-26, 230-234

errors, in code, 50, 76

escaping characters, 39-41

event-driven programming model, 64

events, firing, 86

exception handling, 24-26, 191-193

exceptions, 21-24, 256

Execute method, 137-138, 145-146, 149

ExecuteNonQuery() command, 170

ExecutePlugin method, 143-146, 148-149

exit code, 116

Exit command, 116

exit() method, 54, 57

Extensible Markup Language. See XML

extensibility, 4

F
Facebook, 206
file system, 105
File class, 105
File.OpenText() method, 105
file operations, 29, 100-101
fileOperations class, 113, 115
files

code-behind, 210

listing, in folder, 247-248

opening, 101-102

overwriting, 106

printing, 110-111

reading from, 105

saving to, 106-109

279

280

INDEX

FileSystemWatcher object, 152, 156-158
finally blocks, 25-26
find method, 45
Firebug, 218
fixed-point numbers, 46
floating-point numbers, 34, 37, 46-47
folders, listing all files in, 247-248
font changes, 116
foreign keys, 164
for loops, 30-31
formatting, output, 39-41
forms
adding objects to, 71
adding Thank You page to, 221-222
creating simple, 217-220
cross-page PostBacks, 222-224
development of, 82-90
error handling with, 230-234
extracting characters from, 41-42
implementation of, 64-66
input validation, 226-230
introduction to, 70-72
naming controls in, 72-73
positioning, 86
resizing, 70, 85-70, 88
setting default button on, 271-272
form tag, 216, 260
FSWatcher application, 151-160
functions, built-in, 26-37

G
GET, 216
GetBoolean method, 171
GetChar method, 171

GetCommandLineArgs() method, 246-247

.GetFiles() method, 247-248
GetString method, 171
Google Mail, 206

granular methods, 43-44
GroupBox, 153-154

Hello World! program, 16
help() function, 31
hexadecimal numbers, 31-32
hex() function, 31-32
high-level languages, 5

HTML attributes, setting at runtime,
266-268

HtmlGenericControl, 260, 261

HTML (HyperText Markup Language),
203, 261

HTTP requests, 216

Hugunin, Jim, 2

|
ID property, 210
IDE (integrated development environ-
ment), 63
IIS (Internet Information Services), 205,
206
immutable data types, 45
import command, 51
Imports statement, 77
inheritance
from base class, 243
multiple, 55
object, 49
Initialize method, 136-137
inline method, 210
input() function, 21
input validation, 226-230
INSERT INTO command, 169-171
installation, of [ronPython, 11-12
instantiation, 53
integers, 17-19
integer values, 32, 46
integrated development environment
(IDE), 63
integration, 4
interfaces, 55
Internet, impact of, 203
Internet Explorer 7, 206
Internet Information Services (IIS), 205,
206
interpreter, 50, 52
int() method, 20, 32
IPEngine class library, 133
ipy.exe, 12
IronPython
advanced, 39-62
advantages of, 4-5
base classes, 128-130
compatibility with CPython, 41, 45

creation of, 2-3

downloading and installing, 11-12

as dynamically typed language, 6-7,

17-19

installation, 11-12

interpreter, 50, 52

introduction to, 1-14

pitfalls of, 5

as plug-in engine, 130-160

polymorphism in, 128-130

syntax, 15-38

system requirements for, 10-11
IronPython 2.0, 11
IronPython applications. See applications
IronPython classes, writing basic, 152
IronPython code, calling from C#, 130-

131, 134-140

IronPython.dll, 131
IronPython interpreter, 12-14
IronPython.Modules.dll, 131
IronPython Studio, 63-78

benefits of, 68, 71

downloading and installing, 66-70

error detection, 76

ready-made code templates, 74-75
IsDirty() method, 112
iteration, 30-31

J
JavaScript, 207, 230, 268-269
Jython, 2
K
keyboard shortcuts, 97
keys
foreign, 164
primary, 164
key-value pairs, 45
L

language independence, 3
len() function, 32, 42

list() function, 28, 32-33
lists, iteration over, 30-31
Literal control, 210-212
logical errors, 21-22
low-level languages, 5

INDEX

machine code, 5
magic numbers, 245
MapQuest, 206
math module, 35
max() function, 33
menu bar, creating, 97-99
MenusStrip, 97
MessageBox object, 114
MessageBox.Show object, 114
metadata, 181
methods

granular, 43-44

loosely coupled, 44

naming, 92, 100

private, 101

See also specific methods
Microsoft Developer Network, 92
Microsoft.Scripting.Core.dll, 131
Microsoft.Scripting.dll, 131
min() function, 33
modules, importing, 23
Multiline property, 85
multiple inheritance, 55
multithreaded software development, 251
mutators, 124
MySpace, 206

names, control, 72-73

namespaces, 52

native code, 79

.NET 3.5, 10

.NET code modules, importing, 28

.NET data types, 60

NET framework, 2—4
boilerplate code provided by, 101
cross-page PostBacks, 222-224
database connectivity and, 165
IIS integration and, 206
information sources for, 92
mixing with Python, 61-62
reference types in, 60
System.IO namespace, 105
validators, 227-230
value types in, 60

281

282

INDEX

.New() method, 113, 114
newlines, adding, 40-41
New menu option, 112-114
normalized data, 164
NullReferenceException, 249
null values, 264
numbers
decimal, 31
fixed-point, 46
floating-point, 34, 37, 46-47
hexadecimal, 31-32
integers, 46
magic, 245
pseudo-random, 35
random, 35
round, 36-37

0
object handling, polymorphism and,
119-130
object instantiation, 53
ObjectOperations objects, 135
object-oriented programming (OOP),
48-59
code example, 49-59
encapsulation, 49
inheritance, 49, 55
polymorphism, 49
objects, 48-49
common, 71
displaying string representation of, 240
encapsulation of, 49
inheritance and, 49, 55
.NET, 60
passed by reference, 92-93
passed by value, 93
polymorphism and, 49
Open dialog window, 101-102
OpenFileDialog, 107
open() function, 29
Open function, 101-103, 106
operations, timing, 253-254
ord() function, 27, 33-34
output, formatting, 39-41
overload method, 148-151

P

Page directive, 209
parameterized queries, 175-176
parameters, 44, 148-151
parent solutions, 131
passed by reference, 92-93
performance issues, 5
pi, 35
PlaceHolder control, 258-261
plug-in architecture, 130-160
advantages of, 147-148
application example, 151-160
base class for, 140-147
calling IronPython code, 134-140
creating, 131-133
IronPython class for testing,
138-140
overload method, 148-151
project creation, 131-133
plug-ins, 131
Points, 87
polymorphism
in IronPython, 128-130
OOP and, 119-130
principle of, 49
in statically typed languages,
119-128
POST, 216, 220
PostBacks, 216, 218, 222-224
PostBackUrl property, 223
pow() function, 34
presentation layer, 22
primary keys, 164
PrintDialog, 110-111
_PrintDocument handler, 111
PrintDocument object, 111
private methods, indicating, 101
program execution, conditional state-
ments and, 19-20
program flow, 7
project build order, 140
prototyping, 4
pseudocode, 4
pseudo-random numbers, 35
Python, 1-2, 140

Q

quadratic formula, 34

queries, parameterized, 175-176
QueryString, 263

quotation marks, escaping, 39-41

R

random() function, 35
random module, 35, 36
random numbers, 35
randrange() function, 36
raw_input() function, 20, 21, 244
readability, 4, 7-8
.ReadToEnd() method, 105
records, 163
adding, 169-171, 193-194
deleting, 173-174, 195
retrieving, 171-172
selecting all, 172
updating, 172-173
refactoring, 96-97
reference types, 60
relational database management system
(RDBMS), 163
relationships, in OOP, 56
RequiredFieldValidator, 227-230
Response.Redirect() method, 221, 273
Response.Write() method, 236, 237
return keyword, 43-44
Rossum, Guido van, 1
round() function, 36-37
round numbers, 36-37
rows, 163
RSS feeds, retrieving with XML, 181-183

S

Sandbox project, 63

Save as menu option, 107
SaveFileDialog, 107

Save method, 107

save operations, 106-109
screen scraping, 269-271
ScriptEngine class, 131, 135
ScriptScope objects, 135
ScriptSource objects, 135
scrollbars, 116

INDEX

search engine optimization (SEO), 224

search engines, screen scraping and,
269-270

security issues, 174-176, 234-238

SELECT command, 171-172

self parameter, 50, 53

semantics, 5

separation of concerns, 43-44

Server.HtmlDecode, 238

Server.HtmlEncode, 237

server-side code, 206

server-side operations, using JavaScript to
determine, 268

server variables, looping through, 274-275

ServerVariables collection, 274-275

Session state, storing data in, 257-258

session stealing, 235-238

SetDirty() method, 112, 115

singleton design pattern, implementing,
249-251

_singletonInstance variable, 251

software development, 43-44
software development life cycle (SDLC),
79-80

source code, SQL in, 176-177

span tags, 261, 260

SqlConnections, 179

SqlDataReader, 171, 172, 179

SQL injection, 21

SQL injection attacks, 174-176

SQL Server, 163
connection pooling, 179-180
logging in to, 166
query execution by, 177

SQL Server 2008, 11

SQL (Structured Query Language), 21,

163-180

DELETE command, 173-174
INSERT INTO command, 169-171
sample database, 165-169
SELECT command, 171-172
stored procedures, 176-179
TRUNCATE TABLE command, 174
UPDATE command, 172-173

state, session, 257-258

statically typed languages, 6-8, 119-128

283

284

INDEX

StopWatch class, 253-254
stored procedures, 176-179, 186
streams, 102
StreamWriter object, 109
StringBuilder class, 244-245
String.IsNullOrEmpty() method, 248-249
string operations, 39-43
strings, 16
checking state of, 248-249
concatenating, 18, 244-245
determining length of, 42
displaying objects as, 240
escaping, 39-41
extracting characters from, 41-42
Structured Query Language. See SQL
style sheets, CSS, 204-206
syntax, 15-38
built-in functions, 26-37
C#, 122
conditional statements, 19-20
control structures, 15
data types, 15
error handling, 21-26
errors, 21-22, 50
exception handling, 24-26
exceptions, 21-24
integers, 17-19
strings, 16
sys module, 28
System.Convert.ToString() method, 242
System.Data namespace, 165
System.Environment.GetCommand
LineArgs() method, 246
System.IO namespace, 105
system requirements, 10-11

T
tables, 163
adding records to, 169-171, 193-194
columns, 163
creating, 168-169
deleting records from, 173-174, 195
design of, 164-165
foreign keys, 164
populating with data, 169
primary keys, 164
retrieving data from, 171-172

rows, 163

updating, 172-173
tags, XML, 181
test beds, 63
text, storing in ViewState, 214-215
TextChanged event, 115
Timer control, 158
toolbox, 71
.ToString() method, 105, 124, 145, 240, 242
tracing information, viewing, 272-273
TRUNCATE TABLE command, 174
try-catch blocks, 25, 231
try-catch-finally blocks, 24-26, 29
typeface, 116

U

underscore (_) character, 101
uniform() function, 36, 37
UPDATE command, 172-173
user input
retrieving from the console, 244
validating, 226-230
user interface, updating, 103
using keyword, 126
using statement, 77
utility class, 75, 77

v
validation, 226-230
value types, 60
variables, server, 274-275
ViewsState, 213-215
Visual Studio, web site creation in,
207-213
Visual Studio 2008, 10

w

watches, 77
web applications, 206
web.config file, 232-234, 260
web controls, adding programmatically,
258-260
Web Developer Toolbar, 256
web development
error handling, 230-234
form creation, 217-224
history of, 203-207

security issues, 234-238
validation, 226-230
in Visual Studio, 207-213

web pages

accessing cross-page data, 225-226
.aspx, 207-213

cross-page data, 225-226
development of, 207-213

error handling with, 230-234
HTML, 203-204, 263

Postbacks, 216, 222-225
redirections, 273

screen scraping, 269-271

stateless, 213, 257

INDEX

Windows, Automatic Updates, 207
word-finding application (example), 44-46

X
X-DLR-Version server variable, 220
XHTML-compliant markup, 260
<xhtmlConformance> tag, 260
XML (Extensible Markup Language),
180-184

formatting rules, 181

pros and cons, 181

retrieving RSS feed with, 181-183

sample document, 180-181

writing file to disk, 183-184

285

static, 203 XmlTextReader, 183
viewing tracing information about, Y
272-273 YouTube. 206
ViewState tag and, 213-215 outube,
web servers, 206 Z

WHERE clause, 173 zero-based arrays, 41, 45

